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Abstract. Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give
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a related question posed by P. L. Lions and T. Paul in 1993. If we consider more singular potentials,
our rigorous estimates break down. To investigate whether conical saddle points, such as −|x|, admit
a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori
error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated.
In particular, specific phenomena which render invalid any regularized transport for −|x| are identified
and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate
a precise conjecture for the condition under which conical saddle points admit a regularized transport
solution for the WM.
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1. Introduction

The study of the Schrödinger equation in the semiclassical regime

iεuε
t +

ε2

2
∆uε−V uε=0, uε(t=0)=uε

0,

‖uε
0‖L2(Rd)=1, ε≪1

(1.1)

arises naturally in many problems of engineering and mathematical physics, see e.g.
[21, 37] and the references therein. A standard physical interpretation is that of the
dynamics for a quantum particle, the behavior of which is expected to resemble classical
mechanics as ε→0, hence the term “semiclassical”.

Semiclassical problems appear in many applications; these include long distance
propagation for parabolic and hyperbolic wave equations [21, 37], or long-distance parax-
ial propagation [9, 28, 33, 29]. Certain mean-field limits of statistical mechanics give
rise to semiclassical limits [20] as well. Molecular dynamics and modeling of chemical
reactions is another source of semiclassical limit problems [38, 39]; it is there that sin-
gular saddle points arise as particularly important problems. Singular saddle points are
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2 Regularized semiclassical limits

also related to eigenvalue crossings, which develop even in smooth systems. This has
been an important motivation for their focused study [16, 17].

Since the direct solution of (1.1) becomes intractable for ε≪1, several asymptotic
techniques have been developed for its approximation. Semiclassical asymptotics can
be said to be completely understood for problems with V ∈C1,1(Rd); difficulties arise
for less regular potentials, which will henceforth be called “non-smooth”. In particular,
W 1,∞(Rd) non-smooth potentials may arise as effective potentials in smooth systems
[16, 17, 27], or from first principles modeling [3, 22, 34, 13]. For the relation of this type
of non-smooth potentials and semiclassical limits of non-linear Schrödinger equations
see, e.g., [36, 20]. Recent breakthroughs in the semiclassical limits of problem (1.1) over
non-smooth potentials are [4, 17].

As has been highlighted in [17], the regularity of the potential is not as important
as the overall behavior of the underlying classical flow, φt : (x,k) 7→ (X(t),K(t)), where

Ẋ(t)=2πK(t), K̇(t)=− 1

2π
∂xV (X(t)),

X(0)=x, K(0)=k.
(1.2)

It is well known that the flow φt defined by (1.2) is well-defined for all (x,k)∈R2d as
long as V ∈C1,1(Rd), and that the problem (1.2) has weak solutions (possibly many)
for all (x,k)∈R2d as long as V ∈C1(Rd). This basic observation puts nicely in context
why any V /∈C1,1(Rd) is called non-smooth.

Once we enter the regime of non-smooth potentials, the regularity of the flow is
much more relevant than the smoothness of V . For example, in [17] there are results
applicable, essentially, to any V ∈W 1,∞(Rd), under the assumption that the wavefunc-
tion does not fully interact with a singular saddle point. One way to explain why singular
saddle points are so different, is that the flow around one has an infinite Lyapunov expo-
nent. (See also section 3 for a more detailed discussion of singular saddle points.) Thus,
out of the possible isolated non-smooth points, local maxima are the most challenging
mathematically, since they give rise to singular saddle points. They are also particularly
interesting physically, since they model chemical reactions [39].

Finally, we note that despite the great progress of the last 30 years, the semiclassical
limits for the non-smooth saddle point problem described in Remarque IV.3 of [30], have
not been computed before this work. We state a generalized version of this problem as
Problem 4.11, in Section 4.4, and solve it in Theorem 4.4.

1.1. Statement of the Main Results: Semiclassical Estimates for

V∈C1,a(Rd). One of the main results of this paper is the computation of semi-
classical limits for problems of the form (1.1) with potentials V ∈C1,a(Rd), a∈ (0,1).
For these results, a family of test functions (related to the widely used Banach algebra
A) will be used; namely

Definition 1.1 (BM). We will denote by BM the Banach space of functions f :
R2d→R defined in terms of the norm

|||f |||M :=

∞∑

m=0

M−m‖|K|mf̂(X,K)‖L1(R2d).

The dual space, denoted by B−M has norm

|||f |||−M := sup
|||φ|||M=1

〈f,φ〉.
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Remark 1.2. Some key observations for BM :
(i) (Non-triviality of BM .) One easily sees the following: take a Schwarz test-

function φ(x,k)∈S(R2d), which in addition has the property that its Fourier

transform, φ̂(X,K), is supported on |K|<L. Then φ∈BM for all M>L.
(ii) (Relation to A.) It is straightforward to observe that

‖φ(x,k)‖A= ‖[Fk→Kφ](x,K)‖L1
K
L∞

x
6 ‖φ̂(X,K)‖L1

K
L1

X
6 ‖φ‖BM

, ∀M> 0.

All the notations used here are precisely defined in section 4.1. The definition of the
algebra A is given in appendix A. The main result is stated in the following theorem
and its proof can be found in section 4.3.
Theorem 1.1. Consider the semiclassical IVP (1.1), with a potential V ∈C1,a(Rd) for

some a∈ (0,1], satisfying also
∫
S

V̂ (S)|S|dS<∞. Denote by W ε(t) the Wigner transform

(introduced in detail in section 2.1) of the wavefunction uε,

W ε(t)=

∫

y

e−2πikyuε(x+
εy

2
,t)uε(x− εy

2
,t)dy,

and by ρε(t) the solution of

∂tρ
ε(t)+2πk ·∂xρε(t)−

1

2π
∂xV ·∂kρε(t)=0, ρε(t=0)=ρε0. (1.3)

Then there exists a constant C> 0 so that

|||W ε(t)−ρε(t)|||−M 6CeCt
(
|||W ε(0)−ρε(0)|||−M +εa

)
(1.4)

In particular, if ρε0=W ε[uε
0], |||W ε(t)−ρε(t)|||−M 6CeCtεa.

Remark 1.3. One should note that:
(i) In particular the assumptions allow for V with localized singularities of the

form C|x|1+a; see lemma 4.3 for more details.
(ii) Using Theorem 1.1, a selection principle for the multivalued flow (1.2) can be

constructed, see Theorem 4.4.
(iii) This result contains the semiclassical limit in the sense that, as long as

|||W ε(0)−ρε(0)|||−M = o(1),

lim
ε→0

|||W ε(t)−ρε(t)|||−M =0. (1.5)

The selection of ρε0 so that the solution of classical problem (1.3) gives rise to a
practical method is discussed in section 6.

Also, the estimates we develop have a substantial impact on the treatment of non-
linear problems, where e.g. a priori bounds on ‖u(t)‖H1 can be used through Sobolev
embeddings to get regularity for the effective potential, V = b|u|p. An adaptation of
Lemma 4.2 for the nonlinear Schrödinger equation can be found in [8].

1.2. Statement of the Main Results: Numerical Investigation for

V(x)=−|x|. Lemma 4.2 illustrates very clearly why the proof of Theorem 1.1
cannot be extended for V /∈C1,a. Moreover, the numerical results discussed below in-
dicate that there is one more assumption required to prove any version of Theorem 1.1
when a=0. In that sense it seems that Theorem 1.1 is sharp.
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On the other hand, the saddle point generated by V (x)=−|x| is similar to that
of V (x)=−|x|1+a, a∈ (0,1) in many ways. If an estimate of the form (1.4) was true,
then a regularization similar to that described in Theorem 4.4 would be possible. So
a natural question arises: is it possible to outline the regime of validity of eq. (1.5) for
saddle points of the form V (x)=−C|x|?

This question is answered positively, with the help of a numerical solver based on
a posteriori error control. More specifically, for the numerical solution ũε(tn)∈L2 (tn

being a discrete time level), it can be shown rigorously that we have an upper bound of
the form

‖uε(tn)− ũε(tn)‖L2 6En,

where En is a computable quantity. The development of a practical solver with a poste-
riori error control for the semiclassical Schrödinger equation with non-smooth potentials
is a challenging task on its own; to the best of our knowledge the only available such
solvers in the literature are [26, 14]. More details about the numerical method we use
can be found in section 5. Using this solver, it is possible to investigate reliably the
behavior of uε, even though there is no a priori information for the behavior of the exact
solution.
Remark 1.4. Clearly one cannot investigate numerically the limit ε→0 by solving
for particular small values of ε. However very often ε→0 is merely an approxima-
tion for concrete problems of the form (1.1) with ε not smaller than 10−4 [38]. Thus,
investigating the validity of our asymptotics for ε≈ 10−2 to ε≈ 10−4 is interesting in
itself – in some cases more so than investigating the limit ε→0. Here we work for
ε∈ [5 ·10−3,10−1], having put the emphasis into ensuring stability and small error tol-
erance in the problems that we solve, rather than pushing computations for very small
values of ε. In any case the qualitative behavior we observe seems to be quite robust
for ε≪1; apparently it stabilizes for ε≈ 10−2.

The numerical results we obtain are described in some detail is section 6. Sum-
marizing, we note that the selection principle of Theorem 4.4 appears to hold for a
wavefunction interacting with the saddle point of V (x)=−|x|, under a non-interference
condition; for details see definition 6.1. (The idea is that energy arriving to the saddle
point in phase-space from many directions at the same time constitutes interference.)
Singular wavepacket splitting cases can be successfully approximated; see Section 6.1
and Appendix C. On the other hand, when interference takes place, we observe dif-
ferent behavior, with the semiclassical limit affected by quantum phase information.
Examples and quantitative aspects of this dependence on the phase are presented in
section 6.2.

These numerical results allow the formulation of a precise conjecture for the validity
of our semiclassical selection principle: Using the notations of Theorem 1.1, we propose
that
Conjecture 1.5. For potentials V with localized singularities of the form ±C|x|,

lim
ε→0

〈W ε[uε(t)]−ρε(t),φ〉=0 ∀φ∈BM ,

as long as there is no interference.
Remark 1.6. This can be seen as a refinement of the conditions derived by C.
Fermanian-Kammerer, P. Gerard and C. Lasser. More specifically, the assumption
that “the Wigner measure does not reach the set S \S∗”, which appears in Theorem 2
of [17], can be refined to admit problems where the Wigner measure does interact with
the singular saddle point (i.e. reaches S \S∗) – as long as there is no interference.
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Remark 1.7. A similar non-interference condition arises in [35]. It is possible that the
conjecture can be proved with methods similar to those used therein.
Remark 1.8. The question of conical singularities in higher dimensions is also relevant
– perhaps more so. For d> 1, there are several kinds of “conical singularities”, such as
V (x,y)= c1

√
x2+y2+c2|x|+c3|y|. What can we say about such potentials, which no

longer contain just isolated singularities?

Both Theorem 1.1 and Theorem 2 of [17] still apply, and still do not cover full
interaction with such singularities. Moreover the numerical analysis of [26], Section
5 applies for any d∈N, so numerical investigation is still possible and interesting – if
much more demanding. The intuition behind the Conjecture is also still applicable, so
it makes sense to ask whether it applies to “conical singularities in general”, e.g. in the
sense of equation (1.2) of [17].

In this connection it must be noted that in [6] a two dimensional version of Theorem
1.1 (i.e. |||W ε−ρε|||= o(1)) for a potential similar to V (x,y)=−|x| and special initial
data was already proved.

However, it must be mentioned that when considering general conical singularities
in high dimensions, significant geometric complications come into play. For example,
the notion of interference is more complicated, as now it may take place over points,
lines, or higher-dimensional subspaces of phase-space. (In other words the set S0⊆R2d,
introduced in equation (3.6), can have a range of dimensions up to d−1.)

The paper is organized as follows: in sections 2 and 3 we introduce preliminary
material and some of the characteristics of the flow (1.2) are presented. Section 4 is
devoted entirely in proving Theorem 1.1 and stating the selection principle in Theorem
4.4. In section 5 we describe the numerical method and some of its main characteristics.
In Section 6 we present numerical results obtained in the case of non-smooth potentials
and special attention is given to the interference and non-interference cases. Auxiliary
and background material is presented in Appendices A, B and C.

2. Phase-space methods for semiclassical asymptotics

2.1. The Wigner transform and Wigner measures. To study the semiclas-
sical behavior of (1.1), we use the Wigner transform. For a comprehensive introduction,
as well as the state of the art for smooth potentials, one should consult the references
[30, 21]. Here the aim is to present a brief but self-contained introduction. For any
f ∈L2(Rd), its Wigner transform (WT) is defined as

W ε[f ](x,k)=

∫

y

e−2πikyf(x+
εy

2
)f̄(x− εy

2
)dy ∈ L2(R2d). (2.1)

This transform will be applied to the wavefunction uε(t); we will use the shorthand no-
tations W ε(x,k,t)=W ε[uε(t)](x,k), W ε

0 =W ε[uε
0] when there is no danger of confusion.

In principle, the WT contains the same information as the original wavefunction, but
unfolded in phase space, i.e. position-momentum space {(x,k)}=R2d. This physical in-
formation can be accessed through quadratic observables : an operator valued observable
A can be measured by [21]

A[uε](t)= 〈Auε(t),uε(t)〉x= 〈AW ,W ε[uε(t)]〉x,k, (2.2)

where AW is the (semiclassically scaled) Weyl symbol of A. More details on quadratic
observables can be found in section 5.4. Applying the WT to (1.1) we see thatW ε(x,k,t)
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satisfies a well-posed equation in phase-space [32], namely

∂tW
ε(x,k,t)+2πk ·∂xW ε(x,k,t)+

+ i

∫
e−2πiSy V (x+ ε

2y)−V (x− ε
2y)

ε
dyW ε(x,k−S,t)dS=0,

W ε(t=0)=W ε
0 .

(2.3)

The merit of the WT lies in its behavior as ε→0. The idea is that given a sequence
of solutions of (1.1), {uεn(t)} with lim

n→0
εn=0, then (up to extraction of a subsequence)

its Wigner measure (WM) W 0(t) is defined as an appropriate weak-∗ limit of

W ε(t)⇀W 0(t)∈M1
+(R

2d), (2.4)

where M1
+(R

2d) are the probability measures on phase-space. Moreover, the WM sat-
isfies a Liouville equation,

∂tW
0(t)+2πk ·∂xW 0(t)− 1

2π
∂xV ·∂kW 0(t)=0, W 0(t=0)=W 0

0 , (2.5)

i.e. a formulation as in classical statistical mechanics. (See e.g. Théorème IV.1 of
[30], Section 7.1 of [21], and Theorem A.1 in Appendix A of this paper.) For smooth
potentials, problem (2.5) can be efficiently solved, and its solution can be used to recover
the macroscopic observables of the particle (and sometimes their probability densities;
e.g., position and momentum densities). The Liouville equation (2.5) can be solved
with the method of characteristics [15]: consider the ODE for the characteristics (the
classical trajectories),

ẊX0,K0(t)=2πKX0,K0(t), K̇X0,K0(t)=− 1
2π∂xV (XX0,K0(t)),

XX0,K0(0)=X0, KX0,K0(0)=K0.
(2.6)

Then a classical flow φt is defined in terms of

φt(x,k)= (Xx,k(t),Kx,k(t)). (2.7)

It is straightforward to see that the solution of (2.5) is given by

W 0(t)=W 0
0 ◦φ−t.

It is evident from (2.6) why the regularity of V ∈C1,1(Rd) is a natural threshold for
the validity of these types of results. For V ∈C1,1(Rd), the characteristics (2.6) are
well-defined for all (X0,K0)∈R2d, and thus the WM is unconditionally well defined at
all times. If V /∈C1,1(Rd), then in general the Cauchy problem (2.5) is not well-posed
over probability measures.

In [30] it was further shown that for V ∈C1(Rd), and under appropriate additional
technical assumptions, the WM does indeed satisfy (2.5), which in general has multiple
solutions. Thus, the WM is one of the possible classical evolutions, but it is not known
which one. In Remarque IV.3 of [30] a concrete example of V ∈C1 \C1,1, giving rise to a
multivalued flow, is given – namely the singular saddle point V (x)=−|x|1+a, a∈ (0,1).
This ill-posedness is resolved in Theorem 4.4.

The class of potentials with conical singularities, V ∈W 1,∞(Rd), e.g., V (x)=−|x| /∈
C1, arise as another natural threshold with respect to the regularity of flows. In partic-
ular, it is shown that for potentials in W 1,∞(Rd), the trajectories (2.6) are well defined
for almost all initial data (X0,K0)∈R2d. On the level of the Liouville equation, this
can be seen as well-posedness with initial data in L1∩L∞, [2, 11].
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2.2. The smoothed Wigner transform. It is well known that if uε(x) exhibits
oscillations at length-scales of ε, then W ε[uε](x,k) will exhibit oscillations at length-
scales ε, and sometimes at smaller scales as well. Therefore simply representing W ε

numerically is prohibitively expensive; and solving numerically (2.3) even more so. Very

often a smoothed version of W ε, W̃ ε=W ε ∗G, is used instead [7, 30]; the motivation is
that, if AW is smooth enough,

〈Auε(t),uε(t)〉= 〈AW ,W ε(t)〉≈ 〈AW ,W̃ ε(t)〉.

This can be made precise, i.e. in the limit the two transforms are equivalent [30],

lim
ε→0

〈W̃ ε(t)−W ε(t),φ〉=0 ∀φ∈A.

(For the algebra of test functions in A, see Appendix A.)

In the remaining part of this paper, we will denote W̃ ε(t)= W̃ ε[uε(t)] the smoothed
Wigner transform (SWT), defined as

W̃ ε(x,k)=

(
2

εσxσk

)d ∫

x,k

e
− 2π

ε

[

|x−x′|2
σ2
x

+ |k−k′|2
σ2
k

]

W ε(x′,k′)dx′dk′. (2.8)

Sometimes we will use the notation W̃ σx,σk;ε(x,k) when we want to denote explicitly
the smoothing constants used.

For σx ·σk > 1 it can be shown that W̃ ε(x,k)> 0 [18]. Often it is useful to use
smaller values for the smoothing constants, σx,σk < 1. In any case we will assume that
the smoothing constants do not depend on ε, and are allowed to be in σx,σk ∈ (0,1]. For
more context on the SWT, including on the calibration of the smoothing parameters,
see Appendix B.

3. Flows with infinite Lyapunov exponents and loss of uniqueness

We investigate now, in some detail, the consequences of V /∈C1,1. We consider the
one-dimensional potentials

V ±(x)=±|x|1+a, a∈ [0,1), x∈R. (3.1)

For V += |x|1+a, the problem physically amounts to an oscillator. Although there is no
strong solution of (2.6) once the trajectory reaches {x=0}, by accepting weak solutions
the flow is in fact well defined. Indeed, it is easy to check that the problem

Ẋ(t)=2πK(t), K̇(t)=− 1
2π∂xV (X(t)),

X(0)=0, K(0)=K0,
(3.2)

has a unique weak solution for all values of K0∈R. (See also Figure 3.1.) So the impact
of the conical singularity here is less smoothness of the trajectories, but there is no loss
of uniqueness.

For V −=−|x|1+a, the problem is a singular saddle point (Figure 3.2). The trajec-
tories that approach the fixed point (x,k)= (0,0) now arrive in finite time, in contrast
to what happens in regular saddle points. Once they reach the fixed point, there is no
unique continuation – strong or weak. For example, let a=0 and consider the charac-
teristic starting from (X0,K0)= (1,− 1

π
√
2
); then each of the following

X(t)=

{
1
2 t

2−
√
2t+1, t6

√
2

− 1
2 (t−

√
2)2, t>

√
2

K(t)=

{
1
2π t− 1

π
√
2
, t6

√
2

− 1
2π (t−

√
2), t>

√
2

(3.3)
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Fig. 3.1: For V = |x|, the characteristics in phase-space can be written explicitly (in each
half space ±X>0) as X(t)=− 1

2
sign(X)t2+2πK0t+X0, K(t)=− 1

2π
sign(X)t+K0. Here we

see plots of (X(t),K(t)) for various initial conditions (X0,0). All trajectories eventually have
corners, but all are uniquely defined. The picture is similar for a∈ (0,1).

X̃(t)=

{
1
2 t

2−
√
2t+1, t6

√
2

1
2 (t−

√
2)2, t>

√
2

K̃(t)=

{
1
2π t− 1

π
√
2
, t6

√
2

1
2π (t−

√
2), t>

√
2

(3.4)

˜̃X(t)=

{
1
2 t

2−
√
2t+1, t6

√
2

0, t>
√
2

˜̃K(t)=

{
1
2π t− 1

π
√
2
, t6

√
2

0, t>
√
2

(3.5)

are weak solutions of (2.6) past the interaction with the singularity. The respective
explicit trajectories for a∈ (0,1) can be found in [30].

In other words, a classical particle with just enough momentum to reach this saddle
point, can be scattered to the right, scattered to the left, or stay on the saddle point
indefinitely – or do combinations of the above. There are genuinely different classi-
cal evolutions to choose from here. Moreover, if we take, e.g. a particle starting at
(X1(t),K1(t))=φt(−1, 1

π
√
2
+δ), and (X2(t),K2(t))=φt(−1, 1

π
√
2
−δ), we see that

∀t>
√
2 lim

δ→0
|(X1(t),K1(t))−(X2(t),K2(t))|> 0,

therefore

|(X1(t),K1(t))−(X2(t),K2(t))|6 eCLt2δ fails for every CL> 0,

see also Figure 3.2. In other words the flow, which is well-defined for almost all trajec-
tories, has infinite Lyapunov exponent.

With respect to more general potentials with isolated conical singularities, i.e.

V (x)=V0(x)+w(x)|g(x)|, V0,w,g smooth,

it was shown in [17] that there is a similar behavior. Indeed, away from the set S=
{g(x)=0}, the potential is smooth, and therefore the characteristics are well-defined and
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Fig. 3.2: For V =−|x|, the characteristics in phase-space can be written explicitly (in each half
space ±X>0) as X(t)= 1

2
sign(X)t2+2πK0t+X0, K(t)= 1

2π
sign(X)t+K0. Here we see plots

of (X(t),K(t)) for t∈ [0,T ] and various initial conditions (−1,K0). The separatrix k=± 1

π

√
x
2

(shown in black) consists of two intersecting trajectories. Unlike regular saddle points, the two
branches of the separatrix intersect in finite time over the fixed point (0,0). The picture is
similar for a∈ (0,1).

smooth. As far as the semiclassical limit is concerned, if the WM is never supported
on S, then the regular theory applies [21, 17]. If however the WM arrives at some time
on S, then the regular theory ceases to apply. Moreover, the set S should really be
decomposed into the disjoint union S=S1∪S0, where

S1= {g(x)=0 and k ·∂xg(x) 6=0},
S0= {g(x)=0 and k ·∂xg(x)=0}. (3.6)

If a characteristic arrives at S1, its momentum will take it “immediately” out of S, and
it will be continued uniquely – with a corner, which essentially resembles the behavior
observed for V (x)= |x|. However, if a characteristic arrives at S0, several classical
evolutions are possible. The main result of [17] is that, as long as the WM stays
away from S0, the uniquely defined flow indeed captures correctly its evolution. This
motivates the following
Definition 3.1. Consider a semiclassical family of problems (1.1), with

V (x)=V0(x)+w(x)|g(x)|1+a , V0,w,g smooth, a∈ [0,1). (3.7)

We will say there is full interaction with the singularity of the flow if its WM reaches
the set

S0= {g(x)=0 and k ·∂xg(x)=0}.
So taking into account recent results, the study of “full interaction with singular saddle
points” is in fact the natural generalization of the question put forth in in Remarque
IV.3 of [30].

4. Proof of the main Theorem

In this section we give the proof of the main result stated in Theorem 1.1. We begin
by introducing notation, terminology and auxiliary technical results.
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4.1. Notations.

Definition 4.1 (Fourier transform). Given f(x) its Fourier transform is defined
as

f̂(k) :=Fx→k[f ]=

∫
e−2πix·kf(x)dx.

For functions on phase-space f(x,k), we will also use the Fourier transform in the
second set of variables,

f̂2(x,K) :=Fk→K [f ]=F2f =

∫
e−2πik·Kf(x,k)dk.

For the Fourier transform of functions of phase-space we will typically use the variables

f̂(X,K) :=Fx,k→X,K [f ]=Ff=

∫
e−2πi[x·X+k·K]f(x,k)dxdk.

Definition 4.2 (Schwarz test functions). We will denote by S(Rd) the class of
functions φ :Rd→C for which

∀ multi-indices a,b ∃ Ca,b so that |xa∂b
xφ(x)|6Ca,b.

As is well known, φ̂∈S(Rd)⇔φ∈S(Rd).
Definition 4.3. For f ∈C1,a we define its norm by

‖f‖C1,a = sup
x1 6=x2

|∂xf(x1)−∂xf(x2)|
|x1−x2|a

+sup
x

|f(x)|+sup
x

|∂xf(x)|

Definition 4.4. For a,b∈C, we will use the notation a4 b with the understanding

a4 b ⇔|a|=O(|b|).

Definition 4.5. Denote by T (t) the free-space propagator on phase-space,

T (t) :f(x,k) 7→f(x−2πtk,k). (4.1)

Given any function f(x,k) on phase-space we denote for further reference

T V
ε f :=

2

ε
Re

[
i

∫
e2πiSxV̂ (S)f(x,k− εS

2
)dS

]
, (4.2)

T V
0 f := − 1

2π
∂xV ·∂kf, (4.3)

T̂ V
ε f :=FT V

ε f =2

∫
V̂ (S)f(X−S,K)

sin(πεS ·K)

ε
dS, (4.4)

T̂ (t)f̂(X,K) := F [T (t)f ]= f̂(X,K+2πXt), (4.5)

‖f‖FjLp := ‖Fjf‖Lp , for j∈{1,2,∅}. (4.6)
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4.2. Auxiliary technical lemmata.

Observation 4.6. For any f,g functions on phase-space, t∈R we have

〈T (t)f,g〉= 〈f,T (−t)g〉, 〈T̂ (t)f,g〉= 〈f, T̂ (−t)g〉,

whenever the integrals exist. Moreover,

‖T (t)f‖FLp = ‖f‖FLp, ‖T̂ (t)f‖FLp = ‖f‖FLp

for all p∈ [1,∞].
Observation 4.7. If W =W ε[u](x,k) for some u with ‖u‖L2 =1, then

Ŵ2(x,K)=u(x− εK

2
)u(x+

εK

2
), ‖Ŵ2‖L∞

K
L1

x
=1

In particular, it follows that

〈W,φ〉4 ‖φ̂2‖L1
K
L∞

x
6 ‖φ‖FL1 ⇒ W ∈B−M .

Lemma 4.1 (A specialized Liouville regularity estimate). Denote by E(t) the prop-
agator for the Liouville equation (1.3), and assume that the potential V satisfies

V̂ (S)|S| ∈L1.

Then there exists a constant CL> 0, depending on V and M , so that

|||ρ(t)|||M = |||E(t)ρ0|||M 6 eCL|t||||ρ0|||M .

Remark 4.8. The point of this result is that smoothness in k is in fact preserved by
the flow. In that sense, this lemma can be seen as a counterpart of Proposition 1 of
[17].

Before we proceed to the proof , observe that the assumption V̂ (S)|S| ∈L1 is a
little stronger than V ∈W 1,∞, but less strong than V ∈C1,1. For example if a∈ (0,1),
V (x)=C|x|1+ab(x) (where b(x) is a smooth cutoff function of compact support, see,

e.g., the statement of Problem 4.11 in section 4.4) then V̂ (S)|S| ∈L1 while V /∈C1,1.
Such potentials in particular are the ones that appear in the example of Remarque IV.3
of [30].

Proof : Without loss of generality, we prove the result for t> 0. We work in the Fourier
domain,

∂tρ̂−2πX ·∂K ρ̂+2π

∫

S

V̂ (S)ρ̂(X−S,K)S ·KdS=0,

for some ρ0∈S∩BM . Now using T (t) and integrating in time, we can recast the Fourier-
transformed Liouville equation in mild form, namely

ρ̂(t)= T̂ (t)ρ0+2π

∫

τ=0

T̂ (t−τ)

∫

S

S ·KV̂ (S)ρ̂(X−S,K,τ)dS dτ.
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By virtue of the Young inequality and observation 4.6 it follows that

‖ρ̂(t)‖L1
X,K

6 ‖ρ̂0‖L1 +‖V̂ (S)|S|‖L1
S

t∫

τ=0

‖|K| ρ̂(τ)‖L1
X,K

;

similarly, for any m∈N,

‖|K|mρ̂(t)‖L1
X,K

6 ‖|K|mρ̂0‖L1 +‖V̂ (S)|S|‖L1
S

t∫
τ=0

‖|K|m+1 ρ̂(τ)‖L1
X,K

⇒
⇒ ∑

m

M−m‖|K|mρ̂(t)‖L1 6

6
∑
m

(
M−m‖|K|mρ̂0‖L1 +M‖V̂ (S)|S|‖L1

t∫
τ=0

M−m−1‖|K|m+1 ρ̂(τ)‖L1

)
⇒

⇒ |||ρ(t)|||6 |||ρ0|||+‖V̂ (S)|S|‖L1
S
M

t∫
τ=0

|||ρ(τ)|||dτ.

The result follows by virtue of the Gronwall inequality, and by density of S∩BM in the
space BM .

�

Observation 4.9. Denote by E(t) the propagator of the Liouville equation (as in

Lemma 4.1 above), and Ê(t) its Fourier transform, Ê(t) : f̂ 7→ Ê(t)f . Then, for any f,g
functions on phase-space, t∈R,

〈E(t)f,g〉= 〈f,E(−t)g〉, 〈Ê(t)f,g〉= 〈f,Ê(−t)g〉,

whenever the integrals exist. In particular, E(t) makes sense on functions belonging to
B−M .

Lemma 4.2. Let V ∈C1,a(Rd,R), W =W ε[u] for some ‖u‖L2 =1, and φ be a test
function on phase-space regular enough for the integrals below to exist. Then

〈(T V
ε −T V

0 )W,φ〉x,k = 〈
K
2∫

s=−K
2

(∂xV (x+εs)−∂xV (x)) ·dsŴ ε
2 ,φ̂2〉x,K 4

4 εa‖V ‖C1,a〈|Ŵ ε
2 |, |K|2|φ̂2|〉x,K .

(4.7)

Therefore, by straightforward application of observation 4.7,

〈(T V
ε −T V

0 )W,φ〉x,k4 εa‖V ‖C1,aM2|||φ|||M . (4.8)

Proof: Observe that

F2[T
V
ε W ]=

i

ε

∫

k,S

e−2πik·K
[
e2πiSxV̂ (S)W (x,k− εS

2
)−e−2πiSxV̂ (S)W (x,k− εS

2
)

]
dSdk.

Since the Wigner transform is real valued, W =W ; since the potential is real valued
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V̂ (S)= V̂ (−S). Therefore,

F2[T
V
ε W ]=

= i
ε

∫
k,S

e−2πik·K
[
e2πiSxV̂ (S)W (x,k− εS

2 )−e−2πiSxV̂ (−S)W (x,k− εS
2 )
]
dSdk=

= i
ε

∫
k,S

e−2πik·K
[
e2πiS·x V̂ (S)W (x,k− εS

2 )−e−2πiS·x V̂ (−S)W (x,k− εS
2 )
]
dSdk=

= i
ε

∫
k,S

e−2πik·K
[
e2πiS·x V̂ (S)W (x,k− εS

2 )−e2πiS·x V̂ (S)W (x,k+ εS
2 )
]
dSdk=

= i
ε

∫
k,S

e−2πi[k·K−S·x] V̂ (S)
[
W (x,k− εS

2 )−W (x,k+ εS
2 )
]
dSdk=

= iŴ2(x,K)
∫
S

e2πiS·x V̂ (S) e
−2πi εK

2
S−e

2πi εK
2

S

ε
dS= iŴ2(x,K)

V (x− εK
2 )−V (x+ εK

2 )

ε

(4.9)

On the other hand, it is trivial to check that

F2[T
V
0 W ]=−i∂xV (x) ·KF2W. (4.10)

Thus combining equations (4.10), (4.9) it follows that

F2

[
(T V

ε −T V
0 )W

]
= iŴ2(x,K)

V (x− εK
2 )−V (x+ εK

2 )

ε
+ i∂xV (x) ·KF2W =

= iŴ2(x,K)

K
2∫

s=−K
2

(∂xV (x+εs)−∂xV (x)) ·ds⇒

⇒
∣∣〈(T V

ε −T V
0 )W,φ〉x,k

∣∣=
∣∣〈F2(T

V
ε −T V

0 )W,F2φ〉x,K
∣∣6

6 ‖V ‖C1,aεa〈
K
2∫

s=−K
2

|s|ads|Ŵ2|, |φ̂2|〉x,K 4 εa‖V ‖C1,a〈|Ŵ ε
2 |, |K|a+1|φ̂2|〉x,K .

The proof of eq. (4.7) is complete, since without loss of generality a6 1. For eq.
(4.8) it suffices to observe that

‖K2φ̂2(x,K)‖L1
K
L∞

x
6 ‖K2φ̂(X,K)‖L1

X,K
6M2|||φ|||M .

�

Lemma 4.3. Let

V (x)=C|x|1+ab(x), a∈ (0,1)

where b is a smooth cutoff function as in the statement of Problem 4.11 (see Section
4.4). It can be seen that

∫

S

|V̂ (S)| |S|dS<∞.

Proof: By observation,

‖V̂ ‖L∞ 6 ‖V ‖L1 <∞.

Moreover, observe that for a∈ (0,1)

Fx→k[|x|1+a]=Cd,a|k|−a−1−d
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in the sense of distributions [19]. It follows that

|k|> 1 ⇒ |V̂ (k)|6C|k|−1−a−d.

The result follows by observing

∫

S

|V̂ (S)| |S|dS6C‖V̂ ‖L∞ +C

∫

|S|>1

|k|−a−ddk=C‖V̂ ‖L∞ +C

+∞∫

ρ=1

ρ−a−dρd−1dρ<∞.

�

We are now ready to give the proof of the main theorem.

4.3. Proof of Theorem 1.1. Denote

h(t) :=W ε(t)−ρε(t);

by subtracting eq. (1.3) from (2.3) we find

∂th(t)+2πk ·∂xh+T V
0 h=(T V

0 −T V
ε )W ε ⇒

⇒ h(t)=E(t)(W ε
0 −ρε0)+

t∫
τ=0

E(t−τ)
(
(T V

0 −T V
ε )W ε(τ)

)
dτ ⇒

⇒ |〈h(t),φ〉|6 |〈W ε
0 −ρε0,E(−t)φ〉|+

t∫
τ=0

∣∣〈
(
(T V

0 −T V
ε )W ε(τ)

)
,E(τ − t)φ〉

∣∣dτ,

where in the first step we used Duhamel’s principle to take advantage of the propagator
E of the Liouville equation (see Lemma 4.1), and in the second step we used Observation
4.9. At this point using Lemmata 4.1, 4.2 and observation 4.7 it follows that

|〈h(t),φ〉|6 |〈W ε
0 −ρε0,E(−t)φ〉|+εa‖V ‖C1,aM2

t∫

τ=0

|||E(τ− t)φ|||Mdτ 6

6 eCLt|||W ε
0 −ρε0|||−M |||φ|||M +εa‖V ‖C1,aM2|||φ|||M

t∫

τ=0

eCLτdτ.

(4.11)

By a simple estimate of the dτ integral, it follows that

|〈h(t),φ〉|6CeCLt
(
|||W ε

0 −ρε0|||−M +εa
)
|||φ|||M (4.12)

for some constant C independent of ε.
�

Observation 4.10. One strategy is to choose W ε
0 =ρε0, in which case the first term

on the rhs of eq. (4.12) simply drops out. As we already discussed, in many cases it
is desirable that ρε0 is a smoothed version of W ε

0 , so that the interference terms are
suppressed (see section 2.2, Appendix B). The requirement |||W ε

0 −ρε0|||−M = o(1) pre-
scribes a particular family of smoothing strategies that can be used and still be covered
by Theorem 1.1. For an explicit example of smoothing so that

∣∣∣
∣∣∣
∣∣∣W ε

0 −W̃ ε
0

∣∣∣
∣∣∣
∣∣∣
−M

= o(1) (4.13)

see Lemma B.3.
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4.4. Passage to the limit ε→0. With Theorem 1.1 at hand, we can now
proceed to resolve the following
Problem 4.11. Let b(x)∈S(Rd) be a cutoff function with b(x)=1 for |x|< 2L, b(x)=0
for |x|> 4L. Let

V (x)=−|x|1+ab(x), a∈ [0,1),

and {uε
0}ε∈(0,1) be a family of initial data for (1.1) so that

W 0
0 =w−∗ lim

ε→0
W ε[uε

0] exists, suppW 0
0 ∩{1

2
(2πk)2−|x|1+ab(x)=0} 6= ∅. (4.14)

Compute W 0(t)=w−∗ lim
ε→0

W ε[uε(t)], or show that it is not well-defined.

Remark 4.12. Some clarifications are in order:
(i) The cutoff b does not play any substantial role, and is included only for technical

reasons. With out loss of generality we will assume that L is large enough so
that it doesn’t affect our computations.

(ii) The w−∗ limit is taken with respect to the test functions BM , e.g, 〈W 0
0 ,φ〉=

lim
ε→0

〈W ε[uε
0],φ〉.

(iii) It follows from eq. (4.14) that problem (2.5) for the evolution of the WM in
time has multiple weak solutions. If a∈ (0,1), it is known by [30] that W 0(t)
is one of these. In that case, we need to compute the selection principle, i.e. a
practical criterion to select the correct one. If a=0, it is not known rigorously
whether W 0(t) is related to some appropriate weak solution of (2.5).

(iv) In view of Theorem 1.1,

lim
ε→0

〈W ε[uε(t)],φ〉= lim
ε→0

〈ρε(t),φ〉.

So the question is simplified to (the “purely classical”) computation of the
concentration limit ε→0 of (1.3). To fix ideas, we will work with ρε0=W ε

0 .
The only assumption of Theorem 1.1 which is not obviously satisfied, is that
V̂ (S)|S| ∈L1. For that, we refer to Lemma 4.3.

Theorem 4.4 (Selection principle). Assume we are in the setting of Problem 4.11,
and in addition a∈ (0,1). Denote

S+= {(x,k)∈R2 |H(x,k)=
1

2
(2πk)2−|x|1+ab(x)> 0},

S−= {(x,k)∈R2 |H(x,k)=
1

2
(2πk)2−|x|1+ab(x)< 0},

S= {(x,k)∈R2 |H(x,k)=
1

2
(2πk)2−|x|1+ab(x)=0}.

(4.15)

(i) Denote by χΩ the indicator function for the domain Ω⊆R2d. Then
lim
ε→0

W ε[uε(t)] is well defined if and only if w−∗ lim
ε→0

W ε
0χS+ exists.

(ii) Moreover, if (i) holds, w−∗ lim
ε→0

W ε
0χS− also exists, and

w−∗ lim
ε→0

W ε[uε(t)]=w−∗ lim
ε→0

W ε
0χS− ◦φ−t+w−∗ lim

ε→0
W ε

0χS+ ◦φ−t. (4.16)

Remark 4.13. Some technical clarifications:
(i) It is explained in detail below how eq. (4.16) makes sense. For a simple explicit

case, see also example 4.15.
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(ii) In [30] it is discussed in some detail how w−∗ lim
ε→0

W ε
0χS+ may fail to exist.

(iii) We will make some standard additional regularity assumptions on the initial
data, namely

∀ε, max
|a|,|b|6d+1

‖xa∂b
xu

ε
0(x)‖L2 <∞.

This is sufficient to assure that ρε0=W ε
0 ∈L1(R2d)∩L∞(R2d); see Theorem A.3.

Although this is not strictly necessary, it simplifies considerably some technical
points in the proof below.

Proof of Theorem 4.4: Phase space was partitioned into the disjoint union R2=
S+∪S∪S− in eq. (4.15), accordingly

ρε0=ρε++ρε−+ρεz, where ρε±=ρε0χS± , ρεz =ρε0χS .

Since ρε0∈L1∩L∞ and S is of measure zero, it follows automatically that ρεz =0. There-
fore ρε0=ρε++ρε−, and it suffices to solve each of the problems

∂tρ
ε
+(t)+2πk ·∂xρε+(t)−

1

2π
∂xV ·∂kρε+(t)=0, ρε(t=0)=ρε+, (4.17)

∂tρ
ε
−(t)+2πk ·∂xρε−(t)−

1

2π
∂xV ·∂kρε−(t)=0, ρε(t=0)=ρε−, (4.18)

separately. The point, of course, is that by construction, ρε± ◦φ−t stays supported inside
S±, ∀t∈R, ε∈ (0,1). The restriction of the flow φt on each of the sets S+, S−, will be
denoted by φ+

t , φ
−
t respectively.

Claim 4.14. The flow φ±
t is well-defined and continuous, i.e.

φ±
t ∈C(S±,S±) ∀t> 0.

Proof of the claim: It follows in exactly the same way as Proposition 1 of [17].
�

Therefore each of φ±
t can be extended to the closure of its domain. By abuse of

notation (but without real danger of confusion) we will denote this extension as φ±
t

φ±
t ∈C(S±,S±) ∀t> 0.

So in solving each of (4.17), (4.18) we will work exclusively on the respective domains
S±. Thus, for f ∈S(S±)

〈ρε± ◦φ±
t ,f〉= 〈ρε±,f ◦φ±

t 〉 (4.19)

To conclude we observe that since ρε=ρε++ρε−, and we know that w−∗ lim
ε
ρε exists,

then necessarily w−∗ lim
ε
ρε− exists if and only if w−∗ lim

ε
ρε+ exists. In that case, and

observing that f ◦φ±
t stays continuous for all times,

lim
ε→0

〈ρε±(t),f〉= 〈 lim
ε→0

ρε±,f ◦φ±
t 〉

For the same reason, if w−∗ lim
ε
ρε+ doesn’t exist, we cannot pass to the ε→0 limit

of eq. (4.19).
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The proof of Theorem 4.4 is now complete.
�

It is clear that if Theorem 1.1 was valid for a=0, then Theorem 4.4 would follow,
with the same proof. This is the motivation behind the numerical investigation of its
validity for a=0 which follows in the next sections.

Now, let us look at a concrete example:
Example 4.15. Assume we are in the setting of Theorem 4.4, we take d=1 and let

uε
0= ε−

1
4 e

−π
2

(

x−x0√
ε

)2
+im(ε)

√
|x0|1+a(x−x0)

ε

for some x0< 0. If lim
ε→0

m(ε)=1, then the WM is

W 0
0 =w−∗ lim

ε→0
W ε[uε

0]= δ(x−x0,k−
√
2|x0|1+a

2π
)

is supported on the separatrix S. Since W ε
0 is a Gaussian in phase space with an

effective support of O(ε
1
2 ), it follows that if e.g., m(h)=1+ε

1
6 sin(1

ε
), then w−∗ lim

ε
ρε±

doesn’t exist, since the mass of W ε
0 oscillates between S+ and S−. If, on the other

hand, m(h)=1+ε6sin(1
ε
), then the oscillations would be negligible in the limit, and

w−∗ lim
ε
ρε± exists.

Related examples can also be found in [5, 6].

5. The numerical method

5.1. Solving the semiclassical Schrödinger equation with conical singu-

larities. The numerical solution of (1.1) is complicated from the theoretical as well as
from the practical point of view. The main difficulty is that the solution of (1.1) oscil-
lates with wavelength O(ε) thus standard numerical methods require very fine meshes
(space and time) to resolve adequately this high oscillatory behavior. Further the so-
lution might exhibit caustics, making its numerical approximation even more difficult.
Finally the relatively low smoothness of the potential V means that several tools widely
used in the numerical analysis and simulation of such problems are now not available.

Popular methods for the numerical solution of (1.1) are time-splitting spectral meth-
ods and Crank-Nicolson finite element / finite difference methods. The standard Crank-
Nicolson finite element / finite difference methods suffer from a very restrictive dispersive
relation, cf. [25], connecting the space and time mesh sizes with the parameter ε thus re-
quiring considerable computational resources in order to produce accurate solutions for
ε≪1. In an attempt to relax this restrictive dispersive relation Bao, Jin and Markowich
in [10] proposed time-splitting spectral methods for the numerical solution of (1.1). This
is widely considered to be the preferred approach for semiclassical problems; however it
requires V ∈C2 at least for any kind of rigorous convergence result.

A different approach to overcome this difficulty is based on adaptivity. Adaptive
methods are widely used in recent years to construct accurate numerical approximations
to a broad class of problems with substantially reduced computational cost by creating
appropriately nonuniform meshes in space and time. There are several ways to propose
an adaptive strategy. One such approach is based on rigorous a posteriori error control.
The idea is to estimate the error in some natural norm by

‖u−U‖≤E(U) (5.1)
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where E(U) a computable quantity depending on the approximate solution U and the
data of the problem. A crucial property that the estimator E(U) must satisfy, is to con-
verge with the same order as the numerical method. It is then said that E(U) decreases
with optimal order with respect to the mesh discretization parameters. The existing
literature on adaptive methods based on a posteriori error bounds for the numerical
approximation of (1.1) is very limited. Very recently the authors presented in [26], an
adaptive algorithm for the numerical approximation of (1.1), based on a posteriori error
estimates of optimal order. The proposed adaptive method proved to be competitive
with the best available methods in the literature not only for the approximation of the
solution of (1.1) but as well as for its observables, c.f. [26].

Here we want to investigate the behavior of a quantum problem, for which we don’t
have even any qualitative a priori information. (E.g. the percentage of mass scattered
in different directions after the interaction with the singularity.) Hence a posteriori
error control is particularly useful, as it provides a rigorous, quantitative grasp on the
quantum interaction – making meaningful the subsequent comparison to the classical
asymptotics.

5.2. The CNFE method. In [26] the authors consider the initial-and-boundary
value problem





iεuε
t +

ε2

2
∆uε−V uε= f in Ω×(0,T ],

uε=0 on ∂Ω× [0,T ],

uε(t=0)=uε
0 in Ω,

(5.2)

where Ω⊂Rd is a bounded domain and f ∈L∞([0,T ];L2(Ω)
)
is a forcing term. They

discretize (5.2) by a Crank-Nicolson finite element (CNFE) scheme and prove a poste-
riori error estimates of optimal order. One of the main features of the considered finite
element spaces is that they are allowed to change in time. The optimal order a posteriori
error bounds are derived in the L∞

t L2
x norm and the analysis includes time-dependent

potentials. Furthermore the derived a posteriori estimates are valid for L∞
t L∞

x -type po-
tentials as well, in contrast to the existing results in the literature which require smooth
C1

t C
2
x-type potentials.
The analysis in [26] is based on the reconstruction technique, proposed by Akrivis,

Makridakis & Nochetto, for the heat equation, cf. [1, 31]. In [26] the authors, follow-
ing this technique, introduce a novel time-space reconstruction for the CNFE scheme,
appropriate for the Schrödinger equation (5.2). A posteriori estimates for (5.2) and the
CNFE method were also proven by Döfler in [14], but the estimator was not of optimal
order in time.

The main results of [26] can be summarized as follows: The approximations Un(x) of
uε(x,tn), 0≤n≤N, are computed for a non-uniform time grid 0=: t0<t1< · · ·<tN =:
T of [0,T ]. For each n, Un belongs to a finite element space (which depends on n)
consisting of piecewise polynomials of degree r. By U(x,t) we denote the piecewise
linear interpolant between the nodal values Un. More specifically, for t∈ [tn−1,tn],

U(x,t) :=
t− tn−1

tn− tn−1
Un(x)+

tn− t

tn− tn−1
Un−1(x). Then

‖(uε−U)(t)‖L2(Ω)≤E0
N +ES

N +ET
N , ∀t∈ [0,T ], (5.3)

where E0
N , ES

N , ET
N are all computable quantities. More precisely, E0

N accounts for
the initial error, while ES

N , ET
N are the space and time estimators respectively. These
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estimators are used to refine appropriately the time and space mesh sizes, thus creating
an adaptive algorithm. The algorithm is said to converge up to a preset tolerance Tol
if, after appropriate refinements, we obtain an approximate solution U of u with

E0
N +ES

N +ET
N <Tol.

In particular, in view of (5.3), we will then have that

‖(uε−U)(t)‖L2(Ω)≤Tol, ∀t∈ [0,T ]. (5.4)

The adaptive algorithm of [26] provides efficient error control for the solution and
its observables for small values of Planck’s constant ε, and in particular reduces sub-
stantially the computational cost as compared to uniform meshes. It is very difficult
to obtain such results via standard techniques and without adaptivity, especially when
non-smooth potentials are considered. In addition, it is to be emphasized that as long
as the adaptive algorithm converges, we can guarantee rigorously, based on the a pos-
teriori error analysis, that the total L∞

t L2
x error remains below a given tolerance, Tol.

For more details, see [26].

5.3. Validation of the CNFE scheme. We consider the one-dimensional
spatial case of (5.2), Ω=(a,b), and we proceed to a series of numerical experiments
which (a) validate the method and the estimators in (5.3) in terms of accuracy and
(b) highlight the advantages of adaptivity. We consider the numerical solution of (5.2),
obtained by the CNFE scheme, with initial condition

uε
0(x)=a0(x)e

i
S0(x)

ε ,

where a0 may or may not depend on ε. For the spatial discretization we use finite element
spaces consisting of B-splines of degree r, r∈N. The theoretical order of convergence for
the CNFE scheme is 2 in time and r+1 in space; thus the expected order of convergence
of the estimator ES

N is r+1 and of ET
N is 2.

Next, our purpose is to verify numerically the aforementioned order of convergence
for the estimators, for smooth and non-smooth potentials V . To this end, let ℓ∈N count
the different realizations (runs) of the experiments. We consider uniform partitions in
both time and space, and let M(ℓ)+1 and N(ℓ)+1 denote the number of nodes in space

(of [a,b]) and in time (of [0,T ]), respectively. Then ∆x(ℓ) :=
b−a

M(ℓ)
and ∆t(ℓ) :=

T

N(ℓ)
denote the space and time discretization parameters (of the ℓth realization), respectively.
The experimental order of convergence (EOC) s computed for the space estimator ES

N

as follows:

EOCS :=
log
(
ES
N (ℓ)/ES

N(ℓ+1)
)

log
(
M(ℓ+1)/M(ℓ)

) , (5.5)

where ES
N (ℓ) and ES

N (ℓ+1) denote the values of the space estimators in two consecutive
implementations with mesh sizes ∆x(ℓ) and ∆x(ℓ+1), respectively. Similarly, for the
time estimator ET

N the EOC is computed as

EOCT :=
log
(
ET
N (ℓ)/ET

N(ℓ+1)
)

log
(
N(ℓ+1)/N(ℓ)

) . (5.6)
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First, let us look at a a smooth double well potential problem with initial data

V (x)= (x2−0.25)2, uε
0(x)=a0(x)e

i
S0(x)

ε

a0(x)=e−
25
2 x2

, S0(x)=− 1
5 ln
(
e5(x−0.5)+e−5(x−0.5)

)
, ε=0.25.

(5.7)

The computational domain is [a,b]× [0,T ]= [−2,2]× [0,1]. For the double well potential

(a) Space Estimator

M ES
N EOCS

35 7.4125e−01 –
50 1.6791e−01 4.1633
70 4.1761e−02 4.1354
100 9.7450e−03 4.0799
145 2.1714e−03 4.0407
200 5.9598e−04 4.0205

(b) Time Estimator

N ET
N EOCT

80 1.7266e−02 –
160 3.9316e−03 2.1347
320 9.6275e−04 2.0299
640 2.3943e−04 2.0076
1280 5.9784e−05 2.0018
2560 1.4942e−05 2.0003

Table 5.1: EOCS and EOCT for Double Well potential

(5.7) we use cubic B-splines for the spatial discretization. The results are shown in
Table 5.1. The predicted theoretical order of convergence is observed for both the space
and time estimators.

Now let us look at a problem with a non-smooth potential, namely

V (x)=10|x|, a0(x)= ε−
1
4 e−

π
2ε (x−x0)

2

, S0(x)=25
√
1.5(x−x0), ε=0.5. (5.8)

We use quartic B-spline for the space discretization and [a,b]× [0,T ]= [−4,4]× [0,0.1] is
the computational domain. The numerical results are shown in Table 5.2 demonstrating
the correct order of convergence for the estimators. It is worth noting that in this case
the wavepacket passes over the non-smooth point x=0 during the simulation time.

(a) Space Estimator

M ES
N EOCS

800 1.4268e−01 –
1000 4.5514e−02 5.1204
1200 1.8094e−02 5.0594
1600 4.3186e−03 4.9799
2000 1.4135e−03 5.0051
3200 1.3481e−04 4.9998

(b) Time Estimator

∆t×106 ET
N EOCT

10 1.5731e−03 –
5.724 5.1538e−04 2.0001
3.629 2.0715e−04 2.0001
1.768 4.9168e−05 1.9999
1.012 1.6109e−05 2.0000
0.312 1.5312e−06 1.9999

Table 5.2: EOCS and EOCT for non-smooth potential

Finally, to observe the benefits of adaptivity, we consider a time dependent poten-
tial, namely

V (x,t)=
x2

2(t+0.05)
, a0(x)=e−λ2(x−0.5)2 , S0(x)=5(x2−x) with ε=1. (5.9)
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The computational domain is [a,b]× [0,T ]= [−1,2]× [0,1] and we discretize space using
cubic B-splines. In Figure 5.1, we plot the evolution of the estimators in logarithmic
scale and the variation in time of the time-steps ∆tn := tn− tn−1 and of the degrees
of freedom. This is a characteristic example where intensive adaptivity is observed, in
both time and space.
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Fig. 5.1: Evolution of estimators in logarithmic scale (left) and variation of the time-steps ∆tn

and the degrees of freedom (DoF) versus t (right) during adaptivity for V (x,t)=
x2

2
·

1

t+0.05
.

5.4. Approximation of quadratic observables. As always when discretizing
problems in free space, we have to make sure the computational domain used is large
enough so that (for the initial data uε

0 and timescale T in question) the solutions of
problems (5.2), (1.1) are close to each other. This follows from standard localization
arguments, and it is easy to check it in practice (by measuring how much mass reaches
the endpoints) and poses no particular difficulty here. Hence eq. (5.4) can be interpreted
as an approximation between the numerical solution U and the exact solution of the
free space problem (1.1). Here we discuss systematically how this bound can be used
for the approximation of quadratic observables of the wavefunction uε(t).

The quadratic observable with symbol AW (x,k) is measured for a state uε through

A[uε](t)= 〈W ε[uε] , AW 〉=
∫
e−2πiK(X+Y )AW

(
X+Y

2 ,εK
)
dK uε(X)dX uε(Y )dY.

We will be concerned with two special types of observables, namely observables of posi-
tion, for AW =AW(x)

A[uε](t)= 〈W ε[uε] , A 〉=
∫
AW(x)uε(x,t)uε(x,t)dx, (5.10)

and separable observables, AW =A1(x)A2(k),

A[uε](t)= 〈W ε[uε] , A 〉=
= ε−1

∫
e−2πiK (X+Y )

ε A2 (K)dK A1

(
X+Y

2

)
uε(X)dX uε(Y )dY.

(5.11)

These observables are essentially controlled by the L∞
t L2

x norm of the wavefunction;
this is made more precise in the following
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Lemma 5.1 (Approximation of observables). If ‖uε−U‖L2 6Tol as in (5.4), then
for every observable of position

|A[uε](t)−A[U ](t)|6Tol(‖U‖L2 +‖uε‖L2)‖AW‖L∞ =O(Tol), (5.12)

while for any separable observable

|A[uε](t)−A[U ](t)|6 ε−
1
2Tol(‖U‖L2 +‖uε‖L2)‖AW‖L2 =O(ε−

1
2Tol). (5.13)

The proof follows by inspection of equations (5.10), (5.11).

Remark 5.1. The estimate (5.13) is far from sharp; in fact for regular, localized ob-

servables the ε−
1
2 is very pessimistic. Still, carrying out rigorously a sharper microlocal

estimate for a non-smooth problem is outside the scope of this work. We note that, even
in an imperfect way, it is seen rigorously that the L2 approximation of the wavefunction
does indeed control the observables.

5.5. Particles for the Liouville equation. To approximate numerically the
solution of (1.3), we use a particle method; decompose the initial condition

ρε0≈
N∑

j=1

Mjδ(x−Xj ,k−Kj);

then the center of each particle moves along its respective trajectory, in accordance to
(2.6). (See also the caption of Figure 3.2 for an explicit form of the trajectories.) Thus

ρε(t)≈P ε(t)=

N∑

j=1

Mjδ(x−Xj(t),k−Kj(t)).

The advantage in this case is that we know explicitly the trajectories, and therefore

〈ρε(t)−P ε(t),φ〉= 〈ρε0−P ε(0),φ〉.

This makes it easy to generate approximations of observables of ρε(t), i.e.

∫
ρε(x,k,t)AW (x,k)dxdk≈

∑

j

MjAW (Xj(t),Kj(t))

with predetermined accuracy.

6. Numerical results

In this section we present a series of one-dimensional numerical experiments, inves-
tigating whether an appropriate version of Theorem 1.1 can be seen to hold for a=0,
i.e. if

〈W ε[uε(t)]−ρε(t),φ〉= o(1) (6.1)

holds over saddle points of the form V (x)=−C|x|. More specifically, we work with the
non-smooth potential of type (3.7), namely we take

V (x)=1+(1+tanh(4(x+2.5)))(1+tanh(−4(x−2.5)))
(−|x|+4)

8
. (6.2)
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Fig. 6.1: The non-smooth potential V of eq. (6.2).

This potential incorporates the non-smoothness at x=0 with a smooth transition to a
constant value away from it. Note that in a neighborhood of x=0, V is exponentially

close to − |x|
2 +3, see Figure 6.1.

We compute the numerical solution of problem (5.2), which is known to approxi-
mate well problem (1.1) as long as the effective support of the solution doesn’t reach the
boundary of the computational domain. It will be referred to as the “exact wavefunc-
tion”, and denoted by uε in the sequel. (“Exact” in the sense that the full, quantum
dynamics are used.) The wavefunction uε is computed with a prescribed error tolerance
of Tol≈ 0.01 (more specifically Tol∈ [0.005,0.02]).

We also compute the numerical solution to (1.3) with initial data ρε0= W̃ ε
0 , i.e. a

smoothing of W ε
0 . We write for future reference

∂tρ
ε(t)+2πk ·∂xρε(t)−

1

2π
∂xV ·∂kρε(t)=0, ρε(t=0)= W̃ ε

0 . (6.3)

This will be referred to as the “classical SWT”, and denoted by ρε(t) in the sequel. As
was discussed in section 5.5, (almost all) the trajectories can be computed explicitly.
The initial data uε

0 are chosen so that there is full interaction with the singularity of
the flow, in the sense of definition 3.1.

So we have two reliable computations; one for the full quantum dynamics of the
problem, and one for a semiclassical model inspired by Theorem 1.1. We proceed to
measure a number of observables against uε(t), ρε(t) before, during, and after interaction
with the saddle point. This is equivalent to checking whether eq. (6.1) holds for a
number of test functions (the Weyl symbols of the observables).

In the process of setting up the numerical experiments and interpreting the results, a
clear dichotomy arises between problems with and without interference. A brief, precise
definition can be given as follows:
Definition 6.1. Given uε

0, V consider the problem

∂tf
ε(t)+2πk ·∂xf ε(t)− 1

2π
∂xV ·∂kf ε(t)=0, f ε(t=0)=W ε[uε

0]. (6.4)

We say that interference is observed on a point (x∗,k∗) of phase-space if (non-negligible
for ε= o(1)) amounts of mass of f arrive to (x∗,k∗) at the same time from different
directions.

Clearly, interference is only possible where two trajectories intersect in finite time.
For our potential V as in eq. (6.2), this is only the point (0,0). If one wavepacket
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approaches (0,0) from one side, there is no interference going on. Interference would be
taking place if two wavepackets arrive on (0,0), one from the right and one from the
left, at the same time.

6.1. Non-interference problems. For values of ε ranging from 5 ·10−1 to
5 ·10−3, we simulate the evolution in time of wavepackets of the form

u0(x)=a0(x)e
im

S0(x)

ε , a0(x)= ε−
1
4 e

−π
2 (

x−x0√
ε

)2
, S0(x)=

√
|x0|(x−x0), (6.5)

for x0=−1.5, m∈ [0.8165,1.4289].

When m=1, the SWT W̃ ε[uε] of this problem is centered on (−1.5,
√

3
2 ); this point

reaches zero in t=
√
6, and roughly half the mass of the quantum particle – should (6.1)

hold – is expected to pass to {x> 0}, while the other half should reach close to x=0
and then be reflected back to {x< 0}. By perturbing the value of m in the initial data,
the amount of mass expected to cross over to {x> 0} changes (from no mass crossing
over, to all the mass crossing over in the extreme cases). In all of these case studies the
interaction with the singularity starts around t=1.3 and is over around t=2.45. Thus
e.g. before the interaction with x=0 the classical and quantum solutions should agree
very well, which provides one more opportunity to validate and check our computations.
We look at ρε(t) and W ε[uε(t)] in phase space, and we measure the observables with
symbols

Aα,β,j(x,k)=xα kβ χ[0,4]((−1)jx)χ[−1,1](k), α,β∈N0, α+β6 2, j∈{1,2}. (6.6)

The precise measurement of these observables corresponds to

〈W ε , xαkβ χ[0,4]((−1)jx)χ[−1,1](k) 〉=

=

∫
e−2πiK(X+Y )

[
χ[0,4]((−1)j

X+Y

2
)χ[−1,1](εK)(

X+Y

2
)α(εK)β

]
dK uε(X)dX uε(Y )dY.

For β=0 these are observables of position only, so by the estimate (5.12) we have a
very good approximation. For β> 0 we do not attempt to saturate the estimate (5.13),
since it is quite clear from the numerical results that it is not necessary. Our findings
are fully consistent for both types of observables, as we will see below.

The agreement we find between the quantum dynamics and the proposed semiclas-
sical asymptotics is striking already from relatively large values of ε. This is not entirely
unexpected, as away from x=0 the Liouville equation (2.5) is in fact identical with the
full quantum dynamics (2.3). The finding is that “nothing non-classical happens” on
x=0 either, as can be clearly seen in Figures 6.2, 6.3 and 6.5.

Qualitatively this behavior also appeared in investigating problems with different
envelopes and other values of ε. This creates a compelling sense that in non-interference
problems, eq. (6.1) is valid. In Appendix C an even more singular example can be seen
to be correctly captured by the regularized semiclassical asymptotics.

6.2. Collision of two wave packets. Since this is an one-dimensional problem,
the only way to have interference is by one wavepacket arriving to x=0 from the left,
and one from the right at the same time. So we consider the collision of two wave
packets, symmetrically located around x=0, traveling with same velocities and opposite
directions. The two wavepackets have a phase difference of an angle 2πθ, 0≤ θ≤ 1.
They meet over the corner point of the potential, they interact and continue to travel
in opposite directions until they are completely separated.
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Fig. 6.2: Numerical result for ε=10−2, m=0.9186. Top right: Exact SWT. Top left: momen-
tum density (dx integral of SWT). Bottom right: position density (dk integral of the SWT).
Bottom left: ρε(t). (Note that in the SWT plots the wavenumber is scaled with 1

2π
.)

Fig. 6.3: Observable measurements, for the observables in (6.6) and ε=10−2, m∈
{0.8165,0.8777,0.9186,1.0206,1.4289}, at times t∈ [1.1788,2.3577]. The x−coordinate of each
point is the measurement on the numerical solution U(t), Aquant= 〈A(x,k),W ε[U(t)]〉, and
the y−coordinate is the corresponding classical measurement Acl= 〈A(x,k),P ε(t)〉. Note that
the times used here roughly span the interaction time, in which any discrepancy between the
classical and quantum dynamics could occur. More specifically the interaction starts around
t=1 and is over by t=2.4 for all the problems.

The initial datum, ρε0= W̃ ε
0 [u

ε
0] is symmetric around (0,0), up to exponentially small
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Fig. 6.4: Measurements of observables of position only. The qualitative behavior is consistent
with the larger dataset. These benefit from better accuracy, by virtue of eq. (5.12). It is
clear that qualitatively the picture doesn’t change when we include observables depending on
momentum as well (i.e. as in Figure 6.3). This is not surprising, since the simple estimate of
eq. (5.13) is known to be pessimistic.

Fig. 6.5: Given two vectors of measurements ~x and ~y, where we expect xi≈yi, a standard
way to measure how well they line up is through the correlation coefficient ρx,y =

〈~x,~y〉
‖~x‖‖~y‖

, with
ρx,y=1 if the two vectors are exactly aligned. Here we plot the correlation coefficients for
groupings of measurements that correspond to early, high and late interaction stages. We use
both the linear and log scaling (as in Figure 6.3). The agreement is striking (and most probably
numerical errors are comparable to any quantum-classical discrepancies).

terms, for all θ. To see that, we compute

W ε[uε
0](x,k)=

2

ε
e−π

(x−x0)2

ε
−4π

(k−
√

|x0|
2π

)2

ε +
2

ε
e−π

(x+x0)2

ε
−4π

(k+

√
|x0|
2π

)2

ε +

+2Re

(
2

ε
e−

π
ε
x2− 4π

ε
k2

e−2πiθ− 2i
√

|x0|
ε

x+4πix0k

)
;

(6.7)

For all practical purposes the third term is suppressed by the smoothing (since it is highly
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oscillatory), and with it all trace of θ in W̃ ε[uε
0]. The flow is also symmetric around

(0,0), hence one quickly observes that ρε(t) in this problem predicts a distribution of
mass symmetric around zero.

A crucial observable we study closely for this problem, is the amount of mass located
to each side of x=0 after the crossing is completed,

∫
±x>0

|uε
0(x,t∗)|dx for t∗ sufficiently

large. An eventual mass imbalance means that there are interactions going on not
included in the classical dynamics of (1.3).

The computational domain is taken sufficiently large to avoid possible interactions
with the boundary and we discretize in space using quintic B-splines. The initial con-
dition is of the form

u0(x)=a0,1(x)e
i
S0,1(x)

ε +a0,2(x)e
i
S0,2(x)

ε ei2πθ, 0≤ θ≤ 1,

a0,1(x)= ε−
1
4 e

−π
2 (

x−x0√
ε

)2
, a0,2= ε−

1
4 e

−π
2 (

x+x0√
ε

)2
,

S0,1(x)=
√
|x0|(x−x0), S0,2(x)=−

√
|x0|(x+x0).

(6.8)

In Figure 6.6 the graphs of u0(x), |u0(x)|2 are shown for ε=10−2. The wave packets are
located initially at x0=− 3

2 and −x0=
3
2 respectively. The initial step of the adaptive

algorithm resolves correctly the profile of u0 producing an initial mesh, depicted also in
Figure 6.6, of around 1000 points with an initial error bound approximately 10−9. In
what follows the total error (5.3) is kept under 10−2. In Figure 6.8 the mass distribution
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Fig. 6.6: Visualization of u0 (as defined in (6.8), for ε=1e−2). Left: Position density. Right:
Real and imaginary parts for the two components of u0 (right)

is shown for three values of the parameter θ= 1
4 ,

1
2 ,

3
4 and two values of Planck’s constant

10−2, 5 ·10−3. The snapshots correspond to a time where the two wave packets have
interacted with each other over the corner of the potential and continue to move away
from it. In Figure 6.7 we see the numerical approximations for W̃ ε[uε] and ρε at a time
after the interaction. The classical approximation is completely symmetric, while the
quantum result is not. This is a case of a “microscopic” (i.e. invisible in the WM of the
problem) feature, the phase-difference θ, playing a non-negligible “macroscopic” role.
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Fig. 6.7: Numerical result for ε=5 ·10−3, θ= 18

24
. Top right: Exact SWT. Top left: momentum

density (dx integral of SWT). Bottom right: position density (dk integral of the SWT). Bottom
left: ρε(t). (Note that in the SWT plots the wavenumber is scaled with 1

2π
.)

This non-symmetry of the mass distribution depends on the phase separation of the
two wave packets and on the value of ε. Since mass is conserved – analytically as well
as numerically – the excess mass in one side is compensated by less mass on the other
side of the corner. We measure this by the excess mass percentage (EMP) after the
interaction,

EMP = ‖U(t∗)χx>0‖2L2 −‖U(t∗)χx<0‖2L2 ∈ [−1,1].

For time t∗> 2.5 so that the interaction is complete, and the two waves travel away from
x=0 in opposite directions. For θ= 1

4 the wave packets have a π
2 phase difference and

more mass, is located to the right of the corner, EMP≈ 5%. In a completely analogous
way for a phase separation of 3π

2 (θ= 3
4 ) the exactly same amount of excess mass is

shifted to the left of the corner. However for θ=0, 12 ,1 the mass is distributed equally
around the corner, EMP=0.

The dependance of the mass imbalance on Planck’s constant ε is not easily visible
from Figure 6.8. To clarify the situation we run several numerical experiments for a
variety of values of ε and θ :

θ=(2,3,4,6,8,9,12,14,17,18,21,23)/24,

ε=5 ·10−1,10−1,5 ·10−2,10−2,5 ·10−3.

The results are summarized in Figure 6.9 where the variation of the EMP to the right
of the corner x=0 is shown. The dependence on the value of ε is evident. The location
of maximum and minimum values of EMP depend solely on the value of θ and occurs
for θ= 1

4 and θ= 3
4 respectively but does not depend on ε. The value of this maximum

and minimum depend on the value of ε, and seem to stabilize for ε small enough. For
ε=O(1), EMP≈ 12.5%, and it reaches an apparent limiting value of EMP≈ 5.5% for
ε=5 ·10−3. We also notice for θ=0, 12 ,1 and for any value of ε the mass is distributed



Athanassoulis, Katsaounis & Kyza 29

x
-8 -6 -4 -2 0 2 4 6 8

0

0.5

1

1.5

θ=1/4

|u|
2

x
-4 -2 0 2 4

0

0.5

1

1.5

2 θ=1/4

|u|
2

x
-4 -2 0 2 4

0

0.5

1

1.5

2

2.5
θ=1/2

|u|
2

x
-4 -2 0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

θ=1/2

|u|
2

x
-8 -6 -4 -2 0 2 4 6 8

0

0.5

1

1.5

θ=3/4

|u|
2

x
-4 -2 0 2 4

0

0.5

1

1.5

2

2.5

θ=3/4

|u|
2

Fig. 6.8: Mass distribution for the problem with initial data (6.8) after the interaction for
various values of θ: ε=10−2(left) and ε=5 ·10−3(right)

evenly around the corner, EMP=0. The behavior encoded in Figure 6.9 seems to persist
even if change the envelopes a0,1, a0,2; i.e. there seems to be a quantum scattering
operator that depends only on the phase difference of the interfering waves.

Remark 6.1. While the discrepancy between ρε(t), W ε(t) after the interference effects
is clear, one could think that this is only due to the smoothing of the initial data. In
other words, is maybe f ε, defined as in eq. (6.4), close to W ε(t)? First of all, working
with the full detail of W ε

0 is not a practical asymptotic method, as is clearly seen by
plotting it for small ε (see eq. (6.7) for the explicit form). Still, we did investigate its
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behavior; f ε(t) gives rise to comparable (sometimes larger) mass imbalances as ρε. In
other words,

lim
ε→0

〈ρε(t∗)−W ε(t∗),φ〉 6=0, lim
ε→0

〈f ε(t∗)−W ε(t∗),φ〉 6=0,

at least for the observables corresponding to “mass on the left/right”. This reinforces
the conclusion that the interference effect is genuinely quantum, and thus cannot be
captured by the solution of a Liouville equation on its own. This is also consistent with
the modeling of [24].

Fig. 6.9: EMP distribution for various values of θ and ε.

Appendix A. Background on the Schrödinger equation and the Wigner

transform.

The Schrödinger equation (1.1) is well-posed on L2(Rd) for real potentials V in
Kato’s class, i.e. if V =V1+V2 and

V1∈L∞, V2 ∈Lp, p>max{2, d
2
} (A.1)

or

V1∈L∞, V2∈L2
loc, and ∃C>O such that V2>−C(1+ |x|2). (A.2)

Practically all physically interesting cases are covered by these conditions – unlike the
situation in classical mechanics. The Wigner transform (WT)

W ε :L2(Rd)×L2(Rd)→L2(R2d) :f,g 7→W ε[f,g],

W ε[f,g](x,k)=
∫
e−2πikyf(x+ εy

2 )g(x− εy
2 )dy,

(A.3)
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seen as a bilinear mapping is essentially unitary in L2, in the sense that

‖W ε[f,g]‖L2(R2d)= ε−
d
2 ‖f‖L2(Rd)‖g‖L2(Rd). (A.4)

This allows the construction of an L2 propagator for the Wigner equation out of the
Schrödinger propagator [32]. We would like to interpret the WT as a phase-space
probability density in the sense of classical statistical mechanics; it has e.g. the correct
marginals as position and momentum density

∫
W ε[f ](x,k)dk= |f(x)|2,

∫
W ε[f ](x,k)dx= |f̂(x)|2. (A.5)

However this picture cannot be taken too literally, since the WT has negative values in
general [12, 23]. In fact, it has been realized that when smoothed with an appropriately
large kernel, the WT becomes non-negative. Skipping over some details, this can be
seen as an equivalent reformulation of the Heisenberg uncertainty principle: one can
get a valid (i.e. a priori non-negative) probability that a particle occupies a region
in phase-space only if that region is large enough. This leads to the definition of the
Husimi transform,

Hε[f ](x,k)=

(
2

ε

)d

e−
2π
ε [|x|

2+|k|2] ∗W ε[f ]> 0 ∀f ∈L2. (A.6)

The Husimi transform is used to prove the positivity of the WM, since, as can be readily
checked, W ε[uε] and Hε[uε] are close in weak sense as ε�0 [30].

The particular topology used for weak-∗ convergence W ε[uε],Hε[uε]⇀W 0 is built
on the algebra of test functions A, introduced in [30] and defined as

A= {φ∈C(R2d)|
∫

sup
x

|Fk�K [φ(x,k)]|dK <∞}. (A.7)

The main result for Wigner measures in smooth problems, precisely stated, is the fol-
lowing

Theorem A.1 (Wigner Measures for the linear Schrödinger equation [30, 21]). Let
the real valued potential V be in Kato’s class, and assume there exists a C> 0 such
that V (x)>−C(1+ |x|2). Assume moreover that the family of initial data {uεn

0 }, for a
sequence lim

n→∞
εn=0, has the following properties

• (ε-oscillation) If Fφ(R) is defined as

Fφ(R)= limsup
n→∞

∫

|k|> R
εn

|φ̂uεn
0 |2dk,

then, for all continuous, compactly supported φ

lim
R→∞

Fφ(R)=0.

• (compactness) If G(R) is defined by

G(R)= limsup
n→∞

∫

|x|>R

|uεn
0 |2dx,

then

lim
R→∞

G(R)=0.
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Then, for a semiclassical family of problems of the form (1.1), and any timescale
T > 0, the following hold:

• There exists a subsequence of the initial data, u
εmn

0 , so that their Wigner trans-
form converges in A′ weak-∗ sense to a probability measure,

∀φ∈A lim
n→∞

〈W εmn

0 −W 0
0 ,φ〉=0, W 0

0 ∈M1
+(R

2d)

• For t∈ [0,T ], define W 0(t) as the propagation of the initial Wigner measure W 0
0

under the Liouville equation (2.5). Then

W ε[uεn(t)]=W εn(t)⇀W 0(t)

in A′ weak-∗ sense.

Finally, one should note that if f,g are “nice enough”, then their WT W ε[f,g] will
also be “nice”:
Definition A.2. Σm We will say that f ∈L2(Rd) belongs to Σm if

‖f‖Σm = max
|a|,|b|6m

‖xa∂b
xf‖L2 <+∞.

Remark: It is clear that f ∈Σm⇒ f̂ ∈Σm.
Theorem A.3. If f,g∈Σm(Rd) (see Definition A.2 above), then

W ε[f,g]∈Σm(R2d). (A.8)

Moreover,

if m> 2d, then W ε[f,g]∈L1∩L∞. (A.9)

Proof: Observe that if

R :F (x,y) 7→F (x+Cy,x−Cy),

the Wigner transform can be seen just as a composition of

W ε[f,g]=Fy→kR ε
2
f(x)g(y).

So the strategy for the proof of (A.8) is clear; show that f(x)g(y)∈Σm(R2d), and
then show that each of the operators RC , Fy→k are bounded on Σm(R2d).

So, if f,g∈Σm(Rd), it readily follows that

‖f(x)g(y)‖Σm(R2d)= max
|a1|+|a2|,|b1|+|b2|6m

‖xa1ya2∂b1
x ∂b2

y f(x)g(y)‖L2 6

6 max
|a1|,|b1|6m

‖xa1∂b1
x f(x)‖L2 max

|a2|,|b2|6m
‖ya2∂b2

y g(y)‖L2 6 ‖f‖Σm(Rd)‖g‖Σm(Rd).

Now assume F (x,y)∈Σm(R2d);

‖RCF‖Σm(R2d)6 max
|a1|+|a2|,|b1|+|b2|6m

‖xa1ya2∂b1
x ∂b2

y F (x+Cy,x−Cy)‖L2 =

= max
|a1|+|a2|,|b1|+|b2|6m

‖
(

x+Cy+ (x−Cy)
2

)a1
(

x+Cy− (x−Cy)
C

)a2

∂b1
x ∂b2

y F (x+Cy,x−Cy)‖L2 6

6C′‖F‖Σm(R2d).
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Finally

‖Fy→kF‖Σm(R2d)6 max
|a1|+|a2|,|b1|+|b2|6m

‖xa1ka2∂b1
x ∂b2

k F̂2(x,k)‖L2 =

6 max
|a1|+|a2|,|b1|+|b2|6m

(2π)b2−a2‖xa1∂b1
x ∂a2

y

(
yb2F (x,y)

)
‖L2 6C′′‖F‖Σm(R2d).

Now to prove (A.9); by virtue of the Sobolev embedding Theorem [15]

‖F‖L∞(R2d)6 ‖F‖Hd+1(R2d)6 ‖F‖Σd+1(R2d);

moreover

‖F‖L1(R2d)=
∫
x,y

|F (x,y)|dxdy=
∫
x,y

|F (x,y)| (1+|x|2+|y|2)r
(1+|x|2+|y|2)r dxdy6

6 ‖(1+ |x|2+ |y|2)rF (x,y)‖L2(R2d)‖ 1
(1+|x|2+|y|2)r ‖L2(R2d)6 ‖F‖Σ4r(R2d)

√
∞∫

ρ=0

ρ2d−1dρ
(1+ρ2)2r

which is finite for r> d
2 .

�

Appendix B. The Smoothed Wigner Transform.

As was mentioned, sometimes flexibility in the calibration of the smoothing is re-
quired. Several approaches for the smoothing of the Wigner transform have been studied
[12, 23], and there exist trade offs for the different choices and scalings of smoothing
kernels. We use a Gaussian smoothing in what we call the Smoothed Wigner transform
(SWT). This has the advantage that it leads to entire analytic functions of known order
and type, thus making available a great toolbox of results for their asymptotic study
[7].

The SWT was introduced in (2.8). Observe that

W̃ ε[u](x,k)=

(
2

εσxσk

)d ∫

x,k

e
− 2π

ε

[

|x−x′|2
σ2
x

+ |k−k′|2
σ2
k

]

W ε(x′,k′)dx′dk′=

=

( √
2√

εσx

)d∫

y

e−2πiky− επ
2 σ2

ky
2

∫

x′

e
− 2π

ε

|x−x′|2
σ2
x u(x′+

yε

2
)u(x′− yε

2
)dx′dy,

(B.1)
therefore only d convolutions are needed (i.e. in x), as the smoothing in k can be
performed as part of the FFT.

To implement this transform numerically, we will use the FFT. First of all recall
that
Lemma B.1. For any function f ∈S(R),

∑

j∈Z

f(jh)e−2πiknh=
1

h

∑

j∈Z

f̂(k+
j

h
).

This is a direct corollary of the Poisson summation formula, and the starting point
of any use of the FFT to approximate the Fourier transform of a continuous function.
(The requirement f ∈S(R) can be relaxed; the details along this direction are outside
the scope of this work.)

Similarly, we can create an appropriate version of the Poisson summation formula
for the evaluation of the dy integral in (B.1) as an FFT:
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Fig. B.1: Smoothing of the Wigner transform. Left; the WT – dominant features correspond
to oscillations that vanish in the limit. Middle; fine smoothing – the most spurious oscillations
are gone, there is good resolution and some very negative values. Right; coarser smoothing,
more appropriate for computational use – there are still non-negligible negative values, but
the dominant features of the density are clearly positive while definition has not been overly
smeared.

Lemma B.2. If f ∈S(R), denote by

Sa,b(X,y)= e−
π
2 εσ2

ky
2

∫

x′

e
− 2π

εσ2
x
(X−x′)2

f(x′+εby)f(x′−εby)dx′.

Then

∑

j∈Z

Sa,b(X,j)e−2πi2Kaj =
σ2
k

b
√
2

∑

j∈Z

W̃ [u](X,
aK+j

b
).

Observe that the integral
∫
x′
e
− 2π

εσ2
x
(X−x′)2

f(x′+εby)f(x′−εby)dx′ only needs to be

computed in a small interval in x′ for each X because of the Gaussian localization.

It is handy to note that smoothing in the k direction introduces small changes in
the |||·|||−M norm (see also Observation 4.10):

Lemma B.3. Let ‖uε
0‖L2 =1, W ε

0 =W ε[uε
0], and ρε= W̃ 0,σk;ε

0 . Then

|||W ε
0 −ρε|||−M 6 ε

π

2
σ2
kM

2.

Proof:

|〈ρε−W ε
0 ,φ〉|= |〈F2W

ε
0 ,(1−e−

επ
2 σ2

kK
2

)F2φ〉|6 επ
2 σ2

k‖|K2|φ̂2‖L1
K
L∞

x
6 επ

2 σ2
kM

2|||φ|||M .

We used Observation 4.7, and the fact that

‖K2φ̂2(x,K)‖L1
K
L∞

x
6 ‖K2φ̂(X,K)‖L1

X,K
6M2|||φ|||M .
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square
Remark: Observe that in practice

lim
ε→0

〈W ε
0 −W̃ ε

0 ,φ〉=0

(which is significantly weaker than (4.13) or lemma B.3 above) is often sufficient in
practice. In particular, the use of some smoothing in the x direction as well, does not
seem to hurt the quality of approximation in our numerical examples. In any case, we
have an explicit, uniform upper bound for the effect of smoothing in the k variables
only.

Appendix C. Slicing in two of a WKB wavefunction.

A more singular non-interference problem example is given by the initial data

u0(x)=a0(x)e
i
S0(x)

ε ,

a0(x)= (1+ tanh(7(x+3))) ·(1+ tanh(7(−x+1))), S0(x)=
−2
3 |x| 32

(C.1)

and

V (x)=1+(1+tanh(4(x+4)))(1+tanh(−4(x−4)))
(−|x|+4)

8
. (C.2)

The initial WM of this problem is a line supported measure. The concentration
limit of ρε predicts that this measure would be “sliced” into two lines. We see clear
qualitative agreement between ρε and W̃ ε, see Figure C.1. The quantum observables
(6.6) (including mass scattered to the left / right) are within around 4% of their semi-
classical prediction. Overall it seems that quantitative convergence as ε→0 is taking
place, albeit somewhat more slowly for this type of initial data than for the data of eq.
(6.5).
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Fig. C.1: The quantum phase-space density W̃ ε(t) versus its proposed semiclassical approx-
imation ρε(t), for the data of eq. (C.1), ε=10−2 and various times before, during, and after
interaction with the singularity.


