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A b stra c t

We generalize the category O of Bernstein, Gelfand and Gelfand to the 
so called fat category 0 ,  0^n\  and derive some of its properties.

From a Lie theoretic point of view, O ^  contains a significant amount of 
indecomposable representations that do not belong to O (although it fails to 
add new simple ones) such as the fat Verma modules. These modules have 
simple top and socle and may be viewed as standard objects once a block 
decomposition of is obtained and each block is seen to be equivalent to 
a category of finite dimensional modules over a finite dimensional standardly 
stratified algebra.

We describe the Ringel dual of these algebras (concluding that principal 
blocks are self dual) and we obtain the character formulae for their tilting 
modules. Furthermore, a double centralizer property is proved, relating each 
block with the corresponding fat algebra of coinvariants. As a byproduct we 
obtain a classification of all blocks of O ^  in terms of their representation 
type.

In the process of determining the quiver and relations which characterize 
the basic algebras associated to each block of we prove (for root sys­
tems of small rank) a formula establishing the dimension of the E x t1 spaces 
between simple modules. By borrowing from Soergel some results describ­
ing the behaviour of the combinatorial functor V, we are able to compute 
examples.



Chapter 1 

Introduction

1.1 M otivation

For any finite dimensional complex semisimple Lie algebra Q, the Verma 

modules A (A) constitute a well known class of well behaved representations 

of Q. They are indecomposable, cyclic and A(A)/itW(A(A)) is simple thus 

providing a vast family of simple representations of Q - a major quest in Lie 

theory. Chapter 7 of Dixmier’s book Universal enveloping algebras provides a 

comprehensive treatment of these Verma modules including a detailed proof 

of the BGG theorem (see [16], Proposition 7.6.23) due to Bernstein, Gelfand 

and Gelfand.

In our work we define the so called ”fat” Verma modules, A^n (̂A) (for 

n =  1 we recover the Verma module A (A)) and try to work out some of their 

main properties. The initial idea was to obtain modules which are filtered 

by (isomorphic copies of) Verma modules. Needless to say, some (probably
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most) of the properties of Verma modules and results concerning them still 

hold for their fat version. For example, fat Verma modules have simple socle. 

Nevertheless there are exceptions, the most remarkable one being the above 

mentioned BGG theorem.

It was clear from the beginning that a categorical framework to work in 

was needed. Is is well known that the celebrated category O (introduced 

by Bernstein, Gelfand and Gelfand around 1976 in [9]) encapsulates a sig­

nificant amount of information about representations of Q. In particular, its 

blocks are equivalent to categories of finite dimensional modules over finite 

dimensional quasi-hereditary algebras where Verma modules play the role of 

standard objects. This led us to the definition of the ”fat” category OM 

(where, as before, we recover the category O by setting n =  1). Now, blocks 

of O M will be equivalent to categories of finite dimensional modules over 

finite dimensional properly stratified algebras. This implies the existence of 

another class of distinguished objects (adding to simples, projectives, injec- 

tives, standard, costandard, proper standard and proper costandard mod­

ules): the tilting and cotilting modules.

1.2 Further m otivation

In [33], dealing with problems arising from the representation theory of com­

plex semisimple Lie groups, Soergel introduced the categories O1 (the ” thick” 

category O) where I  stands for an ideal of finite codimension of U{%) and H
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is a fixed Cartan subalgebra of Q. Soergel’s idea (among others) was to gen­

eralize category O to categories closed under taking subquotients and tensor 

products with finite dimensional (/-modules and where all the nice properties 

of his ’’combinatorial functor” V would still hold.

’’Our” category O M is no other than Soergel’s O1 for a particular choice 

of ideal I. It is easy to see that |J  O1 (where I  runs through the set of ideals 

of finite codimension of U(H)) equals |J  O ^  (where n runs through positive 

integers) hence O ^  may play an interesting role (not exploited in our work) 

in the representation theory of complex semisimple Lie groups.

1.3 D escription o f results

In Chapter 2 we introduce the main objects of study of our work: the fat 

Verma modules A^n (̂A) lying in the fat category 0^nK Fat Verma modules 

(A) are easily seen to be cyclic, indecomposable and filtered by nm Verma 

modules A(A) (where m  is the rank of the Lie algebra Q). Furthermore, we 

are able to prove in Proposition 2.2.8 that the fat Verma modules have simple 

socle. We proceed at cruise speed to prove that OW  is closed under taking 

subquotients and tensor products with finite dimensional vector spaces and 

we describe the simple modules in O^ , which turn out to be the same as in 

O. By proving that O ^  has enough projectives and each object has finite 

length we open way to the subsequent Chapter 3: the study of blocks of 

fat category O , as categories of (finitely generated) modules over finite



dimensional algebras A\,n- There, in Section 3.2, an example is worth taking 

a look at: the description of the principal block of O ^  for Q — si2 (C). 

After proving that the algebras A \>n are standardly stratified (they are even 

properly stratified) we borrow from [1] some relevant features of this class of 

algebras regarding the existence and behaviour of standard, proper standard 

and tilting modules. Observing that, for n > 1, the algebras A \>n have 

infinite global dimension, motivates our next step: with the help of a theorem 

of Platzeck and Reiten (Theorem 3.4.6) we conclude in Corollary 3.4.7 that 

the full subcategory of Ax,n — mod consisting of modules filtered by standard 

objects is properly contained in the full subcategory whose objects have finite 

projective dimension.

The largest part of Chapter 3 is taken to investigate the nature of the 

endomorphism rings of tilting modules. To do so we use Arkhipov’s functor 

A  to conclude in Corollary 3.8.5 that the algebras A0,n (i-e. the principal 

blocks of O (”)) coincide with their Ringel duals. As a byproduct we obtain 

in Corollary 3.8.7 the character formulae for fat tilting modules.

The next step reveals a property which is, in general, not shared by 

Soergel’s thick category O1: the existence of an indecomposable projective- 

injective object, i.e. an object which is simultaneously projective and injec­

tive. This is proved in Proposition 3.9.1 and enables us to verify in Proposi­

tion 3.9.4 the validity of a double centralizer property relating the principal
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block of O with the fat algebra of coinvariants. Chapter 3 ends with a suc­

cess and a failure. We succeed in classifying the algebras A\,n with respect to 

their representation type (see Theorem 3.10.6) but fail to relate them in any 

way with their Ext-algebra (recall that regular blocks of category O coincide 

with their homological duals (see [7])).

As the title indicates, Chapter 4 is oriented towards the determination 

of the basic algebra A\,n by means of quiver and relations. To compute the 

quivers we make use of Theorem 4.3.1, where we compute (for root systems 

of rank 1 and 2) the dimension of the E x t1 spaces between isomorphic simple 

modules in 0^n\  and Theorem 4.4.1, complementing the information on the 

extensions of non isomorphic simple modules. By borrowing from [33] results 

describing the behaviour of Soergel’s combinatorial functor V we reprove the 

above mentioned double centralizer property and we are able to compute not 

only the quiver but also the relations for all the principal fat blocks of type 

A\ and all the singular blocks of type A 2. Here, with a little bit of computer 

programming expertise we might have gone a little bit further...

5



Chapter 2 

The category CM

2.1 M ain definitions

Let Q be a complex semisimple Lie algebra of finite dimension. Fix a Cartan 

subalgebra 7i of Q, a root system $  for the pair (Q, 7i) and the corresponding 

Weyl group W. Then, as usual, we have a triangular decomposition of the 

form

Q = Js[-® U ® N + ,

with respect to <£, where B =  7i © Af+ is a Borel subalgebra. The corre­

sponding universal enveloping algebras are denoted by U(Q), U(B) and so 

on.

Let a i , . . . ,a m be the simple roots of <$. It is well known that 11(71) is 

isomorphic to the polynomial ring C[Hi, where m  is the rank of Q

and H i , ..., Hm is a basis of H  where Hi is the coroot associated to c^.
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Throughout this work, all weights A G %* are taken to be integral For 

such a weight A, we consider the ideal

In,x := ((/Ti -  X(Hi))n, .... (Hm -  A(Hm))n)

and the algebra CHi\  =  C[Hi, ...Hm\/In^  which may be viewed as a finite 

dimensional quotient of U(H).

We will proceed to define the more relevant categories in this work:

D efin ition  2.1.1 The objects of category (the so called fat category O) 

are left Q-modules M  with the following properties:

•  M  is finitely generated (as a module over U(Q));

•  M  is a direct sum of Cn,\-modules (as a module over U((H));

•  M  is locally Af+-finite (i.e. for each m  € M  the vector space U(J\f+)m 

is finite dimensional over C).

The morphisms in O ^ a r e  arbitrary Q-module homomorphisms.

R em ark

Observe that under our previous assumptions on weights, all our modules 

will be integrally supported. This means that the decomposition of a module 

M  in as a direct sum of Cn>\ —modules is such that A is integral.

□

There is an alternative definition of G^n\  due to Soergel (see [33]), which 

may be seen as a particular situation inside the more general framework



of ’’deformation theory”: Let I  be an ideal of 11(71) =  C [ H i , H m] of 

finite codimension. On any (/-module M  which is locally finite over H,  the 

nilpotent part of the H -action gives rise to a new action of 7i on M.  Let 

O1 denote the category whose objects are the locally U(B)-finite and finitely 

generated (/-modules such that this ’’new” action of Ti factors through I.

We claim that ’’our” category O ^  is no other than O1 for I  := In>0 = 

(H™,..., H^). Let us prove this fact starting with some basic knowledge 

about the representation theory of C[Hi, ..., Hm]. The simple U(7i)-modules 

are one-dimensional with (central) character A for some A € %* (i.e. all 

elements h G Ti act by scalar multiplication with A(h)). Moreover, if M  is an 

indecomposable finite dimensional U (%)-module there is an element A € H* 

(the generalized character of M) such that for each element h € H one may 

find a basis of M  in such a way that h acts by multiplication with a direct 

sum of Jordan blocks having diagonal elements equal to A(h).

Hence this ’’new” action, *, of % in any finite dimensional indecomposable 

module M  may be described by

h * x = (h — A(h))x

for all x  € M  , where A is the generalized character of M.

But, if M  = Mi is a decomposition of a module M  in 0 In'0 (in

Soergel’s sense) as a direct sum of (necessarily finite dimensional) indecom­

posable U(7i)-modules, we have that

I„,o * M  =  0 IUyo * Mi = 0 for alH G J  In^M i  =  0 for all i G J,
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where A* is the character of M*. Thus we conclude that M  is an object of 

O in the sense of Definition 2.1.1. Going backwards in the above argument 

we convince ourselves that both definitions are actually equivalent.

Special objects in O ^  are the fat Verma modules defined as

A‘">(A) := U(g)®u{B)Cn,x

where the element b =  h +  n of U (B) acts on the nm-th dimensional complex 

vector space CUy\  by left multiplication by h.

An important remark is that, for n =  1, is no other than the classical 

category O as defined by Bernstein, Gelfand and Gelfand in [9]. In this set­

ting, we will use the adjective fat to characterize objects (or even properties) 

of O b u t  only for n > 1. Objects (or properties) of O will often be referred 

to as classical.

2.2 Basic properties o f

In the sequel we will try to establish some analogies with the category O. 

Recalling that we have denoted the rank of Q by m, we have

P ro p o sitio n  2.2.1 Every fat Verma module, A ^(A ), is cyclic and filtered 

by nm ”classical” Verma modules.

P ro o f
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Let us start by defining some distinguished elements vx, iu ...,im in A^n\X )  

in the following way:

:= 1 ® ( f t  -  A (f t) rL ..( ifm -  A

for all ia G {0, ...,n  — 1} and s G {1, ...,ra}. It is clear that ua ,o,...,o generates 

A ^(A ). The space U(Q)v\,n- is clearly ftinvariant and free over 

U(Af~) and U(Af+) annihilates V A .n - i . - .n - i j  hence vx,n-i,...,n-i generates a 

classical Verma module. Factoring it out, the result follows inductively.

□

Remark

1) For simplicity, we will abbreviate the above mentioned generator of 

A ^(A ), by v\  and call it the canonical generator of A ^(A ).

2) Define the A, n-weight space (or n-fat X-weight space) of a {/-module 

M  as

M[n) : = { x e M  : ( f t  -  A (ft))n:c =  0, for all i G (1,..., m}}.

T h e  v e c t o r  s p a c e  i s  e v i d e n t l y  a  C n)A - m o d u le ,  h e n c e  t h e  s e c o n d  c o n d i t i o n  

i n  t h e  d e f i n i t i o n  o f  O ^  c a n  b e  r e p l a c e d  b y  t h e  m o r e  s u g g e s t i v e

•  M  is the direct sum of its n-fat weight spaces (or fat weight spaces, for 

short).

3) Observe that to each non-zero element in one can attach a rad­

ical (and a socle) layer where it naturally lives. One further observes that
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the indecomposable summands of the fat weight spaces of fat Verma mod­

ules A(")(A) have m(n  — 1) -I-1 layers, the first and the last ones being one 

dimensional.

4) It is easy to see that, for all s > 1, we have dim(A ^ (A ))^  =  sm.

5) Consider the truncated polynomial ring C[Hi, ..., /f™) which

is our guiding light for the fat weight spaces of fat Verma modules. As a mod­

ule over C[Hi, it is generated by (the equivalence class of) 1, which

will be called homogeneous of degree 0, while Hi, will be called ho­

mogeneous of degree 1, and so on. The point is that this terminology may 

(and will) be naturally transported to the fat weight spaces of our fat Verma 

modules.

□

There is an alternative construction of ” fat” Verma modules by ” genera­

tors and relations” . To achieve this start by defining J \>n as the left ideal of 

U(Q) generated by Af+ together with the elements of the form (Hi — A(Hi))n 

where i G {1, ...,m}. Then we have

P ro p o sitio n  2.2.2 1) Denoting the left coset of 1 by 1, the map

U(Q)/Jx,n — ► AW(A) 

l ^ V x
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is an isomorphism of U{Q)-modules.

2) For every sequence i i , . . . , im where is € {0, ...,n — 1} for all s 6 

{ 1 , m}, the map

# i ,  i .  : A<n)(A) — ► A<">(A)

v\

is a well defined homomorphism of Q-modules.

P ro o f

Starting by 1), it is clear that J \}Tl annihilates v\ thus proving that the 

map is well defined and, therefore, surjective.

It is also clear that U(Af-) acts injectively on both modules (i.e. left 

multiplication by any fixed element of U(Af~) is an injective map). Hence, 

by applying the Poincare-Birkhoff-Witt theorem (which, from now on, will be 

referred to as ”PBW theorem”) it is enough to show that for all u% G U(%) 

we have

un v\ -  0 = >  uu — 0

which follows immediately from the fact that Annu(n){vx) =

Assertion 2) follows immediately from 1) since va,»!,...,*»» is easily seen to 

be annihilated by J\^n. □

P ro p o sitio n  2.2.3 Every fat Verma module is indecomposable.

12



P roof

To prove the indecomposability of (A) observe that by restricting to 

the t/(%)-module Cn,\, one has the following isomorphism of vector spaces:

Endu(g) (U (G)<8>u(B)Cny\)

But morphisms in O^  preserve fat weight spaces, thus

Homu(n){Cn,x, A ^(A )) =  Endu(n){Cn,x) — CUy

which is a local ring.

By part 2) of the previous proposition we may conclude that the mor­

phisms with ia e  {0, ...,n  -  1} and s € { 1 , m}  form a basis of

E n du(g )(^n^(\)). This allows us to conclude that Endu(g)(A ^(A )) and 

Cn>x are actually isomorphic as rings.

□

E xam ple 2.2.4 Let Y

the standard generators of the Lie algebra Q =  si2 (C).

Below we will try to depict some Verma modules, namely A(0), A^2̂ (0), 

A (—1) and A^2̂ (—1). The reason for choosing these highest weights will 

(hopefully) become more clear in subsequent sections.
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In our pictures, (fat) weight spaces will be labelled by the corresponding 

weight while the action of the generators X ,  Y  and H  will be represented 

(respectively) by arrows —>, «— and O (plus its matrix realization). We denote 

by I 2 the identity matrix of order 2.

Recalling that X  acts like 0 on (fat) highest weight spaces, we represent

- 2

A<2>(0): -

A<2>(—1) : ••

A(0): -  .... - 4  ,
-  0  1

- 4
1 

t

1C
1

^
\ _

_t
o 0

1 O
0

A (—1) :
- 4

. . .  * _ 5
•• 1

- 5

’ - 3
0
-3

-1
t * - 1

1 O
-1

( ~ 2 2 ^ ( 0  1 \

\  0 -- 2 /
, 1
l o  o j

- 4  7 " .. * “ 2 c * 0

1
0  *

f —4 1 \ ( -
O

-2 1 \
/2 t j  

( 0  1\
\N 0 - 4 ) I 0 —2} vo o j

( - 4
2 'I ( - 1 1 ^

V 0 - 4 J V 0 - 1)
* - 5  . * - 1

O  h h  < J
- 5  IN  / - 3  1 \  / - 1  1
0 - 5  I 0 - 3  V 0 -1

The following lemma will be crucial for several results throughout this 

chapter:
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L em m a 2.2.5 Let M  be a Q-module which is the direct sum of its fat k- 

weight spaces and let N  be a submodule of M. Then N  is also the direct sum 

of its fat k-weight spaces.

R em ark  Note that all ^-modules contain the (direct) sum of its fat weight 

spaces as a submodule. □

In the sequel, we will use the ”hat” symbol in a product to express an 

absence. For instance, the sequence abcde should be read as ace.

P roof

As indicated, assume that

M  =  ®  A / f
A EH*

and suppose that x  is an element of N  of the form

x = mAl + m X2 +  ... +  raAn

where G for j  = 1, 2 , . . . ,  n. This means that

(Hi -  =  0 (1)

for i = 1,..., m  and j  =  1,2..., n.

To ease notation, set ap  ̂ =  —Xp(Hi) for i = 1, ...,m  and p = 1, ...,n. By 

(1) we have that

15



(( if ii +  aitix)k +  ar^r)k...(Hin +  anj n)k)nn\r G N

for all is G { 1 , m}  and s G { 1 , n).

Now, observe that for a l l i2 =  1 , m,

0 — (Hi2 + aiti3)km\1 — (Hi2 + a2,i2 + a i^  — a2,i2)km\1 —

=  ( ( H i 2 +  Cb2,i2) k +  (H i 2 +  a2,i2) A:~ 1(a l,i2 ~  a 2,i2) +  ••• +  (a l,Z2 — a 2,i2) k ) m M (2 )

Multiplying (2) by (Hh +  a1>h)k(Hi2 +  a2,i2)k~1...(Hin +  an,in)fc and using 

(1) one concludes that

(̂ l,*2 ~ ^2,i2) iflii "b Ql,ii)k{Hi2 "b &2,i2) •••(■̂ *» “b ®n,zn) ^Ai £ N  (3)

for all is € { 1 , m}  and s G { 2 , n }.

Exactly the same way we may conclude that, for all r, t — 1,..., n

ip,r,ia 0's,is) (-^ii"b^Mi) (-^ir ~b ®r,*r)^***(-^r*t"b®s,it) •••(H in~\-CLn^n) 777  ̂ G iV (4)

for all is G { 1 , m}  and s G {1,..., n}.

Comparing (4) (or (3) which is a particular case of (4)) with (1) we 

observe that we managed to decrease by 1 the degree of our polynomial. We 

repeat this process until we reach a constant polynomial. At that point we 

will have, for all r = 1,..., n,

16



((&r,ii )* , , (®r,ir ^r,ir ) ^ . • • (®r,in ^ n ,in )  ) ^ A r ^

for all zs € { 1 , m} and s € {1,..., n}.

Finally, choosing zs such that ar^a ^  aS)ja (recall that Ar ^  As) we conclude 

that m \r G iV for all r — 1 , n.

□

P ro p o sitio n  2.2.6 1) is closed under taking subquotients and tensor 

products with finite dimensional vector spaces.

2) In Q^n\  fat weight spaces and homomorphism spaces are finite dimen­

sional.

P ro o f

If N  is a submodule of a module M  in then, by Proposition 2.2.5, it 

is also the direct sum of its weight spaces. It is obvious that N  is U(#)-finite 

and to claim it is finitely generated one only needs to invoke the well known 

fact that U(Q) is noetherian (since submodules of finitely generated modules 

over noetherian rings are also finitely generated).

Now let f  : M  — > N  be an epimorphism of (/-modules. It is a straight­

forward exercise to verify that N  is an object of O^  if M  is.

Finally, what can be said about M  0  E  for a (/-module M  in O ^  and a 

finite dimensional (/-module E l  Start by recalling the classical fact that all

17



finite dimensional (/-modules belong to the category O. Now, if (ei, ...,es) is 

a C-basis of E  where each e* has weight A j and {m i,..., m r} is a generating 

set for M, then the set {rrij (8> e* : 1 < j  < r, 1 < % < s} clearly generates 

M  <8>E. Again, [/(B)-finiteness is obvious and, if m \  is a vector of M  having 

fat weight A, then the identity

(H -  (A +  Ai)(H))n(mx <8> e*) =  ((H -  (A)(H))nm x) <8> e<

shows us that M  ® E  is a direct sum of its fat weight spaces. This proves 1).

To prove 2), again suppose that M  is an object of O ^  admitting (m i, ..., m r} 

as a generating set with each rrij an element with fat weight Aj.

Since M  =  U(Q)m\ +  ... +  U(Q)mr , we can restrict ourselves to proving 

that the cyclic modules U(Q)m,i have finite dimensional fat weight spaces. 

Using PBW Theorem, we observe that, as vector spaces,

U(g)rm = U(A/1) (8) (U(B)rm).

But U(B)rrii has finite dimension pi (say), hence all fat weight spaces {U(Q)rrii)^ 

(with A < A*) will have dimension smaller than Pik{A — A*), where k is the 

Kostant partition function.

Now it is easy to prove that the dimension of Hom0 {n) (M, N) is finite 

if N  is another element of O if /  is such a homomorphism, then it is 

determined by the image of the generators of M. But f ( M ^ )  C N ^ \  hence

Hom0 (n)(M, N)  C Homc ( M © ... © m £ \  ^  © ... © N ^ ) ,
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which, as we have just seen, is finite dimensional.

□

P ro p o sitio n  2.2.7 The module to p A ^(X ) is simple and all simples in 

occur in this way.

P ro o f

Let V\ be the canonical generator of A^n (̂A) and N  one of its proper 

submodules. Clearly Cv\ n  N  =  {0} and, by Lemma 2.2.5, one concludes 

that v\ does not belong to the sum of all proper submodules of A^n (̂A). 

This forces the existence of a unique maximal submodule (which has to be 

i?ad(A(")(A))). It is obvious that topA^n\X )  is an object of 0^n\  In fact, if 

L  is a simple object in 0^n\  it is generated by a highest weight vector (which 

is the same as saying that such a vector has to exist...), hence it is a quotient 

of some Verma module in the category O.

□

R em ark  The previous proposition, combined with the fact that fat Verma 

modules are filtered by Verma modules of category O, implies that simple 

objects of O are the same for all n  (in particular, they coincide with the 

simple objects of O).

Hence, from now on, we will denote the top of A^n (̂A) by L(A).

□
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The next proposition expresses further similarities with O:

P ro p o sitio n  2.2.8 Let X be a weight. Then fat Verma modules A ^ ( X )  have 

simple socle L(a) where a is the unique antidominant weight in the orbit of 

A under the dot action of the Weyl group.

P ro o f

For category O (i.e. n =  1) this result is well known: it follows from the 

fact that Verma modules are isomorphic to U(f f - )  (as U(Af~)-modules) and 

any two proper (left) ideals of U(NJ) intersect non trivially.

Now the fat Verma modules are filtered by Verma modules, hence their 

socle is a direct sum of isomorphic simple modules. Consequently, each simple 

component of the socle of (A) is generated by a vector of fat weight a. But

the structure of (A^n  ̂(A))in  ̂ as U('H)-module is well understood: it consists of 

a certain number of copies of Cn,a (given by the Kostant partition function). 

From this we conclude that the socle of A^n  ̂(A) must be generated by vectors 

of weight a  (in other words: vectors belonging to the socle of (A^n^(A))in\  

considered as a module over [/(%)). But

A(A) -  £  (A<">(A))„, 
nen*

since the RHS is clearly a submodule of A ^ (A )  generated by vx,n- i t...,n-i- 

Thus 5 0 c (A ^ (A ))  C soc(A(A)) which is simple.
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Finally, L(a) = A(o;), since U(Af~) acts injectively on fat Verma modules 

(and, therefore, on its submodules), hence, by a classical result (see [16], 

Proposition 7.6.24), we know that a  is antidominant.

□

2.3 Block decom position

Let us recall some facts from classical Lie theory. Apart from the natural 

action of the Weyl group W  on H* we have the so called dot action of W  on 

H* which, for w € W  and A € U*, is defined as

w.A := w(A +  p) — p,

where p is the half sum of the positive roots of $.

Now, let <£ : U(Q) — > 14(1-1) be the Harish-Chandra homomorphism (i.e. 

the projection onto U(H)  along the decomposition

U(Q) =  ®U(G)N+) ®U(U))

and view an element A G H* as an algebra homomorphism from U(H)  to C. 

Construct the central character xx as follows:

Xa := (A o <t>)\z(Q) : Z(Q) — ► C

It is well known (see [23], Chapter 3) that every central character of U(Q) 

(i.e. a homomorphism from the center of U(Q) to C) is of the form xa for
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some A 6 %* and, furthermore, xa =  Xu if and only if A =  w ./j, for some 

element w in the Weyl group W.

Now let M  be a ^-module and x he a central character of U(Q) . Denote 

by Mx the submodule of M  defined by

Mx := {m  6 M  : Vz 6 Z{Q)3k € N : (z -  x (z ))km  = 0}

and let Ox be the full subcategory of whose objects are the 5-modules 

M  which coincide with Mx.

By what has been said above, one may relabel O ^  by 0^x \  bearing in 

mind that =  O ^  if and only if A and /z lie in the same orbit under the

dot action of the Weyl group.

Proposition 2.3.1 Consider the fat category 0^n\  Then

1) Exactly as for category O, we have a block decomposition of the form

o {n) =
A

where A runs through a set of representatives of orbits in TL* for the dot 

action of the Weyl group. Consequently, all composition factors of modules 

in are of the form L(a), where a  lies in the orbit of A under the dot 

action of the Weyl group.

2) All objects of O ^  have finite length.
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Remark

Calling O ^  a block does not constitute an abuse of language since the 

categories O cannot decompose further: in fact, any two simples in O ^  

are homomorphic images of the corresponding Verma modules which have 

the same socle.

□

P roof

Since M  is the direct sum of its fat weight spaces, it suffices to show that 

for all A €1-1* there exist central characters Xi> •••? Xk such that

M™ C MX1 + ... + MXk,

whose sum is easily seen to be direct.

It is clear that fat weight spaces are Z(C/)-modules, thus multiplication 

by central elements yields endomorphisms of fat weight spaces.

Now suppose that such an element z E Z(Q) acts on by a sum of 

Jordan blocks of the form

/ a z 1 \

J  •= ^

V 0 az J
Recalling the fact that any family of commuting endomorphisms of a

finite dimensional vector space admits a common eigenvector, one is able to
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define a map

X - Z ^ C

z x{z)

where x (z ) is the eigenvalue corresponding to the above cited common eigen­

vector of the endomorphims induced by the elements z € Z. It is straight­

forward to check that x  is actually a central character of Z\ in effect, for 

elements 2 1 , 2 2  € Z  and denoting by v the common central eigenvector, we 

have

x ( 2 i  z 2) v  =  ( z 1z 2) v  =  Z i ( z 2v )  =  Z i ( x ( z 2) v )  =

=  x{z2)(ziv) =  x{z2)x{z\)v  =  x O ^ iM ^ K  

Moreover, since we are talking about eigenvalues, we have that

*wiX ^  {az '• z € Z},

hence for each weight A there exist a character x  such that

M<n) n  Mx ±  0

which implies that

dim (M /M x

By induction one concludes that there exist central characters Xi? •••> Xk such 

that

M™ C MX1 + ... + MXk.
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Finally, we observe that Mx fl Mx> =  0 if x /  x!, from which it follows 

that

M =  0 M x,

where x  runs through the set of all central characters. Note that M  is 

finitely generated, hence only a finite number of central characters yield non 

zero summands in the above decomposition.

To prove 2), observe that for an object M  in G^n\  only finitely many non 

isomorphic composition factors can occur. Thus, if the length of M  is not 

finite, then it admits an infinite number of isomorphic composition factors 

yielding the existence of infinite dimensional weight spaces. □

Remark

1) Let W \ denote, as usual, the stabilizer of A € 71* for the natural 

action of the Weyl group W. A block O ^  is called regular if A is regular (i.e. 

\W\\ = 1); otherwise it is called singular. Usually the most ’’interesting” 

block is the principal block, OqH\  the one containing the trivial representation.

2) The block decomposition proved above allows us to define a ’’projection 

onto the block” functor, P r \ , from O ^  to 0^x \  by which an element M  in 

OM is sent to its maximal summand in 0^x \  Furthermore, for dominant 

weights A and //, one may construct the so called ’’translation functor” , 

from O^  to as follows:
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r p H  . q ( t i ) ___  ̂ £ ) ( « )
A A fj>

M  Prtl(E(/i — A) ® M),

where E (p — A) stands for the unique finite dimensional simple module ad­

mitting p — A as highest weight. Since tensoring with finite dimensional 

^-modules and projecting onto blocks are both exact functors, we conclude 

that translation functors are exact as well.

□

2.4 P rojective objects in

The aim of this section is to present some properties of the projective objects 

of O which generalize the corresponding ones in O. Firstly, let us prove 

a kind of ’’recognition” result which tell us how to acknowledge being in the 

presence of a fat Verma module:

L em m a 2.4.1 ( ”recognition lemma”)

Let M  be a cyclic (left) U(Q)-module generated by a vector w\ of highest 

n-fat weight A. Then

a) There is an epimorphism f  : A^n (̂A) — > M  defined by sending v\ , the 

canonical generator of A ^ (X ) , to w\.

b) The above map is an isomorphism if and only if two things happen:
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i) U{M-) acts injectively on M  and

ii) U(H)wx *  Cn,x.

P roof

The map /  is obviously well defined since our assumptions are just another 

way of saying that

Annu(g)V\ C A n n u ^ w x

and consequently it is surjective since generator is mapped to generator. This 

proves a). To prove b), assume that U (N -)  acts injectively on M  and that 

the U (%)-module generated by wx is isomorphic to Cnt\. Then we construct 

a map

g : M  — ► A(n>(A)

X W \  i - »  X V

for all x  G U (£), which, so we claim, is well defined: In fact, if x  is an element 

of U(Q) of the form

X  —  X f i _ X f u

where xn_ € U(Af~) and Xh € U(7i) , then, since U {N-) acts injectively on 

M, we have

xwx = 0 XhWX = 0
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which, when combined with the fact that the U ('H)-module generated by w\ 

is isomorphic to Cn,\, forces

Annu(g)W\ C Annu(Q)V\.

□

Proposition 2.4.2 Let E  be a finite dimensional Q-module and (ei,...,e*;) 

a basis of E  such that, for all i, we have the vector e* of weight A*. Assuming 

the indexing satisfies

A i < A j= > j < i

and fixing A G Ti*, we have:

The Q-module A ^(A ) <S> E  has a filtration

A (n)(A) ® E  = Mk 2  Mfc_! D ... D M0 =  0

such that, for all i € {1,2..., k}, M,/M,_j is isomorphic to A 'n>(A +  Aj).

Proof

Let v\ be the canonical generator of A^n (̂A) and set Wi := v\<8>ei. Further, 

construct, for i =  1,..., k,

Mi = U(G)Wl +  ... +  U{Q)Wi.
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One is easily convinced that A^n (̂A) 0  E  =  Mk  given that v\  0  E  C M* 

and V \  generates A^n (̂A).

Additionally, Wi +  Mj_i is a vector of fat n-weight A +  A* generating 

M i / M ^ .

Moreover, if a  is a positive root and x a € then the routine calculation

X a W i  =  V \  0  X a 6 i  e  M i - 1

shows that J\f+ kills Wi +  Mj_i and, consequently,

M i = U (B-)w1 + ... + U(B-)wi

Where, as usual, B_ stands for the Lie algebra A/’-S 'H . To invoke successfully 

the recognition lemma we only need to show that U(Af-) acts injectively on 

M i / i (which follows immediately from the fact that U{N~) acts injec­

tively on v\)  and that the C/(?^)-module generated by Wi + M i - 1 is isomorphic 

to Cn,A+Aj- For this we use the formula

(Hj  -  (A +  Ai ) (Hj))(vx 0  ei) =  (Hj -  A(Hj )vx) 0  e<), 

which implies

Annu{u){{v\ 0 e j  +  Mf_i) =  A n n ^ )  (ua+A; ) 

allowing us to construct a map



v x ® e i  ^  Vx+Xi,

which is well defined and injective. It is also surjective since it sends generator 

to generator. Clearly ^  preserves the U (%)-module structure hence it is an 

isomorphism.

□

R em ark  The above result tells us precisely how many fat Verma subquo­

tients of a given weight a  appear in such a decomposition: As many as the 

dimension of the subspace of E  consisting of vectors of weight a — A. □

P ro p o sitio n  2.4.3 Let X be a dominant weight. Then A ^(A ) is projective 

in O a n d  in .

P ro o f

Let us show, equivalently, that the functor Hom0 (n)(A^u\  —) is exact. 

Firstly, we observe that proving for O ^  implies proving for G^n\

Now let M  € 0 (n\  let M ^  denote the subspace of M  consisting of 

vectors with fat weight A and let vx be the canonical generator of A^n)(A).

Since taking fat weight spaces is clearly an exact functor from O^  to 

C — mod, it is enough to show that the map

$  : Hom0(n) (A ^  (A), M) — + M <n)

/  — > f ( v a )
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is a bijection. But v\ is a generator of fat weight A of A^n^(A), hence $  is 

injective and well defined.

In order to check surjectivity, let us consider the following sets:

A = { / M  : /  G Ho mo M( M }

and

B  = {v € M ^ ] : N +v =  0}.

We will be done if we manage to show that the following statements are true:

•A  =  /ra$ ;

• A = B ;

•B  = M (xn).

The first one is obvious and it is also obvious that A  C B  (since v\ is 

killed by A f+). To show that B  C A, let w\ be an element of Then we 

have

Annu(g)(vx) =  (jV+, ((H, -  A(Hi))n, ( H m -  A(Hm))n))C A nnu{g)(wx). 

Therefore, there exists a  morphism /  G Hom0(n)(A ^ (X ) , M) defined b y

f{v \)  = wx-

Finally, we prove that Af+M (jl\  =  0. In fact, given that M  is a module 

in the block all its composition factors are of the form L(a) with a < A 

because A is dominant, thus proving the result.
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□

R em ark  There exists a canonical isomorphism of vector spaces

Homg(M  ® E , N )  = Homg(M, N  <g> E*).

Since tensoring with finite-dimensional vector spaces is an exact functor in 

Q — mod and O ^  is closed under tensor products, we observe that M  <S> E  

is projective if M  is so. □

P ro p o sitio n  2.4.4 Let A € H* be a weight. Then

1) There exists a unique (up to isomorphism) projective module P ^ ( A) 6 

O ^  such that

P (n)(A)/Rad(P(n)(A)) “  L(A).

In particular, P ^  (A) is indecomposable.

2) The set {PW(A) : A € %*} is a complete set of representatives of 

isomorphism classes of projective indecomposable modules in 0^n\

P ro o f

Let A € H* and choose a dominant weight a  G Ti* in such a way that 

a — A is a dominant integral weight (one can always do this since the set 

of dominant weights is a cone in an euclidean space). Define furthermore
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E  := L(a — A) so that a  is the highest fat weight of L(X) (g> E. Hence A(n)(a) 

maps onto a submodule of L (\)  0  E  and for this reason

Homg{A(n)(a), L(A) ® E) =  Homg(A {n)(a) <g> E \  L (A)) ±  0.

By the previous remark, we can now say that every simple module is a 

homomorphic image of a projective module. Since we are working inside a 

category where all objects have finite length, we derive that all simples (and 

consequently all modules) admit a projective cover thus proving 1) and 2).

□

D efinition 2.4.5 A U(Q)-module M  is said to have an n-fat Verma flag if 

there exists a chain of submodules

0 C Mi C M2 C ... C Mk = M

such that, for all i G {1,..., k — 1}, we have Mi+i/M i =  A^n (̂Aj+i) for some 

weight Â +i G H* •

Further, define ^7c,(n)(A^) as the full subcategory of O ^  consisting of 

objects that have an n-fat Verma flag.

P ro p o sitio n  2.4.6 The category T 0 {n){A^n )̂ is closed under taking direct 

summands.

33



Proof

Let M be an object in ^rc?(n)(A^n )̂ and let A be a maximal weight among 

those which appear in the Verma flag of M. Since M  is the direct sum of 

its fat weight spaces, we may pick an element v living in the lowest layer 

of Our first aim is to show that the £/(<7)-module generated by v is

isomorphic to A^n (̂A).

By the definition of Verma flag there exists a number j  G { 1 , k} such 

that v G Mj but v # M j-\ (assume M_i =  0). Then v +  M j- i  is an element 

of (M j/M j- 1 ) ^ .  But M j/M j-i = A ^(A j) hence we may conclude that 

A =  A j and that v +  M j - 1  is actually a generator of M j/M j- F r o m  here 

we deduce that the C/(7i)-module generated by v is isomorphic to Cn,\. This 

last assertion, combined with the obvious observation that M +v =  0 , and 

combined with the fact that U (N -) acts injectively on v (since it does so on 

v + M j- 1 ), allows us to conclude that U(Q)v =  A ^(A ).

Now we proceed to prove that all summands of M  are still objects of 

T 0{n){A ^ )  by induction on the length of M  . To that effect, suppose that 

M  =  Mi © M2 . The element v picked above decomposes as v =  v\ +  U2 , 

where Vi G Mi for i G {1,2}, and at least one of the v /s  is non zero and lives 

in the lowest layer of (Mj)^n\  Assume it is v\. As we have deduced above, 

U(Q)vx =  A ^(A ), hence

M/U(Q)v 1 =  M i/U(Q)v\ © M2
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is a direct decomposition of an element of .F ^ n ^ A ^ ) of length smaller than 

the one of M. By induction, we derive that both Mi/U(Q)v\ (and also M\) 

and M2 belong to F 0{n)(A ^ ) .

□

R em ark  The above result tells us that T 0{n){A^) is resolving as defined in

[4]

□

The next two corollaries give us a good description on how the projective 

modules of OW  look like:

C orollary 2.4.7 Every projective (indecomposable) object in O ^  is a sum­

mand of (a)®E, where E is a finite dimensional Q-module and a is a 

dominant weight.

P ro o f

This is an immediate consequence of the proof of Proposition 2.4.4: there 

we Showed that for all weights A there exists a finite dimensional ^-module 

E  (depending on A) such that A ^ ( a )  0  E  maps onto L (A), thus implying 

that P(n)(A) is a direct summand of A ^ ( a )  0  E. □

C orollary  2.4.8 Every projective module in O ^  is filtered by fat Verma 

modules. This filtration can be arranged in such a way that, from top to



bottom, the indices of the fat Verma modules appear in a non-decreasing 

order.

P ro o f

Consequence of Proposition 2.4.2 and the proof of Proposition 2.4.6. □

E xam ple 2.4.9 Let Oq̂  be the principal block of for si2 (C) .

Using previous results and looking back at Example 2.2.4, we are able to 

describe some relevant objects:

The simples in this block are the one dimensional module L(0) and L (—2) 

which is isomorphic to A (—2). Further, we have the fat Verma A^2̂ (0); which 

coincides with 0). I f  we take E( l )  to be the two dimensional simple 

s^iC)-module of highest weight one, we have

p (2) ( - 2 ) ^  A (2)(-l)<g>£(l).

The next result reveals one of the nicest features of O

T heorem  2.4.10 Every fat projective module admits a filtration the subquo­

tients of which are nm isomorphic classical projective modules (i.e. modules 

that are projective when considered as objects of O).

P ro o f

Let A be a dominant weight. Proposition 2.2.1 guarantees the existence 

of a short exact sequence of the form

36



0 — ► A(A) — > A (n)(A) — > N  — > 0,

where N  is filtered by nm — 1 classical Verma modules. Since tensoring with 

finite dimensional (/-modules is an exact functor within the category of all 

U(Q)-modules, we get our result for projectives of the form A(n)(A)®.E. We 

will be done if we show that the projective indecomposable P(a) appears as 

a summand of A (A) ® E  whenever the fat projective P ^ ( a )  appears as a 

summand of A^(X)<S>E, with equal multiplicities. In effect, since A ^ (A )(8>E 

maps surjectively onto A(A)<8>E and projective indecomposables P ^ ( a )  are 

generated by vectors of fat weight a , we conclude that P{a) has got to occur 

in the decomposition of A (A) <8> E  into projective indecomposables. But 

combining Proposition 2.4.2 with Proposition 2.4.8 forces the multiplicities 

to be the same.

The result is, therefore, true for all projectives in 0^n\  □

R em ark  1) Denote by (P^n (̂A) : A^n^(a)) the number of occurrences of 

A ^-(a) in a Verma filtration of p (n\ A) and denote by [A ^ (a )  : T(A)] the 

number of composition factors of A(n)(a) isomorphic to L(A).

2) Recall the BGG reciprocity that holds for O (see [23]):

(P(A) : A(a)) =  [A(a) : L(A)].

□
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P ro p o sitio n  2.4.11 (BGG reciprocity) With the above notations we have

n m ( p ( n ) ( A ) . A ( » ) ( a ) )  =  [A ( » ) ( a ) : £ ( * ) ] .

P ro o f Follows directly from Theorem 2.4.10 and the previous remark. □

Obviously, the BGG reciprocity does not tell us which simples appear as 

composition factors of Verma modules. To achieve that one needs to quote 

a famous theorem of Bernstein, Gelfand and Gelfand (usually known as the 

”BGG theorem” , see [16], Theorem 7.6.23), which tells us the following:

T heorem  2.4.12 (BGG)

Let A and \x be weights. Then the following assertions are equivalent:

1) There is an inclusion A (A) C A (/u);

ii) the simple module L(A) is a composition factor of A(/i);

Hi) there are positive roots 7 1 , . . . , 7 * such that there is a chain of inequal­

ities

p  > s7l./i > ... > S^n...Sryk.p = A 

(where s 7i denotes the reflection associated with 7 i ) .

R em ark  1) Omitting i) one may rewrite the above theorem in the context 

of ” fat” Verma modules.

2) Unfortunately, BGG theorem tells us nothing about multiplicities...
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□

To finish this section, we will try to convince the reader about the exis­

tence of a remarkably ’’well behaved” projective object - the ’’big fat pro­

jective” - inside the principal block. We are talking about the projective 

cover in O ^  of the simple module L (—2p). One reason (perhaps the most 

important one) for its prominent role is the following

P ro p o sitio n  2.4.13 For all w 6 W , we have

[p (" )(-2 p )  : A (n)(w  • 0)] =  1.

P ro o f

Since all fat Verma modules have simple socle, we know, by BGG reci­

procity, that the Verma modules in the above formula do occur in a Verma 

filtration of the ’’big” fat projective. We need to show that such filtrations 

are multiplicity free.

For that, consider the module

A <">(-p)®L(p),

where L(p) is the finite dimensional simple (/-module having p as an ex­

tremal (highest) weight. It is projective (since A^n^(—p) is projective) and,
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by Proposition 2.4.2, it is filtered by fat Verma modules, the top one be­

ing A ^ ( —2p). Prom this, we conclude that P^n\ —2p) is a summand of 

A(n)(-p ) 0  L(p).

But, again by Proposition 2.4.2, the highest fat weights of the Verma 

modules appearing in the above mentioned Verma flag are of the form — p + a , 

where a  is a weight of L(p).

Now, by definition of the dot orbit, we have

—p +  a  € W  • 0 •<=>• a  is an extremal weight for L(p),

in which case L(p)a is one dimensional and therefore A^n^(a) appears with 

multiplicity one in the Verma filtration of p (n)(—2p).

□

Combining the BGG reciprocity with the previous result, we have 

C orollary  2.4.14 For all a  £ W  - 0, we have

[A<">(a) : L(-2p)\ =  nm.

R em ark

The two previous results are still true if we replace —2p and 0 by, respec­

tively, any (integral) antidominant weight a  and any weight in the orbit of 

a  under the dot action of the Weyl group.
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□

Now that a substantial amount of information about projective objects 

is available, what can we say about injective objects?

Given a (/-module M, one may equip its C-dual, M*, with a structure of 

(/-module by defining an action in the following way:

(xaf ) (m)  = f ( x - am),

(h f ) ( m ) = f(hm )

where x a is a basis element of Q indexed by a simple root a , h is an element 

of %, f  belongs to M* and m  is an element of M.

In other words: Q acts on M* via the Chevalley anti-isomorphism.

Recall that all objects M  in O ^  are the direct sum of their fat weight 

spaces, i.e.

M  = 0  M<n)
\en*

and, accordingly, define the vector space i(M)  as

i(M)  := ®  
xen*

We aim to prove that

P ro p o sitio n  2.4.15 With the above notation, i(M) is a Q-module (that is, 

a submodule of M*).
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Proof

Let x a be an element of Q indexed by a simple root a , /  an element of

and m  an element of M. Let us show that x af  belongs to (M * )^a. We 

have, for a basis element Hi of H,

((Hi -  (A +  a)(Hi))n(xaf ) ) (m)  = (xaf)((Hi  -  (A +  *)(Hi))nm)

= f ( x - a( ( H i - ( \  + a)(Hi))n)m)

= f ( ( ( H i \ ( H i ) ) nX - a)m)

= ( ( H i - \ ( H i ) ) nf ) ( x - am)

=  0,

thus proving the result.

□

The previous proposition ensures that the map i induces an endofunctor 

for 0^n\  Moreover, since i preserves the dimension of fat weight spaces, it fol­

lows that simple objects are also preserved and, consequently, one concludes 

that i preserves the blocks of

One concludes that i is a duality as
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Lemma 2.4.16 For all weights X G H* ,

(M*)in) = (M^y.

R em ark  If N  is a subspace of M, we will view N* as the subspace of M*  

consisting of functionals in M  vanishing outside of N .

□

P ro o f

Let us start with the easy implication. Let Hi be a basis vector of %. If /  

is a functional on M  vanishing outside then, since fat weight spaces are 

invariant under U(%), (Hi — X(Hi))nf  also vanishes outside But all the

elements of M ^  are killed by (Hi — X(Hi))n, hence it vanishes everywhere.

For the other direction note that, for all i = 1, ...,m , for all mp G 

with (3 7  ̂ A and for all /  G ( M * ) ^ \  we have

0 =  ((Hi -  X(Hi))nf ) ( mp)  = f ( (Hi  -  X(Hi))nmp)  =  ((/? -  X)(Hi))nf ( mp) .

Since /3 ^  A, there exists j  G {1, ...,m} such that (3(Hj) ^  X(Hj).  One 

may multiply the above by 1 /((/3 — X)(Hi))n to reach the conclusion that /  

vanishes outside □

Summarizing all the information we have just obtained, one may state 

the following theorem:
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Theorem 2.4.17 There exists a duality

i ■ o™  — > o in)

which fixes the simple modules.

From now on we will denote the images of (A) under the above defined 

functor i by y ^ A )  and often refer to them as ’’dual fat Verma modules” . 

We will also denote by 7̂ n (̂A) the image of the projective indecomposable 

p (n)(A) under i. Obviously, 7^(A ) will be the injective envelope of L(A). 

Note that all theorems involving projective objects that have been proved so 

far admit a natural dual statement regarding the injective counterparts. We 

will refrain from stating them except for two results which will be used later:

P ro p o sitio n  2.4.18 I f  X is a dominant weight, then y(")(A) 25 an injective 

indecomposable object in 0^n\

P ro o f

Dual of 2.4.3.

□

P roposition  2.4.19 Every injective module in O ^  is filtered by fat dual 

Verma modules. This filtration can be arranged in such a way that, from top 

to bottom, the indices of the fat Verma modules appear in a non-increasing 

order.
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P ro o f

Dual of 2.4.10.

□
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Chapter 3 

Blocks of O(n) as finite 
dimensional algebras

3.1 A n equivalence o f categories

In the previous chapter we have seen that all blocks of O ^  contain a finite 

number of simple objects, each object has finite length and there exist enough 

projectives (and enough injectives). This is strong evidence that, as for O , 

one has the following equivalence of categories:

T heorem  3.1.1 Let X be a weight and let n be a natural number. Then

O ^  ~  mod -  A x,n 

for some finite dimensional algebra A \>n.

P ro o f

Recall from Proposition 2.4.4 that, for every weight a, the simple module 

L{a) G O admits a projective cover P ^ ( a ) .  Thus, in similar fashion as
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for category O , we construct a projective generator (i.e. a projective object 

surjecting onto each simple object)

where x  runs through a complete set of representatives of W /W \, and define

By a standard general reasoning (see, for instance, [6]) the fact that O ^  

is an abelian category (by being a full subcategory of U{Q) — mod) where all 

its objects have finite length implies that the functor

is an exact equivalence of categories.

□

R em ark  The duality constructed in Theorem 2.4.17 tells us that, on the 

level of finite dimensional algebras, A \yTl and A°£n are Morita equivalent.

□

p \ n) :=

Ax,n to be the ring of endomorphisms of .

M  Hom0 (*)(P^n\  M)
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3.2 Example: The principal block for s/2(C)

1) Let us look at the principal block of OM for Q =  5 / 2  (C) and n =  2. In the 

previous chapter we saw that P ^ (0 )  =  A ^(0 ) and P ^ ( —2) =  A ^ ( —1) <S> 

E(  1). Then (using minor brute force linear algebra) we have that A 0>2 is 

given by the following factor algebra CQ/Jq ,2 where Q is the quiver

and Jo,2 the ideal of relations Jo, 2  =  zy, (z +  yx )2, (xy )2).

2) For general n, we may still describe the principal block of O ^  for 

Q =  sl2 (C) by means of quiver and relations. In fact (this time using major 

brute force linear algebra), we have that A0)n is given by the following factor 

algebra CQ/  Jo,n where Q is the quiver

C x
1 ~  2

y

and Jo,n the ideal of relations Jo>n =  (xz, zy , (z +  yx)n, (xy )n).

3) Making use of 1) and 2), one obtains the decomposition of A 0 ,2 into 

projective indecomposables:
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1
For A0 ) 3  the picture is the following:

R em ark  In Chapter 4 we will be able to describe some blocks of O^  (in-
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eluding the previous ones) using sophisticated methods due to Soergel.

□

3.3 Extensions o f fat Verma m odules

The next proposition clarifies how two fat Verma modules may (or may not) 

extend:

Proposition 3.3.1 Consider the weights a ,0  and X:

i) I f  ot < j3 then E x t1 <p(A(/?), A(ct)) =  0; 

it) I f n >  2 then E x t10(n)(A(A), A(A)) ^  0; 

in) I f  a  < 0  then E x t1O(n) (A ^ (0 ) ,  A ^ ( a ) )  =  0.

Proof

Observe that i) is a well-known result for category O and that it is a 

particular case of Hi). So, let us start with in ).

It suffices to prove the result for blocks of since there are no non 

trivial extensions between objects from different blocks. So let

0 — > A(n)(a) — > M  — ► A(n)(/?) — > 0

be a short exact sequence in O^  with a < 0, let vp be the canonical gen­

erator of A^n) (0) and pick one of its preimages mp M  lying in M^ . As 

we have already seen before in Proposition 2.2.2, the annihilator of vp in
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U(G) is generated by the (Hi — A(ifj))n’s and by Af+. The exactness of the 

above sequence implies that Annu(g)(vp)mp is contained in an isomorphic 

copy of A(n)(a) but, clearly, all the (Hi — X(Hi))n kill mp whereas Af+mp is 

either zero or contains vectors of (fat) weight higher than p. But the latter 

is impossible since a < p.

Hence Annu(g)(vp) C Annu{g)(mp) and the sequence splits.

For ii), recall that, by Proposition 2.2.1, A^(A) is filtered by some copies 

of A(A). This proves the result since A^(A) G O ^  for all n >  2.

□

C orollary  3.3.2 For all weights A the following multiplicity rule holds:

(P{n)(A) : A(n)(A)) =  1.

P ro o f

By Corollary 2.4.8 we know that A^n (̂A) appears on the top of a fat 

Verma filtration of P ^  (A) and the indices of the Verma filtration are in non 

decreasing order. But fat Verma modules do not self extend (as we have just 

seen) and P(n)(A) is indecomposable hence has simple top. From this we 

conclude that our multiplicity law holds. □
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3.4 Standardly stratified algebras

While the blocks of category O are known to be (equivalent to) module cat­

egories of quasi-hereditary algebras (or highest weight categories in the sense 

of Cline-Parshall-Scott, see [14]), the appropriate class of finite dimensional 

algebras, sufficient to describe blocks of O ^  will be shown to be the class of 

properly stratified algebras, introduced in [15]. This is a subclass of the class 

of standardly stratified algebras wherein most of the properties we are inter­

ested in may be derived. In what follows we will be borrowing from [1] which 

in its turn may be viewed as a natural continuation of Ringel’s fundamental 

paper ([29]) on quasi-hereditary algebras.

We recall the main definitions and properties.

Denote by (̂ 4, <) the basic algebra A  together with a fixed (total) ordering 

on a complete set of primitive orthogonal idempotents {ei, ...,em}. For 1 < 

i < m, let L(i) denote the simple top of the projective indecomposable 

P(i) =  Aei.

The standard module A(i) is by definition the maximal factor module 

of P(i) without composition factors L(j)  with j  > i. Furthermore, denote 

by A ^ ( i)  the maximal factor module of A(«) such that the multiplicity 

condition

[A(fc)(t) : L(i)\ =  k

holds.
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Note firstly that A^ ( i )  may or may not exist but A ^ i )  always exists 

and is called the proper standard module associated with the simple L(i). 

Secondly, observe that A(i) — A^r^(i) for some r  < dimA.

Dually, we define the costandard modules V ^ W  and proper costandard 

modules V ^ W  f°r natural numbers r and 1 < i < m.

Some basic properties of (proper) standard and (proper) costandard mod­

ules are as follows:

Lem m a 3.4.1 With the above notation, we have

i) HomA(A(i), A (j)) =  0 for i > j;

ii) E x t\(A (i) ,  A  (j)) =  0 f o r i >  j ; 

in) HomA(s/(i), v ( j ) )  = 0 for i < j ;

iv) E x t \ { \ / {l)(i), V (1)0')) =  0 for i < j ; 

v) HomA(A(i), V (1)0')) =  0 for i ^  j ; 

vi) E xt\{A (i) ,  V ^ O ))  =  0 for every i ,j .

Proof

The statement can be found in [1] (Lemma 1.2), and the proofs are, 

essentially, contained in [29]. For completeness, let us check some of the 

above properties:

53



To prove i) it is enough to observe that a non zero homomorphism between 

A(i) and A (j) would force the existence of a composition factor L(i) of A (j) 

which is impossible since i > j .  For ii), consider the short exact sequece 

0 — > A (j) — > N  — > A(z) — > 0, where N  is an ^4-module. Taking the 

projective cover P(i) of A(i) yields the following commutative diagram:

p ( i )

y  i*
0 ---- »- A (j)  -?—*■ N  — A( i )  »0

where g(3 =  n and thus g(im/3) =  A(i). Now, by the maximality of the 

standard object A(i), we have got only two possibilities left: Either im({3) 

is isomorphic to A(i) (forcing a splitting of the above short exact sequence) 

or there exists a composition factor L(k) of fi Ker(g) with k > i. But 

the latter is impossible since Ker(g) = im (f)  =  A (j) and A(y) has no such 

composition factors.

The other statements are proved in somewhat similar ways. For instance, 

in vi), if we consider a non split short exact sequence

0 — » v(1)(j) — *• N  — >• A(i) — >• 0

then, by maximality of V ^0 )>  we have J < * and, by maximality of A(i), 

we have j  > i. Hence no such exact sequence can occur.

□
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Given a category C and a subcategory 5, define BL (respectively, ±B) in 

the following way:

B1 = {C € C : E x t lc{M, C) =  0 for all M  e B}

(respectively,

±B =  {C € C : E x t lc (C, M) = 0 for all M  € B}).

Let (respectively, ^ ( A ^ ) )  denote the full subcategory of A —mod

whose objects are modules admitting a filtration the subquotients of which 

are standard (respectively proper standard) modules. Further, we will con­

sider subcategories (respectively, ^ ( A ^ ^ )  defined in a similar way

as above but where the choice of standard (respectively, proper standard) 

modules is confined to set (A ( l) , ..., A(j)} (respectively, {A ^^(l),..., A ^ (j)} )  

Our main definition is

D efinition 3.4.2 The pair (̂ 4, <) is said to be standardly stratified if aA £ 

E(A).

Going back to the Lie theoretic framework and recalling that 0^n\  is 

equivalent to mod — A \}U for some finite dimensional algebra A\,n, we have 

the following expected result:
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P roposition  3.4.3 Let ■< be a total order extending the usual partial order 

< on the set of weights. Then the algebra {A\,n, is standardly stratified 

where for w € W /W \, A ^(w .X )  (respectively, A(w.X)) is a complete list of 

standard (respectively, proper standard) modules.

P ro o f

By Corollary 2.4.8 we know that, for each p lying in the dot orbit of A, 

there exists a short exact sequence

0 —> N  p (n)(/i) -» A <">(/*) 0

where the composition factors of the top of N  are of the form L(/3) with 

p < j3 (and hence p -< (3). Now, since all fat Verma modules are filtered 

by ’’classical” Verma modules and, by the BGG theorem, the composition 

factors of Verma modules are known, we conclude that A^n\ p )  is the standard 

object of weight p. □

R em ark  It is well known (see [1], Theorem 2.4.) that if (̂ 4, <) is standardly 

stratified then

(j4, <) is quasi-hereditary <=> gl.dim.A < oo.

But, if S is an anti-dominant weight then A (£) is simple, hence, since 

A ^ (5 ) is filtered by A(£)’s, we have that

E x t1oin)(L{S),L(8)) /  0,
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for n > 1 and consequently we conclude that A \>n has infinite global dimen­

sion if n > 1.

□

Now that we know that blocks of O^  are equivalent to standardly strat­

ified algebras, we may (and will) move freely between both settings. In 

particular, we may (and will) use for OM all the results obtained in [1], 

in the context of finite dimensional standardly stratified algebras. We will 

proceed to quote some of those results:

P ro p o sitio n  3.4.4 In the above setting, if A is standardly stratified then

1) 1 ^(V (1)) = r(A);

.2) f A( V (1>) =  ^ 4 ( A ) x ;

3) The statements ii), iv) and vi) in Lemma 3-4-1 will also hold if we 

replace E x t1 by E x tk for all k > 1.

P ro o f

See [1] for details. □

In the sequel we investigate the relationship between two important sub­

categories of blocks of 0^n\  namely ^rc,(n)(A^) and The latter is

defined to be the full subcategory of O ^  whose objects are the modules 

having finite projective dimension. In this context the following well known 

result is useful:
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P ro p o sitio n  3.4.5 Let (A, <) be a standardly stratified algebra. Then we 

have

P A(A) C P<°°.

P ro o f

Let P ( 1 P(m) be the corresponding ordered set of indecomposable 

projective modules and assume m  is maximal. It is obvious that A (m) = 

P(m) and thus it has finite projective dimension. For i < n consider the 

exact sequence 0 — > K(i) — > P(i) — > A(i) — > 0 where K(i) is filtered 

by A (j)’s with j  > i. Assume by induction that proj.dimAA(j) < oo for 

j  > i. Then K ( i ) will also have finite projective dimension and the same will 

happen to A (i). □

The previous result and the next theorem have both been borrowed from 

[24]. In particular, the next result gives a sufficient condition for the inclusion 

in Proposition 3.4 .5  to be proper:

T heorem  3.4.6 Let (A, <) be a standardly stratified algebra such that 1 is 

minimal

I f  P A{A) =  P^°° then A (l) g  rad(X) for all X  in P<°°.

P ro o f See [24], Theorem 2.4. □

An immediate consequence of this is the following corollary.
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C orollary  3.4.7 Let O ^ b e  a block of O<">. Then ^ 0(„)(A(n>) C P % .

P ro o f Let us prove it for the principal block, the arguments being the 

same for any other block. By Corollary 2.4.8 the self duality of the pro­

jective indecomposable P^n\ —2p) forces it to be the injective envelope of 

2p). Since projectives have simple top, we conclude that A ^ ( —2p) C 

rad(P(n\ —2p)). □

3.5 T ilting m odules for standardly stratified  
algebras

Keeping the notation from the previous section, let us recall some classic 

terminology from tilting theory:

D efinition 3.5.1 An A-module M  is said to be a generalised tilting module

if

i) proj.dimM < oo;

ii) E x fA(M< M) =  0 for all i > 0;

Hi) there exists an exact sequence 0 —> A —> M° M p —> 0 where

M k G add(M) for all k.

R em ark

The notion of generalized cotilting module is defined dually. For more 

details on tilting theory see [4] or [22].
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□

D efinition 3.5.2 An indecomposable A-moduleT(i) satisfying the following 

two properties

i) T(i) is filtered by proper costandard modules;

ii) T(i) is filtered by standard modules where the bottom subquotient is 

isomorphic to A (i) is called a tilting module with parameter i.

Dually, we define the cotilting module with parameter i, K(i).

R em ark

In fact, if such modules do exist they need not generalized tilting modules 

in the sense of Definition 3.5.1!

□

T heorem  3.5.3 There exists a unique tilting (respectively, cotilting) module 

T(i} (respectively, K(i)) for all i G {1 , ...,n}.

A sketch of proof (which can be found in [1]) goes as follows:

P ro o f

Choose a total order that extends < and pick j ,  the successor of i. Imi­

tating [29], we build the universal extension from below of A (j) by copies of 

A(?) and proceed inductively up the chain. The module we eventually get is 

easily seen to be a tilting module with parameter i.
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□

R em ark

The module T  := nj T(i) is called the characteristic tilting module

of the algebra A. By definition we know that T  € T a (&) PI 

fact, we may quote from [1] a much stronger statement:

add(AT) =  :F (A )n .F (v (1))

which, by the way, has been implicitly used in the uniqueness assertion of 

Theorem 3.5.3.

□

3.6 Properly stratified algebras

Although some of the more relevant properties of blocks of appearing 

in our work may be viewed in the context of standardly stratified algebras, 

the appropriate class of finite dimensional algebras sufficient to describe the 

blocks of O M is the class of properly stratified algebras. As mentioned 

before, this is a subclass of the above mentioned class of standardly stratified 

algebras and was introduced by Dlab in [15]. For completeness, we quote its 

main results keeping the notation from the previous sections.
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T heorem  3.6.1 ([15], Theorem 5)

The following statements are equivalent for a finite dimensional basic al­

gebra A and a complete set (ei, e < i , e m) of primitive ortogonal idempotents:

i) aA € F { A)n;F(A <l>);

ii) aA  € IF (A) and A (i) is filtered by copies of A ^ ( t)  for all i €

{1,

Hi) E x t2A{A{i), V (1)0')) =  0 f ° r al1 h f  6 Ui —.«»};

iv) F (A )  = x F(S7 W ) and E { A ^ )  = x :F(v);

v) dimA  =  dimA(i)dim  v*1* (?) =  E H i d im A ^( i)d im  v  (*)•

P ro o f

See [15].

□

D efinition 3.6.2 A finite dimensional algebra A is said to be properly strat­

ified if its basic algebra satisfies any of the conditions stated in the previous 

theorem.

R em ark

The definition of properly stratified algebras in [15] is actually given by 

recurrence in terms of properly stratifying sequences of idempotents in a 

similar way as for the quasi-hereditary situation.

□

The expected result now is
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P roposition  3.6.3 For every weight A and for every natural number n, the 

algebra A \>n is properly stratified.

P ro o f

Looking at statement i) in Theorem 3.6.1, we need only invoke Proposi­

tion 3.4.3 and Proposition 2.2.1.

□

3.7 A rkhipov’s functor and the semiregular 
bim odule

Recall the definition of F0(n)(A ^) as the full subcategory of category O1-"1 

whose objects are modules having a fat Verma flag. The aim of this section is 

to establish an equivalence between T 0{n)(A ^ )  and F 0(n)(A ^ ) op. For n =  1 

(i.e. for category O) this was done by Soergel in [32]. There, the equivalence 

consists on tensoring over U(Q) with a certain bimodule - the semi-regular 

bimodule - which was firstly introduced by Arkhipov in [2]. Its construction 

will be reviewed below and, for n > 1 , our equivalence will follow similar 

patterns to the one established by Soergel in [32].

Let us start by making some general considerations about graded modules 

over graded Lie algebras.

It is well known that the Serre relations (and, of course, the PBW theo­

rem) equip U(Q) (considered as a ^-module under the adjoint action) with a
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natural grading: this is done by giving grade —1 and 1 to basis vectors cor­

responding to simple roots lying respectively in A/1 and A/+, and by giving 

grade 0 to basis vectors lying in %. It is also clear how U(J\f-) inherits that 

same grading.

In general, if M  and N  are Z-graded modules, denote by grHom(M , N) 

the set of all Z-graded homomorphisms from M  to N  (i.e. the direct sum of its 

homogeneous components of degree j  € Z which consist of homomorphisms 

/  satisfying f(M{) C  N i+ j  for all i  6  Z), In particular, by considering the 

trivial module C as being concentrated in grade 0, we denote by M® the 

Z-graded dual of M, in other words,

(M®)i =

where the left action of Q is given by the formula

(x f ) ( m ) = —f(xm ),

for all x G Q and for all m  G M.

It is a routine task to verify that U(N-)® is a U(N~) — U(J\f-)— graded 

bimodule via

(fn ) (m ) =  f(nm )

(n f ) (m ) = /(m n),

for all m, n G U (A/1).
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In fact, if x - a is an element of U(Af-) with grade —1 (associated to a 

simple negative root —a) and fc is an homogeneous element of U(Af-)® with 

grade i then for all homogeneous elements Uj € (U(Af-))j with j  ^  1 — i we 

have

(;X - a f i ) ( U j ) =  f i ( U j X - a ) =  0

because UjX-a lies outside U(Af-)-i.

Consider (again) the left action given by the formula

(x f)(m ) = —f(xm )

for all x  € N ~  and for all m  € U(J\f-). We will show that the transpose of 

the principal automorphism T of U(J\f-)® identifies in a natural way the two 

left actions mentioned above. Here the principal automorphism multiplies 

by —1 the sign of elements of grade 1 while the transpose of the element 

X - ai...X -aa, where a* is a simple root for all i € { 1 , s}, is defined to be 

X - a8...X -ai. We will denote the transpose of the principal automorphism T 

by T*.

Hence, if X - a is a basis element of U(Af-) of degree — 1, /  is an element 

of U(Af-)® and X - ai...X -ap is an element of grade —p then

(r t ( X - a f M X - ai...X-ar) =  ( -1  Y ( X . af ) ( X . ap. . .X .ai) =
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= (-i y f { x - ap. . .x -aix - a) = (-1 y +i} ( - x - av.. .x„aix - a) =

= (r((/))(-x_ax_Q1...x_Qp) = (x_0 (r'(/)))(^_ai...x_ap).

Now set S  := U(Af-)® <8> U(B) and consider right and left actions of 

U(Q) on S  given respectively by the transport of structure via the following 

isomorphisms of vector spaces:

U{Af-)® ® U(B) *  U(N-)® ®u(M.) U(Q)

and

grHomc (U(M_), U(B))) & grHomu{B){U{G), C2p®U(B)),

where the last tensor product is the tensor of the 1-dimensional left ^-module 

C2p (the element b =  h + ... acting like scalar multiplication by 2p(h)) by the 

left regular 13-module U(B).

The left action of U{G) on the above bimodule can be made more explicit 

via the formula:

® U(B) ^  grHomu w (U(g), C2„ <g> 17(B)) 

f ® b i — > ( b ® n — > f(n)b{l ® bi)), 

for all b,bi e  U(B),n  € U (N - ) , f  €
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Define the map i in the following natural way:

i : U(N-)®  — ► S

i ( f )  = f ®  1.

Then, in the above setting, one has:

T heorem  3.7.1 (Soergel)

1) S  is an U(Q)-U(Q)-bimodule;

2) The map i : U(Af-)® — > S  is an inclusion of U {M~)-U (N-)-bimodules 

satisfying

hi(f)  -  i{ f)h  =  2p(h)i(f) -  f(adh) <g) 1.

P ro o f

This is done in [32] and it is much harder to prove than one might expect! 

Let us check property 2) which will be used a number of times in the sequel: 

We start by showing that

h ( f  ® 1) =  - ( f ( a d h) 0  1) +  ( /  <g> ( - 2 p(h) +  h)),

for all /  € U(Af~)9 ,h  € U(H).

This is because

h ( f  ® 1 )(bn) =  ( /  0  1 )(bnh)

= ( /  0  1)(—bhn +  bnh +  bhn) =  ( /  0  1 )(—b(hn — nh) +  bhn)
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=  ( /  <S> 1 )(-b(adh(n)) +  ( /  0  1 )(bhn)

= f ( - a d h(n)b( 1 0  1) +  /(n)6/i(l 0  1))

=  (f ( - a d h) (8) l)(&n) +  f(n)b(2p(h) 0 1  +  1 0  h)

=  ( f ( - a d h) 0  1 +  /  0  (h +  2p(h)))(bn).

□

Now consider the following full subcategories M , M u ,  /C, Ku  of Q — mod 

whose objects are defined by

M  =  {M  e Q—mod : M  is a free Z —graded U(Af-)— module of finite rank},

/C =  {M  € Q—mod : M  is a cofree Z —graded U(Af~)— module of finite rank}

and (respectively, Ku) denotes the full subcategory of M  (respectively, 

K) whose objects are 7^-diagonalizable (i.e. objects which are direct sums of 

their weight spaces).

A big result that we will use in this section is the following:

T heorem  3.7.2 (Soergel) The functor A  : M  i— > S  <8>u(g) M  defines an 

exact equivalence of categories M  ~  K.

The above defined functor was introduced in [2] and since then called 

”Arkhipov’s functor” . In [32], Soergel used it to prove the above theorem. 

A sketch of the proof goes as follows:
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P ro o f

By the construction of A  it is easy to see that it is exact and maps A4 

into 1C.

Define the candidate inverse functor

B : K, — > M  

as B := Homu(g)(S, - )  =  Homu^_)(U(Af-)®, —).

Note that under B , U(Af-)® is sent to Endu(j^_){U(A/1)®) =  In

general, for M  G M ,  one has

B(A(M)) £* H om u{g)(S , S  ®v M)

£* H o m u ^ iU iA f- )® ,  U(Af._)® M).

But M is U(N~)-free of finite rank, hence the canonical map

M  — ► B{A{M )),

which sends an element m £ M  to a map

C/CA/l)® — > C/(A/1)® ®U{M_) M

is an isomorphism.
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The other direction follows similar patterns. Indeed, for K  € K,

A(B(K)) = S  Homu(M.){S, K)

=  ® u{Ar_ )  K ) ^ K

by adjointness.

□

The next result is a more detailed version of the previous theorem.

P roposition  3.7.3 The functor M  i— > (S<g>u(g)M)® defines an equivalence 

of categories M. ~  A4op with the following properties:

1) It is covariant and exact;

-2) I f  E  is a finite dimensional Tt-module then U{Q) ® u ( B )  E  is mapped to 

U ( Q )  ® u { B )  (C_2 p 0  E*)\

3) Restriction yields an equivalence A in  r \ j  M u 9.

P ro o f For the proofs see [32]. Later we will prove its ”fat” version.

□

If, furthermore, we define ^ (A ) as the full subcategory of O whose objects 

have a Verma flag, then the previous proposition can (or better, could) be 

continued in the following way:
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P roposition  3.7.4 (Soergel)

With the same notation as in the previous result we have:

4) F(A) = O n M n\
5) Restriction induces an exact equivalence ^ (A ) r\j r .

P ro o f

Let us try to look through Soergel’s ideas . We will prove 4) and 5) follows 

easily. The inclusion C is the easy one:

Let us use induction on the length of the Verma flag (which is a well 

known invariant) the initial cases being trivial.

If M € ^ (A ) and admits a submodule N  =  A for some Verma module 

A then, by induction, M /A  is a free (hence projective) C/(A/L)-module K  of 

finite rank thus forcing M =  A © K .

The other direction is harder:

Suppose M  =  Mi © ... ® Mk where all M-s are isomorphic to U(M~) as 

U(N-)-modules. Furthermore, let ra; be a free generator of M;. But Mi is 

semisimple as 1/(71)-module (i.e. Mi is the direct sum of its weight spaces) 

so we can write

mi — +  ••• +  axitS. ,

where axitj € (M*)*. for all j  G {1,..., ji}. Now pick Xk,s maximal among all 

the weights appearing in the decompositions of all the rajs and consider the



We observe that the above map is surjective by the universality of A(Afc)S) 

and the maximality of Ak,s and is injective by the freeness of M.

By factoring out A(Afc)S) from M, we obtain a module which is in O (since 

O is closed under quotients) and is (as U(Af-)~module) free of finite rank. 

The result now follows inductively.

□

What can be said in the more general context of OM?

As we have seen before, the fat Verma modules A^n (̂A) in the blocks of 

0 (»)- are the standard objects for the algebra corresponding to such block 

(which we have shown to be standardly stratified) hence it makes sense to 

define, for i < n,

^ ( A (i)) =  {M  € : M  has a fat Verma flag in (9^},

where a fat Verma flag is, by definition, a filtration whose subquotients are 

fat Verma modules.

On the other hand, we denote by M u , ( n )  the obvious ”fat” generalization 

of M% consisting of objects of M  which are the direct sum of its fat weight 

spaces.

R em ark  Observe that, as usual, .^ (A ^ ) =  !F(A). Furthermore, ^ ( A ^ )  

stands for the subcategory of O ^  whose objects are filtered by the standard 

objects (objects having ’’good filtrations” in the sense of [29]).



Observe as well that Mn,( 1) =  M-w  n

With all these considerations we are now in a position to prove

P roposition  3.7.5 The restriction of Arkhipov’s functor induces an equiv­

alence M n ,(n) ~  M n^n)^-

P ro o f

Clearly, it suffices to verify that Arkhipov’s functor sends objects of 

Mn,(n) to objects of Mn,(n)- Accordingly, let M  be an object of M-u^n) 

and let us see what happens to

(S ® u(g) M)*

= m  v_)® u(g)®umM)*.

= (t/(V_)® M)*.

For that, let uu , v2yU v2f y , - , v k < u vktik be a basis of M (xn)

where the left part of the index is labelling the layer (thus k < n) and the 

right part of the index counts the number of independent elements in each 

layer. Suppose, furthermore, that /* is a basis vector of U(Af~)® dual to a 

basis vector of U(Af-) of grade -1 , say x_Qi, where a* is a positive root basis 

element. Then, by part 2 of Theorem 3.7.1, we have

Hj( f i  Vr,p) — (fi(adHj) ® Vr,p) d- fi  0  (2/?(JTj) +  Hj )vrjf)
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(otj +  A +  0  vrjp +  fi 0  ^iayer r+i*

Hence Bi := {/* <S> vViP : 1 < r < n, 1 < p < ir} is a basis of (S 0u(g) 

M)” Q.+A+2p and clearly B f  (consisting of duals of elements of Bi) is then a 

basis of

■((S®W) M ) ® t l i+X+2„.

For an element 00 — 00—  ̂...X— nk of U(N-)  of grade smaller than — 1  

and a corresponding dual vector f x , we use the identity

fxifldh) = - (n ia i(h )  +  ... +  nka k(h))fx,

for all h € H, to prove the result in exactly the same way. In fact, if 7  =  

niot\ + ... +  nka k, we have

Hj ( f x  ® Vr,p) =  (fx(Q'djjj) 0  vrtp) +  f x 0  (2p(Hj)  +  Hj)vr>p) 

=  (7 +  A +  2p) (H j ) f x 0  vr,p + f x 0  ulayer r+1.

Hence we may conclude that (S  0u{g) M)® € Ain,(n)- 

□

As in the classical case, we will be able to show that
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P roposition  3.7.6 With the above notation, we have:

1) ^ ) )  =  o W n % );

2) Arkhipov’s functor sends A ^(A ) to A ^ ( —2 p — A);

8) Restriction induces an exact equivalence .^ (A ^ )  ~  ^ ( A ^ ) 0**.

Before launching into a long and tedious proof, we will need the following 

insultingly easy result of linear algebra:

Lem m a 3.7.7 Let Cn \̂ (respectively, C\,n) denote the nm-th dimensional 

complex vector space with an additional structure of U((H)-module given by

(respectively,

where k G {1, ...,ra}, ik G { l,...,n}  and (vai...am)a1 >...,0 me { « s  a basis of 

the underlying vector space (assuming vnegatives =  0^.

Then Cn>\  =  C*)n as Ufa)-modules.

P ro o f

The reason behind this is that the matrices

( a 1  

0

V

\

1

0 a)
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and

□

( a  0  \
- 1

0

V -1 aj

are similar.

We are now in a position to prove Proposition 3.7.6:

P ro o f

To prove 1 all we have to do is to mimic the proof of Proposition 3.7.4 , 

while 3) follows from 1) and 2).

Let us prove 2) showing that

A(n)(-A  -  2 p) “  (S  ®mg) A(n)(A))®.

Consider the map

*  ; A<")(_A -  2 p) — > ® U(B)) ®u(B) Cx,n)*

where (uai...am)aiv..jame{iv..)n} is a basis for Cn —\ —2p, ('^6 1 ...6m)f>i,...,i>me{i,...,n} is 

a basis for C \yTl, n  6  U(Af~) and Sij is the Kronecker symbol.

It is clear that ^  is a vector space isomorphism since it maps basis of the 

LHS onto basis of the RHS and it is also quite easy to convince oneself that 

preserves the U(Af-) -action. The trickiest thing to check is actually the 

action of the Cart an subalgebra. For Ilk one has
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whereas

□

V(Hk(n ® vh  i„ ) ) ( /  ® 1  ® vju...dm)

= '5f((nHk + adHk (n)) ® Vh v ) * m

=  * (n  ® K   iro -  (2 / 3  +  X)(Hk)vh  iro)+

+adHk(n) ® vh  <„)(/ ® 1  ® vju...Jm)

(2p+X)(Hk)f(n)+

+  ̂ * 1 .  • • im  >.71 • • • J m f (ad Hk(n)),

 ,J(/® 1® ^jl f-ijm )
=  —  im ( H k ( f  ® 1 0

=  “ ^rn,Ut1 im( ( ~ f ( aĉ Hk) ® 1 +

+  /  ® { 2 p { H k) +  i/fc)) ® Vjl,...,jm)

=  _ (_  f ( a(̂ Hk) ® 1 ®

+ /  ®2p{Hk) ® v jlt.„jm+

*̂1 ■■■im ,jl •■•jmS(adHk( n ) ) - 5 *1 •••imijl •••jm(2p + X)(Ilk)f{n)+
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3.8 R ingel self duality and characters o f t ilt­
ing m odules

D efinition 3.8.1 Let X be a weight. An indecomposable object T ,n^(X) in 

0 (r.) is called the tilting module with parameter A if it satisfies the two 

following properties:

1) E x t10 (n) ( (ct) ,T ^(A )) =  0 for all weights a;

ii) T ^(A ) admits a fat Verma flag with bottom subquotient isomorphic 

to A<n>(A).

Dually, we define the cotilting module with parameter A, K^n\ A).

R em ark  1) Note that from now on (until the end of this section) each state­

ment will be equipped with its dual. We will often refrain from displaying 

it.

2 ) Clearly, T<">(A) € ^ 0 („)(A<n)) n

3) By Proposition 3.4.4, the previous definition is just a redecoration of 

Definition 3.5.2!

□

As an application of Theorem 3.5.3 we get

T heorem  3.8.2 For every weight A there exists a unique tilting module with 

parameter A.
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Let A be a (finite dimensional) standardly stratified algebra and let A be 

a set indexing the simple A-modules. Then recall that T  := ®*gAT(i) is the 

characteristic tilting module for A.

D efinition 3.8.3 Keeping the above notation, the algebra E u (Ia ( T )  is called 

the Ringel dual of A.

In the case of a fat block of we have that the characteristic

tilting module is

i i n) := ®xr (n)(x.A),

where x runs through a complete set of representatives of W /W \.

The main result of this section exhibits the Ringel dual of the blocks of

Qin).

T heorem  3.8.4 (Ringel duality for )

Let O ^  be a block of O ^  and A \>n its basic algebra. Then,

A \}n =  Endoin)(T{_ l 2p).

P ro o f

Consider the equivalence

F  : ^r0 („,(A(")) — > J 7o(„)(A(n))0,>,

79



established in Proposition 3.7.3, and a projective module P(n\ a )  in 

By the properties of projective modules, we know that

Pto(a) € ^ (»)(A(n)).

Moreover, by the definition of F  and Proposition 2.4.8, we have

.F(P<n>(<*)) € PoW(A<">);
•0 =  E x t l0 ^ (P W { a ) ,M )  = E x t1oM (F {M ),F {P ^(a )) ) ,  for all M  € 

P c,(„)(A*n*). Consequently,

P(P<">(a)) € ^ w f A W j n ^ w f A W ) 1 .

But F  is contravariantly exact and preserves indecomposability, hence the 

Verma filtration of F ( P ^ (a ) )  has A ^ ( —2p — a) at the bottom, from which 

we conclude that F{P^n\a ) )  =  T ^ ( —2p — a) by the definion of fat tilting 

modules.

Now it is easy to see that the bijection

A i—y —A — 2p,

from %* to itself, permutes the dot orbits. In fact, for w £ W  and A, p £ H*, 

we have

X ~ 2p = w.(—p — 2p) <==>■ —A — p — w(—p — p) 

4=> A +  p =  w(p +  p) A =  w.(p).
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Finally, up to Morita equivalence, we have

A x,n = End0(„)(<SxP (n>{x.\))

& EndoM (®xT ^ \ - x . \  -  2p)) “  End0{n)(T^_ip),

where x  runs through a complete set of representatives of W /W \,  thus con­

cluding the proof.

□

C orollary 3.8.5 The principal blocks o f O ^  coincide with their Ringel dual. 

P ro o f

Obvious consequence of the previous theorem and the fact that 0  and 

—2 p lie in the same dot orbit. □

C orollary 3.8.6 I f  Q — s^iC) then all blocks of O ^  coincide with their 

Ringel dual.

P ro o f

For the root system Ai, the Weyl group is the symmetric group of order

2 and p equals 1. If w G W  is not the identity, we have, for all weights A € Z,

w. A =  w( A +  1) — 1 =  —A — 2,

hence A and —A — 2 p always lie in the same dot orbit.
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□

Now that we are in the mood of collecting our gains we can combine 

Proposition 3.7.3 with BGG reciprocity and the exactness of F  in order to 

state

C orollary  3.8.7 The character formulae for tilting modules look like 

„m(p(n)(A) . A(»)(a )) =  [A<n>(a ) : L(A)] =  nm[T<">(-2p -  A) : L (-2p  -  a)].

Finally, we can combine the exactness of F  with Theorem 2.4.10 to obtain 

a surprising structural result:

C orollary  3.8.8 Let be a tilting module (with parameter X) of a given 

block o fO W .

Then there exists a filtration

0 c  JVl C ... C Nnm_i C Nnm = T ^ \

where the subquotients N i/N i-i are tilting modules (with parameter X) of

O.

3.9 E xistence of projective-injective objects  
and double centralizer properties

We will start by deriving the existence of a unique indecomposable projective- 

injective object P  in each block of G^n\  Afterwards, we proceed to show that 

blocks of have a ’’double centralizer property” with respect to P.
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P roposition  3.9.1 For every weight X there exists a unique projective-injective 

indecomposable object in each block of 0^n\ .

P ro o f

It is enough to show the existence of such object at O^p, where p denotes 

the half-sum of the positive roots, and then use translation functors. Now 

O ^ - p  contains only one simple object and only one projective indecompos­

able which happens to be injective but (except for category 0 , i.e. for n =  1 ) 

not simple.

In fact,

A ^ E n d 0^{A S n\ - p ) )  = C -P,n.

But C-p^n is selfinjective, so the above isomorphism tells us that the regular 

representation is the unique projective-injective representation of A_p>n.

As for uniqueness, observe that, by Proposition 2.2.8, fat Verma modules 

have* simple socle. On the other hand, by Proposition 2.4.8 fat projectives 

are filtered by fat Verma modules hence the socle of each projective module 

p (n)(A) is a direct sum of a certain number (depending on A) of copies of the 

same simple module. The result now follows from the fact that all injective 

modules are the injective envelope of their socle.

□

Now let A  be an algebra, M  a (left) A-module and B  := EndA(M). Then 

M  is a (left) P-module and we set C := EndB{M ) (so the elements of C 

commute with all elements of B ).
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A ring homomorphism can be established

4>: A  — > C

a  ^  <l>a 5

where (j)a consists of left multiplication by an element a € A.

Then A  is said to have a double centralizer property (with respect to M) 

if <f is an epimorphism (in which case an isomorphism is induced by factoring 

out the annihilator of M  from A).

Our final aim in this section is to generalize to OM Soergel’s double cen­

tralizer theorem (see [31]), which relates the principal block of the category O 

with the endomorphism ring of its unique indecomposable projective-injective 

object.

Later in Chapter 4 we will achieve this by closely following Soergel’s 

methods but at the present moment we will mimic the ideas of [27] with 

tools borrowed from ring theory (QF  — 3 rings, dominant dimension, etc). 

In contrast with the traditional proofs (e.g. by the fundamental theorems of 

invariant theory), these techniques are virtually computation free.

D efinition 3.9.2 1) The dominant dimension of a finite dimensional alge­

bra A (domdimA for short) is the supremum of all n G N such that there 

exists an exact sequence of the form
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where the K i ’s are projective-injective objects in A — mod.

2) An algebra is said to be QF  — 3 if there exists a faithful projective- 

injective A-module.

The proof of the next crucial theorem can be found in [27] .

T heorem  3.9.3 Let A be a QF — 3 algebra and pick a minimal faithful 

projective-injective A-module (necessarily of the form Ae for some idempotent 

e). The following statements are equivalent:

i) domdimA > 2 ;

ii) A  =  End(AeeAe)-

R em ark  It is well known that eAe0? =  E n d ^A e) ,  hence ii) does assert the 

validity of a double centralizer property for A.

□

As an application of the previous theorem, one is able to establish another 

analogy with O:

P roposition  3.9.4 (Double centralizer property)

Let A be a block of O^  and Ae its unique indecomposable projective- 

injective object. Then

a) A  is QF  — 3 and domdimA > 2 ;

b) A  =  End(AeeAe)-



Proof

Let A = A \>n be the algebra corresponding to the block of and let 

Xjnin and Xmax be, respectively, the dominant and the antidominant weights 

in the orbit of A under the dot action of the Weyl group. As we have seen 

before, the socle of A is a direct sum of copies of L \ min (where L \ min is the 

simple A-module corresponding to L(Xmin) under the equivalence described 

in 3.1.1) and consequently the injective envelope of A is a direct sum of copies 

of AeAmin (where, again, this is the projective A-module corresponding to

P xn) )•Amin '
Thus A e\min is faithful and A is QF — 3.

Now, by Proposition 2.4.10, there exists a short exact sequence

0 — > A<"> (Xmax) —» P<n> (Amjn) — > M  — *■ 0,

where M  is filtered by fat Verma modules (each occurring with multiplicity 

one) forcing its socle to be a direct sum of copies of L(Xmin) thus providing 

an exact sequence of the form

0 — > A^Ama*) — ► P ^ ( X min) — ► (P<")(Amin))k,

for some natural number k (e.g. take k =  |1 V/Wa| — 1 ) where A ^(A max) is 

projective and P ^ (A mjn) is projective-injective.

Adequately tensoring with finite dimensional vector spaces produces exact 

sequences of the form



where, as before, P  is projective and the Pi s are projective-injectives in 

But, by 2.4.7, all projective objects in O^  may be obtained in a similar 

wav to P , hence A  has dominant dimension higher or equal to two.

By Theorem 3.9.3, b) follows from a).

□

3.10 A uslander’s framework and representa­
tion type

We start this section by presenting two classical results due to Auslander 

(see [3], section 5). In the sequel, we assume that A  is a finite dimensional 

algebra and { L (A) : A 6  A} is a complete collection of non isomorphic simple 

A-modules. Let Ai C  A and define both P(Ai) := @ AeAl P(A) and A Al =  

EndA(P( AO)0?.

P roposition  3.10.1 (Auslander, [3])

With the above notation, the following statements are equivalent for an 

A-module M:

1) M  is Ai-projectively presented (i.e. there exists an exact sequence of 

the form

P2 —̂ P\ —y M  —y 0,
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where the P i ’s are quotients of direct sums of P(X)  ’s with A E Ai);

2) There exists an A-module N  such that M  =  P(Ai) <8 u Al N

(in fact, up to Morita equivalence, A&x — eAe for some idempotent e).

P roposition  3.10.2 (Auslander, [3])

The full subcategory B{Ai) of A\-projectively presented modules is equiv­

alent to the category of A ^-m od  (via induction and restriction).

An immediate consequence of the previous propositions is the following

C orollary 3.10.3 Let A \ iTl be a block of and A \>ne\ the ’big projective’. 

Then e\Ax,ne\-™>od embeds in A\^n-mod .

Furthermore, the above embedding preserve indecomposability.

R em ark  With similar arguments to those in [1 1 ] it could be shown that 

under the same assumptions of Corollary 3.10.3 one has that e\A\,ne\ -mod 

embeds in 

□

E xam ple 3.10.4 Let A be the principal block of 0^(sl2{C )). Then, ac­

cording to the example described in Section 3.2 , the local algebra eiAe\-mod 

is isomorphic to C[X ,Y ] /(X 2, Y 2). Thus eiAei-mod is a well known tame 

algebra.
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We will now proceed to classify the blocks of O ^  according to their 

representation type. For n — 1 this task is much harder and has been done 

in [19] and [11].
I

Recall, after Drozd (see [17]), that the representation type of every finite 

dimensional algebra (over an algebraically closed field) falls into one, and 

only one, of the following cases: finite, tame or wild. Further, if A and B  are 

two finite dimensional algebras of infinite representation type (i.e. with an 

infinite number of indecomposable modules) and there exists an embedding 

from A — mod to B  — mod preserving indecomposability then

• If B  is tame then A  is tame.

• If A  is wild then B  is wild.

Having this in mind and looking back at Corollary 3.10.3, we conclude

that the classification of the algebras e\Ax,nex according to their representa-
!

tion type is of fundamental importance to achieve our main goal. For n =  1, 

the most difficult situation, this has been achieved in [2 1 ].

By deep results of Soergel (see [31]) the algebra exAx,\ex is a well known 

geometric object: the algebra of coinvariants (associated with the Cartan 

subalgebra TV). Until the end of this section, we will assume the validity 

of an important structural fact that will appear in more detail in the next 

chapter: then, we will be able to quote from Soergel that
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e \A \ ine\ S  U(H)Wx ®u(n)w U (H )/h ,n.

where U{Ji)w is the subalgebra oiU^H) generated by all elements which are 

fixed under the (natural) action of W.

We denote the algebra on the RHS of the above isomorphism by C ^  and 

call it the ”fat algebra of coinvariants” of the block . For n = 1 we will 

denote the algebra of coinvariants by C\.

Observe that is a finite dimensional, local, symmetric and commuta­

tive algebra (since C\ is and the ring structure of C ^  follows easily from the 

ones of C\ and U ( 7 i ) / I x , n ) -  But the tame, local, symmetric, commutative 

algebras are classified in [18], Theorem III. 1 (following ideas from [30]). They 

have the form K[X, Y]/I,  where I  is an ideal of the following type:

1) I  =  (X m +  Y n, X Y )  where m  > n > 2 and m  +  n > 4;

2 ) / = ( X 2, r 2);

3) I  — (X 2, Y 2 — X Y ) ,  where K  is a field of characteristic two.

In particular, any such algebra with minimal number of generators greater 

than two is wild.

The theory described above seems to have been tailor made for our sit­

uation. In fact,the previous observations immediately imply our next result 

which describes the representation type of the fat algebra of coinvariants.
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T heorem  3.10.5 Let n > 1 and let C ^  be the fat algebra of coinvariants. 

Then

i) is of finite type if and only ifrank(Q) =  1 and W  =  W\.

ii) c<"> is tame if and only if rank{Q) =  1 and W \  =  1  or rank{Q) =  2, 

n = 2 and W  =  W\.

P ro o f

For all situations apart from the above cited ones, it is easy to spot three 

or more generators for C[n\  In fact, C ^  is graded (e.g. by giving grade 

1  to basis vectors of H), hence all independent vectors of grade 1  must be 

contained in some minimal generating set.

Now in i) we are talking about C[X ]/(X n) which is clearly of finite type. 

In ii), if rank(Q = 1 ) and W \ = 1, we have the algebra C[X, Y ] / (X n, X 2 — 

Y 2) which for n =  2 falls into case 2 (see above) and for n > 2 falls into case 

1. The last assertion is less obvious. To see it we have to check the following 

isomorphism of algebras:

C[x, y]/(xn, x 2 -  y2) -» C[X, Y ] / (X n + F ”, X Y )

x ^ X  + Y  

y y-t X  — Y.

In the last situation, if rank(Q) = 2, n = 2 and W  =  W\, we are in the 

presence of C [X ,Y ] /{X 2, Y 2), so, again, we fall into case 2.
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□

Now the classification for the blocks of O^  is just a matter of ’’copy and 

paste” :

T heorem  3.10.6 Let n > 1 and let be a block of Then

i) is of finite type if and only if rank(Q) =  1  and W  = W\;

ii) is tame if and only if rank(Q) =  1  and W \ — 1  or rank(Q) =  2, 

n =  2 and W  =  W\.

P ro o f

There is only one situation to analyse (since, in the two others, the blocks 

coincide with their fat algebras of coinvariants): the regular blocks of sl2(C). 

But these algebras were described in Section 3.2. They constitute an example 

of special biserial algebras which are well known to be tame (see [18] again). 

□

3.11 K oszul duality: the first drawback

We start this section with the definition of Koszul ring:

D efinition 3.11.1 A Koszul ring is a positively graded ring A  = ®j>0Aj  

such that

i) Ao is semisimple;
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ii) As a graded left A-module, >lo(— ©~^a~) admits a graded projective 

resolution

... —> P2 — y P \  — y P q  — y A q  —y 0 

such that every projective module P i  is generated by its degree i component.

For an algebra A, denote by E(A) the vector space 

®n>oExf^(A/Rad(A) , A j  Rad(A))

made into a ring via the Yoneda multiplication (see [8 ] or [13] for more

details). We will refer to E(A) as the Ext-algebra of A.

If Ao î denotes the basic algebra corresponding to the principal block of 

category O then Beilinson, Ginzburg and Soergel proved in [7] the following 

theorem:

T heorem  3.11.2 1) There exists an isomorphism of C-algebras

Ao,i — E ( A 0ti)\

2) E (A q̂ ) is a Koszul ring.

P ro o f This is Theorem 1.1.1. of [7]. □

Since the algebras A qjU have infinite global dimension for n > 1 , there 

is no hope of finding an isomorphism between A q>n and its Ext-algebra. In 

fact, the following example illustrates how ’’far from isomorphic” can Ao,n 

and E{A^n) be:
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3.11.1 Example: The Ext-algebra of $

Going back to Section 3.2, recall that the basic algebra corresponding to the 

2 —fat principal block of s ^ C ) , Ao,2 , is given by the following factor algebra 

CQ/Jo,2 , where Q is the quiver

0 ^ 2
y

and J 0 ,2 is the ideal of relations Jo,2 =  (x z , zy , (z + yx)2, (xy)2).

The projective resolutions of the simple modules L(l) and L(2) are

. . .  —y -^(l) © 1 (̂2 ) -^(1 ) © ■̂>(^) —̂ -^(1 ) —̂ l '( l )  —̂ ^

and

... P{ 1) © P (2) -> P( 1) © P{ 2 ) P( 1 ) P (2) L(2 ) -> 0

where P(z) is the projective cover of L(i) and all the terms in the above 

resolutions which are not on display are of the form P( 1) © P ( 2 ).

After some not very difficult calculations we reach the conclusion that 

E(A0t2) is given by following factor algebra CQ /K  where Q is the quiver

and K  the ideal of relations K  — {xy, yx, yk — z2y , kx — x z2).

The algebra CQ /K  is iiot even finite dimensional!
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It is obviously a graded algebra (for being an Ext-algebra) where its 

generators x, y and z have grade 1 , while /c has grade 2 .

The graded layers of A q>2 may be depicted in the following table:

1  1 1  2 2  -> 1 2  —> 2

grade 1 z X y
grade 2 z 2 xz zy k
grade 3 z 3 x z 2 z 2y x z y
grade 4 z4 x z 3 z %y k2
grade 5 . . . . . . . . . x z 3y

. . . . . . . . . . . . . . .

Observe that E(A q$) is not generated by the set elements of grade 0  or 

1, hence A0 ,2  is not Koszul.

3.12 Exam ple

To illustrate our previous results let us look at what happens in the principal 

block for n =  1  and n ~  2 .

In the following table, observe how fat Verma (respectively fat projec­

tive, fat tilting ) modules are filtered by Verma (respectively projective, tilt­

ing) modules from category O. Observe, as well, that projective and tilting 

modules are filtered by Verma modules with multiplicities agreeing with the 

character formulae described in Corollary 3.8.7.
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A ,i A ,2

A ( - 2 ) 1
1

1

2

A(0) 2

1

1

2

1

1

P ( - 2)
1
2  
-I

2

1  1
1

2

1

2

P( 0) 2

1

1

2

1

T ( - 2) 1
1

1

1

2
1

1

T(0 )
2

1  1

'•
1

2

1
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Chapter 4 

Towards exam ples

4.1 Generators o f Verma subm odules

We begin this chapter describing some (quite elementary) features of Verma 

modules in category O.

The aim of this section is to investigate the existence o f’’nice” generators 

of submodules of Verma modules which are themselves isomorphic to Verma 

modules. By a ’’nice” generator we mean a generator of the form

where the a / s  are simple roots and v\ is the canonical generator of A (A). 

Our main tool is the following very well known result

P roposition  4.1.1 Let X be a weight such that sa.A < A for some simple 

root a. Then

•V—a

where i\,a =  (^ + A  sa(A +  p)), generates a submodule isomorphic to A(sa .A).
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Proof

This is Proposition 7.1.15 of [16] .

□

In further computations with root systems of rank 2, the following lemma 

is useful:

Lem m a 4.1.2 Let Oi find 0 2  be simple roots. Then

Sot2"Sai * A  ^  ^ c c i  • A <£=>> (A +  p )(# 2 ) — (A +  p)(Hi)(sai, sa2) > 0.

Proof

This is straightforward since

Sqjj.Sqii.A sa i.A

=  A — (A 4- p, 0 1 ) 0 1  — (A — (A +  p, q:i)q:i +  p, 0 2 ) 0 2  — (A — (A +  p, 0 1 )0 1 )

=  A — (A +  p, o i ) ( o i  — (0 1 , 0 2 )0 2 ) — (A 4- p, 0 2 ) 0 2  — (A — (A 4- p, 0 1 )0 1 )

=  ((A +  p, 0 i ) ( 0 i , 0 2) — (A +  p, 02))02-

The next lemma allows us to compute our desired generators of Verma 

submodules for all Verma modules of rank 2.



Lemma 4.1.3 Let 7 be a positive root of the form

7  =  nia i  +  n2a  2, 

where n\ and n2 are non zero positive integers. Suppose that

(A +  p)(H!) > 0, (A 4- p){H2) < 0 and (A +  p)(tf7) > 0 .

Then,

^a2 *̂ ai*A ^  Sai-A-

Proof

Two cases may occur:

Case 1 : 7  =  niOi +  n2a2 with 0 < n\ < n 2.

In this case, since (A +  /o)(#7) > 0  we have that (A +  p){H\ +  H2) > 0 

and consequently (A -f p){H2) — (A +  p)(Hi)(sai, sQ2) > 0. Hence, by Lemma

4.1.2, we conclude that sQ2 .5 a i.A < sQl.A.

Case 2 : 7  =  2oi + a2 , 7  =  3ai +  a2 or 7  =  3o:i +  2a2.

The first situation may happen in types B2 and G2 while the second 

and third situations happen only in type G2 (in all cases a i is the short 

simple root). In all three situations we have to verify directly that every 

weight A lying in the region defined by the hypothesis of the lemma satisfies



4.2 General formulae for fat Verm a m odules

We want to understand how reflections act inside the fat Verma modules. 

More accurately, we want to derive a formula describing X la. (X x_a v\) where 

i is a positive integer, v\ is the canonical generator of A^n (̂A) and is a 

simple root.

To get there let us start by fixing weights a  and A and define recursively 

the weights rrii(a, A) in the following way:

i !
mi (a, A) =  A, 

m 2  (a, A) =  2 A — a, 

m 3 (a, A) =  3A — 3a, 

m 4 (a, A) =  4A — 6 a,

mi(a, A) =  mj_i(a, A) +  A — (i — l)a .
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Observe that rrii(a, A) are still integral weights. Observe, as well, that the 

m^’s could, equivalently, be described in the following way, for all positive 

integers i :

( . ^ - 1 )
m j ( a ,  A) =  %X   — a .

z

Then, if v \  denotes the canonical generator of A (A) and aj  is a positive 

root, we have a first formula for the action of the X Qj’s on the generators of 

Verma modules in category O:

P roposition  4.2.1 With the above notation

xta j (x - ajvx) = m i ( a j , \ ) { H aj) m 2 {aj , \ ) { H aj). . .mi {aj ,X) (H0lj)vx ,

i

or, equivalently,

V (H aj)x ' - lXi-a)vx.

P ro o f

Let us prove the formula by induction on i. The case i = 1  tells us 

what we already know: X ajX - ajv\ — Hajv\ = X(Haj)v\. Now, assuming the 

validity of the formula for i — 1 , one has

X^XL^vx =  X ' - lX - ajX ajXi~a)vx +  ( A  -  (< -  1 )aJ)(Hai ) X i - 1XL%vx

(
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=  x'â xiajxaixi-a]vx +  ( > - ( < -  i)aj +  a — (* — 2)aj)(ffOj0 * i ; lx r a>A

= (A — (i — 1 )aj +  A — (i — 2 )aj +  ... +  (A — aj) +  A )(Haj)X la . 1X t_^.v\

= X)(Haj)m2(aj , \ ) (H aj)...mi(aj , \ ) (H a.)v\.

□

The next lemma hides the ’’easy part” of the BGG theorem (see Theorem 

2.4.12).

Lem m a 4.2.2 Let aj be a positive simple root and i := ix,aj =  sa -(A+

p)). Then A)(Haj) = 0.

Proof

In fact,

mi(aj, A )(Haj) = (A+p, saj ( \+ p )) \(H aj) — ((A+p, saj (A+p))((A+p, saj (A+p))—1))

=  (A +  p, sQj (A +  p))(X(Haj) +  1 — (A +  p, saj (A +  p)))

=  (A +  p, 5a.(A + p))(X(Haj) -  (A +p)(Haj +  p(Haj)) = 0.

□

With this in mind, fix weights a  and A together with a positive integer i 

and, for j  G {1,..., m  — 1}, define weights Aj(a ,  A, i) in the following way:
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A${a, A, i) = m i(a , AJmj^a, A)...rai(a, A)

A i(a ,X ,i)=  ^  Simi(a, A)ra2 (a:, A)...fn^(o;, \)...rrii(a, A)
l < S l < t

A2(a, \ , i )  =  £  5 iS2 mi(o!, A)ra2 (a!, A)...raSl(a!, A)...m S2(a, A)...rrii(a, A)
1 < S 1 < S 2 < 1

Aj(a,A,z) =  £  si...5jm i(a, A)ra2 (a:, A)...mSl(o;, A)...mSj.(a, A)...mi(a, A).
l < S l < . . . < 5 j < t

With the above notation, we can prove the following auxiliary result which 

will be very helpful later on:

Lem m a 4.2.3 For all simple roots otj and all weights A and all positive 

integers i we have

1) A i(aj, \ , i ) ( H aj) ±  0;

2) I f  (A +  p)(Haj) < 0 then A^otj, A, i)(Haj) ±  0.

Proof

Let us start by proving 1): denote the integer X(Haj) by a. Then

i
Ai(ctj, A, i) =  ^  s(a(2a — 2)(3a — 6 )...s(a — (s — l))...(z(a — (i — 1))))

S = 1
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Therefore, Ai(aj, A, i)(Haj) ^  0 if a > i — 1 (in which case it is always 

positive) or a < 0 (here the sign depends on the parity of i). If a € { 0 , i — 

1 }, it annihalates all factors of the above expression except one. Thus the 

result follows.

To prove 2) it suffices to observe that

A 0(a j , \ , i ) (H aj) / 0  <$=» X(Haj) { 0 ,1 ,...,^ ,^  ~  !}•

This follows from simple calculations since, by definition, Ao(aj, A, i)(Haj) 

is non zero if and only if m s{aj, A){Haj) is non zero for all 5  € {1,...,«}. But 

ms(aj, A)(Haj) =  s \ (H aj) — s(s — 1 ) =  s(X(Haj) -  s +  1 ) hence the result 

follows.

□
i  i

Now recall that the homogeneous elements v x ^  6  A ^(A ) were de­

fined in Chapter 2  as

vxm =  (Hai ~ \ (H ai))k'...(Ham -  A(Ham))k~vx,

where a i , ..., a m are the simple roots.

The version of Proposition 4.2.1 for fat Verma modules goes as follows:



P roposition  4.2.4 Let otj be a simple root. With the above notation, we 

have, for every positive integer i ,

X %aj X %_ajV\j6u..'jtm — ^2fAp{OLj, X,i)(Haj)vx,ki,...{kj+p),...,kr
p= 0

or, equivalently,

X a j X - a j V\,ki , . . . ikm — m i { a j i ^ ) ( H a j ) X aj x - a j V\,ki , . . . , kTn+iXaj X _ a j V\,ki,...(kj+p),...,k 

P ro o f

In the same lines of the proof of Proposition 4.2.1, we proceed by induc­

tion. For i = 1 , we have

XajX-ajVx,ki,..,km ~ HajV\,ki,..,km 

=  X ( H a j )Vx,ki , . . ,km  d *  Vx,ki,. . . ,(kj +  l) , . . . ,km'

Now, assuming the validity of the statement for i — 1, we have

X^Xt^vx) = xiT1x_a.xQj.(xi-SA)+

+( A -  (< + +  x % lx “ vXM,...tkj+1)t. ^

=  rmiaj ,  X)(Haj)X l- lXL-a)vxM ,..,,k̂  +  iX ^ 'X '^ v x M , . , ( k j+i),..,k, 

□
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Later on we will make use of the following corollary: Using Lemma 4.2.2, 

a particular case of the above proposition is given by the following corollary:

C orollary 4.2.5 1) If ctj is a positive root and i := i\,aj =  (A+p, saj (A+p)) 

then, keeping the above notation, we have

i

K ^ i aivx =  £ > » ( “ ;•> \ , i ) (H aj)(Haj -  H H aj))pvx,
P = 1

where A\{oij, A, i)(Haj) ^  0;

2) I f  a s and otj are simple roots, i := i \>ctj = (A +  p, saj (A +  p)) and r is 

a positive integer then, keeping the above notation, we have

r i

=  A ,r)(tfQ.) \ , i ) (H aj)(Ha - \ { H a.)Y (H a - \ { H aj)Yvx,
9=0 p= 1

where Ao(os, A,r)(Haa)Ai(ctj, A,i)(Haj) ^  0.

P ro o f

Assertion 1 ) is the combined application of Proposition 4.2.4 and Lemma 

4.2.2 while assertion 2) follows directly from Proposition 4.2.4 and Lemma

4.2.3.

□
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4.3 Self extensions o f simples in O M

We are now in a position to prove one of the main result of this chapter: 

the determination of the dimension of the E xt 1 spaces between all simple 

modules in each block of O ^  for semisimple Lie algebras of rank one and 

two (and a sharp bound in the general case). Note that the choice of coho­

mology is being made by identifying an object in E x t lQ{n)(L(a), L(j3)) with 

a(n equivalence class of a) short exact sequence

0 — ► L(0) — > M  — > L(a) — > 0

with M  e  0 (n).

To relieve a bit the burden of notation, we will split the result into two 

theorems.

Firstly let us introduce some terminology. If a < b for some partial order 

<, let us write a -< b whenever a is an immediate predecessor of b. If w € W, 

define

H{w) = {H7 : s7w •< w}.

Denote the cardinality of H(w) by h(w) and observe that, by the BGG 

theorem, the elements of H(w) parametrize part of the composition factors 

of the top of the radical of the Verma module A(w.X), where A is a dominant 

weight . Observe, as well, that h(w) < m. In fact, H(w) consists of linearly 

independent vectors of %* and therefore we may construct a basis

B{w)
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where {ji, ...,jk(w)} Q {1, Observe that k(w) =  m — h(w).

Now, if 7 , 7 1  and 7 2  are positive roots such that 7  =  7 1  +  7 2 , we have that 

i / 7  G H(w) forces Hlx G H(w) or i / 7 2 G H(w). Hence, we may conclude 

that if # 7  G H(w) and 7  =  niaaia , where the n^’s are positive integers 

and the c^’ are simple roots, then Haia is an integral linear combination of 

the elements of H(w). This allows us to rewrite

B(w) :=

With these observations in mind, we are now in the position to prove the 

main result of this chapter:

Theorem 4.3.1 With the above notation, we have, for n > I, w G W  and
f

X dominant,

1) d im E xt 1 {n)(L(w.X), L(w.X)) > k(w);

2) I f  rank{Q) < 2 then dim E xt 1 (n)(L(w.X), L(w.X)) = k(w).

Remark

It is well known that for every weight A we have dim E xtl0 {L{\), L{\))  =  

0. This follows immediately from the fact that the simple modules in O have 

one dimensional highest weight spaces and % acts diagonally on them.

□

Proof
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To make notation slightly easier, set 0 := it;. A. We are trying to count 

the number of composition factors in the top of the radical of P n{0) that are 

isomorphic to L(/3) but since we are dealing with a properly stratified algebra 

this number equals the number of occurences of L(0) in the top of the radical 

of A n(0). But simple modules are quotients of fat Verma modules which are 

themselves filtered by (usual) Verma modules . Hence, if such a self extension 

does exist it is isomorphic to a quotient of A ^ ( 0 )  and its generalized 0- 

highest weight space admits the images of vp and (H — 0(H))vp as a basis, for 

some H  G B(w). Now, by the ’’recognition” Lemma 2.4.1, each highest weight 

vector of the form (H  — /3(H))vp, with H  G B(w), generates a submodule 

of A (”)(/?) with simple top L{0) (it is easy to check that ((H  — 0{H))vp) =  

A(n-1)(/?), for all H  G B(w)). In fact, denoting by N  the submodule of 

A ^  (0) generated by all vectors of the form

(H -  0{H))vp,

where H  G B(w), there is a short exact sequence

0  — > N  — > A<n)(/?) — > A(/?) — ► 0 ,

where, by the PBW, the elements (H  — 0(H))vp, with H  G B(w), lie in the 

top of N. Hence, viewing A(/?) as the top Verma subquotient of A ^ (0 ) , we 

have
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( H - P ( H ) ) v f f e top (H ad(A ^(0 ))  <=> ( H - P ( H ) ) v f, t J 2 U(S '>w*’
i = 1

where {iui, ...,wp} are preimages of a basis of top(Rad(A(/3))).

To prove 1 ), start by observing that, again by the BGG theorem, we may 

pick sums of elements of the form

where T := —k\(3\ — ... — kifr is of the form /? > s7l./? >  ... >  sln...slk.(3 =  T 

for some positive roots 7 1 ,..., j n, as preimages of a basis of Rad(A(/3)). In 

particular, all simple roots appearing in the decomposition of — r  belong to

, •••, Otik }.

Now if u € U(Q) is such that belongs to the fat ^-weight
/ ’ 1 '

space of A n(/3) then, by the PBW Theorem, we have

uXV-*V/>eCIff«.

This shows that (H —(3{H))vp € to p (R a d (A ^ (/?)) for all H  € {Hjl t ..., Hjk(w)} 

thus proving 1) since the elements Hjlf ...,Hjk{w) are linearly independent.

To prove 2), suppose 7  is a positive root satisfying H1 G H(w). Suppose, 

further, that 7  is of the form

7  =  n iai  +  n2a  2,
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where the a^’s are simple roots and the n*’s are non negative integers. Then 

two situations may occur: If one of the n^’s is zero, say n i, then X %_^£*vp 

generates a submodule of A ^(/?) with simple top L(sQ2 ./3). By Corollary 

4.2.5 1), we conclude that

(H2 - t  top(Rad(A^(l3)).

If both ni and n2 are non zero then we may assume that Hi € H(w) 

and H2 & H(w). In other words, we may assume that (/3 +  p)(H\) > 0 and 

(/3 +  p)(H2) < 0. Then we argue as above to conclude that

(tf, -  <jL top(Rad(A ^  (/?))

and, since Lemma 4.1.3 tells us that

S(X2"Sai-(3 — Sai'P — 

we use Corollary 4.2.5 2) to conclude that

(H2 ■ d(H2))c.t ? t o p ( R a d ( A ^ ( m ,

thus finishing the proof.

□
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4.4 Extensions of non isomorphic sim ples

Now suppose that a  and (3 are two different weights yielding non isomorphic 

simple modules L(a) and L(P) in O. Then we have

T heorem  4.4.1 There is an isomorphism of vector spaces

E x t ^ L ^ U f i ) )  £  E x tlo (L(a),L{0)).

P ro o f

Suppose there is a short exact sequence

0 — > L{0) — > M  — y L(a) — ► 0

with M  e 0 (nK

The result is obvious if M  is a trivial extension and is also obvious if a  ^  p  

or P ft. a  in which case L(a) and L(P) have different central characters and 

thus cannot extend non trivially. Now if M  is a non trivial extension and 

P < a  then M  is cyclic generated by any non zero element v such that 

v £ L(P). In particular, M  is generated by any non zero element belonging 

to the one dimensional generalized highest a-weight space. Hence, Ti acts 

diagonally on the generators of M  and consequently on the whole M. Finally, 

by using the duality i of O ^  (see Chapter 2 , Theorem 2.4.17) we observe 

that

E x tl0{n)(L(a),L(P)) =  E x t l0{n)(L((3),L{a)),
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thus proving the result.

□

R em ark  Since

dim E xtl0 (L(a) , L((3))

is given by the Kazhdan-Lusztig conjectures (a theorem for category O , see

[1 2 ]) , the above result enables us to construct the quiver for all blocks of 

O for Lie algebras of rank one or two. □

4.5 Quivers of

Using the results of the previous section, one can display the quivers of all 

blocks of O for semisimple Lie algebras of rank 1 or 2. Here are some 

examples:

Type Ai, singular block

0
1

Type Ai, principal block 

2
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Type A 2, singular block

Type A2, principal block

Type B 2, principal block

Type B2, singular block
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Type G2 , principal block

R em ark  The quiver corresponding to the singular blocks of type G2 coincides 

with the quiver corresponding to the principal block of type A2. Similarly, 

the quiver corresponding to the singular blocks of type B 2 coincides with the 

quiver corresponding to the principal block of type A\  x A\. □
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4.6 Quiver A N D  relations for

4.6.1 Painting a stolen car

Our next aim is to describe combinatorially the fat blocks of 0^n\  For that 

we will need three theorems (and a corollary) due to Soergel. Actually, all 

the results in this section were borrowed from [33] and [31].

Firstly, let us see how the endomorphism ring of the self dual indecom­

posable projectives of O ^  looks like.

Let A be an integral antidominant weight and let Wq denote the longest 

coset element in W /W \.  Then

T heorem  4.6.1 (Soergel, [33], Theorem 9)

With previous notation,
. i  i

End0(n)P ^ (X )  =  U{H)W> ®u m w U (U )/In,x.

If n =  1, the above ring is the algebra of coinvariants associated with 

the vector space %. For arbitrary n we will simply call it the ”fat algebra 

of coinvariants” and denote it by C ^  (or simply C ^  if it is clear we are 

dealing with regular weights).

It is clear that Theorem 4.6.1 allows us to construct the functor

V := Y x := # o m 0 <„,(P<n>(A), - )  : > U{H)Ŵ  -  mod -

with the remarkable property that
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T heorem  4.6.2 (Soergel, [33], Theorem 11)

The functor V is fully faithful on projectives.

In other words, there is an isomorphism of vector spaces

Homg(P,Q) “  Homc {n)(V(P), V (Q))

for all projective modules P  and Q in .

R em ark  On the level of finite dimensional algebras, the functor V could be 

(re) defined as

V  : Ax,n — > C<") -  mod

M  i—>■ e \M

where Ax,ne\ is the ’big projective’.

Observe that by setting P  =  Q =  A \ jn, the definition of V together with 

the above theorem imply the validity of the double centralizer property which 

has been shown in Proposition 3.9.4.

□

If one wants to compute examples it is therefore of great importance to 

obtain a description of the right hand side of the above isomorphism.

Let us see how that can be achieved. To save energies start by assuming 

that A is regular and for each simple reflection s consider the translation
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functor through the s-wall, 6S. Now for x  G W , x  =  sr ...s2 5i being a reduced 

expression and A dominant, we have

(*) 0Sl...0Sr(A^(A)) =  P ^(x .A ) © (©projectives of the form P^n\ y . A)),

with y < x  (for the Bruhat order on W).

Finally, the above identity stresses the need for a somewhat simpler de­

scription of the composition functor Vo Qs which is given by the next result:

T heorem  4.6.3 (Soergel, [33], Lemma 10)

There exists a natural isomorphism of functors from to — mod,

V o  J , S C W « (cW), V,

where (C ^)*  denotes the invariants of C u n d e r  the action of the reflection

S.

The dream corollary (modulo the sentence ” a summand of ”) is

C orollary  4.6.4 (Soergel)

If  x  = sr ...s2Si Is a reduced expression then the module V (P^(A )) is a 

summand of

0(C'(n))«2 ’** ^ ( ^ O / ^ n . A -

R em ark  Before giving examples, let us stress that this method works (up 

to minimal modifications on the multiplicities in formula (*)) in the singular 

situation as well. See [31] for more details.

□
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4.6.2 Example: Regular blocks of typ e A\

Basically, we will try to describe all V(P)'s for all projective indecomposable 

modules P  and all C^-homomorphisms between them. In the sl2{C) situ­

ation, if we identify the coroot a v with the indeterminate X , we have, by 

Theorem 4.6.1, that

C<"> =  C[X] ®c[* 2] C[X]/(X"),

which is isomorphic to the polynomial algebra C[X, Y ] / (X 2 — Y 2, Y n) and 

its radical (and socle) layers can be depicted as follows:

X Y

X Y n —2 Y n —1

X y n -i

where the arrows represent the action (by multiplication) of the genera­

tors X  and Y.
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Following Soergel’s theory, we can now identify

V(A(n)(0)) ^ < X  + Y  > 

as C^-modules. As C-basis one may pick (X  +  Y , X Y  +  Y 2, . . . ,X Y n~2 +
y n - i ^ y n - i )

If n=2 then C ^  is represented by

X Y

X Y

while M  := V(A(2 )(0)) = <  X  +  Y ,X Y  > . It is easy to find a C-basis of 

homomorphisms between these two modules which is listed below:

M

c<2>

idc-2 

ai 1 : 1 1—̂ X
bi’i

C i,/: 1  1—>• X Y

Ui, 2 : 1 l—̂ X  +  Y  
b i ,2  : 1 i-> X Y

M &21 : X  + Y  y-t X  + Y  
b2,i +

id m 
a2 ,2  +

If we denote x  := 0 1 ,2 , y := «2 ,i and 2  := 0 2 ,1 0 1 , 2  — 2ai,i, the C-algebra 

Ao, 2 is Morita equivalent to the factor algebra CQ/Jq,2 , where Q is the quiver
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X

0 7 - ^ 2

and Jo, 2 is the ideal of relations Jo,2  =  (z y ,x z , (yx — z )2, (xy)2).

Observe that Ao# is graded by giving grade 1  to x  and ?/, and grade 2  to 

z. The grading filtration of Ao^ looks like

1 2

; >
while the radical filtration of Ao^ may be depicted in the following way:

1 2

1 1 2  ® 2  

; >
In the same spirit, some slightly harder computations would show us that 

for n > 1  the algebra A0jn is Morita equivalent to the factor algebra CQ/Jo,n 

where Q is the quiver

2y

and Jo,n is the ideal of relations Jo,n =  (zy ,x z , (yx — z)n, (xy)n).
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4.6.3 Example: Singular blocks of typ e A<i

Start by identifying X  and Y , respectively, with the coroots a v and /?v in 

such a way that sa(Y) =  X  +  Y  =  sp(X). Furthermore, consider a singular 

weight A (different from — p) sitting on the sQ-wall.

Borrowing from [34], we know that for sl^C)  the fat algebra of coinvari­

ants is given by

(?(n) =  C[X, Y] ®C[X2+XY+Y2,2X*+3X2Y-3XY2-2Y3] C[AT, Y } /(X n, Y n). 

Now, according to [34], the elements

1 0 1 , x ' 0 1 , y  0 1 , x 2 0 1 , y 2 0 1 , x 3  0 1

form a basis of C^  and, denoting X  +  2Y  by a, the elements

1 , a 0  1 , a2 0  1

form a basis of . From here we can easily build a basis for C ^  and C ^  

and we observe that the elements A : = a 0 l , Z : = l  and W  := 1 0 y  generate 

as an algebra.

Again following Corollary 4.6.4, we are able to describe the indecompos­

able Cj;7̂ -modules V (P^(A )).

Their structure is described in the tables below. We will abbreviate the 

expression a 0 (c<n))j« ®c simply by (a,b,c) and on the bottom of

the table one finds the (non obvious) action of the generator A. The action 

of A  may also be seen in the pictures as represented by a dotted arrow.
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0.

Y l'i



V(A(2>(Sl3.A))

(1, 1, 1)

(1,1 ,z) (1,1, w) a , x , i )

(1,1, ZW) (1 ,X ,Z )  (1 ,X ,W )

(1 ,X ,Z W )

A.(1,1,1)=4(1,1,Z)+2(1,1,W)-3(1,X,1)
A2 .(1 , 1 ,1) =  7(1,1 , Z W )  -  6 (1 , X, Z) -  3(1, X, W) 

A.(1,X,1)=3(1,1,ZW)-2(1,X,Z)-(1,X,W)

Z W

A.1=2W+Z
A.Z=2ZW
A.W=ZW
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After some long and tedious calculations, we are in a position to exhibit 

a set of independent generators of the homomorphism spaces between the 

V (P)’s described above. They are listed in the table below. Let us stress that 

our calculations were made much easier by the knowledge of the cardinality 

of the above mentioned generating set, which was given by Theorem 4.3.1.

c f V(AW(S/3 .A)) V(A<n)(A))

c f
id c (2)

Ci}i 1 1—̂ Z  
d i’i :1*->W

x i >2 : 1  (1 , 1 , 1 )

V (A < " )( s j9.A ))
2/2,1 : (1 ,1 , 1 ) 

a +  2Z +  W
id V(A(»)(«0.A)) 

t>2,2 : ( 1 , 1 , 1 ) ( 1 , 1 , W)
x2,3 : (1,1,1) »-> 1

V(A<">(A)) 2/3,2 : 1 (1,1, Z)+
+ ( 1 , 1 , W ) - ( 1 , X I 1)

id y ( A (n)(A))

a 3,3 : 1 Z

After determining the' relations between these generators, one may pro­

duce the basic algebra ‘A(a,2 ) corresponding to the singular block of of 

slz{C) indexed by the antidominant weight A:

P roposition  4.6.5 The algebra A \$ is Morita equivalent to the factor alge­

bra CQ/J(\}2) where Q is the quiver



and J(a,2) *5 the ideal generated by the relations

(c2, gP, 6 2, a2,

:cdr d c ,b X X d ,Y b - d Y , 

y X c  — cFX, XcK — yex, xye — exy, xby, xXc — ercX, Yye — cYy , 

X y X  — (yxX -f Xc), Y X Y  — (Yyx + c Y ) ,xyx  — xb, yxy — 6 ?/, 

i i y  — (:r& +  ez), .XT?/ — (ye -f 6 y))

This algebra is graded by giving grade 1 to {x ,y , X ,Y }  and grade 2 to 

{a, b, c, d}. The grading filtration of A\,2  looks like

2

2  1 3 3

1 1 3  1 9 9 9 2

2  2  2  1 1 3 1 3 3  1  31 1  3 1  3 1 ©  * 0  2 2
2  2  2  1 1 o i 1 3 1

1 1 3  1  0  2

;
With similar calculations one could still show that

P roposition  4.6.6 The algebra A \ , 3  is Morita equivalent to the factor alge­

bra CQ/J(\£) where Q is the quiver
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J(a , 3) w  £ h e  ideal generated by the relations

(c3, d3, 6 3, a3, 

cd -  dc, bXXd, Yb -  dY ,

Y X c  — c Y X ,X c 2Y  — ye2x ,xye  — exy,xb2y ,x X c  — exX, Yye — cYy , 

X y X  — (?/a;X +  Xc), y x y  — (y?/a; +  cY ),xyx  — xb, yxy — by, 

x X Y  — (xb +  ea:), Xy?/ — (ye +  fa/))

Again one could draw the grading (and radical, and socle) layers of this 

algebra but, at this point, let us just leave it as the first exercise.
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