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A Unified Appraoch to the i-ica:3urementAnaLys Ls of :lolili:13.l1y
8ircul~r and Cylindrical Surfaces.

The customary "lJroceduresof roundness measuremcnt have been
develo~ed in resnonse to '"I'l~ticularneeds as they have arisen,
mcornorat.t n; appr-oximatLons as a'l;Jro:)riatc.ConscquontLy, the
direct extension of these nroccdirrcoto ncre connl.ex:neasurer.tents
such as ..cylindricity" i::;a queetLonabl,eexercise. The present I{Or:-t
develo':)sa mathematically consistent description of the processes
underLyi ng the measurement and.ana.LysLc of roundness. ?ro~ this are
dorivod analytical methods a:Jpronriatr>to neaaurcnent s for Hhich in-
strumentation is, in some cases, yet to become available. ~ew,
hl~hly efficient algorithms for solvinF,the mininum circumscribing,
maximum inscribing and minimum zone reference figures arc also pro-
duced.

The nethod adopted identifies important features 0: roundness
measurement such as eccentricity and radius ~uppre3sion as transla-
tions between co-ordinate frruncsassociated ~ith the workpiece ar~
instrument. Reference figure fitting is expressed formally as a
problem in optimisation and the standard methods of Operations
Research aoplied to It. All four ;'-."lnll,l..t'<i. reference circles are re-
oxam ned in this way LcadLn.; ::'0 Iscneralisatlons of ncasuremerrt
cmdl tion:;and LranrovedaolutLon metbodc . Earli:::-radvocacy of t!lf>
llrncon as a reference fir~urci..;conf'Lrrtedand extended. The rcL ..-
tion::;hi-:1of circular and linac~n references is ~tudied and an eccen-
tricity ratio shown to be a suitable control over the approxiMatiuns
uscd in nractice.

The use of "lir.laconcylindroid~" seems to -rrovicea working
ary~roximation for the measure~ent of cylindricity. It is recoruaended
th~t cylindrical reference figures L~ fitted by standard techniQues
of Lincar programming rather than by upcc i.a.l algorlthra.
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Nomenclature

Many of the terms used .throughout this work have related but not
identical existences within different frames of reference, here called
instrument co-ordinates and chart co-ordinates. In these· cases the
")ronerty is allocated the same symbol from the English alphabet with
the unper case character referring to instrument co-ordinates and the
lower case to the chart co-ordinates. For examnle, from the list
below I

(At B); (a, b)

(Ao' Bo)

(A1,B1)

a ,. MA

- Cartesian representation of centre
- Intercepts of cylinder axis with XY plane
- Comnonent of slope of cylinder axis from Z axis

(a b r1)Ta =
b

(E, 4)); (i', $)

f('t', ? )

2ft; 2h

H

m

- Vectors used in the manipulation of linear
programmes

~olar renresentation of centre
- Weighting function for profile measurement error
- Radial zone width of ~rofile
- Matrix of e~er1mental ~oints for least squares
- n x n identity matrix
- Matrix of experimental points for L. ~.
- Radius suppression
- Axial length of cylinder
- Direction cosines

- Magnification
'Slope' of line
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N - Number of data points
n - Number of sides on a polygon
o - Co-ordinate system origin
RO; ro - Radius of circle
(Ri' 9-i) I (ri' &i) - "roflle radial data pOint from origin
RLj rL

RI ~ = (ri
(Si,l"i)

- "Radius" (semi-diameter) of limacon
ri rN)T

- -~ro:rlleradial data "Ooint from centre
s - Arb! trary r&di us of polar chart

- Aotive width of polar chartw

(Xi' Yi);

!o
(X, Y. z)

(R, &, Z)

- Cartesian renresentation of nrofile data point
'oint on cylinder axis

- ~rinci~u axes of co-ordinate frames

A
lS = EIRo

~c· e/ro
.6ijk -

~i
£i
'max

- Inverse of basis in linear programme
Eooentricity ratio

- Eccentricity ratio on polar chart
- Detexmlnant, co-factor of matrix
- Out-oi-roundness, residual from limaoon

- Out-of-roundness, residual from circle
- Maximum radial divergence between limacon and circle
- Dimensionless ratio, E/S
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1• Introduction

As,over the past thirty years, surface metrology has

become recognised as an important discipline in its own right

so roundness measurement has grown to be one of its most

significant branches. Traditionally "roundness measurement"
has implied the comparison of single cross-sections of workpieces
with perfect circles which are assumed to be the ideal. Using

specialised measuring machines, an intuitive but perfectly
workable basis for such measurements has developed and is _

embodied within National Standards. Recently, however, two
developments have brought the potential limitations of current
practice into importance. First, inexpensive digital computing

bas led to the expectation of more accurate or highly automated

measurements. Secondly, there is a growing interest in 80-

called "integrated measurements" where the overall surface
shape is to be described. This has caused the introduction

of the currently rather poorly defined terms such as
"cyl1ndricity'" and "sphericity".

Current state-ot-the-art instrumentation, usually

involving the generation of precise straight line and circular
motions, seems capable of coping with most of these expectations
provided that the data which it supplies can be adequately
interpretted. However, it is not elear whether for this step
existing methods can safely be extrapolated. Considering
the basic measurement procedure illustrated by figure 1.1r
the comparison of the imperfectly manufactured workpiece with
its specification is seen to involve several processes.

1 .
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Apart from the inevitable errors which occur with every

measurement, there may be limitations in the instrument which
cannot realistically be eliminated (see chapters 2 and J for
more discussion). Thus it is necessary to extract from the
da.ta supolied that relevant to the workpiece so that only this

is compared to the specification. Note also that at several
stages, the procedures are influenced by Standards.

It is within the above context that this work is concerned
with measurement analysis. Upon which techniques can be used

for the analysis will depend the way· in which instrumental
developments should proceed. Ultimately it is to be hoped

that the acceptance at inspection of manufactured workpieces
will be governed by purely functional considerations, but
this ideal is still well in the f'uture. For the present,

and therefore here, it will be necessary to work within the
spirit of' current standards, particularly with regard to

reference figures.
!his work studies and develops analytical methods

suitable f'or both two and three dimensional measurements of'
nominally round ;parts. Its natural starting point lies in

reappraising current roundness measurement· practice.
On examining the history of roundness measurement the

subject is found to be noticeably f'ragmented. The various
topics have been treated virtually a8 if they were independent.
There are natural reasons why this should be so, for example,
many of the analytical methods have been developed as the need
has arisen in response to particular, practical problems f'or

la



which previously existing methodswere deemedunsuitable. On

achieving a working method there has been little incentive to ques-

tion deeply howit relates to those other methods. However, any

attemnt at extel1d1.ngthe region of influence of these methods comes

immediately against the difficulty that there is no unifying theory

underlying the practice of roundness measurement. It is therefore

regarded as the main task of this work that an attempt should be

madeto establish such a theory.

Thep:resent work is conceptually difficult to explain. Many

of its concepts are of an abstract nature and some, at first sight,

mayseem only tenuouslY linked. This observation maybe compared

.with that earlier concerning the fragmentation of the subject. In

add.f:tfQ!l,many of the practically significant results and conclusions

can stand alone and be successfully applied without deen knowledgeof

their inter-relationships. For these reasons the re'Port will be

allowed to retain a degree of fragmentation. Although its thesis is

that there is an important, underlying structure and that the whole

subject .should be taken together, somechapters have been organised

such that they could be extracted. Because of this the detaUs of

the history ot the su~ect will be deferred until appropriate points

in the text occur•. In this introduction only a very brief overview

will be given •.

The whole.subject of'roundness measurementappears to have been

born in almost its present form. Na.tional Standards (1, 2) indicate

the importance of the independent spindle roundness 1nstrument.

There has been Uttle concentually important change in these since the

nioneerlng work of Reason, wbosesurvey (J) remains the major work on

that subject. (Further discussions of instrumentation is given in

2



Chapter 2.) Amajor d.1sadvantageof most roundness instruments is

that the signal obtained ~ representing the deviations from circu-

larity of the workpiece can be seriously distorted unless great

care is takem to align thE;~6entre of the workoiece with the spindle

axis. Various guidelines have been 'Producedto restrict the degree

of eccentriCity ~resent in the graphical output of the instrument (1, ).

Nevertheless· somedistortion will be present in practice and it adds

greatly to the cOIll!)lex1.ty of measurementanalysis. This will affect

the accuracy with which the reference circles (2) used for assessing

roundness errors can be constructed. Reason () describes the nature

of the distortion and gives a graphical methodfor reducing it but it

seems that Whitehouse(4) first identified the distorted form with the

geometric figure knownas the limacon, claiming that its use as a

reference figure is superior to using perfect circles under customary

measurementconditions. (Section ).1. gives moredetails.)

Standards allow four reference figures, the least squares circle

and three ·lfh1ch will here be grouped as "boundary references": the

minuuacircumscri bing, maximuminscribing and rGinimumzone circles.

"Anadequate solution technique for a restricted set of conditions

has been knownto the least squares circle for manyyears (). 110re

recently the methodhas been extended to inclQde sOllleincomplete,

&rcuate figures (4). All this work depends on what has cometo be

knownas the "limacon approximation" and also makes further restrictive

assumptions. Siddall (S) has queried the accuracy of the standard

formulae for small arcs. Other work relating to this area, but not in

a direct way, includes generating reference centres from centroid

methods (6) and pronosals for different standard formulae (see (7) and

Apnendix) for discussion of these.). Further discussion of least

J



squares methodsis given in section 5.1.

The boundary references have been studied even less, most

authorities apY,l8.rentlya.cce"Qtingthe suggestion in Standards that

"trial and error' methods be used for their fitting. AVdulo"f'(8)

and later Whitehouse(9), using a geometric method, propose basically

the samem.ethOdfor bringing order into the search procedure. The

methodrequires muchwork but is usable with high speed computers.

For s-pecial 'Purposes attempts at data reduction, identifying the

major surface features, have been tried (10). Again the problem

arises of intuitively simnle ideas requiring muchcomputation. Recent

suggestions for finding minmumzone have included a non-uniformly

weighted least squares calculation (11) and }tonte'Carlo methodsbased

on the least squares centre (12). Ne1ther will 'Producethe exact

solution in general. See also, section 6.1.

"Cylindricity" has yet to be formally defined by metrology

Standards. DrawingOffice Standards on geometric tolerancing (13)

and speculations by Reason (14) have both been used to support a

minimum.zone approachalthougbneither actually implies minimumlOne.

Other work relating to cylinder m~asurement(1, 15) has been restricted,

for example, to axial straightness which is clearly less than should

be im'Plled by "cylindricity". Somerecent work in Japan (16, 17) has

calculated "least squares cylinders"by direct extension of the two-

dimensional methodsbut seems not to have considered the im-plicit

assum-ntionsof doing so. Tsukada (18) questions what measurement

schemes should be used with least suqares cylinders and suggests that

a helical trace around the workoiece is appropriate. There is almost

no consideration of boundary cylinders, although the modified least

squares method(11) has been extended to three dimensions. Section

4



11.1 contains a fuller survey of cylinder related work.
In accordance with the ~hi1osonhy outlined earlier, this work

first studies the underlying 'Princi,1es of roundness measurement.
In ~articular it examines the sources of error relevant to reference
figurecalculatlon and identifies them with various specific points
in the measurement process. This leads to the identification of
the major properties derived from ideal and practical reference
figures. Then, rather than follow semi-empirical methods as in
earlier worlc, reference figure fitting is examined formally using

the mathematical methods of Olltimisation theory. This leads to a
full recognition of the role of the limacon in roundness measurement.

Two of the techniques used are of particular interest, name1y"'ara-
meter Snace analysis and Linear "rogramming, both most commonly used
in Operations Research. By specialisation of the Linear ~rogramme
solution for boundary reference limacons, highly efficient algorithms
are develo1?ed. The nature of the approximations involved in using
limacon references is eXamined in detail and the eccentricity ratio
established as a control on the accuracy of the method. Some other
reference figures are also briefly stUdied.

The practical usefulness of the methods introduced here will
depend upon when the mathematically predictable errors beeome sign1-
ficantly large. One aim of this work is to reduce the necessity for
precise centring, or, conversely, to increase the measurement capability
of an instrument. This will "beachieved only if the methods are

tolerant of eccentricity levels considerably higher than those occurring
in current practice. To discover whether this is so will require wide-

snread experimental investigation. Initial tests reported here
suggest that it is.

5



With a firm theoretical basis in two dimensions, the develonment
of methods for finding cylindrical references is relatively straight-

forward. Solutions using linear least squares and linear programming are
advocated. S:"ec1a.lalgorithms are not developed. The nature of the

approximations is similar to those in two dimensions but the magni-
tudes are more severe. However, practically useful measurement systems
can be '!')roduced.

All engineering is ultimately concerned with pragmatism and so
with value judgements. This work sets out to discover what might be

theoretically nossible if suitable instrumentation were to be developed.

Its value can therefore be judged against two criteria, usefulness
under current conditions and ?otential usefulness to future research.
Only the former can be quantified and so only COMparisons of this work

with current practice are made here. It is hoped that this concentra-
tion on the present will not mask possible implicatiOns for the future.
Because of its standpOint, this work is distinctly not a textbook on
roundness measurement, although it may be of interest to those writing
such boeke , Any influence it might exert is ex:pected to be upon the
designers of instrumentatlon systems rather than their users.

Please note that throughout this work many diagrams are shown,
for clarity, with highly exaggerated features. In particular the
limacon is normally shown with a cUSP developed so that it is easily
distinguishable from a circle. It is not intended to imply that these
represent sensible measurement conditions.

6



2. Current "ractice in RoundnessMeasurelDent

2.1 Requisites for RoundnessMeasurement

There are three metrological questions which can be posed

concerning the cross-section of a nearly circular oOlDponent:

1. Whatare 1ts devlatlons from circular! ty?

11. Wh~tis lts si.ze?

lil. Whereis its centre relative to someknownpOint?

Depending upon the circumstances. the relative importance of these

factors and the precision required of their measurementwill vary.

Examples of such oombinations could include:-

a) A simple shaft. Here centre position maybe of little impor-

tance, and, if used ln a bearing, even quite significant radius

variation IJl1ghtbe tolerable to a compliant Journal. However

if the shaft is to run "true" the roundness must be reasonably

good. ,which is also a condition required for the avoidance of

cyclic loads on $uch a compliant Journal.

b) High speed air--h~ic bearing. A l'ossible design might

use a circular journal with a shaft having a deliberate. small

aml?litude lobing to give the nece~ary pres.u~sat1on. Shape

measurementis nowimportant for the control of the size of the

lobes and not, as more cOlDlllonly9ccurs, for checking that no

significant deviation from circularity exists. The bearing would

have small clearances and so radial tolerance on both components

would have to be well controlled.

c) Crankshaft. The requirement on each bearing is probably similar

to a) above, but in addition the individual bearings must be

1



aligned axially. Thus here out-of-roundness and centre position
would be measured.
To determine the out-of-roundness of a section, it must be com-

pared with a perfect circle. This could be either a specific circle
(predetermined centre and radius) used in the manner of general pro-
file measurement (BS 308) or, more COlDlllonly,any convenient circle
suitably aligned to the section, since often the out-of-roundness is
controlled simply by a peak-tc-val.ley amplitude measurement. When
the section is not perfectly circular, the definition of radius and

centre become to some extent matters of interpretation. Usually the
relevant parameters of a circle associated with the section by a "best-
f1tilcriterion are used, although centroids have also been suggested (6).

The range of shapes and sizes which might be absorbed within the
field of roundness measurement is obviously as wide as the imagination
can make it. However, the vast majority of practical examl>les,
includJng virtually all those for which standard instrumentation might
be supplied, fall in the same range as the typical components of, say,
the automobile or aero-space industries. The most common range
contains a peak-ta-valley out-of-roundness in the order of ~ to 19"'m
and occurs on parts with radi1 from a few millimetres to about 100mm.
That roundness measurement should be mainly applied to small components
1s due 1n part to 1ts association with high absolute precision. It is
only when such precision is needed that the special techniques identi-
fying roundness measurement as a spec1fic branch of metrology become
necessary. This work will comply with this groul>ing, being concemed
mainly with techniques hav1ng the potential for resolutions and
accuracies of better than ~.

8



2.2 RoundnessInstrumentation

This work is concerned with the analysis of data representing

roundness measurementrather than with the acquisition of such data,

consequently the discussion of instrumental techniques is included

only to establish a context for the remainder of the work. It is

not intended to be either a surveyor a detailed description of

method(for whichsee references 1, 2, 5, 19). However,it should

be stressed that throughout this work any practical difficulties of

instrumental methodwhich 1II1ghtoccur will not generally be

acknowledgedin the text. This approach follows the argument that

the lim1tations of data analysis must be established in their own

right and only thereafter should 11m!tations due to instruments be

introduced. The areas which wouldbenefit most from improvement

should then stand out clearly. As a specific examplethis work 1s

greatly concerned with the eccentricity between the componentand

the normal stylus-type roundness instrument but will not consider

such important features as the effect of finite tip radius and tan-

gential stiffness of the stylus assembly both of whichare particu-

larly significant on small components. In addi tion it will not

question, other than by this statement, the relevance of the

essentially tWO-dimensionalcross-section measurementto the total,

three-dimensional component.

Of the various practical methOdsused to measure roundness,

nearly all involve the use of a meChanicalrotation as a meansof

producing a circle with which to comparethe workpiece. i'emaps the

simplest in concept is the V-block methOd,figure 2.1, in which the

nart is rotated 1n the. V-block while in contact with the probe of

9
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FIGURE 2.1: Roundness Measurement by V-block



an indicator device. The total out-of-roundness is taken to be the
maximum swing of the indicator. This methOd can give an indication
of out-of-roundness and peXh~ps, radius but not centre since it is
intrinsical11 "a; self aligning device. Its major drawback is that
depending upon the angle of the V-block various orders of 10bing can
be suppressed. Various multiprobe techniques have evolved from V-
block methods (20) but although useful for "in situ" wozitthey show
similar difficulties.

The problems with V-block methods arise because the out-of-
roundness of the workpiece affects the accuracy of the rotation which
is sup~osed to be generating the datum circle. Thus the logical move
would be to a system with an independent precision snindle, the methOd
generally used.in proprietary instruments. (Indeed, Moore (19) goes
so far as to claim that the independent spindle is the only method
usable for precision work.) The spindle is used to produce a relative
rotation between the workpiece and a transducer and so either may be

rotated. Figure 2.2 shows the general scheme of such instruments.
There are some significant and quite subtle differences between
rotating workpiece and .rotating transducer instruments concerning
their structural and operational convenience together with their
accuracy and their ability to perform other measurements blt for the
present purposes they need not be distinguished.. Typical modern
spindles on such instruments run with a maximum deviation from
circularity in the region 0.2';"m to O.02,5.-m. Normally this gives a
limit to the achievable accuracy of the system although in some cases
computational methods can achieve even smaller tigures (20, 21).
These instruments are ideal for measuring out-ot-roundness and may
also, sometimes by the use of optional attachments, be used for a

10
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limited range of centre and radius measurement.

A totally different concept for measuring a circular work-

piece would ~ not to compareit directly with a circle but simply

to take a series of point measurementson the surface using a co-

ordinate measuring machine and to analyse themmathematically.

However, the resolutions and accuracies of present machines is

sufficiently low that this WQuldnot be readily regarded as a valid

methodexcept, perhaps, on large workpieces, but, with this limitation,

it would seem to be the ideal method of measuring the distance between

centres.

Overall then, it appears that, at present, the conventional

roundness instrument has little real competition for precision

measurementand so most references, throughout this work, to instru-

mentation will refer to independent spindle methods. There is one

fundamentally important limitation of such instruments. It is normal

to me&$ur&only the radial variation between the surface of the work-

piece ~d a nominal circle (represented by a knownpoint in the trans-

ducer) having a radius almost equal to that of the workpiece. For

display purposes this variation is magnified and superimposed onto a

convenient arbitrary radius for plotting as a polar graph (or chart)

of the errors. One reason for dOing this seems stra1ghtforward: it

would be impossible to magnify the whole rad1ws by the amount

(probably greater than 1000x) ne.ded for the roundness errors to be

easily d.tectable on a graph. Another facet to be considered is that

if the total radius were measured, a rang./resolution ratio for the

transducer of as muchas 107 might be needed, together with a very

small absolute resolution. This performanc. cannot be obtained

economically and so virtually al.l precision roundness l18asure_nt

11



involves this self-evidently naDiedradius suppression. It is

illustrated schematically in figure 3.1. SomemOderninstruments

do have absolute radius measuring attachJ11entsbut these workto a

precision considerably less than that of the roundness txansducer.

Soan add1tional problem for the later analysis of the profile is

that the precision to which radius suppression is knownis well

below that of the measUI.'ementitself. It is well knownthat radius

suppression is one of the factors which causes the distortion of

the profile from its expected. f01'lllwhenplotted on the chart. Reason

shows someparticularly good examples of this (). Here further

discussion will be defered until Section J to save repetition.

2.) RoundnessAnalysis

If the data :representing a roundness profile had been collected

by a co-o%'d1natemeasuring machine, it would be quite clear that the

first stage of analysis would be to calculate a circle from which to

measure the points. With data from a normal instrument the same is

true for although the instrument measures relative to a circle, there

will inevitably be relative eccentricity between the spindle axis and

the workpiece centre. Part of the profile signal will be the

variation of distance between workpiece and transducer caused by this

eccentricity and so the out-of';'roundness should be measured from a

reference figure which compensates for the eccentricity.

It is important to note that this way of' approaching the subject

of reference figures should not be taken to imply that they are needed

solely because of eccentricity. As in other measurements,'the round-

ness reference figure is that definable state relative to which the

12



data is expressed in the analysis. If a roundness instrument were

perfectly set up, the datum circle of the instrument wouldbe the

reference figure. Hence the need to calculate the reference figure

is a pronerty 'of the measurementimperfectlons, notably, in this

case, eccentricity.

In most roundness measurementsvirtually the whole effort of

analysis is concerned with obtaining the parameters of the reference

figure either because those values represent the end in themselves

(as with eccentricity measurement)or since the out-of -roundness is

normally measuredonly in terms of its maximumdivergence from the

reference, see +-,~...re 2.3.

Standardisation of the form of references to be used is important

if records are to be comparedand SO four "best fit" circles according

to different physical criteria are allowed. Various National

Standards give virtually identical defin1tions of them but maydiffer

over which are to be "prefel:red" (1,' 2) • In descending order of

preference according to :as 31)0 these are:

1. Least squares circle

11. Minimumradial zone circles

ii1. Minimumradius circumscribing circle

iv. Maximumradius inscribing circle

The defin1tion of the least squares circle is discussed in detail

in Chapter 5. The minimumzone circles are two concentric circles so

placed that the profile is enclosed between them and their separation

is minimised. The other definitions are reasonably self-evident.

The terms Ring Gaugeand Plug Gaugecircles are sometimesapplied to

the latter two references. Someauthorities have objected to this

notation on the Broundsthat since the references act only on profiles.

13
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not three-dimensional surfaces, they are not equivalent to the use

of lill1 t gauges. Howeverthe terms are concise and graphic and

will 'be used here,particularly since they are used in the current

version of BS 3130. The Standard claims that the least squares circle

is unique and that the zone width of the minimumzone is obviously

unique but that the centres of minimumzone, ring gauge and plug

gauge circles are not necessarily unique. It will becomeapparent

that such statements should sometimesbe treated with caution but in

particular the ring gauge circle centre is always unique.

With the exception of least squares, for which an approximate

formula is given, the standards accept that the reference circles

will be found by trial and error using compassesor circular templates

on polar charts. ANSI1389gives someguidance for this process. It

has been noted that the combination of eccentricity and radius

suppression leads to some·polar distortion so that a truly circular

componentwouldappear slightly oval on the chart. Therefore some

author1.ties recO_ndallova,ble limits on eccentricity on the chart,

usUally in teras of tbechart meanor inner rad,ius (1, J). Again

to save repetition discussion will be postponed until the next

chaoter.

14



J. Roundness Analysis Re-assessed

3.1 The MeasureJllentSystem

In keeping with the philosophy outlined ln Chapter 1, an
.attempt wUl be made to bring all the material of Chapter 2
within a single descriptive framework. The first polnt ln thls
t;>roceasis to ask what is the fundamental reason for the whole
~rocess? Most commonly it is to determine to what extent a work-
piece devia.tes from its expected. circular sha-pe. Now the shape
of the workpiece is a property of itself alonel the points making
up its surface ha.vea fixed relationship to each other (assuming
that it is rigid) independent of its orientation in space. It is
clear, then, that the shape, including the concept of a reference
circle as the form from which the surface has deviated, exists in
a frame of reference tied to the workpiece which will be called the
com'Oonentco-ordinate frame.

In order to be measured, the workpiece must be presented to an
instrument and in being so its orientation is constrained by the
limitation of that instrument. The measurement data is expressed
relative to the instrument datum, that is, in an instrument co-
Ordinate frame of reference. Generally an at~empt would be made to
align the component CO-Ordinates with the instrument CO-Ordinates
but this wUl never be perfect. The two frames Q&D always be related
by simple axis transformation. With roundness instruments the data
does not appear in instrument co-ordinate form since it is immediately
transformed by radius suppression and magnification to chart co-
ordinates which is where the data is available for analysis. The

15



transformation between instrument and ch~cO-O%d1nates ~s not
a change of axes but a point for point mapping which leaves the
orientation of the axes unchang$d.

The expression of the measurement in terms of the compo-
nent, instrument and chart co-ordinate frames gives more than a
convenient notational arrangement. By forcing each action of
the measurement into a definite position • it is identified as
belonging to a particular frame or to a tranSformation between
frames. Its effect on the lIleuurement is then easily identified.

Since the transformation between component and instrument
co-ordinates is a change of axes only, then all shapes are
preserved and a measurement in instrument co-ordinates relates
directly to the uraf1le in component co-ordinates. The concep-
tual reference circle of the component becomes an eccentric
circle in instrument co-ordinates.

The nature of the transformation from instrument to chart
CO-Ordinates is first radius suppression

x{~) ....r(9) - constant

and .then magnification

x{9) ... x{&)x constant

The transformation is a linear action on radial.vectors and non-
linear on all other relationships. Theretore a circle centred
on the origin 18 tran.fomed to another circle but an eccentric
circle is transformed to a non-circular .hape. The effect may"
be seen to be quantified by reference to Figure 3.1. In instru-
ment co-o%dinates an eccentric circle, centred at (Et ¢I) will bet
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3.1
If this is then transformed into chart co-ordinates by applying

radius suppression L, magnification Mand then adding the arbi-

trarychart radius S, its polar chart will bel

r = M(R- L) + S

AlthoUghS is of 81gn1f1eance in the actual plotted form of the

profUe,it cant being a simple additive term, normally be

ignored in anal7Sis .It doe. not, for instance, occur (or has

zero value) in the electrical output signal available from most

commercial instruments.

Applying the binomial expansion to equation J.1 for E < ROI

R = E eos(9-¢) + R (1 - r2sin2(9_~ - y4sin4(I_;) ••• ) J.2
o ~ 'S' .

and if this is expressed in chart co-ordinates:

~ = MEcos(e-(6) + M{R - L) + MRf_ r2sin2(9-;) - ... J.)
o 0\ '2

where 'I • ElRo and. will here be teDleClthe eccentricity ratio.

Th. shape difference between equation ).2 and ).) ls caused

because of the different relative· weights applied to the con-

stant and harmonic terms of their equivalent Fourier series.

(Although this distortion bas been knownsince the eaxiiest

days of roundness measurement, its,explicit statement in terms

of harmOnicdistortion appears to be quite recent. (4).)

J.2 TheAssessment SY!tell

Although ultimately the assessment of roundness in chart

co-ordinates ls unavoidable. the above d1scusaion attellpts to

17



make clear· that the analysis should talce place in instrument

co-ordinates. The reference circle calculation is an attempt

to .get _ct.from instrument to componentco-ordinates. Fitting

a circle to the chart profile implicitly assUmesthat it

re:o.resents, at least to an adequate approximation, the ap'Pear-

ance on the chart of the reference circle.

Th., current practice and Standards (1, 2) of necessity allow

the defiD1tion of circular references on the chart. Here the

defin1tionof .uch referenceswUl be kept. only for instrument·

co-ordinates, but otherwise they will be regarded as those

d1scU88edin section 2.2. The four references divide naturally

into two groups. the least squares solution which is by nature

an averaging process and the other three refeJ:8nces all of which

are "pealc sensitive". The general name "boundary refeJ:8nces"

will be used for these latter thJ:8e. MathematicaJ.ly, the solution

to any ot the •., refel'8nces i8 &proc~ss of opt1Jl1s&tion. In the

case of least squares it 1. an unconstrained ll1n1m1sation of the

. SWI ot BqU&1.'8S of the 1'eslduals W1th the 'bow3d&r1 references

the opt1ll1sation ls on a saple. function but subject to constraints.

Thus the ring gauge circle problem maybe stated

M1nimiseZ = Ro

Subject to Ri ' EC08(91-_)+ [R~ - E2s1n2(61-.)]f

for all 1 of tbedata set.

that is, find the SJIIall.,st value of R. for which all data points
·0 . •

(Ri: 6i) l1e inside the circle. The plUCgauge problem' is s1m1lar

but maximisesRo subject to constraints of opposite sense. Th.

f'01'IIulatlon of the lI1n1mumzone c1rcl.scan be approached in
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varlouaW&ys. One convenient method ls to use a meanradius

circle from tlhicb symmetrically placed half zone widths t H

are established. This gives

Minimise z = H
. . .. ~

Subject to: Ri ' E cos(ei-;)+(R~ - g2Sin2(9i-¢)] 2 + H 3·5

Ri ;, IDcos(9i-¢) +[R~- E2s1n2(~i-!25)]t - H

for all i of the data set.

Each data point causes tvo cpnstraints illl1llyingthat more work

will be needed to solve the mlnilllUJlzone rather than the ring

or plug circles.

Optimisat1on theory offers a complete general solution

only to somefairly restricted sets of problems. The rele-

vance of these restrictions to the fitt1ng of reference circles

will.be explored in. depth later(partlcul~ly 1n Chapter 4).

Here 1t vill suffice to observe that the major class of pro-

blems which arealvays fully solvable an4 efficiently calculable

consists of those in tlhich...all functions have only a linear

dependence upon the parameters withre.,pect to wh1chthe o-pti-

misation is to be performed. It w1ll be seen that this is not

the case with either constraints. 3.4 or 3.5. The.leastsq\l&res

method.will clearly never have, such a l'-near xel...tionship in the

sumof residuals. It belongs to a·different class which allows

a general solution providing that. the referenceftgure is linearly

dependent on its par8J1leters. (In commonusage the term "least

squares" is. taken as implying "linear least Squa.rtts".) These

observations add weight to the doubts' concerning the uniqueness

of references. quoted in, for instance, BS.3730. They also extend
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these doubts to inclUde the least squares circle.

Anydifficulties concerned with fitting circular references

ln instrument co-ordinates will be compoundedwhenworking in

chart co~ord1nates by the fact that non-circles should be used

on the chart. If circles are used on the chart, difficulties of

fitting might·be expected to be greater than in instrument co-

orcU.natesa1nce the effect of radius suppression and. magnifica-

tion wUl be to increase the amplitude of profUe fluctuations

relative to their _anvalu.e. In the past the approa.chhas been

to sidestep difi'icul ties that do occur by convenient local appro-

ximations, see, for example, sectlon S.t. However, surely it is

desirable that an overall solution should be sought. One approach

would be to adopt an alternative reference figure which can be

used consistently and which maintains an adequately close adherence

to the philosophy of using clrcular references.

Amongthe properties of· any proposed reference figUre, the·

following can be read1l;v identified as being of practical 1mpor-

tance. It should closel)' model the 'fon· d1apla.y'edin lnatruJlSnt

or chart co-Ordinates of an eccentrtc(or centred) circle in instru ....

ment co-ordinates. It should be readily translatable between

instrument and chart co-ordinates, implying that it. dependence

on rad.1.ussuppre88ion IlU8t~ very slapie. Onant graph a

tbeoretic$lly unique refexencs figure shoul.d exist for all tour

accepted fitting criteria. Definitive algOrithM for all the fitting

cri teria should exist and be reasonably easy to implement in practice.

It should be possible to use the reference' by hand' directly on a

graph. It would further be useful if the refexence figure could be

exp.ressed as a continuous mathematical function. Additionally, in
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order to maintain continuity of records, it would be prefeI'able

if. for at least a large set ofrestrlcted conditions, measure-

ments with the reference figure could be easily related to those

perfo:rmedwith· circular references •

. The circle does not fulfill all of these requirements.

HaVingregard for the advantages to be gained in the opti-

misation. a good candidate for & refeNnce figure would be a

line&r1satlon' of the circle in instrument co-ordinates. Radius

suppression is a. linear operation with respect to the radius

vector of polar co-ordinates and so will have the desired simple

effect on any figure which is linear in its radius term measured

from the origin. Thus providing that it is a goOdapproximation

to a circle in instrument co-ordinates, a circle linearised in

its parameters about the origin (position of zero eccentricity)

will fulfill all the computational requirements listed above. The

normal way of linearising a function is to use its truncated Taylor

Series about the desired point of linea.r1sation. For completeness.

here, the general linearisation of equation 3.1 about a point

(Am,1\:) in instrument co-ordinates will be quoted. The first stage

is to remove the parameter r/J by re-expressing equation 3.1 in terms

of the cartesian componentsof eccentricity, A = Ecos~, B = Esin~

R = Acos9+ Baine + (~~ .. (Asint) - Bcos9)2]i 3.6 '

The Taylor expa.neion of thia, tormgiv~sl" , .

R ~ A( cos9 + (AEsin9 - ~cfl'S5)sint) )

[R~ a (AmsinD- BEcos9)2lt

+ B (Sina + Am(sin9 .. Bmcos6)cosf) )

(~ .. <"msint>.. l\:cos9)2]t
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+ Ra ~

[R~ - (Atitt9 - BmcosS)2)2

2 2]1.+ ~cos9 + ~Sizl) + [RE - (AEsin9 - BECOSt» 2

J.1

This approx1mation is linear in A, B and R although. it is highly
~~_.' 0

non-linear in the initial parameter estimates AE, ~ and Hm. When

the linearisation is performed from the origin ("E = Bm = 0) this

becomes greatly simplified I

R~ Acos9 + Bsin" + Ro J.8

Equation J.8 ls, of course, a fo;rmver:! well knownin roundness

measurement and is usually derived not by the methOdgiven here

but by the simple truncation of the binomial series as shown in

equation J.2. The alternative approach is presented to stress

two points. In thls attempt to unify the mathematics of roundness

measurement a specific choice is made to linearise the circle.

Further there remains the poui bUi ty. not shown by the binomial

expansion, of linearising not with respect to the Origin but about

any other point in the instrUment CO-ordinate frame. This second

point is probably of little interest with current roundRess In-

st1'Wllents but could have application in other schemes such as

CO-Ordinate measuring machine based techniques.

The figure represented by equation J.8 is known as the l1macon.

It has been advocated elsewbere( 4) as being a'better approximatlon

to the radius suppressed form of an eccentric' circle' than is a

circle drawn on the chart. This is seen froll equatlon J.J whlch

maybe' comparedwith the equivalent fora of equatlon J.8.

r = MAcos9+ MBsln8+ M{R-L) ... s
o
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= ac089 + bsin6 + r '"

and the expanded form of a circle in chart co-ordinates having

the same parameters:

where nOW r= M(R -L) + Sc 0

Assuming that the shape 41fference between circles and limacons

is dominated by the second order term, the condition for the error

between the limacon and the radius suppressed circle to be .less

than that between the rad1us suppressed and the true circle is

approximatelyt

MRl2 < rl~·-MRl2

or 2(M(R -L) + S) < MRo 0

In a typical instrument, rc misht be about SOmm and so the l1ma.con

will represent a better model than a perfect circle on the chart

on almost all measurements (magnification greater than 100 on lmm

radius components or only 10 on cOllponents of 10. radius).

The limacon refexenee has known.advantages over a circle on

the chart and being linear in its parameters can be used conveniently

for computation. It is amenable to least squares a.uaJ.ysis and the

bounciary refexences using it become linear programming problems for

which well established solution techniques are available. The

computational methods will be consl,dered in later chapters. Here

the general proPl'rties of the. l1macon as a :refe:rence wUl be exa.a1ned.
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J.J The LimaconReference Figure

The limacon is a smoothly varying closed figure having constant

diameter in that R(S) + R(e+'7T)is a constant. It does have chords

not passing through the origin which are lar~~~ than this diameter,

There is somedifficulty over terminology whenusing limacon refer-

ences since the measurementsmade with these are always alluding to

those with circles. Here the general approach will be to na.me a pro-

-perty of a limacon according to its equivalent in a circle. Conse-

quently "diameter" will be defined as a chord passing through the

origin and the name"radius" will be applied to the constant of the

limacon. Rt, although strictly "semi-diameter" would be more accurate.

The ..eccentrici tt' maybe defined as the amplitude of the sinusoidal
221term, E = (A+B )2, and by inference the "centre" of the l1llla.conwill

be the point (E. ~). Measurementson l1macons are madefrom the

origin not from the centre. The snape at l1maconvaries according to

the degree of eccentricity present, being fiattened from circularity in

the opposite direction to that at the eccentricity. It develops a cusp,

symmetrically placed about the direction -fA whentne eccentricity ex-

ceeds half the radius and ceases to have a sU'Ple geometric form whenthe

eccentricity exceeds the radius. In moat diagrams in this work the

limacon will be snownat high eccentricity and cusped for clarity

in distinguishing it from circles. With current practical roundness

instruments cusp behaviour is never likely to occur. Such properties

as circumference and area also vary with eccentricity and so, unlike

the circle. care must be taken to specify which property is being

optimised whenfitting a reference figure. Here it will be taken

that it is the radius which is to be optimised slnce this ls consistent
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with ~.!!l. circle defin1tions quoted earlier and has- the added

advan~ for the opt1m1sat10n process of being a l1near property

ofthe)~imacon. The area of a l1ma.con is rr{R~ +~)t and so wUl

not ne~s8arUy· be opt11l1sed at the same time as is radius. The

mird.muJa" and ma.x1mumdistances of the l1ma.conperiphery from the. ......:.,

centre are Ht and (R~ + E2)t occurring respeotively on the axls

of syDlJII!try(the llne containing both the origin. am centre) and

on tbe~tJe p&rpeDd.1.cularto the axis ot symmetry and passing

thro~t::the °origin.

Br.: choosing to use a l1macon reference and making all measure-

ments ~th respect to it radial :trom the orig1n (note here that

these ~ separate decisions even though usually taken automatlcally

toget~(t' - see also the discussion on 1fh1ch centre to use with

circul~ refere.ces in (3», the analytical 41tricul ties concerning

radius,:!uppression may be overcome. Rad.1al°d1fferences measured from

the 0rHin are always ~erwd under%oad1uis'suppreSs10n and a l1ma.-

.oon ie:.transformed to another l.1ma.oon. Although the translation of

a lima!lon from instrument to chart cO-ordinates, or vice versa, w1ll

changel-1tsshape , it will maintain the same mathemat1cal properties

and so the same analytioal methods can be used in either co-ordinate

frame. For example, 1f' bOth the lII1n1mumradiua cirCUJlScr1b1ng

l1macon to a set of data points In chartco-ord1:nates &Dd those data

p01nts are transformed to 1nstrw'llent cO-Ol.'dlnates, the result, there,

will be the min1muJR radius cirCUJDscr1b1l1gI1J1acon to the data.

Add1t10nally the rad,ialdlatance o£ a particular pOintfroll the

reference _asured in either eo-ord1nate system vU! be the same

(subject to scaling by the a&gn1f1eation). Neither of these

observations will be generallY true for clrcular ~f'erences.
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In instrument co-ordinates the true reference- figure is an

eccentric circle and the use of a limacon reference an approxi-

mation to it. The nature of the approximation is simply the

truncation of the infinite s·eries given by equation J.2 and so a

direct measure of its quality is given by the eccentricity ratio

Y. If this is adequately small the limacon will be a good

approximation to the circle and so a limacon will also be an

equally goOdapprOXimationto the ~torted circle in chart co-

ordinates. Using this fact a. link between circular zeferences

can be prOduced; the circle in instrument co-ordinates is approxi-

mated by a limacon which is then radius suppressed to another

l1macon in chart co-ordinates which is i taelf approximated by a

circle on the chart. The quality of the initial approximation

d~pend.supon the value of rwhile that of the approximation in

chart co-ordinates depends on the chart eccentricity ratio,

Yc • e/rL• The recommendationsgiven for limiting eccentricity in

practice (1, J) are, effectively. controls on r . that is. they
c

maintain the error due to using a circle on the chart to an

adequately low level and do not refer at all to Y. Given current

instrumental designs this is not unreUOl'Jable. Ra and rL &re

likely to be of· the same order of size and so Y vUl be la:r:ger
c

than Y by a factor of theOl.'derof the JII8gDif1cation. The nature

of the errors ia further illustrated by Figure J.2. In the American

Standard (1) a maximwlallowable error between the refezence figure

and the true shape of a radius suppresaed circle is suggested as O.2.5mm

on the chart. The figure shows for one COndition the value, E •
max

of eccentricity in instrument co-ordinates which is allowable in

order to just satisfy this criterion at different componentradii with
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circle and limacon references used on the chart. The assumed

conditions &re of complete radius suppression, Ro = L, a Jll8gni-

fication of 1000 and a chart ,radius, S, of 50mm. The llmacon

allows larger errors except whenthe radius is reduoed to the

extent that MRo'is comparable or smaller than S. WhenMBo= S

there is, in eff'ect, no radius suppression and the circle appears

'undistorted on the chart however mucheccentricity may be present.

The advantage of the limacon is stressed by' the additional line

showing its value of E f'or conditions identical except thatmax
the magnif'ication is 10000. '!'he corresponding line for the circle

would have the same shape as that shown but movedone decade down-

wards and one decade to the left so that it nowhere a.ppears ln

the graph ra.Dge of' figure 3.2. The saple critaria. for 11m!ting

eccentricity are based upon the 'flat' part of the graph for cir-

cular ref'erences.

For values of Ymuch less than unity the divergence between

circle and li_con measured ra.d.1ally from the origin will be

'dominated b,y the lowest~er term ignored by the truncation of
2 2·'equation 3.2, that islE 12Rolsin (9 -SlS). The max1Dlumdivergence

maythen, for convenience of calculation and discussion, be taken as

due only to thattermt

E = R - R (1 - y2)fmax 0 0

~Rl2 =¥= ~,
2 0

The acceptab1ti ty of' this magnitude of' error ..an clearly depend

upon the measurement being made. Controlling the approximation

slmply' by the use of r is suitable 'if' it is only desired to hold

the radial variation within SOllIe :fraction of the circle radius.

It is less clear whether it gives adequate control for measuring
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out-of-roundness from the limacon rather than for the circle.

Although there is an intuitive expectation that the out-of-round-

ness correlates with part radius (for 'instance, because the size

of the mecban1cal loop meded will affect the stiffness of the

manufacturing machine), over the nomal range of workpiece sizes

encountered in roundness measurement an absolute error magnitude

control will also be needed. Figure 3.3 illustrates howr relates

to typical current applications by plotting the value of Emu

against Ro at constant Y. Also shown on the figure is the magni-

tude ot spindle errors (minimumsone enterion) of typical

instruments, 0.05,rto Oo?-and an ~a des~nating the zonal out-
~

of-roundness and radius of workpieces which mlsht be most commonly

handled by such instruments, o.5,.....to 19- and 2mm to SOmm,respec-

tively. This information is tentative, not being based upon a

tormal survey of lnstl'UDl8ntusers but on casual marketing teedback

from customers of RankTaylor Hobson Ltd. (unpublished). Fromthe

figure it is apparent that holding r below 0.001 is almost an

absolute control whereasr =0. 01w1ll most often generate rather

larger errors (in relation to the out-ot-roundness being measured)

than would normally be accepted. Whenin this work a test is required

on the validity of a particular operation, a standard condition

will be to evaluate it at r''a 0.01 (assuming its vali41 ty increases

as r decreases) since this represents a sensible' worst case'

condition on the normal use of limacon methodsoj It also happens

to represent something like the lowest eccentricity ratio which is

likely to be encountered in current practice I tor eXaJIlple1~,"

eccentricity on a tmmradius workpiece could be accomOdatedon moat

instruments for magnifications up to about 1000, that is to the low

end of their most cOllUllonlyused working range.
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Instrumentally, the achievement of eccentricity ratios of

the order of 0.001 or better w111not usually be difficult, even

with 1mmradius components it requires only a precision of ym

in the centring device. The limacon may, therefore, be regarded

as a good; practical alternative to the use of a circle as a

reference figure in instrument co-ordinates. In chart co-ordinates

the l1macon is muchmore tolerant of eccentricity than is a c1rcle,

for any given allowable divergence of the reference shape from

that of the radius suppressed eccentric circle.

A practical consequence of the greater tolerance to eccentricity

at the l1macon reterence 18 the "de-skllling" ot roundness aea-

surement. This term should. be interpreted here in a broad sense.

Not only could it -allow relatively unskilled operators to perfora

roundness measure.ent accurately, but it could also, by reducing

the need for refinement at centring, reduce the l18asurelll8ntcycle

time. It maybe possible to use considerably cheaper fixturing on

the instrument without loss ot accuracy and make the introduction

of automatic handlins aore plausible. Alternatively greater

accuracy can be obtained from a given instrument set-up. The

potential 'improvement' of the lima.conreference over a circle on

the chart 18 otten not aali.able with current instrwaents and.

aethOds. Consider an ext:t:e" eX8Jlpleof a 2,5macomponent, which

for normal measurementwould require a magnification of 20000

(the highest available on typical instruments). The American

Standard ruling tor a lI1&XiaWl error in the reterence at O.2Smmon

the chart would require centring on a SOu radius chart to better

than O.2~ with a circle reterenoe but onl,. to 22,d (r. 0.001)

with a 11macon. However, on IBaBnificat10n the 2~JI eccentricity
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would appear as 440mm, much larger than the chart! Conventional
instruments will never cope with, or need, such eccentricities

but the better accuracy performance of the limacon is of direct
significance when attempts to extend the instrument range compu-
tationally, with a consequent removal from the scheme of eccentric

polar charts, are made (21). The extra tolerance of the limacon
may also justify, for some applications, the higher cost of high

range: resolution transducers (for example, (22» by allowing
savings elsewhere in the measurement system.

To summarise, the case for using limacon reference figures
rests On the following properties. It well approximates a circle
in instrument co-ordinates under sensible instrumental conditions.
It can be used consistently in instrument and chart co-ordinate

frames and is generally a more accurate representation of the
desired reference on the chart than is a circle. It has considerable
computational advantages and gives unique a.~wers for all four

reference criteria. The quality of the limacon approximation is
judged, at least initially, by the eccentricity ratio in instru-
ment co-ordinates. The use of a circular reference on the chart
is very convenient for direct graphical working and. according to
this scheme is allowed by taking the circle as an approximation to
the limacon in chart CO-Ordinates. The quality of this approxima-
tion is governed by the eccentricity ratio in chart co-ordinates.
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4. Roundness References: "Parameter Space Analysis

4.1 Concepts of ''larameterSpace

The fitting of reference figures is identified mathematically

with problems of constrained optimisation and so it seems logical
to apply the analytical methods of optimisation to the study of
such references. In particular the form of their representation
in so-called parameter space will be investigated •..Parameter space

is a well known concept in optimisation theory and operations
research and. similar ideas are used in control theory (for example

state plane analysis). However, the method seems not to have
been much used in other branches of engineering and, in particular,
appears to be new to surface metrology. The basic ideas involved

will therefore, be reiterated in the course of this discussion.
The basic proposition involved is t.lat an optimisation problem

with respect to a set of parameters xl' x2' "'J xn can be represented
in an n-dimension co-ordinate system which has each parameter
allocated to an orthogonal axis. In such a space both the obje(~t1ve
function (that is the function being optimised) and any constraints

appear as hyper-surfaces. Clearly the purpose in dOing this (except
possibly in problems with only two or three parameters) is not
directly to allow graphical solutions but because the geometry of

the parameter space is of great importance. In some simple cases
it could be that parameter space and the cO-ordinate system in
which the problem is formulated are the salle (finding the minimum

2of y = x • would be a trivial example) but generally this is not
so and it is important to make clear the distinction. To allow
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visualisation the discussion will deal mainly with examples having
only two parameters but the results are totally general and apply
to n-dimensional parameter space. Consider a simple example

relevant to this current work, figure 4.1. A point P in the XY
plane is given and it is desired to construct a circle with centre
lying on the x-axis which passes through P. Defining the distance
of the centre from the origin as E and the necessary radius at any
value of E as R then the properties of the desired circle can be0-

plotted in the two-dimensional parameter space with E and Ro as
co-ordinates. Intuition dictates that the parameter space plot will
be identical with the locus of the maximum Y value of the circle in
the XY plane. The parameter space represenation may be seen not

to be just a mathematical artefact but to have direct physical sig-
n1ficance. If it Is desired to discover what value of E gives the
smallest circle, the line ZZ represents the objective function

which has a single minimum at E = Xl (again intuitively covious).
Line ZZ has another important property in dividing the ERa plane
into two areas. The area 'above' the line contains all those combi-
nations of E and Ro which would produce a circle which would
enclose the point i) and the area below the line describes all the

combinations of parameters which would fail to enclose the point.
The line corresponds to a constraint of exactly the type required
by equation 3.4. In the usual terminology the line represents the
boundary between the feasible region (in which the combination of
parameters obeys the COndition) and the infeasible region for the
circumscription of the point. Before pursuing this line of

investigation of circle fitting, a few general properties of
optimisation problems will be discussed in terms of parameter space.
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The re~resentation of a general optimisation problem would consist
of a series of hyper-surfaces representing the constraints which

together form an envelope which is the boundary of the feasible
region and, in effect, a series of hyper-surfaces corresponding to
constant values of the objective function. The desired result is

to discover the largest or smallest value of this constant which
generates an objective function hyper-surface intersecting the

feasible region. This value will always occur with a hyper-surface
which just touches the boundary of the feasible region. Except
for a few special cases having a fully analytical solution, the
discovery of the optimum will depend upon a search algorithm,
usually iterative, which is expected to converge onto the solution.
If the problem has several turning points (either or both of the
objective functions and the constraints can cause this) then it is

usually fairly easy to converge onto a local optimum but much more
difficult to establish whether this represents the global optimum
or not. Once an iterative procedure approaches a local optimum it
will become entrapped and only by restarting the iterations from an
alternative in1tial condition might an alternative, possibly more

extreme, optimum be discovered. Unless it is known, in advance,

how many local optima exist, it is almost impossible to guarantee
that the global value has been found. By dOing more and more
computation the likelihood that the global value is found increases
but certainty is never achieved. In most real problems the exact
forms of constraints and objective functions are governed by

measurements data and so their exact interaction is extremely diffi-
cult to predict. The only method then of discovering the global
solution ls to restrict operations to problems which have always
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the same number of local optime. In practice this implies that

the problem has just one optimum value. Also these problems
represent the only class for which computational efficiencies are
high enough to·allow solution as part of a normal instrumentation

system.
The existence of just a single optimum to a specific problem

relates to its geometry in parameter space: both the objective
function and the feasible region must be convex. Convexity here
has its normal geometrical meaning that any two points within
the region are joined by a straight line which lies totally within

that region, see the examples of figure 4.2. Considering simply
the attempt to minimise x2 in figure 4.2 shows the significance of
convexity of the feasible region. Since the overall feasible region

is the intersection of the constraint surfaces, it will always be

convex if all of the indl vidual constraints are convex. If any
constraint is non-convex, the intersection will be non-convex if

the offending part of that constraint is active. Thus any single
non-convex element in the problem removes the guaralltee of a unique
solution, although conversely, it does not indicate the definite
presence of alternate optima: in figure 4.2 the maximisation of
~ is unique even for the non-convex feasible region.

In an n-dimensional space a hyper-plane (in two dimensions, a
straight line) has the unique property of dividing that space into
two regions both of which are convex. Thus the linear property has
a special place in opt1misation theory: any optimisation problem
which involves only linear functions of its parameters is always
SOlvable by general methods and gives a unique optimal value.
About no other functions can such a wide statement be made, although
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other classes are solvable generally. There are three important
classes which can be solved which have particular relevance here.
Unconstrained optimisation with a convex (linear or quadratic)
objective function (linear least squares is in this group); linear
objective functions with linear constraints giving problems in

linear programming; quadratic objective functions with linear
constraints giving problems in quadratic programming. The latter
two classes are relevant to the solution of the boundary references
in roundness measurement.

4.2 The Analysis of Circular References

The previous section indicated the physical significance of
the plotting of a constraint from a ring gauge circle problem in
parameter space. In further studying the nature of the circle fits,
the simplified ring gauge with two parameters will be used initially
so that a pictorial representation can be given. Table 4.1 gives

a set of data points chosen to illustrate these features. The data
is symmetrical about the 9=0 axis and the minimum radius circumscri-
bing circle having its centre lying on that axis is required to be

found. The simplified form of equation 3.4 will be

Minimise z = Ro
Subject to

4.1

In the parameter space, AR , the boundary of the feasible regiono

will be given by the equality condition of the constraint for any

(Ri' s»
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Angle Radial distance

Si R.
1.

)0° 1.0

45° 0.5
i

900 0.5

1350 0.6

2250 0.6 .

2700 0.5

3150 0.5

3300 1.0

TABLE 4.1: Example Data, Symmetrical about 9=00



4.2

These lines are shown in figure 4.) for the data of Table 4.1.

The feasible region for circumscribing circles lies above the
boundary line which, since the boundary is hyperbolic, will
be convex. The objective function is linear, the contours of
constant vaJ.ue being lines paraJ.lel to the A-axis. Thu.s it is
seen that there is a unique solution to the ring gauge,
corresponding in the diagram to point J.

The equivalent plug gauge fit will be equation 4.1 with
the direction of optimisation and inequaJ.ity reversed, so the
constraint lines will be identical to those of the ring gauge,
equation 4.2 but the feasible region will now lie below the
line. This region is non-convex, as is the intersection of the
region from all the constraints. The contours of the objective

function are, as before, lines parallel to the A-axis. In this
exampte the non-convexity causes two independent local maxima,
corresponding to points K and L on figure 4.3. The plug gauge
is not necessarily unique. A peculiar feature of the plug gauge
problem is demonstrated by figure 4.3 in that,. since the constraint
lines are hyperbolic, as A tends to very large positive or

negative values, the feasible region allows very large HO to Occur.
This is a consequence of using sampled data and corresponds in
physical terms to a circle initially inside the data shrinking until

it is small enough to slip between the data points and once outside
it can then expand for ever without enclosing the data. In this
example, the centre must lie on the ~=O axis and SO placing a data
point on that axis should stop the circle t escaping'. For 81= 0,
equation 4.2 becomes:
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FIGURE 4.3: Parameter Space Representation of Circumscribing
and Inscribing Circle Constraints (see Table 4.1)



which is a straight line intersecting the Ro and A axes and so

l1miting the extent of the feasible region as predicted. If the
centre was allowed to leave the 6=0 axis the circle would always
be able to 'escape' through sampled data. Thus any attempt a.t a
general solution to the plug ga.uge should include extra constraints
to limit the feasible region to that part which has physical

relevance.
Extending, now, this discussion to the general ring and plug

gauge circles, a three dimensional parameter space ABRo will be

used. The form of the constraints will then be found directly from
the equation 3.4 expressed in terms of A and B, see equation 3.6:

4.3

The simplfied form just discussed, equation 4.2, is the cross -
section of this three dimensional figure in the plane B = O. The

full figure is hyperbolic in any cross-section parallel to the Ro
axis and circular in any sectional plane parallel to the AB plane.
It is convex in the circumscribing region and non-convex for the

inscribing region and so the discussion already given applies
equally well to the full form.

The consideration of the geometry of parameter space has thus
derived a result which can also be found by considering the geometry
of real space namely that there is always a unique minimum circum-
scribing circle to a set of data points but there is not necessarily
a unique solution for the maximum inscribing circle. (Note, here,
that BS 3730 (2) wrongly states that the ring gauge may be non-unique.)

The minimum zone circle, equation 3.;, has a four dimensional
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parameter space ABRoH and so no attempt will be made to sketch the
feasible region of even a simplified problem. Again the objective
function is linear, its constant contours being hyper-planes per-
pendicular to the H-axis. The outer circle constraint may be
written as

the constraint boundary being the equality condition and the
feasi ble region lying above (1n the sense at larger H) the boundary.
The convexity of this feasible region is tested in the formal way

T Tthat if !1 = (At Bt R1) and!2 = (A2 B2 R2) are vectors re-
presenting points on the boundary of the region any point on the
straight line joining them must have greater value than H at the
same values of A, B and Ro' so:

4·5
where .i\ is a scalar constant taking any value between 0 and 1.
The terms of equation 4.4 which are linear in the parameters will

not alter the presence or absence of convexity caused by the other
terms as can be seen from equation 4.5 from which they cancel.
Convexi ty therefore depends upon the truth for all ! and A. of the
inequality:

From the physical reality of the problem originally posed, interest
lies only in conditions for which the origin is enclosed by both
circles for which condition the eccentricity is less than the
radius and all three square roots will be positive. Multiplying



through by -t and. changing the sense of the inequality then makes
both sides always positive and. so they may be squared. After can-
celling out terms common to both sides this operation yields:

(1~)~~lR2-(Alsin6i-BlcoSei)(A2sinOi-B2cOSei)J

~ ~(1~) [{Ri-(At sinei-Bt cosei)2HR~-(A2sinel-B2cos~i)2})t

Again the condition that the eccentricity is less than the radius
ensures that both sides are positive and. so the root can be removed
by squaring. After squaring the inequality simplifies to give:

which is always true and so the equation 4.4 is convex.
The constraint of equation 3.5 pertaining to the inner circle

may be analysed in the same way. It is:

Its right-hand-side is the negative of equation 4.4 and so describes
a concave surface (convex for increasing H) if equation 4.4 is con-
vex. Thus for the min1m1sing problem the constraint is non-convex
and. so the whole feasible region may be non-convex. The minimum
zone circle is formally shown to be potentially non-unique.

In fact the non-uniqueness of both plug gauge and minimum zone
can be confirmed by graphical example, figure 4.4 but, particularly
for the zone, the analysis is really needed to prove the circles
shown are local optima. The profiles shown in figure 4.4 look much
more like chart representations than real profiles in instrument co-
Ordinates. There are two reasons for this, one being that if it
were not so the profile out-of-roundness would not be visible on

the figure and the second being that the feature most likely to
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generate non-unique solutions (again, particularly for the zone) is
a rapid, large change of radius. Such changes are much more common
on the chart because the radius variation of the profile is magn1-
fied relative to its mean radius. It appears then that not only is
the c1rcle an inaccurate form of reference on the chart but it is
also susceptible to significant non-un1queness problems.

4.3 Solving Reference Circles

The previous section has demonstrated the behaviour of refe-

renCe circles in parameter space, but so far no attempt has been
made to develop a formal method of solving them. The formulations
of the fitting problems given do not directly compare with any of
the forms having known solutions quoted in section 4.1 and there
are difficulties of practlcal application caused by non-convexity
in some cases. The r1ng gauge ls at least un1que and SO a general
solution should exist. The constraints of the ring gauge, although
convex, are non-linear whlle for standard solutions linear constraints
are needed. However in this case (as first pointed out by P. H.

Philipson) a change of variable can give linear versions which
will be usable providing the objective function remains a suitable
function of the new variables. From the cartesian expression for a
Circle, the constraints of the ring gauge may be written

R~ ~ (Xi-A)2 + (Yi-B)2

Xi = Ri cosf)i and Yi = Risinei•

Multiplying out gives
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so that the constraints are linear in the parameters A, B and

C = (R~_E2). The original objective was to minimise Ro and,

2since Ro'O, it is equally valid to minimise Ra. But

R2 = C+E2 = C+A2+B2o

which is a quadratic function of the parameters. The ring gauge
can thus be formulated as a problem in quadratic programming:

Minimise z = C + A2 + B2

and so standard methods are available for its solution. The
methods are not, however. particularly easy and a large amount of
computing would be needed for complete solution.

The plug gauge clearly has a formulation very similar to that
just given. This indicates not that a general solution is available
for it but that not all problems which may be formulated as quadra-
tic programs are convex and so capable of being solved directly for
the global optimum. The minimum zone circles do not yield at all
to this approach since H cannot be expressed as a simple function of
variables that linearise the constraints.

It seems clear that direct attempts at fitting circular
references are rather unsatisfactory. The re-expression of the
constraints in linear form is not particularly successful in terms
of generating solutions but is nevertheless an operation of impor-
tance to the solution. For instance, since the ring and plug gauge

circles have the same constraint boundaries but with feasible regions
41



lying on op'posite sides of those boundaries, the only possibility
for simultaneously obtaining convex regions for both is to have
linear constraints. Since there is an incentive, in terms of com-
puting effort,to simplify, the approach is to replace the circle
constraints by boundaries which approximate them and which are

linear. Each constraint can be linearised about a suitable point
in parameter space by using a truncated Taylor's Series. Since,
normally, instrumental constraints will ensure that the eccentri-
city is small a suitable point of linearisation for general consi-
deration would be A=B=O, Ro=Ri• It will be noticed that this argu-
ment is the same as that pursued in section 3.2 and produces the
same result: the linearisation of the constraint changes the
problem from one of circle fitting to one of limacon fitting. This
form of linearisation leaves the objective function unaltered and

so limacon fitting, having linear constraints and linear objective
functiOns, "belongs to the class of linear-program.nes.

4.4 The Analysis of Limacon References

The geometric properties of limacon references have been dis-

cussed in section 3.3 SO all it is necessary to do here is to study
the implications of the limacon reference in parameter space. Only
the simple limacon form, representing linearisation of the circle
constraints about A=B=O will be considered here partly because of
the complexity of the expression about any other point (equation
3.7) but mainly beca.use tha.t form is directly amenable to radius
suppression and so would be used on virtually all real measurements.
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The minimum radius circumscribing limacon can be stated:

Minimise z = Ro
4.6

for all

and again the maximum radius inscribing limacon will seek to maxi-
mise Ro subject to cOnstraints identical apart from the sense of
the inequality to equation 4.6. The feasible region for these
figures using the simple example of section 4.2 is shown in figure
4.5. For both ring and. plug Umacons they are convex and a single
minimum occurs at point J (equivalent to point J on figure 4.3)
and a single maximum at point K (equivalent to the local maximum K
of figure 4.3). The equivalent of point L in the earlier diagram

.is no longer in the feasible region here. The linear optimisation

problem has one possible difficulty over the the definition of
optimum parameter values, in that, since the feasible region boun-
dary is made up of straight lines one section may be co-linear with
the optimum contour of the objective function. This is illustrated
by the section KQ of the inscribing region in figure 4.5. The

single optimum radius exists but occurs over a finite continuous
range of eccentricities: it can only occur over a single c~ntinuous
region. (An easily visualised analogy of this behavf.our' is the in-
scribing circle to a rectangle!) Although shown in the figure as
associated with the inscribing limacon, the same feature could occur
with the circumscribing limacon. This is different to the case with
a circle fit where the curvature of the constraint would ensure that

the minimum occured at just one point along that constraint boundary.
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FIaURE 4.5: Parameter Space Representation of Circumscribing
and Inscribing Limacons (see Table 4.1)



Figure 4.5 also illustrates the source of the computational
advantages of linear programming: it can be seen that the optimum
solution lies not only on the boundary of the feasible region but
at the interseotion of two constraints. Efficiency is gained be-

cause it is necessary to search not the entire boundary but only
its vertices in the general n-dimensional parameter space.

The minimum zone limacon fit can be stated:

Minimise z = H
Subject to: 4.7

The interaction of the two constraints can be illustrated for the
condition B=O. They represent two planes in the three dimensional
HARo space as shown in figure 4.6. These planes intersect in the
H=O plane and together form a V-shaped boundary which is everywhere

in the region H~O as is needed for physical sense. Parallel vertices
of the 'V' can occur for at most two points since the direction of
the vertex in parameter space depends only on ei, Also, under sen-
sible conditions of data, the sides of the 'V' can never become
parallel to the plane H=constant. The intersection of the constraints
causing the boundary of the feasible region will, therefore, involve
either a point or a line not parallel to H=constant. Thus it appears
that the minimum zone limacon formulation does not allow the conti-
nuous region of optimum parameters which occurs with the other boun-
dary references, but always gives a completely unique answer.

As the boundaries of the limacon feasible regions are derived
from those of the appropriate circle by truncating the Taylor Series

of the latter, the value of the function and its first derivative will
~
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be the same for both at the point of linearisation. Thus the
limacon constraint planes (in 3 or 4 dimensions) are tangents to
the circle constraint surfaces on the R - (or H- for minimum zone)o
axis; compare fiures 4.3 and 4.5. Since the circle constraints are
convex functions their tangents at any point never intersects them

and so in the case of ring and plug gauges the limacon constraint
lies always below (at smaller Ro) its equivalent circle constraint.
The solution for either problem will therefore be lower for the
limacon than the circle. The limacon fit consistently under-

estimates the radius of the ring and plug circles. If subscribing
to the view that ring and plug references should be used on shafts
and holes respectively, then for judging a fit between shaft and
hole the 'error' of using a limacon for the plug is in the safer
direction and that of the ring in the less safe direction (taking
'safe' to mean that they will fit if the measurement says so).

The minimum zone limacon constraints lie below the convex
circle constraint and above the concave one and since it is not
known which will be of most influence in a given situation it is
not posslble to state in general whether the limacon zone over- or
under-estimates the circle zone.

In principle the least squares circle and limacon could also
be studied in parameter space but other than the general statement
about the need for convexity of the function being minimised little
illumination is to be gained by dOing so. The least squares refer-
ence belongs to a different group of problems to the boundary re-
ferences and will be studied in the next chapter before returning to
the practical application of these observations to the boundary
references in Chapter 6.

45



4.5 Parameter Space and. Chart Co-ordinates

The analysis so far carried out in this chapter, although

completely relating to instrument co-ordinates, is in fact perfectly
general. The fitting of circles and limacons in chart co-ordinates

is governed exactly as has been discussed. The third form of
reference boundary of interest is that of the true chart represen-
tation of the eceentric circle in instrument co-ordinates. To illus-
trate its general behaviour it is convenient to simplify the algebra
by assuming that B=O and that there is no imposed chart radius, S=O.
The circle constraint, equation 4.2, can be expressed in terms of

the chart parameters a, ro and the chart data ri using radius sup-
pression L and magniflcation.M:

Go + L) = (:1+ L)2 + ~ - ~ (:1+ Lr91
Since M>O, this can be multiplied through by,MZ and re-arranged to
give the boundary of the feasible region as:

2 2 1[(ri+ML) - 2a(ri+ML)cOst)i+a 1a - ML 4.8

This is still a convex form in the same sense as equation 4.2 and if
ML=O reduces to that equation with merely different symbols used.
Essentially there is no difference between equations 4.2 and 4.8.
At large ML values the chart co-ordinate form may a.ppear to be
flattened with respect to the instrument co-ordinates form but this
is a graphical effect caused since the a-axis is stretched M times

with respect to the A-axis while there is not similar effect between
the r - and R -axes. Because radial distance is an axis of theo 0

parameter space co-ordinate system, the representation there is, in
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a sense, independent of radius suppression.
The boundaries for fitting circles on the chart do not relate

to the stretched axis and so have much more curvature than the true
boundaries. This again supports the view that plug circles on the
chart are more likely to show multiple local maxima than are the plug

circles properly fitted in instrument co-ordinates.
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5. Least Squares References

5.1 Background.

Generally speaking, the surface metrology community has accepted
for many years the calculation of the "least squares circle" (LSe).

With the exception of a few dissenters, mainly dimensional metrolo-
gists, (see Append.ix 3 for a discussion of their viewpoint) the circle
parameters are accepted as those quoted in BS 3730 in a derivation
attrlbuted by Reason (23) to R. e. Spragg (1960). The standard de-

fines the centre of the least squares circle as that "point from which
the sum of the squares of a sufficient number of equally spaced radial
ordinates has a minimum value". This choice of wording is unfortu-
nate for although the centre of the LSe does have this property, it
is not the formal definition of least squares. Formally, the require-
ment is the minimi~ation of the sum of squares of residuals, that is
of the radial distances of the ordinates from the reference figure.
The derivation given in the Standards does correctly use the residuals
but other workers have been led into error,eous assumptions by this
wording, see, for example, (7).

The standard claims to be attempting to fit a circle to data from
the polar chart but to be doing so by the use of approximate formulae.
As the solution of non-linear least squares is problematical, it ls
no surprise to find that the approximations made in the derivation
are in effect a linearisation of the reference figure in its parameters.
Thus the derivation is an exact solution for the least squares limacon!
Two other points may be discovered in this derivation. Firstly it
uses, as a simplifying deVice, a free switching between summations
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of discrete data and definite integrals of an assumed continuous
profile. The safety of this operation was perhaps overestimated
since the only acknowledgement to it comes in the requirement that

there be a "sufficient" number of points in the original definition.
Secondly, by making these simplifying moves early in the derivation,
it becomes immediately restricted to the special case: the well
known results which are obtained are true only for the arrangement
of data stated and no information about other configurations of
data is available. Thus in saying that the least squares approach
is not generally applicable to interrupted profiles, the Standard
should only refer to these simplified formulae for determining the
least squares limacon parameters.

Historically, this work seems to have been the first use of
the limacon approximation in roundness measurement, although the
separate identity of the limacon was not expressed. There was how-
ever some recognition of its useful properties un the chart.
Reason (3) obsel~es, without explanation, that the error in the
least squares circle calculation cancels the error due to chart
distortion (radius suppression). Of course, the cancellation is
not exact since an infinite series has been truncated, but the re-
maining divergence would not usually be detectable by instrumentation
as opposed to mathematical means.

The first acknowledgement of the separate existence of the
limacon in the determination of least squares appears to be attribu-

table to Whitehouse (4). This work basically followed earlier deri-
vations of the limacon approximation and again only identified it

for its good modelling of distorted circles on the chart. Its impor-
tant contribution was to generalise the derivation of the least squares
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limacon to profiles consisting of just an arc of the circle. However,
in doing SO it still used continuum mathematics on a sampled data

problem and restricted cOndit.ions to equally spaced ordinates, rather
than fully generalising. Using a direct implementation of Whitehouse's
formulae, programmed by the present author, Siddall (22) demonstrated

a significant reduction in parameter accuracy as smaller arcs were
taken. In particular it was reported that some simple estimation
methods, from which no great accuracy was expected, gave 'better re-

osults than the least squares method on arcs of less than about 45 •

No specific explanation of this behaviour was offered at that time.
For all the sources of potential error contained in their deri-

vations these formulae have proved extremely successful in practice,
providing that reasonably good centring is maintained. The formulae
for complete profiles have been used for many years with virtually

no difficulties being suspected from the results and incomplete
profiles have also been adequately processed (24). Their wide
success is due, in part, to the nature of available instrumentation;
the most convenient way of using roundness instruments corresponds
generally to the use of the most favourable conditions for these
formulae.

5.2 The Least Squares Limacon

The derivations discussed above all used the truncation of a
binomial expansion to develop the limacon approximation. An equally
goOd choice for simplifying the problem would have been to use Taylor's

Series. Perhaps if this approach had been used the full implications
of the limacon reference might have been realised earlier since the
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association of Taylor's Series with linearisation is well known.
Be that as it may, it is clear from the previous discussion that

this study will rely heavily upon that linearity.
The reference figure which is really required will be a

circle fitted to the data in instrument co-ordinates according

to the principle of least squares. The first step, therefore, is
to define the residuals of this problem. Referring to the nota-
tion given on Figure 5.1, the true residual is seen to be:

At this stage, the only known point of the system is th~ origin
and so the data must be expressed relative to the origin, as must
the circle parameters. Thus equation 5.1 becomes:

Even if this is expressed in terms of (A, B) rather than (E,0) it
is non-linear in its parameters. Since only the linear least
squares is generally solvable,the expression for residuals must
be linearised about some estimate (Ao' Bo) of the eccentricity.
~re is basically only one linearisation of any given figure, SO

this operation will result in a limacon having its origin at (Ao'

Bo)' The limacon thus has a fundamental role in obtaining a
least squares solution in instrument co-ordinates.

In practice it will be necessary to work in chart co-ordinates.
From section 3.Z, it is seen to be highly desirable that, to get a
reference figure which is easily interpretable across the radius
suppression transformation, a limacon having its origin identical

with that of the co-ordinate system be used. This, of course, is
the same limacon approximation as used in previous work. The re-
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FIGURE 5.1: Measurement from Reference Circle: Residual
Definition



development carried out here serves to stress the physical nature
of that approximation. It is equivalent to linearisation of the

circle in instrument co-ordinates about the point of zero eccen-
tricity (A =B =·0). It is, furthermore, a linearisation of theo 0

expression for the residuals about that point, this being the real

key to the least squares solution. The actual residuals which are
minimised will be:

5.3
Comparing this with equation 5.2 and Figure 5.1, the approximation

for any individual residual is exactly that discussed in section
3.3. What the overall effect on the least squares estimate of the
circle pareters will be is rather less predictable. The use of
equation 5.3 is the best that can be achieved in chart co-ordinates

since it is the only linearisation not requiring knowledge of the
radius suppression.

The discussion here has stressed the lack of generality of
earlier work on least squares limacons caused by the use of conti-
nuous mathematical assumptions. Thus here a fully general deriva-
tion of the discrete least squares limacon will be given. The

techniques used in the derivation are standard theory but, as it
appears that they are les8 well known than some other methods, a
fuller outline of their solution than might otherwise be expected
will be given.

The full set of residuals can be expressed as a matrix equa-
tlon:
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or, more compactly:

5.4
[ is seen to represent the experimental design in that it expresses

the points at which measurements are taken and !!.represents the

results of those measurements. The least squares condition can now

be expressed:

Min 16i = Min §_T.£_
A i A

where the superscript T indicates transposition. Now:

5·5

where the A symbol indicated that the values are those estimated

from the experimental data (which is all that is physically possible! ).

It will be noticed that equation 5.5 is similar in form to a perfect

squ~. As squares are easily minimised, the completion of the square

is sought. Consider the quadratic form:

Substituting this into equation 5.5 gives:

6T8 == (AliTli_l?!!)(!!T!!)-l(,tlTHA-liT!!.)+!!.T!!._!!.T!!<!!T!!)-l[T!!.

= (AHT!!_1!T!!)([T[)-l(,tlTHA-!!T1!)+1!T(l_!!<,tlT!!)-l!!T)!!.

It is this sum of quadratics that is to be minimised. The second
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A ~expression is positive and independent of A, so the minimum over A
"T'"of Q Q will occur when the first expression is minimum. Since this

is a quadratic form, its smallest possible value will be zero which

occurs when

5·6

"This condition upon ~ thus represents the least sum of squares of
residuals and is the required solution:

Substituting equation 5.4 into 5.7 allows the estimation errors
to be expressed:

S·B

In reality this is of little use since ~ cannot be derived from
"2 and so its use must depend upon un-substantiated assumptions.
For good estimates (HTH)-lHTO must be small requiring that the- - --
data fluctuates only slightly from the reference (a condition
encountered elsewhere) and that liTg does not approach singularity.
The condition for unbiased estimates (that is an expected error
of zero) may be seen to be that the expected value of 6 is zero
and that !! and Q. are independent.

Returning now to the specific problem in hand, equation 5.7
can be fully expanded to give t

" 2

(
~) (ICOS e . 2sint)cos5
B = 2 sint)cosf) I sin2e
RL I cost) I sin e

ICOSeJ1(IRCOSel )
I sine I Rsine

N IR

where for clarity the indices have been ommi tted: all sums are

over i=1 to N with Ri' 6i. So far the derivation is perfectly



general: no assumptions concerning the positioning of the values
f)ihave been made. Equation 5.9 is valid for any profile whether
arc, interrupted surface or a normal roundness graph.

Given the "general solution for the least squares limacon, it
is now time to investigate whether simplifications can be made by

selection of specif'1c patterns of ~\. In particular it is desired
to control ~T~ for two reasons; to make the solution of equation

5.9 easier and to ensure that it does not approach singularity.
TThe most desirable action would thus be to diagonalise H H which

requires that:

To ensure that case and sine simultaneously sum to zero requires
that for each point e there is another point at O+~, while for
sin2t) to sum to zero there must be a point at e+1T/2. Thus it is
necessary to have four-fold symmetry of the data paints, but not
necessarily equally spaced pOints, although the most common
arrangement would, one expects, be to have a multiple of four
points spaced evenly around a full circle. Also, under these
conditions:

Icos2f) = I cos29+1 =
2

So that the well known "least squares circle formulae" are
obtained:

It.

2lRi cost)iA
..

2lRisin9iB = 1
N

1Ri

Two inaccuracies are seen to exist in the earlier full circle
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derivations: the number of data points should be a multiple of four,
not just an even number, and some arrangements of non-uniform samples
are permissable so that some types of symmetrically interrupted pro-

files could be bandIed.
The relative ease with which equation 5.9 can be implemented

tends to invalidate the development of specific schemes for a method
optimised to a given situation. Even then the approach should make
use of equation 5.9 rather than use continuous analysis since this
automatically removes difficulties concerned, for instance, with the
adequate representation of definite integrals from sampled data (see
also section 5.4).

5.) Least Squares Limacons as Reference Figures
The previous section has developed the least squares limacon

from the desired circular reference in instrument CO-Ordinates. If
it is to be practically useful two cond1tioilS must be satisfied: the
estimation errors of the least squares limacon parameters must be

adequately small and those parameters must then be relatable to the
circle. The real data will exist in chart co-ordinates and SO the
first step must be to transfer a measurement there into instrument
CO-Ordinates.

S1nce angles subtended at the origin are preserved under radius
suppression, the li matrix is unaffected by that operation. Also the
radial measurements are simply mOdified. The least squares estimate
on the chart will be, by analogy with equation 5.7:

= (~T~rl~T (I:)
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Expressing this in terms of the instrument co-ordinates data gives:

! = M(!!T!!)-l!!/\_L)
\RN-L

= M[! - (gT!i)-1!iT1J

5·11

where l! is an N-vector with each element having magnitude L. Now:

L(ICOSVi)
L sinei

N

which apart from the scalar multiplier is identical with the final
row or column of !iTE• Thus the final reduction of equation .5.11 can
be asserted without formal inversion from the observation that since
!iTlicannot be singular,

to give

This shows that for any possible measurement scheme applied consis-
tently in instrument and chart co-ordinates the least squares limacon
has, subject to magnification, the same centre and a radius term
differing simply by the radius suppression.

The difficulties encountered when attempting to judge estima-
tion errors have already been briefly introduced, so it is to be

expected that only a few generalisations can be discussed here. The
parameter estimates are only independent of each other when HT!:! is

diagonal, that is under the four-fold symmetry conditions. Under

.57



other conditions, which would be expected generally to become more

difficult as the asymmetry increases, the interdependence may lead
to large errors occuring in more than one parameter such that the
whole set appears reasonable. This type of error can be induced
by the use of imprecise computational techniques. In the specific
case of the limacon, the only error of this type which can sensibly
occur is for an inaccurate radius to be offset by an error in the

centre position so that the reference figure passes reasonably
through the data. Geometrical constraints limit the likelihood of
such an occurrence to cases where all the data lies in one reasonably

small arc. (See, also, section 5.4 for illustration of this.) As
the matrix !iT!!,will tend towards a singularity as the arc containing
the data tends to zero, increased random estimation error is likely

at small arcs. Overall it seems that the use of least squares lima-
cons may break down on small arcs, but "small" remains an undefined
term. Certainly increased care should be taken over all highly
asymmetrical measurements.

The other major assumption of error analysis in least squares
concerns t!le nature of the residuals, that they be random and

independent of the measurement scheme. On a full roundness profile
the residuals show by definition a periodicity with wavelength equal
to the component circumference. Generally roundness errors are
dominated by a small number of shapes each having a few undulations
per revolution. Even the assumption of a pseudo-random sequence of
residuals is therefore rather unlikely. Furthermore, since the lima-
con was derived from the eccentric circle by truncating a series,
the residuals of a perfect circle will be periodic and could adversely
affect the overall accuracy at high eccentricity, notably when the



eccentricity is significantly greater than the total out-of-roundness.
Attempts to quantify the effects just discussed are so problem-speci-
fic that they will not be investigated here. To bring the discussion
into context, it should be stressed that, for all these potential
errors, no reports of serious difficulties being discovered with the
least squares limacon have been found in the literature. In effect,
it has been shown experimentally that the method is stable under
practical conditions. There seems need, however, for a systematic
investigation to be carried out before much weight can be given to
such statements. It is not clear, for instance, how near to any limit
of stability is the current practice.

The relationship between the parameters of least squares limacons
and circles is only slightly more amenable to analysis. The question

is not, in any case, totally clear cut: it asks whether the lima-
con gives a good estimation to a local minimum of the circle fitting
problem. The establishment of error bounds for the correspondence

depends on assumptions about the data which are not justifiable in a
general discussion. Choosing "worst case" data would give bounds
so widely separated as to be of no practical usa. However, here, two
observations will be made which may give some "feel" to the situation.

In deriving the limacon as an approximation to an eccentric circle
by means of the binomial expansion (see section ).1) the terms trun-
cated represent a power series in sin2(6-¢), that is, one containing
only even powers. Any even power of sin(6-~) may be reduced to a
sum of harmonics which will contain only even terms and a constant.

Thus the only odd harmonic in the expansion of the eccentric circle
is that retained in the limacon. The estimate of the circle centre
obtained by using the limacon should be exact. The estimate of
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radius however is low since all the truncated terms contribute:
the amplitude of the sin2(8-0) term dominates the error so the
circle. from equation ).2, can be expressed:

R "Ecos(El-(b) + Ro[l-~~ e-~OSZO)]
With a suitable measuring scheme, the application of equation
5.10 to this form will yield:

'for full circle measurements. The presence .of form errors on the
circle will introduce Odd harmonics into the expansion and so the
exact correspondence of limacon and circle centres will no longer
apply.

A second approach would be to consider the relationship between
ci and0i in equationsS.2 and 5.). Using polar notation for the
centre:

where:

Substituting for Ri in terms of 0i givest
2 2 2 2 2 ;1\Ti = °1 + RL + 201RL + E sin (ei-yJ)

Now since the llmacon parameters are determined according to least
I.r2 Isquares, iUi is, by definition, minimum and i6i is zero. In prin-

ciple these facts can be used to express the sum of squares of resi-
duals for the circle in terms of the residuals of the limacon, for
instance:
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Ic~ = I (°1 + RL)2 + E~sin2(E\-¢) + nR~

-2RoI(ol + RL)2 + E2sin2(el-~)]t

In practice, the presence of the square root within a summation
prevents real progress. For example, summations involving

2<\sin (ei-~) are formed which can only be solved for specific
examples. Generally the limacon solution will not represent a
minimum of !e:2i, but providing that E and Max(O ) are small compared

i i
to RL and Ro then Lei is likely to be close to a minimum. Again
the terms ..small" and ..close" are not quantified.

Perhaps discussions such as those above are not of primary
importance. Providing that conditions in instrument co-ordmates
are such that a circle is adequately represented by a limacon, then
if a stable, averaged reference is wanted, the convenience of linear

least squares ensures the use of measurements relative to limacon
references.

5.4 Measurement of Small Arcs

Although, generally, the description of experimental investi-
gations is covered in chapters 9 and 10, one particular study carried
out has more relevance here. This is to re-investigate the results
quoted by Siddall (5), concerning the accuracy of parameter estlma-
tion on arcs. By using a glass reference hemisphere placed
eccentrically on a roundness instrument and measured at relatively
low magnification, a close approximation to the measurement of a

perfect circle subject only to effects such as instrument noise
could be made. After measurement, a series of calculations were
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performed on the profile each terminating after a shorter arc and

all starting at the same point. Using analysis based on the
formulae quoted by Whitehouse (4) Siddall reported that the least
squares radius estimate became rapidly unstable for arcs of less

than about 600•

Using the system described in chapter 9, these tests can be
easily repeated. Since the profile is stored in a disc file
there is added convenience in that tests, using identical data, of
variations due to different algorithms can be investigated at lei-
sure. The earlier work was restricted to comparing results taken
from a single run of the program since the data was held in the
main memory of the computer. Measurment conditions were similar to
those quoted by Siddall. A hemisphere, with roundness better than

0.025fAmMZC, was set up at near the maximum permissable eccentricity

with the instrument magnification of .500. Profiles were data logged
using .512 points to a full revolution with the direction of eccentri-

city being approximately along the +x, -x and -y directions, z being
the spindle axis and -y the front of the worktable, in three mea-
surements. Each of these was then processed over various arc lengths,
always starting from €) = 0 (+x axis) by two least squares limacon

programs. The first (program DENT) used Whitehouse's formulae in an
implementation believed to be 1dentical with that used by S1ddall.
The second (program DLS2) used a direct implementation of the sampled
least squares, setting up the matrix and solving equation 5.6. A

methoJ
Choleski ~ was used for matrix operations (25).

The least squares limacon parameter estimates are shown in Table
5.1 for calculations according to the "traditional" formulae and in
Table 5.2 for calculations from the direct implementation. In all
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Number of Arc length
1\

B

samples 0

a) 512 )60 )7.3 -4.1 1.8

)84 270 )7.) -4.1 1.8
256 180 37·3 -4.2 1.8
128 90 )7.8 -).8 1.)
64 45 )8.2 -3.6 .9
)2 22.5 19·3 -6.9 20.0
16 11.25 -231 -29.0 271
8 .5.6 -944 -47.0 984

b) 512 360 -)6.8 4.1 -1.)

384 270 -36.8 4.1 -1.3
256 180 -36.8 4.1 -1.3
128 90 -36.6 4·3 -1.5
64 45 -)4·5 5.1 -).7
32 22·5 -15·) 8.4 -23.0
16 11.2.5 198 26.5 -236

c) .512 360 -3·5 -37.4 2.4
)84 270 -)·5 -)7.4 2.4
2.56 180 -).5 -)7.4 2.4
128 90 -).4 -)7.) 2.)
64 45 -).1 -37.2 1.9
32 22.5 1.1 -)6.6 -2.)
16 11.25 47.6 -3).) -48.9

TABLE2.1 : Least Squares Limacon Est1mates from various arc lengths
of eccentric hemisphere in three orientations using
Whitehouse' s formulae (program DENT).



Number of Arc length 1\
A "B

samples 0 /,,"m

a) 512 360 37·3 -4.1 1.8

)84 270 37.3 -4.1 1.8
256 180 37.3 -4.2 1.8
128 90 37.8 -3.8 1.3
64 45 38.8 -3.3 0.2

32 22.5 34.3 -4.0 4.8
16 11.25 34.1 -4.5 5.0
8 5.6 45.9 -4.9 -6.8

b) 512 360 -36.8 4.1 -1.3
384 270 -36.8 4.1 -1.3
256 180 -36.8 4.1 -1.3
128 90 -36.6 4.3 -1.5
64 45 -35.2 4.8 -3.0
32 22.5 -30.4 5·5 -7.8
16 11.25 -62.2 2.6 24.1

c) 512 360 -3.5 -37.4 2.4
384 270 -3.5 -37.4 2.4
256 180 -3.5 -37.4 2.4
128 90 -3.4 -37·3 2.3
64 45 -3.4 -37.3 2·3
32 22.5 -3.1 -37.3 1.9
16 11.25 -19.1 -38.9 18.0

TABLE 2.2: Least Squares Limacon Estimates from various arc lengths
of eccentric hemisphere in three orientations using the
general solution (program DLS2).



cases the peak to valley and r.m.s. out-of-roundness for the full

circle was 0.3 to 0.4~m and about 0.07~m respectively. These
figures may be compared with digistation resolution of just under
o.1f-tm to judge the quality of the experimental approximation to
the measurement of a perfect circle. From Table 5.1 it is seen
that the general behaviour of the estimates is as given by Siddall

but here the falloff of values is less rapid than he noted (for
oexample, errors in the radial estimate of about 1/Am at 90 , 10~m

o 0)at 45 and 1000)Am at 15 • The reasons for this difference are
not known. It is possible that there are subtle differences in
the algorithmic implementation of the two experiments but it is
perhaps more likely that the earlier results had rather more "noise"

on the profile. That there can be significant effects caused by
algorithm is shown by comparison of Tables 5.1 and 5.2. In the
latter the same pattern of behaviour is discovered but the size of
the effect is much reduced by using the direct implementation. The
difference is highlighted by Figure 5.2 which plots RL against arc
length for the case of the -x centring error. Also included is a
sketch of Siddall's result (although it is not known what the
centre orientation was used in his test). Note that a non-linear
vertical scale is used on the graph.

The nature of the error in the estimates is that of a poor
x-direction estimate of the centre being compensated by an opposite
error in the radial estimate, as can be seen from the near constancy
of A+RL in each set of measurements. The error in B is probably
caused by "breakthrough" of the main error due to the non-independence
of the estimates.
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These results give renewed confidence to the use of least
squares limacon methods on fairly small ares.' Although the errors
depend upon the orientation, the direct implementation gives in all
cases good results on arcs of less than 450 and useful results seem

oobtainable to below 30. For the purposes of interactively

recentring the workplaces an initial arc of just a few degrees
would usually be adequate.
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6 The BoundaryReferences

6.1 Earlier Work

The grouping together of minimumzone, minimumcircumscribing

and maximuminscr1 bing references which has been adopted here

has been recognised since the earliest days of roundness measure-

mente In general, however, this grouping has been of a rather

negative nature rather than the present positive assertion that

their similarity is in their mathematical formulation. Thus

national standards have tended to isolate the least squares

approach by wayof its uniqueness and computability, leaving the

boundary references as possibly non-unique and solvable only by

graphical 'trial and error' methods. Generally Standards sub-

divide the group, specifying ring and plug references as being

non-preferred and advocating the minimumzone method. I'he American

Standard (1) gives minimwnzone as the preferred measurementwith

least squares as an alternative. In British Standards (2) no

direct choice betweenminimumzone and least squares is madealthough

it is possible to read into it an implied preference for least squares.

As discussed in previous chapters, the Standards refer to the

fitting of circles to chart co-ordinate data. BS 3730 gives no

indication about the solution technique other than to state that

repeated trials must be used and that first finding the ring and

plug circle centres ~y help the discovery of the minimumzone

circle centre. ANSIBB9 gives a little more guida.nce in the form

of statements about the geometry of the contacts between the profile

and the reference circle(s) which will exist whenthe solution is
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found. It gives no justification for those statements but they are
basically the same as the condtions which will be derived in this
discussion and were presumably obtained geometrically.

There have been some attempts to develop algorithms for the
-: :o':;:1!:_II:"

solution of the boundary reference circles, usually starting from a
geometrical or topological description of the problem. The first
attempt seems that of Avdu~ov (8) who'posed the geometrical problem
in terms of a mathematical description but derived methods which,
certainly at that time, required far too much computational effort

to be practical. Some years later Whitehouse (9), in effect, re-
derived the scheme starting from the graphical concept of the problem.
Since it is the more easily visualised, Whitehouse's approach to
the ring gauge circle will be briefly outlined to illustrate the
method. The definition of a circle in a plane has three degrees of

freedom (the x- and y-positions of the centre and the radius.).
Hence it needs three fixed points to be completely defined and so
three contacts between the ring gauge and the profile will be re-
quired. The procedure for achieving these is shown schematically in
figure 6.1. An initial guess is made for the position of the centre,
01, and the point, Pi' on the profile most distant from 01 found.

A circle centred on 01 passing through P1 will circumscribe the
profile but will not be the minimum (unless there happen to be

several points equidistant from 01), The circle may therefore be

reduced by moving its centre along 0lPl while maintaining its contact
with ~1 until at centre O2 a second contact P2 is found. Now the
process continues by maintaining both Pt and P2 on the reducing
circle and so the centre must lie on the bisector of the angle sub-

tended by P1 and '''2' When the third contact PJ is found the ring
66



P,

FIGURE 6.1: A Search Procedure for Finding the Ring Gauge Circle (28)



gauge centre OR is established. The procedure for plug gauge circle
is the opposite of this. First start with the point nearest the
initial trial centre and then expand the circle by moving in direc-
tions opposite'to those shown in figure 6.1. An attempt to achieve
the minimum zone circles notes first that since there are now four
degrees of freedom (the centre and two radii or one radius and a
sone width) there will be four contacts and since the result will
generally not involve either the plug or ring gauge as one of the
zone circles these contacts should lie two on each of the zone
circles rather than three and one. Armed with this information the
minimum zone algorithm uses alternate moves from the ring and plug
algorithms.

In the form described here these algorithms are not very use-
ful. For instance they must be able to cope with such features as
a two point diametral contact of the profile with its ring circle.
Furthermore, they need their end points defined more completely
as was given in ANSI B89. If the centre of the circumscribing circle
to a triangle (which is of course unique) does not lie within that
triangle, the latter contains an obtuse angle and so can be contained
within a smaller circle by using its longest side as a diameter.
So the existence of a three point contact geometry does not alone
determine the ring gauge circle. The additional geometriC condition
that the points form a triangle enclosing the centre is needed.
Similarly the four contacts of the minimum zone must lie alternately
with angle from the centre on each zone circle.

These methods are very useful guides for finding reference
circles graphically and can be quite efficient when coupled with the
intuitive ability of the human operator. For automatic assessment
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by computer they are not nearly so good since careful searches
along the prescribed directions of centre movement are needed
and this involves much calculation. Commercial systems USing
this approach have been produced (Rank Taylor Hobson Ltd. -

'Talydata') but they are based upon specialised fast processing
units and tend to cut-off after a fixed number of iterations in
order to keep the computation time to a reasonable Umi t. Their
results are therefore likely to be close to the solution but may
well not be precisely that solution. Also they do not calculate
with circular references but with the algebraically simpler

limacons. This ls justified in terms of the modelling of distorted
circular references on the chart, but the direct application to
limacons of geometric algorithms developed for circles under such

condHions has not been proven.
An alternative approach to reducing the amount of computation

is to perform some form of data reduction exercise, a plausible
approach since clearly large parts of a profile are not going to
be invovled in the definition of a particular boundary reference (8).
In the course of some other work, Scheiding (10) used a data reduc-
tion scheme which could also, in a .... e, reduce the potential for
non-uniqueness of the plug circle. This consisted of reducing
the profile to an irregular, but convex, polygon by successively
connecting the peaks or valleys of the profile by straight lines,
see figure 6.2. Only the pOints remaining in contact with the poly-
gon are used in the circle fit.

Other attempts at solving in the main minimum zone problems
have been to use 'Monte-Carlo' techniques usually searching an area
around the least squares centre (12). Such methods would require a
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FIGURE 6.2: Scheiding's Method of Data Reduction Demonstrated
on Plug Gauge (21)



lot of work if enough tests to provide resonable confidence in the
result were to be performed. In. any case, using random checks is
really a last resort! The solution of a perturbed least squares
problem has also been suggested (11). It is usual with all these

types of approach to use limacons rather than circles for the compu-
tation - in particular when least suqares is used there is little
choice about this.

6.2 BOUndary Limacons as Problems in Linear Programming

Unlike the work just described, the approach here will be that
of a deliberate choice to use limacons as reference figures, for
the reasons and under the conditions discussed in earlier chapters.

As was pointed out in that discussion, the linearity of limacons in
their parameters means that the fitting of boundary limacons to a
set of data is a problem ~n linear programming. Linear programming

is a standard technique in the field of Operations Research and has
a well-developed theory (see, for example, (26». In this discussion

a knowledge of the major principles of this theory and the solution

techniques will be assumed and, for example, the standard terms will
be used here without definition. However a very brief outline of
the theory, defining these terms, is given in Appendix 2 for easy
reference.

As all three references will be handled in the same manner, the
solution will be discussed in terms of the solution of the minimum
radius circumscribing limacon. In order to stress the nature of
the relationship between the algebraic method of linear programming

and the geometry of the physical fitting problem, reference will be
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made to the simple example, introduced in section 4.2 and table 4.1.
The formal statement of the ring limacon, in terms of chart co-
ordinate parameters, is represented in matrix form as:

Subject to:
6.1

Minimise: z = (0 0

or, more compactly,

Subject to: K a ~ !: 6.2

Minimise: z =
The formulation of the plug limacon will be similar and that of
the minimum zone expressible exactly in the form of equation
6.2 if the symbols are definei to included the extra parameter and
constraints. In expanded form the minimum zone gives:

Subject to: cosB1 sine1 1 1 a r1, ,
b

,
cos'BN sinBN 1 1 rL

~ rN
-cos~j, -sine -1 1 h -r,

I 1 1
I, ,

-cos eN -sinBN -1 1 -rN

Minimise: z = (0 0 0 1)

b

a

Returning now to the ring limacon, equation 6.2 represents the
tableau which may be used for the simplex method of solution.
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However before such a solution can be entertained, some modification
is necessary because in these problems the non-negativity of the
parameters cannot be guaranteed. That a and b may be negative in
the final solution is self evident but, further, in chart co-ordinates
(and so the reason for their use here) the radius rL can also become
negative. This is because the instrument is not constrained to

ensure that the setting of the suppressed radius is less than the
true radius of the workpiece: RL in instrument co-ordinates would
always be positive but rL:: RL-L in chart co-ordinates could be

negative. Since non-negativity is a condition of the simplex method,
the usual splitting of parameters into mutually exclusive positive
and negative variables is needed:

+a~a. -a

+ +where either a i» 0 and 80-:: 0 or a = 0 and a ~ O. The simplex
solution for the ring limacon is thus over six, not three, paramAters
and ha.ving N constraints will require also N slack variables. Bearing
these comments in mind the initial tableau for the simplified example
(having no b) is shown in figure 6.). To comply with the usual
way in which the rules for manipulating the tableau are given this
is shown as the negative of equation 6.2, namely

Maximise: z =
Subject to: -!£ •.§!: ~ -r

The tableau is infeasible: since all the right hand sides are nega-

tive rL = a = 0 is not a feasible solution (for this example this
is clear from the parameter space representation, figure 4.5, from
which a graphical solution could be obtained). In general, then,

artificial variables would have to be added (and then iterated out
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+ - + - b'rL rL a a sl s2 53 54

-1.0 1.0 -0.866 0.866 1 0 ° 0 -1.0 ,

-1.0 1.0 -0.7071 0.7071 0 1 0 0 -0·5
-1.0 1.0 . 0 0 0 0 1 0 -0·5
-1.0 1.0 0.7071 -0.7071 ° 0 0 1 -0.6
-1.0 1.0 0 0 0 0 0 0 0

1.0 -1.0 0.866 -0.866 -1.0 0 0 0 1.0

° 0 0.1589 -0.1589 -1.0 1 0 0 ?5
0 0 0.866 -0.866 -1.0 0 1 0 0·5
0 0 1.5731 -1. 5731 -1.0 0 0 1 0.4
0 0 0.866 -0.866 -1.0 0 0 0 1.0

1.0 -1.0 0 0 -0.4494 ° 0 -0·5505 0.7798
0 0 0 0 -0.899 1 0 -0.1010 0.4596
0 0 0 0 -0.4494 0 1 -0.5505 0.2798
0 0 1.0 -1.0 -0.6357 0 0 0.63.57 0.254)
0 0 0 0 -0.4494 0 ° -0 ..5.5°.5 0.7798

.-

FIGURE 6.3: 3implex Tableau Solution for Circumscribing Limacon



of the solution) to create an initial basic feasible solution.

However, here it can be seen that setting rL to +1 in the first
constraint and then using it to eliminate from the others produces
a basic feasible solution as shown in the second stage of the tableau.

(This corresponds to point G in figure 4.5: the axis is acting as a

constraint). The only non-basic variable with a positive co-
efficient in the objective is now a+ and SO this is brought into

the basis, in constraint 4 since this gives the smallest ratio of
right hand side to column co-efficients. On completing this third
step, the tableau is optimum and its coefficients can be interpreted
in terms of the ring.limacon. a and ri are ignored. In the
first constraint r

L
is basic and has value 0.7798 and in the fourth

constraint a is basic with value 0.2543. In the other constraints

the slack variables are basic and lie inside the lirnacon by 0.4596
and 0.2798 and the out-of-roundness is the larger of these. The
slack variables of the first and fourth constraints are non-basic

and so have zero value, indicating that the corresponding data pOints,
o 0at 3D and 135 • lie on the lirnacon.
Even on this simple example, the work needed to iterate the

tableau is not negligible. In practice there might commonly be 512
data points and so 512 slack variables are needed. The total size
of the tableau could then be 519 by 513 elements and an enormous
amount of calculation would be needed. The minimum zone having more
parameters and more constraints would have a tableau 10)2xl025J over
one million elements would need updating at each iteration! Direct

application of simplex to the boundary limacon fits is not really
practicable therefore.

Since each constraint generates a slack variable while the
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variables generate no extra terms in the tableau, the solution of
linear programming problems having relatively few constraints even
with many variables is more efficient than those with few variables

and. many constraints. The boundary l1macons fall into the latter
group and so an increase in efficiency can be obtained by solving
the dual linear program rather than the primal so far considered.

An additional simplification occurs with the current problem since
a pair of variables associated with a sign-unrestricted variables

in the primal transform to a single equality constraint in the dual

and vice versa. Thus a ring limacon having, say, an array of
variables of 6x512 and needing 512 slack variables in the primal
has in the dual an array of 512x3 and needs only 3 surplus variables.

The total dual tableau would have 516x4 elements and SO require less
than one hundredth of the work needed on the primal for an iteration.

The dual solution for the simple example, namely:

rUn1mise: z =
Subject to: T-1£;[. ~ -_£

6.5

where ;[. are the variables of the dual to which no direct physical
interpretation is attached. This statement may be compared to that

of equation 6.4. The tableau solution is shown in figure 6.4. Noting
that all dual constraints are here equalities, the negative signs
demanded in the constraints by equation 6.5 have been cancelled.
Also because of the equality constraints the origin is not a feasible
solution and artificial variables (t1 and t2) have been added. These
are driven from the solution by the Wagner method, a variation of the
"two phase method" (27). This uses a secondary objective function,
W, in which each co-efficient is the negative sum of the corresponding
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w

Yl Y2 Y3 Yl~ • t2 b'"1
1.0 1.0 1.0 1.0 1 0 1.0
0.866 0.7071 0 -0.7071 0 1 0

-1.0 -0..5 -0.5 -0.6 0 0 0

-1.866 -1.7071 -1.0 -0.2929

0 0.1835 1.0 1.8165 1 -1.1547 1
.1 0.8165 0 -0.8165 0 1.1547 0

0 0.)165 -0.5 -1.4165 0 1.1547 0

0 -0.1835 -1.0 -1.8164 0 2.1547
I

0 0.1010 0.5505 1 0.5505 -0.6357 0.5505
1 0.899 0.4495 0 0.449.5 0.6357 0.4495
0 o .L}596 0.2798 0 0.7798 0.2542 0.7798
0 0 0 0 1.0 1.0

w

w

Note: w = -L ti is iterated to drive out artificial veriables

FIGURE 6,.4: Simplex Tableau of Dual Programme for Circumscribing
Limacon



co-efficients in the constraints for which an artificial variable is
introduced. In this example the iterating out of the artificial
variables happens to coincide with the optimum result for the main

objective function. In terms of ~hysical interpretation, the

correspondence of results between the optimal tableaux in figures
6.3 and 6.4 can be compared. In particular the co-efficients of the
dual objective function give the most important information: those
corresponding to artificial variables give the parameter values and
those corresponding to ~ give the negative of the primal slack
variable values and SO show the contact points and 'out-of-roundness'.

Even with such a small problem the computationl advantage of
the dual is demonstrated by these two tableaux. Although the
artificial variables introduced a secondary objective function, the

total number of element operations on the tableau in the dual is less
than two thirds of those in the primal.

When there are many variables and relatively few constraints,
considerable computational savings can be made by using the techniques
of the revised simplex method. It is then only necessary to update

a square matrix of size go~erned by the number of constraints plus
the active rows and columns of the tableau at each iteration. Thus
revised simplex on the dual is a good technique for solving boundary
limacons. The minimum zone limacon fit would have about 1050 element
calculations per iteration, a figure to be compared with that for
the primal quoted earlier. The majority of practical measurements
can be arranged to have simply (usually uniformly) spaced data points.

The main bOdy of the tableau depends only upon the position of those
POints and, under these conditiOns, elements of it could be constructed

as required rather than the whole tableau stored. Using the revised
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simplex on the dual the amount of necessary reconstruction at each

iteration is small enough to be practical and SO considerable
savings in the necessary computer memory can be made. In fact the
method allows the solution to come easily within the computational

power of the types of mini-computer which can reasonably be used in
ordinary instrumentation systems.

There are techniques which are formally more efficient than
revised simplex but as they tend to require mora complicated soft-
ware, their overall advantage to the present problems may not be

clear. This question will not be pursued here. It is sufficient
to have demonstrated that linear programming on limacons offers a
practically useful method of solving boundary reference fits. All
methods will require considerable computations and are certainly un-

suitable for use 'by hand'. The approach here will be to examine
the implications of these methods to the original geometry with two
potential benefits: specialised h'.gh effiCiency algorithms and a

method at least intelligible as a graphical procedure.

6.) Implications of Dual Feasibility

All the simplex methods discussed above seek to optimise an
objective function while maintaining a feasible solution by ensuring
the non-negativity of the 'right-hand-side' of the constraints in
the tableau. Because of the reversal of roles between primal and

dual, any stata which is feasible in the dual corresponds to an
optimal condit10n in the primal but since the dual is not optimal,
the primal is infeasible. A first step is to identify the geometry
of these various conditions. In figure6.5 are shown the four condi-
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tions that can occur (the labels there refer to the primal) when
seeking the smallest limacon to enclose a set of data points. The

solution of course is the feasible, optimal condition and the same
in primal and dual representations. Simplex solution to the primal
maintains feasibility and so proceeds through stages all of type D.
Simplex solution to the dual maintains, in primal terms, optimality
and so proceeds always through type B stages. The geometric inter-
nretation of an optimal, infeasible condition is a limacon which

does not enclose all the points but which is the smallest one which
can enclose those within it. The difference between the solution of
the primal or the dual is thus very simply stated geometrically, the
primal starts with a figure too large but all-encompassing and
shrinks it as far as possible while the dual starts with a figure

too small and expands it as little as possible. The earlier workers
all, therefore, effectively attempted primal solutions: the previous
section indicates the amount of work this approach could entail.

The dual solution for ring limacon involves three equality

constraints which must be exactly satisfied at each iteration. Thus
the solution will always involve three contact points between the

data and the reference figure. No two point contact such as could
occur with the ring circle is possible.

The maintenance of dual feasibility requires that the 'right-hand-
side' of the tableau remains non-negative. However, at any iteration
the theory underlying the method of revised simplex shows that the
current 'right-hand-side' can be found from its initial form and the
inverse of the current basis:
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where Q is the inverse of the basis, that 1s the inverse of the

matrix consisting of the columns from the tableau of the basic
variables. {3-1In the dual each column of _ will be a column of

!T, b = c and each basic variable corresponds to a zero slack
variable in the primal (section 6.2), that is, to a contact between
the indicated data point and the current trial limacon. Any condi-
tion on b~ can be interpreted as a geometrical condition related
to the contact points.

With all the boundary limacons, c is a simple form having all

elements zero except the last which is unity. This property is
quite common in practical situations being, of course, the request
to optimise a particular parameter: another relevant example from

surface metrology, the assessment of flatness, is discussed in
Appendix 1. In such problems the non-negativity of ~ requires
simply the non-negativity of the final column of Q and SO a quite
simple dependence on the contact point geometry is to be expec~ed.
The nature of this geometry for the limacons will now be examined
for each reference.

6.4 The Minimum Circumscribing Limacon

The dual of the ring limacon linear programme involves only
equality constraints. Its solution will involve artificial
variables but these cannot remain in the basis of a feasible solution.

There are no slack/'surplus variables and 50 all columns of the basis
must be from the constraint matrix K at any general iteration.
(The possibility of an insistence on a positive radius causing an

inequality constraint in the dual is not worrying: the surplus variable
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so produced could be in the basis only if the radius were zero!).
Taking three general contact points at '9i• 't7j and 'Bk the basis
would be:

cos9j
sine.

J
1

No significance (such as ~i < Bj• for example) can be read into
this matrix; the relative positioning of columns depends upon the
workings of revised simplex in previous iterations. Now the
determinant of ~-1 is given by the sum of the co-factors of its

third row, that is by the same co-factors which identify the ele-
ments of the third column of (}_. The non-negativity of the ele-
ments of the third column of 11 thus requires that these co-

factors all have the same sign. So ilij' iljk, ilki must agree in
sign where:

il!j = I cos9i
sine!

COsej I
sine.

J

and similarly for the others. The condition depends then only on
differences of angles, relationships which are independent of the
rotation of the axis system. By using such a rotation one angle,
~i say, can be set to zero and the required condition then becomes
the similarity of sign of sin(8j), sin(~k -Vj) and sin(-Bk). Both
9j andt1t must lie in the range 0 to 3600 with respect to 9i
initially and 50, now, according to whether the co-factors are
11os1tive or negative the conditions must be
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either or 1800< 6j < 3600

0
0

< <t7k< 180°

00< i9k-ej<180o

So the requirement for dual feasiblllty 15 that the three angle

differences 11}j-E7il' l'Ok- ~I and 191- ~I are all less than
180°.

Before proceeding, an alternative approach to deriving this
condition will be introduced for completeness since it is
useful in studying the nature of the feasibility condition. This

relies on a direct geometric interpretation of the co-factors ln the
measurement plane and conveniently uses cartesian co-ordinates.
The co-factor can be expressed:

L\ ij =

and related to this is a function

= 0

which (apart from an indeterminacy at the origin, of little impor-

tance here) is a straight line passing through (xi'Yi) and (0,0)
which divides the xy plane into two areas, one where L\1. > 0 and
the other where fj,i. < 0. The line also represents the locus of
all points having 8i as their argument. Noting the order of indices,

feasibility condition requires that fj,ijand L\1k have opposite
sign and so lie on opposite sides of the line. An exactly similar

the

argument applies to the other points and L\. = 0 or L\ = O.
J. k.

Given the points and their associated lines, the third must lie as
an opposite with respect to both. Thus the only positions it can
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occupy are in the sector defined by the two lines on the opposite
side from the origin to their respective points, see figure 6.6.

However the result is derived, the following theorem is a
direct consequence of dual feasibility.

oThe 180 Rule for Minimum Radius Circumscribing Limacon
A circumscribing limacon with a given origin to a set of

points is the minimum radius circumscribing limacon to those
points if it is in contact with three of them such that no two

adjacent contact points subtend an angle at the origin of more
than 180°, where the term "adjacent" implies that the angle to be

measured is that of the sector not including the third contact
point.

(It must be noted in passing that the statement that the
minimum radius circumscribing 11macon in chart co-ordinates trans-

forms to the minimum radius circumscribing limacon in instrument
co-ordinates relies on the facts that (a) circumscribing figures
remain circumscribing figures, (b) three contact points in chart

co-ordinates obey the 1800 rule and hence, since angles are unchanged,
their transformations into instrument co-ordinates also obey the rule.)

If the radial values of the three contact points are identical
the fitted limacon degenerates to a circle centred at the origin.
Thus the above rule has the following well-known corollary.

oThe 180 Rule for Minimum Radius Circumscribing Circle
The circumscribing circle to a set of data points is the

minimum radius circumscribing circle if no two adjacent of the three
contact points of the circle with the data subtend an angle of more

othan 180 at the centre of the circle. The implications in the word
"adjacent" are as for the limacon case.
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The complete simplex iteration for finding the minimum radius
circumscribing limacon in the dual can be summarised as selecting
any point which violates the reference (conventionally, the point

giving the largest violation is chosen) and substituting it for one
of the points defining the reference in such a way that dual
feasibility is maintained. oThe 180 rule gives to the problem a

geometric concept for maintaining dual feasibility which is simpler
than the general simplex iteration. This complete algorithm is as
follows.

Minimum Radius Circumscribing Limacon Algorithm
a) Choose any three data points such that no two adjacent ones

osubtend an angle at the origin of more than 180 •
b) Construct a reference limacon through these three points.
c) If no data points lie outside this limacon the solution is

found. Otherwise choose the point which violates the
reference by the largest amount.

d) Replace one of the reference points by this new point such
that the 1800 rule is still obeyed and go back to b).
This procedure is an exchange algorithm and is illustrated by

figure 6.7. The exchange between any new point and the contacts is
always unique.

In general, the efficiency of an exchange algorithm depends
upon the iterations moving monotonically towards an optimum solution
in order to guarantee that cyclical exchanges do not occur. Here
this is the case for as the exchange is unique at each iteration it
is identical with that chosen by the simplex method on the dual
linear programme, and that is known to converge monotonically.
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6 •.5 The Maximum Inscribing Limacon

Formal study of the plug limacon could follow the same path as

that carried out in the previous section. More directly it can be

observed that the general form of the primal problem is:

eT aMaximise: z =
Subject to: r

where the symbols are exactly as used in section 6.2. This form may

be compared with equation 6.4, a statement of the ring limacon pro-
blem. They are identical apart from sign which could be absorbed
into the vectors. Thus a complete method for the solution of the

maximum radius inscribing limacon is:
a) Change the sign of all radial data points.
b) Apply the ring limacon algorithm to this mOdified data.
c) The plug limacon parameters are those found in b) with signs

reversed.
This ability to use the same algorithm on two problems, which

is computationally very attractive, is a further consequence of the
parameter linearity of the limacon.

The inversion of the data reflects each point through the
origin and does not alter relative angles subtended there. Thus

othere is 180 rule for inscribing limacons. If a limacon is
inscribing to a set of points and contacts three of them such that

no two adjacent contacts subtend an angle of more than 1800 at the
origin, it is the maximum radius inscribing limacon for that set of
points.
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6.6 The Minimum Zone Limacons

The linear program for minimum zone has been stated in equation
6.), as a primal problem. The zone width must be a positive quan-

tity and so unlike the other boundary limacons a sign restricted
variable, h, is present. The dual thus has three equality constraints
and one inequality. Since artificial variables cannot be present in

a feasible solution, the basis of the dual must consist of either

four columns from the original constraints or three such columns and
the single slack variable. This latter form is always feasible and.

corresponds to a zero width zone being fitted to three points. It
has no relevance to the problem at hand and will be ignored hence-
forth.

The set of primal constraints from which the basis is to be
chosen has two equal subsets compr~sing those relating to 'inner'
or •outer' contacts of the zone •.f l'he basis may select four of these

subject only to the provision that the same point from inner and
outer sets cannot be used simultaneously (to do so would represent
a physical impOssibility for a non-zero zone width). The ~is at
a general iteration of the dual can be represented:

(S10OS61 Sjcos5j Skcos9k Slcos01
f!. -1 _ Slsln5i Sjsin8j SksinEk s1sin~

- Si Sj Sk S1
1 1 1 1

The variables Si to Sl take only values +1 or -1 and indicate
whether the contact comes from the outer or inner set respectively.
As with the ring limacon, dual feasibility insists that the co-fac~ors

of the final row of 11-1 must have the sane sign. These co-factors
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will be:

where:

D.ijk ::: cos9 i
sinC7i
1

etc.
Consider, now the function:

D.i ' = casei cos8j case = 0
J.

sinBi sin'8, sine
J

1 1 1

which can be used to test the sign of llijk and D.ijl• In the
measurement plane it is represented by two lines from the origin in
directions 'B i and 'e j' that is passing through the ith and jth points

respectively see figure 6.8. Unlike the equivalent picture for the
ring limacon, the lines do not reflect through the origin I the
immutability of the third row of l1i' means that columns are notJ.
linearly related if, say, @= -rei' By differentiating D.ij. with
respect to 9 it is shown that it has just two turning points (at

9 = :t(l(1i+ 'Bj)/2) and that the slopes at 9=8i and S=8k are in opposite
senses. Thus there are no zeros of D.i' except those shown in figureJ.
6.8 and those lines represent the boundary between positive and

negative values of D.ij• (The marked areas are correct for the figure
but it is not necessary that the reflex angle sector represent the
positive region).

Now, if the kth and lth points are the same type of contact,
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and for the third and fourth column co-factors to have the same sign,

~ijk and~ljl must differ in sign, whereas if they are of different
types these two determinants will have the same sign. Thus if the
kth and Ith points are of different type they will be adjacent to

each other in the measurement place, while if they are the same type
th .ththey will lie alternately with the i and J points. The change

of sign associated with interchanging columns of a determinant ensure

that an exact parallel of this analysis can be carried out for any
pair of the four points. Dual feasib1lity therefore demands that
any pair of contacts of the same type lie in alternation with the
other pair as angle increases and that any pair of contacts of the
opposite type must lie adjacent to each other. This can be satisfied
only if the four points are alternately inner and outer contacts with

respect to the origin. This condition is purely a control on angular
position with respect to the origin and so is unaffected by radius
suppression. Hence minimum zone limacons in chart co-ordinates trans-

form to minimum zone limacons in instrument co-ordinates.
Given four contact points between the data and the reference

limacons, the substitution of a new point for one of them is always

unique if the above alternate contact rule is obeyed both before and
after the substitution. Thus a complete minimum zone algorithm may
be based on this rule.
Minimum Zone Limacon Algorithm

Following the mathematically guaranteed convergence of the
simplex solution of the dual linear programme, the minimum radial
zone limacon can be found by:
a) Choose, arbitrarily, four data pOints.

b) Fit to these points a reference limacon such that each of the



four points lies equidistant from it and such that the points
lie alternately to either side of the reference with increasing
angles.

c) If no other points are further from the reference, the solution
is found.

d) Otherwise substitute the point which lies furthest from the
reference for one of the four defining points such that the new
set of points l1e alternately either side of the reference and
return to b).

It may be noted that this alternating contact requirement is not
unique to this problem. It also occurs, for instance, with the
Stiefel Exchange Algorithm for finding the minimax polynomial to a

set of data points. In fact the Stiefel Exchange Algorithm has been
derived from a dual linear programming problem in a method parallel
to that used here (28).
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7. Boundary L1macons and Boundary Circles

7.1 Introduction

In the previous chapter, definitive and efficient algorithms
were developed for the solution of boundary references using
limacons. From the arguments of chapter J. if only chart co-ordi-
nate data is available (the radius suppression being unknown) their

use 1s established since they represent the best available approxi-
mation to the desired reference shape •. In effect this amounts to
using boundary limacons in instrument co-ordinates and so investi-
gation of the relationship between boundary limacons and boundary
circles in instrument co-ordinates is indicated. From this two
important issues must be judged: how accurately can the true refe-
rence parameters be estimated if only chart co-ordinate data is
available and when with instrument co-ordinate data (if it were
available) would it be acceptable to use the convenience of the
limacon rather than the circle? Of course, under conditions when
the second of these is true, then the first will also be adequately
accurate. In analysis only the situation in instrument co-ordinates
need be considered.

Rules have been established for determining all the optimum
boundary llmacons, the optimum ring circle and the presence of
local optima of the plug and minimum zone circles. In chapter J the
question of the quality of the approximation of a limacon to a circle

was examined and found to be acceptable under many practical condi-
tions. What is yet to be established is whether the parameters found
for a boundary limacon relate to those of the boundary circle to
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the same data. If it happens that the appropriate circle parameters

can neither be derived from nor closely approximated by those of
the limacon then the measurement of out-of-roundness 1s in doubt.
The llmacon reference may be behaving as a good approximation to the
wrong circle!

In the following sections the correspondence of parameters
between circle and limacon will be examined for each of the three
boundary references. It is because of the difficulties over multiple
optima that only the ring gauge can be expected to give complete
answers and so this will be given pride of place and analysed in
more detail than the others. Some thought will be given in section
7.5 to the possibility of improving upon the approximation of the
limacon in a manner which would have practical relevance to measure-
ment systems.

7.2 Ring Circles and 1imacons

The parameters of both circle and limacon fits are dependent
upon the geometry of the data which is not known 1n advance. It
is not appropriate, therefore, to seek a general (algebraic) function
which links the two sets of parameters. Instead an attempt will be
made to establish one set from the other in terms of a value
subjected to a definite error bound. Since good calculation methods
exist for the llmacon fit, the circle parameters will be expressed
in terms of those of the limacon.

A limacon always has an axis of symmetry, the line joining
origin and centre, and so when discussing purely the geometry of the

figure no loss of generality is incurred by setting this axis co-
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incident with the x-axis. This procedure will be adopted here

since it simplifies the notation. A limacon

has minimum zone circles (as can be seen from the alternate con-
tact rule) shown in figure 7.1. Their centre is coincident with

22.1.that of the limacon and their radii are (HL + E )2 and HL• Any

circle which encloses the ring limacon certainly encloses the
data also and will be larger than the ring circle. The outer of

the minimum zone circles 1s not the smallest cir~le which will
2 2 .1.enclose the limacon and SO its radius, (HL + E )2, is a definite

over-estimate of the ring circle radius.
In the parameter space ~epresentation of the ring gauge

problem (section 4.4) the limacon constraint lies always below its
equivalent circle constraint. So every point on a limacon con-
straint lies in the infeasible region for the ring circle, except,
possibly at E=O where the two surfaces touch. Thus the ring lima-
con solution lies outside the ring circle feasible region and since
that region is convex,the circle solution must have a larger value
of radius than has the limacon solution. Thus the limacon radius,

RL, and so the inner of the minimum zone circles represents a

lower bound on the ring circle radius. (Note, incidentally, that
this is a good illustration of the power of parameter space analysis:
the rigorous proof of this lower bound by geometry is surprisingly
complicated (29».

other bounds on radius can be established. The minimum radius
circumscribing circle to the ring limacon is a,smaller upper bound
than that quoted above. However the complexity of the expression
for its radius 15 such as to discourage its use unless precision is
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FIGURE 7.1: Minimum Zone Circles to a Limacon

FIGURE 7.2: Minimum Circumscribing Circle and Limacon with
Diametral Contacts



of very great importance. The circle constructed through the three
contact points of the ring limacon has important properties if

othose pOints obey the 180 rule with respect to its centre. If all
the data lies within it, it is the ring gauge, otherwise it is
smaller than the ring gauge and so represents a high lower bound on

ring gauge circle radius. Thus five circles have been defined, being
in order of increasing radius:
i) Inscribing circle, radius RL, to the ring limacon
ii) Circle through contact points of ring limacon and data, 1800

rule obeyed for the circle.
iii)
iv)
v)

Ring Gauge Circle

Minimum radius circumscribing circle to the ring limacon
221Circle, radius (RL + E )Z, circumscribing the ring limacon

The circles denoted by i) and v) certainly over-estimate the

uncertainty in the ring circle radius. An estimate of the ring
circle radius will be their mean value:

and, using the identity

2/ .....their radial separation Is E ZRo'

The ring circle radius ls located with an absolute tolerance
band

where, here, Y=E/Ro' which for small r will not differ significantly
from the true eccentricity ratio as given in section ).1.

Even taking as a test case the "typically poor" centring
condition r= 0.01 the ring circle radius can be estimated from the
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limacon parameters to better than 25 parts per million. Relating
this to the polar chart of a roundness instrument, since the maximum
possible eccentricity which could be tolerated would be half the

chart annulus width, W, that is ME<.~~/2,the error ther would be no
greater than !.\~r /8. For this example the maximum error on the
chart could only be 1/8~~ of the chart width. The accuracy of this

ring circle radius estimation is perfectly adequate for almost all
practical applications. The closer estimates are available if
necessary. On the other hand, the error in taking RL as an estimate

of the circle radius is at most only 50 parts per million at
'( = 0.01 and this value has the advantage of being usable indepen-

dently of an accurate knowledge of the radius suppression in a
comparator system.

Although the circle radius is well estimated under all condi-
tions, subject tor, the same is not true for the estimation of
centre position. Physically sensible examples can readily be con-
structed in which the difference between the centre of ring limacons
and circles is a significant fraction of the true eccentricity. 110stly

this effect ls caused by the necessity of the ring limacon having
three contact points with the data. If a diametral contact existed,
the linear programme would introduce eccentricity without affecting
that diameter until a third contact was found. Circle fitting does
not involve such behaviour. Figure 7.2 illustrates this extreme of
the divergence between circle and limacon: it can be seen that the
radii of the two figures are the same while the difference in eccen-
tricity is large and that the 1800 rule is obeyed marginally for
both figures.
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In one sense, the best estimate of the ring circle is the
circle through the contact points of the ring limacon, providing

othat the 180 rule is obeyed for the circle. If these contacts

are (Rp $i)' (nj, e) and (Rk, f\) they are related by

Ri = RL + AL cos9i + BLsin~

with similar expression for j and k where RL, AL, BL are the
parameters of the ring l1macon. From its cartesian equation the

circle through these points is found from the simultaneous equa-
tions

with again similar expressions for j and k and Ro' Ao' Bo being
the circle parameters. Substituting equation 7.2 into 7.3 and
re-arranging gives:

(AosinBi - BOcosBi)2
2RL

where

Now ELOi will be expected to be no larger than the order of size
of the limacon eccentricity which is in practice small compared

to RL. To a good approximation, therefore:

where

R2 _ R2
o L ~ ELOi + Q

i
2RL

Qi = (Aosinf\ - Bocos$1)2/2RL• Exactly parallel
expressions can be derived using the j and k subscripts. From
these three are obtained:

ELOi - ELOj = Qi - CJ.j

ELOi - ELOk = Qi - Qk
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which may be solved to give:

AL -Ao = E; Csin61-sinek) [sin2C81-¢o)-sin
2CE\ -¢o)] ....

2RL sinCe j- fi)+sinCei - 11k)

•.•. -CsinV1 -sinE) [sin2(8k -¢o)-sin2CE>i-¢O)] )
+sln(~\ -9j)

BL-Bo = E~ rCcost:\-cos~) [sln2C8r¢o)-sln2Ce1-¢o) J. ...
2RL \ sln(Dj-81)+sln(8i-9k)

•••• -(cosei -sine) [sln2(ek -¢o)-sin2CSi -¢o)] )
+sinC9k-t3j)

Where (E ,~ ) is the polar form of CA , B). Although theseo ""'0 0 0

expressions can only be used for specific cases, some general
behaviour can be seen. Noting that

and that since the 1800rule with respect to the origin must be
obeyed for the points so that all terms in the denominator have
the same sign, it is seen that the expressions are made of combi-

nations of terms having one of the following forms:

sinCe .-111)J < 1

IsinBi - sinBk I < 2

or Isin(ei+ ~-2¢o) I < 1

Even if all the terms are allowed to take their least favourable
values simultaneously it is not possible for their combination
to exceed ~4 and so
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is an over-estimation of the uncertainty band. The same uncertainty
is found in Bo-EL• For small Y , which was in any case assumed
in deriving this expression, the limacon centre is a good estimate

of the centre of the circle through the contact points. If this
circle is a good approximation to the ring circle then the ring lima-
con parameters represent a good approximation to the ring circle
parameters.

Given the above observations it is of some importance whether
oor not the limacon contact points obey the 180 rule with respect to

the centre as well as the origin. Whenever they do a reasonable
estimate of the ring circle parameters can be guaranteed. Consider

the situation shown in figure 7.). The 1800 rule with respect to 0
is obeyed if the figure is a ring limacon and so there will be con-
tacts on both sides of line PB. If there are contacts with both
sides of line PC the 1800 rule with respect 0' is obeyed. So
difficulties only occur if the only contact to the right of PB lies
in the sector BOC. Applying the sine rule to triangle POC gives

(RL + Esin~)(sin~cosK - cosrsinK) = RsinK

Since ...y and K cannot, physically, exceed 1f/2 this may safely be
expressed in terms of tan,!,= t and tanK = E/RL =r to give:

= r(1 + rt) 7·5
The diagram makes it clear that t ~ r , so all terms are positive
and squaring has no deleterious effect. After regrouping equation
7.5 yields:
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FIGU?E 7.): oConditions on the Satisfaction of the 180 Rule
with respect to the Centre 0'



The solution t=O has no significance here. The remaining cubic can
be seen from the sign alternation of its co-efficients to have no real
negative roots and one, or three, positive rGal roots. This corres-
ponds to the geometrical sense of figure 7.J. For r« 1 a general
solution of equation 7.6 is not attempted. Instead by neglecting all
terms in r 2 and r 3 a factorisable expression is revealed:

(t - 21 )(t2 + 1) = 0

from which the real solution is interpreted as

t.an y> = 2Y 7·7
(This approximate formula is in fact very close to the true solution:
a numeric solution of equation 7.6 using Newton's method showed that
even with Y= 0.1, using equation 7.7 gives an error of only about
one part in 104.)

Figure 7.) shows, in effect, the worst situation which can occur
in this context, that is when a contact point lies at ~ Thus in
equation 7.7 is embodied a complete criterion for the 1800 rule to be
obeyed relative to the centre. 'Jroviding each pair of adjacent contact
points subtend an angle at the origin of greater than tan-1(2Y ) then
the ring limacon parameters may be used directly to estimate the
ning circle parameters. In a sampled data system, this criterion
can become absolute: if the angular sampling interval exceeds
tan-1(2 r , then, apart possibly from diametral contact which is easily

checked, the 1800 rule must always be satisfied relative to the centre.
As an example, with 512 equispaced ~oints the condition is always
satisfied ;:>roviding r < 0.0061.

As a consequence of these analyses, it seems that, although
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not a certainty, there is a high probability that under practical
COnditions the circle through the ring limacon contact points is a
goOd approximation to the ring circle. Further the test on the

angle between contact points is a simple way of detecting possible
bad cases. The work described in section 10.2 gives evidence for
this conclusion.

A complete cycle of operations relating the initially desired
measurement to that actually attainable with a normal roundness
measuring instrument, that is one working in chart co-ordinates,
can be established for ring gauge, subject to the conditions above,
namely that r must be kept small. This cycle is illustrated in
figure 7.4. It is deliberately not explained in detail since it is
intended to provoke further thought about its implications. The
basic flow around the figure is as follows. It is desired to ascer-
tain the deviation of a workpiece cross-section from true circu-

larity for an application where the dominant outer-features are of
particular significance. Placing the workpiece on the instrument

requires that an eccentric circle, optimised as the ring gauge circle,

should be used as a reference. Given difficulties over the accurate
knowledge of radius suppression and also those of calculation, this
equivalent distorted circle in chart co-ordinates cannot be used.
As a linearised approximation to this distorted circle a limacon is
fitted onto the chart profile. Because of the nature of radius
suppression, the contact points of the ring limacon in instrument co-
ordinates are identified with those of the ring limacon on the chart.
Thus the ring limacon parameters for instrument co-ordinates can be

established and from them an adequate representation of the ring
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G upper and lower bounds to circle parameters.
H defined as parameter value and tolerance from F and G.

FIGURE 7.4: Summary of Ring Gauge Circle Measurement Philosophy



circle parameters is found in terms of a value and an associated
tolerance band. Thus, in principle, the cycle is closed,_ and so

a relation to the desired measurement achieved, by using two ap-
proximations. Firstly the modelling of an eccentric circle by a
limacon and then, at the end, the estimation of the ring circle
parameters from those of the ring limacon. Both of these steps
take place in instrument co-ordinates.

The final stages of closing the cycle require the use of the

true radius and SO the radius suppression must be known. However
estimates having only linear dependence on radius suppression can
be used for the ring circle parameters so that comparisons at
fixed, unknown, radius suppression may be performed with ring
circles.

7.3 Plug Circles and Limacons

Given a problem in optimisation, such as the plug circle, where
there may be several local maxima only one limit may be ascertained
wi th certainty in a useful form. The lower bound to any local maxi-
mum must also be a lower bound to the global value but the upper
bound to the local maximum may still be smaller than the global value.
Thus only a weak upper bound can usually be obtained. In the case
of the plug circle, it is clear that any circle which encloses all

the data cannot be positioned so that it inscribes that data (as
opposed to a position at which it does not enclose any data points,
see section 4.2). So the ring circle may be specified as an upper

bound to the plug circle! Usually, however, such a bound is not of
much use for measurement purposes.
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Using the same style of argument as adopted with the ring
circle, information concerning a local maximum of the plug circle
can be obtained. A lower bound for the plug circle radius is
obtained from the inscribing circle, radius RL, to the plug limacon.

The circle constructed through the three contact points of the plug
olimacon with the profile will be, if those points obey the 180 rule

with respect to its centre, either a local maximum inscribing circle
(when none of the profile lies inside it) or an over-estimate of
the radius of a local maximum. If this condition is obeyed, the

radius of the circle through the pOints which lie on the limacon
cannot be greater than that of a circumscribing circle to that
limacon. Thus a pair of bounds, similar to those for the ring circle,

is established. A local optimum of the plug circle exists with radius
221(RL + E )2" , where RL and E are parametersbounded by values RL and

of the plug limacon, providing that the defining contact points of

that limacon obey the 1800 rule with respect to the centre of the
circle constructed through them. This circle may be treated as a
best estimate of the local maximum and. the same analysis regarding

its centre carried out as was performed for the ring circle in the
previous section.

Results can be obtained for estimating plug circle parameters
which exactly parallel those for the ring circle. They are weaker,
however, on two counts. Firstly they refer only to a local maximum
of the plug circle having its centre in the vicinity of that of the

plug limacon. Secondly the tolerance bound for the radius of this
local maximum is not true under all conditions but depends upon the

geometry of the limacon contact pOints. Under practical conditions
the necessary geometry has already been shown to be likely to occur,
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so the restriction may not be too serious. The plug limacon is

found from constraints for fitting circles which have been
linearised about the point of zero eccentricity and will therefore
tend to identify a local maximum having small eccentricity. The

selection of which local maximum is discovered is, in principle,
governable by the initial instrumental set-up. Over-all, although
there are profound mathematical and philosophical difficulties with

this method, it appears that as an engineering technique it is
useful providing that some care and forethought is given to the

measurement and its interpretation.

7.4 Minimum Zone Circles and Limacons

The potential non-uniqueness of solution to the minimum zone
circles causes difficulties similar to those encountered with the
plug circles compounded by a more complex geometry. Again the only
absolute bound on the zone value which can be established is that
falling short of optimum, that is an upper bound to a minimisation.

The minimum zone circles to the minimum zone limacons clearly
have a separation greater than that of the minimum zone circles to
the profile. The zone over-estima.te can thus be formed by circles
having radii (RL-H) a.nd «RL+H)2 + £2)t. Using the identity, equa-
tion 7.1, the zone estimate would then be,

" "2H .2R =o (R
L

+ H)2 + £2 - (R
L

_ H)2

(2H + ~E) • 2RL::

This suggests use of the limacon radius as an estimate of the mini-

mum zone circles mean radius and gives the over-estimate of the zone
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as (2H + rE!2). Generally it would be adequate to take simply 2H

as the measurement of the radial difference of the zone circles
under ~ractical measurement conditions.

A pair of concentric circles constructed so that each passes
through either the inner or outer pair of contacts between the mini-
mum zone limacons and the profile may give a bound on the minimum
zone circles. If the four contact points satisfy the alternation
condition with respect to the centre of those circles and aleo
enclose the whole profile between them then they are local minimum

zone circles. If they do not totally enclose the profile but obey
the alternation conditions then it is only possible to enclose the
whole profile between a larger zone that is centred near to the

centre of those circles. Thus they offer a form of lower bound to
the minimum zone and perhaps a "best estimate" in the sense adopted

for the ring circle in section 4.2. The conditions that the points
have alternate contacts relative t~both the origin and the centre
of the fitted circles can be seen from figure 7.5. The points P
and Q are encountered in the opposite order from 0' than from O.

It is clear that this reversal will not happen if 0' is anywhsre to
the same side of the straight line through P and Q as is O. The
allowable eccentricity to maintain the order depends upon the rela-
tive size of R and H, the angle, ex, subtended by the points at the
origin and the direction of eccentricity relative to the points.

Given this number of variables, the general analysis will be pursued
no further.

The minimum zone approach is particularly relevant to the

assessment of the magnitude of out-of-roundness. However the
physical relevance of the reference parameters, for instance the
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FIGURE 7.5: Preservation of Conditions of Alternating Contacts
from a Centre 0' for Minimum Zone Figures



centre position, seems less than that of the other references. They
relate, if only loosely, to physical situations that a workpiece

might encounter while the minimum zone does not obviously do so.
The estimation accuracy of centres of local minimum zones will not
therefore be investigated here. Methods broadly similar to those
used in section 7.2 should give some indication if needed. The most
common measurement is likely to involve testing whether the out-of-
roundness exceeds some specified tolerance and for this just an
over-estimate of the zone (providing it is not excessively large)
will suffice. The direct use of the limacon zone value seems
indicated for normal purposes.

1.5 Out-of-Roundness Measurement

The main concern of this chapter has been to establish the level
of agreement which can be expected between reference limacons and
the true reference circles. This is typified by the approach
illustrated in figure 7.4 in which it is seen how the ring gauge
circle relates to the ring gauge limacon. If the out-of-roundness
is to be measured, the best estimate of the ring circle (based upon
the fitted limacon) is constructed and imperfections of form measured
from it. It would clearly be more convenient (and is indeed
customary practice) for measurements to be taken directly from the

fitted limacon. DOing this introduces two sources of error. First
the circle and limacon do have different shapes, so that the relative

distance of individual data points from each reference will be

different even if all other features were in agreement. Secondly
the limacon is defined, and the data points measured, with respect

101



to the co-ordinate system origin and not from the reference centre.
Both of these error sources are of a purely geometrical nature and
can be analysed. However a third source of error, not fully analy-

sable, is that discussed earlier in this chapter; the circle which
the reference lirnacon best represents may well not be the desired
reference circle. In particular the doubt over the position of the

reference circle centre is important. Most out-of-roundness values
are expressed as peak-valley so that constant radial errors cancel
out.

One case where a reasonable analysis ls possible ls that de-
picted in figure 7.6 where the ring gauge circle and ring gauge
limacon have the same defining contact pOint. It has been shown
that for this condition the distance of the circle centre from (E, 0)

is small compared to E and SO any error in assuming its centre to
be at (E, 0) will be of second order compared to the effect being
examined. A data point P, (R, e ) from the orl.gin and (S, '{/ ) from
the centre, is measured as being e from the circle and 6 from the

lirnacon. From the cosine rule:

2 2S + E + 2EScos 'f'

= 52(1 + T'i2 + 2T'i cos 'P)

where T'i = Eis is a ratio akin to and of the order of size of r.
In the present context Rand S will always be positive and 50 square
roots may be taken. Also

e = R - 5o

6 = (RL + Ecos'8 ) - R
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FIGURE 7.6: Minimum Circumscribing Circle and Limacon Having
Same Contact Points with the Data



CosSmay be eliminated from this by equating projections along the
x-axis:

6 = HL + E (3cos,*+ E) - R
R

which on substituting for R from equation 7.8 and simplifying gives:

6= RL-S.l+ ncos,*,
(1 + Tt 2 + 2 T} cos 'I' )t

Hence:

As VI describes a circle, the functionf will take a maximum value
2 1.of unity and a minimum value of (1 - 17 )2. Even at eccentricity

ratios of about O.Ol,f varies from unity by no more than a few parts

in 105• The modification to the small displacement e caused by
multiplying.lt by f will be practically undetectable. However Rc
is a much 18Z!er value and multiplying it by f could cause a variation
significant compared to 6 and e. So to a very good approximation:

6 - e = ~ - Rof( 'j/ ,n )
It has been shown that RL ~ Ro~ RL(l + r2)t and SO the limits

of 6 -€ can be stated in terms of both Ra and f simultaneously taking
their maximum and minimum values. For small T/ and r this gives

2
-H~ ~ 6-£ ~

2

Given the similarity, under practical conditions, of f7 and r, a
practical bound is:

16-el

By applying the sine rule to the diagram, figure 7.6, it ls

103



found. that:

sin -1[ .T] sin 1.// 1
(1+ T]2+2T/ cos",,)~

The angular error oscillates about zero with an amplitude of sin-1T] •

If/ - e =

whlch is of the order of sin-1, •

Estimating limits on the error of measuring peak to valley and
not just locating one point relative to the limacon rather than the
'clrcle Is complicated by the possibility that different data points
may define the maximum with respect to the two references. Clearly,
though~ the error in peak to valley can never exceed twice the errors
of a single point. It would seem that measuring from the limacon
rather than the circle will for the present case be quite satisfactory
under current practice. If high eccentricity measurements are made.
, still presents a simple control on the level of error.

The above analysis is specific to the case of ring gauge limacon
and circle references which have (to a good approximation) the same
centre. It does not apply to any other condition. It can be used
intuitively to give some illumination to the more general but
imponderable problem. If it is accepted as a practical decision
(and often there will be little choice) that the centre of the refe-
rence circle will be taken as identical to that of the reference lima-
con. then the errors inherent in so doing will not be seriously com-
pounded by measuring the out-of-roundness from the limacon.

7.6 "Improving" the Reference Shape

The previous sections have examined how a limacon reference
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compares to the true circular reference. The comparison must take
place in instrument co-ordinates and so an im~licit assum~tion has
been made that the radius suppression is known. In some cases,
although the analysis needs knowledge of radius suppression, the

results may be taken directly from the limacon without greatly in-
creasing the uncertainty band of the estimate when related to the
circular reference. The overall conclusion might be summarised
that while the limacon is not £deal its use its use is the best
that can realistically be done. This is certainly true of work in
chart co-ordinates when the radius suppression is ill-defined.

Notwithstanding the above conclusion, there remains the question
of whether, if adequate knowledge of the radius suppression exists,

a better reference than the limacon is available. The most obvious
reason for this is that the quality of the limacon approximation
depends unon the eccentricity ratio and while this is usually ade-
quately controlled in practice at present there may be a move towards
working at larger values. There is currently increasing interest in
working at higher eccentricities either to save time by reducing
centring operations on the instrument or to allow automatic measure-
ments without the expense of very accurate placement systems. Also
there is increasing use of small radius components in precision work.
Together these two trends may create conditions where the limacon
is inadequate.

If the limacon is too approximate but the circle too difficult

to calCUlate than some compromise between them must be sought. This
idea is not altogether new. Instruments have been proposed, by the

~erthen organisation in Germany and probably elsewhere, in which,
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after calculating the least squares circle (using a limacon), the
reference line drawn onto the graph was constructed from the power

series expansion of the circle, equation 2.;. truncated after the
second order term. This idea has not been actively pursued: it has
practical difficulties concerning the necessary precision of calcu-

lation once absolute radius has to be used which can only be over-
come by the recent advances in inexpensive digital computation. It
is now timely to look again at this type of approach. Here. since

definitive methods are available for both limacons and circle fitting,
it will be studied with reference to the ring gauge.

The direct solution of the ring circle as a quadratic programming
problem (section 4.;) is not considered to be practicable using the
computational pOwer that could reasonably be included with a round-

ness measuring system. Much more work would be required than for a
linear program since the solution would have to use the primal and

- ~ direct jump between vertices In parameter space Is not allowed, it

being necessary to search the whole boundary. The approach mentioned
above is also not directly useful. Using a reference figure modi-
fied according to the lima~on reference parameter may make matters

worse because if the limacon does not adequately represent a circle
then it will not fit the data·as would a circle. Another method
which could be adopted is to fit a limacon reference and then simu-
late the recentring of the instrument to that reference by performing
a co-ordinate translation on the data after which a new reference
limacon Can be fitted with. presumably, a more favourable eccentricity

ratio. A disadvantage of this scheme, apart from the high precision
of the arithmetic needed for the translation, is that the translated
data would not be uniformly spaced even if the original data was and
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uniform spacing gives quite large gains in computational efficiency.
The method which is suggested here combines features from both

the other approaches. Its basic logic is that rather than translate

the data to a region of space where the limacon appears less distorted
with respect to a circle, the data should be distorted in a manner
similar to the difference between the figures. The ring limacon to

this distorted data should behave in a similar fashion to the ring
circle to the original data. If an initial ring limacon to the data

indicates parameters Ro E and ¢as the first estimate of the ring
circle, the distortion to be introduced into that data is the second
term of the power series expansion of the circle using these estimates.
Thus the constraints of the refitting are simply:

which may be compared with equation 6.1. This method retains the
advantage that the data remains uniformly spaced with respect to the
origi~ so that exactly the same ring limacon fitting routine is used
both before and after the data modification. It is therefore quite

efficient. Another point is that since only shape relative to the
origin is mOdified the change is not dependent upon radius suppression
other than for the initial calcualtion of E2/2R. The second fittingo

calculation can therefore be carried out effectively in chart co-
ordinates with a consequent saving in necessary arithmetic precision.

Under the conditions which might be expected to occur with prac-
tical systems, the "correction term" is likely to remain on the level
of exactly that. At most the distortion it accounts for might re-

present a few per cent of the total measurment value. This implies
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~hat even a quite large percentage error within the estimate of the
correction value will be acceptable (a 10J~ error in a correction
of 5% of value has a probably negligible effect on the value itself).
Thus it seems that even quite crude estimates of the radius suppres-
sion would be adequate for the purpose of the refinement considered
here. Certainly a precision equal to that of the measurement data
of the profile would not be required.

It remains an open question whether there is much demand for
refinement of the limacon mOdels of circular references. This will

become clear with experience of new instruments and new measurement
problems. The decisions on their use are likely to remain empirical
and cost related for a Significant time into the future. However
useable refinements are shown here to be available when needed, some

practical evidence being given in section 10.4.
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8. Polygons as Reference Figures

8.1 Introduction

Even if corrector terms are applied to reference systems

using limacons (section 7.6) there remains the restriction with
such methods that the origin must lie inside the figure, that
18 the eccentricity ratio cannot exceed unity. In dome measure-
ments, notably when using a co-ordinate measuring machine, the
data may well be expressed relative to an origin which is nowhere
near the profile. (Note that this could only occur in instrument
co-ordinates: radius suppression is meaningless under these condi-
t10ns.) To use limacon methods it is necessary to find an initial
est1mate of the profile centre which may be used as an origin for
re-expressing the data. An alternative would be to use some other
approximation to a circle which retains advantage of computation.
One such alternative could be to approximate the circle piecewise

by a series of straight lines, that is the circle represented as a
polygon. This concept is not the same as that used by Scheiding
(section 6.4 and (10» where straight lines are used as a data
reduction device rather than as a reference figure.

Each side of a polygon is a section from a straight line in
the measurement plane and so can be described by parameters in
which it is linear. So providing that all the sides can be handled
together in a simple way the polygon reference is capable of a
linear parameterisation and consequently should be relat1vely easily
optimised. In fact it turns out to be possible to express all the
four reference circles in terms of equivalent polygons in which the
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sides have fixed direct+ons relative to the frame of reference. In
the case of the least squares fit, however it is necessary to make
assumptions about what is meant by residuals and the generalisation
is rather inelegant. It seems likely that limacon and centroid
methods will prove a more satisfactory approach to the average

reference figure (30). Here as an example of the approach the mini-
mum circumscribing polygon will be examined. Also, in section 8.3.
reference squares will be used to illustrate the nature of boundary

reference fits. This discussion will be parallel to that given for
circles but gives a different viewpoint of the cause of the
ensuing difficulties.

8.2 The "Ring T1olygon"

In defining a polygon reference it will be assumed that the
regular figure is constructed from the envelope of a series of
straight lines, of pre-defined slope, each having the same perpen-
dicular distance from a single point. This point is the "centre" of
the polygon and the perpendicular distance is the "radius". These

parameters are, in fact, those of the inscribing circle to the
polygon.

For the circumscribing figure, each line must lie further from
the centre than the distance of each data point projected onto the
normal of that line, providing the point lies to the same side of
the centre as does the line. The enclosure of the data is

conveniently ensured by using pairs of parallel lines, see figure
8.1. A line of slope m passing a point (A, B) at a perPendicular
distance R can be expressed in the cartesian plane XY as,
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FIGURE 8.1: EncLo si ng Data between a Pair of Parallel Lines
of Slope m. Polygon, Centre (A,E) and "Radius" R
is made up from such Pairs.
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FIGURE 8.2: A Circumscribing Square Reference



2 1..(Y-B) = m(X - A) + R(t + m )2 s.i

Thus for the pair of lines to enclose the data, the following

constraints must be satisfied for all data points (Xi' Yi)
simultaneously:

(Yi - B) ~ m(xi - A) + R(t +m2)!

(Yi - B) ~ m(Xi - A) - R(t + m2)t
8.2

This form becomes difficult when m= 00 (lines parallel to the Y

aixs) and so additional constraints, also required to be true for
all data points are introduced:

(Xi - A) ~ R

(Xi - A) 3 -R
8.J

The constraints are linear in the parameters (A, E, R) and as R
is to be minimised, linear programming may be used to find the
complete polygon reference which will involve such sets of con-
straints over a set of values of m co~sponding to the orientation
of the sides of the polygon. It is obvious from figure 8.1 that

only one (or possibly a series lying on a straight line) data point
can influence the closeness of approach of each of the parallel
lines to the data. In a parameter space (A, B, R) representation
this shows as the relevant constraint boundaries for a given slope
of line being parallel planes. The points 11mi ting each of the
line pairs will be those having the largest and smallest values for

(Yi - mXi)· Only these two points can possibly be active in
defining the sides of slope m to the polygon. Thus the linear

programming exercise can be significantly simplified by breaking it
down into two linear programmes, the first of which is to identify
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the potential defining points and is trivial in the sense that no
iteration is required.

Denoting the slopes of the various lines making up the poly-

gon as m. and letting Q and Q be the maximum and minimum values
J +j_j

of CYi - mli) over all i, then the required optimisation is, from
equation 8.2:

Minimise: R 8.4
Subject to: R ?

-m.A + B - Q •
J -J

(1 + m~)2

for all j.
Again forms equivalent to equation 8.) would be used to account for
mj=oo. The linear program of equation 8.4 is solved directly, the
dual being the more efficient form to use. If there are N data
pOints and n sides to the polygon the total work involved is n searches
through N points to find the values for Q followed by a linear program

in three variables and n constraints (vice versa in the dual). At
least with fairly small numbers of sides, the technique is a
plausible one in terms of the effort needed to use it.

8.). Reference Sguares

The sim~lest reference polygon consists of a square in Which
the sides lie parallel to the co-ordinate axes. The four straight
lines defining this figure are:
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x = A+R = ~

Y = B+R = YH

x = A-R = XL

Y = B-R = YL

Figure 8.2 shows this square, stressing that only a section of each

line is active in defining the figure.
The circumscribing figure has been examined in the previous

section and so here it suffices to note that the constraints re-
quired to ensure that the square encloses the data are:

Max(Yi) ~Y
Hi

Min(Yi) ~ YL
i

All constraints must be satisfied simultaneously. It is seen from
figure 8.2 that the sections of each line not relevant to the

formation of the square are automatically excluded by the constraints.
Consider now, the definition of an inscribing square. It is

not sufficient to demand simply that the data is not contained
within the square since this will allow solutions in which data and
reference are totally unconnected, see figure 8.). The other
example in figure 8.3 concerns the problem of how to avoid the
initially inscribing figure from' escaping' when there is a signi-
ficant gap in the data: it is perhaps not clear what interpretation
may be placed on the phrase "maximum inscribing" in this situation.
Some constraints must be applied to tighten the definition. If the
data sensibly describes a closed figure then insistence that points
lie on all sides of the square is a suitable condition, giving:

Max(Xi) ~~
i

Min(xi) ~ XL
i

Max(Yi) ~ Y
Hi

Min(Yi) ~ YL
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Another approach could be to insist that the inscribing figure
lies totally within the minimum circumscribing figure, which does

not have such problems of definition. This again would generate
four constraints on ~ XL YH and YL but not related directly to
the data points. These four constraints must be satisfied simul-
taneously.

These constraints force the reference to lie within the field
of the data but do not cause it to be inscribing: it is now nece-

ssary to intrOduce constraints to cause the exclusion of all data
points. It is obvious that, unlike the circumscribing square,
thsre must be data points lying to both sides of each of the defining
lines. Further it does not matter where a point is with respect to
say, Y = YH providing it does not satisfy XL < Xi < ~. A point
lies outside the square if any of the following four conditions are
true:

The difference in the behaviour of the constraints for circumscribing
and inscribing polygons is directly describable by logic operators.

In the circumscribing figure the constraints are combined as an AND
function whereas with the inscribing figure thay are combined as an
INCLUSIVE OR. Because of the inclusive property of constraints on
the inscribing square some parts of the constraint boundaries in
parameter space disappear and immediately the constraint planes do
not completely divide parameter space there appears the possibility
of non-convexity even with linear functions. There is in principle
a different solution for the optimum for each valid choice amongst
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the ORed constraints, although not all may make physical sense.

The four constraints limiting its position (which are ANDed) bound
the region of parameter space containing these solutions. (As a

trivial example of what is happening consider attempting to find
the gap in the sequence 1,2,3,7: the answer may be obvious but
mathematically there are three gaps between 1 and 2, 2and J, J and
7 which must be examined.)

Under conditions where it makes sense to use an inscribing ref-
erance, it should be possible to make the choice among the possible

ORed constraints on physical grounds rather than having to search
them. One possibility might be to select the constraint according
to the geometric position of the particular data point relative to
the centroid of all the data points. This would identify whether to
use ~ or XL and also YH and YL but it is less clear how to best make
it choose between the remaining X and the remaining Y. In any case

it is clear that the ORed constraints cause extra work and greater
uncertainty about the result.

The minimum zone reference is, in terms of the constraints
required, a combination of the circumscribing and inscribing cases.
There will again be ORed constraints from the inscribing part.
Similar problems to those encountered with the inscribing square
will occur, but in this case it is more difficult to establish simple
methods of choosing between the possible combinations of constraints.
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9. nractical Assessment Systems

9.1 General

Whatever theoretical niceties may be developed, the measurement
of roundness, as, indeed, all other measurements, will remain essen-
tially a pragmatic exercise. A measurement is made because of un-
certainty concerning the nature of the profile. Any method which
clarifies that uncertainty sufficiently for the purpose in hand is
acceptable for performing the measurement and generally the most
economical approach would be adopted.

Narrowing the discussion to the use of reference figures with
roundness measuring instruments does not alter the motivation enshrined

in the above statement. If the solution is to be found by hand then
the only really practical method is to fit circles onto the polar
chart since circles are easi:i.;yhandled by templates and compasses.
The penalty to be paid for this simplicity is the need for rather
precise centring. The plotting of limacons is possible (see Appendix
4) but would be expected to entail more work than is involved in the
refinement of the centring. The geometry of the exchange algorithms
developed here may be useful in confirming the solution obtained but
is Unlikely to be used formally because of the powerful intuitive
ability of eye and brain.

If automatic solution of the reference figures Is required the
situation is greatly changed. With analogue systems only least

squares limacons can be accurately found (by using simple Fourier
analysis) and so the application of some form of digital computer to
the instrument is imolied. The reason for using automatic assess-
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ment is presumably either to increase accuracy or, more commonly,
to reduce the total measurement time. In this case there are clear
constraints on the type of computing that is feasible. Cost is an

important consideration for it may be more economical to use several
simple instruments than one more efficient, but much more expensive,
system, particularly when the possibility of breakdown is taken

into account. Computational time is also significant, although not
always for what, at first sight, may seem the obvious reasons: if
the computation can proceed in parallel with workpiece unloading
and the setting of the next piece, it may not affect the measurement
cycle time at all! The requirements for algorithms which are to be

practically useful are that they can operate on mini- or micro-
computers which might be found on-line to the instrument while
retaining an adequately fast (this value can only be related to
specific situations) performance and a sensibly better accuracy than
that of the instrument so that the overall system performance is
not down-graded by their use.

There are occasions, inclUding some within this work, where it

can be asserted from a purely mathematical analysis that one method
is suuerior to another. Such an assertion does not require testing
experimentally. However in an engineering context rather than a
mathematical one this may no longer be so since the meaning of
,superior' becomes blurred. Here it is considered to be necessary
to develop working versions of all the plausible methods which have

been considered, not to test whether they work but in order to judge
their relative cost-effectiveness under practical conditions. This
process should not, of COurse, be taken to extremes: for example,

from Chapter 6 it is clear that the direct solution of the primal
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linear programme for ring limacon is rendered an implausible
approach by the existence of the dual.

Having established that there would be the need to develop
and test working measurement systems whatever the rigour of their
theory, it should be stressed that there is need of direct
experimental study in this work. It is necessary to gather practical
experience of real measurement problems both to further the study of
reference systems and 'for posterity'. The practical engineer or
metrologist is aided in his judgement of his own problems by being
able to call upon the experimental data of others. Those working in
standardisation should always be seeking to simplify procedures and
will, therefore, require information on which to judge whether, for
instance, there is significant advantage to be gained by retaining
alternative forms of analysis.

The discussions in chapter 7 make it clear that the quality of
the limacon as an estimator of the true circular reference depenaa
upon the particular geometry of a measurement. There is clearly a

need to discover experimentally whether the occurence of adverse
geometries is likely to be frequent. This will require that large
amounts of work are performed, preferably by many authorities. In
the next chapter the various studies that would be needed are
il~ustrated by some pilot experiments performed under various instru-
mental conditions with minimum circumscribing references. This
chapter will be concerned first to describe the experimental system
which was developed and then to examine the general performance of
the techniques proposed here.
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9.2 The Exnerimental System

The basic components of a roundness analysis system had been
developed prior to the start of the project described here in the

Research Department of Rank Taylor Hobson, Ltd. mainly by the author
and Kinsey (31). This consists of a modified Talyrond 73 (rotating
transducer) instrument connected on-line to a Hewlett Packard 2116c

computer with a moving-head disc operating system. The hardware
and software of the interface existed along with some least squares
limacon programs and programs for the other reference limacons using
the same algorithms as in the Talydata accessory supplied by the
company. These programs appeared to define the state-of-the-art at
that time as summarised in sections 5.1 and 6.1.

The only modification to the Talyrond which has significance to
this work is the attachment to the transducer carriage of an annular
disc containing 512 equi-angularly spaced holes which were read
photo-electrically to give the sampling positions for data-logging
the profile. This system was designed to give a very good repeata-
bility of position of samples relative to the spindle-axis. The

absolute positional accuracy of the sampler was not of over-riding
importance in its original application and was not tested for the
current work in which, again, repreatability of sampling is the main
requirement. The profile was taken from the instrument amplifier
out nut as a signal of ~lV, representing ~25mm on the chart whereas
the actual polar chart width of the instrument is 40mm. This was

passed to a standard Hewlett ~ackard 10 bit successive approximation
analogue to digital converter and thence to the computer, Other
digital interfaces automatically monitored the instrument magnifica-
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tion and other status lines. A~art from standard peri~herals the
computer had available an X-Y driven oscilloscope under program
control upon which profiles could be plotted and the ability to

draw profile and reference figures onto the polar chart of the
Talyrond. The computer was equipped with 16K words of 16 bit memory
of which about 11K was available to the user, the rest being con-
cerned with the operating system. Any program which could be run
on this eystem without needing direct use of the backing store for
either data or program overlay would thus be of a size sufficiently

small to be feasible for use in a 'stand-alone' measurement system.
The programming language normally adopted was FORTRAN IV and
generally single precision floating point arithmetic was used.

This consisted of a 24 bit mantissa and an 8 bit exponent to give a
precision of 6 to 7 decimal digits. Occasionally when absolute
radius was involved directly in the computation double precision was
used (giving 12 to 13 decimal digits), but with software floating
point procedures these operations are expensive in both time and
memory requirements and so were avoided whenever possible.

For the experiments needed in this study, the major requirement
is the ability to compare the behaviour of different methods under
identical conditions. A profile storage system is therefore required
since repeated on-line measurements are bound to show small fluctua-
tions. The data base constructed made direct use of the operating
system file structure. This has several disadvantages caused by the

relative crudeness of the operating system, for instance files
cannot be created or extended dynamically and no read/write security
can be operated. In the present circumstances these are not criti-

cally important for all roundness data files contain one revolution
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of information (512 points on this system) plus similar status data
and so all may be the same size • Additionally on a system to be

accessed by only one or two people, the creation of the files on a
removable disc cartridge used only for that purpose affords, with

care, reasonable security for short term experimentation. The com-
pensating advantage of this approach is that virtually the whole task
of the data transfer is handled by the 'executive' and the soft-
ware overhead to the user program is comparabl~ in size to that of
the on-line data-logging subroutine: both on-line and disc file
based versions of programs can be developed simultaneously. The data
files all consist of a continuous sequence of 512 16-bit words, each
containing one ten bit profile point and up to 128 words of other
relevant data including instrument magnification, the number of
data points (so enabling incomplete profiles to be handled) and an
alpha-numeric identifier of up to 72 characters length. Access to
the files is by write and read subroutines RQi<lRand RORE which have
calling sequences paralleling those of the data-logging routine.

Detailed description of all the programs developed for this
system will not be given but extracts from the listings of some of
the important programmes are given in Appendix 5, for illustration.
Also particular points in the implementation of the algorithms
are included in the discussion of the next section. As all were
written in the same language by the same person they should be

stylistically similar 50 that their relative performance will give
some guidance to the relative efficiency of the algorithms themselves.

A list, with brief descriptions, of the disc file programs used here
follows:
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RODD:
DENT:

DLS2:

DING:

DEVS:

DINM:

DIN2:

DRIC:

DRC2:

DIHA:

Data logging from Talyrond 73 to disc file
Least squares limacon, including arcs, found by the
'traditional' formulae

Least squares limacon, any data configuration, by
direct solution of equations 5.9
Ring limacon by exchange algorithm
Ring or plug limacon by exchange algorithm and data
inversion.

Ring or plug limacon by direct use of revised simplex
on the dual linear program
Version of DING allowing modification of data from
console for "sensitivity tests".
Ring limacon to 2nd order corrected data (see section

Finds and tests the circle constructed through the ring
limacon contact points

Interactive program, based upon DRIC, for finding the
ring circle

Minimum zone limacons by exchange algorithm
On-line revisions exist for some of these with names identical

apart from the first letter: VENT, RING, RIPL, REVS. MIMA. Program
VENT is a mOdified version of a program developed, by the author, in
1972/3.

9.) Algorithm Implementation and General Operating Experience

All the programs were designed to work with equi-angular samples
so that the profile data could be represented by simply the radial
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value (after radius suppression) with the angle of each point being
infered from its relative position in the data array. The only use
made of angular information in any of the algorithms under consider-
ation is in terms of either sine or cosine. This information was
picked up from a simple gine/cosine look-up table using the same
index variable used to recover the radial values from their array.
If gaps are to be allowed in the profile, the same sampling scheme
is followed but the radial points within gaps are set to an "impos-
sible" value which is to be checked for and ignored in the ensuing

calculation. This approach minimises the space needed for data
storage and speeds the access time for the frequently needed sine
and cosine values.

Implementation of both forms of least squares limacon programs
is perfectly straightforward, in neither case were any special pre-
cautions found necessary. They are similar in size, the heart of
DLS2 being a little shorter and less complicated than DENT but calling
upon a subroutine for the solution of simultaneous llnear equations
(a Choleski method was used). Calculation times for a full circle

of data were about three seconds for DENT and five for DL32. The
direct implementation is thus slightly larger and slightly slower
than the "traditional" method. It ls, however, much more general
allowing any distribution of data rather than a single arc. It also
has superior performance under some conditions, see section 5.4..

The ring llmacon exchange algorithm was given a special starting
procedure. The data ls initially searched for its largest diameter
(r (@i) + r(8i+7T» and the initial trial limacon taken to have centre
at the mid point of this diameter and radius equal to half of it.
The largest violation of the limacon by the profile then gives a third
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ocontact which is bound to obey the 180 rule and so the procedure
given in section 6.4 is entered. If there were no violating point
from this initial test, the procedure stops with a two point con-

tact whereas the general limacon solutions liOuld always search for
a third contact (see the discussion of section 6.2). This process
gives what might be regarded as the most logical solution, that of

diametral contacts, in the situations for which a range of valid
centre positions occurs. No special techniques were needed in the
im~lementation of the algorithm but some care is needed in deciding
whether a point violates the reference when using floating point
calculations. Arithmetic rounding errors tend to cause the iteration
procedure to oscillate about the final solution because of infini-
tesimal violations. This is easily overcome by comparing the diffe-
renee between data and reference not to zero but to a small finite
value larger than the rounding errors. A level of 0.1 of the data

quantisation interval was used in the present programs.
The direct implementation of revised simplex on the dual linear

program for ring limacon followed closely the standard methods but

gained some increased efficiency by not using general purpose linear
program subroutines. The solution was developed as code "in-line"
with the data and sine/cosine table addressing. Again the only pre-
caution needed was to protect against rounding errors causing oscil-
lations in the iterations: here a discrimination level of just 0.001
of a quantisation interval was adequate for this purpose. No special
start for finding potential diametral contacts was used. The itera-
tions were started by using artificial variables which were then to

be driven from the solution using the so-called Wagner method (see
section 6.2). This is not a particularly efficient way of starting
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this solution since the first fully feasible solution introduced on
driving out the artificials relates not to the data but to the geo-
metry of the measurement scheme. Instead of taking three iterations
over removing artificials an initial feasible solution could be

given to the program, in terms of a fixed basis, since in every
solution of this implementation the measurement scheme is the same.

As would be expected of a more highly specialised routine the
exchange algorithm version was rather smaller than the revised sim-
plex version (about 60 lines of FORTRAN as opposed to 80) and also

o?erated somewhat faster. Typically the exchange algorithm required

only about 4 iterations to discover the solution taking perhaps 7 or
8 seconds. Including removal of artificial variables, revised sim-
nlex required about six iterations taking a little more than ten
seconds. By using a. special starting method instead of artificials
variables. similar operating times would be expected from both methods.
The nature of the operations required for the exchange algorithm is
such that they are not performed efficiently in FORTRAN iMplementa-
tions. In ASSEHBLER language implementations a total exchange algo-
rithm can readily be produced which occupies only 200 to JOO words

of program. Since software floating paint operatiOns dominate the
operational time, the change to ASSEMBLER does not significantly

alter the operating speed, although with integer arithmetic a
noticeable speeding up would be expected.

The comments about the ring gauge exchange algorithm apply also
to the minimum zone exchange algorithm. An arbitrary start was
taken by using the points at 0°, 90°, 1800 and 270°, The solution
takes about 45 lines of FORTRAN and operates typically in 10 to 12
seconds. For comparison the previously existing program took about
80 seconds and even then could only converge onto the solution from
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much smaller initial eccentricities than could the exchange algorithm.

The exchange algorithm has similar storage requirements to the earlier
method. Again the use of ASSEMBLER improves the efficiency of imple-

menting the exchange algorithm. It seems quite feasible that routines
for all three boundary limacon references could be included in a
"package" of about 500 words plus storage for data and sine/cosine
tables.

Of the programs developed to study "improvements" to the ring
11macon little need be said since they follow exactly the theoretical

suggestions made earlier in this work. All use as their starting
point the exchange algorithm solution for ring limacon, that is the
end point of program DI1~. All also require an estimate of the true

workpiece radius to be supplied by the operator. Program DIN2
calculates the second order term of the circle power series expansion
based upon the eccentricity found for the limacon and subtracts this
from the data, which is then reprocessed by the normal limacon
exchange algorithm. This correction is calculated in single preci-
sion floating point since only division by the large radial value is
involved. ?rogram DRIC used the radius information to calculate the
circle passing through the defining contacts of the data with the
ring limacon. Here the radius is used intimately in the calculation
and double precision arithmetic is needed. From the centre SO

calculated a reference line which is the circle expansion truncated
after the second order term is compared to the data. This reference

is used rather than the true circle since it can be calculated in
single precision, with consequent savings, and has a precision ade-
quate for Use with the data and calculation performed elsewhere in
the program. 'rogram DRC2 is basically DRIC in which the operator
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can specify the points through which the circle should be fitted.
The program reports information on data points violating the refe-

rence and also on the relationship of the contacts to the centre in
oterms of the 180 rule. It is possible, therefore, for the operator

to iterate, making intuitive jumps if necessary, towards the true
ring circle fit.
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10. Roundness References in Practice

10.1 Limacon References

Based upon the computer system ~escribed in chapter 9. a series
of experiments have been performed to study the behaviour of round-
ness references under practical conditions. Generally these are
nilot experiments nerformed on a small scale and are intended firstly
to give an indication of reference behaviour and secondly to show the
ty:')eof investigation which it is believed should be carried out on
a large scale in order to build up a documented exnerience unon
which the relative merits of approximations may be judged. For most
of these experiments the ring gauge has been used because it gives
a unique solution for all the reference figures under consideration.
Some of the tests require data collected for specific conditions
and will be described independently but for others a more general
data base of "typical profiles" was ap?ropriate.

A set of 100 profiles were taken and stored in disc-files from
nominally circular objects which were readily to hand within the
Research and Develonment Department of Rank Taylor Hobson. It is
believed that these renresent a range typical of that for which
roundness instruments are most commonly used. The parts include
elements of roller and ball bearings, finished shafts and holes and
some plastic mouldings. Most commonly used materials are included.
The prof tIes were data-logged with instrument set-up according to

the following guideline. The workpiece was to be set such as to
allow the use of a magnification sufficiently large for the out-of-
roundness to be clearly visible on the chart, but beyond this require-
ment, no special care over centring was taken. In an attempt to
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FILE HAG' n SYSTEM RADIUS H RH,1G LIHACON
RESOLU- (mm) or 7l_V E r

'rION S

RDOOl 500 .1 6 S 11.32 2.37 .0003
RD002 5000 .01 9 S 6.18 2.9; .000;
RD003 5000 .01 36 S 5·15 1.82 .00005
RD007 5000 .01 44 S 6.09 0.19 .000004
RD010 10000 .005 22.5 s 1.52 0.18 .000008
RD013 500 .1 21 S 50.04 19.44 .00093
RD016 2000 .025 60 s 6.69 1.13 .00002
RD019 5000 .01 60 S 2.40 0.05 .000001
RD022 10000 .005 60 s 1.00 0.60 .00001
RD025 1000 .005 37.5 s 1.2; 0.17 .000005
RD028 10000 .005 12.5 s 0.74 0.15 .00001
RDO;2 500 .1 12·5 S 23.60 ].88 .000]
RDO]5 10000, .005 16.5 s 1.98 0.52 .00003
RDO;9 2000 .025 2 s 9.85 1.62 .0016
RD040 1000 .05 2 S 9.7] 18.63 .018
RD041 500 .1 2 S 9.28 44.65 .044
RD042 5000 .01 6.75 S 0.16 0.86 .0001
RD04) 5000 .01 4.5 H 1.05 0.8] .0002
RD044 5000 .01 4.5 H 1.19 0.79 .0002
RD045 5000 .01 6.75 S 2.44 1.26 .0002
RD046 5000 .01 6.75 S 1.70 2.10 .000]
RD047 5000 .01 4.5 M 1.81 2.47 .0005
RD048 5000 .01 6.75 S 1.47 1.52 .0002
RD049 5000 .01 4.5 H 2.46 1.79 .0004
RD050 5000 .01 4.5 H 1.52 1.)9 .000)
R0051 5000 .01 6.75 S 1.72 0·57 .00009
RD052 5000 .01 6.75 S 1.13 2.80 .0004
RD05) 5000 .01 4·5 H 1.)6 3·05 .0007
RD054 5000 .01 4.5 H 1.15 1.70 .0004
RD055 5000 .01 6.75 S 1.;3 1.8) .000)
RD056 5000 .01 6.75 S 2.25 1.42 .0002
RD057 5000 .01 4.5 H 1.86 1.09 .0002
RD058 5000 .01 8.6 H 1.22 1.65 .0002
RD059 5000 .01 12.0 S 1.80 1.88 .0002

TABLE 10.1: ~rofiles in data base. Dimensions in ~m except where
stated.



RD060 1000 .05 4.76 H 33·S3 11.6.5 .002
RD061 1000 .0.5 4.76 H 13.64 7.01 .001
RD062 .500 .1 4.76 H 44.S6 6.46 .001
RD063 1000 .05 4.76 H 42.9S 2.06 .0004
RD065 1000 .0.5 2·5 H 1.5.)9 5.61 .002
RD066 1000 .05 4.37 H 20.64 7.47 .0017
RD067 1000 .0.5 4.37 H 31.82 6.28 .0015
RD068 .5000 .01 6.3.5 H 3.29 2.02 .000)
RD069 .5000 .01 2.)8 H 2.07 0.73 .0003
RD070 .5000 .01 2.)8 H 2.27 0.46 .0002
RnO?l 500 .1 4.1 H 40.24 4.46 .001
ROan 2000 .025 6·35 H 4.64 4.S9 .OOOS
ROO?3 5000 .01 1 S 4.0.5 0.23 .0002
RD076 .5000 .01 2·5 S 2.4.5 0.73 .000)
RD079 5000 .01 22 S 0.71 1.75 .oooos
RDOSO 5000 .01 22 S 0.58 2.09 .0001
RDOSl 1000 .05 17·5 s 20.01 ).97 .0002
RD082 .5000 .01 17.5 S 4.00 1.31 .00008
R008) 500 .1 14.5 H 40.S5 11.46 .OOOS
R0084 2000 .02.5 3.9 H 5.58 2..50 .0006
RD085 2000 .025 ).9 H 4.84 4.21 .001
RD087 2000 .025 12.1.5 s 10.21 6.44 .0005
RD088 5000 .01 11 S 6.28 1.75 .0002
RD089 2000 .025 12.15 s 5·48 ).61 .003
RD090 2000 .025 12 H 10.99 4.21 .0004
R0091 2000 .025 15 s 6.11 ).23 .0002
R0092 20000 .0025 4 s 1.48 0.27 .00007
R009) 20000 .0025 4 s 1.29 0.25 .00006
RD094 20000 .0025 4 s 0.22 0.46 .0001
RD095 5000 .01 12 S 3.5 2.75 .0002
RD096 5000 .01 12 S )·30 ).1) .000)
RD097 2000 .025 12 s 7.29 ).40 .0003
R0098 500 .1 6.2.5 S 85.4) 1.5•.58 .0024
RD099 2000 .025 1.5 s 11.64 1.)8 .0009

TABLE 10,1: (continued)



RDI00 10000 .005 2.25 s 3.86 0.56 .0002
RDI0l 10000 .005 2.25 s 2.l~6 0.20 .00009
RDl02 5000 .01 12 S 4.42 2.90 .00002
RDl03 20000 .0025 12.7 ,., 0.19 0.98 .00008.:.l

RDl04 5000 .01 2.38 S 5.32 2.37 .001
RDl05 5000 .01 3.18 S 4.38 1.26 .0004
RDI06 5000 .01 3.98 S 7.05 3·73 .001
RDI07 5000 .01 3.98 S 6.73 1.75 .0001",

RDI08 5000 .01 4.75 S 2.22 3·73 .0008
RDl09 5000 .01 3 S ).71 1.81 .0006
RD110 5000 .01 :3 S .5.58 1.11 .0004
RDl11 5000 .01 3 S 1.98 3·15 .001
RD112 5000 .01 3 3 3·.57 3·30 .001
RD113 5000 .01 3 S 3·.54 3·10 .001
RD114 .5000 .01 3 S 3.62 0.91 .0003
Rnl15 2000 .025 5.6 s 10.67 8.60 .0015
RD116 5000 .01 5.6 S 2.58 0.73 .0001
RDl17 5000 .01 .5.6 S 4.44 0.99 .0002
RD119 5000 .01 3 S 3.18 1.84 .0006
RD120 5000 .01 4.75 S 7..53 1.40 .0003
RD121 .5000 .01 2.75 S 4.96 0•.57 .0002
RD122 5000 .01 2.75 S .5.58 0.90 .0003
RD12J 5000 .01 4.75 S 6.08 0.64 .0001
RD124 5000 .01 4.75 S 9.18 4.51 .001
RD125 2000 •025 J.85 II 9.77 J.13 .0008
RD126 2000 .025 3.8.5 H 9.7.5 0.85 .0002
RD127 2000 .025 3.85 H 9.79 2.31 .0006
RD128 5000 .01 3.15 H 5.45 0.22 .00007
RD129 10000 .00.5 5·5 H 3·40 0.69 .0001
RD130 10000 .005 5·5 H 1.94 1.81 .0003
RDl31 10000 .005 6.25 H 4.08 0.29 .00005
RDlJ2 5000 .01 2.25 H 4.16 1.75 .0008

TABLE 10.1: (continued)



avoid bias, these measurments were not performed by the author.
Table 101 gives a brief summary of the most im~ortant measurement
conditions for this set, using minimum circumscribing limacons to
assess eccentricity and out-of-roundness. Radii between 5mm and
100mm were measured and magnifications in the range 500 to 20000
used. The majority of parts had out-of-roundness values between
1~m and 10~m, which represents, perhaps, the most common range of

use of roundness instruments. About one third of the profiles were
from holes.

Other workers have re~orted comparisons of results from
applying different reference circles to the same polar charts (see,
for examryle, references J and 8). A natural experi~ent to perform
is thus a similar comparison of the current data base using limacon
references. This was performed using programs DENT, DITIL and DIMA
The results were summarised in the same method as that used by the
other workers: out-of-roundness is expressed in terms of the ratio
of that for the reference being studied to the minimum zone value
and variations between eccentricities of different references norma-
lised as the difference of the centre from the minimum zone centre
divided by the zone width. Figures 10.t, 10.2 and la.) show histo-
grams of the distribution of the values SO obtained with least squares,
minimum circumscribing and maximum inscribing limacons relative to
that minimum zone limacon. The general form of the histograms agrees
quite well with the results quoted by others.

It appears that there is a distinct tendency for the least
squares and minimum zone limacons to have separate identities,
although large differences are to be expected only rarely. On
average the least squares out-of-roundness is about t07~more than
the minimum zone. The apparent tendency for there to be a 0.1 zone
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width separation of the centres does not have an obvious explanation.
Both the ring and plug limacons are more likely to give values close
to the minimum zone although the greater spread of results causes

mean differences higher than those found with least squares. The
parameters of the plug limacon seem to correlate with minimum zone

rather less than do the other references. Again there is no clear

evidence why this should be so. There was, for instance, no particu-
lar tendency for inscribing and minimum zone to agr~e on holes and
circumscribing to agree with minimum zone on shafts. However the
preponderance of shafts in the data base could be a contributor to
the Observed behaviour. The sensitivity of plug gauge to a single
scratch on a shaft could be cited, for example.

10.2 Ring Limacons and Circles

By using programs DING, DIN2, DRIC and DRC2 it is possible to
investigate in some detail the behaviour of circumscribing references
over the set of typical profiles contained in the data base. The

standard comparison of references should be to the ring circle
fitted in instrument co-ordinates. This may be found using the
interactive iterative procedure in DRC2 based upon an estimate (or
nominal value) of the true radius. The first concern therefore is
the sensitivity of this solution to the radius estimate supplied.

A check on sensitivity was performed by testing a com~onent with
nominally reneated measurement tracks for well centred and quite
eccentric conditions for parameter variation when different radius

values were given to DnC2. The part chosen had a nominal radius of
12mm and a.nout-of-roundness of about J)'1m. It was measured at x500
magnification. HUh the centred profile (residual eccentricity about

1)0



7)Am) no oa'ramete'r change of even 0.1 of a quantisation level Has

detected when using radius estimates of IJmm, 12mm, llmm and 5mm!
~f1th an eccentricity of about 45 I'm the same behaviour was found I
a little more variation occured with the estimate of 5mm, the worst

change beingO.5 of the quantisation interval. On the eccentric
data an additional check using a radius estimate of 25mm was per-

formed and again no variation greater than 0.2 quantisation levels
was found. Since radial estimates to better than ~lmm are easily
obtained no difficulties from sensitivity are anticipated.

The use of program DRIC identifies whether the circle through
the ring limacons contact points is indeed the ring circle. From
the 100 profiles there were 15 cases in which violations of the

circle by the data were reported. However in 8 cases this was
merely arithmetic rounding error, the violating point being one of
the contacts. The most serious violation was by an amount of one
sixteenth of a quant Laat.Lon interval. For the seven caaes where
violating points really existed just a single iteration in program
DRC2 yielded the true ring circle. On one profile this resulted in

a change of parameter value of 0.02~m, on two others changes of
0.01~m were found and on the others no change (at the level of O.Ol~m)
was found.

Using a slightly reduced set of profiles (94 from the data base)
the variation of centre position for ring limacons and circles was
examined. Comparisons were performed on eccentricity (A and B) values
rounded to O.Ol;Mm. In 70 cases there were no differences then

detected between the centre of the limacon and the centre of the
circle through the limacon contacts. In all other cases the differ-

e ncea W'ere of O.Ol.rm (only once did the error occur in both axes for

the same profile). Thus in no case was a difference which could be
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regarded as significant obtained. For the seven profiles for which
the ring circle was distinct from the circle through the contacts
the true ring circle again had a centre indistinguishably close to
the limacon centre except in one case. For this one profile (RD108)
a difference of slightly more than O.02~m was found which is
possibly just significant. It is still a difference of less than lf~

of the eccentricity value.
It ls fair to conclUde that, since these figures are small com-

pared to typical roundness instrument performance specification, in

instrument co-ordinates, the ring limacon adequately estimates the
ring circle under normal measurement conditions. The use of refine-

ments such as the second order data correction of program DIN2 are
clearly superfluous here. Note that the eccentricity ratio (see
Table 10.1) rarely exceeds 0.001 in this set of profiles.

The suite of programs may also be used to study typical cases
of fitting reference figures on the polar chart. This is done by
specifying not the true radius but a value of 50mm divided by the
magnification. The program still operates in "instrument co-ordinates"
but the false conditions it has been given make this equivalent to
a chart co-ordinate frame in which a nominal chart radius of 50mm
is used. Operating program DRIC in this manner reveals that on 25
profiles violations of the circle through the limacon contact points
were found. Of these only one was attributable to arithmetic error

and 23 have violations larger than the quantisation interval. On
other profiles, program DRC2 indicated that although the circle
through the contacts circumscribed the profile, those contacts did

not obey the 1300 rule with respect to its centre. The whole set
of profiles were therefore checked and attempts made to iterate

132



them using DRC2 with the following results. In 41 cases out of the

100 the limacon contact points did not define the minimum circum-
scribing circle on the chart. Of these, in 29 cases the points dis-
obeyed the 1800 rule and in 24 the circle did not circumscribe the

data. More ominous was the fact that on 15 occasions the attempt to
iterate to the ring circle was abandonned in frustration. On at
least a few occasions this appeared to be caused by the presence of
diamteral contacts to the ring circle, a case difficult to include
within the iterative procdure being adopted. It seems fair to
observe, however, that since the author has a considerable background
in the theory underlying the process, if he failed to make progress,
then most operators might be similarly frustrated.

Since in instrument CO-Ordinates there was never a significant
difference between limacon and circle, the limacon fitted onto the
chart profile is the figure representing the truly desired reference.
Thus the results just quoted can be rephrased as: in 41% of the

tests the minimum circumscribing circle to the chart profile dld
not represent the ring gauge circle to the component. This diver-

gence is a reflection of the much higher eccentricity ratios which
occur on the chart. Of the 100 profiles, 99 had a chart eccentricity
ratio greater than 0.01, 61 were greater than 0.1 and 24 exceeded
0.2. Reason's recommendations for the control of centring error
based On chart eccentricity ratios of 15J~ or ?% for high accuracy
work (3) were exceeded on 42 and 78 occasions respectively. It is
clear that these criteria are much more severe than is necessary to

control errors when using limacon references. They are once more
confirmed ~s being about right for controlling the fitting of circles

on the chart. ~urther it is seen that quite commonly the operator
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will accept as "not too bad" a degree of eccentricity which is not
adequate for using circles on the chart.

This experiment involving measurement of contact positions led
to two other ~ieces of information which may be of interest. In
figure 10.4 is shown the relative occurrence of the angles subtended
at the origin by the ring limacon contact points grouped according

to the largest, smallest and intermediate angles occurring for each
profile. These results are taken over a subset of the data base

using the last 84 profiles from table 10.1. Some of the features

are caused by the form of grouping the smallest angle must be less
° 0 (than 120 and the largest greater than that but less than 180 from

the 1800 rule!). The intermediate angle is similarly constrained to

always exceed 90°. Two features stand out. Firstly there is a very
good probablity that a measurement will yield a contact angle not
mUch less than 1800 while there is a significant but lesser chance
of getting a very small angle. It is however more likely that a small
angle will be close to zero than of the order of 200. This would
seem to indicate a tendency towards there being nearly diametral

contacts on many occasions with the limacons third contact being
found with reasonably even likelihood around the periphery. The set
of profiles contains many having an important oval component although
not often does ovality alone dominate the measurement. The second
remarkable feature is the near absence of largest and smallest
angles near to 1200• The occurrence of three more or less equally
spaced contacts seems to be quite rare in practice. Just one profile
showed almost equal angles. no other having a variation of less than
100 between the contact angles.

Jince all the collected profiles come from independently set up
1)4
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measurements the direction of eccentricity would be expected to be
random. In practice this is only partly bourne out. In the pro-
files of this data base there appeared to be a rather low occur-
rence of eccentricities in the direction towards the rear of the
instrument, particularly so in the second quadrant. More evidence
would be needed to show whether this variation is statistically
important. If so it appears that the explanation lies in the be-
haviour of the operator rather than the instrument as such, perhaps

by tending to uae the controls in a particular sequence when centring.
This was not investigated here as it does not seem to be relevant,

but there may be experiments in which such an unexpected source of
systematic error could be important.

10·3 nrofiles Under Differi~~ Eccentricities

In the previous section results concerned the general behaviour
of profiles from many work,ieces each measured under conditions
judged to be reasonable. An alternative study is to consider what
happens with profiles taken from the same workpiece ~t different
eccentricities. If only the eccentricity is adjusted between a
series of measurements the profiles will be nominally from the same
track around the workpiece. Comparison of these profiles is a test
of the complete measurement system, not just of that part concerned
with establishing reference figures.

Measurements were made on eight workpieces of various roundness

quality: six lying in the most common range of use, about 1 to 7~m
neak to valley, the other two being much more extreme with out-of-

roundness of about 25;-un and 50.f"m. Each was measured "well centred"
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on the highest appropriate instrument magnification and then at two,
or sometimes three, stages of decentring using lower magnifications

as necessary. "l;Tellcentred" is a term having considerable vagueness:
in practice it ranges from a fraction of a ~m on the very round parts
to a few r on the "worst" profiles. Certainly a figure of the
order of 1fAm is being considered. The largest eccentricity in
each set was also not epecdf'Led closely. Using programs DI!~G, DIN2
and DRIC each set was analysed for variability of ring gauge reference

figure. The largest eccentricity ratio in the set is 0.0033 sa all
readings fit within the compass of those for which limacon mOdels
are considered good. Only the well centred profiles satisfy the
circle on chart criteria based on chart eccentricity. As with much
work of this type the full results obtained consist of tables of
nearly identical numbers which are difficult to assimilate and
virtually impossible to summarise graphically. The figures will

not be given here. Using ring gauge references based upon the lima-
con, the limacon fit to 2nd order corrected data and the circle through
the limacon contacts, the parameters and out-of-roundness measured

for each individual profile never varied by as much as the quanti-
sation interval. On just one occasion, that with the largest eccen-
tricity ratio, the second order correction caused a single change of
contact point. The circle through the contact points was never vio-
lated by more than a fraction of a quantisation interval. These
results do little more than add weight to the conclusions of the
previous section concerning the adequacy of the limacon approximation.

Of the eight sets, there were two for which changes of peak to

vallAY greater than 20% were found over the range of eccAntricities.
Other changes were not more than 5% and sometimes totally absent.
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In five cases the orientation of the contact points varied markedly
as the eccentricity was altered. There were also minor alterations
such as a contact moving from one sample position to an adjacent
one. Some of these changes are undoubtedly due to slight variations
in the nominally repeated profiles: the orientation of a surface

feature to the origin l-rillvary with the eccentricity. The grosser

effects Observed are not likely to be caused just by these variations.
Given the consistency of the reference fits the measurements can

be taken as genuine reflection of changes in the true ring gauge
out-of-roundness. The instrument has 'seen' different profiles on
different runs. It is probably significant that the largest effects
are observed on nrofiles having a "spiky' nature.

Although the tests just described give some indications of
the effects of eccentricity as they might occur in practice, the

number of inaccurately known variables in the instrumental system
make it very difficult to do more than a qualitative comparison.
As a particular example, there is no accurate check on whether the
eccentricity measured corresponds to that of the workpieces. A
better test is to arrange an independent method of placing the
component at different points within the working range of the in-
strument while leaving the instrument itself undisturbed throughout
a series of measurements. In case there might be a favourable
direction of eccentricity for the system, a scheme in which the
component is moved to all positions over a regular matrix covering
the working,range is appropriate. The only results available for
reporting here from such an experiment relate to a pilot scheme
intenderl.or:t~j_nallyjust as a means of testing the concepts and
mechanics of the experimental procedure. A very crude movement
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device based on the standard instrument accessories was used to

generate the matrix of oositions: a more kinematic system should
be used iruIa full ex-periment of this type. The Talyrond 73 centring
and levelling table gives a small flat worktable which can be set

very precisely perpendicular to the spindle axis by using the
instrument itself with a right-angled attachment to its transducer
and which can therefore be used as a reference plane for moving the
testpiece. oThis table also has a shallow plate with a 90 V and a
spring plunger assembly running in a T-slot for locating a workpiece.
With the V-ulate locked in one position the workpiece could be moved
by packing the edges of the V with slip gauges. It is necessary to
preserve the angular orientation of the test piece with respect

to the spindle and so it was not mounted directly onto the worktable.

Instead a glass target from an alignment telescope system was used
as a carrier. This component is a glass disc about 18mn thick
having two flat, parallel faces so that it may be slid across the
worktable and its top face remain perpendicular to the spindle. Its
other feature consists of two location flats on its edges which are

o90 apart and which give a natural lock to the orientation of the
disc when used to bear against the slip gauges. The arrangement is
shown schematically in figure 10.5. For these first tests no physical
constraint was placed on the positioning of the slip gauges along
the sides of the V-plate. Pencil marks were used as a guide to
avoid gross errors. The test piece was mounted on the glass flat and

secured with plasticine. HUh the combinations of slip gauges

corresponding to the centre of the matrix of positions being checked,
the instrurnent lias set to give a well centred profile. A magnifica-

tion suitable for handling the largest eccentricity of the set was
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then selected after which no further adjustment of the instrument
controls was made throughout the sequence of tests. A matrix giving

25 positions being all combinations of O,!12.7 and !25.4 ~~ in bJth

x and y directions was tested (Imperial gauges were being used). Two
distinct groups of slip gauges were used to generate the x and y

steps and the combinations were selected to give minimum errors

according to their calibration certificate. (In fact their accuracy
is so much superior to that of the ex~erimental relocation that this

finesse was hardly necessary). The experimental order started with
the measurement at both x and y eccentricities of +25 )1m and then
proce~ded, varying x more rapidly, in a zig-zag pattern to finish
at -25;Vm in both cases.

An independent test was made of the relocation repeatability
which could be expected. On repeated runs of the same profile
without disturbing the system in between a variation of about to.02~m
was obtained on the centre position. Removing and replacing the same
slip gauges between runs degraded this repeatability. \iithout using

even ~encil marks to guide the relocation a set of seven repeats
caused a total spread in centre position of 2.5 )Am in the y-direction
but about 6)Am in the x-direction. If!th care and the use of guide
marks repeatability was generally within tl~m.

The test piece was the ground edge (not the bearing track) of
a ball race inner having a radius of 12mm. The magnification used
was x500, giving a resolution of about O.l~m in the profile data.
The 25 profiles selected .fore measured against all four reference
limacons. The behaviour of all four was remarkably similar and

so only the rln.:;gauGe, for which other information was also collected,
will be discussed here. Table 10.2 shows the centre positions, rela-
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Centre positions relative to middle test
"forMINIMUM CIRCUMSCRIBING LTI1ACON

-4Matrix points should be nominal 5.10 ins = 12.7~m
Talyrond magnification = 500, resolution 0.11' m

Values in ,,)-Am

05 04 03 02 01

-17.91 -7.91 2·53 15.51 30.64
22.26 22.56 22.04 21.40 21.56

06 07 08 09 10

-17.62 -7.06 5·91 17.67 29.77
8.28 10.43 11.34 11.36 11.38

15 14 13 12 11

-20.75 -12.21 A = 0 14.50 29.39
0.83 0.60 B = 0 -0.45 -1.23

16 17 18 19 20

-20.55 -9.51 0.24 12.81 25.98
-11.33 -11.27 -16.35 -14.90 -1).10

25 24 23 22 21

-22.48 -10.38 2·38 14.51 27.32
-21.57 -21.59 -21.87 -22.55 -23.11

-19.86
2.06

28.68
1.91

-9.41
2.03

2.21
2.)8

Table 10.2 Matrix Experiment

21.96
0.48

10.56
1.34

-0.05
0.8)

-13.39
2.23

-22.14
0.67
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Matrix Experiment

Peak to Valley out-of-roundness relative to ring limacon (upper
figure) and ring circle (lower figure). All values in ~m.

Table 10.~



tive to the middle obtained, in a layout representing the position
of the result within the matrix of measurements. Also shown are the
mean and standard deviations of the 'constant' term along each rank
and file. The standard deviations show again a poorer repeatability
in the x direction than in y. In the y direction the repeatability

is generally of the order of ~1~m as expected. Table 10.3 gives
in similar layout the peak to valley out-of-roundness relative to

the ring limacon and the circle through its contact points (here

taken as the ring circle). There is very little variation either
between positions or between references. Note that the standard
deviation of the whole set with either reference is very close to
the quantisation interlal. Confirmation that the spread could be
caused by the 1-bit uncertainty of data logging was made by means
of a sensitivity analysis using program DIlli1. Using profiles from
this set variations greater than the total spread of peak to valley
occuring in the experiment, could be obtained by i-bit changes to
the amplitude of the contact points. The contacts on the testpiece

owere well spread: the two smaller enclosed angles being about 85 a
oand 120. Other than switching between the contact actually being

registered on one of adjacent samples, they did not vary in position
throughout the whole set.

The rather large variations from the expected centre positions
were further analysed in an attempt to discover their cause. Using
the x-ordinates a least squares plane fit was performed and the
hyPothesis that this plane had linear relationship with x and no y
or constant terms tested by means of the Student-t.. This
showed th8.t the variations from expected values were not statiotically
significant and so are probably attributable to experimental
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inaccuracies rather than specific trends. However taking the ordi-
nates in the measurement order there is some evidence of serial
correlation. The numbers are rather smaller than would be desired,
but if a zero crossing test is accepted serial correlation is signi-
ficant at the 99J~ confidence Umi t. This casts a 11ttle doubt Over
the analysis.

Overall this experiment serves only to confirm that the algo-
rithms are better than the physical experimental method. It would
certainly be of interest to do further work along the lines of this

test using a more accurate procedure but the impression is that the
limacon references will not be tested "to destruction" by normal
instrumental techniques.

10.4 Measurements at Large Eccentricity Ratios

One set of conditions where current, conventional instrumenta-
tion can supply high eccentricity ratios in instrument co-ordinates
is when near maximum amounts of eccentricity occur on very small

parts. This area of measurement may have some im~ortance in the
future since the trend towards miniaturisation could call for the
automatic or semi-automatic measurement of small components which
are difficult to handle and place precisely. By equipping the
Talyrond with a special small stylus (made from a sapphire gramophone
pick-up) it was possible to track repeatably around pins of radius

about 0.5mm at eccentricities of more than 150JAm. Instrument cO-
Ordinates eccentricity ratios of greater than 0.) were obtained.

These readings licm taken with a magnification of x100 which shows

practically the behaviour pattern discussed in section ).2 and figure



'+
True Reference A ;;m B _)Jm TJ_V _)Jm

Radius
0.432mm 1 148 ..5 -40.6 28.9

12 1.50.6 -4.5.4 16.1
"d'= 0.34 CL 149.2 -34.0 +8.2, -15.7

Cl 145.2 -34.8 22·5
CC 147.0 -36.4 19.9

O ..508mm L 162.4 49.1 28 ..5
L2 162.0 47.3 9.1

y= 0.33 CL 162.7 48.2 +4·5. -3·6
Cl 160.3 46.1 10.8
CC 160.0 46.3 11.1

0.517mm L 169.7 11.4 34.1
L2 168.2 6.3 6.8

r = 0.33 CL 169.7 8.1 +3.8, -5.2
Cl 168.7 5.8 5·9
cc 168.5 5.6 6.6

1.753mm L 1.5.5.0 -79.2 9.8
12 1,54.8 -79.2 2.1

y= 0.10 CL 15.5·0 -79.2 +0 ..5. -1.5
Cl 1.54.8 -79.2 2.1
CC 147.3 -7.5.9 28.2

.!f. where a reference circle is violated, "eak and Valley are given
separately

TABLE 10.4: Ring Gauge at High Eccentricity, low Radius. See text
for abbreviations.



3.2. With a 50mm chart radius the profiles are not radius suppressed
on the chart. Table 10.4 shows the data obtained from three pins of
about O.5mm radius and one rather larger part for comparison using
the various ring reference criteria discussed throughout this work.
In the table the following abbreviations are used: L limacon;
L2 limacon on 2nd order 'corrected' data, program DIN2; CL circle

through limacon contacts, program DRIC; Cl and CC ring circles in
instrument and chart co-ordinates respectively, program DRC2. The

quantisation interval for these results is about 0.5~m.
Taking always the circle in instrument co-ordinates as the true

measurement it is immediately obvious that the limacon model has
broken down. The ueak to valley is always much too large and the
circle through its contacts is consistently violated by the profile.
Generally the second order correction works well. However on parts
of about 0.5mm radius the circle on the chart gives the nearest value
for out-of-roundness. On the larger radius part, however, the chart
circle has become a very poor reference while with the slight reduc-

tion of eccentricity ratio the second order correction is virtually
exact. An interesting feature of these readings is the remarka'ole

similarity of the eccentricity of all the references: even when
giVing wildly inaccurate peak to valley readings the divergence of
centres is hardly significant.

This demonstration is very encouraging for future development
in roundness measurement. It has been demonstrated that the data
"correction" approach is a sound practical weapon for use when the

limacon reference alone ceases to be sufficiently accurate.
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11. The Assessment of Circular Cylinders

11.1 Cylindricity Measurement

Although the term "cylindricity' is quite widely used and em-
bodies a generally recognised concept, namely how does the surface
of a workpiece vary from a perfect cylinder, there is no generally
accepted specific definition. There is no metrology standardisa-

tion on cylinder measurement although codes of drawing office prac-
tice define methods of tolerancing deviations from cylindrici ty by
insisting that the real surface lies between two co-axial perfect

\

cylinders. This agrees with the definition given by Reason(14) who
states that cylindricityerrors are conceived as lying between two
co-axial cylinders, figure 11.1. The exact nature of these cylin-

ders with respect to the profile is not stated but the context
suggests that they might obey a minimum zone or possibly least
squares relationship to it. This is consistent with the generally
prevailing view that cylindricity is measured as an extension of
roundness and so the same analytical methods are to be expected.
This method has more relevance than normal tolerancing approaches
based upon totally predefined ideal forms if, ~ seems likely in
practice, cylindricity is to be measured on radius suppressing
instruments.

There has been, in virtually all work on cylindricity measure-
ment, an inherent assumption that roundness instruments having a
straight datum parallel to their spindle axes would be used and

this has greatly influenced the approach to the analysis. It builds
directly upon the methods and assumptions of roundness analysis

without expressing any concern regarding the validity of doing so.
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FIGURE 11.1: Commonly Accepted Definition of Cylindricity



Although the ANSI roundness standard(l) does not discuss cylin-
dricity it does observe that the axis of a workpiece is defined by

the centres of reference circles at a series of cross-sections and
that, therefore, different axes are to be expected according to which
reference criterion is used. It does not recommend a method for

assessing the lack of straightness of this axis. This type of mea-
surement for axial straightness bears only an indirect relationship
to cylindricity and it is important that their separate identities

be recognised. An axial straightness measurement can give out-of-
roundness information at each cross-section but cannot assess an
overul "out-of-cylindrical" value by direct means. A cylindrici ty
measurement would create an overall reference cylinder from which
"out-of-cylindricu" information may be directly taken and will
specify a direction for the best fit straight axis but does not give

an immediate summary of, for instance, the axial straightness. The
complete description of the error of form of a cylinder will there-
fore require both of these analyses to be applied, that is both

overall and cross-sectional references seem to be necessary. Further
evidence for there being a fair degree of independence between these

measurements comes, for instance, from Lotmar's work (15) measuring
the radial variation along a ring gauge, at the expense of losing
all information about the axis, on a roundness instrument not equipped
for cylindrical measurement.

One proposed method for defining cylindricity which does not
rely, at least at first sight, on the usual reference figures is

due to Iizuka and Goto (16, 17) when a deformed cylinder is described
in terms of an axis consisting of orthogonal polynomials in z and
cross-sections of constant z are described as Fourier series using

r and <9 ; r, B , z being a cylindrical co-ordinate system. It seems
that this method was first adopted more to demonstrate the use of
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least-squares by which the parameters can be found than for metro-
logical reasons but it is a method of describing the surface of

which more use could probably be made. Harmonic analysis in round-

ness measurement has been variously proposed, see, for example (J2)
a.n:l (33) and the extension to a polynomial axis seems natural. It
1s, however, still restricted by the need to interpret part of the
"profile error' as caused by residual misalignment of the workpiece
to the instrument co-ordiriate system. To do this they allow that
the first harmonic of each cross-section and the linear polynomial
along the axis are wholly, and the only, terms caused by misalign-
ment. Thus the l1macon approximation is being applied at each cross-

section to account for eccentricity there and the least squares
straight line through the centres of these limacons is taken as the
tilt error between workpiece and instrument.

Other workers have implicitly assumed the use of a "reference
cylinder' which is in fact a limacon on each cross-section perpen-
dicular to the z-axis with the centres of these limacons lying on a

straight line. This is true even of methods which do not actually
measure such cross-sections, such as schemes using a helical trace
around the workpiece (18). Virtually all reported work is concerned
with least squares methods. One partial exception ls an attempt to
discover the minimum zone cylinders (11) from the least squares
solution. A search method is given but considered to be too ineffi-

cient and an alternative is proposed which uses a weighted least

squares approach in which the weights relate to the residuals of an
unweighted least squares solution so that the major peaks and valleys

are emphasised. This method is of course an estimation of the min1-

IIlUII zone cylinders rather than a solution. It still relies upon the
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validity of the limacon approximation at every cross-section.

Here the measurement of cylindricity will be examined from the
viewpoint that it will be required to produce extensions of the

roundness standards and the methods are required for the solution

of least squares, minimum zone, minimum circumscribing and maxi-
mum inscribing cylinders in instrument co-ordinates. The methods

and philosophy used are similar to those adopted here for round-

ness analysis and given detailed treatment in earlier chapters:
the cylinder analysis given will be brief.

11.2 Reference Figures for Cylinder Measurement

None of the literature describing work on the measurement of
cylinders makes use of cylindrical reference figures. Nearly always
the same implicit assumption is made, namely that the cross-sectional

shape in a given plane is unaltered as the workpiece alignment is
altered. The reason for this constancy of approach probably arises
from the nature of the instruments used in the measurement. In effect

they produce profiles representing sections of a cylinder on planes
perpendicular to the z-axis of the instrument co-ordinate frame.
The cylinder is represented by a series of circles of the same
radius placed perpendicular to the z-axis and having their centres
lying on a straight line. In practice these circles are almost
inevitably approximated by limacons. As the distinction of these

different forms can be of some importance, a distinct terminology
will be adopted here. "Cylinder" will be reserved strictly for
describing a figure in which all cross-sections perpendicular to its

axis are identical with respect to that axis. Unless specifically
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stated otherwise a right circular cylinder is implied. Other

cylinder-like figures which do, however, have a different geometry
wUl be called ..cyUndroids" • Distinction is also made between
"tilt" in which all points of a figure are rotated by the same
amount relative to the co-ordinate system and "skew' in which the
axis of the figure is so rotated but the cross-sections remain para-
11el to their original positions. Figure 11.2 illustrates the

difference between these by showing a tilted cylinder and a skew
circular cylindroid. A skew circular cylindroid may also be des-
cr1bed as a scalene cylinder, the former notation being preferred

here because of it is more descriptive of the physical situation
being studied. In the case of a cylindroid,shape ls described in
terms of the cross-section parallel to the unskewed axis. The

reference figure used commonly in cylinder measurement is then a
skew limacon cylindroid. It should be noted that since the axis is
skewed, the eccentricity at different heights will vary and so the
skew limacon cylindroid does not have a constant cross-sectional
shape. It does have constant geometrical properties on its cross-
sections.

An investigation of reference figures suitable for measuring
cylindricity must start from a statement of the form of a true

cylinder oriented arbitrarily in the space described by a set of
instrument co-ordinates. The circular cylindrical surface is defined
b.y the property that all its points have the same perpendicular

distance (radius) from a straight l1ne (the axis). This is con-
veniently desc~ibed using direction cosines and a vector notation.
The axis is fully defined by a set of direction cosines 11 and a
POint .fo through which it passes. The perpendicular distance of a
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FIGURE 11.2: Comparison of a) Tilted Circular Cylinder

and b) Skewed Circular Cylindroid



general point f from this line is given by:

p = I f - fa I sintX 11.1

where ex is the. angle between the axis and the line joining f to fa.
The direction cosines 1of this joining line.w1ll be:

1 = x - X-0 11.2

and the angle ex is then found.:

cos or = 11.;

Substituting equations 11.2 and 11.; into 11.1 and working, for
2convenience, with p since p is a scalar length gives:

To define the cylinder, all points having p = Ro are required, so
a complete description is:

11.4

Where I; is the ;-square identity matrix.
Within the context of normal cylindricity measurement, a less

generally applicable description of the cylinder can be used to give
a better 'feel' to the parameters describing it. Also experience of
twO-dimensional roundness measurement shows the type of operations
likely to be needed on the reference (for example, linearisations)
and the forms of parametrisation which are convenient to handle. It
may be assumed that the axis of a cylinder being measured will not

be far misaligned from the instrument Z-axis (that is the axis of the
instrument spindle) and so its description in terms of deviation
from that axis has advantages. In a direct parallel with the
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descri~tion of eecentricity, cartesian components of these deviations
are used. The intersection of the axis with the Z = 0 plane will be

at (Ao' Bo) and the slopes from the Z-axis of the projections of the
cylinder axis into the XZ- and YZ-planes will be Al and BI• Any
point on the axis is then defined by the co-ordinates (Ao + AIZ,
Ba + BiZ, Z). The slopes A1 and BI relate simply to the direction
cosines so that:

and On multiplying out equation 11.4 gives:

Ra = 1 1 [(X-Ao)2(1+B~) + (Y-Bo)2(1+A~) + Z2(Ai+B~)
(l+A~+Bi)a 11.:j

1

-2(X-Ao)(Y-Bo)A1B1 - 2(X-Ao)A1Z - 2(Y-Bo)B1Z ] 2;

The conversion of equation 11., from cartesian to cylindrical polar
co-ordinates gives the equation of a tilted cylinder as:

+ (Bo + B~ + BoAi - AoA1B~)Sine J
+ (B1cos'e - Aisine)

11.6

In this form both the similarity to and the differences from the
simple eccentric circle, equation ).6, can be seen. The cross-
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section in a plane of constant Z is an ellipse with minor seml-
2 2 idiameter Ro and major semi-d1ameter Ro(t + At + B1) , 1ts major axIs

having the same direction as the cylinder axia projected into tho Xl
plane. The direction of the ellipse does not correspOnd to tho direc-
tion of eccentricity in the plane since this latter value includos
the contribution of Ao and Bo'

The cylinder is clearly non-linear in its parameters and. further-
more can be shown to exhibit a non-convex feasib1lity region in
parameter space for all the possibly required reference conditIons I

minimum radial zone, maximum radius inscribing and minimum radiua
circumscribing. The formal proof of non-convexity will not be in-
cluded here but simple demonstrations illustrate ib truth. The non-
convexity of m1n1mum zone and inscrib1ng circles has already been
demonstrated in chapter 4 and as the circle is a special case of
aquation 11.6 the equivalent cylinders are also non-convex. The
non-convexity of the minimum circumscrIbIng cylinder can be shown
by the existence of examples, such as figure 11.), in which distinctly
separate local minima are shown. In the figure, tho fit shown ia a
minimum radius circumscrib1ng figure since the radius of the cylinder
corresponds to the minor semi-diamter of the elliptical uection. By
symmetry it is clear that four such pos1tions exist and it is readily
seen that it is impossible to move between them without involvIng &

figure of larger rad1us. Th1s example shows that non-uniquenoaa
does not occur only in the relatively unimportant (1n the present
context) sense that a cube may be circumscribed by a cylinder having
its axis pernendicular to any face •

Both to allow analytical solutions to reference f1ttil'16 IU1d
because there will be practical need to work with radius suppressed
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FIGURE 11.3: Example of Non-uniqueness in Minimum Circum-
scribing Cylinder Fitting



data, a reference figure linear in its parameters is desired. Thb
may be found either by the direct application of Taylor expansions
(it is easier to work with equation 11.5 and then convert the result
to polar cO-Ordinates) or by removal of relatively small terns from

equation 11.6 1n a manner akin to the truncation of the binomi31
aeries in deriving the limacon from the circle. The l1nearisaUon

of the cylinder about the point of perfect alignment (Ao·Bo·At-Bt·O)
1s shown to be the skew limacon cylindroid

A comparison of equations 11.6 and 11.? shows how much infor-
mation is totally disregarded by this linearisation. In particular,
there is no remaining term concerned with the ellipticity of the
cross-section. For small parameter values, the differences between
equations 11.6 and 11.7 will be dominated by the second order ter~

of the power series expansion, namely I

R 2 ')
c (AtCOSS +818in e) - _L( (A +AtZ)s1nC> -(13 +111~)cos 0 )'"'2 2H 0 0 •

c

The nature of these error terms is emphasised if they are re-exoressed
BSI

where 0( is the angle of the axis to the Z-axis and "'01 aoo f/J '".:.
are the directions of tilt and total eccentricity in tho XY plane.
The eccentric1 ty terms E and. ¢E del>8nd upon Z whereas the terms due
to pure tilt do not. The acceptability of the model depends upon

the maximum value of eccentricity ratio which occurs at any plane
(which will be at one end of the axis length over which measurements
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are taken) and also upon the magnitude of the tilt compared to the
absolute radius. As written above, the first term in the error can
be identified with the representation of the tilted cylinder in terms
of a skew circular cylindroid while the second term relates to the
approximation of the circular cross-sections of that cylindrold by
limacons.

The above discussion is naturally also of concern to the measure-
ment of roundness profiles on cylindrical objects. It i8 quite

common for tilt to be the major cause of eocentricity in a reading,

particularly when using fixtures which cannot support the workplece
in the plane of measurement and under such conditions the phases ¢oc

and et> E will be broadly similar 80 that the 'Possible sources of second
harmonic errors reinforce each other. On the other hand the error
in the radial term could 'be rather smaller than would be expected
s1m~ly from the limacon approximation.

11.3 ryractical Considerations of Cylindroid References

The development of the skew limacon cylindroid from the
cylinder 13 a parameter l1nearisation. Thus the illUll8diateconse-
quence to measurement practice is that exactly the same &esesament
techniques may be used as have been used here for roundness &8sess-
IIl8nt. The cylindroid may also be used as & medium for transferring
between instrument and chart CO-ordinate frames. Its behav10ur under
radius suppression is exactly the same as that of the limaoon since
the suppression operates in directions perpendicular to the Z-axis.
The magnification usually associated with the translat10n to chart
co-ordinates has one extra effect on the cyl1ndroid since generally
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it would be expected that different values of m&gnificatlon would

be applied in the radial and. axial directions. The slope of tho
cylindroid axis from the measurement axis will be multiplied by the

ratio of the magnifications in these directions.

The shape difference between limacon cylindroid and cylinder
is subject to more sources of variation than is that 'between 11:na-
con and. circle but again similar methods can be used to control
them. The amplitude of the second harmonic of the horizontal sec-
tion through the cylinder will be, under practical measurement
conditions, the effective error in that particular eroas-section of
the cylindroid. A worst condition for its size is that the harmonics
generated by tilt and eccentricity are in phase, when the combined
am;plitude will be R I (tan2()( + y2(Z)), ((Z) being the eccentricity

c 4

ratio at the cross-section. Thus a quite conservati"1'8 check method
2 2 1.

1& to use (tan 0( + '( ) a as a control parameter in exactly themax
manner that '( is used for roundness measurement. It should be

stressed that the values of Cl( likely to be encountered within current
practices are very small. The total tilt adjustment on some commer-
cially available instruments is only a few minutes of arc, so values
of tanO<=O.OOl would not be regarded as particularly swl. In thct
majority of situations the limit on tilt will come from its effect
on the allowable eccentricity: if the axial longth of cylinder over
which the measurement is performed is Lo' there must be at least ono
plane where the eccentricity is at least Ld2 tanOC, so 1 willmax
exceed tanO< whenever the length of cylinder exceeds its diametdr

(as it may, also, if this condition is not satisfied.).
The ellipticity introduced by tilting a cylinder is difficult

to account for in reference figure modelling ainee, apart from the
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~roblems of working with a non-linear parameterisation, there are
other causes of elliptical cross-sections with which interactions
can take place. Using, for example, best fit 'ellipses', probably
modelled by just the second harmonic of the Fourier series, on
cross-sections will not usually yield directly informat1on about
tilt. This relates to the observation that while every tilted

cylinder can be described alternatively, and equivalently, as a skew
elliptical cylindroid, the vast majority of elliptical cylindroids

do not describe tilted circular cylinders. Given a good estimate

of the cylinder axis and knowledge of the true part radius, the
amplitude and phase of the elliptical comnonent can be calculated
and could be used in a second stage of determining the reference,
oossibly in the form of a correction factor such as that proposed
in section 7.5
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12 Limacon Cylindrical References

12.1 Least Sguares Cylindroids

'The skew liIlla.concylindroid is Unear in its par8.l1letersand
so the least squares solution for residuals

6i = Ri - «Ao+AtZi)cosC7i + (Bo+BtZi)sinC>l + RL)

can be stated directly (see section 5.2 for details of the method).

12.1

In matrix form, the parameter estimates are given by the solution
of:

lcos29 LsinBcos8 2'zcos2e 2'Zsin6'bose leost) lAo
lsinecose 2'sin29 2'Zsin8cos'tl :2Zsin2e 2sinO Bo
:2zcos2e 2zsinBcos8 lZ2Cos2t) :2z2sintlcose lZcost' At
Izsinecose 2 lZ2s1n8cosB lZ2sin2e lZsin f Bt2zsin ~
lcose 2sin8 2ZCOse LZsin e N HL

t2.2
2Rcos8
~Rsine

= rRZcos8
L RZsin e
LR

where to save space indices have been omm1ttedl R, 'B, and Z &11

have subscript i and all summations are over i • 1 to N.
The added complexity of the three dimensional problem Means

that there is even higher motivation than.with the simple llaacon
tor choosing measurement schemes wh1ch allow s1mp11fication of
the coeff1cient matr1x. Th1s is unlikely to be posd ble on
incomplete surfaces and so only full cylindrical surfaces will be

cons1dered. For these it is probable that a sampling scheme
having a high degree of un1formity would be used tor instrumental
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as well as arithmetic convenience. Since, also, on a roundness
measuring instrument it Is normally advisable for best accuracy
to kee~ the spindle rotating constantly throughout the measure-
ment, two patterns of measurement are suggested: a series of
cross-sections at pre-determined heights Zi or a helical traverse.

If a series of cross-sections is used and each sampled Iden-
tically, the summations over all the data in equation 11.2 can
be replaced by a double summation over the points in each plane
and the number of planes, for example:

N m
2_Zi cosBi :: L Zk

i=l k=1

where there are m sections each of n pOints, IIln.N. Now if the
sum over j satisfies the fourfold symmetry identified in aection
5·2 for the simplification of the least squares limacon solution,
at each plane the summations over coae, sinE) and sih~,,~e will be

zero and.so also will be the sums of these terms over all the
planes. The matrix of coefficients then becomes qu1te 8parse,

r r cos2f) 0 r Z2COS2e 0 0
0 2 lzrs1n2e 022sin e 0
2: zrcos2e 0 2z2rcos2e 0 0
0 2ZLsin2e 0 st1sin2e 0
0 0 0 0 lin

Noting that those terms involving cos2e correspond. with 1.0 and.
At and similarly with sln2e and.B0 and B

t
, further interprotat1on

of this matrix is possible. The radius of the least squares 11l1&con
cyllndridroid 1s the mean value of all the radial data pOinta and
its axis is the least squares straight line through the centres
of the least squares 11macons on the cross-sectional planes.
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This measurement scheme has, apart from computational simplicity,
two advantageous features: the information on both ax1al straight-
ness and cylindricity measurements is prOduced simultaneously
and, depending upon exactly what is to be measured, there is
considerable scope for data reduction during the course of the
measurement.

There are other ways of selecting measuring schemea which
lead to simplifications similar to, but not as complete as, the
above when using measurement in cross-section. No details of
them will be given here.

The he11cal traverse method is attractive from an instrumenta-
tion point of view. However, computationally, it loses the advan-
tage of having Z and.e independent and SO evaluation mwst be over
the whole data set in one operation. It would be expected that
samples would be taken at equal increments of e and since ~ depends
linearly on Cl this allows various schemes for simpl1fying eqUAtion
12.2 quite considerably. Again, only one scheme w1ll be discussed
here. If it can be arranged that the total traverse encomp&8ses an
axe.ct even number of revolutions of the part and that there is a
multiple of four samples in every revolution then de!1n1ng the
Origin such that Z = 0 at the mid-pOint of the traverse will cause
all summations of odd functions of Z and. 9 to be sero, &8 will &11
those in simply sin8, cose or sin~cose. The ooefficient zu.trlx
then becomes:

/continued over page
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lcos2e 0 0 l zsinecose 0

0 2 l'Zsinecose 0 0lsin e
0 2' Zsinecose l' z2cos2e 0 0

~ Zsinecose 0 0 lZ2sin2e l Zs1n9
0 0 0 l Zsin9 N

The original set of five simultaneous equat10ns reduced to a set
of two and a set of three with considerable computational savin~.

One falling of the helical traverse relat1ve to the measure-
ment of cross-sectIons is that no information relating directly
to axial straightness is produced. Overall, it would seem that
there needs to be fairly strong instrumental reasons for a helical
traverse to be used, particularly as there would appear to 'be

more types of surface discontinuity which can 'be excluded from
the measurement by the judicious chOice of cross-sectional heights
than from choice of helix pitch.

The demonstration carried out in chapter S that the least squares
limacon survives unchanged relative to the profile under the radius
suppression transformation can be applied in identical fashion to
the limacon cylindroid. Given only the provision that the z axis
scaling is unchanged the cylindroid parameters can be used 1n
chart or instrument co-ordinates by applying magnification and
Suppressed radius in the normal way.

One pro-perty of the l1macon fit which does not apply to the
cylindroid is the observation that the estimate for centre ls exact
(section 5.). Reference to equation 11.6 reveals that then are
additional terms which contribute slightly to the odd harmOnics
in the case of the cylindroid. Taking the second order tem of tho
binomial expansion of the first part of equation 11.6 suggest. that
the fundamental is changed only by about 1 + tan2nll so that the

-r
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estimate of axis from the cylindroid should still be good in

practice. This is. however. a further warning that there is

a greater degree of approximation between cylinder and cylin-
droid than between circle and limacon. Although still a good
approximation the cylindroid can stand rather less abuse than
the simpler situations!

12.2 Boundary Value Cylindroids

As with the least squares fit. the solution to the boundary
limacon cylindroids is a direct extension of the methods used
in two dimensions. The general solutions examined in section
6.2 can be merely extended to include two extra parameters.
All three boundary cylindroids are found by solving their linear

programs. revised simplex on the dual being the most appropriate
of the standard techniques. 'rhe inscribing cylindroid can be

solved as a circumscribing cylindroid by inversion of the radial
data. in the manner described in section 6.5. if so desired.

Generally the motivation for seeking exchange algorithms to
replace the general method reduces as the geometrical complexity
of the problem increases for the manipulations required to
calculate the exchange become more involved. The propert,ies
of cylinder and cylindroid examined in the previous chapter would
suggest that exchange conditions might be complicated and sO
offer no real advantages over the use of simplex. That this is

indeed the case will be illustrated by just one exuple. The
minimum circumscribing limacon cylindroid has the formulation a
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Minimise RL

Subject to (Ao+A1Zi)cos$i + (Bo+B1Zi)sinOi + RL ~ Ri

for all i.

Following the method used in section 6.4, the basis of the dual
linear program will be:

cosel cost12 cosB) cos94 cos9S
sinet sine2 sine) sine4 slneS
Z1 cosel z2cos82 z)cos9) Z4cose4 ZScos9S
Zl sinet Z2sin'62 z)sin6) Z4sine4 ZSsin8S
1 1 t 1 1

The cO-factors of the final row of this matrix must have the
same sign if dual feasibility is to be ma.1nt&ined. Using the
geometric interpretation of this condition the boundary between
positive and negative sign regions of these co-factors will be
given, in cartesian forll',.hv equations such as I. .

1'::.2)4. = 1 X2 X
J

X4 X = 0

R2R3R4R Y2 y) Y4 Y
Z2XZ ZJX) Z4X4 ZX
ZZYZ Z)Y) Z4Y4 ZY

It is not easy to describe the surface defined by such an equa-
tion but it Is clear that it is not a simple geometric shape.
The oermissible orientations of points for defining a dual feasible
cylindroid depend upon the interaction of four curves of thb type,
making their full description all but impossible. The search for
an exchange algorithm can be conscientiously abandoned at this
stage. The recommended method of solving boundary l1macon cyl1n-
droids Is by direct solution of the dual linear programme.

Although the full geometric description of dual feasibility
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ls not available, it is easy to discover particular sets of

conditions which satisfy that requirement. This has the merit
that an initial feasible solution for the dual programme can
be specified, so saving the use of artificial variables. One
such condition consists of three points in one cross-sectional
plane which obey the 1800 rule with respect to the Z axis and
any two other points which do not lie in that same plane and
which are not diametrically opposed to one another. If this
occurs, two of the operational co-factors of the basis become

unconditionally zero and it is then possible to invent ambiguous
exchange conditions. This corresponds to degeneracy in the
linear program and casts a slight doubt over whether it is always

possible to obtain a solution by this methOd.
In passing it is worth observing that many of the difficulties

encountered with cylinder fitting are caused because the figure is
defined with respect to a line rather than a point. The natur~
extension of the circle to three dimensions is to maintAin
uniformity about a point by moving to a sphere. By direct

extension of section 6.4, the "l1macon spheroid" can be shown to
have a dual feasibility condition in which any two defining pOints
lie to opposite sides of a plane defined by the other two points
and the origin. This will be seen to be exactly anal~gOU8 to
the situation shown in figure 6.6. Thus a very silllplegeolllOtry
le preserved, although calculating its implications for point

exchange may still not be worthwhile compared to the direct use
of the dual programme.

Given the greater degree of non-convexity in cylinder
formulations than in circle ones, it is to be expected that there
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will be less that can be said with certainty concerning bounds to

cylinder fits from cylindroid fits. The only definite assertions
are those giving overestimates for the minimum zone and minimum
circumscribing radius and an underestimate of the maximum inscri-
bing radius. The conceptual mechanism used is the same in all
three cases. For the circumscribing cylinder the data is first
enclosed by the minimum circumscribing limacon cylindroid. This

figure is then enclosed within a circular cylindrOid and around
this is placed an elliptical cylindroid representing a cylinder
having the same axis tilt as that of the limacon cylindroid.
Figure 12.1 attempts to illustrate this procedure showing only
the plane crucial to the exercise. The circular cylindroid which
can enclose the limacon cylindroid will be controlled by the

cross-section in which the limacon has the largest eccentricity
and so needs the largest circumscribing circle. A convenient
circle is that centred at the limacon centre having radius
( 2 2 1-RL + Emax)2 and a circular cylindroid having this radius and the
same axis as the limacon cylindroid w111 be a circumscribing
figure. In fitting any ellipse about the circle, the minor semi-
diameter remains equal to the circle radius and as the minor dia-
meter cOrresponds to the dimension of the until ted cylinder a
reasonable overestimate of the cylinder radius is (R£ + ~!ax)i.
This is the same as the overestimate for the circumscribing circle
except in one respect. It is quite likely that the limacon having
maximwn eccentricity, being at one end of the measured cylinder,

will not contact the profile at all and so the error between the
overestimate and the profile may be rather larger than in the two
dimensional case. The Original limacon cylindroid is suffiCiently
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large to enclose the effects of ellipticity due to tilt and so
such effects are included in the process. The degree of effect
that is entailed cannot be specified. it depends upon the nature
of the peaks of the data.

The estimate of inscribing cylinder entails first placing
a circular cylindroid within the limacon cylindroid. This is
straightforward.: 'byinspection the circular cylindroid having
radius equal to the limacon and the same axis will be its maximUM
inscrt bing figure. The elliptical cylindroid must 11e inside
this circular cross-section, however. and so its major semi-
diameter will be RL. Thus the radius of the underestimate of the
inscri bing cylinder will be HLcos«.

The two cylinders defined for inscribing and circumscribing
cases have the same axis and so may be used to overestimate the
minimum zone. Their difference gives a :;one of width well approxi-
mated (for Emax« RL) by H(l+cosa) + l\(l-coea')+ E!ax where

2(RL+H)

2H is the cylindroid zone width
In specific cases it will be possible to establish tighter

limits on these fits but it is not possible to generalise the.
tully. For exam»le since the iascri bing elliptical cylindroid doe.
not touch the appropriate limacon cylindroid it oould be expanded
until it does do so. The degree of expanaion will depenc1upon the
direction of tilt relative to the orientation of the 11maoon, both
unknowns in the general solution.

Unlike the case with the circle it cannot be guaranteed that
a cylinder can be fitted through the five defin1ng point. of tho
l1macon cylindroid (although with practical degrees of 1.l.1gnment
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error it is likely that it will be so). Also the failure to identify
fully the geometry of feasible contacts prevents the use of arguments
similar to those adopted in Chapter ? Theoretical work on cylindri-
cal reference bounds seems dogged by areas of vagueness such as this
which prevent the making of rigorous statements even when common sense
suggests that things are so. In fact there is very little practical
evidence about the fitting of cylinders and almost all statements are
conjecture based on experience of two dimensional measurement~. Per-
haps what is most needed at this stage is a detailed and extensive
practical study of cylinder and cylindroid fitting which may lead at
least to an empirical approach to the whole subject.

12.3 Cylindricity Assessment in ~ractice

The facilities which could be made available during the course of
the work reported here were not suitable for performing the exercise
suggested in the previous section. The difficulty lay in the fact that
a roundness instrument with a straightness datum was not available on
line to the computer system. Thus although it was possible to develop
and test programs for cylindricity measurement by measuring croas-
.sections positioned manually on the Talyrond. 1), the data so obtained
could not be considered as a sufficiently accurate representation of
the cylinder for the results to be included in a survey of real condi-
tions. What could be judged was the likely performance to be expected.
of working systems.

A least squares limacon cylindroid system was developed very
easily from the simplified measurement scheme described in section 11.2.
Equiangular samples in each of a series of equally spaced cross-sections
were used. The required calculations are then quite simpler only about



30 lines of FORTRAN are needed to program the whole of the reference

calculation. The two main decisions needed of a system design con-
cern the amount of data to be stored and the methOd of presenting

the results. The vqlume of data which is readily collected from a

cylindrical surface can rapidly overwhelm a small computer system.
If only axial straightness information is required the difficulty is
removed since only the centre of each cross-section's least squares
limacon need be stored plus, of course, the data from one profile
which is being processed at any one time. However cylindr1city
measurement requires that all the data is retained so that it can be
compared to a common reference not known until the end of the measure-
ment sequence. Fortunately it seems that for the majority of work-

pieces likely to be measured the dominating form errors will be slow
moving, usually only a few undulations per revolution in the cross-

section and maybe only an "S -bend" in the axis. In the field of pre-
cision engineering, the nature of conventional machine tools helps
to ensure occurence of such forms. Providing that it is accepted
that cylindricity is a measurement of major deviations of form (having,
for example, a relationship to roundness similar in some aspects to
that between straightness and surface texture) then a relatively coarse
sampling, with, consequently, a lesser number of data points being used,
can be contemplated. In the system described here a sampling rate of 64

per revolution was used, with a maximum of 8 planes being allowable.
The total data storage is then the same as for one roundness profile
using 512 points. If information about short wavelengths of the sur-
face is also required it is often sufficient to measure each plane at

a high sampling rate and supply roundness measurements for them as

individual, independent readings while retaining only a fraction of the
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total points so collected for the overall cylinder analysis. This
would require, say, just an extra 512 data points to be stored.

If the information required from a cylindricity measurement
is much more complicated than an overall zone width, a purely
numerical presentation of that information, while complete, is very

difficult to assimilate. To achieve a rapid impact a graphical
method is wanted. It seems that a direct extension of the polar
chart into three dimensions using, say, an isometric projection on
a visual display unit is not very useful: the distortions caused
by radius suppression and relative magnification make all but the
simplest shapes virtually unintelligible (34). This technique is
also very expensive in terms of computational effort. Perhaps the
best method of showing all the surface detail in one view is to
use a contour map of the opened out cylinder surface (18). for

example. Interpretation of a map requires some degree of care and

experience and it remains computationally expensive to produce
easily readable forms.

In the system developed here an attempt was made to present
graphical information in forms with which the operator could be

expected to be familiar: the two-dimensional roundness graph and
orthographic projections following normal mechanical design
drawing conventions. Axial straightness was shown in terms of front
and side elevations of the axis. Cylindricity was shown in terms of
plan views along the least-squares axis. Either a complete view
showing the envelope of the superimposed profiles correctly
aligned to the cyl1ndroid axis or the views of aligned individual

cross-sect1ons were shown. On the visual display unit the individual
sections can be displayed in sequence each holding for a short
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interval. Providing that the switch from one section to the next
is quite rapid this scan gives a good subjective indication of
the real nature of surface features. The differences of features
such as small holes and axial or helical scratches are readily

recognised, for example. Figure 12.2 illustrates the concepts of
this display. A schematic display of distinct radial variation,
such as taper, was also included but proved less successful.
There was a tendency for the display to be confused with either
axial information or with vertical cross-sections through the
cylinder depending on the display technique used.

An operating system based upon this program was built for
demonstration but was dispatched to exhibitions and so could not
be fully evaluated (J5). The calculation time was about 5 seconds

using floating point single precision arithmetic and a Sine/cosine
look-up table. This compares well to the time taken to acquire
the data: because of the vertical shift between measurements two

spindle revolutions are needed for each plane, so 8 sections would
take about 160 seconds. Although this system has never been used
practically several special measurement systems based upon varloQS
parts of it have been supplied commercially by Rank Taylor Hobson
Ltd.

A minimum circumscribing limacon cylindroid program based on

revised simplex has also been developed. The programming technique
is basically similar to that described in chapter 9 for the two
dimensional analysis. Again up to 8 planes each of 64 equiangular
points were used, but unequal spacing of the planes was allowed.

Since the mechanism of revised simplex does not change the program
performance is very similar to that for the simple limacon. The

168



z

z,

SECTIONS

x

AXIS

------

PLAN

y

OVERALL

FIGURE 12.2: Display of Deviations from a Perfect Cylinder



program is slightly longer since extra effort is needed for the
fetching and carrying of the extra variables. For the same reason
it runs a little more slowly. However the operational time is
dominated by the calculation of the reference at each iteration
which depends mainly on the number of sine and cosine operations

and so on the number of data points. Th us 8 planes of 64 points

iterate almost as fast as a single plane of 512 points. The over-
all calculation time will be longer since with five parameters

more iterations will be required particularly when, as in the
present implementation, artificial variables are used. All the
same, calculation times of not much more than 15 seconds were
recorded which is considered to be quite acceptable.
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13 Conclusions

At its inception it was intended that the primary aim of
the work described here would be the development of methods for
measuring cylindricity using instrumentation which is commer-
cially available. Subject to the (expected) necessity of

using approximations in the reference figure this aim has been
fulfilled. However a consideration of the amount of this

report which is dedicated directly to cylindricity indicates
that the development of algorithms for cylinder fitting by the
use of lima con cylindroids is a theoretically trivial extension
of the ground covered in the earlier chapters. It is believed
that the final, practically useful results obtained fron the
analysis are not, in one sense, the most important feature of
this work. The underlying groundwork concerning the mechanics
and philosophy of both measurement and analysis makes these,
and other results in related fields, relatively easy to produce.

As with many other successful techniques it seems quite straight-
forward once it has been done!

The author anticipates that few would challenge the opinion

that the greatest single contributor to the field of roundness
measurement is R. E. Reason. So great is his influence that
the whole subject reflects his approach. It relies upon mecha-
nical instrumentation of very high quality with the measurements
and necessary analysis being performed in a pragmatic and highly
intuitive manner: the "kinematic" derivation of the polar distor-

tion on the chart is a classic example of this approach (ref. 19).

That it has been a successful method is bourne out by well over
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twenty years of }>ractical experience. The approach does, however,
have some drawbacks. Being essentially mechanical/intuitive, ap-
proximations in the analysis become embedded within the derivation
so that it is not alHays clear whether an approximation has been
made at all. Being also a pragmatic method, the explicit assumptions,

and any analysis built upon them are judged in terms of the perfor-

mance of instrumentation available when they were made. Consequently
the direct extension of the existing analysis to new forms of mea-

surement which might be needed cannot be regarded as a "safe" proce-
dure. While limits upon misalignment which will give adequately accu-
rate measurements are known and tested, there is no informa.tion em-
bodied in the early theoretical work to indicate whether im?rovements
in instrumentation, or even a completely different approach to instru-
mentation, will be fully exploited by those limits. Currently these

doubts are reflected in many areas: the analysis of cylindricity and
the implications of modern developments in high range/resolution trans-
ducers and high accuracy co-ordinate measuring machines are just a
few examples.

This work has adopted a deliberate policy of re-analysing the
roundness measurement process in a mathematical manner in an attempt

to produce a consistent, general theory upon which to build. This has
led to the re-derivation of well-known relationships. No excuse is
made for this since it is a necessary part of the total exercise.
vfuile it is hoped that the approach used here will supercede the
earlier methods as a theoretical tool it does not invalidate using
earlier results in context. (To draw a famous parallel: the work of
Einstein has not affected the results or the continued use of
Newtonian mechanics in "Ordinari' situations but it offers a moro
complete description of rather less mundane problems.)
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The general approach to roundness measurement analysis (and

parallels may be drawn in other disciplines) uro~osed here is
based upon the concept of the three frames of reference which
occur during the measurement process: component, instrument and
chart co-ordinates. The' errors' and 'distortions' which afflict

the data and particularly the analysis of reference figures can be
associated with the transformations between these planes. Thus mis-

alignment associates with the transformation from component to

instrument CO-Ordinates and radius suppression with that from
instrument to chart CO-Ordinates. (These effects may be contrasted
with, for example, transducer inaccuracy which is associated
specifically with the instrument CO-Ordinate frame.) The key to
working consistently with these frames lies in producing a system
model which has a geometry essentially independent of the trans-
formations. The transformation between instrument and chart is a
linear operation on radial values and so a linear model is a
natural choice. Thus the l1nearised circle, the l1macon, is
identified as a figure of particular significance. It is not just
a convenient approximation for avoiding unpleasant mathematics.

All reference figure fitting involves optimisation and for
well controlled optimisation linear parameters are a desirable
feature. Given complete linearisation the well established methods
of linear least squares and linear programming can be invoked.
Under many measurement conditions the use of limacons or limacon
cylindroids which have the required linearity can be justified
and standard solution techniques can be applied to them. The
development of specialised highly efficient methods, such as
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exchange algorithms, then follows as a logical step.

There is no point in restating here any detail of these

processes or of the important questions concerning the relationship
of circles and limacons. Having a general framework within which
these have been discussed, the decision on whether they are

useful is a pragmatic one. The evidence of this work shows that
limacon approximations are highly usable in practice. It shows,

also, under what conditions they become less useful and suggests
alternatives which may then be used.

The revolution in instrumentation over the last few years
has been due mair~y to the availability of cheap digital compu-
tation. This work is well matched to this phenomenon since many
of the consequences of the analysis can only be exploited digitally.

To minimise the cost of computing with modern micro-processors

efficiency is required both in storage requirements and in operation
time so that the slowest suitable system can be used to pr~vide the
answers within a reasonable period. The algorithms developed here
offer big improvements over previous methods both in this respect
~nd in terms of guarantee-able accuracy. Systems, based upon the

work described here, have already been supplied commercially in
which throughput time is critical and high accuracy is demanded,
conditions which the previously used algorithms could not possibly
have satisfied without the use of hardware floating point processors.
The cost savings in such cases are self-evident.
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Appendix 1

Minimum Zone Lines and °lanes

The methods developed in the main text for deriving boundary
references are not applicable only to the measurement of roundness
but to any nrocess which can be expressed in a similar way. As a
further examnle of the method the darivations of references for
another important area of surface metrology, straightness and flat-

ness, will be outlined here. This will give also another opportunity
to compare solutions in two and three dimensions.

Probably the most commonly applied measurements for straight-

ness and flatness work with respect to a reference defined ln terms
of two parallel lines or planes which enclose the profile while
having the minimum vertical separation: that is minimum zone llnes

and planes are wanted. As the reference figures are actually llnear,
the use of linear programming methOds is virtually automatic.

For the minimum enclosing lines there is no need to perform a

formal derivation for they belong to the well documented class of
minimax polynomials, that is curves having the smallest possible
maximum divergence from the data. The condition for this ls that
relative to an nth order polynomial, the data must have n+2 maxima
and minima all of equal magnitude. The solution is found by means
of the Stiefel Exchange Algorithm which proceeds by fitting the poly-

nomlal according to this condition to n+2 points and then bringing
points further away than those points into the defining set while
maintaining that condition. In terms of the minimum zone straight

lines there will be three points, two contacting one line and one
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the other in an alternate sequence which are iterated by exchanges,
see figure A1.1.

The minimum zone planes problem can be expressed:

Minimise h
Subject to axi+ bYi + c + h ~ zi

ax!+ by! + c - h ~ zl
for all data points (xi' Y1' zi)

at band c are sign unrestricted and h ~ O. Based on the arguments
given in the main text the dual of this linear programme will be

used. Noting that h = 0 is valid only for the trivial condition
that all points are co-planar then it may be asserted that four points
will be represented in the basis which for the dual can be expressed

(see section 6.6 for the reasoning):

B = Sixi S jXj Sk~

SiYi S .y. SkYkJ J
S S . Sk1 J
1 1 1 1

where Si' etc. are variables taking values +1 or -1 according to
whether (xi' Yi' zi) contacts the upper or lower of the minimum zone
planes. Any optimal solution to the primal problem must demonstrate
dual feasibility. Here the primal objective function depends only
on the fourth parameter and so dual feasibility is guaranteed if all
terms in the final column of B-1 are positive. This in turn will
be true providing that:

-3jSkSl ..6 jkl -SiS jSl Llijl
313k31 llikl SiSik Llijk
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where:

II jkl = x. ~ xlJ

Yj Yk Yl
1 1 1 etc.

all have the same sign.

Consider the determinant:

ll'k = x. xk x = 0
J • J

Yi Yk Y

1 1 1

This is the boundary between regions in which lljkl is positive
and those where it is negative. Geometrically the boundary is a
plane parallel to the z-axis (since it is independent of z) and

passing through points (xj• Yj) and (~. Yk)' The dual feasibility
condition requires that if Si = Sl (contacts with the same plane)

11jkl and II jkl must have different signs and vice versa. So if
the ith and Ith contact are with the same plane they l:.e on oppo-

site sides of ll'k = 0 but if they contact different planes they
J •

lie both to the same side of ll'k = O. A parallel argument shows
J •

that the same is true for all pairs of points.
The relative positions of contacts which give dual feasibility

are given by these relationships. There are two ways of satisfying
them as shown in the plan views of figure Al.2. There may be two
contacts with each of the minimum zone planes in which case the plan

of lines jOining the alternate types must form a convex quadrIlateral

or a three:one split in which case the single contact must lie in
the plan of the triangle formed by the other three contacts.

It is readily demonstrated that there is a unique exchange for
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any new point in order that these relationships be preserved and so
a workable exchange algorithm may be based upon these patterns.
While its use by hand is very easy. the number of decisions which
are involved in making the exchange is quite high and the develop-

ment of a computer program to perform them is quite complex. For
example the decision to switch from ):1 to 2:2 arrangements of

contacts is intuitively obvious but needs quite an effort to explain!

Even with this most simple of three dimensional zone fits the
advantage of using specific exchange algorithms rather than a

general revised simplex solution for automatic system is becoming
unclear.
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Appendix 2

A Brief Summary of Linear '1rogranuningConcepts

The purpose of this note is to provide in very compact form an
indication of how the theory of linear programming used in this work
fits together. It may be used either as a reminder for those knowing,
bUt not familiar with, the theory or as a guide to the most relevant

sections of specialist textbooks on the subject. It covers only
major features: important subtleties are not included. The notation
used here has been kept in a form similar to that used in many text-
books, it does not therefore correspond with the notation used in
the main body of this .text.

Linear programming seeks solutions to optimisation problems in
which the objective function and all constraints depend linearly on
the problem parameters. In vector/matrix notation such problems are:

r1aximise z = QT~

Subject to !! ~ ~ .E

where Q and ~ are n-vectors, b an m-vector and A an nxm matrix of co-
efficients.

The first stage of solution is to switch to more easily handled
equality constraints by introducing m extra parameters representing
the amounts by which !!~ is less than.E and called slack variables
(or sometimes surplus variables When having ~ type constraints).
This extension allows the problem to be stated as:

Maximise z =
3 ubject to !!~ = .2. AE= [A: I ]- -'-m

It is required that the parameters, ~, be non-negative for the formal
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solution of this programme. (There are special devices for allowing
sign indeterminant parameters.)

In a parameter space where each xi is expressed along an othogo-
nal axis, the constraints form a set of hyperplanes which enclose a
"feasible region" in which lie all combinations of the parameters
satisfying all the constraints. As a consequence of the problem
linearity this region will be convex and bounded by planes forming
vertices when sets of n hyperplanes intersect (in three dimensions

the region would be a polyhedron). The orams of linear programming
indicate that there will be one optimum value of the objective func-
tion and that it will coincide with a vertex of the feasible region.
At this vertex a subset of exactly n of the m constraints will be
satisfied exactly which in terms of the extended x vector indicates

that the elements corresponding to the other constraints w111 be
zero. These elements are termed non-basic. The defining variables
constitute the basis. It is always possible to express both the
constraints and the objective function in canonical form, that is
as a constant plus the weighted sum of the non-basic variables by
re-ordering the columns of the matrix and the elements of the vectors.
As the non-basic variables are zero this is clearly a manipulative
device which gives the current values of ego the objective function
and also indicates from the weighting co-efficients those non-basic
variables which could, by becoming positive, increase the objective
function.

The simplex solution to linear programming problems consists of
manipulating the constraints in canonical form such that a move from
vertex to vertex through the feasible region is performed in such a
way that the objective function increases at every iteration. The
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process consists of choosing from the canonical form of the objective
function the non-basic variable which has the largest positive co-
efficient, that is the variable which by changing value will most

affect the value of the objective function. This variable will be
brought into the basis and consequently one of the basic variables
must be removed. As there must be a move to a new vertex, the new

variable must be made as large as possible. Thus it is possible to
identify the basic variable it replaces as being the one active in

the constraint for which the new point can take the smallest value
before making it infeasible. The process continues in this manner
until the canonical form of the objective function has no positive
co-efficients at which point the optimum is found. To start this
process automatically it is necessary to have the parameter space
origin as a vertex. This then becomes the initial basic feasible
solution, all parameters are zero and all slack variables basic. If
the origin is not a feasible point and no other initial basic feasible
solution can be specifiec in advance a device involving extra vari-

abIes called artificial variables is used to mOdify the problem so
that the new origin is included. The artificials are iterated out
preferentially and when all are removed, the problem sits at a basic
feasible solution of the original problem from which the normal
methOds can proceed.

The usual manner of performing the calculations does not speci-
fically manipUlate the canonical forms but uses the simplex tableau.
The tableau is an array of co-efficients of the form:

!E I b
- - - - -1- - __

eT ! z
- 1

which is used because all the operations necessary to move from
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vertex to vertex through the simplex iterations are elementary row
operations on this tableau. The largest positive co-effi6ients of
Q gives the variable which will enter the basis. The test for re-
placement is that the b' column of the updated tableau must remain
positive. The updating of the tableau is them easily performed since
the columns of the tableau corresponding to the basic variables con-
stitute an identity matrix embedded into the tableau. Thus once it
is known which row will contain the 1, the full update is done, by

normalising this row and subtracting suitably weighted amounts of it
from the other ~ows to reduce the rest of the column to zeros.

It may be noted that the operation of the simplex tableau is
sImilarly mechanically to the standard method of inverting a matrix

by a series of elementary row operations. At any iteration of the
tableau the columns which originally constituted ~he identity matrix,
the original basic (usually being the slack variables), contains a
complete record of the combined effect of all the iterations to date
and so they form the inverse of the matrix made of the initial values
of the columns constituting the current basis. The inverse of the
current basis thus contains all the information necessary to recon-
struct the complete tableau. The method of Revised Simplex exploits
this particular feature. The information stored consists of the
original tableau and an updated version of the original basis. At
each iteration matrix multiplications using this inverse of the basis

and the original £ and ~ vectors allow the current ~ and ~ vectors
to be calculated. The appropriate row of the ~ matrix'fj corres-

pOnding to the largest element of .£. is updated to Ej by another
matrix multiplication and then using ~'j and~' the necessary elemen-
tary row operation for the current iteration found in the normal way.
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Since this operation is only performed on the inverse of the basis,
not the complete tableau less total work has to be done. The savings
are particularly evident in tableau having large numbers of columns

and relatively few rows since the basis is a square matrix of dimen-
sion equal to the number of rows (that is to the number of constraints).

An important theorem of linear programming ls that concerning
duality. The forms considered SO far relate directly to the physical
nature of the problem being considered, and constitute the primal
linear program. The theorem states that for any primal:

Maximise zp = CTx

Subject to A x ~ b
x ~ 0

there exists a dual linear programme:

Minimise z = bTvd _.M..

!T::f. ~ Q

1. ~ 0

Subject to

The dual has n constraints and m variables (Yi to which no direct
physical meaning is attached). The optimum solution to both primal
and dual give tableaux which are re-arranged version of each other.
All information concerning the optimum may be obtained by solving
either primal or dual. The major advantage of this manipulation is
that if the original problem has many constraints and few variables,
1ts dual will have few constraints and many variables. The dual can
then be solved very efficiently by using revised simplex. The
reversal of roles of the .E and Q vectors between primal and dual

leads also to a series of correspondence conditions at iterations
prior to the optimum being achieved. Examples of their use are
given in the main text.
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Appendix 3

Alternative Centre Definitions for Mean Circles

The following pages contain the text of a paper, written by the
author and presented at the HIEKO VIII Conference in 1'loscow by l'lr.

V, S. Lukianov, "Dimensioning nominal circles: the resolution of
conflicting ideas.-, This is reference 30 of the main ~ext.

Its relevance here is in the description of difficulties en-
countered by making different, sometimes inappropriate, assumptions
regarding the mathematical formulation of derivations for the centre
of mean circles to a set of data points.
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DIMENSIONING NOlvIINALCIRCLES: THE RESOLUTION OF

CONFLICTING IDEAS
by

.D G . CHETWYND

Metrology Research Group, Rank Taylor Hobson,
Leicester, England.

The centre of the "least squares circle is a
common starting point for measuring circular
objects, which different schools of thought
calculate by different formulae: an unsatis-
factory situation. This paper investigates
the methods of both schools and shows them to
be approximations to the general solution.
The applicabilities of the simple forms are
compared. The relationship between least
squares centres and profile centroids is also
briefly examined.
Keywords: 11etrology, Least Squares Circle

1. IntrOduction

Traditionally the methods and equipment of the dimensional and
surface metrologists ahve been almost totally distinct. In the case
of nominally circular components shape has been measured relative to
the rotation of the precision spindle of a roundness measuring inst-
rument. Generally only the variations between surface and datum are
recorded, the absolute size being lost (the instrument employs

"radius suporesa Lon"}, The dimensions have largely been measured by
diametral techniques such as calipers or with variations on ring or
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plug gauges. In determining the distance between features, the cen-
tres have been defined mechanically, for example by locating tapered

pins into holes.
With modern methods, the distinction between the fields of me-

trology is becoming less clear. Co-ordinate measuring machines with

position sensitive electrical probes now have resolutions which,
while still much coarser than that of surface metrology instruments,

are capable of detecting the major shape error3 of surfaces. Further
by their nature such machines must define circular features in terms
of the position of several points on the periphery of those features.

Thus both the dimensional and surface metrologist are faced with the
problem of defining from a set of data points lying on the circumfe-
rence of a nominal circle, but subject to errors both of measurement

and. of the surface, some form of "best-fit" circle to be used as a
basis for the measurement. A commonly used criterion in both schools
is the least squares (minimum quadrature) circle. Usually simple
formulae for estimating the centre of this circle are quoted. The
radius is then defined as the mean distance of the data points from
this centre.

It is here that conflict arises for generally, given a set of
data points (Xi' Yi)' the dimensional and surface metrologists res-
pectively regard the least squares centre to be at co-ordinates:

1 N 1 N
(if l xi' N L yi)

1 1
or 2 N 2 N

(N 2 xi' if 2: yi)
1 1

This difference could clearly be of some importance. It is examined
by briefly reviewing the derivation of both these forms, and then
discussing the general least squares circle problem.
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2. Least Squares Circle: Approximations

National Standards for surface metrology define the centre of
the least squares circle as that point from which the sum of the
squares of the radial distances of a sufficient even number of
equally spaced radial ordinates is minimised (1). While this state-
ment is true, it is not strictly a definition of the least squares

method and it is easy to read into it more than is actually implied.
Consider the situation depicted in Figure 1. It is desired to

find the circle, centred at (a, b) and radius R, which is the best

fit to a set of data points (xi' Yi)' or in polar co-ordinates (ri'
9i), of which point P is an example. From the above definition it

would appear that the centre is that point for which

N 2
2 s
1 i

N
= 2 «xi

1

is minimised. The minimum is obtained by equating the partial
differentials to zero. For example:

2 Na 2 si = 2 - 2(X - a) = 0ca 1 i
(2)

giving

1 N
a = N 2 xi

1
and b = ()

This is one of the derivations given by Farkas (2). It has not
made specific use of the statement that the ordinates should be
equally spaced.

The derivation given in the above Standard takes the following
form. Tho ~olar expression for an eccentric circle,

9 = acos b + bsinS + 2(R - (asinS - 2 1 (4)boose) P"
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FIGURE AJ.1: Reference Circle Definition

FIGURE A3.2: Profile Centroid Calculation



1s approximated by

p = acos~ + bsin6 + R

for 222-a + b «R, a condition almost always imposed by the nature

of roundness measuring instruments. This is the limacon approxima-

tion which has particular advantages in surface metrology, notably
its ability to compensate for radius-suppression (3). The least

squares solution now requires that
2IT 2 ~ 2

I = J (r-9) de = I (r-acose -bsine -R) de
o 0

( 6)

is minimised. Again equating partial differentials to zero gives,
for example:

dI =oa
27TI (r-acos8 -bsinB -R) cosB dB

o
1 27T
ir / rcose de

= o (7)

a = (8)

Now given sufficient evenly spaced paints, the integral is replaced
by a summation to give:

a = and b = (9)

Here the equispaced data condition is used to justify the replace-
ment of integrals by summations but is still not used directly in
the derivation.

3. The Least Squares Circle

The data which is available for the calculation of the reference
circle is a series of discrete points. Thus a formal derivation
should use a sampled data scheme not a continuous one. By analyzing
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a problem in continuous form and then switching to a sampled form,
the true nature of any assumptions made can be hidden. Formally
least squares seeks to minimise the sum of squares of the residuals,
that is the deviations of the data points from the solution figure,
of any set of data points. In the case of circle fitting it is first,
then, necessary to define what is meant by a residual.

Probably most metrologists and mathematicians would agree that
the most logical form for the residuals is in terms of their r~ial
distance from the circle centre:

(10)

using again the notation of Figure 1. This form is implied by the
definition given in Standards but is not quite that used in the
associated derivation, where residuals are measured radially from the
origin.

Using equation (10), the required minimisation will be )f

(11)

where the positive square root will always be taken since it is a
scalar length. This problem is non-linear in its parameters a, b
and R and sO is unlikely to be directly solvable. It may well exhi-
bit multiple local minima. The solution will require that all the
partial differentials are zero simultaneously giving:

dI N n(xi-a)
da: l: (Xi-a) - 2 . = 0

1 «xi-a)2 + (Yi-b) )~

dI N R(yi-b)
ob: L (y -b) - = 0

1 i « x1-a)2 + (yl-b)2p"
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The first of these indicates that the best fit radius will be the
mean distance of the data points from the defined centre. The other
two equations show the necessary condition for the 1/N solution:

N
R 2: cos e 1 =
1

N
R 2: sin 9i =
1

o

For this to be true. the data points must occur in diametral pairs
with respect to the circle centre. The method thus suffers the
theoretical objection that the data must be aligned to an initially

unknown point and so an adequate experimental scheme cannot be pro-
duced.

Since only the linear least squares problem gives a general
solution. the expression for the residuals must be linearised. This
may be done by taking the first order terms of the Taylor series ex-

pansion of equation (10) about a point (xo' Yo) close to the solution

(a, b). (Since equation (10) is linear initially in R this does not
enter the problem.) The expansion gives:

(14)

If (xo' Yo) may be taken as the co-ordinate system origin, this
reduces directly to the limacon approximation form. This will be
used in the discussion here. The residuals for the set of data poits
points may be expressed by the matrix equation.

H a = r

The theory of least squares then gives as the solution:
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"a = (16)

HT being the trans~ose of matrix H. So that the general solution
to the least squares limacon can be stated as:

(

L cos2~ LSin: cdsB
2: sin e cos e Lsin e
Leos e 2:sine

2:case) (a.) (2r cost})
2:,sinB ~ = L.r sine
N R Lr

(17)

where the limits and indices have been omitted for clarity, all
being over i=l,N. There is strong motivation to attem~t to select

Tthe measurement scheme, the values of 8i, such that H H is made dia-
gonal. Not only does this make the solution very simple but also it
makes the narameter estimates independent and helps to restrict esti-
mation errors. This can be arranged by selecting a four-fold symme-
try of pOints, such that for each ei there are also points taken at

C\+7( and Bi'!.Jr/z. Then the solution of equation (17) reduces to
that given in Standards, equation (9). Such a scheme is quite prac-

tical since the angula.r position of the points are defined with re-
spect to the origin, a point known before measurement. Note, however,
that it is not sufficient to have any reasonably large even number
of equispaced points as implied in Standards: the number must be a

multiple of four. The general solution, equation (17), will naturally
cope with any distribution of data points. It can thus deal with
sections having holes in them and with the partial arc problems
which have previously used s~eclal methods, again based on a conti-
nuous (integral) analysis (4). On such problems the Off-diagonal
terms will have an effect, in some cases excaeding in magnitude the
diagonal terms. The strong interde~endence of the parameter estimates
can then cause large errors. The small difference in calculated
values of the matrix co-efficients found by assuming integral forms

may com~ound such errors and the continuum approach will break down.
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The assumptions required to generate tiN and 2/N types of acLu-
tlon can only both be satisfied when the centre of the circle lies
at the origin. Then since both xi and Yi must sum to zero for either
approximation to be valid at that point, both give the correct result
and there is no conflict. However, the fact alone that these sums
are zero does not guarantee that the centre lies at the origin:

there may be off-diagonal terms interacting with the radius estimate.

4. Centroid Methods

If a closed, non-circular profile is to be measured, a proposal
(5) for defining a central reference point is to use the centroid of

that profile, assuming it to be a uniform lamina. Other assumptions
about the profile are also possible in this context. In effect, one
quoted method of deriving the tiN type centre solutions discussed here
CASC;u.mes ne. do.-t", 'Po~,,+~ +0 be ~ 'P0s',t;0f1( Ot 1'0,'''+ I"lO.sse&. A +h.-rei. pv~',l;, ; 'it,
here is to consider the profile to be a uniform l.r1re. Assume that N
radial measurements are equally spaced at angles ei about an origin.
Providing N is reasonably large, the length of a sector associated
with the ith point (see Figure 2) will be

(18 )

and its associated x-moment:

M =x \ ri cos e i (19)

so that the x-eo-ordinate of the centroid is

a = (20 )

the y-co-ordinate being similar but involving sin 9i' Although this
exrression does not relate directly with the least squares solutions,
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it is comparable. If the data points lie nearly on a circle and can
be expressed as a mean value with small variations. Oi' from it and
if, also, casei and sinei are arranged to sum to zero then equation

(20) can be reduced to:

a '" (21)

Thus there is some link between the centroid of the profile
treated as a line and the least squares limacon. The association of
the least squares approximations discussed here with different cen-

troid methods is evidence of their different physical implications.

5. Concluding Remarks

The apparent conflict between different schools of metrology over

the definition of the least squares circle centre is illusory. Both
versions of standard formulae are approximations. their relative
validity depending upon the actual positioning of the data points.
The difficulties have arisen through lack of appreciation of these
anproximations. Some of the causes of this are informative: the
general acceptance of a rather loose definition for what should be
a precise concept and the masking of implicit assumptions by using
continuous, integral analysis for essentially sampled systems.

The limacon approximation gives good centre estimates providing
a reasonably accurate estimate of the centre is available (J). Its
particular advantages when using a roundness instrument are such
that its position is firmly established. Given also the normal

practice and 11mi tations of such instruments, the use of the 2/N-tYI'e
formulae will often be safe. With, for instance, data from a co-
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ordinate measuring machine it is much less clear what approximations
may be used. ?roviding that the points are spread fairly regularly
around the circumference of the section the best accuracy will pro-
bably be obtained by using the general form of the least squares

limacon, an initial estimate of the centre being obtained by, say,

the liN type approximation.
The ~rofile centroid could also be used as an operational

centre. From the discussion of the least squares problem it appears
that treating the data as point sources is an oversimplification,

but whether the urofile is best regarded as a line or lamina is an
open question, perhaps depending on the application. Indeed the
question of "correctness" may be irrelevant: the important principles
are that a method has good mathematical stability and is applied in

a consistent manner by all users.
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Appendix 4

Construction Aids for Limacon Roundness References

The following pages contain the main text of a note having

the above title written in1tially as Rank Taylor Hobson Technical
Note T60, September 1975 b.Y the present author.

It describes the concept of the design of "limacon compasses",

that is a mechanical device for drawing limacons and discusses the
practicality of fitting limacons by template methods.

A third possiblity, not discussed, would be the use of an
optical system by which a polar chart and the picture of a limacon
on a cathode ray tube are superimposed. The construction of such
a device is certainly possible without particular difficulty but
would inevitably be quite expensive.
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Construction Aids for Limacon Roundness References

IntrOduction

It is now widely established in theory and appreciated in
practice that the use of circular reference lines for measuring

out-of-roundness is inaccurate if the component is set eccentri-
cally with respect to the measuring instrument axis. The shape
of an eccentric component becomes distorted in the instrument out-

put due to the radius suppression which is intrOduced. This dis-
torted shape has been shown to be well approximated for practical
situations by the limacon, which has the form

r (e) = R -+- ecose
where R is the component radius and e the relative eccentricity
of component and instrument. As well as being a better approxi-

mation to the distorted shape than an offset circle, the limacon
haa the advantage of being easier to compute either by analogue
or digital hardware. A disadvant~e of the l1macon and the reason
that it has not been more widely adopted is that it is not easily
estimated by hand from a profile graph. It is easily possible to
produce reasonable looking fits for circular references (best f1t
or zonal) on graphs by using a template of concentric circles onto
the graph with a pair of compasses. It is felt that the use of the
limacon will not become a standard method (with circles used, for
convenience, as an approximation for rapid hand checking of graphs)
unless a potentially usable, although not necessarily convenient,
'hand' method is available. The most important aid to 'hand'
assessment would be a pair of compasses which draw limacons instead
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of circles since this could be used both to draw in the lines and
to perform the search for best fit. A further aid to finding the
fit would be a set of limacon templates for differing eccentricities,

or, even better, an adjustable template.

Limacon Compasses

It is possible to construct an instrument, sim~lar·to a pair

of compasses, which wUl describe a limacon figure. For a parti-
cular, given shape the easiest device to use would be a form of cam-
follower attached to a radius arm which will superimpose a radial
variation from the set value as the device is rotated. The device
required here, however, should be easily and. continuously variable

in terms of eccentricity and the resultant deviations from circu-
larity. Thus replaceable cams are not an attractive proposition.
Instead a geometrical construction may be used. The diagram of
figure 1 shows the construction of point P on the periphery of the
limacon centred at 0 with eccentricity e such that the apparent
circular centre is at 0'. The total length from 0 to P will then
be R + eccs providing that the line YY is perpendicular to OP.

The limacon compasses can be built directly in the form indicated by
figure 1, the main features being indicated schematically by figure
2. The device consists of a fixed length radius arm on the end of
which is the pencil P. The other end of this arm is attached to a
cross-member and also to a telescopic arm which holds the pivot point,

O.A slot in the cross-member is at right angles to the radius arm
and engages a fixed pin 0'. The distance 00' defines the eccentri-
city of the limacon. As the radius arm is rotated about 0, the
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ecos~

p

o

e Y

Line YY is always perpendicular to line OP
r( 8) = R + e cos f)

FIGURE A4.1: Geometry of Limacon Compasses

Telescopic section
pivots at 0

R

at 0'
Slotted cross member mating
with fixed 'eccentricity
pin', 0'

e

FIGURE A4.2: Schematic form of Limacon Compasses



fixed positions of 0 and 0' together with the rigid right angle

between YY and OF will cause the length of the telescopic section
to vary as ecosS and SO the pencil will draw a limacon figure. The
sketches of figure J indicate practical way of obtaining the nece-

ssary movements. The feasi bili ty of such a system has been demon-
strated by the construction of a working cardboard mOdel. For use
on Talyrond graphs it is useful to have a base with a central spigot

which can be used to locate the pivot of the compasses onto the
chart centre.

Templates

It seems unlikely that an adjustable template, that is one which

shows a set of concentric limacons which have a settable eccentricity,
could be produced in a practical way. The most obvious approach
would be to use the constant diameter property of the figure. A set
of equal diametral wires, which all are constrained to pass through
the mid point of a fixed equal wire could be constructed such that as
the ray at right angles to the fixed wire is moved, the other rays

mOVe lesser amounts according to the limacon shape. If sufficient
rays were used an elastic web attached to them would conform closely
to the desired limacons. The mechanism needed to move the rays would
be the right angled slides used in the compasses (section 2) and the
whole would quickly become bulky. In any case if very many rays
are used, the transparency of the template will be curtailed.

Another possible mechanism would be to link the rays by a circum-
ferential web of stiff elastic material (a spring!). If now the
movable ray ls adjusted, the constraints of minimum bending energy
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FIGURE A4.J: Sketches of Limacon Compasses



will tend to pull the other rays into a suitable shape. (Whether
this shape is exactly a limacon has not been proved.) This system
would probably need less rays and SO be more transparent. Its
difficulty lies in the variation of the circumference of the lima-

con with it's eccentricity - some method of tensioning the web will
need to be devised.

A set of templates each consisting of limacons at one eccentri-

city could very easily be produced. The whole range of eccentrici-
ties which can occur on a Talyrond graph could probably be covered
adequately by a relatively small number of templates, say 5-10. It
would be necessary to ensure that all templates were located to the
proper centre so that a base plate with a spigot for mounting both
the graph and the templates would be needed. This system ls likely

to be not too tedious to operate and should give a better approxima-
tion to the true reference than a circular template.
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Appendix 5.

Selected Extracts from Programs

Included here are extracts from the listings of some of the
programs developed for this work (see chapter 9). An attempt has
been made to preserve just the essential working heart of these pro-
grams SO that the extracts indicate just the work involved in fitting
the reference and not that concerned with acquiring data and displaying
results. The listings are in FORTRAN IV but are only slightly
annotated and it is not envisaged that they be studied unless
specific need arises. They are included mainly for completeness.
No flow-charts are given.

Certain conventions occur in all the extracts. The profile data

(ri) are in an array ~(I). Sine and cosine look-up tables having
suitably indexed intervals are used, values being held in arrays SCI)
and C(I) or SI(I) and co(r). Variable SF is a scaling factor
converting the original units of the data to )Wm and Tl) is the cons-
tant 21T. Generally variables A, B, R are the llmacon or circle
parameters as used in this text. However exceptions occur in those
programs using matrix manipulations, DLS2 and DEVS, where arrays
A() and PIC)~respectively contain the parameters. In those pro-
grams B( ) is an array having other manipulative use. The number
of data points in a full revolution (usually 512) is represented by
N and in cases where there may be less than a full revolution of
data to process, the actual number of points is in NOG.
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PRO G R A M DEN T

Least squareslimacon by traditional formulae

:':BB3B"c"==--c~,c -TH-2=T-P.-( HOG-lc)-:'--'-----:c..
--BIi:IL __ .__ . SRE __5..:i'_C'r·( 1 )+,(OIOG)_)

, ~BB-j?~::~:;:'::i:~-~';-:SR;S-=-~~5';V(HOG')";'S'g-HOG)
)1.B33--,,_:0_··,,_ ._ .-::-SRC=:::5.:"< Y < 1 )+'f(~~O G):I< CO ( NOG » _._._._.
'"a- a 3ot;-::-:~:.::---:-::~c~o-:-:'"-r-B::::·I-= 2 I HOG -r-:::·c::·-·:
c;:B_.B:;3s.-:-::;-,,_~_ -~... ".c:~_R_=,S:R;:l' Y.< 1 ),c'-'-:::::::.c-.--c._-.
:?aB-36'--:--=:,,-c:o::·SRC=SRC+Y( I )*CO(I )
-E!-B:ncc::~::,=:-;.:: cc: SRS= SRS.+.'/ ( 1 )-*51:<71.)
':B a 38':::c'-"-~::"':tll-:Cl} to! lI·HUE - --:::-::.:-..;-.-,.- ..
:-:0.0-3'3:, -r-r-r-: .. _-CA-=:Sl.(.tLOG) ---:.:-_-;---::-::'c_-' ----
;:ife-4B -':0-,-::' -. c5";;:i'-'>'-con~oG)::::C;:--·::.:c-: -
,,9 B-4l-- -r-r-r - --.. ..N-2: =:2_~iIN OC c 1-- ·-:::cc -_'_:-';..zr :
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31-38 Integration by trapezium rule
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PRO G R A M D L S 2

Least squares limacon by formal evaluation

a a 33 -C.;:___.s E T UP RE J.EC TED BITS
o a 34 '{ j'1I tt=!E';':;2 0
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. B 8 5t.::':C·'::::::::-:~':·'=·:-··iH2) = B( 2) +'( I) *CO ( I ) ·.C--

.lHIS 7.. ._. .. _BC 3J=.B('3').+ Y(. La 5.1 ( LL..__..__
-aB 58 ·~~::~?::::':::=_7ra·ca~Hi"NU-E::-':::-:~:':" . .

~~-:~::~;="~~~=:_;T~~.~:;c~}~~~thp;·~JZ=~~--·T:7c;~-~:~-::.
D B6.L .. , . .. HHCL 2.J=H H (2..•3)- .. _.__ .
.BB6Z-··::::::=;:~~--;_~~··cALt~·~·IJifTR(:H"., I), 3. 3 i-i'E Iff
,a.B 63. - .. I F( I E.R_HE. __D) GOT 0 .1.. _..
'a a 64=~==-:;;::0'.:'.:. CA tt.~--:::SEEG(U, B ..A.-:;:, 3)::·:

:,,":,._=---.::.::, : •.- '.

33-41 Interactive loop to remove profile sections from
evaluation

62-64 U~TR and StEQ subroutines give Choleski solution
to HH.A = B for A-- - -
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PRO G R A M D I M A

rnnimum zone limacons by exchange algorithm

--C~~FIRSTEST~HATE USE QUADRANT POINTS
K=!.1
IAD(l)=l

---- ._JAD(Z)=129
I A j) ( 3) = 25 7
r A D(4 j:= 3 8 5
!i=( vrr i-v: 257 »)/2.3

__________ 8=('( 12Sl)-:Y_L3_S_5 ))/2.13 _,,__ ,__ _ _
_:-::,c, .._:';'. - R= (Y(:L'}+Y('129--)~~Y(25 7 )+-Y(--:\i:S::i) 14: 3- - .
___ ....._ H=~'((l t+.r'<257_.>..-YL1213 )-:J_l;?:_$!5»/4 ..EL
'--'_ -. ~ Z H i)(c3:::); Z H !)( 1 ):.::;;.;:c::::.=::~ . _:-:_-_-~~.-~~:.:i-:.-··
______ . ~AP(_2._?_=.':·::: Ii !HJ ~__.__.__ _ .

2 ADC4)=Z H j) ( 2)·-=-;':=:-:" - .

K=K+l
~li-F.- I H(}'-"LfUiCES r HOti:-EH"2i 0 SED ~·iiiN~r-:···

J=3
~.::..::::::.-;_,_;,::_:::;_/-5ff--H-X:~-~·B'S(·if·i~?-;-_'_i=?i;::::~.~·-·~:·::~~_='=7:::-:C:"::·'-·:·_~}:~~~S_;:;:·-:-:-:--

1)0 18 I=l,N
:--=-~o.c--:c:-::-~R::-:;;K5-~( Y< !)':..(R:+A:;C( I )+-e-:ti:s:ch)') j--::~;;-;:~:~:::_~

----...-----._
.--._- .... _-

- .... '.::.:.:::- ...;._;::.~.--.,:

,-::.:=::~~-:.~::::-.::_.-. ~-.~..~,:-=--:-=-:-=;-;:=-.-_- ".. .: ':':~.':'::~:.-...-_':::--..-::::.-=---_'::.~...
-

~~~E~g.:;:;:~~::-~(~~;.:::_~.~~-;tx.~(i':~'+B:i<S-{,JS~:-=.~~~··..-c·::-::cc_---:~·c

~~:.,~.~~S ~&~~~;~~&~i~.4~~~f.:lT--::
====-c.:.""-,,,.,Jf:=S ~_"..J,":I .• IAD t),~:dGQ:- T 0 1 2_.__..._ __ '..
=.:ll':-CONT;INlIE .-::::-:..:'::-:'_-- - .- .._.-
::=.::-::::::--'_ .._~1::_5_. __.-_. -.- ....-- '--"'-'-' ..-.. _- ._...--_.- . ---.~.;::..-- ...-.c - .. ----- --c. --

,,='" '1 2 I F (I $"1'GN( 1 I H ):Ie (:;'1 ) * :10 ( I':" 1-) ~tl E. I S I GIi('1;. E ,.I ) ) I = r.;. 1- .. .-- --

:I=::~~l':~J:~=,:T~,~~,~:tt~~: ~~g~-;fg:':-Ii ....-,::~-::=;-
==.:':7,. ..-..;_1ADCL)= I HD(2.)____ _ .__. ....
:::;:-~=::. -- -[ AD(2') = I AD( 3 ).::~-:,_,:-- . -

~~:;j:_-:::;:__~c~~;=-J)~~IAD(4-)=~_:c... _.. ..'

:::::-==::::"-:-:'7-,&0 ._1_O :._1.3 '---':::=:::'_-c-,c::--- ._. . _ •..__.. _
:::::::=':31· I AD(4::).= I AD( 3 T::::::: ..
~:;:~:?=:::-:::)AD(. 3 ) = I AD< 2.. )---.::;:=~c ~"'._
r: ,,-- cc::;::.: ., -1A D(:2 ):: I A D ( 1-:)~::::::.:.::;'
-- .._._'-"- ~ 1 = l"_'__~M_ " •• _

.- .. 13IAD(I)::J
C FIND HE~ REFERENCE

... - - .. ---_.. -

, +-, -- - H= < <Y ( I 1 ) - Y( r~·).) *' ( s.; I 2 ;.- S ~ I .;. ) ) - ( 'r' ( !2 ) - 'r' ( 14 ) ) Ii< ( S'; I 1 ) - S ( !;::) ) ),..-.
# ( ( C ( 1 1 > - C( r 3 »,jo ( S ( 12 > - S ( I 4 ) i - ( C.. 1 2) - C{ 14 ) ) .1< ( S ( r 1 ) - S ( I 3 ) ) )
IF(ABS(SCIl)-S(i3»).LT.ABS(S(!2j-S(I't)))CO TO 14
6 = < ( Y( I 1 ) - Y( r 3 ) ) - A"' ( C( i 1 > - C.: I ::: ) ;, ),.. ( S ( I 1 ;1 - S ~ i :~) ;,
GO TO 15

14 B=( (Y< 12)-'( i4) !-A*< C( 12 )-1.:< I -l») )/( S, 12 )-S( 1-+))
15 R:(·r'( Ii )"'Y(12)-A:t(C( 11 )+C(i2))-8~'S(Il)+S( i2)ji/2.il

H=Y< I 1 j-( R+Aid'::~ i i )+8:;.S( r 1 i)

GO TO :i
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PROGRAM DIP L

Ring or plug lima.con by exchange algori thm

iHJ26:
EHi2?

-G B23
JHJ29
'IH535 ..
Oa31

c FIRST ESTIMATE: MAX DIAMETER
.J = 1
V=Y(1 )+y( ti2+1)
D (.1 1 a I = 2 I ~12
T=Y( I H'i( I +H2)
IF(T.LE.V)GC TO 10

IH133
"'HI34
_l1..B 35.
:BB36
_~.B ~( .. _
~Ba3e .
.JIB39
.-e a 4tl

.J= I
·la CONTINUE

R=.V_I·2.
V=Cf( J },..Y(·)+H2) )/2 .

._ "._.._".:Ii=_V,* .C(~J:~., -:-:":'''''':='::=:::-~:''-
:::':·:··~=::C.:·e= V >Ie 5 (:J :.>.,.: .-: '; :=.:.: .. :::':':·.:c :.' .
...... K= n ..__ __ __..

CALL VIOL(A.S.R,NAX~
,",.-.-~----,--.- ..~..- . --_. __ ... _ ...... ..

J! U41 .. ._."_ .. IF: (1'1 A;; . EO . B) GO._TO_ ~..__.. _ ....
='BB42. C·~:THREE 'POIHT CorITAC:l~~.-ORDER-:J I J+1t2.H~X

. _" _,._-.-- -.--- ..-.,. __ -

:-::~:e.~ 5..-:::-::.::.~:==: ..:_J 2.=..t"~"_'~="=':::':'.-:-.:::-'-=-~C-':::· :-:".-:::-:-:-:-.: :.. : ..- ...;-;:--.-.- _.. ".
:;:'g-g4,: .. -;';o-=-=::.==-.~:.:: I :?,=fiA ;;='.::::::.:?::::~.""'::'.:: ,-:,'=-::.:::.C· .. : .:.::::

~?)14?:::=:-::.-.:::.-:::!::?=.!.l~A-:-.-::-,,·:-:-::-=::-·:·:=--:.-:: ..::" ..---.----.- ...--...--- .... ,_..:·,,·c·~·=cc::.-::
=g-34 3-·::C:::_":::-'::':'=:'::::-=·::·G0::::1"0:::1 :5 ::.::..:=s:». --_'c.:''':C:=:C
_!iiB9 __. __ U __If.Lf1A;\~LL. ..·J~GO_J.O ... 1.2_._ ...._... _ ..... - .. -- ..- .. - ..
~:ifr}5a;~?'::::-·':::~;::~~.I2~ita;?:;~'::'::'~~--:±:,:::~:,,',::::::;_,::::::-.:'-.-:~..:«. :.~:;:~-_:::.::~::::c::=:.;
_a.a51_.oo .GO._LO_LL_ . ---------...-- _---- ...- ..- ..~~e:a-5 2'::::~:==="1;~:_':_'Ii;:';F:::~::::::'~'::::':~~::.~:::":;.:;_.;:::-;_:-. ..
_5 g 5 3 ........... .1.1.=1'1 Iix._._ .. __. ._. .._._
~ri·054:::~:f.:~fA'[·CU LAT E':RE FERE,.ft;·E~·'i 1 /I2 I 1:3
_JIB55 .. .....1.5.. S12= S.CU).::SC12L ..--.- ... .,-. _" --
~00%.·:::;,·~::~~·~:'·'·S32=S<r'3')-S(!2 )":-: ." " .-
::::-fl a s z.. Cl 2·= ~ Cl ~.)- CCl 2_)_.: .. ::..:.,::.:.~.. . ~ ( C 1;2 .*.8~~2- G32 :le S 12 )
:- IHI 5 e C:3 2 = C ( I :3 ) - C( I2 ):. '.' ~.. ..
_3059. _.. . A=.<.LyU.l_) ":".YCI 2) J!S3 2-('( 13) -:.Y( I 2.V ..*5.12) / J
~:B06~'·:~:''::::;~C:::::~:::IF''('ABS'::S12 ).IF;'~SSc..S.32 )GO TO 35.···· .
_5 B 6L. . .. B=<'Y<'UJ.-:.'r' _( 12 )_~A* Cl 2 ) / S 1 2 .... '
::Ba~2'.;:~.;=~~.::~::'::::.:;G0 T- 0 36.:=~:~:i:':'c.::.:.:..'~':::~>;:.:: ..
::-~H.6 3._.-c:: ...35- ....t3 :;.~:¥.:Ll.}_)~:Y.(J: 2 )::-.~ >icC32 )1 $3 2: .. -- ..
=0E164-:::::-:::'::::36-=R='Y(;r:F~;;"A *' C<:I 1·)·-6*8 ( II T:'
IHH,5 K=K+1 .

28 N2 is 1800

41 No violation of reference by data: end of iterations
43-53 Not diametral contact, sort out angles 11, I2, 13 of

three contact points
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PROGRAi.~ DIPL continued

~'1Hbb. -=:=-..:.:CA LL- ..V10L('A ""a•.R_..,nAX). __,,,_.::-: ------
-aa 67 .0-:-':=::-=-;;-:·. IF (1'1 ~X. EG .13 )GO",cT06··
-JH!68. : .. ~=PLf~CE.~lAx....lH REFE.REHCE.US ING. P.I..CRITER.10I~
-a E ; 9-~ .... c.. I F ( 1'1 A X . G T . I 1 ) GOT 0- 2 El ....
::fLEI-za.-:.--_-.. -.-.. ,,-"::.-If.' er 2:::MAX ~Lr.H2. )~O.-JO __:2L---- ------- _- .-
=3 H71 .. - . :==-=-:~·~'::I3 = r 2'--·_-·· ....

:::.667-2 -._=--::-OC" ..,.,.,.:I 2·=·!.·h~:-::.;·.-::0::::-:·
if fH 3: ·::::'=::-~-ir' -t 1= i'i~1-\'. ,'::'-
:tlu74. GO rO_26-

::_-:--'-, .-.-'-:::_-:-":-.-.::.-

:a 6·75- 2ti
_.Ei i176 -_._ .- .....
':3077=':;:23

IF( i'iAX-.GT .12 )GO:-·T-022
IF<I3~.r-t~X.GT . .r12)GO TO 21._ .. _

..0 B 713
=fH179
a El83
0081
Htl;32
[Hl;~.:::
lH134
0;;!:35

£108,'

69-86

'G142 ;
.614:;:
-:01H
:0145
off 14';.
Cl •. ~-:-

,.:U j. -,.!-

12 =MA ~<::;.,.::.
GO TO .26

-. ::=:::,22 r F 01 A X . GT . I 3 ) GOT 0 2 4
IF( 1'IA;~-ll . LT. H2 )GO iO 23

r-,_.

GO T025
24 IFCMAX-t2.LT.H2)GO TO 25

11=12
12=13

25 13 =(1A;":
26 GO TO 15
END OF ITERATIOHS

Exchange contacts, maintaining order, according to
1800 rule

_ E i] ij i V IiL E i'~C E . < c., s~i Z :; ) ;.
:--N:5! 2

... ::::.~_. r'l Ii ,;::B .
.'.- c:.~;::·=-:.:. 'rf= e .

-r-r-r- ... v= u., i
-. c.:· -oo 313 1=1, N'

..014:' ... ,- .. c:_-=.;;.1'=Yl. 1)-( A:lcC( I)+8~S( I )+R)
::::=-'··If( r. LE. V)GIJ TiJ35 .

--:=.:::= -; V = T· -- .... --.
'01 '5 ~
_-3-iSl
·3152
:..0153
"-8154

- -: C .=··~c:-HA;, = I
-:.:.-.-=33·-::0IH I rl'J E

.~.:-'.::;.-.. rt: .RET IjR N

140 VIJL finds in MAX address of largest violation of
limacon (A,B,R) by data. 0 means no violation.
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PRO G R A M D E V S

Ring lima con by direct use of revised simplex on dual linear
programme

, -
_a (l :3 1 c _ REV r SED s HI P LEX : SET UPIN I II HLeO j-j D IT!O tl S
aD 32 _ , Hi~r==,'-T RIJE.
a iU3
~H134
,,8835
9936'

'f(513)=0.
DO 2D::cI'=l,3
. BP CL'_=il
C8(I)=D.

Jln 3 z,'-.~,=:c:;- .. I.C(_I )= 513
:::a B38' "'·'::'::·:'''-,'·DO· 2 B:::·J·:·l ;.,3
di-.a3..~,,,-::-c.,,:,=:--=-==-: ,B (-1.!::.L_>C;=a---..-7-· ..,:-.::-:,,-:-.:::.·, ..------- ...- ....

"-lfe-4ff .. ...-==::::~c.~.:,: I F(!~~.:tJ1=?::JHH'tf-J:..j::-l';- .
",jH141--..:-2 a,..=c-=::.c.i1~I.l:Ut:ll E~:. ~::==:.='-.-'
=ae4'2",.':::::,:=':':-::'::::--ap'C:3"}:""F:::- ...:C::::~=;:=:::::. .- ..
=p:u.4_3:-,.c:-..:.==:., ..K 0 UM.L= a. . ., .-..-.- --- --- ..-- ...
=~ftf44·':;C;=·:'·G ET lA TEST S I rtP lEX-M UL TI PL 1 ER s r P I=A·":S., R
~£la4!.L .. .1.5__D0... 1.6..-1.= L3 ..._... ... - ---. -
~e-Et:~{6'=:::::-::c:~-:::q6':-'PI- fI:Y~~B(1', {'>*:bi (1)- B (2'; I ) * CB ( 2 ): B(3', I ) '" CB( 3 )
::£lB4Z-::.,l:.. __fJJlD .-p.,LIJ.o,r .,C0 L ...,.,-=~tAX Cl (J LEO K.. Cl ( J ..)-!~e-;.. ,_.. -
=Efti4ii:::-;~:·::-t::=::-::::t"F·A R-T:t-'f'! Cl HLs"cp RESEH T USE WAGH E R ttI:-· FOR C
:.:3-,3 4-<}_-::::--::::-c:.=-:,=:::-:' J,= a ·".~'=7·.- ' .. ::::'::·~'.~CC_:-.'.:', .. . .-- .. " .-

:':13"-"B5B-'::;:;::::--::~=--::-==: 'r f'1 :-';"lfH F .-:,:_::::=o,:::::-.::::,:' .....
::n:~51-::-::::=;:7~-:=::-::;:-:.. :"D (l--1...IL.r.=L ...N.:.-=~:-:=-:=::-.::.
'iHJ52::''''~C~'~~ IF(ART')GO TO ZZ·:'·'
=IlU53.. .T=Y(! ..)+(C( Ll:f<A+SCI)*D+R) .-..
~i'HJ54 . GO "Toil
AH155 22· T:::C(_I-)"'.('_1.~+A)+.SU.):!C( 1.+D )+1. +R
:':fH1S't: 21-: If ( T . LE, TM)GOT OHf
~;Dti 5.(:, .. - ::..-:.:.:::~:::-:.:_T i'l = T.:
~:~ffB53'- ,::::_:"-..::.~,:~,'.'.-·J="I-- -
...ll.il53.. .._lD ...co ~l.T.UWE:._ ... _-_. ..----- ... -., ---- ,- ..
-:0:9 6 i-~_:::_=:::::::~':;:_:' IF (J~:Eo',B_).~-G6-:~'T-~:'3 (3.. .=_:.~.. :~:.. ..=:=:'=;-::-=:::~-
:::~El__6L_._.-:"::=, ..-;..KOUN.T::,~K,OUHT.t:1..~:-,...:.- ,. . , -:_:-:'=-:-:.
=UliJb2·::::_:C':::':~':;:CALCUL.ATE;:CURREHF-YALUES PJ OF 'CHOSEN:COLUMH:7': =::
.}:HJ ~3 E:..~:-:.=.:..~:~I0 FHI D.. RO ~J_ K:.:~..!!~ ...r1.1H. rHE) A VA LU E
:..1iJ D l:).4· ' ..'_·,:::':"::---:C .. ':'::· TM =--rC-:·3~:::":· , - _ ..--_. . .. ....'
ElB65 K=B

-_

..~Ilbb._ ...__..__ "C' DO__1L_1..::1, 3 ..__ ._.._.. '., .---- ..-......--..,.-- .--
·:eB67 ,':::.=:":::: P,)(·-I:)·iiB( r J lj~c'(i;)+i3( i~2'>*S(j )+B( It"3)
_BB68.-.. _IF(PJ(!.)_LE.B_J~O:.;TC 1 L.7:_·- ........ - ..- ..

'B 8 ; 1 .·C • T= BP (: l ) lP',..! ( I ).:", ......,.,.. ..

tFCT.,CT.,Tf1 )GO-..TO _11
IF(T.EQ.TM)GD TO 31
= !6~? 11 OHTIHUE
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PROGRAM DEVS continued

- ---
:::Gu 7€~ ::-~:·~·:7.:.F-.I-VjJ T 1.S--:-;'.K..J-\.l. ;t-t SE~:~6.-H,5 r C'~..,V iiR-:-. i ri.. CO fl.5.T-i~H r H.r.....OR D,ER.- -
::5577 ;;-"cUPiH,TE'BAsI S ·Ht'D R~-f1 ~S. ...

iC( K)=.j
=lt5?:; ·..:=::.·:='-=...::·CB(j{-jozy{-.J'r·-······-------
:.::.0il3 3-.-=:=-=--;·1 F ( HJ~:T:):C 6-,(, K ).;::C·';"J::-l-!S,C)-).-+ l..~_-~=.. -'.;===':= - .-
~~f5f3! :::::::::.::=.o'·:'=:·::Di] I'Ft';'!=i 3 .,: -.;.==:=,.:.:;-;;:::::. -- ;·:?~:,:-:,;_:;::;·:·'::==~.C:.~=c~~·.

dl!iB2-.,.-=~ ..z,.~·S(K/-.I.,...).:._B.<_,K- ....1.);:;~~-K-)- ·-.:C:::-:-:-:--:.::'::.-- --- ..==':.:':_~'

=6'5 g:3 .:::='=-=-==::'-:::::':::'-E! F ( ff:), == Et F 0"K },.. P~rf~i('"j-::'::-'-.:~" - :=.=:= :::.... - --·c_; --=-~;: .

=il-384 ==:::vo.· 13-=-1 ::-.1-:: ... 3.:-··-::=_-===-··-·-· --- ..----.-- ----:""---.:--" .'
=ifB 8 5-;';-'=:'~:"==':-I F ( re.'Eii'fK'> GO: -ro=ra
=3-€P3€.···-··.,..=:=::-: BP( i·)=BPJ:.I-).,.BP-(K):.*,PJ·(.I ').---';-,.,:-:.:::-:.
=-5'5 e 7 ·-'·:::==-_:-·=:'I)O (4·~-:,,·J·;·F':3·."~:.::::'::=--
"Jl-~ B 13--::=-:.=:.--:::l-A--:. B { It-~.L;t_~iH-1-:-,-J,....).::::. o,;(-:i';"'" J_.):k P •.1 <-I _)_-"--:-:'-' -:":a0 8::t·--;~::7frciJ HTnw t::=~: ·.:e::<_:._::':,o-:. ..-.-

. -.--- _. -_._-_._._ ... _ .._-.. .... . ..
._--.--.--_.'-" -_--

~~fHl~a ···==:-::-_G O-·T.o-':::1-:5-.,..- . - .. -:::::'-:=7:::-'" - ---

'-'0 B 91 -':c==j)"PT"I i1Atl TT": fiJ UrI fi ..':.:.'7':'._ .. '

:o:~Ji-32-:~±ti:-::i r-'-:-.::ri,()._T"",A ~l:,),G()._::-:~:O:-:--~ ...-.---
;:Cff 09 3" ..=-;_-=-,:::; AR r==';':FIlLS E··.-::::- .. 0 •••

,JH194. :-=:::-:=:= .... 0:).- 36-...-1.::::1- ... 3....-. ··_::·.·.-cc·._
''''5035:':=:'-36 CB< i );"Y(IC( r)T::'::::~:c:
-:i15 C;;:. '. :-:cc.=-_-:-:-:-c_-:-: -. G0 T 0. ..:_:1-5-:,-_ .::- ..~.~-:-::_:-__-
::iHB 7 . :-t==;='fffFE H 5 r"ff-!L':(ri !.-::~-:=-- ..
di B '3 8 ::-=::-_=:32:-·;.;1 RIi' E (-1-".1-1 il) --'.---:'.-: _. -
=Iii !B'J:-::::::'l'ia FORM IiH"ER Ro.RCOHv'rT 10i'P)
Al·! iiu··:0-:==.-::-::::' .. GQ...,.J': 0.::=1-.-;::-: ... ;''':.;-' ..'..::-_=:.:._ ... .... - ... ,'.:o...:c=,-;-:::::.-:'-
:'ifl ill - c--::=-""S:"fii?LEx'rfE"::'B REAK' FoR- THETA -------.- ...
:-51 tl2 .:-==~1-::.1 F (K • EQ.,..B-l GO T 0..-:=-,3.2-. ..... ---- _. .:~:::.~_-=::=:;:-:-::.~_"
:':~H iH -=-::-=:,=:::=::::==.::::·!)O3 3'K'i(= 1 , N -- ------.
:-G-194--.------,TI =(. B<-1-;--1-) *C( I< K-)·+B<' 1 , 2 )i< S.('KK)+ iH. 1 ....3.) ) IP J(_I-k-,;:- ....
~81 85 .' :~-~~'::~;:':Tr~:;(B (K-, 1 ):I<C(j( K')+iH 1(, 2 i* 5 (K'K) + BCK; 3) ;; IP.J ( Key:::"-,
:::131 U6· '7C.:=-.,...--. IF ( T I-.·E IL i iO G0..---10.;: 33 -.-- . -- 'j'
coalti? --.-.-_. IF(Tr~-G-r;TiOGO 'TOll .._.,.
:.al 88 .__=.:=:::.__.GO T 0.._.-:2..3-.-:;:.:::::-::- ._:::;::-:::-:-:.:-::-._--. ..- .. --" '_'--'-'---'-'_"'-- .-. --c' --0=-'" ..- _.

_- ,- ._._._----- -.~.------.- _. __ .. ..-

"Bl El?
;_Pl 1tl
::Bl11

'::=::::-:'33·-:- G0 N r IN ltE:"'::-::':':: .. -..--.-- ..

_. . GO .TO._LL H._. ·_·

-t:===~:cE H j) 0 F IT ER ~ TI 0 Hs:..:·~:::::.:-
.- ':'-7.:7.::-::-: :4:~~:~.~.-:--.

.'::;':::"::'::'~:';"--'.:~ ~:'.- .-

Program is basic revised simplex. Note identification of
variables and arrays.

ART - (logical) true when infeasible so using Wagner w
B - inverse of basis
BP - R.H.S. vector of tableau
CB - basic elements of objective function
D - y-component of eccentricity
PI - simplex multipliers

Also I(1),(2),(3) equivalent to A,D,R
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PRO G R A M D R C 2

Interactive ring circle fitting

Only interactive section is given, it is proceeded by finding
the ring limacon by exchange algorithm

_r!D% C _._"_CIRCLE.~'_.CALCULATIOHS. -, ._

·O~B(" IJRITE( 1 j I1B)
ar.p::: 110 r:ORMAT(1t RADIUS (MM) _It)

.g 3 j " RE Ae ( 1 f*') R B
_alBG R0=RB.ID3/SF
:0:1rj! ::~'6a CONTINUE
.n.HI2 ....._._ .. T 1 = T P.,..( .Il~.1 )_-- -_-'-' -._ ._--
e:fH 93:-:::':::--:O:':·:T 2 = T P*(·~I2'-l )
::1!J.!14 . ·. __ . T3 ::.TP..*.Cl3_= ..U. ------- ..--- ....-----.-----. . ------.-. j
;;8'185 . ~:::~::~::·;,CALL·C3P(:Y:(·I 1) ,':,((":12"),Y ( I 3:-h·H.:~:~i2-, T3,R B,,'(LB, R )-:., ':::_:

!
~,a.1.a6 ._:~=,::_---Tl=RB1:.R::_=,..- ..- ..-.----. .. ..- .. -.----.. ..
~=ErH17:==:;· ..G=SQRT(~A-*A ...B*B )/T 1 . .....- .. -.. _
JI1"B ::: =.::-_.-_~" P = ti ....=a::ta l' '::::':=:=::-='::-~V= 0. ._.c. .... "'i

I
.::_~:!.la ·-:.-c-==c;.l1AX= EI-=:·.7:·C=:-':.:_-::. :::=7.-.C:-;:=." ,:'." -.- --- -- .
=a=Fl1':::C=---::DO 4 B0r:-:i'f:~-N _=.:=--:.::"~... - - - ..

_1l.1..12. ...... ~=_YCU.=..A* C_<"'l.)-:: 8 >IISCI.l=R +CA.*.S CLl.::.B_*C_tI 1)* '" 21 T 1/2~_ ..__ .. __==rff{3>:~:':==:":::' .c.."'IF'( p:;:::'G'E¥rc')c'o' T 1}0'4i::::':<'- --:_:L:C::~:;C::-'=:::·-::~::':~::;:::::· .. ~ ... -. _:.;.
dl-:!::1.4;-:-::-: z: ...p.=.T ··CC... -.::== ·".:·,,·=:::::::C·.:;: ·-·:·~:c:·:·::::-:,:~~=-:=.;:·.:·:.7·::--.:. ..-::.::::"'-:;- -::-...,
:"li:'Ff5'O~::'~----'--r1AX=f:-===-;::-"'':':- :::::::::::::'::--:-=::::'..::::- :·:·-~.:=:;;_::,·:·C:::':·=:"~-:'·~.7-'-'·····-.. --. - .. -. , ....
-..a.:1-,·1·~·-:c::::--4~,CO HrI.Nll~_-, '''·-::.=:=:=7''~::''·-· .._--.-- ...._ .._.......- - -----"

=e:-fT? ·::~-:-.-~:·I F< 'II : -CF-';t==)y = T -,:::-.:=c_:=:-~: '. - .

dh1-.-1:B-... ._1F( I S.SU~s..P4 L4 B::-.:-.:.._:-::_.
=EFF'r9 . -; C::::-=-'4Ft F ( T . GT_:~cB» IIIR I T E ( Gf 1 4 B )1 , T
::3:.1:<;:0 ::'-.::.J.,Hl.=F UR 11A.+C~. ·_PoOS: "00':1:4 ..:"._" =".' F 8-:-~ ).,~ _:-_":-:a:F21':-~'::4:a::==C 0 rH IN'UE::':::"'-:-:::::':::::::' .... :;.: "-"-"- ,..
.:.ftl,,2 2 .. ··.r::=.::- ..:::.~:::IJRI T E <.6- ....1..,1.1 ) G - - ..-t-:..... :-,,_ ... -:-:-,-.... ...

=U"!"2z=f'Ft:: FORMAT(-:"~7;t':I RCL EDAT'A ;. 2", D .OR DER""- GAMMA= d I r s.6)
!~~-....-~:ci::Y=:_:;~:~:~~I~:~~':i{:''''-".'..:::.::;.,~.;~.:.: .:.;.:~:;~::~.

~;;-:c~~~~5.~~~~:~;~:I~~~::..·::~.·.:-~~"~·:'2~E=-'. ...
-0:-1,28 .... -.=.:::::::::"T 3 = R *S.E_....-=co.:=·: .. : -.~".::.::-,::..~,.:;-...... --... .. --....... . •._ ... -- ....._ •.
=if-i:2 9~=:--:::==i:J RI T E (=6':'F1-"1'2 )Tt, T2,-r3 , P,V . ' ..-.-:".':::';.:'.,.';-"-
.e13a 112-FORM~T(" A=",F8.3." UM B=".F8.3," UM R=",FS.3." UM"I

-i

::.B::b11::,·::-==1:c· -eli A-l>b-=PoE AK = "., F8-,. 5 , -.. U('1.. -: M1H-:.VFt L LE·Y.= H ,F S.,::~~." . U:.~I"I )
;:'a=r32- C~:C'iHiER AC T'IVE'::::"C:I RCL E FIr .- " ..
:fi-l~'J3 ··:o·,.::-::::=:·T1=R B·+R .-:-:~=:. _.....

=813'4 ::"':'·:'~:C:-~'CALl COPS-'(fl,A/B~Tl)
di·J.JS:-:-::='C":'.',·.:::::-: CA L L -co.? S "'1.2 .. K.....B ....T 1 ) .. -..
~aT3~ -:~-=-==;-:::'::~CHLL·tOPS(·I3/Ai·B;Tl)--
::6·1-.37 -'_=_:-::c=-=L.IR I r E'6.· ...1..4·5) NFt X ..---7· .: "C-C _.:-;_-.:= ==.
=a'i3B .::'r·.~S'c--fO RiHrH·It:'fiAK ,Po1'Hi Ai· II 4 f~' .
",C-l.3-' - ·.,.-::--:c·-ctF( I·SStH.CJ.) .. GE.B.)C.OiO 1··
=ifl i 5 ':'::'. :_:::'. i:;R t i E'fh~16 a :;:,-:=-::.;:.~~:.:-"":, ..
=_lL1.4L ..... 1..613 fO Rr1 H.T<"!~- HEW Co. H-'tilC.T S?" )
fBI ..? RE IifJ ( 1 .' oft ) I 1 . . . .
)114;; _1f ( I l_LE_Jl)G 0 .TO 1_

~-'''--:~-:-:::'.'.:::''':- _ .. _ .... --" -.
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PROGRAM DRC2 continued

- 2 1 '-}'1-

L 1 t~~:

CALLCOPS( I1 d!, 6, r i )
REAI)(L*)I2-
CALL COPS( 12 d! ,S, Tt )

-_
B I .~~"
:';I ; ., ~

:: u-. .:. -r ~ RE AD {,1,,--~) I 3
CAL LeO PS ( I3 , H r B, t 1 j

4 CuNT IHUE
- Gl 51
£i152 SiJBRuiJrii'iE -cttPS( I I Ii 15.: R)

C o 1'11i-0 H-:;'.C5-1-2-)I-:S-\ 64 B ).---:-:::_--::
o IrtE HSI OW' C\ 512) ------------
E~ iJi-VA L-Eli-CE (C>-S (1-23 )..}-=-::-..::---

-_-=:--:.-:-:-=- ._-_

:-:_fi 1 5:;:
:' E 1 ~~

"',:::<::.-.~. :- ._. '_.

--

_::il_j 5?-

._------.._.,_-_"-- --------.-_---------

=61'58 'iP :oxl}~s(.:r)
~jj1..5:; -. . -:_::=:-::-:-:-:_-:0< o_~_?- ~_~_i{P-:c. =-=:::=-_;:."
.;BT6 E -:=:::::::=':'Y' 0= ;t=¥irS-:::'ypc:_=:'=::-:=_:=-=:- -
::_3,l_-6.1--",_:--==--=-= c- I'O-P--=A-'tAJ'i2 {_'i(l,,-X-(L)L_ a 122'7--------
"=iFf-~ i7:=--:=-=:~:=-==_:::::IF;:=~&P-~~tT.Bj-rtrp-;~Fbp+- sff~=-~:7:
~~}~~.~~__~~?2I:g;~:c:~~~i:f:~'r~;:i:a-~'-;i=?rop--.. 3-::=c~::=_:.

'.. :,:..~-:::,,=;;:,::;::_:_::"'_:.----_.-"._----.
_ .._.-.
...--_.----'-

. ---~-..
" ..-_-,' .. -.- _.-- _- --._----._- --_ _._-_ .

'-iJ1-:';'5:-::::::=:::=1:~~:: f ORii-~l'-!', -COii"LA-C-TL", 14-_,?:',=0-~P OS I-"LE-:_~_~,-I4. i.
'-~G1'56 ·,c-:::=:;:-:::-::::..:,::. RE'TU'RH .iz: .-- .-.-:~.. - ::-:-_::~-,-,-~:-:::.-:-.:::_-:::=='

99 RO absolute radius - double precision
108-121 find peak & valley relative to specified circle.

Peak is zero if no violation
152 COPS gives index of other end of circle diameter

=tIl34
::D-!- 3.5
-s r es
Jl18;:"
=HI 88
~[1133
:;i}1-9il
__a1-~n .
:-6f92
[H93

-- SUBROUTINE C3P{Yl,Y2.Y3,Tl,T2,T:;LRB/H,[:,R)
i)I)USL E-:_PRE C IS I-O;lR~, 0 I R L.R2 ~R 3 ,.LA ...r s
R3=RB+Y3--
R2::RtHY2--- ------.-.
Rl~RB+Yl --
0=(0_5 IIH DB LE c.tz.-r U )/R3+_D S I I-HDBL~(,T 1- T3 ) )_I R2_

;:-:1 +DSIIHDBLE(T3";'T2»/R1)*2D0
-r TA=( CR1:fcDSHED8LE(T2 »-R2;'DSIIHDBLE(T 1) »lR3

.-1 +(Rl*DSIN(DBLECTl »-Rl*DS!HCDBLE(T3»)/R2
___2 +( R2*DS llHDBLE(T3) )-R3:ft!)SI!-I( DBLE<T2»' )/Rl )iD

T r = - ~ < R 1 t: D C (I "H £) ElL E ( T 2 ) ) - R 2 H, COS ( !)B L E ( T 1 ) ) ),1 R 3
~(R3*DCOSCDBLE(Tl )~Rl.DCOS(DBLE(T3));R2

_El 1 '~~, 2 +(R2*DCOS(DBLE(T3»-R3*DCOS(DBLE(T2»)/Rl )/D
F;3 :: R 1 - T :1,..D COS ( D B L E ( T 1 ) ) - T B >I< es I H( DB L E < T 1 ) )
R2:TA*DS!H(DBLE(Tl»-TB*DCOS(OBLE(Tl»);]1~~:

··{11,):!

E ZU/j
~l2 til
n2i:l2
tl2J::::

8=T8
R=Rl-RiJ
KEilJRH

184 C)P calculates circle through three points, specified
in terms of R. 6R .• 8. to maintain precision

1. 1.
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