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A Unified Appraoch to the ileasurement Analysis of llominally

GCircular and Cylindrical Surfaces.

The customary nrocedures of roundness measurement have been
develoned in resnonse to marticular needs as they have arlsen,
incormnorating approximations as anprooriate. Consequently, the
direct extension of these nroczdures to more comnlex measurements
such as "cylindricity" is a questionable exercise. The present work
develons a mathematically consistent description of the processes
underlying the measurement and analysis of roundness. Fronm this are
derived analytlcal methods approoriate to neasurements for which in-
strumentation is, in some cases, yet to become available. New,
highly efficient algorithms for solving the minimum circumscribdbing,
maximum inscribing and minimum zone reference flgures are also pro-
duced.

The method adopted identifles important features of roundness
measurement such as eccentricity and radius suppression as transla-
tions between co-ordinate frames assoclated with the workpiece and
instrument. Reference figure fitting 1s expressed formally as a
problem in optimisation and the standard methods of Operations
Research anplied to it. All four standard reference circles are re-
examined in this way leading to generalisatlons of measurement
conditions and improved solution methods., Earlier advocacy of the
limacon as a refercnce figure 1s confirmed and extended. The relu-
tionshin of circular and limaccn references 1s studied and an eccen-
tricity ratio shown to be a suitable control over the approximatiuns
used in »oractice.

The use of "limacon cylindroids" seems to provide a working
aonroximation for the measurement of cylindricity. It is recommended
that cylindrical reference figures be fitted by standard techniques
of linear programming rather than by special algorithn,
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Nomenclature

Many of the terms used throughout this work have related but not
identical exisiénces within different frames of reference, here called
instrument co-ordinates and chart co-ordinates. In these cases the
nronerty is allocated the same symbol from the English alphabet with
the unnér case character referring to instrument co-ordinates and the

lower case to the chart co-ordinates. For examnle, from the list

below:
a = MA
(A, B); (a, b) - Cartesian representation of centre
(Ao’ Bo) - Intercepts of cylinder axis with XY plane
(Al’ Bl) - (Comnonent of slope of cylinder axis from Z axis
= T
a (a © rL)
b ~ Vectors used in the manipulation of linear
c - programmes

“olar renresentation of centre

(En 0)3 (@o ¢)

v, 1) - Weighting function for profile measurement error
243 2h - Radial zone width of nrofile

H - Matrix of exmerimental noints for least squares
ln = n xn identity matrix

K - Matrix of experimental points for L. 7,

L - Radlius suppression

L° - Axial length of cylinder

1 ~ Direction cosines

M - Magnification

m - 'Slope' of line
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Number of data points

Number of sides on a nolygon

Co-ordinate system origin

Radius of circle

"rofile radial data point from origin

"Radius" (semi-diameter) of limacon
. IN)T '

*rofile radial data voint from centre

Arbltrary radius of polar chart

Active width of polar chart

Cartesian reoresentation of ovrofile data noint

‘'oint on cylinder axis
“rincinal axes of co-ordinate frames

Inverse of basis in linear programme

Eccentricity ratio

Eccentricity ratio on polar chart
Determinant,'cc-factor of matrix

Out-of-roundness, residual from limacon
Out-of-roundness, residual from circle

Maximum radial divergence between limacon and circle

Dimensionless ratio, E/S
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1, Introduction

As, over the past thirfy years, surface metrology has
becoﬁe recognised aé an important discipline in its own right
so roundness measurement has grown to be one of its most
significant branches. Traditiénally "roundness measurement"
has'implied the compérison of single cross~sections of workpieces
with perfect circles which are assumed to be the ideal. Using
specialised measﬁring machines, an intuitive but perfectly
workable basis for such measurements has developed and is
embodied within National Standards. Recently, however, two .
‘devqlopmentsvhave Brought the potential limitations of current
practice into importance. PFirst, ine#pensive digital computing
‘has led to the expectation of more accurate or highly autoﬁated
measurements. Secondly, there is a growing interest in so-
calle& "integrated‘ﬁeasurements" where the overall surface
shape is to bé‘described. This has causedvthe introduction
of the currently rather poorly defined terms such as
meylindricity® and “sphericity”.

Current state-df-the-art instrumentation, usuelly f
involving the generation of precise straight line and circulai
motions, seems capable of coping with most of these expectations
provided that the data which it supplies:can be adequatély
interpretfed. However, it is not clear whether for this step
existing methods can safely be extfapolated. Considering
rthe b#sic measufement procedure 111ustrated by figure 1.1,
the comparison of the imperfectly manufactured workpiece with
its apecification is seen to involve several processes.

.
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Apart from tﬁe inevitable errors which occur with every
measurement, there may be limitations in the insfrument which
cannof realietically be eliminated (see chapters 2 and 3 for
more &iécussioﬁ). Thus it‘is neeessary to extract from the
data supvlied that reievant‘to the workpiece so thet only tﬁis
is compared to thevspecification. Note also that at several
stages, the procedures are influenced by Standards.

- It is within the above contextithat this work is concernmed
: w1th’measurement analysis. Upon which techniques can be used
for the ana1y31s will depeed the way in which 1nstrumenta1
developments should proceed. Ultlmately it is to be hoped
that the acceptance at.inspection of manufactured workpieces
will be governed by purely functional considerations, but
[fhis ideal is still well‘in the future. For the present,
band therefore here, it will be neceséary to work within the
spirit of current standards, particularly with regard to
reference flgures.

., This work studles and develops analytical methods
suitable for both tvo and three dimensional measurements of
nomlnally round ' parts. Its natural starting point lies in
reappraising current roundness measurement practice.

On examining the history of roundness measurement the
subject is found to be noticeably fragmented. The verious
topics have been treated virtually ashif they were“independent.
fhere ere natural reasons‘yhy this should be so, for example, |
many ofzthe enelytical methods have beeh developed as the need

has arisen in response to particular, practical problems for
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whi#h ﬁréviously existing methods were deemed ﬁﬁsuitable. On
achieving a working metﬁod there has been little incentive to ques-
tion deeply how it relates @o those other methods. However, any
attemnt at extéhding the region of influence of these methods comes
immediately against the difficulty that there is no unifying theory
underlying the practice of roundness measurement. It 1s therefore
regardéd as‘the main task of this work that an attempt should be
made ﬁé,establish such & theory.

The present‘ﬁork'is conceptually difficult to explain. Many
of its concepfs are of anvabstract'nature and some, at first sight,
may seenm only tenuougly‘linked. This observation may be compared
with that earlier‘;oncerning the fragmentation of the subject. In
additioﬁ, many of the-practically significant results and conclusions
can stand alone»and be successfully apvvlied without deen knowledge of
their inter-relationships. For these reasons the report will be
allowed to retain a degree of fragmentation. Although its thesis is
that tﬁ;rh‘is an 1mp§£tant, uﬁderlying structure and that the whole
subject 3hou;d'be téken together, some ch#pters have been organised
such that_ihey could be extracted. Because of this the details of
the history of the subject will be deferred until avvropriate points
in the téxt occur. . In this introduction only a very brief overview
will be givén., ‘

The’whole subject of roundness measurement appears to have been
born in almost its present form. National Standards (1, 2) indicate
the importance of the indenendent snindle roundness instrument.

There has been little concentually important change in these since the
nloneering work of Reason, whose survey (3) remains the major work on
that subjecf. (Further discussions of instrumentation is given in
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Chapter 2.) A major diéadvantage of most roundness instruments 1is
that the signal obtained as representing the deviatlons from clrcu-
larity of the workplece can be seriously distorted unless great

care is taken to allgn the centre of the workviece with the spindle
axis. Various guidelines have.been produced to restrict the degree

of eccentricity »resent in the graohical output_of the instrument (1, 3).
Nevertheless some distortion will be present in practice and it adds
greatly to the complexity of measurement analysis. Thls will affect
the accuracy with which the reference circles (2) used for assessing
roundness errors can be constructed. Reason (3) describes the nature
of the distortion and gives a graphical method for reducing it but it
seems that Whitehouse (4) first identified the distorted form with the
geometric filgure known as the limacon, claiming that its use as a
reference figure 1s superior to using perfect circles under customary
measurement conditions. (Section 3.1. gilves more details.)

Standards allow four reference figures, the least squares circle
and three which wlll here be grouped as "boundary references": the
minimuR clrcumscribing, maximum inscribing and minimum zone circles.
"An adequate solution technique for a restricted set of conditions
has been known to the least squares circle for many years (3). More
recently the method has been extended to include some incomplete,
arcuate figures (4). All this work depends on what has come to be
known as the "limacon approximation" and also makes further restrictive
assumptions. Siddall (5) has queried the accuracy of the standard
formulae for small arcs. Other work relating to this area, but not in
a direct way, includes generating reference centres from centroid
methods (é) and oronosals for different standard formulae (see (7) and

Apnendix 3 for discussion of these.). Further discussion of least

3



squares methods is given in section 5.1.

The boundary references have been studied even less, most
authorities apparently accepting the suggestion in Standards that
"trial and error" methods be used for their fitting. Avdulov (8)
and later Whitehouse (9), using a geometric method, propose basically
the same method for bringing order into the search procedure. The
method requires much work but is usable with hlgh speed computers.
For speclal purposes attempts at data reduction, identifying the
major surface features, have been tried (10). Again the problem
arises of intultlvely simnle ideas requiring much computation. Recent
suggestions for finding minmum zone have included a non-uniformly
welghted least squares calculation (11) and Monte Carlo methods based
on the least squares centre (12), Nelther will produce the exact
solution in general. See also, section 6.1.

"Cylindricity" has yet to be formally defined by metrology
Standards. Drawing Office Standards on geometric tolerancing (13)
and speculations by Reason (14) have both been used to support a
minimum zone approach although neither actﬁally implies minimum fone.
Other work relating to cylinder measurement (1, 15) has been restricted,
for example, to axial stralghtness which is clearly less than should
be implied by "cylindricity". Some recent work in Japan (16, 17) has
calculated "least squares cylinders" by direct extension of the two-
dimensional methods but seems not to have considered the implicit
assumntions of doing so. Tsukada (18) questions what measurement
schemes should be used with least suqares cylinders and suggests that
a hellcal trace around the workolece is appropriate. There is almost
no consideration of houndary cylinders, although the modified least
squares method (11) has been‘extended to three dimensions. Section

L



11.1'contains a fuller survey of cylinder related work.

In accordance with the Dhilosonhy outlined earlier, this work
first studies the underlying orincinles of roundness measurement.

In »articular it éxamines the sources of error relevant to reference
figure calculéﬁion and identifies them with various sveciflc points
in the measurement nrocess. This leads to the identification of

the major properties derived from ideal and practical reference
figures. Then, rather than follow semi-empirical methods as in
earlier work, reference figure fitting is examined formally using
the mathematical methods of optimisation theory. This leads to a
full recognition of the role of the limacon in roundness measurement,
Two of the techniques used are of varticular interest, namely “ara-
meter Smace analysis and Linear “rogramming, both most commonly used
in One;ations Research. By specialisation of the Linear ~rogramme
solution for boundary reference limacons, highly efficient algorithms
are developed. The nature of the approximations involved in using
limacon references is examined in detail and the eccentricity ratio
established as a control on the accuracy of the method. Some other
reference figures are also briefly studied.

The practical usefulness of.the methods introduced here will
depend upon when the mathematically predictable errors become signi-
ficantly large. One aim of this work is to reduce the necessity for
precise centring, or, conversely, to increase the measurement capability
of an instrument. This will be achieved only if the methods are
tolerant of eccentricity levels considerably higher than those occurring
in current nractice. To discover whether this is so will require wide-
soread exverimental investigation., Initial tests reported here

suggest that it is.



With a'firm theoretical basis‘in two dimehsiohs, the develooment
of methods for finding cylindrical references is relatively straight-
forward. Solutions using 1;near least squares and linear programming are
advocated. Special algorithms are not developed. The nature of the
anproximations is simllar to those 1ﬁ two diménsions but the magni-
tudes are more severe. Howevér, practically useful measurement systems
can be nradﬁced;

Aliiéngiheéring 1s ultimately concerned with pragmatlism and so
with value judgements, This work sets out to discover what might be
theoretically nossible.if sultable instrumentation were to be developed.
Its value can therefore be Jjudged agéinst two criteria, usefulness
under current conditions and potential usefulness to future research.
Only the former can be quantified and so only comparisons of this work
with current practice are made here. It is hoped that this concentra-
tion on the present will not mask possible implications for the future.
Because of 1té standpoint, this work is distinetly not a textbook on
roundness heasqremeﬁt, although it may be of interest to those writing
such books, An& influencé it might exertiis expected to be upon the
designers of instrumentation Systems rather than their users.

Please note that throughout thls work many diagrams are shown,
for clarity, with highly exaggerated features. In particular the
limacon is normally shown with a cusn'deveIOped so that 1£ is easily
distinguishable from a circle., It 1s’not intended to imply that these

Trenresent sensible measurement conditions.



2.

Current "ractice in Roundness Measurement

2.1 Requisites for Roundness Measurement

-

- There are three metrological questlons which can be posed

concerning the cross-section of a nearly circular component:

1. What are its deviations from circularity?

1i. What is its size?

111. Where is its centre relative to some known point?

Depending upon the circumstances, the relative importance of these

factors and the preclsion required of their measurement will vary.

Examples of such combinations could include:-

a)

b)

c)

A simple shaft. Here centre position may be of little impor-

tance, and, i1f used in a bearing, even quite significant radius
variation might be tolerable to a compliant journal. However
if the shaft is to run "true" the roundness must be reasonably
good, which is also a condition required for the avoldance of
cyclic loads on such a compllant journal.
High speed airbhxggggxgggic‘bearigg. A possible design might
use a clrcular journal with a shaft having a deliberate, small
amplitude lobing to give the necessary pressurisation. Shape
measurement is now important for the control of the size of the
lobes and not, as more commonly occurs, for checking that no
significant deviation from clrcularity exists. The bearing would
have small clearances and so radial tolerance on both components
would have to be well controlled.
Crankshaft. The requirement on each bearing is probably similar
to a) above, but in addition the individual bearings must be

7



aligned'axially. Thus here out-of;roundness and centre position
would be measured;

To determine the out-df-roundness of a section, it must be com-
pared with a perfect circle. This could be either a specific circle
(predetermined centre and radius) used in the manner of general pro-
file measurement (BS 308) or, more commonly, any convenient circle
suitably alignéd to the section, since often the out-of-roundness is
controlléd simpl& Sy a peakétc-valley amplitude measurement. When
the sectioﬁ is nof peifectiy circular, the definition of radius and
centre become to some extent matters of interpretation. Usually the
relevant parameters of a circle associated with the section by a "best-
fit" criterion are—used. although centroids have also been suggested (6).

The range of shapes and sizes which might be absorbed withiﬁ the
field of roundness measurement is obviously as wide as the imagination
can make it. However, the vast majority of practical examples,
inciud!ng virtually all those for which standard instrumentation might
be supplied, fall in the same range as the typical components of, say,
the automobile or aero-space industries. Thé most common range
contains a ﬁeak-to-valley out-of-roundness in the order of ium to 1Qmm
and occurs on parts with radii from a few millimetres to about 100mnm,
That roundness measurement should be mainly applied to small components
is que in part to its assoclation with high absolute precision. It is
only when such precision'is needed that the special techniques identi-
fying roundness measurement as a specific"branch of metrology become
necessary. This work will cbmply with this grouping, being concerned
mainly ﬁith techniques having the potential for resolutions and

accuracies of better than fum.



2.2 Roundness Instrumentation

This work is concerned with the analysis of data representing
roundness measprement rather than with the acquisition of such data,
consequently th;ldiscussion of instrumental techniques is included
only to establish a context for the remainder of the work. It is
not intended to be either a survey or a detalled description of
method (for which see references 1, 2, 5, 19). However, it should
be stressed that throughout this work any practical difficulties of
instrumental  method which might ocour will not generally be
ackﬁowledged in the text. This approach follows the argument that
the limitations of data analysis must be established in their own
right and only thereafter should limitations due to instruments be
introduced. The areas which would benefit most from improvement
should then stand out clearly., As a specific example this work is
greatly concerned with the eccentricity between the éomponent and
the normal stylus-type roundness instrument but will not consider
such important features as the effect of finite tip radius and tan-
gentlal stiffness of the stylus assembly both of which are particu-
larly significant on small cohponents. In addition it will not
question, other than by this statement, the relevance of the
essentially two-dimensional cross-section measurement to the total,
three-dimensional component,

O0f the various practical methods used to measure roundness,
nearly all involve the use of a mechanical rotation as a means of
producing a circle with which to compare the workplece. Terhaps the
simplest in concept is the V-block method, figure 2.1, in which the
part 1s rotated in the V-block while in contact with the probe of

9
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an indicator device. The total out-of-roundness is taken io be the
maximum swing of the indicator. This method can glve an indicatlon
of out-of-roundness and perhaps, radiﬁs but not centre since it is
intrinsically a self aligning device. Its major drawback is that
depending upon the angle of the V-block various orders of lobing can
be suppressed. Various multiprabe techniques haye-evolved from V-
block methods (20) but although useful for "in situ" woik they show
similar difficulties.

The problems with V-block methods arise because the out-of-
roundness of the workpiece affects the accuracy of the rotation which
is supposed to be generating the datum circle. Thus the loglcal move
would be to a system with an independent preclision snindle, the method
generally used in pronrietary instruments. (Indeed, Moore (19) goes
so far as to claim that the independent spindle is the only method
usable for precision work.) The spindle is used to produce a relative
rotation between the workpiece and a transducer and so either may be
rotated. Figure 2.2 shows the general scheme of such instruments.
There are some significant and.quite subtle differences between
- rotating workplece and rotating transducer instruments concerning
their structural and operational convenience together with their
accuracy and their ability to perform other measurements but for the
present purposes they heed not be dist;nguished. Typical modern
spindles on such instruments run-with a maximum deviatlon fronm
circularity in the region 0.25um to 0.025«m. Normally this gives a
limit to the achievable accuracy of the system although in some cases
computational methods can achieve even smaller figures (20, 21).
These instruments are ideal for measuring out-of-roundness and may
also, sometimes by the use of optional attachments, be used for a

10
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limited range of centre and radius measurepent.

A tctally different concept for measuring a circular work-
plece would be not to gompare it directly'with a circle but simply
to take a series of point méasurements on the surface using a co-
ordinate measuring machine and to analyse them mathematically.
However, the resolutions and accuracies of present machines 1is
suff;cientlyilow that this would not be readily regarded as a valld
mgthod‘except, perhaps, on la;ge workpieces, but, with this limitation,
it would seem to be the ideal method of measuring the distance between
centres.,

Overall then, 1t appears that, at present, the conventional
roundness instrument has little real competition for precision
measurement and so most references, throughout this work, to instru-
mentation will refer to independent spindle methods. There is one
fundamentally important limitation of such instruments. It is normal
to measure only the radial variation between the surface of the work-
plece and a nominal circle (represented by a known point in the trans-
ducer) having a radius almost equal to that of the workpiece. For
display purposes this variation is magnified and superimposed onto a
convenient arbitrary radius for plotting as a polar graph (or chart)
of the errors. One reason for doing this seems stralghtforward: it
would be impossible to magnify thekuhole radius by the amount
(provably greater than 1000x) needed for the roundness errors to be
easily detectable on a graph. Another facet to be considered is that
if the total radius were measured, a range/resolution ratio for the
transducer of as much as 107 might be needed, together with a very
small absolute resolution. This performance cannot be obtained
economically and so virtually all precision roundness measurement

11



involves this self-evidently named radius suppression. It is
11lustrated schematically in figure 3.1, Some modern instruments

do have absolute radius measuring attachments but these work to a
precislon éonsiderably less than that of the roundness transducer.

So an additional problem for the later analysis of the profile is
that the precision to which radius suppression is known is well
below that of the measurement itself. It is well known that radius
suppression is one of the factors which causes the distortion of

the profile from its expected fofm when plotted on the chart.' Reason
shows some particularly good examples of this (3). Here further

discussion will be defered until Section 3 to save repetition.

2.3 Roundness Analysis

" If the data representing a roundness profile.had been collected
by a co-ordinate measuring machine, it would be quite clear that the
first stage of anaiysis would be to calculate a circle from which to
neasure the points. With data from a normal instrument the same 1s
true for although the instrument measures relative to a circle, there
will inevitably be relati?e eccentricity between the spindle axis and
the workpiece centre. DPart of the profile signal will be the
variation of distance between workpiece and transducer caused by this
eccentricity and so‘the out-of-roundness should be measured from a
reference figure which compensates for the eééentricity.

It 1s important to note that this way of approaching the subject
of reference figures should not be taken to imply that they are needed
solely because of éccentricity; As in 6ther measurements;'the round-
ness reference figure is that definable state relative to which the

12



data 1is expressed in the analysis. If a roundness instrument were
perfectly set up, the datum circle of the instrument would be the
reference figure. Hence the need to calculate the reference figure
is a proverty of the measurement imperfections, notably, in this
case, eccentricity.

In most roundness measurements virtually the whole efforf of
analysis 1s concerned with obtalning the parameters of the reference
figure elther because those values represent the end in themselves
(as with eccentricity measurement) or since the out-of-roundness is
normally measured only in terms 6f its maximuh divergence from the
reference, see fiqure 2.3 .

Standardisation of the form of references to be used is important
if records are to be compared and so four "best fit" circles according
to different physical criteria are allowed. Various National
{ Standards glve virtually identical definitions of them but may differ
over which are to be "prefexred"” (1, 2), In descending order of
preference #ccérding to BS 3730 these are:

1. Least squares circle
ii. Minimum radial zone circles
111, Minimum radius circumscribing circle
iv. Maximum radius inscribing circle

The definition of the least squares circle is discussed in detail
in Chapter 5. The minimum zone circles are two concentric circles so
placed that the profile is enclosed between them and their separation
is minimised. The other definitions are reasonably self-evident.

The terms Ring Gauge and Plug Gauge circles are sometimes applied to
the latter two references. Some authorities have objected to this

notation on the grounds that since the references act only on profiles,
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noti three-dimensional surfaces, they are not e@ﬁiﬁlent to the use

of limit gauges. However the terms are concise and graphic and

© will be used hem; particula"rly since they are used in the current
ve:si@n of BS 3730., The Standard claims that the least squares circle
~ is unique and that the zone width of the minimum zone is obviously
unique but that the centres‘of minimum zone, ring gauge and plug
gauge circles are not necessarily unique. It will become apparent
that such statements should sometimes be treated with caution but in
particular the ring gauge clrcle centre is always uriique.

With the exception of least squares, for which an approximate
formula is given, the standards accept that the reference circles
¥ill be found by trial and error using compasses or circular templates
on bOIar charts. 'ANS’I B89 gives some guldance for this process. It
has been noted that the combination of eccentricity and radius
suppression leads to some polar distortion so that a truly circular
component would appear slightly oval on the chart. Therefore some
authorities recommend allowable limits on eccentricity on the chart,
usually in terms of the chart mean or imner radius (1, 3). Again
to save repetltion discussion will be postponed until the next

chapter.
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3, Roundness Analysis Re-assessed

3}1 The Measurement Systenm

In keepiné with the philosophy outlined in Chapter 1, an
‘attempt will be made to bring all the material of Chapter 2
within a single descriptive framework. The first point in this
process 1s to ask what is the fundamental reason for the whole
orocess? Most commonly it is to determine to what extent a work-
plece deviates from its expected, circular shape. Now the shape
of the w&rkpiece is a property of itself alones the points making
up its surface have a fixed relationship to each other (assuming
that it is rigid) independent of its orientation in space. It is
clear, then, that the shape, including the concept of a reference
circle as the form from which the surface has devlated, exists in
a frame of reference tied to the workpiece which will be called the

. component co-ordinate frame.

In order to be measured, the workpiece must be presented to an
instrument and in being so its orientation is constrained by the
limitation of that instrument. The measurement data is expressed

relative to the instrument datum, that is, in an instrument co-

ordinate frame of reference. Generally an attempt would be made to
align the component co-ordinates with the instrument co-ordinates
but this will never be perfect. The two frames cﬁn always be related
by simple axis transformation., With roundness instruments the data
does not appear in instrument co-ordinate form since it is immediately
transformed by radius suppression and magnification to chart co-
ordinates which is where the data is available for analysis. The

15



transformation between instrument and chart co-ordinates is not
a change 6f axes but a point for point mapping which leaves the
orlentation of the axes unchanged.

The expreésion Qf’the measurement in terms ofithe compo~
nent, 1natiuﬁent‘§nd chart;co-ordinate frames gives more than a
‘convenient notational arrangement. By forcing each actlon of
the measurement into a definite position. it is identified as
belonging to a particular frame or to a transformation between
frames., Its efféct on the measurement is then easily identified.

Since the transformation between component and instrument
co-ordinates is a change of axes only, then all shapes are
preserved and a measurement in instrument co-ordinates relates
directly to the profile in component co~-ordinates. The concep-
tual reference circle of the componsnt becomes an eccentric
circle in instrument co-ordinates.

The nature of the transformation from instrument to chart

co-ordinates is first radius suppression
r(0) «» r(9) - constant

and thenmagnification |
{(9) «» (D) x coﬁétgnt

The transformation is a linear ;ct1on on radial vectois and non-
linear on all othér relationships. Therefbre a circle centred
on the origin is transformed to anpthcf‘éircle but an eccentiic
circle is transformed to a non-circular shape. The effect may -
be seen to be quantified by reference to Figure 3.1. In instru-

ment co-ordinates an eccentric circle, centred at (E, ¢) will be:
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"R = E cos(f-¢) +fR§ - Ezsinz(ﬁ-w]% ’ 3.1
If this is then tra.néfomed into chart co-ordinates by applying

radius sﬁppression L, magnification M and then adding the arbi-

frary chart ra;:l.ius 3, its polar chart will be:
r=MR-L)+S

Although S is of significance in the actual plotted form of the
profile, it can, being a simple additive term, normally be
ignored in analysis. It does not, for instance, occur (or has
zero value) in the electrical output signal available from most
commerclal instruments,

Applying the binomial exvansion to equation 3.1 for E <R o
R=E cos(®-¢) + no‘(:l - 22s1n2(9-¢) -%usinu(ﬂ-@ ) 32
and if this 1s expressed in chart co-ordinates: ‘
r = MEcos(® ~-¢@) + M(R° - L)+ MR o (- ?;sinz(ﬁ-@ - e 3.3
where ¥ = E/R_ and will here be termed the eccentricity ratio.
The shape difference betweean equation 3.2 and 3.3 is caused
because of the different relative weights applied to the con-
stant and harmonic terms of their equivalent Fourier series.
(Although this distortion has been known since the earliest

days of roundness measurement, its explicit statement in terms

of harmonic distortion appears to be quite recent. (4).)

3.2 The Assessment Systen

Although ultimately the assessment of roundness in chart
co-ordinates is unavoidable, the above discussion attempts to
17



make clear that the analyéis ‘'should take place in instrument
co-ordinates. The reference circle calculation is an attempt
to get back from instrument to component co-ordinates. Fitting
a circle to the chart profile implicitly assumes that it
represents, at least to an adequate approximation, the appear-
ance on the chart of thé reference circle.

The current practice and Standards (1, 2) of necessity allow
the definition of circular references on the chart. Here the
definition of such references will be kept only for instrument
co-ordinates, but otherwise they will be tegarded as those
discussed in section 2.2, The four references divide naturally
into two groups; the least squares solution which is by nature
an averaging process and the other three references all of which
are "peak sensitive”. The general name "boundary references"”
will be used for these latter three. Mathematically, the solution
to any of these references is a process of optimisation. In the
case of least squares it is an unconstrained minimisation of the
' sum of squares of the residuals  With the boundary references
the opiimisation is on a simple function but subject to constraints.
Thus the ring gauge clrcle problem may be stated.

Minimise 2 = R,

| 3.4
Subject to Ry ¢ Ecos(8,-¢) + (RS - Ezsinz(eieﬁ)]*

for all 1 of‘ the data set.
that 1s, find the smallest value of R, for which all data pO.tnts.
(Rys ©;) 11e inside the circle. The plug gauge problem is similar
but maximises R 6 subject to constraints of opposite sense. The
formulation of the minimum zone circles can be approached in

18



virious ways. One convenient method is to use a mean radius
circle from which symmetrically placed half zone widths, H

are established. This glves

Minimise z = H

Subject to: R,

' ; .4 4
¢E cos(91-¢) +[R§ - Ezsinz(ei-¢)] 2+4 3.5

. L
R, > E cos(9,-8) +[R§ - E2s1n2(01-¢)} ‘-H

1
for all i of the data set.

Each data voint causes two constraints implying that more work
will be needed to solve the minimum zone rather than the ring.
or plug circles.

Optimisation theory offers a complete general solution
only to some fairly restricted sets of problems. The rele-
.vance of these restrictions to the fitting of reference clrcles
will be explored in depth later (particularly in Chapter 4).
Here it will suffice to observe that the major class of pro-
blems which are always fully solvable and efficlently calculable
consists of those in which all functions have only a linear
devendence upon the parameters with respect to which the °§tif
misation is to be performed. It will be seen that this is not
the case with either constraints 3.4 or 3.5. The least squares
method will clearly never have. such a linear relationship in the
sum of residuals., It belongs to a.different class which allows
a general solution providing that the reference figure is linearly
dependent on its parameters. (In common usage the term "least
squares” is taken as implying "linear least squares".) These
observations a&d weight to the doubts concerning the uniqueness.
of references quoted in, for instance, BS 3730. They also extend
19



these doubts to include the least squares circle.

Any difficulties concernmed with fitting circular references
in instrument co-ordinates will be compounded when working in
chart co-ordinates by the fﬁct that non-circles should be used
on the chart. If circles are used on the chart, difficulties of
fitting might be expected to be greater than in instrument co-
ordinates since the gffbct of radius suppression and magnifica-
tion will be to increase the amplitude of profile fluctuations
relative to their mean value. In the past the approach has been
to sidestep difficulties that do occur by convenient local appro-
ximations, see, for example, section 5.1. However, surely it is
desirable that an overall solution should be sought. One approach
would be to adopt an alternative reference figure which can be
used consistently and which maintains an adequately close adherence
to the philosophy of using circular references.

Among the properties of any proposed reference figure, the:
following can be readily identified as being of practical impor-
tance. It should closely model the form displayed in instrument
or chart co-ordinates of an eccentric (or centred) circle in instru-
ment co-ordinates. It should be readily translatable between
instrument and chart co-ordinates, implying that its dapindsnée
oﬁ radius suppression must be very simple. On any graph a
theoretically unique reference figure should exist for all four
accepted fitting criteria. Definitive algorithms for all the fitting
criteria should exist and be reasonablj easy to lmplement in practice.
It should be possible to use the rsferonce"by hand' dlrectly on a
graph. It would further be useful if the reference figure could be

expressed as a continuous mathematical function. Additionally, in
20



order to maiptain continulty of records, it would be preferable
if, for at least a large set of restricted conditions, measure-
ments with the reference figure could be easiJ.y related to those
performed with -circular réfeiences. ‘

_The circle does not fulfill all of these requirements.

Having regard for the advantages to be gained in the opti-
misation, a good candidate for a reference figure would be a
linearisation of the circle in instrument co-ordinates. Radius
‘'suppression 1s a linear operation with respect to the radius
vector of polar co-ordinates and so will have the desired simple
effect on any figure which is linea.f in ifs radius term measured
from the origin. Thus ’providing that it is a good approximation
to a circle in instrument co-ordinates, a circle linearised in
its parameters about the origin (position of zero eccentricita}')
will fulfill all the computational requirements listed above. The
normal way of linearising a function is to use its truncated Taylor
Series about the desired point of linearisa.tion.‘ For completeness,
here, the gene:al l‘inearisa.t’ion of eqy._m.tion 3.1 about a péint
(A, BE) in instrument co-ordinates will be quotéd. ’I'he‘first stage
1s to remove ttrx’e' pérameter @ by re-expressing eﬁuation 3.1 in terms
. of the cartesian components of eqcentﬁcity;. A = Ecos@, B = Esinf:
‘R= Acos® + Bsineyf‘ [Rg -:;_(AAsinQ: -,vBcosG)?]% ) 3.6

The Taylor expansion of this form gives:. .

"R g4 (cosﬁ + (AEsine - BEcﬁBB)sinﬂ )
3.7

[Rg = (Agsin® - BEcOSG)zl%

.+FB (sina-v AE(sin‘B- BECSC’BG)C;‘)S9
[th - (Agsin® - 330039)2]%)
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+R,
(82 - (g0 - BEcosﬁ)z]% 3.7

» : o en21

+ AgcosD + Bosid + [né - (Azsin® - Boc0eD)]*
This approximation is linear in A, B and R o although it is highly
non-linear in the initial parameter estimates A, BE and Ry. When

the linearisation is performed from the origin (AE_= By = 0) this
becomes greatly simplified:

R = AcosD + Bsin® + R, 3.8

Equation 3.8 is, of course, a form very well known in roundness
neasurement and is usually derived not by the method given here
but by the simple truncation of the binomial series as shown in
equation 3.2. The alternative approach is presented to stress
two points. In this attempt to unify the mathematics of roundness
measurement a specific choice is made to linearise the circle.
Further there remains the possibility, not shown by the binomial
expansion, of linearising not with respect to the origin but about
any other point in the instrument co-ordinate frame. This second
point is probably of little interest with current roundness in-
struments tut could have application in other schemes Such as
co-ordinate measuring machine based technigues.

The figure represented by equation 3.8 is known as the limacon.
It has been advocated elsewhere (4) as being a better approximation
to the radius suppressed form of an eccentric circle than is a
circle drawn on the chart. This is seen from equation 3.3 which
may be compared with the equivalent form of equation 3.8.

r = MAcosD + MBsinf + M(RO-L) +S ' 3.9
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= acosD + bsin0§- T, ’ 3.9

and the expanded form of a circle in chart co-ordinates having

the same para.mete:r;s:
T i
r = ecos(6-9) + [rg - e2s1n2(9 -¢)] 2

= MECOS@-@ + M(RO-L) + rc(-)/zsinz(ﬂ -¢) - )

where now r_-= M(RO-L) + 8

and Tc = of r,

Assuming that the shape difference between circles and limacons
is dominated by the second order term, the condition for the error
between the limacon and the radius suppressed circle to be less
than that betwsen the radius suppressed and the true circle is.

approximately:
2 2 2
MROY < rcfc - MROY
or Z(M(RO-L) +8) < MR

In a typlcal 1nstrumen£, T, might be about 50mm and so the limacon
will represent a bétter model than a perfect circle on the chart
on almost all measurements (magnification greater than 100 on imm
radius components or only 10 on components of 10mm radiug).

The limacon reference has >kn>own ‘a.dfva'.nta’ges over a qircle on
the chart and being lifmar in its | parameters can be used convenlently
for computation, It i= aﬁenable to lgast squares analysis and the
boundary references using it become linear programming problems for
which well established solution techniques are available. The
computational methods will be considered in later chapters. Here
the general propertles of the limacon as a reference will be examined.,
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3.3 The Limacon Reference Figure

The limacon is a smoothly varying closed figure having constant
diameter in tha.t’ 'R(®) + R(®+T) 1is a constant. It’does have chords
not paseing tnfough the origin which are larger than this dlaneter,
There is some difficulty over terminology when using limacon refer-
ences since the measurements made with these are always alluding to
those with circles. Here the general approach will be to name a pro-
perty of a limecon according to its equivalent in a circle. Conse-
quently “"dlameter” will be d.efined as e. choi'd passing through the
origin and the name "radius" will be applied to the constant ‘of the
limacon, RL' although strictly "semi-diameter" would be more accurate.
The "eccentricity” may be defined as the amplitude oflthe sinusoidal
term, E = (A2+Bz)%. and 'by inference the "centre" oi’ the limacon will
be the point (E, ¢). Measurements on limacons are made from the |
origin not from the centre. The shape of limacon varies according to
the degree of eccentricity present, being fle.ttened. fron circula.rity in
the opposite direction to that of the eccentricity. It develops a cusp,
symnetrically pla.ced a.'bout the direction -¢, when the eccentricity ex-
ceeds half the red.ius and ceases to ha.ve a simple geometric form when the
eccentricity exceeds the ra.dius. In most dia.grans in thie work the
limacon will ‘be shown a.t high eccentricity a.nd cusped for clarity
in distinguiehing it from circles. Hith current practical roundness
instruments cusp cehaviour is never likely to occcr. Such proverties
as circu.pfeience and area elso vary with eccentricity and so, unlike
the circle, care must be ta.ken to séecify which proﬁerty is being

optimised when fitting a reference figure. Here it will be taken
that 1t 1s the radius which is to be optimised since this is consistent
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with vtlgx_e,_ circle definitions quoted earlier and has the added
a.dva.ntage for the optimisation process of being a linear property
of the,limacon. The area of a limacon is (R + £2)? and so will
not necessarily be optimised at the same time as 1s radius. The
minimum. and MM distances of the limacon periphery from the
centre are R, and (RL + Ez)% occurring respectively on the axis
of symmtry (the line containing both the origin and centre) and
on the-line perpendicular to the axis of symmetry and passing
through, the origin,

By: choosing to use a limacon reference and making all measure-
ments with respect to it radial from the origin (note here that
these are separate decislons even though usually taken automatically
together ~ see also the discussion on which centre to uée with
circulaxr referemces in (3)), the analytical difficultles concerning
radius.guppression may be overcome., Radial differences measured from
the origin are always proserved under radius suppression and a lima-
con 13, transformed to another limacon. Although the translation of
a limacon from instrument to chart co-ordinates, or vice versa, will
change, its shape, it will maintain the same mathématica.l properties
and so the same analytical methods can be used in either co-ordinate
frame. For example, 1f both the minimum radius circumscribing
limacon to a set of data points in chart co-ordinates and those data
points are transformed to instrument co-ordinates, the result, there,
will be the minimum radius circunscribing limacon to the data.
Additionally the radial distance of a particular point from the
reference measured in either co-ordinate system will be the same
(subject to scaling by the magnification). Neither of these

observations will bs generally true for circular references.
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In instrument co-ordinates the true reference figure is an
eccentric circle and the use of a limacon reference an approxi-
mation to it. The nature of the approximation is simply the
truncation of the infinite series given by équa.tion 3.2 and so a
direct measure of its quality is given by the eccentricity ratio
7. If this is adequately small the limacon will be a good
approximation to the circle and so a limacon will also be an
equally good approxima.tion.to the d:i,storted circle in chart co-
ordinates. Using this fact a link between circular references
can be produced; the circle in instrument co-ordinates is approxi-
mated by a limacon which is then radius suppressed to another
limacon in chart co-ordinates which is itself approximated by a
circle on the chart. The quality of the initial approximation
derends upon the value of Y while that of the approximation in
chart co-ordinatgs depends on the chart eccentricity ratio,
¥, = ¢/T;. The recommendations given for limiting eccentricity in
practice (1, 3) are, effectively, controls on Yc, that is, they
maintain the error due to using a circle on the chart to an
adequately low level and do not refer at all to 7. Given current
instrumental designs this is not unreasonable, R, and are
likely to be of the !ysm order of size and so Tc will be larger
than ¥ by a factor of the order of the magnification. The nature
of the errors is further illustrated by Figure 3.2. In the American
Standard (1) a maximum allowable error between the reference figure
and the true shape of a radius suppressed circle is suggested as 0.25mm
on the chart, The figure shows for one condition the value, Em,
of eccentricity in instrument co-ordinates which is allowable in
order to just satisfy this criterion at different component radii with
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circle and limacon references used on the chart. The assumed
coxﬂitiqns are of complete radius suppression, R o = L, a magni-
fication of 1000 and & chart -ra.dius, S, of S0mm. The limacon
allows larger errors ‘exce'pt when the radius is reduced to the
extent that MR_ 1s comparable or smaller than S. When MR_ = S

there is, in effect, no radius suppression and the circle appears

‘undistorted on the: chart however mﬁch eccentricity may be present.

The advantagé of the limacon is stressed by the additional line
showing its value of Ema.x for conditions identical except that
the magnification is 10000; The corresponding line for the circle
would have the same shape as that shown but moved one decade down-

wards and one decade to the left so that it nowhere appears in

-the graph range of figure 32 The simple criteria for limiting

eccentricity are based upon the 'flat' part of the graph for cir-
cular references.

For values of ¥ much less than unity the divergence between
circle and limacon measured radially from the origin will be

‘dominated by the lowest order term ignored ﬁi"the truncation of

equation 3.2, that is (Ez/ 2R°)sih2(ﬂ-¢). The maximum divergence
may then, for convenience of ca.lculation and disét:ésion, be taken as
due only to6 that term: o .

Epax ™ Bo - Rl -7}

o 2 = = 2

The acceptability of this maénifudé ‘of error will clearly depend

upon the measurement b'eing made. controliing the approximé.tion

simply by the use of ¥ is suitable if it is only desired to hold

the radial variation within some fraction of the circle radius.

It 1s less clear whether it gives adequate control for measuring
27



out-of-roundness from the limacon rather than for the circle.
Although there is an intultive expectation that the out-of-round-
ness correlates with part radius (for instance, because the size
of the mechanical loop neede& will affect the stiffness of the
‘manufacturing machine), over the normal range of workpiece sizes
encountered in roundness measurement an absolute error magnitude
_control will also be needed. Figure 3.3 illustrates how I relates
to typical current applications by plotting the value of Em
against R  at constant 7. Also shoun on the figure is the magni-
tude of spindle errors (minimum gone criterion) of typical
instruments, ’0.0Srto. O.Z/«a.nd an a?ea désignating the zonal out-
of-roundness and radius of workpleces which might be most commonly
handled by such instruments, 0.5m.to 10mwand 2mm to 50mm, respec-
tively. This informatioh is tentative, not being based upon a
formal survey of instrument users but on casual marketing feedback
from customers of Rank Taylor Hobson Ltd. (unpublished). From the
figure it is apparent that holding ¥ below 0.001 is almost an
absolute control whereasY = 0.01 will most often generate rather
larger errors (in relation to the out-of-roundness being measured)
than would normally be accepted. When in this work a test is required
on the validity of a particular operation, a standard condition
will be to evaluate it at ¥ = 0.01 (assuming its valldity increases
as ¥ decreases) since this represents a sensible ' worst case'
condition on the normal use of limacon methods. It also happens
to represent something like the lowest eccentricity ratio which is
likely to be encountered in current practice; for ‘example 1o,m
eccentricity on a imm radius workplece could be accomodated on most
instruments for magnifications up to about 1000, that is to the low
end of their most commonly used working range.
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Instrumentally, the achievement of eccentricity ratios of
the order of 0,001 or better will not usually be difficult; even
with imm radius components it requires only a precision of lsm
in the centring device. The limacon may, therefore, be regarded
as a good, practical alternative to the use of a circle as a g
reference figure in instrument co-ordinates. In chart co-ordinates
the limacon is much more tolerant of eccentricity than is a circle,
for any given allowable divergence of the reference shape from
that of the radius suppressed eccentric circle.

A practical consequence of the greater tolerance to eccentricity
of the limacon reference is the "de~skilling" of roundness mea-
surement. This term should be interpreted here in a btroad sense,
Not only could it -allow relatively unskilled operators to perform
roundiness measurement accurately, but it could also, by reducing
the need for refinement of centring, reduce the measurement cycle
time, It may be possible to use considerably cheaper fixturing on
the instrument without loss of accuracy and make the introduction
of automatic handling more plausible., Alternatively greater
accuracy can be obtained from a given instrument set-up. The
potentlal 'improvement' of the limacon reference over a circle on
the chart is often not .realisable with current instruments and
methods, Consider a.n extreme example of a 25mm component, which
for normal measurement would require a magnification of 20000
(the highest available on typical instruments). The American
Standard ruling for a maximum error in the reference of 0.25am on
the chart would require centring on a 50mm radius chart to better
than 0.25sam with a circle reference but only to 22um (¥ = 0,001)
with a limacon, However, on magnification the 22um eccentricity
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would appear as 440mm, much larger than the chart! Conventional
instruments will never cope with, or need.vsuch eccentricities

but the better accuracy performance of the limacon is of direct
significance when attempts to extend the instrument range compu-
tationally, with a consequent removal from the scheme of eccentric
polar charts, are made (21). The extra tolerance of the limacon
may also justify, for some applications, the higher cost of high
range: resolution transducers (for example, (22)) by allowing
savings elsewhere in the measurement system.

To summarise, the case for using limacon reference figures
rests on the following properties. It well approximates a circle
in instrument co-ordinates under sensible instrumental conditions.
It can be used consistently in instrument and chart co-ordinate
frames and is generally a more accurate representation of the
desired reference on the chart than is a circle. It has considerable
computational advantages and gives unique auswers for all four
reference criteria. The quality of the limacon approximation is
Jjudged, at least initially, by the eccentricity ratio 1in instru-
ment co-ordinates. The use of a circular reference on the chart
is very convenient for direct graphical working and according to
this scheme 1s allowed by taking the circle as an approximation to
the limacon in chart co-ordinates. The quality of this approxima-

tion is governed by the eccentricity ratio in chart co-ordinates.
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. Roundness References: Parameter Space Analysis

4,1 Concepts of "arameter Space

The fitting of refereﬁce figures is identified mathematically
with problems of constrained optimisation and so it seems logical
to apply the analytical methods of optimisation to the study of
such references. In particular the form of their representatioa
in so-called parameter space will he investigated. "Paraméter space
is a well known concept in optimisation theory and operations
research and similar ideas are used in control theory (for example
state plane analysis). However, the method seems not to have
been much used in other branches of engineering and, in particular,
appears to be new to surface metrology. The basic ideas involved
will therefore, be reiterated in the course of this discussion.

The basic proposition involved 1s tuat an optimisation problem
with respect to a set of parameters Xy9 X5y 00y X cAD be represented
in an n-dimension co-ordinate system which has each parameter
allocated to an orthogonal axils. In such a space both the objective
function (that is the function being optimised) and any constraints
appear as hyper-surfaces. Clearly the purpose in doing this (except
possibly in probvlems with only two or three parameters) is not
directly to allow graphical solutions but because the geometry of
the parameter space is of great importance. In some simple cases
it could be that parameter space and the co-ordinate system in
which the problem is formulated are the same (finding the minimum
of y = xz. would be a trivial example) but generally this is not

so and it is important to make clear the distinction. To allow
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visualisation the discussion will deal mainly with examples having
only two parameters but the results are totally general and apply
to n-dimensional parameter space. Consider a simple example
relevant to this current wofk, figure 4.1. A point P in the XY
plane is given and it 1is desired to construct a circle with centre
lying on the x-axis which passes through P. Defining the distance
of the centre from the origin as E and the necessary radius at any
value of E as Ro then the properties of the desired circle can be
plotted in the two-dimensional parameter space with E and Ro as
co-ordinates. Intuition dictates that the parameter space plot will
be identical with the locus of the maximum Y value of the circle in
the XY plane. The parameter space represenation may be seen not

to be just a mathematical artefact but to have direct physical sig-
nificance. If it is desired to discover what value of E gives the
smallest circle, the line ZZ represents the objective function
which has a single minimum at E = X, (again intuitively covious).
Line ZZ has another important property in dividing the ER° plane
into two areas. The area 'above' the line contains all those combi-
nations of E and Ro which would produce a circle which would
enclose the point " and the area below the line describes all the
combinations of parameters which would fail to enclose the point.
The line corresponds to a constraint of exactly the type required
by equation 3.4. In the usual terminology the line represents the
boundary between the feasible region (in which the combination of
parameters obeys the condition) and the infeasible region for the
clrcumscription of the point. Before pursuing this line of
investigation of circle fitting, a few general propertlies of
optimisation protlems will be discussed in terms of parameter space.
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The revresentation of a general optimisation problem would consist
of a series of hyper-surfaces representing.the constraints which
together form an envelope which is the boundary of the feasible
region and, in effect, a series of hyper-surfaces corresponding to
constant values of the objective function. The desired result is
to discover the largest or smallest value of this constant which
generates an objective function hyper-surface intersecting the
feasible region. This value will always occur with a hyper-surface
which just touches the boundary of the feasible region. Except
for a few speclial cases having a fully analytical solution, the
discovery of the optimum will depend upon a search algorithm,
usually iterative, which is expected to converge onto the solution.
If the problem has several turning points (either or both of the
objective functions and the constraints can cause this) then it is
usually fairly easy to converge onto a local optimum but much more
difficult to establish whether this represents the global optimum
or not. Once an iterative procedure approaches a local optimum it
will become entrapped and only by restarting the iterations from an
alternative initial condition might an alternative, possibly more
extreme, optimum be discovered. Unless it is known, in advance,
how many local optima exist, it is almost impossible to guarantee
that the global value has been found. By doing more and more
computation the likelihood that the global value is found increases
but certainty is never achieved. In most real problems the exact
forms of constraints and objective functions are governed by
heasurements data and so their exact interaction is extremely diffi-
cult to predict. The only method then of discovering the global

solution is to restrict operations to problems which have always
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the same number of local optime. In practice this implies that
the problem has just one optimum value. Also these problems
represent the only class for which computational efficlencles are
high enough to allow soluti&n as part of a normal instrumentation
systen,

The existence of just a single optimum to a specific problem
relates to its geometry in parameter space: both the objective
function and the feasible region must be convex. Convexity here
has its normal geometrical meaning that any two points within
the reglon are joined by a straight line which lies totally within
that region, see the examples of figure 4.2. C(onsidering simply
the attempt to minimise X, in figure 4.2 shows the significance of
convexity of the feasible region. Since the overall feasible region
is the intersection of the constraint surfaces, it will always be
convex if all of the individual constraints are convex. If any
constraint is non-convex, the intersection will be non-convex if
the offending part of that constraint is active. Thus any single
non-convex element in the problem removes the guarantee of a unique
solution, although conversely, it does not indicate the definite
presence of alternate optima: in figure 4.2 the maximisation of
X, 1s unique even for the non-convex feasible region.

In an n-dimensional space a hyper-plane (in two dimensions, a
straight 1line) has the unique property of dividing that space into
two regions both of which are convex. Thus the linear property has
a special place in optimisation theory: any optimisation problem
which involves only linear functions of its parameters is always
solvable by general methods and gives a unique optimal value.

About no other functions can such a wide statement be made, although
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other classes are solvable generally. There are three important
classes which can be solved which have particular relevance here.
Unconstrained optimisation with a convex (linear or quadratic)
objective function (linear least squares is in this group); linear
objective functions with linear constraints giving problems in
linear programming; quadratic objective functions with linear
constraints giving problems in quadratic programming. The latter
two classes are relevant to the solution of the boundary references

in roundness measurement.

L.2 The Analysis of Circular References

The previous section indicated the physical significance of
the plotting of a constraint from a ring gauge circle problem in
parameter space. In further studying the nature of the circle fits,
the simplified ring gauge with two parameters will be used initially
so that a pictorial representation can be given. Table 4.1 glves
a set of data points chosen to illustrate these features. The data
is symmetrical about the =0 axis and the minimum radius circumscri-
bing circle having its centre lying on that axis is required to be

found. The simplified form of equation 3.4 will be

Minimise 2 = Ro

. 2,2, 2413
Subject to Ry < Acos®, + [R) - A®sin oJ

In the parameter space, ARO, the boundary of the feasible region
will be given by the equality condition of the constraint for any
(Ri' Oi):
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Angle Radial distance
B R,
30° 1.0
45° 0.5
90° 0.5
135° 0.6
225° 0.6
270° © 0.5
315° 0.5
330° 1.0

TABLE 4.1: Example Data, Symmetrical about ©=0°



Ri = Ri + A2 - ?.ARiccsGi

These lines are shown in figure 4.3 for the data of Table 4.1.
The feasible region for circumscribing circles lies above the
boundary line which, since the boundary is hyperbolic, will

be convex. The objective function is linear, the contours of
constant value being lines parallel to the A-axis. Thus it is
seen that there is a unique solution to the ring gauge,
corresponding in the diagram to point J.

The equivalent plug gauge fit will be equation 4.1 with
the direction of optimisation and inequality reversed, so the
constraint lines will be identical to those of the ring gauge,
equation 4.2 but the feasible region will now lie below the
line. This region is non-convex, as is the intersection of the
reglon from all the constraints. The contours of the objective
function are, as before, lines parallel to the A-axis. In this
exanpie the non-convexity causes two independent local maxima,
corresponding to points K and L on figure 4.3. The plug gauge

is not necessarily unique. A peculiar feature of the plug gauge

problem is demonstrated by figure 4.3 in that, since the constraint

lines are hyperbtolic, as A tends to very large positive or

negative values, the feasible region allows very large R, to occur.

0
This is a consequence of using sampled data and corresponds in

4.2

physical terms to a circle initially inside the data shrinking until

it 1s small enough to slip between the data points and once outside

it can then expand for ever without enclosing the data. In this

example, the centre must lie on the 9=0 axis and so placing a data

point on that axis should stop the circle 'escaping'. For 91=(l

equation 4,2 becomes:
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Ro = Ri + A

which is a straight line intersecting the Ro and A axes and so
1imiting the extent of the feasible region as predicted. If the
centre was allowed to leave the §=0 axis the circle would always

be able to 'escape' through sampled data. Thus any attempt at a
general solution to the plug gauge should include extra constraints
to 1imit the feasible region to that part which has thysical
relevance,

Extending, now, this discussion to the general ring and plug
gauge circles, a three dimensional parameter space ABRo will be
used. The form of the constraints will then be found directly from
the equation 3.4 expressed in terms of A and B, see equation 3.6

2 _ .2 2
Ro = Ri + A"+ 3B

2
- 2ARicosﬁi - 2BR,sin®, 4.3

The simplfied form just discussed, equation 4.2, is the cross -
section of this three dimensional figure in the plane B = 0. The
full figure is hyperbolic in any cross-section parallel to the R,
axis and circular in any sectional plane parallel to the AB plane.
It 1s convex in the circumscribing region and non-convex for the
inscribing region and so the discussion already given applles
equally well to the full form,

The consideration of the geometry of parameter space has thus
derived a result which can also be found by considering the geonmetry
of real space namely that there is always a unique minimum clrcum-
scribing circle to a set of data points but there is not necessarily
a unique solution for the maximum inscribing circle. (Note, here,
that BS 3730 (2) wrongly states that the ring gauge may be non-unique.)

The minimum zone circle, equation 3.5, has a four dimensional
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parameter space ABROH and so no attempt will be made to sketch the
feasible region of even a simplified problem. Again the objective
function is linear, ité constant contours being hyper-planes per-
pendicular to ﬁhe H-axis. The outer circle constraint may be

written as
H » R, - Acos® Bif)'[Rz-(AsinQ-Bcosﬂ)Z]% b
> Ry cosU, - Bsin¥, - |R/ 1 1 '

the constraint boundary being the equality condition and the
feasible region lying above (4n the sense at larger H) the boundary.
The convexity of this feasible region is tested in the formal way
that 1f A, = (A1 By RI)T and A, = (A2 B, RZ)T are vectors re-
presenting points on the boundary of the region any point on the
straight line joining them must have greater value than H at the

same values of A; B and Ro, s0¢
(1-20H(4;) +AH(4,) 2 H((1A)A, +A4,) b.5

where A is a scalar constant taking any value between O and 1.

The terms of equation 4.4 which are linear in the parameters will
not alter the presence or absence of convexity caused by the other
terms as can be seen from equation 4.5 from which they cancel.
Convexity therefore depends upon the truth for all A and A of the

inequality:

i
2

-(11K)[Rf-(Alsinﬂi-Blcosﬂi)z] -)X[R%-(AzsinfE-Bcosﬂi)Z]%

> -[((1MRAR,)? - {((1A)A A, )sinf, - ((1-X)B, 7B, )eos8, |]

From the physical reality of the problem originally posed, interest
lies only in conditions for which the origin is enclosed by both
circles for which condition the eccentricity is less than the

radius and all three square roots will be positive. Multiplying
38
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through by -1 and changing the sense of the inequality then makes
both sides always positive and so they may be squared. After can-

celling out terms common to both sides this operation ylelds:
(1A ))‘[RIRZ'(A131n01'31°°891)(AZSinOi'Bzcos ﬂi)]
éAiiéX)[{Rz-(A sinf, -B, cosf )2}{R2-(A sinf, -B,cos® )2}]%
. 11 i1 b 22 172 i
Again the condition that the eccentricity is less than the radius

ensures that both sides are positive and so the root can be removed

by squaring. After squaring the inequality simplifies to give:
2
[Ri(A231n91'32°°591) - Rz(A151"91‘31°°891)] 20

which is always true and so the equation 4.4 is convex.
The constraint of equation 3.5 pertaining to the inner circle

may be analysed in the same way. It is:

i
H>» -R, + Acosf), + Bsin®, + [Ri-(Asinf)i-Bcosﬂi)z]z

1
Its right-hand-side is the negative of equation 4.4 and 30 describes
a concave surface (convex for increasing H) if equation 4.4 is con-
vex. Thus for the minimising problem the constraint is non-convex
and so the whole feasible region may be non-convex. The minimum
zone circle is formally shown to be potentially non-unique.

In fact the non-uniqueness of both plug gauge and minimum zone
can be confirmed by graphical example, figure 4.4 but, particularly
for the zone, the analysis is really needed to prove the circles
shown are local optima. The profiles shown in figure 4.4 look much
more like chart representations than real profiles in instrument co-
ordinates. There are two reasons for this, one being that if it
were not so the profile out-of-roundness would not be visible on
the figure and the second being that the feature most likely to
39



MZC

FIGURE 4.4: Examples of Non-uniqueness for Plug Gauge Circle
(MIC) and Minimum Zone Circles (lZC)



generate non-unique solutions (again, particulafly for the zone) is
a rapid, large change of radius. Such changes are much more common
on the chart because the radius varlation of the profile is magni-

fied relative to its mean radius. It appears then that not only is
the circle an inaccurate form of reference on the chart but it is

also susceptible to significant non-uniqueness problems.

4.3 Solving Reference Clrcles

The previous section has demonstrated the behaviour of refe-
rence clrcles in parameter space, but so far no attempt has been
made to develop a formal method of solving them. The formulations
of the fitting problems given do not directly compare with any of
the forms having known solutions quoted in section 4.1 and there
are difficulties of practical application caused by non-convexity
in some cases. The ring gauge is at least unique and so a general
solution should exist. The constraints of the ring gauge, although
convex, are non-linear while for standard solutlons linear constraints
are needed. However in this case (as first pointed out by P. H.
Philipson) a change of variable can give linear versions which
will be usable providing the objective function remains a suitable
functlon of the new variables. From the cartesian expression for a

clrcle, the constraints of the ring gauge may be written
2 2 2
Ry > (X,-A)" + (¥,-B)* ,

X =Rcosﬂi and Y =Rsinai.

i i i i
Multiplying out gives



2 2 .2
Ri < RO-E + 2X1.A + 2Y1.B

=C+ 2(,.A + 2Y1.B

1
so that the constraints are linear in the parameters A, B and
C = (Ri-Ez). The original objective was to minimise R_ and,
since R >0, it is equally valid to minimise RZ. But

R 2 248%

= C+E”™ = C+A

2
o
which is a quadratic function of the parameters. The ring gauge
can thus be formulated as a problem in quadratic programming:

Minimise z = C + A%+ BZ

Subject to: 2R,cosf,.A + 2R,sinf).B + ¢ > BZ

and so standard methods are available for its solution. The
methods are not, however, particularly easy and a large amount of
computing would be needed for complete solution.

The plug gauge clearly has a formulation very similar to that
Jjust given. This indicates not that a general solution is available
for it but that not all problems which may be formulated as quadra-
tic programs are convex and so capable of being solved directly for
the global optimum. The minimum zone circles do not yield at all
to this approach since H cannot be expressed as a simple function of
variables that linearise the constraints,

It seems clear that direct attempts at fitting circular
references are rather unsatisfactory. The re-expression of the
constraints in linear form is not particularly successful in terms
of generating solutions but is nevertheless an operation of impor-
tance to the solution. For instance, since the ring and plug gauge

circles have the same constraint boundaries but with feasible regions
L1



lying on opposite sides of those boundaries, the only possibility
for simultaneously obtaining convex regions for both 1is to have
linear constraints, Since there is an incentive, in terms of com-
puting effort, to simplify, éhe approach is to replace the circle
constraints by boundaries which approximate them and which are
linear. Each constraint can be linearised about a suitable point
in parameter space by using a truncated Taylor's Series. Since,
normally, instrumental constraints will ensure that the eccentri-
city is small a suitable point of linearisation for general consi-

deration would be A=B=0, R°=R It will be noticed that this argu-

g
ment is the same as that pursued in section 3.2 and produces the
same result: the linearisation of the constraint changes the
problem from one of circle fitting to one of limacon fitting. This
form of linearisation leaves the objective function unaltered and
so limacon fitting, having linear constraints and linear objective

functions, belongs to the class of linear-programnes.

4.4 The Analysis of Limacon References

The geometric properties of limacon references have been dis-
cussed in sectlion 3.3 so all it is necessary to do here is to study
the implications of the limacon reference in parameter space. Only
the simple limacon form, representing linearisation of the circle
constraints about A=B=0 will be considered here partly because of
the complexity of the expression about any other point (equation
3.7) but mainly because that form is directly amenable to radius
suppression and so would be used on virtually all real measurements.
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The minimum radius circumscribing limacon can be stated:

Minimise 2z = Ro

Subject to: Acos€k+Bsin0i+Ro > Ry 4,6
for all (Ry» 91)

and again the maximum radius inscribing limacon will seek to maxi-
mise R subject to constraints identical apart from the sense of

the inequality to equation 4.,6. The feasible region for these
figures using the simple example of section 4.2 is shown in figure
4.5. For both ring and plug limacons they are convex and a single
minimum occurs at point J (equivalent to point J on figure 4.3)

and a single maximum at point XK (equivalent to the local maximum K
of figure 4.3). The equivalent of point L in the earlier diagram
.1s no longer in the feasible region here. The linear optimisation
problem has one possible difficulty over the the definition of
optimum parameter values, in that, since the feasible regiun boun-
dary is made up of straight lines one section may be co-linear with
the optimum contour of the objective function. This is illustrated
by the section KQ of the inscribing reglon in figure 4.5. The
single optimum radius exists but occurs over a finite continuous
range of eccentricities: it can only occur over a single continuous
region. (An easily visualised analogy of this behaviour is the in-
scribing circle to a rectangle!) Although shown in the figure as
associated with the inscribing limacon, the same feature could occur
with the circumscribing limacon, This is different to the case with
a circle fit where the curvature of the constraint would ensure that

the minimum occured at just one point along that constraint boundary.
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Pigure 4.5 also illustrates the source of the computational
advantages of linear programming: it can be seen that the optimum
solution lies not only on the boundary of the feasible region but
at the intersection of two constraints. Efficiency is gained be-
cause it is necessary to search not the entire boundary but only
its vertices in the general n-dimensional parameter space.

The minimum zone limacon fit can be stated:

Minimise 2 =

H
Subject to: H2R, - Acos'ai - Bsinﬁi - R L.7

> -
H2> Acosﬁ& + Bsinﬁa + Ro Ri

The interactlion of the two constraints can be illustrated for the
condition B=0, They represent two planes in the three dimensional
HAR , space as shown in figure 4.6. These planes intersect in the
H=0 plane and together form a V-shaped boundary which is everywhere
in the region H20 as is needed for physical sense. Parallel vertices
of the 'V' can occur for at most two points since the direction of
the vertex in parameter space depends only on ﬂi. Also, under sen-
sible conditions of data, the sides of the 'V' can never become
parallel to the plane H=constant, The intersection of the constraints
causing the boundary of the feasible region will, therefore, involve
elther a point or a line not parallel to H=constant. Thus it appears
that the minimum zone limacon formulation does not allow the conti-
nuous region of optimum parameters which occurs with the other boun-
dary references, but always gives a completely unique answer.

As the boundaries of the limacon feasible regions are derived
from those of the appropriate circle by truncating the Taylor Series

of the latter, the value of the function and its first derivative will
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be the same for both at the point of linearisation. Thus the
limacon constraint planes (in 3 or 4 dimensions) are tangents to
the circle constraint surfaces on the RO— (or H- for minimum zone)
axis; compare fiures 4.3 and.h.5. Since the circle constraints are
convex functions their tangents at any point never intersects them
and so in the case of ring and plug gauges the limacon constraint
lies always below (at smaller Ro) its equivalent circle constraint.
The solution for either problem will therefore be lower for the
limacon than the circle. The limacon fit consistently under-
estimates the radius of the ring and plug circles. If subscribing
to the vlew that ring and plug references should be used on shafts
and holes respectively, then for judging a fit between shaft and
hole the 'error' of using a limacon for the plug is in the safer
direction and that of the ring in the less safe direction (taking
'safe' to mean that they will fit if the measurement says so).

The minimum zone limacon constraints lie below the convex
circle constraint and above the concave one and since it is not
known which will be of most influence in a given situation it is
not possible to state in general whether the limacon zone over- or
under-estimates the circle zone,

In principle the least squares circle and limacon could also
be studied in parameter space but other than the general statement
about the need for convexity of the function being minimised little
illumination is to be gained by doing so. The least squares refer-
ence belongs to a different group of problems to the boundary re=
ferences and will be studied in the next chapter before returning to

the practical application of these observations to the boundary
references in Chapter 6.
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4.5 Parameter Space and Chart Co-ordinates

The analysis so far carried out in this chapter, although
completely relating to instrument co-ordinates, is in fact perfectly
general. The fitting of circles and limacons in chart co~ordinates
is governed exactly as has been discussed. The third form of
reference boundary of interest is that of the true chart represen-
tation of the eceentric circle in instrument co-ordinates. To illus-
trate its general behaviour it is convenient to simplify the algebra
by assuming that B=0 and that there is no imposed chart radius, S5=0.
The circle constraint, equation 4.2, can be expressed in terms of
the chart parameters a, T, and the chart data Ty using radius sup-
pression L and magnification M:

(ro+L>2 = ri_-l-.L2 + gz-g 3:1-0-Lc0391
N (ﬁ‘ ) M? M(M— )
Since M>0, this can be multiplied through by.M2 and re-arranged to

give the boundary of the feasible reglon as:

r = [(z4m0)2 - 2a(r#ML)cosB+a?]? - ML 4.8
° { 1 173 '

This is still a convex form in the same sense as equation 4.2 and if
ML=0 reduces to that equation with merely different symbols used.
Essentially there is no difference between equations 4,2 and 4.8.

At large ML values the chart co-ordinate form may appear to be
flattened with respect to the instrument co-ordinates form but this
is a graphical effect caused since the a-axis is stretched M times
with respect to the A-axis while there is not similar effect between
the r- and Ro-axes. Because radial distance 1s an axis of the
parameter space co-ordinate system, the representation there is, in
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a sense, independent of radius suppression.

The boundaries for fitting circles on the chart do not relate
to the stretched axis and so have much more curvature than the true
boundaries. This again suppérts the view that plug circles on the
chart are more likely to show multiple local maxima than are the plug

circles properly fitted in instrument co-ordinates.
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5. Least Squares References

5.1 Background

Generally speaking, the surface metrology community has accepted
for many years the calculation of the "least squares circle" (1SC).
With the exception of a few dissenters, mainly dimensional metrolo-
gists, (see Appendix 3 for a discussion of their viewpoint) the circle
parameters are accepted as those quoted in BS 3730 in a derivation
attributed by Reason (23) to R. C. Spragg (1960). The standard de-
fines the centre of the least squares circle as that "point from which
the sum of the squares of a sufficient number of equally spaced radial
ordinates has a minimum value". This choice of wording is unfortu-
nate for although the centre of the LSC does have this property, it
is not the formal definition of least squares. Formally, the require-
ment is the minimisation of the sum of squares of residuals, that is
of the radial distances of the ordinates from the reference figure.
The derivation given in the'Stanﬁards does correctly use the residuals
but other workers have been led into errorneous assumptions by this
wording, see, for example, (7).

The Standard claims to be attempting to fit a circle to data from
the polar chart but to be doing so by the use of approximate formulae.
As the solution of non-linear least squares is problematical, it is
no surprise to find that the approximations made in the derivation
are in effect a linearisation of the reference figure in its parameters.
Thus the derivation is an exact solution for the least squares limacon!

Two other points may be discovered in this derivation. Firstly it
uses, as a simplifying device, a free switching between summations
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of discrete data and definite integrals of an assumed continuous
profile. The safety of this operation was berhaps overestimated
since the only acknowledgement to it comes in the requirement that
there be a "sufficient" number of points in the original definition.
Secondly, by making these simplifying moves early in the derivation,
it becomes immediately restricted to the special case: the well
known results which are obtained are true only for the arrangement
of data stated and no information about other configurations of
data is available. Thus in saying that the least squares approach
is not generally applicable to interrupted profiles, the Standard
should only refer to these simplified formulae for determining the
least squares limacon parameters.

Historically, this work seems to have been the first use of
the limacon approximation in roundness measurement, although the
separate ldentity of the limacon was not expressed. There was how-
ever some recognltlon of its useful properties un the chart.

Reason (3) observes, without explanation, that the error in the

least squares circle calculation cancels the error due to chart
distortion (radius suppression). Of course, the cancellation is

not exact since an infinite series has been truncated, but the re-
maining divergence would not usually be detectable by instrumentation
as opposed to mathematlical means.

The first acknowledgement of the separate existence of the
limacon in the determination of least squares appears to be attribu-
table to Whitehouse (4). This work basically followed earlier deri-
vations of the limacon approximation and again only identified it
for its good modelling of distorted circles on the chart. Its impor-
tant contribution was to generalise the derivation of the least squares
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limacon to profiles consisting of just an arc of thé circle, However,
in doing so it still used continuum mathematics on a sampled data
problem and restricted conditions to equally spaced ordinates, rather
than fully generalising. Using a direct implementation of Whitehouse's
formulae, programmed by the present author, Siddall (22) demonstrated
a significant reduction in parameter accuracy as smaller arcs were
taken. In particular it was reported that some simple estimatioﬁ
methods, from which no great accuracy ﬁas expected, gave better re-
sults than the least squares method on arcs of less than about 450.
No specific explanat;on of this behaviour was offered at that time.
For all the sources of potential error contained in their deri-
vations these formulae have proved extremely successful in practice,
providing that reasonably good centring is maintained. The formulae
for complete profiles have been used for many years with virtually
no difficulties being suspected from the results and incomplete
profiles have also been adequately processed (24). Their wide
success is due, in part, to the nature of available instrumentation;
the most convenient way of using roundness instruments corresponds
generélly to the use of the most favourable conditions for these

formulae.

5.2 The Least Squares Lilmacon

The derivations discussed above all used the truncation of a
binomial expansion to develop the limacon approximation. An equally
good choice for simplifying the problem would have been to use Taylor's
Series. Perhaps if this approach had been used the full implications

of the limacon reference might have been realised earlier since the
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association of Taylor's Series with linearisation is well known.
Be that as it may, it is clear from the pre&ious discussion that
this study will rely heavily upon that linearity.

The reference figure which is really required will be a
circle fitted to the data in instrument co-ordinates according
to the principle of least squares. The first step, therefore, is
to define the residuals of this problem, Referring to the nota-

tion given on Figure 5.1, the true residual is seen to be:

At this stage, the only known point of the system 1s the origin
and so the data must be expressed relative to the origin, as must
the circle parameters. Thus equation 5.1 becomes:

€ = [(Ri-Ecos(O i-¢))2 + Ezsinz(ﬂi- ¢)]% - R,
Even if this is expressed in terms of (A, B) rather than (E,@) it
is non-linear in its parameters. Since only the linear least
squares 1s generally solvable,the expression for residuals must
be linearised about some estimate (Ao' Bo) of the eccentricity.
There is basically only one linearisation of any given flgure, so
this operation will result in a limacon having its origin at (Ao’

Bo). The limacon thus has a fundamental role in obtaining a

least squares solution in instrument co-ordinates.

5.1

5.2

In practice it will be necessary to work in chart co-ordinates.

From section 3.2, it 1s seen to be highly desirable that, to get a
reference figure which is easily interpretable across the radius
suppression transformatlon, a limacon having its origin identical
with that of the co-ordinate system be used. This, of course, is
the same limacon approximation as used in previous work. The re-
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FIGURE 5.1: Measurement from Reference Circle: Residual
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development carried out here serves to stress the physical nature
of that approximation. It is equivalent to'linearisation of the
circle in instrument co-ordinates about the point of zero eccen-
tricity (A°=B°=O). It is, furthermore, a linearisation of the
expression for the residuals about that point, thils being the real
key to the least squares solution. The actual residuals which are

minimised will be:

6 =

A Ri - (Acos(’)i-f-BsinOi'*'R 5.3

L)

Comparing this with equation 5.2 and Figure 5.1, the approximation
for any individual residual is exactly that discussed in sectlon
3.3. What the overall effect on the least squares estimate of the
clrcle pareters will be 1s rather less predictable., The use of
equation 5.3 1s the best that can be achieved in chart co-ordinates
since it 1s the only llnearisation not requiring knowledge of the
radius suppression.

The discusslon here has stressed the lack of generality of
earlier work on least squares limacons caused by the use of conti-
nuous mathematical assumptions. Thus here a fully general deriva-
tion of the discrete least squares limacon will be given. The
techniques used in the derivation are standard theory but, as it
aprears that they are less well known than some other methods, a
fuller outline of their solution than might otherwise be expected
will be given,

The full set of residuals can be expressed as a matrix equa-

tion:
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§1 R, co.sf)1 si'nf)1 1

A
- . ; 1B
R

GN Ry cosﬂN sinﬂN 1/\R}

or, more compaétly:

§ = R-H.A 5.4

H is seen to represent the experimental design in that it expresses
the points at which measurements are taken and R represents the
results of those measurements. The least squares condition can now

be expressed:

Min 362 = Min 678
A 1 A

where the superscript T indicates transposition. Now:

§'6 = (&™-A"H")(r-uA)
55
= R'R - R'HA - ATH'R + A'HHA

where the * symbol indicated that the values are those estimated

from the experimental data (which is all that is physically possible! ).
It will be noticed that equation 5.5 is similar in form to a perfect
square. As squares are easily minimised, the completion of the square

is sought. Consider the quadratic form:

(&"s - B"H)(8%H)"1(aHA - BR)
= %"k - B'uA - AR + RMEGT) TR

= (AnTu-R"H) (1 8) "1 (aTHA-H R AT (2-H(H ) 1T )R

It is this sum of quadratics that is to be minimised. The second
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expression 1s positive and independent of :A:, so the minimum overz
of é T(f will occur when the first expression is minimum. Since this
is a quadratic form, its smallest possible value will be zero which
occurs when

T

HHA - K"

-HR = 0 5.6

>

This condition upon _& thus represents the least sum of squares of

residuals and is the required solution:
i = @R 5.7

Substituting equation 5.4 into 5.7 allows the estimation errors

to be expressed:
-a = @) 5.8

In reality this is of little use since é cannot be derived from

A

0 and so its use must depend upon un-substantiated assumptions.
For good estimates (H'H) 'H'0 must be small requiring that the
data fluctuates only slightly from the reference (a condition
encountered elsewhere) and that ng does not approach singularity.
The condition for unbiased estimates (that is an expected error
of zero) may be seen to be that the expected value of § is zero
and that H and § are independent.

Returning now to the specific problem in hand, equation 5.7

can be fully expanded to glve:

2 coszﬂ . YsinDcosl S cosf\1( I ReosH

A
) = IsinBeosd I sin?d 3 sin® 2 Rsin® 5.9
ﬁL 3 cosb Y sinb N 2R

where for clarity the indices have been ommitted: all sums are
over i=1 to ¥ with R,, 91. So far the derivation is perfectly
sl



general: no assumptions concerning the positioning of thé values
91 have been made. Equatlion 5.9 is valid for any profile whether
arc, interrupted surface or a normal roundness graph.

Given the general solution for the least squares limacon, it
is now time to investigate whether simplifications can be made by
selection of specific patterns of 91. In particular it is desired
to control g?g for two reasons; to make the solution of equation
5.9 easier and to ensure that it does not approach singularity.
The most desirable action would thus be to diagonalise H'H which
requires that:

{cosf& = isinf)i = Esinf&cosf& =0

To ensure that cos® and sin® simultaneously sum to zero requires
that for each point © there is another point at 0+ﬂ3 while for
sin20 to sum to zero there must be a point at O+T/2. Thus it is
necessary to have four-fold symmetry of the data points, but not
necessarily equally spaced points, although the most common
arrangement would, one expects, be to have a multiple of four
points spaced evenly around a full circle. Also, under these

conditions:

Tcos?® = Jcos2f+1 = N = Isin®0
2 2

So that the well known "least squares circle formulae" are

obtained:
A ZZRicOSQi
% = % 2R, sinf,
Ry, IRy

Two inaccuracies are seen to exist in the earlier full circle
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derivations: the number of data points shoqld be a multiple of four,

not just an even nunber, and some arrangements of non-uniform samples
are permissable so that some types of symmetrically interrupted pro-

files could be handled.

The relative ease with which equation 5.9 can be implemented
tends to invalidate the development of specific schemes for a method
optimised to a glven situation, Even then the approach should make
use of equation 5.9 rather than use continuous analysis since this
automatically removes difficulties concerned, for instance, with the
adequate representation of definite integrals from sampled data (see

also section 5.4).

5.3 lLeast Squares Limacons as Reference Figures

The previous section has developed the least squares limacon
from the desired circular reference in instrument co-ordinates. If
it is to be practically useful two conditious must be satisfied: the
estimation errors of the least squares limacon parameters must be
adequately small and those parameters must then be relatable to the
circle. The real data will exist in chart co-ordinates and so the
first step must be to transfer a measurement there into instrument
co-ordinates.

Since angles subtended at the origin are preserved under radius
suppression, the H matrix is unaffected by that operation. Also the
radial measurements are simply modified. The least squares estimate

on the chart will be, by analogy with equation 5.7:

o> >
H
[

() "tT

3>
H~--

£ .
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Expressing this in terms of the instrument co-ordinates data gives:

m(E"s) Y 7

1>
I

1'-L
. 5.11
RN-L

M[A - (15 EL]
where L is an N-vector with each element having magnitude L. Now:

QTL = L 2cosﬂi
Esinei
N

which apart from the scalar multiplier is identical with the final
row or column of g?g. Thus the final reductlion of equation 5.11 can
be asserted without formal inversion from the observation that since

_!iT_}_{_ cannot be singular,

E'D™ @' = 1,

to glve

This shows that for any possible measurement scheme applied consis-
tently in instrument and chart co-ordinates the least squares limacon
has, subject to magnification, the same centre and a radius term
differing simply by the radius suppression.

The difficulties encountered when attempting to judge estima-
tlon errors have already been briefly introduced, so it is to be
expected that only a few generalisations can be discussed here. The
parameter estimates are only independent of each other when ﬂTﬁ is

diagonal, that is under the four-fold symmetry conditions. Under
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other conditions, which would be expected generally to become more
difficult as the asymmetry increases, the interdependence may lead
to large errors occuring in more than one parameter such that the
whole set appears reascnable. This type of error can be induced

by the use of imprecise computational techniques. 1In the specific
case of the limacon, the only error of this type which can sensibly
occur is for an inaccurate radius to be offset by an error in the
centre position so that the reference figure passes reasonably
through the data. Geometrical constraints limit the likelihood of
such an occurrence to cases where all the data lles in one reasonably
small arc. (See, also, section 5.4 for illustration of this.) As
the matrix g?g will tend towards a singularity as the arc containing
the data tends to zero, increased random estimation error is likely
at small arcs. Overall it seems that the use of least squares lima-
cons may break down on small arcs, but "small" remains an undefined
term. Certalnly increased care should be taken over all highly
asymmetrical measurements,

The other major assumption of error analysis in least squares
concerns the nature of the residuals, that they be random and
independent of the measurement scheme. On a full roundness profile
the residuals show by definition a periodicity with wavelength equal
to the component circumference. Generally roundness errors are
dominated by a small number of shapes each having a few undulations
per revolution. Even the assumption of a pseudo-random sequence of
residuals is therefore rather unlikely. Furthermore, since the lima-
con was derived from the eccentric circle by truncating a series,
the residuals of a perfect circle will be periodic and could adversely

affect the overall accuracy at high eccentricity, notably when the
8



eccentricity 1s significantly greater than the total out-of-roundness.
Attempts to quantify the effects just discussed are so problem-speci-
fic that they will not be investigated here. To bring the discussion
into context, it should be stressed that, for all these potential
errors, no reports of serious difficulties being discovered with the
least squares limacon have been found in the literature. 1In effect,
it has been shown experimentally that the method is stable under
practical conditions, There seems need, however, for a systematic
investigation to be carried out before much weight can be given to
such statements, It is not clear, for instance, how near to any limit
of stability is the current practice.

The relationship between the parameters of least squares limacons
and circles is only slightly more amenable to analysis. The question
is not, in any case, totally clear cut: it asks whether the lima-
con glves a good estimation to a local minimum of the circle fitting
problem, The establishment of error bounds for the correspondence
depends on assumptions about the data which are not justifiable in a
general discussion, Choosing "worst case" data would give bounds
so widely separated as to be of no practical use. However, here, two
observations will be made which may give some "feel" to the situation,

In deriving the limacon as an approximation to an eccentric circle
by means of the binomial expansion (see section 3.1) the terms trun-
cated represent a power series in sin2(6-¢», that is, one containing
only even powers. Any even power of sin(0-{) may be reduced to a
sum of harmonics which will contain only even terms and a constant,
Thus the only odd harmonic in the expansion of the eccentric circle

i1s that retained in the limacon. The estimate of the circle centre

obtained by using the limacon should be exact. The estimate of
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radius however is low since all the truncated terms contribute:
the amplitude of the sin2(9-¢) term dominates the error so the
circle. from equation 3.2, can be expressed:

R = Ecos(0-p) + R_[1-8 (1-00529)
ZR2 2
)
With a suitable measuring scheme, the application of equation

5.10 to this form will yleld:

B = r [1-8°
° 2
l'RO

‘for full circle measurements. The presence -of form errors on the
circle will introduce odd harmonics into the expansion and so the
exact correspondence of limacon and circle centres will no longer
apply.

A second approach would be to consider the relationship between

€ and 6 s 1n equations 5.2 and 5.3. Using polar notation for the

centre:
2 _ 2 2
Ei = Ti - 2R°Ti+ Ro
where:
2 2
T{ = R} - 28R, cos(0,-0) + E°

Substituting for R, in terms of (51 gives:

2 2 2 2.2
T, = 6, + Rf + 25,R. + Esin (91-¢)

Now since the limacon parameters are determined according to least
squares, {6? 1s, by definition, minimum and Eél is zero. In prin-
ciple these facts can be used to express the sum of squares of resi-

duals for the circle in terms of the residuals of the limacon, for

instance:
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2

362 =3 6, + RL)2 + Ezisinz(ei-(b) + nRy

i
- -2r 3{(6, + RL)Z + Ezsinz(ei-@]%

In practice, the présencg of the square root within a summation
prevents real progress. For example, summations involving
Gisin?(ei-q» are formed which can only be solved for specific
examples. Generally the limacon solution will not represent a
minimum of 285, but providing that E and ng(5i) are small compared
to Ry and R then 2E, is likely to be close to a minimum. Again
the terms "small" and “close" are not quantified.

Perhaps discussions such as those above are not of primary
importance. Providing that conditions in instrument co-ord hates .
are such that a circle is adequately represented by a limacon, then
if a stable, averaged reference is wanted, the convenience of linear
least squares ensures the use of measurements relative to limacon

references.
5.4 Measurement of Small Arcs

Although, generally, the description of experimental investi-
gations is covered in chapters 9 and 10, one particular study carried
out has more relevance here. This is to re-investigate the results
quoted by Siddall (5), concerning the accuracy of parameter estima-
tion on arcs., By using a glass reference hemisphere placed
eccentrically on a roundness instrument and measured at relatively
low magnifiéation, a close approximation to the measurement of a
perfect circle subject only to effects such as instrument noise

could be made. After measurement, a series of calculations were
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performed on the profile each terminating after a shorter arc and
all starting at the same point. Using analysis based on the
formulae quoted by Whitehouse (4) Siddall reported that the least
squares radius estimate became rapidly unstable for arcs of less
than about 60°.

Using the system described in chapter 9, these tests can be
easily repeated, Since the profile is stored in a disc file
there is added convenience in that tests, using identical data, of
variations due to different algorithms can be investigated at leil-
sure. The earlier work was restricted to comparing results taken
from a single run of the program since the data was held in the
main memory of the computer. Measurment conditions were similar to
those quoted by Siddall. A hemlsphere, with roundness better than
0.025M mMZC, was set up at near the maximum permissable eccentricity
with the instrument magnification of 500. Profiles were data logged
using 512 points to a full revoluticn with the direction of eccentri-
city being approximately along the +x, -x and -y directions, 2z being
the spindle axis and -y the front of the worktable, in three mea-
surements, Each of these was then processed over various arc lengths,
always starting from ©=0 (+x axis) by two least squares limacon
programs. The first (program DENT) used Whitehouse's formulae in an
implementation believed to be identical with that used by Siddall.
The second (program DLS2) used a direct implementation of the sampled
least squares, setting up the matrix and solving equation 5.6, A
Cholesklj(ﬁgg used for matrix operations (25).

The least squares limacon parameter estimates are shown in Table
5.1 for calculations according to the "traditional" formulae and in

Table 5.2 for calculations from the direct implementation. In all
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A A ~
Number of Arc length A B R

L
samples ) M M An
a) 512 360 7.3 4.1 1.8
384 270 37.3 4.1 1.8
256 180 37.3 4.2 1.8
128 90 7.8 -3.8 1.3
64 45 38.2 -3.6 9
32 22.5 19.3 -6.9 20.0
16 11.25 -231 -29.0 271
8 5.6 _ouy -47.0 984
b) 512 360 -36.8 4,1 -1.3
384 270 -36.8 b -1.3
256 180 -36.8 b1 -1.3
128 90 -36.6 . 4.3  -1.5
6L L5 -34.5 5.1 =3.7
32 22.5 -15.3 8.4 -23.0
16 11.25 198 26.5 =236
c) 512 360 -3.5 =37.4 2.4
384 270 =3.5 =37.4 2.4
256 180 -3.5 =37.4 2.4
128 90 -3.4  -37.3 2.3
64 45 -3.1  -37.2 1.9
32 22.5 1.1 -36.6 -2.3
16 11.25 47.6 -33.3 -48.9

TABLE 53.1: Least Squares Limacon Estimates from various arc lengths
of eccentric hemisphere in three orientations using
Whitehouse's formulae (program DENT).



Number of Arc length A B R
samples o Am _mm m
a). 512 360 37.3 -4.1 1.8
384 270 37.3 =41 1.8
256 180 373 b2 1.8
128 90 7.8  -3.8 1.3
64 4s 38.8 -3.3 G.2
32 22.5 .3 4.0 4.8
16 11.25 51 % B 5.0
8 5.6 45,9 4.9 -6.8
b) 512 360 ~36.8 b1 -1.3
384 270 -36.8 44 -1.3
256 180 -36.8 b1 -1.3
128 90 -36.6 4.3  -1.5
6L Ls -35.2 4.8 -3.0
32 22,5 -30.4 5.5  =7.8
16 11.25  -62.2 2.6 24,1
c) 512 360 -3.5 =37.4 2.4
384 270 -3.5 =37.4 2.4
256 180 -3.5 <37.4 2.4
128 90 3.4 =37.3 2.3
64 4s -3.4 =37.3 2.3
32 22.5 -3.1  -37.3 1.9
16 11.25 -19.1 -38.9  18.0

TABLE 5.2: Least Squares Limacon Estimates from various arc lengths
of eccentric hemisphere in three orientations using the
general solution (program DLS2).



cases the peak to valley and r.m.s. out-of-roundness for the full
circle was 0.3 to O.A/um and about 0.07/¢m respectively. These
flgures may be compared with digistation resolution of just under
o.imm to judgé the quality of the experimental approximation to
the measurement of a perfect circle. From Table 5.1 it is seen
that the general behaviour of the estimates is as given by Siddall
but here the fall off of values is less rapid than he noted (for
example, errors in the radial estimate of about 1mm at 90°, 10mn
at 45° and 1000Mnm at 15°). The reasons for this difference are
not known, It is possible that there are subtle differences in
the algorithmic implementation of the two experiments but it is
perhaps more likely that the earlier results had rather more "noise"
on the profile. That there can be significant effects caused by
algorithm is shown by comparison of Tables 5.1 and 5.2. In the
latter the same pattern of behaviour is discovered but the size of
the effect is much reduced by using the direct implementation. The

difference is highlighted by Figure 5.2 which plots R. against arc

L
length for the case of the ~-x centring error. Also included is a
sketch of Siddall's result (although it is not known what the

centre orientation was used in his test). Note that a non-linear
vertical scale is used on the graph.

The nature of the error in the estimates is that of a poor
x~direction estimate of the centre being compensated by an opposite
error in the radlal estimate, as can be seen from the near constancy
of A+RL in each set of measurements, The error in B is probably
caused by "breakthrough" of the main error due to the non-independence

of the estimates.
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These results give renewed confidence to the use of least
squares limacon methods on fairly small ares. Although the errors
depend upon the orientation, the direct implementation gives in all
cases good results on arcs of less than 450 and useful results seenm
obtalnable to below 300. For the purposes of interactively
recentring the workpleces an initial arc of just a few degrees
would usually be adequate.



6 The Boundary References

6.1 BEarlier Work

The grouping together of minimum zone, minimum circumscribing
and maximum inscribing references which has been adopted here
has been recognised since the earliest days of roundness measure-
ment. In general, however, this grouping has been of a rather
negative nature rather than the present positive assertion that
their similarity is in their mathematical formulation. Thus
national standards have tended to isolate the least squares
approach by way of its uniqueness and computability, leaving the
boundary references as possibly non-unique and solvable only by
graphical 'trial and error' methods. Generally Standards sub-
divide the group, specifying ring and plug references as being
non-preferred and advocating the minimum zone method. [he American
Standard (1) gives minimum zone as the preferred measurement with
least squares as an alternative. In British Standards (2) no
direct choice between minimum zone and least squares is made although
it is possible to read into it aniimplied preference for least sguares.
As discussed in previous chapters, the Standards refer to the
fitting of circles to chart co-ordinate data. BS 3730 gives no
indication about the solution technique other than to state that
repeated trials must be used and that first finding the ring and
Plug circle centres mhy help the discovery of the minimum zone
circle centre. ANSI B89 gives a little more guidance in the form
of statements about the geometry of the contacts between the profile

and the reference circle(s) which will exist when the solution is
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found., It gives no justification for those statements but they are
basically the same as the condtions which will be derived in this
discussion and were presumably obtained geometrically.

There have been some attempts to develop algorithms for the
solution of the boundary reference clrcles, usually starting fromfzf"
geometrical or topological description of the problem. The first
attempt seems that of Avdulov (8) who posed the geometrical problem
in terms of a mathematical description but derived methods which,
certainly at that time, required far too much computational effort
to be practical. Some years later Whitehouse (9), in effect, re-
derived the scheme starting from the graphical concept of the problen.
Since it is the more easily visualised, Whitehouse's approach to
the ring gauge circle will be triefly outlined to illustrate the
method. The definition of a circle in a plane has three degrees of
freedom (the x- and y-positions of the centre and the radius.).
Hence 1t needs three fixed points to be completely defined and so
three contacts between the ring gauge and the profile will be re-
quired. The procedure for achieving these is shown schematically in
figure 6.1. An initial guess is made for the position of the centre,
01, and the point, Pl' on the profile most distant from O, found.

1
A circle centred on 01 prassing through P1 will circumscribe the
profile but will not be the minimum (unless there happen to be
several points equidistant from 01). The circle may therefore be

reduced by moving its centre along O while maintaining its contact

11
with ?1 until at centre O2 a second contact P2 is found. Now the
process continues by maintalning both P1 and P2 on the reducing
circle and so the centre must lie on the bisector of the angle sub-
tended by P1 and Pz. When the third contact P
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FIGURE 6.1: A Search Procedure for Finding the Ring Gauge Circle (28)



gauge centre OR is established. The procedure for plug gauge circle
is the opposite of this. First start with the point nearest the
initial trial centre and then expand the circle by moving in direc-
tions opposite to those shown in figure 6.1. An attempt to achieve
the minimum zone circles notes first that since there are now four
degrees of freedom (the centre and two radii or one radius and a
sone width) there will be four contacts and since the result will
generally not involve elther the plug or ring gauge as one of the
zone circles these contacts should lie two on each of the zone
circles rather than three and one. Armed with this information the
minimum zone algorithm uses alternate moves from the ring and plug
algorithms.

In the form described here these algorithms are not very use-
ful. For instance they must be able to cope with such features as
a two poinf diametral contact of the profile with its ring circle.
Furthermore, they need their end points defined more completely
as was given in ANSI B89. If the centre of the circumscribing circle
to a triangle (which is of course unique) does not lie within that
triangle, the latter contains an obtuse angle and so can be contained
within a smaller circle by using its longest side as a diameter.
So the existence of a three point contact geometry does not alone
determine the ring gauge circle. The additional geometric condition
that the points form a triangle enclosing the centre is needed.
Similarly the four contacts of the minimum zone must lie alternately
with angle from the centre on each zone circle.

These methods are very useful guides for finding reference
circles graphically and can be quite efficlent when coupled with the
intuitive ability of the human operator. For automatic assessment
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by computer they are not nearly so good since careful searches
along the prescribed directions of centre movement are needed
and this involves much calculation. Commerclal systems using
this approach have been produced (Rank Taylor Hobson Ltd. -
'Talydata' ) but they are based upon specialised fast processing
units and tend to cut-off after a fixed number of iterations in
order to keep the computation time to a reasonable limit. Thelr
results are therefore likely to be close to the solutlion but may
well not be precisely that solution. Also they do not calculate
with circular references but with the algebraically simpler
limacons. This is justified in terms of the modelling of distorted
circular references on the chart, but the direct application to
limacons of geometric algorithms developed for circles under such
conditions has not been proven.

An alternative approach to reducing the amount of computation
1s to perform some form of data reduction exercise, a plausible
approach since clearly large parts of a profile are not going to
be invovled in the definition of a particular boundary reference (8).
In the course of some other work, Scheiding (10) used a data reduc-
tion scheme which could also, in a semse, reduce the potential for
non-uniqueness of the plug circle. This consisted of reducing
the profile to an irregular, but convex, polygon by successively
connecting the peaks or valleys of the profile by straight lines,
see figure 6.2, Only the points remaining in contact with the poly-
gon are used in the circle fit.

Other attempts at solving in the main minimum zone problems
have been to use 'Monte-Carlo' techniques usually searching an area
around the least squares centre (12). Such methods would require a
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on Plug Gauge (21)



lot of work if enough tests to provide resonable confidence in the
result were to be perfarmed. In any case, using random checks is
really a last resort! The solution of a perturbed least squares
problem has also been suggested (11). It is usual with all these
types of approach to use limacons rather than circles for the compu-
tation - in particular when least suqares is used there 1s little

choice about this.

6.2 Boundary Limacons as Problems in Linear Programming

Unlike the work just described, the approach here will be that
of a deliberate choice to use limacons as reference figures, for
the reasons and under the conditions discussed in earlier chapters.
As was pointed out in that discussion, the linearity of limacons in
their parameters means that the fitting of boundary limacons to a
set of data is a problem un linear programming. Linear programming
is a standard technique in the field of Operations Research and has
a well-developed theory (see, for example, (26)). In this discussion
a knowledge of the major principles of this theory and the solutiocn
techniques will be assumed and, for example, the standard terms will
be used here without definition. However a very brief outline of
the theory, defining these terms, is given in Appendix 2 for easy
reference.

As all three references will be handled in the same manner, the
solution will be discussed in terms of the solution of the minimum
radius circumscribing limacon. In order to stress the nature of
the relationship between the algebraic method of linear programming

and the geometry of the physical fitting problem, reference will be
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made to the simple example: introduced in section 4.2 and table 4.1.
The formal statement of the ring limacon, in terms of chart co-

ordinate parameters, 1s represented in matrix form as:

Subject to: cc's.B1 sft.'ne1 ]: _ a / 1"1
cos@N s:i.nsN 01 Ty, Ty

Minimise: z = (0 0 1),a
b
L

or, more compactly,
Subject to: Ka 2 =r 6.2
T
Minimise: z = C a

The formulation of the plug limacon will be similar and that of
the minimum zone expressible exactly in the form of equation
6.2 if the symbols are defined to included the extra parameter and

constralnts. In expanded form the minimum zone gives:

a r

Subject to: [ cosf) s:l.na1 1 1 1
: : : I b :
os®. sinB, 1 1| |z |2

cosBy  sinf L Ty

-cos@i -sin® -1 1 h -r

! ‘ 1 ] ' Ii

1 ] f 1 ]

-cos@N -sineN -1 1 -Ty
Minimise: 2z = (0 0 0 1) |a
b
L
h

Returning now to the ring limacon, equation 6.2 represents the
tableau which may be used for the simplex method of solution.
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However before such a solution can be entertained, some modification
is necessary because 1n these problems the non-negativity of the
parameters cannot be guaranteed. That a and b may be negative in

the final solution is self evident but, further, in chart co-ordinates
(and so the reason for their use here) the radius r; can also become
negative. This is because the instrument is not constrained to
ensure that the setting of the suppressed radius 1s less than the

true radius of the workplece: R. in instrument co-ordinates would

L
always be positive but r, = R-L in chart co-ordinates could be
negative. Since non-negativity is a condition of the simplex method,
the usual splitting of parameters into mutually exclusive positive
and negative variables is needed:

+
a—+ a - a

where either a'> 0 and a~=0 or a =0 and a~ > 0. The simplex

solution for the ring limacon is thus over six, not three, parameters

and having N constraints will require also N slack variables. Bearing
these comments in mind the initial tableau for the simplified example

(having no b) is shown in figure 6.3. To comply with the usual

way in which the rules for manipulating the tableau are given this

is shown as the negative of equation 6.2, namely

Maximise: z = -rL

Subject to: -K.a <€ -r

The tableau is infeasible: since all the right hand sides are nega-
tlve r; = a =0 is not a feasible solution (for this example this
is clear from the parameter space representation, figure 4.5, from
which a graphical solution could be obtained). In general, then,

artificial variables would have to be added (and then iterated out
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r}; ri al a 84 S, | S5 8y b
-1.0 1.0 | -0.866 0.866 1 0|0 | O -1.0
-1.0 1.0 | -0.7071 0.7071 0 1 (0| o0 -0.5
-1.0 1.0] © 0 0 o |1 0 -0.5
-1.0 1.0 0.7071| =~0.7071 0 0o (0 | 1 -0.6
-1.0 1.0} 0 0 0 0 {0 | 0 0
1.0 | -1.0| 0.866 -0.866 -1.0 0|0 | O 1.0
0 0 0.1589 | -0.1589 | -1.0 1 |o | O 0.5
0 0 0.866 ~0.866 -1.0 0|1 0 0.5
0 0 1.5731| -1.5731| -1.0 0 {0 1 0.4
0 0 0.866 | -0.866 | -1.0 0]0 | O 1.0
1.0 | ~1.0 0 ~0.4494 | 0 |0 | -0.5505 | 0.7793
0 0 0 -0.899 1 |0 |-0.1010 | 0.4596
0 0 0 0 -0.4494 | 0 |1 {-0.5505 | 0.2798
0 0 1.0 -1.0 -0.6357 | 0 |0 | 0.6357 0.2543
0 0 0 0 —0.4494 | 0 |0 | -0.5505 | 0.7798

FIGURE 6.3: 3implex Tableau Solution for Circumscribing Limacon



of the solution) to create an initlal basic feasible solution.
However, here it can be seen that setting T to +1 in the first
constraint and then using it to eliminate from the others produces

a basic feasible solution as shown in the second stage of the tableau.
(This corresponds to point G in figure 4.5: the axis 1s acting as a
constraint). The only non-basic variable with a positive co-
efflcient in the objective 1is now é+ and so this is brought into

the basis, in constraint 4 since this gives the smallest ratio of
right hand side to column co-efficients. On completing this third
step, the tableau is optimum and its coefficients can be interpreted
in terms of the ring. limacon. a~ and ri are ignored. In the
first constraint T is basic and has value 0.7798 and in the fourth
constraint a 1s basic with value 0.2543. In the other constraints
the slack variables are basic and lie inside the limacon by 0.4596
and 0,2798 and the out-of-roundness 1s the larger of these. The
slack variables of the first and fourth constraints are non-basic

and so have zero value, indicating that the corresponding data points,
at 30° and 135°, 1ie on the limacon.

Even on this simple example, the work needed to iterate the
tableau is not negligible. In practice there might commonly be 512
data points and so 512 slack variables are needed. The total size
of the tableau could then be 519 by 513 elements and an enormous
amount of calculation would be needed. The minimum zone having more
parameters and more constraints would have a tableau 1032x1025; over
one million elements would need updating at each iteration! Direct
application of simplex to the boundary limacon fits is not really
practicable therefore.

Since each constraint generates a slack variable while the
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variables generate no extra terms in the tableau, the solution of
linear programming problems having relatively few constraints even
with many variables is more efficient than those with few variables
and many constraints. The boundary limacons fall into the latter
group and so an increase in efficiency can be obtained by solving
the dual linear program rather than the primal so far considered.
An additional simplification cccurs with the current problem since
a palr ol variables assoclated with a sign-unrestricted variables
in the primal transform to a single equality constraint in the dual
and vice versa. Thus a ring limacon having, say, an array of
variables of 6x512 and needing 512 slack variables in the primal
has in the dual an array of 512x3 and needs only 3 surplus variables.
The total dual tableau would have 516xl elements and so require less
than one hundredth of the work needed on the primal for an iteration.

The dual solution for the simple example, namely:

Minimise: z = -Xry

7 6.5
Subject to: Ky = -c

where y are the variables of the dual to which no direct physical
interpretation is attached. This statement may be compared to that

of equation 6.4. The tableau solution is shown in figure 6.4. Noting
that all dual constraints are here equalities, the negative signs
demanded in the constraints by equation 6.5 have been cancelled.

Also because of the equality constraints the origin is not a feasible
solution and artificial variables (t1 and tz) have been added. These
are driven from the solution by the Wagner method, a variation of the
"two phase method" (27). This uses a secondary objective function,

W, in which each co-efficient is the negative sum of the corresponding
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ct+

! 2 Y3 3 1 2
1.0 1.0 1.0 1.0 1 0 1.0
0.866 0,707t 0 -0.7071 | 0 1 0
-1.0 -0.5 -0.5 -0.6 0 0 0
w | -1.866 | -1.7071 | -1.0 -0.2929
0 0.1835 1.0 1.8165 | 1 -1.1547 11
1 0.8165 0 -0.8165 | 0 1.1547 || ©
0 0.3165 | -0.5 -1.4165 | 0 1.1547
w 0 -0.1835 | -1.0 -1.8164 | 0 2.1547
0 0.1010 0.55051 1 0.5505 | ~0.6357 || 0.5505
1 0.899 0.4495 | 0 0.4495 | 0.6357 || 0.4495
0 0.45%6 0.2798 | 0 0.7798 | 0.2542 | 0.7798
w 0 0 0 0 1.0 1.0

Note: w = -3 ti is iterated to drive ocut artificial veriables

FIGURE 6.%: Simplex Tableau of Dual Programme for Circumscribing

Limacon




co-efficients in the constraints for which an artificial variable is
introduced. In this example the iterating out of the artificlal
variables happens to coincide with the optimum result for the main
objective funcfion. In terms of physical interpretation, the
correspondence of results between the optimal tableaux in figures

6.3 and 6.4 can be compared. In particular the co-efficients of the
dual objective function give the most important informatlon: those
corresponding to artificial variables give the parameter values and
those corresponding to y give the negative of the primal slack
variable values and so show the contact points and 'out-of-roundness'.

Even with such a small problem the computationl advantage of
the dual is demonstrated by these two tableaux. Although the
artificial variables introduced a secondary objective function, the
total numbe: of element operations on the tableau in the dual is less
than two thirds of those in the primal.

When there are many variables and relatively few constraints,
considerable computational savings can be made by using the technlques
of the revised simplex method, It is then only necessary to update
a square matrix of size governed by the number of constraints plus
the active rows and columns of the tableau at each iteration. Thus
revised simplex on the dual is a good technique for solving boundary
limacons, The minimum zone limacon fit would have about 1050 element
calculations per iteration, a figure to be compared with that for
the primal quoted earlier. The majority of practical measurements
can be arranged to have simply (usually uniformly) spaced data points.
The maln body of the tableau depends only upon the position of those
points and, under these conditions, elements of it could be constructed
as required rather than the whole tableau stored. Using the revised
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simplex on the dual the amount of necessary reconstruction at each
iteration is small enough to be practical and so considerable
savings in the necessary computer memory can be made. In fact the
method allows the solution to come easily within the computational
power of the types of mini-computer which can reasonably be used in
ordinary instrumentation systens.,

There are techniques which are formally more efficlent than
revised simplex but as they tend to require more complicated soft-
ware, their overall advantage to the present problems may not be
clear., This question will not be pursued here. It is sufficlient
to have demonstrated that linear programming on limacons offers a
practically useful method of solving boundary reference fits. All
methods will require considerable computations and are certainly un-
suitable for use 'by hand'. The approach here will be to examine
the implications of these methods to the original geometry with two
potential benefits: specialised h'gh efficiency algorithms and a

method at least intelligible as a graphical procedure.

6.3 Implications of Dual Feasibility

All the simplex methods discussed above seek to optimise an
objective function while maintaining a feasible solution by ensuring
the non-negativity of the 'right-hand-side' of the constraints in
the tableau. Because of the reversal of roles between primal and
dual, any state which is feasible in the dual corresponds to an
optimal condition in the primal but since the dual is not optimal,
the primal is infeasible. A first step is to identify the geometry

of these various conditions, In figure6.5 are shown the four condi-
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non-optimal
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infeasible
non-optimal
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FIGURE 6.5: Possible Conditions Occurring during the Search
for a Minimum Circumscribing Limacon to a Set of

Five Data Points



tions that can occur (the labels there refer to the primal) when
seeking the smallest limacon to enclose a set of data polnts. The
solution of course is the feasible, optimal condition and the same
in primal and dual representations. Simplex solution to the primal
maintains feasibility and so proceeds through stages all of type D.
Simplex solution to the dual maintains, in primal terms, optimality
and so proceeds always through type B stages. The geometric inter-
pretation of an optimal, infeasible condition is a limacon which
does not enclose all the points but which is the smallest one which
can enclose those within it., The difference between the solution of
the primal or the dual is thus very simply stated geometrically, the
primal starts with a figure too large but all-encompassing and
shrinks it as far as possible while the dual starts with a flgure
too small and expands it as little as possible. The earlier workers
all, therefore, effectively attempted primal solutions: the previous
section indicates the amount of work this approach could entall.

The dual solution for ring limacon involves three equality
constraints which must be exactly satlsfied at each iteration. Thus
the solution will always involve three contact points between the
data and the reference figure. No two point contact such as could
occur with the ring circle is possible.

The maintenance of dual feasibility requires that the 'right-hand-
side' of the tableau remains non-negative. However, at any iteration
the theory underlying the method of revised simplex shows that the
current ‘right-hand-side' can be found from its initial form and the

inverse of the current basis:

¥ =432
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where ,Q_ is the inverse of the basis, that is the 1nverse of the
matrix consisting of the columns from the tableau of the basic
variables. In the dual each column of @-1 will be a column of
X, b= c and each basic variable corresponds to a zero slack
variable in the primal (section 6.2), that is, to a contact between
the indicated data point and the current trial limacon. Any condi-
tion on @i can be interpreted as a geometrical conditlon related

to the contact points.

With all the boundary limacons, c 1s a simple form having all
elements zero except the last which is unity. This property is
quite common in practical situations being, of course, the request
to optimise a particular parameter: another relevant example from
surface metrology, the assessment of flatness, 1s discussed in
Appendix 1. In such problems the non-negativity of b requires
simply the.non-negativity of the final column of /Q and so a quite
simple dependence on the contact point geometry is to be expecced.
The nature of this geometry for the limacons will now be examined

for each reference.

6.4 The Minimum Circumseribing Limacon

The dual of the ring limacon linear programme involves only
equality constraints., Its solution will involve artificial
varlables but these cannot remain in the basis of a feasible solution.
There are no slack/surplus variables and so all columns of the basis
must be from the constraint matrix K at any general iteration.
(The pPossibility of an insistence on a positive radius causing an
inequality constraint in the dual is not worrying: the surplus variable
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so produced could be in the basis only if the radius were zero!),
Taking three general contact pocints at <91, ES and‘ﬁk the basis

would be:

-1
[~ = cos b, cosﬁ% cosf,

sinQ1 sinEG sinEk
1 1 1

No signifidance (such as B, < 63, for example) can be read into
this matrix; the relative positioning of columns depends upon the
workings of revised simplex in previous iterations. Now the
determinant of 37! 1is given by the sum of the co-factors of its
third row, that is by the same co~-factors which identify the ele-
ments of the third column of /2 . The non-negativity of the ele-
ments of the third column of /3 thus requires that these co-
factors all have the same sign. 3o Aij’ Ajk’ Aki nust agree in

sign where:

A

13 cos@i cosﬁs,

sin@i sin®,
J

- 7]
cos@isinQB sin icosﬁ%

sin(@j - 91)

and similarly for the others. The condition depends then only on
differences of angles, relationships which are independent of the
rotation of the axis system. By using such a rotation one angle,
91 say, can be set to zero and the required condition then becomes
the similarity of sign of sin(aj), sin(@k -‘@j) and sin(-fk)- Both
EB andfi must lie in the range 0 to 360° with respect to 91
initially and so, now, according to whether the co-factors are

positive or negative the conditions must be
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either 0 < D, < 180° or 180°< 05 < 360°

180%< g, < 360° 0° < g < 180°

0 < By-f < 180° 0°< |6y - ;)< 180°
So the requirement for dual feasibility is that the three angle
differences l@j-eil, [9k- %l and I@i-%l are all less than
180°,

Before proceeding, an alternative approach to deriving this
condition will be introduced for completeness since it 1s
useful in studying the nature of the feasibility condition. This
relies on a direct geometric interpretation of the co-factors in the

measurement plane and conveniently uses Cartesian co-ordinates.

The co-factor can be expressed:

yi Yj

and related to this is a function

¥y ¥

which (apart from an indeterminacy at the origin, of little impor-

tance here) is a straight line passing through (x ) and (0,0)

1'%
which divides the xy plane into two areas, one where Ai. >0 and
the other where Ajﬂ'< 0. The line also represents the locus of

all points having 6, as their argument. Noting the order of indices,
the feasibility condition requires that A 35 and Aik have opposite
sign and so lie on opposite sides of the line. An exactly similar
argument applies to the other points and Aj. =0 or Al<.= a.

Given the points and their associated lines, the third must lie as

an opposite with respect to both. Thus the only positions it can
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occupy are in the sector defined by the two lines on the opposite
side from the origin to their respective points, see figure 6.6.

However the result is derived, the following theorem is a
direct consequence of dual feasibility.

The 180° Rule for Minimum Radius Circumscribing Limacon

A circumscribing limacon with a given origin to a set of
points 1s the minimum radius circumscribing limacon to those
points if it is in contact with three of them such that no two
adjacent contact points subtend an angle at the origin of more
than 1800. where the term "adjacent"” implies that the angle to be
measured is that of the sector not including the third contact
point.

(It must be noted in passing that the statement that the
ninimum radius circumscribing limacon in chart co-ordinates trans-
forms to the minimum radius circumscribing limacon in instrument
co-ordinates relies on the facts that (a) circumscribing figures
remain circumscribing figures, (b) three contact points in chart
co~ordinates obey the 180o rule and hence, since angles are unchanged,
their transformations into instrument co-ordinates also obey the rule. )

If the radial values of the three contact points are‘identical
the fltted limacon degenerates to a circle centred at the origin.
Thus the above rule has the followlng well-known corollary.

The 180° Rule for Minimum Radius Circumscribing Circle

The circumscridbing circle to a set of data points is the
minimum radius circumscribing circle if no two adjacent of the three
contact points of the circle with the data subtend an angle of more
than 180° at the centre of the circle. The implications in the word
"adJjacent" are as for the limacon case.
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The complete simplex iteration for finding the minimum radius
circumscribing limacon in the dual can be summarised as selecting
any point which violates the reference (conventionally, the point
giving the largest violation is chosen) and substituting it for one
of the polnts defining the reference in such a way that dual
feasibility is maintained. The 180° rule gives to the problem a
geometric concept for maintaining dual feasibility which is simpler
than the general simplex iteration. This complete algorithm is as
follows.

Minimum Radius Circumscribing Limacon Algorithm
a) Choose any three data points such that no two adjacent ones
subtend an angle at the origin of more than 180°.

b) Construct a reference limacon through these three points.
¢) If no data points lie outside this limacon the solution is
found. Otherwise choose the point which violates the

reference by the largest amount.
d) Replace one of the reference points by this new point such

that the 180° rule is still obeyed and g0 back to b).

This procedure is an exchange algorithm and is illustrated by
figure 6.7. The exchange between any new point and the contacts is
always unique.

In general, the efficlency of an exchange algorithm depends
upon the iterations moving monotonically towards an optimum solution
in order to guarantee that cyclical exchanges do not occur. Here
this is the case for as the exchange is unique at each lteratlon it
1s identical with that chosen by the simplex method on the dual
linear programme, and that is known to converge monotonically.
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A,B,C obey the 180° rule

A,B,D obey the 180°rule

Therefore D replaces C

FIGURE 6.7: PFeasible Point Exchange for Circumsecribing Limacon



6.5 The Maximum Inscribing Limacon

Formal study of the plug limacon could follow the same path as
that carried oﬁt in the previous section. More directly it can be

observed that the general form of the primal problem is:

Maximise: z = gT a

Subject to: Ka < r

where the symbols are exactly as used in section 6.2. This form may

be compared with equation 6.4, a statement of the ring limacon pro-

blem. They are identical apart from sign which could be absorbed

into the vectors. Thus a complete method for the solution of the

maximum radius inscribing limacon is:

a) Change the sign of all radial data points.

b) Apply the ring limacon algorithm to this modified data.

¢) The plug limacon parameters are those found in b) with signs
reversed,

This ability to use the same algorithm on two problems, which
1s computationally very attractive, is a further consequence of the
parameter linearity of the limacon.

The inversion of the data reflects each polnt through the
origin and does not alter relative angles subtended there. Thus
there is 180° rule for inscribing limacons. If a limacon is
inseribing to a set of points and contacts three of them such that
no two adjacent contacts subtend an angle of more than 180° at the
origin, it is the maximum radius inscribing limacon for that set of

points.
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6.6 The Minimum Zone Limacons

The linear program for minimum zZone has been stated in equation
6.3, as a primél problem., The zone width must be a positive quan-
tity and so unlike the other boundary limacons a sign restricted
variable, h, 1s present. The dual thus has three equallity constralnts
and one inequality. Since artificial variables cannot be present in
a feaslble solution, the basis of the dual must consist of either
four columns from the original constraints or three such columns and
the single slack variable., This latter form is always feasible and
corresponds to a zero width zone being fitted to three points. It
has no relevance to the problem at hand and will be ignored hence-
forth.

The set of primal constraints from which the basis is to be
chosen has two equal subsets comp;}sing those relating to 'inner’
or 'outer' contacts of the zone. 'The basis may select four of these
subject only to the provision that the same point from inner and
outer sets cannot be used simultaneously (to do so would represent
a physical impossibility for a non-zero zone width). The basis at
a general iteration of the dual can be represented:

5, cos8; Sjcos?j Sk0059k Slc0591

P Sisinﬁ1 SjSinEB S sing Sysin®)
1 1 1 1

The variables S1 to Sl take only values +1 or -1 and indicate

whether the contact comes from the outer or inner set respectively.

As with the ring limacon, dual feasibllity insists that the co-factors

of the final row of [2'1 must have the same sign. These co-factors
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will be:

S.8.8, A

S 1527 51555k Pk

$i1 Ajkl; sisks A -sisjslA

1“1k’
where:

Aijk = 00591 cosa:.J cos??k

sin(?1 sin9j sint?k
1 1 1

etc.

Consider, now the function:

Aij. = c03(91 cosBj cos© = 0
sfm‘@i sina.j sin®
1 i 1

which can be used to test the sign of Aijk and Aijl' In the
measurement plane it is represented by two lines from the origin in
directions ®, and ‘Ej, that is passing through the 1*0 ang jth points
respectively see figure 6.8. Unlike the equivalent picture for the
ring limacon, the lines do not reflect through the origin: the
immutability of the third row of A 1j, Means that columns are not
linearly related if, say, ©= -8;. By differentiating Aij. with
respect to © it i1s shown that it has just twovturning points (at

b= _“:(91 + ‘Bj)/Z) and that the slopes at 9=81 and 9=8k are in opposite
senses. Thus there are no zeros of Ai 3. except those shown in figure
6.8 and those lines represent the boundary between positive and
negative values of Ai 3. (The marked areas are correct for the figure
but it 1s not necessary that the reflex angle sector represent the
positive region),

th

Now, 1f the kth and 1™ points are the same type of contact,
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and for the third and fourth column co-factors to have the same sign,
Aijk and'Aijl must differ in sign, whereas if they are of different
types these two determinants will have the same sign. Thus if the

th

k™" and lth points are of different type they will be adjacent to

each other in the measurement place, while if they are the same type
they will lie alternately with the ith and jth polints. The change

of sign associated with interchanging columns of a determinant ensure
that an exact parallel of this analysis can be carried out for any
palr of the four points. Dual feasibility therefore demands that
any pair of contacts of the same type lie in alternation with the
other pair as angle increases and that any pair of contacts of the
opposite type must lie adjacent to each other. This can be satlsfled
only if the four points are alternately inner and outer contacts with
respect to the origin. This condition is purely a control on angular
position with respect to the origin and so is unaffected by radius
suppression, Hence minimum zone limacons in chart co-ordinates trans-
form to minimum zone limacons in instrument co-ordinates.

Given four contact points between the data and the reference
limacons, the substitution of a new point for one of them is always
unique if the above alternate contact rule is obeyed both before and
after the substitution. Thus a complete minimum zone algorithm may
be based on this rule.

Minimum Zone Limacon Algorithm

Following the mathematically guaranteed convergence of the
simplex solution of the dual linear programme, the minimum radial
zone limacon can be found by:

a) Choose, arbitrarily, four data points.

b) Fit to these points a reference limacon such that each of the
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four points lles equidistant from it and such that the points
lie alternately to either side of the reference with lncreasing
angles.

¢) If no othef points are further from the reference, the solution
is found.

d) Otherwise substitute the point which lies furthest from the
reference for one of the four defining points such that the new
set of points lie alternately elther side of the reference and
return to b),

It may be noted that this alternating contact requirement is not

unique to this problem., It also occurs, for instance, with the

Stiefel Exchange Algorithm for finding the minimax polynomial to a

set of data points, In fact the Stiefel Exchange Algorithm has been

derived from a dual linear programming problem in a method parallel

to that used here (28).
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- 7. Boundary Limacons and Boundary Circles

7.1 Introduction

In the previous chapter, definitive and efficient algorithms
were developed for the solution of boundary references using
limacons. From the arguments of chapter 3, if only chart co-ordi-
nate data is available (the radius suppression being unknown) their
use is established since they represent the best avallable approxi-
mation to the desired reference shape. . In effect this amounts to
using boundary limacons in instrument co-ordinates and so investi-
gation of the relationship between boundary limacons and boundary
circles in instrument co-ordinates is indicated. From this two
important issues must be judged: how accurately can the true refe-
rence parameters be estimated if only chart co-ordinate data is
available and when with instrument co-ordinate data (if it were
available) would it be acceptable to use the convenience of the
limacon rather than the circle? Of course, under conditions when
the second of these is true, then the first will also be adequately
accurate. In analysis only the situation in instrument co-ordinates
need be considered.

Rules have been established for determining all the optimun
boundary limacons, the optimum ring circle and the presence of
local optima of the plug and minimum zone circles. In chapter 3 the
question of the quality of the approximation of a limacon to a circle
was examined and found to be acceptable under many practical condi-
tions. What is yet to be established is whether the parameters found

for a boundary limacon relate to those of the boundary circle to
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the same data, If it happens that the appropriate circle parameters
can nelther be derived from nor closely approximated by those of
the limacon then the measurement of out-of-roundness is in doubt.
The limacon reference may be behaving as a good approximation to the
wrong circle!

In the following sections the correspondence of parameters
between circle and limacon will be examined for each of the three
boundary references. It is because of the difficulties over multiple
optima that only the ring gauge can be expected to glve complete
answers and so this will be given pride of place and analysed 1n
more detall than the others. Some thought will be given in section
7.5 to the possibility of improving upon the approximation of the
limacon in a manner which would have practical relevance to measure-

ment systems.

7.2 Ring Circles and Limacons

The parameters of both clrcle and limacon fits are dependent
upon the geometry of the data which is not known in advance. It
is not appropriate, therefore, to seek a general (algebraic) function
which links the two sets of parameters. Instead an attempt will be
made to establish one set from the other in terms of a value ‘
subjected to a definite error bound. Since good calculatlon methods
exist for the limacon fit, the circle parameters will be expressed
in terms of those of the limacon,

A limacon always has an axis of symmetry, the line joining
origin and centre, and so when discussing purely the geometry of the
figure no loss of generality is incurred by setting this axis co-
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incident with the x-axis. This procedure will be adopted here

since it simplifies the notation. A limacon

R(P) = R+ Ecos®

has minimum zone circles {as can be seen from the alternate con-
tact rule) shown in figure 7.1. Their centre 1s coincident with
that of the limacon and their radii are (R + £2)% and R . Any
circle which encloses the ring limacon certainly encloses the
data also and will be larger than the ring circle. The outer of
the minimum zone circles is not the smallest circle which will
enclose the limacon and so its radius, (Hi + EZ)%, is a definite
over~estimate of the ring circle radius.

In the parameter space representation of the ring gauge
problem (section 4.4) the limacon constraint lies always below its
equivalent circle constraint. So every point on a limacon con-
straint lies in the infeasible region for the ring circle, except,
possibly at E=0 where the two surfaces touch. Thus the ring lima-
con solution lies outside the ring circle feasible reglon and since
that region is convex,the circle solution must have a larger value
of radius than has the limacon solution. Thus the limacon radius,
RL' and so the inner of the minimum zone circles represents a
lower bound on the ring circle radius. (Note, incidentally, that
this 1s a good illustration of the power of parameter space analysls:
the rigorous proof of this lower bound by geometry is surprisingly
complicated (29)).

Other bounds on radius can be established. The minimum radius
circumscribing circle to the ring limacon is a.smaller upper bound
than that quoted above. However the complexity of the expression

for its radius is such as to discourage its use unless precision is
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FIGURE 7.1: Minimum Zone Circles to a Limacon

FIGURE 7.2: Minimum Circumscribing Circle and Limacon with

Diametral Contacts



of very great importance. The circle constructed through the three

contact points of the ring limacon has important properties if

those points obey the 180° rule with respect to its centre. If all

the data lies within it, it is the rihg gauge, otherwise it is

smaller than the ring gauge and so represents a high lower bound on

ring gauge circle radius. Thus five clrcles have been defined, being

in order of increasing radius:

1) Inscribing circle, radius R, to the ring limacon

11) Circle through contact points of ring limacon and data, 180°
rule obeyed for the circle.

111) Ring Gauge Circle

iv) Minimum radius circumscribing circle to the ring limacon

2
L

The circles denoted by 1) and v) certainly over-estimate the

L
v) Circle, radius (R + E%)?, circumscribing the ring limacon
uncertainty in the ring circle radius. An estimate of the ring

clrcle radius will be their mean value:

A 2 2\%
Ry = (R, + (Rp + E%)%)/2
and, using the identity

22 -2 = (P+ Q)P -Q) 7.1

their radial separation is E2/2R o

The ring circle radius is located with an absolute tolerance

band

R, = R (1 +T%/4)

where, here, Y=E/R o+ which for small 7 will not differ significantly
from the true eccentricity ratio as given in section 3.1.

Even taking as a test case the "typlcally poor" centring
condition ¥ = 0,01 the ring circle radlus can be estimated from the
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limacon parameters to better than 25 parts per million. Relating
this to the polar chart of a roundness instrument, since the maximum
possible eccentricity which could be tolerated would be half the
chart annulus width, W, that is ME<W/2, the error ther would be no
greater than +W/ /8. For this example the maximum error on the
chart could only be 1/8% of the chart width, The accuracy of this
ring circle radius estimation is perfectly adequate for almest all
practical applications. The closer estimates are available if
necessary. On the other hand, the error in taking RL as an estinate
of the circle radius is at most only 50 parts per million at

Y= 0.01 and this value has the advantage of being usable indepen-
dently of an accurate knowledge of the radius suppression in a
comparator system.

Although the circle radius is well estimated under all condi-
tions, subject to Y, the same is not true for the estimation of
centre position. Physically sensible examples can readily be con-
structed in which the difference between the centre of ring limacons
and circles is a significant fraction of the true eccentricity. Mostly
this effect is caused by the necessity of the ring limacon having
three contact points with the data. If a diametral contact existed,
the linear programme would introduce eccentricity without affecting
that diameter until a third contact was found. Circle fitting does
not involve such behaviour. Figure 7.2 illustrates this extreme of
the divergence between circle and limacon: it can be seen that the
radil of the two figures are the same while the difference in eccen-
tricity is large and that the 180° rule is obeyed marginally for

both figures,
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In one sense, the best estimate of the ring clrcle is the
circle through the contact points of the ring limacon, providing

that the 180° rule is obeyed for the circle. If these contacts

are A(Ri, Gi), (Rj, GJ.) and (Rk’ Sk) they are related by

Ri = RL + ALcosE& + BL

sinEi 7.2
with similar expression for j and k where RL' AL’ BL are the
parameters cf the ring limacon. From its cartesian equation the
circle through these points is found from the simultaneous equa-

tions
2 _ , , 2 2 7.3
RS = (Ri - Abcosai'- Bosinfl) + (Aosinfa - Bocosea)
with again similar expressions for j and k and Ro' Ao, Bo being

the circle parameters. Substituting equation 7.2 into 7.3 and

re-arranging gives:

2 .2 2
R ~Bp o Bpo(1+ ELOi) + (Agsinb; - B cos®)) 7.4
2Ry, 2Ry, 2Ry,
where Blogy = (AL - Ao)cosei + (BL - Bo)sinsjL

Now ELOi will be expected to be no larger than the order of size
of the limacon eccentricity which is in practice small compared

to RL‘ To a good approximation, therefore:

2 2
R - R
o — Lox B+ @y
L
where Q = (AosinBi - Bocosﬁi)%/ZRL. Exactly parallel

expressions can be derived using the j and k subscripts. From

these three are obtained:

E -EB .. = 0

Lot Loj

8ot = Bpok = 9 -9



which may be solved to give:

82 [(s1n6,-s1n0) [s10%(6, - ¢, )-s10%©, -0, )]
ol stn(e,-g)sin(6,-8)

AL-Ao

n

rer ~(sin®, -s1n6))[s1n(9, -4, )-51n°(6, - )]

+sin(9k- 9j)

I

Eg {( cos@i—cosﬁk) [sinz(ej-(po)-sin2(91-¢o)]
2Ry, \ s1a(0,-, J+sin(8,-6)

BL-B

s 00

ceee =( cos@i-sin%) [sinz(ek-¢°)-sin2(91-¢o)]

+sin(9k— 93)

Where (Eo, ®,) is the polar form of (A , B ). Although these
expressions can only be used for specific cases, some general

behaviour can be seen. Noting that

s1n’(8;-9) - sin®(Oy-¢)) = sin(O;-6)sin(0+6;-28,)
and that since the 180°rule with respect to the origin must be
obeyed for the points so that all terms in the denominator have
the same sign, it 1is seen that the expressions are made of combi-
nations of terms having one of the following forms:

sin(@.-‘@l)
A

<1

‘sin@_,L - sin@k' < 2
or lsin(81+%-2¢o)| < 1

Even if all the terms are allowed to take their least favourable
values simultaneously it is not possible for their combination

to exceed +4 and so
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|Ao - A <

|« 2 = ars,

Ry
is an over-estimation of the uncertainty band. The same uncertainty
is found in BO-BL . For small ¥ , which was in any case assumed
in deriving this expression, the limacon centre is a g00d estimate
of the centre of the circle through the contact points., If this
clrcle i1s a good approximation to the ring circle then the ring lima-
con parameters represent a good approximation to the ring circle
parameters,

Glven the above observations it is of some importance whether
or not the limacon contact points obey the 180° rule with respect to
the centre as well as the origin. Whenever they do a reasonable
estimate of the ring circle parameters can be guaranteed. Consider
the situation shown in figure 7.3. The 180° rule with respect to 0
is obeyed if the figure is a ring limacon and so there will be con-
tacts on both sides of line PB. If there are contacts with both
sides of line PC the 180° rule with respect 0' is obeyed. So
difficulties only occur if the only contact to the right of PB lies

in the sector BOC. Applying the sine rule to triangle POC gives
(Ry, + Esiny)(sinycosk - cosysinK) = RsinK
Since y and K cannot, vhysically, exceed T7/2 this may safely be
expressed in terms of tany= ¢ and tanK = E/RL =) to give:
243
(1+t9)%(t -Y) = ¥(1+7¢) 7.5

The diagram makes it clear that t 7 , so all terms are positive
and squaring has no deleterious effect. After regrouping equation
7.5 ylelds:
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FIGU®E 7.3: Conditions on the Satisfaction of the 180o Rule

with respect to the Centre O°



287 - 27t ¢ (12 - 2r(1sr )= 0 7.3
The solution t=0 has no significance here. The remalning cublic can
be seen from the sign alternation of its co-efflcients to have no xeal
negative roots and one, or three, positive real rooits. This corres-
nonds to the geometrical sense of figure 7.3. For I <<1 a general
solution of equation 7.6 is not attempted. Instead by neglecting all
terms in ?’2 and )’3 a factorisable expression is revealed:

(¢t -27)(t*+1) = o0
from which the real solution is interpreted as

tany = 27 : 7.7
(This approximate formula is in fact very close to the true solution:
a numeric solution of equation 7.6 using Newton's method showed that
even with ¥ = 0.1, using equation 7.7 gives an error of only about
one vart in 104.)

Figure 7.3 shows, in effect, the worst situation which can occur
in this context, that is when a contact point lies at ™. Thus in
equation 7.7 is embodied a complete criterion for the 180° rule to be
obeyed relative to the centre. “roviding each pailr of adjacent contact
points subtend an angle at the origin of greater than tan'l(z)’) then
the ring limacon parameters may be used directly to estimate the
ring circle parameters. In a sampled data system, this criterion
can become absolute: if the angular sampling interval exceeds
tan-1(27’) then, apart possibly from diametral contact which is easily
checked, the 180° rule must always be satisfled relative to the centre.
As an example, with 512 equispaced points the condition is always
satisfled providing ¥'< 0.0061.

As a consequence of these analyses, it seems that, although
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not a certainty, there is a high probability that under practical
conditions the circle through the ring limacon contact points is a
good approximation to the ring circle. Further the test on the
angle between contact mints is a simple way of detecting possible
bad cases. The work described in section 10.2 gives evidence for
this conclusion,

A complete cycle of operations relating the initially desired
measurement to that actually attainable with a normal roundness
measuring instrument, that 1s one working in chart co-ordinates,
can be established for ring gauge, subject to the conditions above,
namely that ¥ must be kept small, This cycle is illustrated in
figure 7.4. It is deliberately not explained in detail since it is
intended to provoke further thought about its implications. The
basic flow around the figure is as follows, It 1s desired to ascer-
tain the deviation of a workpiece cross-section from true circu-
larity for an application where the dominant outer-features are of
particular significance. Placing the workplece on the instrument
requires that an eccentric circle, optimised as the ring gauge circle,
should be used as a reference. Given difficulties over the accurate
knowledge of radius suppression and also those of calculation, this
equivalent distorted circle in chart co-ordinates cannot be used.

As a linearised approximation to this distorted circle a limacon is
fitted onto the chart profile. Because of the nature of radius
suppression, the contact points of the ring limacon in instrument co-
ordinates are identified with those of the ring limacon on the chart.
Thus the ring limacon parameters for instrument co-ordinates can be

established and from them an adequate representation of the ring
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circle parameters is found in terms of a value and an assoclated
tolerance band. Thus, in principle, the cycle 1s closed, and so
a relation to the desired measurement achieved, by using two ap-
proximations, .Firstly the modelling of an eccentric circle by a
limacon and then, at the end, the estimation of the ring circle
parameters from those of the ring limacon. Both of these steps
take place in instrument co-ordinates.

The final stages of closing the cycle require the use of the
true radius and so the radius suppression must ve known. However
estimates having only linear dependence on radius suppression can
be used for the ring circle parameters so that comparisons at
fixed, unknown, radius suppression may be performed with ring

circles.

7.3 Plug Circles and Limacons

Given a problem in optimisation, such as the plug clrcle, where
there may be several local maxima only one limit may be ascertained
with certainty in a useful form. The lower bound to any local maxi-
mum must also be a lower bound to the global value but the upper
bound to the local maximum may still be smaller than the global value.
Thus only a weak upper bound can usually be obtained. In the case
of the plug circle, it is clear that any circle which encloses all
the data cannot be positioned so that it inscribes that data (as
opposed to a position at which it does not enclose any data points,
see section 4,2), So the ring circle may be specified as an upper
bound to the plug circle! Usually, however, such a bound is not of

nuch use for measurement purposes.
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Using the same style of argument'as adopted with the ring
clrcle, information concerning a local maximum of the plug circle
can be obtained. A lower bound for the plug circle radius is
obtained from the inscribing circle, radius RL, to the plﬁg limacon.
The circle constructed through the three contact points of the plug
limacon with the profile will be, if those points obey the 180° rule
with respect to its centre, either a local maximum inscribing circle
(when none of the profile lies inside it) or an over-estimate of
the radius of a local maximum. If this condition is obeyed, the
radius of the circle through the points which lie on the limacon
cannot be greater than that of a circumscribing circle to that
limacon. Thus a pair of bounds, similar to those for the ring circle,
is established. A local optimum of the plug circle exists with radius
bounded by values R, and (Ri + Ez)%. where R, and E are parameters
of the plug limacon, providing that the defining contact points of
that limacon obey the 180° rule with respect to the centre of the
circle constructed through them. This circle may be treated as a
best estimate of the local maximum and the same analysis regarding
its centre carried out as was performed for the ring circle in the
previous section.

Results can be obtained for estimating plug circle parameters
which exactly parallel those for the ring circle. They are weaker,
however, on two counts. Firstly they refer only to a local maximum
of the plug circle having its centre in the vicinity of that of the
Plug limacon., Secondly the tolerance bound for the radius of this
local maximum is not true under all conditions but depends upon the
geometry of the limacon contact points. Under practical conditions
the necessary geometry has already been shown to be likely to occur,
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80 the restriction may not be too serious. The plug limacon is
found from constraints for fitting clrcles which have been
linearised about the point of zero eccentricity and will therefore
tend to identify a local maximum having small eccentricity. The
selection of which local maximum is discovered is, in principle,
_governable by the initial instrumental set-up. Over-all, although
there are profound mathematical and philosophical difficulties with
this method, it appears that as an engineering technigue it is
useful providing that some care and forethought is given to the

measurement and its interpretation.

7.4 Minimum Zone Circles and Limacons

The potential non-uniqueness of solution to the minimum zone
circles causes difficulties similar to those encountered with the
plug circles compounded by a more complex geometry. Again the only
absolute bound on the zone value which can be established 1is that
falling short of optimum, that is an upper bound to a minimisatlion,

The minimum zone circles to the minimum zone limacons clearly
have a separation greater than that of the minimum zone clrcles to
the profile. The zone over-estimate can thus be formed by circles
having radii (R;-H) and ((RL+H)2 + Ez)%. Using the identity, equa-

tion 7.1, the zone estimate would then be:

ZH.ZRO

2 2 2
(RL+H) + B -(RL-H)

(28 + _z]g) . 2R

> L

This suggests use of the limacon radius as an estimate of the mini-

hun zone circles mean radius and gives the over-estimate of the zone
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as (2H + TE/2). Generally it would be adequate to take simply 2H
as the measurement of the radial difference of the zone circles
under practical measurement conditions.

A pair of concentric circles constructed so that each passes
through either the inner or outer pair of contacts between the mini-
mum zone limacons and the profile may give a bound on the minimum
zone circles., If the four contact points satisfy the alternation
condition with respect to the centre of those circles and also
enclose the whole profile between them then they are local minimum
zone circles. If they do not totally enclose the profile but obey
the alternation conditions then it is only possible to enclose the
whole profile between a larger zone that is centred near to the
centre of those circles. Thus they offer a form of lower bound to
the minimum zone and perhaps a "best estimate" in the sense adopted
for the ring circle in section 4.2. The conditions that the points
have alternate contacts relative to both the origin and the centre
of the fitted circles can be seen from figure 7.5. The points P
and Q are encountered in the opposite order from 0' than from O.
It 1s clear that this reversal will not happen if 0' is anywhesre to
the same side of the straight line through P and Q as is O. The
allowable eccentricity to maintain the order depends upon the rela-
tive size of R and H, the angle,((, subtended by the points at the
origin and the direction of eccentricity relative to the points.
Given this number of variables, the general analysis will be pursued
no further.

The minimum zone approach is particularly relevant to the
assessment of the magnitude of out~-of-roundness. However the
physical relevance of the reference parameters, for instance the
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centfe position, seems less than that of the other references. They
relate, if only loosely, to physical situations that a workpiece
might encounter while the minimum zone does not obviously do so,

The estimation accuracy of centres of local minimum zones will not
therefore be investigated here. Methods broadly similar to those
used in section 7.2 should give some indication 1f needed. The most
common measurement is likely to involve testing whether the out-of-
roundness exceeds some specified tolerance and for this just an
over-estimate of the zone (providing it is not excessively large)
will suffice, The direct use of the limacon zone value seens

indicated for normal purposes.

7.5 Out-of-Roundness Measurement

The main concern of this chapter has been to establish the level
of agreement which can be expected between reference iimacons and
the true reference circles. This is typified by the approach
1llustrated in figure 7.4 in which it is seen how the ring gauge
circle relates to the ring gauge limacon. If the out-of-roundness
1s to be measured, the best estimate of the ring circle (based upon
the fitted limacon) is constructed and imperfections of form measured
from it. It would clearly be more convenient (and is indeed
customary practice) for measurements to be taken directly from the
fitted limacon. Doing this introduces two sources of error. First
the circle and limacon do have different shapes, so that the relative
distance of individual data points from each reference will be
different even if all other features were in agreement. Secondly
the limacon is defined, and the data points measured, with respect
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to the co-ordinate system origin and not from the reference centre.
Both of these error sources are of a purely geometrical nature and
can be analysed. However a third source of error, not fully analy-
sable, is that discussed earlier in this chapter; the circle which
the reference limacon best represents may well not be the desired
reference circle. In particular the doubt over the position of the
reference circle centre is important. Most out-of-roundness values
are expressed as peak-valley so that constant radial errors cancel
out,

One case where a reasonable analysis 1s possible is that de-
picted in figure 7.6 where the ring gauge circle and ring gauge
linacon have the same defining contact point. It has been shown
that for this condition the distance of the circle centre from (E, 0)
is small compared to E and so any error in assuming its centre to
be at (E, 0) will be of second order compared to the effect being
examined. A data point P, (R, ©® ) from the origin and (S, ¥ ) from
the centre, is measured as being &€ from the circle and O from the
limacon. From the cosine rule:

2 s+ B2+ 2EScos y

R

s%(1 + n?+ 2ncosy) 7.8

where 7] = E/S is a ratio akin to and of the order of size of 7.
In the present context R and S will always be positive and so square

roots may be taken, Also

6 = (RL + Ecos® ) - R
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FIGURE 7.6: Minimum Circumscribing Circle and Limacon Having

Same Contact Points with the Data



CosO may be eliminated from this by equating projections along the

x-axis:

6 = R +E (Sco;£+ E) - R

which on substituting for R from equation 7.8 and simplifying gives:

0 = RL ~-3.1+ Ncoswy
(1 + 772+ 2N cosy )

L
2

Hence:

0= RL-(RO—E).f(\//on )

As vy describes a circle, the function f will take a maximum value

of unity and a minimum value of (1 - N 2)%. Even at eccentricity
ratios of about 0,01,f varies from unity by no more than a few parts
in 105 . The modification to the small displacement € caused by
multiplying it by f will be practically undetectable. However R

1s a much larger value and multiplying it by f could cause a variation

significant compared to S and €. So to a very good approximation:

6-8 = RL'Rof(V/vn)

1
It has been shown that RL$ R_ = RL(1 + 72)2 and so the limits

(o]

of 6 ~€ can be stated in terms of both R, and f simultaneously taking

0
their maximum and minimum values. For small 7] and 7 this gives

2 2
mbé? < 8- € RIZ

Given the similarity, under practical conditions, of N and ¥V, a

practical bound is:

|6-e] ¢ rR¥? = yE
= =

By aprlying the sine rule to the diagram, figure 7.6, it is
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found that:

-1 .l sinw

w-0 = sin Y (Nsinb) = sin ,
(1+772+27’2c05\//)5

The angular errdr oscillates about zero with én amplitude of sin-ln ,
which is of the order of sin-lr .

Estimating limits on the error of measuring peak to valley and
not just locating one point relative to the limacon rather than the
"circle is complicated by the possibility that different data points
may define the maximum with resvect to the two references. Clearly,
though, the error in peak to valley can never exceed twice the errors
of a single point. It would seem that measuring from the limacon
rather than the circle will for the present case be quite satisfactory
under current practice. If high eccentricity measurements are made,
¥ still presents a simple control on the level of error.

The above analysis 1s specific to the case of ring gauge limacon
and circle references which have (to a good approximation) the same
centre. It does not apply to any other condition., It can be used
intuitively to give some illumination to the more general but
imponderable problem. If it is accepted as a practical decision
(and often there will be little choice) that the centre .of the refe-
rence clrcle will be taken as identical to that of the reference lima-
con, then the errors inherent in so doing will not be seriously com-

pounded by measuring the out-of-roundness from the limacon.

7.6 "Improving" the Reference Shape

The previous sections have examined how a limacon reference
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compares to the true circular reference. The comparlison must take
place in instrument co-ordinates and so an implicit assumption has
ﬁeen made that the radius suppresslon is known. In some cases,
although the analysis needs knowledge of radius suppression, the
results may be taken directly from the limacon without greatly in-
creasing the uncertainty band of the estimate when related to the
circular referénce. The overall conclusion might be summarised
that while the limacon is not ideal its use its use 1is the best
that can realistically be done. This is certainly true of work in
chart co-ordinates when the radius suppression is ill-defined.

Notwithstanding the above conclusion, there remains the questlon
of whether, if adequate knowledge of the radius suppression exists,
a better reference than the limacon is available. The most obvious
reason for this is that the quality of the limacon approximation
depends uvnon the eccentricity ratio and while this 1s usually ade-
quately controlled in practice at present there may be a move towards
working at larger values. There 1s currently increasing interest in
working at higher eccentricities either to save time by reducing
centring operations on the instrument or to allow automatic measure-
ments without the expense of very accurate placement systems. Also
there is increasing use of small radius components in precision work.
Together these two trends may create conditions where the limacon
is 1nadequate,

If the limacon is too approximate but the circle too difficult
to calculate than some compromise between them'must be sought. This
idea is not altogether new. Instruments have been proposed, by the
"erthen organisation in Germany and probably elsewhere, in which,
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after calculating the least squares circle (using a limacon), the
reference line drawn onto the graph was constructed from the power
series expansion of the circle, equation 2.3, truncated after the
second order term, This idea has not been actively pursued: it has
practical difficultles concerning the necessary precision of calcu-
lation once absolute radius has to be used which can only be over-
come by the recent advances in inexpensive digital computation. It
is now timely to look again at this type of approach. Here, since
definitive methods are available for both limacons and circle fitting,
1t will be studied with reference to the ring gauge.

The direct solution of the ring circle as a quadratic programming
problem (section 4.3) is not considered to be practicable using the
computational power that could reasonably be included with a round-
ness measuring system. Much more work would be required than for a
linear program since the solution would have to use the primal and
a direct jump between vertices in parameter space is not allowed, it
belng necessary to search the whole boundary. The approach mentioned
above is also not directly useful. Using a reference figure modi-
fled according to the limason reference parameter may make matters
worse because if the limacon does not adequately represent a circle
then 1t will not fit the data .as would a circle. Another method
which could be adopted is to fit a limacon reference and then simu-
late the recentring of the instrument to that reference by performing
& co-ordinate translation on the data after which a new reference
limacon can be fitted with, presumably, a more favourable eccentricity
ratlo. A disadvantage of this scheme, apart from the high precision
of the arithmetic needed for the translation, is that the translated
data would not be uniformly spaced even if the original data was and
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uniform spacing gives quite large gains in computational efficiency.

The method which is suggested here combines featuresfrom both
the other approaches. Its basic loglc is that rather than translate
the data to a fegion of space where the limacon appears less distorted
with respect to a circle, the data should be distorted in a manner
similar to the difference between the figures. The ring limacon to
this distorted data should behave in a similar fashion to the ring
circle to the original data. If an initial ring limacon to the data
indicates parameters ﬁo g and & as the first estimate of the ring
circle, the distortion to be introduced into that data is the second
term of the vower series expansion of the circle using these estimates.
Thus the constraints of the refitting are simply:

AcosBi + 13sin8‘,L +R, 2 Ry -_ﬁﬁsinz(eiﬁ)
ZRO

which may be compared with equation 6.1. This method retains the
advantage that the data remains uniformly spaced with respect to the
origin so that exactly the same ring limacon fitting routine is used
both before and after the data modification., It is therefore quite
efficient. Another point is that since only shape relative to the
origin is modified the change is not dependent upon radius suppression
other than for the initial calcualtion of ﬁz/zﬁo. The second fitting
calculation can therefore be carried out effectively in chart co-
ordinatgs with a consequent saving in necessary arithmetic precision.

Under the conditions which might be expected to occur with prac-
tlcal systems, the "correction term" is likely to remain on the level
of exactly that. At most the distortion it accounts for might re-

Present a few per cent of the total measurment value. This implies
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that even a quite large percentage error within the estimate of the
correction value will be acceptable (a 10% error in a correction

of 5% of value has a probably negligible effect on the value itself).
Thus it seems that even quite crude estlimates of the radius suppres-
sion would be édequate for the purpose of the refinement considered
here. Certainly a precision equal to that of the measurement data
of the profile would not be required.

It remains an open question whether there is much demand for
refinement of the limacon models of circular references. This will
become clear with experience of new instruments and new measurement
problems. The decisions on their use are likely to remain empirical
and cost related for a significant time into the future. However
useable refinements are shown here to be available when needed, some

practical evidence being given in section 10.4,
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8. Dolygons as Reference Figures

8.1 Introduction

Even 1f corrector terms are applied to reference systems
using limacons (section 7.6) there remains the restriction with
such methods that the origin must lie inside the figure, that
i1s the eccentricity ratio cannot exceed unity. In some measure-
ments, notably when using a co-ordinate measuring machine, the
data may well be expressed relative to an origin which 1s nowhere
near the profile. (Note that this could only occur in instrument
co-ordinates: radius suppression is meaningless under these condi-
tions.) To use limacon methods it is necessary to find an initial
estimate of the profile centre which may be used as an origin for
re-expressihg the data. An alternative would be to use some other
approximation to a circie which retains advantage of computation.
One such alternative could be to approximate the circle plecewise
by a series of straight lines, that is the circle represented as a
Pplygon. This concept is not the same as that used by Scheiding
(section 6.4 and (10)) where straight lines are used as a data
reduction device rather than as a reference figure.

Each side of a polygon is a section from a straight line in
the measurement plane and so can be described by parameters in
which it is linear., So providing that all the sides can be handled
together in a simple way the polygon reference is capable of a
linear parameterisation and consequently should be relatively easily
optimised, In fact it turns out to be possible to express all the
four reference circles in terms of equivalent polygons in which the
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sldes have fixed directlons relative to the frame of reference. In
the case of the least squares fit, however 1t is necessary to make
assumptions about what is meant by residuals and the generalisation
1s rather inelegant. It seems likely that limacon and centroid
methods will prove a more satisfactory approach to the average
reference figure (30). Here as an example of the approach the mini-
mun circumscribing polygon will be examined. Also, in section 8.3,
reference squares will be used to illustrate the nature of boundary
reference fits., This discussion will be parallel to that given for
circles but gives a different viewpoint of the cause of the

ensulng difficulties.

8.2 The "Ring ™olygon"

In defining a polygon reference it will be assumed that the
regular figure is constructed from the envelope of a series of
straight lines, of pre-defined slope, each having the same perpen-
dicular distance from a single point. This point is the "centre" of
the polygon and the perpendicular distance is the "radius". These
parameters are, in fact, those of the inscribing circle to the
polygon.,

For the circumscribing figure, each line must lie further from
the centre than the distance of each data point projected onto the
normal of that line, providing the point lies to the same side of
the centre as does the line. The enclosure of the data is
convenlently ensured by using pairs of parallel lines, see figure
8.1. A line of slope m passing a point (A, B) at a perpendicular

distance R can be expressed in the cartesian plane XY as:
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FIGURE 8.1: Enclosing Data between a Pair of Parallel Lines
of Slope m. Polygon, Centre (4,B) and "Radius" R

is made up from such Pairs.
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FIGURE 8.2: 4 Circumscribing Square Reference



(Y-B) = mn(X - a) + B(1 + n2)¥

Thus for the pair of lines to enclose the data, the following
constraints must be satisfied for all data points (Xi( Yi)
slimultaneously:

(Y, - 3) < n(x; -a) + R(1+D)F

Wi

(Y, -B) > n(x; -4) - R(1+nd)

This form becomes difficult when m=0o (lines parallel to the Y
alxs) and so additional constraints, also required to be true for

all data points are introduced:
(Xi-A) € R
(Xi-A) > -R

The constraints are linear in the parameters (A, B, R) and as R

1s to be minimised, linear programming may be used to find the
complete polygon reference which will involve such sets of con-
stralnts over a set of values of m corresponding to the orientation
of the sides of the polygon. It is obvious from figure 8.1 that
only one (or possibly a series lying on a straight line) data point
can influence the closeness of approach of each of the parallel
lines to the data. 1In a parameter space (A, B, R) representation
this shows as the relevant constraint boundaries for a glven slope
of line being parallel planes. The points limiting each of the
line pairs will be those having the largest and smallest values for
(Yi - mX,). Only these two points can possibly be active in
defining the sides of slope m to the polygon. Thus the linear
Programming exercise can be significantly simplified by breaking it
down into two linear programmes, the first of which is to identify
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the potential defining points and is trivial in the sense that no
iteration is required.
Denoting the slopes of the various lines making up the poly-

gon as my and letting Q _and Q _ be the maximum and minimum values
*J ~-J
of (Y1 - mjxi) over all i, then the required optimisation is, from

equation 8,2:

Minimise: R
8.4

Subject to: R 2 mjA -B+ Q+i

2y3
+ m$
(1 +m3)

> -m, A+ B -0 ,
R 2 m‘J -3

2\2
+ m5
(1 mJ)

for all j.
Agaln forms equivalent to equation 8.3 would be used to account for
mj=°°' The.linear program of equation 8.4 is solved directly, the
dual being the more efficient form to use. If there are N data
points and n sides to the polygon the total work involved is n searches
through N points to find the values for Q followed by a linear program
in three variables and n constraints (vice versa in the dual). At
least with fairly small numbers of sides, the technique is a

plausible one in terms of the effort needed to use it.

8.3. Reference Squares

The simplest reference polygon consists of a square in which
the sides lie parallel to the co-ordinate axes. The four straight

lines defining this figure are:
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X = A+R
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Y= B+tR = Yk ;] Y=3B-R = YL

Flgure 8.2 shows this square, stressing that only a section of each
line is active in defining the figure.

The circumscribing figure has been examlned in the previous
sectlion and so here it suffices to note that the constraints re-
quired to ensure that the square encloses the data are:

M?x(xi) S Xy

Min(xi) 2 X Min(Yi) 2y

All constraints must be satisfied simultaneously. It is seen from
figure 8.2 that the sections of each line not relevant to the
formation of the square are automatically excluded by the constraints.

Consider now, the definition of an inscribing square. It is
not sufficilent to demand simply that the data is not contained
within the square since this will allow solutions in which data and
reference are totally unconnected, see figure 8.3. The other
example in figure 8.3 concerns the problem of how to avoid the
initially inscribing figure from 'escaping' when there is a signi-
ficant gap in the data: it is perhaps not clear what interpretation
may be placed on the phrase "maximum inscribing" in this situation.
Some constraints must be applied to tighten the definition, If the
data sensibly describes a closed figure then insistence that points

lie on all sides of the square is a sultable condition, giving:

M 2 4 2
ax(Xy) 2 X, Max(¥y) > ¥y

Min(X,) < X
i ot

L i Mi.n(Yi)s Y,
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FIGURE 8.3: Difficult Cases for an Inscribing Square
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Another approach could be to insist that the inscribing figure
lies totally within the minimum circumscribing figure, which does
not have such problems of definition. This again would generate
four constraints on XH XL YH and YL but not related directly to
the data points. These four constraints must be satisfied simul-
taneously.

These constraints force the reference to lie within the field
of the data but do not cause it to be inscribing: it 1s now nece-
ssary to introduce constraints to cause the exclusion of all data
points. It is obvious that, unlike the circumscribing square,
there must be data points lying to both sides of each of the deflning
lines. Further it does not matter where a point is with respect to
say, Y = YH providing it does not satisfy XL< X1< XH A point
lies outside the square if any of the following four conditions are

true:

> .
Xg2 X0 Yy 2y
X

< I3
Xi\ L'’

The difference in the behaviour of the constraints for clrcumscribing
and inscribing polygons is directly describable by logic operators.
In the circumscribing figure the constraints are combined as an AND
function whereas with the inscribing figure thay are combined as an
INCLUSIVE OR. Because of the inclusive property of constraints on
the inseribing square some parts of the constraint boundaries in
Parameter space disappear and immediately the constraint planes do
not completely divide parameter space there appears the possibility
of non-convexity even with linear functions. There is in principle

a different solution for the optimum for each valid choice amongst
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the ORed constraints, although not all may make physical sense.
The four constraints 1limiting its position (which are ANDed) bound
the region of parameter space containing these solutions. (As a
trivial examplé of what is happening consider attempting to find
the gap in the sequence 1,2,3,?; the answer may be obvious but
mathematically there are three gaps between 1 and 2, 2and 3, 3 and
7 which must be examined.)

Under conditions where it makes sense to use an inscribing ref-
erence, it should be possible to make the choice among the possible
ORed constraints on physical grounds rather than having to search
them. One possibility might be to select the constraint according
to the geometric position of the particular data point relative to
the centroid of all the data points. This would identify whether to
and also Y, and Y. but it is less clear how to best make

L H L
it choose between the remaining X and the remaining Y. In any case

use XH or X

it is clear that the ORed constraints cause extra work and greater
uncertainty about the result.

The minimum zone reference is, in terms of the constraints
required, a combination of the circumscribing and inscribing cases.
There will again be ORed constraints from the inseribing part.
Sinilar problems to those encountered with the inseribing square
will oceur, but in this case it is more difficult to establish simple

methods of choosing between the possible combinations of constraints.
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9. “ractical Assessment Systems

9.1 General

Whatever theoretical niceties may be developed, the measurement
of roundness, as, indeed, all other measurements, will remain essen-
tially a pragmatic exercise. A measurement is made because of un-
certainty concerning the nature of the profile. Any method which
clarifies that uncertainty sufficiently for the purpose in hand is
acceptable for performing the measurement and generally the most
economical approach would be adopted.

Narrowing the discussion to the use of reference figures with
roundness measuring instruments does not alter the motivation enshrined
in the above statement. If the solution is to be found by hand then
the only re#lly practical method is to fit circles onto the polar
chart since circles are easiliy handled by templates and compasses.
'The penalty to be paid for this simplicity is the need for rather
precise centring. The plotting of limacons is possible (see Appendix
4) but would be exvected to entail more work than is involved in the
refinement of the centring. The geometry of the exchange algorithms
developed here may be useful in confirming the solution obtained but
is unlikely to be used formally because of the powerful intuitive
ability of eye and brain.

If automatic solution of the reference figures is required the
situation is greatly changed. With analogue systems only least
squares limacons can be accurately found (by using simple Fourier
analysis) and so the application of some form of digital computer to
the instrument is imolied. The reason for using automatic assess-
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ment 1s presumably either to increase accuracy or, more commonly,

to reduce the total measurement time. In this case there are clear
constraints on the type of computing that is feaslible. Cost is an
important consideration for it may be more economical to use several
simple instruments than one more efficient, but much more expensive,
system, par£icularly when the possibility of breakdown is taken
into account. Computational time is also significant, although not
always for what, at first sight, may seem the obvious reasons: if
the computation can proceed in parallel with workplece unlcading

and the setting of the next piece, it may not affect the measurement
cycle time at all! The requirements for algorithms which are to be
practlcally useful are that they can operate on mini- or micro-
computers which might be found on-line to the instrument while
retaining an adequately fast (this value can only be related to
specific situations) performance and a sensibly better accuracy than
that of the instrument so that the overall system performance is

not down-graded by their use.

There are occasions, including some within this work, where it
can be asserted from a purely mathematical analysis that one method
is suverior to anothef. Such an assertion does not require testing
experimentally, However in an engineering context rather than a
mathematical one this may no longer be so since the meaning of
'superior' becomes blurred. Here it is considered to be necessary
to develop working versions of all the plausible methods which have
been considered, not to test whether they work but in order to judge
their relative cost-effectiveness under practical conditions. Thils
process should not, of course, be taken to extremes: for example,
from Chapter 6 it is clear that the direct solution of the primal
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linear programme for ring limacon is rendered an implausible
approach by the existence of the dual.

Having established that there would be the need to develop
and test working measurement systems whatever the rigour of thelr
theory, it should be stressed that there is need of direct
experimental study in this work. It is necessary to gather practical
experlence of real measurement vroblems both to further the study of
reference systems and 'for posterity'. The practical engineer or
metrologist is aided in his judgement of his own problems by being
able to call upon the experimental data of others. Those working in
standardisation should always be seeking to simplify procedures and
will, therefore, require information on which to judge whether, for
instance, there is significant advantage to be gained by retalining
alternative forms of analysis.

The discussions in chapter 7 make it clear that the quality of
the limacon as an estimator of the true circular reference depenas
upon the particular geometry of a measurement. There is clearly a
need to discover experimentally whether the occurence of adverse
geometries is likely to be frequent. This will require that large
amounts of work are performed, preferably by many authorities. 1In
the next chapter the various studies that would be needed are
11llustrated by some pilot experiments performed under various instru-
mental conditions with minimum circumscribing references. This
chapter will be concerned first to describe the experimental system
which was developed and then to examine the general performance of

the techniques proposed here.
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9.2 The Experimental System

The basic components of a roundness analysis system had been
developed vrior to the start of the project described here in the
Research Department of Rank Taylor Hobson, Ltd. mainly by the author
and Kinsey (31). This consists of a modified Talyrond 73 (rotating
transducer) instrument connected on-line to a Hewlett Packard 2116C
computer with a moving-head disc operating system. The hardware
and software of the interface existed along with some least squares
limacon programs and programs for the other reference limacons using
the same algorithms as in the Talydata accessory supplied by the
company. These programs appeared to define the state-of-the-art at
that time as summarised in sections 5.1 and 6.1.

The only modification to the Talyrond which has significance to
this work is the attachment to the transducer carriage of an annular
disc containing 512 equi-angularly spaced holes which were read
photo-electrically to give the sampling positions for data-logging
the profile. This system was designed to glve a very good repeata-
bility of position of samples relative to the spindle-axis. The
absolute positional accuracy of the sampler was not of over-riding
importance in its original application and was not tested for the
current work in which, again, repreatability of sampling is the main
requirement. The profile was taken from the instrument amplifier
outout as a signal of +1V, representing +25mm on the chart whereas
the actual polar chart width of the instrument is 4Omm, This was
passed to a standard Hewlett “ackard 10 bit successive approximation
analogue to digital converter and thence to the computer, Other

digital interfaces automatically monitored the instrument magnifica-
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tion and other status lines. Apart from.standard peripherals the
computer had avallable an X-Y driven oscilloscope under program
control upon which profiles could be plotted and the ability to
draw profile and reference figures onto the polar chart of the
Talyrbnd. The computer was equlpped with 16K words of 16 bit memory
of which about 11X was available to the user, the rest being con-
cerned with the operating system. Any program which could be run
on this system without needing direct use of the backing store for
elther data or program overlay would thus be of a size sufflclently
small to be feasible for use in a 'stand-alone' measurement systen.
The programming language normally adopted was FORTRAN IV and
generally single precision floating point arithmetic was used.

This consisted of a 24 bit mantissa and an 8 bit exponent to give a
precision of 6 to 7 decimal digits. Occasionally when absolute
radius was'involved directly in the computation double precision was
used (giving 12 to 13 decimal digits), but with software floating
point procedures these operations are expensive in both time and
memory requirements and so were avoided whenever possible.

For the experiments needed in this study, the major requirement
1s the ability to compare the behaviour of different methods under
identical conditions. A profile storage system is therefore required
since repeated on-line measurements are bound to show small fluctua-
tlons. The data base constructed made direct use of the operating
system file structure. This has several dlsadvantages caused by the
relative crudeness of the operating system, for instance files
cannot be created or extended dynamically and no read/write security
can be operated. In the present circumstances these are not criti-
cally imnortant for all roundness data files contaln one revolution
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of information (512 points on this system) plus similar status data
and so all may be the same size., Additionally on a system to be
accessed by only one or two people, the creation of the files on a
removable disc cartridge used only for that purpose affords, with
care, reasonable security for short term experimentation. The com-
pensating advantage of this approach is that virtually the whole task
of the data transfer is handled by the 'executive' and the soft-
ware overhead to the user program is comparable in size to that of
the on-line data-logging subroutine: both on-line and disc file
based versions of programs can be developed simultaneously. The data
files all consist of a continuous sequence of 512 16-bit words, each
containing one ten bit profile point and up to 128 words of other
relevant data including instrument magnification, the number of
data points (so enabling incomplete profiles to be handled) and an
alpha-numeric identifier of up to 72 characters length. Access to
the-files is by write and read subroutines ROWR and RORE which have
calling sequences paralleling those of the data-logging routine.
Detailed description of all the programs developed for this
system will not te given but extracts from the listings of some of
the important programmes are given in Appendix 5, for illustration.
Also particular points in the implementation of the algorithms
are included in the discussion of the next section. As all were
written in the same language by the same person they should be
stylistically similar so that their relative performance will give
some guidance to the relative efficiency of the algorithms themselves.

A list, with brief descriptions, of the disc file programs used here
follows:
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RODD: Data logging from Talyrond 73 to disc file
DENT: Least squares limacon, including arcs, found by the
‘traditional’' formulae
DISZ2: Least squares limacon, any data configuration, by
direct solution of equations 5.9
DING: Ring limacon by exchange algorithm
DI™L: Ring or plug limacon by exchange algorithm and data
inversion. |
DEVS: Ring or plug limacon by direct use of revised simplex
on the dual linear progranm
DINM: Version of DING allowing modification of data from
console for "sensitivity tests".
DINZ: Ring limacon to 2nd order corrected data (see section
- 7.5)
DRIC: Finds and tests the circle constructed through the ring
limacon contact points
DRC2: Interactive program, based upon DRIC, for finding the
ring circle
DIMA: Minimum zone limacons by exchange atgorithm
On-line revisions exist for some of these with names identical
apart from the first letter: VENT, RING, RIPL, REVS, MIMA. Progranm
VENT is a modified version of a program developed, by the author, in
1972/3.

9.3 Algorithm Implementation and General Operating Experience

All the programs were designed to work with equl-angular samples

so that the profile data could be represented by simply the radial
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value (after radius suppression) with the angle of each point being
infered from its relative position in the data array. The only use
made of angular informatlon in any of the algorithms under consider-
ation is in terms of either sine or cosine. This information was
plcked uﬁ from a simple sinq/cosine look-up table using the same
index variable used to recover the radial values from their array.
If gaps are té be allowed in the profile, the same sampling scheme
is followed but the radial points within gaps are set to an "impos-
sible" value which is to be checked for and ignored in the ensuing
calculation. This approach minimises the space needed for data
storage and speeds the access time for the frequently needed sine
and cosine values.

Implementation of both forms of least squares limacon programs
is perfectly straightforward, in neither case were any special pre-
cautions found necessary. They are similar in size, the heart of
DLSZ being a little shorter and less complicated than DENT but calling
upon a subroutine for the solution of simultaneous linear equations
(a Choleski method was used). Calculation times for a full circle
of data were about three seconds for DENT and five for DL32. The
direct implementation is thus slightly larger and slightly slower
than the "traditional" method. It is, however, much more general
allowing any distribution of data rather than a single arc. It also
has superior performance under some conditions, see section 5.4..

The ring limacon exchange algorithm was given a special starting
procedure. The data is initially searched for its largest dlameter
(r @91) + r(91+ﬂ7) and the initial trial limacon taken to have centre
at the mid point of this diameter and radius equal to half of it.

The largest violation of the limacon by the profile then gives a third
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contact which is bound to obé& the 1800 rule and so the procedure
given in section 6.4 is entered. If there were no violating point
from this initial test, the procedure stops with a two point con-
tact whereas the general limacon solutions would always search for
a third contact (see the discussion of section 6.2). This process
gives what might be regarded as the most logical solution, that of
dlametral contacts, in the situations for which a range of valid
centre positions occurs. No special techniques were needed in the
implementation of the algorithm but some care is needed in deciding
whether a point violates the reference when using floating point
calculations. Arithmetic rounding errors tend to cause the iteration
procedure to oscillate about the final solution because of infini-
tesimal violations., This is easily overcome by comparing the diffe-
rence between data and reference not to zero but to a small finite
value larger than the rounding errors. A level of 0.1 of the data
quantisation interval was used in the present programs.

The direct implementation of revised simplex on the dual linear
program for ring limacon followed closely the standard methods but
gained some increased efficiency by not using general purpose linear
program subroutines. The solution was developed as code "in-line"
with the data and sine/cosine table addressing. Again the only pre-
caution needed was to protect against rounding errors causing oscil-
lations in the iterations: here a discrimination level of Jjust 0.001
of a quantisation interval was adequate for this purpose. No special
start for finding potential diametral contacts was used. The itera-
tlons were started by using artificial variables which were then to
be driven from the solution using the so-called Wagner method (see
section 6.2). This is not a particularly efficient way of starting
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this solution since the first fully feasible solution introduced on
driving out the artificials relates not to the data but to the geo-
metry of the measurement scheme. Instead of taking three iterations
over removing artificials an initial feasible solution could be
given to the prOgram, in terﬁs of a fixed basls, slnce in every
solution of this implementation the measurement scheme is the same.

As would be expected of a more highly specialised routine the
exchange algorithm version was rather smaller than the revised sim-
plex version (about 60 lines of FORTRAN as opposed to 80) and also
operated somewhat faster. Typically the exchange algorithm required
only about 4 iterations to discover the solution taking perhaps 7 or
8 seconds. Including removal of artificial variables, revised sim-
nlex required about six iterations taking a little more than ten
seconds. By using & speclal starting method instead of artificials
variables, similar operating times would be expected from both methods.
The nature of the operations required for the exchange algorithm 1s
such that they are not performed efficiently in FORTRAN implementa-
tlons. In ASSEMBLER language implementations a total exchange algo-
rithm can readily be produced which occupies only 200 to 300 words
of program. Since software floating point operations dominate the
operational time, the change to ASSEMBLER does not significantly
alter the operating speed, although with integer arithmetic a
noticeable speeding up would be expected.

The comments about the ring gauge exchange algorithm apply also
to the minimum zone exchange algorithm., An arbitrary start was
taken by using the points at 0%, 90°, 180° and 270°. The solution
takes about 45 lines of FORTRAN and operates typically in 10 to 12
Seconds. For comparison the previously existing program took about

80 seconds and even then could only converge onto the solution from
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much smaller initial eccentrlcities than could the exchange algorithm.
The exchange algorithm has similar storage requirements to the earlier
method, Again the use of ASSEMBLER improves the efficlency of imple-
menting the exéhange algorithm., It seems quite feasible that routines
for all three boundary limacon references could be included in a
"package" of about 500 words plus storage for data and sine/cosine
tables.

Of the programs developed to study "improvements" to the ring
limacon little need be sald since they follow exactly the theoretlcal
suggestions made earlier in this work. . All use as their starting
point the exchange algorithm solution for ring limacon, that 1s the
end point of program DING. All also require an estimate of the true
workplece radius to be supplied by the operator. Program DINZ
calculates #he second order term of the circle power series expansion
based upon the eccentricity found for the limacon and subtracts this
from the data, which is then reprocessed by the normal limacon
exchange algorithm. This correction is calculated in single preci-
sion floating point since only division by the large radial value is
involved, P rogram LRIC used the radius information to calculate the
clrcle passing through the defining contacts of the data with the
ring limacon. Here the radius is used intimately in the calculation
and double precision arithmetic is needed. From the centre so
calculated a reference 1line which is the circle expansion truncated
after the second order term is compared to the data. This reference
1s used rather than the true circle since it can be calculated in
single Drecision, with consequent savings, and has a preclsion ade-
quate for use with the data and calculation performed elsewhere in
the program. ‘rogram DRC2 is basically DRIC in which the operator
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can specify the points through which the circle should be fitted.
The program reports information on data points violating the refe-
rence and also on the relatlionship of the contacts to the centre in
terms of the 180o rule. It is possible, therefore, for the operator
to iterate, making intuitive jumps if necessary, towards the true

ring circle fit.
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10. Roundness References in Practice

10.1 Limacon References

Based upon the computer system described 1ln chapter 9, a serles
of experiments have been performed to study the behaviour of round-
ness references under practical conditions. Generally these are
nilot exmeriments merformed on a small scale and are intended firstly
to give an indication of reference behaviour and secondly to show the
tyve of investigation which it is believed should be carried out on
a large scale in order to build up a documented exverience unon
which the relative merits of approximations may be judged. For most
of these experiments the ring gauge has been used because it glves
a unique solution for all the reference figures under consideration.
Some of the tests require data collected for specific conditions
and will be described independently but for others a more general
data base of "typical profiles" was appropriate.

A set of 100 profiles were taken and stored in disc-files from
nominally circular objects which were readily to hand within the
Research and Develonment Devartment of Rank Taylor Hobson. It is
believed that these renresent a range typical of that for which
roundness instruments are most commonly used. The parts include
elements of roller and ball bearings, finished shafts and holes and
some plastic mouldings. Most commonly used materials are included.
The profiles were data-logged with instrument set-up according to
the following guideline. The workplece was to be set such as to
allow the use of a magnification sufficiently large for the out-of-
roundness to be clearly visible on the chart, but beyond this require-
ment, no special care over centring was taken. In an attempt to
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FILE MAG'n SYSTEM RADIUS H RING LIMACON
RESOLU- (mm) o©or ™=V B 4
TION

@]

11.32 2.37 .0003
6.18 2.93  .0003
5.15 1.82  .00005
6.09 0.19  .000004
1.52 0.18  .000008

50.04 19.44  ,00093
6.69 1.13  .00002
2.40 0.05 .000001
1.00 0.60  .00001
1.23 0.17  .000005
0.74 0.15 .00001

23.60 3.88  ,0003
1.98 0.52 .00003
9.85 1.62  .0016
9.73 18.63 .018

RDOO1 500 .1 s
RDO02 5000 .01 S
RDOO3 5000 .01 36 S
RDOO7 5000 .01 4L s
RDO10 10000 .005 =22.5 S
RDO13 500 .1 21 S
RDO16 2000 .025 60 s
RDO19 5000 .01 60 s
RD0O22 10000 .005 60 s
RDO25 1000 .005 37.5 S
RDO28 10000 ,005 12.5 S
RDO32 500 .1 12.5 S
RDO35 10000. .005 16.5 S
RDO39 2000 .025 2 3
RDO4O 1000 .05 2 s
RDO41 500 .1 2 S 9.28 44,65 .04
RDO42 5000 .01 6.75 S  0.16  0.86 .0001
RDO43 5000 .01 4.5 H 1.05 0.83 .0002
RDO44 5000 .01 .5 H  1.19  0.79 .0002
RDO4L5 5000 .01 6.75 S 2.44 1,26 .0002
RDOL6 5000 .01 6.75 S 1.70  2.10  .0003
RDOK7 5000 .01 4.5 H 1.8t 2,47 .0005
RDOL8 5000 .01 6.75 S 1.47 1.52 .0002
RDOY 5000 .01 4.5 H  2.46 1.79  .0004
RDO50 5000 .01 4.5 H 1.52 1.39 .0003
RDO5S1 5000 .01 6.75 S 1.72  0.57 .00009
RDO52 5000 .01 6.75 S 1.13  2.80 .0004
RDO53 5000 .01 L5 H 1.36 3.05 .0007
RDOSL 5000 .01 4.5 H 1.15 1,70 .0004
RDO55 5000 .01 6.75 S 1.33 1.83 .0003
RDO56 5000 .01 6.75 S 2.25 1.42  .0002
RDO5? 5000 .0t 4.5 H 1.86 1.09 .0002
RDO58 5000 .01 8.6 H 1.22 1.65 .0002
RDO59 5000 .01 12,0 S 1.80 1.88 .0002

TABLE 10.1: “~rofiles in data base. Dimensions in pam except where

stated.



RDO60
RD0O61
RD062
RD063
RD065
RD066
RD067
RD068
RD069
RDO70
RDO71
RDO72
RDO73
RD0O76
RD0O79
RD080
RD081
RD082
RD083
RDO8B4
RD085
RDO87
RD088
RD089
RD090
RD0OS1
RD092
RDO93
RDO94
RD095
RD0O96
RD097?
RD098
RD099

TABLE 10,1:

1000 .05
1000 .05
500 .1
1000 .05
1000 .05
1000 .05
1000 .05
5000 .01
5000 .01
5000 .01
500 .1
2000  .025
5000 .01
5000 .01
5000 .01
5000 .0t
1000 .05
5000 .01
500 .1
2000 .025
2000  ,025
2000 .025
5000 .01
2000 .025
2000 .025
2000 .025
20000  .0025
20000 0025
20000 0025
5000 .01
5000 .01
2000 .025
500 .1
2000  .025

(continued)

4,76
L.76
L.76
L.76
2.5

4.37
4.37
6.35
2.38
2.38
L.1

6.35

2.5
22
22
17.5
17.5
4.5
3.9
3.9
12.15
11
12.15
12
15

&

12

12

12
6.25
1.5

33.83
13.64
4L 86
42.98
15.39
20.64
31.82
3.29
2.07
2.27
40.24
L, 64
4.05
2.45
0.71
0.58
20.01
4,00
40.85
5.58
4.84
10.21
6.28
5.48
10.99
6.11
1.48
1.29
0.22
3.5
3.30
7.29
85.43
11.64

11.65
7.01
6.46
2.06
5.61
7.47
6.28
2,02

0.73
0.46

4.89
.23
.73
.75
.09
.97

= W N - O O

11.46
2.50
4,21
6. 44
1.75
3.61
L.21
3.23
0.27
0.25
0.46
2.75
3.13
3.40

15.58
1.38

.002
.001
.001
.0004
.002
.0017
.0015
.0003
,0003
.0002
.001
.0008
.0002
.0003
,00008
,0001
.0002
,00008
.0008
.0006
.001
.0005
.0002
.003
,0004
,0002
,00007
,00006
,0001
,0002
,0003
.0003
.0024
.0009



RD100
RD101
RD102
RD103
RD104
RD105
RD106
RD107
RD108
RD109
RD110
RD111
RD112
RD113
RD114
RD115
RD116
RD117
RD119
RD120
RD121
RD122
RD123
RD124
RD125
RD126
RD127
RD128
RD129
RD130
RD131
RD132

TABLE 10.1;

10000 .005  2.25
10000 .005  2.25
5000 .01 12
20000 .0025 12.7
5000 .01 2.38
5000 .01 3.18
5000 .01 3.98
5000 .01 3.98
5000 .01 4.75
5000 .01 3
5000 .01 3
5000 .01 3
5000 .01 3
5000 .01 3
5000 .01 3
2000 .025 5.6
5000 .01 5.6
5000 .01 5.6
5000 .01 3
5000 .01 L.75
5000 .01 2.75
5000 .01 2.75
5000 .01 k.75
5000 .01 4.75
2000 .025  3.85
2000 .025  3.85
2000 ,025  3.85
5000 .01 3.15
10000  ,005 5.5
10000 .005 5.5
10000 .005  6.25
5000 .01 2.25

(continued)

W wm nn 0. ynm u n L n L 1 W nun n n w omw’ B u u u y
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3.86
2.46
L, b2
0.19
5.32
4,38
7.05
6.73
2.22
3.71
5.58
1.98
3.57
3.54

10.67
2.58
L, Lk
3.18
7.53
L.96
5.58
6.08
9.18
9.77
9.75
9.79
5.45
3.40
1.94
4,08
4,16

0.56
0.20
2.90
0.98
2.37
1.26
3.73
1.75
3.73
1.81
1.11
3.15
3.30
3.10
0.91
8.60
0.73
0.99
1.84
1.40
0.57
0.90
0.64
4,51
3.13
0.85
2.31
0.22
0.69
1.81
0.29

1.75

.0002

.00009
.00002
.00008

.001
.0004

.001
.0004
.0008
.0006
.0004
.001
.001
.001
.0003
.0015
,0001
.0002
.000%
.0003
.0002
.0003
.0001
.001
.0008
.0002
.0006
.00007
.0001
.0003
.00005
.0008



I

avoid blas, these measurments were not performed by the author.
Table 10.1 gives a brief summary of the most important measurement
conditions for this set, using minimum circumscribing limacons to
assess eccentricity and out-of-roundness. Radll between 5mm and
100mm were measured and magnifications in the range 500 to 20000
used. The majority of parts had out-of-roundness values between
I/um and lo/xm, which represents, perhaps, the most common range of
use of roundness instruments. About one third of the profiles were
from holes.

Other workers have reported comparisons of results from
apPlying different reference circles to the same polar charts (see,
for examnle, references j and 8). A natural experiment to perform
is thus a similar comparison of the current data base using limacon
references._ This was performed using programs DENT, DIPL and DIMA
The results were summarised in the same method as that used by the
other workers: out-of-roundness is expressed in terms of the ratio
of that for the reference belng studied to the minimum zone value
and variations between eccentricities of different references norma-
1 lised as the difference of the centre from the minimum zone centre
divided by the gzone width. Figures 10.1, 10.2 and 10.3 show histo-
grams of the distribution of the values so obtained with least squares,
minimum circumscribing and maximum inscribing limacons relative to
that minimum zone limacon. The general form of the histograms agrees
quite well with the results quoted by others.

It appears that there is a distinct tendency for the least
Squares and minimum zone limacons to have separate identities,
although large differences are to be expected only rarely. On
average the least squares out-of-roundness is about 10j> more than
the minimum gzone. The apparent tendency for there to be a 0.1 zone
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wldth separation of the centres does not have an obvious explanation.
Both the ring and plug limacons are more likely to gzlve values close
to the minimum zone although the greater spread of results causes
mean differences higher than those found with least squares. The
parameters of the plug limacon seem to correlate with minimum zone
rather less than do the other references. Again there is no clear
evidence why this should be so. There was, for instance, no particu-
lar tendency for inscribing and minimum zone to agree on holes and
circumscribing to agree with minimum zone on shafts. However the
‘preponderance of shafts in the data base could be a contributor to
the observed behaviour. The sensitivity of plug gauge to a single

scratch on a shaft could be cited, for example.

10.2 Ring Limacons and Circles

By using programs DING, DIN2, DRIC and DRC2 it is possible to
investigate in some detall the behaviour of circumseribing references
over the set of typical profiles contained in the data base. The
standard comparison of references should be to the ring circle
fitted in instrument co-ordinates. This may be found using the
interactive iterative procedure in DRC2 based upon an estimate (or
nominal value) of the true radius. The first concern therefore is
the sensitivity of this solution to the radius estimate supplied.

A check on sensitivity was performed by testing a component with
nominally reneated measurement tracks for well centred and quite
eccentric conditions for parameter variation when different radius
values were given to DRC2. The part chosen had a nominal radius of
12mm and an out-of-roundness of about 3 pm. It was measured at x500

magnification, With the centred profile (residual eccentricity about
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7/Am) no narameter change of even 0.1 of a quantisatlion level was
detected when using radius estimates of 13mm, 12mm, iimm and Smm!
With an eccentricity of about L5 pm the same behaviour was found;

a little more variation occured with the estimate of 5mm, +the worst
change being 0.5 of the quantisation interval. On the eccentric
data an additional check using a radius estimate of 25mm was per-
formed and again no variation greater than 0.2 quantisation levels
was found. 3ince radial estimates to better than +imm are easily
obtained no difficulties from sensitivity are anticipated.

The use'of program DRIC identifies whether the circle through

™

the ring limacons contact points is indeed the ring circle. From
the 100 profiles there were 15 cases in which violations of the

circle by the data were reported. However in 8 cases this was

merely arithmetic rounding‘error, the violating polnt being one of

the contacts. The most serious violatlon was by an amount of one
sixteenth of a quantisation interval. For the seven cises where
violating points really existed just a single iteration in program

DRCZ yielded the true ring circle. On one profile this resulted in

a change of varameter value of 0.02 mm, On two others changes of
0.01 um were found and on the others no change (at the level of 0.0l/um)
was found,

Using a slightly reduced set of profiles (94 from the data base)
the variation of centre position for ring limacons and circles was
examined. Comparisons were performed on eccentricity (A and B) values
rounded to 0.01 mum. In 70 cases there were no differences then
detected between the centre of the limacon and the centre of the
circle through the limacon contacts. In all other cases the differ-
2nces were of 0.01 pun (only once did the error occur in both axes for

the same profile). Thus in no case was a difference which could be
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regarded as significant 6btained. Tor the seven profiles for which
the ring circle was distinet from the circle through the contacts
the true ring pircle again had a centre indistinguishably close to
the limacon cenﬁre except in one case. For this one profile (RD108)
a difference of slightly more than 0.02 um was found which 1s
possibly just significant. It is still a difference of less than 17
of the eccentricity value.

It is fair to conclude that, since these figures are small com~
pared to typlcal roundness instrument performance specificatlon, in
instrument co-ordinates, the ring limacon adequately estimates the
ring circle under normal measurement conditions. The use of refine-
ments such as the second order data correction of program DIN2 are
clearly superfluous here. Note that the eccentricity ratlo (see
Table 10.1) rarely exceeds 0.001 in this set of profiles.

The suite of programs may also be used to study typical cases
of fitting reference figures on the polar chart. This is done by
specifying not the true radius but a value of 50mm divided by the
magnification. The program still operates in "instrument co-ordinates”
but the false conditions it has been given make this equivalent to
a chart co-ordinate frame in which a nominal chart radius of 50mm
1s used. Operating program DRIC in this manner reveals that on 25
profiles violations of the circle through the limacon contact points
were found. Of these only one was attributable to arithmetic error
and 23 have violations larger than the quantisation interval. On
other profiles, program DRC2 indicated that although the circle
through the contacts circumscribed the profile, those contacts did
not obey the 130° rule with respect to its centre. The whole set

of profiles were therefore checked and attempts made to iterate
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them using DRC2 with the following results. In 41 cases out of the
100 the limacon contact points did not define the minimum circum-
scriblng circle on the chart. Of these, in 29 cases the points dis-
obeyed the 180° rule and in 24 the circle did not circumscribe the
data. More ominous was the fact that on 15 occasions the attempt to
lterate to the ring circle was abandonned in frustration. On at
least a few occasions this appeared to be caused by the presence of
diamteral contacts to the ring circle, a case difficult to include
within the iterative procdure being adopted. It seems fair to
observe, however, that since the author has a considerable background
in the theory underlying the process, if he failed to make progress,
then most operators might be similarly frustrated.

Since in instrument co-ordinates there was never a significant
difference between limacon and circle, the limacon fltted onto the
chart profile is the figure representing the truly desired reference.
Thus the results just quoted can be rephrased as: in 41 of the
tests the minimum circumscribing circle to the chart profile did
not represent the ring gauge circle to the component. This diver-
gence 1s a reflection of the much higher eccentricity ratlos which
occur on the chart. Of the 100 profiles, 99 had a chart eccentricity
ratio greater than 0.01, 61 were greater than 0.1 and 24 exceeded
0.2. Reason's recommendations for the control of centring error
based on chart eccentricity ratios of 15% or 7% for high accuracy
work (3) were exceeded on 42 and 78 occasions respectively. It is
clear that these criteria are much more severe than is necessaxy to
control errors when using limacon references, They are once more
confirmed as bteing about right for controlling the fitting of circles

on the chart, rurther it is seen that quite commonly the operator
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will accept as "not too bad" a degree of eccentricity which 1s not
adequate for using circles on the chart.

This experiment involving measurement of contact positions led
to two other pieces of information which may be of interest. In
filgure 10.4 is shown the relative occurrence of the angles subtended
at the origin by the ring limacon contact points grouped according
to the largest, smallest and intermediate angles occurring for each
profile. These results are taken over a subset of the data base
using the last 84 profiles from table 10.1. Some of the features
are caused by the form of grouping the smallest angle must be less
than 120° and the largest greater than that but less than 180° (from
the 180° rule!). The intermediate angle is similarly constrained to
always exceed 90°. Two features stand out. Firstly there is a very
good probablity that a measurement will yleld a contact angle not
much less tﬁan 180° while there is a significant but lesser chance
of getting a very small angle. It is however more likely that a small
angle will be close to zero than of the order of 20°. This would
seem to indicate a tendency towards there being nearly diametral
contacts on many occasions with the limacons third contact being
found with reasonably even likelihood around the periphery. The set
of profiles contains many having an important oval component although
not often does ovality alone dominate the measurement. The second
remarkable feature is the near absence of largest and smallest
angles near to 120°, The occurrence of three more or less equally
Spaced contacts seems to be quite rare in practice. Just one profile
showed almost equal angles. no other having a variation of less than
10° between the contact angles,

Since all the collected profiles come from independently set up
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measurements the direction of eccentricity would be expected to be
random. In practice this is only partly bourne out. In the pro-
files of this data base there appeared to be a rather low occur-
rence of eccentricities in the direction towards the rear of the
instrument, particularly so in the second quadrant. More evidence
would be needed to show whether this variation is statistically
important., If so it appears that the explanation lies in the be-
haviour of the operator rather than the instrument as such, perhaps
by tending to ume the controls in a particular sequence when centring.
This was not investigated here as it does not seem to be relevant,
but there may be experiments in which such an unexpected source of

systematic error could be important.

10.3 Profiles Under Differing Eccentricities

In the previous section results concerned the general tehaviour
of profiles from many worknieces each measured under conditions
Judged to be reasonable. An alternative study is to consider what
happens with profiles taken from the same workpiece at different
eccentricities. If only the eccentricity is adjusted between a
series of measurements the profiles will be nominally from the same
track around the workpiece. Comparison of these profiles is a test
of the complete measurement system, not Just of that part concerned
with establishing reference figures.

Measurements were made on eight workpieces of various roundness
quality: six lying in the most common range of use, about 1 to ? jm
neak to vallay, the other two being much more extreme with out-of-

roundness of about 25 pm and 50 pm. Each was measured "well centred"
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on the highest appropriate instrument magnification and then at two,
or sometimes three, stages of decentring using lower magnifications
as necessary. "Well centred" is a term having considerable vagueness:
in practice it.ranges from a fraction of a am on the very round parts
to a few//An on the "worst" profiles. Certalinly a figure of the
order of 1 um is being considered. The largest ecceniricity in
each set was also not specified closely. Using programs DING, DIN2
and DRIC each set was analysed for variability of ring gauge reference
figure. The largest eccentricity ratio in the set 1s 0.0033 so all
readings fit within the compass of those for which limacon models
are considered good. Only the well centred profiles satlisfy the
circle on chart criteria based on chart eccentricity. As with much
work of this type the full results obtained consist of tables of
nearly identical numbers which are difficult to assimilate and
virtually impossible to summarise graphically. The figures will
not be glven here. Using ring gauge references based upon the lima-
con, the limacon fit to 2nd order corrected data and the circle through
the limacon contacts, the parameters and out-of-roundness measured
for each individual profile never varied by as much as the quanti-
sation interval. On just one occasion, that with the largest eccen-
tricity ratio, the second order correction caused a single change of
contact point. The circle through the contact points was never vio-
lated by more than a fraction of a quantisation interval. These
results do little more than add welght to the conclusions of the
previous section concerning the adequacy of the limacon approximation.
Of the eight sets, there were two for which changes of peak to
valley greater than 20% were found over the range of eccentricitles.

Other chanses were not more than 5% and sometimes totally absent.

136



In five cases the orientation of the contact points varied markedly
as the eccentricity was altered. There were also minor alterations
such as a contact moving from one sample position to an adjacent
one. Some of these changes are undoubtedly due to slight variations
in the nominally repeated profiles: the orientation of a surface
feature to the origin will vary with the eccentricity. The grosser
effects observed are not likely to be caused just by these variations.
Glven the consistency of the reference fits the measurements can
be taken as genuine reflection of changes in the true ring gauge
out-of-roundness. The instrument has 'seen' different profiles on
different runs. It is probably significant that the largest effects
are observed on profiles having a "spiky" nature,

Although the tests just described give some indications of
the effects of eccentricity as they might occur in practice, the
number of inaccurately known variables in the instrumental system
make it very difficult to do more than a qualitative comparison.
As a particular example, there is no accurate check on whether the
eccentricity measured corresponds to that of the workpieces. A
better test is to arrange an independent method of placing the
component at different points within the working range of the in-
strument while leaving the instrument itself undisturbed throughout
a series of measurements. In case there might be a favourable
direction of eccentricity for the system, a scheme in which the
component is moved to all positions over a regular matrix covering
the working range is appropriate. The only results available for
reporting here from such an experiment relate to a pilot scheme
intended orisinally just as a means of testing the concepts and

Mechanics of the experimental procedure. A very crude movement
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device based on the standard instrument accessories was used to
generate the matrix of nositions: a more kinematic system should

be used ima full exveriment of this type. The Talyrdnd 73 centring
and levelling table gives a small flat worktable which can be set
very nrecisely vervendicular to the spindle axis by using the
instrument itself with a right-angled attachment to its transducer
and which can therefore be used as a reference plane for moving the
testpiece. This table also has a shallow plate with a 90O V and a
spring plunger assembly running in a T-slot for locating a workplece.
With the V-plate locked in one position the workpiece could be moved
by packing the edges of the V with slip gauges. It is necessary to
Preserve the angular orientation of the test plece with respect

to the spindle and so it was not mounted directly onto the worktable.
Instead a glass target from an alignment telescépe system was used
as a carrier., This component is a glass disc about 18mn thick
having two flat, parallel faces so that it may be slid across the
worktable and its top face remain perpendicular to the spindle. Its
other feature consists of two location flats on its edges which are
900 apart and which give a natural lock to the orientation of the
disc when used to bear against the slip gauges. The arrangement is
shown schematically in figure 10.5. For these first tests no physical
constraint was placed on the posittoning of the slip gauges along
the sides of the V-plate. Pencil marks were used as a gulde to
avold gross errors. The test plece was mounted on the glass flat and
Secured with plasticine. With the combinations of slip gauges
corresponding to the centre of the matrix of positions being checked,
the instrument was set to glve a well centred profile. A magnifica-

tlon suitable for handling the largest eccentricity of the set was
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then selected after which no further adjustment of the instrument
controls was made throughout the sequence of tests. A matrix giving
25 vpositions being all combinations of 0,+12.7 and +25.4 un in both
x and y directions was tested (Imperial gauges wWere being used), Two
distinct groups of slip gauges were used to generate the x and y
steps and the combinations were selected to give minimum errors
according to their calibration certificate. (In fact their accuracy
is so much superior to that of the exverimental relocation that this
finesse was hardly necessary). The experimental order started with
the measurement at both x and y eccentricities of +25 4m and then
proceeded, varying x more rapidly, in a zig-zag pattern to finish

at -25/um in both cases.

An independent test was made of the relocation repeatability
which could be expected. On repeated runs of the same profile
without disturbing the system in between a variation of about +0.02 un
was obtalned on the cenfre position., Removing and replacing the same
slip gauges between runs degraded this repeatability. Without using
even vencil marks to guide the relocatlon a set of seven repeats
caused a total spread in centre position of 2.5 pm in the y-direction
but about 6/um in the x-direction. With care and the use of gulde
marks repeatability was generally within 1 pm,

The test piece was the ground edge (not the bearing track) of
a ball race inner having a radius of 12mm. The magnification used
was x500, giving a resolution of about 0.1 mm in the profile data.
The 25 profiles selected were measured against all four reference
limacons. The behaviour of all four was remarkably similar and
SO only the riny gauge, for which other information was also collected,

wlll be discussed here. Table 10.2 shows the centre positions, rela-
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Centre positions relative to middle test
for MINIMUM CIRCUMSCRIBING LIMACON

L

Matrix points should be nominal 5.10  ins = 12.7mm
Talyrond magnification = 500, resolution 0.1 m
Values in um
05 Ol 03 02 01
-17.91 -7.91 2.53 15.51 30.64
22.26 22.56 22.04 21 .40 21.56
06 07 08 09 10
-17.62 -7.06 5.91 17.67 29.77
8.28 10.43 11.34 11.36 11.38
15 14 13 12 11
-20.75 -12.21 A=0 14,50 29.39
0.83 0.60 B=0 -0.45 -1.23
16 17 18 19 20
-20.55 -9.51 0.24 12.81 25.98
-11.33 -11.27 -16.35 -14.90 -13.10
25 2k 23 22 21
-22,48 |-10.38 2.38 14.51 27.32
-21.57 -21.59 -21.87 -22.55 -23.11
A -19.86 -9.41 2.21 15.00 28,68
Sa 2.06 2.03 2,38 1.78 1.91

Table 10.2

Matrix Experiment

21 -96
0.48

10.56
1.34

-0.05
0.83

-13.39
2.23

"22 . 14
0.67



LIMACON:
CIRCIE:

5 L 3 2 1
3.24 3.13 3.08 3.18 3.22
3.25 3.15 3.14 3.19 3.22
6 7 8 9 10
3.01 3.11 3.17 3.15 2.93
3.00 3.11 3.18 3.15 2.92
15 14 13 12 11
3.13 3.09 3.19 3.18 3.24
3.12 3.08 3.19 3.17 3.21
16 17 18 19 20
3.09 3.23 3.00 3.03 3.14
3.07 3.23 3.00 3.03 3.09
25 24 23 22 | 21
3.11 2.99 2.92 3.16 3.19
3.11 3.01 2.92 3.14 3.18
Mean = 3,12, s.d. = 0,09, spread = 0.32
Mean = 3.11, s.d. = 0.09, spread = 0.33

Matrix Experiment

Peak to Valley out-of-roundness relative to ring limacon (upper
figure) and ring circle (lower figure). All values in R,

Table 10.3




tive to the middle obtained, in a layout representing the position
of the result within the matrix of measurements. Also shown are the
mean and standard deviations of the 'constant' term aleng each rank
and file, The standard deviations show again a pocrer repeatability
in the x direction than in y. In the y directlion the repeatabllity
is generally of the order of +1 um as expected. Table 10.3 gives

in simllar layout the peak to valley out-of-roundness relative to
the ring limacon and the circle through its contact points (here
taken as the ring circle). There is very 1little variation elther
between positions or between references. Note that the standard
deviation of the whole set with either reference is very close to
the quantisation interval. Confirmation that the spread could be
caused by the 1-bit uncertainty of data logging was made by means

of a sensitivity analysis using program DINM. Using profiles from
this set variations greater than the total spread of peak to valley
occuring in the experiment, could be obtained by 1-bit changes to
the amplitude of the contact points. The contacts on the testplece
were well spread: the two smaller enclosed angles being about 850 a
and 1200. Other than switching between the contact actually being
reglstered on one of adjacent samples, they did not vary in position
throughout the whole set.

The rather large variations from the expected centre positions
were further analysed in an attempt to discover their cause. Using
the x-ordinates a least squares nlane fit was performed and the
hynothesis that this plane had linear relationship with x and no y
or constant terms tested by means of the Student-t. This
showed that the variations from expected values were not statistlically
significant and so are probably attributable to experimental
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inaccuracies rather than specific trends. However taking the ordi-
nates in the measurement order there is some evidence of serial
correlation. The numbers are rather smaller than would be desired,
but if a zero crossing test is accepted serial correlation is signi-
ficant at the 997 confidence limit. This casts a 1little doubt over
the analysis.

Overall thls experiment serves only to confirm that the algo-
rithms are better than the physical experimental methed. It would
certainly be of interest to do further work along the lines of,this
test using a more accurate procedure but the impression is that the
limacon references will not be tested "to destruction” by normal

instrumental techniques.

10.4 Measurements at Larze Eccentricity Ratios

One set of conditions where current, conventional instrumenta-
tlon can supply high eccentricity ratios in instrument co-ordinates
1s when near maximum amounts of eccentricity occur on very small
parts. This area of measurement may have some importance in the
future since the trend towards miniaturisation could call for the
automatic or semi-automatic measurement of small components which
are difficult to handle and place precisely. By equipping the
Talyrond with a special small stylus (made from a sapphire gramophone
Pick-up) it was possible to track repeatably around pins of radius
about 0.5mm at eccentricities of more than 150 pm, Instrument co-
ordinates eccentricity ratios of greater than 0.3 were obtalned.
These readings worc taken with a magnification of x100 which shows
practically the behaviour pattern discussed in section 3.2 and flgure
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True Reference A/pm B um P=V pm
Radius
0.432mm L 148.5 -40.6 28.9
12 150.6 -L5. L 16.1
Y= 0.3% | CL 149.2 -34.,0 | +8.2, -15.7
cI 145.2 | -34.8 | 22.5
ccC 147.0 -36.4 19.9
0.508mm L 162.4 49.1 28.5
L2 162.0 47.3 9.1
Y= 0.33 | oL 162.7 48.2 | +4.5, -3.6
cI 160.3 46.1 10.8
cc 160.0 46.3 i1.1
0.517mm L 169.7 11.4 34,1
L2 168.2 6.3 6.8
¥=0.33 | cL 169.7 8.1 | +3.8, -5.2
CI 168.7 5.8 5.9
ofo] 168.5 5.6 6.6
1.753mm L 155.0 -79.2 9.8
L2 154.8 -79.2 2.1
Y=0.10 | cL 155.0 | -79.2 | +0.5, -1.5
cI 154.8 -79.2 2.1
cc 147.3 -75.9 28.2
* where a reference circle is violated, "eak and Valley are glven
senarately
TABLE 10.4: Ring Gauge at High Eccentricity, low Radius. See text

for abbreviations.



3.2, With a 50mm chart radius the profiles are not radius suppressed
on the chart. Table 10.4 shows the data obtained from three pins of
about 0.5mm radius and one rather larger part for comparison using
the various ring reference criteria discussed throughout this work.
In the table the following abbreviations are used: L limacon;

L2 1limacon on 2nd order ‘corrected' data, program DINZ2; CL circle
through limacon contacts, program DRIC; CI and CC ring circles in
instrument and chart co-ordinates respectively, program DRCZ. The
quantisation interval for these results is about 0.5 um.

Taking always the circle in instrument co-ordinates as the true
measurement it is immediately obvious that the limacon model has
broken down. The peak to valley is always much too large and the
circle through its contacts is consistently viclated by the profile.
Generally the second order correction works well. However on parts
of about 0.5mm radius the circle on the chart glves the nearest value
for out-of-roundness. On the larger radius part, however, the chart
circle has become a very poor reference while with the slight reduc-
tion of eccentricity ratio the second order correction is virtually
exact. An interesting feature of these readings is the remarkabdle
similarity of the eccentricity of all the references: even when
giving wildly inaccurate peak to valley readings the divergence of
centres is hardly significant.

This demonstration is very encouraging for future development
in roundness measurement. It has been demonstrated that the data
"correction" anproach is a sound practical weapon for use when the

limacon reference alone ceases to be sufficlently accurate.
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11, The Assessment of Circular Cylinders

11.1 Cylindricity Measurement

Although the term "cylindricity" is quite widely used and em-
bodies a generally recognised concept, namely how does the surface
of a workpiece vary from a perfect cylinder, there is no generally
accepted specific definition. There is no metrology standardisa-
tion on cylinder measurement although codes of drawing office prac-
tice define methods of tolerancing deviations from cylindricity by
insisting that the real surface lies between two co-ax;al perfect
cylinders. This agrees with the definition given by Reason(14) who
states that cylindricity errors are conceived as lying between two
co-axial cylinders, figure 11.1. The exact nature of these cylin-
ders with respect to the profile is not stated but the context
suggests that they might obey a minimum zone or possibly least
squares relationship to it. This is consistent with the generally
prevalling view that cylindricity is measured as an extension of
roundness and so the same analytical methods are to be expected.
This method has more relevance than normal tolerancing approaches
based upon totally predefined ideal forms if, as seems likely in
Practice, cylindricity is to be measured on radius suppressing
instruments.

There has been, in virtually all work on cylindricity measure-
ment, an inherent assumption that roundness instruments having a
straight datum parallel to their spindle axes would be used and
this has greatly influenced the approach to the analysis. It builds
directly upon the methods and assumptions of roundness analysis
without expressing any concern regarding the validity of dolng so.
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Although the ANSI roundness standard(1) does not discuss cylin-
dricity it does observe that the axis of a workplece is defined by
the centres of reference circles at a series of cross-sections and
that, therefore, different axes are to be expected according to which
reference criterion is used. It does not recommend a method for
assessing the lack of straightness of this axis. This type of nea-
surement for axial straightness bears only an indirect relationship
to cylindricity and it is important that their separate identities
be recognised. An axial straightness measurement can give out-of-
roundness information at each cross-section but cannot assess an
overall "out-of-cylindrical” value by direct means. A cylindricity
measurement would create an overall reference cylinder from which
"out~of-cylindrical" information may be directly taken and will
specify a direction for the best fit straight axis but does not give
an immediate summary of, for instance, the axial stralghtness. The
complete description of the error of form of a cylinder will there-
fore require both of these analyses to be applied, that is both
overall and cross-sectional references seem to be necessary. Further
evidence for there being a fair degree of independence between these
méasurements comes, for instance, from Lotmar's work (15) measuring
the radial variation along a ring gauge, at the expense of losing
all information about the axis, on a roundness instrument not equipped
for cylindrical measurement.

One proposed method for defining cylindricity which does not
rely, at least at first sight, on the usual reference figures 1is
due to Iizuka and Goto (16, 17) when a deformed cylinder is described
in terms of an axis consisting of orthogonal polynomials in z and
Cross-sectlons of constant z are described as Fourier series using
r and ¥ i, D,z being a cylindrical co-ordinate system, It seems
that this method was first adopted more to demonstrate the use of
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least-squares by which the parametefs can be found than for metro-
logical reasons but it is a method of describing the surface of
_ﬁhich more use could probably be made. Harmonic analysis in round-
ness measuremeﬁt has been variously proposed, see, for example (32)
and (33) and the extension to a polynomial axis seems natural. It
is, however, still restricted by the need to interpret part of the
“profile error" as caused by residual misallgnment of the workplece
to the instrument co-ordinate system. To do this they allow that
the first harmonic of each cross-section and the linear polynomial
along the axis are wholly, and the only, terms caused by misalign-
ment. Thus the limacon approximation is being applied at each cross-
section to account for eccentricity there and the least squares
straight line through the centres of these limacons is taken as the
tilt error between workpiece and instrument.

Other workers have implicitly assumed the use of a "reference
eylinder" which is in fact a limacon on each cross-section perpen-
dicular to the z-axis with the centres of these limacons lying on a
straight line. This is true even of methods which do not actually
measure such cross-sections, such as schemes using a helical trace
around the workpiece (18). Virtually all reported work is concerned
Wwith least squares methods. One partial exception is an attempt to
discover the minimum zone cylinders (11) from the least squares
solution. A search method is given but considered to be too ineffi-
clent and an alternative is proposed which uses a weighted least
Squares approach in which the weights relate to the residuals of an
unweighted least squares solution so that the major peaks and valleys
are emphasised. This method is of course an estimation of the mini-
Mum zone cylinders rather than a solution. It still relies upon the
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validity of the limacon approximation at every cross-section,

Here the measurement of cylindricity will be examined from the
viewpoint that it will be required to produce extensions of the
roundness standards and the methods are required for the solution
of least squares, minimum zone, minimum circumscribing and maxi-
mum inscribing cylinders in instrument co-ordinates. The methods
and philosophy used are similar to those adopted here for round-
ness analysis and given detailed treatment in earlier chapters;

the cylinder analysis given will be brief.

11.2 Reference Figures for Cylinder Measurement

None §f the literature describing work on the measurement of
cylinders makes use of cylindrical reference figures. Nearly always
the same implicit assumption is nade, namely that the cross-sectional
shape in a given plane is unaltered as the workplece allgnment is
altered. The reason for this constancy of approach probably arises
from the nature of the instruments used in the measurement. In effect
they produce profiles representing sections of a cylinder on planes
perpendicular to the z-axis of the instrument co~ordinate franme.

The cylinder is represented by a series of circles of the same
radius placed perpendicular to the z-axis and having their centres
lying on a straight line. In practice these circles are almost
inevitably approximated by limacons. As the distinction of these
different forms can be of some importance, a distinect terminology
will be adopted here. "Cylinder" will be reserved strictly for
describing a figure in which all cross-sections perpendicular to its
axis are identical with respect to that axis. Unless specifically
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| stated otherwise a right circular cylinder is implied. Other
cylinder-like figures which do, however, have a different geometry
ﬁill be called "cylindroids". Distinctlion is also made between
"tilt" in whicﬁ all points of a figure are rotated by the same
amount relative to the co-ordinate system and "skew" in which the
axls of the figure is so rotated but the cross-sections remain para-
1llel to their original positions. Figure 11.2 illustrates the
difference between these by showing a tilted cylinder and a skew
circular cylindroid. A skew circular cylindroid may also be des-
cribed as a scalene cylinder, the former notation belng preferred
here because of it is more descriptive of the physical situation
being studied. In the case of a cylindroid,shape is déscribed in
terms of the cross-section parallel to the unskewed axis., The
reference figure used commonly in cylinder measurement is then a
skew limacon cylindroid. It should be noted that since the axis is
skewed, the eccentricity at different heights will vary and so the
skew limacon cylindroid does not have a constant cross-sectional
shape. It does have constant geometrical properties on its cross-
sections,

An investigation of reference figures suitable for measuring
cylindricity must start from a statement of the form of a true
cylinder oriented arbitrarily in the space described by a set of
instrument co-ordinates. The clrcular cylindrical surface is defined
by the property that all its points have the same perpendicular
distance (radius) from a straight line (the axis). This is con-
venlently described using direction cosines and a vector notation.
The axis is fully defined by a set of directlon cosines 1, anda
point X | through which it passes. The perpendicular distance of a
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general point X from this line is given by:
p = g(_-go|s1no( 11.1

where X 1s the angle between the axis and the line joining X to ﬁo‘

The direction cosines 1 of this joining line. will be:

1= X-X 11.2
[(x - x)5(x - 317

and the angle X is then found:

cosor = 171 11.3

Substituting equations 11.2 and 11.3 into 11.1 and working, for
convenlence, with p2 since p is a scalar length glves:

o= (x-x )k -x) - (& -x,)M)?

To define the cylinder, all points having p = R are required, so
a complete description is:

2 _ T T
Ry = (X -%,)7(L; - 1,1)E - X)) 1.4

where 13 1s the 3-square identity matrix,

Within the context of normal cylindricity measurement, a less
generally applicable description of the cylinder can bevused to give
a better 'feel' to the parameters describing it. Also experience of
two-dimensional roundness measurement shows the type of operations
likely to be needed on the reference (for example, linearisations)
and the forms of parametrisation which are convenient to handle. It
may be assumed that the axis of a cylinder being measured will not
be far misaligned from the instrument Z-axis (that is the axis of the
instrument spindle) and so its description in terms of deviation
from that axis has advantages, In a direct pnarallel with the
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description of eooentricit‘y, cartesian components of these deviations
are used. The intersection of the axis with the 2 = 0 plane will be
at (Ao. Bo) and the slopes from the Z-axis of the projections of the
cylinder axis into the XZ- and YZ-planes will be A, and B,. Any
.Point on the axis is then defined by the co-ordinates (Ao + A2,

B°'+ B,Z, 2). The slopes A, and B, relate simply to the direction

cosines so that:

T _ 2 _ _
I3 - __%2_ By -AB A
(1+a3+B7) | -A¢By 1+a2  -B,
-A 2.2
"1 =B, AYE]
and on multinlying out equation 11.4 glves:
R = 1 [(X-A )2(1+82) + (Y-B_)2(1+A2) + 22(A%+B2)
0 —-—2—-2—;_‘_ [o] 1 Q 1 i 1
( 1+A+B] )2 11.

L
2
-2(X-A ) (¥-B_)A,B, - 2(X-A JA,Z - 2(Y-B,)B,2 ]

The conversion of equation 11.5 from cartesian to cylindrical polar

co-ordinates gives the equation of a tilted cylinder as:

LK)

———

= » 2
R(9, 2) = [(Ao + A+ ABY - ﬁBoBi)cosa )
1

2 2
+ (B, + By + BoAy

+ (Bicos‘e - A4sin® )2

- Aoﬁﬁi )sinB

11.6
£
R (1 + Af + 13?)2
+ —— .
(1 + (Bicos O - Aisine)z)%
2]}
.. ((a, * A1Z)sin8 - (B, + Blz)cose) 2

R2(1 + (B,cos © - Aisina)z)

In this form both the similarity to and the differences from the

simple eccentric circle, equation 3.6, can be seen. The cross-
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section in a plane of constant Z is an ellipse with minor semi-
dlameter R and major semi-dlameter Ro(i + Af + Bf)*, its major axis
having the same direction as the cylinder axis projected into tho XY
plane. The direction of the ellipse does not correspond to the direc-
tion of eccentricity in the plane since this latter value includes
the contribution of A, and B.

The cylinder is clearly non-linear in its parameters and further-
more can be shown to exhiblt a non-convex feasibility region in
parameter space for all the possibly required reference conditions:
minimum radial zone, maximum radius inscribing and minimum radius
circumscribing, The formal proof of non-convexity will not be in-
cluded here but simple demonstrations illustrate its truth. The non-
convexity of minimum zone and inscribing circles has already been
demonstrated in chapter 4 and as the circle 1s a special case of
equation 11.6 the equivalent cylinders are also non-convex. The
non-convexity of the minimum circumscribing cylinder can be shown
by the existence of examples, such as figure 11.3, in which distinctly
separate local minima are shown. In the figure, the fit shown is a
minimum radius circumscribing figure since the radius of the cylinder
corresponds to the minor semi-diamter of the elliptical section. By
symmetry it is clear that four such positions exist and it is readily
seen that it is impossible to move between them without involving a
figure of larger radius. This example shows that non-uniqueness
does not occur only in the relatively unimportant (in the present
context) sense that a cube may be circumscribed by a cylinder having
its axis pervendicular to any face .

Both to allow analytical solutions to reference fitting and

because there will be practical need to work with radius suppressed
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data, a reference figure linear in its parameters 1is desired. Thia
may be found either by the direct application of Taylor expansions
(1t is easier to work with equation 11.5 and then convert the result
to polar co-ordinates) or by removal of relatively small terms from
equation 11.6 in a manner akin to the truncation of the binomial
series in deriving the limacon from the circle. The llnearisation
of the cylinder about the point of perfect alignment (A°=8°-A1=81-0)

is shown to be the skew limacon cylindroid
= 15
R(®, 2) (A, * Aiz)cose + (ao +Biz)sin * R 11.7

A comparison of equations 11.6 and 11.7 shows how much infor-
mation is totally disregarded by this linearisation. In particular,
there 1s no remaining term concerned with the ellipticity of the
cross-section. For small parameter values, the differences betwsen
equations 11.6 and 11.7 will be dominated by the second order tern
of the power series expansion, namely:

Re (A,cosB +B 81n9)2 - 1 ((A*A,2)31n0 -(B _+D,2)cos
5 1 1 - 1 0

The nature of these error terms is emphasised if they are re-exoressed
as:
tan%x R, (1 + cos2(O-¢)) - ﬁfiﬂ (1 - cos2(D-9.(%)))
—_— R,
where ¢ 1s the angle of the axis to the Z-axis and @y and &,
are the directions of tilt and total eccentricity in the XY plane.
The eccentricity terms E and ¢E devend upon Z whereas the terms due
to nure tilt do not. The acceptabllity of the model depends upon
the maximum value of eccentricity ratio which occurs at any plane
(which will be at one end of the axis length over which measurements
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are taken) and also upon the magnitude of the tilt compared to the
absolute radius. As written above, the first term in the error can
be identified with the representation of the tilted cylinder in terms
of a skew circular cylindroid while the second term relates to the
approximation of the circular cross-sections of that cylindroid by
limacons.

The above discussion is naturally also of concern to the measure-
ment of roundness profiles on cylindrical objects. It is quite
common for tilt to be the major cause of eccentricity in a reading,
particularly when using fixtures which cannot support the workplece
in the plane of measurement and under such conditions the phases Pu
and ¢E will be broadly similar so that the possible sources of second
harmonic errors reinforce each other. On the other hand the error
in the radial term could be rather smaller than would be expected

simoly from the limacon approximation.

11.3 Practical Considerations of Cylindroid Refersnces

The development of the skew limacon cylindroid from the
cylinder is a parameter linearisation. Thus the immediate conse-
quence to measurement practice is that exactly the same assessnent
technlques may be used as have been used heres for roundness assess-
ment. The cylindroid may also be used as a medium for transferring
between instrument and chart co-ordinate frames. Its behaviour under
radius suppression is exactly the same as that of the limacon since
the suppression operates in directions perpendicular to the Z-axis.
The magnification usually associated with the translation to chart

co-ordinates has one extra effect on the cylindroid since generally
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1t would be expected that different values of magnification would
be applied in the radial and axial directions. The slope of the
cylindroid axis from the measurement axis will be multiplied by the
ratlo of the magnifications in these directions.

The shape difference between limacon cylindroid and cylinder
is subject to more sources of variation than is that betwsen linma-
con and circle but again similar methods can be used to control
them. The amplitude of the second harmonic of the horizontal sec-
tion through the cylinder will be, under practical measurement
conditions, the effective error in that particular cross-section of
the cylindroid. A worst condition for its size is that the harmonics
generated by tilt and eccentricity are in phase, when the combined
amplitude will be Rc/4(tan%x +-72(z)), 7(Z) being the eccentricity
ratlo at the cross-section. Thus a quite conservative check method

is to use (tan2

o + Tiax)% as a control parameter in exactly the
manner that ¥ is used for roundness measurement. It should be
stressed that the values of & likely to be encountered within current
practices are very small., The total tilt adjustment on some commer-
clally available instruments is only a few minutes of arc, so values
of tanX=0,001 would not be regarded as particularly small. In the
majority of situations the limit on tilt will come from its effect
on the allowable eccentricity: if the axial length of cylinder over
which the measurement is performed is Lo' there must be at least one
plane where the eccentricity is at least LQ/ZtanO(. 80 ’max will
exceed tanX whenever the length of cylinder exceeds its diametur
(as 1t may, also, if this condition is not satisfled.).

The ellipticity introduced by tilting a cylinder 1s difficult

to account for in reference figure modelling since, apart from the
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sroblems of working with a non-linear parameterisation, there are
other causes of elliptical cross-sections with which interactions
can take place. Using, for example, best fit 'ellipses', probably
modelled by just the second harmonic of the Fourler series, on
cross-sections will not usually yleld directly information about
tilt. This relates to the observation that while every tilted
cylinder can be described alternatively, and equivalently, as a skew
elliptical cylindroid, the vast majority of elliptical cylindroids
do not describe tilted circular cylinders. Given a good estimate
of the cylinder axis and knowledge of the true part radius, the
amplitude and phase of the elliptical comvonent can be calculated
and could be used in a second stage of determining the reference,
vossibly in the form of a correction factor such as that proposed

in section 7.5
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12 Limacon Cylindrical References

12.1 least Squares Cylindroids

The skew limacon cylindroid is linear in its parameters and

80 the least squares solution for residuals

6

can be stated directly (see section 5.2 for details of the method).

In matrix form, the parameter estimates are given by the solution

1 <

=Ry - ((Ao+A1zi)°°501 + (BO+B1Z:L)35.:19i + RL)

of:
Scos?0 $sinBcos® $7c0s°0 $2sintcosf  Jcost ! IAO
38infcost Zsin2@ S 2ZsinDcos® SZsinze 2sin® | B,
Ezcosze Szsinfeos® $2z2cosZDd $2%s1n0cosO Izcost: Ay
Y 284nBcos6 I zsinZ® $2%sinfcosD $2°s1n20 3Zsinf| | B,
2cosP ssin® S2cos© $2Zsin® N Ry
2 RcosB
2 Rsin®
= $RZcos b
£RZ2sin ©
TR

where to save space indices have been ommitted: R, O, and 2 all

have subscript 1 and all summations are over L = 1 to N,

The added complexity of the three dimensional problem means

that there is even higher motivation than with the simple limacon

for choosing measurement schemes which allow simplification of

the coefficient matrix.

incomplete surfaces and so only full cylindrical surfaces will be

considered.

This is unlikely to be possidle on

For these it is probable that a sampling scheme
having a high degree of uniformity would be used for instrumental
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as well as arithmetic convenlence. Since, alsc, on a roundness
measuring instrument it is normally advisable for best accuracy
to keep the spindle rotating constantly throughout the measure-
ment, two patt‘erns of measurement are suggested: a serles of
cross-sectlons at pre-determined heights Zi or a helical traverse.
If a series of cross-sections is used and each sampled iden-
tically, the summations over all the data in equation 11.2 can
be replaced by a double summation over the points in each plane

and the number of planes, for example:

N n n
Zzicosei = Z Z, Zcosejk
1=1 k=1 =1

where there are m sections each of n points, mn = N, Now if the
sum over j satisfies the fourfold symmetry identified in section
5.2 for the simplification of the least squares limacon solution,
at each plane the summations over cosD, sinD and s1.2.ce0 will be
2ero and so also will be the sums of these terms over all the

planes. The matrix of coefficients then becomes quite sparse:

STcos?® 0 Tg5cos%0 0 0
0 Syein’® 0 SZsin?0 0
2 ZZcOS2 g o0 2 ZZ}'_'cogze 0 0
0 S23sin’6 0 372581020 O
0 0 0 0 mn

Noting that those terms involving cos20 correspond with A and

Ay and sindlarly with sin’©and B, and B,, further interprotation
of this matrix is possible. The radius of the least squares linmacon
cylindridroid is the mean value of all the radial data points and
its axis is the least squares straight line through the centres

of the least squares limacons on the crogs~-sectional planes.,
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This measurement scheme has, apart from computational simplicity,
two advantageous features: the information on both axial straight-
ness and cylindricity measurements 1s produced simultaneously

and, depending upon exactly what 1s to be measured, there is
considerable scope for data reduction during the course of the
measurement,

There are other ways of selecting measuring schemes which
lead to simplifications similar to, but not as complete as, the
above when using measurement in cross-section. No details of
them will be given here.

The helical traverse method is attractive from an instrumenta-
tion point of view. However, computationally, it loses the advan-
tage of having Z and O independent and so evaluation must be over
the whole data set in one operation. It would be expected that
samples would be taken at equal increments of © and since 2 depends
linearly on O this allows various schemes for simplifying equation
12.2 quite considerably. Again, only one scheme will be discussed
here. If it can be arranged that the total traverse encompasses an
exsct even number of revolutions of the part and that there is a
multiple of four samples in every revolution then defining the
origin such that Z = 0 at the mid-point of the traverse will cause
all summations of odd functions of Z and © to be sexo, as will all
those in simply sinf, cos® or sinfcos®. The coefficlent matrix

then becomes:

/continued over page
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5 00820 0 0 S 7sinfcos® 0

0 S sin%® S Zsinbcos® 0 0
0 Y %2sinfcos®d 5 2200820 0 0

S Zsinbcos® 0 0 T2%51n%® ¥ Zsin®
0 0 0 2 Zsin® N

The original set of five simultaneous equations reduced to a set
of two and a set of three with considerable computational saving.
One failling of the helical traverse relative to the measure-

ment of cross-sectlons is that no information relating directly
to axial straightness is produced. Overall, it would seem that
there needs to be fairly strong instrumental reasons for a helical
traverse to be used, particularly as there would appear to be
more types of surface discontinuity which can be excluded from
the measurement by the judicious choice of cross-sectional heights
than from choice of helix pitch.

The demonstration carriled out in chapter 5 that the least squares
limacon survives unchanged relative to the profile under the radius
suppression transformation can be applied in identical fashion to
the limacon cylindroid. Given only the provision that the z axis
scaling is unchanged the cylindroid parameters can be used in
chart or instrument co-ordinates by applying magnification and
suppressed radius in the normal way.

One proverty of the limacon fit which does not apply to the
cylindroid is the observation that the estimate for centre is exact
(section 5.3), Reference to equation 11.6 reveals that there are
additional terms which contribute slightly to the odd harmonics
in the case of the cylindroid. Taking the second order term of the

binomial expansion of the first part of equatlon 11.6 suggests that

the fundamental is changed only by about 1 + tandxi1 so that the
4
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estimate of axis from the cylindroid should still be good in
practice. This is, however, a further warning that there 1s
a greater degree of approximation between cylinder and cylin-
drold than between circle and limacon. Although still a good
approximation the cylindroid can stand rather less abuse than

the simpler situations!

12.2 Boundary Value Cylindroids

As with the least squares fit, the solution to the boundary
limacon cylindroids is a direct extension of the methods used
in two dimensions. The general solutions examined in section
6.2 can be merely extended to include two extra parameters.

All three boundary cylindroids are found by solving their linear
programs, revised simplex on the dual being the most appropriate
of the standard techniques. ihe inscribing cylindroid can be
solved as a circumscribing cylindroid by inversion of the radial
data, in the manner described in section 6.5, if so desired.

Generally the motivation for seeking exchange algorithms to
replace the general method reduces as the geometrical complexity
of the problem increases for the manipulations required to
calculate the exchange become more involved. The properties
of cylinder and cylindroid examined in the previous chapter would
suggest that exchange conditions might be complicated and so
offer no real advantages over the use of simplex. That this 1is
indeed the case will be illustrated by just one example. The

ninimum circumscribing limacon cylindroid has the formulation:
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Minimise RL

Subject to (A°+A1Zi)cosei + (B°+Blzl)sln91 + Ry 2Ry

for all i.

Following the method used in section 6.4, the basis of the dual
linear program will be:

cosf; cosb, cosEB cosf, cos95

s:i.n91 sin92 sin93 sineu sin95

ZICOSe& Z,c0s0, chosGB zucoseh zsc0595

Z,s1nf) ZzsinEE Z3sin93 Zusineu Z5sin63

1 1 1 1 1
The co-factors of the final row of this matrix must have the
same 8ign if dual feasibility is to be maintained. Using the
geometric interpretation of this condition the boundary between
poslitive and negative sign regions of these co-factors will be

glven, in cartesian form, hy equations such as:

1 X2 X3 Xa X |= 0
Y

Ao =
34, —
R,R.R,R|y Y
2Ky ZiXs ZyX, 2X

27374 2 Y3 L
272

ZZYZ Z3Y3 ZuYu 2Y

It 1s not easy to describe the surface defined by such an equa-
tlon but it is clear that it is not a simple geometric shape.

The vermissible orientations of points for defining a dual feasible
cylindroid depend upon the interaction of four curves of this type,
making their full description all but impossible. The search for
an exchange algorithm can be conscientiously abandoned at this
stage. The recommended method of solving boundary limacon cylin-

droids is by direct solution of the dual linear programme.
Although the full geometric description of dual feasibility
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1s not available, it is easy to discover particular sets of
conditions which satisfy that requirement. This has the merit
that an initial feasible solution for the dual programme can

be specified, so saving the use of artificlial variables. One
such condition consists of three points in one cross-sectional
plane which obey the 180° rule with respect to the Z axis and
any two other points which do not lie in that same plane and
which are not diametrically opposed to one another, If this
Occurs, two of the operational co-factors of the basls become
unconditionally zero and it is then possible to invent amblguous
exchange conditions. This corresponds to degeneracy in the
linear program and casts a slight doubt over whether it is always
possible to obtain a solution by this method.

In passing it is worth observing that many of the difficulties
encountered with cylinder fitting are caused because the figure 1is
defined with respect to a line rather than a point. The natura.
extension of the circle to three dimensions is to maintain
uniformity about a point by moving to a sphere. By direct
extension of section 6.4, the "limacon spheroid" can be shown to
have a dual feasibility condition in which any two defining points
lie to opposite sides of a plane defined by the other two points
and the origin. This will be seen to be exactly analogous to
the situation shown in figure 6.6. Thus a very simple geomotry
is preserved, although calculating its implications for point
exchange may still not be worthwhile compared to the dirsct use
of the dual programnme,

Given the greater degree of non-convexity in cylinder

formulations than in circle ones, it is to be expected that there
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will be less that can be saild with certainty concerning bounds to
cylinder fits from cylindroid fits. The only definite assertions
are those giving overestimates for the minimum zone and minimum
circumscribing radius and an underestimate of the maximum inscri-
bing radius. The conceptual mechanism used is the same in all
three cases. For the circumscribing cylinder the data 1s first
enclosed by the minimum circumscribing limacon cylindroid. This
figure is then enclosed within a circular cylindroid and around
this is placed an elliptical cylindrold representing a cylinder
having the same axis tilt as that of the limacon cylindroid.
Figure 12.1 attempts to illustrate this procedure showing only
the plane crucial to the exercise. The circular cylindroid which
can enclose the limacon cylindroid will be controlled by the
cross-section in which the limacon has the largest eccentricity
and so needs the largest circumscribing circle. A convenient
circle is that centred at the limacon centre having radius

(Ri + Eﬁax)% and a circular cylindroid having this radius and the
same axis as the limacon cylindroid will be a circumscribing
figure. In fitting any ellipse about the circle, the minor semi-
dlameter remains equal to the circle radius and as the minor dla-
meter corresponds to the dimension of the untilted cylinder a
Treasonable overestimate of the cylinder radius is (RE + Ei.x)*.
This is the same as the overestimate for the circumscriding circle
except in one respect. It is quite likely that the limacon having
maxinum eccentricity, being at one end of the measured cylinder,
Will not contact the profile at all and so the error between the

overestimate and the profile may be rather larger than in the two
dimensional case. The original limacon cylindroid is sufficiently
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large to enclose the effects of ellipticity due to tilt and so
such effects are included in the process. The degree of effect
that is entailed cannot be specified: it depends upon the nature
of the peaks of the data.

The estimate of inscribing cylinder entails first placing
a clrcular cylindroid within the limacon cylindroid. This is
straightforward: by inspection the circular cylindroid having
radius equal to the limacon and the same axis will be its maximun
inscribing figure. The elliptical cylindroid must lie inside
this circular cross-seétion, however, and so its major semi-
diameter will be R . Thus the radius of the underestimate of the
inscribing cylinder will be RLcoson

The two cylinders defined for inscribing and circumscribing
cases have the same axis and so may be used to overestimate the
mininum zone. Their difference gives a sone of width well approxi-
mated (for E, <« R ) by H(i+cosx) + R (1-cosq) + B2, ~ where

i)

21 1s the cylindroid zone width

In specific cases it will be possible to establish tighter
limits on these fits but it 1s not possible to generalise them
fully, For example since the inmscribing elliptical cylindroid does
not touch the appropriate limacon cylindroid it could be expanded
until it does do so. The degree of expanslion will depend upon the
direction of tilt relative to the orientation of the limacon, both
unknowns in the general solution.

Unlike the case with the circle it cannot be guaranteed that
& cylinder can be fitted through the five defining points of the
limacon cylindroid (although with practical degrees of alignment
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error it is likely that it will be so), Also the failure to identify
fully the geometry of feasible contacts prevents the use of arguments
similar to those adopted in Chapter 7. Theoretical work on cylindri-
cal reference bounds seems dogged by areas of vagueness such as this
which prevent the making of rigorous statements even when common sense
suggests that things are so. In fact there is very little practical
evldence about the fitting of cylinders and almost all statements are
conjecture based on experience of two dimensional measurements. Per-
haps what is most needed at this stage is a detalled and extensive
Practical study of cylinder and cylindroid fitting which may lead at

least to an empirical aporoach to the whole subject.

12.3 Cylindricity Assessment in “ractice

The facilities which could be made available during the course of
the work reported here were not suitable for performing the exercise
suggested in the previous section. The difficulty lay in the fact that
3 roundness instrument with a straightness datum was not available on
iline to the computer system. Thus although it was possible to develop
and test programs for cylindricity measurement by measuring cross-
sections positioned manually on the Talyrond 73, the data so obtained
could not be considered as a sufficlently accurate representation of
the cylinder for the results to be included in a survey of real condi-
tions. What could be judged was the likely performance to be expected
of working systenms, »

A least squares limacon cylindroid system was developed very
easlly from the simplified measurement scheme described in section 11.2.
Equiangular samples in each of a series of equally spaced cross-sections

were used. The required calculations are then quite simple: only about
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30 lines of FORTRAN are needed to program the whole of the reference
calculation. The two main decisions needed of a System design con-
cern the amount of data to be stored and the method of presenting

the results. The volume of data which is readily collected from a
cylindrical surface can rapidly overwhelm a small computer systenm.

If only axial straigh£ness information is required the difficulty is
Temoved since only the centre of each cross-section's least squares
limacon need be stored plus, of course, the data from one profile
which is being processed at any one time. However cylindricity
Mmeasurement requires that all the data is retained so that it can be
compared to a common reference not known until the end of the measure-
ment sequence. Fortunately it seems that for the majority of work-
Pleces likely to be measured the dominating form errors will be slow
moving, usually only a few undulations per revolution in the cross-
section and maybe only an "S-bend” in the axis. In the field of pre-
cision engineering, the nature of conventional machine tools helps

to ensure occurence of such forms. Providing that it is accepted

that cylindricity is a measurement of major deviations of form (having,
for example, a relationship to roundness similar in some aspects to
that between straightness and surface texture) then a relatively coarse
sampling, with, consequently, a lesser number of data points being used,
can be contemplated. In the system described here a sampling rate of 64
per revolution was used, with a maximum of 8 planes being allowable,
The total qata storage is then the same as for one roundness profile
using 512 points. If information about short wavelengths of the sur-
face is also required it is often sufficient to measure each plane at

a high sampling rate and supply roundness measurements for them as

individual, independent readings while retaining only a fraction of the
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total points so collected for the overall cylinder analysis. This
would require, say, just an extra 512 data polnts to be stored.

If the information required from a cylindriclity measurement
is much more complicated than an overall zone wldth, a purely
numerical presentation of that information, while complete, 1s very
difficult to assimilate. To achieve a rapid impact a graphical
method 1s wanted. It seems that a direct extension of the polar
chart into three dimensions using, say, an isometric projection on
a visual display unit is not very useful: the distortions caused
by radius suppression and relative magnification make all but the
simplest shapes virtually unintelligible (34). This technique is
also very expensive in terms of computational effort. Perhaps the
best method of showing all the surface detall in one view is to
use a contour map of the opened out cylinder surface (18), for
example., Interpretation of a map requires some degree of care and
experience and it remains computationally expensive to produce
easily readable forms.

In the system developed here an attempt was made to present
graphical information in forms with which the operator could be
expected to be familiar: the two-dimensional roundness graph and
orthographic projections following normal mechanical design
drawing convention#. Axial straightness was shown in terms of front
and side elevations of the axis. Cylindricity was shown in terms of
plan views along the least-squares axis. Either a complete view
showing the envelope of the superimposed profiles correctly
aligned to the cylindroid axis or the views of allgned individual
cross-sections were shown. On the visual display unit the individual

sections can be displayed in sequence each holding for a short
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interval. Providing that the switch from one section to the next
is quite rapid this scan gives a good subjective indication of
the real nature of surface features. The differences of features
such as small holes and axial or helical scratches are readily
recognised, for example, Figure 12,2 illustrates the concepts of
this display. A schematic display of distinct radial varlation,
such as taper, was also included but proved less successful.
There was a tendency for the display to be confused with elther
axial information or with vertical cross~sections through the
cylinder depending on the display technique used.

An operating system based upon this program was built for
demonstration but was dispatched to exhibitlons and so could not
be fully evaluated (35). The calculation time was about 5 seconds
using floating point single precision arithmetic and a sine/cosine
look-up table. This compares well to the time taken to acquire
the data: because of the vertical shift between measurements two
spindle revolutions are needed for each plane, so 8 sections would
take about 160 seconds. Although this system has never been used
practically several special measurement systems based upon various
parts of it have been supplied commercially by Rank Taylor Hobson
Ltd.

A minimum circumscribing limacon cylindroid program based on
revised simplex has also been developed. The programming technique
1s basically similar to that described in chapter 9 for the two
dimensional analysis. Again up to 8 planes each of 64 equiangular
points were used, but unequal spacing of the planes was allowed.
Since the mechanism of revised simplex does not change the program

performance is very similar to that for the simple limacon. The
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program is slightly longer since extra effort 1s needed for the
fetching and carrying of the extra variables. For the same reason
it runs a little more slowly. However the operational time is
dominated by the calculation of the reference at each iteration
which depends mainly on the number of sine and cosine operations
and so on the number of data points. Thus 8 planes of 64 points
iterate almost as fast as a single plane of 512 points. The over-
all calculation time will be longer since with five parameters
more iterations will be required particularly when, as in the
present implementation, artificial variables are used. All the
same, calculation times of not much more than 15 seconds were

recorded which is considered to be quite acceptable.
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13 Conclusions

At its 1inception it was intended that the primary alm of
the work described here would be the development of methods for
measuring cylindricity using instrumentation which is commer-
clally avallable., Subject to the (expected) necessity of
using approximations in the reference figure this alm has been
fulfilled. However a consideration of the amount of this
report which 1s dedicated dlrectly to cylindricity indicates
that the development of algorithms for cylinder fitting by the
use of limacon cylindroids is a theoretically trivial extension
of the ground covered in the earlier chapters. It is believed
that the final, practically useful results obtained fron the
analysis are not, in one sense, the most important feature of
this work.. The underlying groundwork concerning the mechanics
and philosophy of both measurement and analysis makes these,
and other results in related filelds, relatively easy to produce.
As with many other successful techniques it seenms quite straight-
forward once it has been done!

The author anticipates that few would challenge the opinion
that the greatest single contributor to the field of roundness
measurement is R. E. Reason. So great is his influence that
the whole subject reflects his approach, It relies upon mecha-
nical instrumentation of very high quality with the measurements
and necessary analysis being performed in a pragmatic and highly
intuitive manner: the "kinematic” derivation of the polar distor-
tion on the chart is a classic example of this approach (ref. 19).
That it has been a successful method is bourne out by well over
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twenty years of onractical experience. The approach does, however,
have some drawbacks. Being essentially mechanical/intuitive, ap-
proximations in the analysis'become embedded within the derivatlon

s0 that it is not always clear whether an approximation has been

made at all. Beinzg also a pragmatic method, the explicit assumptions,
and any analysls built upon them are judged in terms of the perfor-
mance of instrumentation avallable when they were made. Consequently
the direct extension of the existing analysis to new forms of mea-
surement which might be needed cannot be regarded as a “safe" proce-
dure. While limits upon misalignment which will give adequately accu-
rate measurements are known and tested, there is no information enm-
bodied in the early theoretical work to indicate whether improvements
in instrumentation, or even a completely different approach to instru-
mentation, will be fully exploited by those limits. Currently these
doubts are reflected in many areas: the analysis of cylindricity and
the implications of modern developments in high range/resolution trans-
ducers and high accuracy co-ordinate measuring machines are just a
few examples,

This work has adopted a deliberate policy of re-analysing the
roundness measurement process in a mathematical manner in an attempt
to produce a consistent, general theory upon which to build. This has
led to the re-derivation of well-known relationships. No excuse is
made for this since it is a necessary part of the total exercise.
While it is hoped that the approach used here will supercede the
earlier methods as a theoretical tool it does not invalidate using
earlier results in context, (To draw a famous parallel: the work of
Einstein has not affected the results or the continued use of
Newtonian mechanies in "ordinary" situations but it offers a more
complete description of rather less mundane problenms. )
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The general approach to roundness measurement analysis (and
parallels may be drawn in other disciplines) pronosed here is
based upon the concept of the three frames of reference which
occur during the measurement process: component, instrument and
chart co-ordinates. The 'errors' and 'distortions' which afflict
the data and particularly the analysis of reference figures can be
assoclated with the transformations between these planes. Thus mis-
alignment assoclates with the transformation from component to
instrument co-ordinates and radips suppression with that from
instrument to chart co-ordinates. (These effects may be contrasted
with, for example, transducer inaccuracy which 1is associated
specifically with the instrument co-ordinate frame.) The key to
working consistently with these frames lies in producing a system
model which has a geometry essentially independent of the trans-
formations. The transformation between instrument and chart is a
linear operation on radial values and so a linear model is a
natural choice. Thus the linearised circle, the limacon, 1s
identified as a figure of particular significance. It is not just
a convenient approximation for avoiding unpleasant mathematlics.

All reference figure fitting involves optimisation and for
well controlled optimisation linear parameters are a desirable
feature. Given complete linearisation the well established methods
of linear least squares and linear programming can be invoked.
Under many measurement conditions the use of limacons or limacon
cylindroids which have the required linearity can be justifled
and standard solution techniques can be applied to them. The

development of specialised highly efficient methods, such as
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exchange algorithms, then follows as a loglcal step.

There is no point in restating here any detail of these
processes or of the iImportant questions concerning the relationship
of circles and limacons. Having a general framework within which
these have teen discussed, the decision on whether they are
useful 1is a pragmatic one. The evidence of this work shows that
limacon approximations are highly usable in practice. It shows,
also, under what conditions they become less useful and suggests
alternatives which may then be used.

The revolution in instrumentation over the last few years
has been due mainly to the availability of cheap digital compu-
tatlon. This work is well matched to this phenomenon since many
of the consequences of the analysis can only be exploited digitally.
To minimise the cost of computing with modern micro-processors
efficiency is required both in storage requirements and in operation
time so that the slowest suitable system can be used to provide the
answers within a reasonable period. The algorithms developed here
offer big improvements over previous methods both in this respect
and in terms of guarantee-able accuracy. Systems, based upon the
work described here, have already been supplied commercially in
which throughput time is critical and high accuracy is demanded,
conditions which the previously used algorithms could not possibly
have satisfied without the use of hardware floating point processors.

The cost savings in such cases are self-evident.
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Appendix 1

Minimum Zone Lines and Planes

The methods develoved in the main text for deriving boundary
references are not applicable only to the measurement of roundness
but to any process which can be expressed in a similar way. As a
further exampnle of the method the derivations of references for
another important area of surface metrology, straightness and flat-
ness, will be outlined here. This will give also another opportunity
to compare solutions in two and three dimensions.

Probably the most commonly applied measurements for straight-
ness and flatness work with respect to a reference defined in terms
of two parallel lines or planes which enclose the profile while
having the minimum vertical separation; that is minimum zone lines
and planes are wanted. As the reference figures are actually linear,
the use of linear programming methods is virtually automatic.

For the minimum enclosing lines there is no need to perform a
formal derivation for they belong to the well documented class of
minimax polynomials, that is curves having the smallest possible
maximum divergence from the data. The condition for this is that

relative to an nth

order polynomial, the data must have n+2 maxima
and minima all of equal‘magnitude. The solution is found by means

of the Stiefel Exchange Algorithm which proceeds by fitting the poly-
nomial according to this condition to n+2 points and then bringing
points further away than those points into the defining set while
malntaining that condition. In terms of the minimum zone straight

lines there will be three points, two contacting one line and one
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the other in an alternate sequence which are iterated by exchanges,
see figure Al1.1.

The minimum zone planes problem can be expressed:

) Minimise h

Subject to a’.xi + byi +¢c+h > Zy

ax, + byi + ¢-h € N

for all data points (xi, Yy zi)

| a, b and ¢ are sign unrestricted and "h>0. Based on the arguments
given in the main text the dual of this linear programme will be

used, Noting that h = 0 is valid only for the trivial condition
that all points are co-planar then it may be asserted that four points
will be represented in the basis which for the dual can be expressed

(see section 6.6 for the reasoning):

B =/3;x% ijj Skxk 51%

S;¥y Sy¥5 S Sin
s, S5 S 8
1 1 1 1

vwhere Si. etc. are variables taking values +1 or -1 according to
whethexr (xi' Yo zi) contacts the upper or lower of the minimum zone
Planes. Any optimal solution to the primal problem must demonstrate
dual feasibility. Here the primal objective function depends only
on the fourth parameter and so dual feasibility is guaranteed if all
terms in the final column of §'1 are positive. This in turn will

be true providing that:

5.5,8
55K°1 D S8 by
317651 B 3455k Dyg
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where:

L1}

b

=

»
[

B 51 5

1 01 1 ‘ etc.

all have the same sign.

Consider the determinant:

By, = x5 % x|[= 0
Vi Y ¥

1 1 1
This is the boundary between regilons in which Ajkl i1s positive
and those where it is negative. Geometrically the boundary is a
pPlane parallel to the z-axils (since it is independent of z) and
passing through points (xj, yj) and (xk. yk). The dual feasibility

condition requires that if S, = 8, (contacts with the same plane)

i
Ajkl and Ajki must have different signs and vice versa. So if
the ith and l’th contact are with the same plane they lie on oppo-

site sides of Ajk. = 0 %but if they contact different planes they
lie both to the same side of Ajk. = 0. A parallel argument shows
that the same is true for all pairs of points.

The relative positions of contacts which glve dual feasibility
are given by these relationships. There are two ways of satisfying
them as shown in the plan views of figure Al.2. There may be two
contacts with each of the minimum zone planes in which case the plan
of lines joining the alternate types must form a convex quadrilateral
Or a three:one split in which case the single contact must lie in
the plan of the triangle formed by the other three contacts.

It is readily demonstrated that there is a unique exchange for
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- any new point in order that these relationships be preserved and so
a workable exchange algorithm may be based upon these patterns,
While its use by hand is very easy, the number of decisions which
are involved ih‘making the exchange is quite high and the develop-
ment of a computer program to perform them is quite complex. For
example the decision to switch from 3:1 to 2:2 arrangements of
contacts is intuitively obvious but needs quite an effort to explain!
Even with this most simple of three dimensional zone fits the
advantage of using specific exchange algorithms rather than a
general revised simplex solution for automatic system is becoming

unclear.
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Appendix 2

A Brief Summary of Linear "rogramming Concepts

The purpose of this note is to provide in very compact form an
indication of how the theory of linear programming used in this work
fits together. It may be used either as a reminder for those knowing,
but not familiar with, the theory or as a gulde to the most relevént
sections of specialist textbooks on the subject. It covers only
major features: important subtletiesare not included. The notatlon
used here has been kept in a form similar to that used in many text-
books, it d&es not therefore correspond with the notation used in
the main body of this text.

Linear programming seeks solutlons to optimisation problems in
which the objective function and all constraints depend linearly on
the problem parameters, In vector/matrix notation such problems are:

Maximise z = QT

1%

Subject to A Xx €

o

where C and x are n-vectors, b an m-vector and A an nxm matrix of co-
efficients,

The first stage of solution is to switch to more easily handled
equality constraints by introducing m extra parameters representing
the amounts by which A X is less than b and called slack variables
(or sometimes surplus variables when having > type constraints).
This extension allows the problem to be stated as:

Maximise z = g?

1%

Subject to  Ax = b P AgT [ﬁ.:lm]

It is required that the parameters, x, be non-negative for the formal

178



solution of this programme. (There are special devices for allowing
sign indeterminant parameters.)

In a parameter space where each Xy is expressed along an othogo-
nal axis, the constraints form a set of hyperplanes which enclcse a
"feasible region" in which lie all combinations of the parameters
satisfying all the constraints. As a consequence of the problem
linearity this region will be convex and bounded by planes forming
vertices when sets of n hyperplanes intersect (in three dimensions
the region would be a polyhedron). Theorsms of linear programming
indicate that there will be one optimum value of the objective func-
tion and that it will coincide with a vertex of fhe feasible region.
At this vertex a subset of exactly n of the m constralnts will be
satisfled exactly which in terms of the extended x vector indicates
that the elements corresponding to the other constraints will be
zero. These elements are termed non-basic, The defining variables
constitute the basls, It 1s always possible to express both the
constraints and the objective function in canonical form, that is
as a constant plus the weighted sum of the non-basic variables by
re-ordering the columns of the matrix and the elements of the vectors.
As the non-basic variables are zero this is clearly a manipulative
device which gives the current values of eg. the objective function
and also indicates from the weighting co-efficients those non-basic
variables which could, by becoming positive, increase the objective
function.

The simplex solution to linear programming problems consists of
manipulating the constraints in canonical form such that a move from

vertex to vertex through the feasible reglon 1s performed in such a

way that the objective function increases at every iteration. The
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process consists of choosing from the canonical form of the cbjective
function the non-basic variable which has the largest positive co-
efficient, that is the variable which by changing value will most
~affect the valﬁe of the objective function. This variable will be
brought into the basis and consequently one of the basic variables
must be removed. As there must be a move to a new vertex, the new
variable must be made as large as possible. Thus it 1s possible to
identify the basic variable it replaces as being the one active in
the constraint for which the new point can take the smallest value
before making it infeasible. The process continues in this manner
until the canonical form of the objective function has no positive
co-efficients at which point the optimum is found., To start this
Process automatically it is necessary to have the parameter space
origin as a vertex., This then becomes the initial basic feasible
solution, all parameters are zero and all slack variables basic. If
the origin is not a feasible point and no other initial basic feasible
solution can be specifiec in advance a device involving extra vari-
ables called artificial variables is used to modify the problem so
that the new origin is included. The artificials are iterated out
preferentially and when all are removed, the problem sits at a basic
feasible solution of the original problem from which the normal
methods can proceed.

The usual manner of performing the calculations does not speci-
fically manipulate the canonical forms but uses the simplex tableau.

The tableau is an array of co-efficients of the form:

which is used because all the operations necessary to move from
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vertex to vertex through the simplex iterations are elementary row
operations on this tableau. The largest positive co-efficients of

C glves the variable which will enter the basis. The test for re-
placement is that the b' column of the updated tableau must remain
positive. The updating of the tableau is them easily performed since
the columns of the tableau corresponding to the basic variables con-
stitute an identity matrix embedded into the tableau. Thus once it
is known which row will contain the 1, the full update is done by
normalising this row and subtracting suitably weighted amounts of it
from the other rows to reduce the rest of the column to zeros.

It may be noted that the operation of the simplex tableau is
similarly mechanically to the standard method of inverting a matrix
by a series of elementary row operations. At aﬁy iteration of the
tableau the columns which originally constituted the identity matrix,
the original basic (usually being the slack variables), contains a
complete record of the combined effect of all the iterations to date
and so they form the inverse of the matrix made of the initial values
of the columns constituting the current basis. The inverse of the
current basis thus contains all the information necessary to recon-
struct the complete tableau. The method of Revised Simplex exploits
this particular feature. The information stored consists of the
original tableau and an updated version of the original basis. At
each iteration matrix multiplications using this inverse of the basis
and the original ¢ and b vectors allow the current C' and ' vectors
to be calculated. The appropriate row of the AE ma.trix'}_’_j corres-
ponding to the largest element of C¢' 1is updated to 23 by another
matrix multiplication and then using D'y and B the necessary elemen-

tary row operation for the current iteration found in the normal way.
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Since this operation is only performed on the inverse of the basis,

not the complete tableau less total work has to be done. The savings

are particularly evident in tableau having large numbers of columns

and relatively>féw rows since thé basis is a square matrix of dimen-

sion equal to the number of rows (that is to the number of constraints).
An important theorem of linear programming is that concerning

duality. The forms considered so far relate directly to the physical

nature of the problem being considered, and constitute the primal

linear program. The theorem states that for any primal:

Maximise z, = 9?5

D
Subject to A x < b

x >0
there exists a dual linear programme:

Minimise zg = ng
Subject to ATI > C

¥ 20

The dual has n constraints and m variables (yi to which no direct
physical meaning is attached). The optimum solution to both primal
and dual give tableaux which are re-arranged version of each other.
All information concerning the optimum may be obtained by solving
either primal or dual. The major advantage of this manipulation is
that if the original problem has many constraints and few variables,
1ts dual will have few constraints and many variables, The dual can
then be solved very efficlently by using revised simplex. The
reversal of roles of the b and (vectors between primal and dual
leads also to a series of correspondence conditions at iterations
prior to the optimum being achieved. Examples of their use are

glven in the main text.
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Appendix 3

Alternative Centre Definitions for Mean Circles

The following pages contain the text of a paper, written by the
author and presented at the TMEKO VIII Conference in lMoscow by ir.
V. S. Lukianov, "Dimensioning nominal circles: the resclution of
conflicting ideas.”. This is reference 30 of the main text.

Its relevance here is in the description of difficulties én—
countered 5y making different, sometimes inappropriate, assumptions
regarding the mathematical formulation of derivations for the centre

of mean circles to a set of data points,
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DIMENSIONING NOMINAL CIRCLES: THE RESOLUTION OF

CONFLICTING IDEAS

by

D G. CHETWYND

Metrology Research Group, Rank Taylor Hobson,

Leicester, Ehgland.

1. Introduction

The centre of the "least squares circle is a
common starting point for measuring circular
objects, which different schools of thought
calculate by different formulae: an unsatis-
factory situation. This paper investigates
the methods of both schools and shows them to
be approximations to the general solution,
The applicabilities of the simple forms are
compared., The relatlionship between least
squares centres and profile centrolds is also
briefly examined.

Keywords: Metrology, Least Squares Circle

Traditionally the methods and equipment of the dimensional and

surface metrologists ahve been almost totally distinct. In the case

of nominally circular components shape has been measured relative to

the rotation of the precision spindle of a roundness measuring inst-

rument. Generally only the variations between surface and datum are

recorded, the absolute size being lost (the instrument employs

"radius suporession"),

The dimensions have largely been measured by

diametral techniques such as calipers or with variations on ring or

184



plug gauges. In determining the distance between features, the cen-
tres have been defined mechanically, for example by locating tapered
pins into holes.

With modern methods, the distinction between the fields of me-
trology is becoming less clear. Co-ordinate measuring machines with
position sensitive electrical probes now have resolutions which,
while still much coarser than that of surface metrology instruments,
are capable of detecting the major shape errors of surfaces. Further
by their nature such machines must define circular features in terms
of the position of several points on the periphery of those features.
Thus both the dimensional and surface metrologist are faced with the
problem of defining from a set of data points lying on the circumfe-
rence of a nominal circle, but subject to errors bvoth of measurement
and of the surface, some form of "best-fit" circle to be used as a
basis for the measurement. A commonly used criterilon in both schools
is the least squares (minimum quadrature) circle. Usually simple
formulae for estimating the centre of this circle are quoted. The
radius is then defined as the mean distance of the data points from
this centre.

It 1is here that conflict arises for generally, given a set of
data points (xi, yi), the dimensional and surface metrologists res-

pectively regard the least squares centre to be at co-ordinates:

N
% yi) or (

(

=z

5 )
2y
1 i

=N

N
2 Xy
1 b

=2

>
Y
1 1

2

This difference could clearly be of some importance. It 1s examined
by briefly reviewing the derivation of both these forms, and then

discussing the general least squares circle problem.
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2. Least Squares Circle: Approximations

National Standards for surface metrology define the centre of
the least squarés circle as that point from which the sum of the
squares of the radial distances of a sufficient even number of
equally spaced radial ordinates is minimised (1). While this state-
ment 1s true, it is not strictly a definition of the least squares
method and it is easy to read into it more than is actually implied.

Consider the situation deplcted in Figure 1. It 1s desired to
find the circle, centred at (a, b) and radius R, which is the best
fit to a set of data points (xi, yi), or in polar co-ordinates (ri,
91), of which point P is an example. From the above definition it

would appear that the centre is that point for which

51

- N
N

is minimised,

differentials to zero.

M

((xy - a)% + (y; - ®)%)

For example:
N

The minimum is obtained by equating the partial

(1)

2.3 si2 = 3 - 2(xi -a) = 0 (2)
da i
giving
1 N g X
a = & E Xy and b = 5 % ¥y (3)

This is one of the derivations given by Farkas (2).

It has not

made specific use of the statement that the ordinates should be

equally spaced.,

The derivation given in the above Standard takes the following

form.

Q:

The »olar exvression for an eccentric circle,
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is approximated by

p = acos® + bsin® + R (5)

for a2 + b2 << R’; a condition almost always imposed by the nature

of roundness measuring instruments. This is the limacon approxima-
tion which has particular advantages in surface metrology, notably
its ability to compensate for radius-suppression (3). The least

squares solution now requires that

27T » 277 » .
I= /[ (r-9)%40 = f (r-acos0 -bsinO-R)“a0 (6)
o]

o]

i1s minimised. Again equating partial differentlals to zero gives,

for example:

g

2 .
g—i = / - (r-acosf -bsinO -R) cos® 48 = 0 (7)
)
& .
a = 7 rcosB d O (8)

Now given sufficient evenly spaced points, the integral 1s replaced

by a summation to give:

[}
=21
- M =

= 2 ,
a = 3 ricosei and b risinQi (9)

- M=

Here the equispaced data condition is used to justify the replace-
ment of integrals by summations but is still not used directly in

the derivation,

3. The Least Squares Circle

The data which is avallable for the calculation of the reference
circle is a series of discrete points. Thus a formal derivation

should use a sampled data scheme not a continuous one. By analyzing
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a problem in continuous form and then switching to a sampled forn,
the true nature of any assumptions made can be hidden. Formally
least squares seeks to minimise the sum of squares of the residuals,
that is the deviations of the data points from the solution figure,
of any set of data points. In the case of circle fitting it is first,
then, necessary to define what is meant by a residual.

Probably most metrologists and mathematlcians would agree that
the most logical form for the residuals is in terms of their radial

distance from the circle centre:
-R | (10)

using again the notation of Figure 1. This form is implied by the
definition given in Standards but is not quite that used in the
assoclated derivation, where residuals are measured radially from the
origin,

Using equation (10), the required minimisation will be of

o= 3 [((gy-a)? + (3,-0)9)3]2 (11)

= M2

where the positive square root will always be taken since it is a
scalar length. ‘This problem is non~linear in 1ts parameters a, b
and R and so is unlikely to be directly solvable. It may well exhi-
bit multiple local minima., The solution will require that all the

partial differentials are zero simultaneously giving:

N
255 (x-a? 4 (r-0)DEr = 0

3 N R(xi-a)

==t 2 - - t = 0 12
oa’ 2 (x4-a) ((xi_a)z N (yi-b)2)3 (12)

—=3: 2 (y,-b) - T -
BT Y T e+ (00
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The first of these indicates that the best fit radius will be the
mean distance of the data points from the defined centre. The other
two equations show the necessary condition for the 1/N solution:
N N

R> cosEi = R2 sin9i = 0 (13)

1 1
For this to be true, the data poilnts must occur in diametral pairs
with respect to the circle centre. The method thus suffers the
theoretical objection that the data must be aligned to an initially
unknown peint and so an adequate experimental scheme cannot be pro-
duced.

Since only the linear least squares problem gives a general
solution, the expression for the residuals must be linearised. This
may be done by taking the first order terms of the Taylor series ex-~
pansion of equation (10) about a point (x_, y,) close to the solution
(a, b). (Since equation (10) is linear initially in R this does not
enter the problem.) The expansion gives:

a(x-x,) + v(y-y,)
((x=x )% (y-y,)?)?

£, = ((xx )P (y=r,)2)F - ® (14)

If (x,, yo) may be taken as the co-ordinate system origin, this
reduces directly to the limacon approximation form. This will be
used in the discussion here. The residuals for the set of data poits

polnts may be expressed by the matrix equation,

co:s@i s:!’.na1 % a T:I !-7‘1
] : ! b = ! - ‘0
cos Oy sin ON 1 R Ty Ey
H . a=1x - & (15)

The theory of least squares then gives as the solution:
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3= @) te o (16)

HT being the transpose of matrix H. So that the general solution

to the least squares limacon can be stated as:

200525 Ssinb cos® TeosB| /a Sr cosd
$sinDcos6 Zsinze $sinb|| b |=| Zr sin® (17)
2 cos© ¥sin® N R 2r

where the limits and indices have been omitted for clarity, all

being over i=1,N. There is strong motivation to attempt to select
the measurement scheme, the values of 81. such that HTH is made dla-
gonal. Not only does this make the solution very simple but also it
makes the varameter estimates independent and helps to restrict esti-
mation errors. This can be arransed by selecting a four-fold symme~
try of points, such that for each 6& there are also points taken at
91+n' and EE:TT/Z. Then the solution of equation (17) reduces to
that given in Standards, equation (9). 3uch a scheme 1s quite prac-
tical since the angular position of the points are defined with re-
spect to the origin, a point known before measurement. Note, however,
that it is not sufficient to have any reasonably large even number

of equispaced points as implied in Standards: the number must be a
multiple of four. The general solution, equation (17), will naturally
cope with any distribution of data points., It can thus deal with
sectlons having holes in them and with the partial arc problems

which have previously used special methods, again based on a conti-
nuous (integral) analysis (4). On such problems the off-diagonal
terms will have an effect, in some cases exceeding in magnitude the
dlagonal terms. The strong interdependence of the parameter estimates
can then cause large errors. The small difference in calculated
values of the matrix co-efficients found by assuming integral forms

may compound such errors and the continuum approach will break down.

190



The assumptions required to generate 1/N and 2/N types of solu-
tion can only both be satisfied when the centre of the circle lies
at the origin.( Then since both xi and yi must sum to zero for either
approximation to be valid at that point, both give the correct result
and there is no conflict. However, the fact alone that these sums
are zero does not guarantee that the centre lies at the origin:

there may be off-dlagonal terms interacting with the radius estimate.

4, Centroid Methods

If a closed, non-circular vrofile is to be measured, a proposal
(5) for defining a central reference voint is to use the centroid of
that profile, assuming it to be a uniform lamina. Other assumptions
about the profile are also possible in this context. In effect, one
quoted method of deriving the 1/N type centre solutions discussed here
assumes the date points 4o be the posrtionc of point masses . A third possibility
here is to consider the profile to be a uniform wire. Assume that N
radial measurements are equally spaced at angles 81 about an origin.
Providing N is reasonably large, the length of a sector assoclated
with the ith point (see Figure 2) will be '

= 2
.11 = ri C R (18)

and its assoclated x-moment:

= 1
M 4 Ty ©os 81 | (19)

so that the x-co-ordinate of the centroid is
N 2 N
a = (2 r;%0s?,)/(Zr,) (20)
1 i 1 i

the y-co-ordinate being similar but involving sin® 4+ Although this

expression does not relate directly with the least squares solutlons,
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it is comparable. If the data points lie nearly on a circle and can

be expressed as a mean value with small variations, 5i' from it and

if, also, cosfai and sin€9i are arranged to sum to zero then equation
(20) can Ye reduced to: |

2 M
a ~ §§61c059i (21)
Thus there 1s some link between the centroid of the profile

treated as a line and the least squares limacon. The assocliatlion of
the least squares approximations discussed here with different cen-

troid methods is evidence of their different physical implications,

5. Concluding Remarks

The apparent conflict between different schools of metrology over
the definition of the least squares circle centre is illusory. Both
versions of standard formulae are approximations, their relative
validity depending upon the actual positioning of the data points.
The difficulties have arisen through lack of appreciation of these
approximations, Some of the causes of this are informative: the
general acceptance of a rather loose definition for what should be
a precise concept and the masking of implicit assumptions by using
continuous, integral analysis for essentlally sampled systems.

The limacon approximation gives good centre estimates providing
a reasonably accurate estimate of the centre is available (3). Its
Particular advantages when using a roundness instrument are such
that its position is firmly established. Given also the normal
Practice and limitations of such instruments, the use of the 2/N-tyve

formulae will often be safe. With, for instance, data from a co-
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ordinate measuring machine it is much less clear what approximations
may be used. Troviding that the points are spread falrly regularly
around the circumference of the section the best accuracy will pro-
bably be obtained by using the general form of the least squares
limacon, an initial estimate of the centre being obtained by, say,
the 1/N type approximation.

The profile centroid could also be used as an operational
centre. From the discussion of the least squares problem it appears
that treating the data as point sources is an oversimplification,
but whether the vrofile is best regarded as a line oxr lamina is an
open question, perhaps depending on the application. Indeed the
question of "correctness" may be irrelevant: the important principles

are that a method has good mathematical stability and 1s applied in

a consistent manner by all users.
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Appendix 4

Construction Aids for Limacon Roundness References

The following pages contain the main text of a note having
the above title written initially as Rank Taylor Hobson Technical

Note T60, September 1975 by the present author.

It describes the concept of the design of "limacon compasses”,
that is a mechanical device for drawing limacons and discusses the

practicality of fitting limacons by template methods.

A third possiblity, not discussed, would be the use of an
optical system by which a polar chart and the picture of a limacon
on a cathode ray tube are superimposed. The construction of such
a device is certainly possible without particular difficulty but

would inevitably be quite expensive.
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Construction Aids for Limacon Roundness References

Introduction

It is now widely established in theory and appreciated in
practice that the use of circular reference lines for measuring
out~of-roundness is inaccurate if the component is set eccentri-
cally with respect to the measuring instrument axis. The shape
of an eccentric component becomes distorted in the instrument out-
put due to the radius suppression which is introduced. This dis-
torted shape has been shown to be well approximated for practical
situations by the limacon, which has the form

r(6) = R+ ecosB
where R is the component radius and e the relative eccentricity
of component and instrument, As well as being a better approxi-
mation to the distorted shape than an offset circle, the limacon
has the advantage of being easier to compute either by analogue
or digital hardware. A disadvantage of the limacon and the reason
that it has not been more widely adopted is that it is not easily
estimated by hand from a profile graph. It is easily possible to
produce reasonable looking fits for circular references (best fit
or zonal) on graphs by uslng a template of concentric circles onto
the graph with a pair of compasses. It is felt that the use of the
limacon will not become a standard method (with circles used, for
convenlence, as an approximation for rapid hand checking of graphs)
unless a potentially usable, although not necessarily convenlent,

"hand' method is avallable. The most important aid to 'hand’

assessment would be a pair of compasses which draw limacons instead
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of circles since this could be used both to draw in the lines and
to perform the search for best fit. A further aid to finding the

fit would be a set of limacon templates for differing eccentricitles,

or, even bettef, an adjustable template.

Limacon Compasses

It is possible to construct an instrument, similar.-to a palr
of compasses, which will describe a limacon figure. For a parti-
cular, given shape the easlest device to use would be a form of cam-
follower attached to a radius arm which will superimpose a radial
variation from the set value as the device is rotated. The device
required here, however, should be easily and continuously variable
In terms of eccentricity and the resultant deviations from circu-
larity. Thus replaceable cams are not an attractive proposition.
Instead a geometrical construction may be used. The diagram of
figure 1 shows the construction of point P on the periphery of the
limacon centred at 0 with eccentricity e such that the apparent
éircular centre i1s at 0'. The total length from O to P will then
be R + ecos providing that the line YY is perpendicular to OP.
The limacon compasses can be built directly in the form indicated by
figure 1, the main features being indicated schematically by figure
2. The device consists of a fixed length radius arm on the end of
which is the pencil P, The other end of this arm 1s attached to a
cross-member and also to a telescopic arm which holds the pivot point,
0.A slot in the cross-member is at right angles to the radius arm
and engages a fixed pin 0', The distance 00' defines the eccentri-

city of the limacon. As the radius arm 1is rotated about 0, the
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r(B) = R+ e cos®

FIGURE A4.1: Geometry of Limacon Compasses

fixed radius section
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pivots at O Pin at O'

Slotted cross member mating
with fixed ‘'eccentricity

l l Y pin', O

FIGURE A4.2: Schematic form of Limacon Compasses



fixed positions of O and 0' together with the rigid right angle
between YY and OP will cause the length of the telescopic section
to vary as ecosE and so the pencil will draw a limacon figure. The
sketches of fiéure 3 indicate practical way of obtaining the nece-
ssary movements. The feasibility of such a system has been demon-
strated by the construction of a working cardboard model. For use
on Talyrond graphs it is useful to have a base with a central splgot
which can be used to locate the pivot of the compasses onto the

chart centre.

Templates

It seems unlikely that an adjustable template, that is one which
shows a set.of concentric limacons which have a settable eccentricity,
could be produced in a practical way. The most obvious approach
would be to use the constant diameter property of the figure. A set
of equal diametral wires, which all are constralned to pass through
the mid point of a fixed equal wire could be constructed such that as
the ray at right angles to the fixed wire is moved, the other rays
move lesser amounts according to the limacon shape. If sufficlent
rays were used an elastic web attached to them would conform closely
to the desired limacons. The mechanism needed to move the rays would
be the right angled slides used in the compasses (section 2) and the
whole would quickly become bulky. In any case if very many rays
are used, the transparency of the template will be curtailed.

Another possible mechanism would be to link the rays by a circum-
ferential web of stiff elastic material (a spring!). If now the

movable ray is adjusted, the constraints of minimum bending energy
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will tend to pull the other rays into a suitable shape. (Whether
this shape is exactly a limacon has not been proved.) This system
would probably need less rays and so be more transparent. Its
difficulty lies in the variation of the circumference of the lima-
con with 1t's eccentricity - some method of tensioning the web will
need to be devised.

A set of templates each consisting of limacons at one eccentri-
city could very easily be produced. The whole range of eccentrici-
ties which can occur on a Talyrond graph could probably be covered
adequately by a relatively small number of templates, say 5-10., It
would be necessary to ensure that all templates weré located to the
proper centre so that a base plate with a splgot for mounting both
the graph and the templates would be needed. This system is likely
to be not too tedlous to operate and should give a better approxima-

tion to the true reference than a circular template.
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Appendix 3.

Selected Extracts from Programs

Included here are extracts from the listings of some of the
nrograns develdped for this work (see chapter 9). An attempt has
been made to preserve just the essential working heart of these pro-
grams so that the extracts indicate just the work involved in fitting
the reference and not that concerned with acquiring data and displaying
results, The listings are in FORTRAN IV but are only slightly
annotated and it is not envisaged that they be studied unless
specific need arises. They are included mainly for completeness.

No flow-charts are given.

Certain conventions occur in all the extracts. The profile data
(ri) are iﬂ an array Y(I). Sine and cosine lock-up tables having
suitably indexed intervals are used, values being held in arrays S(I)
and C(I) or SI(I) and CO(I). Variable SF is a scaling factor
converting the original units of the data to um and TP 1s the cons-
tant 277, Generally variables A, B, R are the limacon or circle
parameters as used in this text. However exceptions occur in those
Programs using matrix manipulations, DIS2 and DEVS, where arrays
A(3) and PI(3) respectively contain the parameters. In those pro-
grams B( ) is an array having other manipulative use. The number
of data points in a full revolution (usually 512) is represented by
N and in cases where there may be less than a full revolution of

data to process, the actual number of points is in NOG.
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PROGRAM DENT

Least squares limacon by traditional formulae

TSRSTEBYYCNOGISSTINDG)
:ﬁSRP‘
FPUTFRTI=2, HOG- 15
_BB35.._ .. _ . SR=SR+Y(I1) __._._
"BB36. 0 T- T GRC=SRCHYC T INCACT )|
. SRS=ZRSHY{L)IS g1>
SPBOCONTINUE - ¢ i
+-CASSILHOG)

"IF(HZ BT.NIN2= N2 N

JCr=\1 *CO\HZ))/4

— a—c4/tH2 -
ST ECHRCSATH2 =67
D=C5/THR....

=AxFE-Cx{. S

SN2E2AN0G =1 .

. .-CBETH2/2=SICN2I2d .

‘?(?(1)+((NGG)*CP(NGG))”N"

,,,,,

X8=(9*\§Rr b*SP)+C*(bPS D*SP))/E*TP

BBSZ. o TB=CEAC SRS ~D#SRILC*( SRC- BHSRIILE#TP .

31-38 1Integration by trapezium rule

200

BES4 T RS(SRHTP-XB¥C4<YB*C5)/TH2



PROGRAM DLS2

Least squares limacon by formal evaluation

8833 _C...SET UP REJECTED BITS

8334 FT YA IN=1E<28

aa3s . .JQITELL.EaB)W L -

gaze ZRAATO"REJECT: _")

Bazc. - PEan,bk113h¢. . B —
3R CIFCISTLETBIOR.IF.GT. 512)6010 363

DO 365 _1=1S.IF ..
YL UISYIIN 50

e G0 10335 o
BB4ZCEGENERAL TEVSTSOLUTION ¢
_ﬁa4,ﬁfn_gba DD 9~Lf1.irm, e
R 44-ToT . B Ey=R

CHHCLL L) = HH(L,1>+1.,“AHWV
SHHC $r 2 3SHHCE, 22 +00C 1) - & i
— HHC1.32=HHCL.32+SICID> . .
HHL2,2)=HHC 2,2 )X+00( 1 *C0C ) SR
CHHC2,3)=HHC2, 30000 I)4SITY
HHC 3, 3)=HHCR, 3 3+SI( 151 1) R
7§Bflz—8s1)+Y"),,.,m e R
R 2=+ I rRC0T Y T ‘ A

: .. .- BO3)=BCIIIVCLINSICL) o
BESE- TSR CONT INUE S : B
BBSS _______ HHC2, 1)=HHLL.2) -
SERsBTT o HHCZ AEY=HA (53 30 <
BR6L .. LHHCZ, 2)=HHC243). . . _

‘BBz C CALE-UETRCHH, U, 3, 37 1ER )
.BB63. IFCIER._ME._BIGOTO . 1.

93,34:1::__——;_;—'-1* CALETSEERLY, B, H—.s.-o)' ’

33-41 Interactive loop to remove profile sections from
evaluation

62-64 ULIR and SLEQ subroutines give Choleski solution
to HH.A = B for A
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PROGRAM DIMA

Minimum zone limacons by exchange algorithm

€C--FIRST ESTIMSTE USE QULADRANT EQINTS: TR
K=8 _ - ;
CEADC D=L
_1ape2)=129
iap¢3y=257 - =
. _IADL4 =385 i . —
- CR={YCLI-YL 257 »/2.8 N : SUAT DR T T
L B=(Y¥{129)-Y{385)0/2.8 ____ U
R CYCLI Y CI2 90 Y (257 )4 YE385)074. 8 SRR T L TS
O H=(Y(1)+¥(257)-Y¢ 129 )~ vc,ss>>*4;ﬂiﬁw_ e
L ZADTIIZZADCL ) : CEET SRR e T T
ZADC2)=-ZAD{ 1) I ——— -

CZADG4I=ZADL2Y T
K=K+l . o
ZCS FIND LARGEST NON-ENCLOSED POINT
J=8 ,

L DAAX= A8 St HINES
218 I=Y.N_ . e
. QUJ,Vx‘\—ap*a*cr1>+=*5uz>>>
944* 50_19. 18,

)t'.’_l ,._‘3 ‘\ . I
(R-rHs g,_i}.g.g..kc(‘;))_»— T TR

1 IADCAI=IAD(Z Fo =
- -jaD(a) LTS —— P . s -
IS % S e R - e
13 IADCI )=y .
C  FIND HEW REFERENCE
o BRCCY T LI - VOIE IS IZ -8 14 -0 ¥ I23-¥ (1420w {S{113-80T13) )/
‘ $  (CCCI15-CXIZIIHCSII2)-8¢14)~{CiI125-0¢14))+(S{I1I~5{I3))2"
IFCABS(SCTI)-SCIZ)) LT . ABS(S{I12)~S(142))00 TD 14
E=((YCilyr=-¥¢ 33)4'-}'%’*\ COTLr=CoIZuyd/i8iyLa~-g0is
GO TO 15
14 B=C{vYCI22~-¥{Id ) 1=A%( 0 [20-CCI42) 3708012 -8CTdd)
15 R=(r(Ii»*YC¢i2s-pns \Cxll:+Fg12)>~8$(8<11)+5(I2)>752-5
A=YC i1 o0-{R+A*0CI13+B&3¢1 1)

no 14a

&
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PROGRAM DIPL

Ring or plug limacon by exchange algorithm

gg26: C - FIRST ESTIMATE: NAX DIANETER

gEev g=1

~882% S ¥=Y

829 D

B8535 T=Y

_BB31 IF ¢

ggsz ¢ ¥=

BE33 o od=1

"g834 - -18 CON

88335 - ?'

2115 = ¥

Bt ¥= - B

- o o e
I e e
LL vIgL{a,s.R,HBAX)
(AKX, EQ.B)E0_T0 6

PGIHT CONTACT ORDER J,J+NZ,HAKX .

iige,
15

G2 b POIED BT SR ee ) N ‘n'uq m o u nn || || [ T VREE e A IO o= T TR Y

=Ha% -
LATE" QEF‘QEH"E Il In:Iu ’ RS
12=8{11)~ S’I’l“mﬂ"“mw e e e
22=8{F2¥-8{ 123750 - : s ‘ .
12=CCI112-0CI2) . LCI"’&\U £22%512)
£32=0C132)-CCTI2x% -
A=LCYEI1-YCI22%532- (Y(I’) Y(IZ))*SIZ’ﬁj
FCABSESE2 ). LTY QSS(S32))GO TU 35 .
iG0 e i e ; :
B={YCI3)-Y(I12)- R*C’Z)/°32 .
=S Q*C(I!) -R&S{ I .
=K+1
28 N2 is 180°
41 No violation of reference by data: end of iterations

43-53 Not diametral contact, sort out angles It, I2, I3 of
three contact points
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PROGRAYM DIPL continued

BBE6 e CALL VIBLCARBRAMAR Y oo e
HEeT CEo o0 IF(MAX.E@.BXGO-TEE T LT

8888 .. C..PLACE MAX. IN REFERENCE.USING PRI CRITEPIOH
@59 - . - IFCHAX.GT.I1)G0 T0 28 ~ =
Egrczz MAR LT.H2)G60 T0.2L oo

5 ; T R
8874 . .ﬂ,““.cu roazu_ B e e
GEvs - IFCAAK-GT. zv>so To~22"*-=
IFCI3-MAX.GT.H2IGEG T0O L
o=l g T T ST
b GU T 0 ‘2 ‘3 oo N - N . _,:T‘;‘f -
IFL{MAaX.67.I3260 TO 24 TR

5]
-

IFCHAK-11 LT .H2)G0 70 23
50 70295 ’
IFCHBA-12 . LT .H2)GG TO 25
it=12
! 12=13

§335% 25 13=#a%

ge2s 26 Gg 70 13

agary S END OF ITERATIGHS

69-86 Exchange contacts, maintaining order, according to
180~ rule .

g1 HSEDUTINE YIGLEG.B.F.HRE? =
& GRHOH YO5123.5(64E8 N
& IHEHSION C{81Z3

&1 _ENUIYALEHDE {(C.5¢1i2%52 - .

"R i TH=51Z

81 MaR=8 . .
“H1 Y=g, -
81 IR T8 < I S - R
81 3 38 ISbeH e : "
821 -T=Y£5)-(Qﬂu\1)+r=Q\I)+?)

‘g IF(T.LE.¥>X50 TO33

;__FL} -¥=T.. o e -

‘g1 THAR=T -

81 ~DOHT IHUE .

"Bt TTRETURHN -

140 VIOL finds in MAX address of largest violation of
limacon (A,B,R) by data. O means no violation.
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PROGRAM DEV S

Ring limacon by direct use of revised simplex on dual linear
programme

.8831 .G . REVISED SIHPLEX: SET UP INITIAL COHOITIONS

‘g@32 o SE ARTETRUES T . =

Aa33 . ... Y(913y=8. .
- LT DD 2 B ..'_I.» 1 B 3 Fe -

Py ','. ".'.’ Bo { I‘ 2 _B ST UL T T :

‘9836- . CBCIY=R. e

Tanza“u, TNLCng_SLWYTW

S = fFDO"25wJ‘:~3 :

BPCI LT : -
e :.‘0 UH L.. B . = e -
PI=A,B:R N

: 49(1,1)«c§3{> BC2; iJ*cs<2> B0, 1)%CB(3 Y -
11un PIVOL COL.._MAX C’CJ).FOR.CCJINE.

U TH=-BRE Fown

=-00..18.. 1= -
= IFCARTIGO TO 227 -
BAS3 - ez T= YCI)+LC(I)*Q+B(I)*D P) e .
T ep re st ;' , o LT
(BA55 22 TECOIMHCL #AIESCIIHCLL 4D IHL 4R -
“gpse - CT 217 IFCT.LE.TM)IEO0 TO 14 E

_._KUUNT KOUNT*‘L_., e

CALCULATE: CURRENT-VALUES PJ OF CHOSEN COLUMNNZ
AND FIND ROY K FOR MIN. THETA VALUE__ . R

_‘.__._ TH=¢ 53&_ -":"’".‘.' N e R
K=8

.. D011 _1=1,3 . e e e
'P;<x>=a<r,1>*r<a>+a<x 23#8CJ2+BC1; 3 R
. IFCPJCL) . LE.B. >cu rc 1S S , H
1= BP’I)/PJ(I) ' TR
. "wrm>camro_ R

.EQ.THJGD TO 31 '

HUE .
I3.BR TR 22
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PROGRAM DEVS continued

et Wi o T |

P
R

(ML I = § By IR ]
*y

o
»

SN

ot B e

I N
R
\-’ .

L S S et
mmwc:m:um:mr)m"uan-

b R 00 B & ALY

B¢ 1~L> Bt-I—;;L)
3 CONTINDES -
'.Tgl'a ?a T — T l-‘g rn 1 .L SN

3891 ToSRPTIMALITY FOUND -
889238 _IFCAOLARTISE 106

P33 u.‘..__Itf..],_,L S
TBLI 2=YCIECT )
—ﬁu:amWﬁ————»uﬂ T0.15—

.‘

)

TEE97 e —INFEASIBILITY ! -
8892 32 WRITECI+I-18) . N — -
“BE 99 T1d FORAATC "ERROR CONDITIOH® >

= T IS T .fuba TO"—i I TL LTI e _.:"“':T"'“..’"”,:.._.?.',f". o
“At@t CSTHPLEX TIE BREAK FOR. THETA

SIFCK L ER. B260 . TO32. -
Dl 3T KK=I.H I =
~tI—\B»Jvl)*C\KKJfB\1;2;‘vukK)+B(I»+))/PJLLL—Z,M~~r

:“T&—(BKK;I)*CKKK)+B\K;a)*S\&K)*EKF)J) COE KT

*g1ds
gige e IFCTIER.TK260--TO- 33 -
“gigr ’IrtTT BTTKIGO TO 11 :

_,_,.“_..ca L

Program is basic revised simplex. Note identification of
variables and arrays.

ART - (logical) true when infeasible so using Wagner w
B - inverse of basis
BP - R.H.S. vector of tableau

CB

basic elements of objective function

D

y-component of eccentricity
PI - simplex multipliers

Also I(1),(2),(3) equivalent to A,D,R
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PROGRAM DRC?2

Interactive ring circle fitting

Only interactive section is given, it is proceeded by finding
the ring limacon by exchange algorithm

,u £ _ _"CIRCLE* CALCULATIONS
59 i WRITECHL 118D

_Ej_ﬂf."_‘ 116 FORMATC" RADIUS (MH)Y ")
‘BAYY <3 READC 1, #)RE. :

2188 .. RO=RB*ID3/SF o
3N CEGA CONTINUE : S i
gimz 0 L Ti=TPRCIL=1) e e e
@13 - S T2=TPRGIZ-1) P !
a1a4 X3=TPACIZ=1) e e |
Bras SCALL CIPCYCIIIFYelay, YCI3FT15T25 T3 RO A;B,R> = i
2186 . o T1=RBER__.__ . _ R e e 1
gyp7 v EEE L G= sanna*ma*s)/n
B1ES

Eg?ggwé;3 = oL L mmiEe a e B 3 : 1
A118 L _MAK=" __ __. e e e

111 DD 4BSTEIGN e
A112 _ T=YC =A% CL)- S*S(LLR*-(R*S(I,)_B*‘C_(I))**2/T1/2._._____,:,-

iz IR CPTGESTIGO TOT42- - i
:8—_1':1 4"":‘: P T : ™ TSI
P e "Hﬂ'f’l"”‘"““ ST e
Bi16- 42 CONTINUE .. - S

iy - '."Z...._—_.....— IF( V GF' r)v=T -_-,‘. mm T . .‘.:._.I,V N '"".",'."_"';" _;‘z' SN o :
S § X §-1-T' T2 BT 5 DA |- E S S
S D R I S o o O S o e I SWRITEC6314B)1,T LT T

8120 o140 FURNATCE 08:%.14, 0 ¥=",F8 2>_,___._.__::_,,_ , e
%'rcpmnrf " CIRCLE. DATA -2ND. ORDER- GAMMA=",F8.6) -
URITECE,E125T1, T25T3,P, ¥ SRR R

8133 112 FORMAT(" A=",F8.3,* UM B=",F8.3," un R=" aFS 3; UM“/

- 5 B P g MA¥=PEAK =",F8-.5," UH-—~MIN-VALLEY =",F8.4,% UN"7)
“F{32- CEINTERACTIVESCIRCLE FIT -
BE ——Tl RA+R s i b e e LT TS TEmIIIETT
“CALL COPSCIL,A,B,T1) ST LEEETE
-CALL "EU‘PS"‘IZ"Q ~BT1) . e oTIIULTITL CTTEITIRT T NINEITITO UM ) CTLoTIIET T T
'CALL TOPSCIZ,AVB,TL) Ce T
B137 _--_..mrzzrata.-14s>nax..,.:~, e
-F133 T4F-FORHATC® HAXK . POTINT AT,
: e - PFCIBBWA99..GE . BIGOTO 1
FI4F SR HRITECH I By L AR
B4l . 168 . FORHAT(N_HEW ccﬂtacrs”) e e
142 T RFﬁp(l )11 G - S :
143 0 . IFCILLLE.BIGY .TO 1. e e
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PROGRAM DR(C2 continued

E14 SALL COPSCIL,A,B.TLD 5 ' =
Ei4% READ( L, %12 . -
TH1as TALL COPSCI2,A,B.TID ”
L3147 READ{1, %013 ,
f A ChLL COPS{IZ.A,B.T1) :
Hrdv LLETH 8B e —
i ¢ DOHTIHUE ; =
i3 EHD o oo e
613 - SUBRDUTIHE TOPS{I.A.8
-B IHAON-Y{512.),5(848)
‘8 - IR C¢a12) -
-8 - LEHCECS.S(129))=
- g ~ez>+3*5:z&#saa?'

nl"'-nﬁ_* Ll) . S

C AP aRFASERY
4D=2 *ASKR.
SYQS2THE-YP

zaéix TOP
';-»Uﬂtdﬂ—l Lm_} I 4}—

Au;{”kIA)Q;;._n_Tw

99 RO absolute radius - double precision

108-121 find peak & valley relative to specified circle.
Peak is zero if no violation

152 COPS gives index of other end of circle diameter

Bisd  SHBROUTINE C3PCY!.Y2,Y3,T1,T2,T3,RB,/A,B/RD
:_;3‘5 )"UBLE PR:CISLO" Q :D)RI-;_RZ}R3;.1R+—TB~ [
Higs - R3=RE+73 Lo DTl R
.8187. . R2 RAFYZ. - o e e e
B139 - ORL=RBHYL T T ST '
8189 . ._._ D=CDSIH{(DBLE(I2- TL))/R’+DSIH&DBLE(T1 TE))XRZ__N
‘Fia@ - 1 - +DSINCDBLE(T3-T2))/Ri)*2DH L R
Bi19t . __.. TAa=C((RL*DSINC(DBLE(T2))- PZ*DSIH(DBLE\Tl/))XP o
Bio2 B | +(RI*DSINCDBLE(TI)-RI4DSINC(DBLE(T3)))/R2 :
B193 . .2  +(R2#DSIH{DBLE(T3))- -R3I#DSIH{DBLECT2))3/R1I/D
D34 e TPa-((RIEDCOSCDELECT2))-R2%LCOSCDBLECTI ) I}ARS
gi3% 1 +{RIXDCIZ{OBLELTLI I~ ~R1%DCOS¢DBLELTZI3)/R2
8136 2 +(R24DCOS(DBLELTIY)-RI*DCASCOBLE(T2ID )/ R1/D
ggar RI=R1-TA*DCOSCDBLECT1))-TE*DSINC(DBLECTI )
.a19s R2=TA*DSINCDBLE(T1))~-TE*DCNS(DBLECTL??
‘@199 R1=RIADSARTC IDB+RASRIHR2/RID
pzog a=Th
H2H1 n=78
1282 R=rl-Bd
‘gzaz RETUERH .

184 C3P calculates circle through three points, specified

in terms of R, 5Ri, B, to maintain precision
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