
The development of reliable X-by-Wire systems:

Assessing the effectiveness of a “simulation first”

approach

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Devaraj Ayavoo
B.Eng. (1st Hons.)

Embedded Systems Laboratory

Department of Engineering

University of Leicester

Leicester, United Kingdom

September 2006

UMI Number: U217825

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U217825
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

The development of reliable X-by-Wire systems: Assessing
the effectiveness of a “simulation first” approach

Devaraj Ayavoo

Abstract

Networks of embedded processors play an increasingly important role in the control of
automotive, aerospace, industrial, defence and medical systems. The requirements for
such “X-by-Wire” applications are highly demanding and complex in nature, and there are
numerous possible design and technology options available. As a consequence, in all but
the most trivial systems, engineering teams who wish to identify the “best” solution can
only hope to prototype a small percentage of the possible designs.

Several researchers have argued that an effective solution to these problems is to use
computer simulations in the early stages of the design process. The aim o f this thesis is to
explore the effectiveness of such a “simulation first” approach when developing X-by-
Wire systems. The main focus is on the automotive sector, but it is suggested that the
techniques developed during the course o f this project can be more widely applied.

This document makes three main contributions, as follows.

First, it provides clear empirical evidence of the extent to which a “simulation first”
approach can be used to support the development of non-trivial X-by-Wire systems.

Second, it introduces a novel, cost-effective empirical “small group methodology” (SGM)
to compare between different development techniques for embedded systems. The SGM
is described, and its effectiveness demonstrated in four non-trivial case studies.

Third, evidence is presented which suggests that the SGM may be more widely applicable.

Acknowledgement
Firstly, I would like to express my deepest gratitude to my supervisor Dr. Michael Pont for

his constant guidance and encouragement throughout this research project. I am very

appreciative of all the help that you have provided and have thoroughly enjoyed working

with you. You have made this “journey” of mine a very memorable one.

Next, I would like to thank the UK Government (Department of Education and Skills) for

awarding me the ORS Scholarship. In addition, I would also like to thank Pi Technology,

for partially funding my research project. In particular, I am grateful to Stephen Parker

and Mike Ellims for their various useful contributions to the project.

This research project would not have been possible without the peer support of my

colleagues in the Embedded Systems Laboratory. I thank you all for your encouragement,

support and the occasional distraction. Also, a special thanks to all my colleagues from

University o f Leicester’s Welfare Service. And to my good friends here and abroad, I

thank you for your unwavering belief in me.

A special thanks to my uncle, Dr. Nadaraja Kannan, for encouraging me to pursue a

doctorate degree.

Last but not least, I cannot thank my parents, sister and all my family members enough for

their constant support and prayers over the last few years. Thank you for always being

there for me.

I dedicate this thesis to my parents and sister

Ayavoo Kannan, Gunabushany Munusamy & Nalini Ayavoo

Table of Contents
L I S T O F C A S E S T U D I E S ... I l l

L I S T O F F I G U R E S .. IV

L I S T O F T A B L E S ... V I

L I S T O F P U B L I C A T I O N S ...V I I

L I S T O F A B B R E V I A T I O N S , S Y M B O L S A N D U N I T S ...IX

1. I N T R O D U C T I O N ..1

1.1 In t r o d u c t io n ... 1
1.2 D e s c r ip t io n o f t h e p r o b l e m .. 2
1.3 K e y c o n t r i b u t i o n s ... 7
1.4 T h e s is l a y o u t ..8
1.5 C o n c l u s i o n s .. 8

2. W H A T S I M U L A T O R S A R E A V A I L A B L E ? .. 9

2.1 In t r o d u c t io n ...9
2 .2 W h a t d o w e n e e d t o s im u l a t e ? ..1 1
2.3 A v a il a b l e s im u l a t io n t o o l s ... 19
2 .4 D i s c u s s i o n ... 24
2 .5 C o n c l u s i o n s ...24

3 . D O E S T H E T R U E T I M E S I M U L A T O R W O R K ? ..26

3.1 In t r o d u c t io n ... 26
3 .2 C a s e S t u d y 3 A : T h e C r u is e -C o n t r o l S y s t e m ..27
3.3 C a s e S t u d y 3B : T h e in v e r t e d p e n d u l u m s y s t e m ...35
3 .4 D is c u s s io n a n d c o n c l u s io n s ..4 0

4. H O W C A N W E A N S W E R M O R E S P E C I F I C Q U E S T I O N S A B O U T T H E R O L E O F
S I M U L A T I O N ? ..41

4.1 In t r o d u c t io n ...41
4 .2 C h a l l e n g e s o f e m p ir ic a l s o f t w a r e s t u d i e s ..43
4 .3 T o w a r d s a “ s m a l l g r o u p ” m e t h o d o l o g y ... 45
4 .4 T h e “ S m a l l G r o u p M e t h o d o l o g y ” .. 4 9
4 .5 D i s c u s s i o n ...56
4 .6 C o n c l u s io n s ...57

5. C A N T H E U S E O F S I M U L A T I O N R E D U C E E F F O R T ? ..58

5.1 In t r o d u c t io n ... 58
5 .2 C a s e S t u d y 5: A s s e s s in g t h e e f f o r t i n v o l v e d ...59
5.3 S y n c h r o n is in g t h e t i m e s c a l e ...63
5 .4 A n a l y s is o f t h e r e s u l t s f o r C a s e S t u d y 5 ...65
5.5 D i s c u s s i o n ...70
5 .6 C o n c l u s i o n s ...72

6 . C A N T H E D E V E L O P M E N T E F F O R T B E F U R T H E R R E D U C E D ? ..73

6.1 In t r o d u c t io n ... 73
6 .2 T r u e T im e - P l u s ... 74
6.3 C a s e S t u d y 6 : E v a l u a t io n o f t h e “ n e w ” s im u l a t io n m e t h o d o l o g y ... 76
6 .4 S y n c h r o n is in g t h e t i m e s c a l e ...78
6 .5 A n a l y s is o f t h e r e s u l t s f o r C a s e S t u d y 6 ...80
6 .6 D i s c u s s i o n ...86
6 .7 C o n c l u s i o n s .. 9 0

7 . C A N S I M U L A T I O N I M P R O V E S O F T W A R E Q U A L I T Y ? .. 91

7.1 In t r o d u c t io n ... 91
7 .2 B a c k g r o u n d o n s o f t w a r e q u a l it y .. 92

7.3 C a s e S t u d y 7: E v a l u a t io n o f s o f t w a r e q u a l i t y ...93
7 .4 T h e m e a s u r e m e n t o f q u a l it y i n d i c a t o r s ..94
7.5 A n a l y s is o f t h e r e s u l t s f r o m C a s e S t u d y 7 ...97
7 .6 D i s c u s s i o n ...101
7 .7 C o n c l u s i o n s .. 103

8. CAN THE SGM BE APPLIED MORE WIDELY?.. 104

8.1 In t r o d u c t io n ... 104
8 .2 C a s e St u d y 8: E v a l u a t io n o f t h e P T T E S B u i l d e r .. 105
8.3 A n a l y s is o f t h e r e s u l t s f o r C a s e S t u d y 8 ...109
8 .4 D i s c u s s i o n ...118
8.5 C o n c l u s io n s ... 120

9. DISCUSSION AND CONCLUSIONS...121

9.1 In t r o d u c t io n ..121
9 .2 O v e r v ie w o f t h e w o r k c o n d u c t e d ...121
9.3 S im u l a t io n in p r a c t i c e ...122
9 .4 E v a l u a t io n o f t h e S G M ..124
9.5 O t h e r “ b y p r o d u c t s ” o f t h e r e s e a r c h p r o j e c t ..126
9 .6 F u t u r e w o r k ..127
9 .7 C o n c l u s i o n s ... 130

REFERENCES..131

APPENDICES

A p p e n d ix -A O b s e r v in g t h e d e v e l o p m e n t o f r e l ia b l e e m b e d d e d s y s t e m s ... A - 1
A p p e n d ix -B T w o n o v e l s h a r e d -c l o c k s c h e d u l in g a l g o r it h m s f o r u s e w it h C A N - b a s e d

DISTRIBUTED S Y S T E M S ... B - l
A p p e n d ix -C A ‘h a r d w a r e - in -t h e - l o o p ’ t e s t b e d r e p r e s e n t in g t h e o p e r a t io n o f a c r u is e -c o n t r o l

SYSTEM IN A PASSENG ER C A R ... C - l
A p p e n d ix -D B a c k g r o u n d o n d e s ig n p a t t e r n s .. D - l
A p p e n d ix -E C o m p a r is o n o f e f f o r t a n d s o u r c e c o d e c h a n g e s ... E - l
A p p e n d ix -F L im it a t io n s o f t h e T r u e T im e s i m u l a t o r ..F - l
A p p e n d ix -G T e s t c a s e s f o r C a s e S t u d y 8 .. G - l
A p p e n d ix -FI E x a m p l e s o f s o m e a n a l y t ic a l m o d e l s ..H - l
A p p e n d ix -I E x a m p l e s o f s t u d e n t q u e s t i o n n a i r e s ...1-1

List of Case Studies
C a s e S t u d y 3 a T h e A u t o m o t iv e c r u is e -c o n t r o l s y s t e m .. 27

C a s e S t u d y 3 b T h e in v e r t e d p e n d u l u m s y s t e m .. 35

C a s e S t u d y 5 A s s e s s in g t h e e f f o r t in v o l v e d ...59

C a s e S t u d y 6 E v a l u a t io n o f t h e n e w s im u l a t io n m e t h o d o l o g y .. 76

C a s e S t u d y 7 E v a l u a t io n o f s o f t w a r e q u a l it y ..93

C a s e S t u d y 8 E v a l u a t io n o f t h e P T T E S B u il d e r ...105

i i i

List of Figures
F ig u r e 1-1 M ic r o c o n t r o l l e r im p l e m e n t a t io n g r o w t h in a u t o m o b il e s . R e d r a w n f r o m d a t a in

B a n n a t y n e (2 0 0 3) , F ig u r e 1 ...3

F ig u r e 1-2 A n il l u s t r a t io n o f a n X -b y -W ir e s y s t e m in a c a r f r o m B r e t z (2 0 0 1) , F ig u r e 1.
C o p y r ig h t IE E E , r e p r o d u c e d w it h p e r m is s io n ... 4

F ig u r e 2-1 R e q u ir e d f e a t u r e s o f a t o o l t o s im u l a t e X - b y - W ir e s y s t e m s ... 1 1

F ig u r e 2 -2 T a s k e x e c u t io n f o r c o -o p e r a t iv e a n d p r e - e m p t iv e s c h e d u l e r s .. 12

F ig u r e 2 -3 T h e p l a n t , c o n t r o l p r o c e s s a n d I /O s f o r a c o n t r o l s y s t e m .. 16

F ig u r e 2 -4 E x a m p l e s o f b l o c k in g a n d in t e r f e r e n c e d e l a y f o r c o -o p e r a t iv e a n d p r e - e m p t iv e

SCHEDULERS... 18

F ig u r e 2 -5 T h e T r u e T im e s im u l a t io n l ib r a r y o n S im u l in k ..23

F i g u r e 3-1 A b a s i c c r u i s e - c o n t r o l s y s t e m f o r C a s e S t u d y 3 A (a d a p t e d f r o m A y a v o o e t a l . 2 0 0 4 ,
F i g u r e 1).. 28

F i g u r e 3 -2 T h e c a r e n v i r o n m e n t f o r t h e C C S (a d a p t e d f r o m A y a v o o e t a l . 2 0 0 5 c , F i g u r e 2) 29

F i g u r e 3-3 A d i s t r i b u t e d c r u i s e - c o n t r o l s y s t e m f o r C a s e S t u d y 3 A (a d a p t e d f r o m A y a v o o e t a l .
2 0 0 4 , F i g u r e 2) ...30

F i g u r e 3 -4 C o n t r o l p e r f o r m a n c e u s i n g t h e T r u e T im e s i m u l a t o r a n d H IL t e s t b e d f o r C a s e S t u d y
3 A (ADAPTED FROM AYAVOO ETAL. 2 0 0 4 , FIGURE 3) .. 34

F i g u r e 3-5 T h e t e s t b e d o f a n i n v e r t e d p e n d u lu m f o r C a s e S t u d y 3 B (a d a p t e d f r o m B a u t i s t a e t
a l ., 2 0 0 5 , F i g u r e 1)... 37

F i g u r e 3 -6 T h e i n p u t / o u t p u t o f t h e p e n d u lu m t e s t b e d (p l a n t) a n d t h e A R M m i c r o c o n t r o l l e r f o r
C a s e S t u d y 3 B . F i g u r e a d a p t e d f r o m A y a v o o e t a l . 2 0 0 6 , F ig . 2 .. 37

F ig u r e 3 -7 D is t r ib u t e d im p l e m e n t a t io n o p t io n s f o r t h e p e n d u l u m c o n t r o l in C a s e S t u d y 3 B 38

F ig u r e 4-1 O v e r v ie w o f t h e S G M ..49

F ig u r e 4 -2 T h e s y n c h r o n is a t io n t e c h n iq u e ..56

F ig u r e 5-1 T h e c o n t r o l s y s t e m s e t u p o n T r u e T im e ..61

F ig u r e 5 -2 T o t a l h a r d w a r e im p l e m e n t a t io n t im e f o r a l l t h e g r o u p s in C a s e S t u d y 567

F ig u r e 5 -3 H a r d w a r e im p l e m e n t a t io n e f f o r t in s t a g e s f o r t h e f o u r g r o u p s in C a s e S t u d y 5 68

F ig u r e 5 -4 C o m p a r is o n o f t o t a l s im u l a t io n e f f o r t a n d t o t a l im p l e m e n t a t io n e f f o r t f o r G r o u p C
a n d G r o u p D in C a s e S t u d y 5 ..68

F ig u r e 5-5 C o m p a r is o n o f s im u l a t io n a n d im p l e m e n t a t io n e f f o r t in s t a g e s f o r G r o u p C in C a s e
St u d y 5 ...69

F ig u r e 5 -6 C o m p a r is o n o f s im u l a t io n a n d im p l e m e n t a t io n e f f o r t in s t a g e s f o r G r o u p D in C a s e
S t u d y 5 ...70

F ig u r e 6-1 C o m p a r is o n o f T r u e T im e a n d T T -P l u s s im u l a t io n p r o c e s s ..75

F ig u r e 6 -2 A f l o w c h a r t d e s c r ib in g h o w T T - P l u s l e a d s t h e u s e r t h r o u g h t h e v a r io u s

IMPLEMENTATION OPTIONS... 76

F ig u r e 6 -3 H a r d w a r e im p l e m e n t a t io n e f f o r t f o r d if f e r e n t s t a g e s (C a s e S t u d y 6). F ig u r e

ADAPTED FROM AYAVOO ETAL. (2 0 0 6) , FlG. 3 ...83

F ig u r e 6 -4 C o m p a r is o n o f t h e t o t a l s im u l a t io n e f f o r t a n d t o t a l im p l e m e n t a t io n e f f o r t f o r t h e
GROUPS USING A SIMULATOR IN CASE STUDY 6 ... 84

F i g u r e 6 -5 T h e s i m u l a t i o n e f f o r t i n v o l v e d a t d i f f e r e n t s t a g e s (C a s e S t u d y 6). F i g u r e a d a p t e d
f r o m A y a v o o e t a l . (2 0 0 6) , F ig . 4 .. 85

F ig u r e 6 -6 T h e s im u l a t io n e f f o r t in v o l v e d a t d if f e r e n t p h a s e s f o r a t w o -n o d e s y s t e m (C a s e

S t u d y 6). F i g u r e a d a p t e d f r o m A y a v o o e t a l . (2 0 0 6) , F ig . 5 ..86

F ig u r e 6-7 T h e s i m u l a t i o n e f f o r t i n v o l v e d a t d i f f e r e n t p h a s e s f o r a t h r e e - n o d e s y s t e m (C a s e
S t u d y 6). F i g u r e a d a p t e d f r o m A y a v o o e t a l (2 0 0 6) , F ig . 6 ...86

F ig u r e 6 -8 S u m m a r y o f t h e im p l e m e n t a t io n e f f o r t in v o l v e d in C a s e S t u d y 6 ... 88

F ig u r e 6 -9 S u m m a r y o f t h e s im u l a t io n e f f o r t in v o l v e d in C a s e S t u d y 6 ... 89

F ig u r e 7-1 A n e x a m p l e o f a f r a m e w o r k f o r s o f t w a r e q u a l it y . R e d r a w n f r o m d a t a in M a r t in a n d
S h a f e r (1 9 9 6) , F ig u r e 3 ...92

F ig u r e 7 -2 T h e IS O /IE C 9 1 2 6 s o f t w a r e q u a l it y c h a r a c t e r is t ic s f r o m a u s e r ’s p e r s p e c t iv e .
R e d r a w n f r o m d a t a in B e v a n (1 9 9 9) , F ig . 1 ..93

F ig u r e 7-3 R e s u l t s o f t h e im p l e m e n t e d l in e s o f c o d e f o r e a c h g r o u p in C a s e S t u d y 7 99

F ig u r e 7 -4 R e s u l t s o f M c C a b e ’s C y c l o m a t ic C o m p l e x it y f o r e a c h g r o u p in C a s e S t u d y 7100

F ig u r e 7 -5 T h e l e v e l o f s o u r c e c o d e c o u p l in g f o r e a c h g r o u p in C a s e S t u d y 7 .. 100

F ig u r e 7 -6 . T h e n u m b e r o f c h a n g e s m a d e d u r in g t h e im p l e m e n t a t io n s t a g e s f o r e a c h g r o u p in
C a s e S t u d y 7 ...101

F ig u r e 7 -7 T r e n d o f t h e o v e r a l l r e s u l t s o f s o f t w a r e q u a l it y f o r a t w o -n o d e s y s t e m in C a s e

St u d y 7 ... 102

F ig u r e 7 -8 T r e n d o f c h a n g e s m a d e a n d im p l e m e n t a t io n e f f o r t f o r a l l t h e g r o u p s in C a s e S t u d y
7 ... 103

F ig u r e 8-1 E x a m p l e o f t h e u s e r in t e r f a c e f o r t h e P T T E S B u il d e r .. 105

F ig u r e 8 -2 D e v e l o p in g t h e C C S u s in g t h e a s s o c ia t e d P IE s f o r C a s e S t u d y 8. F ig u r e a d a p t e d f r o m
PO N T£T/IL . (SUBMITTED), FIGURE 15 ..110

F ig u r e 8-3 T h e C C S d e v e l o p m e n t p h a s e s f o r t h e t e a m s in C a s e S t u d y 8. F ig u r e a d a p t e d f r o m

P o n t e t a l . (s u b m i t t e d) , F i g u r e 1 6 ... 1 11

F ig u r e 8 -4 E f f o r t in v o l v e d in im p l e m e n t in g t h e r e l a t e d p a t t e r n s in C a s e S t u d y 8-1...........................114

F ig u r e 8 -5 T h e n u m b e r o f c h a n g e s m a d e t o t h e in d iv id u a l p a t t e r n s in C a s e S t u d y 8-1....................... 114

F ig u r e 8 -6 T h e e f f o r t in v o l v e d in im p l e m e n t in g t h e r e l a t e d p a t t e r n s in C a s e St u d y 8 - I I116

F ig u r e 8 -7 T h e n u m b e r o f c h a n g e s m a d e t o t h e in d iv id u a l p a t t e r n s in C a s e S t u d y 8 - I I117

F ig u r e 8-8 T h e t e s t c a s e c o m p l ia n c e r a t io in C a s e S t u d y 8 - I I .. 118

F ig u r e 8 -9 T r e n d o f c h a n g e s m a d e a n d d e v e l o p m e n t e f f o r t f o r a l l t h e g r o u p s in C a s e S t u d y 8.
...119

F ig u r e 9-1 T h e m o d if ie d S G M t h a t in c o r p o r a t e s p r e - a n d p o s t -a n a l y s is in t e r v ie w s128

V

List of Tables
T a b l e 2-1 S o m e d if f e r e n c e s in t h e c h a r a c t e r is t ic s o f t h e c o m p e t in g n e t w o r k p r o t o c o l s in t h e

AUTOMOTIVE SECTOR FOR SAFETY-CRITICAL APPLICATIONS (ORIGINAL SOURCES OBTAINED FROM
KOPETZ, 2 0 0 1 ; L e e n a n d H e f f e r n a n , 2 0 0 2 ; M a i e r e t a l , 2 0 0 2) ... 15

T a b l e 3-1 T a s k in it ia l a r r iv a l , p e r io d a n d e x e c u t io n t im e s w it h a 1m s t ic k in t e r v a l f o r C a s e

S t u d y 3 A (a d a p t e d f r o m A y a v o o e t a l . 2 0 0 4 , T a b l e 1)... 31

T a b l e 3 -2 C o m b i n a t i o n o f t h e p o s s ib l e i m p l e m e n t a t i o n s f o r t h e C C S in C a s e S t u d y 3 A (a d a p t e d
f r o m A y a v o o e t a l . 2 0 0 4 , T a b l e 2) ...32

T a b l e 3 -3 C o m p a r is o n o f T r u e T im e s im u l a t io n r e s u l t s a n d t h e H IL t e s t b e d o f a n “ e v e n t

MESSAGE” RESPONSE TIME (IN nS) FOR CASE STUDY 3 A (ADAPTED FROM AYAVOO ETAL. 2 0 0 4 , TABLE
3) ..34

T a b l e 3 -4 C o m p a r is o n o f c o n t r o l d e l a y (in u s) b e t w e e n t h e T r u e T im e s im u l a t o r a n d t h e H IL
TESTBED FOR CASE STUDY 3 A (ADAPTED FROM AYAVOO ETAL. 2 0 0 4 , TABLE 4) ... 35

T a b l e 3 -5 T h e p e r c e n t a g e o f m e a n d e v ia t io n b e t w e e n t h e T r u e T im e s im u l a t o r a n d t h e H IL
TESTBED FOR THE PERIODIC CONTROL TASKS IN CASE STUDY 3 A (ADAPTED FROM AYAVOO ETAL. 2 0 0 4 ,
T a b l e 5) ..35

T a b l e 3 -6 T a s k s t r u c t u r e o f t h e p e n d u l u m c o n t r o l l e r f o r C a s e S t u d y 3 B ...39

T a b l e 3 -7 C o m p a r is o n o f t h e c o n t r o l d e l a y (in m s) b e t w e e n t h e T r u e T im e s im u l a t io n a n d

IMPLEMENTATION FOR CASE STUDY 3 B ... 39

T a b l e 4-1 “ P r o g r e s s f o r m ” t o c a t e g o r is e t h e a c t iv it ie s u n d e r t a k e n b y t h e s t u d e n t s d u r in g t h e

EXPERIMENT. GENERALLY, A TICK IS MARKED ON THE RELEVANT BOX TO INDICATE THAT “ ACTIVITY X ”
IS BEING CARRIED OUT AT A PARTICULAR TIME SLOT. NOTES WERE ALSO MADE TO RECORD ANY
DIFFICULTIES AND ANOMALIES OBSERVED THROUGHOUT THE DEVELOPMENT PROCESS..................................55

T a b l e 5-1 G r o u p s t r u c t u r e f o r C a s e S t u d y 5. T a b l e a d a p t e d f r o m A y a v o o e t a l . (s u b m i t t e d) ,
T a b l e 11..60

T a b l e 5 -2 R e s u l t s f o r C a s e S t u d y 5 a f t e r e a c h v e r s io n w a s m a p p e d t o its c o r r e s p o n d in g p h a s e

AND ITS RESPECTIVE TIME TAKEN IN MINUTES.. 64

T a b l e 5 -3 R e s u l t s (in m in u t e s) f o r C a s e S t u d y 5 a f t e r g r o u p in g v e r s io n s t o g e t h e r . T a b l e

ADAPTED FROM AYAVOO ETAL. (SUBMITTED), TABLE I I I .. 64

T a b l e 5 -4 T h e m e a n r e s u l t s f o r e f f o r t (in m in u t e s) f o r C a s e S t u d y 5. T a b l e a d a p t e d f r o m

A y a v o o e t a l . (s u b m i t t e d) , T a b l e IV ...65

T a b l e 6-1 D e v e l o p m e n t m e t h o d o l o g y f o r e a c h g r o u p in C a s e St u d y 6. T a b l e a d a p t e d f r o m

A y a v o o e t a l . (2 0 0 6) , T a b l e 1 ..78

T a b l e 6 -2 S y n c h r o n is e d r e s u l t s f o r C a s e S t u d y 6 a f t e r g r o u p in g s im il a r p h a s e s t o g e t h e r a n d it s

RESPECTIVE TIME TAKEN IN MINUTES. TABLE ADAPTED FROM AYAVOO ETAL. (2 0 0 6) , TABLE 380

T a b l e 6 -3 T h e r e s u l t s f o r e f f o r t (in m in u t e s) f o r C a s e S t u d y 6 ...81

T a b l e 6 -4 P e r c e n t a g e o f t h e e f f o r t in v o l v e d f o r t h e d if f e r e n t d e v e l o p m e n t a p p r o a c h e s f o r

C a s e St u d y 6 ..82

T a b l e 7-1 T h e c o n t r o l d e l a y (in m s) r e c o r d e d b y a l l t h e g r o u p s in C a s e S t u d y 798

T a b l e 8-1 T h e G Q M a p p r o a c h u s e d in C a s e S t u d y 8 .. 108

T a b l e 8 -2 T h e m e a n r e s u l t s f o r C a s e S t u d y 8 ... 112

T a b l e 8-3 T h e s y n c h r o n is e d r e s u l t s o f t h e e f f o r t a n d c h a n g e s m a d e f o r C a s e S t u d y 8-1............... 113

T a b l e 8 -4 T h e r e s u l t s (in t o t a l) f o r e f f o r t , r e l ia b il it y a n d m o d u l a r it y o f t h e p a t t e r n s in C a s e
St u d y 8-1...113

T a b l e 8-5 T h e s y n c h r o n is e d r e s u l t s f o r e f f o r t a n d c h a n g e s m a d e f o r C a s e S t u d y 8 - I I 115

T a b l e 8 -6 T h e r e s u l t s (in t o t a l) f o r e f f o r t , r e l i a b i l i t y a n d m o d u l a r i t y o f t h e p a t t e r n s in C a s e
S t u d y 8 -II. T a b l e a d a p t e d f r o m P o n t e t a l . (s u b m i t t e d) , T a b l e 3 ... 116

LIST OF PUBLICATIONS

A number ofpapers were published during the course o f the work described in this thesis.
These are listed below (in reverse chronological order). Please note that the contents o f
some o f these papers have been adapted fo r presentation in this thesis: where applicable,
a footnote at the beginning o f a chapter indicates that material from one or more papers
has been included. For those papers with contents that have not been included in this
thesis, a copy o f the paper itself is included in the appendices.

Directly-related publications

Ayavoo, D., Pont, M. J. and Parker, S. (in preparation) “Developing reliable embedded
systems: Does a ‘simulation first’ approach improve software quality?”.

Ayavoo, D., Pont, M. J. and Parker, S. (submitted 29 August 2006) “Comparing different
techniques for developing software for mechatronic systems: A low-cost empirical
methodology”. IEEE/ASME Transactions on Mechatronics.

Pont, M. J., Mwelwa, C., Bonthonneau, L., Ayavoo, D., Kurian, S. and Ward, D.
(submitted 10 August 2006) “Pattern-based development of time-triggered embedded
systems using software tools: Challenges and solutions”. Journal of Systems and
Software.

Ayavoo, D., Pont, M.J. and Parker, S. (2006) "Does a ‘simulation first’ approach reduce
the effort involved in the development of distributed embedded control systems?”.
Proceedings of the 6th UKACC International Control Conference, Glasgow, Scotland,
2006.

Ayavoo, D., Pont, M.J. and Parker, S. (2005a) "Observing the development of a reliable
embedded system". In Vardanega, T. and Wellings, A. (Eds.) "Proceedings o f the 10th
Ada-Europe International Conference on Reliable Software Technologies, York, UK,
June 20-24 2005", p. 167-179. Lecture Notes in Computer Science, Vol. 3555.
Published by Springer-Verlag [ISBN: 3-540-26286-5]. (A copy o f this paper is
included in Appendix-A)

Ayavoo, D., Pont, M.J. and Parker, S. (2004) "Using simulation to support the design of
distributed embedded control systems: A case study". In: Koelmans, A., Bystrov, A.
and Pont, M.J. (Eds.) "Proceedings of the 1st UK Embedded Forum 2004
(Birmingham, UK, October 2004)", p. 54-65. Published by University of Newcastle
upon Tyne [ISBN: 0-7017-0180-3].

Associated publications

Ayavoo, D., Pont, M.J., Short, M. and Parker, S. (accepted) “Two novel shared-clock
scheduling algorithms for use with CAN-based distributed systems”. Microprocessors
and Microsystems. (Accepted fo r publication subject to minor revisions. A copy o f
this paper is included in Appendix-B)

Ayavoo, D., Pont, M.J., Short, M. and Parker, S. (2005b) “Two novel shared-clock
scheduling algorithms for use with CAN-based distributed systems”. In: Koelmans, A.,
Bystrov, A., Pont, M.J., Ong, R. and Brown, A. (Eds.), Proceedings of the Second UK
Embedded Forum (Birmingham, UK, October 2005), p. 246-261. Published by
University o f Newcastle upon Tyne [ISBN: 0-7017-0191-9].

Ayavoo, D., Pont, M.J., Fang, J., Short, M. and Parker, S. (2005c) “A ‘hardware-in-the-
loop’ testbed representing the operation of a cruise-control system in a passenger car”.
In: Koelmans, A., Bystrov, A., Pont, M.J., Ong, R. and Brown, A. (Eds.), Proceedings
of the Second UK Embedded Forum (Birmingham, UK, October 2005), p. 60-90.
Published by University of Newcastle upon Tyne [ISBN: 0-7017-0191-9]. (A copy o f
this paper is included in Appendix-C)

List of Abbreviations, Symbols and Units

Abbreviations
ACCS Adaptive Cruise-Control System
ADC Analogue to Digital Converter
ASIC Application Specific Integrated Circuit
CA Controller/Actuator
CAN Controller Area Network
CASE Computer Aided Software Engineering
CCS Cruise-Control System
CSMA/CA Carrier Sense Multiple Access / Collision Avoidance
DAC Digital to Analogue Converter
DSP Digital Signal Processor
DVD Digital Versatile Disc
ESL Embedded Systems Laboratory
FPGA Field Programmable Gate Array
GQM Goal Question Metrics
HIL Hardware-in-the-Loop
HW Hardware
I/O Input/Output
IMP Implementation
kbps kilo bits per second
LCD Liquid Crystal Display
LED Light Emitting Diode
LIN Local Interconnect Network
LOC Lines of (Source) Code
LQR Linear Quadratic Regulator
Mbps Mega bits per second
0 - 0 Object-Oriented
PDA Personal Digital Assistant
PID Proportional, Integral and Derivative
PIE Pattern Implementation Example
PTTES Patterns for Time-Triggered Embedded Systems
PWM Pulse Width Modulation
s e e Shared-Clock CAN
SGM Small Group Methodology
SIM Simulation
SW Software
TDMA Time Division Multiple Access
TTCAN Time-Triggered Controller Area Network
U p Time-Triggered Protocol
TTP/C Time-Triggered Protocol, Class C
TT-Plus TrueTime-Plus
UML Unified Modelling Language
VAN Vehical Area Network

Symbols
a Acceleration
Fr Frictional coefficient
m Mass
Vf Final speed
v, Initial speed
Ax Displacement
6 Throttle setting
r Engine torque

Units
m/s Metres / Second
ms Millisecond
s Second
ps Microsecond

x

1. Introduction
In this introductory chapter, an overview o f the work undertaken in this thesis is presented
and the importance o f this area is discussed. 1

1.1 Introduction

Most branches o f engineering have a long history associated with them. For instance, the

study of electrical engineering can be dated back to the invention of the electric motor by

Michael Faraday in 1821 (Faraday, 2004), while James Watt is largely recognised for his

seminal contributions to control engineering with the development of the flyball governor

in the 1760s (Marsden, 2004). It is possible that the practice of civil engineering may

have the longest history of all, dating back to the building of the Egyptian pyramids.

Certainly, the Institution of Civil Engineers was founded in the UK in 1818 and is the

oldest professional engineering institution in the world (ICE, 2006).

For the software engineer, a different situation applies. Although Charles Babbage began

work on his ‘Analytical Engine’ around 1833 (Babbage, 1888), it was not until 1965 that

the first mass-produced mini computer, the PDP-8, was launched (Jones, 2004). Intel

followed suit with the release of the first microprocessor, the Intel 4004, only in 1971

(Wilson, 2001). As a result o f the late introduction of small programmable computer

systems, the field of software engineering lacks the rigorous theoretical foundation which

marks out most branches of the engineering profession. This situation might not matter if

software development was a niche occupation: however, the development of software-

based systems lies at the heart of many business and technical activities (Storey, 1996;

Lewis, 2001).

The focus of this thesis is on the development of reliable software for embedded systems.

Embedded systems are special-purpose computers that combine hardware and software

and are mounted on compact electronic circuit boards that are used inside a particular

device (Sachitanand, 2002). Very often, such systems interact with the real world through

input/output devices such as push-button switches, potentiometers, LCD panels and LEDs.

Parts o f this chapter have previously been published in Ayavoo et at. (2004) and Ayavoo et at. (2006).

1

Embedded systems may include microcontrollers, microprocessors, DSPs, FPGAs and/or

ASICs to perform the core computation.

Embedded processors can be found in many day-to-day applications such as digital

cameras, Personal Digital Assistants (PDAs), palm top computers, DVD players and

mobile phones (Chouliaras et ah, 2005). In addition to these “non-critical” systems,

embedded processors are also used in safety-critical applications such as automotive,

aerospace, defence and medical systems (Storey, 1996). The use of embedded processors

in such applications is very attractive as it can greatly improve the functionality of a

particular product at very low cost (Pont, 2001; Sachitanand, 2002). Over the years, many

industrial firms (such as Intel, Infineon, Philips, Atmel, Altera, Xilinx, Texas Instruments)

have been actively producing a range of different embedded processors to match the

growing needs and demand of the modem technology. Overall, embedded processors are

poised to revolutionise many industrial sectors and consumer products by making various

systems more “intelligent”.

1.2 Description of the problem

With the rapid growth of technology, the development o f huge and complex embedded

systems is becoming increasingly difficult; especially where system safety and reliability

is crucial. This section describes the difficulties involved in detail.

1.2.1 Distributed embedded control systems in the automotive sector

The focus of the work presented in this thesis is on the development of reliable embedded

systems, particularly for automotive applications. Here, embedded processors are

becoming ubiquitous (Maier et ah , 2002) and are used to perform a variety of safety-

related functions in the vehicle such as automatic transmission, anti-lock braking systems

and engine control. The number of embedded processors used in a vehicle has also been

steadily increasing over the past few years (see Figure 1-1), and it is expected that this

trend will continue over the next few years, as the complexity and functionality of the

system increases (Lanfear et al., 2006).

2

Vehicle Type

Luxury

Mid-range

Low-end

O (^T)

GE GE GE
1998 1999 2000 2001 2002 Year

Figure 1-1 Microcontroller implementation growth in automobiles. Redrawn from data in
Bannatyne (2003), Figure 1.

It is also expected that an increasing number of road vehicles will soon contain

sophisticated distributed embedded control systems, consisting of a number of

microcontrollers linked by one or more computer networks (Leen et al., 1999): crucially,

these systems will have no mechanical backup. As with similar distributed embedded

control systems in other sectors (including aerospace, medicine, manufacturing and

defence), these embedded automotive designs will be highly complex, and will have a

central role in safety.

This cutting edge technology, which is also known as X-by-Wire2 systems (Ellims et al.,

2002; Fredriksson, 2002; Koopman, 2002; Nossal and Lang, 2002), can be argued to have

been inspired by the success of Fly-by-Wire systems adopted in the aerospace industry

(Briere et al., 1995; Schmitt et al., 1998). The ‘X’ in X-by-Wire represents the basis of

any safety-related application, such as steering, braking, power train, throttle or suspension

control systems (see Figure 1-2). It is expected that X-by-Wire systems will assist the

driver in different situations and make it safer for all road-users (Bretz, 2001; Koopman,

2002).

Please note that the term X-by-Wire is used in the remainder o f this thesis to represent any distributed
embedded control systems.

3

Electric throttle
A L valve control

Electrically a ss isted
power steering

Active
suspension

Brahe-by-wire

Figure 1-2 An illustration of an X-by-Wire system in a car from Bretz (2001), Figure 1. Copyright
IEEE, reproduced with permission.

1.2.2 Why is the development of X-by-Wire systems difficult?

The designers of X-by-Wire systems, particularly for those in the automotive industry,

face the challenge that the resulting systems must operate very reliably, and - at the same

time - have minimal maintenance requirements and a low purchase price (Kopetz, 1995;

Schoitsch, 2003). As a consequence of the market’s demand for lower cost, the X-by-

Wire systems often have to operate within severe resource constraints such as limited CPU

speed, memory constrictions, minimal hardware peripherals and restricted network

bandwidth.

Over the last few years, software engineers and programmers have been influenced by a

stream of new methodologies and techniques, such as object-oriented (O-O) development

(Dahl and Ngyaard, 1966), design patterns (Cunningham and Becks, 1987; Gamma et a l,

1995), aspect-oriented design (Kiczales et al., 1997) and “extreme” programming (Becks,

2000). In any company, it is very difficult for team managers to determine whether the

use of one or more of these techniques is likely to prove beneficial (Fenton et al., 1994;

Basili et al., 1999; Dyba et al., 2005).

4

In addition to choosing between these different software development methodologies, the

implementation o f X-by-Wire systems must also constantly adapt to changes in the

software environment brought about by changes in technology and hardware design. For

example, the designer o f a modem passenger car may need to choose between the use of

one (or more) network protocols based on CAN (Rajnak and Ramnerfors, 2002), TTCAN

(Hartwich et al., 2002), LIN (Specks and Rajnak, 2002), FlexRay or TTP/C (Kopetz,

2001). The resulting network may be connected in, for example, a bus or star topology

(Tanenbaum, 1995). The individual processor nodes in the network may use event-

triggered (Nissanke, 1997) or time-triggered (Kopetz, 1997) software architectures, or

some combination of the two. The clocks associated with these processors may be linked

using, for example, shared-clock techniques (Pont, 2001) or synchronisation messages

(Hartwich et al., 2000). These individual processors may, for example, be C l67 (Siemens,

1996), ARM (ARM, 2001), MPC555 (Bannatyne, 2003) or 8051 (Pont, 2001).

To further complicate matters, the different design options are far from independent: for

example, the CAN bus is supported on 8-bit processors for which - in many cases -

memory restrictions means that 0 - 0 programming languages (like C++) are not widely

available (Pont, 2003). However, use of a FlexRay bus as an alternative to CAN is likely

to require a more powerful processor with increased memory: use of such a processor

may, in turn, make the use of an 0 - 0 language feasible.

Moreover, most embedded systems that are related to safety-critical applications have

“hard” timing constraints (Liu, 2000). This means there is no allowance for errors or

“lateness” in the way the system executes with regards to its timing. For example, in a

Brake-by-Wire system, the brake actuators may be required to respond within a fixed

amount of time after the brake pedal has been pressed. If the system is unable to respond

within this time frame, there could be a danger that the vehicle may not stop in time before

crashing into another vehicle. In such cases, it is better to predict the timing behaviour of

an embedded system to ensure that all timing constraints are met.

However, predicting the behaviour of X-by-Wire system is not straightforward. For future

automotive X-by-Wire systems, it is unlikely that (say) a Brake-by-Wire system will work

independently; by contrast, this system may be partially dependent on other control

systems of the vehicle such as throttle and cruise control. For example, suppose the brakes

5

fail, the control system will wish to cut the throttle. Furthermore, it is also expected that

these systems will share certain resources such as the network bandwidth, and have

multiple levels o f redundancy (Isermann et al., 2002) such as back-up nodes (Short et al.,

2006) and secondary network protocols (Hilmer et al., 1998; Pimentel and Fonseca, 2004).

For such complex systems and taking into account the different design options and

development methodologies available, the process o f ensuring that all timing constraints

are satisfied can be difficult.

Overall, the number of possible system designs is enormous, and prototyping even a small

subset of these different systems is impractical. If the developers o f embedded systems

intend to rapidly understand the behaviour of a particular system, or identify the “best”

system architecture from a range of possible options, an alternative approach is required

(Castelpietra et al., 2001).

1.2.3 A “simulation first” approach

The work described in this thesis was initiated with preliminary discussions between

representatives from Pi Technology and Dr. Michael Pont from the Embedded Systems

Laboratory (ESL), University of Leicester. The initial discussions resulted in the decision

to develop a tool that supports the simulation of embedded systems, particularly for those

in the automotive industry. The tool was expected to be able to support the development

o f reliable, cost-effective, X-by-Wire networks by allowing different network designs to

be rapidly assessed, and their features compared, early in the product lifecycle.

Various researchers have suggested that a simulation approach could be used to design and

validate various implementation options in this way (see El-khoury and Tomgren, 2001;

Palopoli et al., 2001; Tomgren et al., 2001; Castelpietra et al., 2002; Cervin et a l, 2003;

Karatza, 2004; Redell et al., 2004). For example, according to Karatza, “The most

straightforward way to evaluate the performance without a full-scale implementation is

through a modelling and simulation approach. Detailed simulation models help determine

performance bottlenecks inherent in the architecture and provide the basis fo r refining the

system conjiguration.'XKaratza, 2004, p. 183).

6

A versatile simulator is often expected to provide various benefits to the development

process of embedded systems. For instance, El-khoury and Tomgren (2001) suggest that a

simulator could be used to address the development challenges by evaluating various

error-detection and error-handling mechanisms for X-by-Wire systems. Redell and

colleagues imply that a simulation approach could help lower development times and

minimise implementation-related problems at the later stages of the design process (Redell

et al., 2004). Palopoli and colleagues conclude that a simulation tool can help provide

guidelines to the choice of design by allowing the assessment of different system design

options (Palopoli et al., 2002). Henzinger and colleagues suggest that this approach can

potentially increase the reliability and reusability of control software (Henzinger et al.,

2003).

Overall, the literature suggests that simulation has the potential to assist in the

development of reliable X-by-Wire systems. Hence, the initial aim of the research project

described in this thesis was to develop a simulation tool that could assist in the design and

implementation of such systems.

1.3 Key contributions

This thesis makes three contributions to this research area:

First, empirical evidence of the contributions that simulation can make in the development

of reliable X-by-Wire systems is provided. Specifically, the impact of a “simulation first”

approach on the system development effort and software quality is reported.

Second, the thesis introduces a novel, cost-effective empirical methodology - the “Small

Group Methodology” (SGM) - that can be used to compare development techniques for

embedded systems. It is demonstrated that this approach allows a detailed evaluation and

analyses of the various stages of the software development process.

Third, evidence is provided that the SGM may be suitable for use in a wider range of

application areas. In support of this claim, a case study is presented in which the SGM

was used to assess the effectiveness of a CASE tool in the implementation of reliable

software patterns for embedded systems.

7

1.4 Thesis layout

Following this introductory chapter, Chapter 2 provides an overview of some of the

existing simulation tools that are available. Chapter 3 then uses one particular simulator,

and investigates the extent to which the tool can be used to predict the behaviour of

various X-by-Wire systems.

In Chapter 4, discussions are carried out on techniques that can be used to evaluate the

efficacy of novel development methodologies when used in practice. A description of the

SGM is then presented.

Chapters 5, 6 and 7 are devoted towards using the SGM to assess the efficacy of the

“simulation first” approach in the development of reliable embedded control systems.

Chapter 5 describes a case study to investigate if a “simulation first” approach can reduce

the overall effort involved in the development process. A different case study is used in

Chapter 6 to explore ways in which the effort involved can be further reduced. In Chapter

7, the SGM is used to evaluate contributions of a “simulation first” approach on software

quality.

In Chapter 8, a different (and otherwise unrelated) case study was carried out to

investigate the extent to which the SGM can be applied more widely in other studies.

The discussion and conclusions are presented in Chapters 9.

1.5 Conclusions

This introductory chapter has presented an overview on the complexity involved in the

development of reliable X-by-Wire systems. To assist in the development of such

complex systems, some researchers have proposed a “simulation first” approach. Based

on the discussion presented, the initial aim of the research project was outlined, and the

contributions of this thesis were summarised. The remainder o f this thesis will describe

the work undertaken throughout this research project.

2. What simulators are available?
It was argued in Chapter 1 that the development o f reliable X-by-Wire systems is
becoming increasingly challenging. To address this issue, the research presented in this
thesis was centred on the use o f a “simulation first ” approach in the development o f X-by-
Wire systems. Previous work in this area is reviewed in this chapter 3

2.1 Introduction

The idea of using computer simulations to better understand the characteristics of a

particular phenomenon can be dated back to World War II when researchers were

interested in studying the behaviour of neutrons. It was then that John von Neumann and

Stanislaw Ulam came up with the notion of using Monte Carlo simulations to model

nuclear detonation (Ulam et al., 1947). Computer simulations in those days were not very

useful, mainly because it cost too much and took a very long time to generate results.

However, since then, computer simulations have come to play an important part in many

sectors, such as medical (Popp et al., 2004), defence (Oren et al., 2000) and aerospace

(Graziani, 2002).

Please note that such an approach is not without its critics (see Kurkowski et al., 2005;

Andel and Yasinsac, 2006). For example, Andel and Yasinsac (2006), p. 48, have argued

that: “Simulation is a powerful tool, but i t ’s fraught with potential pitfalls. We question

this approach’s validity and show how it can systematically produce misleading results

Such views are not universally held and, as system development becomes ever more

challenging, various researchers have attempted to simulate their application.

With regards to the simulation of embedded control systems, the traditional approach has

been to use a comprehensive mathematical library, such as MATLAB and Simulink4.

These tools are used to fine tune the mathematical models and control algorithms until

satisfactory performance of the control system is achieved. The embedded control system

is then either implemented manually or automatically (using code generation tools such as

Real-Time Workshop Embedded Coder4). The code is then tested and optimised until it

demonstrates the required timing behaviour (Henzinger et al., 2003).

3 Parts o f this chapter have previously been published in Ayavoo et al. (2004) and Ayavoo et al. (2005c).
4 http://www.mathworks.com/ (last accessed: 16/08/2004)

9

http://www.mathworks.com/

Developers working in this way tend to make the assumption (implicitly or explicitly) that

the delays between the various control events are constant (Astrom and Wittenmark,

1990). However, such assumptions are rarely valid when embedded control systems are

implemented on the hardware (see Tomgren, 1998; Sandfridson, 2000).

Another drawback with this approach is that - once the code has been generated - the link

to the initial library is broken: as a consequence, adding new system functionality, porting

the code to a different processor or simply “refining” the code may invalidate assumptions

made during the early stages of the design process (Henzinger et al., 2003).

To address these issues, various researchers (for example, see El-khoury and Tomgren,

2001; Palopoli et al., 2001; Tomgren et al., 2001; Castelpietra et al., 2002; Cervin et al.,

2003; Karatza, 2004; Redell et al., 2004) have argued for the use o f simulation tools that

allow developers of control systems to take into account the real-time implementation

aspects of X-by-Wire systems. Several institutes have since begun to investigate the use

of a similar tool support for the development of embedded systems, including Lund

Institute of Technology (Eker and Cervin, 1999; Cervin et al., 2003), Royal Institute of

Technology Sweden (Torngren et al., 2001), Uppsala University (Amnell et al., 2002) and

RETIS Laboratory Pisa (Palopoli et al., 2001). This has resulted in the development of

several simulation tools.

To avoid reinventing the wheel, a sensible starting point for this research was to review

the range of available simulators. More specifically, this chapter attempts to establish if

any of the available tools can currently meet the requirements o f developers o f X-by-Wire

systems. To do this, a study on some of the basic features required in a simulator is

carried out in Section 2.2. Section 2.3 then reviews some of the previous work carried out

in the area o f simulation for real-time embedded control systems. The discussions and

conclusions are presented in Section 2.4 and Section 2.5, respectively.

1 0

2.2 What do we need to simulate?

The initial goal of this research was to build a simulator that can support the development

of X-by-Wire systems, particularly in the automotive sector (see Section 1.2.3). To do

this, it was necessary to identify the features of an appropriate simulator.

In Section 2.1, it was argued that that such a simulator must incorporate the real-time

implementation aspects of control systems. Tomgren et al. (2001) have previously

described an “ultimate simulator” that includes various implementation attributes such as

distributed real-time control applications, network, nodes, schedulers/real-time kernels and

the modelling of system and environment. It is important to take some of these

implementation options into consideration because they could potentially introduce

uncertainties in the overall performance for X-by-Wire systems (see Tomgren, 1998; Chen

and Sandfridson, 2000).

Based on this discussion, the initial focus for the requirements o f a simulator was outlined,

as illustrated in Figure 2-1. A description of these features is provided in the following

sections.

Features of a simulator

Software
Architectures

Distributed
System s

Network
Protocols

Control
System s

M easurement
of Perform ance

Figure 2-1 Required features of a tool to simulate X-by-Wire systems.

2.2.1 Software architectures

Although most embedded processors are required to run only one program, it is often the

case that the program is executed through a collection of tasks (e.g. Nissanke, 1997; Shaw,

2001). These tasks can, for example, be implemented as ‘C’ functions (Pont, 2001).

The various possible software architectures in embedded design are often characterised in

terms of the tasks that are to be performed (Marwedel, 2003). For example, if the tasks

are invoked by events (typically hardware interrupts) the system may be described as

‘event triggered’ (Nissanke, 1997). Alternatively, if all the tasks are invoked periodically

11

(say every 10 ms) under the control of a timer, then the system may be described as time-

triggered (Kopetz, 1997). The nature of the tasks themselves is also significant. If the

tasks, once invoked, can pre-empt (or interrupt) other tasks, then the system is said to be

‘pre-emptive’; if tasks cannot be interrupted, the system is said to be co-operative (or non-

pre-emptive). Figure 2-2 illustrates how three tasks on an embedded processor may

execute when using co-operative and pre-emptive schedulers.

Task 3

Task 2

Task 1

Task 3

Task 2

Task 1

Co-operative Scheduler

Task 1
completes

Task 2
completes

' //// / / / / / / / / / / ,

Pre-emptive Scheduler Task 2
completesu Task 1

completes

Y ///////////////Z 4 /
Time

1
Task 2

1
Task 3

arrives arrives

Figure 2-2 Task execution for co-operative and pre-emptive schedulers.

Note that a system may support both time-triggered and event-triggered tasks; some of

these may be co-operative in nature while others are pre-emptive.

Another possibility to consider is the design of hybrid schedulers for embedded systems.

Such systems could include - for example - tasks that are time-triggered and co-operative

in nature with one high-priority event task that can pre-empt other tasks (Maaita and Pont,

2005). Other task scheduling algorithms include fixed-priority techniques like deadline-

monotonic and rate-monotonic algorithms; and dynamic-scheduling approaches like the

earliest-deadline-first algorithm (see Liu, 2000).

Overall, there is more than one way to schedule a set of tasks on an embedded processor.

Each of these techniques could potentially affect the general performance of an embedded

1 2

control system in a different way (Fang and Pont, 2006). In this case, it has been argued

that it would be useful to have a simulator that can simulate different software

architectures to compare the system performance (Eker and Cervin, 1999; Tomgren et al.,

2001).

2.2.2 Distributed systems

As described in Section 1.2.1, future automotive systems will involve the use of

distributed embedded processors. The use of distributed embedded systems (as opposed to

a single processor system) has several advantages.

For instance, according to Tanenbaum and van Steen (2002), distributed systems offer

replication transparency where resources are replicated to increase availability and

improve performance. This could include additional processor performance: for example,

the performance of a single node that is overloaded with tasks could be improved by

distributing the processing load over multiple nodes. Similarly, distributed embedded

systems also benefit from having additional hardware facilities (such as I/O ports and

hardware timers).

Furthermore, the use of distributed systems could also lead to modular embedded design

architecture (Lonn, 1999; Chen and Sandfridson, 2000). Chen and Sandfridson (2000)

described this as exploiting the natural parallelism inherent in distributed architectures.

This could - for example - be the use of smart sensors and smart actuators where sensor

related functions are kept separate from the actuator. In some instances, it could also be

the case that distributed systems are preferred due to the physical location of the sensors

and actuators (see Ball, 1996; Chen and Sandfridson, 2000).

Another advantage includes the capability of incorporating failure handling mechanisms,

like redundancy. Lonn (1999) described an example where three out of four wheels that

incorporates smart sensors and actuators can still safely stop a car, although the distance

may increase and the braking conditions be poor under certain conditions.

With the various advantages of using distributed architectures, it is becoming necessary to

predict the behaviour for future X-by-wire systems (see Section 1.2.2). To do this, it has

1 3

been argued that the capability of modelling distributed embedded systems is a useful

feature that a simulation tool should have (Tomgren et al., 2001; Redell et al., 2004).

2.2.3 Network protocols

To connect the various distributed embedded processors such that information can be

exchanged among the nodes, a form of communication protocol is required (Tanenbaum

and van Steen, 2002). Initially, the generic UART (Universal Asynchronous

Receiver/Transmitter) device was used to transmit and receive messages using serial

protocols like RS232 and RS485 (Leen et al., 1999). However, as use o f distributed

electronics begun to expand into safety critical application (such as automotive control

systems), network protocols that are more deterministic (Lonn, 1999) and have

sophisticated fault-tolerant features (Kopetz, 1995) were needed.

In the mid 1980s, Robert Bosch GmbH introduced the Controller Area Network (CAN)

protocol, which was first implemented in the Mercedes Benz S-class car in 1991 (Bosch,

1991; Leen et al., 1999). The CAN protocol - which employs a CSMA/CA message

transmission scheme - has since been widely used in many sectors, such as automotive

and automation (Fredriksson, 1994; Zuberi and Shin, 1995; Sevillano et al., 1998;

Thomesse, 1998; Pazul, 1999; Farsi and Barbosa, 2000; Misbahuddin and Al-Holou,

2003). Besides the CAN protocol, there are also other new network protocols that are

competing for a place in the automotive industry. These include TTCAN (Hartwich et al.,

2002), TTP (Kopetz, 2001) and FlexRay (Litterick and Brenner, 2005) that uses the Time

Division Multiple Access (TDMA) technique to allocate data transmissions on the

network bandwidth (Maier et al., 2002). Some of the differences in these protocols are

outlined in Table 2-1.

1 4

Table 2-1 Som e differences in the characteristics of the competing network protocols in the
automotive sector for safety-critical applications5 (original sources obtained from Kopetz, 2001;

Leen and Heffernan, 2002; Maier et al., 2002).

Feature CAN TTCAN TTP/C FlexRay

Transmission speed 1 Mbps 1 Mbps 25 Mbps 10 Mbps
Data size (bytes) 8 8 240 246
Fault tolerant clock synchronisation No Yes Yes Yes
Replicated communication channels No No Yes Yes
Bus guardian (avoid babbling idiot) No No Yes Yes

Currently, there is no one protocol that can be claimed as being the “defacto” standard in

the automotive industry. This is because each protocol has its own advantages and

drawbacks. For example, although TTP/C appears to be far superior to CAN, the cost is

also much higher than CAN controllers. In general, the use of any one of these techniques

described could potentially affect the performance of an X-by-Wire system.

In some cases, the X-by-Wire system may also include bridge architectures (Wolf and

Koller, 1998), network gateways (Ekiz et al., 1996) and bus guardians (Temple, 1998),

which could further complicate the analysis of the system performance. Therefore, it has

been argued that the use o f a flexible simulation tool that can model some of these

network protocols could be valuable in the development of X-by-Wire systems (Cervin et

al., 2003).

2.2.4 Control systems

As described in Chapter 1, the focus of this thesis is on the development of reliable

embedded control systems.

The process of control can usually be divided into three main operations: sampling,

control and actuation. In the first operation, data are sampled. In the second operation,

these data are processed using an appropriate control algorithm. In the third operation, an

output signal is produced that (generally) alters the system state. In a single-processor

system, all three functions are carried out on the same node. In a distributed environment,

these functions may be carried out on multiple nodes, linked by an appropriate network

5 Please note that, LIN (Specks and Rajnak, 2002) is not included in this table because it is not generally
considered to be suitable for safety-critical applications (Ahlmark, 2000).

1 5

protocol. For example, a two-node design might carry out the sampling operations on

Node 1, and the control and actuation operations on Node 2 (see, for example Lonn and

Axelsson, 1999; El-khoury and Tomgren, 2001).

To simulate the complete control system, both a model of the plant and a model of the

control process are required (Dorf and Bishop, 2000). The term plant is often used to

indicate the environment to be controlled; such as the engine, the wheels and brakes,

steering wheel or the overall physical car dynamics. In a real implementation, the plant

and control process will usually be linked by various I/O mediums, such as port pins,

serial bus and parallel cables. This is illustrated in Figure 2-3.

Plant

t
I /O

Control process

Single / multi-processor

sampling + control + actuation

Figure 2-3 The plant, control process and l/Os for a control system.

Hence, if the aim is to model complete control systems, then the tool should support the

simulation of both the control process as well as the plant dynamics (Tomgren et al.,

2001). This also makes it possible to research the dynamic performance of a particular X-

by-Wire system from a control perspective (Cervin et al., 2003).

2.2.5 Measurement of system performance

As discussed in Section 2.1, the performance of a control system not only depends on the

control algorithm, but also the way the overall system has been implemented in real-time

(for example the number of nodes, choice of software architecture and network protocol).

To assess the performance of a control system, timing measurements can be used as a

crucial source of information (Wittenmark et al., 1995; Sandfridson, 2000).

1 6

For instance, the measurement of an event response time can show how long a process

would take to complete from the time a particular event has been detected on the system

(Lonn and Axelsson, 1999). This can perhaps be used to measure the time between the

detection of sensor failure (on one node) and the reaction to the failure (on the second

node). More generally, event response times are an important concern in a distributed

environment, where the signal might have to travel through a number of nodes and across

several networks before it reaches its destination.

Control delay is another measure that is important to determine the time taken to perform a

control process from the beginning to the end (Lonn and Axelsson, 1999; Sandfridson,

2000). The variation in the control delay can also be useful to determine the control jitter.

For example, if a control task was scheduled to run every 10 ms, and executed at (say) t =

2.00 ms, t = 12.00 ms, t = 22.00 ms, etc, then the jitter would be 0. Jitter in this case can

be caused by blocking or interference delay. A blocking delay is the longest time that task

x has to wait for a lower-priority task to complete its execution (Tindell and Clark, 1994;

Lonn and Axelsson, 1999; Sandfridson, 2000). An interference delay is the longest time

that all higher priority tasks can be queued and executed before task x is finally executed

(Lonn and Axelsson, 1999; Sandfridson, 2000). Figure 2-4 shows examples of blocking

and interference delays for tasks in a co-operative and pre-emptive scheduler.

Ideally, it is preferable that embedded control systems have low event response time, short

and constant control delay, and minimal control jitter (Lonn, 1999; Liu, 2000; Marti et al.,

2001).

1 7

Co-operative Scheduler

Blocking Delay

Interference DelayPre-emptive Scheduler

Task 2

i r
Task 2 Task 3
arrives arrives

Figure 2-4 Examples of blocking and interference delay for co-operative and pre-emptive
schedulers.

Since the choice of the system implementation can have an impact on these measurements

and influence the overall system performance, it would be useful if the chosen simulator

can collect and report the relevant measures to the system designer.

2.2.6 Summary of required features

The discussions presented in Section 2.2 covers various useful features for a suitable tool

to simulate X-by-Wire systems. These features are summarised here.

• At a processor level, it has been argued that a simulator should be able to model the

behaviour of a range of software architectures like time-triggered and event-triggered

systems.

• To simulate X-by-Wire systems, it has been argued that the simulator should support a

distributed architecture of the control system, as well as a range of network protocols

used in the automotive sector like CAN.

• A case has also been made that in the event of modelling a complete control system,

the tool should be capable of simulating the distributed embedded controller as well as

the plant dynamics.

18

• Finally, it is expected that the tool used must have the capability of measuring and

reporting the relevant system performance.

2.3 Available simulation tools

Having discussed some of the attributes that a suitable simulator is expected to have, this

section reviews some o f the available tools that have been developed by various research

groups and companies.

2.3.1 Instruction-level simulation

With the increasing variety of embedded processors available, designers are relying on the

use of simulation tools to verify that their design works correctly on the desired platform

(e.g. Engblom et al., 2006).

Some development tools come with its own built-in simulators to assist in the low-level

simulation of the embedded processor. The simulation generally executes at the

instruction level of the source code, and is tightly coupled with the embedded processor in

use.

For example, the Keil IDE6 is primarily used to write and compile C or assembly code for

use in microcontrollers such as the 8051, C l67 and ARM. In addition, the tool

incorporates its own simulator to imitate the behaviour of various microcontrollers at the

instruction level. Similarly, another tool specially dedicated for an 8051 processor has

been developed to simulate faults that occur due to Electromagnetic Interference (Ong,

2002). Altera’s Quartus-II (Altera, 2005) is another software development tool that has a

built-in simulator that can perform behavioural and timing verifications of a design

described using a hardware description language (such as VHDL and Verilog).

In addition, there are also third party vendors that specialise in simulating embedded

systems at low level. For example, Modelsim7 by Mentor Graphics is capable of

simulating the detailed behaviour o f various FPGAs. With the correct simulation library

provided by the chip vendors (such as Altera and Xilinx), Modelsim can simulate all the

6 http://www.keil.com/ (last accessed: 21/05/2005)
7 http://www.model.com/ (last accessed: 07/11/2004)

1 9

http://www.keil.com/
http://www.model.com/

signals on the processor for each electronic gate and wire. Such simulation is not only

restricted to the functional behaviour, but includes timing details as well. Other third party
8 9FPGA simulators include Synopsys VCS (by Synopsys) and Incisive (by Cadence).

The tools described in this section perform the simulation at very low level and are

processor specific. However, simulating X-by-Wire systems at such low level can be

extremely difficult. For example, a system developer may need to go through the tedious

process of configuring all the relevant device drivers at low level (such as hardware timers

and I/O ports) just to simulate an LED flashing every one second. Indeed, it has been

suggested that some researchers prefer not to simulate X-by-Wire systems at such low

level (see Cervin et al., 2003). In such cases, it might be better to just build the prototype.

It is concluded that simulating X-by-Wire systems at such low level can be extremely

tedious, difficult and time consuming.

2.3.2 Analytical simulation models

In Section 2.3.1, it was concluded that using processor-level simulation tools may be

unsuitable as it is extremely difficult to simulate complex X-by-Wire systems. Some

researchers have therefore tried to model X-by-Wire systems at a higher level of

abstraction. Such an approach requires the creation o f analytical models to simulate

control systems that are less dependent on the low-level specifications of the embedded

processor.

For example, the study on holistic scheduling approach (Tindell and Clark, 1994) and the

VOLCANO tool (Rajnak and Ramnerfors, 2002) have used various analytical models to

calculate message latencies and task response times (see Audsley et al., 1993; Tindell and

Bums, 1994). Similarly, other researchers have also worked on the development of

analytical models for a variety of software architectures and network protocols that

include time-triggered and event-triggered systems (see Lonn and Axelsson, 1999; Pop,

2003). Appendix-H provides some examples of these analytical models.

http://www.svnopsvs.com/ (last accessed: 30/03/2006)
http://www.cadence.com/ (last accessed: 02/04/2006)

2 0

http://www.svnopsvs.com/
http://www.cadence.com/

The simulation techniques discussed here depends heavily on the analytical models of the

real-time system. Considering the complexity of X-by-Wire systems, such high-level

models may prove to be rather inaccurate (Castelpietra et al., 2002). For instance, the

work by Tindell and Clark (1994) only calculates the worst-case end-to-end response time

for distributed periodic tasks. The actual response time may however be lower than the

worst-case scenario.

Moreover, such tools are usually targeted towards a specific implementation approach,

making it inflexible to simulate other techniques. For instance, the work carried out by

Lonn and Axelsson (1999) does not cater for the Shared-Clock CAN (SCC)

communication approach (see Pont, 2001; Ayavoo et al., 2005b). As such, a significant

change to the proposed model is required in order to simulate a SCC system.

Overall, although analytical simulation models are useful, the extent to which these tools

can be used to simulate a wide range of X-by-Wire systems is limited.

2.3.3 Recent general-purpose simulation tools

To overcome some of the complexities involved in simulating a wide range of embedded

systems, general-purpose simulators have been developed recently (see Amnell et al.,

2002; Castelpietra et al., 2002; Palopoli et al., 2002; Cervin et al., 2003; Henzinger et al.,

2003; Redell et al., 2004). Some of these tools include a sufficient level of

implementation details such as the flexibility of configuring hardware interrupts and

timers. This in turn makes the tool more flexible by providing a wider range of options to

design X-by-Wire systems. In addition, these tools are also equipped to perform the

necessary timing analyses.

For instance, TimesTool - developed by Uppsala University, Sweden - allows the

designer to perform schedulability analysis on real-time embedded designs (Amnell et al.,

2002). The tool is expected to assist in system modelling and analysis. The tool is

capable of finding a suitable schedule and calculates the worst-case response time for a set

of tasks. However, TimesTool currently only supports a single-processor system. Work

on a multi-processor simulator is said to be in progress (Amnell et al., 2003).

21

Unlike TimesTool, the Carosse-Perf tool (Castelpietra et al., 2001) - developed by

researchers at the LORIA French Research Laboratory in Computer Science - supports the

simulation of distributed control systems. The tool was used effectively in a PSA

Peugeot-Citroen application to evaluate the various response times for a distributed system

which included the CAN and VAN network protocols (Castelpietra et al., 2002).

However, it remains unclear as to what extent this tool can be used to evaluate wider range

of distributed control systems and network protocols. For instance, the tool does not

mention the support o f TDMA protocols like TTCAN, and TTP/C. Moreover, although

the tool can calculate the relevant response times, it is still unable to address the

performance of the complete control system. This is mainly because Carosse-Perf does

not support the co-simulation of both the embedded processor and the plant dynamics.

Cheddar is another simulation tool which is similar to the Casosse-Perf approach.

Cheddar was developed by researchers at University of Brest, France (Singhoff et al.,

2004). Their work was motivated by the lack of tools that could analyse and simulate a

wide range of scheduling techniques.

Tools that support the co-simulation of the control process as well as the plant dynamics

include Giotto (Henzinger et al., 2003), AIDA (Redell et al., 2004), RTSIM (Palopoli et

al., 2001; Palopoli et al., 2002), and TrueTime (Cervin et al., 2003). Most of these tools

are general-purpose simulators that have the capability o f simulating a wide range of X-

by-Wire systems while taking into consideration the real-time implementation as well as

the control aspects of the design.

For example, Giotto was created as a means to integrate the simulation of control system

with the real-time concerns. To do this, the mathematical model developed on Simulink is

separated to two components; the platform-independent functional and timing properties

and the platform-dependent scheduling and communication issues. Finally, the Giotto

compiler combines the two entities and generates the source code for the chosen platform.

In a similar vein, Redell and colleagues have developed the AIDA toolset to perform real

time analysis for control systems while taking into account the implementation aspect of

the design. The AIDA toolset imports a control system design from the Simulink

environment. It then models the real-time implementation by assigning various properties

2 2

to the control systems such as task delay, period, number of nodes, and communication

strategy. The tool then analyses the response time for the system, and if satisfactory,

exports the design with the relevant timing properties back to Simulink.

Another tool - RTSIM - has also been developed to assist with the design of real-time X-

by-Wire systems. RTSIM uses a collection of C++ libraries to permit a separate

specification of the functional behaviour of the controller and the hardware and software

properties of the architecture. It then maps the two elements together and carries out the

simulation and performance analysis.

Likewise, TrueTime was developed by the Department of Automatic Control, Lund

Institute of Technology, Sweden, as a MATLAB toolbox capable of simulating real-time

schedulers and network protocols (see Figure 2-5). TrueTime is intended to facilitate the

co-simulation of controller task execution in real-time kernels, network transmissions, and

continuous plant dynamics. The simulator supports various types of kernels, for example

fixed-priority, deadline-monotonic, rate-monotonic and earliest-deadline-first. The

kernels in turn support the use of interrupts and multiple A/D and D/A channels. Multiple

network communication blocks can also be created, including CSMA/CA which is similar

in behaviour to the CAN protocol (Kopetz, 1998; Hartwich et a l, 2000), and TDM A

which is the basis of most time-triggered network protocols (e.g. see Kopetz, 2001).

n5Library: truetime | - f 5] fx~

File Edit View Format Help

Am D/A

Snd
Interrupts

Schedule

Rev Monitors

TrueTim e Kernel

Rev

Snd 1
Schedule

T rueTim e Network

TrueTim e Block Library 1.2
Copyright (c) 2 0 0 4 Dan Henriksson and Anton Cervin

D epartm ent of A utom atic Control, Lund University. S w ed en
P lea se direct q u estion s and bug reports to: truetim e@ control.lth .se

Figure 2-5 The TrueTime simulation library on Simulink.

2 3

mailto:truetime@control.lth.se

2.4 Discussion

The requirements for a simulator and some existing simulation tools were described in

Section 2.2 and Section 2.3 respectively. Clearly, it is preferable that the tool can perform

the simulation at a sufficiently low level to closely emulate the behaviour of a real

embedded processor. However, this - as discussed in Section 2.3.1 - poses other

problems such as the difficulty to simulate complex X-by-Wire systems. By contrast,

having high-level analytical models may lead to rather inaccurate solutions with stringent

implementation options (see Section 2.3.2). It is concluded that the most suitable

approach is the one where the tool is flexible enough to support the co-simulation of the

real-time implementation aspects of embedded controller as well as the modelling of the

plant dynamics.

To avoid reinventing the wheel, the TrueTime simulator was provisionally selected as a

means of understanding the behaviour of X-by-Wire systems at the design stage.

The TrueTime simulator was chosen for the following reasons:

• TrueTime is capable of simulating the system to be controlled (that is, the plant

dynamics) and a wide range of software architectures and network protocols for the

distributed control system.

• Many control engineers are familiar with MATLAB and Simulink (e.g. see Dutton et

al., 1997; Dorf and Bishop, 2000). Since TrueTime is a MATLAB / Simulink

package, this makes it easy to integrate the software and network design process with

the development of the control system.

• TrueTime is an open-source package. This provides obvious advantages in terms of

cost, and also provides flexibility: both are important considerations in a research

project such as that described in this study.

2.5 Conclusions

The work described in this chapter began by considering the required features of a

simulator. Then, some of the previous work on the development of suitable simulation

tools for reliable X-by-Wire systems was described. TrueTime was provisionally chosen

as a starting point to explore the use of simulation in the implementation of X-by-Wire

systems. However, the choice of tool was made purely on a “desk” basis without the

2 4

backing of empirical evidence. It remains the case that not much experimentation has

been conducted that can clearly demonstrate if TrueTime is capable o f correctly predicting

the behaviour a range of real embedded implementations. In order to verify this, the

TrueTime simulator must be assessed beforehand to ensure that it works correctly. The

evaluation process is described in Chapter 3.

2 5

3. Does the TrueTime simulator work?
In Chapter 2, TrueTime was provisionally selected as the simulator to be used in the
remainder o f the studies described in this thesis. The available literature suggests that
TrueTime has the necessary potential to simulate a range ofX-by-Wire systems. To
confirm that TrueTime was appropriate fo r use in the present project, two small case
studies were carried out. These studies, and the results obtained, are described in this
chapter.10

3.1 Introduction

The initial aim described in this thesis was to develop a suitable simulation tool to support

the development of X-by-Wire systems (see Section 1.2.3). A sensible starting point for

this project was to first explore the available simulation tools (see Chapter 2). Based on

the initial research, it was found that several tools were already available that support the

simulation of X-by-Wire systems. Hence, in order to avoid reinventing the wheel,

TrueTime was provisionally selected.

However, there is very little data available that can validate that TrueTime has been used

to predict the behaviour o f a range of X-by-Wire systems. For example, it remains unclear

if TrueTime can support the simulation of (say) a Shared-Clock CAN (SCC) distributed

system, or if the nature o f event-triggered systems can be correctly modelled. There is

also a lack of results for researchers to make a quantitative comparison between the

measurements obtained from the TrueTime simulator with the actual hardware

implementation. Overall, there is a lack of quantitative evidence to demonstrate that

TrueTime can be efficient enough to support the simulation of X-by-Wire systems.

In light of the above considerations, the aim of the work described in this chapter was to

investigate the extent to which a general purpose simulator (such as TrueTime) can be

used to simulate X-by-Wire systems. To do this, two case studies were employed: (1) a

cruise-control system for a passenger car and (2) a control system for an inverted

pendulum. These systems were simulated on TrueTime first, and the results compared

10 Parts o f this chapter have previously been published in different forms in Ayavoo et al. (2004); Ayavoo
et al. (2005c) and Ayavoo et al. (2006).

2 6

with the actual measurements obtained from a hardware testbed. These case studies and

their results are discussed in detail in the remainder of this chapter.11

3.2 Case Study 3A: The Cruise-Control System

Case Study 3A was used to evaluate the extent to which TrueTime can predict the

behaviour of a non-trivial embedded control system. This study involved the design of an

automotive cruise-control system (CCS). A description of the case study is presented in

this section.

3.2.1 The CCS testbed

An automotive CCS provides the driver with an option of maintaining his or her vehicle at

a desired speed without further intervention, by controlling the throttle (accelerator)

setting (Heintz, 1990). Such a driver assistance system can reduce the strain on the driver

especially while travelling on long journeys. This type of CCS was chosen as the basis for

the present case study as it represents a non-trivial embedded control system which is in

widespread use in the automotive industry (Clarke, 1998).

An automotive CCS will typically have the following features (Kureemun, 1999; Sanz and

Zalewski, 2003):

1) An ON / OFF button to enable/disable the system.

2) An interface through which the driver can change the vehicle’s set speed while

cruising.

3) Switches on the accelerator and brake pedals that can be used to disengage the CCS

and return control to the driver.

For the purpose of the study described here, the specification of the CCS was simplified

such that the vehicle was assumed to be always in “cruise” mode. While in cruise mode, a

“speed dial” was available to allow the driver to dynamically change the car speed. The

embedded control process ensured that the vehicle would travel at the desired (set) speed.

11 Please note that an additional case study that also compares the simulated results and the hardware
implementation for a six-node X-by-Wire system was carried out in Ayavoo et al. (2005a). This study
is not included in this chapter, but the results obtained are presented in Appendix A.

2 7

In this study, a computational model was used to represent the environment in which the

CCS operates. This car environment model had one input (current throttle) and one output

(a train of pulses representing the speed of the car). Figure 3-1 illustrates this.

C ar Environm ent Model

Current
Speed Throttle

C ruise-Controi System

Figure 3-1 A basic cruise-control system for Case Study 3A (adapted from Ayavoo et al. 2004,
Figure 1).

The core of the car environment simulation was a simplified physical model based on

Newton’s laws of motion. First the instantaneous acceleration of the vehicle was

calculated (Equation 1). Once this acceleration was obtained, the new speed of the car

was then calculated (Equation 2).

a = ((0T)-(y,Fr))/m(1)

v/ 2 = v ,2 + 2 a A x(2)

a Acceleration
Fr Frictional coefficient
m Mass
v/ Final speed
V/ Initial speed
Ax Displacement
e Throttle setting
X Engine torque

Please note, that in this case, it was assumed that the vehicle was under the influence of

only two forces, the torque exerted on the car engine and the frictional force that acts in

the opposite direction to the motion (see Figure 3-2). The engine torque was assumed to

be constant over the speed range. These models can clearly be made more realistic (for

2 8

example, see Short et al., 2004a; Short et al., 2004b), but - for the purpose of this study

this simplified model was sufficient.

C a r v e lo c ity (o u tp u t)

Frictional force Engine force (input)

/ /

Figure 3-2 The car environment for the CCS (adapted from Ayavoo e t al. 2005c, Figure 2).

In order to investigate the accuracy of the TrueTime software simulation process, a

Hardware-in-the-Loop (HIL) testbed was used to implement the X-by-Wire system. In

this case, a network of Infineon 16-bit microcontrollers (Phytec C167CS/CR development

boards) was used to implement the CCS: such devices are widely used in the automotive

sector (Siemens, 1996).

The car environment was implemented on a basic desktop PC (Intel Pentium II 300 MHz

processor). The use of a PC hardware for such studies have several advantages that

includes cost effectiveness and flexibility (see Pont et al., 2003).

A detailed description of the HIL design and implementation of the CCS is illustrated in

Appendix C.

3.2.2 Implementation of the distributed CCS

In the present case study, the CCS was designed to operate as an X-by-Wire system

consisting of two nodes: a sampler node and a controller & actuator (CA) node (Figure

3-3).

2 9

Car Env ironment Model

Current
Speed Throttle

Network
Communication Controller &

Actuator
Sampler

Cruise-Control System

Set
Speed

Figure 3-3 A distributed cruise-control system for Case Study 3A (adapted from Ayavoo et al.
2004, Figure 2).

The sampler node was used to calculate the vehicle speed: this is assumed to be carried out

by counting pulses from an optical/magnetic sensor (which is usually attached to one of

the vehicle’s wheels). Some noise filtering and the necessary scaling were also performed

on this node. The calculated car speed was then sent over a network to the CA node. On

the CA node, a Proportional, Integral and Derivative (PID) algorithm was used to calculate

the required throttle position, which was then sent back to the car environment model.

The CA node was also responsible for obtaining the required “set speed” value (from the

driver).

Besides the basic computations of sampling, controlling and actuation, the CCS must also

be capable of detecting and handling any software or hardware errors in an appropriate

manner. For example, in a safety-critical system where a sensor failure occurs and no

error management is performed, the result may be a cruise speed which is much higher

than desired. With appropriate error detection and management techniques, the likelihood

of such problems can be greatly reduced. In the CCS study, a failure of the speed sensor

was simulated, and the impact of this failure on the performance of the different design

options was compared. In each case, it was intended that the sensor failure can be

detected, and that the vehicle can be brought to a halt “as quickly as possible” (by setting

the throttle to 0). This mechanism of error handling was felt to be adequate for this initial

study. Please note that - of course - other fail-safe strategies can also be applied: for

example, control can be returned to the driver, or a backup sensor can be deployed.

However, the type of fail-safe mechanism used has no bearing on the present study.

As discussed in Section 2.2.1, embedded software systems are often designed and

implemented as a collection of communicating tasks. Table 3-1 shows the set of tasks to

carry out, including the task’s initial arrival, period and execution times on the sensor and

the CA nodes.

Table 3-1 Task initial arrival, period and execution times with a 1ms tick interval for Case Study 3A
(adapted from Ayavoo e t al. 2004, Table 1).

Sensor node

Dri .. Task initial arrival Task period Task execution
Pnorlty (in ticks) (in ticks) Task descnpt.on time (in ps)

1 0 1 Check Sensor Failure 7

2 0 50 Compute Speed 46

Controller/Actuator node

0 . .. Task initial arrival Task period _ , Task execution
W (in ticks) (in licks) Task descnpton ame (m Ms)

1 0 1 Indicate Sensor Failure 6

2 1 50 Compute Throttle 168

3 0 1000 Get Ref Speed 38

Choosing the software architecture and communication technique of the described CCS

was not a trivial process even for this simple two-node system. This is because the choice

of implementation can have an impact on the overall system performance (see section 2.2).

Here, four different implementation options were compared (see Table 3-2). In all cases,

the nodes were linked using a CAN bus running at 333.3 kbps. The CAN bus was used as

it provides high-reliability communications at low cost (Fredriksson, 1994; Sevillano et

al., 1998; Thomesse, 1998; Farsi and Barbosa, 2000). Moreover, since the CAN protocol

is widely used in many sectors (see Section 2.2.3), most modem microprocessor families

now have members with on-chip support for this protocol (e.g. Philips, 1996; Siemens,

1997; Infineon, 2004; Philips, 2004).

3 1

Table 3-2 Combination of the possible implementations for the CCS in Case Study 3A (adapted
from Ayavoo et al. 2004, Table 2).

Sampler Node Communication CA Node

“T-T-T” Time Time Time
“T-E-T” Time Event Time
"E-T-E” Event Time Event
“E-E-E” Event Event Event

In the “T-T-T” system, the scheduling on both nodes was time-triggered, where the tasks

were scheduled to execute periodically. The network protocol was also time-triggered.

Please note that although CAN networks are generally treated as event-triggered (Leen

and Heffeman, 2002), some previous work has demonstrated that CAN can also be used in

a time-triggered fashion by employing the Shared-Clock CAN (SCC) strategy (see Pont,

2001; Ayavoo et al., 2005b). Here, a “tick” message was sent from the sensor node at the

beginning of every sensor node “tick”. This message was used to synchronise the CA

node. The sensor status and the car speed data were also included in this message. An

acknowledgement message from the CA node was then sent back to the sensor node.

Please note that this is more complicated than it may appear. These techniques are

described more thoroughly in Appendix B.

In the “T-E-T” system, the scheduling policy on both of the nodes was time-triggered but

the network protocol was event-triggered (fixed priority). The scheduling of all the tasks

was similar to the “T-T-T” system, the difference being that messages were sent at the end

of the task execution, instead of in pre-determined time “slots”.

In the “E-T-E” system, the scheduling policy on the nodes was event-triggered but the

network communication was TDMA. Again (because of the nature of the control system)

most of the tasks were executed periodically. However, tasks “Check Sensor Failure” (on

the sensor node) and “Indicate Sensor Failure” (on the CA node) were triggered

(asynchronously) via interrupts. Because of the TDMA protocol, messages were

exchanged between the nodes periodically, at predetermined times.

In the “E-E-E” system, the scheduling on the nodes was event-triggered and the network

communication was event-triggered. The task execution on both the nodes was similar to

3 2

the “E-T-E” system, but in this case messages were sent at the end of the task execution,

instead of having predetermined time slots.

3.2.3 Measurements for Case Study 3A

In this study, the focus o f the measurements was on the following aspects of the system

performance:

1) Control performance.

This is the measure of the effectiveness of the CCS in maintaining the vehicle speed

at the desired value.

2) Event response time.

In the CCS, the event response time is a measure o f the time between the detection of

sensor failure (on the sensor node) and the reaction to the failure (on the CA node).

3) Control delay.

For the CCS, this is a measure of the time between the measurement of the current

vehicle speed and the application of a new throttle setting.

4) Control jitter.

This is a measure o f the variations in start times o f the periodic control tasks.

It was to be expected that all of these measures will be affected to a greater or lesser

extent, by the implementation options such as type of scheduling policies used (for

example, time-triggered or event-triggered) as well as the choice of network protocols (for

example, TDMA, or fixed-priority).

3.2.4 Results for Case Study 3A

Having carried out the experiment (on both the software simulation and hardware

implementation), this section reviews the results obtained for each of the measurements

discussed in Section 3.2.3.

The control performance of all systems was found to be very similar. As an example,

Figure 3-4 shows the results from the “E-E-E” system. The car reference speed was set to

be at 30 m/s initially and then changed to 45 m/s. It can be seen from Figure 3-4 that the

CCS was able to follow the desired (set) speed in both the TrueTime simulator and the

HIL testbed.

3 3

60.0 i

50.0 -

40.0 -

S 30.0 -

20.0

10.0 -

0.0
166 11 21 261 31 36 41 46 51

Time (in seconds)

 SIM HW |

Figure 3-4 Control performance using the TrueTime simulator and HIL testbed for Case Study 3A
(adapted from Ayavoo et al. 2004, Figure 3).

Table 3-3 shows the recorded event response times for the simulation and HIL systems.

Table 3-3 Comparison of TrueTime simulation results and the HIL testbed of an “event m essage”
response time (in ps) for C ase Study 3A (adapted from Ayavoo et al. 2004, Table 3).

System
Minimum

HIL SIM HIL
Maximum

SIM

“T-T-T” 1384 1384 2383 2384
“T-E-T" 419 1000 2243 2000
“E-T-E” 392 391 1390 1384
“E-E-E” 384 384 391 496

The results show that, for the xTx systems, the simulation match the results from the HIL

testbed very closely (within 1%). The match between the simulated and HIL results for

the xEx systems are less close. This was due to the fact that the different boards (in the

HIL design) had independent crystal oscillators, which moved out of step. This possibility

was not taken into account in the simulator used in this study. Further discussion on this

issue is presented in Appendix F.

Table 3-4 displays the control delay for the two systems that had employed a time-

triggered approach for the network communication. In this case the measurements were

3 4

taken from the time the “Compute Speed” task started (on the Sampler node) until the

“Compute Throttle” task finished executing (on the CA node).

Table 3-4 Comparison of control delay (in ps) between the TrueTime simulator and the HIL testbed
for C ase Study 3A (adapted from Ayavoo e t al. 2004, Table 4).

HIL SIM

E Minimum 1388 1373
1— CD
h- oo Maximum 1398 1373r- >,CO Mean 1393 1373

f= Minimum 1390 1381
UJ m
H to Maximum 1400 1381UJ >,

CD Mean 1395 1381

Once again, the simulation results for the xTx systems followed those from the HIL

testbed quite closely (the mean error is less than 2%).

Table 3-5 shows the percentage of deviation between the TrueTime simulator and the HIL

testbed for two periodic control tasks (“Compute Speed”, on the sensor node and

“Compute Throttle” on the CA node).

Table 3-5 The percentage of mean deviation between the TrueTime simulator and the HIL testbed
for the periodic control tasks in C ase Study 3A (adapted from Ayavoo et al. 2004, Table 5).

Task Compute Speed Task Compute Throttle

T-T-T System 0.002 0.002
T-E-T System 0.002 0.006
E-T-E System 0.002 0.002
E-E-E System 0.002 1.789

The results show that deviation between the simulated and HIL values in the “E-E-E”

system were slightly larger than those from the other systems. As before, this was caused

by clock drifts in the HIL testbed.

3.3 Case Study 3B: The inverted pendulum system

In Section 3.2, Case Study 3A demonstrated that the TrueTime simulator can closely

match the results of the hardware implementation for an automotive cruise-control system.

To substantiate this claim for a wider range of studies, Case Study 3B was carried out.

3 5

In Case Study 3B, a real control problem was used to evaluate the TrueTime simulator,

instead of a “simulated” HIL system. The testbed employed in this case was based on the

control of an inverted pendulum. A description of Case Study 3B and its results are

presented in this section.

3.3.1 The inverted pendulum testbed

An inverted pendulum is an inherently unstable system, and the objective o f the control

system is to balance the rod at an upright position. Previous work has discussed ways in

which an inverted pendulum may be used as an effective testbed for experimenting with

different design options involving embedded control systems (Edwards et a l , 2004;

Bautista et a l , 2005; Bautista and Pont, 2006). In addition, it has also been argued that

this testbed can be suitable to experiment with future automotive X-by-Wire systems (see

Edwards et al., 2004).

In this study, the inverted pendulum testbed used (see Figure 3-5) was custom made in the

ESL. The length of the track was 0.9 metres. The pendulum (or rod) weighed 0.05

kilograms with a height o f 0.305 metres. A brushed DC motor with integrated gearbox

was used to move the cart along the track. A pulse encoder attached to the motor was used

to measure the position of the cart. Another encoder was mounted at the base of the rod to

measure the angle of the rod. More details of the testbed can be obtained from Bautista et

a l (2005).

3 6

Actuator

Track

Figure 3-5 The testbed of an inverted pendulum for Case Study 3B (adapted from Bautista e t al.,
2005, Figure 1).

In the setup used in this study, the inverted pendulum testbed produced two outputs: the

position of the cart and the angle of the rod. The rig also required a signal that represented

the speed of the cart and another signal that indicated the direction of the cart as inputs

into the motor. To control the rod such that it remained balanced at the middle position, a

32-bit ARM7 microcontroller (Philip’s LPC2129) was used (see Figure 3-6). The

microcontroller reads in the position of the cart and the angle of the rod, and used these

values in a control algorithm to calculate the required control value. This value was then

translated to a Pulse Width Modulation (PWM) output, which in turn enabled the motor to

move the cart at the required speed and direction.

Pendulum Testbed

32-Bit ARM
LPC2129

Node 1

Figure 3-6 The input/output of the pendulum testbed (plant) and the ARM microcontroller for Case
Study 3B. Figure adapted from Ayavoo e t al. 2006, Fig. 2.

3 7

3.3.2 Implementation of the inverted pendulum controller

In this study, the inverted pendulum controller was designed as a multiprocessor system,

comprising of either two nodes (Option A) or three nodes (Option B) to represent an X-by-

Wire system (see Figure 3-7). Since the results from Case Study 3A shows that the

simulator is less efficient in predicting the behaviour of event-triggered systems, the

implementation techniques used in this study was confined to a time-triggered solution.

To do this, a co-operative scheduler that employs a SCC communication protocol was

used. A 5ms tick interval was used in this system, and the CAN bus was configured to

operate at its maximum speed of 1 Mbps.
Optbn A Optbn B

Node 1Node 2 Node 1 Node 2Node 3

Pendulum testbed Pendulum testbed

CAN Bus CAN Bus

Figure 3-7 Distributed implementation options for the pendulum control in Case Study 3B.

Table 3-6 illustrates the set of tasks related to the pendulum controller. For a two-node

system, Node 1 was the sensor node while Node 2 carried out the control and actuation

process. For a three-node system, the sensor, controller and actuator were assigned to

Node 1, Node 2 and Node 3 respectively. In all cases, a heartbeat LED task was used on

each microcontroller to indicate the status of the board.

3 8

Table 3-6 Task structure of the pendulum controller for Case Study 3B.

Task Names Task Description Task Period
(in ms)

Obtain sensor
values

Obtains the cart position and rod angle from the
sensors 10

Calculates
control value

Calculates the required control value using an
“LQR” algorithm 10

Actuates PWM
output

Actuates the PWM output that determines the speed
and direction of the cart 10

Checks cart
track safety

Checks that the cart does not hit the boundaries of
the track 10

Heartbeat LED
update

Periodic flashing of an LED to indicate that the
system is “alive” 1000

3.3.3 Measurements for Case Study 3B

In Case Study 3B, the control delay was measured. This measurement was used as a

means to compare the results between the TrueTime simulation and hardware

implementation.

3.3.4 Results for Case Study 3B

Table 3-7 illustrates the results of the control delay for the various implementations.

Table 3-7 Comparison of the control delay (in ms) between the TrueTime simulation and
implementation for C ase Study 3B.

SW SIM HW IMP

One-node min 6.467 6.492
One-node max 7.246 7.269
Max - Min 0.779 0.777

Two-node min 16.307 16.321
Two-node max 17.086 17.090
Max - Min 0.779 0.769

Three-node min 20.018 19.834
Three-node max 20.018 19.845
Max - Min 0.000 0.011

The results indicate that the TrueTime simulation can closely predict the behaviour of the

control delay for the one-node, two-node and three-node implementations of the inverted

pendulum controller.

3 9

3.4 Discussion and conclusions

The results from Case Study 3 A suggest that the TrueTime simulator is capable of

predicting the behaviour o f the actual hardware implementation very closely. In

particular, this was the case for distributed systems that employed a time-triggered

approach for its message communication. For systems that used an event-triggered

communication approach, the results of the TrueTime simulator were less reliable. This

was, in part, due to the lack of support for individual clock drifts on the current version of

TrueTime (V I.2) used in this study (see Appendix F).12

In Case Study 3B, a real hardware testbed was employed as opposed to a simulated HIL

system. The results of the study again indicate that the TrueTime simulator was capable

of predicting the behaviour of a real X-by-Wire system.

Overall, the case studies presented in this chapter show a close match between the

behaviour of the embedded systems simulated on TrueTime and the corresponding

measurements obtained from the hardware testbeds. O f course, the TrueTime simulator is

imperfect: for example, the presence of independent crystal oscillators in the two

processor nodes was not taken into account (see Appendix F for further discussion on the

limitations of TrueTime). Nevertheless, the results obtained suggest that the TrueTime

simulation technique is an effective way of predicting the performance of X-by-Wire

systems.

Of course, although it has been necessary to verify that the TrueTime simulator works, this

condition alone is not enough to demonstrate the full potential of the tool. This issue is

discussed in more detail in Chapter 4, in conjunction with suggestions for techniques that

could be used to carry out further evaluations.

12 Please note that at a much later time after these studies were conducted, the Department o f Automatic
Control at Lund Institute o f Technology, Sweden, introduced a newer version o f the TrueTime
simulator (V I.3) which supports clock drifts.

4 0

4. How can we answer more specific questions about
the role of simulation?

The initial aim o f this research was to develop a simulation tool to support the
development o f X-by-Wire systems. However, in Chapter 3, it was demonstrated through
two case studies that the available TrueTime simulator is capable o f predicting the
implementation behaviour o f X-by-Wire systems. The work presented in this chapter
discusses other ways in which the simulation approach could be further assessed.13

4.1 Introduction

As briefly discussed in Chapter 1, the initial aim of the work described in this thesis was to

develop a simulation tool to support the development o f X-by-Wire systems. As discussed

in Chapter 1, it might be expected that the use of an effective simulator can assist in the

development of such systems. However, the contributions made by simulation towards

the development process are rarely explored in depth and is incompletely understood.

Indeed, there is very little empirical data available that can demonstrate the efficacy of

such a simulator.

This lack of empirical evidence is not, o f course, a problem unique to the use of simulators

and the software engineering community is becoming increasingly aware o f the need to

seek evidence of any form of new technology (Oman and Pfleeger, 1997; Pickard et al.,

1998; Wood et al., 1999; Endres and Rombach, 2003), rather than relying on sweeping

statements about its “obvious” effectiveness (e.g. see Turski, 1986; Fenton et al., 1994).

Resorting to bad practices such as gut feelings, intuition or analytical advocacy has

sometimes led to the popular belief that a particular method is useful, when in fact,

subsequent empirical research seems to show otherwise (Basili et al., 1999; Dyba et al.,

2005). For example, Fenton et al. (1994) has previously described some studies that have

contradicted the widely held beliefs on techniques like 0 - 0 and formal methods.

With respect to a “simulation first” methodology which is the focus of this thesis, evidence

is also essential to evaluate its efficacy in the development process of future X-by-Wire

systems. For example, in Chapter 3, evidence was presented to suggest that the TrueTime

simulation can closely match the behaviour of X-by-Wire systems. However, fulfilling

13 Parts o f this chapter also appears in Ayavoo et al. (2006) and Ayavoo et al. (submitted).

4 1

this condition alone - clearly - does not mean that a “simulation first” approach is

effective. On the contrary, the work presented in Chapter 3 has only described a

necessary, but insufficient condition to demonstrate the overall effectiveness o f the tool.

In Chapter 1, the other factors that affect the efficacy o f a simulator were briefly

discussed. Researchers have suggested that a “simulation first” approach should - for

example - reduce the development effort involved (Castelpietra et al., 2002; Henzinger et

al., 2003; Redell et al., 2004), or improve the quality and reliability o f the system (El-

khoury and Tomgren, 2001; Cervin et al., 2003; Henzinger et al., 2003). Yet, in order to

substantiate these claims, evidence that can demonstrate the effectiveness of the tool in use

(with regards to effort or quality) is required. Unfortunately, such evidence is scarce.

Indeed, to date, very little work has been carried out to gather evidence to indicate that a

“simulation first” approach is going to be effective when used in practice.

According to Endres and Rombach, “Rather than developing theories, they [theorists]

frequently argue in favour o f specific methods and tools, many o f which demonstrate

technical virtuosity. They often do this without sufficient regard to their usefulness in

practice nor after validating them by meaningful trials. Practice should be the true

measure o f a method’s usefulness ...” (Endres and Rombach, 2003, p. 1). Putting this in

context of the current research, the more interesting question is essentially how useful the

TrueTime simulation approach is going to be when it is used in practice to develop X-by-

Wire systems. Hence, to verify the true usefulness of the approach, more specific

questions need to be answered.

Based on these discussions, the focus of this chapter is on the use of empirical

investigations as a vital process in gathering evidence on the efficacy of any new

technology in software engineering (see Oman and Pfleeger, 1997; Basili et al., 1999;

Endres and Rombach, 2003). However, carrying out empirical software studies is not

straightforward. Some of these challenges are illustrated in Section 4.2.

With respect to X-by-Wire system development, the challenges faced in the empirical

software studies are slightly unique. These problems are discussed in detail in Section 4.3.

In order to address some of these issues, a low-cost empirical methodology is proposed in

4 2

Section 4.4. For ease of reference, the technique is referred to as the “Small Group

Methodology” (SGM).

4.2 Challenges of empirical software studies

Carrying out empirical software assessments and gathering the necessary evidence can be

notoriously difficult (Fenton et al., 1994; Basili et al., 1999). Although the work

presented in this thesis is not intended to address all o f these problems, it is useful to

appreciate some of these challenges faced by researchers in this area.

One of the difficulties is caused by the dependency on human-based studies (Basili and

Reiter, 1979; Sheil, 1981; Seaman, 1999; Lethbridge et al., 2005). Since the skill of a

software engineer is often involved in most software development processes, it is crucial

that the interaction of the engineer with a particular development methodology is taken

into account in the analysis (Brooks, 1980). This is important because the likelihood of

success or failure may depend on the way the methodology is applied by the software

engineer. However, identifying these characteristics is not always straightforward and

may be dependent on the way that the experiment is designed.

For instance, a previous study on the use of flowcharts in programming suggested that

such charts do not assist the programmer in comprehending the documentation any more

than pseudocode (Shneiderman et al., 1977). Subsequent research later suggested that this

may not necessarily be the case (Scanlan, 1989). The difference of outcome in these two

research publications, at the very least, illustrates the construction of a suitable experiment

that involves human subjects can be extremely difficult.

Such studies are also very often complex and time consuming (Fenton et al., 1994). For

example, depending on the nature o f the study, it can be difficult to identify and control all

the influential variables that may affect the outcome of the empirical software experiment

(Fenton et al., 1994; Pfleeger, 1999). The experiment may also require much effort in

planning and the experimentation process itself may take a long time. These factors also

tend to influence the cost involved in such studies, making it very difficult to conduct

large-scale empirical experiments. Drawing a general conclusion from empirical studies is

also not easy. Very often, the studies are conducted within certain constraints, and

4 3

therefore the results cannot be generalised for all circumstances (see Basili et al., 1999;

Pfleeger, 1999).

Nevertheless, some researchers have attempted to provide some rules and strategies on

how to prepare and carry out these complex studies (Brooks, 1980; Basili et al., 1986;

Kitchenham et al., 2002; Lethbridge et al., 2005).

For example, Brooks (1980) discussed the various problems involved in the selection of

subjects, design of the experiment and choice o f measurements for empirical software

studies. Although various solutions have been proposed, each one has its own drawback

and no universally accepted technique is available.

To help carry out better empirical studies, some researchers had proposed a framework of

the various stages involved such as project definition, planning, operation and

interpretation (Basili et al., 1986; Kitchenham et al., 2002). However, the variation

caused by the different goals, methodology, experience, problem domain and constraints

of the experimental environment can still affect the techniques used at the various stages

of the empirical study. For example, the cost of the study may influence some of the

techniques used at the operation stage, or limitations in the personnel may influence the

way the analysis is carried out.

Recently, Lethbridge et al. (2005) described various techniques of data collection for

empirical software studies. A discussion was also provided on the pros and cons for each

technique. In spite of this, not all the techniques are applicable in all empirical studies.

For example, the conceptual modelling technique that requires the participant to

conceptualise their mental thoughts on paper might not be suitable as it may force a

particular development methodology on the test subjects. Likewise, the use of “think

aloud” techniques that require the test subjects to “verbalise” their thoughts, may be

unnatural for the participants and may cause other side effects on the measurement

process.

Overall, carrying out empirical studies is difficult and no universally accepted technique is

available. Hence, it remains the case that the approach used to carry out empirical

4 4

experiments in software engineering is strongly dependent on the characteristics of the

study.

4.3 Towards a “small group” methodology

One way that researchers have found to be effective in carrying out empirical investigation

for a range of software engineering fields, is through the use of laboratory studies in

conjunction with techniques to observe the process of software development (see

Robillard et al., 1998; Henry and Stevens, 1999; Seaman, 1999; Marcias et al., 2002;

Marcias et al., 2003; Germain and Robillard, 2005).

4.3.1 Large industrial studies

In this thesis, the focus is on the comparison of different development methodologies for

automotive X-by-Wire systems. In general terms, it is clear how researchers could

conduct an effective scientific study in this area. For example, the study could employ

(say) 50 different groups of experienced developers each working on a different design for

a Steer-by-Wire system: the researcher might then argue that - after analysing the results -

they would be able to identify the “best approach”.

Sometimes such studies can be carried out effectively. Indeed, various researchers have

used an industrial site as their base for collecting data (see Shepperd and Schofield, 1997;

Subramanian and Corbin, 2001; Subramanyam and Krishnan, 2003). These studies

involved the analysis of software development data obtained through a large team of

professional software engineers working on site.

As an example of a study using industrial data, Subramanyam and Krishnan (2003)

analysed the implications of 0 - 0 design complexity metrics on software defects.

Industrial data was used here because the research required a huge amount of data to

investigate the effects o f software metrics and the different analysis techniques that could

be employed on the data obtained (see also Shepperd and Schofield, 1997; Subramanian

and Corbin, 2001). In general, these studies did not require a change in the software

development methodology employed by the respective industries. More importantly,

4 5

these experiments have not been designed to compare different software development

approaches.

Industrial data have also been useful for studies that require longitudinal data (data spread

across several years). As noted by Cook and colleagues, there is much benefit to be

reaped from analysing in-place software processes (Cook et al., 1998), and this has been

shown effectively by Kemerer and Slaughter (1999), where the evolution o f software over

20 years in a particular industrial site was explored.

In the case of embedded systems, technology changes very rapidly (in periods measured in

months or years, not decades); hence, the turn around time for empirical results must be

equally fast. In addition, since it is intended that the benefits of new technologies are

explored, experiments need to be carried out with at least two groups, operating in

controlled conditions with little or no communication between the members o f different

groups. Finding significant numbers of suitable subjects for empirical studies is often seen

as problematic (Pickard et al., 1998; Basili et al., 1999): adding a requirement for a

controlled environment also tends to mitigate against the use of a company setting for the

type of studies required in this thesis.

4.3.2 Using students as test subjects

Faced with the challenges outlined in the previous section, one option would be to use

students as subjects, and to conduct controlled experiments in a university (or similar)

setting. Clearly, this raises a number o f questions, not least the fact that the interest (in

this case) is the impact of new technologies and methodologies on professional developers

rather than students. While some researchers have argued that there are only minor

differences between the students and professionals (see Holt et al., 1987; Host et al.,

2000), others have argued differently (see Brooks, 1980; Arisholm and Sjoberg, 2004).

One must therefore ask if studies with students can yield useful data.

For example, in the Arisholm and Sjoberg (2004) study, the researchers found that the

level of correctness and effort involved in maintaining a particular software program

varied between senior professional engineers and undergraduate students. However, the

criteria used to select the students and the professional engineers were ambiguous. It

4 6

could be the case that some of the student subjects selected for that study were not very

good, or the distribution of the students was not equally balanced. Indeed, the study

showed that there were cases where the results o f some students were similar to the

professional engineer. This may suggest that student studies are still possible, if the

subjects are selected with equal backgrounds and abilities.

Certainly, the available data does suggest that student studies are capable of generating

useful results. As quoted by Kitchenham and colleagues, “Some practitioners may feel the

use o f student subjects in formal experiments reduces the practical value o f the

experiments. In our view, this is not a major issue as long as you are interested in

evaluating the use o f a technique by novice or non-expert software engineers. Students

are the next generation o f software professionals and, so, are relatively close to the

population o f interest.” (Kitchenham et al., 2002, p. 732).

Students have previously been used in a number of empirical studies (see Robillard et al.,

1998; Henry and Stevens, 1999; Prechelt and Unger, 2000; Marcias et al., 2002; Sobel and

Clarkson, 2002; Marcias et al., 2003; Germain and Robillard, 2005). For example,

Prechelt and Unger (2000) have successfully showed the effects of Personal Software

Process Training on software development. In a different study, Sobel and Clarkson

(2002) have explored the benefits of using formal methods in software development using

students. Henry and Stevens have also conducted a useful study on different team

structures in software projects using only student subjects and have concluded that the

results obtained can be more widely applied: “This research provides guidance to

managers in forming successful teams...” (Henry and Stevens, 1999, p. 248 - 249).

4.3.3 Large student studies

Having decided that students can be used to yield useful data, Sobel and Clarkson (2002)

used 20 groups (40 people) to study the impact of formal methods on 0 - 0 software

development. Here, a large number of students were easily employed because the test

case used in the study was integrated with the teaching syllabus. Large numbers of

student test subjects have also been employed by several other researchers (see Henry and

Stevens, 1999; Prechelt and Unger, 2000).

4 7

Large numbers of student test subjects were available for such empirical experiments for

two main reasons. First, the subjects for the studies were already exposed to a necessary

“treatment” as a result o f having taken previous course modules prior to the experiment:

for example, in the Sobel and Clarkson study, half the class had already taken a course in

formal methods, the other half had not. Secondly, such experiment can often be designed

in such a way that these students participate as part of the normal running of the module:

for example, the experiment conducted by Germain and Robillard (2005) was part of an

optional course offered to senior students in computer engineering. This similar scheme

has also been employed in other studies (see Holcombe et al., 2001; Marcias et al., 2002;

Marcias et al., 2003).

Given the rate of change in the field of embedded implementation for automotive systems

(see Section 1.2.1), neither of these two conditions can be easily satisfied in this area of

research. Therefore, empirical research in this field needs to rely on custom-made studies:

if such studies are conducted with students, these have to usually take place during

university vacations. Such studies have advantages, not least because a much wider range

of hypothesis can be tested in a controlled study of this nature. However, as such studies

rely on the use of volunteers, the numbers of subjects will be greatly reduced.

4.3.4 Small student studies

Although studies employing large number of students have been successful, it is extremely

unlikely that any institute would consider employing such an approach, primarily on

grounds of cost (Ciolkowski et al., 2003). By contrast, various successful studies have

been carried out in the past using small numbers of subjects.

For example, Robillard et al. (1998) carried out an empirical study by observing the

meetings of four full-time software engineers participating in a professional software

development project. In a different empirical study, five student subjects were employed

instead of professional engineers (Robillard et al., 2004). Several other researchers have

also used a small number of test subjects in their study (see Fitter and Cruickshank, 1983;

Vessey and Conger, 1994; Dawson and Swatman, 1999). In fact, there is a study that used

only one test subject due to the difficulty in obtaining suitable candidates for the study

(Strong, 1995). Despite this - very - small sample size, the study succeeded in providing

4 8

useful insight on effective design principles for speech prosthesis by observing the human-

computer interaction.

4.4 The “Small Group Methodology”

The “Small Group Methodology” (SGM)14 builds on the findings from previous successful

studies in which small numbers of subjects have been employed. Such an approach has

obvious advantages in that it reduces costs, and makes it possible to conduct research

when only limited numbers of volunteers are available.

A set of “good practices” from previous studies was tailored to suite the current

experimental approach that involves the development of embedded systems. An overview

of the SGM is given in Figure 4-1. A detailed discussion on the six key phases of the

SGM is presented in this section.
: - a -; A r;-:

The SGM

The ca se study M easurem ents

< xtmv&smsmim as es® ■ m / V f ‘

Selection of subjects

V

Management of
subjects

What to measure

How to measure

Analysis

Synchronising the \
timescale

Preparation of the
case study

Figure 4-1 Overview of the SGM.

4.4.1 Selection of subjects

A key idea behind the SGM is to use small “balanced” groups of students with equal

backgrounds and capabilities as test subjects.

14 Please note that an early version o f the SGM was described by Ayavoo et al. (2005a). This work is
presented in Appendix A o f this thesis.

4 9

Most of the small studies described previously tried to match up the backgrounds of the

test subjects (Poison et al., 1986; Vessey and Conger, 1994; Robillard et al., 2004). To do

this, account was taken o f the subjects’ prior experience (Robillard et a l, 2004) and the

courses they had undertaken (Poison et al., 1986). Questionnaires were also used (Vessey

and Conger, 1994).

In the SGM, the fact that students have an associated “mark history” was used. This

means the knowledge of which university modules the subjects have previously studied

and the marks they have obtained for these modules are available.15 This allows for the

possibility of assembling small groups of students who are extremely well matched in

terms of background and skill level (in a particular area).

In this case, the research studies that were conducted required the students to implement

embedded systems. To minimise the bias in the studies, the students were chosen such

that they had very similar “mark history” in the Embedded Systems module offered by the

university. This module offers weekly lectures that discuss the theoretical and practical

aspects of embedded system implementations. In addition, the module also includes

intensive laboratory sessions to evaluate the skills and ability of the students in

implementing real-time embedded systems. The laboratory work involves hardware

configuration and software implementation on embedded microcontrollers. The “marks

history” generally reflects the student’s ability in carrying out the weekly laboratory

assignments.

The students’ marks can also factors in other issues such as experience and interest. Here,

it is assumed that if a student has any relevant experience in embedded systems then their

marks will be able to reflect this. Similarly, it is unlikely that students who are

disinterested in the subject will perform very well.

Please note that, in the studies reported in this thesis, the students were paid expenses

(approximately £20.00 / day / student). It is worth noting that even this modest level of

expense payment could soon mount up if larger groups were used.

15 Please note that this is - in most cases - “public knowledge”: the module marks used are published.

50

4.4.2 Management of subjects

Selecting suitable test subjects for the study is not enough to ensure its success. In

addition, the test subjects must be managed in an appropriate manner to ensure that there

is minimal bias in the experiment.

For example, some studies may require the students to work in pairs. This raises the issue

of the compatibility within the group. A recent study conducted by Katira et al. (2004)

looked at issues that could affect the compatibility in student groups such as personality

types, actual skill level, perceived technical competence and self-esteem. In that study, the

authors have found that in 90% of the cases, student programmers who are randomly

paired are compatible. The study has also revealed that the student subjects prefer to pair

off with someone they perceive to have similar technical competence. This suggests that

pairing student subjects randomly, when the test subjects come from the same background

and ability are unlikely to produce incompatible pairs.

Another issue that must be taken into account is the inter-group interaction. While

conducting observational studies, it is essential that the student subjects do not discuss

their findings with other group members. Sharing information this way could affect the

outcome of the results. To avoid this potential bias, the students were advised against this

at the beginning of the study. However, having complete control over this is very

difficult. For instance, it may be possible to prevent one student from discussing the work

with another student in a different group during their lunch break by simply staggering the

lunch hours between the groups. However, it is more difficult to curb any form of inter

group discussion at the end of a daily laboratory session. Crucially, this required the

cooperation from all the participating students.

It is also important to make sure that the subjects are not aware of the objective of the

study as this may compromise the results. This eliminates the possibility of subjects

behaving differently because of their knowledge of the experimenter’s expectations. (This

is also sometimes known as the Hawthorne Effect; see Kitchenham et al., 2002; Berry and

Tichy, 2003). To avoid this, the test subjects were only informed o f the experiment’s

objectives and motives at the end of the experiment.

5 1

Finally, using the same students in cross-over design must be avoided at all cost. This is

the case where the same students are subjected to several different treatments. In this case,

the test subject may have gained knowledge from the first treatment and is likely to find

the next task slightly easier. As suggested by Kitchenham et al. (2002), the second

attempt of debugging would be easier than the first, regardless o f the technique that is

being applied. To avoid this bias, a fresh set of students that had not taken part in any of

the prior research studies were selected for each new study.

4.4.3 Preparation of a suitable case study

In order to carry out an empirical investigation effectively, a suitable case study is

required. The description of the problem for the case study needs to be carefully designed

such that it is feasible for the students taking part in the project. The feasibility of the

study must take into consideration the size of the groups, the duration of the study and the

experience and ability of the students involved. For example, it is fruitless to prepare a

difficult case study that may require ten students to work in a group for six months, when

the group size is only two and the students are only available for four days.

The case study must also ensure that the new technology can be tested fairly. To do this,

an experiment that does not use any “treatment” can be used as an effective “control”.

This can then be compared with the results of the experiment that has the “treatment”

under test (see Kitchenham et al., 2002; Dyba et al., 2005). That is, the study should be

designed such that the problem given to the students can be solved, with or without the

new technology.

It is also generally agreed that the case studies used in empirical software engineering

need to scale up to real systems and to avoid “toy” problems (Fenton et al., 1994; Basili et

al., 1999). For example, Brooks (1980) suggested that software programs that are less

than 500 lines of source code can usually be deemed as “toy” programs. Equally, if the

problem is made to be too complex, then the results may become more difficult to analyse,

and may make the cost o f the study itself prohibitive.

In light of this, the programs that the students were required to work on consisted of

thousands of lines of source code. Please note that in most cases, some basic structure and

5 2

sample code was available so that the subjects did not need to start coding from scratch.

However, the subjects had to understand the source code and program structure before

they could begin their coding. It is assumed that this approach is similar to most

embedded software development process, where the embedded software is rarely created

from scratch.

4.4.4 Deciding what to measure

After suitable groups o f students and an appropriate case study have been identified,

evidence can now be gathered. The evidence can take the form of “tangible” evidence or

“testimonial” evidence (Pfleeger, 2005). According to Pfleeger (2005), evidence that can

be examined directly to see what it reveals can be classified as being tangible.

Testimonial evidence refers to observational reports on how the experiment transpired. To

obtain the necessary evidence, a choice of relevant measurements must be made.

One way of doing this is to use the Goal-Question-Metric (GQM) approach (Basili and

Weiss, 1984). GQM is a methodology that assists the researcher in determining the

suitable software metric that should be measured. To begin with, the goals of the study

must be identified, followed by the generation of set of questions to be answered, and

proceed step-by-step to identify the type of data to be collected.

For example, with respect to the “simulation first” approach, the fundamental goal is to

assist in the development of X-by-Wire systems. One of the essential questions is can

simulation predict the behaviour of X-by-Wire systems? This question was answered in

Chapter 3 where it was demonstrated how the TrueTime simulator can be used to

understand the behaviour of different implementation options. To do this, a measurement

of various attributes were carried out, such as control delay, control jitter and response

time.

The specific measures used in this research are discussed in Chapters 5, 6, 7 and 8.

4.4.5 Deciding how to measure

Having decided on what to measure, the next step is to decide how to carry out the

measurements. In general, in order to collect as much data as possible a continuous

5 3

sampling technique would seem to be ideal. However, carrying out the measurements is

likely to have an impact on the process under observation (SEL, 1995): that is, the more

frequently a measurement is taken, the more likely it is that this will influence the

development process itself.

In order to collect as much useful data as possible from the study without causing undue

interference, three data collection techniques were employed:

• Progress observation:

The progress of each team is observed, and records are made on pre-prepared

“progress forms” (see Table 4-1). This will allow the observer to note any difficulties

faced during the development process. This technique is sometimes used to make

qualitative measurements of software development (Seaman, 1999). This method

contributes to testimonial evidence from the researcher’s point o f view.

• Email:

Each team is asked to e-mail their project source code periodically to the observer.

The source code is saved, and subsequently analysed. This method is crucial to SGM

because it provides tangible evidence throughout the software development process.

• Questionnaire and interview:

At the end of the experiment, the students are given a questionnaire (please refer to

Appendix I for examples of the questionnaire) to complete, and a short (recorded)

interview session is held with each test subject (such techniques have been discussed

in Lethbridge et al., 2005). This session is intended to help elicit any additional

information that may have been missed out at the other phases of the observation

process. This technique offers testimonial evidence from the perspective o f the test

subjects.

5 4

Table 4-1 “Progress form” to categorise the activities undertaken by the students during the
experiment. Generally, a tick is marked on the relevant box to indicate that “Activity X” is being

carried out at a particular time slot. Notes were also made to record any difficulties and anomalies
observed throughout the development process.

Activities\Time 0930 1000 1030 1100 1130 1200 1230 1300 1330

Activity 1

Activity 2

Activity 3

4.4.6 Time-scale synchronisation

The software development process can usually be divided into several stages such as

requirements analysis, high-level design, low-level design, coding, unit test, integration

test, system test and acceptance test (Weller, 1994). In this case, the focus is mainly on

the design, coding and testing stages.

The development phases (at the design, coding and testing stages) for the different groups

may not necessarily align. For example, when developing an embedded control system,

one group may choose to design the controller first before configuring the necessary

Input/Output (I/O) ports, while another group may choose to do the opposite, or develop

the control and I/O sections in parts. The lack of a common development process makes a

direct comparison of the “raw” results more difficult.

Some previous studies have used a classification scheme to formally categorise and

analyse the “raw” data obtained from the software empirical study. For example, Kemerer

and Slaughter (1999), used a classification scheme to categorise the events that take place

at a particular point in time in their longitudinal study of software evolution. In a different

study, Germain and Robillard (2005), used a classification scheme to categorise the

cognitive activities involved in software development. Source code classifications have

also been used to analyse small source code changes (see Purushothaman and Perry,

2005).

The approach here is slightly different from those described previously. The aim here is to

allow a comparison of the results by synchronising the data obtained from two

development processes (see Figure 4-2). The solution involves dividing the entire

5 5

development process into small, identifiable, phases. The number of the phases involved

may vary depending on the testbed and case study used. Please note, that by doing so, a

development process is being elicited rather than being enforced.

Next, each set of measurement taken at a particular point in time is mapped to the

necessary sub-development phases. This mapping is necessary to categorise the phases

that were involved for each measurement. Each measurement may have one or more sub

development phases mapped to it. To carry out the mapping process, tools to compare two

version of software such as Araxis Merge16 or Windiff can be used. Finally,

measurements can be grouped together in areas where there is more than one measurement

in the same sub-development phase.

Measurement 1
-Phase 1

Measurement 2
-Phase 2 . Phase 3

Measurement 1
-Phase 1

Measurement 2
-Phase 1, Phase 2

Total Phase 1 =
Measurement 1 +
(Measurement 2)12 + ...

Total Phase 2 =
(Measurement 2)/2 + ...

Total Phase 1 =
Measurement 1 +...

Total Phase 2 =
(Measuremert 2)/2 + ...

Total Phase 3 =...
(Measurement 2)/2 + ...

Source code of
development

process A

Source code of
development

process B

Dividing the
entire

development
process into

smaller phases

• Phase 1
• Phase 2
• Phase 3

Analysis with
Araxis Merge

Analysis with
Araxis Merge

Raw results Phase mapping Phase grouping

Figure 4-2 The synchronisation technique.

4.5 Discussion

In order to address some of the challenges and difficulties involved in carrying out

software empirical research in the field of embedded systems development, the SGM has

been proposed. Although the SGM has various advantages, the disadvantages of the

approach must also be appreciated.

The main drawback of the SGM is the inability to generalise the findings when such an

approach is employed to carry out empirical studies. This is due to the small sample size

16 http://www.araxis.com/ (last accessed: 27/02/2006)

5 6

http://www.araxis.com/

used in such research projects. Although generalising the findings is a common problem

in software empirical research (Basili et a l , 1999), it is more severe when the SGM is

used.

In addition, due to the small number of students used in the SGM, there is a risk that the

human variation in characteristics may make it difficult to interpret the results of the study,

and obscures the conclusion. For example, Sheil (1981) has discussed the individual

variability among test subjects and its effect on the results.

However, due to the various difficulties that have been discussed in Section 4.3, the SGM

provides a practical technique for gathering empirical evidence. In this case, it may be

better to rapidly obtain some evidence than to wait indefinitely to conduct an “ideal”

empirical study. For example, Pfleeger (1999) encourages the sort o f practice that

involves study a little, theorise a little, then iterate: ”In this way, educators have the

advantage o f using the most effective techniques known at the time, without having to wait

fo r large number o f replications.” (Pfleeger, 1999, p. 34).

4.6 Conclusions

The discussions presented in this chapter have argued for more rigorous empirical studies

to gather evidence on the contributions that a “simulation first” approach can make in the

development of X-by-Wire systems. However, carrying out such investigations is very

difficult. Based on the assumption that it is better to gather “some” evidence instead of no

evidence at all, the SGM has been proposed. Overall, the approach is intended as a way of

rapidly carrying out empirical assessments at low cost, and to help suggest new

hypotheses.

Having proposed a methodology to carry out empirical evaluations, the subsequent

chapters explore how the SGM can be employed to answer more specific questions

involving the comparison of different development approaches for embedded systems.

5 7

5. Can the use of simulation reduce effort?
The work presented in this thesis focuses on evaluating the effectiveness o f a “simulation

fir s t” approach to the development o f X-by-Wire systems. In this chapter, the “Small
Group Methodology” (introduced in Chapter 4) was used to assess i f a “simulation fir s t”
approach can reduce the effort involved. 7

5.1 Introduction

The initial goal of this project was to build a suitable simulation tool for X-by-Wire

systems. To avoid reinventing the wheel, the TrueTime simulator was provisionally

chosen (see Chapter 2), and it has been shown to be capable of predicting the behaviour of

a range of X-by-Wire systems (see Chapter 3). However, as discussed in Chapter 4, this

condition alone is not enough to demonstrate that a “simulation first” approach is

effective.

One factor that marks out the success of a “simulation first” approach, or any given

software engineering project for that matter, is the development effort involved (Jorgensen

and Sjoberg, 2001; Molokken-Ostvold and Jorgensen, 2003; Grimstad et al., 2006; Huang

and Chiu, 2006). Indeed, some researchers have suggested that a “simulation first”

approach is likely to reduce the development effort involved (see Castelpietra et al., 2002;

Henzinger et al., 2003; Redell et al., 2004). For example, Redell et al. (2004), p. 181

concluded “The toolset hence allows users to evaluate control systems implementations

before realisation, which should help lowering development times ...”.

However, there is very little empirical evidence that can support such claims. For

instance, although Henzinger et al. (2003) claimed that the use of the Giotto tool helped to

significantly reduce the effort involved, there were no empirical results to demonstrate

this, or any discussion on the techniques used to obtain such measurements. Overall - in

most cases - the developers of simulation tools for embedded systems have sought to

demonstrate the technical merits of the tool, but have not attempted to study the efficacy

of the approach when used in practice.

17 Parts o f this chapter also appears in Ayavoo et al. (submitted).

5 8

The aim of the work presented in this chapter was therefore to begin to seek evidence of

the effort involved when employing a “simulation first” development approach. The use

of simulation in the studies presented here was restricted to the verification of the correct

design implementation of a preferred solution. To do this, the SGM was employed where

the development of two versions of an embedded control system by independent groups of

students was observed in Case Study 5. One group was asked to implement the system

directly while the second group was asked to use a simulator first, before carrying out the

hardware implementation.

5.2 Case Study 5: Assessing the effort involved

As outlined in Section 5.1, Case Study 5 involved the observation o f the development of a

non-trivial embedded control system. The SGM was applied in the present study to assess

the contribution of a “simulation first” approach towards the development process. The

study is described in this section.

5.2.1 The testbed

The testbed employed in this study was based on the cruise-control system (CCS)

hardware-in-the-loop (HIL) testbed described in Chapter 3. The CCS testbed was chosen

for the following reasons:

• The testbed was based on an embedded automotive application.

• The testbed presented a realistic implementation problem of a control system.

• The CCS can be developed with and without the use of a software simulator.

• The CCS testbed was successfully used (in Case Study 3A) to evaluate the

performance of the simulator.

In this study, the testbed was modified such that the CCS node consists of a single

Infineon 16-bit microcontroller. This was done in order to remove the associated

complexity of distributed embedded systems, and hence to make the study feasible for the

selected test subjects within the allocated time and cost constraints (Section 5.2.2 and 5.2.3

discusses the selection of subjects and the time allocated for the study).

5 9

5.2.2 Selection of subjects

Having selected the CCS as the testbed for this study, the next step was to select suitable

test subjects.

In the study presented here, students that had previously undertaken a one-semester

module in embedded systems were used. From the list o f volunteers, the student subjects

were specifically chosen such that their marks for this module were very similar (in the

range 70%-80%) to ensure that the all the groups were - as far as possible - well matched

in background and ability.

Four groups of students were employed to develop the CCS. The breakdown of the

groups (and the allocated tasks) is shown in Table 5-1.

Table 5-1 Group structure for Case Study 5.18 Table adapted from Ayavoo et al. (submitted),
Table II.

Group Number of
members

Scheduling
approach

Software
simulation

Hardware
implementation

A 1 Pre-emptive V
B 2 Co-operative V
C 1 Pre-emptive V V
D 2 Co-operative V V

One way of classifying embedded software is through the labels “pre-emptive” and “co

operative” (see Section 2.2.1). Previous studies have suggested that co-operative designs

have more predictable behaviour, and may be easier to simulate (Nissanke, 1997). In

order to reduce the impact of the choice of system architecture on the results obtained, the

CCS was developed using two scheduling approaches, either a time-triggered co-operative

software architecture (Pont, 2001) or a time-triggered pre-emptive software architecture

(Bate, 1998). For each architecture, one group was instructed to perform a software

simulation first followed by the hardware implementation while the other group was asked

to perform the hardware implementation immediately.

18 As shown in Table 5-1, some groups had two students while some had one. This discrepancy was
caused by some volunteers who pulled out o f the study at the last minute. However, this did not have a
huge bearing on the study since the comparisons were carried out in a non-bias way. For instance,
comparison between Group A and Group B was avoided because the number o f subjects in those
groups was not the same.

60

Every effort was made to ensure that the groups were supported equally. All groups were

provided with a real-time task scheduler (co-operative or pre-emptive) suitable for use in

the implementation phase. For groups that were involved in the software simulation, an

example of the scheduler running on the simulator and the car environment model was

also provided. All groups were also provided with a documentation o f the necessary

formulae and variables required to develop the CCS.

5.2.3 Measurement of effort

In the present study, the work involved in the development o f both the “simulated” and

“real” systems, had to be measured and compared.

The work involved in the simulation phase included creating block diagrams (with the

appropriate connections as shown in Figure 5-1) for the system and subsequently writing

MATLAB source code for the TrueTime simulator. An example of a task in MATLAB is

shown in Listing 5-1.

co n tro ll« r_ o u tp u t
To C _ sp « ed

CAR

C o u n te iL ED _pin1CCS
Clock

th ro ttle jn

raw_speed

LE0_pin1

Figure 5-1 The control system setup on TrueTime.

6 1

function [exectime, data] = CCS_Sens_Compute_Speed(seg, data)
switch seg,

case 1,
data = ttTryFetch('Data_Box');
exectime = 0.0 00001;

case 2,
% Get raw speed from car
% The raw speed is scaled to obtain the
% calculated speed of the car
data.raw_speed = ttAnalogln(data.inpChan(1));
data.scaled_speed = data.scaling_factor*data.old_speed
+ (1-data.scaling_factor)*(data.raw_speed * 4);
data.old_speed = data.scaled_speed;
ttAnalogOut(data.outChan(1), data.scaled_speed);
ttTryPost('Data_Box1, data);
exectime = 0.000046;

case 3,
exectime = -1;

end

Listing 5-1 An example of a task specification created using the TrueTime simulator.

All of the work involved in the implementation phase required coding in C (the source

code was developed and compiled on the Keil IDE). For example, the task specified in

TrueTime in Listing 5-1 is shown in C in Listing 5-2.

void Sens_Compute_Speed(void)
{
tWord raw_speed;

raw_speed = Get_Raw_Speed();
Scaled_speed_G = ((float) (SCALING_FACTOR * 01d_speed_G) +
(float)((1 - SCALING_FACTOR) * (raw_speed * 4))) ;

01d_speed_G = Scaled_speed_G;
}

Listing 5-2 The task specified in TrueTime in Listing 5-1 is shown in C here.

Since both the simulation and implementation phases required coding, code-based metrics

were used as the basis of the comparisons (McCabe, 1976; Stark et al., 1994; Weller,

1994)19. In addition, for the simulation phase, the time required to build the block

diagrams was included in the measures of effort required to develop the source code since

the source code and diagrams are interdependent: in this case development time was felt to

be an appropriate metric as it has previously been used to measure effort (Solingen and

Stalenhoef, 1997; Basili et al., 2004).

19 Please note that although the languages o f the simulation and implementation were different, the
structure and logic o f the tasks were similar.

6 2

Having decided what to measure, it was possible to then decide when to measure. In the

present study, the students were allocated (up to) four days to implement the CCS. Taking

daily measurements would not be appropriate as the sample points would be too coarse.

Conversely, taking the measurements (say) every five minutes would be too intrusive. In

this study, it was decided that the effort was measured approximately every 30 minutes by

asking each team to e-mail their project source code. This duration was felt to be

appropriate as it could capture the progress involved in sufficient detail without

compromising the study. The source code submitted in this way was saved, and

subsequently analysed.

5.3 Synchronising the timescale

After carrying out the relevant measurements, the raw data were analysed. As noted in

Section 5.2.3, a record of all the software versions was recorded, along with information

about the time taken to create each version. Since each group produced different code

versions at different rates, it made comparison of the results difficult. To make the

comparison of the results possible, synchronisation o f the development phases was carried

out, as discussed in Chapter 4 (see Section 4.4.6).

To do this, the total software development of the CCS was divided into smaller phases. In

this case, the key software development phases were identified to be:

• Gaining familiarity with the development environment (FAMENV).

• Writing the “Compute Car Speed” task (COMSPD).

• Writing the “Get Ref Speed” task (GETREF).

• Writing the “Compute Throttle” task (COMTHR).

• Debugging the tasks to make the system work (DBGTSK).

The source code was then compared and analysed (using Araxis Merge for Windows).

Each version was then linked to one (or more) of the system development phases listed.

Table 5-2 shows the phases that were developed for each version.

6 3

Table 5-2 Results for C ase Study 5 after each version was mapped to its corresponding phase and
its respective time taken in minutes.

Group A Group B Group C Group D

COMSPD 30 COMSPD 30 FAMENV 30 FAMENV 40

COMSPD 35 COMSPD 35 FAMENV 40 FAMENV 40

COMSPD 25 COMSPD 25 FAMENV/COMTHR/COMSPD 30 FAMENV 30

GETREF 45 COMSPD/COMTHR 45 COMTHR 30 FAMENV 30

GETREF/COMTHR 30 GETREF 30 COMTHR/COMSPD/GETREF 30 FAMENV 45

COMTHR 30 GETREF 35 DBGTSK 30 FAMENV 10

DBGTSK 35 DBGTSK 35 DBGTSK 30 COMSPD/COMTHR 40

DBGTSK 35 DBGTSK 25 DBGTSK 40 COMTHR 20

DBGTSK 25 DBGTSK 25 DBGTSK 20 GETREF/DBGTSK 30

DBGTSK 25 DBGTSK 20 DBGTSK 20 DBGTSK 30

DBGTSK 35 DBGTSK 25 COMTHR 40 COMSPD 30

DBGTSK 15 DBGTSK 25 COMTHR/COMSPD/GETREF 30 COMSPD 30

DBGTSK 30 COMTHR/COMSPD/GETREF 30 COMSPD 30

DBGTSK 20 COMSPD/DBGTSK 30 GETREF 40

DBGTSK 40 DBGTSK 40 COMTHR 30

DBGTSK 30 DBGTSK 30

DBGTSK 30

DBGTSK 30

DBGTSK 30

DBGTSK 30

455 355 620 505

From Table 5-2, it can be observed that the effort expended on the various phases varied

between groups. To allow a more detailed analysis of the effort involved in each phase,

‘similar’ phases were grouped together. Where necessary, the total development time was

divided by the number of phases.

Table 5-3 illustrates the results after similar versions were grouped together.

Table 5-3 Results (in minutes) for Case Study 5 after grouping versions together. Table adapted
from Ayavoo et al. (submitted), Table III.

Phases Group A Group B Group C Group D

FAMENV 0 0 80 195

2 COMSPD 0 0 20 20
CO
? GETREF 0 0 10 15
CO COMTHR 0 0 50 40

DBGTSK 0 0 140 45

FAMENV 0 0 0 0
CL COMSPD 90 112 35 90

GETREF 60 65 20 40
>
I COMTHR 45 23 60 30

DBGTSK 260 155 205 30

TOTAL 455 355 620 505

6 4

5.4 Analysis of the results for Case Study 5

Once the results have been synchronised, it is now possible to analyse the results.

Five factors were considered:

• Total development effort.

This is the time taken to complete the project by each group. For Groups A and B, this

only involves the hardware implementation. For Groups C & D, this involves the

software simulation and the hardware implementation.

• Total hardware implementation effort.

This is the effort involved at the implementation stage only. For Groups A and B, this

value should be similar to the total development effort. For Groups C and D, the

simulation effort is ignored.

• Hardware implementation effort in stages.

This value measures the hardware implementation time based on the various software

development phases. The phases are COMSPD, GETREF, COMTHR and DBGTSK.

• Comparison of the total simulation and total implementation effort.

This is the comparison of the total effort spent at the simulation stage and the total

effort involved in the implementation for Groups C and D only.

• Comparison of simulation and hardware implementation effort in stages.

Here, a comparison was done between Groups C and D of the simulation and

implementation effort involved at the various development phases (COMSPD,

GETREF, COMTHR and DBGTSK).

5.4.1 Mean results

The mean results obtained from the experiment are summarised in Table 5-4.

Table 5-4 The mean results for effort (in minutes) for Case Study 5. Table adapted from Ayavoo et
al. (submitted), Table IV.

Mean of HW
Groups (A &

B)

Mean of SIM
Groups (C &

D)

Effort of SIM groups
compared to HW

groups

Total hardware
implementation effort 405 255 37% less

Total development effort 405 563 39% more

6 5

If the mean implementation effort for the groups is considered, it can be seen that although

the effort involved to implement the hardware was 37% less than the “hardware-only”

groups, the overall development effort was 39% more for the groups using the TrueTime

simulator.

Inevitably, given the small group size, it would be expected that there may be differences

in the individual student behaviour. Nonetheless, it is useful to examine the performance

of individual students, to see if any further lessons can be learned from this study. The

results of this analysis are reported in the following sections.

5.4.2 Total development effort

From Table 5-3 it can be seen that the total development time for Group C and Group D

was much higher than for Group A and Group B.

In addition, it should be noted that the student subjects were not familiar with TrueTime

simulation but had previous experience implementing embedded systems (this is

confirmed by the null values for FAMENV for all the groups for hardware

implementation).

If the effort taken in the FAMENV stage is ignored for Group C and Group D (that is, the

time taken to gain familiarity with the simulator is discounted), then the overall effort for

Group C was 19% more than Group A while Group D took 13% less effort than Group B.

These (apparently contradictory) results will be considered again in Section 5.5.

5.4.3 Total hardware implementation effort

If only the time taken to perform the hardware implementation was considered (Figure

5-2), then it can be seen that the groups that embarked on the “simulation first” approach

(Group C and Group D) took a much shorter time to implement the system compared to

the “implementation only” groups.

6 6

Group A Group B Group C Group D

Figure 5-2 Total hardware implementation time for all the groups in Case Study 5.

For the groups that used the pre-emptive scheduler, the effort reduction (Group C) was

30%. For the groups that used the co-operative scheduler, the time reduction (Group D)

was 46%.

This suggests that simulation had reduced the effort required to subsequently implement

the system on the hardware.

5.4 .4 Hardware im plem entation effort in s ta g e s

By plotting the progress made in the hardware implementation in stages (Figure 5-3), it

can be seen that Group A, Group B and Group C had similar characteristics. In each of

these cases, the development effort increased towards the end of the hardware

implementation phase.

By contrast, in the case of Group D, the development effort seemed to have declined

towards the end of the implementation phase.

This result will be considered again in Section 5.5.

Group A Group B Group C

[■COMSPD ■ GETREF □ COMTHR HDBGTSK |

Group D

Figure 5-3 Hardware implementation effort in stages for the four groups in Case Study 5.

5.4 .5 C om parison o f sim ulation and im p lem en tation effort

By comparing the total development effort of the simulation and implementation process

for Group C and Group D, two different results can be observed (Figure 5-4).

■ Simulation ■Implementation

Figure 5-4 Comparison of total simulation effort and total implementation effort for Group C and
Group D in Case Study 5.

68

The duration of the simulation and implementation phases for Group C was very similar

(implementation effort was 7% more than simulation effort). However, for Group D, the

implementation effort was considerably less than the simulation effort (by 40%).

In this case, it was noted that Group D showed a significant reduction in effort when using

the TrueTime simulator.

It is also observed that there was very little difference in the total effort involved in the

simulation phase for both the groups.

5.4.6 C om parison o f sim ulation and im p lem en tation effort in s ta g e s

Next the results from each stage of the development process (COMSPD, GETREF,

COMTHR, DBGTSK) were considered.

The results for Group C (Figure 5-5) reveal similar simulation and implementation effort

characteristics.
250 ---

COMSPD GETREF COMTHR DBGTSK

B Simulation ■ Implementation

Figure 5-5 Comparison of simulation and implementation effort in stages for Group C in Case
Study 5.

6 9

However, the results for Group D (Figure 5-6) show different effort characteristics for the

two phases.

COMSPD GETREF COMTHR DBGTSK

[■ Simulation ■ Implementation

Figure 5-6 Comparison of simulation and implementation effort in stages for Group D in Case
Study 5.

5.5 Discussion

On the basis of the results presented in Section 5.4, can it be said that use of simulation

leads to an overall reduction in the effort involved in developing embedded systems, with

respect to this study? Unfortunately, the answer to this question is not totally

straightforward.

In Section 5.4.3, the results seem to indicate that simulation did reduce the effort taken to

implement the system. However, in Section 5.4.4, the results seem to contradict this

finding. The results in Section 5.4.5 then suggest that the use of the simulation in fact

reduced the effort expended by Group D but not by Group C. This finding is - to a large

extent - repeated in Section 5.4.6 when the results from the various development stages are

compared.

70

Overall, although both Group C and Group D had used the same simulator, the impact on

the working patterns of the groups was different. The results suggest that although the

simulation effort trends are similar, the implementation effort trends for Group C and

Group D were different. This suggests that an anomaly may have occurred in the

implementation phase of the development process.

This prompted a further investigation into the source code submitted by Group C and

Group D. It was then noted that Group C did not (directly) use the source code written

using the TrueTime simulator when porting their work to the hardware implementation.

(This was apparent because the algorithm used in the simulation and implementation was

different for Group C).

In a post-experiment questionnaire, it was clear that Group C did not use the TrueTime

files when porting their code to the implementation phase (preferring instead to write the

source code for the implementation “from scratch”). Group D on the other hand stated in

their questionnaire that they used the TrueTime source code to help them develop code for

the hardware implementation.

Overall, looking back at the individual results, the following lessons can be learned:

• The actual progress and effort needed in each phase depends on the approach the

groups take. For example, Group D generally took more time to plan and understand

the problem, and reaped the benefits in later stages. Group C, on the other hand, spent

less time in planning and therefore had to debug for a longer time. Group C also made

less effective use of the simulator, changing their algorithm at the hardware

implementation stage.

• Learning how to use the simulator inevitably contributes to the project overhead.

Disregarding this overhead (that is, assuming that the developers are already familiar

with the simulator) a “simulation first” approach does appear to reduce the overall

effort.

• Using a “simulation first” approach can lead to a reduction in the implementation time

(at the hardware implementation stage). This could be due to the benefits of

experimenting in the simulator environment, and may also be because the simulator

promotes familiarity with the problem before beginning the hardware implementation.

7 1

• Developing the simulation models contributed to a significant amount of effort. In

average, 55% of the overall development effort came from developing the relevant

simulation models.

• The group that used the simulation source code for the implementation phase (Group

D) demonstrated a significant reduction in overall effort. By contrast, the group that

made less effective use of the simulator (Group C) actually saw their total effort

increase.

5.6 Conclusions

The work presented in this chapter involves an empirical study conducted using the SGM

to evaluate the effort involved when using a “simulation first” approach to develop an

embedded control system. Overall, Case Study 5 suggests that the group that used the

simulation source code for the implementation phase (Group D) demonstrated a reduction

in overall effort. By contrast, the group that made less effective use of the simulator

(Group C) actually saw their total effort increase. Specifically, the results suggest that the

use of a “simulation first” approach can contribute to a significant reduction of the effort

involved in the implementation phase.

The study also revealed that the process of developing the relevant TrueTime simulation

models can contribute to a substantial amount of effort. The next chapter will explore

ways in which the overall effort can be further reduced. In particular, the investigation

will explore the possibility of reducing the effort involved in the simulation phase of the

development process.

More generally, the results demonstrate that use of small groups of individuals can provide

useful information about the development of complex embedded systems, if studies are

carried out in an appropriate manner.

7 2

6. Can the development effort be further reduced?
In the previous chapter, it was shown that although simulation can reduce the
implementation effort, the effort involved to create the simulation models was not trivial.
In this chapter, another SGM-based investigation is carried out to assess i f the effort
involved can be further reduced. To do this, the TrueTime simulator was modified. 20

6.1 Introduction

As discussed in Section 1.2.3, the research project described in this thesis began with the

aim of developing a simulator to evaluate X-by-Wire designs very rapidly. The

subsequent work (presented in Chapter 2 to Chapter 4) suggests that - instead of

reinventing the wheel - the TrueTime tool can be used as it closely matches the initial

requirements. Following this (in Chapter 5), further empirical investigations suggested

that TrueTime - when used effectively - can reduce the effort involved. In particular,

evidence was obtained which suggests that the “simulation first” approach that employs

TrueTime can lead to reduction in the implementation effort.

However, the evidence presented in Chapter 5 also suggests that a considerable amount of

effort was involved in the development and simulation of the TrueTime models. In

particular, it was found that a substantial amount of effort was spent configuring the

TrueTime block diagrams and writing the relevant MATLAB source code. It was also

noted that learning to use TrueTime requires a significant amount of effort.

Other researchers have also suggested that developing the relevant simulation models can

sometimes be rather tedious (Castelpietra et al., 2002; Carson II, 2005). For instance,

Castelpietra et al. (2002), p. 1263 concluded: “However, simulation model development is

quite time consuming, as it has to obey to the formalism o f a general-purpose simulation

tool that is not specific to an embedded system domain.”.

These observations suggest that, although the code-based approach of the TrueTime

simulator provides flexibility in developing the system, it (inevitably) increases the effort

required to develop the relevant simulation models.

20 Parts o f this chapter have previously been published in Ayavoo et al. (2006) and Ayavoo et al.
(submitted).

7 3

Based on this discussion, the work presented in this chapter studies the impact of

modifications to the TrueTime simulator on the development effort. The modified version

of TrueTime (referred to here as TrueTime-Plus) is described in Section 6.2. An empirical

evaluation using the SGM (Case Study 6) is presented in Section 6.3 to assess the efficacy
9 1of the TrueTime-Plus simulator.

6.2 TrueTime-Plus

Intuitively, it seems likely that the overall effort could be further reduced if the effort

involved in creating the simulation models is reduced. With the aim of reducing this

effort, a code-generation technique was employed.

Code-generation techniques have also been used in other simulation tools. For example,

Real-Time Workshop Embedded Coder from MathWorks generates C code from Simulink

models. Similarly, tools such as TimesTool and Giotto (discussed in Chapter 2) also

employ code-generation techniques for the final implementation (Amnell et al., 2003;

Henzinger et al., 2003). Please note that code generation is - obviously - not limited to

simulators, and has been used in other research areas (see Florijn et al., 1997; Mwelwa et

al., 2006).

In this study, code generation was used to automate the development of the relevant

simulation models (instead of the final implementation as carried out in previous studies).

In particular, an “add-on” design-led code-generation package called TrueTime-Plus (TT-

Plus) was developed using Visual C to complement the existing TrueTime simulator. TT-

Plus prompts the developer with a series of possible high-level design options for the

system implementation, and then generates the necessary MATLAB files that are required

for the simulation process on TrueTime. This process is expected to assist the user in

rapidly developing a working prototype of their system without having to immediately

deal with the low-level complexities of choosing the right TrueTime library functions.

Please note that by modifying the simulator, the initial aim o f this thesis - which was to build a suitable
simulator - was partially fulfilled.

7 4

The source files generated can then be edited to accommodate the task specific

instructions. Figure 6-1 illustrates the differences in the simulation process of TrueTime

and TT-Plus.

T T -P lu s

Design option
configuration

MATLAB source
code generation

T r u a T k n t S i m u l a t i o n T r u a T i m # S i m u l a t i o n

Create MATLAB
source file

Configure block
diagrams

Edit
source file

Configure block
diagrams

 _ — -----------

Simulate the system Simulate the system

TrueTime Simulation Process '-Plus Simulation Process

Figure 6-1 Comparison of TrueTime and TT-Plus simulation process.

Currently, TT-Plus takes the designer through the following design options: (1) number of

nodes in the system, (2) number of inputs/outputs on a node, (3) processor scheduling

strategy (time-triggered or event-triggered), (4) communication scheduling strategy (time-

triggered or event-triggered), (5) number of tasks (periodic and aperiodic), (6) task

execution times22, (7) task delays, (8) task periods and (9) system tick interval. Figure 6-2

illustrates the process of leading the user through the design implementation options in

TT-Plus.

It is accepted that lack o f knowledge about worst-case task execution time is a problem. However, it
is one which faces the developers o f many embedded systems. For example, as Gergeleit and Nett
have noted: “Nearly all known real-time scheduling approaches rely on the knowledge o f worst-case
execution times for all tasks o f the system” (Gergeleit and Nett, 2002). In this thesis - as in previous
studies - it is assumed that the developer will have access to worst-case execution time information.

7 5

Oct num of
nodes

Single processor Multi processor
system system

hecks single or
multi processor?Get num of

InputsAxiputs
G ets Ccmms
Arch (TT/ET)

i
Get num of

Inputs/outputs
Get num of

Periodic tasks

Any periodic ~7

S u otasks?

At least one
periodfctask

periodic
tasks

Get tick
irterval

Get execution
time

Get task delay

Get task period

/ Any more
I'es __X periodic task? /

Get num of Get num of
Event tasks Periodic tasks

Any event ,
tasks? /

No

At least one
, event task

Get execution
time

Get Irtenupt
source

Any more
event tasks?

No
Ai

At least one
periodic task

Any periodic ~ 7
!<s?

periodic
tasks

St
Get tick
interval

Get execution
time

1
Get task delay

i
Get task period

i
-------- Any more

END PROCESS
Yes

periodictask?

Get nun of
Event tasks

' No/ tasks? / ^ — I
At least one

} event task

Get execution
time

Get Interrupt
source

/ Anymore
evert tasks? / Yes

No

Any more
nodes? / Yes

No

Figure 6-2 A flowchart describing how TT-Plus leads the user through the various implementation
options.

Please note that TT-Plus was developed as a simple prototype, in order to investigate the

impact of simulation on development effort. Further work would -clearly - be required to

develop TT-Plus into a commercial-quality product. Such work was beyond the scope of

the research project described in this thesis.

6.3 Case Study 6: Evaluation of the “new” simulation methodology

Having developed the TT-Plus package, the “new” simulation methodology can now be

assessed. To evaluate if TT-Plus can indeed reduce the development effort, observation of

the development process was carried out using the SGM. The evaluation method is

described in this section.

6.3.1 Testbed to assess the “new” simulator

To assess the contribution of this “new” simulation methodology, it was decided that a

different testbed is used instead of the CCS to obtain more variability in the evaluation

7 6

process. The testbed employed in this study was based on the control of an inverted

pendulum as described in Chapter 3 (see Case Study 3B).

6.3.2 Selection of subjects to assess the “new” simulator

In Case Study 6, student volunteers that had previously undertaken a one-semester module

in embedded systems were used. Three groups of students were chosen; each group

consists of two students. The students were chosen and paired off such that their

combined average mark of the groups was very similar (in the range 65%-69%). All the

students chosen in Case Study 6 had no prior experience in developing embedded source

code on the LPC2129 microcontroller.

6.3.3 Instructions to subjects

At the beginning of the empirical experiment, the following task scenario was given to all

groups:

“The Embedded Systems Laboratory (ESL) has a testbed consisting o f a one-node inverted

pendulum controller, which is based on a time-triggered software architecture. The ESL

is now interested in converting the one-node pendulum controller to a distributed

(multiprocessor) control system that involves either two or three microcontrollers

connected over a Controller Area Network (CAN) bus. The distributed solution should

use the Shared-Clock CAN (SCC) scheduling approach in its final implementation”.

The group’s task was to determine - by means of some empirical results - which of the

two implementations (two nodes or three nodes) would be a “better” option.

Each group was asked to come up with the solution using different development

approaches, as illustrated in Table 6-1. Group A was asked to obtain the solutions by

directly implementing the different systems on the hardware and measuring the

performance. Group B was instructed to use the TrueTime simulator to decide which

design option would be “better” before implementing their preferred solution on hardware.

The development approach used by Group C was similar to Group B, the only difference

being that Group C was given the additional TT-Plus package to guide them through the

system design decisions and code generation during the simulation phase.

7 7

Table 6-1 Development methodology for each group in C ase Study 6. Table adapted from Ayavoo
etal. (2006), Table 1.

Group TT-Plus TrueTime
simulation

Hardware
implementation

A V
Case Study 6 B V V

C V V V

Every effort was made to ensure that the groups were supported equally. Each group was

provided with the same documentations. Each group was also provided with the working

solution of a single-node pendulum implementation and the basic implementation of the

SCC algorithm (for two and three nodes) for the LPC2129 microcontroller. For the groups

using the “simulation first” approach, a simulation of the one-node pendulum control was

provided (plant and controller). In addition, the necessary simulation block diagrams for a

typical two-node and three-node control system connected over CAN were provided.

However, the source code required to simulate these systems were not provided.

This also meant that all the groups had a working single processor control system to begin

with, before attempting to make the necessary design changes for a multiprocessor system.

6.3.4 Measurement of effort

To measure - and compare - the effort involved in the development o f both the

“simulated” and “real” systems, the time taken by each group to complete the project was

measured. In addition, the source code for each group was collected periodically. In this

study, 30 minute intervals were felt to be adequate for a five-day study. A progress

observation form was also used to record the development of each group.

6.4 Synchronising the timescale

As done previously in Chapter 5, the timescale of the development process was

synchronised in order to analyse the results. To do this, the development of the pendulum

control system was divided into different phases. In this study, the following key

development phases were identified:

• Familiarising with the development environment (FEMENV).

7 8

• Using TTPLUS in the simulation process for a two-node system (2N_TTPLUS).

• Using TTPLUS in the simulation process for a three-node system (3N_TTPLUS).

• Communicating messages (transmitting and receiving) over CAN for two nodes using

the simulator (2N_TXRX_SIM).

• Communicating messages (transmitting and receiving) over CAN for three nodes

using the simulator (3N_TXRX_SIM).

• Porting the necessary tasks over to simulate the control of the pendulum for two nodes

(2 N P E N D S I M) .

• Porting the necessary tasks over to simulate the control of the pendulum for three

nodes (3N_PEND_SIM).

• Measuring the control delay for a two-node system using the simulator

(2N_ME A_S IM).

• Measuring the control delay for a three-node system using the simulator

(3N_ME A_S IM).

• Implementing and testing the two-node pendulum control on hardware

(2 N P E N D H W).

• Implementing and testing the three-node pendulum control on hardware

(3N_PEND_H W).

• Measuring the control delay for a two-node system using the hardware

(2N_MEA_HW).

• Measuring the control delay for a three-node system using the hardware

(3N_MEA_HW).

Table 6-2 illustrates the synchronised results.

7 9

Table 6-2 Synchronised results for Case Study 6 after grouping similar phases together and its
respective time taken in minutes. Table adapted from Ayavoo et al. (2006), Table 3.

Phases Group A Group B Group C
FEMENV 0 195 75
2N JT PL U S 0 0 90

3N JT PL U S 0 0 15

2 2N_TXRX_SIM 0 765 90
if)
£

3N_TXRX_SIM 0 195 60
if) 2N_PEND_SIM 0 120 120

3N_PEND_SIM 0 45 30
2N_M EA_SIM 0 150 60

3N_MEA_SIM 0 90 60

CL
2N_PEND_HW 540 270 240

3N_PEND_HW 255 0 0
£
X

2N_MEA_HW 255 120 60
3N_MEA_HW 300 0 0

6.5 Analysis of the results for Case Study 6

Once the results have been synchronised, it is possible to analyse the results for the

following.

• Total development effort.

This is the total effort spent from the beginning till the end of the project. For Group

A, this only involves the hardware implementation effort. For Groups B and C, this

includes the simulation and implementation effort.

• Effort taken to decide on the “best” system.

This measure of the effort indicates the time taken by the groups to decide which of

the two distributed control implementation (two-node or three-node) is better. This

measure is especially useful in sectors where there are time-to-market pressures. In

this situation, design decisions may have to be made before the product is built. For

the group that used the “simulation first” approach, this decision can be made after

simulating the various systems. For the group that did not use the simulator, they had

no choice but to implement both the options and decide on the “best” one.

• Hardware implementation effort.

This is the effort spent by each group for software implementation on the

microcontroller. For Group A, this is similar to the total effort involved. For Groups

B and C, the effort involved at the simulation phase is ignored.

80

• Comparison of total simulation and total implementation effort.

This is the comparison of the total effort spent at the simulation stage and the total

effort involved in the implementation for Groups B and C only.

• Simulation development effort.

This is the measure of the effort that Groups B and C spent at the various software

simulation phases. The effort for the hardware implementation is ignored.

• Comparison of the simulation effort for a two-node and three-node systems.

This is the measure of the individual simulation effort involved for a two-node

pendulum controller and a three-node pendulum controller.

Please note that the analysis excludes the effort involved in the FEMENV stage.

All the participating groups managed to successfully implement a stable pendulum

controller of their choice. Please note that Group A had to implement both the options to

decide which system was “better”. Since the other groups (B and C) used a “simulation

first” approach, they could decide on which of the two options was “better” based on the

simulation results, before implementing their desired solution. Group B and Group C

decided to implement the two-node system as their final solution.

6.5.1 Overview of the results

Table 6-3 illustrates the overview of the results for Case Study 6. The comparison of the

effort for the various approaches (hardware, TrueTime and TT-Plus) is presented in Table

6-4. The result indicates that for all cases, the TT-Plus group (C) had the most reduction

of effort.

Table 6-3 The results for effort (in minutes) for Case Study 6.

Effort of HW group Effort of TrueTime Effort of TT-Plus
(A) group (B) group (C)

Effort to decide on the “best”
system (excl. FEMENV) 1350 1365 525

Hardware implementation
effort 1350 390 300

Total development effort
(excl. FEMENV) 1350 1755 825

8 1

Table 6-4 Percentage of the effort involved for the different development approaches for Case
Study 6.

TrueTime
compared to HW

TT-Plus compared
to HW

TT-Plus compared
to TrueTime

Effort taken to decide on the
“best” system (excl. FEMENV) 1% more 61% less 62% less

Hardware implementation
effort 71% less 78% less 23 % less

Total development effort (excl.
FEMENV) 30% more 39% less 53% less

The individual results for each group are reported in detail in the following sections.

6.5.2 Total development effort

Based on the results obtained in Table 6-3, it is observed that for Case Study 6, the group

that took the shortest time to complete the project was Group C. This was followed by

Group A and finally Group B. The overall effort for Group B was 30% more than Group

A while Group C took 39% less effort than Group A. These contradictory results will be

discussed again in Section 6.6.

6.5.3 Effort taken to decide on the “best” system

This measure of effort represents the time taken by the groups to decide which of the two

distributed control implementation (two-node or three-node) is “better”.

From the results obtained in Case Study 6, it is observed that Group B took 1% more

effort than Group A, while Group C took 61% less effort than Group A. These

contradictory results will be discussed in Section 6.6.

6.5.4 Hardware implementation effort

Comparing the results of the effort spent at the hardware implementation stage for all the

three groups in Case Study 6, the result shows that Group B and Group C took 71% and

78% less effort respectively when compared to Group A.

8 2

By comparing the two phases involved in the hardware implementation individually, it can

be seen that Group B and C took much less effort compared to Group A (Figure 6-3) for

both the phases.

PEND_HW

|■ G rou p A (HW) ■ Group B (TrueTime) □ Group C (TT-Plus) |

Figure 6-3 Hardware implementation effort for different stages (Case Study 6). Figure adapted
from Ayavoo et al. (2006), Fig. 3.

6.5.5 Comparison of total simulation and total implementation effort

It can be seen from Figure 6-4 that the total implementation effort for Groups B and C was

very similar. However, the total simulation effort for Group B was much higher than for

Group C. This indicates that Group C had a more significant reduction of effort in

developing the simulation models compared to Group B.

8 3

Group B (TrueTime) Group C (TT-Plus)

| B Simulation w lm plem entation j

Figure 6-4 Comparison of the total simulation effort and total implementation effort for the groups
using a simulator in Case Study 6.

6.5.6 Simulation development effort

This section considers the time taken to develop the simulation models for Groups B and

C. The results in Table 6-2 show that Group C took 62% less effort when compared to

Group B. The results also indicate that the time taken by Group C to familiarise

themselves with the TrueTime simulation environment was about 62% less than Group B.

By comparing the three phases involved in the simulation development individually

(Figure 6-5), the results indicate that the bulk of the effort reduction came from

configuring the necessary communication messages (TXRX_SIM).

8 4

TXRX_SIM PEND_SIM MEA_SIM

| ■ Group B (Tm eTim e) ■ Group C (TT-Plus)]

Figure 6-5 The simulation effort involved at different stages (Case Study 6). Figure adapted from
Ayavoo e t al. (2006), Fig. 4.

6.5.7 Comparison of the simulation effort for two-node and three-node systems

By comparing the total simulation effort involved for a two-node and three-node system

individually for Case Study 6, the result indicates that the effort spent by Group C was less

than Group B, by 65% and 50% respectively.

By comparing the two-node system at the different simulation phases, the result again

indicates that most of the effort reduction for Group C came from the TXRX_SIM phase

(Figure 6-6). The similar trend was also observed for the three-node system (Figure 6-7).

The results also indicate that the total effort to simulate a two-node system was more when

compared to the three-node system. This was observed to be the case for both the

simulation approaches.

8 5

2N_TXRX_SIM 2N_PEND_SIM 2N_MEA_SIM

[□G roup B (TrueTime) ■ Group C (TT-Plus) |

Figure 6-6 The simulation effort involved at different phases for a two-node system (Case Study 6).
Figure adapted from Ayavoo et al. (2006), Fig. 5.

250

3N_PEND_SIM3N_TXRX_SIM

■ Group B (TrueTime) ■ Group C (TT-Plus)

Figure 6-7 The simulation effort involved at different phases for a three-node system (Case Study
6). Figure adapted from Ayavoo e t al. (2006), Fig. 6.

6.6 Discussion

Based on the analyses of the results obtained in Section 6.5, it is difficult to state

definitively that simulation reduced the effort involved. This is because some cases show

8 6

a reduction of effort while some cases do not. To understand the meaning of these results

more thoroughly, the results in Case Study 6 are considered in more detail in this section.

In Sections 6.5.2 and 6.5.3, the results for Case Study 6 indicate that that only the group

using TT-Plus demonstrated a significant reduction in the overall effort involved. This

was also the case for the effort involved to decide on the “best” system. However, Section

6.5.4 indicates that both simulation approaches (TrueTime and TT-Plus) contributed to a

reduction in effort in the implementation phase. Overall, the results suggest that the

difference mainly appear to be in the simulation phase because the trends o f the

development effort for the simulation models seem to be different for Group B and Group

C.

By analysing the total effort involved in the simulation phase more closely, Group C had

taken less effort compared to Group B. Specifically, the reduction in effort came from

simulating the message transmission between the individual nodes (TXRX_SIM). This

reduction of effort can be attributed to the use of TT-Plus as opposed to TrueTime for the

“simulation first” development approach. In addition, the results also show that the group

that used TT-Plus required less effort to gain familiarity with the simulation environment

compared to the TrueTime Group.

The results also suggest that developing the simulation models for a two-node pendulum

controller took more effort than a three-node system. This is surprising since a three-node

system is more complex. This unexpected result may be attributed to the “knowledge

gathering” effect that was discussed in Section 4.4.2. However, this did not affect the

overall outcome of the results because all the groups “suffered” from the similar effects.

Figure 6-8 and Figure 6-9 illustrates the summary of the results for the implementation

and simulation phases respectively.

8 7

Overall Implementation D ecision for “b est” PENDJHW MEA_HW
system

□ Group A (HW) ■ Group B (TrueTime) □ Group C (TT-Plus)

Figure 6-8 Summary of the implementation effort involved in Case Study 6.

A short summary of the results for each measure at the implementation stage is given

below:

• Overall development effort.

The group that used the TT-Plus simulator showed a reduction of the overall effort

compared to the TrueTime group and the “hardware only” group.

• Implementation effort.

The “simulation first” approach seems to benefit the implementation phase.

• Decision for the “best” system.

The efforts for the TrueTime simulator group (Group B) were very similar to the effort

of the “implementation only” approach (Group A). However, the TT-Plus simulation

group demonstrated a reduction of effort in this area.

• PEND HW effort.

The simulation group showed a reduction of effort compared to the “hardware only”

approach.

• MEA HW effort.

The simulation group showed a reduction of effort compared to the “hardware-only”

approach in this category.

Simulation FEMENV TXRX_SIM PEND_SIM MEA_SIM

| B Group B (Tm eTim e) B Group C (TT-Plus) |

Figure 6-9 Summary of the simulation effort involved in Case Study 6.

A short summary of the results for each measure at the simulation stage is given below:

• Simulation effort.

The results indicate that the TT-Plus group showed a reduction in the effort to develop

the simulation models compared to the TrueTime group.

• FEMENV effort.

The group using TT-Plus took less effort to familiarise themselves with the simulation

environment compared to the TrueTime group.

• TXRX SIM effort.

The group using TT-Plus took less effort to develop the simulation models in this

category.

• PEND_SIM effort.

The results indicate that there were no significant differences in the effort for the

simulation groups in this category.

• MEA SIM effort.

The result shows that the TT-Plus groups took slightly less effort compared to the

TrueTime group.

8 9

6.7 Conclusions

In this chapter, a SGM-based empirical investigation was conducted to determine if the

modifications made to the TrueTime simulator could further reduce the effort involved.

This resulted in the development of a modified version o f the TrueTime simulator called

TT-Plus.

Overall, the results obtained in this study are in agreement with the results in Chapter 5

which suggest that a “simulation first” approach could lead to a reduction of effort in the

implementation phase. However, the conventional TrueTime simulation approach may

not necessarily reduce the overall effort. In the current study, this was attributed to the

complexity of developing the correct models to simulate message transmissions in multi

processor systems. The results suggest that the use o f TT-Plus in conjunction with the

existing simulator can further reduce the effort involved in the development of simulation

models for X-by-Wire systems. Hence, the overall effort was found to be reduced only if

the effort required to carry out the simulation is limited.

The effort involved in learning the simulation environment and developing the simulation

models depends on the characteristics and features of the simulator. With respect to this,

the results suggest that a simulator that employs a design-led code-generation approach

could potentially make it easier to create the relevant simulation models. Crucially, the

effort involved can be further reduced by developing the simulation models at a high level

of abstraction. The results suggest that TrueTime can provide the foundation to support

this approach.

More generally, the SGM was effectively used to obtain evidence to suggest that the

“simulation first” approach can be improved such that it can contribute to further reduction

in the overall effort involved. However, with respect to the software development process,

reducing the effort is necessary, but not sufficient to determine the overall efficacy of the

approach. Indeed, as discussed in Chapter 4, the use of a simulator is also expected to

improve the quality and reliability of the system. In light of this, the next chapter will

explore the contributions that a “simulation first” approach can make towards software

quality.

90

7. Can simulation improve software quality?
In Chapter 5 and Chapter 6, the SGM was used to investigate the effort involved in the
development o f embedded control systems. Although development effort is critical to any
software development process, it is also often desirable that the software produced is o f
the highest quality. In this chapter, the “simulation f ir s t” approach is evaluated to
investigate i f it can improve the software quality.23

7.1 Introduction

On August 6th 1997, Korean Air flight 801 crashed into Nimitz Hill while attempting to

land at Guam International Airport and 228 people lost their lives (NTSB, 2000). The

results of subsequent research suggest that the accident could have been prevented had it

not been for problems with the software in the “minimum safe altitude warning” (MSAW)

system: specifically, it appears that software configuration changes were incorporated in

the MSAW, and that the modified system was not re-tested before it was used (Greenwell,

2003). This, and other fatal software-related accidents such as the Panama radiotherapy

accident (IAEA, 2001), the Patriot missile defence problem (GAO, 1992) and the Therac-

25 incident (Leveson and Turner, 1993) highlight the importance o f developing high-

quality software, especially when it is to be employed in safety-related applications.

In this case, the development of embedded automotive control is often linked with safety-

critical applications (von Hanxleden et al., 1998; Zheng et al., 2004; Kandasamy et al.,

2005). As a consequence, it is important that the use of a “simulation first” approach in

the development of such applications produce high-quality embedded software systems.

Indeed, some researchers have suggested that simulation can achieve this (see El-khoury

and Tomgren, 2001; Cervin et al., 2003; Henzinger et al., 2003), although very little

empirical evidence is available to support such claims.

In light of these discussions, the focus of this chapter is to investigate the contributions

that a “simulation first” approach can make towards the software quality of the embedded

system. Some background work on software quality is presented in Section 7.2. The

evaluation of software quality (Case Study 7) is illustrated in Section 7.3.

23 Parts o f this chapter is currently being prepared for publication in Ayavoo et al. (in preparation).

9 1

7.2 Background on software quality

According to Jorgensen (1999), software quality is commonly defined by the following

three statements:

• Software quality is determined by a set o f quality indicators (such as ISO 8402-1986

and IEEE 610.12-1990).

• Software quality is determined by user satisfaction.

• Software quality is determined by errors o f unexpected behaviour of the software.

Much research has been carried out over recent years on software quality measurements

(see Schneidewind, 1992; Coleman et al., 1994; Henry et al., 1994; Bevan, 1999; Briand

et al., 2000; Amasaki et al., 2005; Thwin and Quah, 2005). However, it remains the case

that a universally accepted definition of software quality has proved elusive. Jorgensen

(1999) suggests that this is mainly due to the complex nature of what is perceived as being

“software quality” .

For example, Martin and Shafer (1996), mapped out a general framework to assess

software quality (see Figure 7-1). Later, Bevan (1999), illustrated a slightly different

framework to express software quality from a user’s perspective (see Figure 7-2).

Similarly, Kan et al. (1994) described software quality from various perspectives such as

the customer satisfaction, the product quality and the process of the product development.

M aintainabilty

15%15%, 15% 15%20% 20%

Evolvabllity

10% 2 5 %20%2 5 %20%

Portability

15% 2 5 %20%.4 0 %

Maintainability

.5 0 %5 0 %

Consistency

Modularity

Modularity

Modularity

Documentation

Documentation

Documentation

Independence

Documentation

Anomaly ControlDesign Simplicity

Anomaly ControlDesign Simplicity

Self-Descriptiveness

Self-Descriptive ness

Self-Descriptiveness

Figure 7-1 An example of a framework for software quality. Redrawn from data in Martin and
Shafer (1996), Figure 3.

9 2

PortabllK yFunctionality Reliablity MaintainabilityUsability Efficiency

Software Quality

Adaptability
Installabiity

Conformance
Replaceability

Accuracy
Suitability

Interoperability
Compliance

Secunty

Analysability
Changeability

Stability
T estab ility

Maturity
Fault Tolerance
Recoverability

Understandability
Leanability
Operability

Time Behaviour
Resource
Utilisation

Figure 7-2 The ISO/IEC 9126 software quality characteristics from a user’s perspective. Redrawn
from data in Bevan (1999), Fig. 1.

Besides this, quality measurements can also be influenced by the software technology in

use. For example, in Basili et a l (1996), the authors described some traditional metrics

(such as McCabe’s cyclomatic complexity measure) as being inappropriate for assessing

the quality of 0 - 0 software development. Instead, they attempted to validate metrics

specific to the 0 - 0 technology such as coupling, member functions and number of

children (these metrics were initially proposed by Chidamber and Kemerer (1994)).

As a consequence, given a piece of software, it is very difficult to allocate an overall

quality value. However, it is generally considered to be possible to make specific

comparative measurements from (say) two pieces of software and thereby determine

which is of the highest quality (Jorgensen, 1999). This approach is described in more

detail in Section 7.4.

7.3 Case Study 7: Evaluation of software quality

Case Study 7 was carried out to evaluate the contributions of a “simulation first” approach

to software quality. This required the development of a suitable embedded application to

carry out the comparisons between a “simulation first” approach with a “hardware only”

technique. Instead of carrying out a new empirical investigation, it was decided that the

data from Case Study 6 (described in Chapter 6) was to be used for the following reasons:

• Case Study 6 is suitable as it involved the development of an X-by-Wire system where

reliability is essential (Edwards et al., 2004; Bautista et al., 2005).

• Case Study 6 had compared the development of an inverted pendulum controller using

three different development methodologies (“hardware only”, TrueTime and TT-Plus);

two of them being a “simulation first” techniques and one being a “hardware-only”

9 3

approach. This makes the data from Case Study 6 suitable to compare the impact that

a “simulation first” approach may have on the development of high-quality software

for reliable X-by-Wire systems.

• By employing the SGM, a repository o f all the data collected from the previous study

was readily available. This allowed for the reanalysis of the results obtained from the

perspective of software quality.

• It was cost effective to use the data from Case Study 6.

Hence, an inverted pendulum was used as the testbed, and the student groups were

required to decide if a two-node or three-node pendulum controller would be “better”

(please refer to Section 3.3 for details on the testbed and Section 6.3 for details of the case

study).

7.4 The measurement of quality indicators

Having decided on a suitable case study in the previous section, the next step was to

extract the measurements that indicate the quality of software. To do this, the measure of

quality must first be identified.

Ideally, it would be preferable to measure the quality of the software implementation of

each group by looking at issues such as the error density (errors per 1000 lines of code),

field stability (problems per user months) and percentage of customer satisfaction (see

Endres and Rombach, 2003). However, evaluating these quality factors are not always

feasible, primarily because they rely on the product to be used by customers over a period

of time. As argued in Chapter 4, this is not always possible due to - for example - the

rapid growth of the technology and the difficulty of employing suitable test subjects.

Moreover, checking for failures in this study might not be a suitable metric to measure

quality since all groups had successfully completed the task to control the pendulum (see

Chapter 6).

One way to measure quality in the present study was to compare the results of the control

delay obtained from the software simulation and the hardware implementation. Besides

this, since all groups were initially given the same sample code to start from, then in an

ideal case, all groups that completed the study should produce the same source code.

9 4

However, given that the groups used different development approaches, it was expected

that variations in the source code would occur as a result o f this.

Therefore, the approach here was to use indirect measurements to indicate the quality of

the overall system. In the current study, four code-based metrics24 were chosen as a

measure of the quality indicators for the implemented system:

• Software size.

• Software complexity.

• Software modularity.

• Software stability.

Please note that in this study, these quality indicators were not used to analyse the

software quality for a three-node system. This is because the simulation groups decided to

implement the two-node pendulum controller as their final solution.

7.4.1 Software size

“Software size” can be used to predict the likely reliability of a particular system. Put

simply, the more software there is, the greater the risk of errors (Rosenberg et al., 1998),

with the consequence that - given two systems with equivalent behaviour created using

the same programming language - it could be argued that the system implemented using

less code is likely to have code of higher quality.

The number of non-commented lines o f source code (LOC) was used to measure the size

of the software implementation. This measurement had previously been used in other

studies (see Coleman et al., 1994; Stark et al., 1994). In the present analysis, only the

lines that contributed to ‘C’ statements were counted; blank lines and comments were

ignored.

7.4.2 Software complexity

The complexity of the software can be used to determine the ease of maintainability for a

particular piece of source code (Martin and Shafer, 1996). As the complexity of the

24 P le a se n o te , th a t th e s tu d e n t su b je c ts w e re n o t in fo rm e d o f th e se m e tr ic s as b e in g th e m e th o d o f
e v a lu a tin g so f tw a re q u a lity , s in c e th is c o u ld h a v e b ia sed th e o u tco m e o f th e re su lts .

9 5

software increases, the ease of maintainability decreases (McCabe, 1976). Hence, given

that two pieces o f software have the same behaviour, then it could be argued that the

source code with lower level of complexity is likely to be easier to maintain.

To measure the complexity of the software implementation, McCabe’s Cyclomatic

Complexity was used (McCabe, 1976; Munson and Khoshgoftaar, 1992), where v(G) is

the cyclomatic complexity and n is the number o f conditions.

v(G) = 71 + 1

This translated to calculating the number of conditional statements in each task and adding

1 to it. The complexity of all the tasks were then added together to represent the overall

source code complexity. Please note that in this case, the complexity of the system

scheduler was ignored, as all groups used the same scheduler without performing any

modifications to it.

7.4.3 Software modularity

The modularity of the software can be used to determine the portability and

maintainability of the software solution (Martin and Shafer, 1996). One way to determine

the modularity of software is to measure the coupling level. As the coupling level

decreases, the modularity of the system tends to improve (Rosenberg and Hyatt, 1997).

To measure the software modularity, a scoring system was used to quantitatively assess

the coupling between the different modules. For each task that was observed to be sharing

the same function or variable with another module, a mark o f +1 was given to indicate the

level of coupling in the system. For example, Listing 7-1 illustrates an example source

code in ‘C \ The example here shows that there is an external variable used locally within

this task (Var_Al). In addition, Task_K also calls an external function from another file

(Function_Al). Hence in this example, the coupling level of Task_K is two.

9 6

#include "File_Al.h
extern int Var Al;

// Includes an external file
// <--Uses an external variable

void Task K () // Task K

int x = 5;
if (Var Al x)

// Local variable
// Condition

{
Function_Al(); // <--Calls an external function
}

}

Listing 7-1 An example code illustrating how coupling in ‘C’ source code was calculated.

7.4.4 Software stability

The stability of the software development process may provide an indication of the

reliability of the system. According to Schneidewind, 2004, p. 14, “A high rate o f

software change can be detrimental to software reliability”. Indeed, from a software

maintenance point of view, the reliability tends to be at a maximum when the maintenance

of the code stabilises (Schneidewind, 1999). It has also been previously shown that an

increase in small source code changes made to a module is likely to introduce errors into

the system (Purushothaman and Perry, 2005). In the present study, it could be argued that

high number of changes made to the source code may indicate the lack of clarity from the

developer’s point of view in implementing the system. As a consequence, this could

affect the stability of the software development process.

To measure stability, the number of changes made to a particular segment in the source

code was used. Specifically, the stability of the software was analysed in terms of the

number of adaptive, corrective and perfective changes made throughout the software

implementation stage. Such technique was adapted from a previous study that analysed

small source code changes (see Purushothaman and Perry, 2005). Adaptive changes were

attributed to changes that involve adding new functionality to the system. Corrective

changes were generally made to fix defects in the software. All other changes that

contributed to the enhancement of performance were categorised as perfective changes.

7.5 Analysis of the results from Case Study 7

After identifying and extracting the relevant measures for software quality, the results can

now be analysed. The results and analyses for Case Study 7 are presented in this section.

9 7

7.5.1 Comparison of the control delay for simulation and implementation

To compare the quality of the results for the simulated systems with the “actual” hardware

testbed, the measurement o f control delay (see Sandfridson, 2000) was used. The results

in Table 7-1 indicate that the simulated results of the groups using TrueTime closely

matched the implementation results. However, it can also be observed that the simulated

result of the three-node pendulum controller for Group B was incorrect (the control delay

was too short).

Table 7-1 The control delay (in ms) recorded by all the groups in C ase Study 7.

Case Study 7
Group A

SIM HW
Group B

SIM HW
Group C

SIM HW
Two-node min X 15.926 16.307 15.946 16.307 16.315
Two-node max X 16.726 17.086 16.714 17.086 17.109
Max - Min X 0.800 0.779 0.768 0.779 0.794

Three-node min X 29.613 16.467 X 25.018 X

Three-node max X 29.615 17.246 X 25.018 X

Max - Min X 0.002 0.779 X 0.000 X

This may suggest that the group that used the basic TrueTime simulator developed

simulation models that were susceptible to errors. On the other hand, the group using TT-

Plus have a higher probability of producing more robust simulation models.

7.5.2 Software size

Based on the non-commented LOC produced for the groups that implemented a two-node

pendulum control (see Figure 7-3), the result shows that the group that produced the

largest code size was Group A, followed by Group B and finally Group C. This may

suggest that a “simulation first” approach can support in the production of software which

is smaller in size.

98

Group A (HW) Group B (TrueTime) Group C (TT-Plus)

Figure 7-3 R esults of the implemented lines of co d e for each group in C ase Study 7.

Please note that the software size shown in the graph is not representative of the real

software size, but rather the sections that the students had worked on. However, the

students were required to understand the behaviour of the entire software in order to make

the necessary modifications to selected sections of the source code.

7.5.3 Software complexity

Based on McCabe’s Cyclomatic Complexity, the result in Figure 7-4 shows that there was

very little difference between all the groups. This may suggest that simulation did not

have a significant impact in helping the developers to produce source code of lower

complexity.

9 9

20
18

17 17

: ; >

mmpH
.

■

■

■ mm
G roup A (HW) G ro u p B (T rueT im e) G ro u p C (TT-Plus)

Figure 7-4 Results of McCabe’s Cyclomatic Complexity for each group in Case Study 7.

7.5.4 Software modularity

After analysing the modularity of the source code produced, the results suggest that the

group that produced the most modular code was Group C, followed by Group B and

finally Group A (see Figure 7-3). This result may suggest that simulation had assisted the

developer to produce modular source code.

m m

'm m

iiil
G roup A (HW) G roup B (TrueTim e) G roup C (TT-Plus)

Figure 7-5 The level of source code coupling for each group in Case Study 7.

1 0 0

7.5.5 Software stability

The result of Case Study 7 (see Figure 7-6) shows that the number of corrective changes

made for Group A was much more when compared to the adaptive changes. Groups B

and C however made fewer corrective changes than adaptive changes. With respect to the

total changes, Group A made the most changes followed by Group B and Group C. These

results suggest that the “simulation first” approach had led to a more stable software

implementation process.

160

140

120

O 100 O
_i
ct 80 « o> cnj
O 60

40

20

0

Figure 7-6. The number of changes made during the implementation stages for each group in
Case Study 7.

7.6 Discussion

The results in Section 7.5.1 imply that, although the simulation results of most groups

matched the results of the hardware implementation, there was a higher probability that

the group using TT-Plus would produce reliable systems.

Summaries of the results obtained in Section 7.5.2 to Section 7.5.5 are presented in Figure

7-7. Here, a quality index was used to represent the individual measurement divided by

the maximum measurement recorded by all the groups. As the index value decreases, the

quality of the software improves.

G r o u p B (T fu e T im e)

[■ A d d a p t iv e ■ C o r r e c t iv e □ P e rf e c t iv e [

1 0 1

Although the variations between the groups was small, the trend o f these results suggest

that the groups that used a “simulation first” approach produced software of higher quality

compared to the “hardware implementation only” groups. The results also suggest that the

use of simulation in conjunction with code-generation techniques tends to result in higher

software quality.

1 . 2 -r---

0.8

g. 0.6

3o

0.4

0.2

0
Group A (HW) Group B (TrueTime) Group C (TT-Plus)

| — ♦— LOC —■— M cCabes Complexity - A - Coupling - x - Total C hanges|

Figure 7-7 Trend of the overall results of software quality for a two-node system in Case Study 7.

By plotting the results of the total number of changes made (software stability) to the

effort involved in the implementation stage for each group, the results in Figure 7-8

suggest that these two measurements are closely related. This can be seen from the similar

trend for both measurements.

102

300 T T 1600

-- 1400
250 -

- - 1200

200 -

- 1000 ~

« 150 - - 800

-- 600
100 -

400

50 -
- - 200

Group A (HW) Group B (TrueTime) Group C (TT-Plus)

■ Total changes —A— Effort

Figure 7-8 Trend of changes made and implementation effort for all the groups in Case Study 7.

7.7 Conclusions

The aim of the work presented in this chapter was to explore the impact that a “simulation

first” approach may have on the quality of the software for reliable X-by-Wire systems.

Overall the result suggest that such an approach may lead to the creation of high-quality

software (when compared to software produced using a “hardware only” approach). The

results from Case Study 7 also imply that a “simulation first” approach that incorporates

code-generation techniques has the potential to assist in the implementation of high-

quality software. Similarly, there is evidence that a “simulation first” approach that

incorporates code-generation techniques is likely to produce more reliable simulation

models. Finally, there is some evidence to suggest that the stability o f the software

development is closely related to the effort involved.

Up till now, the SGM has been used (in Chapters 5, 6 and 7) primarily to evaluate the

efficacy of a “simulation first” approach in the development of X-by-Wire systems. For

the SGM to be useful, it must be capable of being applied to a wider range of studies. In

order to explore whether the SGM can be applied more widely, Chapter 8 describes a case

study that employs the SGM in a non-simulation investigation.

103

8. Can the SGM be applied more widely?
In previous chapters, the SGM has been employed to explore the efficacy o f a “ simulation
fir s t” approach in the development o f embedded control systems. In this chapter, an
investigation is carried out to explore the extent that the SGM can be applied to other
studies.25

8.1 Introduction

The aim of the work described in previous chapters was to explore a “simulation first”

approach to software development for embedded systems. To do this the SGM was

employed. However, the SGM has not yet been applied to a broader range of research

studies that explores other development methodologies for embedded systems. This issue

is of particular interest since the SGM is intended to be a “general” technique that can be

applied to a wide range o f studies. To substantiate this claim, it is necessary to

demonstrate that the SGM can be employed in a non-simulation study.

To this end, research in the ESL has been exploring the use o f automated pattern-based

code-generation techniques to support the implementation of reliable embedded systems

(see Mwelwa et al., 2003; Mwelwa et al., 2004a; Mwelwa et a l , 2004b; Mwelwa et al.,

2005; Mwelwa et al., 2006). Design patterns can be viewed as a collection of reusable

software (and hardware) solutions for implementing a range of embedded systems. A

review on some of the previous work on design patterns is provided in Appendix D. To

assist in the implementation of the patterns for embedded systems, a code-generation

approach was used. To this end, a tool called PTTES Builder (see Mwelwa et al., 2005;

Mwelwa et al., 2006) was developed in the ESL to assist the developer of embedded

systems in choosing the appropriate patterns and automatically generating the necessary

source code (called Pattern Implementation Examples, or PIEs) for the system

implementation process.

Although the research has demonstrated many technical virtuosities of the approach, no

attempt has so far been made to evaluate the contributions of the tool when used in

practice. As such, Case Study 8 investigates the extent to which SGM can be used to

25 P a rts o f th is c h a p te r a lso a p p e a rs in P o n t e t al. (su b m itte d).

10 4

assess the impact of a pattern-based code-generation approach on the development of

embedded systems.

8.2 Case Study 8: Evaluation of the PTTES Builder

As stated briefly in Section 8.1, the aim of the work described in this chapter was to

consider the extent to which the SGM can be employed to a wider range of studies. To do

this, the automated pattern-based code-generation technique to implement embedded

systems was used as the case study. Specifically, the SGM was used to investigate the

contributions that PTTES Builder may have in the development of embedded systems.

Figure 8-1 illustrates the user interface of the PTTES Builder.

, P il l S Bulldtf.vl. I laipki m Hgf
Project Workspace

PTTES cdectton

0 PTTES colectton
* 0 8051 fan*
* 0 Delays

0 Hardware Watchdog
« 0 Schediiers
* 0 Tmeouts

Patterns added to project

Project nodes (mfcrocontrders):

jsTDPROJ *1
0 Swtch interfaces
0 MX LED Display
0 LCD Character Panel

Setect a fie to view

T:\STDPROASTDPROA2_01_10i.c

Th is code wee g en es* ted by th e FT
F i le i 2 _ 0 J_ J0 i.c
P ro je c t: STDPROJ
Author: I t 94
t e a t updated: 2 3 /6 /2006 e t 1 1 :3 7

S S S S 2S E 2S B H I f f l 1
[f CD PC Ur* mptementation — n -

Select an appropriate wplementation from the 1st:

Output orty -
Ms per second (Baud rate):

[2400 bps

r ZD :
[CD Configure schedier tasks z z

I Select a scheduler task from the 1st and then enter appropiate initial and
I period* task delays -

...
| 0k II t e a l 3 c l 2

--------- P u h lic v a r ia b le d e f in i t i o n s ----------------------

/ * Deed to i n d ic a te the number o f tim es th a t th e t i has o v e r flo w e d * /

otal numberof errors: 73
Message

expecting: auto’, char', const’, double,... 10
~~ Replaced token, ‘b f wfctv'unslgned’char |12

Skrwrf token: rnde

0 Selected patterns
* 0 0051 fandy

0 Osdator hardware
0 Reset hardware
0 Port Header

». 0 Schedulers
0 HeartbeatLED
0 Keypad interface

i* 0 Serial peripherals
* 0 Analogue-to-dgtal Converters (ADCs)

KEYPAD _Lpdate *
,JtCARTBEAT_L£D_lpdate, Intid delay: 1 ms, Pehodc delay: 2 ms |
SEQUENTIAL _ADC_Update_Sample, Irtbal delay: 1 ms, Pertxfc delay: 2 m: |

*1
[Ti\STDPR03^TPP«0J^J)l_iac 1 £
T :\STDPROT\STDPRÔ 2_01 _10(.C
T:\STDPROtlSmPROT12 01 Ifll.f

Error _port, assigned to P0
(PI^4 has been reserved for SP1_S5
Pl^S has been reserved for SP1J40SI
PI^7 has been reserved for SPI.Ctf
Pl*6 has been reserved for SPI.MHO
t€AftTBEAT_LEDjxn, assigned to Pl*2
SP1_SEQADC_CS, assigned to Pl^O

Figure 8-1 Example of the user interface for the PTTES Builder.

The study involved the comparison of two different development approaches of a non

trivial embedded application, one using PTTES Builder and the other using a manual

approach (that is, only having access to the PTTES language in the book form). This

required the use of an appropriate testbed.

105

8.2.1 The testbed

The testbed used in this study was based on a similar HIL automotive cruise-control

system (CCS) testbed described in Chapter 3 and Chapter 5. In the current study, the CCS

testbed consists of a single 8051 Infineon C515C microcontroller. An 8-bit 8051

microcontroller was used in this case since the PTTES Builder supports embedded code

generation for that family of microcontrollers.

Please note that the tasks used in this case study was similar to that described in Table 3-1

(see Section 3.2.2). The exception being an additional task (Display Ref Speed) which

was used to update and display the desired car speed on the terminal emulator every

second.

8.2.2 Selection of subjects

The empirical experiment in Case Study 8 was conducted in two parts, Case Study 8-1 and

Case Study 8-II.

For Case Study 8-1, two groups were employed to develop the CCS. Each group consisted

of two postgraduate students who had previously taken a one-semester module in

embedded systems. In keeping with the SGM, the students were chosen such that their

marks for this module were very similar (in the range 63%-67%) to ensure that the two

groups were - as far as possible - well matched in background and ability.

Group A-I (“A” referring to the group and “I” referring to the experimental phase) was

given the PTTES book (Pont, 2001) as well as PTTES Builder. A documented tutorial

was also accompanied with the tool. The group was specifically asked to use PTTES

Builder to implement the CCS. Group B-I was directed to implement the same system,

but only with the help of the PTTES book.

The version of PTTES Builder used in these studies supported eight patterns while the

associated book (which is around 1000 pages long) describes 72 patterns. As a

consequence, it could be argued that the users of the book had the additional challenge of

identifying the most appropriate patterns to use.

106

In order to address this potential bias, Case Study 8-II was carried out. In Case Study 8-II,

four new groups of students were selected (average mark in the range of 70% - 80%).

Each group consisted of a single student that had previously undertaken two modules in

embedded systems. The students were again selected such that their ability and

experience in embedded systems was similar.

As with Case Study 8-1, Groups A-II and B-II were asked to use PTTES Builder and the

PTTES book to implement the CCS, while Groups C-II and D-II were asked to only use

the PTTES book. However, in this phase, the books handed out to all the groups were

marked to identify the eight patterns required (and that were supported by PTTES

Builder). Groups C-II and D-II were also given the relevant PIEs (example code) for the

patterns.

It was made clear to all the groups in Case Study 8-II that the CCS was to be implemented

using the following eight patterns:

• E x ten d ed 8051 pattern.

The pattern describes the features of an Extended 8051 processor such as additional

memory, on-chip ADC and the number of package pins.

• C o -o p e r a t iv e S c h e d u l e r pattern (p_Sch).

This pattern describes how a time-triggered co-operative scheduler can be used for an

application with the relevant source code.

• Po r t W r a p p e r pattern (p_Port).

This pattern describes the use of a port library to declare the necessary port pins that

are used for I/O.

• H e a r tb e a t LED pattern (p_LED).

The pattern illustrates how a Heartbeat LED can be implemented to indicate the status

of a system.

• H a rd w a re P u ls e Count pattern (pCounter).

The pattern discusses the use of an onboard hardware counter to count external pulses.

• P ID C o n t r o l l e r pattern (p _ P ID).

The pattern discusses how a PID algorithm can be implemented on the 8051 to

perform real-time control.

• S e q u e n tia l ADC pattern (p_ADC).

107

The pattern shows how an onboard ADC can be configured to be used on an 8051

microcontroller.

• PC Link (RS232) pattern (p_RS232).

This pattern discusses the communication between an 8051 microcontroller and a

desktop PC using the RS232 communication protocol.

8.2.3 Software Metrics

As described in Section 4.4.4, the Goal-Question-Metric (GQM) methodology (Basili and

Weiss, 1984) was used to identify the necessary measurements to be collected, as

illustrated in Table 8-1. Here, it is shown how the goal of the study led to some basic

questions that resulted in several metrics that could be measured from the study.

Table 8-1 The GQM approach used in C ase Study 8.

Goal To evaluate the effectiveness of PTTES Builder tool for embedded
software development.

Questions Can the tool reduce the effort?
• Can the tool reduce the overall

development effort?

• Can the tool reduce the effort
involved to implement the patterns?

• Can the tool reduce the effort
required to produce a functionally-
correct system?

Can the tool produce better code
quality?
• Can the tool contribute to a more

stable source code development
process?

• Can the tool help to produce a
functionally correct system?

• Does the tool produce source code
that is more maintainable and
portable?

Metrics • Development time
• Test case compliance ratio

• Source code changes
• Test case compliance ratio
• Software modularity

A description of each of these metrics is provided below:

• Development time: This is the measure of the amount of time taken for the software

developer to implement various code segments (see Section 5.2.3).

• Test case compliance ratio: This is the measure of the number of passed test cases to

the total number of test cases. Measurements of software reliability has previously

been carried out in this way by Bassin et al. (2002). In the present study, a total of 26

test cases were created based on the requirements specification (see Appendix G for

108

details of the testcases). The higher the compliance ratio, the closer the solution is to a

functionally-correct system.

® Software code changes: This is the measure o f the number o f changes made to a

particular segment in the source code. In the current study, the PIEs used have already

undergone rigorous testing and verification procedures. Modifying the PIE is

therefore likely to make the source code “less reliable”. Therefore, extensive source

code changes to an existing PIE could potentially introduce more bugs into the

software. It is concluded that - as the number o f changes made to the PIEs increases -

the system is more likely to contain errors.

• Software modularity: This is the measure of the coupling of the various modules in the

system with respect to files, functions and variables (as discussed in Section 7.4.3).

For each module observed to be sharing the same file, function or variable with

another module, a mark o f +1 is given to indicate the level o f coupling in the system.

As the coupling level decreases, the modularity o f the system tends to improve

(Rosenberg and Hyatt, 1997). Software modularity in turn can be used to indicate the

maintainability and portability of the system (Martin and Shafer, 1996).

8.2.4 Observations and measurements

The following observation and measurement techniques were used in this study:

• Progress observation.

• Email.

• Questionnaire and interview.

Please refer to Section 4.4.5 for descriptions of these techniques.

8.3 Analysis of the results for Case Study 8

After the experiments, the results obtained from Case Study 8 (source code, completed

progress forms and recorded interviews) were analysed.

8.3.1 Overview of the results

All groups developed the CCS system using the relevant PIEs, as illustrated in Figure 8-2.

109

Cruise-Control System

Compute Car
S p eed

Compute
Throttle

LED Flash
Update

G et Ref
S p eed

Display Ref
S p eed

Tasks

PID
Controller

Pattern

Sequential
ADC Pattern

Hardware
Pulse Count

Pattern

PC Link
(R S232)
Pattern

PortWi'apper
Pattern

Heartbeat
LED Pattern

Co-operative Scheduler Pattern

PIEs

Figure 8-2 Developing the CCS using the associated PIEs for Case Study 8. Figure adapted from
Pont etal. (submitted), Figure 15.

An initial observation suggests that the development characteristic of the groups using

PTTES Builder and the groups using the PTTES book was different (see Figure 8-3).

Based on the progress form, it was observed that the groups using PTTES Builder

generally began developing their source code by using appropriate PTTES patterns as a

starting point, before writing the relevant tasks26 for the CCS. By contrast, the groups that

did not use the tool began developing their source code in parts. It was also observed that

the groups that used the tool initially spent approximately 60 minutes using it; 15 minutes

of which was spent going through the PTTES Builder tutorial. For these groups,

approximately 75% of the system’s final source files were generated by the tool.

26 T h e task s h ad to be im p lem en ted m an u a lly as th ey w ere ap p lica tio n sp ec ific an d th e re fo re n o t d irec tly
su p p o rted b y th e P T T E S lan g u ag e . In th is s tudy , the g roups w ere p ro v id ed w ith d o cu m en ta tio n o f the
necessa ry fo rm u lae and v a ria b le s re q u ire d to im p lem en t th ese tasks.

1 1 0

Using the PTTES Builder

_______ A_______
Research from PTTES book

________ A________

With Tool

No Tool

v
R esearch from PTTES book

Initial source code development progress

PATTERN Cl) PATTERN (2)
■ ■ ■

PATTERN Cn) TASK (1) TASK (2)
■ ■ ■

TASK (n)

PATTERN (1) TASK (1) PATTERN (2) TASK (2)
■ ■ ■

PATTERN (h) TASK (n)

Figure 8-3 The CCS development phases for the teams in Case Study 8. Figure adapted from
Pont et al. (submitted), Figure 16.

8.3.2 Synchronising the results

In order to determine whether PTTES Builder had been effective in the embedded

software development process, synchronisation of the development phases was carried out

(as described in Section 4.4.6). The analysis was conducted by dividing the development

of the CCS into several development phases, as described:

Implementing the scheduler pattern (p_Sch).

Implementing the port library pattern (p_Port).

Implementing the blinking LED pattern (p_LED).

Implementing the hardware pulse counter pattern (p_Counter).

Implementing the PID control algorithm pattern (p_PID).

Implementing the PC link RS232 pattern (p_RS232).

Implementing the task to compute the car speed (t_CSpd).

Implementing the task to obtain the new throttle position (t_CThr).

Implementing the task to obtain the set (or reference) speed (t_GRef).

Implementing the task to display the set speed on a desktop PC (t_DSpd).

The source files submitted by each team were compared and analysed with the subsequent

submissions using Araxis Merge for Windows. Through the analysis, each file was

associated (if relevant) with the development phase described. The synchronisation

involved grouping source files with respect to their associated patterns in order to analyse

the effort involved and the quality of the source code produced.

I l l

8.3.3 Mean results

Table 8-2 illustrates the mean results obtained in Case Study 8.

Table 8-2 The mean results for C ase Study 8.

Mean of groups with
tool

(A-I, A-ll & B-I 1)

Mean of groups with
no tool

(B-I, C-ll & D-ll)

Comparison of tool
with no tool

Total effort for the entire
project (in minutes) 280 360 22% less

Total effort to implement
the patterns (in minutes) 149 240 38% less

Total changes made to
the patterns (in LOC) 32 79 59% less

Total coupling level for all
the patterns implemented 3 8 63% less

The results suggest that for all cases, the groups that used the tool required less effort and

produced software o f higher quality. However, these results do not tell the whole story. A

breakdown of the individual results is presented in the following sections.

8.3.4 Results of Case Study 8-1

In Case Study 8-1, neither of the groups (A-I nor B-I) completed all of the required system

features within the allocated time. As a consequence, the analysis was carried out up to

the point at which the groups decided to begin testing their source code on the testbed.

This point of time was chosen as an indication of the confidence level of each group with

their software development stage, before moving on to the hardware-in-the-loop testing.

Table 8-3 shows the results obtained up to this point (after the synchronisation process) for

each development phase. From this, Table 8-4 was constructed to illustrate the results for

the pattern implementations only.

1 12

Table 8-3 The synchronised results of the effort and changes made for Case Study 8-1.

Development
Phases

Effort (in minutes)
A-I B-I

Changes (in LOC)
A-I B-I

p_Sch 42 67.5 11 15
p_Port 16 30 1 16
p_LED 10 16 0 3
p_Counter 26 41 8 17
p_PID 45 53.5 11 22
p_ADC 10 11 0 5
t_CThr 62 37.5 17 29
t_GRef 22 7.5 14 0
t_CSpd 37 66 27 26
Total 270 330 89 133

The results in Table 8-4 show that the total time required to implement all the patterns in

the CCS was less for the group that used the tool. Similarly, the total number of changes

made to all the patterns was less for the group that used PTTES Builder. By comparing

the level of coupling in all the patterns implemented, Table 8-4 shows that the group that

used the tool created source code with better modularity.

Table 8-4 The results (in total) for effort, reliability and modularity of the patterns in Case Study 8-1.

Grp A-I (Tool) Grp B-I (No Tool)

Total effort to implement the patterns
(in minutes)

149 219

Total changes made to the patterns
(in LOC)

31 78

Total coupling level for all the patterns
implemented

0 5

To determine whether the tool did indeed reduce the effort required in implementing the

patterns, each pattern was individually analysed. Figure 8-4 shows that individual patterns

were implemented with less effort by the group that used PTTES Builder. This suggests

that the tool was effective in reducing the effort involved in the development of the

embedded system.

113

p_Sch p_Port p.L E D p_C ounter

[■ G rp A-I (Tool) ■ G rp B-I (No Tool)

P_PID p_ADC

Figure 8-4 Effort involved in implementing the related patterns in Case Study 8-1.

In comparing the changes made to the individual patterns, Figure 8-5 shows that the

patterns implemented by the group that used PTTES Builder required fewer changes to the

generated code. This suggests that the group using PTTES Builder had a more stable

pattern implementation process.

r
p_Sch p_Port p_LED p_Counter p_PID

|« G r p A-I (Tool) BG rp B-I (No Tool) |

p_ADC

Figure 8-5 The number of changes made to the individual patterns in Case Study 8-1.

114

The analysis on the test cases revealed that Group A-I had passed 11 test cases and Group

B-I had passed only four test cases. This was reflected at the beginning of the hardware

testing phase, where Group A-I had an on-board LED flashing, while Group B-I failed to

achieve even this modest goal. The questionnaires and interviews revealed that students

using PTTES Builder found the tool useful, but still relied on the PTTES book for

clarification of the design patterns. It was also pointed out (as explained earlier in Section

8.2.2) that PTTES Builder might have been easier to use on this occasion because of the

limited number of design patterns available.

8.3.5 Results of Case Study 8-11

The synchronised result in Case Study 8-II is illustrated in Table 8-5.

Table 8-5 The synchronised results for effort and changes made for C ase Study 8-11.

Development
Phases A-II

Effort (in minutes)

B-II C-II D-II A-II
Changes (in LOC)

B-II C-II D-II

p_Sch 23.75 93 52.5 90.5 3 26 21 45

p_Port 18.75 6 15 23.5 3 0 2 3

p_LED 3.75 6 15 10 0 0 0 0

p_Counter 3.75 6 5 24.5 0 0 3 11

p_PID 8.75 42 27.5 69 4 18 5 15

p_ADC 3.75 46 5 134 0 9 0 53

p_RS232 8.75 28.5 25 5 1 2 2 0

t_CSpd 3.75 43.5 15 55.5 0 7 1 9

t_CThr 37.5 77 27.5 60.5 18 28 7 14

t_GRef 3.75 43.5 27.5 0 0 24 4 0

t_DSpd 33.75 28.5 25 37.5 45 29 18 25

Total 150 420 240 510 74 143 63 175

The overall results obtained from Case Study 8-II are presented in Table 8-6. The results

indicate that Group A-II (which used PTTES Builder) was effective in reducing the overall

effort when compared to Groups C-II and D-II that did not use the tool. The results also

suggest that Group A-II had the most stable pattern implementation process when

compared to Groups B-II, C-II and D-II.

However, Group B-II only showed overall improvements in the effort and software quality

when compared to Group D-II (see Table 8-6). This is surprising since Group C-II

(without tool) took less effort and made fewer changes to the patterns when compared to

115

Group B-II that did use the tool. Nevertheless, Group B-II produced source code with

better modularity compared to C-II and D-II.

These apparently contradictory results will be discussed again in Section 8.4.

Table 8-6 The results (in total) for effort, reliability and modularity of the patterns in Case Study 8-
II. Table adapted from Pont et al. (submitted), Table 3.

Grp A-II
(Tool)

Grp B-II
(Tool)

Grp C-II
(No Tool)

Grp D-II
(No Tool)

Total effort for the entire
project (in minutes)

150 420 240 510

Total effort to implement
the patterns (in minutes)

71 228 145 357

Total changes made to
the patterns (in LOC)

11 55 33 127

Total coupling level for all
the patterns implemented

5 4 11 9

By comparing the development of the individual patterns for the different groups, the

results (see Figure 8-6) indicates that Group A-II - in general - took less effort compared

to the other groups. This was not the case for Group B-II where the effort involved for

some of the individual patterns was higher when compared to groups that did not use

PTTES Builder.

160 ---

p_Sch P_P°rt p_LED p_Counter P_PID p_ADC p_RS232

| ■ Grp A-I I (Tool) ■ Grp B-I I (Tool) □ Grp C-l I (No Tool) □ Grp D-l I (No Tool) |

Figure 8-6 The effort involved in implementing the related patterns in Case Study 8-II.

1 1 6

The result in Figure 8-7 illustrates the changes made to individual pattern throughout the

development process. The results indicate that Group A-II made minimal changes to the

implemented patterns. All other groups had made some significant changes to the

patterns.

53

45

I26

21

f1 11

10115

32 3 2 3 3J'dH,..' 00 ° , 0 °Ei 0 | 0 1 2 2 , jn° ,
p _Sch p_Port p_LED p_C ounter P_PID p_ADC p_R S232

[■ G rp A-II (Tool) B G rp B-II (Tool) D G rp C-II (No Tool) D G rp D-II (No Tool)]

Figure 8-7 The number of changes made to the individual patterns in Case Study 8-11.

By observing the rate at which the groups met all the requirements (by checking it against

the test cases: Figure 8-8), it was observed that Group A-II was the first to comply with

the test cases (more than 50% of the requirements were met in the first 60 minutes).

Group B-II was also quick off the mark (25% requirements were met in the first 60

minutes), but took a much longer time to meet all the required test cases. The results of

the testcase evaluation for the individual groups are presented in Appendix G.

1 1 7

1.2

/ x.../ ^
0 -I ‘- — i----------- 1----- .-----------------1-----------1-----------1----------- 1-----------1----------- .-----------1----------------1------------------,-1----------- 1-------- ,--------------- .--------- ,

30 90 150 210 270 330 390 450 510
Time (in minutes)

f Grp A-II (Tool) Grp B -I (T o o l) Gtp C -l (No Tool) Gfp D-II (No Tool) |

Figure 8-8 The test case compliance ratio in C ase Study 8-II.

8.4 Discussion

This section discusses the results obtained from Case Study 8-1 and Case Study 8-II.

The results from Case Study 8-1 shows that the groups that used the PTTES Builder took

less effort to implement the patterns. The results also suggest that the use o f the PTTES

Builder has led to better source code modularity and a more stable pattern implementation

process. In Case Study 8-II of the study, out of the two groups that used the PTTES

Builder (Groups A-II and B-II), only Group A-II showed an improvement in the

development effort, modularity, source code stability and rapidly producing functionally

correct source code. However, the results from Group B-II seem to be in contradictory to

these findings. This may suggest that some other factor had influenced the development

process of Group B-II.

Upon further investigation (through the interviews, questionnaire and code analysis), it

became clear that Group B-II had only very limited confidence in the tool. As a

consequence, the subject had attempted to make major changes to the scheduler and

pattern tasks generated by the tool in the Keil IDE. Specifically, the subject had changed

the declaration of the tasks and modified the task dispatch function. This, in turn,

introduced many software bugs and caused a significant amount of delay in the

development process. This finding is in line with our assumption in Section 8.2.3, where

1 1 8

the more changes made to the PIEs, the more likely it is to introduce bugs into the system.

Overall, this result suggests that tool support will only be effective if users have

confidence in the tools (something which is perhaps more likely with a commercial

product than in a trial such as that described here).

It was also noted that the trend of results observed from Case Study 8-1 and Case Study 8-

II (Group A-II) were very similar. This may imply that the possibility of bias in Case

Study 8-1 was not a significant factor in the results obtained.

By plotting the results of the changes made and effort taken on the same graph, the results

in Figure 8-9 illustrates that the trend of the development effort was very similar to the

trend of the software stability. The result o f each group’s development process also

showed a similar trend for the development effort and changes made (see Appendix E).

200 T T 60 0

180 --

- 5 00
160 -

140 --
- 40 0

o
o-I

120 -

c
^ 100 - -
© a c
ID

5 80 "

-- 300

- 200
6 0 -

4 0 -
- 100

20 - -

A-II (Tool) B-II (Tool) C-II (No Tool) D-II (No Tool)A-I (Tool) B-I (No Tool)

| I Total C h anges — A— Effort |

Figure 8-9 Trend of changes made and development effort for all the groups in Case Study 8.

Overall, the results suggest that implementing the patterns using PTTES Builder did

reduce the effort: however, some patterns showed more reduction of effort than the others

To investigate this further, McCabe’s Cyclomatic Complexity (McCabe, 1976) was used

to determine the complexity level of the different PIEs. The PIE with the highest level of

complexity was associated with the Co-operative Scheduler. By analysing the results in

1 1 9

Figure 8-6 and Figure 8-7, it was revealed that PTTES Builder contributed significantly to

reducing the implementation effort of Co-operative Scheduler and at the same time

improving the quality o f the resulting code. However, for less complex patterns (such as

Port Wrapper and Heartbeat LED), the contribution of the tool was not as significant. This

may imply that PTTES Builder is much more effective in implementing patterns with a

higher level of complexity. Further studies would have to be carried out to confirm this.

8.5 Conclusions

In this chapter, the primary goal was to investigate the extent to which the SGM can be

applied to a wider range o f studies. To do this, the SGM was employed in an empirical

study to assess the efficacy of a tool that automates the implementation of reliable

software patterns for embedded systems.

In a two-phase empirical study, the effectiveness o f tool-based pattern development

technique was compared with an equivalent “manual” approach. The results obtained

suggested that - in almost all cases - the use o f the tool reduced the development effort.

The exception to this general rule was in one case where the subject opted to re-write the

code generated by the tool (probably because of lack of confidence in the code-generation

approach). In this circumstance it was noted that such a lack o f confidence may be more

likely in a laboratory setting (with an experimental tool) than in a commercial setting.

Three other observations were made from these studies: (1) there was some evidence that

the use of the tool was likely to lead to improved code quality, (2) the contribution of the

tool was most significant when implementing patterns with a high level of complexity, and

(3) the development effort involved showed a very similar trend to the number of changes

made to the source code. However, further studies are required to investigate these

observations in more detail.

Overall, the results discussed in this chapter suggest that the SGM has the potential to be

more widely applied in other research areas to rapidly assess new technologies in a cost-

effective way.

120

9. Discussion and conclusions

9.1 Introduction

In this chapter, the conclusions from this research project are presented. Some suggestions

for future work in this area are made.

9.2 Overview of the work conducted

The work described in this thesis began by exploring ways in which a software simulator

could be used to support the development of reliable X-by-Wire systems. Specifically, the

initial aim of the research was to develop a simulation tool that could support the

development of X-by-Wire applications by allowing the comparison of different design

options early in the product life cycle.

As outlined in Chapter 2, the work began by considering some o f the available simulation

tools. TrueTime was provisionally chosen as a starting point to explore the use of

simulation in the implementation of X-by-Wire systems. To confirm that TrueTime was

appropriate for use in the present project, two non-trivial case studies were carried

(Chapter 3). The results obtained indicated that the TrueTime simulation technique

provided an effective way of predicting the performance of X-by-Wire systems. This

suggested that - instead of reinventing the wheel - the available TrueTime simulation tool

could be used as a simulator for X-by-Wire designs.

Of course, although it was necessary to verify that the TrueTime simulator works, this

condition alone was not enough to demonstrate the full potential of the tool. During the

course of this research, it became apparent that appropriate (empirical) software-

engineering techniques were required to carry out investigations to evaluate the

effectiveness of the “simulation first” approach. The Small Group Methodology” (SGM)

was then developed as a cost-effective means to rapidly assess various development

methodologies and implementation techniques for embedded systems.

121

9.3 Simulation in practice

This section presents an evaluation o f the “simulation first” approach. The inferences

made from the results and the validity of the claims are discussed here.

9.3.1 The efficacy of a “simulation first” approach

In the research project described in this document, four aspects of the efficacy of a

“simulation first” approach was evaluated.

First, studies were carried out to determine whether the TrueTime simulator could predict

the behaviour of a range of X-by-Wire systems correctly (see Chapter 3). The results

suggest that although the simulator is imperfect, it can still be used to predict the

behaviour of a range o f embedded implementation options. It was also noted that the

simulator was more effective in simulating time-triggered designs, as opposed to event-

triggered designs.

Second, an empirical study was presented (in Chapter 5) to assess the contribution of a

“simulation first” approach towards the development effort. The results suggest that

simulation can assist in lowering the development effort required to subsequently

implement the system on the hardware. The results also suggest that the overall effort can

be reduced if the simulator is used effectively.

Third, another case study was presented (in Chapter 6) to determine whether the

development effort can be further reduced by modifying the simulation methodology.

Here, the results suggest that the TT-Plus approach - that employed a high-level design-

led code-generation technique - can further reduce the effort involved, especially in the

simulation phase. In particular, the results suggest that the overall development effort can

be further reduced if the effort required to develop the relevant simulation models is itself

reduced.

Finally, the study presented in Chapter 7 assessed the impact of a “simulation first”

approach on software quality. Here, indirect software quality measures were used. The

results suggest that use of simulation may indeed improve the quality of software for

12 2

embedded systems. The results also suggest that the reliability o f the simulation models is

better when using a design-led code-generation approach.

Overall, the results suggest that using a “simulation first” approach can be an effective

way of designing and implementing X-by-Wire systems.

9.3.2 Validity of the results

Although evidence have been provided to suggest that a “simulation first” approach is

effective, the extent to which the claims can be generalised must be considered.

First, in the various simulation case studies, TrueTime has been used to simulate 16-bit

C l67 microcontrollers (see Case Study 3A and Case Study 5) and 32-bit ARM

microcontrollers (see Case Study 3B and Case Study 6). This may suggest that TrueTime

could be effective as a general purpose simulator for a wide range o f embedded

microcontrollers.

However, the case studies have only explored the use of the TrueTime simulator.

Therefore, the results and discussions cannot be generalised to other simulation tools.

This is because the methodologies for the various tools are different from one another.

For example, TrueTime employs coding and the creation o f block diagrams, whereas tools

like TimesTool and AIDA use different approaches to simulate embedded systems (such

as message sequence charts, timed automata and dataflow diagrams). Nonetheless,

lessons learnt from the TrueTime simulator could be useful in the development and

enhancements of other simulators. For instance, tools such as AIDA, might benefit from

employing a “source-code development approach” as there is evidence that this can

contribute to the reduction of effort in the implementation stage.

In addition to the fact that only one simulator was used, the work presented in this thesis

only employed two testbeds: an automotive cruise-control system and an inverted

pendulum. In both these studies, evidence was provided to show ways that simulation

could contribute to the development of embedded systems. However, due to time and

resource constraints, it was impossible to try a wider range of testbeds. As such, it cannot

yet be claimed that the results will hold for all cases. For example, in a very large-scale

123

embedded application that involves various individuals, the conventional “simulation

first” approach may not be effective. Instead, it could be the case that the simulation,

implementation and testing processes will have to be staggered throughout the various

development phases for the various sub-modules.

9.4 Evaluation of the SGM

One “by-product” o f this research was the SGM. It was through this approach, that the

findings in Chapter 5 to Chapter 8 of this thesis were made possible. The effectiveness of

the SGM is discussed in this section.

9.4.1 Is the SGM useful?

One of the key characteristics of the SGM is that it employs small number of student

subjects and matches them up in terms of their marks in previous university modules.

Through this approach, empirical evidence can be obtained rapidly and in a cost-effective

way.

Although the number of test subjects used is very small, the technique used is effective in

producing large amounts of useful data. These include the investigation of software

development effort and software quality when employing various development

methodologies for embedded systems. Moreover, the use of SGM has successfully raised

several questions about the various aspects of the development methodology, and assisted

in generating hypotheses.

Keeping in mind that most of the case studies in this thesis employed the SGM to explore

the efficacy of a “simulation first” approach, it should not be assumed that the SGM is

confined to only simulation related studies. To investigate if the SGM can be applied

more widely, a different study (Case Study 8) that involved design patterns and code

generation for embedded systems was employed. This investigation successfully revealed

various useful contributions of design patterns and code-generation approach. This

suggests that SGM has the potential to be more widely applied in other studies to rapidly

evaluate development methodologies and implementation techniques for embedded

systems in a cost-effective way.

1 2 4

Overall, the SGM - which includes guidelines on how to carry out empirical experiments,

- is effective in providing insight on the various development approaches for embedded

systems. This may allow industrial firms to rapidly obtain some empirical evidence on the

efficacy of a particular technology.

9.4.2 Using qualitative data to “fill the gaps”

In contrast with empirical studies using large sample sets, the impact caused by individual

characteristics must be considered in studies using the SGM.

In the studies considered in this document, individual differences were taken into account

through the use of qualitative data analysis, using progress observation forms,

questionnaires and interviews. These techniques were shown to be effective in eliciting

information that was not obvious through source code analysis, and provided a means of

understanding the overall outcome of the quantitative measurements.

In this way, the following anomalies were documented:

1) Coding strategy: In Chapter 5, it was noted that the subject in Group C chose not to

port the source code from the simulation environment (TrueTime/MATLAB) to the

implementation environment (Keil). Instead, the student wrote the code from scratch

at the implementation environment that resulted in functional errors in the

implementation stage. The other group on the other hand had ported the source code

over and made syntactical changes. This resulted in them getting their system working

much quicker.

2) Lack of confidence: In Chapter 8, it was documented that one of the groups (B-II) had

very little confidence in the tool given to implement the embedded system. This led

the test subject to make major changes to the source code and introduced software bugs

into the system. This caused severe delay in the implementation process.

9.4.3 The “chicken or egg” problem

The work presented in this thesis has evaluated the “simulation first” approach and the

SGM through various trials. This however raises a causality problem, which is sometimes

referred to as “which came first, the chicken or the egg”.

125

In particular, the SGM was initially used to assess the “simulation first” approach, when

the methodology itself had not been verified beforehand. Here, the inconsistency in the

research is apparent because neither the SGM, nor the “simulation first” approach, had

previously been verified. Instead, the approach employed in this research was to assume

that the SGM was a valid technique, and subsequent studies were carried out to evaluate

the effectiveness o f the “simulation first” approach.

In this case, it could be argued that an unverified empirical approach used to evaluate an

unverified development technique may introduce more uncertainties in the results.

However, the results obtained from the various empirical evaluations are sensible. For

example, in Chapter 5, it was shown that subjects that did not use the simulator efficiently,

made more mistakes that eventually led to an increase in the overall effort. The similar

sort of logical causality behaviour had also been recorded for all the other case studies.

This suggests - by means of the results obtained - that the SGM had been indirectly

verified through the various case studies.

Therefore, in light of this discussion, the work presented in this thesis has verified the

SGM, in addition to concurrently providing evidence to demonstrate the efficacy of

various development approaches for embedded systems. It is argued that the assumptions

made in doing so were reasonable, and this was confirmed based on the results that were

obtained. Overall, although the underlying “chicken or egg” problem had not been

resolved, it is believed that this issue did not have a huge bearing on the outcome of this

research.

9.5 Other “by products” of the research project

During the course of this research project, several other technical contributions were

made. These contributions - although not directly related to the core of the work

described in this thesis - resulted in several publications (see page viii).

The first “by product” of the research project was the development of new variants of the

Shared-Clock CAN algorithm (Ayavoo et al., 2005b; Ayavoo et al., accepted). This work

was carried out to address some of the limitations in the existing shared-clock algorithms.

12 6

Specifically, the two new algorithms that were developed (referred to as TTC-SC3 and

TTC-SC4) has inspired the work of other researchers (see Short and Pont, 2006).

The second “by product” was the development o f a non-trivial cruise-control testbed for a

passenger car (Ayavoo et al., 2005c). This work was carried out to obtain a low-cost

testbed that could be used to assess different implementation techniques for embedded

systems. The testbed has also been found to be useful by other researchers (see Mwelwa

et al., 2005; Vidler and Pont, 2006; Kurian and Pont, 2007).

9.6 Future work

As this thesis draws to a close, some suggestions for future work in this important area are

made.

9.6.1 Improvements to the SGM

The version of the SGM described in this thesis has been effective in evaluating the

development process of embedded systems. On hindsight however, there is still room for

further improvements in the evaluation process.

One way to improve the SGM would be to employ a “blind” approach to analyse the

results (Kitchenham et al., 2002). In this case, the individual who analyses the results

from the study is kept unaware as to which set of results have been subjected to a

treatment. Such an approach can reduce the bias in the analyses. Please note that using

this approach could incur additional cost in hiring a third party to analyse the results.

In addition, to improve the quality o f the results in future studies, a video recorder could

be used to digitally record the events in the experiments. The data collection technique

may also be automated to reduce the level of intrusion to the study.

In the current version of the SGM, the case study was prepared followed by the

experiment and data collection. The test subjects were then given questionnaires to fill

and a short interview was held at the end of the experiment. Finally, the source code

collected throughout the experiment was analysed. One drawback to this approach is in

1 2 7

the event where the subsequent source code analysis reveals an anomaly that was not

picked up in the questionnaire, interview or progress observation forms. In this case,

understanding the results will be difficult and may rely on the researcher’s intuition. To

avoid this, the SGM can be modified to incorporate two interview sessions, one before the

source code analysis and another interview after the analysis (see Figure 9-1). This way,

the researcher has a chance to cross-examine the test subjects for the second time to

confirm the findings.

SGM M odified SGM

Study Prep a rati on

Experiment &
Data Collection

Questionnaires

Interview

Source Code
Analysis

Study Preparation

Experiment &
Data Co lection

Questionnaires

Pre-Analysis
Interview

Source Code
Analysis

Post-Analysis
Interview

Figure 9-1 The modified SGM that incorporates pre- and post-analysis interviews.

9.6.2 Further studies on simulation

The work presented in this thesis on software simulation for X-by-Wire systems is only

the tip of the iceberg. Indeed, there is much more to learn from the contributions that a

“simulation first” approach can make towards the development of X-by-Wire systems.

For instance, although this research has suggested that simulation can potentially improve

software quality, its impact upon other quality metrics like error density and field stability

have not been explored. Moreover, the work on software quality described in this thesis

has only looked at the software development for a final solution, and not an incremental

system development that involves software maintenance. The contributions of a

“simulation first” approach for such system may be different.

Besides this, the work described in this thesis has evaluated the “simulation first”

approach when it is used only at the coding and testing phases. However, simulation

1 2 8

could also be used in different ways like the “A” and “V” development process (see

Nossal and Lang, 2002). In such cases, the impact o f the simulation on the development

effort would be different.

Another area for future research is the comparison o f the various simulation tools that was

described in Section 2.3.3. In particular, the various properties of the different simulators

that contribute to the development effort and software quality can be further explored.

9.6.3 Beyond simulation

In this thesis, the utilisation of various tools to support the development of a range of

embedded control applications has been explored. Such practice has been identified as

becoming an important aspect to aid in the development of embedded systems.

Hendriksson and colleagues note: “ Unfortunately, the tools that allow a co-design

approach are quite few. Instead most tools specialize on a single domain, e.g., control

design, schedulability analysis or UML-type software modelling and code generation”

(Henriksson et al., 2005, p. 51). This implies that although there are various tools

available to assist in the development process, many of them are too specific and limited

to a single domain. This is particularly a problem in the development of embedded control

system, where there is a close integration of control systems, hardware design, software

architectures, network protocols and schedulability analysis.

The work presented in this thesis has touched on the use of simulation techniques, code

generation and design patterns. Specifically, simulation was used at the design,

verification and implementation phase, while code generations and design patterns were

used to implement embedded systems. Future research should consider employing a more

collective approach of tool support by combining some of these techniques to assist in the

overall development of reliable X-by-Wire systems.

For instance, future research could investigate the extent to which autocode generation

from design patterns can be used with TrueTime to simulate an embedded system.

Similarly, the combination of various CASE tools to design, verify, compile and simulate

an embedded system can be considered for future research projects.

1 2 9

9.7 Conclusions

Overall, the work described in this thesis has made three major contributions. First,

evidence has been successfully provided to demonstrate the effectiveness of a “simulation

first” approach when it is used in practice to design and implement embedded systems.

Second, the research has described and demonstrated a set of techniques (called SGM) to

rapidly carry out empirical evaluations for embedded systems at low cost. Finally,

evidence has been presented to suggest that the SGM can be applied more widely to other

studies. This thesis, in addressing some of the initial issues that were posted in the outset,

has prompted many more interesting questions. This will hopefully provide the necessary

inspiration for further research in this critical area.

130

References

Ahlmark, M. (2000). “Local Interconnect Network (LIN) - packaging and scheduling”.
M.Sc. Thesis. Department of Computer Engineering, Malardalen University, Vasteras,
Sweden.

Altera (2005). "Quartus II simulation with VHDL designs". Altera Corporation,

Amasaki, S., Y. Takagi, O. Mizuno and T. Kikuno (2005). "Constructing a Bayesian
Belief Network to predict final quality in embedded system development." IEICE
Transactions on Information and Systems E88-D(6): 1134-1141.

Amnell, T., E. Fersman, L. Mokrushin, P. Pettersson and W. Yi (2002). "Times: A tool for
modelling and implementation of embedded systems". International Conference on
Tools and Algorithms for Construction and Analysis of Systems, TACAS2002,
Grenoble, France.

Amnell, T., E. Fersman, L. Mokrushin, P. Pettersson and W. Yi (2003). "TIMES: A tool
for schedulability analysis and code generation o f real-time systems". Proceedings of
the 1st International Workshop on Formal Modeling and Analysis o f Timed Systems
(FORMATS 2003), Marseille, France.

Andel, T. R. and A. Yasinsac (2006). "On the credibility o f Manet simulations." IEEE
Computer 39(7): 48-54.

Arisholm, E. and D. I. K. Sjoberg (2004). "Evaluating the effect of a delegated versus
centralized control style on the maintainability o f Object-Oriented software " IEEE
Transaction on Software Engineering 30(8): 521-534.

ARM (2001). "ARM7TDMI technical reference manual".

Astrom, K. J. and B. Wittenmark (1990). "Computer-controlled systems, theory and
design". New Jersey, Prentice-Hall International. [0131727842].

Audsley, N., A. Bums, K. Tindell, M. Richardson and A. Wellings (1993). "Applying new
scheduling theory to static priority pre-emptive scheduling." Software Engineering
Journal 8(5): 248-292.

Babbage, C. (1888). "The analytical engine". Proceedings o f the British Association, Bath.

Ball, S. R. (1996). "Embedded microprocessor systems: real world design". Boston,
Newnes. [0750697911].

Bannatyne, R. (2003). "Microcontrollers for automobiles." Micro Control Journal.

Basili, V., S. Asgari, J. Carver, L. Hochstein, J. K. Hollingsworth, F. Shull and M. V.
Zelkowitz (2004). "A pilot study to evaluate development effort for high performance
computing". CS-TR-4588 University o f Maryland, Maryland, USA.

Basili, V., L. C. Briand and W. L. Melo (1996). "A validation of Object-Oriented design
metrics as quality indicators." IEEE Transaction on Software Engineering 22(10):
751-761.

Basili, V. and R. W. Reiter (1979). "An investigation of human factors in software
development." IEEE Computer 12(12): 21-38.

131

Basili, V., F. Shull and F. Lanubile (1999). "Building knowledge through families of
experiments." IEEE Transaction on Software Engineering 25(4): 456-473.

Basili, V. and D. Weiss (1984). "A methodology for collecting valid software engineering
data." IEEE Transaction on Software Engineering 10(6): 728-738.

Basili, V. R., R. W. Selby and D. H. Hutchens (1986). "Experimentation in software
engineering." IEEE Transactions on Software Engineering 12(7): 733-743.

Bassin, K., S. Biyani and P. Santhanam (2002). "Metrics to evaluate vendor-developed
software based on test case execution results." IBM Systems 41(13-30).

Bate, I. J. (1998). "Scheduling and timing analysis for safety-critical real-time systems".
Ph.D Thesis. Department of Computer Science, University o f York, York, England.

Bautista, R. and M. J. Pont (2006). "Is fuzzy logic a practical choice in resource-
constrained embedded control systems implemented using general-purpose
microcontrollers?" Proceedings of the 9th IEEE International Workshop on Advanced
Motion Control, Istanbul, Turkey.

Bautista, R., M. J. Pont and T. Edwards (2005). "Comparing the performance and resource
requirements of "PID" and "LQR" algorithms when used in a practical embedded
control system: A pilot study". Proceedings of the 2nd UK Embedded Forum 2005,
Birmingham, UK.

Becks, K. (2000). "Extreme programming explained". London, Addison-Wesley.
[0201616416].

Berry, D. M. and W. F. Tichy (2003). "Comments on "Formal methods application: An
empirical tale of software development"." IEEE Transaction on Software Engineering
29(6): 567-571.

Bevan, N. (1999). "Quality in use: Meeting user needs for quality." Journal of Systems
and Software 49(1): 89-96.

Bosch, R. G. (1991). "CAN specification version 2.0". Robert Bosch GmbH, Postfach 50,
D-7000 Stuttgart 1, Germany,

Bretz, E. A. (2001). "By-Wire cars turn the comer." IEEE Spectrum 38(4): 68-73.

Briand, L. C., J. Wiist, J. Daly and D. V. Porter (2000). "Exploring the relationships
between design measures and software quality in Object-Oriented systems." Journal of
Systems and Software 51(3): 245-274.

Briere, D., C. Favre and P. Traverse (1995). "A family of fault-tolerant systems: Electrical
flight controls, from Airbus A320/330/340 to future military transport aircraft."
Microprocessors and Microsystems 19(2): 75-82.

Brooks, R. E. (1980). "Studying programmer behaviour experimentally: The problems of
proper methodology." Communications of the ACM 23(4): 207-213.

Carson II, J. S. (2005). "Introduction to modeling and simulation". Proceedings of the
2005 Winter Simulation Conference, Orlando, USA.

Castelpietra, P., Y. Q. Song, F. S. Lion and M. Attia (2001). "CAROSSE-Perf: A modular
approach for simulation of in-vehicle embedded architectures". 15th European
Simulation Multiconference - ESM'2001, Prague, Czech Republic.

1 3 2

Castelpietra, P., Y. Q. Song, F. S. Lion and M. Attia (2002). "Analysis and simulation
methods for performance evaluation of a multiple networks embedded architecture."
IEEE Transactions on Industrial Electronics 49(No. 6).

Cervin, A., D. Henriksson, B. Lincoln, J. Eker and K. Arzen (2003). "How does control
timing affect performance? - Analysis and simulation o f timing using jitterbug and
TrueTime." IEEE Control Systems Journal 23(3): 16-30.

Chen, D. J. and M. Sandfridson (2000). "Introductions to distributed systems for real-time
control". TRITA MMK 1998:22 Mechatronics Laboratory, Department o f Machine
Design, Royal Institute of Technology, Stockholm, Sweden.

Chidamber, S. R. and C. F. Kemerer (1994). "A metrics suite for Object-Oriented design."
IEEE Transaction on Software Engineering 20(6): 476-493.

Chouliaras, V. A., J. L. Nunez, D. J. Mulvaney, F. S. Rovati and D. Alfonso (2005). "A
multi-standard video accelerator based on a vector architecture." IEEE Transaction on
Consumer Electronics 51(1): 160-167.

Ciolkowski, M., O. Laitenberger, S. Vegas and S. Biffl (2003). "Practical experiences in
the design and conduct of surveys in empirical software engineering." Lecture Notes
in Computer Science (LNCS) 2765/2003: 104-128.

Clarke, P. "Adaptive cruise control takes to the highway". EETimes Online. (Last
accessed: 31/07/2006) http://www.eetimes.com/story/OEG19981020S00Q7

Coleman, D., D. Ash, B. Lowther and P. Oman (1994). "Using metrics to evaluate
software systems maintainability." IEEE Computer 27(8): 44-49.

Cook, J. E., L. G. Votta and A. L. Wolf (1998). "Cost-effective analysis of in-place
software processes." IEEE Transaction on Software Engineering 24(8): 650-663.

Cunningham, W. and K. Becks (1987). "Using pattern languages for Object-Oriented
programs". OOPSLA'87 workshop on the Specification and Design for Object-
Oriented Programming, Florida, USA.

Dahl, O. J. and K. Ngyaard (1966). "SIMULA - An ALGOL-based simulation language."
Communications of the ACM 9(9): 671-678.

Dawson, L. and P. Swatman (1999). "The use o f Object-Oriented models in requirement
engineering: A field study". Proceedings of the 20th International Conference on
Information Systems, Charlotte, North Carolina, USA, Association for Information
Systems.

Dorf, D. and R. Bishop (2000). "Modem control systems". New Jersey, Prentice-Hall.
[0130306606].

Dutton, K., S. Thompson and B. Barraclough (1997). "The art of control engineering".
Harlow, Addison Wesley. [0201175452].

Dyba, T., B. A. Kitchenham and M. Jorgensen (2005). "Evidence-based software
engineering for practitioners." IEEE Software 22(1): 58-65.

Edwards, T., M. J. Pont, P. Scotson and S. Crumpler (2004). "A testbed for evaluating and
comparing designs for embedded control system". Proceedings of the 1st UK
Embedded Forum 2004, Birmingham, UK.

1 3 3

http://www.eetimes.com/story/OEG19981020S00Q7

Eker, J. and A. Cervin (1999). "A Matlab toolbox for real-time and control systems co
design". Proceedings of the 6th International Conference on Real-Time Computing
Systems and Applications.

Ekiz, H., A. Kutlu, M. D. Baba and E. T. Powner (1996). "Design and implementation of a
CAN/Ethemet bridge". 3rd International CAN Conference, Paris, France.

El-khoury, J. and M. Tomgren (2001). "Towards a toolset for architectural design of
distributed real-time control systems". IEEE Real-Time Symposium, London,
England, IEEE.

Ellims, M., S. Parker and J. Zurlo (2002). "Design and analysis of a robust real-time
engine control network." IEEE Micro 22(4): 20-27.

Endres, A. and H. D. Rombach (2003). "A handbook o f software and systems engineering
- Empirical observations, laws and theories". Harlow, Pearson Addison Wesley.
[0321154207].

Engblom, J., G. Girard and B. Werner (2006). "Testing embedded software using
simulated hardware". Proceedings of Embedded Real-Time Software (ERTS 2006),
Toulouse, France.

Fang, J. and M. J. Pont (2006). "Exploring the links between different software
architecture and PID parameters in embedded control systems". Proceedings of the 6th
UKACC International Control Conference, Glasgow, Scotland.

Faraday, M. (2004). "Experimental researches in electricity", Dover Publications.
[0486435059].

Farsi, M. and M. Barbosa (2000). "CANopen implementations: Applications to industrial
networks". Exeter, Research Studies Press Ltd. [0863802478].

Fenton, N., S. L. Pfleeger and R. L. Glass (1994). "Science and substance: A challenge to
software engineers." IEEE Software 11(4): 86-95.

Fitter, M. J. and P. J. Cruickshank (1983). "Doctors using computers: A case study".
Designing for human-computer communication. M. E. Sime and M. J. Coombs.
London, Academic Press: 239-260. [012643820x].

Florijn, G., M. Meijers and P. Winsen (1997). "Tool support for Object-Oriented patterns".
11th European Conference on Object-Oriented Programming, Jyvaskyla, Finland.

Fredriksson, L. B. (1994). "Controller Area Networks and the protocol CAN for machine
control systems." Mechatronics 4(2): 159-192.

Fredriksson, L. B. (2002). "CAN for critical embedded automotive networks." IEEE Micro
22(4): 28-35.

Gamma, E., R. Helm, R. Johnson and J. Vlissides (1995). "Design patterns: Elements of
reusable Object-Oriented software". Reading, Addison-Wesley. [0201633612].

GAO (1992). "Patriot missile software problem". GAO/IMTEC-92-26 General
Accounting Office, Information Management and Technology Division, Washington,
USA.

Gergelait, M. and E. Nett (2002). “Scheduling transient overload with the TAFT
Scheduler”. Presented at GI/ITG specialised group of operating systems, Berlin.

134

Germain, E. and P. N. Robillard (2005). "Engineering-based processes and Agile
methodologies for software development: A comparative case study." Journal of
Systems and Software 75(1-2): 17-27.

Graziani, P. L. (2002). "Keynote speech: Addressing the challenges of aerospace and
defense initiative using software analysis tools". Proceedings of the 2002 Winter
Simulation Conference, San Diego, USA.

Greenwell, W. S. (2003). "Learning from accidents and incidents involving safety-critical
software systems". M.Sc Thesis. Department o f Computer Science, School of
Engineering, University of Virginia, Virginia, USA.

Grimstad, S., M. Jorgensen and K. Molokken-Gstvold (2006). "Software effort estimation
terminology: The Tower of Babel." Information and Software Technology 48(4): 302-
310.

Hartwich, F., B. Muller, T. Fuhrer, R. Hugel and R. B. GmbH (2000). "CAN networks
with time-triggered communication". 7th international CAN Conference.

Hartwich, F., B. Muller, T. Fuhrer, R. Hugel and R. B. GmbH (2002). "Timing in the
TTCAN network". Proceedings 8th International CAN Conference.

Heintz, R. P. (1990). "Vehicle speed control device". U. S. Patent. United States, The
Deaccelerator Corporation. 4,947,950.

Henriksson, D., O. Redell, J. El-khoury, M. Tomgren and K. Arzen (2005). "Tools for
real-time control systems co-design - A survey". ISRN LUTFD2/TFRT—7610-SE
Department of Automatic Control, Lund Institute o f Technology, Lund, Sweden.

Henry, J., S. Henry, D. Kafura and L. Matheson (1994). "Improving software maintenance
at Martin Marietta." IEEE Software 9(4): 67-75.

Henry, S. M. and K. T. Stevens (1999). "Using Belbin's leadership role to improve team
effectiveness: An empirical investigation." Journal o f Systems and Software 44(3):
241-250.

Henzinger, T. A., C. M. Kirsch, M. A. A. Sanvido and W. Pree (2003). "From control
models to real-time code using Giotto." IEEE Control Systems Journal 23(1): 50-64.

Hilmer, H., H. D. Kochs and E. Dittmar (1998). "A CAN-based architecture for highly
reliable communication systems". 5th International CAN Conference, San Jose, USA.

Holcombe, M., M. Gheorghe and F. Marcias (2001). "Teaching XP for real: Some initial
observations and plans". Proceedings XP 2001, Sardinia, Italy.

Holt, R. W., D. A. Boehm-Davis and A. C. Schultz (1987). "Mental representations of
programs for students and software programmers". Empirical Studies of Programmers:
Second Workshop, Ablex Publishing Corp.

Host, M., B. Regnell and C. Wohlin (2000). "Using students as subjects - A comparative
case study of students and professionals in lead-time impact assessment." Empirical
Software Engineering 5(3): 201-214.

Huang, S. J. and N. H. Chiu (2006). "Optimization of Analogy Weights by Genetic
Algorithm for Software Effort Estimation" Information and Software Technology
48(11): 1034-1045.

1 3 5

IAEA (2001). "Investigation of an accidental exposure o f radiotherapy patients in Panama
- Report of a team of experts". 92-0-101701-4 International Atomic Energy Agency,
Vienna, Austria.

ICE "Engineering Heritage". Institute o f Civil Engineers. (Last accessed: 26/07/2006)
httv://www. ice, or2 . uk/knowledse/librarv heritage, asp

Infineon (2004). "Connecting C l66 and C500 microcontroller to CAN". Infineon
Technologies,

Isermann, R., R. Schwarz and S. Stolzl (2002). "Fault-tolerant Drive-by-Wire systems."
IEEE Control Systems Journal 22(5): 64-81.

Jones, D. W. "FAQ: What is a PDP?" (Last accessed: 26/07/2006)
http://www. faas. ors/faqs/dec-faa/pdp8/section-1. html

Jorgensen, M. (1999). "Software quality measurement." Advances in Engineering
Software 30(12): 907-912.

Jorgensen, M. and D. I. K. Sjoberg (2001). "Impact of effort estimates on software project
work." Information and Software Technology 43(15): 939-948.

Kan, S. H., V. Basili and L. N. Shapiro (1994). "Software quality: An overview from the
total quality management perspective." IBM Systems 33(1): 4-19.

Kandasamy, N., J. P. Hayes and B. T. Murray (2005). "Time-constrained failure diagnosis
of Distributed embedded systems: Applications to actuator diagnosis." IEEE
Transactions on Parallel and Distributed Systems 16(3): 258-270.

Karatza, H. D. (2004). "Modeling and simulation o f distributed systems and networks."
Simulation Modelling Practice and Theory 12(3-4): 183-185.

Katira, N., L. Williams, E. Wiebe, C. Miller, S. Balik and E. Gehringer (2004). "On
understanding compatibility of student pair programmers". ACM Technical
Symposium on Computer Science Education, SIGCSE Norfolk, USA.

Kemerer, C. F. and S. Slaughter (1999). "An empirical approach to studying software
evolution." IEEE Transactions on Software Engineering 25(4): 493-509.

Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. M. Loingtier and J.
Irwin (1997). "Aspect-Oriented programming". European Conference on Object-
Oriented Programming (ECOOP), Finland, Springer-Verlag LNCS.

Kitchenham, B. A., S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. E. Emam
and J. Rosenberg (2002). "Preliminary guidelines for empirical research in software
engineering." IEEE Transaction on Software Engineering 28(8): 721-734.

Koopman, P. (2002). "Critical embedded automotive networks." IEEE Micro 22(4): 14-18.

Kopetz, H. (1995). "Automotive electronics - Present state and future prospects". 25th
International Symposium on Fault-Tolerant Computing Systems: Special Issue,
California, USA, IEEE Computing Society.

Kopetz, H. (1997). "Real-time systems: Design principles for distributed embedded
applications". Boston, Kluwer Academic. [0792398947].

Kopetz, H. (1998). "A comparison of CAN and TTP". 15th IF AC Workshop on
Distributed Computer Control Systems, Como, Italy.

Kopetz, H. (2001). "A comparison o f TTP/C and FlexRay." Research Report 10/2001.

1 3 6

http://www

Kureemun, R. (1999). "Minimising the effects o f electromagnetic interference in a cruise
control system". M. Sc. Dissertation. Department o f Engineering, University of
Leicester, Leicester, UK.

Kurian, S. and M. J. Pont (2007). "The maintenance and evolution of resource-constrained
embedded systems created using design patterns." Journal of Systems and Software
80(1): 32-41.

Kurkowski, S., T. Camp and M. Colagrosso (2005). "MANET simulation studies: the
incredibles." ACM SIGMOBILE Mobile Computing and Communications Review
(Special Issue on Medium Access and Call Admission Control Algorithms for Next
Generation Wireless Networks) 9(4): 50-61.

Lanfear, C., S. Balacco and M. Volckmann (2006). "The 2005 embedded software
strategic market intelligence program". Venture Development Corporation, Maryland,
USA.

Leen, G. and D. Heffeman (2002). "TTCAN: A new time-triggered Controller Area
Network." Microprocessors and Microsystems 26(2): 77-94.

Leen, G., D. Heffeman and A. Dunne (1999). "Digital networks in the automotive
vehicle." Computing and Control 10: 257-266.

Lethbridge, T. C., S. E. Sim and J. Singer (2005). "Studying software engineers: Data
collection techniques for software field studies." Empirical Software Engineering
10(3): 311-341.

Leveson, N. and C. S. Turner (1993). "An investigation o f the Therac-25 accidents." IEEE
Computer 26(7): 18-41.

Lewis, D. (2001). "Fundamentals of embedded software; where C and assembly meet".
New Jersey, Prentice Hall. [0130615897].

Litterick, M. and M. Brenner (2005). "Utilizing Vera functional coverage in the
verification o f a protocol engine for the FlexRay automotive communication system".
Fourteenth Annual Conference o f Synopsys Users Group (SNUG) Europe, Munich,
Germany.

Liu, J. W. S. (2000). "Real-time systems". New Jersey, Prentice Hall. [0130996513].

Lonn, H. (1999). "Synchronization and communication results in safety-critical real-time
systems". Ph.D Thesis. Department o f Computer Engineering, Chalmers University of
Technology, Goteborg, Sweden.

Lonn, H. and J. Axelsson (1999). "A comparison of fixed-priority and static cyclic
scheduling for distributed automotive control application". The Eleventh Euromicro
Conference on Real-Time Systems, York, England.

Maaita, A. and M. J. Pont (2005). "Using ‘planned pre-emption’ to reduce levels of task
jitter in a time-triggered hybrid scheduler". Proceedings of the 2nd UK Embedded
Forum, Birmingham, UK.

Maier, R., G. Bauer, G. Stoger and S. Poledna (2002). "Time-triggered architecture: A
consistent computing platform." IEEE Micro 22(4): 36-45.

Marcias, F., M. Holcombe and M. Gheorghe (2002). "Empirical experiments with XP".
Proceedings of 3rd International Conference on Extreme Programming and Flexible
Processes in Software Engineering (XP2002), Sardinia, Italy.

137

Marcias, F., M. Holcombe and M. Gheorghe (2003). "Design-led & design-less: One
experiment and two approaches in 'Extreme Programming and Agile processes in
software engineering". Proceedings of the 4th International Conference, XP 2003.

Marsden, B. (2004). "Watt's perfect engine: steam and the age o f invention ". New York,
Columbia University Press [0231131720].

Marti, P., J. M. Fuertes, G. Fohler and K. Ramamritham (2001). "Jitter compensation for
real-time control systems". Proceedings o f Real-Time Systems Symposium, London,
UK.

Martin, R. A. and L. A. Shafer (1996). "Providing a framework for effective software
quality measurement: Making a science o f risk assessment". The 6th Annual
International Symposium of International Council on Systems Engineering (INCOSE),
Systems Engineering: Practices and Tools, Massachusetts, USA.

Marwedel, P. (2003). "Embedded system design". Boston, Kluwer Academic Publishers.
[1402076908].

McCabe, T. (1976). "A software complexity measure." IEEE Transactions on Software
Engineering 2: 308-320.

Misbahuddin, S. and N. Al-Holou (2003). "Efficient data communication techniques for
Controller Area Network (CAN) protocol". ACS/IEEE International Conference on
Computer Systems and Applications, Tunis, Tunisia.

Molokken-Ostvold, K. and M. Jorgensen (2003). "A review o f surveys on software effort
estimation". IEEE International Symposium on Empirical Software Engineering
(ISESE 2003), Rome, Italy.

Munson, J. C. and T. M. Khoshgoftaar (1992). "Measuring dynamic program complexity."
IEEE Software 9(6): 48-55.

Mwelwa, C., M. J. Pont and D. Ward (2003). "Towards a CASE tool to support the
development of reliable embedded systems using design patterns". 1st International
Workshop on Quality o f Service in Component-Based Software Engineering,
Toulouse, France.

Mwelwa, C., M. J. Pont and D. Ward (2004a). "Code generation supported by a pattern-
based design methodology". Proceedings of the 1st UK Embedded Forum,
Birmingham, UK.

Mwelwa, C., M. J. Pont and D. Ward (2004b). "Patterns to support the development and
maintenance o f software for reliable embedded systems: A case study". Proceedings
of the IEE / ACM Postgraduate Seminar on "System-On-Chip Design, Test and
Technology, Loughborough, UK.

Mwelwa, C., M. J. Pont and D. Ward (2005). "Developing reliable embedded systems
using a pattern-based code generation tool: A case study". Proceedings of the 2nd UK
Embedded Forum, Birmingham, UK.

Mwelwa, C., M. J. Pont and D. Ward (2006). "Rapid software development for reliable
embedded systems using a pattern-based code generation tool". Society of Automotive
Engineers (SAE) World Congress 2006, Detroit, USA.

Nissanke, N. (1997). "Realtime systems". New Jersey, Prentice Hall. [0136512747].

Nossal, R. and R. Lang (2002). "Model-based system development." IEEE Micro 22(4):
56-63.

1 3 8

NTSB (2000). "Aircraft accident report: Controlled flight into terrain, Korean Air Flight
801, Boeing 747-300, HL7468, Nimitz Hill Guam, August 6 1997". NTSB/AAR-
00/01 National Transportation Safety Board,

Oman, P. and S. L. Pfleeger (1997). "Applying software metrics". Los Alamitos, IEEE
Computer Society Press. [0818676450].

Ong, H. L. R. (2002). "Techniques intended to reduce the impact o f program-flow errors
on embedded systems". Ph.D Thesis. Department o f Engineering, University of
Leicester, Leicester, England.

Oren, T. I., S. K. Numrich, A. M. Uhrmacher, L. F. Wilson and E. Gelenbe (2000).
"Agent-directed simulation - Challenges to meet defense and civilian requirements".
Proceedings o f the 2000 Winter Simulation Conference, Orlando, USA.

Palopoli, L., G. Lipari, L. Abeni, M. D. Abeni, P.Ancilotti and F. Conticelli (2001). "A
tool for simulation and fast prototyping of embedded control systems". Proceedings of
LCTES01, Snow Bird, Utah, United States, ACM Press.

Palopoli, L., G. Lipari, G. Lamastra, L. Abeni, G. Bolognini and P. Ancilotti (2002). "An
Object-Oriented tool for simulating distributed real-time control systems." Software -
Practice & Experience 32(9): 907-932.

Pazul, K. (1999). "Controller Area Network (CAN) basics". Microchip Technology Inc.,

Pfleeger, S. L. (1999). "Albert Einstein and empirical software engineering." IEEE
Computer 32(10): 32-37.

Pfleeger, S. L. (2005). "Soup or art? The role of evidential force in empirical software
engineering." IEEE Software 22(1): 66-73.

Philips (1996). "PCA82C250/251 CAN transceiver". Philips Semiconductors,

Philips (2004). "SJA1000 stand-alone CAN controller".

Pickard, L. M., B. A. Kitchenham and P. W. Jones (1998). "Combining empirical results
in software engineering." Information and Software Technology 40(14): 811-821.

Pimentel, J. R. and J. A. Fonseca (2004). "FlexCAN: A flexible architecture for highly
dependable embedded applications". 3rd International Workshop on Real-Time
Networks, Catania, Italy.

Poison, P. G., E. Muncher and G. Engelbeck (1986). "A test of common elements theory
o f transfer". Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems Boston, Massachusetts, United States, ACM Press.

Pont, M. J. (2001). "Patterns for time-triggered embedded systems: building reliable
applications with the 8051 family of microcontrollers". Harlow, Addison
Wesley/ACM Press. [0201331381].

Pont, M. J. (2003). “An object-oriented approach to software development for embedded
systems implemented using C.” Transactions of the Institute of Measurement and
Control 25(3): 217-238.

Pont, M. J., A. J. Norman, C. Mwelwa and T. Edwards (2003). "Prototyping time-
triggered embedded systems using PC hardware". Eighth European Conference on
Pattern Languages of Programs (EuroPLoP), Irsee, Germany.

139

Pop, P. (2003). "Analysis and synthesis of communication-intensive heterogeneous real
time systems". Ph.D Thesis. Department of Computer and Information Science,
Linkoping University, Linkoping, Sweden.

Popp, L. M., G. Seemann and O. Dossel (2004). "A simulation study of the reaction of
human heart to biphasic electrical shocks." BMC Cardiovascular Disorders 4(9).

Prechelt, L. and B. Unger (2000). "An experiment measuring the effects of Personal
Software Process (PSP) training." IEEE Transaction on Software Engineering 27(5):
465-472.

Purushothaman, R. and D. E. Perry (2005). "Towards understanding the rhetoric of small
source code changes." IEEE Transaction on Software Engineering 31(6): 511-526.

Rajnak, A. and M. Ramnerfors (2002). "The Volcano communication concept".
International Congress on Transportation Electronics, Society of Automotive
Engineers Inc.

Redell, O., J. El-khoury and M. Tomgren (2004). "The AIDA toolset for design and
implementation analysis of distributed real-time control systems." Microprocessors
and Microsystems 28(4): 163-182.

Robillard, M. P., W. Coelho and G. C. Murphy (2004). "How effective developers
investigate source code: An exploratory study." IEEE Transaction on Software
Engineering 30(12): 889-903.

Robillard, P. N., P. d'Astous, F. Detienne and W. Visser (1998). "Measuring cognitive
activities in software engineering". Proceedings o f the 20th international conference
on Software engineering, Kyoto, Japan, IEEE Computer Society.

Rosenberg, L., T. Hammer and J. Shaw (1998). "Software metrics and reliability". 9th
International Symposium on Software Reliability Engineering, Germany.

Rosenberg, L. and L. Hyatt (1997). "Software quality metrics for Object-Oriented
environments." Crosstalk - The Journal of Defense Software Engineering(April).

Sachitanand, N. N. (2002). "Embedded systems - A new high growth area". The Hindu.
Bangalore.

Sandfridson, M. (2000). "Timing problem in distributed real-time computer control
problems". ISSN 1400-1179 Mechatronics Lab, Department of Machine Design,
Royal Institute of Technology, KTH, Stockholm, Sweden.

Sanz, R. and J. Zalewski (2003). "Pattern-based control systems engineering." IEEE
Control Systems Journal 23(3): 43-60.

Scanlan, D. A. (1989). "Structured flowcharts outperform pseudocode: An experimental
comparison." IEEE Software 6(5): 28-36.

Schmitt, V. R., J. W. Morris and G. D. Jenney (1998). "Fly-by-Wire: A historical and
design perspective". Warrendale, Society of Automotive Engineers. [0768002184],

Schneidewind, N. F. (1992). "Methodology for validating software metrics." IEEE
Transaction on Software Engineering 18(5): 410-421.

Schneidewind, N. F. (1999). "Measuring and evaluating maintenance process using
reliability, risk, and test metrics." IEEE Transaction on Software Engineering 25(6):
769-781.

140

Schneidewind, N. F. (2004). "Recommended practice on software reliability". Software
Technology Conference, Salt Lake City, USA.

Schoitsch, E. (2003). "Embedded systems - introduction." ERCIM News 52: 10-11.

Seaman, C. B. (1999). "Qualitative methods in empirical studies o f software engineering."
IEEE Transaction on Software Engineering 25(4): 557-572.

SEL (1995). "Software measurement guidebook". SEL-94-102 NASA/GSFC,

Sevillano, J. L., A. Pascual, G. Jimenez and Civit-Balcells (1998). "Analysis of channel
utilization for Controller Area Networks." Computer Communications 21(16): 1446-
1451.

Shaw, A. C. (2001). "Real-time systems and software". New York, John Wiley & Sons
Inc. [0471354902].

Sheil, B. A. (1981). "The psychological study of programming." ACM Computing
Surveys 13(1): 101-120.

Shepperd, M. and C. Schofield (1997). "Estimating software project effort using
analogies." IEEE Transaction on Software Engineering 23(12): 736-743.

Shneiderman, B., R. Mayer, D. McKay and P. Heller (1977). "Experimental investigations
of the utility o f detailed flowcharts in programming." Communications of the ACM
20(6): 373-381.

Short, M. J., J. Fang, M. J. Pont and A. Rajabzadeh (2006). "Assessing the impact of
redundancy on the performance of a Brake-by-Wire system". Society of Automotive
Engineers (SAE) World Congress, Detroit, USA.

Short, M. J. and M. J. Pont (2006). "Predicting the impact o f hardware redundancy on the
performance o f embedded control systems". Proceedings of the 6th UKACC
International Control Conference, Glasgow, Scotland.

Short, M. J., M. J. Pont and Q. Huang (2004a). "Simulation o f a vehicle longitudinal
dynamics". ESL 04-01 Embedded System Laboratory, University of Leicester,
Leicester, England.

Short, M. J., M. J. Pont and Q. Huang (2004b). "Simulation of motorway traffic flows".
ESL04-02 Embedded Systems Laboratory, University of Leicester, Leicester,
England.

Siemens (1996). "C167 derivatives - User's manual". Version 2.0.

Siemens (1997). "Proceedings of the European Pattern Languages o f Programming
Conference".

Singhoff, F., J. Legrand, L. Nana and L. Marce (2004). "Cheddar: A flexible real time
scheduling framework". Proceedings o f the 2004 annual ACM SIGAda international
conference on Ada, Atlanta, USA

Sobel, A. E. K. and M. R. Clarkson (2002). "Formal methods application: An empirical
tale of software development." IEEE Transaction on Software Engineering 28(3): 308-
320.

Solingen, R. V. and P. Stalenhoef (1997). "Effort measurement of support to software
products". Proceeding of the International Workshop on Empirical Studies of
Software Maintenance, Bari, Italy.

1 4 1

Specks, J. W. and A. Rajnak (2002). "LIN - Protocols, development tools, and software
interfaces for Local Interconnect Networks in vehicles". 9th International Conference
on Electronic Systems for Vehicles.

Stark, G., R. C. Durst and C. W. Vowell (1994). "Using metrics in management decision
making." IEEE Computer 27(9): 42-48.

Storey, N. (1996). "Safety-critical computer systems". Harlow, Addison-Wesley.
[0201427877].

Strong, G. W. (1995). "An evaluation of the PRC touch talker with Minispeak: Some
lessons for speech prosthesis design". Extra-ordinary human-computer interaction:
Interfaces for users with disability. A. D. N. Edwards. Cambridge, Cambridge
University Press: 47-57. [0521434130].

Subramanian, G. and W. Corbin (2001). "An empirical study o f certain Objects-Oriented
software metrics." Journal of Systems and Software 59(1): 57-63.

Subramanyam, R. and M. S. Krishnan (2003). "Empirical analysis of CK metrics for
Object-Oriented design complexity: Implications for software defects." IEEE
Transaction on Software Engineering 29(4): 297-310.

Tanenbaum, A. S. (1995). "Distributed operating systems". London, Prentice Hall.
[0131439340].

Tanenbaum, A. S. and M. van Steen (2002). "Distributed systems: Principles and
paradigms". New Jersey, Prentice Hall. [0130888931].

Temple, C. (1998). "Avoiding the babbling-idiot failure in a time-triggered
communication system". Proceedings of the Twenty-Eighth Annual International
Symposium on Fault-Tolerant Computing Munchen, Germany.

Thomesse, J. P. (1998). "A review of the fieldbuses." Annual Reviews in Control 22: 35-
45.

Thwin, M. M. T. and T. S. Quah (2005). "Application o f neural networks for software
quality prediction using Object-Oriented metrics." Journal of Systems and Software
76(2): 147-156.

Tindell, K. and A. Bums (1994). "Guaranteed message latencies for distributed safety-
critical hard real-time control networks". YCS 229 Real-Time Systems Research
Group, University of York, York, England.

Tindell, K. and J. Clark (1994). "Holistic schedulability analysis for distributed hard real
time systems." Microprocessing and Microprogramming - Euromicro Journal 40: 117-
134.

Tomgren, M. (1998). "Fundamentals of implementing real-time control applications in
distributed computer systems." Journal of Real-Time Systems 14: 219-250.

Tomgren, M., J. El-khoury, M. Sandfridson and O. Redell (2001). "Modelling and
simulation o f embedded computer control systems: Problem formulation". ISRN
KTH/MMK-{01/3}-SE Mechatronics Laboratory, Department of Machine Design,
Royal Institute of Technology, Stockholm, Sweden.

Turski, W. M. (1986). "And no philosophers' stone either". Information Processing 86,
Elsevier Science (Northern Holland).

14 2

Ulam, S., R. D. Richtmyer and J. von Neumann (1947). "Statistical methods in neutron
diffusion". LAMS-551 Los Alamos Scientific Laboratory, Los Alomos, USA.

Vessey, I. and S. A. Conger (1994). "Requirement specification: Learning object, process
and data methodologies." Communications o f the ACM 37(5): 102-113.

Vidler, P. and M. J. Pont (2006). "Computer assisted source-code parallelisation".
International Conference on Computational Science and its Applications (ICCSA
2006), Glasgow, Scotland.

von Hanxleden, R., A. Botorabi and S. Kupczyk (1998). "A codesign approach for safety-
critical automotive applications." IEEE Micro 18(5): 66-79.

Weller, E. F. (1994). "Using metrics to manage software projects." IEEE Computer 27(9):
27-33.

Wilson, R. "Inventor recalls birth of the MPU". EETimes Online. (Last accessed:
09/06/2006) http://www. eet. com/story/QEG20011212S004 7

Wittenmark, B., J. Nilsson and M. Tomgren (1995). "Timing problems in real-time control
systems". Proceedings of the 1995 American Control Conference, Seattle, USA.

Wolf, A. and C. Koller (1998). "16-bit microcontroller with two on-chip CAN modules".
5ht International CAN Conference, San Jose, USA.

Wood, M., J. Daly, J. Miller and M. Roper (1999). "Multi-method research - An empirical
investigation of Object-Oriented methodology." Journal o f Systems and Software
48(1): 13-26.

Zheng, N. N., S. Tang, H. Cheng, Q. Li, G. Lai and F. Y. Wang (2004). "Towards
intelligent driver-assistance and safety warning systems." IEEE Intelligent Systems
19(2): 8-11.

Zuberi, K. M. and K. G. Shin (1995). "Non-preemptive scheduling o f messages on
Controller Area Network for real-time control applications". Proceedings of the First
IEEE Real-Time Technology and Applications Symposium, Chicago, USA.

143

http://www

APPENDICES

Appendix-A Observing the development of reliable
embedded systems

This appendix includes a copy o f the Ayavoo et al. (2005a) paper.

A b s tra c t. D istributed em bedded system s are becom ing ub iquitous and increasingly complex. It is
frequently assum ed that the use o f sim ulation can support the design and im plem entation o f such
system s. H ow ever the contribution made by sim ulation tow ards the developm ent process is rarely
explored in depth and is incom pletely understood. The p ilo t study described in th is paper was intended
to help identify techniques which may be used to p rovide a quantitative assessm ent o f the contribution
which sim ulation m akes in this area. The study involved the observation o f the “sim ulation first”
developm ent o f a d istributed em bedded system. The results ob tained in the study are described, and will
form the basis for future investigations in this im portant area.

1. Introduction

Distributed embedded systems are becoming increasingly common and increasingly
complex. For example, the designer of a modem passenger car may need to choose
between the use o f one (or more) network protocols based on CAN, TTCAN, LIN,
FlexRay or TTP/C. The resulting network may be connected in, for example, a bus or star
topology. The individual processor nodes in the network may use event-triggered or time-
triggered software architectures, or some combination of the two. The clocks associated
with these processors may be linked using, for example, shared-clock techniques or
synchronization messages. These individual processors may, for example, be C l67,
ARM, MPC555 or 8051.

Overall, the number of possible system designs is enormous and prototyping even a small
subset of these possibilities is impractical: an alternative approach is therefore required
(Thane, 2000). According to Karatza: “The most straightforward way to evaluate the
performance without a full-scale implementation is through a modelling and simulation
approach. Detailed simulation models help determine performance bottlenecks inherent in
the architecture and provide the basis for refining the system configuration.”(Karatza,
2004, p. 183). Various other investigators have also argued for the use of simulation to
support the development of this type of system (El-khoury and Tomgren, 2001; Palopoli et
al., 2001; Tomgren et al., 2001; Castelpietra et al., 2002; Cervin et al., 2003; Redell et al.,
2004).

Intuitively, one might expect that use of an appropriate simulator may assist in the
development process. However, there is very little empirical data available that can
demonstrate that - for example - simulation reduces the overall effort in a project.
Similarly, even if use of a simulator does reduce the required effort, it is not clear exactly
how such a tool should be employed. Should we, for example, simulate the whole system
then build it, or should we simulate part o f the system, build this, then simulate the next
part, and so on?

The lack of empirical evidence is not, o f course, a problem unique to the use of simulators
and the software-engineering community is becoming increasingly aware of the need to
seek evidence of the effectiveness of any form of new technology (Pickard et al., 1998;

A-l

Germain and Robillard, 2005), rather than relying on sweeping statements about its
“obvious” effectiveness (e.g. see Turski, 1986; Fenton et al., 1994).

In light o f the observations above, the pilot study described in this paper was intended to
help identify techniques which can be used in future experiments in order to provide a
quantitative assessment of the contribution which simulation makes in this area. The
study involved the observation of the development o f a non-trivial distributed embedded
control system, first using a simulator and then developing “real code” for a network of
suitable microcontrollers.

The paper is organised as follows. Section 2 describes in detail the case study used in the
project described here. A comparison of the results from the simulation process and the
hardware implementation is presented in Section 3. Section 4 then presents the raw results
from the measures o f “effort” for the two development processes. Synchronisation of the
timescales for these processes is then discussed in Section 5. An analysis of the
synchronised results is then presented in Section 6. Finally, the results are discussed and
conclusions are presented in Section 7.

2. The case study

As outlined in the introduction, the study described in this paper involved the observation
of the “simulation first” development of a distributed embedded control system.

We describe the study in this section.

2.1 T h e t e s tb e d

The testbed used in this study was based on part o f an X-by-Wire control system for a
passenger car: it was adapted from a platform described by Castelpietra et al. (see
Castelpietra et al., 2002). In our version of Castelpietra’s system, six embedded nodes
were connected using a CAN bus (see Figure A -l). Each node contained an Infineon
“ 167” microcontroller: such devices are widely used in the automotive sector (Siemens,
1996.

The case study was developed using a Shared-Clock CAN (SCC) architecture using a tick
interval of 1ms and a CAN baudrate o f 500Kbits/sec (Pont, 2001). A FIFO buffer was
designed to ensure that the messages were queued correctly.

The characteristics of the tasks and messages are illustrated in Table A -l.

CAN BUS

Suspension (SUS)

Intelligent Switching Unit
(ISU)

Wheel Angle Sensor/
Dynamic Head-lamp
Control (WAS/DHC)

Anti-lock Braking System/
Vehicle Dynamic Control

(ABS/VDC)
Engine Control (EC)

Automatic Gear Box
(AGB)

F ig u re A - l Test bed used in this study (based on Castelpietra et al., 2002).

A -2

Table A -l Task and message characteristics o f the six distributed nodes. The Initial Delay and Period values are in

T
as

k
N

am
e

N
od

e

Pr
io

ri
ty

In
iti

al
D

el
ay

Pe
ri

od

In
pu

t
M

es
sa

ge

O
ut

pu
t

M
es

sa
ge

EC T ask l 1 1 10 M1
EC Task2 2 2 20 M3
EC Task3 3 3 100 M10
EC Task4 EC 4 4 7 M4
EC Task5 5 5 7 M2
EC Task6 6 6 25 M8
EC Task7 7 7 20 M6

AGB T ask l 1 1 15 M4
AGB Task2 AGB 2 2 50 M11
AGB Task3 3 3 25 M8
AGB Task4 4 4 7 M2
ABS T ask l 1 1 20 M5
ABS Task2 2 2 40 M6
ABS Task3 ABSA/DC 3 3 15 M7
ABS Task4 4 4 100 M12
ABS Task5 5 5 10 M3
ABS Task6 6 6 10 M9
WAS T ask l WAS/D HC 1 1 14 M2
WAS Task2 2 2 10 M9
SU S T ask l 1 1 20 M9
SU S Task2 2 2 10 M5
SU S Task3 SUS 3 3 5 M1
SU S Task4 4 4 7 M2
SU S Task5 5 5 7 M7
ISU T ask l 1 1 50 M8
ISU Task2 2 2 25 M11
ISU Task3 3 3 5 M1
ISU Task4 ISU 4 4 50 M10
ISU Task5 5 5 20 M6
ISU Task6 6 6 10 M9
ISU Task7 7 7 50 M12

2.2 Selecting a suitable simulator

To develop the system described in Section 2.1, a “simulation first” approach was
employed. The simulation process was used to predict the response times of all the signals
between the nodes, in order to avoid the expense of repeated prototyping at the
implementation stage (Redell et al., 2004).

A number of simulation tools have been developed by different research groups and
companies. For example, El-khoury and Torngren (El-khoury and Tomgren, 2001)
described a toolset which integrates the modelling of schedulers and distributed systems
with models of control system performance. This was later expanded to form a more
versatile simulation tool called AIDA (Redell et al., 2004). Another tool - RTSIM - was
described by Palopoli et al. (Palopoli et al., 2001) to help engineers to develop real-time
distributed embedded control systems. Similarly Eker and Cervin (Eker and Cervin, 1999)
described a Matlab toolbox simulating a real-time scheduler: this was later extended to
develop the TrueTime Simulator (Cervin et al., 2003).

In the present study, the TrueTime simulator was chosen to simulate the behaviour of the
system for the following reasons:

A -3

• TrueTime is capable of simulating the system to be controlled (that is, the plant
dynamics) and a wide range of software architectures and network protocols for the
distributed control system.

• Many control engineers are familiar with Matlab and Simulink (e.g. see Dutton et al.,
1997; Dorf and Bishop, 2000). Since TrueTime is a Matlab / Simulink package, this
makes it easy to integrate the software and network design process with the
development of the control system.

• TrueTime is an open-source package. This provides obvious advantages in terms of
cost, and also provides flexibility: both are important considerations in a research
project such as that described in this paper.

2.3 How do we measure (and compare) the effort involved?

There has been comparatively little research into the measurement of effort involved in
development of software-rich systems (Solingen and Stalenhoef, 1997; Basili et al., 2004;
Germain and Robillard, 2005).

In the present study we first needed to understand the work involved in the development of
both the “simulated” and “real” systems.

The work involved in the simulation phase included creating block diagrams (with the
appropriate connections as shown in Figure A-2) for the system and subsequently writing
Matlab codes for the TrueTime simulator. An example of a task in Matlab is shown in
Listing A -l.

All of the work involved in the implementation phase required coding in C. For example,
the task specified in TrueTime in Listing A -l is shown in C in Listing A-2.

Since both the simulation and implementation phases required coding, we used code-based
metrics as the basis of the comparisons that were carried out. Please note that although the
languages of the simulation and implementation are different, the structure and logic of the
tasks are similar. In addition, for the simulation phase, we included the time required to
build the block diagrams in the measures of effort required to develop the code since the
code and diagrams are interdependent.

f6_b*g
*7>fl

R«v *12.two

1

F ig u re A -2 The T rueT im e block diagram s for the system described in Section 2.1.

A -4

function [exectime, data] = Nl_Task7(seg, data)
global N1_MSG_6;
switch seg,

c a s e 1,
Sig_6 = N1_MSG_6(3);
% Turn on the LED on and off
if (Sig_6 == 1)

data.Sig_out = 1;
else

data.Sig_out = 0;
end

exectime = 0.0001;
case 2,

ttAnalogOut(data.out7Chan, data.Sig_out);
exectime = -1;

end
Listing A -l An exam ple o f a task specification created using the T rueT im e sim ulator.

void Nl_Task7(void)
{
// Turn on the LED on and off (reverse logic)
if (Msg_6)

{
Sig_pin_7 = 0;
}

else
{
Sig_pin_7 = 1;
}

}
L isting A-2 The task specified in TrueT im e in L isting A -l is show n in C here.

Three parameters were chosen to assess the effort involved:
• Development time;
• Lines O f Code (LOC);
• McCabe’s Cyclomatic Complexity v(G) (McCabe, 1976).

Time was chosen as it has been used before to measure the software development process
(Solingen and Stalenhoef, 1997; Basili et al., 2004). LOC was used as it can measure
effort in terms of product size (Stark et al., 1994; Weller, 1994). McCabe’s Cyclomatic
Complexity was chosen as it is a popular way o f assessing and comparing code
complexity (McCabe, 1976; S tarke/ al., 1994).

2.4 Deciding on a suitable frequency of measurement

Having decided what to measure, we needed to decide when to measure. In general, we
wish to have as much data as possible: thus a continuous sampling technique would seem
to be ideal. However, carrying out the measurements is likely to have an impact on the
process under observation (SEL, 1995): that is, the more frequently a measurement is
taken, the more likely we are to influence the development process itself.

In this study, it was decided that measurements should be taken every time a “new
version” of the software was developed: this technique is usually used to keep track of

A -5

code development that is constantly evolving (Tichy, 1985). Copies of all the versions
created were retained for subsequent analysis.

2.5 The observer and observee

Finding suitable test subjects to carry out an experiment is a common problem in empirical
software engineering (Pickard et al., 1998). In this pilot study, we used one observee (one
of the authors - DA): the same individual acted as the observer. This “one person”
approach has previously been shown to be effective (see Basili and Turner, 1975).

3. Does the simulator work?

After the simulation and implementation processes were completed, the first verification
test was to determine if the results obtained from the simulation matched those from the
hardware implementation. To do this, measurements of the response time for each of the
signals (19 in total) were made. Results for the TrueTime simulator were collected by
running the experiment on Simulink and logging the response time in a .MAT file. The
signals on the hardware implementation were measured using LabView via a National
Instruments data acquisition card (NI PCI-6035E).

The results obtained showed that the response time of all the 19 signals from the
simulation matched closely the measured results from the hardware (within 2 ms)

4. Raw results

A new version of the software was saved every time the project reached a significant
milestone. The versions produced are summarised in Table A-2.

Table A-2 D escription o f all the versions that were created for the softw are sim ulation and hardw are implementation and

Version Description Duration

SIM v1 C reated one M aster (M) and two slaves (S1 & S2) SCC configuration. S1 sen d s a
signal to S2 and S2 sen d s a signal to S1.

5

SIM v2 Similar to SIM v1 but u ses a basic m e ssa g e gueue. 4
SIM v3 Increased to five s laves with basic m e ssa g e gueue but couldn't work. 2

SIM v4
Reverted back to SIM v2 and gradually added another three slaves (S3, S4 & S5). S3,
S4 & S5 only took part in the SCC, but not in the m e ssag e gueue.

2

SIM v5 Added another two signals, one from S3 and one from M. S4 & S5 acted a s receivers. 2
SIM v6 Ported C astelp ietra’s te s tc a se to the existing platform (SIM v5). 5
HW v1 Implem ented the basic SCC architecture on all the six nodes. 7

HW v2
Developed the initial m e ssag e queue. W orks for only a single m essa g e sen t out from
slave.

4

HW v3 C ode w as modified to send multiple m e ssag es out from the slaves. 3

HW v4
M aster node w as modified to a lso have the capability to send multiple m essages . Got a
basic system working on th ree nodes, w here a m essag e is sen t from S 1 -S 2 through
M.

4

HW v5 Tested the m e ssa g e transfer for m aster-to-slave, slave-to-m aster and slave-to-slave. 4
HW v6 Im plem ented five nodes m e ssag e queue system with all nodes sending a signal out. 4
HW v7 Begin to port C aste lp ie tra’s te s tca se for M, S1, S2, S4 and S5. 3

HW v8
Continued porting C aste lp ie tra’s te s tca se for S3. Performed checks for all tasks,
signals and m e ssa g e properties.

2

HW v9 Modified the receiving signal for LabView m easurem ent purpose. 1

1 There was one problem with the raw data obtained for HW v l. The raw data showed duration o f seven
hours. However, this included the time (five hours) taken to detect a hardware error on a faulty 167
board. Assuming no hardware error was present, the actual development time for HW v l would have
been two hours, and this figure will be used in the remainder o f the paper.

A-6

Please note that for the first version of the hardware implementation (HW v l) and
software simulation (SIM vl), the number o f nodes used in both processes were different.
For the HW v l, all the six nodes were initially connected with the SCC approach to test
the development boards for any potential faults. This check was not necessary on the
simulator as there were no physical hardware component involved. Therefore, we decided
to begin testing the SCC architecture with only three nodes.

5. Synchronising the timescales

As can be seen from Table A-2, there were six different simulation versions produced and
nine versions of the hardware implementation. This makes comparison of the two
development processes difficult. In order to be able to carry out a meaningful comparison
of the two development processes, we needed to synchronise the two development
processes.

The first step we took was to divide the development process into three stages:
• To develop the basic SCC
• To implement a message queue within the scheduler
• To port Castelpietra’s testcase onto the existing platform

These three stages were then mapped onto the various versions of the software
development as illustrated in Table A-3.

Table A-3 M apping o f versions to developm ent stages.
Simulation Hardware Development

StageVersion X Duration Version X Duration
SIM v1 5 HW v1 2 Basic SCC (A)
SIM v2 4
SIM v3 2 HW v2 4

M essage Q ueue (B)
SIM v4 2 HW v3 3
SIM v5 2 HW v4 4

HW v5 4
HW v6 4

SIM v6 5 HW v7 3
Castelpietra (C)HW v8 2

HW v9 1
Total 20 Total 27

Based on Table A-3, it can be seen that for the three stages (A, B and C), the number of
versions produced during simulation and hardware implementation were different. In
order to produce the same number o f versions in each stage, two approaches were
employed:

• Grouping ‘similar’ versions together
• Adding ‘dummy’ versions

5.1 Grouping versions together

Based on Table A-3, it can be seen that Development Stage A and C seem to have only
one version for the hardware and simulation respectively. On the simulator, there were
two versions in Development Stage A. These two versions (SIM vl and SIM v2) were
grouped together into SIM v l. Note that the number of hours o f the ‘new’ SIM vl was the
summation of SIM vl and SIM v2. The similar process was also carried out for the
hardware (Development Stage C). The resulting data are summarized in Table A-4.

A -l

Table A-4 Results after grouping versions together.
Simulation Hardware Development StageVersion X Duration V ersion X Duration

SIM v1 9 HW v1 2 Basic SCC (A)
SIM v2 2 HW v2 4

M essage Q ueue (B)
SIM v3 2 HW v3 3
SIM v4 2 H W v4 4

HW v5 4
HW v6 4

SIM v5 5 HW v7 6 Castelpietra (C)
Total 20 Total 27

5.2 Adding dummy versions

Dummy versions are added to a particular stage when we wish to retain the resolution of
the results (grouping them would reduce the resolution). From Table A-4, it can be seen
that in Stage B the simulation process resulted in the creation of three versions while the
hardware process generated five versions. Since Stage B showed significant development
effort, it was decided that two dummy version will be added in the simulation results as
shown in Table A-5. The dummy versions were added such that they were evenly
distributed in the designated development stages.

Table A-5 A dding dum m y task.
Simulation Hardware Development

S tageV ersion X Duration Version X Duration
SIM v1 9 HW v1 2 Basic SCC (A)
SIM v2 2 HW v2 4

M essage Q ueue (B)
Dummy 2 HW v3 3
SIM v3 2 HW v4 4
Dummy 2 HW v5 4
SIM v4 2 HW v6 4
SIM v5 5 HW v7 6 C astelpietra (C)
Total 20 Total 27

Note that for the task duration, the previous value before the dummy version was inherited
for the dummy version. This will have the effect of ‘stretching’ Development Stage B of
the simulation such that the timescale is synchronised with the hardware implementation.
However, notice that the total task duration has not been changed. This will preserve the
actual time properties of the simulation process. The similar procedure was carried out for
LOC and McCabe’s Cyclomatic Complexity. The final results are shown in Table A-6.

Table A-6 R esults for all attributes after perform ing the tim eline synchronisation.
S im ulation H ardw are D evelopm ent

S tag eVersion X Duration LOC v(G) Version X Duration LOC v<G)
SIM V1 9 312 21 HW v1 2 6095 184 Basic SCC (A)
SIM v2 2 322 24 HW v2 4 2611 70

M essage Q ueue (B)
Dummy 2 322 24 HW v3 3 2655 74
SIM v3 2 649 52 HW v4 4 3954 109
Dummy 2 649 52 HW v5 4 3997 116
SIM v4 2 1025 91 HW v6 4 6612 218
SIM v5 5 1190 101 HW v7 6 7752 250 Castelpietra (C)

6. Analysis of the synchronised results

Using the synchronised results (Table A-6), the measured attributes for the simulation and
hardware implementation were plotted. Figure A-3 compares the effort (in terms of
working hours) for the simulation and the hardware.

Part I on the graph took longer for the simulation than on the hardware because the SCC
architecture was already available on the hardware (as a software pattern Pont, 2001) but

A-8

had to be built from scratch for the simulator. Part II was where the message queue was
developed. Here, the simulation took less time than the hardware because a FIFO
architecture was already available on the simulator (as a message box Henriksson and
Cervin, 2004) but not on the hardware. Part III was where testing and further
enhancement of the message queue was carried out. Again, this part required more effort
on the hardware than on the simulator due to the availability of a message queue.

Finally, Castelpietra’s testcase was ported onto the two platforms (Part IV). In this part,
both the hardware and simulator show an increase in effort. This is due to the manual
work o f porting all the tasks and message properties to the existing platform.

10

9

6
7

6

4

3

2

1

0
2 3 S 61 7

Figure A-3 Comparison o f the effort (time) between the simulation and hardware.

Looking at Figure A-4 and Figure A-5, it can be seen that LOC and v(G) follow a similar
trend. Both the results indicate that more effort (in terms of LOC and v(G)) was needed
on the hardware than on the simulator.

The difference in Part I was due to the number o f nodes that were initially used to set up
the SCC. The hardware used six nodes whereas the simulator only used three. As the
development stage progressed, the growth rate of the LOC and v(G) was much more rapid
on the hardware than on the software.

0000

6000

7000

0000

0000

3000

2000

0 e 763

Figure A-4 Comparison o f the effort (LOC) between the simulation and hardware.

A -9

IV
J

1 !
1 !

in
I /

i

11
\ l

Bm Ic SCC 1
SCC Wthconpleta
message (yjeue

Cestsfcletra’s
testcase

2 3 4 6 Q
Dtv^apmwt «ag*s

I— I
Figure A-5 Comparison o f the effort (McCabe) between the simulation and hardware.

7. Discussion and conclusions

The pilot study described in this paper was intended to help identify techniques which can
be used in future experiments in order to provide a quantitative assessment of the
contribution which simulation makes in the development of distributed embedded systems.
The study involved the observation of the development of a non-trivial distributed
embedded control system, first using a simulator and then developing “real code” for a
network of suitable microcontrollers.

The results presented here involved only a single study, involving one developer. It would
be inappropriate to claim that the findings presented here provide solid evidence for (or
against) the use o f simulation in the development o f distributed embedded control systems.
However, the results from this study do suggest that the measurements made here, used in
conjunction with techniques for timescale synchronisation, are worth pursuing in a future
study involving larger numbers of test subjects.

Acknowledgements - This work is supported by an ORS award (to DA) from the UK
Government (Department for Education and Skills), and by Pi Technology. Work on this
paper was completed while MJP was on Study Leave from the University of Leicester.

References

Basili, V., Asgari, S., Carver, J., Hochstein, L., Hollingsworth, J.K., Shull, F. and Zelkowitz, M.V. A pilot
study to evaluate development effort for high performance computing Technical report CS-TR-4588,
University o f Maryland, 2004.

Basili, V.R. and Turner, A.J. Iterative enhancement: A practical technique for software development. IEEE
Transaction on Software Engineering, 1 (4). 390-396.

Castelpietra, P., Song, Y.Q., Lion, F.S. and Attia, M. Analysis and simulation methods for performance
evaluation o f a multiple networks embedded architecture. IEEE Transactions on Industrial Electronics,
49 (No. 6).

Cervin, A., Henriksson, D., Lincoln, B., Eker, J. and Arz^n, K. How does control timing affect performance?
- Analysis and simulation o f timing using jitterbug and TrueTime. IEEE Control Systems Journal, 23
(3). 16-30.

Dorf, D. and Bishop, R. Modern control systems. Prentice-Hall, New Jersey, USA, 2001.
Dutton, K., Thompson, S. and Barraclough, B. The art o f control engineering. Addison Wesley, 1997.
Eker, J. and Cervin, A., A Matlab toolbox for real-time and control systems co-design, in Proceedings o f the

6th International Conference on Real-Time Computing Systems and Applications, (1999).
El-khoury, J. and TOrngren, M., Towards a toolset for architectural design o f distributed real-time control

systems, in IEEE Real-Time Symposium, (London, England, 2001), IEEE.

A -1 0

Fenton, N ., Pfleeger, S.L. and Glass, R.L. Science and substance: A challenge to software engineers. IEEE
Software, 11 (4). 86-95.

Germain, E. and Robillard, P.N. Engineering-based processes and A gile methodologies for software
development: A comparative case study. Journal o f System s an d Software, 75 (1-2). 17-27.

Henriksson, D. and Cervin, A. TrueTime 1.2— reference manual, Department o f Automatic Control, Lund
Institute o f Technology, Lund, Sweden, 2004.

Karatza, H.D. Modeling and simulation o f distributed systems and networks. Simulation Modelling Practice
and Theory, 12 (3-4). 183-185.

McCabe, T. A software complexity measure. IEEE Transactions on Software Engineering, 2. 308-320.
Palopoli, L., Lipari, G., Abeni, L., Abeni, M.D., P.Ancilotti and Conticelli, F., A tool for simulation and fast

prototyping o f embedded control systems, in Proceedings ofLCTESOl, (Snow Bird, Utah, United
States, 2001), ACM Press.

Pickard, L.M., Kitchenham, B.A. and Jones, P.W. Combining empirical results in software engineering.
Information and Software Technology, 40 (14). 811-821.

Pont, M.J. Patterns fo r tim e-triggered em bedded systems. Addison W esley, 2001.
Redell, O., El-khoury, J. and Tomgren, M. The AIDA toolset for design and implementation analysis o f

distributed real-time control systems. M icroprocessors and M icrosystem s, 28 (4). 163-182.
SEL. Software measurement guidebook Software Engineering Laboratory Series, NASA/GSFC, 1995.
Siemens. C l67 derivatives - User's manual Version 2.0, 1996.
Solingen, R.V. and Stalenhoef, P., Effort measurement o f support to software products, in Proceeding o f the

International Workshop on Empirical Studies o f Software Maintenance, (Bari, Italy, 1997).
Stark, G., Durst, R.C. and Vowell, C.W. Using metrics in management decision making. IEEE Computer, 27

(9). 42-48.
Thane, H. Monitoring, testing and debugging o f distributed real-time systems M echatronics Laboratory,

Department o f Machine Design, Royal Institute o f Technology, Sweden, 2000.
Tichy, W.F. RCS - A system for version control. Software - Practice & Experience, 15 (7). 637-654.
Torngren, M., El-khoury, J., Sandfridson, M. and Redell, O. Modelling and simulation o f embedded

computer control systems: Problem formulation, Mechatronics Laboratory, Department o f Machine
Design, Royal Institute o f Technology, Sweden, 2001.

Turski, W.M., And no philosophers' stone either, in Information Processing 86, (1986), Elsevier Science
(Northern Holland), 1077-1080.

W eller, E.F. U sing m etrics to m anage software projects. IEEE Computer, 27 (9). 27-33.

A -l 1

Appendix-B Two novel shared-clock scheduling
algorithms for use with CAN-based
distributed systems

This appendix includes a copy o f the Ayavoo et al. (accepted) paper on the various SCC
techniques. An earlier version o f this paper was published in Ayavoo et al. (2005b).

A b s tra c t. The C ontroller A rea N etw ork (CA N) protocol is w idely em ployed in the developm ent o f
d istributed em bedded systems. Previous studies have illustrated how a “ Shared-C lock” (S-C) algorithm
can be used in conjunction with CAN -based m icrocontrollers to im plem ent tim e-triggered netw ork
architectures. T his study explores some lim itations o f the existing S-C algorithm s (“TTC -SC 1” and
“T T C -SC 2”), and introduces two new algorithm s (TTC-SC3 and TTC -SC 4). The results presented in the
paper suggest that TTC-SC3 and TTC-SC4 are useful additions to the range o f shared-clock algorithms.

1. Introduction

Over recent years, we have considered various ways in which time-triggered software
architectures can be employed in low-cost embedded systems where reliability is a key
design consideration (e.g. Pont, 2001; Pont, 2003; Pont and Banner, 2004). Our previous
work in this area has focused on the development of both single- and multi-processor
designs. In the case of multi-processor designs, we have sought to demonstrate that a
“Shared-Clock” (S-C) architecture provides a simple, flexible platform for many systems
(Pont, 2001). In such designs, the Controller Area Network (CAN) protocol - introduced
by Robert Bosch GmbH in the 1980s (Bosch, 1991) - provides high-reliability
communications at low cost (Fredriksson, 1994; Sevillano et al., 1998; Thomesse, 1998;
Farsi and Barbosa, 2000). Since the CAN protocol has become widely used in many
sectors, such as automotive and automation (Fredriksson, 1994; Zuberi and Shin, 1995;
Sevillano et al., 1998; Thomesse, 1998; Pazul, 1999; Farsi and Barbosa, 2000;
Misbahuddin and Al-Holou, 2003), most modem microprocessor families now have
members with on-chip support for this protocol (e.g. Philips, 1996; Siemens, 1997;
Infineon, 2004; Philips, 2004).

The original S-C protocols were introduced in 2001 (Pont, 2001). In this paper, we
consider some of the features and limitations of two such protocols, which will be referred
to here as “TTC-SC1” and “TTC-SC2”2. We go on to present two new S-C protocols -
TTC-SC3 and TTC-SC4 - which have features better matched to the needs of some
applications.

The paper is organised as follows. Section 2 and Section 3 of the paper gives an overview
of the TTC-SC1 and TTC-SC2 algorithms, respectively. Section 4 discusses some of the
limitations of TTC-SC1 and TTC-SC2. TTC-SC3 and TTC-SC4 are introduced in Section
5 and Section 6, respectively. An initial evaluation of the TTC-SC3 and TTC-SC4
algorithms is presented in Section 7. Section 8 goes on to discuss some of the weaknesses
of the TTC-SC3 and TTC-SC4 algorithms. Our conclusions are presented in Section 9.

2 Please note that the algorithm referred to here as “TTC-SC1” was referred to as “SCC Scheduler” in the
original publication (Pont, 2001). “TTC-SC2” was originally viewed as a variant o f TTC-SC1.

B-l

2. The TTC-SC1 algorithm

Although CAN is often viewed as an event-triggered protocol (Leen and Heffeman, 2002),
it has been shown that time-triggered behaviour can be achieved using TTC-SC1 (Pont,
2001). An overview of the TTC-SC1 algorithm is presented in this section.

2.1 Synchronising the nodes

The TTC-SC1 algorithm is a time division multiple access (TDMA) protocol based on
CAN. The key idea behind TTC-SC1 is to synchronise the clocks on the individual nodes
by sharing a single clock source between the various processor boards (see Figure B-l).

L

M aster Slave 1 Slave 2

T ick m e s s a g e s (from m a s te r to s la v e s)

Slave N

Acknowledgement Acknowledgement Acknowledgement

© -- <>--------------------------------------- <
i i i c o w o y c

b............................. ©

F ig u re B-l C o m m u n ic a tio n b e tw een M a ste r an d S la v es n o d e s in S -C a rch itec tu re s .

In this case, we have a single accurate clock on the Master node that generates periodic
timer interrupts to drive the scheduler (for example a time-triggered co-operative
scheduler in Pont, 2001) of the Master node. In addition, the Master node also generates a
Tick message that is sent to the Slave nodes connected on the network using a CAN
message. All the Slave nodes respond to the Tick message by generating an interrupt
(from the CAN hardware). This interrupt will in turn be used to drive the scheduler of the
Slave nodes.

2.2 Detecting communication and node failures

Besides synchronising the individual nodes on the network, TTC-SC1 is also responsible
for detecting network and node failures. TTC-SC1 does this by having the Slave nodes
return an “Acknowledgement” (Ack) message back to the Master node (Figure B-l). This
way, the Master node will know the status of all its Slaves after one TDMA round

With each Tick message, the Master node identifies which Slave should return an Ack
message by embedding that particular Slave ID in the data stream. Only the Slave with
this particular ID will send an Acknowledgement back to the Master. The Master will
then check the status of this Slave, and send the next Tick message out with a new Slave
ID.

Figure B-2 illustrates an example of the TDMA round for a network with one Master and
three Slaves, where Tick messages originate from the Master while Ack-X message is
transmitted from Slave-X.

B-2

TDMA round
M-- ►

Tick || Ackl Tick || Ack2 Tick Ack3 Tick | Ack1
A j i i

4 ----------------------- ►
Tick interval

L i k. Time

fas te r Tick
(Timer interrupt)

Figure B-2 The round-robin TDMA configuration using TTC-SC1.

2 .3 E x c h a n g in g d a ta b e tw e e n th e n o d es

CAN messages may be up to 8 bytes long. Only a limited overhead (typically up to 1 byte
in each message) is required to support the TTC-SC1 protocol. This leaves around 7 bytes
/ message for data transfers between the Master and Slave nodes.

Please note that in this protocol, Slave-to-Slave communication is not permitted: all
communication is directed via the Master node (through Tick and Ack messages).

2 .4 Im p le m e n ta t io n

In the TTC-SC1 algorithm, only two CAN messages are exchanged within a Tick interval.
Typically, on the Master node, CAN Message Object (CMO) 0 will be configured to send
the Tick messages. A second CMO will be configured to receive the Ack messages from
all the Slaves. Similarly, on the Slave nodes, CMO 0 will usually be configured to receive
Tick messages and CMO 1 will be configured to transmit the Ack messages.

On the Master node, no CAN interrupts should be employed. On the Slave nodes, the
CAN interface will be configured to generate a CAN interrupt upon receipt of a valid Tick
message.

3. The TTC-SC2 algorithm

In some networks, the round-robin approach used to communicate with the Slave nodes in
TTC-SC1 may not be efficient. For example, it may be that the Master node is required to
check the status of a particular Slave node more frequently than the other Slaves. To do
this, a modified version of the TTC-SC1 algorithm can be used: this is referred to here as
“TTC-SC2”.

In the TTC-SC2 algorithm, the configuration of the TDMA round is assumed to be
flexible. For example, for the similar system illustrated in Figure B-2, it may be necessary
that the status of Slave 1 is checked more frequently. Using TTC-SC2, the TDMA round
illustrated in Figure B-3 may be more suitable.

B-3

TDMA round
^ ►

Tick | Ackl Tick || Ack2 Tick |\ Ackl Tick | Ack3 Tick || Ackl
t i i i i

4 ----------------------►
Tick intenal

i Ak. J Time

Master Tick
(Timer interrupt)

Figure B-3 A different TDMA round for a four-node system using TTC-SC2.

4. Problems with TTC-SC1 and TTC-SC2

We consider some of the drawbacks of TTC-SC1 and TTC-SC2 in this section.

4.1 Overview

The TTC-SC1 and TTC-SC2 algorithms are very simple and allow the creation of low-
cost, time triggered, CAN-based networks with highly predictable patterns of behaviour.
The algorithms are flexible and can also be used with a range of other network protocols,
including RS485, without difficulty (see Pont, 2001).

However - inevitably - neither algorithm is a perfect match for all applications. In
particular, when used with CAN, both TTC-SC1 and TTC-SC2 have the following
limitations:

i) Direct transfer of messages between Slave nodes is not supported, with the
consequence that Slave-to-Slave transmission times are comparatively long.

ii) To detect the failure of a given Slave node will take up to (N +l)xT seconds (where N
is the number of Slave nodes, and T is the network Tick interval).

iii) They suffer from task jitter, due to CAN bit stuffing.

We consider each of these issues in more detail in the remainder of this section.

4.2 Slave-to-Slave message latency

In TTC-SC1 and TTC-SC2, the design of the (TDMA) protocol means that all
communication between Slave nodes is directed via the Master node. This makes bus
traffic easy to predict, but increases the delays involved in Slave-to-Slave
communications.

For example, if all the nodes on the network - including the Master - are sending eight-
byte data messages, this makes message piggy-backing (see Tindell and Bums, 1994)
impossible. Therefore, for each Tick, the Master needs to decide which data message
should be relayed out to the Slaves. The technique used to relay the messages could be
either priority-based or round-robin. Relaying the messages out to the Slaves will cause
additional delay to the Slave-to-Slave message latency.

Additional delays such as these can sometimes have a detrimental impact on overall
system performance. In control systems, for example, large delays between a sampling

B-4

instant and a corresponding actuator response can seriously degrade system stability and
performance (Sandfridson, 2000).

4.3 Failure detection time

In TTC-SC1, the Master node has to wait for a complete TDMA round before the status of
all the Slaves on the network can be verified (and as the number of Slave nodes increases,
the duration of the TDMA round becomes longer).

The worst-case failure detection time for the TTC-SC1 algorithm is given by Equation 1:

Failure detection time = (Number o f slaves + 1) x Tick - CANTickmsg (1)

where CANTickMsg refers to the time taken for the Master node to transmit a Tick
message

Take the system illustrated in Figure B-4 as an example. Here, it would take up to four
Tick intervals for the Master to detect a failure on Slave 1.

Failure on Slave 1 just after it
sends a valid Acknowledgement
message

Worst case failure detection tine

Failure on Slavel is detected by
the Master 1

Tick Ackl Tick | Ack2 Tick | Ack3 Tick | Ack l Tick

i
i
i
i

i * i
n Tick interval

i J

\
t 1

k Time

CAN Tick msg

Figure B-4 Failure detection time for TTC-SC1,

This delay could be slightly reduced by using the TTC-SC2 algorithm, as illustrated in
Figure B-5. However, a failure of a “low priority” Slave (one that is sent Tick messages
infrequently) - such as Slave2 - will still take a long time to be detected by the Master.

B-5

Failure on Slave 1 just after it
sends a valid Acknoui ledgement
message

Failure on Slave 1 is detected by
the Master

Worst case feilure detection time

Tick Ackl Tick Ack2 Tick Ack1 | Tick Ack3 Tick
A ii

i
i
i

i ‘lick interval
— ;--------------- ►

■ i

k i i ^ 4 w
1 Time

CAN Tick msg

Figure B-5 Failure detection time for TTC-SC2.

4.4 Jitter due to bit-stuffing

The CAN protocol uses "Non Return to Zero” (NRZ) coding for bit representation. Under
such a scheme, drift in the receiver’s clock can occur when a long sequence of identical
bits has been transmitted. Such a drift might, in turn, result in message corruption.

To avoid the possibility of such a scenario, the CAN communication protocol (at the
physical level) employs a bit-stuffing mechanism which operates as follows: after five
consecutive identical bits have been transmitted in a given frame, the sending node adds
an additional bit, of the opposite polarity. All receiving nodes remove the ‘inserted’ bits to
recover the original data (Farsi and Barbosa, 2000). Whilst providing an effective
mechanism for clock synchronization in the CAN hardware, the bit-stuffing mechanism
causes the frame length to become a complex function of the data contents.

It is useful to understand the level of message variation that this process may induce.
When using (for example) 8-byte data and standard CAN identifiers, the minimum
message length will be 111 bits (without bit stuffing) and the maximum message length
will be 135 bits (with the worst-case level of bit stuffing): see Nolte et al., 2003 for details.
At the maximum CAN baud rate (1 Mbit/sec), this translates to a possible variation in
message lengths of 24 ps.

These variations in message transmission times can have important implications in any
real-time systems in which it is important to be able to predict event timing at the
microsecond level. For example, in systems using TTC-SC1 and TTC-SC2, variations in
the duration of “Tick” messages can have a significant impact on the levels of task jitter in
the Slave nodes (see Nahas and Pont, 2004; Nahas et al., 2005).

This process is illustrated in Figure B-6.

B-6

<L-

j < • - —

Tick
message

■ J

i
____ „n. 1

k
................ T _

i

Tick
m essage

T-J ----- > Slave Ticks (with jitter)

| S lave Ticks (Ideal)

Tick
m essage

■>t- ■t
Time

1 M aster Ticks

Figure B-6 Impact o f frame length on the timing o f Slave Ticks in TTC-SC1 and TTC-SC2.

5. TTC-SC3 algorithm

To resolve some of the shortcomings of the TTC-SC1 and TTC-SC2 algorithms, we
developed TTC-SC3. An overview of this new protocol is presented in this section.

5.1 More than one Slave can reply in a Tick interval

In the TTC-SC3 algorithm, more than one Slave is allowed to reply within one Tick
interval. Each time a Tick message is sent from the Master, an ID is also sent within the
message (similar to TTC-SC1 and TTC-SC2). However, with TTC-SC3, it is possible to
have more than one Slave reply to each ID. In this case, we let the CAN controller handle
any message collisions. The Master node then checks that the appropriate Slaves have
replied to a designated Tick ID before transmitting the next Tick message.

For example, let us assume a four-node system is to be implemented on a single CAN bus.
Figure B-7 shows the typical message exchange on the CAN network.

Tick interval = TDMA round
 ►

Tick ficM ficU2 11 Ack3 Tick Ack1 M<2 A ck3

n i L Time

ktaster Tick
(Timer interrupt)

Figure B-7 Tick and Acknowledgements for the TTC-SC3 algorithm.

As an example of a more complicated configuration, suppose that we have a system with
N Slaves, it is possible that all N Slaves reply within one Tick interval, or M Slaves reply
within the first Tick interval and N-M Slaves reply in the second Tick interval; where
M<N. In the latter instance, the TDMA round is extended across two tick intervals. The
algorithm can be reconfigured such that the TDMA round is extended across more Tick
intervals. The example in Figure B-8 illustrates two possible examples of how a seven-
node system can be configured.

B-7

Configuration i
^ -----------------------

TDMA round

Tick 1| Ackl |1 Ack2 11 Ack3 Tick Ack4 1 Ack5 Ack6

J i i i | Time

fufaster Tick
(Tiner interrupt)

Configuration ii
^ -------------------------

TDMA round

Tick Ack1 || Ack2 Tick Ack3 I Ack4 Tick Ack5 Ack8

i i J l i ------ £ ---------- ►* Time

fubster Tick
(Tiner interrupt)

Figure B-8 Two possible TDMA configurations using the TTC-SC3 algorithm for a seven-node system.

5.2 A ll m e ssa g e s a r e b r o a d c a s t

In the TTC-SC3 algorithm, all messages sent from the Slave nodes are broadcasted to all
nodes (including the other Slaves).

5.3 I m p le m e n ta t io n

The broadcasting of Slave messages is made possible (on a CAN network) by assigning to
each Slave node a unique CMO for its Ack message.

Please note that - as with TTC-SC1 and TTC-SC2 - these Ack messages should not trigger
CAN interrupts.

6. The TTC-SC4 algorithm

TTC-SC4 is another S-C algorithm which builds on TTC-SC3. We describe TTC-SC4 in
this section.

6.1 T ic k o n ly m e ssa g e s

When using TTC-SC4, the Master node is configured to send out “empty” Tick messages.
These messages synchronise the network but - after the initialisation process - will not
generally contain data. As such, the Master node simply generates the “heartbeat” of the
network, but does no data processing. This approach allows the Tick message to have a
fixed data content, which results in a constant CAN Tick message length. Thus, jitter
caused by the Tick messages can be reduced.

Please note that, compared to TTC-SC1, TTC-SC2 and TTC-SC3 (where the Master can
be involved in the system data processing), the total number of nodes on the system will -
usually - increase by one.

B-8

Please also note that this is not the only way to reduce the jitter due to bit stuffing in CAN-
based networks (e.g. see Nahas et al., 2005, Nahas and Pont, in press).

6 .2 M o re th a n o n e S la v e c a n re p ly in a T ic k in te r v a l

As for TTC-SC3.

6.3 A ll m e ssa g e s a r e b r o a d c a s t

As for TTC-SC3.

7. Evaluating the TTC-SC3 and TTC-SC4 algorithms

We describe the results of a small number of experiments carried out to illustrate the use
of the TTC-SC3 and TTC-SC4 algorithms in this section.

7.1 R e d u c e d f a i lu r e d e te c t io n t im e

TTC-SC3 and TTC-SC4 allows the Master node to quickly obtain Ack messages from the
Slaves.

For example, Figure B-9 illustrates an example where Slave 1 suffers a failure as soon as it
has transmitted its Ack message. We assume we have all Slaves reply to each Tick
message. As a result, the longest possible time that the Master node takes before a failure
on the Slave node can be detected is calculated using Equation 2. This duration is slightly
less than two Tick intervals (which is significantly less than TTC-SC1 / TTC-SC2 in non
trivial networks).

failure detection time = 2 x Tick - CANtickmsg (2)

Failure on Slave 1 ju s t after it
s e n d s a valid A *now ledgem errt Failure on Slave 1 is detected by
m essag e | \Aibrst c ase feilure detection tim e th e M aster |

r* -- ►
i1

Tick 1 A ckl PcV.2 1 Ack3 1 f i c M Tick | Ack1 Ack2 | A * 3 Ack4 Tick

A [i
i
i
l Tick irrte rval = TDM Around

4 1 hr

l A

i

Tick interval
\̂ d h.

 ̂ Time

! 1
1 i
' .1 |
i i Tick irrte rval -C A N Tick msgi . j h j; -- w-

V i
CAN Tick m sg

Figure B-9 Calculating the worst-case Slave failure detection time o f TTC-SC3/TTC-SC4.

Of course, the precise failure detection time will depend very much on the way the TDMA
round was scheduled. If the TDMA round is extended across more than one Tick interval,
then Equation 3 is used to calculate the failure detection time. This is illustrated more

B-9

clearly in Figure B-10 where Slave 1 suffers a failure as soon as it has transmitted its Ack
message.

failure detection time = TDMAround - CANtickmsg + Tick (3)

Failure on Slave 1 just alter it Failure on Slave 1 is detected by
sends a valid .Acknowledgement the htaster
m essage , i

Worst case failure detection tine

1
1

* -- *
i i r i

i}
Tick Ack1 | Ack2 Tick | Ack3 Tick | *k1 Ack2 Tick

i

i

TDM)

l i

Around

L i

1
1

L Time

1
1
1
1
1
1

w

TDMAround-CANTick msg

1
1

Tick interval

i
i

CAN Tick msg

Figure B-10 Calculating the worst-case Slave failure detection time for TTC-SC3 when the TDMA round
extends across more than one tick interval.

7.2 Reduced Slave-to-Slave message latency

When compared with TTC-SC1 and TTC-SC2, the latency of message transmission
between Slaves is reduced in both TTC-SC3 and TTC-SC4.

To illustrate this, a comparison of the implementation between TTC-SC1, TTC-SC3 and
TTC-SC4 was carried out (see Figure B-l l)3.

TTC-SC1 /TTC-SC3

Master Slavel

N 1 N2 N3

TTC-SC4

Slave2Master Slave3Slavel

N 1 N2 N3

Figure B-l 1 Comparing TTC-SC1, TTC-SC3 and TTC-SC4.

Referring to Figure B-l 1, each of the main nodes (Nl, N2, N3) executes several periodic
tasks which exchange data around the network.

3 Note that, in both the TTC-SC3 and TTC-SC4 implementations, all Slaves replied to each Tick message.

B-10

We made our measurements using a (dummy) control system that involves all three nodes.
Specifically, N1 had a control task that issued a periodic request for data from N2 and N3.
N2 and N3 each sent data back to N1 as soon as they received the request. N1 then
produced a control value. We measured the interval between the data request (on N l) and
the completion of the control value calculation on this node.

Table B-l shows the control delay for the different versions of this system. The results
indicate that the control delay when using TTC-SC3 and TTC-SC4 was shorter than that
obtained using TTC-SC1. In addition, the variation in the control delay for the TTC-SC3
and TTC-SC4 implementations was insignificant when compared to the corresponding
TTC-SC1 results.

Table B -l Comparison o f measured control delays for TTC-SC1, TTC-SC3 and TTC-SC4.

TTC-SC1 TTC-SC3 TTC-SC4

Minimum (ps) 4013 3003 4008

Maximum (ps) 6012 3003 4022

Average (ps) 5012 3003 4012

Max-Min(ps) 1999 0 14

Std. Deviation 816 0 3

7.3 Jitte r due to bit-stuffing

With the TTC-SC3 algorithm, the level of jitter due to bit stuffing remains the same as that
obtained using TTC-SC1 and TTC-SC2.

To illustrate the reduction in jitter obtained with TTC-SC4, two versions of a three-node
system (each with 1 Master and 2 Slaves) were implemented using TTC-SC3 and TTC-
SC4. A CAN baudrate of 500kbits/sec was used in each system. For TTC-SC3, the
content of the Tick data messages were periodically rotated among three different values
(the Tick messages were “empty” when using TTC-SC4).

Measurements of the interval between sending the Tick message on the Master and
receiving the message on the Slaves were carried out (for both the Slave nodes). The
results obtained (shown in Table B-2) indicate that the TTC-SC3 algorithm had higher
jitter compared to TTC-SC4. The results also indicate that the maximum jitter for the
TTC-SC4 algorithm on the CAN message transmission time was +/- 1 bit time (at 500
kbits/sec, one bit time is 2ps). This is in line with the results obtained previously (Nahas
and Pont, 2004) for minimal jitter levels in CAN messages.

B -l 1

Table B-2 Message transmission times for TTC-SC3 and TTC-SC4.

Slavel

TTC-SC3

Slave2

TTC-SC4

Slavel Slave2

Minimum (ps) 186 186 122 122

Maximum (ps) 200 200 126 126

Average (ps) 192 192 124 124

Max-Min (ps) 14 14 4 4

Std. Deviation 5 5 1 1

8. Discussion

Although we have shown that TTC-SC3 and TTC-SC4 algorithms have several benefits
(when compared to TTC-SC1 and TTC-SC2), there are also some drawbacks. We
consider these here.

8.1 Number of network nodes

Using the TTC-SC4 algorithm, the total number o f nodes required in each network will be
increased by one. This is because a separate Master node is required to function as the
network synchroniser. This will obviously add to the system cost.

8.2 Tick interval

In most cases, TTC-SC3 and TTC-SC4 require all the Slaves to reply within one Tick
interval. As such, the following relationship must hold:

Tick interval > Time take fo r all Ack messages to be received by the Master

That is the Tick interval of the system is related to the number o f Slaves, and the size of
each o f the Slave’s Ack messages. This may be a significant drawback in networks
requiring a low Tick interval.

8.3 Portability

The TTC-SC3 and TTC-SC4 algorithms cannot be easily ported to other network
protocols, such as RS485. This is due to the fact that the algorithms require more than one
Slave to reply to each Tick message. Most CAN controllers can deal with this because
they can handle message conflicts and support multiple receive buffers. By contrast,
RS485 has one receive buffer and no direct support (in hardware) for handling message
conflicts.

Please note:

• Some CAN controllers (such as MCP2510) do not have 15 message receive buffers.
Overall, this reduces the portability of the TTC-SC3 and TTC-SC4 algorithms when
compared with TTC-SC1 and TTC-SC2.

• The number of nodes connected to the CAN bus will depend on the number of
message objects supported by the CAN hardware (in most cases, this will be up to 15:
see, for example, Siemens, 1996). If more than 15 nodes need to be connected, a

B-12

second CAN controller can be used. Many microcontrollers now have two or more
on-chip CAN controllers and can support such requirements. However, such an
arrangement further reduces portability (and further adds to costs).

8.4 Babbling Slaves

TTC-SC3 and TTC-SC4 will - typically - rely on all the Slaves to send an
Acknowledgement back to the Master within one Tick interval. If one of the Slaves have
a “babbling idiot” problem (Kopetz, 1998) or there is constant message retransmission
from one of the Slaves, then lower priority CAN messages from other Slaves will not have
access to the network. This will cause the Master to “think” that the Slaves with the lower
priority CAN messages are faulty when in-fact it is only a single node that is causing the
problem.4

To reduce the impact o f this problem, the CAN controller can be configured to disable its
automatic message retransmission. However, this is not a complete solution, and the
feature is only available on certain CAN implementations (such as that used in the
Infineon XC167).

9. Conclusions

This study has investigated the use of shared-clock (S-C) algorithms with CAN-based
systems. Specifically, we have looked at two new S-C algorithms (TTC-SC3 and TTC-
SC4) which are - when compared with TTC-SC1 and TTC-SC2 - intended to reduce
Slave-to-Slave message transmission times, reduce failure detection times and (in the case
of TTC-SC4) reduce task jitter.

While no single algorithm is ever likely to provide a perfect solution to all networking
problems, the results and discussion presented here suggest that TTC-SC3 and TTC-SC4
are very useful additions to the range of S-C algorithms.

Acknowledgements - This work is supported by an ORS award (to DA) from the UK
Government (Department for Education and Skills), and by Pi Technology. Work on this
paper was completed while MJP was on Study Leave from the University of Leicester.

References
Bosch, R.G., 1991. CAN specification version 2.0, Robert Bosch GmbH, Postfach 50, D-7000 Stuttgart 1,

Germany.
Farsi, M. and Barbosa, M., 2000. CANopen implementations: Applications to industrial networks. Research

Studies Press Ltd.
Fredriksson, L.B., 1994. Controller Area Networks and the protocol CAN for machine control systems.

Mechatronics, 4(2): 159-192.
Infineon, 2004. Connecting C l66 and C500 microcontroller to CAN, Infineon Technologies.
Kopetz, H., 1998. A comparison o f CAN and TTP, 15th IFAC Workshop on Distributed Computer Control

Systems, Como, Italy.
Leen, G. and Heffernan, D., 2002. TTCAN: A new time-triggered Controller Area Network.

Microprocessors and Microsystems, 26(2): 77-94.

4 Although TTC-SC1 and TTC-SC2 also suffer from problems caused by “babbling idiot” failures, the
impact is more severe (and harder to guard against) in TTC-SC3 and TTC-SC4, due to the smaller error
margins.

B-13

Misbahuddin, S. and Al-Holou, N., 2003. Efficient data communication techniques for Controller Area
Network (CAN) protocol, ACS/IEEE International Conference on Computer Systems and Applications,
Tunis, Tunisia.

Nahas, M. and Pont, M.J., 2004. Reducing task jitter in shared-clock embedded systems using CAN. In: A.
Koelmans, A. Bystrov and M.J. Pont (Editors), Proceedings o f the UK Embedded Forum, Birmingham,
UK.

Nahas, M., Short, M.J. and Pont, M.J., 2005. The impact o f bit stuffing on the real-time performance o f a
distributed control system, 10th international CAN Conference, Rome, Italy.

Nolte, T., Hansson, H., Norstrdm, C. and Punnekkat, S., 2003. Using bit-stuffing distributions in CAN
analysis, IEEE/IEE Real-Time EMbedded Systems Workshop, (Satellite o f the IEEE Real-Time
Systems Symposium) London.

Pazul, K., 1999. Controller Area Network (CAN) basics, Microchip Technology Inc.
Philips, 1996. PCA82C250/251 CAN transceiver, Philips Semiconductors.
Philips, 2004. SJA1000 stand-alone CAN controller.
Pont, M.J., 2001. Patterns for time-triggered embedded systems. Addison W esley.
Pont, M.J., 2003. Supporting the development o f time-triggered co-operatively scheduled (TTCS) embedded

software using design patterns. Informatica, 27(1): 81-88.
Pont, M.J. and Banner, M.P., 2004. Designing embedded systems using patterns: A case study. Journal o f

Systems and Software, 71(3): 201-213.
Sandfridson, M., 2000. Timing problem in distributed real-time computer control problems. ISSN 1400-

1179, Mechatronics Lab, Department o f Machine Design, Royal Institute o f Technology, KTH,
Stockholm, Sweden.

Sevillano, J.L., Pascual, A., Jimenez, G. and Civit-Balcells, 1998. Analysis o f channel utilization for
Controller Area Networks. Computer Communications, 21(16): 1446-1451.

Siemens, 1996. C l67 derivatives - User's manual, Version 2.0.
Siemens, 1997. Proceedings o f the European Pattern Languages o f Programming Conference.
Thomesse, J.P., 1998. A review o f the fieldbuses. Annual Reviews in Control, 22: 35-45.
Tindell, K. and Burns, A., 1994. Guaranteed message latencies for distributed safety-critical hard real-time

control networks. YCS 229, Real-Time Systems Research Group, University o f York.
Zuberi, K.M. and Shin, K.G., 1995. Non-preemptive scheduling o f messages on Controller Area Network

for real-time control applications, Proceedings o f the First IEEE Real-Time Technology and
Applications Symposium, Chicago, USA, pp. 240-249.

B-14

Appendix-C A ‘hardware-in-the-loop’ testbed
representing the operation of a cruise-
controi system in a passenger car

This appendix includes a copy o f the Ayavoo et al. (2005c) paper on the detailed
implementation o f an automotive cruise-control system testbed.

Abstract. The developer of a modem embedded system faces a bewildering range of design options.
One way in which the impact of different design choices can be explored in a rigorous and controlled
manner is through the use of appropriate hardware-in-the loop (HIL) simulator. HIL simulators - unlike
software-only equivalents - allow studies to be carried out in real time, with real signals being measured.
In this paper, we describe a HIL testbed that represents an automotive cruise-control system (CCS). A
case study is used to illustrate how this testbed may be used to compare the different implementation
options for single-processor and multi-processor system designs.

1. Introduction

The developer o f a modem embedded system faces a bewildering range of design options.
For example, the designer of a modem passenger car may need to choose between the use
of one (or more) network protocols based on CAN (Rajnak and Ramnerfors, 2002),
TTCAN (Hartwich et al., 2002), LIN (Specks and Rajnak, 2002), FlexRay or TTP/C
(Kopetz, 2001). The resulting network may be connected in, for example, a bus or star
topology (Tanenbaum, 1995). The individual processor nodes in the network may use
event-triggered (Nissanke, 1997) or time-triggered (Kopetz, 1997) software architectures,
or some combination of the two. The clocks associated with these processors may be
linked using, for example, shared-clock techniques (Pont, 2001) or synchronisation
messages (Hartwich et al., 2000). These individual processors may, for example, be C l67
(Siemens, 1996), ARM (ARM, 2001), MPC555 (Bannatyne, 2003) or 8051 (Pont, 2001).

One way in which we can explore the impact of different design choices in a rigorous and
controlled manner is through the use of appropriate hardware-in-the loop (HIL) simulators
(see for example Hanselmann, 1996; Dynasim, 2003). HIL simulators - unlike software-
only equivalents - allow studies to be carried out in real time, with real signals being
measured.

The basic setup for the HIL simulator is illustrated in Figure C-l, where the HIL
simulation and the embedded system interconnect with each other by exchanging
information through the necessary I/Os, such as digital, analogue and serial ports.

C-l

Inputs to embedded
systemOutputs from

embedded system
Embedded System

I /O

Figure C-l The HIL approach.

We have recently described a detailed HIL simulation of an adaptive cruise-control system
(ACCS) for a passenger car (Short et al., 2004b; Short et al., 2004c; Short et al., 2004a;
Short and Pont, in press), and shown how this can be employed to assess new network
protocols (Nahas et al., 2005).

The complexity o f the full ACCS simulation ensures accurate results at the cost of system
complexity. In some cases, it can be useful to be able to eliminate inappropriate design
options more quickly through this use of a less detailed HIL simulation. To this end a
simple (non-adaptive) cruise-control design was developed. The design, implementation
and evaluation of this simple simulator is described in detail in this paper.

The paper is organised as follows. Section 2 to Section 7 introduce the cruise-control
testbed and describe the model and implementation details. A case study that employs the
testbed is then presented in Section 8. Our conclusions are presented in Section 10.

2. An overview of the CCS testbed

An automotive cruise-control system (CCS) is intended to provide the driver with an
option of maintaining the vehicle at a desired speed without further intervention, by
controlling the throttle (accelerator) setting. Such a driver assistance system can reduce
the strain on the driver especially while travelling on long journeys.

Such a CCS will typically have the following features:
1) An ON / OFF button to enable / disable the system.
2) An interface through which the driver can change the set speed while cruising.
3) Switches on the accelerator and brake pedals that can be used to disengage the CCS

and return control to the driver.

For the purpose of our study, the specification of the CCS was simplified such that the
vehicle was assumed to be always in “cruise” mode. While in cruise mode, a “speed dial”
was available to allow the driver to dynamically change the car speed. The control
process ensures that the vehicle would travel at the desired set speed.

3. The design of the car environment

As with any HIL systems, a simulation model (sometimes known as plant within the
control engineering community) is required in order to represent the system to be
controlled. In this case, a computational model was used to represent the car environment
in which the CCS would operate (based on a model described in Pont, 2001). The core of
the car environment is a simplified physical model based on Newton’s law of motion (see
Figure C-2). Please note that in this case, it is assumed that the vehicle is under the
influence of only two forces, the torque exerted on the car engine and the frictional force
that acts in the opposite direction to the motion.

C a r v e lo c ity (o u tp u t)

Frictional force Engine force (input)

/7Z77777777777777777777777777
Figure C-2 The car environment for the CCS.

To model this mathematically, the summation of all the forces acting on the car is
calculated, beginning with Newton’s Second Law of Motion. The terms listed below are
used in the equations that follow in this section:

A Acceleration

v, Initial speed

v/ Final speed

M Mass of car

Ax Displacement

<9 Throttle setting

Fr Frictional coefficient

T Engine torque

The frictional force and the engine force of the car are incorporated into Equation 1.

EngineForce - FrictionalForce = ma ̂j ̂

The frictional force is a function of the velocity of the car, whereas the engine force is a
product of the throttle setting and the engine torque. The engine torque is assumed to be
constant over the speed range. The following model (Equation 2) is thus produced.

Or - v, Fr = ma

C-3

This model is then used to determine the output o f the car environment, which is the final
velocity of the car (vf). Solving for a, the instantaneous acceleration of the vehicle is first
calculated (Equation 3).

a = (Or - v tF r)/m ^

Once this acceleration has been obtained, the distance travelled by the car (Ax) is solved
using Equation 4.

1 2Ax = v,t + — at
2 (4)

The final speed o f the car () is then determined using Equation 5.

v / = v , 2+2aAx

4. The implementation of the car environment

The car environment was implemented using a time-triggered co-operative scheduling
architecture on a basic desktop PC (Intel Pentium II 300 MHz processor). The advantages
of using PC hardware for such studies is described in detail elsewhere (see Pont et al.,
2003).

Four main tasks were implemented as shown in Table C -l. The source code was written
and compiled using the Open Watcom C compiler5.

T a b le C -l T h e c a r m o d e l ta s k s tru c tu re .

Task Names Task Description
Task Period

(in ms)

Car Dynamics Update Updates the car dynamics (speed) based on the input throttle position 5

Car Display Update Displays the speed of the car and the throttle position on the monitor 100

PRM Update Sends out the speed of the car as a train of pulses 1

Write To File Records the speed and the throttle position of the car in a text file 1000

We wanted to keep the cost o f this simulator as low as possible (so that it can be widely
used). In order to access the PC hardware level, an operating system (OS) was required.
DOS (Disk Operating System) was chosen because it offers the required flexibility at low
cost6. DOS in-tum control the BIOS (Basic Input Output System) o f the PC to access the
PC hardware level (Figure C-3).

5 The Watcom compiler can be downloaded (without charge) here: http://www.openwatcom.org/.
6 Free versions o f DOS are available. See for example http://www.handvarchive.com/free/dos/

C-4

http://www.openwatcom.org/
http://www.handvarchive.com/free/dos/

Application software

Co-operative scheduler

DOS

BIOS

PC hardware level

Figure C-3 The operating layers for a PC hardware implementation.

To interface the real world, a low-cost (but effective) option is to use the PC’s parallel
port. The parallel port has three registers: the data register, status register and control
register (Messmer, 2002). In our version of the CCS, the port’s data register (LPT1,
0x378) was used to store an 8-bit throttle position as the input signal to the car
environment. The output signal from the car environment is the current speed of the car,
represented as a train of pulses at the automatic line feed (ALF) pin of the port’s control
register (LPT1, 0x37A).

The connections are illustrated in Figure C-4.

8 bit throttle position
_______ A

f \ r
Not used Car speed (pulses)

\

Printer signal D7 De Ds D 4 D3 D2 Di Do

Pin number 9 8 7 6 5 4 3 2

CD
(/) 5

*
-o
>■O

O
F

O
N

m
7l
3D X X X

11 10 12 13 15

X X X 7J
0

|
D

SL P-T1
V)—1
71

17 16 14 1

Data Register, 0x378 Status Register, 0x379 Control Register, 0x37A

Figure C-4 Connections on the PC’s parallel port.

Figure C-5 shows a screenshot of the car environment model running on a desktop PC.

Figure C-5 A screenshot o f the CCS system.

The source code for the car environment model is discussed in Appendix A. The complete
source code is available from the Embedded Systems Laboratory website7.

7 http://www.le.ac.uk/eg/embedded/SimpleCCS.htm

C-5

http://www.le.ac.uk/eg/embedded/SimpleCCS.htm

5. The design of the controller

To control the velocity of the car at a set speed, a control algorithm was required. Two
basic controllers can be chosen: open loop or closed loop.

In this case, a closed-loop control system was used since the output value from the car
environment has an impact on the process input value to maintain the desired output value.
A closed loop control system (as shown in Figure C-6) sends the difference of the input
signal (the desired value) and the feedback signal (actual output value) to the controller.
The controller’s job is to reduce this error (ideally to 0). To achieve this, a wide range of
control algorithms are available (see, for example, Dutton et al., 1997; Dorf and Bishop,
2000).

Desired ____________________ Actual output
output value

Controller

Control signal
The system to

value
¥ w be controlled ... V

▲

Feedback value

Figure C-6 A closed-loop or feedback control system (Pont, 2001).

A “Proportional Integral Differential” (PID) controller was used in the CCS as it is a
simple, common and effective choice (Ogata, 2002). The PID algorithm consists of three
main parts: the proportional term (Kp), the integral term (Ki) and the derivative term (Kd) :
please see Equation 4, where u and e represent the output signal and error signal,
respectively.

c de
u = Kp x e + K ix edt + Kd x —

J dt (4)

The proportional term will have the effect of reducing the rise time. The integral term can
eliminate the steady-state error, but it may make the transient response worse. The
derivative term can be used to add “damping” to the response, in order to reduce the signal
overshoot (Franklin et al., 1998).

6. Implementation of the controller

A typical control system can be divided into three main sections: sampler, control
algorithm and actuator. In the first section, data are sampled from the environment model.
In the second section these data are processed using an appropriate control algorithm. In
the third section, an output signal is produced that will (generally) alter the system state.

In a single-processor system, all three functions will be carried out on the same node. In a
distributed environment, these functions may be carried out on up to three nodes, linked
by an appropriate network protocol. For example, a two-node design might carry out the
sampling operations on Node 1, and the control and actuation operations on Node 2 (see,
for example Lonn and Axelsson, 1999; El-khoury and Tomgren, 2001).

C-6

Figure C -l and Figure C-8 illustrate the implementation of a one-node and two-node CCS
respectively8.

C a r s p e e d T h ro ttle (8 bit v a lu e s e n t
to t h e C a r M o d e l)C ar E n v iro n m e n t

(pulses)

E m b e d d e d C m ise -C o n tro l S y s tem S e t s p e e d s e n t
v ia R S 2 3 2

S e t s p e e d (0 -5 v fro m
th e poten tiom e te r)

T erm ina l em u la to r

Figure C -l One-node CCS.

C a r s p e e d

(p u ls e s)
C a r E n v iro n m e n t

T h ro tt le (8 bit v a lu e s e n t
to t h e C a r M o d e l)

S e t s p e e d s e n t
s4a R S 2 3 2

[Controller &
' Actuator j

Sam pler

E m b e d d e d C ru is e -C o n tro l S y s te m
T erm in a l e m u la to r

S e t s p e e d (0 -5 v from
th e p o te n tio m e te r)

Figure C-8 Two-node CCS.

In both the one-node and two-node systems, the input to the CCS is the car speed
(represented as a train of pulses from the car environment) and the desired set speed comes
from a potentiometer. The output from the CCS is an 8-bit throttle position that is sent to
the car environment and (to support the simulation) the desired set speed value that is sent
via an RS232 link to a PC or similar terminal.

Figure C-9 shows an example of the wiring involved for a one-node CCS on a C l67
microcontroller.

Please note that the system could also be expanded to have more than two nodes to incorporate various
design options such as bus guardians, back-up nodes and redundancy. These options are not
considered here.

C-l

Port 7 Port2 Port 5

Pin number

r

C

Printer signal D7 Do Ds D* D3 D2 D i Do

Pin num ber 9 8 7 6 5 4 3 2

' J' l

to to to K) IO to <7>7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.U C/1 A (*> to - o CD 00 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 z
o

Car speed (pulses)

X X X 31
CD

o
C/Ir“

z £-n
W —c
31

- - - - 17 16 14 1

Potentiometer

TD
a

> -s

Data Register, 0x378 Control Register, 0x37A >'

Figure C-9 Wiring example for a one-node CCS system implemented using a Cl 67 processor.

7. The CCS tasks

Embedded software systems are often designed and implemented as a collection of
communicating tasks (e.g. Nissanke, 1997; Shaw, 2001).

To implement the CCS, five tasks were employed (Table C-2).

Table C-2 The CCS task list.

Task Names Task Description
Task Period

(in ms)

Compute Car Speed Computes the car speed obtained from the car model 50

Compute Throttle Calculates and sends the required throttle to be applied back to the car model 50

Get Ref Speed Gets the desired speed from the driver 1000

PC Link Update Sends a character to the serial port 10

Display Ref Speed Updates the string that displays the desired car speed 1000

Each task is described in the subsections that follow.

7.1 Task: Compute C ar Speed

This task acts as the signal sampler. The signal - in this case, the speed of the car - is
represented as a train o f pulses. To obtain the correct representation of the car speed, a
hardware pulse counter is used to store the number of pulses that has arrived. This value
is then filtered (using software) to remove any noise that may be present in the signal. The
filtered value will then to be scaled to represent the current speed of the car.

A partial code listing for this task is show in Listing C -l.

Please note that the processor chosen for this application must have at least two hardware
timers - one for the periodic timer and one for the hardware counter.

C-8

void Sens_Compute_Speed(void)
{
tWord raw_speed;

raw_speed = Get_Raw_Speed();

Scaled_speed_G = ((float) (FILTER_COEFF * 01d_speed_G) + (float)
((1 - FILTER_COEFF) * (raw_speed * SCALING_FAC)));

01d_speed_G = Scaled_speed_G;
}

Listing C-l An example o f the compute car speed task.

7.2 Task: Compute Throttle

This task functions as the controller and actuator. The PID algorithm was implemented in
this function, and “anti-windup” was included9.

Once the necessary control value has been calculated, this value is then scaled to an 8-bit
throttle position (in the range of 0-255). The partial code listing is illustrated in Listing
C-2.

void Compute_Throttle(void)
{
unsigned char pc_throttle = 0
static float throttle = 0
float car_speed = 0
float set_speed = 0
float speed_error = 0

car_speed = Scaled_speed_G;
set_speed = Ref_Speed_G;

speed_error = set_speed - car_speed;

throttle = PID_Control(speed_error, throttle);

pc__throttle = (unsigned char) (throttle * 2 5 5) ;

Throttle_Port = pc_throttle;
}

Listing C-2 An example o f the compute throttle task.

7.3 Task: Get Ref Speed

The purpose of this task is to obtain the reference or desired set speed that the driver may
want the car to travel at. The reference speed of the car is obtained using a 0-5 volts
potentiometer. An on-board analogue to digital converter (ADC) is used to capture the
signal. The signal is then scaled to the reference speed within the required range. The
code listing for the implementation on a C l67 microcontroller is illustrated in Listing C-3.

9 Anti-windup protection ensures that - when the throttle is at a maximum or minimum value - the error
value does not continue to accumulate. For further details, see Astrom, 2002.

C-9

void Act_Get_Ref_Speed (void)
{
tWord Time_out_loop = 1 ;
tWord AD_result = 0;

ADST = 1;

while ((ADBSY == 1) && (Time_out_loop != 0))
{
Time_out_loop++;
}

if (!Time_out_loop)
{
AD_result_G = 0;
}

else
{
AD_result_G = ADDAT;
}

Ref_Speed_G = (tByte)((AD_result_G / 1023.Of) *
MAX_CAR_S PEED) ;

}
Listing C-3 An example o f the get ref speed task.

7.4 Task: Display Ref Speed

This task uses the task “PC Link Update” to display the required operating speed of the
car.

7.5 Task: PC Link Update

The purpose of this task is to display information on a terminal emulator (for example
HyperTerminal running on a PC) by means of an RS232-based serial connection from the
processor node on which this task is running.

8. Case study

To obtain some preliminary results from the CCS testbed, we compared the control
performance o f one-node and two-node CCS implementations. In each case the CCS
nodes were implemented using an Infineon 16-bit microcontroller (Phytec C167CR
development board): such devices are widely used in the automotive sector (Siemens,
1996).

8.1 Implementation of one-node CCS

The description of the one node CCS was given in Section 6 and 7. The tasks were
implemented using a time-triggered co-operative scheduler (see Pont, 2001). A picture of
the single node setup is shown in Figure C-10. The source code for a single node
implementation on the C l67 is discussed in Appendix B.

C -10

? v: "
8-bi; throttle
position

Connection to the
parallel port’ .

- Potentiometer

(pulses)

Figure C-10 Implementation o f a one-node CCS on the C167.

8.2 Implementation o f a two-node CCS

In the second design, the CCS was designed to operate as a distributed system using two
nodes: a sampler node and a controller / actuator (CA) node (Figure C-l 1). The sampler
node was used to calculate the vehicle speed. The calculated car speed was then sent over
a network to the CA node. On the CA node, the PID algorithm was used to calculate the
required throttle position. The CA node was also responsible for obtaining the required
“set speed” value (from the driver). The nodes were linked using a CAN bus running at
333.3 kbits/s.

In this particular implementation, a “Time-Time-Time” system was employed. As such,
the scheduling on both nodes was time-triggered and the network protocol was also time-
triggered, using shared-clock scheduling (Pont, 2001). On both nodes, the tasks were
scheduled to execute periodically. A “tick” message was sent from the sensor node at the
beginning of every sensor node “tick”. This message was used to synchronize the CA
node. The sensor status and the car speed data were also included in this message. An
acknowledgement message from the CA node was then sent back to the sensor node.

The source codes for the two-node implementation on the C 167 boards is discussed further
in Appendix C.

C-l 1

'^mpl̂ n'ode;

Car speed
(pulses) ‘

CA node J

8-bit throttle
position Potentiometer

Figure C-l 1. Implementation o f a two-node CCS on the Cl 67.

9. Results

The results for the two different implementation options were compared at four different
set speed values (60mph, 1 OOmph, 170mph and 120 mph). Figure C -l2 shows the car
speed for the two different implementations. Although both the implementation options
were very similar, there was some slight differences. The results show that the single node
implementation could maintain the car speed more accurately to the desired speed
compared to the two-node system.

200

180

160

140

120

100

1 5 9 13 17 21 2 5 29 33 37 41 4 5 4 9 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 113 117 121

| One-node CCS - - - Two-node C C S Set Speed

Figure C-l 2. The performance (speed) o f the car for two different implementation options.

C-12

Figure C -l3 shows the differences in the throttle performance for the different
implementations. The results indicate that the responsiveness of the controller to
variations in the output signal for the single node system was - again - slightly better than
the two-node implementation.

0.8

0.6

0.4

0.2

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 113 117 121

| O n e -n o d e C C S * * - T w o -n o d e C C S

Figure C-l 3 The performance (throttle) o f the car for two different implementation options.

These differences in the results can be attributed to the fact that the distributed system has
an additional delay element involved in the network communication. Such delays can
have an impact on the control performance of the system (Tomgren, 1998).

10. Conclusions

In this paper, we have described a simple HIL testbed that can be used to quickly evaluate
some design and implementation strategies for embedded automotive control systems.
Although this system is incomplete, the case study shows that this simple setup can be
used to compare different implementation solutions for embedded control systems.

Acknowledgements - This work is supported by an ORS award (to DA) from the UK
Government (Department for Education and Skills), and by Pi Technology. Work on this
paper was completed while MJP was on Study Leave from the University of Leicester.

References

ARM, 2001. ARM7TDMI technical reference manual.
Bannatyne, R., 2003. Microcontrollers for automobiles. Micro Control Journal.
Dorf, D. and Bishop, R., 2001. Modern control systems. Prentice-Hall, N ew Jersey, USA.
Dutton, K., Thompson, S. and Barraclough, B., 1997. The art o f control engineering. Addison Wesley.

C-13

Dynasim, 2003. Hardware-in-the-loop simulation o f physically based automotive model with Dymola,
Dynasim, Lund, Sweden.

El-khoury, J. and Tdrngren, M., 2001. Towards a toolset for architectural design o f distributed real-time
control systems, IEEE Real-Time Symposium. IEEE, London, England.

Franklin, G.F., Powell, J.D. and Workman, M.L., 1998. Digital control o f dynamic systems. Addison-
W esley.

Hanselmann, H., 1996. Hardware-in-the-loop simulation testing and its integration into a CACSD toolset,
The IEEE International Symposium on Computer-Aided Control System Design, Michigan, USA.

Hartwich, F., Muller, B., Fuhrer, T., Hugel, R. and GmbH, R.B., 2000. CAN networks with time-triggered
communication, 7th international CAN Conference.

Hartwich, F., Muller, B., Fuhrer, T., Hugel, R. and GmbH, R.B., 2002. Timing in the TTCAN network,
Proceedings 8th International CAN Conference.

Kopetz, H., 1997. Real-time systems: Design principles for distributed embedded applications. Kluwer
Academic.

Kopetz, H., 2001. A comparison ofTTP/C and FlexRay. Research Report 10/2001.
Lonn, H. and Axelsson, J., 1999. A comparison o f fixed-priority and static cyclic scheduling for distributed

automotive control application, The Eleventh Euromicro Conference on Real-Time Systems, York,
England.

Messmer, H.P., 2002. The indespensable PC hardware book. Addison-W esley.
Nahas, M., Short, M.J. and Pont, M.J., 2005. The impact o f bit stuffing on the real-time performance o f a

distributed control system, 10th international CAN Conference, Rome, Italy.
Nissanke, N., 1997. Realtime systems. Prentice Hall.
Ogata, K., 2002. Modern control engineering. Prentice Hall.
Pont, M.J., 2001. Patterns for time-triggered embedded systems. Addison W esley.
Pont, M.J., Norman, A.J., Mwelwa, C. and Edwards, T., 2003. Prototyping time-triggered embedded systems

using PC hardware. In: K. Henney and D. Schutz (Editors), Eighth European Conference on Pattern
Languages o f Programs (EuroPLoP), Irsee, Germany.

Rajnak, A. and Ramnerfors, M., 2002. The Volcano communication concept, International Congress on
Transportation Electronics. Society o f Automotive Engineers Inc.

Shaw, A.C., 2001. Real-time systems and software. John W iley & Sons Inc.
Short, M.J. and Pont, M.J., in press. Hardware in the loop simulation o f embedded automotive control

systems, IEEE International Conference on Intelligent Transportation Systems 2005, Vienna, Austria.
Short, M.J., Pont, M.J. and Huang, Q., 2004a. Development o f a hardware-in-the-loop test facility for

automotive ACC implementations. ESL04-03, Embedded Systems Laboratory, University o f Leicester.
Short, M.J., Pont, M.J. and Huang, Q., 2004b. Simulation o f a vehicle longitudinal dynamics. ESL 04-01,

Embedded System Laboratory, University o f Leicester.
Short, M.J., Pont, M.J. and Huang, Q., 2004c. Simulation o f motorway traffic flows. ESL04-02, Embedded

Systems Laboratory, University o f Leicester.
Siemens, 1996. C l67 derivatives - User's manual, Version 2.0.
Specks, J.W. and Rajnak, A., 2002. LIN - Protocols, development tools, and software interfaces for Local

Interconnect Networks in vehicles, 9th International Conference on Electronic Systems for Vehicles.
Tanenbaum, A.S., 1995. Distributed operating systems. Prentice Hall.
Torngren, M., 1998. Fundamentals o f implementing real-time control applications in distributed computer

systems. Journal o f Real-Time Systems, 14: 219-250.

C -14

Appendix-D Background on design patterns

This appendix presents some background material on design patterns. Parts o f this
material also appears in Pont et al. (submitted).

In recent years, some developers have found that design patterns offer a means of
achieving effective “design recycling”. Current work on patterns was inspired by
Christopher Alexander and his colleagues (Alexander et al., 1977; Alexander, 1979).
Alexander is an architect who first described what he called “a pattern language” relating
various architectural problems (in buildings) to good design solutions.

This concept o f descriptive problem-solution mappings was adopted by Ward
Cunningham and Kent Becks who used some o f Alexander’s techniques as the basis for a
small “pattern language” intended to provide guidance to novice Smalltalk programmers
(Cunningham and Becks, 1987). This work was subsequently built upon by Erich Gamma
and colleagues who, in 1995, published an influential book on general-purpose object-
oriented software patterns (Gamma et al., 1995).

Over the last decade, the development of pattern-based design techniques has become an
important area o f research in the software engineering community. Gradually, the focus
has shifted from the use, assessment and refinement of individual patterns, to the creation
of complete pattern languages, in areas including telecommunications systems (see:
Rising, 2001) and systems with hardware constraints (Noble and Weir, 2001).

In 1996, researchers in the ESL began to assemble a collection o f patterns to support the
development of time-triggered software for embedded systems. The first versions of these
patterns were used “in house”, primarily for teaching and training purposes. The ESL
researchers then began to publish and discuss the next versions of the patterns more
widely (Pont, 2000) and not just at pattern workshops but also at more general technical
conferences (see for example Pont et al., 1998; Pont, 1999; Pont, 2000). Through this
process, a great deal o f useful feedback on the project was obtained, and the collection was
refined again. The end result was a set of more than seventy patterns, which is referred to
as the Patterns for Time-Triggered Embedded Systems (PTTES) collection (Pont, 2001);
see Table D-l for a list o f these patterns. It is important to appreciate that all of the
PTTES patterns are intended to support the development of software for systems with
time-triggered co-operative/time-triggered hybrid architectures.

In summary, the PTTES collection is organised as follows:
■ The processor patterns (S t a n d a r d 8051, S m a l l 8051 and Ex t e n d e d 8051) allow

selection of a processor with performance levels appropriate for the application.

■ The oscillator patterns (Crystal Oscillator and C e r a m ic R e s o n a t o r) allow an
appropriate choice o f oscillator type, and oscillator frequency to be made, taking into
account system performance (and, hence, task duration), power-supply requirements,
and other relevant factors.

■ The various Shared-Clock schedulers (SCC S c h e d u l e r , SCI S c h e d u l e r (D a t a), SCI
S c h e d u l e r (T ic k) , SCU S c h e d u l e r (L o c a l), SCU S c h e d u l e r (RS-232) and SCU
Sc h e d u l e r (RS-485)) describe how to schedule tasks on multiple processors with a

D-l

time-triggered architecture. Using one of these schedulers as a foundation, the pattern
Long Task describes how to migrate longer tasks onto another processor without
compromising the basic time-triggered architecture.

■ L o o p T im e o u t and H a r d w a r e T im e o u t describe the design o f timeout mechanisms that
may be used to ensure that tasks complete within their allotted time.

■ M u l t i-S t a g e T a s k discusses how to split up a long, infrequently triggered task into a
short task that can be called more frequently. PC L in k (RS232) and LCD C h a r a c t e r
Pa n e l both implement this architecture.

■ H y b r id S c h e d u l e r describes a scheduler that has most of the desirable features of the
(pure) co-operative scheduler, but also allows a single long (pre-emptive) task to be
executed.

Table D -l This table lists the 72 patterns in the PTTES collection. Table adapted from Mwelwa et al.
__ (submitted).__

S t a n d a r d 8051 S m a l l 8051 E x t e n d e d 8051

C r y s t a l O s c il l a t o r C e r a m ic O s c il l a t o r R C R e s e t

R o b u s t R e s e t O n -C h ip M e m o r y O f f -C h ip D a t a M e m o r y

O f f -C h ip C o d e M e m o r y N a k e d L E D N a k e d L o a d

IC B u f f e r B JT D r iv e r IC D r iv e r

M O S F E T D r iv e r S S R D r iv e r (D C) E M R D r iv e r

S S R D r iv e r (A C) S u p e r L o o p P r o je c t H e a d e r

P o r t I /O P o r t H e a d e r H a r d w a r e D e l a y

So f t w a r e D e l a y H a r d w a r e W a t c h d o g C o -o p e r a t iv e S c h e d u l e r

H a r d w a r e T im e o u t L o o p T im e o u t M u l t i-S t a g e T a s k

M u l t i-S t a t e T a s k H y b r id S c h e d u l e r P C L in k (R S 2 3 2)

S w it c h In t e r f a c e S w it c h In t e r f a c e
O n -O f f S w it c h

(S O F T W A R E) (H a r d w a r e)

M u l t i-s t a t e S w it c h K e y p a d In t e r f a c e M x L E D D is p l a y

L C D C h a r a c t e r P a n e l I2C P e r ip h e r a l S P I P e r ip h e r a l

S C I S c h e d u l e r (T ic k) S C I S c h e d u l e r (D a t a) S C U S c h e d u l e r (L o c a l)

S C U S c h e d u l e r (RS-232) S C U S c h e d u l e r (R S -4 8 5) S C C S c h e d u l e r

D a t a U n io n L o n g T a s k D o m in o T a s k

H a r d w a r e P u l s e -C o u n t S o f t w a r e P u l s e -C o u n t H a r d w a r e PR M

So f t w a r e P R M O n e -S h o t A D C A D C P r e -A m p

S e q u e n t ia l A D C A -A F il t e r C u r r e n t S e n s o r

H a r d w a r e P W M P W M S m o o t h e r 3 -L e v e l P W M

S o f t w a r e P W M D A C O u t p u t D A C S m o o t h e r

D A C D r iv e r P ID C o n t r o l l e r 2 5 5 -T IC K S C H E D U L E R

o n e -t a s k s c h e d u l e r One-YEAR s c h e d u l e r S T A B L E S C H E D U L E R

As an example of a pattern from the PTTES collection, consider H e a r t b e a t LED, which is
summarised in Figure D -l and Figure D-2.

D -2

Heartbeat LED

Context
■ You are developing (or maintaining) an embedded application based on a microcontroller or

microprocessor.
■ You are programming in C (or a similar language).
■ Your application has an architecture based on some form o f scheduler.

Problem
How can you tell, at a glance, if your system is “alive”?

Design constra in ts
Many embedded systems have little or no user interface. There is not generally a screen on which you can
display error messages or warnings to the user. If you are working on a system prototype, or performing
maintenance in the field, how can you tell that the system is “alive” - that it has power and (at least) the
scheduler is running?

You could, o f course, hook up a debugging link (e.g. a JTAG link), or a simpler serial link (based on RS-
232), but this takes time and including suitable ports on your production system may not be practical or cost
effective. Often a very simple, low-cost solution is required.

Solution
Every time we implement an embedded system, the first task we include is one that flashes a “heartbeat”
LED. Wherever possible, this LED stays with the system, right into production.

We tend to use a 50% duty cycle and a frequency o f 0.5 Hz (that is, the LED runs continuously, on for one
second, off for one second, and so on) but this is - o f course - up to you.

Use o f this simple technique provides the following key benefit:

The development team, the maintenance team and, where appropriate, the users, can tell at a glance that
the system has power, and that the scheduler is operating normally.

In addition, during development, there are two less significant (but still useful) side benefits:
After a little practice, the developer can tell “intuitively” - by watching the LED - whether the scheduler
is running at the correct rate: if it is not, it may be that the timers have not been initialized correctly, or
that an incorrect crystal frequency has been assumed.

• By adding the “Heartbeat” task to the scheduler array after all other tasks have been included, the
developer can tell immediately if the task array is large enough to match the needs o f the application (if
the array is not large enough, the LED will never flash).

Reliability and safety im plications
Use o f this simple technique may help to improve system reliability since it provides those developing the
system with an indication o f its health throughout the development lifecycle.

Hardware requirem ents
HEARTBEAT LED has minimal hardware requirements. The only requirements are a port pin connected
to an appropriate LED (with an appropriate resistor if required).

Cost implications
As noted above, the hardware requirements are very limited. The time taken to implement this pattern is
also likely to be minimal. Overall, the costs are very low.

Overall s tren g th s and w eak n esses

© HEARTBEAT LED provides a simple, low-cost way o f determining whether your system is “alive”.

© Uses a port pin and associated LED hardware.

Figure D -l A summary o f the pattern H e a r t b e a t LED. Figure adapted from Mwelwa and Pont (2003).

D -3

/ * ---
Heartbeat_LED.C

Simple 'Heartbeat L ED1 PIE for an Infineon C515C microcontroller.
If everything is OK, flashes at 0.5 Hz

#include "Main.H"
#include "Port.H"
#include "Heartbeat LED.H"

// ------- Private variable definitions
static bit Heartbeat led state G;

HEARTBEAT_LED_Init()
Prepare for HEARTBEAT_Update() task.

void HEARTBEAT_LED_Init(void)
{
Heartbeat_led_state_G = 0;
}

j 'k_______ —---—_____ _________________

HEARTBEAT_LED_Update()

Flashes an LED on a specified port pin.

Must schedule at twice the required flash rate: thus, for 0.5 Hz
flash (on for 1 second, off for 1 second) must schedule at 1 Hz.

 * __. __ ._______ ._____„___★ J
void HEARTBEAT__LED_Update (void)

{
// Change the LED from OFF to ON (or vice versa)
if (Heartbeat_led_state_G == 1)

{
Heartbeat_led_state_G = 0;
Heartbeat_led_pin = 0;
)

else
{
Heartbeat_led_state_G = 1;
Heartbeat_led_pin = 1;
}

}
/ * --* -

 END OF FILE ---
_ * -- * /

Figure D-2 A HEARTBEAT LED PIE for the 8051 platform. Figure adapted from Mwelwa and Pont (2003).

As you examine Figure D-l and Figure D-2, please note it is sometimes assumed that a
(software) pattern is simply a code library. As H e a r t b e a t LED should help to make clear,
this is not the case (in fact, it includes no code at all). Instead, a pattern includes a broad
discussion of the problem area, a discussion of the consequences of applying this solution,
as well as suggestions about alternative approaches. Of course, code will also be required
in many cases: this may be included in an “example” section in the pattern or - in more
recent pattern libraries (Pont et al., (submitted 10 August)); - in the form of a set of linked
“Pattern Implementation Examples” (PIEs), as illustrated in Figure D-3 .

D -4

HEARTBEAT LED
(C, 8051)

Hea r t b e a t LED
(C, LPC2xxx)

(PIEs)

Figure D-3 Link between a pattern and its Pattern Implementation Examples (PIEs). Figure adapted from
Mwelwa et al. (submitted).

As the name might suggest, a PIE illustrates how a particular pattern can be implemented.
This is important (in the field of embedded systems) because there are great differences in
system environments, caused by variations in the hardware platform (e.g. 8-bit, 16-bit, 32-
bit, 64-bit) and programming language (e.g. Assembly and C). The possible
implementations are not sufficiently different to be classified as distinct patterns: however,
they do contain useful information.

References

Alexander, C. (1979). "The timeless way o f building", Oxford University Press.
Alexander, C., S. Ishikawa, M. Silverstein, M. Jacobson, I. Fisksdahl-King and S. Angel (1977). "A pattern

language", Oxford University Press.
Cunningham, W. and K. Becks (1987). "Using pattern languages for Object-Oriented programs".

OOPSLA'87 workshop on the Specification and Design for Object-Oriented Programming, Floriday,
USA.

Gamma, E., R. Helm, R. Johnson and J. Vlissides (1995). "Design patterns: Elements o f reusable Object-
Oriented software", Addison-Wesley.

Kurian, S. and M. J. Pont (2005). "Building reliable embedded systems using Abstract Patterns, Patterns, and
Pattern Implementation Examples". Proceedings o f the 2nd UK Embedded Forum, 20th October. A.
Koelmans, A. Bystrov and M. J. Pont. Birmingham, UK.

Noble, J. and C. Weir (2001). "Small Memory Software". Reading, Massachusetts, USA, Addison Wesley.
Pont, M. J. (1999). "Pattern for embedded systems". Invited presentation to IEE East Midland Centre

Lincolnshire, UK.
Pont, M. J. (2000). "Designing and implementing reliable embedded systems using patterns". Proceedings of

the 4th European Conference on Pattern Languages o f Programming and Computing.
Pont, M. J. (2001). "Patterns for time-triggered embedded systems", Addison Wesley.
Pont, M. J., Y. Li, C. Parikh and C. P. Wong (1998). "The design o f embedded systems using software

patterns". Proceedings o f Condition Monitoring, Swansea, UK.
Rising, L., Ed. (2001). "Design Patterns in Communications Software". N ew York, USA, Oxford University

Press.

HEARTBEAT LED

(D esign pattern)

D-5

Appendix-E Comparison of effort and source code
changes

This appendix presents the individual results o f the groups in Case Study 8 to illustrate the
trend between the effort involved and the number o f changes made to the source code.

In Chapter 8, the results suggest that there was a similar trend between the effort involved
and the number of source code changes made by each group. This section presents the
individual results of each group that illustrates the effort spent and the amount of changes
made to the source code for the various development phases.

30 T T 70

- 60

20

40 5

m 15 ■-

10 -

- 20

10

p_LED p_Counter p_PID p_ADC t_CThr t_GRef t_CSpdp_Sch p_Port

| ■ Total Changes —A— Effort

Figure E-l Trend o f changes made and effort for the individual phases o f the study described in Chapter 8
(Group A-I).

E-l

35 T 80

30

- 60
25

- 50 •=■

40

« 15

30

10
- 20

p_LED p_Counter p _ P D p_ADC t_CThr t_CSpdp_Sch p_Port t_GRef

j ■ Total C hanges —A— Effort

Figure E-2 Trend o f changes made and effort for the individual phases o f the study described in Chapter 8
(Group B-I).

50 T

4545

- 4040 -

35 -

30 -

25

2020

- 10

p_Sch p_Port P_LED p_Counter p_PID p_ADC p _R S232 t_CSpd t_CThr t_GRef t_DSpd

"■ Total C hanges —A— Effort |

Figure E-3 Trend o f changes made and effort for the individual phases o f the study described in Chapter 8
(Group A-II).

E-2

100

90
3 0 -

80

70

60

5 15 -
40

3010 -

20

- 10

p _S ch p_Port p_LED p_Counter p _P D p_ADC p _R S232 t_CSpd t_CThr t_GRef t_DSpd

■ Total C hanges —A— Effort]

Figure E-4 Trend o f changes made and effort for the individual phases o f the study described in Chapter 8
(Group B-II).

S 10
20

p _Sch p_Port p_LED p_Counter p_PID p_ADC p_R S232 t_CSpd t_CThr t_GRef t_DSpd

I ■ Total C hanges —A— Effort |

Figure E-5 Trend o f changes made and effort for the individual phases o f the study described in Chapter 8
(Group C-II).

E-3

160

140
50

120

4 0 -

■■ 100 9

v> 30 80

60

p _S ch p_Port p_LED p_Counter p _P D p_ADC p _R S232 t_CSpd t_CThr t_GRef t_DSpd

| ■ Total C hanges —A— Effort |

Figure E-6 Trend o f changes made and effort for the individual phases o f the study described in Chapter 8
(Group D-II).

Based on these results (Figure E-l to Figure E-6), it could be suggested that the
development effort could potentially be used to predict the stability of the source code
implementation process for an embedded application (and vice versa).

E-4

Appendix-F Limitations of the TrueTime simulator

This appendix presents some o f the limitations o f the TrueTime simulator.

Although the TrueTime simulator can be effective in predicting the behaviour of a range
of distributed embedded control systems, it is more difficult to obtain an accurate result for
very low-level changes in the embedded processor. Two of these low-level attributes
include variation in the clock drift and the use of idle mode.

A discussion on these limitations is presented.

1. Clock drift

To illustrate the underlying problem of clock drift, Figure F-l shows the results recorded
from a simple HIL implementation that sends a signal from the Sampler to the CA node
across the CAN bus periodically. On the nodes, the sampling and actuation tasks were
(both) scheduled every 5ms, individually. In this case, the communication delay was
approximately 390ps: this represented the minimum possible response time. The
maximum response time was 390ps plus the 5ms (actuation) task period. The recorded
results lie in this range o f values, as illustrated in Figure F-l.

0 .0 0 6 0 0 0

0 .0 0 5 0 0 0

0.0 0 4 0 0 0

0.002000

0.001000

0.000000
181161 201 221 241121 14181 1016121 411

Figure F-l Drift in the signal response time for “T-E-T” system using the HIL testbed. Figure adapted from
Ayavoo et al. (2004).

To investigate this further, a simple test o f a T-E-T system was employed, where a
message was transmitted periodically from one node to the other, and the response time
was measured. In addition, the frequencies o f the individual crystal oscillators on the
microcontrollers were also measured. These values were then used to calculate and
modify the individual periods o f the task on each of the simulated nodes such that the new
task periods on the simulator were matched up with the actual crystal frequency.

F-l

Figure F-2 illustrates the comparative response time between the TrueTime simulation and
the HIL results when clock drift is not considered in the TrueTime simulation. The result
shows that the response time measured on the simulator was constant due to the
assumption that both the nodes were operating at the same crystal frequency. Figure F-3
illustrates the result when the individual clock drifts of the crystals were taken into
account in the TrueTime simulation process. The result from the TrueTime simulator now
shows a closer correspondence to the characteristics of the hardware implementation.

0.006000

0.005000 .------------------------------------ 1-̂ -----------------------------------r ' ------------------------------------ ^ A ---------------

0.004000 • ; '• : '•
2 > . ! • '

$ o . o o 3 o o o - : : • •

! \ : • i \ i
® • • • 'BC \ ' \ ,

0.002000 - j i : ;

0.001000 • : *• : '• • \ ;

0.000000 hi....I...m.mimi... I........I..I......mm.... mini...
1 21 41 61 81 101 121 141 161 181 201 221 241

Number of iterations

— Simulation ■ - - HL |

Figure F-2 Response time o f the simulation and HIL results when clock drift is not taken into account on the
TrueTime simulator.

0.006000

0.005000

0.004000

<i>|
i 0.003000 -

ina
a.

0.002000

0.001000

0.000000
201121 141 161 181 221 24110161 8121 411

Number of iterations

| Simulation - • • HL |

Figure F-3 Response time o f the simulation and HIL results when clock drift is incorporated in the TrueTime
simulation.

F-2

2. Idle mode

The idle mode is a state at which the microcontroller “goes to sleep”. The benefits of
using idle mode include a reduction in power consumption and CPU utilisation of the
microcontroller. The microcontroller will come out of the idle mode or “wake up” when
an interrupt occurs.

In the co-operative scheduler used for the time-triggered system, the CPU was configured
to go to sleep after all the ready tasks have been executed. The CPU will “wake up” when
the timer overflows and triggers an interrupt.

The result in Figure F-4 and Figure F-5 was obtained from a T-T-T HIL system. The
response time was calculated from the time a switch was pressed on the sampler node until
the actuation (lighting of LED) took place on the CA node. The results show that the
system using the idle mode had lower jitter, compared to the system that did not utilise the
idle mode. Statistical analysis of the results is shown in Table F - l .

5390 -1--

5380 --

5370
a
E
■= 5360

c
o

5340 ------

5330 -------

5320
101 201 301 401 501 601 701 801 901 1001 1101 1201 1301 1401 1501 1601

Number of Iterations

Figure F-4 Response time with idle mode turned on,

F-3

c/5

5320 —
1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1301 1401 1501 1601

Number of Iterations

Figure F-5 Response time with idle mode turned off.

Table F-l Statistical comparison o f system with and without the idle mode.
With Idle Mode Without Idle Mode

Average (ps) 5365 5367

Minimum (ps) 5360 5345

Maximum (ps) 5370 5384

Standard Deviation 2.422447 7.831764

The difference in the two results was caused by the time taken to save the instruction
pointer. When an interrupt occurs, the CPU has to first save the location of the instruction
pointer before servicing the interrupt service routine (ISR). Without idle mode, the
instruction pointer could be pointing at any random instruction when the interrupt occurs.
The time taken to save that current location and go to the ISR could vary from instruction
to instruction. By using idle mode, the processor will be at a known state when an
interrupt occurs. Therefore, the time taken to save the present location into the stack
before servicing the ISR is always constant. This reduces the jitter in the system.

However, this low-level characteristic of an embedded microcontroller is much more
difficult to simulate using TrueTime.

F-4

Appendix-G Testcases for Case Study 8

This appendix presents the testcases used in Case Study 8 (Phase-II). The results o f the
testease evaluation fo r each group are also presented.

Table G -l The list o f testcases for Case Study 8, and the method used to test.
Main Test
C ase Groups Individual Test Cases Method Of Test

A LED A-1

A-2

Does the LED (P4.7) blink on and off?

Is the period of the task 1000ms?

Visually on the
board

Keil Simulator
A-3 Does the task start correctly the first time? Keil Simulator

B Counter B-1 Does it count up correctly? Keil Simulator
B-2 Is the period of the task 50 ms? Keil Simulator
B-3 Is the scaling & filtering done correctly? Keil Simulator
B-4 Does the task start correctly the first time? Keil Simulator

C Control & C-1 Is the PID algorithm called every 50m s? Keil Simulator
Actuation C-2 Is this task called after the sensor task? Keil Simulator

C-3 Is the scaling done correctly? Keil Simulator
C-4 Is the value displayed on P5? Keil Simulator
C-5 Does the task start correctly the first time? Keil Simulator

D ADC D-1 Is the ADC task called every 1000 ms? Keil Simulator
D-2 Is data from the ADC scaled correctly? Keil Simulator
D-3 Can the ADC work for varying values of the Keil Simulator

D-4
potentiometer (0,1,2,3,4,5?)
Does the task start correctly the first time? Keil Simulator

E PC LINK 0 E-1 Is this task called every 10ms? Keil Simulator
E-2 Is a value displayed on the screen? Serial init on the

screen
E-3 Does the task start correctly the first time? Keil Simulator

F RS232_Display F-1 Is this task called every 1000ms? Keil Simulator
F-2 Does it display the correct value on the

terminal?
View on screen

F-3 Is the value displayed in MPH? Keil Simulator
F-4 Does the task start correctly the first time? Keil Simulator

G Overall test G-1 Does the car speed stabilise at a particular
value?

HIL test

G-2 Is the set speed of the car displayed on the
screen?

HIL test

G-3 Does the set speed and car speed match up? HIL test

G-l

Table G-2 The record of testcase evaluation for Group A-II.
1 2 3 4 5

A-1 V V V V
A-2 V V V V
A-3 V V V V
B-1 V V V V
B-2 V V V V
B-3 V
B-4 V V V V
C-1 V
C-2 V
C-3 V
C-4 V
C-5 V
D-1 V V >/ V
D-2 V
D-3 V V V V
D-4 V V V V
E-1 V V V V
E-2 V V V V
E-3 V V V V
F-1 V V V V
F-2 V
F-3 V V V V
F-4 V V V V
G-1 V
G-2 V
G-3 V

0 15 15 15 26

G -2

Table G-3 The record of testcase evaluation for Group B-II.
1 2 3 4 5 6 7 8 9 10 11 12 13 14

A-1 V V V V V V V V V V V V V
A-2 V V V
A-3 V V V V V V V V V V V V V
B-1 V V V V V V V V V V V V V
B-2 V V V
B-3 V V V V V V V V V
B-4 V V V
C-1 V V V
C-2 V V V V V V V V V V V V V
C-3 V V V V V V V V V V V V V
C-4 V V V V V V V V V V V V V
C-5 V V V
D-1 V V V
D-2 V V V V V V V
D-3 V V V V V V V V V V V
D-4 V V V
E-1 V V
E-2 V V
E-3 V V
F-1 V V
F-2 V
F-3 V V
F-4 V V
G-1 V V V V V
G-2 V
G-3 V

0 7 7 7 7 8 8 9 10 9 9 16 23 26

G-3

Table G-4 The record o f testcase evaluation for Group C-II.
1 2 3 4 5 6 7 8

A-1 V V V V V
A-2 V V V V V
A-3 V V V V V
B-1 V V V V
B-2 V V V V
B-3 V V V V
B-4 V V V V
C-1 V V V V
C-2 V V V V
C-3 V V V V
C-4 V V V V
C-5 V V V V
D-1 V V V V
D-2 V V V V
D-3 V V V V
D-4 V V V V
E-1 V
E-2 V V
E-3 V V
F-1 V
F-2 V
F-3 V
F-4 V V
G-1 V V V V
G-2 V
G-3 V V V

0 0 0 3 17 18 21 26

G -4

Table G-5 The record of testcase evaluation for Group D-II.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A-1 V V V V V V V V V V V V V
A-2 V V V V V V V V V V V V V V V
A-3 V V V V V V V V V V V V V V V
B-1 V V V V V V V V V V V
B-2 V V V V V V V V V V
B-3 V V V V V V V V V V V
B-4 V V V V V V V V V V
C-1 V V V V V V V V
C-2 V V V >/ V V V V V V V
C-3 V V V V V V V V V
C-4 V V V V V V V V V V V
C-5 V V V V V V V V V V V V
D-1 V V V V V V
D-2
D-3 V
D-4 V V V V V V V V
E-1 V V V V V V
E-2 V V V V V V V V
E-3 V V V V V V V V
F-1 V V V V V V V
F-2 V V V
F-3 V V V V V V V V V
F-4 V V V V V V V V V
G-1 V V
G-2 V V
G-3 V V

6 2 2 11 11 8 15 15 3 2 2 20 20 20 24 24 22

G -5

Appendix-H Examples of some analytical models

This appendix presents some examples o f analytical models fo r real-time embedded
systems. This material is referred to in Chapter 2.

1. Detailed CAN communication model

This section illustrates some examples of analytical models for the CAN communication.
The worst-case response time for the CAN communication is composed of two delays, the
physical transmission delay (Cm) and the queing delay (fVm).

Cm is defined as the worst-case time taken to physically transmit the CAN message m. Cm
may be calculated using Equation 1. The term Sm in this equation refers to the number of
data bytes transmitted for a single CAN message. This variable can take any value from
one to eight. Tbu is the time resolution: for example, if the CAN bus is running at a speed
of 1 Mbps, then Zbu is l|is .

/ 34 + 8 S m \
m + 47 + 8 S m

V 4 m

Note that Equation 1 is for a standard CAN message. If an extended CAN message is
used, then the equation can be easily modified, to give Equation 2:

f 54 + 8 S M \
m + 67 + 8 S

V 4 m
J

For an extended CAN identifier, there are 67 bits of message overhead compared to 47
bits in a standard message (this doesn’t include any data). This difference arises because
of the different lengths of the Arbitration Field in the two versions o f the protocol.

For a standard CAN message, 34 bits in the message overhead is subjected to bit stuffing.
One bit is stuffed for every four bits: therefore, a maximum of four similar consecutive
bits can be encountered before a stuffed bit is inserted (Nolte et al., 2001). Early work
assumed that the worst-case scenario would involve insertion o f a stuffed bit for every five
bits; however, the inserted stuff bit contributes to the first bit o f the next sequence (Ellims
et al., 2002). Therefore, the sequence 00000111100001111 becomes
00000(1)1111(0)0000(1)1111 where the bits in () are the stuffed bits. The data field of
the CAN frame is also subject to bit stuffing, where one bit is stuffed for every four
similar consecutive bits. Therefore, Cm takes into account the message overhead, the data
transmitted and the number o f bits stuffed.

The queuing delay is denoted as Wm. Wm may be calculated using Equation 3:

W” + J : + TI
w.n + 1 = * .+ E

Vjehp(m)

bit C, (3)

H-l

(Note that Equation 3 will be calculated recursively until W ”+x converges to W ” .)

In Equation 3, Bm is the blocking delay. This delay is caused by a lower priority message
that is already transmitting its message over the CAN bus when message m enters the
queue. Bm may be calculated using Equation 4:

S m= m a x (c) (4)
Vkelp(m)

(Note: Equation 1 and Equation 2 are from Ellims at al. (2000). Equation 3 and Equation
4 are from the work of Tindell and Bums (1994).

2. Analytical models for a two node distributed system

Analytical models have also been created for distributed systems. The models take into
account the various scheduling technique and message communication. Table H-l below
illustrates the analytical models created by Lonn and Axelsson (1999) for the minimum
and maximum control delays for a two-node distributed network.

Table H-l Control delays for different scheduling policy. Table adapted from Lonn and Axelsson (1999).
Communication Processor Global

Scheduling Scheduling Time Control Delay

No
Min Cm + Oma + Ca

Fixed-Priority Fixed-Priority Max Bm + CM + Im + 0 Ma + BA +CA +IA

Yes
Min Oa + CA - (B s + Is + Cs)
Max 0 A + B a + Ia + c A - c s

No
Min Cm + Oma + Ca

Static-Cyclic Fixed-Priority Max Ttdma + Cm + Oma + Ba + Ca + Ia

Yes
Min Oa + CA - (Bs + Is + Cs)
Max 0 A + BA + Ia + CA - Cs

No
Min Cm + Oma + Ca

Static-Cyclic Static-Cyclic
Max Tjdma + CM + T + 0 Ma + CA

Yes
Min 0 A + CA
Max Oa + CA

No
Min Cm + Oma + Ca

Fixed-Priority Static-Cyclic
Max Bm + Im + CM + T + 0 Ma +Ca

Yes
Min 0 A + CA
Max 0 A + CA

References
Ellims, M., S. Parker and J. Zurlo (2002). "Design and analysis o f a robust real-time engine control

network." IEEE Micro 22(4): 20-27.
Lonn, H. and J. Axelsson (1999). "A comparison o f fixed-priority and static cyclic scheduling for distributed

automotive control application". The Eleventh Euromicro Conference on Real-Time Systems, York,
England.

Nolte, T., H. Hansson, C. Norstrdm and S. Punnekkat (2001). "Using bit-stuffing distributions in CAN
analysis". IEEE/IEE Real-Time Embedded Systems Workshop (RTES'01), London, UK.

Tindell, K. and A. Burns (1994). "Guaranteed message latencies for distributed safety-critical hard real-time
control networks". YCS 229 Real-Time Systems Research Group, University o f York, York, England.

H -2

Appendix-1 Examples of student questionnaires

This appendix presents some example questionnaires used by the student groups in the
SGM.

1. Questionnaire for non-simulation groups

i) What were the areas that were thought to be difficult and / or time consuming when
implementing the system?

ii) What were the areas that were thought to be easy when implementing the system?

iii) Do you think that having a simulator available (for use before code implementation)
would have helped to make it easier to implement your system?

iv) Assuming that you feel a simulator could be useful, what features do you think you
would require in such a program?

v) While developing the system, did you fully understand the software architecture of the
scheduler that you used? (Please explain your answer)

vi) How else do you think you could have created the code for this system? What were the
drawbacks/failures of the method you used?

vii) Did you find the software architecture that you used posed a problem at any point in
your development? (ie - would you have preferred to have used a co-operative instead of
a pre-emptive scheduler and vice versa?) Please explain your answer.

viii) Any other comments?

2. Questionnaire for simulation groups

i) What were the areas that were thought to be difficult and / or time consuming when
simulating the system on the TrueTime simulator?

ii) What more could have been done to make the TrueTime software simulation process
much easier and user friendly?

iii) What were the areas that were thought to be easy when simulating the system on
TrueTime?

iv) Were there any particular features of the TrueTime simulator that you thought was
particularly useful?

1-1

v) What were the areas that were thought to be difficult and / or time consuming when
implementing the system on hardware?

vi) For such areas, do you think the TrueTime software simulator could have been
modified to make it easier to implement the system on the hardware? Please give some
examples/suggestions etc...

vii) What were the areas that were thought to be easy when implementing the system on
hardware?

viii) Do you think that having TrueTime simulator available (for use before code
implementation) has helped to make it easier to implement your system?

ix) While developing the system, did you fully understand the software architecture of the
scheduler that you used? (Please explain your answer)

x) How else do you think you could have created the code for this system? What were the
drawbacks/failures o f the method you used?

xi) Did you find the software architecture that you used posed a problem any point in your
development? (ie - would you have preferred to have used a co-operative instead of a pre
emptive scheduler and vice versa?) Please explain your answer.

xii) Any other comments?

1-2

