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We introduce a new Self-Timed Cellular Automaton capable of

simulating reversible delay-insensitive circuits. In addition to a

number of reversibility and determinism properties, our STCA

exhibits direction-reversibility, where reversing the direction of a

signal and running a circuit forwards is equivalent to running the

circuit in reverse. We define also several extensions of the STCA

which allow us to realise three larger classes of delay-insensitive

circuits, including parallel circuits. We then show which of the

reversibility, determinism and direction-reversibility properties

hold for these classes of circuits.
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1 INTRODUCTION

Delay-insensitive (DI) circuits are a category of asynchronous circuits which

make no assumption about delays within modules and lines (wires) connect-

ing the modules, and have no global clock. It is argued in [11] that typical

logical gates such as NAND and XOR are not Turing-complete when op-

erated in a DI environment. Therefore implementations of DI modules and

circuits in alternative technologies, such as cellular automata ([6]) and RSFQ

circuits ([20]), have been researched actively in recent years. DI circuits were

introduced by Keller ([3]) who characterised the conditions required for cor-

rect DI operation and gave various universal sets of modules for a large class
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of circuits. Subsequent work by Patra and Fussell ([19]) went into finding

more efficient universal sets of modules for this class of circuits.

Reversible modules were originally studied by Fredkin and Toffoli ([2])

who proposed a number of synchronous universal logic gates. More recently,

Morita, Lee, Peper and Adachi carried out research into finding efficient uni-

versal sets of reversible serial DI modules (where only one signal travels

around a circuit) with memory, such as Rotary Element ([12]), and Reading

Toggle and Inverse Reading Toggle ([9]). The sets of all possible 2-state re-

versible serial modules with two, three and four pairs of input/output lines

were enumerated in [14]. Implementations of reversible serial DI modules in

Self-Timed Cellular Automata (STCAs) ([21]), a special type of asynchronous

cellular automata, are shown in several papers including [10, 9, 8, 7]. How

these various concepts relate to each other was discussed by Morita in [13].

Further investigations in [16, 17] examine the effects of combining reversibil-

ity with parallelism in the context of DI modules and the resulting limitations

of such modules, while introducing a new notation for describing DI modules

called set notation.

In this paper we introduce four novel STCAs for non-arbitrating parallel

DI circuits, including two STCAs for the reversible versions of such circuits.

Our two main STCAs have several very useful properties, they are locally de-

terministic, locally reversible and support what we call direction-reversibility.

This allows us to operate a circuit in reverse by changing the direction of sig-

nals and utilising its output lines as input lines (and vice versa). This removes

the need for separate constructions to realise the inverse of a circuit. New

notions of global determinism and global reversibility are introduced for par-

allel DI circuits, and these properties are proven for these two STCA. We also

introduce two further extensions to the STCAs which simulate irreversible

circuits. These two additional STCAs are shown to be locally deterministic

and globally deterministic. Finally, we prove that the final STCA can be used

to realise Keller’s class of DI circuits.

Section 2 introduces DI modules and some universality results and Section

3 introduces STCAs. In Section 4 we define two new STCAs for the simu-

lation of reversible serial and serial modules. We then show how to extend

our STCAs to support two subclasses of parallel modules and give a univer-

sality result for Keller’s class of DI circuits. Section 6 concludes the paper.

All constructions in this paper were verified using an STCA simulator. The

software, as well as the constructions in this paper, can be found at [15].
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2 DELAY-INSENSITIVE MODULES

We define delay-insensitive modules using a high-level set notation developed

in [17] which naturally describes external concurrent behaviour of modules.

The notation represents a module as a mapping between the module’s states

together with sets of concurrent input signals and the resulting states with

output signals. This is in contrast with the sequential machine style notation

of Keller ([3]) where modules are simple state machines which process sin-

gle inputs at a time. Details how set notation is derived from the sequential

machine notation can be found in [17].

A module is a 4-tuple {Q, I,O, T }, where Q is a finite set of states ranged

over with q, q′ . . . or S, S′ . . . , I is the set of input lines and O is the set of

output lines both ranged over with a, b . . . . The map T ⊆ Q× (P (I) \ ∅) →

Q × (P (O) \ ∅) is called the transition map and it assigns an input set in a

given state to an output set and a new state. Informally, T denotes what we

call the input/output behaviour of a module. This describes the effects of a

concurrent set of input signals to a module. The environment is required to

signal the set of lines corresponding to one defined input set. Upon receiving

the full input set, the module produces signals on lines corresponding to the

output set and changes the state, according to T . The environment may then

begin signalling a new input set. If an input set is undefined in a given state, it

is assumed that this input set is never signalled in the given state. We note that

Keller’s sequential machine notation uses a transition map which is a partial

function, whereas our notation is more general by also allowing maps which

are not functions; see also Remark 4.

The inverse of {Q, I,O, T } is the module {Q,O, I, T−1} where T−1 is

the inverse of T . Note that since T is a map, T−1 is defined. We call a

module serial if all input and output sets are singletons, and no two input

sets are equal in any given state. Modules which are not serial are called

parallel. We call a serial module reversible if T is a bijection, otherwise it is

irreversible.

A network or circuit of modules is a collection of instances of modules,

such that every output of a module is connected to at most one input of an-

other module and every input of a module is connected to at most one output

of another module. We say that a network of modules is delay-insensitive

(or DI for short) if the network operates correctly regardless of delays in any

of the lines or modules. We call a network a realisation of a module if the

input/output behaviour of a network simulates correctly the input/output be-

haviour of the module. A network is serial if all modules within the network

3



WW

RR

W0W0 W1W1

0 = (W,W0).1

1 = (W,W1).0 + (R,W1).1

WW

RR

W0W0 W1W1

0 = (W1,W ).1

1 = (W1, R).1 + (W0,W ).0

FIGURE 1

Reading Toggle (top) and Inverse Reading Toggle (bottom) modules. A signal on R

(W0) is not permitted when RT (IRT) is in state 0. This definition of RT and IRT is

from [8].

are serial, otherwise it is parallel. We say that a set of modules is universal

for a class of modules, if any module within the class can be realised using

only modules from the set.

As in [17], we use a CCS-like ([23, 25]) notation to present more easily

the definitions of modules. A typical module (Q, I,O, T ) is given by a set of

equations of the form qi = (Ai1, Bi1).qi1 + · · ·+(Aij , Bij).qij where i, j ≥

0. The expression (Akl, Bkl).qk is called an action of qk for all appropriate

k, l, Akl ⊆ I and Bkl ⊆ O. There is one such equation for each qk in Q,

and, for all appropriate k and l, (Akl, Bkl).qkl is an action of qk if and only

if (qk, Akl, qkl, Bkl) ∈ T . Informally, each action corresponds to an element

of T and vice versa. For example, S0 = ({a, b, c}, {d, e}).S1 says that in

state S0, the environment may signal the lines a, b and c exactly once each,

in any order or concurrently. This will result in a signal on d, a signal on e (in

any order or concurrently), and a new state S1. Set brackets are omitted for

singleton sets.

Figure 1 shows the modules Reading Toggle (RT) and Inverse Reading

Toggle (IRT) ([9, 8]), which are both reversible serial, and are each other’s

inverses. We use 0, 1 as states and R,W,W0,W1 as inputs and outputs to

be consistent with the notation in [8]. The set {RT, IRT} is universal for

reversible computation ([9], [8]), and a network of RT and IRT modules can

realise any reversible serial module. Hence {RT, IRT} is universal for the

class of reversible serial modules.

Figure 2 shows several other common DI modules. For consistency with
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FIGURE 2

Fork, Join and Merge modules.

the original definitions, F, J and M denote states. Fork and Join are parallel

modules. Merge is a serial module and is irreversible, as its transition map is

not a bijection.

Definition 1. A module is arbitrating (arb for short) if there is a state with

different actions (A,B).q′ and (A′, B′).q′′ such that either A ⊆ A′ or A′ ⊆

A. A module is non-arbitrating (non-arb) if it is not arbitrating.

Informally, arbitration corresponds to a form of non-determinism. As each

possible input set in a given state corresponds to a set of signals arriving,

for a module to be deterministic in a delay-insensitive environment, no in-

put set can be a subset of another input set in the same state, and no in-

put set can lead to two different output sets or different states. All mod-

ules defined so far are non-arb. An example of a simple arb module is D =

({a, b, c}, x).D + ({a, b}, y).D. Here, the input set {a, b} is a subset of the

input set {a, b, c} in the state D. It is clear that all serial modules are non-arb

due to the requirement that no two input sets in a state are equal.

Example 2. Keller’s Arbitrating Test and Set module (ATS for short) [3] is

an example of an arb module. The set notation definition of ATS (as given in

[17]) is as follows:

S1 = (T, T1).S1 + ({R, T }, T1).S0 + ({R, T }, T0).S1

S0 = (T, T0).S1

ATS is a two-state module, which can hold one of two memory values (re-

ferred to as 0 and 1), and allows the arrival of signals on T andR concurrently.

If T is processed, the module outputs a signal on T1 or T0, corresponding to

the held value, and resets the held value of the module to 1. If R is processed,

the module sets the held value to 0 but produces no output, so this is not visi-

ble to the environment. Hence the held value does not directly correspond to

the state of the module as defined by the set notation. Therefore, signalling R
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and T concurrently in S1 may result in different behaviours, which is reflected

in the (set notation) definition of S1.

Definition 3. A module is backwards-arbitrating (b-arb for short) if there

are two states q1 and q2 in the definition of the module such that (A,B).q′1
and (A′, B′).q′2 are actions of q1 and q2, respectively, and q′1 = q′2 and either

B ⊆ B′ or B′ ⊆ B. A module is non-backwards-arbitrating (non-b-arb) if

it is not b-arb.

Many b-arb modules are not logically reversible because the inverses of their

transitions maps are not bijections. There are, however, logically reversible

b-arb modules, whose inverses are not forwards-deterministic in a DI en-

vironment due to the presence of inclusion between input sets in the same

state. Consider the module defined by the equation S0 = ({a}, {x, y}).S0 +

({b}, {x}).S0. The map T given by (S0, a, S0, {x, y}) and (S0, b, S0, x) is

clearly a bijection. However, the inverse of this module, given by the equa-

tion S−1

0 = ({x, y}, {a}).S−1

0 +({x}, {b}).S−1

0 is clearly non-deterministic

when delay-insensitivity is assumed, as signalling the set {x, y} concurrently

could produce a or it could result in b and a signal pending on y.

There is a mismatch between the notion of logical reversibility when con-

sidering a module’s definition, and the notion of reversibility in a DI environ-

ment. Therefore, in the context of parallel modules, we shall use the term re-

versible to mean strictly non-arb non-b-arb modules, and not simply modules

where T is bijective. Fork and Join are examples of reversible modules which

are each others’ logical inverses, as inverting the definition of one yields the

other. Merge is an example of a b-arb module: two actions (a, c).M and

(b, c).M share the same output set {c}, as well as the same target state M .

Remark 4. We note that set notation is more expressive than the sequential

machine style of Keller, and as a result it is possible to define modules using

this notation which cannot be specified as traditional sequential machines. An

example is the module Choice which implements a binary choice:

C = (c, a).C + (c, b).C

Note that Choice is the inverse of Merge. Choice cannot be specified as

Keller’s sequential machine because its transition map is not a function. This

distinction is not relevant when studying non-arb modules.

In [16], we defined a Distributed (one-bit) Memory (DM) module which is

reversible and serial, and showed that {DM, Merge} is universal for the class
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of serial modules. As {RT, IRT} is universal for any reversible serial module,

it can realise DM. It is shown in [17], by giving a general construction, that the

set {DM, Fork, Join} is universal for the class of non-arb non-b-arb modules

and {DM, Fork, Join, Merge} is universal for the class of non-arb modules.

It is shown in [3] that the set {Merge, Fork, Select, ATS} is universal for

Keller’s class of DI modules, where Select is a simple serial module with a

one-bit memory [3].

Proposition 5. 1. {RT, IRT, Merge} is universal for serial modules.

2. {RT, IRT, Fork, Join} is universal for non-arb non-b-arb modules.

3. {RT, IRT, Fork, Join, Merge} is universal for non-arb modules.

4. {Merge, Fork, RT, IRT, ATS} is universal for Keller’s class of DI modules.

Proof. Universality of the two non-arb sets of modules is achieved through

the illustration of a general construction, one for each of the two classes of

modules, given in [17]. It is shown in [9] that {RT, IRT} is universal for any

reversible serial module, so it is capable of simulating DM. As Select is serial,

it can be realised using the set {RT, IRT, Merge}.

3 SELF-TIMED CELLULAR AUTOMATA

A Self-Timed Cellular Automaton (STCA for short), introduced in [21], is a

special type of asynchronous cellular automaton. It is given by a set of up-

date rules together with a two-dimensional infinite array of cells. In Figure 3,

adopted from [8], a cell is depicted as a square (for example, the square con-

taining triangles with a, b, c, d). Each cell is divided into four subcells which

are depicted in Figure 3 as small triangles, each of which can be in one of two

states, 0 or 1. We depict the state 0 with a clear triangle, and the state 1 with

a black triangle. The default state of a subcell is 0 and is known as the qui-

escent state. The state of all cells and their subcells in the two-dimensional

array is known as a configuration, and the state of cells and subcells in the

initial array is called the initial configuration. Configurations are ranged over

by C,C′ . . . and D,D′ . . . . In this paper we identify an STCA with the set

of its update rules R.

A set of subcells in a configuration may be involved in an update, where

the states of subcells are modified according to one of the update rules. An

update involves a full cell (comprised of its four subcells) together with the

cell’s four adjacent neighbouring subcells on the two-dimensional plane. Fig-

ure 3 shows how a general update rule is depicted (image adopted from [8]),
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FIGURE 3

Depiction of an update rule.

where a, b, c, d, e, f, g, h, q, r, s, t, u, v, w, x ∈ {0, 1}. This means that sub-

cells a, b, c, d, q, r, s, t of a configuration are updated to e, f, g, h, u, v, w, x,

respectively, giving a new configuration. Following [21], an update of a set

of subcells may only occur if an update rule is defined for the current state of

the given subcells.

Subcells are assumed to update instantaneously and randomly at any time

if a corresponding update rule is defined. However, as two adjacent cells

share subcells in their update codomain, we assume, following [22], that no

two adjacent cells may update simultaneously.

Definition 6. A set of update rules is locally reversible, if no two update rules

have identical right-hand sides. A set of update rules is locally deterministic

if no two update rules have identical left-hand sides. An update causes the

current configuration to change to a new configuration. An execution of a

configuration C is a sequence of configurations C → C′ → C′′ . . . , where

→ represents that one or more updates have occurred simultaneously. The

reflexive and transitive closure of → is denoted by →∗. Configuration C′ is

reachable from C if C →∗ C′, and we call C′ a derivative of C.

In this paper we assume that configurations give rise only to those execu-

tions that satisfy weak fairness ([4]):

Definition 7. An execution C1 → C2 → . . . , with C = C1, is weakly fair

whenever if

• there are different Ck, Cl in the execution with k < l such that Cl+1 = Ck

(a “loop” containing Ck and Cl is reachable from C) and

• there is D 6= Ci, for k ≤ i ≤ l, such that Cj → D, for some k ≤ j ≤ l, (D

is not one of the configurations of this loop and the execution can leave the

loop by updating to D),

then Cm = D for some m > l (the execution leaves the loop eventually).
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FIGURE 4

A weak-fair execution. Each node represents a unique configuration.

Informally, once an execution reaches a loop and if it is possible to break from

the loop by updating to a configuration outside the loop, then the configura-

tion will be reached eventually. An example of this can be seen in the exe-

cution graph in Figure 4, where each node represents a unique configuration.

Weak fairness allows us to achieve the effect of Keller’s ([3]) finite-blocking

property which requires that signals are assimilated eventually by modules.

It also allows us to guarantee that a module eventually produces an output in

response to an input.

Next, we define two new important properties of STCAs.

Definition 8. Let C be a configuration of an STCA.

1. C is globally deterministic if there exist a configuration D such that, for

all C′, if C →∗ C′, then C′ →∗ D.

2. C is globally reversible if there exist a configuration D′ such that, for all

C′, if C′ →∗ C, then D′ →∗ C′.

Informally, if C is globally deterministic then all executions from C must

eventually reach the configuration D required by Definition 8. Correspond-

ingly, if C is globally reversible then all executions to C originate from some

configuration D′ as required in Definition 8. This is a modification of global

reversibility defined in [8], and is made here to accommodate for parallel sig-

nals travelling through an STCA and looping execution sequences.

Remark 9. There is some relationship between the global determinism and

global reversibility of configurations in Definition 8 and the Forward Dia-

mond (FD) and Reverse Diamond (RD) properties of labelled transition sys-

tems (LTS for short) in [23, 24]. If we defined the notions of Definition 8 in

the setting of LTSs, then FD would imply general determinism and RD would

imply global reversibility, but not vice versa.

For the purpose of this paper, we assume that the configurations are finite
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FIGURE 5

The set of rules RS for reversible serial modules. Each class 1-4 consists of a single

rule (on the left) together with three of its rotations (on the right). The classes represent

the following behaviours: 1) Signal movement; 2) Signal right turn; 3) Signal left turn

(direction-reversal of class 2); 4) Toggle of a memory structure by a signal.

two-dimensional arrays such that the four “edges” of the grid are rows of cells

which are not involved in updates.

Examples of STCAs developed for the simulation of reversible serial DI

circuits can be found in [10, 9, 8, 7]. The STCAs in [10, 8, 7] contain locally

reversible and locally deterministic rules.

4 DIRECTION-REVERSIBLE STCA FOR SERIAL DI MODULES

In this section we define a new STCA intended for the simulation of serial DI

modules, including reversible modules.

In Figure 5, we give four different rules along with three rotations by the

multiples of 90 degrees. Hence each line in Figure 5 represents an equivalence

class of rules. In the context of DI circuits, a signal is represented by a single

subcell in state 1, with the subcell adjacent to its longest side in the quiescent

state. Signals are considered to “point” in the direction perpendicular to the

subcell’s longest side. We refer to this set of rules, (and the STCA defined by

this set) as RS (for reversible serial).

Definition 10. Given an update rule r, δ(r) is the update rule obtained from r

by (a) inverting r, namely swapping the left and right-hand sides, and then (b)
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inverting the direction of the signal in the resulting rule, namely swapping the

states of subcells inside the squares given by the following pairs (q, a), (c, s),

(r, b), (d, t), (u, e), (g, w), (v, f), (h, x) in Figure 3. The rule δ(r) is called

the direction-reversal (rule) of r and, given the set of rules R, δ(R) is the set

of direction-reversal rules of the rules in R. STCA with the set of rules R is

direction-reversible if R = δ(R).

For example, the direction-reversal of rule 2 in Figure 5 is rule 3, namely

δ(2) = 3, and vice-versa. Also, δ(1) is the third rule in class 1 and δ(4) is the

third rule in class 4.

Proposition 11. Let r ∈ RS. Then δ(r) ∈ RS and, hence δ(RS) = RS.

Proof. By Definition 10.

Proposition 11 implies that for each construction in RS which performs an

operation on a single signal, inverting the direction of the signal in the rules

has the same effect as using the inverses of rules. Moreover, we have:

Proposition 12. Rules in RS are locally reversible and locally deterministic.

Proof. By Definition 6.

Figure 6 shows a single construction which acts as either RT or IRT, de-

pending which lines are used as inputs. This is a consequence of the direction-

reversibility of RS. We say that such constructions, as well as configurations

realising such constructions, are direction-reversible. This implies that RS

can be used to perform universal computation, and to simulate any reversible

serial module (see Section 1). Furthermore, as both RT and IRT are simulated

by a single construction separate constructions are not required to realise the

inverse of a reversible serial circuit. Inverting a circuit in RS requires sim-

ply changing the direction of the signal. This bidirectional nature implies a

potential advantage when considering physical implementation.

Proposition 13. Any reversible serial module can be realised by a configura-

tion in RS. Such configurations, and their derivatives, are globally determin-

istic, globally reversible, and direction-reversible.

Proof. It is shown in [9] that any reversible serial module can be simulated

using a network of RT/IRT modules. Composing multiple instances of the

construction in Figure 6 allows a realisation of such a network. Local re-

versibility and local determinism of the rules, together with the presence

of a single signal in the network, results in a unique execution sequence,
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FIGURE 6

Left: RT/IRT in state 0. Right: RT/IRT in state 1. When R and W are used as inputs,

the construction acts as RT with W0 and W1 as outputs, and vice-versa for IRT. The

images show the path of the signal W when the construction is used as RT. A dotted

white line through a memory structure indicates that the memory’s state is toggled and

the signal continues in the same direction.

thus guaranteeing global reversibility and global determinism. Direction-

reversibility of RT/IRT, local reversibility and local determinism guarantee

direction-reversibility.

Our STCA RS uses only four classes of rotation-symmetric rules. The only

STCA for simulating reversible serial circuits which utilises four classes of

rotation-symmetric rules that we are aware of appears in [10, 7], but direction-

reversibility is not supported. The STCA in [9] supports direction-reversibility,

but the rules are not locally reversible or locally deterministic. We are not

aware of any other STCA which allows direction-reversibility. Furthermore,

the STCA in [9] requires five classes of rotation-symmetric and reflective-

symmetric rules.

We now demonstrate a useful construction in RS. In [1] it is shown that

any irreversible function (which we call I) of the type Input → Output can be

converted to a reversible function which simulates I . In order to be left with

a garbage-less result, this requires a complex series of operations A, B and

C (see Figure 7), where: A is a reversible version of the original irreversible

function I which performs the operation of I while recording the computation
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FIGURE 7

Reversible garbage-less implementation of an irreversible function I . A is the re-

versible version of I , B clones the output of A and C is the inverse of A.

history; B is a function which copies the output (excluding the computation

history); andC is the inverse ofA which removes the computation history and

the first copy of the output, while reproducing the original input. This results

in a new function of the type Input → (Input + Output) which simulates I .

In order to facilitate implementations of these functions, in Figure 8 we

show a construction called Direction-Reverser (DR for short) which takes an

input signal on IO, toggles the internal state, and then produces an output on

IO. Hence, this construction can be used to reverse the direction of a signal.

If DRs are placed at the output lines of a circuit as in Figure 9, due to the

direction-reversible nature of RS, an input to the circuit will eventually result

in the output being “recorded” in one of these constructions, and the signal

being returned to the original input line (but facing the opposite direction).

The internal state of the circuit is also returned to its original configuration.

Hence, when implementing reversible versions of irreversible functions in RS,

it suffices to implement only the function A.

In Figure 10, we give the set of rules M for realising Merge. Informally,

the new rules extend the left/right-turn structure so that a signal approach-

ing from the previously unused side is (irreversibly) forwarded to the oppo-

site side. Hence the left/right turn structure can now operate as Merge. The

rules in M are locally deterministic but not locally reversible. This gives

rise to our second STCA S = RS ∪ M . The set S (for serial) supports the

reversible constructions demonstrated in this section. Interestingly, direction-

reversibility is maintained for all of these constructions. However, attempting

to perform a direction-reversal on constructions which utilise Merge (which

are irreversible) may result in unexpected behaviours.

Theorem 14. Rules in S are locally deterministic. Any serial module can be

realised by a configuration in S. Such configurations, and their derivatives, are
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IO

FIGURE 8

A Direction-Reverser. An input signal on IO causes a change in the state of the mem-

ory structure (with a white dotted line) and an output on IO.

I1 I2 I3 In

O1 O2 O3 On

record output

via state change

and reverse

DRDRDRDR

A (C)

FIGURE 9

Direction-reversible STCA implementation of a reversible version of an irreversible

function in Figure 7. The main part of the circuit realises both A and C.

FIGURE 10

The set of rules M . The rotation-symmetric equivalences are included for ease of

implementation, but are not required if turns (classes 2 and 3 in RS) are utilised.
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FIGURE 11

The set of rules P . The rules represent from left to right: (p1) Fork to Join evolution;

(p2) Join to Fork evolution; (p3) Fork to Join evolution while an input produces two

outputs; (p4) Join to Fork evolution while two inputs produce an output. In the third

rule (p3), an input signal (the bottommost black subcell in the source of the rule)

arrives at a Fork, produces two outputs (the leftmost and the rightmost black subcells

in the target of the rule) and changes the configuration to a Join. In the last rule (p4),

two input signals (the leftmost and the rightmost black subcells in the source of the

rule) arrive at a Join, produce an output (the bottommost black subcell in the target of

the rule) and change the configuration to a Fork.

globally deterministic. Configurations which realise reversible serial mod-

ules, and their derivatives, are direction-reversible.

Proof. By Proposition 5, {RT, IRT, Merge} is universal for the class of serial

modules. Composing multiple instances of the construction in Figure 6 and

Merge structures allows us to realise any serial module. Local determinism

of the rules, together with the presence of a single signal, results in a unique

execution sequence, thus guaranteeing global determinism. The behaviour of

the RT/IRT construction is unaffected by the additional rules in M . Hence,

by Proposition 13, compositions are direction-reversible.

5 EXTENDING TO PARALLEL DI MODULES

We now show how RS and S can be extended to cover parallel circuits. Re-

call that {RT, IRT, Fork, Join} is universal for the class of non-arb non-b-arb

modules (Proposition 5). Hence it suffices to add the rules for Fork and Join:

these are given in Figure 11.

In order to maintain local reversibility and local determinism, rotation

equivalent rules in P are not permitted. So, there is a design constraint on the

layout of such circuits, and it implies that Fork and Join constructions must

be oriented appropriately in order to function correctly. This is overcome by

using left/right turn constructions when designing circuits. We note that the

direction-reversal version of each rule in P is also in P , thus δ(P ) = P .

Figure 12 shows a Fork and Join construction in P . As Fork and Join are

each other’s inverses, they can be realised with a single direction-reversible
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a

b

c

Evolving structure

FIGURE 12

Fork and Join. The central structure evolves between Fork and Join patterns according

to p1 and p2 in Figure 11. When a (correspondingly b, c) is used as an input, the con-

struction acts as Fork (Join) with b and c (correspondingly a) as outputs. The image

shows the path of signals when used as a Fork. Signals loop along the dotted lines

until they encounter the evolving structure in the correct state. This will eventually

happen due to the weak fairness assumption in Section 3.

construction. This is achieved by two simple structures that evolve constantly,

one into the other. The central structure is an evolving structure (as opposed

to previously seen static structures), as updates can occur continuously even

when no signals are present. It can be verified that the construction is globally

deterministic and globally reversible when signals are applied as intended.

Figure 13 contains rules C for crossing of signals. Note that δ(C) = C.

We now define our third STCA NANBP = RS∪P ∪C, (where NANBP is

for non-arb non-b-arb parallel). Since the construction for Fork/Join in Fig-

ure 12 is direction-reversible, globally deterministic and globally reversible

when operated with appropriately placed signals, it is easy to see that when

combining the construction with that of RT/IRT and connecting lines ap-

propriately as in DI circuits, the resulting configuration is also direction-

reversible, globally deterministic and globally reversible.

Theorem 15. Rules in NANBP are locally deterministic and locally reversible.
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FIGURE 13

The set of rules C (for crossing) to implement the crossing of signals.

Any non-arb non-b-arb module can be realised by a configuration in NANBP.

Such configurations, and their derivatives, are globally deterministic, globally

reversible and direction-reversible.

Proof. By Proposition 5, {RT, IRT, Fork, Join} is universal for the class of

non-arb non-b-arb modules. Composing multiple instances of the construc-

tions in Figures 6 and 12 allows a realisation of such a network. Global

determinism and global reversibility of both types of construction, together

with the delay-insensitive property of the general construction in [17], guaran-

tee that such a network is also globally deterministic and globally reversible.

Direction-reversibility, globally determinism and globally reversibility of RT/

IRT and Fork/Join, together with local reversibility and local determinism

guarantee direction-reversibility.

We note the STCA in [22] implements Keller’s full class of parallel DI

modules, but rules are not locally reversible or permit direction-reversibility,

even when restricted to the subclass of reversible modules. We also note that

the Partitioned Cellular Automaton (PCA) [5] is similar to a STCA but it

has a smaller codomain for the update function, and three states per subcell.

This PCA realises Keller’s full class of parallel DI circuits, but as in [22] its

rules are not local reversible or permit direction-reversibility when restricting

to the reversible subclass. And, we note the ACA in [26] that simulates the

universal NAND gate via the use of parallel arbitrating DI modules.

Finally, we define STCA NAP = RS ∪ P ∪ C ∪ M (for non-arbitrating

parallel modules) and, correspondingly to Theorem 14, we have:

Theorem 16. Rules in NAP are locally deterministic. Any non-arb module

can be realised by a configuration in NAP. Such configurations, and their

derivatives, are globally deterministic. Configurations which realise non-arb

non-b-arb modules, and their derivatives, are direction-reversible.

Proof. By Proposition 5, {RT, IRT, Fork, Join, Merge} is universal for the

class of non-arb modules. Composing multiple instances of the construc-
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tions in Figure 6, Figure 12 and Merge structures using the rules in Figure 10

allows a realisation of such a network. Global determinism of these con-

structions, together with the delay-insensitive property of the general con-

struction in [17], guarantee that such a network is globally deterministic. The

behaviour of the RT/IRT and Fork/Join constructions are unaffected by the

additional rules in M . Hence, by Theorem 15, compositions are direction-

reversible.

We introduce one further universality result. Recall that the set of DI mod-

ules which can be defined using Keller’s sequential notation is a strict subset

of all DI modules definable using our set notation (Remark 4). Recall from

Proposition 5 that {Merge, Fork, Select, ATS} is universal for Keller’s class

of DI modules.

In Figure 14, we show how the STCA NAP can realise ATS (defined in

Section 2) directly. The construction contains two consistent memory struc-

tures which can hold one of two values, 0 or 1 (represented by the grey and

corresponding black subcells). A signal on R may only arrive when the mem-

ory structures hold a value of 1. In this case it can be verified that the signal

sets the two memory structures to 0 and pends at the Join structure to the right

of the construction. A signal on T will query the value in the upper memory

structure. A value of 1 will cause the signal to leave on the T 1 line. A value

of 0 will cause the signal to enter the Join structure, synchronising with the

pending R signal, before resetting the values to 1 and outputting on T 0. A

race condition may arise between signals on T attempting to query the upper

memory, and R attempting to modify the value. A collision will not occur as

it is assumed in Section 3 that no two adjacent cells may update simultane-

ously. It can be verified using [15] that this construction correctly implements

the behaviour of ATS. This gives us the following result.

Theorem 17. Any module in Keller’s class of DI modules can be realised by

a configuration in NAP.

Proof. By Proposition 5, {Merge, Fork, RT, IRT, ATS} is universal for Keller’s

class of DI modules. By Theorem 16, NAP is able to realise Merge, Fork, RT

and IRT. Figure 14 shows how to realise ATS, also with NAP.

6 CONCLUSION

In this paper we have introduced a new STCA for reversible serial DI circuits.

It is locally reversible and locally deterministic. The STCA allows circuits to
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T

R

T1 T0

FIGURE 14

Implementation of Keller’s ATS module. The two memory structures from the left of

the figure hold a value of 1 (depicted by the black subcells), or a value of 0 (depicted

by the grey subcells). The black and grey subcells both denote the subcell state of 1

but are used to depict the differing location of the memory structure depending on the

held value. A white dotted line indicates that a signal toggles the memory structure

and then continues in the same direction.
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be inverted by reversing the direction of the signal: the new property we call

direction-reversibility. We have discussed the potential advantages of this

property, and shown how it can be used to realise efficiently garbage-less re-

versible functions. New notions of global determinism and global reversibil-

ity have also been introduced for asynchronous parallel circuits. Our STCA

has been shown to be globally deterministic and globally reversible.

We have shown how to extend the STCA to all serial modules, non-arb

non-b-arb modules, and finally to all non-arb modules while retaining lo-

cal determinism and global determinism. We have shown that in the case

of non-arb non-b-arb modules, global determinism, global reversibility and

direction-reversibility are preserved. Finally, we have proven that the STCA

for non-arb modules can be used to realise Keller’s class of DI circuits.
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