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Abstract

The deluge of intelligent objects that are providing continuous access

to data and services on one hand and the demand of developers and

consumers to handle these data on the other hand require us to think

about new communication paradigms and middleware.

Based on requirements collected from scenarios from connected car,

social networks, and factory of the future this thesis is developing new

concepts for fast data processing for hyper-scale systems. In hyper-

scale systems, such as in the Internet of Things, one emerging require-

ment is to process, procure, and provide information with almost zero

latency. This thesis is introducing new concepts for a middleware to

enable fast communication by limiting information flow with filtering

concepts using event policy obligations and combining data processing

techniques adopted from complex event processing.

Fast data processing has to deal with continuous data streams of

events, providing a set of operators to manipulate, aggregate, and

correlate data. This processing logic needs to be distributed. Dis-

tribution helps us to scale on one hand in terms of numbers of data

sources (e.g. phones, cars, sensors) and on the other hand to paral-

lelise processing in terms of grouping and partitions (e.g. regional).

In our solution, event policies are injected as close as possible to the

place where the data is born to optimise traffic. Filters, aggregations

and rules help to process the data accordingly. Finally, communi-

cation paradigms or interaction patterns support mediation between

classical service based request-response interaction and event-based

data exchange.

This all together builds a middleware enabling fast data processing

for hyper-scale systems.
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Chapter 1

Introduction

“If you want your children to be intelligent, read them fairy tales. If you

want them to be more intelligent, read them more fairy tales.”

– Albert Einstein

Today, there are various mega trends; people are talking about big data, cloud

computing, service-oriented architecture (SOA), or the Internet of Things (IoT);

just to name a few. All these trends have at least one common aspect: Data!

There is a huge amount of data produced by a vast amount of heterogeneous

sources, e.g. sensors, phones, cars, etc.. This data needs to be filtered, processed,

and procured. Besides simply collecting all this data, there is rapidly growing

demand to create timely insights into data. These insights can provide com-

petitive advantages to business. Extracting relevant information from data or

correlating data with other data sets as fast as possible is becoming a key factor

for success. Latency, the time needed to process data, is getting more and more

critical. It requires handling a huge volume of data, meditation between various

data structures and processing a large number of sources.

Therefore, this thesis will investigate the following directions:

1. How can this data get processed as fast as possible?
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2. How can relevant data be separated from irrelevant data?

3. How can data get filtered efficiently and in a scalable manner?

4. How can data from distributed, heterogeneous data sources and services be

integrated into a system?

5. How to combine different technologies and different interaction patterns to

make data flow efficient?

6. How to bridge between services, data, and consumers?

7. How to mediate between service offerings and consumer request in a timely

manner, with almost no latency?

We should note that the huge data volume does not arise (at least in the

scenarios we consider and address) from large single items of data that occur in

scientific computing but rather from a very large amount of small items such as

sensor readings.

To achieve almost zero latency data processing, data must be available at the

place where the user needs it, such as a data provider. So, instead of pulling

data at request time from data sources, data should be pushed to such a data

provider. This is only the first step towards a faster processing of data in terms of

providing results with low-latency. If the data sources are continuously pushing

data to a data provider (e.g. the selector) there is a vast amount of overhead

by unnecessarily transferring data – a waste of bandwidth. Especially for mobile

devices the cost of bandwidth needs to be taken into account.

For examples there is a data provider, the one who interacts with the user. He

knows when the user needs updated data and the intelligent data sources know

about their situation. Thus, the data provider informs the sources under which

changing situation (when) the sources should inform the data provider about the

change of their properties (what). What and when can be expressed with event

policies which are injected into the data sources, so that we can really make

use of their intelligence. Thus, each data source will be responsible to make the

projection from its own fine-grained, raw data to some more high-level, complex

data which the data provider - and at the end the user - is interested in.

2



1.1 Motivation Scenarios

Data processing technologies, especially Complex Event Processing (CEP),

are tackling the aspect of processing data with low latency. Some CEP systems

are based on temporal algebra and provide consistent query languages based on

strong formal languages. Therefore, the connection between service offerings,

enriched by time information, and CEP-based events has to be made to improve

processing time. A combination of service based systems and CEP, or more

general event processing systems sounds logical. By extending event processing

logic and rules for data to be processed already on the service side, close to the

sources, is reducing the amount of data which needs to be sent around. The logic

can also be used to correlate and aggregate data (events) on its origin.

This approach can be used to overcome the scaling problem when we talk

about millions of services, data sources or simple sensors. The mediation between

consumer requests and service offerings is the most challenging aspect because

it requires pattern mining and detection. Pattern mining and detection can be

achieved by learning from interaction between users and services. As soon the

pattern is learned it can be expressed in terms of a query on the stream of

incoming data or can be pushed to the service side.

This research investigates in combining existing paradigms, such as pub-sub

approaches for processing service offerings and mediations with classical request-

response SOA approaches for consumer requests, facilitated by data processing

technologies, such as Complex Event Processing (CEP).

1.1 Motivation Scenarios

In real life there is a plethora of examples for hyper-scale setups, such as connected

car green wave, smart factories or smart cities. In the connected car green wave

scenario, car data and traffic signal data needs to be collected. The system will

recommend to the driver the correct speed so that she can, depending on current

traffic, catch the next signal light at green and does not need to stop. The

current light signals state, the position and speed of the driver and the speed of

the drivers nearby are relevant to find the correct speed. Clearly, some processing

must happen in the cloud and maybe some processing in each drivers’ car. The

3



1.1 Motivation Scenarios

calculation of speed and direction is the timely insight and has to happen ad-hoc

and with low-latency otherwise the driver would not need it. This can happen

locally. The correlation between cars has to happen in the cloud as central point

for intelligence. Here, the logic has to partition cars in regions with the same

direction (ideally on the same street) and calculate the ideal speed for them.

This scenario makes clear how important local and global processing is to

enable fast insights and recommendation for the ideal speed for cars. However,

the entire processing could happen in the cloud but this would not be ideal since a

lot of raw, unneeded data would be sent around and would impact on bandwidth

and network traffic. To find the right balance between what can or should be

processed locally and what needs to be processed globally is actually one challenge

and depends on the scenario.

In the following we present four scenarios from various domains to highlight

the demand for a system which enables fast data processing for a huge number

of data sources - hyper-scale system.

We introduce examples from fleet management, social network systems, in-

surance companies and manufacturing to motivate our approach. However, the

approach is not limited to these scenarios and can be applied in a wide variety of

applications where cloud services are matching a large set of potential consumers

to providers, such as sensor network or logistics, e.g.

• Traffic sensor networks to monitor vehicle traffic on highways or in congested

parts of a city.

• Parking lot sensor networks to determine which spots are occupied and

which are free.

• Geo tracking of vehicles to support optimised routing of deliverables.

1.1.1 Fleet Management

In fleet management, like taxi companies, with a large amount of taxis it is almost

impossible to use the classical request-response approach to find the nearest taxi

for a given user location (see (TRM11, MTJ14)). Therefore, the fleet management

4



1.1 Motivation Scenarios

A

C

B

D

Figure 1.1: Fleet Management Sample

must be aware of the taxis location at any given time. There is usually no need to

store all the provided locations of all taxis forever. The management system only

requires the latest data to process a user request to locate the nearest taxi. There

is no necessity to persist the data for later use. In the scenario (see Figure 1.1)

there is a customer with a given context, his geo location, requesting a taxi. The

fleet management system has to identify the most relevant taxi in terms of (1)

availability and (2) proximity to the customer’s location. There are two taxis,

A and C, which are close to the customer’s location but they are not available.

Taxi B is the closest which is available. Of course the fleet management could

take traffic information into account, and then maybe taxi D becomes the best

solution because it is reasonably close, available and might arrive earlier because

of beneficial traffic conditions.

This scenario shows

1. how different kind of properties of taxis (here: availability and geo location)

2. properties of different services (here: taxi and traffic) are used to select

services, and

3. that taxis have to pro-actively inform the fleet manager about their location

to enable fast and reliable responses to customer requests
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Furthermore, the geo location and the traffic information are data which

changes rapidly and it does not make sense to store all of this data because it

is only short-lived and hence only the current values are relevant when a service

has to be selected.

1.1.2 Friend-Near-by

Another example is extracted from social networks. In this example we are con-

necting virtual friends in real-life. Users of a social networks can provide their

location information via a smart phone or tablet PC. Correlating this information

with social network data, such as friends and their position, a service can send

a notification back to the phone whenever one of the friends is close-by so that

the user can meet his friends in real life (TRMJ12). To do so, the user has to

provide his geo position and information about his social network, his friends, to

a service. In this scenario we have two types of data: (1) location data which is

time dependent and might change frequently and (2) social data which can be

considered static. The location data needs to be sent regularly to the cloud and

might cause a lot of data traffic if we consider a large number of users.

Assume there are Bob, Alice, Chris and Dave and they are all part of the same

social network (see Figure 1.2). Alice is a friend of Dave, Chris and Bob, and

Dave and Bob are also friends. While Bob is sitting at home, Alice is traveling

with the metro from A to B, Dave is going by car from C to D, and Chris is in

a rush and drives from E to F. Since Bob’s geo position is almost static he only

needs to provide his position once. In contrast, Alice, Chris and Dave are moving

and hence need to provide frequent updates of their geo positions. The cloud

service itself collects and processes all data. In case there is a match the service

can inform the users. So that for example Alice and Dave can be informed at

time t and position X that they are close to each other so that they can take

this chance to talk to each other face to face. Since Chris is in a hurry, he has

no time to meet and talk to one of his friends, he has set his availability to false.

Although he could meet Alice as well in Y, his device should not provide any

position data since there is no time anyway. The service would not propose that

Chris and Dave should meet in Z because they are not friends.
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Figure 1.2: Friend-Near-by sample

What can we learn and extract from this scenario? This scenario shows

1. the need to process different kinds of properties (here: availability and geo

location) in a timely manner

2. properties of different services (here: geo position and social network) are

used to match user data

Thus, it makes sense to have rules running on devices which define which data

should be used (event), when data should be sent (condition) and what data

should be send (action). While each specific rule is very specific to a scenario,

they help to balance between optimising data traffic and data accuracy in a cloud

system (and actually in terms of privacy it is even better to keep less).

1.1.3 Pay-as-you-Drive

The privacy aspect becomes even clearer within this scenario. Pay-as-you-drive

auto insurance is a type of automobile insurance whereby the costs of motor

insurance is dependent upon the type of vehicle used, measured against time,

distance, driver behaviour and place (see (CC12)). This differs from traditional
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insurance, which attempts to differentiate and reward ”safe” drivers, which is

a reflection of history rather than present patterns of behaviour. This means

that it may take a long time before safer (or more reckless) patterns of driving

and changes in lifestyle feed through into premiums. With the pay-as-you-drive

insurance model it is possible to provide a new model for costumers and taking

physical data coming from the car and deriving behaviour.

We take the pay-as-you-drive insurance as motivating example for processing

data already at the car level. The in car calculations can avoid on one side

that raw, high frequent data is send and on the other sides it aggregates data and

creates information in a way that privacy at some level is preserved. This requires

a programming model to express logic in a way to aggregate raw personal data,

such as GPS positions, and the ability to correlate results of aggregation with

other data (e.g. weather).

This scenario can be used to consider some local calculations of the behaviour,

acceleration, lane changes or heavy breaking and enriching it with more global

available data, such as weather or traffic information. However, data sources in

the car are the odometer giving the speed, or the breaks. The in car calculation

will provide the basic driver index (BDI) (see Figure 1.3).

In the scenario there is Bob. Bob is having a fast car and he likes driving

fast and changes lanes whenever there is a free spot. Sometimes he has to break

heavily. All this makes him an aggressive driver. On the other side there is

Chris. He thinks economically and adjusts his speed to the traffic. He avoids

heavy breaking or any unnecessary lane switches. He is a safe driver. And then

we do have all the other drivers in between.

So, we can define our BDI for this example as follows:

BDI =
n∑

i=1

wi ∗ fi(pi) (1.1)

with

pi : Properties contributing to index, such as speed, breaks etc.

fi: A specific function or rule to extract a value from property

wi: Weight of the value
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Figure 1.3: Pay-as-you-Drive Sample

There is also an adjusted driver index (ADI) which is the basic driver index

adjusted by some external data, such as weather or heavy traffic. For example

the BDI is calculated with perfect road and weather conditions, but if it rains or

it is icy drivers needs to reduce their speed and have to drive even more carefully.

This adjustment can happen in an additional service. We call it aggregation

service (or mediator). This service has all external data sources available and

can aggregate the weather information with the BDI coming from the cars. To

preserve privacy in this setup the BDI cannot contain the exact GPS position

but maybe a region; this will be sufficient for processing needs since weather

information is also regional. Alternative the car could also calculate the ADI

itself, if the car has a rain sensor for example. The ADI would be calculated as

follows:

ADI =
∑

fi ∗BDI (1.2)

The only information the insurance company would get is the adjusted driver

index per driver; based on this the company can calculate the insurance fee. Well,

this would be ideal and in reality the company needs more data as the BDI or

ADI is more complex, but already the reduced example shows the potential of

our approach.

This scenario shows
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1. how local aggregation can support preservation of privacy

2. the need to mediate between different service interaction models, such

as data streams (speed, breaks ...) and weather information pulled from

weather services

3. the need for more complex logic and rules

Again, we have a rule running on the device which defines which data should

be used (event), when data should be sent (condition) and what data should be

send (action) and we do have a similar setup in the cloud performing the ADI

calculation before the insurance company can access the data.

1.1.4 Shop Floor Monitoring

While in the pay-as-you-drive scenario privacy preservation is a predominant fea-

ture, latency and efficient data processing is more relevant in industry scenarios

(ST13). In a typical scenario (e.g. within a manufacturing shop floor), sensors are

connected to programmable logic controllers (PLCs), where each PLC is respon-

sible for monitoring and controlling one machine. The PLCs forward information

to a backend system where the signals can be correlated with manufacturing

workflow data or enterprise resource planning (see Figure 1.4).

The operators’ dashboards are reading and presenting the data from the back-

end system. Typically, there are already some static pre-filtering or down sam-

pling rules on the PLCs (for example in normal situations, the PLCs should

forward the temperature, vibration and rotation aggregated readings only every

second). However, the PLCs have access to much higher data rates (up to 10

KHz). Suppose then that the PLC detects that the temperature is above a given

pre-defined threshold and reports an alarm to the backend. In this situation,

the operator would like to get more information from the machine/PLC associ-

ated with the alarm. Therefore, he grabs his mobile device (e.g. tablet or smart

phone) and goes to the shop floor to check the machine personally. In front of

the failing machine, he would now (1) like to connect to the machine directly and

(2) inspect the high-resolution data streams.
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Figure 1.4: Shop floor monitoring sample

To enable this, the operator’s mobile device must be able to run local queries

and the system managing the analytics must be able to detect the new context

of the operator (in front of the machine) in order to re-arrange the setup of logic,

so that he, the operator, can receive the high-rate data streams from the PLCs.

This scenario shows

1. the demand to enable the integration of different systems (sensors, MES,

ERP)

2. the demand of data processing rules acting on context information to adjust

behaviour

However, the system needs to adjust its behaviour provided by context in-

formation. Here, we have the source of data, the temperature (event) and the

defined threshold (condition) so that the operator can receive an alarm (action).

In cases the operator is in front of the machine the condition, the sampling rate,

and the action (send data to different endpoint) are changing.

1.1.5 Alarm Management

The shop floor monitoring sample is highlighting the demand of fast data and

context relevant data processing. This gets even clearer within alarm management

(see (KHJ+14)).

In alarm situations in industry, such as refineries, operators have not to deal

with one single alarm but with a so-called alarm cascade. A huge number of
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Figure 1.5: Alarm management sample

alarms from various sensors and systems are forwarded and flooding the entire

system and the operators dashboard – leaving them to determine the root cause

of the problem. Here, it would be very helpful if the system could hold back

minor prioritised alarms and give high priority to crucial alarms and data. It

would be good to have a set of rules on sensors and higher-level devices to decide

which alarm (or event) should go through in which context. This has to happen

as fast as possible and instantaneously.

In our example we have a two stages approach (see Figure 1.5). First there

is the state-based alarming. This is an alarm management method based on

switching of the alarm system configuration to the settings which correspond

to the identified process state. As stated in (KHJ+14), this technique aims at

eliminating occurrences of alarms inappropriately triggered by normal process

changes within given process state. This can already help to reduce the number

of alarms. As an example for potential states:

• State 0: normal state (the alarm limits design corresponds to light crude

oil fed into the column at medium flow rate)

• State 1: light crude oil and low input flow rate

• State 2: light crude oil and high input flow rate

• State 3: heavy crude oil and high input flow rate

These states can be forwarded to some backend node which can use the state

to pick the right configuration for state and alarm to enable alarm load shedding.
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In alarm load shedding the operator is interested in prioritising of actions during

alarm floods (i.e. an abnormal situation in operations when the number of alarms

exceeds the operator alarm handling capacity.). The alarm load shedding method

limits the rate of displayed alarms with a targeted alarm rate or approximately one

alarm per minute (when feasible), which is considered to be the alarm rate that

the human operator can still handle. This method is based on ranking alarms with

respect to their urgency and delaying less urgent alarms from being displayed.

Given its nature, this method is suitable for abnormal process situations, which

have not been handled by state-based alarming. As a result of this method, the

alarm load is distributed more evenly for the operator and most urgent alarms

are handled first.

Examples are:

• Percent of time in flood state: The proportion of time that the operator

console is flooded with alarms. The rate at which a single operator is over-

whelmed by alarm activations (i.e. when the alarm count per 10 minutes

exceeds 10 alarms).

• Average number of alarms in 10 minutes: The alarm rate that the operator

is able to efficiently handle in long term is less than 1 alarm in 10 minutes.

• Peak number of alarms in 10 minutes: The maximum rate for the most

active 10-minute interval within the evaluated time period is 10 alarms.

• Peak Alarm Minute Rate: The target peak minute rate for the most active

minute within the evaluated time period. Target = 2 per minute

This scenario highlights the need to express conditions on which actions are

triggered based on some highly frequently changing data (sensor data) and static

definitions of configurations. Furthermore, it show the requirements of temporal

computations, or windowing, as we have seen above.
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1.1.6 Summary

In general we can extract the following list of requirements from provided scenar-

ios:

Scenario Requirement

Fleet Management
• [R1.1] Processing of dynamic and static data and
dynamic properties
• [R1.2] Data traffic reduction by local processing

running on nodes
• [R1.3] Timely insights through recurrent data pro-
cessing

Pay-as-you-Drive
• [R2.1] Privacy preservation through local data

aggregation and calculation
• [R2.2] Global correlation of local results with global
services
• [R2.3] Support of huge number of data sources

Friend-near-by
• [R3.1] Support of huge number of data sources

(users and phones)
• [R3.2] Privacy preservation through local data

aggregation
• [R3.3] Fast processing of dynamic and static data

Shop Floor Monitoring

• [R4.1] Timely insights in production process (KPIs)
• [R4.2] Easy to adapt setup to context changes

(operator position)
• [R4.3] Integration of heterogenous data sources in
terms of number and interaction
• [R4.4] Smart local aggregation to avoid unneeded
data traffic

Alarm Management

• [R5.1] Timely insights in alarm situations
• [R5.2] Easy to adapt setup to context (alarm state)
• [R5.3] Processing of dynamic data to detect alarms
and adapt to static configuration
• [R5.4] Integration of potentially many different

data sources in terms of number and interaction
• [R5.5] Local processing for pre-filtering and global
processing for adaption
• [R5.6] Temporal or windowed aggregations (e.g.

every 10 minutes)
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1.2 Research Challenges

Based on research direction described above, the following concrete topics have

been identified and will be addressed at the different phases of this PhD project.

In the following, each topic reflects one research direction discussed in the previous

section (see Figure 1.6).

Speed: Fast processing of data to provide timely insights

Requirements: [R1.1],[R1.3],[R3.3],[R4.1],[R5.1], [R5.6]

There is a demand on getting results as fast as possible. New paradigms are

needed to improve the speed on processing service requests or in processing data

provided by data sources, such as sensors. Basically, it makes sense to rethink

classical request-response SOA approaches and to ensure that service offerings

process data in almost real-time. Furthermore, we require a way to express data

processing in a way that it fits in certain systems. This is a key challenge for

moving forward towards to the next generation of the SOA The research issues

are:

• How to ensure that service offerings and data are processed as fast as pos-

sible?

• What interaction pattern to choose to enable provisioning of information

with almost no latency?

• What model to express data processing?

• Which set of operators is required?

• How to enable aggregations over time windows?

Scale: Be smart in terms of which data to process and where to optimise

data traffic.

Requirements: [R1.1],[R1.2],[R2.1],[R2.2],[R2.3],[R3.1],[R3.2],[R4.2],[R4.4],[R5.5]

Considering sensors, cars, phones or other data sources as potential services,

which need to be integrated and their data be processed, requires to rethink the

pure forwarding of raw data to a single process or backend. Instead of bringing

the data to the processing we have to consider bringing the processing to the data
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instead. Logic should run on nodes and be smart in terms of forwarding data.

Ideally a master service can control when data is forwarded and which data is

forwarded through terms of aggregation or batching. A higher level of control of

transferred data is required to optimise data traffic. Controlling the data flow and

the amount of data without missing any insights enables scaling up to millions

of services sending data around. The research questions are

• How to reduce network traffic in large scale service networks?

• How to express logic for nodes?

• How to distribute logic within the topology?

Mediation: Combine request-response interaction with event-based interac-

tion efficiently.

Requirements: [R1.1],[R2.2],[R3.3],[R4.3],[R5.3],[R5.4]

In context of this thesis mediation is used to describe the combination of request-

response interaction pattern and event-based interaction. These different pattern

needs to be combined and there must be concepts enabling their seamless inte-

gration.

• How to mediate efficiently between consumer requests and service offerings?

• Who is defining mediation rules? Is this automatic or defined by domain

experts?

• How to combine push- and pull-model in an effective way?

The research presented in this dissertation addresses these 3 challenges. In

particular, we present a novel approach for processing temporal data in an efficient

way and a novel approach to use the actor model for highly-distributed data

pipelines. Based on these concepts, we develop a new architecture for fast data

processing in hyper-scale systems.
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Figure 1.6: Challenges of the thesis
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1.3 Research Aims and Statement

The overall aims of this dissertation are developing a model for enabling fast data

processing in hyper-scale systems. It is useful to further divide the aims into more

specific problems, objectives and questions.

Aims

1. Data processing model to process temporal service data with near zero

latency.

This aim is looking into a formal way to express data processing as a

pipeline of transformations from sources to action. Ideally, the model is

based on formal logic as grounding.

2. Model to enable data processing in highly-distributed and large systems.

This aim is tackling the scale challenge. The model has to scale up to a

huge number (millions) of different data sources. With millions of data

sources or services the model has to enable a way to distribute logic over

data. It ensures to bring the processing to the data instead of bringing

the data to the processing. This includes the development of flexible

distribution concepts and methods to be smart in terms of bandwidth

usage and network traffic.

3. Develop an architecture to mediate between different interaction pat-

tern.

Within a heterogenous setup we can expect different interaction pattern,

e.g. request-response or event-based. An architecture has to provide

means to integrate these patterns in an coherent way.

There are a number of objectives that need to be met by the approach.
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Objectives

1. The formal model for fast data processing shall respect continuous data

streams and time related properties.

2. The formal model shall be easy to use and shall support simple types

of data.

3. The underlying architecture shall support the distribution of logic to

nodes to enable filtering at the source.

4. The architecture shall be capable to deal with a large number of services,

sensors and data sources.

5. The mediator architecture shall have low complexity to integrate push

and pull conversations.

6. The mediator architecture must provide an effective way to handle large

amount of data.

To address the first two objectives, we need to answer the following questions.

• Which model can provide a good foundation for processing time relevant

properties?

• How can we ensure correctness of processed data?

• What does correctness mean?

• How to connect the model with the physical world in terms of data sensor

readings and actuations?

• What is an easy way to create a pipeline to process service or sensor data?

• What influence does the pipeline have on latency?
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Regarding the third and fourth objective, three research questions should be

considered:

• What kind of lightweight model can run on nodes?

• Is there a way to distribute logic across a network?

• How to combine the architecture with the formal model?

The last two objectives are related to the following research questions.

• How can we measure scalability?

• Is there a way to optimise network traffic?

In this dissertation, we address all these questions, however, some aspects are

considered in greater depths.

Thesis Statement

The dramatic increase of data coming from heterogenous data source and

the need to process and procure these data to provide insights in short time-

frames is a key challenge in software engineering. We show an approach to

enable fast data processing in a highly distributed setup with different inter-

action patterns in a feasible and practical way.

1.4 Key Terminology and Assumptions

To ensure a focus on the outlined research aims, objectives and questions, some

crucial terminology and assumptions have to be established. Some of these terms

are already defined in other scopes or might have ambiguous definitions. There-

fore the following collection is summarising terms which are crucial to put this

thesis in the right context. Furthermore, in the young field of data processing

in cloud scale systems different researchers use some terms in slightly different

ways. To avoid ambiguity we present our use of the relevant terms.
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• In general we are talking about big data in this thesis. In contrast to some

other definitions big data is in this thesis the result of small chunks of data

produced by a huge amount of various data sources. These data sources

are producing the data recurrent and frequently, e.g. one data point every

second or even in sub-second intervals. We can find this setup in IoT, like

SmartCities etc.. A huge amount of sensor across a city are producing

temperature, traffic or air pollution data (just to name a few). In addition

to these sensor data we can find car telemetry data or weather information

from services. All this data is usually small in terms of size but big in terms

of numbers and data rate. As a result we are talking here about big data,

too.

• With this thesis we would like to introduce the term fast data. In contrast

to big data which usually just tries to characterise the plain quantity of

data the term fast data tries to focus more on the speed aspect the data

needs to be processed. While speed is just the time between when the data

is born up to when relevant insights are available.

• We have mentioned hyper-scale systems already sometimes. In scope of

this thesis a hyper-scale system has to deal with the huge amount of data

sources, services and sensors. There is no number to quantify a hyper-scale

system, but we would except thousands and thousands of data sources.

• Data sources, services and sensors are basically used within this thesis to

provide examples for nodes which can deal as a source of data. We would

like to call all of them services, but sometimes we are using the term data

source or simply node as a synonym.

• Sometimes we might use the term real-time data processing. We just want

to point out that real time in scope of this thesis is more soft real-time or

near real-time. It is not meant as hard real-time as we can find in industrial

control systems or other critical systems. The real time in this scope is not

ensuring that a result is available within a given time. It is more about

processing the data as fast as possible without any additional saving to

databases.
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• The data sources and services are producing a continuous flow of data.

There is no beginning and end. Thus, we are talking about a stream of

data points.

• A data point is also called an event. We will provide a more solid definition

later in this thesis but for general understanding an event could be seen as

a data point at a given time.

• So far the term logic was mentioned. Logic is a piece of executable software

code. Later we will replace the term logic with the term expression.

1.5 Methodology and Contributions

We use the case study based research methodology. Our research began with

analysing the real world data processing scenarios taken from IoT. The alarm

management scenario is a result of discussions we had in the IMC-AESOP project

(HMT+14), (JKB+14), and (KHJ+14).The other scenarios were taken from cus-

tomer interactions in the scope of manufacturing, smart cities and fleet man-

agement. Based on discussions and requirements collection with customers the

presented scenarios were developed and representing the state of the art of current

discussions within this domain.

The main contributions of this dissertation are:

• A syntax to describe data processing pipelines from sources to actions. The

main focus of the syntax is on expressing transformations from input data

and trigger actions on the output side (Chapter 3).

• An architecture to enable a distributed pipeline setup over a heterogenous

set of nodes (Chapter 4).

• Event policies which help to optimise data traffic in hyper-scale systems

(Chapter 4).

• A mediation model to integrate pull and push interaction into one coherent

architecture (Chapter 5).
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1.6 Dissertation Outline and Summary

This chapter discussed the purposes of the dissertation - addressing fast data

processing and data mediation for large scale, distributed systems. We explained

the crucial challenges of combining different interaction paradigms to address

issues around services and efficient data processing through an enhanced model

in combining push and pulls-based models.

In order to draw our research borderline, we listed the interested research

aims, objectives with their related questions and provided focus with a clear thesis

statement. The key assumptions and terminology were explained. In addition,

we highlighted our research contributions in the previous section. The reminder

of this dissertation is organised as follows:

• In Chapter 2, we give a more detailed description of the research back-

ground. Specifically, we are going to discuss the related work on service

and service-oriented architecture in the scope of policies, event-based inter-

action, interval temporal logic, and event data processing.

• In Chapter 3, we focus on time, time dependent service offerings and how

this can be processed with available logic over a stream of events.

• In Chapter 4, we illustrate a new approach to enable data processing over

big, distributed system. Therefore, we are going to extend the actor model

into a code injected actor model.

• In Chapter 5, we investigate how push and pull-based data capturing can

be provided to consumers and how this can we used in junction with the

architecture to mediator easily between different interaction models.

• In Chapter 6, we implement core parts of the proposed approach, measure

latency and scalability. Furthermore, we discuss system evaluation results

for speed and scalability and compare this with existing technologies.

• In Chapter 7, we provide a concluding discussion and identify potential

future research directions.

23



1.6 Dissertation Outline and Summary

Figure 1.7: Structure of the thesis

The figure 1.7 shows how the chapters map to the three overall challenges

described in 1.2:
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Chapter 2

Research Background and

Related Work

“There are three stages in scientific discovery. First, people deny that it

is true, then they deny that it is important; finally they credit the wrong

person.”

– Bill Bryson, A Short History of Nearly Everything

This thesis covers different topics. While there is existing work on non-

functional properties, service selection, complex even processing and temporal

logic, there is no work as far as we are aware which combines these approaches

to solve selection problems for large-scale systems.

We will start with a short overview of state-of-the art of the surrounding field

without going into details that are not directly relevant for this thesis. After the

overview we will dive into some more specific topics, which are relevant for this

thesis and provide some more background. Thus, we will go into more detail for

interval temporal logic (ITL), event data processing or complex event processing,

and event-based interaction patterns. All three topics have direct impact on this
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thesis and therefore we will provide a deeper introduction into these topics.

2.1 State-of-the-Art

To capture state-of-the-art for some topics is quiet challenging since research is

moving forward quickly. Therefore, it is hard to give a full overview of the state-

of-art. We have picked the most relevant work, which is in some aspects touching

this thesis. We will look into work around (1) rules and reactive systems, (2) data

processing in regards of complex event processing, (3) services, service properties

and service selection, and (4) ECA rules.

The use of Event-Condition-Action (ECA) rules is well established in Data-

Stream Processing applications (For90, CM94) and ECA-based policy languages

(TLDS08, UBJ+03) are used to govern the behaviour of systems on the basis

of these rules to control and manage distributed systems (Slo94). In our work,

we are however mainly concerned about the selection and propagation of events

in a P2P infrastructure. The formalisation of event policies in this work differs

from traditional ECA rules in that the condition does not only describe a Boolean

combination of events, but can address the history of a selected event stream that

allow to specify the distance between propagated events using ITL (CMZ11).

Data Stream processors such as SNOOP (CM94) and successors already use

event histories for detecting the order of events, making this a natural model

for expressing policies that also allows for the efficient enforcement of such poli-

cies (JCSZ07). The semantics of event-policies is based on temporal projection

(Mos95) as this is a natural abstraction technique for complex system specifi-

cations. Other work by Duan et.al. (DK04, TD09) on propositional projection

temporal logic would provide alternative formalisations of projection, but lead to

a more complex formalisation of the event policies without apparent gain in this

application context. The use of policies together with a mediator has also been

suggested in a different context by Edge et.al. (ESPC08) where they focus on the

mining institutional transaction data for fraudulent activities. However, their

use of policies is targeted to this particular application domain and is focused on
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the detection of events, whereas we address the problem of event filtering and

propagation as part of an infrastructure for event driven P2P systems.

As already mentioned there is a lot of work about service selection based

on non-functional properties. (YRM08) provides a survey and classification of

service selection based on non-functional properties. Most of the related work

on using non-functional properties for service selection concentrates on defining

QoS (Quality of Service) ontology languages and vocabularies and identification

of various QoS metrics and their measurements with respect to semantic services.

In (YZL07) QoS ontology constraints for efficient service selection are described,

while (RMYT09) separates different non-functional criteria into different service

categories. This is more sensible than ranking all kinds of services by using the

same predefined criteria and hence not considering the different attributes that

occur with specific services. All these approaches are lacking temporal aspect or

NFPs.

Bonifati et al. (BCP02) describes a very interesting approach for using active

rules for pushing reactive services. But it does not take into account temporal

aspects or states. Roitman et al. (RGR09) presents a framework for satisfac-

tion of complex data needs involving volatile data. But the focus is on pull-based

environments. We believe that our approach is more promising for large-scale sys-

tems. With push based systems, data is pushed to the system and the research

focus is mainly on aspects of efficient data processing, where load shedding tech-

niques (TLPY06) can be applied in order to control what portions of the pushed

data to process and to increase latency. Such systems include publish-subscribe

(pub/sub) (DGH+06), stream processing (ACÇ+03), and complex event process-

ing, however there is no consideration of bandwidth consumption.

In the following we will look into some specific topics in more details, which

are relevant for the carried out research in chapters 3, 4, and 5. Interval temporal

logic is key for chapter 3 where we introduce the programming model for past

data processing. Event data processing or complex event processing inspires

section 4. Therefore, we will look into more detail into some CEP concepts, which

are relevant. Finally, interaction patterns, pull- and push-based interaction, are

building the baseline for chapter 5. So, we will provide some overview here as

well.
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Expressions

e ::= µ | a | A | g(e1, . . . , en) | ©v | fin v

Formulae

f ::= p(e1, . . . , en) | ¬ f | f1 ∧ f2 | ∀v r f |
skip | f1 ; f2 | f1∆f2

Figure 2.1: Syntax of ITL

2.2 Interval Temporal Logic

The key notion of ITL (CMZ11) is an interval. An interval σ is considered to

be a (in)finite sequence of states σ0, σ1 . . ., where a state σi is a mapping from

the set of variables Var to the set of values Val . The length |σ| of an interval

σ0 . . . σn is equal to n (one less than the number of states in the interval, so a one

state interval has length 0).

The syntax of ITL is defined in Figure 2.1 where µ is a constant value, a is

a static variable (does not change within an interval), A is a state variable (can

change within an interval), v a static or state variable, g is a function symbol

and p is a predicate symbol. The syntax is based on (CMZ11), however uses the

projection operator f1∆f2 as primitive and derives the operator f ∗ as introduced

in (Mos95).

The informal semantics of the most interesting constructs are as follows:

• skip: unit interval (length 1, i.e., an interval of two states).

• f1 ; f2: (“chop”) holds if the interval can be decomposed (“chopped”) into

a prefix and suffix interval, such that f1 holds over the prefix and f2 over

the suffix, or if the interval is infinite and f1 holds for that interval. Note

the last state of the interval over which f1 holds is shared with the interval

over which f2 holds. This is illustrated in Figure 2.2.

• f1∆f2: (“projection”) is defined to be true on an interval σ iff two conditions

are met. First, the formula f2 must be true on some interval σ′ obtained by
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. . . . . .
σ0 σk σ|σ|

f1 f2

Figure 2.2: Informal Semantics of f1 ; f2

projecting some states from σ. Second, the formula f1 must be true on each

of the subintervals of σ bridging the gaps between the projected states.

An example is depicted in Figure 2.3.

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

K = 0 1 2 3 4 5 6 7 8

σ′
0 σ′

1 σ′
2 σ′

3 σ′
4

K = 0 2 4 6 8

len 2 len 2 len 2 len 2

K gets K + 2

Figure 2.3: Example of Temporal Projection

In the interval σ the value of K increases from 0 to 8 in steps of one. The

interval σ satisfies (len(2))∆(K gets K + 2). (len(2)) is true if the interval

is of length two and (K gets K + 2) is true if the K increases by 2 from

state to state. The gaps between the projected states (highlighted in red)

are bridged by the formula len(2). The formal definition of this operator is

given in (Mos95).

• ©v: value of v in the next state when evaluated on an interval of length at

least one, otherwise an arbitrary value.

• fin v: value of v in the final state when evaluated on a finite interval, oth-

erwise an arbitrary value.
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2.2.1 Derived Constructs.

The following lists some of the derived constructs used in the remainder of this

paper. The binary operators ∨ (or) and ⊃ (implication) are derived as usual.

• ©f =̂ skip ; f (read “next f”), means that f holds from the next state.

Example: ©(X = 1): Any interval such that the value of X in the second

state is 1 and the length of that interval is at least 1.

• more =̂ ©true means the non-empty interval, i.e., any interval of length at

least one.

• empty =̂ ¬more means the empty interval, i.e., any interval of length zero

(just one state).

• inf =̂ true ; false means the infinite interval, i.e., any interval of infinite

length.

• finite =̂ ¬ inf means the finite interval, i.e., any interval of finite length.

• f_
1 f2 =̂ f1 ; skip ; f2 weak chop, like chop but f1 and f2 don’t share a state.

• ♦f =̂ finite ; f (read “sometimes f”), i.e., any interval such that f holds

over a suffix of that interval. Example: ♦X 6= 1: Any interval such that

there exists a state in which X is not equal to 1.

• �f =̂ ¬♦¬ f (read “always f”), i.e., any interval such that f holds for all

suffixes of that interval. Example: �(X = 1): Any interval such that the

value of X is equal to 1 in all states of that interval.

• �i f =̂ ¬(¬ f ; true) box-i, i.e., any interval such that f holds over all prefix

sub-intervals.

• �a f =̂ ¬(finite ;¬ f ; true) box-a, i.e., any interval such that f holds over all

sub-intervals.

• fin f =̂ �(empty ⊃ f) defines the final state, i.e., any interval such that f

holds in the final state of that interval.
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. . . . . . . . . . . .
σ0 σi σj σk σ|σ|

f f f

Figure 2.4: Informal Semantics of f∗

• halt f =̂ �(empty ≡ f) terminate the interval when f holds.

• ∃v r f =̂ ¬∀v r ¬ f existential quantification.

• len(e) =̂


false if e < 0

empty if e = 0

skip ; len(e− 1) if e > 0

holds if the interval length is e.

• v gets e =̂ �(more ⊃ (©v) = e) gets, i.e., in every state except the initial

state the variable v will be assigned the value of e evaluated in the previous

state.

• f ∗ =̂ f∆true (read “f chopstar”) holds if the interval is decomposable into a

finite number of intervals such that for each of them f holds, or the interval

is infinite and can be decomposed into an infinite number of finite intervals

for which f holds. This is illustrated in Figure 2.4.

2.3 Event Data Processing

In the last decades due to the significant increase in speed and volume of in-

formation flows, it has become vital to have technologies and automation tools

allowing us to handle very high data rates with strict latency requirements. These

demands are shared by many event-driven organisations in different areas of in-

dustry such as manufacturing, health care, financial services and web analytics.

Complex event processing (CEP) is a technology of continuous real-time data

processing, which satisfies the above requirements.

CEP can be seen as continuous and incremental processing of event streams

from multiple sources based on declarative query and pattern specifications with

near-zero latency. CEP enables monitoring and analysis of events happening on
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different levels of organisation, helps in identifying their relationship and corre-

lation, and triggers immediate subsequent actions.

2.3.1 Events

An Event is a basic concept of CEP. It defines something that happened. There

are plenty of events in our every-day life, for example: a historical or social

happening, a car accident or receiving of a text message. There are different

formal definitions of this term in the literature ((LS08), (GPMF06)). Basically,

we can define event within this context as any happening of interest that can be

observed, recorded and reacted on in a system.

An event is created in two distinct steps: observation and adaptation. Firstly,

a particular activity of a system should be observed without changes to the sys-

tems behaviour. Then observed activities are transformed into event objects that

can be processed by the CEP system. The transformation is usually done by

special entities called adapters.

As described in (Luc02) we can distinguish three major aspects of an event:

1. Form: The form constitutes the data associated with an event. It can

contain different attributes or data components. The typical data compo-

nents of an event are, for instance, a timestamp when the event happened,

a source of the event and its longevity. The same event can have different

forms communicating different data to interested parties. In the literature,

by event/notification it is often meant a complete event object (an event

together with its form) (see also (GPMF06)).

2. Significance: An event represents an activity. The corresponding activity

of an event is called its significance.

3. Relativity: Events can be independent or dependent on other events.

They can relate by causality, time and aggregation. The relationship be-

tween events reflects the dependencies of the corresponding activities and

is called relativity. Usually, the events form encodes its relativity, so that

the dependencies on other events can be derived from the given event.
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In natural language or everyday life an event is defined as something that

happens or is supposed to happen. This understanding is partly valid for events

in CEP. Because in CEP an event is represented by an object which is triggered

by an activity or happening, the significance, but it is not the activity itself.

An event is also not just a pure message. The form of such an event could be

represented by a message, but it also needs to cover significance and relativity.

Dependencies and relationships between events can have different form and are

often the main points of interest for CEP applications.

2.3.2 Event Relationships

D. Luckham (Luc02) describes three common relationships between events:

1. Time: Time is used to order events, defining which of the two events A

or B happened earlier. Usually, as soon as an event is created, the current

time is added to the event object in a form of a timestamp. So, timestamps

define time relationships between events. This type of relationship depends

on the clocks in the system. Events can have different time relationships

corresponding to different clocks. Event comparability in this case depends

upon whether the clocks are synchronised.

2. Cause: Event A causes event B, if the activity signifying event A had

to happen in order for activity B to happen. Accordingly, causality is a

relationship of dependency between activities. If event B can happen only

after event A, then event B depends on event A, or event A caused event

B. When neither of the events depends on each other, we say the events

are independent. The relationship of time and cause is expressed in the

following axiom, which is valid for most systems: If event B is caused by

eventA in system S, than no clock in system S will give an earlier timestamp

to event B than to event A. Consequently, if the clocks can observe two

dependent events, they will always observe them in the same order.

3. Aggregation: If the activity corresponding to event A consists of other

activities corresponding to a set of events B1...Bn, then event A is an ag-

gregation of the events Bi. In this case we say that events B1...Bn are
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members of event A. Aggregation is a mean to abstract events, enabling

introduction of vertical dependency. Furthermore, the activity signified by

event A is more complex than the activities of member events. Because of

that, its signifying event is called a complex event. It is easy to see, that

aggregation leads to a causal relationship between the complex event and

its members. Activities signified by complex events often happen over a

period of time and instead of a timestamp a time interval is used. The time

interval starts with the earliest activity and ends with the end of the latest

activity from the events members.

2.3.3 Root-Cause Relations

All the above relationships support partial ordering and satisfy the mathematical

properties of transitivity and asymmetry. We say that a binary relationship R

defined on a set N is transitive, if for any elements A, B, C from the set N such

that element A is related to element B, and element B is related to element C,

follows that element A is related to element C.

For example, the ordering defined by timestamps from the same clock is tran-

sitive. Thus, if event A happens earlier than event B and event B happens earlier

than event C then event A happens earlier than event C. Relationships of ag-

gregation and causality are also transitive. A binary relationship R defined on a

set N is called asymmetric, if there exist elements A and B from the set N , such

that element A is related to element B and element B is not related to element

A.

2.3.4 Event Processing Languages

To describe a complex event, the customer is interested in different types of event

processing languages (EPL). Usually, these languages provide means to identify a

sought-for event sequence using some form of a pattern, and a set of rules, which

define how to react when the event sequence is found.

Because CEP as a technology emerged from different areas of computer science

(such as active database systems, artificial intelligence, event simulation, etc.),
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currently there are many different event query languages that use quite different

paradigms and approaches and significantly differ in the level of expressiveness.

Due to the lack of common terminology in CEP, there are also different classi-

fications of EPLs. The following classification is taken from (Eck08). The author

distinguishes the following types of event processing languages:

• Composition-operator-based: The main idea of this group of languages

is to define simple events and a set of operators that are recursively defined

on them. The result of applying operators is, in its own turn, a com-

plex event. By analogy with mathematics such languages are also called

event algebras, even though not all natural algebra properties apply to

composition-operator-based (COB) languages (for example, associativity

does not hold). Conceptually, a typical COB language interprets events

from all input sources as a single stream of events of different types (Bui09).

The language defines a term of simple event query as a query that allows

specifying events of a particular type, for example message received or mes-

sage sent. The query takes all incoming events as input and produces a

stream of events of a specified type as output. Even though some lan-

guages of this group allow specifying not only a type of the event, but also

some arbitrary data fields, COB languages mostly focus on actual events

as happenings rather than on the associated data. Further in the text, we

will denote simple queries by capital letters (such as A, B, etc.) and the

corresponding events by lowercase letters (a, b, etc.).

• Data Stream: Data stream languages define data streams as unbounded

ordered sequences of tuples (see (Eck08)). Each tuple represents a single

event. In order to be able to use SQL-like queries, data streams have to be

bounded and converted to some form of relations, at least on the concep-

tual level. The main idea behind data stream languages can be defined as

follows: At each point in time T the input data streams are converted into

a set of relations, then a regular relational query is applied to them, and af-

terwards the result is converted back to the output streams. Consequently,

data stream languages define three types of operators: stream-to-relation,

relation-to relation, and relation-to-stream operators. Stream-to-relation
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operators produce a relation from a stream at some point of time T. Typi-

cally, the result of such an operator is a set of tuples for a predefined period

of time or of predefined volume. Basically, stream-to-relation operators

define either a time or tuple based window of relevant to the query events.

• Production Rule Languages: Production rule languages were not specif-

ically created for event querying, but provide a very convenient way to do

that. This group includes such languages as OPS (FM77), IBM ILOG

(MD05), Jess (FH04), Drools (Bro09) and others. The main idea of these

languages is to use a condition-action rule of the form

WHEN condition THEN action

to express event queries. The semantics of this statement is that as soon

as the condition becomes true the corresponding action is executed. The

condition is checked against a set of facts, which is called the working mem-

ory. The facts could be inserted and removed from the working memory.

Usually, representation of working memory and facts strongly depends on

the general purpose programming language around which the production

rule engine is build (such as Lisp, Java, etc.). There are no restrictions on

the actions being called. They can be custom method calls or procedures.

They also can change the working memory, inserting or removing facts. The

CEP functionality can be implemented using production rule languages by

inserting the corresponding fact in the working memory on each new event

and writing event queries as a condition over these facts. As soon as a new

event inserted, the evaluation of all production rules have to be triggered.

Interestingly, the programming model in section 3.4 will make use of produc-

tion rules languages, since we believe that the

WHEN condition THEN action

is very straight forward and understandable idea for a user. The power of the

window concept is otherwise very helpful for reasoning over data streams.
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2.3.5 Temporal Aspects in Event Data Processing

Data stream languages define data streams as unbounded ordered sequences of

tuples (see (Eck08)). Each tuple represents a single event. In order to be able to

perform queries over such sequences, data streams have to be bounded, at least

on the conceptual level. The main idea behind data stream languages can be

defined as follows: At each point in time T the input data streams are converted

into a set of relations, then regular queries can be applied to them, and afterwards

the result is converted back to the output streams.

The concept of windows helps to bound the sequence of tuples. This helps to

apply techniques which usually work only on bounded data sets to unbounded

data streams. In general windowing is a costly way since it keeps the sequence

as state to enable processing over the bounded state.

There are several types of time windows, such as (see Figure 2.5):

• Unbounded window: the resulting relation R at time T contains all tuples

received till time T. This type of the window is very resource intensive and

not often used in real life applications.

• Sliding window: the resulting relation R at time T contains all tuples

within a window of a specified duration d. The start of the window is

moved forward each single time unit or entrance of new events (K ==1).

• Hopping window: the resulting relation R at time T contains all tuples

within a window of a specified duration d. The start of the window is moved

forward each K units.

• Tumbling window: this is a special case of a sliding window, when the

size of the window is equal to its hop size, i.e. d == K.

• User defined window (frame): the resulting relation R at time T contains

all tuples within a time points f(T) and g(T), where f and g are user defined

functions. This is also called frame.The user function triggers the closing

of the window and opening of the successor window.
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Figure 2.5: Windows for temporal data processing
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2.4 CEP Tools

There are various CEP tools available on the market. An elaborated list and tool

description can be found in the appendix (A). We conducted the survey within

the KAP project. There are different features offered by the tools. In this section,

we discuss the features offered by the different CEP tools. First, we clarify the

features and then we provide a table summarising which products support which

features.

We broadly devise the features into language features and execution features.

The formers deal with how the tool users specify how the events should be pro-

cessed. The latters are related to how the system behaves at runtime.

2.4.1 Language features

• Type: We can distinguish 2 broad categories of language the detecting (det)

or pattern-based languages and the transforming languages. The detecting

languages define detecting rules by separately specifying the firing condi-

tions and the actions to be taken when such condition holds. Conversely,

the transforming languages specify one or more operations that process the

input flows of events to produce one or more output flows. They can be

further refined into the declarative (decl) languages for which the process-

ing rules are defined in term of results, and the imperative (imp) languages

for which the processing rules are defined in an imperative way, letting the

user choose a plan of primitive operators.

• Time mode: Relationship between the information items flowing into the

CEP engine and the passing of time. We distinguish the following 3 modes:

– Stream-only (stream): the only language construct dealing with time

is the windowing

– Absolute (abs): an absolute timestamp is available in language con-

struct

– Interval (interv): 2 timestamps, start and end
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• Single item operators: The three operations considered are the selection,

the projection (removing event fields) and the mapping (creating new fields

based on the original fields).

• Logic operators: The logic operators apply only for detection-based lan-

guages. They are used to define rules that combine the detection of several

events. The operators are conjunction (satisfied if all events are detected),

disjunction (satisfied if one of the events is detected) and negation (satisfied

when the event is not detected).

• Sequence: The sequence operator is similar to the logic operators except

that the ordering of the events is considered rather than just the presence

or absence of the events.

• Iteration: The iterations are repetitions of events for which one can spec-

ified the minimum and the maximum number of repetitions.

• Windows: The windows are a construct to group events into buckets that

can be processed individually and for which aggregate functions are avail-

able such as COUNT. The first type is the fixed window for which the

start and the end times are specified. The landmark windows specify only

the start time and process continually the new incoming events. Then, we

distinguish windows based on event count and on time. The count sliding

windows move by one event at a time, removing from the current windows

the oldest event and adding the newly arrived event. The count tumbling

windows proceed by removing all the events in the current windows and

then filling the new windows with new events. Finally, the count hopping

windows is the generalisation of the two preceding windows, discarding an

arbitrary number of events. The time windows are similar to the count win-

dows except that they act on time rather the element counts. Therefore,

the time sliding move by a unit of time, the time tumbling windows move

by time step corresponding to the window, and the time hopping move by

an arbitrary amount of time.
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• Flow management: The flow management operators operate on the flows

of events directly and correspond to their relational equivalents.

• Flow creation: The flow creation refers to the possibility to create a new

flow of events.

• User defined function (UDF): This refers to the possibility to define

functions that can then be called by the operators.

• User defined aggregator (UDA): As an extension of the UDF, the UDA

refers to the possibility to create aggregate functions used with the grouping

of the events into windows.

• User defined operator (UDO): The latest extension considered is the

possibility for the user to create its own custom operators.

• Statistics: This refers to the support in the language for statistical func-

tion, at least correlation and linear regression.

• Probability: Finally, the probability feature refers to the support by the

language for uncertainty regarding event occurrences.

Table in Figure A.1 (see Appendix A) provides a summary of the language

features supported by the different tools reviewed.

2.4.2 Execution Features

The execution features refer to features concerning the runtime operations of the

tools. We have selected the following features.

• Deployment model: The deployment model refers to the way different

engine instances possibly collaborate. The centralised model refer to one

unique server, the network model refer to instances collaborating over the

network, and finally, the cluster model refers to the collaboration between

instances over high-bandwidth connections. Note that although a tool is

classified as centralised, this does not prevent the user to have different
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instances collaborating by building the proper input and output adapters.

It only means that there is not intrinsic support for deploying queries over

different machines.

• Manageability: Manageability refers to the possibility to start and stop

queries dynamically.

• Monitoring: Monitoring refers to the capacity to monitor live the resource

consumption of the engine instances by queries.

• Capacity management: Capacity management, also called load shed-

ding, refers to the ability of the engine to select events to drop in order to

avoid overloading of the engine.

• Debugger: The debugger feature refer to the ability to track the events as

they flow through the operators.

• High Availability: High availability refers to the support of failure of

engine instances, in which case another instance take ownership, preventing

loss of analysis.

Table in Figure 2.6 shows the execution features supported by the reviewed

tools. The data presented in the table is extracted from current data sheets and

web pages. For some research tools the data is extracted from research papers.

Thus, this information might be older then one year. The license type for the

tools is also specified in the table.

2.5 Event-based Interaction Pattern

Looking at a system from a higher level, you can abstract away the details of how

communication occurs and focus on what an interaction is trying to accomplish

and how. Software systems can be considered societies of communicating and

cooperating processes (as described in (Fai06)). Process interactions are similar

to conversations between people. The expression interaction dynamics is used

to describe the ways software processes interact with each other over time, with

particular interest in the following areas:
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Figure 2.6: Execution features supported by CEP tools

• Roles: Which process is giving information to the other? The word infor-

mation is used here to denote both commands and data. One process might

assume the role of caller or data provider with respect to the other.

• Control: Which process is in charge of the interaction? Which one is

responsible for initiating it? Can the interaction be aborted? If so, by which

process? Is one of the processes responsible for monitoring the progress of

the interaction? Which process decides when the interaction terminates?

• Timing: When sending messages, can the sender wait forever for a re-

sponse? Can the sender continue with other work while waiting for a re-

sponse? Does the sender require a response within a certain time frame?

Can the receiver accept other messages while processing a prior one?

• Flow: Is information sent in a single exchange, or it is broken down into
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an iteration of smaller ones? If an iterative flow is used, how is the end of

the iteration signalled?

Looking at different kinds of software systems, it becomes apparent that there

are recurring ways in which processes interact in terms of communication mechan-

ics, assumptions made by the communicating parties, goals of the sender, overall

timing, and so on. This can be called interaction patterns.

2.5.1 Message Exchange Pattern

One of the simplest ways of classifying an interaction is based on which way

information flows in relationship to the party starting the interaction. If one

party gives information to another party, the information is said to be pushed. If

one party requests information from another party, the information is said to be

pulled.

In push-pull models, one do not worry about lower-level interaction details,

such as whether exchanges are synchronous or asynchronous. What matters the

most is the overall direction of information flow relative to the party starting the

conversation. In the next section we will look more detailed into push and pull

interactions.

2.5.2 The Pull Model

The purpose of a pull interaction is for one party to obtain information from

another. Normally, the caller is named client and the responder is called server.

As the terms indicating this is baseline of the classical client-server architectures.

In a pull interaction, the interrogator sends a request to the respondent, which

replies with a response.

An example would be that a service S1 needs to continuously monitor the

status of a number of other services Si. Status changes can only be handled at a

certain rate, decided by S1 (see figure 2.7)

In the client-server or pull model we can observe both synchronous (see figure

2.8a) and asynchronous calls (see figure 2.8b)

Pull interactions are effective when the following two things apply:
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Figure 2.7: Pull model example

Figure 2.8: Synchronous and asynchrounous interaction
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1. The interrogator (here: S1) needs to control when information is retrieved.

2. The interrogator (here: S1) only needs information at a given time.

The interrogators request can convey the type of information needed. The

respondents response supplies the information. If the interrogator uses a method

call to query for information, the method can define parameters to hold the

response information. If the interrogator uses a message for the query, a separate

interaction is required for the response. The response is not considered a push

interaction, because the interrogator determined its timing. Pull interactions are

particularly effective when the interrogator only needs information at specific and

infrequent times. It would be wasteful for the respondent to push the information

using change notifications, especially if changes occurred frequently.

Pull interactions are very common for two reasons:

1. They are simple to implement, because both the interrogator and the re-

spondent can be synchronous. A simple method call is sufficient.

2. They apply to the common situation in which status changes in the respon-

dent do not require the interrogator to react immediately: The interrogator

will discover the change the next time it requests status.

2.5.3 The Push Model

The purpose of a push interaction is for one party to deliver information and/or

execution control to another. There are different terms used for the one initiating

the interaction. Here we can use the term publisher to designate the party starting

the interaction, and the word subscriber for the party with whom the publisher

interacts. In a push interaction, the publisher sends a command to the subscriber,

as shown in figure 2.9.

A command can include data. A push interaction is an imperative interaction.

Push interactions are effective when the following two things apply:

1. The publisher acts as a controller of the subscriber.

2. The publisher decides when to issue commands to the subscriber.
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Figure 2.9: Publisher/ Subscriber

Push interactions form the basis of event-driven systems. Publishers are talk-

ers, and subscribers are listeners. When something occurs to the publisher, noti-

fications are sent to available subscribers to inform them of the event. Using push

interactions to propagate changes through a system is particularly efficient when

the talker needs to send the same command to a large number of listeners. If you

have to implement the system without using push interactions, the alternative

would require each listener to poll the talker periodically, waiting for changes to

occur. A significant amount of processing time would be wasted in polling loops.

Using a push interaction pattern frees the listeners from devoting resources to

monitor the talker. While the talker has no new data, the listener can use its

own resources to do more useful things than sitting in a polling loop. Due to

their efficiency, push interactions are a good solution in real-time systems. When

changes occur at very high speed, you might use a single notification to describe

multiple changes at once. There are numerous examples of the push pattern in

everyday life and in computing.

There are basically two different kinds of push interaction (see figure 2.10):

• Fire and forget: Calls made without the expectation of a completion,

thus is interaction is not reliable.

• Pushed Feedback: Interaction for asynchronous blind interaction, with

feedback pushed to publisher.
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Figure 2.10: Push models

2.6 The IMC-AESOP CEP Service

The IMC-AESOP project (http://www.imc-aesop.eu) envisions an infrastruc-

ture that goes well beyond existing approaches. It will enable cross-layer service-

oriented collaboration not only at horizontal level, e.g. among cooperating devices

and systems, but also at vertical level between systems located at different levels

of a Plant-Wide System (PWS) enterprise architecture. Focusing on collabo-

ration and taking advantage of the capabilities of cooperating objects, poses a

challenging but also very promising change on the way future plants will operate,

as well as to the way we design software and model their interactions.

In process industry systems become nowadays larger and more complex than

before. They often consist of heterogeneous, distributed components, which might

themselves be complex subsystems. In order to cope with this increasing com-

plexity hardware independent, asynchronous communication methods have to be

employed. Such a flexible mechanism can be built based on the concepts of

services (KCJ+10) and (CK09). Data processing in IMC-AESOP is focused on

events and (complex) event processing (CEP).

Normally, complex events are created by abstracting from low-level events,

which can be thought of as sensor readings. The processing of events is expressed

within a specific language in terms of rules. Unfortunately, the set of features

and the way to express the rules differ from platform to platform.

In IMC-AESOP some efforts were looking into concepts for aligning CEP

concepts for process industries in terms of distribution and processing on devices.
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As a result we were looking into the two different approaches:

• CEP as a service: In this work a service can either be realised as a ser-

vice running locally on a server or the same concept still holds for a service

running in the cloud and on top of cloud technologies. It is meant to be

a general-purpose service, which offers CEP as a feature. CEP systems

are designed and implemented in a way to be able to handle more than a

million events per second. This data rate should be good enough to enable

CEP as a service either on premises or in the cloud. The limiting factor

here is most probably the network in terms of latency and bandwidth. This

service is realised as an extended version of an event broker. While the

event broker is a consumer and provider the CEP service also provides and

API to deploy queries. Thus, the CEP service has an input layer except-

ing incoming events from publisher and an output layer sending events to

registered consumers. The consumers can register for specific topics (see

Figure 2.11). The queries inside the service can register to specific topics.

Thus, events can be forwarded to queries for a topic. This happens via a

topicBinding. The topicBinding is also used to map the output of a query

to registered consumer.

• Embedded CEP: This is a concept of a lightweight CEP using concurrent

reactive objects (CRO) model guarantying execution of CEP queries in

an efficient and predictable manner on resource constrained platforms and

offering a low-overhead real-time scheduling. As described in (LPM13) and

(PLM12), there have been a lot of efforts on processing data on resource-

constrained devices, typically on sensor nodes in wireless sensor networks,

see e.g. SwissQM (MAK07) or TinyDB (MFHH12). These approaches

however differ from this one in that nodes actively query for data, whereas

in our approach nodes react on external events. Event-based programming

is a core concept behind Contiki - a tiny operating system targeted for

wireless sensor nodes (DGV04). The work on embedded CEP is providing

a scheme to implement CEDR queries (BGAH06) using the CRO model.

Semantic similarities between the two make it possible to design a fully

automatic translation. The technique proposed in the paper is based on
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Figure 2.11: CEP as a service

compile-time translation, whose aim is to create tailored highly efficient

and predictable CEP system for resource-constrained platforms.

The work in IMC-AESOP is showing some early concepts for having some

data processing running as a service and put some data processing logic on a

smaller device. Although the concepts do not provide generic, holistic approach

end-2-end it definitely highlights the demands for such an approach.

2.7 KAP Data Processing Framework

The main objective of the KAP project (http://www.kap-project.eu) is to de-

velop standards and a framework that supports sustainable manufacturing by

increasing transparency and supporting informed decision making. At the shop-

floor level, energy standards will ensure that energy is managed with the same

level of attention as other materials in the manufacturing process. These stan-

dards will be defined to be compatible with existing production standards and will

support the development of an energy management system (EMS). The inclusion

of an EMS is an important step in achieving the goals of sustainable manufac-

turing. Other existing factory systems will continue to monitor and measure
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sensor data and feed into data storage systems (DSS) and business intelligence

(BI) tools at higher levels. However above these, new production performance

indicators (PPIs) will be defined. By applying CEP models to past and current

PPI levels, future outcomes can be predicted. This should reduce the effects of

human bias in prediction while at the same time removing the need to manually

revise prediction models. This method ensures continuously adjusted accuracy

and creates a self-improving operational control system.

Within the KAP project an end-to-end architecture was developed to provide

seamless processing of PPIs at the manufacturing environment. To enable scala-

bility, adaptability, and availability in stable and unstable environments as given

in industrial manufacturing scenarios, PPI events have to be processed and ag-

gregated as close as possible to their data sources. Thus, one focus lies on the de-

sign and realisation of a reference infrastructure for distributed event and stream

processing in heterogeneous networks that integrates existing as well as novel

approaches on modelling stream networks and publish/subscribe-mechanisms for

(content-based) event routing. Particularly, queries and operators have to be

deployed and managed according to constraints from devices and data transfer

media as well as data selectivity inside complex event processing queries. Besides

mechanisms for efficient processing of raw event data streams like aggregation,

compression and filtering, complex analyses will be developed including but not

limited to online stream mining and (approximate) similarity matching.

The end-to-end architecture provides a concept for a generic processing engine

to support distributed CEP queries based on the architecture specified within

KAP (see Figure 2.12).

The data processed by the system is retrieved from various sources such as

sensors, databases or other systems. The integration of this data is outside of

the architecture. From the data sources at the shop-floor to the data consum-

ing systems such as user interfaces, manufacturing execution systems (MES) or

enterprise resource planning (ERP) these layers are:

1. Data Integration: The data integration layer is used to retrieve, trans-

form and translate data from arbitrary systems and sensors so that it can be
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Figure 2.12: KAP architecture

processed by the KAP system. The integration can be implemented in mul-

tiple ways, e.g., using proprietary solutions or any sophisticated integration

middleware.

2. Data Processing: All processing of shop-floor data is done within the data

processing layer. The processed data can either be current real-time data of

the shop-floor systems, previously recorded historical data or a combination

of both.

3. Data Broker: Consumers can access all data in the system, configure data

processing and subscribe to result- and raw-data-streams using the data

broker layer. The purpose of this layer is to encapsulate the complexity of

the underlying system and provide easy and fast access to it.

4. Data Consumption: The data consumption layer contains any software

component configuring and consuming data processed by the KAP system.

This can be any existing system, such as monitoring cockpits, resource

planning or controlling systems.
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2.8 Summary

The KAP project was focusing on shop-floor systems. The overall architecture

was targeting shop-floor operators to define and consume PPIs. The CEP cluster

was already trying to address the demand of distributed data processing but

very limited by the underlying technology and the restrictions required from the

architecture in terms of distribution concepts.

2.8 Summary

There are several approaches and technologies for SOA service selection, archi-

tectures for highly distributed architectures, and handling big data with speed.

Unfortunately, most approaches are limited to only one aspect. There is at least

for our knowledge no approach, which covers end-2-end SOA based scenarios,

which are highly distributed and require fast processing of data. We have looked

into a new family of scenarios, which are in the field of the Internet for Things.

But, whenever we are looking into SmartGrid, SmartFactory or SmartHome sce-

narios we have exactly a huge number of data sources, combined with a different

set of services (and thus with different interaction pattern), and with requirements

around handling data in a smart way.

We have identified a list of requirements (1.2) for fast processing of data

in a distributed fashion and the need to integrate heterogeneous data sources.

By analysing current related research work against the requirements, we find

they lack integrating approaches end-2-end. Moreover, most works are scoping

very much on aspects, which makes it hard to cover the full spectrum of the

requirements.

The involvement in the KAP and IMC-AESOP project assists to develop

results for fast data processing and concepts for distributed data processing for

industry scenarios. From the next chapter, we will start to illustrate the solution

being contributed to the fast and distributed data processing for hyper-scale

systems field.
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Chapter 3

Formal Model for Temporal, Fast

Data Processing

“Begin at the beginning,” the King said, very gravely, ”and go on till

you come to the end: then stop.”

– Lewis Carroll, Alice in Wonderland

This chapter is focusing on data processing. It describes a way to handle data

and process data in an efficient and fast way. We will introduce a model based

on ITL which enables processing of time triggered or time dependent data.

In general the model enables us to reason about temporal data. In particular,

the model will integrate services with time dependent offerings. Normally, services

offer data, either functional or non-functional data. We will introduce a way to

divide these general data or properties into more specific service offerings in terms

of static and time dependent data.

We are also introducing a concept (policies) based on event-condition-action

paradigm so that we can express rules over continuous stream of data to trigger

actions. Therefore, we are defining a data stream model and combine it with the

notion of time.
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However, the proposed model enables to express policies in the form of a

source-condition-action tuple by using operators. This approach is not restricting

us only on time dependent data. We can use it for any kind of sequential ordered

data. This can either be ordered by time or any other kind of sequence.

Finally, we explain how these policies can be validated against ITL logic.

3.1 Time Dependent Service Offering

Properties of services are considered to be non-functional or functional. Such

properties are used for service selection or context-based service discovery. The

available approaches are based on the fact that properties are pulled from service

repositories (that is from service metadata) or possibly from the services directly

before the algorithm determines the most relevant service for a given context.

Repositories are useful for static data and polling services directly works if a small

number of properties of a small number of services is of interest. We believe

that there is an emergent need to provide methods to enable the continuous

evaluation of functional and non-functional properties especially in the case where

the number of services is high.

We define static properties ps as constant over time, such as a location of a

printer, the vendor of a printing machine, or the number of a taxi etc.

Dynamic properties pd(t) are changing over time. Using these, we define non-

functional properties NFP as a tuple of static properties and dynamic properties:

NFP (t) = 〈ps, pd(t)〉

For the fleet management scenario the schema of the non-functional properties

might look as follows:

<NFProperties>

<Static>

<TaxiId type="xs:string"/>

</Static>
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<Dynamic>

<GEOLocation id="x">

<Longitude type="xs:int"/>

<Latitude type="xs:int"/>

</GEOLocation>

<PassengerNumber type="xs:int"/>

</Dynamic>

</NFProperties>

This presents the static data schema; like a snapshot in time. Temporal

aspects are covered by events and therefore we would see different data at different

points in time.

As a side note, we can define a time dependent schema for non-functional

properties; for service offerings we can do the same for functional properties. In

general, we are not restricted to non-functional properties here.

3.2 Event Policies

Policies refer to obligations placed on services to actively communicate dynamic

information, with respect to a given data-schema, triggered by events and time.

Informally this means that a policy defines the granularity over time at which

data is pushed up the service chain to aggregating services and end-users.

In this thesis the policies are modelled similar to the well-understood Event-

Condition-Action paradigm (For90, TLDS08, UBJ+03). However, the novelty of

the policies used in this thesis is that they use temporal conditions that describe

the condition between two consecutive actions that push data to aggregating

services, rather than defining conditions on the system state. The advantage of

this approach, compared to existing temporal conditions (JCS+06, JCSZ12), is

that the condition bridges between two events, thus does not require the storage

of large amounts of historical data.

Informally a policy is a set of rules of the following structure:
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<Policy> <!-- send to Service -->

<Rule>

<Source>...</Source>

<Event>...</Event>

<Condition>...</Condition>

<Action>...</Action>

</Rule>

<Rule> ... </Rule>

</Policy>

The <Source> of a rule is a continuous list of data on which the <Action>

of the rule is invoked if the rule is triggered. The <Event> of a rule is an event

descriptor that determines when the <Condition> of the rule is evaluated. The

descriptor is a predicate build from primitive events (e.g. a GPS-Update) that are

domain dependent and defined in the service description. Conceptually the event

descriptor describes an abstraction of the event trace over which the <Condition>

is evaluated. The <Condition> describes the distance between events that are

communicated upstream to aggregating services as a temporal formula. The

syntax that is used is an XML representation of Interval Temporal Logic formulae

that is described in section 2.2. This can be represented as shown in figure 3.1.

To provide a more formal description we define the following constructs. An

event policy is a set of rules pols = {r0, . . . , rn}. Each rule r ∈ pols has four

components:

• Source (srcr): A source is defined as a list of continuous data flow. This

flow of data is either finite or infinite. The continuous data flow is called a

stream σs and produces data of the same type T.

• Event (evtr): An event is the data construct of a stream. Events are of a

specific type T. An event is defined as a tuple 〈se, ts, p〉 with se the service

producing the event, ts is the time-stamp of the occurrence of the event

and p the payload.
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Figure 3.1: Event policy as source, condition, action

• Condition (cndr): A temporal condition bridging between two consecutive

executions of the action. A condition of one or two stream of events and

produces exactly one output stream of events. The condition can either do

a simple transformation, filters, or join events from the input. The input

stream has events of type T. The output of condition has events of type T’.

• Action (actr): The action to be performed on the target.

3.3 Temporal Data Streams

Let each service s ∈ Services be defined over a continuous stream σs of events

ei ∈ Eventss, observed by the service s. This is modelled by representing σs as an

ITL interval and Events as a set of propositional state variables that indicate the

occurrence of events (recall that state variables can change their value from state

to state). This model allows for the concurrent occurrence of events, e.g. ei ∧ ej

(i 6= j), and only captures the sequence of events, rather than their absolute

timing. The creation time of the event is stored explicitly as part of the event

tuple and can be referred to in the conditions of policy rules.

As described an event is described as a tuple 〈se, ts, p〉, denoting the service

se creating the event, the time-stamp when the event was created ts (based on

the clock of s) and an optional payload p. We use the notation e.se, e.ts and e.p
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Figure 3.2: Temporal streams

when referring to a specific element of an event tuple e (see stream s in figure

3.2).

Each event e in σs sets the state within the stream. This means that the state

holds until there is another event changing the state. The stream is in this sense

an ordered sequence of states. The ordering is given by the time of occurrence of

the particular event.

Sometimes it is required to have a well-defined definition of time in system.

It is like a tick or a heartbeat. It is either possible to inject this heartbeat

already into the event from the beginning or to have the option to specify a clock

(3.2) following the same principal as the ”normal” events. Thus, we do have the

option by simply changing the clock stream to influence the time progress within

the system. By joining a stream si with a clock stream c we do have the option

to be very flexible with time in the system without changing the condition logic.

We are introducing another stream σc which we call a clock c. The clock

injects events into the system. A timer given by the system clock triggers the

injection of events. We are extending the event definition by an end-time te.

Thus, an event is defined as a tuple 〈ce, ts, te, p〉. The end-time defines the end of

the event. We define that the end-time te is the right border and does not belong

to the event. The time of the event is an open interval [ts, te[.

The clock enables us to introduce time into the system without changing

the original definition of the system. Furthermore, the timestamps ts and te
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do not have to be system clock. We can set ts and te to values we want. These

timestamps are following application time (see (BGAH06)). This is useful because

we can define rules on application time and do not depend on system time alone.

In this way, injecting events on the clock stream does not influence the rule.

Since the clock stream behaves like a normal stream we can join it with another

stream. As a result the resulting stream is time stamped by application time so

that we can have proper temporal rules over this stream. Introducing start- and

end-time has some impact on the behaviour. In figure 3.2 the event with payload

a in stream s correlates with the event at time 0:01 in the clock stream. Therefore,

if we join both events (it is possible since the state in s has the payload a and

the event in the clock stream has the payload 1) we are getting an event with a

combined payload 〈1, a〉, ts = 1 and te = 2. At time t=0:02 there is another clock

event triggered with ts = 2 and te = 3. At this time the state of stream s is still

having the payload a. Therefore the resulting event is 〈2, a〉, ts = 2 and te = 3.

The se value is in our example extended to a combined se, ce value to show that

the event is a result of a join of two streams. Stream s is now triggering another

event with payload b. Unfortunately, this event is ignored in the resulting streams

since this event is triggered at a non-valid timestamp. Actually, it is below the

sampling rate. In reality, it is impossible to set a proper timestamp for this event

in the resulting stream since application time has the resolution of one tick in

our example and we do not want to introduce values below a tick. To overcome

the problem the event injection rate could be increased. Since the injection runs

with system time we could easily increase the injection rate. Here, the advantage

of separating application time and system time is obvious.

3.4 Programming Model for Data Streams

To program event policies we consider a functional programming model as very

relevant. As discussed in section 2.3 there are certain CEP programming paradigms

to enable event processing already. Unfortunately, there is no standard right now.

We are providing a more general programming model, which will fit to most of

available CEP engines and implementations. However, functional programming
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is providing already a very promising foundation and has proven that the way

in which list and sequences are handled using lazy evaluation is making a lot of

sense.

In general, there is a concept of an operator. An operator o can have one

or more input streams σi with events ei of type Ti. An operator o is producing

exactly one output stream σo of events eo of type To. Thus, the output of one

operator can be used as an input of another operator. Therefore, we can compose

a graph g of operators oi. This graph g is called an expression exp and is equal

to the condition cnd.

To compose operators we want to introduce the pipe symbol | > so that we

can write

o1| > o2.

This means that the output of o1 is used as input of o2. Since the source src

produces a stream sigma as well a source can be at the beginning of a pipe. We

can write

src| > o1| > o2.

The same is true for the end of a pipe. An action act can have an input stream

without producing an output stream. Thus, the full programming model looks

like

src| > oi| > act

which is equal to

src| > cnd| > act.

As a result the condition cnd can be written a s sequence of operators

o1| > o2| > oi.

Finally, the full source-condition-action rule can be expressed as

src| > o1| > o2| > oi| > act
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3.4.1 Operator for Stream Models

We have explained how we can compose formally operators. In the following

we define operators. Figure 3.3 presents an overview over the set of required

operators. The following list provides a short description (for operator description

we are using a Haskell syntax and implementation):

• Pipe (| >) : The pipe is used for composing operators left to right. It

feels more natural to write a pipeline from source (left) to action (right).

In Haskell a pipe is the inversion of the $ operator:

(|>) = flip \$

• Stream : A stream is defined as a data type. IN combination with the

cons operator it produces a infinite stream of elements of type a:

data Stream a = Cons a (Stream a)

• asStream : This is a helper function which connects a source to a condition.

It creates a continuous stream of data from a source. It can be seen as a

protocol or behaviour and is very source specific. From an array of numbers

the asStream operator creates a stream of numbers. In case of an finite array

the resulting stream is finite as well. The type of the AsStream function

looks as follows:

asStream :: [a] -> Stream a

asStream (x:xs) = Cons x (asStream xs)

asStream [] = error "infinite list expected"
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• action : The action operator is used at the end of a rule. It connects the

results of a rule with the outside world. Thus, it can be used to connect

the result with actuators of the underlying system. If this is the physical

system it can trigger switches. In addition it can be used to send data over

the network. Finally, a special action implementation could even hold the

last result and expose an endpoint to get the state pulled from here. We

encapsulate all these external interaction with the well-known Haskell IO

monad.

action :: Stream a -> IO ()

sink :: Stream a -> [a]

sink (Cons x xs) = x : sink xs

out :: Show a => Int -> Stream a -> IO ()

out n x = x |> sink |> take n |> print

In combination with asStream and a simple out action we can formulate a

pass-through pipeline:

asStream [1..] |> out 10

As an input we simply create an infinite stream from a list of type Int. The

pass-through pipeline outputs the first 10 elements. This is handled by the

out action:

[1,2,3,4,5,6,7,8,9,10]

63



3.4 Programming Model for Data Streams

• filter : Filters events based on a given function fn and produces a new

stream of events. The filter operator does not change the type of the in-

coming events. The function fn returns a bool based on some logic.

filter :: (a -> Bool) -> Stream a -> Stream a

filter p ~(Cons x xs)

| p x = Cons x (filter p xs)

| otherwise = filter p xs

For example

asStream [1..] |> filter odd |> out 10

results in

[1,3,5,7,9,11,13,15,17,19]

• map : Is used to map a function fn to each event. Since the function fn

can change type of events the resulting stream has events of type b as a

result of fn.

map :: (a -> b) -> Stream a -> Stream b

map f ~(Cons x xs) = Cons (f x) (map f xs)

For example

asStream [1..] |> map (*2) |> out 10
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results in

[2,4,6,8,10,12,14,16,18,20]

• zip : Joins two streams into one new stream. The first stream has events

of type a, the second stream has events of type b and the resulting stream

has events of joined type (a, b).

zip :: Stream a -> Stream b -> Stream (a,b)

zip ~(Cons x xs) ~(Cons y ys) = Cons (x,y) (zip xs ys)

For example

asStream [11..] |> zip (asStream[1..]) |> out 5

results in

[(1,11),(2,12),(3,13),(4,14),(5,15)]

• state : Triggers an output event when the value of the event has changed.

The state operator keeps the state of the last value and compares it with

current value. Comparing happens by using equality. Therefore elements

of type a must derive Eq. If Eq returns false the current value is becoming

the state. The state operator expects an initial value to start comparison

with:

state :: Eq a => a -> Stream a -> Stream a

state i ~(Cons x ys)
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| i==x = state x ys

| otherwise = Cons x (state x ys)

For example

asStream (cycle [1,1,1,2,2,3,3]) |> state 0 |> out 10

The cycle operator creates an infinite list of the list [1,1,1,2,2,3,3]. Passing

this as a stream through the state operator results in:

[1,2,3,1,2,3,1,2,3,1]

• len : The len operator is used to chunk a set of events together. The

len operator takes a number n as argument and collects n events together

into an array of length n of events and outputs this as a new event. This is

useful aggregation of values, e.g. sum, average, min, max or other statistical

functions. Normally, the len operator is followed by a map operator.

len :: Int -> Stream a -> Stream [a]

len n (Cons x ys) = Cons (x:xs) (len n zs)

where

(xs, zs) = span n ys

span :: Int -> Stream a -> ([a], Stream a)

span n (Cons x xs)

| n == 0 = ([], xs)

| n > 0 = let (a, rest) = span (n-2) xs

in (x:a, rest)
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| otherwise = ([], Cons x xs)

For example

asStream [1..] |> len 3 |> out 5

results in

[[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15]]

• win (window) : The win operator is comparable with the len operator but

the window operator takes two arguments: The size s of the window and

the hop size h of the window. In this way two windows can overlap each

other.

win :: Int -> Int -> Stream a -> Stream [a]

win s h (Cons x ys) = Cons (x:xs) (win s h hys)

where

(xs, zs) = span (s+2) ys

(hxs, hys) = span (h-1) ys

For example

asStream [1..] |> win 5 2 |> out 3

results in
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[[1,2,3,4,5],[3,4,5,6,7],[5,6,7,8,9]]

Another example in combination with map

asStream [1..] |> win 5 2 |> map(\y -> minimum y) |> out 5

results in

[1,3,5,7,9,11,13,15,17,19]

3.5 Event Policy Validation

So far we have introduced a concept to process data from source to action as an

event policy. This policy is formulated as a pipeline from src| > cnd| > act. We

are considering an event stream as an infinite sequence of states. This allows us to

handle time progression as a stream of states as well, where each new timestamp

is represented by a new state in the sequence.

ITL is a logic which enables us to describe properties of intervals over a se-

quence of states. Policies in ITL can be executed. AnaTempura is an engine

which can execute ITL policies. ITL works on finite streams. But ITL can have

infinite time, e.g. true does not restrict the length of the interval. Indeed abbre-

viated constructs like finite = true;false and infinite = not finite are available. In

our case, we want to process infinite streams, but we do not reason about infinite

intervals. We were looking at behaviours that have unfolded to the current point

in time and were acting on these. This means that we always have a finite time

from start of process to now. In particular, we benefit from the fact that we can

use windows to provide a bounded sequence to ITL over a infinite stream. We are

scoping the processing over a finite set of values. By moving time and windows

forward we can process the stream.
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Figure 3.3: Operator overview
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Figure 3.4: Policy validation approach

Using ITL to validate expressions over the src| > cnd| > act (operator

pipeline) paradigm, we have to find an ITL specification for a problem which

can produce the same result as our operator pipeline. If such a problem can

be formulated as an ITL policy we can execute this rule in AnaTempura. The

abstracted ITL specification needs to be validated by a domain expert against

the requirements. In this way , we can validate that the extracted specification

reflects the requirements.

Thus, we can formulate the following assumption:

We consider a operator pipeline expression as validated if an ITL policy

can be defined such that (1) the policy yields the same outputs on all inputs

as the pipeline when executed with AnaTempura and (2) the policy can be

validated against the requirements for the pipeline, e.g. by a domain expert.

We use the ITL/AnaTempura path as the authoritative one. It is grounded

and formally proven. The process can be described as follows (see Figure 3.4):

1. We express the rule as operator pipeline and run it.

2. We express an ITL policy and run it through AnaTempura.
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Service Events σs

Rule Events σs,r

Push Actions
actr actr actr

cndr cndr

evtr evtr evtr evtr

Figure 3.5: Policy Rule Evaluation

3. Domain expert reviews and validate the ITL policy against requirements

4. We compare both results.

5. If the results are equal for given input, we can consider the operator pipeline

as validated.

Evaluating the policy pols of the service s against this interval is a two stage

process in ITL.

3.5.1 Stage 1

First, for every rule r ∈ pols an abstraction of the interval σs is generated based

on the Event trigger evtr of the rule r. Currently we only consider single event

triggers, however the formal model is supporting combined events such as ei ∧ ej

or state formulae (i.e. ITL formulae that do not contain temporal operators).

Conceptually this stage is generating an abstracted interval σs,r of the interval σs

that contains only those states in which evtr is true. This is depicted in Figure 3.5.

3.5.2 Stage 2

Second, for every rule r the condition of the rule cndr is evaluated against the

corresponding abstracted interval σs,r. The condition defines the distance between

two consecutive actions triggered by the same rule. This means that the temporal

formula cndr must hold over the subintervals of σs,r bridging the gaps between

the projected states. This is depicted in Figure 2.3.
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Formally this means that the policies relate the service’s event trace, viz. the

interval σs to actions that are performed by the service as follows:

σs |= ©halt (evtr)∆(cndr∆�actr)

Here ©halt (evtr)∆f conceptually yields the abstracted interval σs,r over which

the policy rule is evaluated. The condition cndr of the rule then bridges between

two consecutive actions that are performed as a consequence of the rule.

The rationale for separating the two steps is that the filtering of event streams

based on simple events (evtr) can be implemented very efficiently, whereas the

complexity of the evaluation of the conditions cndr is more complex and can in

certain cases grow linearly with the number of states that are bridged. Thus

the initial reduction using the event filter reduces the complexity of the latter

evaluation.

The overall service specification is then constructed from this as:

σs |=
∧

r∈pols

©halt (evtr)∆(cndr∆�actr)

The specification of actr is not detailed here and we only consider that the

relevant action is initiated in that state of the service interval.

The model can be expressed from its semantics using AnaTempura (Hal88,

CMZ11), resulting in the following code:

/* run */ define example() = {

exists Evts :

{ /* create test event trace for the service */

list(Evts,3) and stable(struct(Evts)) and evtmodel(Evts) and

{ /* example rule evaluation */

(next halt(Evts[0]=1)) /* selecting events Evts[0] */

proj{ /* show selected events, testing only */

always format("Evts[0] = 1\n") and {

len(2) /* select every second event only */

proj{ /* show selected events, testing only */

always format("Action on every 2nd Evts[0].\n")

}}}}}}.

set assign_ahead = false.
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define evtmodel(Evts) = {

Evts = [1,1,0] and skip ; Evts = [1,0,1] and skip ;

Evts = [1,1,0] and skip ; Evts = [1,0,1] and skip ;

Evts = [0,0,0] and skip ; Evts = [0,0,1] and skip ;

Evts = [1,0,0] and skip ; Evts = [1,0,0] and empty

}.

Here three events are modelled for the service, and an example trace is gen-

erated by the function evtmodel(Evts). AnaTempura can be run in a run-

time verification mode and could receive these events from an external pro-

gram. The event trigger for the encoded rule is Evts[0], where a value of 1

indicates that the event occurred. This is encoded in the first projection con-

dition (next halt(Evts[0]=1)), which in effect generates the more abstract

interval σs,r over which the second projection is taking place. In this example

the temporal condition is selecting every second of the events (len(2)) on which

the action of the rule is triggered. In this proof of concept only a statement is

printed out to the screen, but instead a message could be easily send to another

service. The above code can be readily executed in AnaTempura (available at

http://www.cse.dmu.ac.uk/STRL/ITL/) and will produce the following output:

State 0: Evts[0] = 1

State 1: Evts[0] = 1

State 1: Action on every 2nd Evts[0].

State 2: Evts[0] = 1

State 3: Evts[0] = 1

State 3: Action on every 2nd Evts[0].

State 6: Evts[0] = 1

State 7: Evts[0] = 1

State 7: Action on every 2nd Evts[0].

Done! Computation length: 7. Total Passes: 9.

Total reductions: 297 (293 successful). Maximum reduction depth: 11.

The event Evts[0] is raised in the states 0, 1, 2, 3, 6 and 7 as also indicated

by the control outputs. The Action is triggered on every second occurrence of

the event, namely in states 1, 3 and 7.
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3.5.3 Policy Validation using Stream Model

The same can also be expressed using the source, stream and action metaphor

and executed over data stream semantics. In this sample we are using an F#

implementation of operators. Throughout the thesis we are using different im-

plementations. This also shows that the concept is not platform dependent. In

general we are using functional programming languages, such as F#, Haskell or

Erlang, because expressing source, condition, and action pipelines can be ex-

pressed very easy and natural in the functional programming paradigm:

# create the source data

evtmodel = [{1,1,0},{1,0,1},{1,1,0},{1,0,1},{0,0,0},{0,0,1},{1,0,0},{1,0,0}]

Source.asStates(evtmodel)

|> Stream.map(fn {s,{a,x,y}} -> %{state: s, a: a , x: x, y: y} end)

#selecting events Evts[0]

|> Stream.filter(fn x -> x.a == 1 end)

# show selected events, testing only

|> Stream.print(fn x -> IO.inspect "State #{x.state}: Evts[0] = #{x.a}" end)

# select every second event only

|> Stream.len(2)

|> Stream.map(fn ([h,t]) -> t end)

# show selected events, testing only

|> Stream.print(fn x -> IO.inspect "State #{x.state}: Action on every 2nd Evts." end)

|> Pipes.Action.nul

Here the evtmodel is expressed as a list of tuples. A source stream is created

of type {state, a, x, y} (with a as availability, x and y as position). However,

the logic is a one to one mapping to the AnaTempura expression. First we filter

out events which have the availability value 1 (Stream.filter). Secondly, we

trigger only every second event (Stream.len 2). Thirdly, as an action we output

the result. As a remark the result in action contains an array of two events. We

pick the second element in the list (here: t for tail) and display its state number.

As a result we receive the following:

"State 0: Evts[0] = 1"

"State 1: Evts[0] = 1"

"State 1: Action on every 2nd Evts."
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"State 2: Evts[0] = 1"

"State 3: Evts[0] = 1"

"State 3: Action on every 2nd Evts."

"State 6: Evts[0] = 1"

"State 7: Evts[0] = 1"

"State 7: Action on every 2nd Evts."

We have expressed the same policy with the operator pipeline and we received

the same result. Thus, we have validated our result. We believe that this approach

is superior AnaTempura since it is more powerful by offering the full functionality

of functional programming in the background in addition to the logical support

of ITL over temporal event streams to enable policies.

In general, the advantage of building the policy language on the basis of a

formal model is that one can reason about the hierarchy of event filters throughout

the service infrastructure. Without loss of generality one can reason about a

general stream of events Esys that contains all events that are observable in the

system. Whilst the event streams Es are generated by the individual services s,

conceptually they can be seen as a filtered event stream that selects from Esys

only those events that originate from s. This approach makes reasoning about

the interaction of the various event streams possible and does not complicate the

analysis as it uses the same policy-defined event filters that are advocated in this

work.

3.6 Examples revisited

So far, this all sounds very theoretical. Thus, it makes sense to revisit some

scenarios introduced in 1.1.

3.6.1 Fleet Management

We can revisit the taxi management scenario to illustrate the presented theory

with a simple example. In this example we have the user as one peer who is

interested in finding a taxi. He is formulating his needs in form of a request

providing his current location, which he forwards logically to all taxis (the other
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peers). Here, it is a query (see figure 1.1) over an event stream returning the node

(taxi) which is available (means number of passengers == 0) and the closest

— expressed by calculating the minimum distance between the user location

provided by his context and the location given by the taxi event streams. The

user requests are joined with the event stream coming from the taxis:

/* define taxi and user tupel */

Taxi = %{ Available :..., GEOPosition : ...}

User = %{ GEOPosition : ...}

/* run standing query */

result = taxis.asStream(Taxi)

|> zip users.asStream(User)

|> filter (fn (taxi, user)

-> taxi.Available && Min(distance(user.GEOPosition, taxi.GEOPPosition)) end)

|> Action (fn (taxi, user)

-> select taxi) /* create a result stream of relevant nodes */

Each node (taxi) is sending an event whenever it moves more than 50 meters or

the number of passengers is changing indicating a change to the taxi’s availability

(see Example 1.1.1). There is a so-called standing query consuming the incoming

event streams from all nodes (taxis) and mapping the user specific request to the

stream. Since, the query is aware of all state changes of the nodes, it is aware of

the state of the entire system. Thus, it can reply to the user request with almost

zero latency. Here, we can make the assumption that we have four taxis (A,B,C,

and D) (see Figure 3.6). At time t1 a user is requesting a taxi. At that point in

time only taxi A is available so that the query will return taxi A as result. Thus,

taxi A is sending a new event (A2) since it picks up the user. When a new user

at time t2 is requesting a taxi the situation has changed. Taxi A is take by user1,

taxi B and taxi D are available and taxi C is still taken. Thus, the query will

check if taxi B or taxi C is closer to user2. The distance function will return taxi

B as the closest.

When another user, user3, at time t3 is requesting a taxi, there is again a new

situation and the query might return taxi D as the best fit. Already this simple

scenario highlights the capabilities of this approach.
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Figure 3.6: Event Stream Reasoning

3.6.2 Friend-Near-By

In the Friend-Near-By example we have the users who want to get a notification

when one of their friends is near by. To get this notification the user has to sub-

scribe to a query producing notifications about friends’ movements. Technically

the query is responsible to handle all subscriptions from users and map it to the

geo location event streams coming from all user devices. The ECA rule running

on the mediator is receiving two data streams: (1) is the stream of the friend

relationship and (2) the stream of users’ geo locations. Since, the friend relation-

ship stream is considered static the events in this stream are having infinite live

time. The geo location stream contains different events for each user and the live

time of each event is defined by the policy injected in each device, such as the

speed on changing the geo position.

Each node (user’s phone) is sending an event whenever it moves more than

50 meters (see Example 1.1.2).

The ECA policy is collecting these notifications and correlates this geo location

data with the friend relation information so that we can notify each user if one

of his friends is close by, e.g.

• we want to notify Alice when one of Alice’s friends is closer than 50 meters

This can be translated into the following an ECA policy:

Event: GeoLocationUpdate(x)

Condition: friend(Alice, X) and distance(alice,X) < 50

Action: Notify Alice of X
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Figure 3.7: Event Stream Reasoning

And this translates directly into:
/* define user tuples */

User = %{ GEOPosition : ..., Friends : User[]}

/* run standing query */

result = users.AsStream(User)

|> filter (fn (user)

-> friend(Alice, user) end)

|> filter (fn (user)

-> distance(Alice.GEOPosition, user.GEOPPosition) < 50 end)

/* create a result stream of relevant nodes */

|> Action (fn (user)

-> notify Alice user end)

In our example we do have Alice, Bo, Chris, and Dave (see Figure 3.7). At

time Y Chris is at position Y but Alice is not, so there is no action triggered. At

time Z Chris and Dave are at the same position but they are not friends. Again

no event is issued. At time Z Alice and Dave are at position X and they are

friends so that both are getting a notification.
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3.7 Summary

As we have seen in 1.1 (1) processing of dynamic and static data and dynamic

properties and (2) timely insights through recurrent data processing are key re-

quirements for fast data processing.

This can be achieved by using a model which enables expressing rules of data

streams in general and over temporal data streams in particular.

We have developed a model based on the well-known event-condition-action

paradigm to express rules. Furthermore, we have extended the rules to be able

to get executed over temporal data streams. We call these rules event policies.

We have validated these policies against ITL to ground it on a solid temporal

logic. Event policies can be considered as a general concept over data streams

to enable filtering, aggregation, correlation and mapping. These policies form a

generic concept and can be realised in different environments. We have shown

how to use it with AnaTempura and functional programming, but these policies

are not limited to those. It is also easy to express it with CEP rules or on top of

other programming languages.
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Chapter 4

Fast Data Processing in

Distributed Systems

“If you thought that science was certain - well, that is just an error on

your part.”

– Richard P. Feynman

So far the approach was considering processing that runs on a single, phys-

ical machine; although it was not restricted to this. The goal is to describe an

approach for fast data processing that can run on multiple machines or can span

even across millions of machines, a hyper-scale setup. Our approach is intro-

ducing data processing units (called PIPES) on each of these machines (called

NODES) and thus forming a distributed pipeline for data processing. We refer

to this as distributed data processing and believe that it is a suitable foundation

for fast data processing in a hyper-scale setup.

In the introduction we mentioned the Internet of Things with scenarios for

Smart Cities, Smart Grid or Smart Factory. Common for these scenarios is that

they require collecting data from a plethora of different data sources in a highly

distributed fashion. The advantage of distributed data processing is:
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1. Distributed data processing can exploit the heterogeneous environment

where certain resources are available only on certain nodes and passing

data around is probably less effective then passing processing logic around;

there is always more data than there will be processing instructions.

2. In a highly distributed setup, communication time becomes significant.

Therefore time critical information should be processed at the place where

it is born. Results can be produced faster without waiting for other input.

3. Reduction of the amount of data which needs to be sent around. Coming

back to the taxi example where it does not make sense to pass data, which

does not provide new information around. If the taxi does not move why

should it send its geo position every second?

However, there are several reasons to consider the distribution of data pro-

cessing units (pipes) in systems. The architecture enabling fast, distributed data

processing introduced here, is called PIPES.

4.1 Event Policy Distribution

Distribution of event policies over devices enables the processing of events as

close as possible to data sources and also enables scalability, adaptability, and

availability in stable and unstable environments. The deployment of event policies

and operators is mainly triggered by the need to process data as close to the source

as possible and to avoid sending raw data through the network.

Constraints from devices, networks and data availability for policies are key

factors for distribution. In order to be able to support complex analysis of events,

we need to employ general mechanisms that can provide the foundation for the

efficient processing of raw event data streams.

A very concrete scenario would require adding sensors to at least one pro-

duction tool to monitor all wafer processing parameters including energy con-

sumption. This will allow us to visualise and compare the energy consumption

of those tools for energy-aware tool matching. The framework needs to store

process values in real time with a high sampling rate. Using a technology like
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Figure 4.1: Graph of operators

event policies for data extraction and data aggregation can help to forward only

specific values to other process control tools. These process control tools can use

these aggregated values for correlation with other values for making production

more effective.

As described in section 3.4, an event policy is a graph (see figure 4.1) of one

or more operators. Each operator exposes one or more output streams. These

output streams can be used as input streams for other operators. The basic data

are events. Thus, the combination of operators is not restricted and only defined

by the semantic of the query.

Since we have defined a policy pol as a set of rules ri. Each ri is defined as a

tuple of 〈src, cnd, act〉 with src being a source of events, cnd a graph of operators

and act the triggered action. A condition cnd can be split. We can take the

rule r and split the rule into rule r′ and rule r′′ (see figure 4.2). The condition

cnd is split into condition cnd′ and condition cnd′′. As an interaction between

both conditions we add another action act′ and source src′. The action act′ is

forwarding the output of cnd′ to src′ which acts as the input for cnd′′. Thus, we

can write

src| > cnd| > act

as

src| > cnd′| > act′..src′| > cnd′′| > act

With this approach we keep the concept src-cnd-act and we can split each

query for distribution.
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Figure 4.2: Event Policy splitting

When we talk about distribution of a policy we mean that parts of the query

graph are executed on different computing nodes (e.g. a PC or PLC). Therefore,

we have to understand what it means to place some parts of a policy on a separate

node.

The simplest case is the linear graph. Within such a setup there are operators

op3 and op4 so that the output of op3 is used as input by op4 (see figure 4.1). Here,

op3 and op4 can be easily placed on two different compute nodes. Distribution is

required when we need to sample down the data rate, pre filtering or aggregation

on a node. This is useful to reduce data traffic over the network. For example,

sensors are delivering data at a sampling rate of 1000 Hz. This would be too

much to transport all data over the network since most of the raw data is not

needed at the backend. Therefore, op3 can do some resampling and aggregation

close to the sensors before data is send across the network. By reducing the

sampling rate from 1000 Hz to 10 Hz and aggregating the data (building the

average over a time interval) the amount of data can be reduced by factor 100.

Data traffic can also be reduced by filtering out data by op3. In anyway, the

drawback of distribution is latency caused by network latency. Usually, there

is no way around distribution since insights needs to be displayed at one place.

The challenge is to find the optimal way to process data and to optimise data

traffic. Event policy distribution provides a flexible way to split processing logic

and helps to overcome this challenge.
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A more complex setup is the grouping although it is the most obvious. The

operator op4 is splitting the events into sub queries, here into operator op5 and

op6. The grouping happens usually by some key value or group condition. But

the distribution is quite simple. Each operator, op5 and op6 can run on its own

compute node. This approach clearly makes sense for parallelisation of work

(each sub query can do its own job) or to distribute for optimised capacity (e.g.

memory) usage.

This leads to the most complex distribution approach, the join. If we split

queries into sub queries as described above we might want to join them at the end.

We also often have several data sources and they need to be joined for processing.

There are operators op1 and op2 which feed their results into operator op3 which

should join the inputs from op1 and op2. In a first place both op1 and op2 can

run on separate compute nodes. Therefore, we have to add two actions act1 and

act2 which are forwarding results produced by op1 and op2. A new source src3

needs to collect the data from act1 and act2 feed them into op3. The figure 4.3

shows also the virtual actions and sources for a distributed setup. Since there

might by events from act1 or act2 which might be delayed caused by network

latency, src3 has to handle them properly. This means src3 can either wait or

discard late arrivals of events. For example an additional clock stream joined

with src3 could move time forward and thus discard late arrival of events (see

section 3.3). Whenever we separate two operators by distribution we have to

add a new action to the sender side (for example act3) and a new source to the

receiver side (for example src4). The semantic of the original src-cnd-act rule is

kept but distribution is added. If only the semantic matters actions and sources

can be skipped within the operator graph. If process borders matter actions and

sources should be added as shown in figure 4.3.

4.2 Distributed Architecture

There are different approaches to enable distribution of processing in a system.

One very promising approach is to use explicit message passing and encapsulate
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Figure 4.3: Distributed event policies

processing and state in a standalone unit. This is also called the actor model

(HBS73).

The core element of the actor model is an actor. This actor encapsulates its

state. The state can only be changed by sending explicit messages to the actor.

In addition it is also possible to get the state from the actor by simply asking

the actor about its state. Developed already in 1973 the actor model became

very popular in distributed systems for mobile companies. The actor model was

perfectly made for handling millions of mobile phone connections and their state.

Interestingly, the same concepts are very useful for internet games. Millions of

parallel gamers (or their avatars) need to be handled, their status needs to be

maintained and their interaction needs to be tracked. In fact, Orleans (BGK+11),

an actor model implementation in .NET, is used to do exactly this for games.

Therefore, the actor model seems to be a great candidate as a basis for our

fast data processing architecture. Each actor can run a machine or node, explicit

message passing is used to send data, results, or aggregations around. There are

several actor model implementations so that the architecture can be realised on

different platforms:

• In Erlang (Arm97), (Lar09) the actor model is realised as a first class citizen.

It is used as a core concept and ensures scalability and reliability. Erlang

is used in applications for telecommunication.

• Orleans (BGK+11) is a software framework for building reliable, scalable,

and elastic cloud applications. Its programming model encourages the use

of simple concurrency patterns that are easy to understand and employ cor-

rectly. It is based on distributed actor- like components called grains, which
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are isolated units of state and computation that communicate through asyn-

chronous messages.

• Akka (http://www.akka.io/) is a toolkit and runtime for building highly

concurrent, distributed, and resilient message-driven applications on the

JVM using the actor-model.

• Haskell (http://www.haskell.org) is also looking into some concept sim-

ilar to actors (EBPJ12) with their Cloud Haskell approach.

4.2.1 Distribution Middleware

It is reasonable to wonder whether there is even demand for an architecture for

distributed data processing. Is it not possible to simply use what exists in terms

of the actor model and pass messages around?

The proposed middleware is called PIPES. PIPES combines existing ap-

proaches and enables programming of data processing pipelines. Think about

a single program that happens to spawn through your entire hyper-scale systems

collecting and processing data and acting accordingly. PIPES provides a whole

infrastructure suite that supports distributed data processing for any application

domain. There are some important features it provides, which go beyond that

readily available in actor models.

Specifically, PIPES

• extends the actor model with the capability to spawn an actor remotely

and inject processing logic remotely.

• allows to change logic during runtime.

• provides a registry which enables a user to write a pipeline against registered

nodes where each node provides information about data sources.

• allows automatic deploying and linking of pipes during deployment.

• allows supervision of nodes and pipes.
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The PIPES middleware consists of the following core elements (see Figure 4.4).

Most names correlate to the already mentioned terms, except the event policy is

called expression and is executed within a cell here:

1. Source (src) produces or injects a continuous stream of events. A source

is used as a connector to the outside world for the PIPES system. There

are several implementations of a source. A simple one is the RandomSource

which creates random values by a given interval. The PushSource exposes

an endpoint to which data can be pushed form outside of a pipeline. A

PullSource can be used to get data in in a request-response way. The

sources enable the convergence of pull and push systems.

2. Condition (cnd) defines the transformation of events. A condition can

contain concatenation of transformations in the form of operators. Opera-

tors are: Map, Zip, Filter. This concatenation can be expressed by using

the pipe symbol (| >). Example:

source

|> filter(fn x -> isOdd(x) end)

|> map (fn x -> x * 2 end)

|> action

In this example the filter and map functions are forming the vertex.

3. Action (act) triggered by the condition result. An action can either send

out the result to other sources, can trigger an action or simply output the

result. The action is also used to hold the final state of a pipe.

4. Rule is defined by source, condition, and action

expr = fn -> source |> vertex |> action end

5. Cell is a container for expressions. A cell is an extended actor since the

actor behaviour is injected:
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Figure 4.4: PIPES terminology

PIPES.send(node, cell, expr).

A cell instance is defined by its unique cell identifier (PID).

6. Node is the physical environment hosting multiple cells. A node can be

identified by its unique node identifier (NID).

Different cells can be connected by joining sources and actions. By connecting

cells it is possible to build highly distributed processing pipelines. Compared to

the classical actor a cell is not only encapsulating its state and can receive events,

it is possible to inject the behaviour of a cell. This is an extension to the original

actor model.

We can find similar approaches in Cloud Haskell (EBPJ12) where closures can

be serialised to a mailbox as expressions or functions. This is more restricted to

closures and is not as complete as our approach. In Orleans (BGK+11) we can

find an actor model implementation on C/.Net but the flexibility is limited to

sending around behaviour in form of expressions.

The notion of sources and actions allow us to have a flexible integration of

push-based and pull-based approaches. With PullSources classical REST services

can be integrated (see 4.5).
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Figure 4.5: PIPES topology

Classically a system supporting actors can have thousands of actors running in

parallel. The overhead and costs for running an actor is very small, consequently

a cell also needs to be very small in terms of overheads. A cell can also be realised

in a reliable way. The cell just has to persist its state. If the cell would fail and

not react anymore at some point a supervisor of the cell could just restart another

cell on the node and restore the state from disk.

4.2.2 PIPES Middleware

The PIPES middleware has four core elements (see figure 4.6). A supervisor

is monitoring the other core elements and ensures that they are alive. If the

supervisor gets notified or detects that one element is not responding anymore

he triggers a restart. Since the other components can persist their state it is easy

to restart if one breaks.

The registry is managing nodes and cells. Both register themselves with their

unique name as soon they get created. When a node or cell register itself, the

registry returns the NID or PID as unique identifiers for node or cell. Via the

registry a user can lookup nodes and cells via their name.

There is one node which is called the master node. This master node runs

the registry and supervisor within its own process. A node also runs another

supervisor, which monitors the cells which run inside a node. Cells are created,

started, stopped and removed via the corresponding node.
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Figure 4.6: PIPES middleware

As already mentioned, a cell is an actor. A cell itself is defined by its PID and

its contained rule in form of an expression. The cell can be started, stopped and

deleted. In addition it is possible to inject a new expression. However, injecting

a new expression means restaring the cell or at least loosing current processing

results.

4.2.3 Towards PIPES Implementation

How does this all fit together? As a remainder in section 3.4 we have introduced

some operators enabling data processing over temporal streams. We have vali-

dated and grounded these rules (event policies) on ITL. Within this chapter we
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have explained how event policies can conceptually be distributed by using cells.

We have provided an architecture for a middleware to enable distribution and

allow management of such a setup by using nodes, supervisor, and registry. How

would a PIPES middleware be realised?

Ideally it is realised on top of a functional programming language, such as

Haskell, F# or Erlang. Haskell is the purest functional programming language

and would be ideal to translate ITL logic into functions. But Haskell has limita-

tions in terms of actor model and distribution. As mentioned, the Cloud Haskell

project is trying to build an actor comparable framework, but the project is not

mature enough compared to F# or Erlang regarding this aspect.

F# is not a pure functional programming language. It is a mixture of OOP

concepts and functional elements. Expressing ITL logic as functions is feasi-

ble and there are several actor model implementations for F#, like AKKA, but

serialisation of expressions is quite difficult.

The actor model in Erlang is providing a great foundation for the hyper-

scaling setup. It can be seen a first class citizen within the Erlang framework. In

fact, Elixir is used for Reactor. Elixir is an extension on top of Erlang. In Elixir

everything is an expression and can be serialised easily to other instances. This

build-in functionality in combination with the superior actor model implementa-

tion makes Elixir the first choice for realising the PIPES middleware.

4.3 Examples revisited

In the following section we are revisiting some scenarios introduced in section 1.1

to explain in more depth the approach.

4.3.1 Pay-as-you-Drive

Consider Figure 4.7, which shows the pay-as-you-drive scenario in a form that it

fits into the PIPES system. The logic to calculate the BDI is one pipe:
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expr2 = fn ->

velocitySource.asStream |>

zip (laneChange.asStream) |>

zip (brakes.AsStream) |>

win 60*60 60*60 (fn x -> sum(x) end) |>

Action.send (NID#2, BDI, PID)

end

We consider three sources: the velocity, the notifications of lane changes, and

the usage of the brakes. Then, we zip all three streams to have one combined

stream. The window operator is calculating a window over an hour (60 seconds

multiplied by 60 minutes) and also hops one hour. The window is used to sum

the values of the three streams. The action is then forwarding the BDI every

hour to the master node.

The cell on the server is collecting the BDI events and keeps the state. When-

ever a customer is asking for a driver index, the cell can simply forward the result.

It could also do the ADI calculation by combining the BDI with additional infor-

mation, e.g. weather. The expression of the cell would look like this:

expr1 = fn ->

bdi.asStream |>

zip (weatherService.asStream) |>

map (fn x -> ADI(x) end) |>

Action.keepState(...)

end

To enable an end-2-end processing pipeline follow these steps:

1. Step 1: Author the expression expr1

2. Step 2: By calling Node.start() the expression will be send to the node with

NID2
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Figure 4.7: PIPES pay-as-you-drive example

3. Step 3: the node with NID2 will start a new cell instance hosting the given

expression (expr1)

4. Step 4: The cell will register itself at the registry. In this case with the tag

BDI which needs to be defined during expression definition.

5. Step 5: The next expression will be send to node with NID1

6. Step 6: The node with NID1 starts a cell with given expression expr2. This

can be scaled out to multiple nodes if required.

7. Step 7: The new cell will register itself at the registry with the tag ”ADI”.

8. Step 8: Finally, the cell in NID1 sends data to cell in NID2

9. Step 9: Now, considering a customer looking for the ADI of a driver. He

has to provide the driver id and calls the information mediator endpoint.

10. Step 10: The information mediator finds the cell with tag ADI in registry

11. Step 11: Without any delay the information mediator collects state from

the cell and sends this back to customer.
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4.3.2 Shop Floor Monitoring

The shop floor monitoring scenario is requiring aggregation of data already at

the place where the data is born. This means on the PLC, which is connected

directly to the sensors. The sensor data is read from the field bus by the source on

the device (here: Node#NID1). To aggregate data over 20 seconds, calculating

the average of the sensor data over 20 seconds and send it, the policy could look

like follows:

expr1 = fn ->

sensor.asStream |>

win 20 20 (fn x -> avg(x) end)

Action.send (NID#2, \’devices\’, PID)

end

The action is sending the data to the master node (here: Node#NID2). On

the master node we are keeping it simple. The policy is simply receiving the data

and forwarding it to display the data on a dashboard.

expr2 = fn ->

devices.asStream |>

Action.show (fn x -> display(x) end)

end

In cases of an alarm the operator wants to connect directly to the machine,

which has triggered the alarm and wants to change the policy so that he gets

a higher sampling rate. This can be done by changing the window operator

parameter from 20 seconds to 2 seconds for example. So, the operator changes

the policy and he also changes the send command to send the data not to the

master node but to his tablet device (here: Node#NID3).
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Figure 4.8: PIPES shop floor monitoring example

The policy looks as follows:

expr3 = fn ->

sensor.asStream |>

win 2 1 (fn x -> avg(x) end)

Action.send (NID#3, \’devices\’, PID)

end

Figure 4.8 shows the schematic setup for this scenario.

4.4 Summary

We have introduced an architecture to distribute event policies in a hyper-scale

system. The proposed architecture is aligned with the basic concepts for fast

data processing in section 3.4. The idea of grounding the middleware on top of

the actor-model ensures that it works for systems at scale as the actor-model is

already in use in highly distributed telecommunication applications.
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4.4 Summary

The PIPES middleware is an easy to use and distributable concept, which can

run on everything from small devices to large cloud, based systems. Thus, there

are no limitations for this approach.

We have also validated that it works semantically based on the provided sce-

narios.
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Chapter 5

Mediation Architecture for

Hyper-Scale Systems

“When my information changes, I alter my conclusions. What do you

do, sir?”

– John Maynard Keynes

Nowadays businesses as well as the Web require for information to be available

in real-time in order to reply to requests, make decisions and generally stay com-

petitive. This in turn requires for data to be processed in real-time. In general in

service-oriented architecture (SOA) we are less concerned about latency of data

processing. Clearly, there are investigations of service-level agreements (SLA)

and quality of service (QoS) to guarantee service delivery. Based on this, several

approaches on monitoring SLAs have emerged and solutions to find most relevant

services for a given context have been developed. Most of this work is assuming

that the relevant information for decision making is available and accurate.

Properties for service selection are considered to be non-functional or func-

tional, and the available approaches are based on the fact that properties are

pulled from service repositories (that is from service metadata) or possibly from
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the services directly before the algorithm determine the most relevant service for

a given context. Repositories are useful for static data and polling services di-

rectly works if a small number of properties of a small number of services is of

interest. We believe that there is an emergent need to provide methods to enable

the continuous evaluation of functional and non-functional properties especially

in the case where the number of services is high (Cho08).

Lets assume there is a user who tries to locate the nearest printer with the

shortest print queue because he has a deadline and needs to print out an important

report. Therefore, the system needs the location of the user, typically part of a

user profile, the geographical location of the printers, and information about

the print queue of each printer. In service selection, an algorithm compares the

location of the user with the location of the printer taking into account the number

of documents in each print queue. There are several approaches which are able

to identify the most relevant printer within a given context so this is not the

challenge we are tackling; we are interested in obtaining the data that is used

for the decision making. The geographical location is static information it does

not change continuously over time. We will be using the term static property for

properties whose values are static over time. The number of documents in the

print queue is not static it is time dependent and changes over time as documents

are printed or new documents are added to the queue. Hence the length of the

print queue is a dynamic property.

5.1 Convergence of request-response and event-

based Service Interaction

As we have pointed out in (TRMJ12) and in (TRM11), to achieve almost zero

latency data processing, data must be available at the place where the consumer

needs it, such as a data provider. So, instead of pulling data at request time from

data sources, data should be pushed to such a data provider. If we apply a scan-

based approach to an SOA, this would mean that a consumer is pulling data from

services (see Figure 5.1a). In contrast an event-based approach would mean that
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Figure 5.1: Metaphor comparison of request-response and event-based in SOA

services are pushing data to a consumer (see Figure 5.1b). The communication

is still initiated by the consumer (see section 1.1.1).

In an SOA it does not matter which approach is used since both can be

employed together. Usually, these interaction patterns are already supported by

technologies enabling SOA, e.g. Web Services. In Web Services there are request-

response paradigms as well as event paradigms used individually and in combined

fashions. Thus, it is just a matter of how services are composed (see Figure 5.2).

Here the service A is requesting data from services 1 and 2. While service 1

is composed of service 1.2 and 2.2 it will request data from them by scanning

to its composed services. In contrast service 2 is composed of several services

2.1...2.n. Here the services are pushing their data asynchronously to service 2.

This resembles the event-based approach more closely.

Using event-based models is only the first step towards a faster processing

of data in terms of providing results with low-latency. If the data sources are

continuously pushing data to a data provider (e.g. the selector) there is a vast

amount of overhead by unnecessarily transferring data – a waste of bandwidth.

Event policies can be as smart as possible by using various sets of information,

such as the prioritization of the data. Consider for example an alarm situation

with cascading alarms. Such a system has to ensure that the most severe alarms

are delivered and the bandwidth is not occupied with unimportant information

(see section 1.1.5. Thus, event policies executed on smart data sources - intelligent

objects - should enable low capacity filtering by being context-aware.
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Figure 5.2: Service dependencies

5.2 The Pull/Push Model

It is quite challenging to get an accurate view of this data with classic request-

response approaches, which are usually employed in SOA. Consider the number

of printers within in a company, all taxis of a company within a city, or even the

shuttle service on a large company campus. Here the number of possible services,

namely printers, taxis, or shuttles is high. In addition the length of the print

queue or the geo location of taxis or shuttles change very frequently they are

highly dynamic properties.

Using a typical request-response approach every time a user asks for a taxi

the system has to poll all the taxis geo locations and other properties just to be

able to identify the most relevant one for the request. If we consider that this

might be 50 or even 100 taxis we get a feeling for the scale. In such realistic

settings it is becoming quite challenging to answer a simple question such as find

the nearest shuttle to my location quickly.

We can define this more crisply as a need for a concept delivering responses

with low latency based on dynamic service properties at any time to consumer
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Figure 5.3: Mediation Pattern

requests from huge lists of services. Basically, we propose to combine existing

request-response approaches (Figure 5.3(a)) with publish-subscribe techniques

(Figure 5.3(b)).

Services offer dynamic properties to which consumer can subscribe, such as

the dynamic GeoLocation property of a taxis service and the number of current

passengers from which the system can derive if the taxi is available or not.

We envision that our approach can be adopted easily as it only requires the

addition of two interfaces: (1) The publisher endpoint is exposed on the service

side to which the consumer can register or subscribe to events and (2) the sub-

scriber endpoint is exposed by the Mediator to enable the services to fire events

in a fire and forget fashion (see Figure 5.3(c)).

The publisher interface which enables the registry to subscribe to a set of

dynamic properties provides two operations:

injectPolicy(Policy) : PolId

with

• Policy : the event policy describes the topic to be subscribed to, the refresh

interval, and the state changes which trigger event notification.
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• PolId : Unique registration id for the policy subscription

unsubscribe(PolId)

with

• PolId : Unique registration id of injected policy

The subscriber interface offered by the Mediator provides only one operation:

notify(Event)

As defined in section 3.3, an event is a tuple of values event = 〈se, ts, te, p〉 ,

containing the service endpoint address se, time information ts and te, and the

payload p. The time information defines the valid start time ts and end time

te of the event and the payload is defined by the type of the subscribed topic.

For example the GeoLocation could be defined as record with Longitude and

Latitude, both of the XML schema type xs:int.

5.3 Mediator

As described in (RL06) processing of streaming data is an important practical

problem that arises in time-sensitive applications where the data must be analysed

as soon as they arrive, or where the large volume of incoming data makes storing

all data for future analysis impossible.

As a central instance we use a mediator (see figure 5.4). This mediator en-

capsulates the processing of the incoming request from the consumer side and

the incoming events from the service side and maps both. The mediator is a ser-

vice and exposed operations (methods) map internally to specific policies. Thus,

during runtime the mediator is receiving continuous streams of events from sub-

scribed services. Then, an incoming consumer request is handled as a query on

subscribed service properties. Instead of pulling at request time all the data from

all services the mediator knows at any time the status of all services. Therefore,

this allows for service selection in real-time independent of the number of services.
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Figure 5.4: Mediation service architecture

5.3.1 Event Mediator

The mediator is a special PIPES node within the PIPES middleware. A specific

pipe - called event mediator - is used to expose the endpoint to collect all incoming

events from registered services. An event will contain metadata and payload. The

metadata contains information about the time when the event was created on

the publisher side. The schema of the subscribed topic, such as temperature or

vibration, defines the payload. New event policies are injected via the mediator

into the correct service (publisher). The source of the event mediator is exposing

the notifyEvent method to be able to get called by services.

The event mediator is responsible to normalize the incoming data streams. For

cases when not all events provide the same data structure the request mediator

maintains a mapping table to transform incoming events from endpoints into a

normalised data stream. This is realised as a rule EventMediatorExpr with a

policy pol. The policy pol is a set of two rules:

〈EventMediatorExpr, InformationMediatorExpr〉

EventMediatorExpr = fn ->
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pullPushSource.asStream |>

map (fn x -> Normalize(x) end) |>

Action.send (InformationMediator, PID)

end

The service1 provides events containing temperature in Celsius while service2

provides the temperature data in Fahrenheit. The event mediator normalises

event streams internally before the event data is forwarded to the information

mediator via the pipeline.

In addition the event mediator is able to detect missing events since the refresh

time is set within the subscription process. Here it is possible to apply different

retention policies to react to missing events, such as simply ignore missing events,

use the latest event until a new event arrives, or raise an exception because the

absence of an event is an exceptional case. How to handle missing events depends

on the scenario and does not require a general solution.

5.3.2 Information Mediator

The information mediator maps consumer request to queries on continuous event

streams provided by the Request Mediator. On the consumer side the framework

still offers a normal Web Service interface, which internally needs to be trans-

formed into a query, which is executed over the event stream. The information

mediator also ensures the quality of the events from event streams, such as du-

plicated events or out-of-order events. The information mediator is another rule

InformationMediatorExpr:

InformationMediatorExpr = fn ->

source.AsStream |>

filter (fn x -> InOrder(x) end) |>

window 20 1 (fn x -> RemoveDuplicates(x) end)

Action.keepState(EndpointAddress)
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Here, our approach benefits from the existing work on complex event process-

ing (CEP), such as (LPTL02) or (Luc02). The specific time information we are

adding to the event helps to control the quality of events and result. While valid

start and end times are generated by the service side the Information Mediator

also added internal time information (called: System time) to the events. Within

the Information Mediator internal clock increments are used to move time forward

decoupled from external sources. Thus, the order of events is guaranteed and the

quality of the results can be ensured. Basically, this is a classical CEP topic and

the approach is simply benefiting from using CEP technology here which can find

in for example in (BGAH06).

5.4 Filtering at the Source

To control the event flow from services to the mediator the services are accepting

event policies as filtering rules. These policies are defining which state changes

within a service (on the source) trigger an event (such as “temperature > 50.2C”)

and the expected interval (refresh). The expected interval would then also be used

within an event so that the start time is set when the event is issued on the service

and the end time is defined by the refresh interval.

In this case we have to define an event policy in a form that it has a threshold

filter and in addition a clock stream as a refresh interval, such as

sourceFilterExpr = fn ->

source.asStream |>

filter (fn x -> x > Threshold end) |>

zip (clock.AsStream( Interval)) |>

Action.send (masterId, \’filter\’, PID)

In general a data source, such as a device, a sensor, or a phone, can be

considered as a service or a PIPES node. If it is a service we have to pull data

from it in some cases. If it is a PIPES node then we can inject a policy as

described above.
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In (PLM12) the authors are describing an approach which is mapped to a

real-time system. The approach is based on translating a policy (here a CEDR

query (BGAH06)) into a concurrent reactive object (CRO) program.

Section 3.2 has explained the specification of the required filters in detail.

Being able to set the event interval rate and condition helps to fine-tune the

system to obtain the appropriate balance between data accuracy, response time

and data traffic.

5.5 Examples revisited

How can this be used within our motivating examples? Lets revisit one of the

samples from section 1.1.5.

5.5.1 Alarm Management

In the alarm monitoring example the requirement of integrating potentially many

different data sources in terms of number and interaction was a strong demand.

Data sources are on ones side sensors and on the other side configuration services.

We can define a system using PIPES concepts. On the node running on

the field bus level we can inject an event policy to do the state estimation (see

Figure 5.5). This is following the filtering at the source concept. Sensor data can

either be pushed or pulled into the state estimation policy. The states are send

as resulting events to the backend. On the backend we run a mediator receiving

the state estimation results.

The mediator also injects a new state estimation policy into the field bus

node.

StateEstimationExpr = fn ->

sensors.asStream |>

map (fn x -> EstimateState(x) end) |>

Action.send (masterId, \’stateEstimation\’, PID)
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Figure 5.5: Alarm Monitoring example on PIPES

On the backend itself we run a alarm configuration policy. This policy pulls

data from configuration services depending on states to provide throttled alarms

to the user.

AlarmSheddingExpr = fn ->

stateEstimation.asStream |>

map (fn x -> Shedding(x, GetConfiguration(x),

GetAlarmConfiguration(x) end)

filter (fn x -> Prio(x) > Threshold end) |>

Action.keepState(...)

5.6 Summary

This chapter has introduced the mediation concept. As we have seen from the

motivating scenarios there are requirements about integrating services into such

a system. These services are usually implemented in way that they are following

the classical request-reesponse paradigm.
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5.6 Summary

The mediation enables a grounding concept based on the fast data processing

model and the PIPES middleware. The mediator is an integration point between

request-response and push-based interaction paradigms.

On one side event policies can help to handle data traffic efficiently by con-

trolling the data flow and the amount of data and on the other side it enables a

system to detect data faults and missing data if required.
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Chapter 6

Implementation and Evaluation

“The opposite of a correct statement is a false statement. But the oppo-

site of a profound truth may well be another profound truth.”

– Niels Bohr

This thesis is about fast data processing in hyper scale systems. The aims

and objectives in section 1.3 were formulated around speed, scale and mediation.

All topics are main drivers for this work.

The aims are:

1. Speed: Data processing model to process temporal service data with near

zero latency.

2. Scale: Model to enable data processing in highly-distributed and large

systems.

3. Mediation: Develop an architecture to mediate between different interac-

tion pattern.

Therefore, the evaluation will look into all three aspects. We will evaluate the

speed of data processing, the benefits of the mediation concept, and the scalability

of the architecture.
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So far, we have introduced a formal model for fast data processing with respect

to continuous data streams and time related properties. We have provided an easy

way to describe logic over continuous data with support for simple types, such

as int, string, and time. In addition, this work has introduced an architecture to

distribute logic which is capable to support highly-distributed and large systems.

This includes concepts like filtering data at the source to manage data traffic and

a way to provide insights with almost zero latency by combining push and pull

conversations.

But what does fast processing mean? How fast is fast and is the proposed

programming model and language the right approach at all? Can we verify that

the insights can be provided with low latency by facilitating the mediator concept?

Is the architecture able to deal with a large number of nodes?

This leads to our hypothesis for evaluation:

The proposed architecture is capable to process data over data streams

fast enough (∼ 1,000,000 evt/sec), the mediator helps to reduce latency for

requests compared to full data source scans, it scales linear in terms of pipeline

length and event size, and provides the capabilities to realise the motivating

scenarios.

Basically, we have to evaluate this work regarding to the objectives. In the

following we will (and this is how the chapter is structured)

• prototypically implement the proposed architecture,

• evaluate the continuous data processing approach over data streams (see

section 6.2),

• evaluate latency of push and pull based architectures (see section 6.3),

• evaluate the capabilities of the filtering at the source concept in terms of

data traffic (see section 6.3),

• evaluate the distribution and scalability of the system (see section 6.4), and

• validate it by implementing a scenario end to end (see section 6.5).
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6.1 Implementation

6.1 Implementation

The PIPES middleware is implemented in ELIXIR/Erlang. This means it fol-

lows mainly the functional programming paradigm. It turned out that functional

programming provides concepts which make writing data pipelines very straight

forward and readable. Although there are quite a number of functional pro-

gramming languages out there (e.g. Haskell, Closure, Scala), ELIXIR/Erlang is

our choice here. It should be mentioned that concepts can be adapted to every

functional language. It is not limited to ELIXIR/Erlang. But ELIXIR/Erlang

provides some first-class elements, such as distribution, supervising, actors, and

message and expression passing, which makes ELXIR/Erlang the language of

choice for prototyping the system.

The Swedish telecom company Ericsson developed Erlang over 25 years ago.

The basic motivation was to enable millions of parallel conversations at the same

time, with almost zero tolerance for downtime. Scale and reliability were key

requirements for designing core concepts of Erlang. Erlangs syntax derived from

Prolog and was heavily influenced by Smalltalk, CSP and functional programming

concepts. Fundamental concepts are lightweight processes in Erlang, which can

communicate via message passing.

Elixir is a dynamic, functional language designed for building scalable and

maintainable applications. Elixir leverages the Erlang VM, known for running

low-latency, distributed and fault-tolerant systems, while also being successfully

used in web development and the embedded software domain. Elixir can be seen

as a thin layer on top of Erlang. Elixir inherits pattern matching, higher order

functions and the entire process handling from Erlang. Additionally it provides

a number of advantages for our work:

• The pipe operator (| >): This is a reminiscent of Prologs DCGs and Haskell

monads. Can be read as unix pipe operator. x | > y means call x then take

the output of x and add it as an extra argument to y in the first argument

position.

• Closures: Closures really behave like closures. fns have the nice property of

capturing the present value of any variables that are in their scope so that
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6.1 Implementation
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Figure 6.1: Evaluation architectural overview

immutable closures can be created.

• Metaprogramming: Metaprogramming is code that writes code. Thus, it

provides an easy way to extent Elixir with new first-class elements and to

extend it to data types required by scenarios.

In general, we can split the architecture for evaluation into a runtime and

a design time part. For runtime we have implemented the basic functionality

of (1) node, (2) source, (3) expression, (4) cell and (5) actions as processes in

ELIXIR. All these entities live within the runtime layer (see Figure 6.1). Concrete

expressions, sources and actions are motivated by the scenario. For these we have

to understand the semantic requirements, such as window length, filter, or specific

sources and actions. If expression is in place we can optionally verify it with ITL.

Finally, we can deploy the system (see Section 4.3.1).

We are following this approach to evaluate the system in terms of latency

of expression pipelines and the overall latency of distributed nodes. As already

mentioned, a node can be seen as a system process holding multiple cells. A cell

itself is a lightweight process (like an actor or agent). A source is a port to receive

messages which gets forwarded to an expression; the logical unit. The result of
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6.1 Implementation

an expression is then forwarded to an action. In general an action is a broad

concept and can deal as a gateway or forwarder to another cell or for keeping

result as state.

A typical way to implement a cell is the following. First we can define an

expression as a function or closure, e.g.

expr = fn ->

Source.asStream(name) |>

Stream.filter(fn v -> v >= n end) |>

Action.log

end

An expression is a function defining the source as a stream, a condition, and

an action. This expression can be passed to a cell which takes the expression and

literally starts it, e.g.

# start cell

name = :node1

node = Registry.lookup(:master)

Cell.start(expr, name, node)

The name parameter is a unique name which helps to identify the cell. The

node parameter defines the node on which the cell should run. This node can

be on a remote computer. With expression passing it is possible to distribute

expressions from one central node to all other nodes in the system. This is a core

feature which makes PIPES on ELIXIR/Erlang very easy to use in a distributed

setup, like in the fleet management example. There filter logic needs to be pushed

to the taxis (nodes) from the backend. Here, each taxi can register at the central

node and from there we can manage the rules running on the taxi node. For other

systems, like Cloud Haskell, Storm, F# or .NET, it is not that easy to deploy

expressions. Complex frameworks are required to serialise expression trees and

deserialise it. In ELIXIR/Erlang expressions are treated like datatypes and are

serialisable by nature. As a result, PIPES can distribute and manage rules, cells

and nodes right out of the box.
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6.2 Expression Evaluation

Expressions are rules running within cells. Expressions are handling event streams.

Expression evaluation means evaluating the continuous data processing approach

over data streams. This is useful to understand how stream processing behaves

in general and how the pipeline concept works in particular. It is quite difficult

to simply measure performance, throughput or latency without having a com-

parison. Therefore, we will compare the fundamental concepts of streams with

enumerations.

This leads to our hypothesis for expression evaluation:

For large data sets stream processing provides faster insights compared to

enumerations.

6.2.1 Lazy Evaluation

Lazy evaluation is a great way to delay the execution of functions on larger

datasets. In a typical enumeration each item is evaluated one-by-one. This is

not a problem with smaller sets, but as those sets get larger the amount time to

process them grows exponentially. Every function has to evaluate the entire set

before the next function can execute. The benefits of streams is that they allow

us to compose our enumerations prior to execution.

First we will take a look at using enums to multiply each element with 2.

Starting from the following piece of code:

1..3

|> Enum.map(fn x -> print.(x) end )

|> Enum.map(fn x -> x *2 end)

|> Enum.map(fn x -> print.("-> "+x) end)

We do print before and after the mapping the value and we are receiving the

following output:
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6.2 Expression Evaluation

1

2

3

-> 2

-> 4

-> 6

We note that each map is applied in order so first all the numbers are printed

then they are doubled and printed. The map functions has to complete its itera-

tion over the entire set before it can pipe the result list to the step.

The behaviour is different with streams. Take the following piece of code:

1..3

|> Stream.print

|> Stream.map(fn x -> x * 2 end)

|> Stream.print

|> Stream.run

Now we see that the each number is completely evaluated before moving to

the next number in the enumeration:

1

-> 2

2

-> 4

3

-> 6
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6.2 Expression Evaluation

Compared to the enum behaviour this stream behaviour is different. For enum

the entire list is processed completed before there is any result available. This

might not be problem with 3 numbers but if we consider an infinite list then we

would never get any result. With streams we get an result as soon a number is in

the system: We start with one, it gets forwarded to the print, then multiplied by

2 and finally the result gets printed again. We see that data is processed instanta-

neously. Here in this example we have not used any parallelisation concepts but

we could even consider to process numbers in parallel using the src-cnd-action

paradigm without any limitation.

6.2.2 Pipeline Latency

Latency is a time interval between the stimulation and response, or, from a more

general point of view, a time delay between the cause and the effect of some

physical change in the system being observed. Within this setting it is hard

to measure latency in general since it depends on the semantics of a policy or

pipeline. For example if we use a window over 5 seconds and aggregate the data

then this window is the limiting factor with its 5 seconds in terms of producing

a result. We cannot expect any result before these 5 seconds.

In general we can compare again enums with streams in the first place. Thus,

we can formulate a policy and measure the time until we receive the expected

result. Lets assume we have data points entering our stream, then we can ask

how long it will take to have a result at the end of the pipeline.

Definition 1 If an event e enters the pipeline pol at time ts and the result of the

event is available at the end of the pipeline te we can define the latency l as the

difference of the timestamps te − ts.

To measure the latency we define a pipeline, which passes only values, which

can be, divided by 3 and 5. Finally, we take the 5 first results from the resulting

list. We test this with 10,000 up to 10,000,000 events. We measure the time with

the :timer fucntion in Erlang and injext the policy to be executed. The frame

for this looks as follows:
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6.2 Expression Evaluation

Figure 6.2: Latency comparison of enums and streams

result = :timer.tc( policy )

Measurements were executed on the following setup:

• Macbook Pro, with Intel Core i7 (3 GHz) and 8GB of Ram running Elixir1.0.1

on Erlang 17.0 (64bit) on OSX

The policy looks as follows:

1..n

|> Stream.filter(fn x -> rem(x,3)==0 || rem(x,5)==0 end)

|> Stream.take 5

The result can be found in figure 6.2.

For enums in every run the entire data set needs to be evaluated before we can

take out the first 5 elements. For streams this is different. The system evaluates

every element. It is as if the event flies through the pipeline and produces a
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6.2 Expression Evaluation

result at the end. Thus, there is no surprise that the size of the stream has no

direct impact on the latency for stream processing - the time it takes to produce

a result is constant. This is an important result since we are mainly interested

in infinite streams it is good to know that it is possible to define policies, which

have constant latency over time.

6.2.3 Pipeline Complexity

Another aspect is important to understand: Which impact does the complexity

of a policy have on execution time? The complexity of a policy can be seen by

the number of conditions (cnd) we are using between a source and an action.

Definition 2 The complexity cxp of an event policy p is defined as the number

of conditions within a policy pol. If the policy pol is defined as pol = src| >∑
i cndi| > act with

∑
defining the pipeline of conditions as

∑
i cndi = cnd1| >

...| > cndi we define complexity as cxp = i.

Thus, we have measured policies with different kind of operators compared

again to enum behaviour (see figure 6.3). We are testing the map and the filter

operator. We have build pipelines with complexity of 1,2,3,6, and 9.

We have varied the number of events injected into the pipeline from 10,000

to 1,000,000 events. Finally, we have measured the time it took to process all

events. As a result we can see that both enums and streams behave the same

way.

Measurements were executed on the following setup:

• Macbook Pro, with Intel Core i7 (3 GHz) and 8GB of Ram running Elixir1.0.1

on Erlang 17.0 (64bit) on OSX

The efficiency of the filter operators is constant over the complexity and clearly

depends on the number of events (see figure 6.3b and figure 6.3d). But the map

operator depends linear on the complexity. This means the more operators we

use within a pipeline the more time we might need, however this is dependent on
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6.2 Expression Evaluation

(a) Enum.Map (b) Enum.Filter

(c) Stream.Map (d) Stream.Filer

Figure 6.3: Pipeline comparison between Enum and Stream
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6.3 Mediation Architecture

the specific operators used. This behaviour is the same for enums and streams

(see figure 6.3a and figure 6.3c).
As a note this means that instead of doing

1..3

|> Stream.map(fn x -> x * 2 end)

|> Stream.map(fn x -> x * 3 end)

we better should do

1..3

|> Stream.map(fn x -> x * 6 end)

Unfortunately, this is not always possible. Especially, when we consider that

we are looking into distributed systems. Sometimes we want to do the first

mapping on one node and the second mapping on the following node.

To summarise, streams are enabling processing over data pipelines with very

low latency. In scenarios as described in the beginning of this thesis streams are

superior compared ti enumerations. Using expressions over streams are promising

in terms of latency and complexity in terms of expressiveness. Thus, streams and

operators seem to be a promising approach for expressing rules within cells.

6.3 Mediation Architecture

The mediator approach is supposed to be beneficial for large amount of data

sources and large amount of requestors.

The hypothesis for evaluation of the mediator architecture is

Mediation with filtering of events at the source

1. provides replies with near zero latency and
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6.3 Mediation Architecture

2. reduces the amount of data transfered (recall that this was large because

of the amount of small messages, not because the data in itself being

intrinsically large).

The experimental evaluation was geared towards proving these two aspects,

so we conducted two evaluations: (1) we measured the latency of finding a result

using the pull model compared with a push model and (2) counted the number

of messages occurring during a one second time interval in the push model and

combined pull-push model. The overall setup considered settings with up to

60000 data sources. We have simulated the setup. The data sources were ELIXIR

processes and the master service was simulated as another processes. Thus, all

processing happened on one single machine.

This simulations were executed on

• Macbook Pro, with Intel Core i7 (3 GHz) and 8GB of Ram running Elixir1.0.1

on Erlang 17.0 (64bit) on OSX

6.3.1 Pull/Push Model Evaluation

Testing pull and push approaches is quite complex since there is a big number

of data sources required to get some significant results. Nonetheless, we had to

distinguish between pure latency as a result of the different concepts and latency

caused by physical setup, such as network latency and latency used by semantic

processing. For testing we decided to run everything on one machine and to

simulate each data sources as a small object in our test setup. This object can

be seen as an atom, a logical, self-contained unit. By having all simulated data

sources in memory on one machine we can say that latency caused by the physical

setup can be neglected. The simulated objects (data sources) were simply holding

a random value and the query in the setup was to find the object whose value

is the closest to a given number. This simple setup matches the taxi example

where the value would represent the geo position of the taxi and the given number
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6.3 Mediation Architecture

would be the customer geo position, but also reflects the typical scenario where

we see the approach apply.

In the pull approach we are iterating over all objects (taxis) and are trying to

find min(value − number). In the push approach the objects are pushing their

number to the mediator and we run a query over this data, such as

expr = fn ->

values.AsStream

|> Stream.win 10 10 (fn x -> min(x) end)

|> ...

end

The results are presented in Figure 6.4. While the latency is increasing

linearly for the pull approach, it remains almost constant for the push approach.

We also find that all values for the push approach are far lower than those for the

pull approach, with for example approx. 4ms vs. 65ms for 60000 data sources.

This clearly indicates that the pull approach is superior compared to the push

approach in terms of latency and the trends show that for a growing number of

data sources as those expected in scenarios like the Internet of Things is delivering

performance close to no latency. We also want to point out that this is the pure

measured latency ignoring network and processing delays – once these are added

as additional factors to the evaluation, latency will become rapidly worse for

the pull approach as much more communication and more processing is needed

compared to push approach which remains constant for the full spectrum (albeit

a little slower in real terms than measured in the isolated setting).

6.3.2 Filtering at the Source

The drawback of the push approach is the number of data items sends from data

sources to the mediator. Therefore, we have introduced policies (rules) in our

approach to avoid that messages are polluting the network unnecessarily. The

next evaluation is comparing the number of messages send in a one second interval
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6.3 Mediation Architecture

in pure push approach compared with the number of messages which sent in a

push approach with filtering at the source.

The latter is expected send fewer messages because of the injected policy.

For testing we extended the objects with another random value representing the

availability. The availability here is a random number, either 0 or 1. The policy

is saying that the object should push only messages when the availability is 1

(means the taxi is available).

Figure 6.5 shows the results as we expected. With a simple policy we can

roughly save 50% of exchanged messages (based on the randomly changing val-

ues). It is clear that with even more specific policies (such as taxi should have

moved more then 50 meters before sending an update) and real data (a spe-

cific taxi being available 50% of the time does not make for a profitable business

model!) the number messages can be further reduced.

The number of processed messages per second goes down for both graphs since

the receiver node can handle only a limited number of events. It means that the

receiving node is dropping events. We can compute the maximum number of

events, which are in the system by multiplying the number of processed messages

per second with the number of data providers. We can see that with a number

of 60000 sources the numbers of messages, which can be processed in sum, are

hitting a limit here.

The number of messages is proportional to the size of data exchanged (data

traffic) and this relates to bandwidth usage. With the pure push approach we

see that we will hit at some point the bandwidth limit. This approach would not

support hyper-scale systems.

The usage of event policies and use them to filter already at the source shows

a superior approach in terms of bandwidth usage and the flexibility to support

distributed systems with up to several thousands of sources.

6.3.3 Integration by Mediation

We have discussed already in section 4.2.1 that the approach can be easily inte-

grated into existing solutions and systems. With cells we can compose complex,

distributed graphs for data processing. It is possible to split logic (1) vertically by
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simply putting different src-cnd-act cells on different nodes and (2) horizontally

by simply splitting the processing and running cells in parallel.

This can be handled with specific source and action implementations:

• PullSource: A PullSource is used to recurrently read data from an end-

point. The interval i is defining the polling frequency and a defines the type

of the expected data offered by the service endpoint e. The syntax looks as

follows (again Haskell inspired):

PullSource :: Int -> Endpoint e -> a -> Stream a

• PushSource: A PushSource exposes an endpoint and expects data of type

a. The interval i is optional and is used to verify the frequency of incoming

data, e.g. checking if data arrives late and can be discarded.

PushSource :: Endpoint e -> a -> Int -> Stream a

• SendJSONTo: The Send is a specific action, which forwards data to the

given endpoint. The endpoint is defined as a REST endpoint. The send

action sets a topic to enable the receiving source to identify received events.

The topic is added to the payload information and the token could be a

security token. In this example the send action is sending the event as

JSON:

SendJSONTo :: Endpoint e -> Topic -> Token

Already with this small set of sources and actions it is possible to integrate

easily into existing systems. The condition itself is decoupled from the integration

and works on top of streams and temporal data information.
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First we do have to calculate the ADI as described in section 4.3.1. This

would run as a cloud service. On one side data in from of a BDI is pushed every

10 seconds from cars to this policy and on the other side data needs to be pulled

every 1 hour from weather services. These two data streams need to be joined

to create the ADI (see Figure 6.6). Finally, we are forwarding the result to an

insurance company. Such a policy looks pretty simple:

ADICalcualtionExpr = fn ->

PushSource("ADI", driver, 10 seconds) |>

zip (PullSource(1 hour,

"http://weather.com/region...",

weatherData)) |>

map (fn x -> calculateADI(x) end) |>

SendJSONTO ("http://pay-as-you-drive.com",

x.driver_id, secToken)

end

In reality we would have to deal with some other details, such as security. But

most of this can be handled in specific implementations for sources and actions.

Thus, as a result the final event policy can be reduced to something simple as

shown.

6.4 Distribution and Scalability

Up to here, we have investigated latency of expressions, and behaviour of medi-

ation architecture.

It is worthwhile to spend a deeper look into the overall scalability and distri-

bution of the PIPES middleware. This means that we have to understand the

performance of the connected cells and how this scales over multiple hops.

As a working hypothesis we start from the following:
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Figure 6.6: Latency of pull approach vs. pull approach

The PIPES middleware scales linear in terms of pipeline length (multiple

cells and nodes) and message size. (This requires communication of messages

(serialisation/deserialisation) between cells)

For the test evaluation we have implemented sources, cells and actions. A cell

can take a cell defined by a source, condition and action, e.g.

expr = fn ->

Source.asStream(name) |>

Stream.filter(&(&1) >= n) |>

Action.log

end

This expression can be passed to a cell which takes the expression and literally

starts it, e.g.

# start cell

Cell.start(expr, name, node)
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Node

v -> v=1 v-> v+1 v-> v+1 v-> v+1 v-> v+1 v >= n

number of cells (n) final cell

Figure 6.7: Approach to evaluate scale over cells

The name parameter links the source stream to the running expression.

We have varied the number of messages we have ingested into the pipeline

from 10,000 up to 3,000,000 and measured the time to process to all incoming

messages. To verify that all messages were processed the filter condition was

holding back until the final data point (10,000, 100,000,) was reached and printed

this to the standard output via the log action. We think it is fair to make use

of the filter since it is a valid operator and by holding back the output we could

avoid pollution of the result by printing on standard output.

The code to make the measurement looks pretty simple:

# measure time

result = :timer.tc(fn ->

1..n |>

Enum.map(fn x -> Action.send(pid, x)

end)

end)

We can use the :timer module from Erlang. We can pass an expression to

it. In our case it is an enumeration from 1..n (with n means the max number of

messages per measurement) (see Figure 6.7). For each element in the enumeration

a data tuple with value x is sent to the cell with the process id pid.

In the same way we can use the approach for scaling-out measurements. A

set of connected cells are defining a pipeline. The question we want to answer is:

How does the PIPES middleware scale over the number of connected cells?
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We measure this by building a pipeline and vary the number of cells within

a pipeline. The number starts with 3 going up to 100. Each cell is running the

following expression

expr = fn ->

Source.asStream(name) |>

Stream.map(fn x -> x+1 end) |>

Action.forward(toPid)

end

We measure the performance over a different number of messages (10,000 up

to 3,000,000). The last cell is using the same expr as above. It filters until the

maximum number is reached before it prints the result on standard output to

verify the full pipeline was processed. In case we have a pipeline with 3 cells with

10000 messages we expect 10003 for example as output.

The evaluation setup is executed on four different machines:

• Mac mini, with Intel Core i5 (2.3 GHz) and 16GB of Ram running Elixir1.0.4

on Erlang 17.0 (64bit) on OSX

• Macbook pro, with Intel Core i7 (3 GHz) and 8GB of Ram running Elixir1.0.4

on Erlang 17.0 (64bit) on OSX

• Intel Xeon 2.8GHz and 12GB of Ram running Elixir1.0.5 on Erlang 18.0 on

Windows 10 with 64bit

• Raspberry Pi 1 ModelB with 512MB of Ram running Elixir1.0.3 on Erlang

on Linux

The results are shown in figure 6.8.

On all computers the systems scales linear over the number of cells and over

the number of messages. We can calculate an average throughput of 8̃00,000

messages/sec. based on one single cell. This result is close to what we wanted to

reach (remember: in the hypothesis we wanted to reach 1̃,000,000 messages/sec.).

This result shows that we can talk about fast processing of data streams.
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Figure 6.8: Measurement of cell scalability over different computer
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So far we have measured the processing time in terms of scale. Another

interesting parameter is the size of a message. We have repeated the measurement

on two computers

• Mac mini, with Intel Core i5 (2.3 GHz) and 16GB of Ram running Elixir1.0.4

on Erlang 17.0 (64bit) on OSX

• Macbook pro, with Intel Core i7 (3 GHz) and 8GB of Ram running Elixir1.0.4

on Erlang 17.0 (64bit) on OSX

We have repeated each measurement 10 times and calculated the average

and standard deviation of 10 measurements. We measured with payload sizes of

1,3,5,10,30,50, and 100 values. This means a message was basically a tuple of the

form {1: 1, n: n} where the first value 1: is naming the property and the value

behind the colon represents the value. This tuple can be created with a single

line of code where m defines the size of the tuple:

message =

1..m |>

Enum.reduce(%{},fn (x,acc) -> Map.put(acc,x,x) end)

The message was sent to the cell using the forward action and the time was

measured:

result = :timer.tc(fn ->

1..n |>

Enum.map(fn x ->

Action.send(pid, Map.put(message,1, x))

end)

end)

The number n of messages varied from 10,000 to 3,000,000 messages. The

resulting time was measured in milliseconds (ms) (see Figure 6.9).
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Figure 6.9: Scalability depending on message size over different computer

The results show that the system scales linear over message size and number

of messages. There is a trend that with larger messages the time will increase

more then linear. But the number of more then 100 properties per message is not

a very common use case. Thus, considering an average number of 10 properties

per message the scalability looks very promising over the entire spectrum.

6.5 Example revisited

In the introduction we have mentioned a few scenarios to motivate the work.

To validate the approach we will implement one example end to end. We pick

the fleet management. Since we do not have an entire taxi fleet available we will

simulate taxis as single processes within an Elixir/Erlang runtime on a Raspberry

Pi.

In section 6.4, we haven proven that the PIPES concept does linear scalable

in terms of length of a pipeline and in terms of message size. In general we

have also proven that the expressions over streams can produce results with very

low latency. The same applies to the general concepts of having a mediator

and introduce filtering at the source. Therefore, the implementation of the fleet

management is bringing all pieces together.

The setup of the fleet management simulation is based on three Raspberry Pis
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Figure 6.10: Fleet management simulation

Model B (each ARM v6, 512 MB Ram), a Macbook Pro with a Core i7 (Duo Core,

3.0 GHz, 8GB Ram) as a server backend, and a Mac mini with Core i5 (Duo Core)

used a requesting client. The Core i7 runs the master node (mediator) receiving

the messages from the taxi processes. These processes are running on the Pis (see

Figure 6.10). Each Pi is running n taxi processes (n: 100, 1000, 5000, 10000)

within one single node.

Using the PIPES API it is quite straightforward to implement the relevant

parts. A taxi can be simulated like follows:

def positionDataAsStream(id, x, y, interval) do

S.repeat( %{id: id, a: 0, x: x, y: y},

&(%{a: avail(id),x: move(&1[:x]),y: move(&1[:y])})) |>

S.zip(S.interval(interval)) |>

S.map(fn {t,v} -> %{id: id, a: v.a , x: v.x, y: v.y, t: t} end)

end

The parameter id is used to identify the taxi, x and y representing the start
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positions on a 2-dimensional grid and the interval is defining when a new event

gets triggered. The first line uses the repeat method and simply creates an infinite

stream and outputs event tuples of form {id, x, y, a} (with a representing the

availability of the taxi; a=0 taxi is available and a=1 taxi is not available). The

move method changes the values x or y by a random value between -1 and 3.

This stream is zipped with a clock stream producing an output every interval (in

milliseconds). The results of the zip method is a joined stream which outputs a

time stamped position data tuple {id, x, y, a, t}. Now, we can inject a rule on

each taxi, which forwards the new position only if the distance is greater then

20. Here is the number 20 an arbitrary number and is usually defined by the use

case. The rule looks as follows:

def rule(stream) do

stream |>

S.state(%{x: -1, y: -1, a: 1},

fn (v,acc) -> distance(v,acc) > 20 end)

end

The method expects a stream and detects if there is a new state. A new state

is defined by the closure used within the operator. If there is a new state available

the action forwards to the master.

Alternatively, we can define a rule which forwards the average position over

a time window. In this example the time window has the size of 5 seconds and

starts accumulating every 5 seconds (hop size):

def rule(stream) do

stream |>

S.win(5, 5, fn (elems) -> average(elems) end)

end

The average methods takes a list of tuple (elems) and calculates the average

position of x and y. As a timestamp t we output the last timestamp of the list.
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Same applies for availability a. The structure of the output tuple is the same as

above {id, x, y, a, t}.
In both cases, with state method or time window, the rule outputs a results,

which can be forwarded to the master. Therefore, a taxi cell can be implemented

as follows (with id is a taxi identifier and master defines the master cell id):

def startTaxi(id, master) do

Cell.start (fn ->

positionDataAsStream(id, rnd(1000), rnd(1000), 1000) |>

rule |>

Action.forward(master)

end)

end

The master node is implemented as a single node. First we create an Action-

State, which can keep changes in a dictionary and exposes an endpoint for clients

to request the available taxi for a given taxi. The closure within the ActionState

expects a stream of taxi updates and the client position v. First the closure filters

for available taxis and secondly returns the taxi which has the minimal distance

to the given position.

def startMaster do

# create action state endpoint

# provide standing query

endpoint = ActionState.start(fn (stream,v) ->

stream |>

S.filter(fn x -> x.a !=1) end) |>

S.min_by(fn x -> distance(x,v) end)

end)

# cell expression

expr = fn ->
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Source.asStream(:master) |>

Action.keepState(endpoint)

end

# start master cell

master = Cell.start(expr, :master, 1000)

Registry.register_name(:endpoint, endpoint)

Registry.register_name(:master, master)

{:ok, endpoint, master}

end

The expression expr running in the master cell is quite simple. On the source

side it expects incoming data and forwards to the Action, which can keep the

state. Finally, the cell gets started with the given expression expr and name

:master. The startMasterNode method has to return the master PID and the

endpoint PID so that taxis can forward to the master and clients can request

results from the endpoint.

Finally, the client is simply implemented as an Elixir process sends a message

to the master endpoint. The endpoint sends back the result as a message to the

client. This can also implemented as a request-response over http (if required)

without changing the core logic.

We have measured the memory consumption on the RaspberryPis to validate

scalability on smaller devices. Furthermore, this proofs the cell processes can scale

up millions without impacting the memory too much, This can be considered as

lightweight processes. The result is shown in figure 6.11.

As a summary we can say that it is straightforward to implement the fleet

management with the PIPES middleware even in a distributed setup. It is also

very impressive to see how lightweight a cell process is. We can run 10,000 cells

on a Raspberry Pi and we can run more than 1,000,000 cells on a Core i7 with

enough memory. Since it scales very linear this middleware can easily be used to

hyper-scale systems from smaller devices to the cloud.
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Figure 6.11: Used virtual memory on RaspberryPis

6.6 Comparison with other Technologies

So far, we have seen how PIPES behaves in data processing speed, scale over

multiple nodes and mediation. There are some other technologies which are

comparable to the PIPES middleware. For comparison we have picked the most

common: (1) Storm is definitely the best know technology for distributed data

processing, (2) Akka is well-known as distributed actor platform , and (3) Cloud

Haskell as the functional programming platform which is close to PIPES concepts.

Storm (https://storm.apache.org) is a distributed, real-time computation

system. On a Storm cluster, you execute topologies, which process streams of tu-

ples (data). Each topology is a graph consisting of spouts (which produce tuples)

and bolts (which transform tuples). Storm takes care of cluster communication,

fail-over and distributing topologies across cluster nodes. Storm is created by

Twitter and open sourced in 2011. It is written in Clojure and Java, but it works

well with Scala. It is well suited for doing statistics and analytics on massive

streams of data. Storm can describe streaming computation very simply: You

make a graph of computation with some input data source called spouts at the
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top, below that computation nodes called bolts that can depend on any spout or

bolt that has been computed above it, but you cannot have cycles. The graph is

called a topology.

Akka (http://www.akka.io/) is a toolkit for building distributed, concurrent,

fault-tolerant applications. In an Akka application, the basic construct is an actor;

actors process messages asynchronously, and each actor instance is guaranteed to

be run using at most one thread at a time, making concurrency much easier.

Actors can also be deployed remotely. Theres a clustering module coming, which

will handle automatic fail-over and distribution of actors across cluster nodes.

As described in (EBPJ12), Cloud Haskell (http://haskell-distributed.

github.io/) is a domain-specific language for cloud computing, implements as a

shallow embedding in Haskell. A programmer can make use of massage-passing

model, as we can find it in Akka or Erlang, but with some Haskell specific bene-

fits, e.g. purity, types, and monads. The term cloud in Cloud Haskell refers to a

large number of processors, with separate memories that are connected by a net-

work and have independent failure nodes. In Cloud Haskell the core concept are

lightweight processes (like actors) which communicate through typed channels.

The PIPES system can be seen as bringing the best of all worlds. In PIPES

the core concepts are sources, conditions and actions which builds together an

expression. The expression represents the logic and can be executed by a cell.

Compared to Storm a cell could be a spout or a bolt or both and provides a more

flexible to create a topology. A cell itself spawns lightweight processes, like in

Akka or Cloud Haskell. Therefore, it is natural to create many cells if needed to

process data. Since a cell can hold source, condition and action, PIPES provides

a very flexible way to distribute data processing expressions within a topology.

Thus, parallelising and scaling becomes very natural in PIPES. As shown, PIPES

is able to handle large amounts of data, scales very nicely and distribution works

out-of-the box.

6.6.1 Core concepts

Firstly, the basic unit of data in Storm is a tuple. A tuple can have any number of

elements, and each tuple element can be any object, as long as there is a serialiser
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available for it. In Akka, the basic unit is a message, which can be any object, but

it should be serialisable as well (for sending it to remote actors). In Cloud Haskell

the unit of data is a type (deriving from Typeable) and must be serialisable via

a channel. The type safety of Cloud Haskell makes it very robust for developing

system while concepts in Storm and Akka are more flexible.

In PIPES messages are tuples of values. A tuple is serialisable by the systems

and makes distribution and message passing easy and out of the box. The com-

plexity of a tuple is not limited and it is transparent if the message is processed

locally or forwarded to a remote cell. The missing type information is limiting

the robustness of a pipeline. This is work for future research.

In Storm, we have components: bolts and sprouts. A bolt can be any piece

of code, which does arbitrary processing on the incoming tuples. It can also

store some mutable data, e.g. to accumulate results. Moreover, bolts run in a

single thread, so unless you start additional threads in your bolts, you dont have

to worry about concurrent access to the bolts data. In Akka the core concept

are actors. Each actor is a lightweight process (not a system process). Each

actor can receive messages and maintains its state. This is comparable to Cloud

Haskell where we can find lightweight processes which communicate through type

channels.

A PIPES cell is comparable to an actor in Akka or a process in Cloud Haskell

although it can behave like a bolt since a cell runs a piece of code (expression)

to process incoming messages (tuples) and can store mutable data if required.

The major difference between actors and bolts is how they communicate. An

actor can receive messages and can send messages to any other actor, as long

as it has the reference to this actor (by looking it up in a registry). It can also

send back a reply to the sender of the message that is being handled. Storm,

on the other hand is one-way. You cannot send back messages; you also cannot

send messages to arbitrary bolts. But you can send a tuple to a named channel

(stream), which will cause the tuple (message) to be broadcast to all listeners,

defined in the topology. As a result, the topology in Storm is well defined and

stable while the topology in Akka and Cloud Haskell is more fragile and ad-hoc.

PIPES uses messages to communicate between cells and can even send mes-

sages back, although this can lead to some strange behaviour. By using message
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passing the topology in PIPES is also very flexible and can be changed quite

easily. The only dependency is the cell id to which a message should be sent.

In Storm, multiple copies of a bolts/sprouts code can be run in parallel (de-

pending on the parallelism setting). So this corresponds to a set of (potentially

remote) actors, with a load-balancer actor in front of them.

PIPES is not limiting any parallel execution of cells. The routing or load-

balancer would be a cell with specific logic taking care for parallelising the mes-

sage passing to other cells. To union results another cell is required (see fleet

management example).

6.6.2 Size and Scalability

There is also a difference in the weight of a bolt, an actor, and lightweight process.

In Akka, it is normal to have lots of actors (up to millions). The same applies to

Cloud Haskell. In Storm, the expected number of bolts is significantly smaller;

this is not in any case a downside of Storm, but rather a design decision. Also,

Akka actors typically share threads, while each bolt instance tends to have a

dedicated thread. Dedicated threads usually share memory to exchange data. In

Cloud Haskell both message passing and shared memory is possible.

PIPES is comparable to Akka. PIPES is expecting to have a big number of

cells where each cell is able to process a huge number of messages.

Akka is better for actors that talk back and forth, but you have to keep

track the actors, and make strategies for setting up different actor systems on

different servers and make asynchronous request to those actor systems. Akka is

more flexible than Storm but there is also more to keep track of. Storm is for

computations that move from upstream sources to different downstream sinks. It

is very simple to set this up in Storm so it run computation over many distributed

servers.

The following table summarises the comparison and provides an overview:
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Storm Akka Cloud
Haskell

PIPES

Platform Java/ Scala Java/Scala Haskell Elixir/Erlang
Programming
model

OO OO functional functional

Data tuple message typeable typed tuple
Communication streams message pass-

ing
typed channel message pass-

ing
Distribution stouts / bolts actor process cells
Hot deploy-
ment

– – – Code rede-
ployment
during run-
time

Data stream
processing

Streams (fil-
ter, map,
join, )

– – conditions
(filter, map,
zip, )

Temporal
concepts

windows – – clock stream
(with len and
win)

To summarise, PIPES provides a complete set of features for distributed data

processing. It brings together the best of all worlds: It provides an easy way to

describe and combine cells, enables the user to describe the pipeline for event

stream processing, and is fast enough to process data in a scalable fashion.

6.6.3 Event Processing Comparison

From a platform perspective PIPES can offer already a sufficient set of features.

Processing of expressions within a cell can be compared with complex event pro-

cessing. Therefore it makes sense to revisit engine and language features of section

A.

The following table provides an overview of PIPES compared to CEP engine

features:
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Engine Feature
Deployment model clustered
Manageability limited
Monitoring via Erlang observer
Capacity management –
Debugger –

Most products provided a more complete set of engine features. Most of them

are manageable and offers capacity management. Some of them monitoring and

debugging features. Here, PIPES can be improved is not on the level of available

products.

The following table provides an overview of PIPES compared to CEP language

features:

Language Feature
Type functional
Time mode world clock stream
Single Item Operators selection, projection, map-

ping
Logic Operators not yet
Windows sliding, hopping, and tum-

bling, count, user defined
Flow Management join
Others UDF, UDA, UDO

Main language features are available in PIPES. Although PIPES is lacking

some operators, we were focused so were on providing operators which were re-

quired by motivating scenarios. Furthermore, it was not in focus to build a

platform with a complete operator list. The focus was more on providing a foun-

dation which is strong enough to fulfil requirements and to provide a coherent

foundation which can be validated via ITL to gain a more or less formal proof. In

this sense, PIPES offers a foundation based on formal logic which is not available

with any other technology (as far as we are aware).

However, PIPES is a complex concept combining event processing with highly

scalable and distributed architecture which is new. We believes this is a very

useful combination for scenarios introduced in the introduction of the this thesis.
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6.7 Summary

In this chapter we have evaluated the approach presented within this thesis re-

garding (1) the overall approach for continuous data processing, (2) the latency

of push and pull based architectures towards a hyper-scale setup, (3) the capabil-

ities of the filtering at the source concept in terms of data traffic, and (4) building

distributed, fast processing data pipelines.

We have shown that using streams for data processing is a useful concept in

terms of latency and processing speed. We have demonstrated that complexity

of pipelines only matters for specific operators.

Overall, both evaluation tests regarding mediation architectures highlight how

(1) using the push approach with mediator and (2) policy injection on the data

source can be combined to form a promising architecture supporting low-latency

for large systems.

We have validated the applicability of the approach for real-world scenarios

by proving that building a pipeline end-2-end is (1) possible and scales in terms of

throughput and number of cells and (2) it provides a valid foundation for writing

distributed applications in an easy and natural way.
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Chapter 7

Conclusion

“Success is not final, failure is not fatal: it is the courage to continue

that counts.”

– Winston S. Churchill

SOA and big data are two of the mega-trends of the last decade. When

talking about big data it is usually linked to the 3 Vs as stated by Gartner

(Gar11): Volume, Variety, and Velocity. But the common understanding of big

data was mainly associated with volume and variety only. Velocity represents

the speed data at which needs to be processed. Nowadays, this is getting more

and more important driven on one the side by the pure speed or latency in which

insights can be produced and on the other side by the pure amount of data. The

expected data produced by sensors, phones, devices, etc. is expected to be so big

that all raw data cannot or may not be stored. Thus, it needs to be processed on

the fly with almost no latency. Google and others have started to use the term

fast data for this.

In addition SOA is still there and still important. There are services ev-

erywhere, providing data and offering functionality, e.g. weather, climate, or

traffic insights. Combining different data sources and services to produce better
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and more specific insights and predicting behaviour or avoiding unplanned down-

times are becoming key in the next years. Reading machine data in real-time,

correlating it with prediction models and triggering actions is one aspect in IoT

scenarios.

In this thesis we have presented how to combine fast data processing with

SOA. The overall aims of our research are (1) to develop a model to process

temporal service data with near zero latency, (2) to enable data processing in

highly-distributed and large systems, and (3) to develop an architecture to me-

diate between different interaction patterns.

In this chapter, we will discuss our research contributions by reflecting on the

research aims in Section 7.1 and considering future research directions in Section

7.2. Finally the concluding remarks will be made in Section 7.3.

7.1 Research Contribution

We divided our research aims into three aspects and each aspect comes with

several sub goals and objectives. We will now discuss our research contributions

against each of them.

7.1.1 Model for Fast Data Processing of Temporal Service

Data

A language to describe data processing pipelines from sources to ac-

tions. The main focus of the syntax is on expressing transformations of input

data and trigger actions on the output side. We have introduced a concept called

event policies to enable rules over data streams. These data streams were con-

sidered to follow the ITL logic. The event policy is a kind of ECA rule or a

source-condition-action rule (see section 3.2). By defining a source-condition-

action paradigm and verfiying this against ITL we have provided a foundation

for fast data processing over continuous data streams.

Support of time dependent service offerings. We have extended the

current logic with time information by introducing the concept of a clock stream.
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This additional time information is building the grounding to process time de-

pendent service offerings. With SCA over time rules it is possible to formulate

time related rules over data streams.

7.1.2 Data Processing in highly-distributed Systems

.

Defined an architecture to enable a distributed pipeline setup over

a heterogeneous set of nodes.We have extended the event policy paradigm

towards support of distributed systems. Polices can be distributed to nodes and

executed. The distribution concept is aligned with the policy concept. A policy

consists of a source-condition-action pattern. Thus, this can be easily distributed

through a complex distributed setup. Sending policies around as extended actors

enables us to support highly-distributed and large setups. The footprint by using

an actor model is very small so that we can easily scale to a big number of policies

and pipelines.

7.1.3 Mediation Architecture for Distributed Systems

A mediation model to integrate pull and push interaction into one

coherent architecture. We can find a lot of SOA based systems. Most of them

are using the classical request-response interaction paradigm. In contrast event-

based systems are getting popular as well; especially in some distributed systems.

We have developed an interaction paradigm which easily enables us to integrate

heterogeneous interaction pattern. Starting by combining push and pull based

interaction helps us to integrate request-response interaction with event-based

systems.

The mediation pattern enables us to control event-flow very elegantly by using

event policies and filtering at the source. This pattern extends the existing pull-

and push-model to have insights at your fingertip. There is no need to scan

through the list of services. Data is there when required.
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7.2 Future Research Directions

The programming model for fast data processing, the PIPES middleware, and the

mediation architecture are supporting the convergence of SOA and event-based

systems in large-scale. Although we have successfully achieved our research aims,

there are some remaining and arising research issue and directions in fast data

research.

Internet of Things: In the Internet of Things we are expecting a lot of

new requirements and challenges in the next years. The integration of different

sources and the extraction of insights will create new scenarios and services. The

demand for expressing rules over on-the-fly data will increase dramatically. The

pure amount of data will require a very flexible model to change rules on-the-fly

and for a highly distributed setup. Managing the amount of data, the optimal

usage of bandwidth or simply expressing rules depending on context will become

a key challenge for IoT. The expressiveness of rules needs to be increased and

extended. In addition, the requirement of placing rules as close to the source as

possible requires us to think about how to build engines which are able to execute

event policies on really small devices, e.g. sensors. More operators which makes

the definition of rules easier are desirable. Ideally a user should be able to read

rules as plain English.

Factory of the Future: In factory of the future (or Industry 4.0) each work

piece will be connected through its entire life time and deliver telemetry data.

Each work piece is becoming a smart object. These object are carrying unique

information to be identifiable, to communicate with equipment and machines to

tell them how a piece needs to be processed and in production it will tell about

its status, maintenance requirements, etc. Future research could investigate how

presented work can be used for smart objects. Which data can be processed

on really small processors and which needs to be send as aggregated data to

the cloud? This work provides some grounding, but there are challenges about

connectivity, about data in general, and about device capabilities at the horizon

which are not covered.

Predicting behaviour. So far, we defined operators only for processing

actual data to provide insights which are very timely. We have not looked into
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models which can predict certain behaviour. It would be nice to detect patterns

on a data stream and predict problems early. Fro example, we would know there

is a characteristic spike in the data stream which is caused by a problem which

will lead to a problem. It would be nice to learn this correlation and express it as

an event policy. The concept of event policies which we have presented here would

basically support it. There is currently a missing link between the learning phase

and expressing the policy. Future research could investigate how event policies

could be generated based on historical data in a first step and in a second step

deriving event policies dynamically while processing data streams.

Enabling event policy evolution. The current PIPES system supports

the ability to update event policies during runtime. This does not mean that

states from one version of the policy migrated to the new version of a policy. So

far, we have not looked into any kind of event policy versioning and evolution.

Future research could investigate into evolution concepts of event policies. There

might be changes to policies which do not break policy logic so that they could

be considered as a next evolution step of a policy. This work would also link to

the automatic adaption of prediction policies during runtime.

7.3 Concluding Remarks

It is not foreseeable when the dramatic increase of data sources producing trillions

of data points a second will stop. The amount of available data is directly linked

to the demand of processing this data and getting use out of it. This requires

concepts on how to handle this data (1) in terms of expressing rules, (2) in terms

of deciding which part of the rule can run where and (3) to control the data flow

without reducing the amount of information extracted from data. This thesis has

looked into all three aspects and has delivered a coherent concept for processing

data, distributing logic and integrating it into existing systems. This is clearly

only the beginning for a whole new set of application and research for hyper-scale

systems. We hope this thesis can make some contribution for the future to help

overcome the data flow without losing too much privacy.
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Appendix A

Platforms for CEP

In order to conduct this review of the state of the art, we have based our analysis

on different sources. First, we have identified 2 existing surveys from which some

of our results are based ((CM12), (FTR+10)). Second, we identified the market

leaders in the field of CEP based on a Forrester report (GR09). Finally, we

completed the analysis by gathering additional information more recent than the

previously mentioned documents.

A.0.1 Selection Criteria

The projects and products discussed in this section had to satisfy the following

criteria in order to appear.

• Availability of sources or binaries: in particular, research paper without an

available platform were not considered

• Availability of documentation: some commercial products provide docu-

mentation and support only after buying the product. Those products are

mentioned and references are given, but they are not discussed.

We list all the CEP products/projects satisfying the criteria:
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AMIT

IBM Active Middleware Technology (AMIT) is a lightweight complex event pro-

cessing engine that has been developed in IBM Research - Haifa. AMIT is now

commercially available as a WebSphere family product extension and should be

considered part of the WebSphere Message Broker. The latest version has been

released in 2008 and it seems that IBM is now promoting WebSphere Business

Events as its WebSphere CEP processing.

Borealis

Borealis is a research project developed at Brandeis University, Brown University,

and MIT. It is a distributed stream processing engine building on previous efforts

of the team in the area of stream processing: Aurora and Medusa. The Borealis

project is no longer an active research project and its latest release dates back

from 2008 and is available under an ad-hoc public license. The Borealis software

runs on Linux x86-based computers.

Cayuga

Cayuga is an open-source expressive and scalable Complex Event Processing

(CEP) system developed at the Cornell Database Group. The system is im-

plemented in C++, and runs on Windows, Linux, and Mac OS X. The code is

available on SourceForge under a BSD license.

Continuous Analytics

The Continuous Analytics software system (9) from Truviso is a hybrid of real-

time stream processing and relational dabase management system (RDBMS). It

resulted from the commercialization of the TelegraphCQ tool. A data stream

query processor has been integrated as a component of the SQL query processor

inside PostgreSQL.

150



Esper/Nesper

Esper is an open source event stream processing (ESP) and event correlation

engine (CEP). A commercial version is also available with additional features

such as high availability and which includes support. Esper is a Java-based

whereas Nesper is the equivalent CLR-based engine.

Event Processing Network

EventZero (12) is Brisbane-based Independent Software Vendor (ISV) founded in

2005. The Event Zero product suite is a full-featured commercial Event Process-

ing Network (EPN) platform used to implement many different types of event

processing solutions. Tehir EPN is a fully integrated suite of products that pro-

vides functionality for all of the stages in the event processing lifecycle: capture,

process, and respond.

Infosphere Streams

InfoSphere Streams is a CEP platform commercialized by IBM. It consists of

a programming language and an integrated development environment (IDE) for

Streams applications, and a runtime system that can execute the applications on

a single or distributed set of hosts. The Streams Studio IDE includes tools for

authoring and creating visual representations of the Streams applications.

Oracle CEP

Oracle launched its commercial event-driven architecture suite in 2006 and added

BEA’s WebLogic Event Server, itself based on Esper core engine, to it in 2008,

building what is now called ”Oracle CEP”, a system that provides real time infor-

mation flow processing. Oracle CEP is a lightweight Java application container

based on Equinox OSGi. Oracle CEP uses CQL as its rule definition language

which allows the manipulation of Streams and Relations.
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PADRES

Publish/Subscribe Applied to Distributed Resource Scheduling (PADRES) is an

open-source project. It is a distributed enterprise-grade event management in-

frastructure developed in the Middleware Systems Research Group at University

of Toronto. PADRES is based on the publish/subscribe event notification model.

Progress Apama

Progress Apama is a commercial product resulting from the acquisition of Apama

inc by Progress software corporation in 2005. It is one of the market leaders in

the field of CEP and provides a set of tools for creating, deploying and monitoring

CEP applications.

RTM Analyzer

RTM Analyzer (17) is commercialized by RTM Realtime Monitoring gmbh which

is a full subsidiary of Software AG. It is modular CEP platform originating from

the results obtained in the PIPES research project headed by B. Seeger.

Rulecore CEP Server

Rulecore CEP server is a commercial tool provided by Rulecore. It is entirely

event-driven and its execution engine works by continuously evaluating reaction

rules in response to inbound events. The rules are defined using a declarative

XML based rule language.

RulePoint

RulePoint is a commercial CEP software, initially developed by Agent Logic,

which was then bought by Informatica in 2009.

SASE

Stream-based And Shared Event processing (SASE) is a research project devel-

oped at the University of Massachusetts. Their focus lies in pattern matching in
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event streams with a formal approach based on the query evaluation model re-

lying on non-deterministic automata with buffer. The initial query model SASE

has been extended in SASE+ to incorporate Kleen closure.

Smart Enterprise Platform

Starview Smart Enterprise Platform is a commercial system for developing and

running event-driven applications. It provides a comprehensive environment of

event servers, remote agents (lighter version of event servers), monitoring and

simulation servers.

STREAM

The Stanford Stream Data Manager (STREAM) is a research project that has

been actively developed in Stanford University until 2004. A distinguishing fea-

ture of the language is the use of two elements, streams and relations, having

operators on each types as well as operators transforming on type into the other.

The project served as testbed for different researches in the context of stream

processing including the query language, the query processing, and the system as

a whole.

Stream Mill

Stream Mill is a research project conducted at the Web Information Systems

Laboratory of UCLA. Research efforts have been targeted at the query model and

language, optimization techniques, efficient support for XML as well as mining a

continuous stream of data.

Streambase

StreamBase Systems was founded in 2003 by Dr Mike Stonebraker, building on

the efforts from M.I.T, Brown University and Brandeis University in the Aurora

project. Streambase’s Event Processing Platform is a commercial product com-

bining a graphical event-flow development environment, a high troughput event
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server and a broad connectivity to real-time and historical data. Client libraries

are available for Java, C++, .Net and Python.

StreamInsight

Microsoft StreamInsight is a commercial platform for stream query processing

based on the Microsoft Research project called CEDR. Streaminsight embraces

a temporal stream model to unify and further enrich query language features,

handle imperfections in event delivery and define consistency guarantees on the

output.

Sybase Aleri Streaming Platform

The Sybase Aleri Streaming platform is a commercial tool resulting of the merger

of Coral8, Aleri and Sybase, which was then later bought by SAP. The plat-

form provides an IDE called Aleri Studio based on the Eclipse framework for

application development. It also provides multiple programming interfaces to

communicate with the platform as well a a large set of utilities.

TelegraphCQ

Telegraph is a research project in UC Berkeley’s Computer Science Division.

They core research evolves around technologies for adaptive dataflow. In partic-

ular, they have introduced techniques to reshape dataflow graphs to maximize

performance and to do load balancing across multiple machines on a network.

Tibco BusinessEvents

Tibco Business Events is a commercial product using a model-driven approach to

collect, filter, and correlate events. Its execution engine is a RETE-Based rules

engine and can be distributed across a multiple computers.
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UC4 Decision

UC4 Decision is a commercial product resulting from the acquisition of Senactive

by UC4 in 2009. UC4 Decision is a complex-event processing tool that processes

events based on pre-defined process models.

Vantify

Built on CEP technology, WestGlobal’s Vantify Experience Centre is a commer-

cial real-time Business Activity Monitoring solution.

Websphere Business Events

Websphere Business Events is a commercial product part of the Websphere line

of business offered by IBM. The technology originates from the acquisition of

the Aptsoft company in 2008. The tool allows to define complex event processing

more from a workflow perspective, and a distinguishing feature is the aim to target

directly the business analysts rather than deep technologists and programmers,

and therefore a set of easy to use tools with a clear view of the business processes

is part of the Websphere Business Events offering.
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Figure A.1: Language features supported by the tools
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