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Abstract 
 

Biological processes are frequently driven by protein-protein interactions. The number 
of known protein interactions is much higher than the number of known protein 
complex structures. To bridge this gap, data-driven protein-protein docking utilizing 
experimental or theoretical restraints is applied. In this study the PROTIN_ID method 
for generating theoretical docking restraints is introduced. PROTIN_ID generates 
residue clusters on the protein surface based on sequence conservation. Compared to 
WHISCY and CCRXP, PROTIN_ID performs equally well or better. Furthermore, 
PROTIN_ID has user-friendly features such as the ability to improve the quality of 
sequence alignments, which improves its performance, and automatically utilizing up-
to-date sequence data for experimentally determined proteins or homology models to 
generate theoretical restraints. A webserver version of PROTIN_ID was implemented 
for the academic community. 
 
Statistical analyses of the conservation of interface residues using the latest version of 
Benchmark4.0 demonstrated that interface residues are more conserved than non-
interface residues. The application of spatial clustering of residues is more efficient to 
exploit the conservation signal of interface residues, resulting in reliable predictions that 
are better than predictions generated by ‘non-clustering’ or at random.  
 
Theoretical restraints derived from PROTIN_ID were applied to drive docking and 
compared to ab initio docking, demonstrating that data-driven docking was more 
successful. Combining theoretical and experimental restraints to drive docking was 
compared to experimental-data driven docking. It was shown that combined restraints-
driven docking improved because of increased interface residue recall, demonstrating 
that consensus-data is possibly useful for improvement of docking performance. 
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Chapter 1 

 

Introduction 

 

1.1 Proteins 

 

Proteins are composed of amino acid building blocks linked together through peptide 

bonds, forming a polypeptide chain known as the primary structure. The primary 

structure forms secondary structural elements, such as alpha helices and beta sheets via 

hydrogen bonds, which in turn interact to create the tertiary structure through protein 

folding. The tertiary structure may combine with another to form a quaternary structure 

(see Figure 1-1). The outcome is a protein with functional capabilities whose active site 

or interface, where biomolecular interaction occurs, is composed of amino acids that 

may be far apart on the primary structure-level but are close together because of the 

unique three-dimensional arrangement of the final tertiary or quaternary structures. 

Broadly, proteins are classified as globular proteins, which function in cellular activities 

(ex. enzymes) and fibrous proteins (ex. keratin) that assume a structural role. The 

holistic number of proteins produced from the genome of an organism is known as the 

proteome. Unless otherwise stated, “protein” will refer to globular proteins in this 

chapter. 

 

1.2 Protein-protein interactions 

 

Proteins compose the molecular machinery of cells and the association of a protein with 

others to form temporary or long-term functional complexes is fundamental in 

numerous biological processes. The region of specific binding between two or more 

proteins’ residues is known as the interface. Protein-protein interactions are diverse in 

functionality, highlighting their importance. For example, protein-protein interactions 

are involved in signalling in the bacterial phosphoenolpyruvate-dependent sugar 

phosphotransferase system (PTS). The PTS system involves transfer of a phosphate 

derived from phosphoenolpyruvate to proteins of this pathway ultimately leading to 

phosphorylation of sugars coupled with their transfer through bacterial membranes 
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(Cornilescu et al., 2002; Wang et al., 2000). Protein interactions are also involved in 

enzymatic inhibitory activities such as inhibition of matrix metalloproteinases (MMPs) 

by tissue inhibitor of metalloproteinases (TIMP). MMPs are essential for breakdown of 

extracellular matrix constituents during embryogenesis, tissue regeneration, for example 

(Arumugam and Van Doren, 2003a; Gomis-Rüth et al., 1997). TIMPs regulate these 

enzymes by forming non-covalent inhibitory complexes (Williamson et al. 1997). A 

disturbance in this regulation favouring heightened activity of MMPs can result in 

pathophysiological conditions such as cardiovascular diseases like myocardial 

infarctions and aneurisms (Hovsepian et al., 2000). In addition, protein-protein 

interaction is important for the creation of multi-protein assemblies that perform 

specific tasks. For instance, DNA polymerases, DNA helicase, and DNA primase with 

other accessory proteins assemble into the replisome that undertakes the action of 

reproducing DNA during the DNA replication process, which is part of cell division 

(Perumal et al., 2011; Marians, 2008). Proteins are also involved in the degradation of 

others. As an example, in the ubiquitin proteasome pathway (UPP), ubiquitin protein 

molecules are linked via ubiquitin ligases to proteins. These ubiquitinated proteins are 

degraded into peptides by a multi-protein complex composed of multiple catalytic sites 

called the proteasome (Hershko et al., 1984; Hershko et al., 1983). Protein-protein 

interactions are important in immune responses. For example, T-cell activation is 

achieved through T-cell receptor interaction with antigens in complex with major 

histocompatibility complex proteins, leading to an immune response (Aleksic et al., 

2010). The differing varieties of protein interactions are a part of an interaction network 

between different proteins and other biomolecules called the interactome. For example, 

in human cells an estimated number of 130,000 ± 32,000 binary interactions may occur, 

and there are 137,713 interactions currently known as presented in the BioGRID 

database, which is a repository for interaction data (Bonetta, 2010; Stark et al., 2010; 

Venkatesan et al., 2009). The number of binary interactions is higher than the estimated 

number of proteins (100,000) in a human cell (International Human Genome 

Sequencing Consortium, 2004). Indeed, the total protein-protein interactions may be as 

high as 375,000 based on an estimated 15 interactions per protein (Ramani et al., 2005). 

Protein interactions are undisputedly important and their disruption can lead to 

interruption of fundamental biological mechanisms, causing diseases.  
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Figure 1-1: Examples of the primary, secondary, tertiary, and quaternary structures. The 

primary structure is composed of amino acids connected by peptide bonds, forming a 

polypeptide chain. Secondary structures (alpha helix) form through hydrogen bond 

interactions in the primary structure. This interaction of secondary structural elements 

leads to a tertiary structure, which may combine with others to form a quaternary 

structure. The example quaternary structure is human haemoglobin (PDB: 1MKO). 
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Therefore, it is vital to understand the different facets of proteins that deal with their 

interactions with others in order to comprehend protein complex formation and by 

extension biological processes (Keskin et al., 2004). This allows a wide-ranging 

understanding of the inner workings of the interactome as a whole (Spirin and Mirny, 

2003). The sheer magnitude of differing proteins known to interact and those 

interactions yet to be discovered highlights the growing importance of understanding 

protein-protein interactions, which are important for all living things to function and 

exist (Alloy and Russell, 2004). For example, knowledge of protein-protein complex 

structure is important for drug screening and design, allowing targeting of those 

complexes linked to cancer to inhibit them (Lessene et al., 2013). 

 

1.3 Classification of protein-protein interaction types 

 

There are three main features that are employed to classify protein-protein interactions. 

These are based on protein complex composition, structural subsistence, and protein 

interaction lifetime (Ozbabacan et al., 2011). An overview of this classification of 

protein-protein interaction types will be discussed in this section. Figure 1-2 presents a 

summary of the classification of protein-protein interaction types. 

 

1.3.1 Homo- and hetero-oligomers 

 

This grouping of complexes is based on composition of the subunits of a complex. A 

protein complex where non-identical monomers compose it is referred to as a hetero-

oligomer (Ozbabacan et al., 2011). A protein complex in which only identical subunits 

compose it is referred to as a homo-oligomer. Homo-oligomers can be subdivided 

further, if a homo-oligomer complex’s subunits use the same interface for binding and 

have 2-fold structural symmetry, they are termed as being isologous in interaction, 

whereas heterologous interaction means that homo-oligomer subunits interact at 

different interfaces (Ozbabacan et al., 2011; Nooren and Thornton, 2003a; Goodsell and 

Olson, 2000; Monod et al., 1965). 
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1.3.2 Obligate and non-obligate interactions 

 

An obligate protein complex is one where its bound constituents are unable to subsist as 

monomers (i.e. unstable) in unbound form. This means that they assume their final 

configuration upon protein complex formation to function (Ozbabacan et al., 2011; 

Nooren and Thornton, 2003a). The met repressor is an example of an obligate DNA 

binding protein, which inhibits DNA expression (Zhu et al., 2006; Rafferty et al., 1989). 

Non-obligate protein complex components can subsist autonomously from each other as 

stable monomers prior to protein complex formation (Ozbabacan et al., 2011; Nooren 

and Thornton, 2003a). Cyclin-dependent kinases are examples of non-obligate proteins 

essential for cell cycle regulation and which are anti-cancer drug targets (Shafiq et al., 

2012).  

 

1.3.3 Permanent and transient interactions 

 

Based on protein interaction lifetime, there are permanent and transient interactions 

(Ozbabacan et al., 2011; Perkins et al., 2010; Nooren and Thornton, 2003a). Permanent 

complexes are stable in association and remain in complex, whereas transient 

complexes are transitory such that their components are able to bind and unbind. 

Obligate complexes are mainly permanent in interaction, while non-obligate complexes 

can be transient or permanent in interaction (Nooren and Thornton, 2003a). Transient 

interactions are further subdivided, based on their binding affinity (Kd; see section 

1.4.5) and interaction lifetime, into strong and weak interactions. Strong transient 

interactions like the G-protein complex (αβγ) subunits remain stable with long lifetimes 

due to the binding of GDP (guanosine diphosphate), resulting in tight association of the 

complex subunits. This changes with the binding of GTP (guanosine triphosphate), 

triggering separation of the complex into Gα and Gβγ components (Nooren and 

Thornton, 2003a). Weak transient interactions cyclically engage and disengage in 

complex formation with short lifetimes (ex. seconds) (Ozbabacan et al., 2011; Perkins 

et al., 2010; Nooren and Thornton, 2003a, 2003b).  

 



 
 

6 

 

 

Figure 1-2: Classification of protein-protein interaction types according to protein 

complex composition, structural subsistence, and protein interaction lifetime. Adapted 

from Ozbabacan et al., 2011, pp. 2-3 and Perkins et al., 2010, p. 1234. In terms of 

composition, protein complexes with identical binding partners are called homo- 

oligomers, whilst complexes with different binding partners are known as hetero- 

oligomers. Proteins capable of existing as stable monomers upon association and 

dissociation are termed non-obligate. Oppositely, proteins whose association guarantees 

structural subsistence as monomers only and not the reverse are termed obligate. 

Interactions based on binding affinity (lifetime) are either permanent in which case they 

form a stable complex, or transient where they can unbind upon forming a complex. 

Transient complexes can be further sub-grouped as strong and weak transient 

interactions. Weak interactions bind and unbind with short lifetimes and, in contrast, 

strong interactions are stable in complex with longer lifetimes when an activating factor 

causes them to associate and leave their unbound state. 
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1.4 Characteristics of protein-protein interactions 

 

There are differing features that characterize protein-protein interfaces upon protein 

complex formation and their interactions. In this section, an overview of these features 

will be presented. 

 

1.4.1 Interface size  

 

Interface sizes are defined by the buried surface area (BSA) measure, which determines 

the change in accessible surface area (ASA) in residues for proteins in their unbound 

and bound complexed states (Chothia and Janin, 1975). The BSA is measured as 

follows: 

 

 BSA= ASAA + ASAB − ASAAB  (1- 1) 

 

where ASAAB, ASAA, and ASAB represent the accessible surface areas of the bound 

complex and unbound protein components A and B, respectively (Levy, 2010; Lo 

Conte, 1999). Non-obligate hetero-dimer protein-protein complexes have an interface 

area average of 1,910 Å2 ± 760 Å2 (Dey et al., 2010). In general, an interface is a single 

patch when its interface area is < 2,000 Å2 (Chakrabarti and Janin, 2002). In contrast, 

homo-dimers (mostly obligate with some non-obligate complexes) have a larger 

average interface area of 3,570 Å2 ± 2,490 Å2 that bury more atoms, and these larger 

interfaces may consist of one or more patches (i.e. surface residues in structural 

proximity) (Dey et al., 2010; De et al., 2005; Bahadur et al., 2003). A recent study 

examined 42 non-obligate, weak homo-dimers and found that they had an interface area 

average of 1,620 Å2  ± 480 Å2, which is similar to the protein-protein complexes (Dey 

et al., 2010). In general, the BSA measure is mainly directly related to the number of 

residues and their atoms that are buried upon protein complex formation (Dey et al., 

2010). Similar proportions of main chain atom contributions to the BSA% are present 

for homo-dimers (17% ± 6) and hetero-dimer (19) protein-protein complexes (Dey et 

al., 2010). It has been suggested that larger interfaces of proteins (>2,000 Å2) involve 

interactions of significant conformational change during protein complex formation, 
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whereas proteins with smaller interface sizes involve less conformational flexibility (i.e. 

rigid-body) during complex formation (Lo Conte et al., 1999). Obligate complex 

subunits cannot exist as monomers and are less ordered and only become ordered when 

forming complexes with each other. Therefore, since they have larger interfaces these 

types of proteins undergo major conformational change for them to become ordered 

upon protein complex formation (Janin, 2009). 

 

1.4.2 Interface geometrical plane and complementarity 

 

A feature of protein interface regions is that they are more planar than the rest of the 

surface of a protein (Wu et al., 2007; Murakami and Jones, 2006). Planarity is 

calculated by defining the least squares fit plane of interface atoms and determining the 

interface atoms’ root mean square deviation from the plane (Chakrabarti and Janin, 

2002). Compared to each other, non-obligate protein complex interfaces are more planar 

than obligate complex interfaces (Bera and Ray, 2009). Moreover, generally geometric 

(shape) complementarity is present in protein complex interfaces and this is due to close 

packing density of interface atoms of an interface (Bahadur et al., 2004). It can be 

determined by the shape correlation statistic that measures the fit between buried atoms 

of an interface of both complex proteins (Lawrence and Colman, 1993). It has been 

determined that, in general, the interface packing density is similar to a protein’s interior 

packing density (Sonavane and Chakrabarti, 2008; Lo Conte, 1999). Of course there are 

exceptions to this. For example, electron transfer proteins have loose atomic packing for 

their interfaces and as a consequence geometric complementarity is less pronounced and 

this is most likely due to the nature of their interactions, which occur extremely rapidly 

and only generate short-term protein complexes, providing less emphasis on interface 

packing and geometric complementarity (Janin et al., 2007; Bahadur et al., 2004).  

 

1.4.3 Interface secondary structural preferences 

 

The secondary structural preference differs in protein complex interfaces for obligate 

homo-dimers (mostly obligate with few non-obligate complexes) and non-obligate 

hetero-complex interactions. Specifically, obligate homo-dimers interfaces have a 
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higher proportion of alpha helices than beta strands, whereas these secondary structural 

elements are almost similar in proportion in non-obligate hetero-complex interaction 

interfaces (Guharoy and Chakrabarti, 2007). Other structural elements such as loops, 

turns, and coils are present in higher proportion in non-obligate hetero-complex 

interfaces than obligate homo-dimer interfaces. Guharoy and Chakrabarti (2007) 

grouped alpha helices and beta strands under the category of regular structures, and 

loops, turns, and coils were grouped as non-regular structures. They observed a higher 

proportion for the regular group than the non-regular group in obligate homo-dimer 

interfaces. For the non-obligate hetero-complex interfaces this was not the case because 

both groups had similar proportions. However, the proportion of regular structures was 

found to increase with interface size (i.e. ∆ASA) for non-obligate hetero-complex 

interfaces. Specifically, the alpha helices become longer in length with increased 

interface size. But for obligate homo-dimer complexes no change was observed in the 

proportion of secondary structural elements with increase in interface size. Examination 

of “pairing” of secondary structural elements across interfaces revealed interesting 

results. Pairing refers to the cross-interface interactions that occur between two proteins 

in complex. There were two pairing categories that were delineated. One category of 

cross-interface pairing was defined as being between regular secondary structural 

elements amongst themselves (i.e. intra-pairing). Another category was between non-

regular structures pairing with either alpha helices or beta strands, or intra-pairing 

between non-regular structures themselves. It was found that for obligate homo-dimer 

complexes an approximately equal share of interactions occurred for both pairing 

categories, whereas non-obligate hetero-complexes favoured the latter category. For 

non-obligate hetero-complex interaction interfaces, bias to the latter category is due to 

their interfaces interchanging from exposed to buried and at the same time they must 

retain properties of a basic protein surface that allows their monomeric unbound states 

to remain stable in their natural soluble state (Guharoy and Chakrabarti, 2007; Bahadur 

et al., 2004). This study highlighted that secondary structural preferences are dependent 

on protein-protein interaction type. 
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1.4.4 Interface regions and their physicochemical properties 

 

It has been observed in protein interfaces that a slightly higher proportion of 

hydrophobic residues are found in homo-dimers interfaces (65% ± 7) that are mostly 

obligate with some non-obligate complexes compared to non-obligate hetero-dimer 

(58%) interfaces (Dey et al., 2010). In addition, polar and charged residues are slightly 

higher in proportion in non-obligate hetero-dimer interfaces (28% polar and 14% 

charged) than homo-dimers (22% ± 6 polar and 13% ± 6 charged), and both interaction 

types have roughly similar water molecule and hydrogen bond densities in their 

interfaces (Dey et al., 2010). Analysis of non-obligate weak homo-dimers indicates that 

their average contribution of non-polar and polar residues is 62% (± 8) and 24% (± 7), 

respectively, and this is similar to the general averages for homo-dimers. Furthermore, 

their proportion of charged residues is 13% (± 8), which is similar to non-obligate 

protein-protein complexes and the general average for homo-dimers (Dey et al., 2010). 

Chakrabarti and Janin (2002) proposed the core-rim model that divided an interface into 

core (inner) and rim (outer) regions, which contain buried residues and solvent 

accessible residues, respectively (see Figure 1-3A). They defined interface residues as 

protein residues (or their atoms) that lose >0.1 Å2 ASA during protein complex 

formation based on equation 1-1. Core residues were defined as residues that have a 

minimum of one completely buried atom (zero ASA), while rim residues retain some 

solvent accessibility for all their atoms (>zero ASA). Based on this interface division, 

they examined the amino acid percentages for interface core and rim zones for non-

obligate hetero-dimer complexes and later for homo-dimers composed of mostly 

obligate with some non-obligate interacting proteins  (Dey et al., 2010; Bahadur et al., 

2003). In terms of average amino acid percentage for non-obligate hetero-dimer 

complexes, the core region has a greater proportion of residues (55%) then the rim 

(45%). In homo-dimers complexes, the core’s percentage contribution of interface 

residues is higher (59%) than the rim’s (41%) percentage (Dey et al., 2010). Weak 

homo-dimers have identical percentages for their core and rim regions as the transient 

protein-protein complexes (Dey et al., 2010). The residue composition of the rim 

resembles the generic surface of a protein exposed to solvent (57% non-polar and 43% 

neutral polar/charged residue compositions of the BSA%) for non-obligate hetero-dimer 
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protein complexes. It is also similar for homo-dimers, but in it aliphatic residues are 

more prevalent relative to a protein’s surface (Dey et al., 2010; Bahadur et al., 2003). In 

contrast, the core region is between a protein’s interior and exterior surface in residue 

makeup (Levy, 2010). In non-obligate hetero-dimer complexes, aromatic residues 

enrich the core, while charged residues are low in presence with the exception of 

arginine (Chakrabarti and Janin, 2002). In homo-dimer protein complexes, aliphatic and 

aromatic residues makeup a major portion of core residues, providing a stronger 

hydrophobic character in these complexes than non-obligate hetero-dimer complexes 

due to their larger interface sizes (Levy, 2010; De et al., 2005; Bahadur et al., 2003). 

Also, in homo-dimers charged residues, excluding arginine, are reduced in the core 

region (Dey et al., 2010).  

 

 

 

Figure 1-3: The delineation of an interface into regions based on change in buried 

surface area is presented based on two models. A) Core-rim (C-R) model. Core residues 

have a zero accessible surface area upon complexation for at least one residue atom 

(ASAc), whereas rim residues have > 0 ASAc. Adapted from Chakrabarti and Janin, 

2002, p. 339 B) Core-rim-support (C-R-S) model. Core residues have > 25% accessible 

surface area in protein monomers (ASAm) and upon complexation such residues have < 

25% ASAc. On the other hand, rim residues have > 25% ASAc, whereas support 

residues have < 25% ASAm and are buried further upon complexation. Adapted from 

Levy, 2010, p. 662. In general in terms of residue composition, the rim region is similar 
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to the generic surface of a protein, while core residues are midway between a protein’s 

surface and interior. The support region is similar to a protein’s interior. 

 

 

Levy (2010) defines a third region, in addition to the rim and core regions of the 

interface, called support (see Figure 1-3B). Here, the regions of the interface (ASA > 0) 

are divided by a different accessible surface area (25% ASA) such that rim residues are 

exposed (> 0 ASA) in both unbound and complexed forms (> 25% ASA) of both 

complex proteins, while core residues are exposed (> 25% ASA) in a protein’s unbound 

state, but become buried (< 25% ASA) upon complexation. The support residues are 

buried (< 25% ASA) in the monomer proteins and become even more so upon protein 

complexation (< 25% ASA). The rim’s residues are still similar to a generic surface 

patch, while the core’s residues are intermediary between a protein’s surface and 

interior. The support, however, is similar to a protein’s interior in residue composition 

(hydrophobic) due to its exclusive buried state upon unbound to bound protein 

transition during protein complexation. The residue makeup of the interface cores as 

delineated by Chakrabarti and Janin (2002) and Levy (2010) are similar. The rim as 

delineated by Levy (2010) is more similar to a protein surface, whereas the rim defined 

by Chakrabarti and Janin (2002) is slightly less similar to a protein surface in terms of 

amino acid frequencies. This slight difference is due to the differences of the ASA 

values used to partition an interface into its different regions. As a result in Levy’s 

(2010) work, the proportions of rim, core, and support regions have analogous numbers 

of residues. Nevertheless, a single core residue buries almost double the surface area 

than both rim and support regions on average (Levy, 2010). But, in some cases where 

interfaces are small (< 1000 Å2) like transient interfaces of approximately 800 Å2, the 

core’s presence is smaller relative to the interface rim; hence these interfaces are more 

polar in nature (Levy, 2010). Compared together holistically, the models’ of partitioning 

the interface particularly for core and rim regions are similar in the information they 

convey about these regions most notably for the core region of the interface (Levy, 

2010). In addition, the characteristics of the rim, core, and support were found to be 

regular in three species (Homo sapiens, Saccharomyces cerevisiae, and Escherichia 

coli), emphasizing the usefulness of this interface model (Levy, 2010). 
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1.4.5 The energetic terms of protein-protein interactions 

 

The generation of a complex between two proteins (A and B) is described below: 

 

 A+ B
Koff

← 

Kon → AB (1- 2) 

 

where Kon and Koff are the association and dissociation rate constants, respectively. 

Following the mass action law, the ratio of these constants defines the equilibrium 

dissociation constant (Kd). Kd describes the binding affinity between two proteins (A 

and B) upon protein complex formation (AB) and is expressed in the following 

relationship: 

 

 Kd =
Koff

Kon

=
A[ ] B[ ]
A : B[ ]

 (1- 3) 

 

where [A], [B] and [A:B] are the concentration (Molarity) of the unbound proteins and 

bound complex. The tighter the binding affinity between complex proteins, the lower 

the Kd value. In addition, if the high concentrations of [A] and [B] are required to form 

[A:B], this reflects low binding affinity and hence a high Kd value. 

 

The Gibbs binding free energy (∆G) describes the thermodynamics of binding of 

protein monomers, depicting the affinity of the protein monomers for each other and the 

stability of the protein complex upon formation (Thirupathi et al., 2011; Janin, 1995). 

The thermodynamic terms that define the process of protein complex occurrence are 

defined in the equations below:  

 ∆Gd = −RTln
Kd

c°
 (1- 4) 

 

 ∆Gd = ∆Hd −T∆Sd  (1- 5) 

where c° is the 1 standard reference concentration (1 mol.l-1), R is the gas constant 

(8.314 JK-1 mol-1), and T is the absolute temperature (Kelvin). By determining the Kd 

value, it is possible to calculate ∆G by using equation 1-4.  
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In equation 1-5, ∆H and ∆S refer to the change in enthalpy and entropy, respectively, 

which define the binding free energy (∆G). The ∆H term is based on the interactions 

that form the protein-protein complex, such as electrostatic interactions, hydrogen 

bonds, and van der Waals interactions (Kastritis and Bonvin, 2013). Electrostatic 

interactions of the ∆H term involve dipole-dipole, charge-dipole, and charge-charge 

interactions. As an example, the interactions between glutamic acid and aspartic acid 

with lysine, arginine, or histidine represent instances of charge-charge interactions. 

These interactions generally contribute to stability in protein-protein interfaces (Xu et 

al., 1997a; 1997b). The hydrogen bond is a dipole-dipole interaction, as it involves a 

polar-bonded hydrogen (ex. H-N or H-O hydrogen bond donors) interacting with an 

electronegative atom’s non-bonded electron pair (ex. O or N hydrogen bond acceptors). 

Hydrogen bonds provide specificity in protein-protein interactions (Bissantz et al., 

2010; Ponstingl et al., 2005). This specificity of interaction is enabled, as hydrogen 

bonds follow stringent geometrical restrictions in a biological setting (Bissantz et al., 

2010). Coupled with this, a hydrogen bond is weak bond, allowing it to swiftly come 

into being or break, thereby assisting in protein-protein interaction. van der Waals 

interactions occur through non-specific interactions that are a result of electron 

fluctuation of atoms, resulting in their irregular distribution, and the creation of induced 

dipoles for the atoms that interact with one another (Wood and Meyers, 1991). 

Although these are weak interactions, they are a contributing factor in protein-protein 

interaction specificity since many such interactions collectively occur during protein-

protein binding (Kastritis and Bonvin, 2013). 

 

The ∆S term defines the microstate dynamics of a thermodynamic system. For protein-

protein interactions, the entropies of conformation (protein side-chain and main-chain), 

solvent, and association are an important component of the ∆S term (Brady and Sharp, 

1997). The side-chain (∆Sside) is the more prominent constituent of conformation 

entropy while in comparison the main-chain (∆Smain) is limited in contribution to 

conformational entropy in protein complex formation (Stites, 1997). This may change 

upon the occurrence of limited protein folding during complex formation (Brady and 

Sharp, 1997). Prior to complex formation, the binding surface of a protein is exposed to 

water molecules. Upon protein-protein complexation, this changes and leads to a 

favourable (i.e. positive) solvent entropy (∆Ssolv). This occurs when water molecules 
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detach from a protein’s binding surface and join the surrounding water molecules 

(Archakov et al., 2003). Furthermore, the hydrophobic effect (non-polar interactions), 

which is a non-specific interaction, results from entropic changes in the presence of 

water molecules. This is to reduce the effect of the “cage” ordering of water molecules 

in the presence of non-polar entities, which reduces entropy. Holistic aggregation of 

non-polar entities relative to water molecules reduces their “cage” ordering, diminishing 

the impact of entropic reduction (Bissantz et al., 2010). The hydrophobic effect is an 

important driving force for protein-protein complexation especially when the interface 

has non-polar and hydrophobic residues that become buried (ex. interface core) upon 

protein complex formation (Williams, 2011; Ponstingl et al., 2005; Tsai et al., 1997). 

With regards to the final entropic term, the association entropy (∆Sass), it decreases as 

translational and rotational restrictions occur upon the complexation of two proteins 

(Brady and Sharp, 1997). The sign of the overall entropy value determines if entropy 

drives protein-protein interactions. A positive ∆S drives the protein-protein interaction 

process, whereas a negative ∆S indicates that ∆H drives protein-protein interactions 

(Archakov et al., 2003). 

 

1.5 An overview of hotspot residues 

 

Protein interfaces are composed of residues with different physicochemical properties, 

and they facilitate protein-protein interactions. However, a specific subset of interface 

residues contributes to most of the binding free energy of a protein-protein interaction 

(Thorn and Bogan, 2001). These residues are known as hotspots. Clackson and Wells 

(1995) first used this terminology to describe such crucial residues for protein binding. 

In their work, the authors examined the complex of the human growth hormone (hGH) 

and the bound receptor protein (hGHbp). They applied alanine-scanning mutagenesis to 

mutate the complex’s interface residues. Using this method, two tryptophan residues, 

forming part of a hydrophobic area of the interface, were found to provide most of the 

binding free energy (Clackson and Wells, 1995).  

 
A hotspot is a residue that, upon mutation, causes a protein complex’s binding free 

energy to change by ≥2kcal/mol (Bogan and Thorn, 1998). Tyrosine, tryptophan, and 

arginine residues have a common occurrence of being hotspots. Residues that contribute 
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less to the binding free energy of a complex are observed to encircle hotspots, and this 

configuration is called a hydrophobic O-ring. Their presence around hotspots occludes 

bulk solvent, which generally allows hotspots to maintain their contribution to overall 

binding free energy for a protein interaction (Bogan and Thorn, 1998). Specifically, this 

creates a localized low dielectric presence, heightening the impact of electrostatic and 

hydrogen bonding in the regions where bulk solvent are occluded (Li et al., 2005). 

Keskin et al., (2005) observed that hotspots were structurally conserved, while residues 

that encircle them were less structurally conserved in comparison. Moreover, these 

energetically important residues form clusters of hot regions in an interface, which are 

characterized by tight packing of hotspots as opposed to them being scattered across an 

interface (Keskin et al., 2005). Due to the importance of hotspots in binding free energy 

contribution, methods for predicting hotspots have been developed that utilise different 

properties (ex. evolutionary conservation data). For example, Ahmad et al., (2010), who 

observed that clusters of evolutionary conserved residues (CECRs) contained hotspot 

residues, developed a method to predict CECRs. This indicates that hotspots are 

evolutionary conserved (Guharoy and Chakrabarti, 2010). Likewise, Ofran and Rost 

(2007a) applied their ISIS method (discussed in section 1.8.1) to predict hotspot 

residues of a 30 protein complex dataset and demonstrated accurate predictions of 

hotspots. Tuncbang et al., (2009) developed an empirical method (HotPOINT) that 

incorporated residue conservation with other biophysical properties to predict hotspot 

residues in a protein complex, resulting in accurate predictions. The accurate prediction 

of hotspot residues in protein complexes facilitates their use in protein-protein docking 

studies. 

 

1.6 In silico methods to predict protein-protein complexes: protein-protein 

docking 

 

Given the sheer number (in the thousands) of predicted protein-protein interactions 

identified by high-throughput approaches like the yeast two-hybrid method, in 

comparison structurally solved protein-protein complexes by NMR and x-ray 

crystallography approaches, which are time-consuming, are lower in number. For 

example, the BioGRID database has about 490,000 known interactions and the PDB 

database has approximately 94,000 structures, including protein-protein complexes 
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(Berman et al., 2013; Stark et al., 2010). To bridge this gap, the application of protein-

protein docking methods is a useful, inexpensive, and timesaving process of predicting 

and studying protein complexes as well as identifying biologically important 

interactions from those that are false positives obtained from high-throughput methods 

(Wass et al., 2011a; Lensink et al, 2007). Docking methods complement NMR and x-

ray crystallography, providing important insights into protein-protein interactions (Goa 

et al., 2004). The objective of protein-protein docking, given two (or more) unbound 

proteins known to interact, is to predict their final protein complex configuration that is 

at the lowest free energy available to the system (Gray, 2006; Liang et al, 2006). For 

this to be achieved, a docking algorithm must sample repeatedly many structural 

binding poses between interacting proteins, using known experimentally determined 

unbound receptor and ligand protein models, or homology models if structures are 

lacking. Each predicted protein complex is scored during docking, filtering accurate 

predictions from erroneous ones in order to determine the most energetically minimal 

complex in free energy terms (Gray, 2006). In practice, however, the development of 

protein conformational sampling and binding free energy calculation that a docking 

method requires has been quite a lengthy process and is by no means complete, and the 

“docking problem” as it is known is an open problem under active research (Torchala et 

al., 2013). In this section, an overview of the steps in protein-protein docking will be 

presented. 

 

1.6.1  Protein-protein docking: the sampling process 

 

The initial stage of protein-protein docking is the sampling process. It involves the rapid 

generation of docked conformations of proteins while accounting for unbound to bound 

conformational flexibility of the interacting proteins in an attempt to produce putative 

complex models that are biologically meaningful. The first docking algorithm 

developed in 1978 performed docking on low-resolution (coarse-grained) structures 

where a residue is depicted as a sphere (Vakser, 2004; Wodak and Janin, 1978). It 

involved sampling through angular rotations coupled with translations (i.e. six degrees 

of freedom) of one protein’s positional configuration located near its binding partner’s 

active site surface to produce docked models (Wodak and Janin, 1978). This pioneering 

work demonstrated that docking two proteins using low-resolution representation was 
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possible. Further development of docking progressed to intermediary-resolution rigid-

body docking methods such as fast Fourier transform (FFT) or geometric hashing 

techniques that depict interacting proteins as shapes and matches them accordingly 

(Fischer et al., 1995; Katchalski-Katzir et al., 1992). For example, FFT methods 

discretize proteins in three-dimensional space via a grid such that proteins are divided 

into interior, surface, and exterior sections, and subsequently perform docking of the 

two proteins rapidly by shape matching and complementarity through the overlap of 

surface regions between two proteins (Gabb et al, 1997; Katchalski-Katzir et al, 1992). 

Here, the proteins are kept rigid to perform six-dimensional sampling in translational 

and rotational space (Chen and Weng, 2002). Such docking methods simplify flexibility 

in protein interactions, for example, by means of introducing restricted structural 

flexibility in general and/or protein side-chain refinement (Jackson et al., 1998; Gabb et 

al, 1997).  

 

Another approach is to permit sterical overlap between proteins during the sampling 

protocol, implicitly modelling flexibility (Fernández-Recio et al., 2002). Rigid-body 

docking in general performs well in predicting protein complexes whose protein 

constituents experience minimal conformational change when transitioning to their 

bound states, however, performance is poor for proteins that experience major 

conformational change during complexation (Janin, 2010; Ritchie, 2008). Recent 

development of high-resolution protein docking methods has enabled sampling using 

atomic-level representations of proteins, while having the capability to incorporate 

flexibility during the docking protocol (Wang et al., 2007; Dominguez et al., 2003; 

Gray et al, 2003). In high-resolution docking, the incorporation of flexibility can be 

achieved implicitly by using ensembles of protein conformations derived from NMR 

and molecular dynamics approaches, for example, or by using different experimentally-

derived models of the same protein (Dominguez et al., 2004; Grünberg et al., 2004). 

This application of ensembles has been extended to rigid-body docking (Dominguez et 

al., 2003).  

 

 

In principle, the use of an ensemble generated from an unbound protein presumes that 

the combined conformational snapshots for a protein cover a substantial portion of the 

actual bound conformational pose adopted by the protein in complex (Dobbins et al., 
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2008; Grünberg et al., 2004). While helpful, it is possible that structural flexibility 

produced upon complexation cannot be generated through the ensemble model 

approach from unbound proteins that interact with each other, preventing the actual 

modelling of the final bound pose between interacting proteins. This may occur when 

an unbound protein’s transition to it’s bound configuration involves major surface 

transformation. Further means of incorporating conformational dynamics in docking in 

high-resolution docking methods involves the explicit inclusion of flexibility of protein 

side-chains and/or backbones through the use of molecular dynamics or Monte Carlo 

simulations (Dominguez et al., 2003; Gray et al., 2003).  

 

For proteins that undergo large structural changes upon complexation, specific sampling 

protocols that model this flexibility have recently been developed (Karaca and Bonvin, 

2010). For example, in the Flexible Multidomain Docking (FMD) data-driven approach 

of Karaca and Bonvin (2010), a flexible protein is split into sub-domains that are kept 

together by connectivity restraints during the FMD protocol. The sub-domains are 

docked as multi-bodies to the partner protein, which is followed by the introduction of 

explicit flexibility in the backbone and side chains of the interfacial regions of the 

docked models. The FMD approach successfully modelled a protein interaction where 

one protein constituent underwent backbone conformational changes of 19.5 Å when 

transitioning to its bound state (Karaca and Bonvin, 2010).  

 

1.6.1.1 Data-driven sampling in protein-protein docking 

 

There are two types of docking sampling strategies, ab initio and data-driven. The 

difference between the two is that the latter strategy limits sampling to specific regions 

on both proteins as dictated by data that guides a docking sampling algorithm. In 

contrast, the former strategy is unconstrained by data and may sample all possible poses 

between proteins, given adequate computational resources. The data used can be 

derived from experimental approaches (NMR) or theoretical approaches like protein 

interface predictors (see sections 1.7 and 1.10) (de Vries et al., 2006; van Dijk et al., 

2005a). The composite data employed in sampling represents possible interfacial 

regions (ex. Chemical shift perturbations - CSPs) and provides orientational information 

(ex. Residual dipolar coupling - RDCs) of one protein to its partner, which is an 
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advantage in sampling because it vastly reduces the search space (van Dijk et al., 

2005a). This is even more so significant for high-resolution docking where sampling is 

a computationally expensive process compared to intermediary and lower resolution 

sampling. While data-driven sampling is effective to steer docking, one side effect is the 

possibility the data used is wrong thereby “trapping” docking sampling in the wrong 

area of interest. A widely known and established high-resolution docking method that 

utilizes the data-driven strategy is the HADDOCK method (Dominguez et al, 2003). In 

HADDOCK, sampling data is converted into ambiguous interactions restraints (AIRs). 

These interaction restraints are referred to as ambiguous because interface residues 

identified from one protein are not known with which residues of the opposing partner 

protein they interact (Dominguez et al, 2003). HADDOCK randomly discards some 

restraints during its sampling protocol in case of some restraints being wrong. If wrong 

restraints are removed, this may improve docking.  

 

1.6.2 Protein-protein docking: the scoring function 

 

The prediction of a protein complex involves generating many models of different poses 

whether sampling is data-driven or not. From these models, it is anticipated that some 

models have similar structures to the native complex. Scoring functions are applied in 

order to rank each model in an attempt to distinguish biologically meaningful models 

from ones that are not (Moont et al., 1999). The application of a scoring function during 

docking is of two kinds. In docking, scoring functions may be applied directly in the 

sampling protocol influencing the generated models in which case they are termed as 

‘integrated’, or they may be employed directly after sampling is completed where they 

are termed as ‘edge’ (Halperin et al., 2002). Regardless of their implementation in a 

docking method, the determination of the protein complex structure with the lowest 

binding free energy is the goal, assuming that the native complex corresponds to the 

lowest energy conformation (Yu et al., 2004).  

 

Scoring functions employed in docking protocols can be knowledge-based functions or 

physical force field functions. The knowledge-based scoring functions are based on 

statistically deriving residue/atomic contact propensity data of experimentally solved 

protein-protein complexes and those from decoy protein complexes (Zhang et al., 
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2005). This can assist in better discrimination from near-native complexes from decoys. 

The ClusPro docking method applies this type of scoring function using Atomic Contact 

Potential and electrostatic energy in its filtering stage after sampling is performed in 

order to select the best scoring models for later processing (Comeau et al., 2004). The 

force field scoring functions calculate the final energy of a docked complex, which is a 

weighted sum of the contribution of interaction terms derived from a molecular 

mechanics force field and also incorporate energy terms that evaluate the use of 

experimental/theoretical data in docking (Audie, 2009; Dominguez et al., 2003). An 

example of this type of scoring function (equation 1-6) is implemented in the 

HADDOCK docking method, which is applied in this study (de Vries et al., 2007; 

Dominguez et al, 2003). 

 

 EHADDOCK = EvdW + Eelec+ Edesolv+ EAIR + Esani + Evean (1- 6) 

 

where EvdW and Eelec represent the van der Waals and electrostatic energy terms, 

respectively. Edesolv is the desolvation energy. EAIR, Esani, and Evean are pseudo-energy 

terms for the ambiguous interaction restraints, RDCs and intervector projection angles 

(IPAs) energies, respectively. They calculate the agreement between the generated 

models and the experimental data used in HADDOCK to guide docking, acting as a 

discriminator between near-native and incorrect models. The individual energetic terms 

are weighted to optimize the EHADDOCK score. The EHADDOCK score in various forms is 

applied during all stages of the HADDOCK docking protocol to select the best scoring 

models for each stage of the protocol. 

 

1.6.3 The Critical Assessment of PRedicted Interactions (CAPRI) 

 

CAPRI is a blind docking competition that assesses the capabilities of protein docking 

methods. A CAPRI prediction round is held upon the emergence of new experimentally 

determined protein-protein and protein-nucleic acid complexes (Lensink and Wodak, 

2010). The starting protein structures of the ‘unknown’ CAPRI target complex are 

provided to each participating docking team for prediction of the final complex 

configuration. The CAPRI participants have no knowledge of the actual experimentally 
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determined protein complex. All generated docking solutions from participating 

docking teams are evaluated against the actual complex and classified as acceptable, 

medium, or high quality models (see section 3.8.2). Models not assigned to these 

classes are classified as incorrect (Méndez et al., 2003, 2005). Ideally, the starting 

protein structures used for docking would be in the unbound pose. However, if only a 

single unbound protein is available for a CAPRI target, a bound protein extracted from 

the CAPRI target complex is provided for docking, or in some cases when feasible, a 

homology model is used (Lensink and Wodak, 2010; Lensink et al., 2007; Méndez et 

al., 2003). The first CAPRI competition (2001-2002) was held for two rounds, 

involving 7 CAPRI targets and 19 docking teams overall (Janin et al., 2003). In this 

competition, acceptable to high quality models were generated for 5 CAPRI targets by 

14 docking teams (Méndez et al., 2003). The second CAPRI competition (rounds 3-5; 

2003-2004) involved more CAPRI targets (10) and docking teams (30). This 

competition was more successful than the first, as correct predictions were generated for 

all CAPRI targets (acceptable and higher models) by 20 docking teams (Méndez et al., 

2005). Continuing the momentum of successes, rounds 6-12 of the third competition 

(2005-2007) involved 9 CAPRI targets and resulted in acceptable and medium models 

with only one high quality model in total for 8 CAPRI targets. In these rounds, 71 

docking teams participated, but only 31 teams produced acceptable and above models. 

In addition, these rounds featured a scoring experiment. Here, 15 scoring teams scored 

models generated by the docking groups for 5 CAPRI targets and re-ranked them. The 

best 10 re-ranked models were submitted to evaluate their scoring methods’ 

performance. The scoring groups identified only acceptable and medium models for 3 

CAPRI targets from their submitted models (Lensink et al., 2007). Rounds 13-19 of the 

fourth CAPRI competition (2007-2009) performed blind docking experiments involving 

14 CAPRI targets altogether (Lensink and Wodak, 2010). 76 docking groups 

participated in this competition. 51 docking groups generated acceptable quality models 

or above for 11 CAPRI targets. For the scoring function ‘blind’ test, 41 scoring groups 

participated and this was higher than previous participation. From their submitted 

models, the scoring groups identified acceptable and greater models for 7 CAPRI 

targets (Lensink and Wodak, 2010). The CAPRI competition has stimulated the 

development of protein docking methods through rigorous testing and assessment. This 

will help in docking methods’ development to enable their deployment in high-

throughput protein complex prediction at the proteomic scale. As a consequence, the 
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rapid generation of relevant protein complex models between putative proteins known 

to interact would be predicted for use in further experimental studies. The HADDOCK 

data-driven docking method, which has performed well in the CAPRI competition (de 

Vries et al., 2007), was used in this study to examine the effect of interface prediction 

data-driven docking vs. ab initio docking (see section 1.11). 

 

1.7 In silico methods to predict protein-protein interfaces: protein interface 

predictors 

 

The function of a protein complex at the molecular level can be understood by 

examining its interface. To realize this, it is essential to identify functional residues of 

the interface (Ofran and Rost, 2007b). Given two proteins known to interact, the goal is 

to predict their functional residues. Accordingly, protein interface predictors have been 

developed for this purpose. These protein interface predictors utilize known interface 

residue characteristics determined from analysis of interfacial and rest of the surface 

residues of proteins (Zhou and Qin, 2007). These in silico methods complement 

experimental approaches to characterize interface residues like site-directed 

mutagenesis or NMR CSP analysis (Fernández-Recio, 2011). In the context of protein-

protein docking, interface predictors are useful as they can provide restraints to reduce 

sampling complexity to the region of interest and improve scoring of complex models 

(Ezkurdia et al., 2009).  

 

1.7.1 Definitions of interface residues used for creating an interface residue dataset 

 

Determining surface residues is necessary as this allows distinguishing between 

interface residues and the rest of the surface residues (ROS) of a protein’s surface (see 

sections 3.2.1 and 5.3). Surface residues can be determined by defining the relative 

(percentage of accessible surface area) or absolute (accessible surface area) exposure to 

solvent of a residue (Wang et al., 2006; Chakrabarti and Janin, 2002). In either case, 

only interface residues that are above or equal to a certain threshold used for surface 

residues are retained, while those residues under the threshold are discarded from the 

final dataset of interface and ROS residues used for training a protein interface predictor 
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(see section 5.3) (Xue et al., 2011a). 

 

It is necessary to define interface residues, for example, to characterize interface residue 

properties to be used as a basis to design, test, and benchmark interface predictors (see 

sections 3.2.1 and 5.3). Various definitions have been applied to interface residues in 

order to construct datasets. One definition is based on a distance between pairwise 

residues (i.e. alpha carbons) or any of their atoms of a protein complex. If the measured 

distance is smaller than or equal to a cut-off (ex. 5 Å or 1.2 nm), then residue pairs of 

the interacting proteins are counted as interface residues (Fariselli et al., 2002). 

Adjusting the distance cut-off to a higher value defines more residues as interface, and 

decreasing it results in fewer interface residues. An alternative interface definition is 

based upon the change in accessible surface area from unbound to bound protein states 

(see section 1.4.1) (Chakrabarti and Janin, 2002; Chothia and Janin, 1975). As with the 

distance-based definition, a cut-off is applied (ex. 4% ASA) to determine interface 

residues, and its adjustment controls the number of interface residues determined. A 

final definition considers the geometry of interfaces through the application of Voronoi 

diagrams (Pontius et al., 1996; Harpaz et al., 1994; Richards, 1974). The Voronoi 

diagram is the division of space around points (i.e. residues or residue atoms), leading 

to the creation of a polyhedron around each residue atom. Residues or residue atoms 

(points) from opposing proteins in complex that share the same Voronoi facet are part of 

the protein complex interface (Cazals et al., 2006; Valdar, 2002). Regardless of the 

definition used, similar results are produced in terms of interface size/area (Gong et al., 

2005). 

 

1.7.2 Interface residue predictive characteristics 

 

Different features have been identified that characterize interface residues from other 

surface residues (ROS), and such features are applied as properties to predict protein 

interfaces. Interface residues are evolutionary conserved as opposed to non-interface 

residues due to functional/structural implications, indicating use as a predictive feature 

(see Chapter 5) (Chung et al, 2006; Bordner and Abagyan, 2005). The evolutionary 

conservation of residues is determined by comparing a protein sequence with other 

homologous sequences in a multiple sequence alignment (MSA; see section 3.4) (de 
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Vries et al., 2006). This is achieved using an evolutionary conservation score, which 

computes the amino acid variability in an MSA column while incorporating their 

physicochemical characteristics, for example, to determine the level of conservation of 

the MSA column (see section 3.4). Higher conservation implies functional significance 

(i.e. interface residue) due to evolutionary constraint and vice versa. In the context of 

the core-rim interface model, core residues are more conserved than rim residues 

(Guharoy and Chakrabarti, 2005). Also conserved residues cluster together spatially in 

interfaces (Guharoy and Chakrabarti, 2010). Hydrophobic amino acids along with 

aromatic/basic residues (tryptophan, tyrosine, and arginine), which are found in the core 

region of interfaces (see section 1.4.4), are clustered in interfaces, highlighting another 

predictive feature namely residue propensity (Guharoy and Chakrabarti, 2010; Chung et 

al, 2006; Liang et al, 2006; Bordner and Abagyan, 2005). Glycine also has a preferred 

propensity in conserved residue clusters although it is not enriched in an interface core 

(Guharoy and Chakrabarti, 2010). In addition, interface residues have higher solvent 

accessibility than ROS residues (Chen and Zhou, 2005). Moreover, interface residues 

are less probable to adopt different side-chain rotamers, which may be in preparation for 

loss of conformational entropy of side-chains upon protein complex formation (Liang et 

al, 2006; Cole and Warwicker, 2002). This predictive quality has been applied from x-

ray crystallography B-factor data (Chung et al., 2006). Other features used for 

predictive purposes include secondary structure characteristics and interface shape, 

hydrophobicity, desolvation, and electrostatics (see section 1.4) (Burgoyne and Jackson, 

2006; Hoskins et al., 2006; Bradford and Westhead, 2005).  

 

1.7.3 Interface prediction approaches 

 

Interface prediction methods are trained on datasets of determined interface and ROS 

residues, using a particular definition to determine interface residues (see section 1.7.1). 

Structural and sequence data pertaining to interface residues are incorporated as 

predictive features in an interface prediction method. In general, given a surface residue 

of unknown classification (i.e. interface or ROS), it is either classified as an interface or 

ROS residue by different methods (Bradford and Westhead, 2005). The classification 

can be done by interface prediction methods that, generally, can be divided into 

numerical value-based and probabilistic approaches (Zhou and Qin, 2007). 
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1.7.3.1 Numerical value-based approach 

 

A numerical value-based approach is represented in a function taking into account 

sequence or structural-based predictive features of known interface residues (Zhou and 

Qin, 2007). This is represented as follows: 

 

 Si = f (xi, x j∈ni
,c)  (1- 7) 

 

where xi is input data (i.e. predictive features like conservation) of an unknown residue i 

of interest. In addition, residue i’s neighbour list is considered, which is represented by 

spatially neighbouring residues’ (j ∈ ni) properties (xj) in terms of their structural or 

primary sequence proximity (i.e. window) of the residue i (Capra and Singh, 2007). The 

group of coefficients, which is defined during training, is represented by c. The value of 

Si determines whether residue i is classified as interface or ROS residue. A threshold for 

S may be set such that if Si > S, then it is classed as an interface residue and vice versa. 

Numerical value-based approaches can be based on linear regression (Kufareva et al., 

2007). For example, conservation data can be used as input data in a linear equation and 

compared to conservation of known interface residues (Li et al., 2006). Scoring 

functions, based on empirical energy functions, can also be applied, permitting different 

types of input data (i.e. interface discriminative features like conservation) to be used in 

scoring a residue of interest with later classification of that residue (see section 3.4). 

Finally, there are different machine learning-based approaches that have been applied. 

For instance, in support vector machines (SVM) non-linear mapping of input data of a 

training set is performed in high dimensional space, resulting in a hyper-plane that 

attempts to separate the input data points into two classes: interface and ROS residues 

(Zhou and Qin, 2007; Larrañaga et al., 2006). Subsequently, given a residue of interest, 

the objective is to assign it through SVM to the interface or ROS classes. 
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1.7.3.2 Probabilistic approach 

 

The objective of a probabilistic approach is to determine the conditional probability for 

the residue of interest to be predicted as an interface residue, given a set of input data 

(Zhou and Qin, 2007). This is depicted as follows: 

 

 p(s x1,...,xk )  (1- 8) 

 

where s represents the residue of interest that can be either an interface or ROS residue. 

x1 through xk represent the input data (i.e. interface discriminative features) for s. If the 

obtained probability for a residue of interest is greater than a conditional probability 

cut-off, the residue is classified as interface and vice versa. The conditional probability 

cut-off is derived from the dataset of known interface and ROS residues that is used for 

training. There are different applications for this type of method. As an example, the 

naïve Bayesian method views the input data (x1 through xk) as being independent in 

order to calculate the conditional probability in the following manner: 

 

 p(s x1,...,xk) = p(s)
p(xl s)

p(xl )l=1

k

∏  (1- 9) 

 

where  p(s) represents the fraction of the class s (i.e. interface or ROS residues) of the 

training set composed of interface and ROS residues (Zhou and Qin, 2007). p(xl) is the 

probability density of the input data (xl) in the entire dataset (Zhou and Qin, 2007). 

Finally, p(xl|s) is the likelihood probability of the data subset that it is of a specific class 

s (Zhou and Qin, 2007). 

 

1.7.4 Prediction output of interface predictors 

 

The interface predictors are grouped into patch and residue-based predictors (de Vries 

and Bonvin, 2008; de Vries et al., 2006; Bradford and Westhead 2005). Patch-based 

methods divide a protein’s surface into pre-defined patches of a given size and score 

them following a specific approach in an attempt to rank the patches in terms of 
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confidence such that the top scoring patch or group of defined patches are classified as 

the protein’s interface (Bradford and Westhead, 2005). A residue-based method outputs 

a list of residues that have been predicted to be part of the interface. Such residues may 

be used as the final prediction although if mapped on a protein’s surface there may be 

some isolated residues from some that are spatially close from one another (de Vries et 

al., 2006). Alternatively, residues of this approach are then clustered into patches that 

are re-ranked (Qiu and Wang, 2012). This eliminates isolated residues, which may be 

far apart from the main cohort of clustered residues (Guharoy and Chakrabarti, 2010; 

Ofran and Rost, 2007b). Also, applying clustering is supported by recent findings that 

conserved interface residues cluster spatially in close proximity on a protein’s surface 

(Guharoy and Chakrabarti, 2010). 

 

1.8 Historical description of protein-protein interface predictors 

 

In this section, a variety of interface predictors in this field will be described, focusing 

on all aspects of their methodologies, the training and testing datasets used, and their 

reported performances. Thereafter, further discussions focusing on other themes relating 

to interface predictors will take place. These discussions will focus on advantages and 

disadvantages of the described interface predictors, their application in combination 

with protein-protein docking, and their limitations in the context of what the newly 

proposed interface predictor (PROTIN_ID) introduced in this work seeks to address, 

including in its application in combination with protein-protein docking. 

 

1.8.1 Overview of interface prediction approaches 

 

The first protein interface and functional residue prediction method developed in 1996, 

known as the Evolutionary Trace method (ET), detects evolutionary conserved surface 

residues using multiple sequence alignments (Lichtarge et al., 1996a; 1996b). In the ET 

method, the initial step is to generate a sequence identity dendrogram from a multiple 

sequence alignment. Sequences in a dendrogram are partitioned via partition identity 

cut-offs (PIC) and separated into sub-groups based on their identity to each other. These 

sub-group sequences each branch off from a dendrogram’s node at a specific PIC. While 
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sharing sequence identities to each other, sequences in a sub-group may be similar in 

function as well. Based on the PIC selected, this allows scaling of functional resolution 

of entire sequences in a dendrogram through group clustering of all sequences. A higher 

PIC results in greater functional resolution and vice versa. The next step in this method 

is the construction of an evolutionary trace. This begins with the generation of a 

consensus sequence for each sub-group of sequences of a delineated partition, and 

invariant (conserved) residues of a consensus sequence are identified. The remainder of 

variant residues are designated as neutral. Following this, all consensus sequences for a 

given partition are aligned to identify: - 1) invariant residues conserved across all 

consensus sequences, 2) invariant residues that differ in residue type and designated as 

class-specific, and finally 3) variant residues (including gaps) for aligned positions, 

which are highlighted as neutral (Lichtarge et al., 1996a). The evolutionary trace data of 

conserved and class-specific residues are mapped onto the final three-dimensional 

structure of the query protein of interest to visualize the conservation data and interpret 

it through the application of residue clustering (Madabushi et al., 2002). An extension to 

the ET method incorporated the Shannon entropy score (see section 3.4.2) and treated 

gaps as the 21st amino acid (Mihalek et al., 2004). The later iteration of the ET method 

outperformed the original implementation.  

 

Jones and Thornton (1997a) developed, SHARPE2, an interface residue predictor for 

prediction of protein-protein interfaces in homo-dimers, hetero-dimers, and antibody-

antigen interactions. In their method they define surface patches for a given protein. A 

surface patch is composed of a seed residue and the number of neighbouring residues in 

close proximity to it. For homo-dimer interactions, surface patches of a certain size are 

determined based on a linear correlation between protein size and interface size, which 

are both defined in terms of their number of respective residues. In contrast hetero-

dimer and antibody-antigen interactions’ surface patch size for a given protein is based 

on the average size of the interface patch, and this is determined from their dataset. 

Each surface patch is scored according to predictive features applied, depending on the 

type of protein-protein interaction. The score obtained for each predictive feature is 

combined to create a composite score per surface patch. In complimentary work, Jones 

and Thornton (1997b) showed that interface properties differed, according to the type of 

protein-protein interaction. This is applied by varying groupings of predictive features 

used to score surface patches based on protein interaction type (Murakami and Jones, 
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2006; Jones and Thornton, 1997b). For homo-dimer interactions, these predictive 

features are accessible surface area, planarity, protrusion, hydrophobicity, solvation 

potential, and interface residue propensity. In hetero-dimer interactions, four features of 

the above predictive features are applied to score surface patches for the receptor 

protein known to interact with its smaller ligand protein; only hydrophobicity and 

solvation potential are not used. All six predictive features are applied to score the 

ligand protein of a hetero-dimer interaction’s surface patches. In antigen interactions 

only the interface residue propensity feature is not used. When each feature contributing 

to the composite score scores highly, a surface patch is ranked high. In their method, the 

three highest scoring patches are taken as the final prediction. Overall, this method 

produced predictions of >70% specificity (see section 3.5.2) on a dataset of 59 

complexes (homo- and hetero-complexes).  

 

Another method developed by Landgraf et al. (2001) predicts functional residue surface 

patches of a protein and, like the ET method above, utilizes both three-dimensional 

structural and sequence data to generate predictions. This method utilizes structural data 

of a protein of interest and its sequence data (MSA). For the initial step, surface patches 

are generated the same way as the method of Jones and Thornton (1997a). Residues of a 

patch are removed in the global MSA and connected to form a regional MSA. The 

regional MSA represents the structural vicinity of residues that comprise a surface 

patch, and it is derived from the global alignment of the query sequence of interest with 

its related sequences. In the subsequent steps, global and regional sequence similarity 

matrices are created by the method, representing the global and regional MSAs. These 

matrices are compared to determine, if present, the degree of difference between them. 

This establishes if an individual seed surface residue and its structurally neighbouring 

residues are more conserved than the protein altogether. This procedure is iterated for 

all surface patches’ seed residues and their neighbouring residues to determine their 

extent of conservation. The final output involves converting the associated structural 

conservation per seed residue scores into Z-scores, and these are mapped back onto the 

protein’s surface. This method was tested on a dataset of 25 obligate and transient 

proteins, 6 proteins that bind to DNA (or RNA), and 15 proteins with catalytic sites. 
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A pioneering method used machine learning for the prediction of interface residues 

(Zhou and Shan, 2001). In their work Zhou and Shan (2001) employed PSI-BLAST 

position-specific sequence profile data and solvent accessibility data of spatially 

contiguous residues at the structure level to train a neural network for interface 

prediction. Their training set used consisted of 615 protein-protein complexes (552 

homo-dimers and 63 hetero-dimers). Moreover, their testing set was composed of 129 

complexes where 117 were hetero-dimers and the remaining were homo-dimers. Zhou 

and Shan’s (2001) method, Protein-Protein Interaction Site Predictor (PPISP), showed 

specificity and sensitivity of 70% and 47%, respectively (see section 3.5.4). Later 

development of this predictor added consensus neural network prediction to alleviate 

over- and under-prediction problems (Chen and Zhou, 2005). Hence known as cons-

PPISP, this later iteration of the method was trained (using the same predictive 

properties) on a much larger dataset (1156 protein chains: - 756 homo-dimers and 400 

hetero-dimers) and tested on 100 (58 hetero-dimers and 42 homo-dimers) protein 

chains, resulting in much improvement interface residue prediction performance. This 

was exemplified by increased specificity (80%) and sensitivity (51%) values, when 

using the testing set. Further testing of cons-PPISP on independent validation datasets 

of 8 proteins determined by NMR and 68 transient proteins resulted in accurate 

predictions (NMR proteins: 69% specificity and 47% sensitivity; Transient proteins: 

61.4% specificity and 38% sensitivity). Fariselli et al., (2002) also used a neural 

network for prediction, training it on the same features used in the method of Zhou and 

Shan (2001). However, they used sequence profiles obtained from HSSP MSAs. In their 

method, the neural network is trained, using three-fold cross validation, on a dataset of 

226 hetero-dimers and performed at 72% specificity and 56% sensitivity. Unlike the 

above authors, Ofran and Rost (2003a) used sequence data only and no structural data 

for interface prediction. They used protein interface composition by analysing their 

spatial proximity to each other at the sequence level, to train (using three-fold cross-

validation) a neural network method. Although structural input is not utilized by their 

method, it is trained on interface residues determined through a distance cut-off of a set 

of 333 protein complexes predicted as transient. This dataset may contain obligate 

protein complexes due to its predicted nature. In comparison to this predicted dataset, 

an established transient protein dataset (Benchmark 4.0) exists with a lower number 

(176) of transient complexes and their unbound protein constituents (Hwang et al., 

2010). Ofran and Rost (2007b) further developed their method ISIS (Interaction Site 
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Identified from Sequence) by including more predictive properties in addition to the 

current property implemented in their method. They used secondary structure and 

solvent accessibility data predicted from sequence alone and evolutionary conservation 

data derived from PSI-BLAST sequence profile data as input to ISIS. The updated 

method of ISIS was trained (using cross-validation) on the original dataset and 

generated a minimum of one interface residue in its predictions for more than 90% of 

the dataset used, which corresponded to ~ 61% specificity at 20% sensitivity.  The 

original implementation of ISIS managed to predict at 62% specificity at a low 

sensitivity (0.5%), and this performance enhancement of ISIS is chiefly from the 

addition of more predictive properties.  

 

Neuvirth et al. (2004) developed the ProMate predictor, a Naïve Bayesian technique, 

which utilized various extensive descriptors drawing from both structure and sequence 

data of a training set of 57 transient proteins (via cross-validation) to predict interface 

residues. Specifically the method scans the surface of a protein, forming circles around 

a specific point at a certain radius. Neighbouring residues within a circle are analysed in 

terms of the subsequent parameters: (a) residue conservation derived from the PSI-

BLAST position-specific sequence scoring matrix; (b) knowledge-based features 

(secondary structural composition, B-factor, and the presence of water molecules); (c) 

and physicochemical conformation (residue propensity and pairing, residue and atom 

type, and residues’ sequence distance from one another). The surface “circles” are 

scored according to the above descriptors to determine their probability of being 

assigned as interface or not. ProMate produced accurate predictions of ≥ 50% 

specificity and ≥ 20% sensitivity. A further update to ProMate focused solely on re-

optimization of the input parameters (via logistic regression) used for prediction, 

resulting in an increased number of correct predictions (i.e. proteins with specificities ≥ 

50%) for 67% of the dataset for the optimized version of ProMate compared to 63% for 

the original ProMate (Neuvirth et al., 2007).  

 

Koike and Takagi (2004) used a support vector machine (SVM), which is a machine 

learning technique, as an interface predictor (see section 1.7.3.1). Their method was 

trained using sequence residue neighbour profiles derived from a PSI-BLAST position-

specific sequence scoring matrix and structural residue neighbour profiles based on the 

10 closest residues’ spatial distances to form a surface patch. In addition, other features 
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for training the SVM such as estimated interaction site ratio (interface residue to entire 

protein sequence), spatially contiguous residues’ ASA, and planarity of surface patches 

were utilized. Using k-fold cross validation, their method was trained on 271 and 291 

hetero- and homo-complexes, respectively, and produced a performance of 56.1% 

specificity and 44.6% sensitivity.  

 

Keil et al., (2004) developed a predictor, a neural network method, to predict functional 

residues. In their method, two topographical (cavity depth and surface topography 

index) and three physicochemical (electrostatic potential, hydrogen bond acceptor and 

donor densities, and lipophilicity) predictive properties were used to train their method 

for the purpose of scoring areas of a query protein’s surface termed domains. Surface 

domain scores are mapped onto a protein’s surface for visualization. They employed an 

extensive dataset composed of 7821 protein structures bound to proteins and peptides, 

ligands, and DNA and RNA that were partitioned into training and testing sets 

composed of 1,241,859 and 13,994 surface domains, respectively. They reported a 

sensitivity value of 76% when the top scoring surface domains were taken as final 

prediction for all bimolecular interactions of their dataset. For protein-protein 

interactions, 44% sensitivity was obtained when the top scoring surface domains were 

taken as final prediction 

 

Chelliah et al., (2004, 2006) developed the Crescendo method that employed 

environment specific substitution tables (ESST), which were used to discriminate 

between structural and functional constraints placed on residues in a given protein 

structure. Crescendo accepts as input a query protein structure along with a MSA 

containing the query protein’s sequence with its associated homologous sequences, 

which may be obtained from known protein structures or not. The observed residue 

substitution pattern for each residue of an MSA column is compared to the expected 

residue substitution pattern, as determined from the ESST. The comparison can be 

quantified through a divergence score (i.e. Jensen-Shannon divergence) or a 

conservation score. The computed scores are converted to Z-scores and mapped onto 

the final three-dimensional structure of the query protein of interest where they are 

smoothed and contoured. High Z-scoring residues are clustered and all clusters are 

ranked by size. The Crescendo method was originally applied to representative proteins 

of 164 protein families to predict ligand binding sites and catalytic residues, producing 
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on average accurate performance (28% specificity and 40% sensitivity)  (Chelliah et al., 

2004). It was later applied for protein-protein interface prediction on a dataset of 20 

proteins and achieved correct predictions (>50% specificity) for 85% of the dataset 

(Chelliah et al., 2006).  

 

PPI-Pred is a method similar in concept to the pioneering SHARP2 predictor, as it also 

analyses surface patches according to predictive properties (Bradford and Westhead, 

2005). The six predictive properties used were conservation, solvent accessibility, 

hydrophobicity, interface residue propensity, electrostatic potential, surface shape index, 

and surface shape curvedness. It differs, however, in that it utilizes this data to train an 

SVM algorithm to differentiate between true interacting patches from ROS patches. 

PPI-Pred was trained, using leave-one-out cross validation, on a 180 protein dataset 

composed of obligate and transient interactions. PPI-Pred computes a confidence value 

for each patch and ranks them according to their scores. Like the SHARP2 predictor, the 

top-three ranked patches are taken as the final prediction. A correct prediction was 

defined as a patch with >50% specificity and >20% sensitivity ranked in the top three 

patches. Based on this definition of success, PPI-Pred was able to obtain correct 

predictions for 76% of the dataset. Further testing on a mixed dataset of 47 proteins 

(obligates and transients) and a transient dataset of 57 proteins generated correct 

predictions for 72% and 53% of the datasets, respectively. In later work, Bradford and 

Westhead (2006) trained a naïve Bayesian classifier to predict protein interface patches 

using the same predictive properties applied for PPI-Pred. They used the same previous 

dataset, using leave-one-out cross validation for training, and the same criteria for 

success. This new predictor obtained 82% correct predictions (within top-three patches) 

for the dataset, performing better than PPI-Pred. This improvement in performance may 

be attributed to the lesser degree of data over-fitting by the naïve Bayesian classifier 

(Bradford and Westhead, 2006). 

 

An SVM-based predictor used evolutionary conservation rates (analysed from a MSA) 

and the residue type frequencies for a seed surface residue and its closest 14 nearest 

neighbouring residues for training (Bordner and Abagyan, 2005). The residue type 

frequencies are determined from the residue type frequencies present in a MSA’s 

columns that correspond to the 15 spatially nearest surface residues. This is iterated for 

all surface residues and their nearest-neighbours since all surface residues are 
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considered seed residues. The predictor was trained on 632 protein complexes (518 

homo-dimers and 114 hetero-dimers), using five-fold cross-validation, which resulted in 

performance specificity and sensitivity values of 34% and 64%, respectively. In addition 

it was also tested on 43 transient hetero-dimers, producing accurate predictions (22% 

specificity and 67% sensitivity values).  

 

An interesting method, developed by Hoskins et al., (2006), used secondary structural 

data to predict potentially interacting beta-strands of a query protein as an initial step for 

prediction of interacting residues. This method characterized beta-strands by their 

solvent accessibility, length and orientation (parallel or anti-parallel), strand type and 

localization (isolated or sheet; central or edge), beta-bulge occurrence, protective loops 

(PL) presence, and residue propensity to derive rules to classify beta-strands into 

interacting and non-interacting strands. The next step of this method is prediction at the 

residue-level, through scoring surface residues according to hydrophobicity and solvent 

accessibility that is based on secondary structure, residue type and atom type (main-

chain; polar- and non-polar side-chain). If the residues are found in potentially 

interacting beta-strands in the first step, the PL presence is taken into account in the 

score too. The final step is the mapping of scored residues onto the three-dimensional 

structure of a protein followed by generating contours. This method was developed 

using a dataset of 467 proteins and tested on a dataset of 77 proteins, resulting in correct 

predictions (>50% specificity) for 79% of the interfaces of the testing dataset (Hoskins 

et al., 2006).  

 

An interesting combination of an SVM with interface predictive properties augmented 

with structural conservation displayed enhanced prediction performance compared to 

not incorporating structural conservation in SVM training (Chung et al., 2006). 

Structural conservation data is mined from a multiple structure alignment (MSAstruc), 

which the predictor generates and scores via a structural conservation score. The 

structural conservation score accounts for distances between residues at an aligned 

position of an MSAstruc while weighting them by their mutability, as defined by a 

mutation data matrix. A novel step follows where each generated conservation score per 

MSAstruc position is additionally weighted by normalized B-factors obtained from the 

query structure. This results in rigid areas of residues in a query protein receiving higher 

structural conservation score values than flexible regions of residues of a query protein 
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that cause poor alignment of MSAstruc regions. Along with structural conservation, 

which distinguishes this method from those described thus far, Chung et al., (2006) 

trained their SVM driven method using PSI-BLAST position-specific sequence profile 

data and solvent accessibility data of spatially neighbouring residues at the structure 

level. Predicted residues are finally clustered on the query protein’s structure. Chung et 

al., (2006) trained their method on a dataset of 274 hetero-complexes, using three-fold 

cross-validation. The method’s specificity and sensitivity values were 50% and 67.3%, 

respectively. Without structural conservation data, their method generates a lower 

sensitivity (59.7%) at 50% specificity using the remaining predictive properties to train 

their SVM, highlighting the enhanced prediction performance derived from structural 

conservation data.  

 

Wang et al., (2006) utilized sequence profile data from HSSP MSAs like Fariselli et al., 

(2002), but also include evolutionary conservation data derived from phylogenetic tree 

analysis based on the methodology of the ET method. These predictive parameters are 

obtained for a seed residue and its structural residue neighbours, allowing an SVM to be 

trained on a dataset of 69 hetero-dimers. Leave-one-out cross validation analysis was 

applied, resulting in accurate performance (49.7% specificity, 66.3% sensitivity, 65.4% 

accuracy, and 0.297 MCC; see sections 3.5.1 and 3.5.7).  

 

The PINUP (Protein Interface residue Prediction) interface residue predictor combines 

residue conservation, interface residue propensity, and an energy score to form a three-

part empirical score function. It is the first predictor to utilize side-chain energy 

calculation to distinguish interface residues with higher side-chain energies than side-

chains of ROS residues (Liang et al., 2006). The side-chain energy score is composed of 

knowledge-based and energy terms optimized by their respective weights. PSI-BLAST 

sequence profile data were used to compute the residue conservation term. The residue 

propensity term defines the contribution of residues to protein interfaces normalized by 

their contribution to the ROS of proteins and weighted by their accessible surface areas 

in interface and ROS areas. PINUP was trained on a set of 57 transient proteins, using 

leave-one-out cross validation, and produced 44.5% specificity and 42.2% sensitivity 

prediction performance values. PINUP was tester further on an independent dataset of 

68 transient proteins, resulting in 29.4% specificity and 30.5% sensitivity values. The 

PINUP authors noted that the independent testing dataset had binding interfaces less 
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conserved than those in the training set, which may have contributed to the reduction in 

PINUP’s prediction performance on the independent dataset.  

 

de Vries et al., (2006) developed a method, WHISCY (WHat Information does Surface 

Conservation Yield?), that extracts evolutionary conservation data from a HSSP MSA 

through the use of a mutation data matrix-based evolutionary conservation score. All 

solvent accessible residues of a protein are assigned conservation scores weighted by 

the residues’ interface propensities and mapped back to the protein surface. Following 

this, closely proximal surface residues are scored higher than isolated residues by a 

smoothing function. In the last step, high scoring surfaces residues are predicted as 

interface residues. WHISCY was developed using datasets of 57 (developmental) and 

38 (testing) transient proteins, respectively. Its performance on the developmental 

dataset was 33% specificity and 30% sensitivity. The performance values of WHISCY 

evaluated on the test dataset were 40.8% specificity and 26.7% sensitivity.  

 

Interface residues are solvent accessible in an unbound protein and buried upon binding. 

Methods designed for predicting solvent accessibility of residues from sequence alone 

predict interface residues as buried (Porollo and Meller, 2007). This observation has 

been exploited as a novel interface predictive ‘fingerprint’ in the SPPIDER predictor 

(Solvent accessibility-based Protein-Protein Interaction sites IDEntification and 

Recognition). The difference between solvent accessibility calculated from an unbound 

structure and predicted solvent accessibility from sequence alone is computed and used 

as an interface residue fingerprint (Porollo and Meller, 2007). This novel fingerprint and 

various other structural and sequence-related predictive features were applied. The 

sequence-based features are MSA-derived evolutionary conservation using the Shannon 

entropy and PSI-BLAST sequence profiles, and residue features (side-chain size, 

residue type and frequency, charge and hydrophobicity). The structure-based features 

employed were residue contact numbers and hydropathy constants. All predictive 

features were applied to train SPPIDER, which is a neural network-based method, via 

k-fold cross validation on a training set of 435 proteins (homo- and heterocomplexes). 

In addition a separate independent dataset of 149 (homo- and heterocomplexes) was 

used for validation. Overall, the authors found that SPPIDER achieved accurate 

prediction performance for the testing and (63.7% specificity and 60.3% sensitivity 

values) and training sets (67% specificity and 52.7% sensitivity values). In addition, 
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they showed that minus the novel solvent accessibility fingerprint, methods utilizing the 

other predictive features have less effective predictive performance (Matthews 

correlation coefficient- MCC of ~ 0.3) relative to SPPIDER (> 0.42 MCC), 

underscoring the usefulness of this novel fingerprint. Finally, further testing of 

SPPIDER on a dataset of transient proteins (43 interfaces) generated 47% specificity 

and 43% sensitivity.  

 

HotPatch generates patches for high scoring residues through clustering based on spatial 

proximity and score (Pettit et al., 2007). The predictive structural properties used for 

scoring individual residues are concavity, surface roughness, electrostatic charge and 

potential. Predicted patches are assigned confidence values indicating their likelihood of 

functional importance. HotPatch, which is neural network-based, was trained (using 

jack-knifing) on a dataset of 618 varied protein interactions, including protein-protein 

interactions. The performance of HotPatch was ≥ 33% specificity.  

 

Another predictor using structural predictive properties is InterProSurf (Negi and 

Braun, 2007). Interface residue propensity, defined as the contribution of a specific 

residue type in an interface normalized by the residue’s contribution to the entire surface 

of a protein, and solvent accessibility, were used as discriminative parameters. Given a 

query protein, InterProSurf generates surface clusters or alternatively the neighbour 

density for each surface residue to form patches. Whichever surface partitioning method 

is applied, the clusters (or patches) produced are scored according to the predictive 

properties applied in the predictor and ranked by score. The predictor was trained on 72 

protein complexes and independently validated on 21 protein complexes, achieving an 

accuracy value of ~70% (for both datasets) by using either surface partitioning 

technique.  

 

Konc and Janežič (2007) used structural conservation data for prediction binding sites. 

In their method a query protein with a known partner protein is compared to related 

proteins through structural alignment to identify the most conserved surface region 

between the query protein and its related proteins. This conserved site is isolated from 

the first query protein and is compared to the second query protein’s surface to find the 

best match on its surface using distance matrices and similarity of physical chemical 

features of the surface atoms. The best matching surface from the second query protein 
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is predicted as its binding site. The two surface sites isolated from both query chains are 

taken as the final prediction. This method was developed using a total of 8 proteins (6 

obligate hetero-and homo-dimers and 2 transients). Overall, the method generated ~ 

42% specificity and ~ 46.6% sensitivity values.  

 

The PIER (Protein IntErface Recognition) predictor uses structural predictive 

discriminators (Kufareva et al., 2007). The structural properties are derived from 

statistical analyses of structures at atomic resolution to generate atom groups with 

significant predictive discrimination. This structural data is coupled with computed 

solvent accessibility for atom groups. PIER initially generates the solvent accessible 

surface of a query protein and extends it by a further 3Å. This is followed by the 

generation of uniformly spaced surface points on the protein surface. The local 

neighbourhood of solvent accessible atoms within a specific radius of a surface point 

are determined, creating surface patches. A surface patch is scored based on the 

structural discriminators utilized by PIER. Finally the scores are assigned to surface 

residues. Surface residues above a specific cut-off are predicted as interface residues. 

PIER was trained (using three-fold cross validation) on a dataset of 748 proteins 

composed of permanent and transient hetero- and homo-complexes, producing 

predictions at 60% specificity and 50% sensitivity values. Additionally, two 

independent validation datasets were used to gauge PIER’s performance. The first 

dataset like the training set is mixed and composed of obligate and transient 

interactions. For this dataset the results were similar to those obtained using the training 

set (61.8% specificity and 50% sensitivity values). The second dataset was composed 

solely of transient interactions (340 interfaces obtained from 91 transient complexes). 

PIER generated predictions of reasonable accuracy (≥25% specificity at 50% 

sensitivity) for ~82% of the dataset (Kufareva et al., 2007). 
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1.9 Advantages and disadvantages of previous protein-protein interface 

predictors 

 

Tables A-1 and A-2 of the Appendix summarize and include details regarding the 

advantages (in green) and drawbacks (in red) of the predictors discussed. The following 

categories are examined: - (i) the dataset essentials utilized for predictor development 

(tables A-1 and A-2); (ii) the training of predictors (Machine learning predictors only) 

and the application of benchmarking (table A-2); (iii) the use of structural and/or 

sequence data and the miscellaneous advantages and disadvantages of a predictor, 

including the availability of a predictor webserver or download (table A-2).  

 

1.9.1 Protein dataset essentials: protein complex types’ influence on predictor 

performance 

 

Table A-1 shows the developmental (training/testing) and independent testing datasets 

used for the interface predictors with their performance measures for the specific dataset 

used. It can be seen that most interface predictors (15) are trained and validated on 

mixed datasets of different protein complex interaction types. These mixed datasets are 

composed mainly of obligate (or permanent) and transient complexes (see section 1.3). 

A few methods are trained and tested on transient complexes in comparison. The protein 

complex interaction types contained in those datasets differ in terms of their interface 

characteristics (Ofran and Rost, 2003b). For instance, interface size, hydrophobicity, 

and binding affinity are more prominent in obligate complexes than transient complexes 

(see section 1.4). In addition, obligate interfaces exhibit a strong evolutionary 

conservation signal and thus are more conserved than transient interfaces (Dey et al., 

2010; Bradford and Westhead, 2006; Mintseris and Weng, 2005a; Caffrey et al., 2004). 

Moreover, obligate proteins cannot exist in the unbound form, as they are unstable. In 

the context of ‘blindly’ predicting unknown interfaces their ‘prediction’ as part of mixed 

datasets is a non-biologically relevant problem, because they only exist in the bound 

form in a complex. A more interesting and motivating challenge is to solve the complex 

of two unbound transient proteins through the aid of interface prediction. This scenario 
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would be relevant to a biologist intent on determining an unknown complex for proteins 

in the unbound form that are known to interact. Interestingly, computational methods 

have been developed to distinguish between obligate and transient interaction 

complexes, performing accurately in their predictions (Aziz et al., 2011; Zhu et al., 

2006). These studies highlighted the differences between obligate and transient 

interfaces, which were utilized successfully in prediction for a biologically relevant 

problem in structural biology of distinguishing between obligate and transient 

interactions. As such, it would seem that obligate interactions are more suited for the 

protein complex type discrimination problem, which requires as input a protein complex 

for testing, rather than the interface prediction problem that requires monomeric 

(transient) proteins. Furthermore, interface predictors are increasingly utilized with 

protein-protein docking to predict the complex of two transient proteins known to 

interact (see section 1.10). Obligate proteins do not exist in the unbound form and hence 

generating interface prediction data for them and using them in protein-protein docking 

studies to dock obligate proteins is not biologically meaningful. 

 

The differences of interface features results in much lower interface prediction difficulty 

for obligate interfaces than transient ones, influencing interface residue prediction 

performance. A consequence of this is that a interface predictor developed and validated 

using protein complex mixed datasets primarily consisting of obligate (or permanent) 

interfaces will perform better (higher specificity and sensitivity) in general than a 

predictor solely trained and validated on transient interfaces because these interfaces are 

easier to predict. Indeed, it can be seen that from the overall 15 predictors trained on 

mixed datasets, 6 of them were also independently validated using transient only 

datasets or mixed datasets and have specificities and sensitivities available (see table A-

1). It can be observed that 5 predictors (cons-PPISP, PPI-Pred, SPPIDER, PIER, and 

Bradford and Westhead, 2006’s predictor) perform better on mixed (developmental 

and/or independent) datasets then transient only datasets (developmental and/or 

independent) overall. An example of this is SPPIDER, which performs better in 

specificity (+20%) and sensitivity (+10%) for its mixed developmental dataset than its 

transient only independent dataset. The sixth predictor (Bordner and Abagyan (2005)) 

performed better for obligate complex types than transient ones. Although this predictor 

had similar sensitivities for both obligate and transient datasets, the specificity 

performance indicates much more accurate predictions for obligate proteins. In 
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summary, including obligate complexes in training and testing datasets boosts the 

performance of a predictor and this explains why predictors trained solely on transient 

proteins have lower reported performances (ex. PINUP and WHISCY) in comparison to 

those trained on mixed datasets (ex. SPPIDER). 

 

1.9.2 Protein dataset essentials: bound vs. unbound transient proteins in datasets 

 

Regarding dataset essentials, most predictors used datasets composed of bound transient 

protein-protein complexes where each protein chain of a complex is extracted. In 

contrast, an unbound transient protein refers to an independently determined protein 

monomer not in a complex with another protein. Bound transient proteins used for 

predictor development and testing may introduce potential bias by either influencing the 

interface residue predictive properties derived for prediction or artificially boosting 

prediction performance of a predictor when using bound models for testing and 

performance assessment. For example, a predictor that utilizes solvent accessibility data 

of bound interface residues may be using a biased property as it is linked to 

conformation change of a protein. It would be more ideal to utilize interface residue 

solvent accessibility data from unbound models to simulate a blind prediction setting, as 

interface residues are not in a buried and bound interacting pose. Another example of 

this is the use of B-factors obtained for interface residues as predictive discriminators 

for prediction. For the method of Chung et al. (2006) bound models are used to derive 

this data. Although interface residues have lower B-factors than ROS residues in the 

unbound form, in bound models their B-factor values are lower (Neuvirth et al., (2004). 

This may result in optimistic performance of a method using such data derived from 

bound models (and not unbound models) since interface residues have lower B-factors 

due to being in a ‘locked’ binding pose. Indeed, Porollo and Meller (2007) showed that 

incorporating B-factor data in SPPIDER and testing it on a dataset of 21 bound proteins 

resulted in better performance on the bound models (64.5% specificity and 37.5% 

sensitivity) in comparison to SPPIDER’s performance on their unbound protein 

counterparts (59.2% specificity and 31.4% sensitivity). Consequently, this possible bias 

of deriving B-factors data from bound models may influence the structural conservation 

predictive feature implemented in the method of Chung et al., (2006) where each 

conservation score assigned to a residue is normalized based on the ‘flexibility’ of the 
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region in which it is found. The effect is higher conservation scores for rigid residues 

than flexible ones, leading to optimistically reported performance values. An additional 

example is the use of bound model data in a prediction workflow, potentially 

introducing an unintended bias. This is manifested in the method of Konc and Janežič 

(2007), which was tested using a bound input protein ‘extracted’ from a known complex 

to predict the binding site of the input protein’s partner, which is biased developmental 

testing of their method. This can be avoided entirely through the use of an unbound 

protein model as input. Furthermore, during the first step of its prediction protocol 

(structural alignment between the query protein with its related proteins), a closer 

examination of the related proteins used in this step revealed that, for some instances, 

the related bound proteins were identical to the input protein and the protein partner for 

which predictions of their binding surfaces were sought. Such an error in this method 

could be avoided through use of a filtering heuristic prior to performing the first step in 

this method to remove identical ‘related’ (bound) proteins to the query protein. 

 

Any potential bias introduced in the extracted ‘bound’ interface predictive features (ex. 

solvent accessibility or B-factor data) is accentuated by including spatial contiguity data 

of interface residue neighbours in the bound form for training a method. Interface 

residues are ‘closer’ during complexation than they would otherwise be in the unbound 

and uncomplexed form. This also highlights the linkage of residue spatial proximity 

with the conformational configuration of a protein. Similarly, biased predictive 

properties may indirectly affect other predictive properties not linked directly to 

conformational change of a protein used (ex. sequence profile data). For example, a 

predictor, which clusters its predicted residues to generate clusters, and is validated on 

bound proteins, may result in the enhancement of the effect of clustering and may 

artificially boost the effect of sequence profile data. This would be due to bound 

interface residues’ closer proximity to each other. For example, two highly conserved 

residues may be in closer spatial contiguity at the bound structural level, but not at the 

unbound structural level to be included in a cluster. Therefore a potential consequence is 

that a ‘bound cluster’ has a stronger conservation signal then the ‘unbound’ cluster, 

which may be lacking some of the conserved residues present in the ‘bound’ cluster. 
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Zhou and Shan (2005; 2001) tested their PPSIP predictor on the effect of unbound vs. 

bound change on a dataset of 35 unbound transient proteins and their bound 

counterparts. They did not find a difference between the 35 protein samples in overall 

specificity (bound 69% vs. unbound 70%) and concluded that their predictor performed 

as accurately on unbound models as bound models. In addition, cons-PPISP was also 

tested on Benchmark 1.0 bound and unbound models, producing slightly lower unbound 

specificity (61.4%) and sensitivity (38%) values relative to the bound models (63.6% 

specificity and 39% sensitivity) (Chen and Zhou, 2005; Chen et al., 2003a). Also, 

Bradford and Westhead (2005) tested PPI-Pred on a small dataset of 10 unbound models 

with their bound chain equivalents. They achieved success for 9 unbound models (> 

50% sensitivity). However, all these analyses used protein datasets composed mainly of 

small-induced fit conformational changes during protein complexation and, in addition, 

focused on a specific prediction setting. For example, the 10 unbound model dataset 

used by Bradford and Westhead (2005) was composed mainly of the ‘rigid-body’ 

category (i.e. have minimal conformational change) as categorized by docking 

difficulty. This may have been the reason that the methods’ performance was similar on 

bound and unbound models for transient proteins of their datasets due to lack of 

conformational differences on the dataset used by the cons-PPISP and PPI-Pred 

predictors. The analysis on unbound vs. bound transient models was not performed at a 

‘holistic’ performance level, as offered through ROC analysis. Rather a specific 

prediction setting was used for the previous predictors. Using ROC analysis facilitates 

an overall representation of method performance at all possible predictor performance 

settings. The previous authors have not presented this in their papers when examining 

bound vs. unbound performance. Utilizing ROC analysis by these developers would 

have provided complete predictor performance without the potential bias of using only a 

single predictor setting (without the knowledge of predictor performance at alternative 

settings) for the specific testing of unbound vs. bound performance differences. 

 

Later work by de Vries and Bonvin (2011a) examined predictor (for example WHISCY, 

SPPIDER, and PIER) performances on unbound vs. bound model prediction, using 

Benchmark 2.0 proteins (Mintseris et al., 2005b). ROC-like analysis (specificity vs. 

sensitivity plots) was performed to examine all possible scoring cut-offs for the 
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predictors. Even with small conformational changes, performance differed in favour of 

bound models for the majority of predictors. For example, performance was better 

overall for PIER on bound models. Additionally, at specific sensitivity ranges 

(approximately ≤ 45%), WHISCY performed better on bound models. Also, SPPIDER 

performed better on bound models than unbound models at approximately ≤ 20% 

sensitivity. This differs from earlier work performed using SPIDDER on 21 bound vs. 

unbound models, which found only small differences in SPPIDER’s performance on 

both datasets (Porollo and Meller, 2007). In general, the findings of de Vries and 

Bonvin (2011a) suggest that interface predictors perform better on bound models at 

specific or all sensitivity ranges. In their work, they pursue training and testing, using 

explicitly unbound models derived from Benchmark 2.0, to develop their consensus 

predictor, composed of individual predictors, for protein-protein docking (de Vries and 

Bonvin, 2011a). 

 

Generally, interface predictive properties derived from bound models may introduce 

bias especially for the properties influenced by conformational changes. In addition 

using bound models may result in higher confidence in a predictor’s performance 

during testing (Porollo and Meller, 2007). These disadvantages are avoided when using 

unbound models to derive predictive properties and for training and validation of a 

predictor. An examination of the predictors in Table A-1 shows that the majority were 

trained and tested on bound models. Only a few used unbound models. Additionally, 

predictors are increasingly utilized in docking (see below) of unbound proteins known 

to interact in an attempt to predict their final complexed configuration. In this regard, 

bound docking has minimal significance from a biological perspective, and recent 

development of a consensus predictor is aligned with the target of unbound (and blind) 

docking through generating ‘unbound’ docking constraints for data-driven docking  (de 

Vries and Bonvin, 2011a). 

 

1.9.3 Protein dataset essentials: Crystallization and antibody-antigen interactions 

 

In some datasets, non-biological interactions caused by crystal packing interactions are 

not omitted. For instance, Zhou and Shan (2001) did not omit such complexes due to 
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the lower numbers of dimer interactions in the PDB to allow sufficient complexes for 

training their PPISP predictor. They used a filter of interface size (> 20 residues per 

protein) to select for large ‘interfaces’, arguing that such crystal packing binding sites 

are stabilized similarly to other dimer complexes in a soluble environment. The use of 

non-biologically relevant interactions was also present in the training and validation sets 

for their cons-PPISP predictor (Chen and Zhou, 2005). Crystal packing interactions are 

non-specific and do not have a biological function coupled with them such that they are 

not subjected to evolutionary pressures associated with biologically relevant 

interactions. These non-relevant biological complexes would not occur in a living 

organism (Zhu et al., 2006). While Zhou and Shan (2001) use interface size as a 

discriminator to filter some non-specific crystal interactions from their dataset, this sole 

criterion may not be enough, as non-relevant interactions may have large binding sites 

(Bahadur et al., 2004). In addition, crystal packing ‘interfaces’ are not conserved, 

having no different conservation as ROS residues, and this is not the case for 

biologically relevant interactions that have more conserved interfaces relative to their 

ROS residues (Dey et al., 2010). For a method like cons-PPISP that relies on 

conservation data as an interface predictive property among others, it is risky to include 

such complexes in their training and validation datasets. The use of non-biologically 

relevant complexes (homo-dimers) in training and testing a predictor is not justified and 

represents a disadvantage. As a consequence, attempts to remove such complexes from 

a dataset may involve using Swiss-Prot annotation checks as was done by Bordner and 

Abagyan (2005) (Magrane and UniProt Consortium, 2011). 

 

Although the biological function of an antibody is interaction with its antigen, this is not 

reciprocated by antigens’ biological functions to entail binding to antibodies. This 

makes their interfaces difficult to predict, as they do not follow the evolutionary model 

that assumes evolution of interfaces of two proteins that have overlapping biological 

functions (de Vries and Bonvin, 2008; Kufareva et al., 2007; Zhou and Qin, 2007). 

Antibody-antigen complexes mostly form through the complementary determining 

regions (CDRs) identifiable from their sequence variability relative to other sequence 

regions of an antibody in a multiple sequence alignment. Antigens, through antibody 

maturation, can have a number of epitopes for antibody interaction and these may 

overlap with other interface regions of other proteins. For predictors implementing 

evolutionary conservation data in their prediction protocol, this makes such interactions 
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unsuitable for prediction purposes. This is in contrast to other protein-protein complexes 

used in training and validation datasets, which have ‘two-way’ interactions coming from 

both binding partners and thus have an evolutionary model of overlapping biological 

functions, facilitating the use of evolutionary conservation data to identify their 

interfaces with other interface predictive properties. Therefore, the inclusion of 

antibody-antigen complexes in a dataset introduces a conflicting evolutionary model of 

interaction compared to that from other protein-protein complexes. Other authors have 

advised in the exclusion of antibody-antigen complexes from datasets (de Vries and 

Bonvin, 2008; Kufareva et al., 2007; Zhou and Qin, 2007; Liang et al., 2006). For 

example, the authors of PINUP and Crescendo excluded antibody-antigen complexes 

from their datasets, as their interactions were not developed under evolutionary pressure 

during long time spans, but under somatic cell mutations that occur swiftly, making 

such complexes not appropriate for prediction by their predictors since they utilize 

evolutionary conservation for prediction (Liang et al., 2006; Chelliah et al., 2004, 

2006). 

 

1.9.4 The training of predictors, their benchmarking to others, and their use of 

structural and/or sequence data 

 

Like all predictors, machine learning-based predictors are trained on datasets of known 

interface and ROS residues. Since the proportion of ROS residues is greater than 

interface residues, the removal of some ROS residues from a dataset during cross-

validation results in a decrease of FPs (i.e. ROS residues), biasedly affecting the 

accuracy measure. In a blind setting the interface and ROS residues are undetermined 

(Bordner and Abagyan, 2005). Only three predictors have this disadvantage; the 

majority of predictors do not reduce the number of ROS residues (see Table A-2).  

 

It is important to benchmark a new predictor to existing predictors to ascertain its 

performance relative to theirs. This becomes important when a predictor aims to 

introduce, for instance, new algorithmic methodologies to improve prediction efficacy 

and/or applies novel interface predictive features combined with previous features to 

predict interface residues. A small number of predictors benchmark directly to other 

predictors, whereas a larger number do not benchmark directly, and with direct 
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benchmarking, all standard performance metrics can be used to gauge different aspects 

of each benchmarked predictors performance. In addition, the majority of predictors 

utilized interface predictive properties from both structure and sequence data, and eight 

other methods either are sequence- or structure-based. No given interface predictive 

property can unequivocally be used to absolutely predict interface residues amongst all 

the surface residues. However, utilizing multiple predictive properties from structure 

and sequence sources of data in a predictor provides a greater advantage than predictors 

that depend exclusively on either source of data.  

 
Additionally, it is more advantageous to utilize the latest sequence data with structural 

data for a predictor. Some predictors do not utilize the latest sequence data. As an 

example, there are some predictors that utilize sequence data (i.e. MSAs) obtained from 

the HSSP database (Dodge et al., 1998). The HSSP database is not updated completely; 

instead only HSSP MSAs older than 6 months are updated in a weekly cycle (Joosten et 

al., 2010). Consequently, HSSP alignments under 6 months old, which do not contain 

the latest sequence data, are present in the HSSP database. This means a predictor may 

not have access to latest sequence data for a given prediction. Interestingly, a predictor 

that relies on HSSP alignments, and is applied to generate predictions for newly 

deposited structures in the PDB, would not be able to generate a prediction straight 

away. This is because newly deposited proteins do not have HSSP alignments 

immediately generated for them in the HSSP database.  

 

1.9.5 The miscellaneous advantages and disadvantages of predictors and their 

availability 

 

There were specific advantages or drawbacks unique to or shared by predictors (see 

Miscellaneous column of Table A-2). As shown in table A-2, there were a number of 

predictors that utilized manually curated datasets, avoiding the pitfalls of crystallization 

packing interactions (ex. PPI-Pred). Also, in some cases antibody-antigen complexes 

were excluded (ex. ProMate, WHISCY, and PIER), whilst in others they were present 

(ex. SHARPE2). In summary, the use of manually curated datasets represents an 

advantage in relation to other predictors that were mainly developed using 

automatically generated datasets and in a specific instance using 77% of PDB-1999 (ex. 
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Keil et al., 2004). The size of the dataset for testing is also important. Using a small 

dataset would not be a robust means of testing a predictor’s performance. For example, 

Konc and Janežič (2007) used 8 proteins to test their method. It would have been more 

appropriate to test their method using manually curated datasets like Benchmark 2.0 or 

those used by earlier predictors to systematically evaluate their predictor. Likewise, it is 

important to remove redundancy in a dataset to prevent bias in terms of artificially high 

confidence in prediction performance. A useful example is illustrated using the method 

of Fariselli et al. (2002) where originally a dataset of 452 proteins was used to validate 

it. This dataset was not checked for redundancy. When redundancy filtering was 

applied, only 59 chains were found to be non-redundant (Porollo and Meller, 2007). The 

testing of Fariselli et al. (2002)’s method on both datasets, using 10-fold cross 

validation, resulted in marked differences in performance. Specifically, using the 

redundant dataset this predictor yielded a 0.43 MCC. In contrast, a much lower MCC 

value of 0.28 was obtained when using the non-redundant dataset (Porollo and Meller, 

2007). Thus, high redundancy in a dataset affects the performance evaluation of a 

predictor and should be filtered.  

 
Generated predictions are compared, via a performance metric, to the actual number of 

interface and ROS residues, which are determined from experimentally available 

complexes (see section 3.5). In order to evaluate performance of a given predictor, most 

predictors use the actual interface and ROS residue numbers determined beforehand 

prior to prediction. This data would be used to ascertain their proportions in all 

predictions for proteins in a dataset.  If ROS residues are present in predictions they are 

classed as false positives (FPs). Likewise all interface residues correctly predicted 

would be classed as true positives (TPs). Only two predictors do not adhere to this 

performance evaluation practice and convert some false positives into ‘true positives’ 

based on their proximity to true positives present in their predictions (ex. cons-PPISP 

and Chung et al., 2006). If such FP residues are in reality TPs then they should not be 

included initially as ROS residues prior to prediction to avoid introducing bias in 

performance assessment (i.e. increase the specificity value). The initial separation of 

surface residues into interface and ROS residues prior to prediction must remain fixed 

to enable unbiased performance evaluation. The conversion of some FPs into TPs, 

which follows after a prediction, is biased and boosts their predictor’s specificity 

performance. An example of this was the NMR dataset used to independently validate 
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cons-PPISP; the specificity differed when accounting for TPs only (38.5%) and when 

accounting for TPs and FPs (converted to TPs) in close proximity (69%) at 47% 

sensitivity. 

 

There are unique drawbacks to certain predictors. The methods of Fariselli et al., (2002) 

and Wang et al., (2006) both used permissive interface residues definitions (12 Å 

between alpha-Carbons of opposing protein chains). This resulted in 40% and 34.8% of 

their surface residues designated as interface residues for the former and latter 

predictors. This makes it easier to predict interface residues and improves predictor 

performance (Chen and Zhou, 2005). In addition, when this is coupled with a highly 

redundant dataset as used by Fariselli et al., (2002); the outcome is an optimistic 

performance of their predictor (72% specificity and 56% sensitivity).  

 
Some predictors have notable advantageous features, for example the ProMate predictor 

is designed to be able to accept potentially new interface predictive properties as input 

(Neuvirth et al., 2007). Noteworthy predictive properties like SPPIDER’s novel solvent 

accessibility fingerprint and the utilization of structural conservation in the predictor of 

Chung et al., (2006) demonstrate advantageous features unique to these predictors that 

improve the predictors’ performance. All predictors developed were tested on datasets 

where an experimentally determined complex is known. This means the interface 

residues can be determined prior to testing. Of course most proteins bind to more than 

one partner and such complexes are not represented in a dataset for training and 

validation of a predictor. Therefore these unrepresented interfaces are considered ROS 

residues. In their valuable study, Porollo and Meller (2007) incorporate other known 

interface residues for each protein of their dataset, including the ‘actual’ interface of the 

specific experimentally determined complex of their dataset. This approach for 

developing a predictor has a further advantage in that potential false positives, which 

are in fact alternative interface residues, are avoided and assigned as TPs when correctly 

predicted. This prevents decreases in predictor specificity if they are not taken into 

account. Over half of the predictors are available to users as webservers (or downloads; 

see table A-2). This is beneficial and a user-friendly service. Also, it is useful for 

benchmarking of new predictors and fosters further development, as demonstrated in 

the recent progress of consensus prediction combined with protein-protein docking (de 

Vries and Bonvin, 2011a; Qin and Zhou, 2007a). 
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1.10 The use of interface predictors in combination with protein-protein docking 

 

Interface residue predictors have been combined with protein-protein docking 

approaches to predict the binding poses of proteins known to interact. This is 

accomplished directly to drive docking sampling by reducing the sampling search space 

(i.e. front-end docking), or indirectly by re-ranking docked models via scoring (i.e. 

back-end docking). An early implementation of an interface residue predictor combined 

with back-end docking was achieved using an ET-based method (Aloy et al., 2001). 

Five enzyme-inhibitor complexes’ unbound proteins were docked using FTDock (Gabb 

et al., 1997). The resulting docked poses were retained, if a protein’s surface was within 

a close distance to a functional residue prediction obtained from the predictor for its 

partner protein, while all other complexes not fulfilling this criterion were disregarded. 

It was shown that the prediction-based distance constraint data filter improved the 

ranking of near-native models (ranked within top 25 models) compared to no filtering 

applied (ranked 87th and above). Specifically, four complexes resulted in near-native 

models found within the top-ten docking predictions. In the CAPRI competition, Ben-

Zeev et al., (2003) utilized ET method prediction data in front-end docking to predict 

the best putative docking model of the HPR kinase-HPR complex using its unbound 

proteins. A model of acceptable quality was generated using MolFit (Heifetz et al., 

2002). Zhu and Tytgat (2004) used the ET method to predict binding sites from Hsp90 

and p23 proteins. They mapped this data to the best-ranked docked model for the two 

proteins generated using BiGGER (Palma et al., 2000). It was observed that they were 

part of the modelled complex’s putative interface, suggesting a possibly putative 

biologically relevant complex (Zhu and Tytgat, 2004). Gottschalk et al., (2004) used 

ProMate prediction data as part of a scoring function that computes the tightness of fit 

for the potential interfacial sites on docked models. A benchmark of 21 enzyme-

inhibitor complexes was used for docking unbound proteins using FTDock. Using their 

scoring function, a 77% success rate was achieved for complexes of their benchmark. 

van Dijk et al., (2005b) combined PPISP prediction data and experimental data for 8 

CAPRI targets during the CAPRI competition to drive their docking using HADDOCK 

(Dominguez et al., 2003). Acceptable or above models were obtained for five targets. 

Specifically, 3 medium and 2 high quality models were generated. PPISP contributed 
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34% specificities and 32% sensitivities for the targets’ predictions. Tress et al., (2005) 

applied prediction data from the method of Fariselli et al., (2002) with data derived 

from other experimental and theoretical sources, during the CAPRI competition, to 

identify near-native models. Docked models’ putative interfaces were examined and 

filtered according to overlap to the prediction and experimental data. 7 CAPRI targets 

were docked using Hex and GRAMM, which resulted in acceptable models being 

produced for 4 CAPRI targets based on their filtering strategy. de Vries et al., (2006) 

applied WHISCY prediction data as restraints to drive docking of unbound proteins for 

25 complexes obtained from Benchmark 2.0. Using this approach, successful results 

were generated for 48% of their dataset compared to ab initio docking using 

HADDOCK (0% success). Combining WHISCY and ProMate prediction data, the 

number of the successful cases increased to 64% of the dataset. Crescendo predictions 

have been applied for back-end docking (Chelliah et al., 2006). Docked solutions 

generated by pyDock were scored using distance restraints derived from Crescendo 

prediction data. This protocol produced near-native models ranked in the top-20 

docking solutions for 80% of the 10 complex docking dataset (7 bound-unbound 

docking cases, 1 unbound-unbound cases, and 2 bound-bound cases). This protocol was 

found to be superior to the native pyDock energy score used for ranking models. 

Furthermore, Crescendo prediction data was also applied to drive front-end docking of 

four protein complexes (one was bound-unbound docking, while the rest were in the 

unbound form), using HADDOCK and generated near-native complexes ranked highly 

(1st for three cases and 4th for one case). Kanamori et al., (2007) developed a docking 

method that applies shape complementarity weighted by residue evolutionary 

conservation retrieved from the ET method to perform docking. This method was used 

to dock seven CAPRI targets and it produced near-native models for 5 targets. Qin and 

Zhou (2007b) combined biochemical data with prediction data from cons-PPISP 

predictions to rank docked models obtained from a mixture of bound-unbound or 

entirely unbound docking generated by ZDOCK for 24 CAPRI targets (Chen et al., 

2003b). For 23 CAPRI cases, near-native models were generated using ZDOCK. An 

individual model is ranked according to the number of residues of its putative interface 

that match the number of residues predicted as interface in both binding partners. Using 

their back-end docking approach, they attained an improvement in ranking near-native 

models for 9 CAPRI cases compared to the native ZDOCK ranking. Martin and 

Schomburg (2008) utilized evolutionary conservation prediction data derived from an 
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ET-based method and combined it with other discriminative features for developing an 

SVM to differentiate and rank near-native models among decoys, which were generated 

by the ckordo docking method (Zimmermann, 2002). When applied to protein 

complexes of Benchmark 2.0, the SVM significantly ranked near-native models in the 

top-ten ranked models compared to ranking of docking solutions based on geometric fit.  

 
In this work, HADDOCK was applied to study the effect of docking performance when 

interface prediction data was combined with experimental data and this was compared 

to standard experimental data-driven docking (see section 1.11 below). 

 

1.11 Aims of this present study 

 

This work seeks to address limitations in the current status of the field of interface 

prediction exclusively pertaining to unbound transient protein (hetero-complexes) 

interface prediction and its utilization in protein docking. The reasons that this complex 

type is studied were clarified in the discussion of the disadvantages and drawbacks of 

the previous predictors (see section 1.9). These limitations of the field are summarized 

in Appendix table A-3. To the best of my knowledge, this is the first study to address 

these limitations and solve them. 

 

The initial limitations pertain to interface prediction through use of sequence data and 

clustering of prediction data: -  

 

1) Multiple sequence alignments (MSAs) that are generated automatically may have 

alignment errors, which may diminish conservation signals because of the alignment 

error noise, and may also be out-of-date (i.e. HSSP). For the predictors that utilize 

sequence data from a multiple sequence alignment, no interface predictor has been 

applied to explicitly improve multiple sequence alignments prior to deriving the 

evolutionary conservation from them for the systematic prediction of transient hetero-

complexes (see table A-3). It is predicted that explicitly reducing or eliminating sources 

of sequence alignment errors may result in better conservation signal retrieval and 

subsequently improve interface prediction. This hypothesis is tested in this work 

through the use of improved MSAs vs. automatically generated MSAs and the impact 
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they have on evolutionary conservation calculation for the interface prediction of 

transient proteins. Specifically it will be studied through applying a sequence editing 

heuristic protocol introduced in this work on the up-to-date sequence data derived from 

the UniRef90 database for the most recently published transient complex dataset 

(Benchmark 4.0). The sequence alignments generated through the sequence editing 

heuristic approach introduced in this study will be compared to sequence alignments 

generated automatically from the same data sources. Statistical hypothesis tests will be 

applied to test the significance of explicitly improving MSA data. 

 

2) For the predictors that utilize structural data from an unbound transient input protein, 

no interface predictor has been applied to systematically address the impact of interface 

prediction data clustering using the three-dimensional coordinates of the input 

(unbound) transient protein. Clustering may improve the impact of interface residue 

accuracy. This important hypothesis is tested in this work through the use of clustering 

vs. no clustering of interface prediction data and their assessment on prediction 

performance. It is predicted that applying three-dimensional clustering of interface 

prediction data may cause elimination of ROS residues for the interface prediction of 

transient proteins in the unbound state, leading to improved interface prediction quality. 

This hypothesis will be studied by clustering prediction data derived from improved 

MSAs and its comparison to non-clustering. Statistical hypothesis tests will be applied 

to test the significance of clustering on interface prediction performance improvement. 

In addition, the application of clustering will be examined in the context of whether 

interface residues are more conserved than rest of surface residues for proteins of 

Benchmark 4.0 and this analysis will be discussed in the context of previous literature.  

 

3) The sequence data editing and interface prediction data clustering heuristics will be 

integrated into a new predictor, PROTein INterface IDentification (PROTIN_ID), 

designed for the prediction of transient protein interfaces using evolutionary 

conservation data. This interface predictor will be developed using the Benchmark 4.0 

dataset of transient proteins. In addition, PROTIN_ID will be benchmarked to the 

WHISCY predictor, developed using transient proteins, and the CCRXP predictor. 

Finally, a web-server implementation of PROTIN_ID will be designed with user-

friendly features, allowing convenient access of the method to the biological community 

at large. 
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The other identified limitation relates to the application of interface predictors in 

combination with protein docking: -  

 

4) The systematic application of interface prediction data-driven docking vs. ab initio 

docking and its evaluation using stringent CAPRI evaluation metrics will be performed 

to explore interface prediction data’s impact on docking performance vs. ab initio 

docking. Statistical analysis will be applied to examine data-driven docking 

performance. This aim paves the way for the exploration of combining interface 

prediction data and NMR data to drive docking. It has been observed that interface 

predictors have been used in successful front-end or back-end docking of transient 

proteins (see section 1.10). However, interface prediction data has not been combined 

with NMR data (Residual dipolar coupling (RDC) and chemical shift perturbation 

(CSP) data). Currently, standard data-driven docking using CSP and RDC data from 

NMR is able to produce good quality models. If using interface prediction data has been 

shown to have a successful impact on docking performance, then it is hypothesised that 

combining this data with NMR data may improve front-end docking performance by 

increasing the number of correct docking solutions and/or their quality according to 

CAPRI metrics. This improvement may arise from greater interface accuracy and 

coverage caused by the ‘consensus’ combination of all data sources. To test this 

hypothesis, a dataset of protein complexes with known NMR data (RDC and CSP) will 

be used and unbound docking runs of standard experimental NMR data-driven docking 

will be performed and compared to consensus data-driven runs using HADDOCK. This 

will be followed by the application of statistical hypothesis tests to investigate the 

significance of consensus-data driven docking. 
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Chapter 2 

 

Preliminary work 

 

 

2.1 Introduction 

 

This chapter describes the preliminary work performed in this study, and it serves as a 

foundation to other work described in this thesis. Developers of previous interface 

predictors have not systematically studied and analysed the impact of multiple sequence 

alignment quality and the impact of three-dimensional clustering on transient proteins 

(hetero-complexes) for their interface predictors (see table A-3). Specifically, the first 

analysis described in this chapter investigates the effect of explicitly improving MSAs 

by reducing or eliminating causes of alignment errors from sequence data obtained for 

transient proteins (see section 3.2) of the Benchmark 4.0 dataset (see section 1.11 point 

1 for this hypothesis). This may improve conservation signal retrieval from an MSA and 

hence interface prediction. A comparison will be made to automatic MSAs not 

subjected to any improvement (i.e. controls) and derived from the same sequence data 

sources. The second analysis studies the effect of three-dimensional clustering vs. non-

clustering (i.e. control) of interface prediction data on unbound transient proteins 

derived from Benchmark 4.0 (see section 1.11 point 2 for this hypothesis). Unbound 

transient protein interfaces are harder to predict in comparison to non-transient proteins 

in the context of blind prediction (see sections 1.9.1 and 1.9.2 and table A-1). This 

analysis will ascertain whether elimination of ROS residues is improved after 

clustering, leading to improved interface prediction quality. Statistical significance tests 

will be applied to test the two hypotheses.  
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2.2 Preliminary work: multiple sequence alignment optimization 

 

In this section, the optimization of MSAs vs. automatic MSAs on the effect of 

conservation signal retrieval and consequently interface prediction is studied and 

discussed. The optimization of MSAs was performed using the sequence editing 

heuristic introduced in this work (see section 4.3.1). Briefly, this heuristic generates a 

pair-wise alignment (via the Needleman-Wunsch algorithm) between a Benchmark 4.0 

query protein’s sequence and each of its homologous sequences (i.e. hits) retrieved from 

the UniProt90 database (Hwang et al., 2010; Suzek et al., 2007; Needleman and 

Wunsch, 1970). The query sequence contains only the residues present in its tertiary 

structure, as such sequence regions of the hit sequences like N/C terminal overhangs 

present only in the hit sequence and absent in the query sequence, are removed. 

Likewise, hit sequence insertions are removed, which cause the query sequence to split. 

This is important as only sequence regions present in the query ‘structural’ sequence 

and reciprocated in the each sequence hit are used for calculating residue conservation 

scores and projected onto the query protein structure.  

 

2.2.1 Case study: Tissue inhibitor of metalloproteinase 1 protein 

 

The sequence editing heuristic was written as a stand-alone PERL script and was 

initially tested on the Tissue inhibitor of metalloproteinase 1 protein (TIMP-1; PDB: 

1D2B) and its related homologous sequence data. The hit sequence data used was 

filtered to remove sequence fragments and redundant sequences, leaving only hit 

sequences with a high fraction of coverage to the query sequence prior to testing (see 

section 4.3.1 and figure 4-2). The same sequence data is used to generate refined (with 

the heuristic) and unrefined (without the heuristic) MSAs. When ‘edited’ hit sequences, 

including the TIMP-1 query sequence, are aligned, this results in an improved and 

structured MSA (refined). In comparison, when generating an MSA using ‘unedited’ hit 

sequences, this causes a more unstructured MSA (unrefined) (see figure 4-4). For the 

TIMP-1 example, the quality of an interface residue prediction is tested using both 

refined and unrefined TIMP-1 MSAs. Reducing or eliminating sources of sequence 
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alignment errors (N/C terminal overhangs and insertions) that cause misalignment in an 

MSA may result in better conservation signal retrieval. To evaluate their impact on 

interface residue prediction, both alignments were used to calculate evolutionary 

conservation scores for their MSA columns. Only MSA columns representing surface 

residues of the TIMP-1 protein were extracted to avoid false positive results caused by 

more conserved protein core residues (see section 3.2.1). Rank analysis, which 

computes the fraction of top-20 ranked interface residue columns, was performed 

(Wang and Samudrala, 2006). The top-20 hits score is set for the best 20 conserved 

surface residues since it is equal to the average size of a protein interface obtained from 

the Benchmark 4.0 dataset (see table 5-2). For TIMP-1, it was determined that the 

fraction of interface residues according to the top-20 hits score was higher for the 

refined MSA (0.35) in contrast to the unrefined (0.20) MSA. Using the top-20 hit score 

analysis, this initial result on TIMP-1 suggests that it is possible to improve ranking of 

interface residues using evolutionary conservation with a refined MSA. For meaningful 

statistical evaluation, this initial analysis was extended to include all proteins derived 

from intra-species protein complexes of Benchmark 4.0 (see section 3.2). 

 

2.2.2 Refined vs. unrefined MSAs and their impact on interface residue prediction 

 

For all intra-species interacting proteins of Benchmark 4.0, sequence data for each 

protein were obtained and filtered in the manner described previously for the TIMP-1 

test case. Following this, each protein’s sequence data (query and hits) was submitted to 

the editing heuristic protocol to generate refined MSAs. The sequence data was also 

used to generate unrefined MSAs. The top-20 hit score analysis was performed for each 

MSA of the dataset and an average for the whole dataset was obtained using the refined 

and unrefined MSAs. Improving an MSA may not result in better interface prediction of 

transient protein interfaces and this null hypothesis (Ho) states that there is no difference 

in interface prediction performance when using either unrefined or refined MSAs. 

Statistical analyses were performed to test this hypothesis and demonstrate (actual 

hypothesis, Ha) that refined MSAs improved transient protein interface residue 

prediction. 

 

The Wilcoxon matched pairs test was applied to test the effect of refined alignments on 
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interface prediction against their unrefined counterparts. This test was performed using 

GraphPad Prism (version 5.00) at default settings (GraphPad Software). The fraction of 

interface residues as determined by the top-20 hit scores for refined and unrefined 

MSAs for each protein of the dataset were compared to determine if refined MSAs 

produced better interface residue predictions such that their top-20 hit score difference 

(∆top-20) was statistically significant at the 5% significance level. In addition, the 95% 

confidence intervals (CI) for the upper and lower bound limits were calculated for the 

top-20 hit score difference between both MSA types, using the bootstrap analysis (using 

1000 randomly selected samples to calculate sample means per bootstrap repetition), as 

implemented in STATA version 11 (StataCorp LP, 2009).  

 

The difference in the top-20 hit score (∆top-20) between refined and unrefined alignments 

was computed for the dataset (see table 2-1). ∆top-20 may be positive (i.e. ∆top-20 > 0), 

which indicates that refined MSAs have greater enrichment of interface residues, or 

negative, indicating the opposite (i.e. ∆top-20 < 0). A ∆top-20 of 0 indicates no improvement 

provided by either refined or unrefined alignments. It can be seen that on average ∆top-20 

> 0, indicating that refined alignments have more interface residues with a high ranking 

based on evolutionary conservation. This suggests that the conservation signal is better 

detected from these refined alignments than unrefined alignments and translates into 

better interface predictions. The sequence editing heuristic is having its intended effect 

by removing sources of misalignment errors like N/C terminal overhangs or insertions 

both of which arise from hit sequences. This finding (i.e. ∆top-20 > 0) is supported by the 

result of the 95% CI analysis, which quantifies the precision of the ∆top-20 population 

mean (µ) from which the analysed dataset represents a sample, and depicts the 95% 

chance that the true population mean is between its upper and lower boundaries (see 

table 2-1). Most importantly from this analysis it is shown that the lower bound limit of 

the 95% CI (0.07) is greater than zero (∆top-20 = 0), essentially excluding the possibility 

that ∆top-20 < 0 where the unrefined MSA dataset on the whole exhibits a stronger 

conservation signal and better interface residue prediction compared to the refined MSA 

dataset. This indicates the usefulness of the sequence editing heuristic protocol in 

diminishing the effect of misalignment-inducing errors in up-to-date sequence data, 

resulting in more structured MSAs and ultimately better interface residue predictions 

compared to an approach in which it is not applied. 
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Complementing the 95% CI is the p-value calculated using the Wilcoxon matched pair 

test. This statistical test evaluates the statistical significance of the null hypothesis that 

states that there is no difference in interface prediction performance using residue 

conservation from either unrefined or refined MSAs. As shown in table 2-1, it can be 

seen that the null hypothesis is rejected and indicates the difference in favour of the 

refined MSAs (i.e. ∆top-20 > 0) is statistically significant (p-value <0.0001). 

 

Table 2-1: Comparison of top-20 hit score averages for the refined and unrefined 

multiple sequence alignments (MSA). The standard deviations are indicated in 

parentheses. The fractional difference average indicates that the majority of the refined 

MSAs generate a stronger conservation signal, enriching the top-20 most conserved 

surface residues with more interface residues than the unrefined MSAs (i.e. ∆top-20 > 0). 

The 95% Confidence Interval indicates the upper and lower bound range limits of ∆top-

20. The Wilcoxon matched pairs test P value indicates the probability that ∆top-20 > 0 is 

statistically significant at the 5% significance level (see table A-4 of Appendix for 

dataset examined). 

 

Editing 

heuristic: 

refined 

MSA 

Non-

editing 

heuristic: 

unrefined 

MSA 

Fractional 

difference 

(∆top-20) 

P value 

∆top-20 > 0 

95% 

Confidence 

Interval 

(∆top-20) 

Top-20 

hit score 

0.34 

(0.22) 

0.24 

(0.20) 
0.10 (0.17) <0.0001a 0.07 – 0.13 

a P value < 0.0001 indicates extreme significance. 

 

 

In the dataset, there were some cases where ∆top-20 < 0 (see table A-4). It was 

ascertained that for such cases ROS residues that did not generate a high conservation 

score in the unrefined MSAs had high conservation scores in refined MSAs and were 

ranked among the top-20 surface residues. The MSA regions of “displacing” ROS 

residues aligned better in refined MSAs compared to unrefined MSAs and hence 

generated higher conservation scores. This may be due to the displacing ROS residues 

being part of other binding interfaces (i.e. crypto-interface residues) with high 

conservation signals. These ROS residues scored higher than interface residues in these 



 
 

61 

cases and displaced them from the top-20 ranked residues for refined MSA cases, 

resulting in ∆top-20 < 0 for these cases.  

 

 

 

2.3 Preliminary work: the effect of clustering vs. non-clustering on interface 

prediction 

 

In this section, the effect of three-dimensional clustering of interface prediction data is 

examined and compared to non-clustering of the same prediction data. The working 

hypothesis is that there is a potential elimination of ROS residues from interface 

prediction data using the clustering approach, leading to improved interface prediction 

quality (actual hypothesis, Ha). Alternatively there may be no difference between the 

two approaches (null hypothesis, Ho). Both scenarios were examined to ascertain the 

extent of the effect of the clustering approach on interface prediction reliability. 

 

Clustering is useful as it can identify potential interface residues, which are spatially 

contiguous, and likely functionally important. Also, an important effect of clustering is 

the removal of isolated residues on a different part of a protein’s surface from the 

predicted interface (Guharoy and Chakrabarti, 2010; Ofran and Rost, 2007b). Isolated 

residues can erroneously influence protein-protein docking sampling, if used as input 

with a potential functionally important cluster in a docking method, leading to 

biologically irrelevant docking solutions. The clustering protocol implemented is 

described in detail in chapter 4 (section 4.3.2). Briefly, the top-N most evolutionary 

conserved surface residues are extracted and their carbon-α distances relative to one 

another are determined and stored in an all-against-all distance matrix (see figure 4-5). 

Single-linkage clustering is applied to cluster top-N predicted residues within a carbon-

α radial distance cut-off (default ≤ 7Å, see section 5.7). The largest cluster formed from 

the top-N surface residues is considered the final prediction (see figure 4-6). If two or 

more clusters are of the same size, they are sorted by the average cluster conservation. 

Using the clustering protocol the top-ranking cluster is taken as the final interface 

prediction. Compared to the clustering protocol, the non-clustering protocol assigns all 

top-N evolutionary conserved surface residues as the final interface prediction data. 
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2.3.1 Analysis of clustering vs. non-clustering protocols 

 

The clustering and non-clustering protocols were implemented in a PERL script and 

were tested on a dataset of 123 proteins derived from Benchmark 4.0 (see section 3.2). 

The top-N evolutionary conserved surface residues were extracted from refined MSAs 

for each protein of the dataset. For each top-N residue extraction, the clustering protocol 

was applied to derive the top-ranking cluster as the final prediction. Likewise, the non-

clustering approach predicted all top-N surface residues as interface residues. This top-

N residue extraction procedure was iterated one surface residue at a time starting from 

the most conserved surface residue, incrementing the next conserved surface residue, 

until all possible top-N residues were extracted and inputted in both clustering and non-

clustering approaches. Both approaches’ interface prediction data for each top-N 

extraction cut-off point were used to generate receiver operator characteristic (ROC) 

curves (see figure 2-1). The areas under the curve were computed for false positive rate 

(FPR; see section 3.5.5) ranges of 1.0 (AUC1.0) and 0.166 (AUC0.166; this analysis will 

be explained below) for both clustering and non-clustering approaches. A numerical 

comparison of AUCs (AUCcluster and AUCnon-cluster) at both FPR ranges was performed to 

determine if a difference (∆AUC > 0, Ha) is present and statistically significant or not 

(∆AUC = 0, Ho) at the 5% significance level, using a standard AUC comparison statistical 

test (Sonego et al., 2007). In addition, the 95% CI analysis was applied to determine the 

upper and lower bound limits of the ∆AUC for both FPR ranges to complement the AUC 

comparison statistical test. All analyses performed above were carried out using 

GraphPad Prism (version 5.00).  

 

For AUC1.0 analysis, the AUC values for both clustering and non-clustering approaches 

are indicated in table 2-2. Although ∆AUC1.0 > 0 and is in favour of the clustering 

approach, this difference is not significant since it does not support the rejection of the 

null hypothesis, as indicated by the p-value (0.8552). This finding is supported by the 

95% CI analysis, which shows that the 95% CI range extends from negative to positive 

values. As the lower bound limit is a negative value, this indicates that the non-

clustering approach may also have a higher AUC than the clustering approach, or no 

difference exists between both approaches overall relating to interface prediction 

performance since ∆AUC = 0 is within the 95% CI range. This suggests the lack of 

evidence to support the observation that the AUC1.0 of the clustering approach (i.e. ∆AUC 
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0.00160) is significantly better in terms of interface prediction than the non-clustering 

approach.  

 

 

Table 2-2: Comparison of AUCs at two FPR ranges (1.0 and 0.166) for the clustering 

and non-clustering approaches. The 95% Confidence Interval indicates the upper and 

lower bound range limits of ∆AUC for both FPR ranges. The AUC comparison statistical 

test P value indicates the probability that ∆AUC > 0 is statistically significant at the 5% 

significance level. 

 Clustering 
Non-

clustering 

AUC 

difference 

(∆AUC) 

P value 

(∆AUC > 0) 

95% Confidence 

Interval (∆AUC) 

AUC1.0 0.70030 0.69870 0.00160 0.8552 -0.01563 - 0.01883 

AUC0.166 0.04760 0.04230 0.00530 0.0098a 0.00127 - 0.00933 

a P value 0.001 - 0.01 indicates a very significant result. 

 

 

There are two drawbacks to using the above AUC1.0 analysis, which compares both 

interface prediction approaches holistically. The first drawback is that for most of the 

ROC analysis, a large number of top-N (ex. top-100) conserved surface residue cut-offs 

are used, which are not useful to compare both interface prediction approaches. This is 

because of the nature of the single-linkage clustering approach, which is to maximize as 

much as possible the nearest neighbours when generating a cluster via a specific carbon-

α radial distance cut-off. Therefore, having many residues to cluster creates a cascading 

effect, resulting in the majority of the top-N surface residues or all of them being 

clustered via the clustering approach. In this scenario there would not be a major 

difference between both approaches, as can be seen by the ROC curves being similar for 

the majority of high TPR (see section 3.5.4) and FPR ranges in figure 2-1. A potential 

best-ranked cluster of conserved residues based on a low top-N cut-off, which may 

contain genuine interface residues, may merge with other distant clusters over a 

protein’s surface simply because of this cascading effect. In the context of using 

interface prediction data to drive protein-protein docking, having a high top-N residue 
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cluster, results in a high FPR with many ROS residues in the final prediction. This is a 

risky use of interface prediction data derived by clustering (and even non-clustering) for 

data-driven docking and hence the biological non-relevance of high top-N cut-offs-

derived data application in the context of data-driven docking. In a docking scenario, 

predictions are relevant when a sufficient TPR coupled with a low FPR are retrieved as 

input docking sampling restraints. Therefore, a high (or all) TPR is not useful as it 

introduces many false positives that can misdirect docking sampling and reduce 

docking performance. 

 

Given that the above AUC1.0 analysis focuses on all TPR and FPR cut-offs, and that 

high cut-offs are not relevant in the context of protein-protein docking, the application 

of this analysis to a region of biological relevance in the context of protein-protein 

docking should be pursued instead of comparing the entire ROC curves, which is 

misleading. This is tied to the second drawback of the AUC1.0 analysis in this 

circumstance. The AUC1.0 analysis does not indicate if the two compared approaches’ 

ROC curves are the same overall or differ in localized regions. It can be seen that 

indeed they are not the same (see figure 2-1). In fact, the clustering approach seems 

better than the non-clustering approach at the low FPR range (0 - 0.166) and this 

interestingly is the region most important for biological application in the framework of 

protein-protein docking. The difference between the approaches is because of the 

reduction of ROS residue noise using the clustering approach, which is more impactful 

for interface prediction relative to the non-clustering approach. Besides this relevant 

region, there are also other regions of difference between both approaches at higher 

FPR ranges, which are not relevant in the context of docking. Here, the non-clustering 

approach performed better and this is because the clustering approach identified less 

interface residues within these FPR ranges, causing reduction in interface prediction 

performance relative to the non-clustering approach. 
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Figure 2-1: ROC curves comparing the clustering and non-clustering approaches for 

interface prediction. The AUCs are shown for both approaches at FPR ranges of 1.0 (top 

plot – AUC1.0) and 0.166 (bottom plot – AUC0.166), respectively. 
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The low FPR range (0 - 0.166) of the ROC curves was compared using AUC0.166 

analysis. For AUC0.166 analysis, the AUC values for both clustering and non-clustering 

approaches indicate that ∆AUC0.166 > 0, which is in favour of the clustering approach. 

This difference is significant and supports the rejection of the null hypothesis (p-value 

0.0098), which states that no difference between these interface prediction approaches 

exists. In addition, this outcome is supported by the 95% CI analysis, which shows that 

the 95% CI lower bound limit is greater than zero, excluding the possibility that ∆AUC is 

zero or lower. To summarize, there is a 95% chance that the 95% CI upper and lower 

bound limits support the observation that ∆AUC0.166 > 0 at a low FPR range (i.e. 

biologically relevant range) upon expanding the size of the dataset. Using this inference, 

evidence exists to support the use of the clustering approach (i.e. Ha) since it 

significantly improves interface prediction quality at a biologically relevant low FPR 

range compared to the non-clustering approach. This demonstrates its usefulness in 

improving interface prediction quality of transient proteins for its utilization for protein-

protein docking in comparison to lack of clustering. 

 

2.4 Conclusion 

 

The overall findings indicate that interface predictions can be significantly improved 

using explicitly refined multiple sequence alignments and three-dimensional clustering. 

These novel findings have not been systematically explored in previous work (see table 

A-3). Based on the above work, a new interface predictor to identify protein interfaces 

will be created (PROTIN_ID – PROTein INterface IDentification), which utilizes both 

state-of-the-art sequence editing and clustering heuristics. The default parameters of 

PROTIN_ID (top-20 conserved surface residues with clustering at 7 Angstroms) 

represent its operating point, which is within the significant 0 - 0.166 FPR range (see 

figure 2-1). The PROTIN_ID interface predictor is discussed in detail in chapter 4 and 

is benchmarked to other interface residue predictors (see chapter 6). Furthermore, the 

PROTIN_ID interface prediction data is used to compare data-driven docking to ab 

initio docking followed by its combination with experimental data to drive protein-

protein docking in a novel docking study (see Chapter 7). 
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Chapter 3 

 

Methods 

 

3.1 Protein sequence database 

 

The UniProt Reference Cluster dataset 90 (UniRef90) is composed of protein sequences 

derived from the Universal Protein Resource database (UniProt), which is a unified and 

comprehensive repository of protein sequences (Magrane and UniProt Consortium, 

2011). UniRef90 contains protein sequences clustered at a 90% sequence identity 

threshold to reduce the presence of redundant sequences. The UniRef90 database was 

selected as it allows broad coverage of sequence space at 90% sequence identity 

resolution, hiding redundant sequences (i.e. > 90% sequence identity resolution) by 

grouping them into clusters that are represented by a single sequence (Suzek et al, 

2007). This improves sequence search and retrieval speeds when a query sequence is 

searched against this database. This database is part of the PROTein INterface 

Identification predictor (PROTIN_ID) implementation. It is used to retrieve 

homologous sequences for protein chains derived from protein-protein complex 

structures of the Protein Docking Benchmark 4.0 dataset (see section 3.2).  

 

3.2 Protein-protein complex database 

 

The Protein-protein docking Benchmark 4.0 dataset is a manually curated dataset of 

non-redundant protein-protein complexes (Hwang et al, 2010). All protein complexes of 

this dataset form transient interactions. This dataset is primarily designed for testing the 

performance of protein-protein docking algorithms. However, it has found use outside 

the protein docking community as it is used for development of protein interface 

prediction algorithms (de Vries et al., 2006). There are a total of 176 experimentally 

determined protein complexes in this dataset. These are protein complexes that are in 

their bound form. In addition, the unbound forms of the proteins of each complex are 

included in the dataset. The 176 protein complexes were grouped into intra-species, 

inter-species, and antibody-antigen interactions. Overall, there are 73 intra-species, 76 
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inter-species, and 27 antibody-antigen complexes. A further six intra-species complexes 

mentioned in the Protein-protein docking Benchmark 4.0 paper (1J6T, 1O2F, 1P9D, 

3EZA, 1UR6, and 1GGR) were included, raising the number to 79 intra-species 

complexes (Hwang et al, 2010). The unbound coordinates for the six complexes were 

located in the PDB database and included (1J6T: 1A3A and 1HDN; 1O2F: 1IBA and 

2F3G; 1P9D: 1P9C and 1P98; 3EZA: 1HDN and 2KX9; 1UR6: 1E4U and 2ESK; and 

1GGR: 1HDN and 2F3G). The intra-species complexes were further divided according 

to the number of complex protein constituents. This resulted in 63 binary and 16 

multimeric intra-species complexes. One protein complex (1PXV) and the ligand 

protein of the 1ZHI complex were discarded from this dataset as the ligand and receptor 

proteins had very few homologs or no homologs retrieved from the UniRef90 database. 

As a result these proteins could not be used in the analyses of this study. The final 

dataset is therefore composed of 62 binary complexes that consist of 123 individual 

proteins (see appendix table A-5). The intra-species binary complexes and their 

corresponding unbound proteins were selected to create a dataset for this study (see 

section 5.2). All residues of the bound protein chains and their unbound counterparts 

were manually checked using the PyMol molecular visualization tool to ensure they 

agree in residue numbering (Delano, 2002). If there was disagreement, this was 

corrected. This is important for making sure interface and rest of surface (ROS) residues 

in the bound and unbound forms of a protein agree otherwise their subsequent analysis 

will be incorrect.    

 

3.2.1 Determination of interface and “rest of surface” residues from the protein 

complex dataset 

 

The dataset of 62 intra-species protein complexes was analysed to determine the 

number of interface residues for each individual protein complex and its unbound 

protein counterparts. This data is important as it is used to evaluate the performance of 

protein interface prediction algorithms, for example. Interface residues were determined 

based on the distance definition of the Critical Assessment of PRediction of Interactions 

(CAPRI) assessment established by the protein-protein docking community, which is 

used to measure the performance of protein docking algorithms. A residue is considered 

part of an interface if any of its atoms are ≤5 Å distance from the opposing protein’s 
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residue atoms in a complex (Méndez et al, 2003). The contact script of the HADDOCK 

protein-protein docking suite was applied to calculate the distances of residue atoms of 

an interface that are ≤5 Å (Dominguez et al, 2003). A perl script was implemented to 

parse all atomic contacts of the contact script’s output files to generate a list of interface 

residues of both interacting (bound and unbound) chains for each protein complex of 

the dataset. This provided a reference to calculate the total number of interface residues 

based on the distance definition in the entire dataset.  

 

Solvent accessibility calculations were performed on all residues of the unbound 

proteins using Naccess (run via the PROTIN_ID method) where residues were defined 

as surface if their side-chain or main-chain atoms were ≥ 15% solvent accessibility 

(Hubbard and Thornton, 1993). This filters out core residues and generates surface 

residues. All unbound interface residues determined by the distance-based cut-off were 

examined to calculate how many are above the solvent accessibility cut-off. The 

interface residues for each complex’s unbound proteins above ≥ 15% solvent 

accessibility were determined. This allowed a comparison between the interface sizes 

based on the distance and solvent accessibility criteria for each unbound protein of each 

complex for the entire dataset. A negligible loss of interface residues was determined 

using this solvent accessibility threshold. As a result of this, the 15% solvent 

accessibility was chosen as the default setting of the PROTIN_ID method for filtering 

out core residues prior to predicting interface residues. A perl script was implemented to 

determine the total number of surface residues, including interface residues (and rest of 

surface residues ROS) above the solvent accessibility threshold, and core residues for 

the unbound chains for each protein complex of the dataset. 

 

3.3 Sequence retrieval and multiple sequence alignment generation  

 

Homologous sequences of the unbound proteins’ chains of the intra-species protein 

complex dataset were retrieved by the BLAST algorithm from the UniRef90 database. 

(Suzek et al, 2007; Altschul et al, 1990). Using the MUSCLE (version 3.8) multiple 

sequence alignment program (Edgar, 2004), all the unbound proteins’ chains of the 

intra-species (binary) protein complex dataset were then aligned with their homologous 

counterparts. The BLAST search and MUSCLE alignment procedures were performed 
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within the PROTIN_ID method. PROTIN_ID also optimizes MSAs by dealing with 

sequence redundancy and sequence fragments prior to running MUSCLE (see Chapter 

4).   

 

3.4 Conservation score analysis of alignments 

 

All multiple sequence alignments were scored with seven different conservation scores 

(described below) using the score conservation algorithm (default settings) as run from 

the PROTIN_ID program (Capra and Singh, 2007). A conservation window (default 3) 

in the score conservation algorithm is applied to incorporate the effect of the 

background conservation for each MSA column that is scored (see section 3.4.1). In 

addition, MSA columns with ≥ 30% gaps are disregarded and assigned a score -1000 

by the score conservation algorithm since they are less likely to have functional 

significance (Capra and Singh, 2007). These scores were changed to 0.00 by 

PROTIN_ID to represent no conservation due to the presence of gaps. For MSA 

columns with < 30% gaps, a gap penalty is enforced. The score conservation algorithm 

implements position-based weights to weight all the sequences in an MSA based on the 

diversity of each MSA column. This prevents bias introduced from similar sequences 

that are overrepresented (Capra and Singh, 2007; Henikoff and Henikoff, 1994). All 

residues for each unbound chain of a protein complex of the dataset had their 

evolutionary conservation calculated. Using a perl script, the average conservation score 

and standard deviations were calculated from the parsed output files of the score 

conservation algorithm for each unbound chain’s distance and solvent accessibility-

based interface residues. This was also calculated for the rest of surface residues (ROS) 

for comparison purposes. This was done for all conservation scores in this study. 

 

3.4.1 Window score heuristic: 

 

Functionally important residues have neighboring residues (in sequence and structure) 

with higher conservation than average (Capra and Singh, 2007). In the score 

conservation algorithm, a window score heuristic feature is implemented that 

incorporates background conservation of residue neighbors of a residue of interest 
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within a sequence window when measuring conservation (Capra and Singh, 2007).  

 

 

It is calculated as follows: 

 WindowScore= λSc + (1− λ)
Sii∈window

∑
window

 (3-1) 

where λ is a linear combination factor (default = 0.5) and Sc is the conservation score of 

the column of interest (i.e. foreground residue). Si is the score of the neighbouring 

column (i.e. background residue). window refers to the total residue window on the left 

and right sides of the column of interest. 

 

3.4.2 Shannon entropy score: 

 

This is an early and widely used conservation measure (Valdar, 2002; Sander and 

Schneider, 1991; Shenkin et al., 1991; Shannon, 1948). 

 α
α

α ppSE
K

2log∑−=  (3-2) 

where K and α represent the 20 amino acids and amino acid symbols, respectively. pα 

represents the residue distribution in a multiple sequence alignment column. pα is 

calculated as follows:- 

 pα = nα

N
 (3-3) 

where nα and N refer to number of amino acids of type α (i.e. symbol) and total number 

of amino acids in the alignment column, respectively.  

 

3.4.3 Property entropy: 

 

This score is a modified version of the above Shannon entropy (Valdar, 2002). The 

original Shannon entropy does not take into account amino acids’ biochemical 

relationships and views all amino acids as just symbols. The property entropy remedies 

this by grouping amino acids according to physicochemical properties into 6 sets: 

aliphatic [AVLIMC], aromatic [FWYH], polar [STNQ], positive [KR], negative [DE], 
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special conformations [GP], and gaps (Capra and Singh, 2007; Valdar, 2002; Mirny and 

Shakhnovich, 1999). The distinct number of groups identified in an alignment column is 

then scored using this modified Shannon entropy score.  

 PE = pi

i

K

∑ ln pi  (3-4) 

where K represents 6 physicochemical sets i in which the 20 amino acids are 

partitioned. pi represents the physicochemical set distribution in a multiple sequence 

alignment column over a given number of sequences (Manning et al, 2008; Valdar, 

2002). 

 pi = fi

N
 (3-5) 

where fi  is the stereochemical set’s (i) frequency in an alignment column and N is the 

total number of sequences. 

 

3.4.4 Property relative entropy: 

 

This score is also a Shannon entropy variant and related to the Property entropy score in 

purpose such that it groups amino acids into physicochemical sets. It differs by using 

nine stereochemical amino acid sets and by having a normalizing term, which accounts 

for amino acid set frequencies of a multiple sequence alignment (Manning et al, 2008). 

 PRE= pi

i

K

∑ ln
pi

pi









 (3-6) 

where K represents 9 stereochemical sets i in which the 20 amino acids are partitioned 

(Manning et al, 2008; Valdar, 2002). The amino acid set are as follows:- [VLIM], 

[FWY], [ST], [NQ], [HKR], [DE], [AG], [P], [C] (Wil liamson, 1995). pi represents the 

stereochemical set distribution in a multiple sequence alignment column over a given 

number of sequences. pi is the average of pi for  the entire columns of an alignment. 

 pi = fi

N
 (3-7) 

where fi  is the stereochemical set’s (i) frequency in an alignment column and N is the 

total number of sequences.  
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3.4.5 Relative entropy: 

 

 RE= pi log2

pi

pibi

∑  (3-8) 

where pi represents the residue distribution in a multiple sequence alignment column. 

Pib represents an amino acid background distribution derived from a dataset (default 

BLOSUM62 alignment data) of amino acid frequencies (Capra and Singh, 2007; Wang 

and Samudrala, 2006). Unlike previous scores, the utilization of a background 

distribution enhances the scores of residues that have low background frequencies when 

they are very common in an alignment column. Such residues are regarded as more 

likely to indicate functional significance. On the other hand, if a residue with a high 

background frequency is as prevalent with one that has a lower background frequency 

in an alignment column, it will be given a lower score than the other residue because of 

its higher background frequency.  

 

3.4.6 Jensen-Shannon divergence: 

 

 ),(, )1( rqrpc REREJS λλ −+=  (3-9) 

where pc and q refer to the amino acid frequencies in an alignment column and 

background distribution of residues derived from a sequence dataset (default 

BLOSUM62), respectively (Capra and Singh, 2007). λ is a linear combination 

weighting factor (default 0.5) and RE is the Relative entropy. r is calculated as follows:- 

 qpr c )1( λλ −+=  (3-10) 

3.4.7 Von Neumann entropy: 

 

 VNE= −Tr(plog p) (3-11) 

where p is a density matrix normalized by its trace (Tr) (Capra and Singh, 2007; Caffrey 

et al, 2004). Initially, a matrix is constructed such that its off-diagonals are zero and 

only the diagonal values refer to the amino acid frequencies in an alignment column. 

These diagonal values are multiplied by the observed amino acid frequencies from a 
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similarity matrix, such as BLOSUM62, in order to create a density matrix (Caffrey et al, 

2004). In doing so, physicochemical similarity is accounted for in this evolutionary 

conservation score. 

 

3.4.8 Sum-of-pairs: 

 

This score measures evolutionary conservation by pair-wise comparison of residues in 

an alignment column. 

 SP= 1

wi × wjj>i

N

∑
i

N

∑
× wi × wjj>i

N

∑
i

N

∑ × S(Ci,Cj )  (3-12) 

where S is a similarity matrix used to compare the similarity of residues i and j of a 

column C. wi  and wj are weighting factors for the ith and jth sequences (Capra and 

Singh, 2007; Valdar, 2002). 

 

3.5 Statistical analysis of Interface prediction algorithms 

 

In order to assess a method’s performance in interface residue prediction, it is necessary 

to determine the number of interface and ROS residues. This was determined from the 

62 protein-protein complex dataset used in this study. A surface residue (section 3.2.1) 

can either be an interface residue or not. This binary classification of residues by an 

interface predictor is compared to the known binary classification of surface residues of 

the dataset of this study. The predictions of interface prediction methods can have either 

a positive/or negative result, according to this binary classification applied to surface 

residues. A positive result is divided into true positives (TP) or true negatives (TN). A 

TP is a correctly predicted interface residue, whereas a TN is a ROS residue that has not 

been included in a prediction method’s final prediction. In other words, it has been 

correctly discarded from the final result of an interface prediction method. A negative 

result is divided into false positives (FP) and false negatives (FN). An FP is a ROS 

residue that has been incorrectly predicted as an interface residue in the final prediction 

of an interface prediction method. A FN is an interface residue incorrectly discarded as a 

ROS residue. The relationship of TP, FP, TN, and FN residues is illustrated in the 

confusion matrix (table 3.1). 
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Table 3-1: A confusion matrix and the components that make up a positive or negative 

result. TP + FN refer to the total interface residues, whereas FP + TN refer to the total 

ROS residues. 

Actual 
Confusion Matrix 

Positive Negative 

Predicted 

interface 
TP FP 

P
re

di
ct

ed
 

Predicted ROS FN TN 

 

 

 

The following standard performance metrics are derived from the confusion matrix 

(Fawcett, 2006). 

 

3.5.1 Accuracy: 

 
(TP+TN)

(TP+TN+ FP+ FN)
 (3-13) 

The accuracy measure calculates the predicted TP and TN residue proportion out of the 

total positive and negative results of an interface prediction algorithm. 

 

3.5.2 TP fraction (specificity):  

 

 
(TP)

(TP+ FP)
 (3-14) 

The TP fraction calculates the percentage of TPs in the final prediction. A high fraction 

reflects more TPs and less FPs in the final prediction of an interface prediction 

algorithm. 
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3.5.3 FP fraction: 

 
(FP)

(TP+ FP)
 (3-15) 

 

The FP fraction is the opposite of the TP fraction. It quantifies the fraction of FPs in a 

final prediction. A predictor that scores a low FP fraction generates low numbers of FPs 

in it final prediction results. 

 

3.5.4 TP rate (sensitivity): 

 
(TP)

(TP+ FN)
 (3-16) 

 

The TP rate quantifies the fraction of interface residues predicted in a final prediction 

from the total number of observed interface residues. A higher fraction represents a 

greater recall of interface residues. 

 

3.5.5 FP rate: 

 
(FP)

(FP+TN)
 (3-17) 

The FP rate computes the fraction of ROS residues present in a final prediction from the 

total number of observed ROS residues. A lower fraction represents a lower recall of 

ROS residues. 

 

3.5.6 F-measure: 

 
2

1/Specificity+1/Sensitivity
 (3-18) 

The F-measure quantifies the harmonic mean from the combination of the TP fraction 

(specificity) and the TP rate (sensitivity), which are weighted equally (Rennie, 2004; 

Van Rijsbergen, 1979). Hence, it measures the retrieval quality of an interface 

prediction method. A method that scores highly for both TP fraction and TP rate is 

awarded a high F-measure and vice versa. An F-measure of zero implies the lack of TPs 

in a final prediction and a score of one refers to total recall of observed interfaces with 
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the absence of FPs in the final prediction. 

 

3.5.7 Matthew’s correlation coefficient (MCC): 

 

 
TP×TN− FP× FN

(TP+ FN)(TP+ FP)(TN+ FP)(TN+ FN)
 (3-19) 

 

The MCC score computes the correlation between the actual results of the confusion 

matrix (table 3-1) with the predicted results and scores 1 for completely correct 

predictions and -1 for the completely incorrect predictions (Murakami and Mizuguchi, 

2010; Matthews, 1975). An MCC value of zero indicates prediction performed at 

random (Baldi et al, 2000). 

 

A perl script was implemented to automate the parameterization of the PROTIN_ID 

prediction algorithm to maximize its performance in terms of interface residue 

prediction. This perl script ran PROTIN_ID at different settings and calculated its 

performance at each setting, according to the standard performance metrics defined 

above. Performance evaluation was also applied to the benchmarking of the 

performance of PROTIN_ID in comparison to WHISCY and CCRXP methods (section 

3.7).  

 

3.6 Statistical analysis of interface vs. ROS residues conservation 

 

A statistical analysis was performed to determine whether interface residues are more 

conserved than ROS residues. A perl script was implemented to calculate the difference 

in conservation signal between the interface and ROS conservation for all proteins of 

the test dataset (∆Cons). This was done iteratively for average interface and ROS 

conservation as calculated for all seven conservation scores. ∆Cons is calculated as 

follows: -    

∆Cons = InterfaceAveCS− ROSAveCS (3-20) 

where InterfaceAveCS and ROSAveCS refer to the average interface conservation and 

average ROS conservation, respectively. The ∆Cons value can be a positive, negative, 
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or zero difference. A positive difference indicates that interface residues are more 

conserved than the ROS residues of a protein. A negative difference is the opposite 

where ROS residues are more conserved than interface residues. If the difference is 

zero, this indicates that interface and ROS residues are equally conserved.  

 

STATA version 11 (StataCorp LP, 2009) is a comprehensive statistical suite that is 

useful for the organization and analysis of data and its representation in convenient 

graphical output. STATA was used to determine if the ∆Cons values of all dataset 

proteins follow the Normal distribution in order to analyse the ∆Cons data with the 

appropriate statistical tests of STATA. This is important as the choice of a statistical test 

used for data analysis depends on the underlying probability distribution exhibited by 

the data. If the wrong statistical test is used for data analysis the subsequent statistical 

interpretation may be invalid (Park, 2008). To examine the ∆Cons distribution, 

graphical methods, which compare a theoretical normal distribution with the ∆Cons 

distribution, were applied. The graphical methods generated with STATA were 

histograms, Q-Q plots, and P-P plots. The example commands used for histograms and 

Q-Q plots (in that order) are given below. 

 

• histogram difference, width(0.05) start(-0.3) frequency normal 

normopts(lwidth(thick)) ytitle(Frequency, size(large)) ylabel(0(5)30, 

labsize(large)) xtitle(Difference, size(large)) xlabel(-0.3(0.1)0.3, labsize(large)) 

xline(0, lwidth(thick)) title(Jensen-Shannon divergence, size(large)) 

• qnorm difference 

In addition, numerical methods that examine skewness and kurtosis of the ∆Cons 

variables (skewness-kurtosis test) and test for their normality (Shapiro-Wilks and 

Shapiro-Francia test) were performed in STATA. The standard commands for these tests 

are provided below. 

• sktest difference 

• swilk difference 

• sfrancia difference 
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The Paired t-test was used to examine whether the ∆Cons conservation difference in 

favour of interface residues over ROS residues was statistically significant. 

Furthermore, the 95% confidence intervals (CI) for the upper and lower bound limits of 

the ∆Cons values were calculated as part of the Paired t-test results. Both tests presume 

that the data follow the normal distributions. An example command for this test 

performed using STATA is provided below. 

 

• ttest  asainterfacecsave == surfaceonlycsave 

 

Further statistical tests were applied that assume no underlying probability distribution 

(ex. normal) as a precondition prior to data analysis. This was done for comparison with 

the Paired t-test and 95% CI analysis, which require as a perquisite normally distributed 

data, to determine if overlap in final statistical results exists. The bootstrap approach 

and the Wilcoxon matched pairs test were applied as equivalents to the CI analysis and 

Paired t-test, respectively. The Wilcoxon matched pairs test was performed using the 

biostatistical program GraphPad Prism version 5.00 at default settings for the ∆Cons 

data. The bootstrap approach was performed using STATA for ∆Cons data. For the 

bootstrap analysis, 1000 randomly selected samples were used to calculate the sample 

means per bootstrap repetition in order to calculate the CI for the ∆Cons data. The 

example command is specified below. 

 

• bootstrap m=r(mean), rep(1000) : summarize difference 

 

3.7 Benchmarking of PROTIN_ID with WHISCY and CCRXP algorithms 

 

The protein complexes selected for benchmarking analysis were based on the protein-

protein complex datasets used by the authors of WHISCY and CCRXP (see section 6.3). 

The WHISCY interface prediction results were generated using default parameters for 

HSSP and UniRef90 (section 3.3) alignments of the proteins of the protein-protein 

complex dataset. The online webserver of WHISCY was used 

(http://nmr.chem.uu.nl/Software/whiscy/index.html). The output file that lists all 

residues by WHISCY score from the highest to lowest scores was parsed by a perl script 

and the residues that scored ≥0.18 where predicted as interface residues, following the 
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WHISCY authors in their inital study (de Vries et al, 2006). The predicted interface 

residues were evaluated by the statistical performance measures (see section 3.5). The 

CCRXP interface predictions were generated using default parameters using the 

webserver version of the method (http://ccrxp.netasa.org/). A perl script was 

implemented to parse the cluster output file generated by CCRXP and the largest cluster 

of residues (or most conserved cluster if the largest clusters are the same size) was 

predicted as interface residues (see section 6.2.2). The perl script further evaluated the 

predicted cluster using the previous performance metrics (see section 3.5). The 

PROTIN_ID interface predictions were performed using default parameters. Chapter 4 

provides a full description of the PROTIN_ID method. A perl script was implemented to 

parse the output cluster file of PROTIN_ID (cluster_filename.dat) to retrieve the final 

cluster of predicted interface residues where it was assessed by the performance 

evaluation metrics. 

 

3.8 Protein-protein docking driven by interface predictions 

 

Protein-protein docking seeks to predict the protein complex of two proteins in their 

unbound pose that are known to interact with each other. To examine the effect of 

predicted interface data on the docking of protein-protein complexes and compare this 

to ab initio docking (i.e. without the use of any data), a docking dataset was created 

from the protein-protein complex dataset of this study. Protein-protein complexes were 

selected that had ≥ 10% TP rate (section 3.5.4) for both chains when prediction 

restraints were generated by PROTIN_ID. This resulted in a total of twenty-six 

complexes in a docking dataset, which consisted of their unbound forms for use in 

docking (see Chapter 7). 

 

3.8.1 The HADDOCK protein-protein docking algorithm: Theoretical data-driven 

docking vs. ab initio docking  

 

The High Ambiguity Driven protein-protein DOCKing (HADDOCK) algorithm was 

applied for the docking of the protein-protein docking dataset (de Vries and Bonvin, 

2010; Dominguez et al, 2003). The HADDOCK algorithm was selected due to its 
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ability to use experimental or theoretical (i.e. predicted interface residues) data to drive 

protein-protein docking. The PROTIN_ID predicted interface residues were designated 

as active residues of the ambiguous interaction restraints (AIRs) and inputted into 

HADDOCK (version 2.0). The larger protein chain of the unbound input proteins was 

the receptor protein and the smaller chain was the ligand protein and this was reflected 

in the begin.par HADDOCK docking setup file. In the data-driven runs, default settings 

were used. For example in the run.cns parameter file of HADDOCK, the random 

removal AIRs (noecv = true) is set to 50% (ncvpart = 2) and this results in 50% AIRs 

removal per docking trial. This may result in the removal of possible false positives 

from the AIRs restraints that guide docking. The control docking runs (ab initio 

docking) were done using the centre of mass restraints (cmrest = true) while disabling 

the random removal of restraints parameter in run.cns (noecv = false). These centre of 

mass restraints enforce contact between the two unbound proteins during ab initio 

docking. Using default settings, 1000 complexes were generated in the rigid-body 

docking stage of HADDOCK for each run. Subsequently, the best 200 (default) 

complexes ranked according to the HADDOCK score were further subjected to 

simulated annealing and water refinements (Dominguez et al., 2003). The final water 

refined 200 protein-protein (docked) complexes generated by HADDOCK upon 

completion of a data-driven or ab initio docking run were analysed. 

 

3.8.2 Analysis of predicted protein-protein docking complexes 

 

The Critical Assessment of PRediction of Interactions (CAPRI) quality assessment of 

docked complexes was applied to analyse the protein-protein complexes generated by 

the docking runs (Lensink et al, 2007; Méndez et al, 2003). All predicted complex 

models for a particular protein complex were compared to the experimentally solved 

complex and were evaluated according to CAPRI criteria. The CAPRI criteria 

implemented are the fraction of native contacts (Fnat), ligand-rmsd (L-rmsd), and 

interface-rmsd (I-rmsd). Fnat is defined as the number of correct residue contacts in a 

predicted complex divided by the number of residue contacts in the actual experimental 

complex. A contact is determined from the experimentally solved complex, and it is 

defined as a residue pair of the protein interface whose atoms are ≤ 5 Å apart. The L-

rmsd refers to the ligand (smaller protein) backbone (N, Cα, C, O atoms) rmsd 
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difference of the predicted and experimental complex ligand proteins, following the 

superimposition of both predicted and experimental complex receptor (larger) proteins. 

I-rmsd is all atom-atom contacts between residues of opposing proteins at ≤ 10 Å of the 

experimental complex’s superimposed backbone (N, Cα, C, O atoms) over the same 

residues in the predicted complex. Both rmsd measures look at geometric fit between 

experimental and predicted complexes (Méndez et al, 2003).  

 

The CAPRI criteria for ranking predictions are given below. 

� High quality predictions: Fnat ≥ 0.5 and l-rmsd ≤ 1.0 Å or i-rmsd ≤ 1.0 Å.  

� Medium quality predictions:  Fnat ≥ 0.3 and l-rmsd 1.0 < x ≤ 5.0 Å or i-rmsd 

1.0 < x ≤ 2.0 Å 

� Acceptable quality predictions: Fnat ≥ 0.1 and l-rmsd 5.0 < x ≤ 10.0 Å or i-

rmsd 2.0 < x ≤ 4.0 Å 

� Incorrect predictions: Fnat  < 0.1 or (l-rmsd > 10.0 Å and i-rmsd ≤ 4.0 Å) 

 

The CAPRI analysis (c shell) scripts for calculating the Fnat, L-rmsd, and I-rmsd were 

obtained from the HADDOCK authors. Both the Fnat and I-rmsd scripts were updated to 

perform CAPRI evaluation of the protein-protein models generated by docking. Only 

the L-rmsd script was re-written in perl for calculation of the L-rmsd values for 

predicted complexes. Both the L-rmsd and I-rmsd scripts utilize ProFit (version 3.1), 

which is a least squares fitting program, in the background for rmsd calculations 

(Martin, 1998). The input files for ProFit specifying the interface and ligand zones were 

generated for both I-rmsd and L–rmsd scripts, respectively. For each protein complex of 

the dataset under consideration, the number of correct models (acceptable and above) 

out of the final 200 refined models was determined for both data-driven and control 

docking runs. This data was analysed using the Fisher exact test using GraphPad Prism 

version 5.00 at default settings to determine if the difference in numbers of correct 

models between both runs was statistically significant. 
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3.9 Protein-protein docking driven by interface predictions and experimental 

data 

 

The effects of using interface predictions and experimental data as restraints in protein-

protein docking in order to improve docking performance was examined. The 

experimental data to be applied in docking were residual dipolar couplings (RDCs) and 

chemical shift perturbation (CSP) data. A search for binary protein-protein complexes 

with available unbound protein constituents, RDCs (derived from backbone amides), 

and CSP data was performed for all protein-protein complexes of the PDB database and 

the Biological Magnetic Resonance Data Bank (BMRB), which is a repository of NMR 

data derived from NMR analysis of proteins that are cross-linked to PDB entries (Ulrich 

et al, 2008; Bernstein et al, 1977). To this end, a dataset was created of protein-protein 

complexes with the required experimental data by applying a keyword-based search on 

the PDB database. Similar keyword-based search strategies have been applied in other 

studies (Choi et al, 2009; Nooren and Thornton, 2003b). Text searches were performed 

to get three lists of PDB entries associated with general keyword groups: - protein 

complexes, RDCs, and CSPs. The following keywords were used: “Protein Complex”, 

“Complex”, “Complexes”, “Chemical Shift”, “Chemical Shifts”, “Chemical Shift 

Perturbation”, “Chemical Shift Perturbations”, “CSP”, “CSPs”, “RDC”, “RDCs”, 

“Residual dipolar coupling”, and “Residual dipolar couplings”. This resulted in a list of 

PDB entries for each keyword of each group. A perl script was written to combine PDB 

entries for each keyword of a group and thus remove overlapping PDB entries. This 

resulted in non-overlapping PDB entries that were combined for each group. Following 

this, the PDB entries for the protein complex group where combined with those with the 

CSP group to retrieve overlapping entries. The same was done with the protein complex 

and RDCs groups. Therefore, two lists were created one for the protein complexes with 

associated CSP data and another for those protein complexes with associated RDC data 

in the PDB. These two lists were combined to create a final list of overlapping entries, 

which are protein complexes with CSP and RDC data. These were manually checked to 

retrieve only binary protein complexes for this study, which had CSP and RDC data in 

the BMRB (see section 7.2). For each protein complex of the dataset, the RDC and CSP 

data were retrieved from the BMRB. If only RDC data was present for a particular 

complex, the CSP data for that protein complex was retrieved from the literature. For all 

protein complexes their unbound constituents were found and these have been used as 
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input in HADDOCK docking runs. 

 

3.9.1 RDC and CSP data preparation as restraints for protein-protein docking 

 

To use RDCs in HADDOCK protein-protein docking, the PALES program was used to 

derive the axial (Da) and rhombic (R) components for each protein-protein complex’s 

unbound protein constituent of the dataset (Zweckstetter, 2008; Zweckstetter and Bax, 

2000). The standard PALES command is given below. 

 

• Pales –bestFit –inD file1.tab –pdb file2.pdb –outD file3.tbl 

 

The alignment tensor components and the RDC input file were used for each protein-

protein complex run in HADDOCK (section 3.8.1). Furthermore, intervector projection 

angle (IPA) restraints generated using the RDC data were also used in HADDOCK runs. 

IPA restraints are not dependent on the alignment tensor (Meiler et al., 2000). Finally, 

CSP restraints for residues that displayed significant shifts (Bonvin, 2010) and were 

≥15% in solvent accessibility were converted into AIRs active residues. Residues 

neighbouring to the designated (CSP) active residues and were ≥15% in solvent 

accessibility were included as passive residue AIRs restraints. The AIRs data were 

combined with the other forms of data (RDC and interface prediction data) in the 

docking runs. The following docking runs were performed: 

 

• Ab initio run (control) 

• Interface prediction run 

• CSP run 

• Interface/CSP run 

• RDC/CSP run 

• RDC, CSP, and interface prediction run 

 

For each run, the final 200 water refined predicted protein-protein complexes were 

analysed using the previous CAPRI analysis scripts. This was followed by a statistical 

comparison of the difference in correct models generated for each run using the Fisher 

exact test of GraphPad Prism version 5.00 (at default settings). This is to determine if 
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the difference in numbers of correct models between the runs is statistically significant 

(see section 3.8.2). Using the same software, the Spearman r test was conducted to 

compare the correlation of TP fraction and TP rate overall to the number of correct 

models generated. 
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Chapter 4 

 

The Protein Interface Identification method 

 

4.1 Introduction 

 

Proteins interact through specific residues on their surface, forming the interface. The 

identification of interface residues is important, as they can be applied as sampling 

restraints in protein-protein docking whose objective is to predict the complex of 

proteins known to interact (see section 1.6). To achieve this, the PROTein INterface 

IDentification (PROTIN_ID) method was implemented for the prediction of protein-

protein interface residues (i.e. theoretical restraints) to be used to drive docking (see 

Chapter 7). This method is written in standard Perl 5 and uses the Bioperl toolkit, which 

provides functionality in biological data analysis (Ryu, 2009; Stajich et al, 2002; Wall et 

al, 2000). In order to generate theoretical restraints, the PROTIN_ID program requires 

as a minimum input a protein structure file in PDB format (Berman et al, 2000). In 

addition, an optional multiple sequence alignment (MSA) in CLUSTAL, HSSP, or 

FASTA file format may be inputted, if the default generation of an MSA is not 

preferred. 

 

4.2 The rationale for the implementation of the PROTIN_ID method 

 

The course of action followed in implementing this method was driven by previous 

work that has identified predictive features of interface residues (see section 1.7.2). 

Structural and sequence data were utilized as predictive properties for interface residues 

in this method. For example, in structural terms interface residues are solvent accessible 

and some residues cluster together in close proximity. Furthermore, interface residues 

are conserved due to evolutionary pressure and this data can be extracted from a 

multiple sequence alignment (MSA), taking into account the background environment 

of conserved residues, which is the spatial proximity of other residues varying in 

conservation in contiguous alignment columns (see section 3.4.1). Therefore, conserved 

interface residues cluster on a protein’s surface, and being able to explore the extent of 
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conservation and clustering of conserved residues of an extensive dataset of intra-

species proteins (see section 3.2), as a predictive feature of interface residues versus 

non-clustering, was a basis for developing this method (see section 5.7). And this goal 

was implemented in the context of whether interface residues are more conserved than 

rest of surface residues (see Chapter 5). 

 

Sequence data in the form of MSAs often require manual editing before being data 

mined. This becomes tedious in the context of testing hundreds of proteins and their 

associated MSAs in a high-throughput setting for docking, and simply analysing an 

alignment generated automatically in a method without manually checking its 

sequences may introduce bias from the noise generated by alignment errors. This may 

introduce non-interface residues in a method’s final prediction. When applied to 

docking, errors in theoretical restraints may misdirect the sampling. The implementation 

of an editing heuristic to ‘check’ the sequence data prior to MSA generation formed 

another basis for developing this method.  

 

To recapitulate, the focus on conserved clusters of residues and elimination of factors 

from sequence data that may cause MSA issues affecting their prediction led to the 

development of PROTIN_ID that generates docking restraints for (unbound) proteins of 

the latest protein complex dataset (i.e. Benchmark4.0, see section 3.2). However, 

Ahmad, et al. (2010) later published a method, Clusters of Conserved Residues-XP 

(CCRXP), with a similar protocol, but with specific differences. The CCRXP method 

was designed to automate the computational tasks of generating conserved residue 

clusters, and provide the first publicly available method to achieve this (Ahmad et al., 

2010). One difference between it and PROTIN_ID is that CCRXP does not process 

sequence data prior to MSA generation, and the final clusters of conserved residues in 

CCRXP method are not ranked further by a heuristic to create a final prediction as done 

in PROTIN_ID, but are annotated by structural features (ex. secondary structural 

composition). In addition, the CCRXP method was trained on a small dataset of protein-

RNA and protein-protein complexes (25 proteins) to predict hotspot interface residues 

based on the premise that they form clusters of conserved residues. In contrast, 

PROTIN_ID was trained to cluster conserved interface residues based a bigger dataset 

of 123 intra-species proteins to be used in docking (see section 3.2). Since both methods 

seek to predict conserved residue clusters, PROTIN_ID was compared in interface 
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residue prediction performance to CCRXP and performed better than CCRXP (see 

Chapter 6). 

 

4.3 Implementation of PROTein INterface Identification (PROTIN_ID)  

 

The PROTIN_ID method requires a PDB coordinate file of an unbound protein of 

interest (i.e. query) to initiate its prediction of clusters of conserved interface residues. 

From the PDB file, the method extracts the query FASTA sequence from the file’s 

ATOM coordinates. By default, chain ‘A’ of a PDB file is extracted unless the user 

specifies another PDB chain identifier. This preparatory step ensures the method has 

structural (PDB coordinate) and sequence data (query sequence) upon which to proceed 

with the next steps (below), utilizing predictive properties of interface residues, for the 

final prediction. An overview is of PROTIN_ID is shown in Figure 4-1, indicating the 

protocol’s steps from start to finish. 

 

4.3.1 Sequence data retrieval and processing in PROTIN_ID 

 

PROTIN_ID performs a BLAST search to retrieve homologous sequences of the query 

protein sequence in the UniRef90 database at an e-value of 1x10-8 or as defined by the 

user (Altschul et al, 1990). Using this database greatly expands BLAST search speeds 

to retrieve sequence homologs (hit sequences) and allows better detection of sequences 

with distant relationships to the query sequence because redundant sequences (i.e. 

>90% sequence identity) are hidden (see section 3.1) (Suzek et al, 2007). UniRef90 also 

provides convenient access to hit sequence details like taxonomy ID and species name. 

The taxonomy ID is relevant for a subsequent data processing step in PROTIN_ID to 

filter out identical sequences of the same species that may be present. In PROTIN_ID, 

sequences in the generated MSA have their species names appended to their UniRef90 

accession codes, making it easier for a user to relate sequences to each other, for 

example. 
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Figure 4-1: Overview of PROTIN_ID. The default protocol requires a PDB file as 

input. Along with this, an optional multiple sequence alignment (MSA) in CLUSTAL, 

HSSP, or FASTA format can be inputted by the user, which starts PROTIN_ID from the 

point indicated by the dashed arrow. The final output is a theoretical restraints file for 

data-driven docking. Also, two files for molecular visualization of clusters predicted 

and the conservation map of the protein of interest in PyMol are produced. PROTIN_ID 

has important features that have been implemented. The first feature involves 

minimizing noise in sequence data. This is achieved by filters to remove sequence 

fragments and redundant sequences, which are followed by the application of an editing 

heuristic to remove overhangs or insertions in the remaining sequences that occur when 

these sequences are aligned to the query sequence. The editing heuristic step minimizes 

or eliminates factors that cause multiple sequence alignment (MSA) errors and reduces 

the requirement of manual editing of an MSA. This is a desirable user-friendly feature 

useful in the context of high-throughput work to generate theoretical restraints from 

many proteins for application in protein-protein docking. The second feature is the use 

of structural data to apply spatial clustering of conserved surface residues. Residues that 

are spatially contiguous are more likely to be functionally significant, if conserved. 

Clustering is useful to remove isolated residues from being included in predictions. 
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Following the retrieval of sequence homologs, the hit sequences are filtered by the 

fraction of coverage (FC%). FC% is determined by comparing the pairwise alignment 

of a hit sequence to the query sequence taken from the BLAST report (see Figure 4-2). 

It is measured as follows: 

 

 FC%= nhit

Nquery

×100 (4-1) 

 

where nhit is the length of a hit sequence without gaps in the pairwise alignment (High-

Scoring Segment Pair; HSP) between it and the query sequence and Nquery is total length 

of the query sequence. HSPs are defined in the blast report. If more than one HSP is 

present for a hit and the query sequence, it is possible that they may overlap with each 

other in relation to the query sequence. In this instance, PROTIN_ID calls the tiling 

algorithm of Bioperl to retrieve the overall length of the hit sequence that is aligned 

with the query sequence. If 50% FC is set all hits that are ≥ 50% aligned to the query 

are retained; the rest of the hit sequences are discarded. This filter allows the user to 

filter out very short sequences or fragments caused from partial or incomplete 

experimental data from appearing in a multiple sequence alignment. If such short 

sequences are kept, gaps are inserted in areas of the missing sequence segments of the 

fragmented sequences. This can cause conservation scores to penalize for the presence 

of these ‘artificial’ gaps, which are assumed to be there because of biological 

significance, assigning a reduced score to the alignment columns enriched in them (see 

section 3.4).  

 

Upon filtering by FC% another step may be applied by the user for further filtering of 

sequences. In this step, all hit sequences are grouped by their (NCBI) taxonomic ids in 

order to determine how many sequences are from the same species (Figure 4-2). The 

taxonomic IDs are retrieved from each sequence’s UniRef90 webpage by PROTIN_ID. 

If a taxonomic ID number has more than one hit sequence associated with it, then only 

the sequence with the highest fraction of coverage is retained, while the rest are 

discarded. Conversely, if a taxonomic ID has only one sequence then it is retained by 

PROTIN_ID. This taxonomic ID filtering step eliminates sequence redundancy (i.e. 

identical sequences) in the same species to remove overrepresentation of identical 
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sequences of the same species. After applying the above filter(s) the final set of 

homologous hit sequences are defined. These are extracted from the UniRef90 database 

by the Fastacmd program when called by PROTIN_ID. 

 

 

Figure 4-2: Overview of the fraction of coverage/redundancy filters that are 

implemented in PROTIN_ID. The plot shows hit sequence high-scoring segment pairs 

(HSPs) derived after pairwise alignments with the query (bold sequence). The hit 

sequences (dark blue) align with various regions of the query sequence. If a hit 

sequence covers ≥ 80% fraction of coverage (FC), for example, of the query sequence 

(centre), it is retained and if is under the cut-off it is discarded. In some instances, a hit 

sequence may have more than one HSP, which may overlap. In this case, their non-

overlapping contribution to the overlap of the query is determined to calculate their 

FC%. Some hit sequences may be redundant (i.e. identical) sequences from the same 

species (green). In this case, redundancy filtering may be applied such that all identical 

sequences are removed, leaving only the intra-species sequence with the highest 

fraction of coverage (i.e. longest) to the query. In the end only the hit sequences A-D are 

retained. The above step is useful to remove many duplicate sequences and sequence 

fragments prior to multiple sequence alignment (MSA) generation, reducing the burden 

of repetitive manual editing of MSAs especially in the context of high-throughput 

generation of theoretical restraints for docking. 
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The PROTIN_ID editing heuristic is implemented, following the retrieval of all hit 

sequences via Fasatcmd (see Figure 4-3). First, pairwise global alignments between the 

query sequence and each hit sequence are created by the Needleman-Wunsch algorithm 

as implemented in the EMBOSS suite (Rice et al, 2000; Needleman and Wunsch, 

1970). In this analysis, the query sequence is regarded as the canonical sequence and 

any deviations from the query sequence by the hits are corrected. The objective is to 

create a modified set of hit sequences that only align to the canonical sequence since 

protein functional prediction is mapped back to the known query 3-D structure 

ultimately and such information can only be gathered by hit sequence residues that align 

to the query sequence’s residues. Only these residues have their evolutionary 

conservation measured. The hit residues not found in the query PDB structure are 

irrelevant for this purpose of mapping and are discarded even though their evolutionary 

conservation has been measured.  

 

Often in manual editing of an alignment for input in an interface predictor method, the 

following steps are usually applied. If a hit sequence has overhangs that exceed the 

canonical sequence’s N or C-termini, they are removed leaving only a hit sequence’s 

areas, which align completely with the query sequence. Furthermore, if there are splits 

(i.e. gaps) in the canonical sequence observed in its pairwise alignment with a hit 

sequence, this is due to the hit sequence having additional residues (i.e. insertions) not 

found in the query sequence. Such insertions are removed from the hit sequence. These 

rules are automatically implemented by the editing heuristic. The outcome is an 

improved, structured MSA when the hits and the query are aligned in the next step by 

MUSCLE through the removal of the above factors. Figure 4-4 shows the difference 

between two MSAs generated by MUSCLE for the Tissue inhibitor of 

metalloproteinases 1 (TIMP-1) protein sequence. Both MSAs use the same number of 

sequences. One MSA has been generated using sequences edited by the novel editing 

heuristic (refined), while the other MSA uses the same, unedited sequences (unrefined). 
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Figure 4-3: Overview of the sequence editing heuristic that is implemented in PROTIN_ID. A hit sequence is globally aligned to the query 

sequence by the Needleman-Wunsch algorithm. The query sequence is regarded as the canonical sequence and any N/C terminal overhangs 

beyond the query sequence or insertions that split the query by the hit sequence will be removed. The end result is hit regions that only align to 

the canonical sequence. This is important as these regions are used for computing conservation of the query. Hit residues not found in the query 

are non-essential because they do not exist in the query protein’s 3D protein structure.  
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It can be seen for the unrefined MSA that there are misaligned residues (i.e. CVC), 

which is due to a long N-terminal overhang present in the hit sequence. This N-terminal 

overhang exceeds the length of the TIMP-1 query sequence, and is the longest sequence 

(i.e. to the left) in the holistic view of the unrefined alignment in Figure 4-4(A). In the 

refined MSA, this N-terminal overhang is removed from the hit sequence by the editing 

heuristic before MSA generation by MUSCLE, as it has no counterpart sequence region 

in the query sequence. This has resulted in the misaligned residues’ positions likely 

aligned in the appropriate sequence columns that were originally occupied by residues 

(i.e. CLA) of the removed N-terminal region. In the context of high-throughput 

generation of theoretical restraints for docking such unstructured MSAs would require 

manual editing before input in an interface predictor. The aim of the sequence editing 

heuristic is to address this and lessen the need of manual editing of MSAs. The refined 

MSA is improved because the factors that caused unstructured alignments in the first 

place, namely N/C terminal overhangs and insertions that split the query (canonical) 

sequence have been eliminated. If more manual MSA editing is required at a later stage 

by the user, it will be more efficient to perform also. Both the refined and unrefined 

MSA were examined further to assess their impact on interface residue prediction 

performance of PROTIN_ID. Using the unrefined MSA as input, it was determined that 

no interface residues were predicted in the final prediction, whereas using the refined 

MSA resulted in interface residues being predicted in the final prediction at a 58% TP 

fraction (see 3.5.2). This is because more (7) interface residues were extracted for 

clustering based on the refined alignment in later steps of the protocol, which generated 

the largest (12 residue), top-ranking cluster (see section 4.3.2). Only four interface 

residues were extracted using the unrefined MSA, forming a smaller, five-residue 

cluster that was ranked second.  
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Figure 4-4: The comparison of the MSAs generated by MUSCLE of the same number 

of hit sequences for the Tissue inhibitor of metalloproteinase-1 sequence. A) The top 

MSA is when the editing heuristic is not applied (unrefined) and the bottom is when it is 

applied (refined). It can be seen that N/C terminal overhangs and insertions of longer hit 

sequences than the query cause an unstructured MSA, and this is not the case when the 

editing heuristic is applied B) There are three misaligned residues (CVC and CLA - blue 

outlines) in the top sections of the unrefined MSA indicated by the arrow. In the refined 

MSA, the three residues (CVC - blue outline) are likely aligned in the appropriate 

sequence columns compared to their original positions in the unrefined MSA. Using the 

refined MSA, PROTIN_ID predicts interface residues for its top prediction. With the 

unrefined MSA, no interface residues were predicted, indicating the editing heuristic’s 

usefulness in improving PROTIN_ID prediction performance.  
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The cluster ranked first based on the unrefined MSA was composed entirely of eight 

non-interface residues. The four interface residues in the second-ranking cluster that 

were extracted based on the unrefined alignment overlapped with four out of seven 

interface residues extracted using the refined MSA. This leaves a difference of three 

residues that could not be extracted using the unrefined MSA. A comparison of these 

three residues’ assigned conservation scores based on the two MSAs revealed that they 

score less in the unrefined MSA, decreasing their rank beyond the absolute residue 

extraction cut-off used in PROTIN_ID (see section 4.3.2). This indicates that using a 

structured MSA derived from ‘edited’ hit sequences via the editing heuristic can 

improve PROTIN_ID’s prediction performance through extracting more interface 

residues clustered together, which can boost their cluster ranking.  

 

As mentioned above, automatically edited hits are submitted along with the query 

protein’s sequence to MUSCLE (version 3.8) to generate an MSA (Edgar, 2004). 

PROTIN_ID runs MUSCLE using default parameters to produce an output multiple 

sequence alignment in clustal format (see section 3.3). This is followed by conservation 

score analysis (see section 3.4). In this step, conservation scores are measured for the 

MSA columns by the score conservation algorithm using the Jensen-Shannon 

divergence score (default) or one of the other conservation scores at a three residue 

window to account for background conservation of the residue neighbours of a query 

residue of interest in the alignment column being scored (see section 3.4.1; Capra and 

Singh, 2007).   

 

4.3.2 Structural data processing in PROTIN_ID 

 

The conservation score values for each MSA column are mapped back to each query 

sequence’s residues and are written in the residues’ B-factor columns of the query PDB 

file in order to generate a conservation map to depict the residues’ conservation signals 

on the query protein’s surface. The “mapped” query PDB file is submitted to 

NACCESS by PROTIN_ID to calculate solvent accessible residues (Hubbard and 

Thornton, 1993). NACCESS calculates solvent accessibility by rolling a circular probe 

with a radius of 1.4 Å along a protein’s van der Waals surface. The path undertaken by 
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the probe’s centre for recursive slices of a protein’s surface is known as the solvent 

accessible surface (Lee and Richards, 1971). Residues that are above a user-defined 

relative solvent accessible cut-off (default ≥15%, see section 5.3) are defined as surface 

and are retrieved by PROTIN_ID. The surface residues are ranked according to their 

conservation scores and the top N residues (default N = 20, see section 5.7) are 

extracted for further processing.  

 

An option in PROTIN_ID exists to delete residues from the query protein where it is 

known that they are not part of the interface (i.e. using biological data). These surface 

residues may be important for other biological reasons (ex. a known cofactor binding 

site). Such residues may display strong conservation signals and mask the interface 

residues of interest by having higher conservation signals such that they may be part of 

the top-20 residues that are extracted and therefore the residue deletion list can 

eliminate these false positives from being part of the top-20 residues prior to clustering. 

This may allow other interface residues to take their place and be ranked within the top-

20 conserved surface residues. 

 

The next step involves clustering the extracted, top-20 conserved residues in order to 

determine clusters of conserved residues on the query protein’s surface. To begin with, 

the top-20 extracted residues’ carbon-α distances are measured from one another and the 

distances are recorded in an all-against-all distance matrix. The distance calculation 

between alpha carbons of two residues (Carbon α disij) is defined as follows: 

Carbonαdisij
= (xi − xj )

2 + (yi − yj )
2 + (zi − zj )

2  (4-2) 

 

where x,y, and z represent the α carbon coordinates of residues i and j. The result is the 

distance (Å) between two residues’ α carbons. Data derived from this matrix is inputted 

for clustering using the OC clustering algorithm (Barton, 2002, 1993). The single-

linkage clustering method, a form of hierarchical clustering, is used to cluster the 

residues at a carbon-α radial distance cut-off (Figure 4-5). In this method, residues ≤N 

Å radial cut-off (default ≤7 Å, see section 5.7) are clustered as neighbours from data 

derived from the all-against-all alpha carbon distance matrix until no residue nearest 

neighbours are found to any of the clustered residues comprising the current cluster 

(Ross, 1969; Johnson, 1967). This process is repeated to form a new cluster with the 
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remaining non-clustered residues until no more residues remain to be clustered out of 

the Top-20 extracted surface residues. PROTIN_ID applies a heuristic for sorting a 

cluster whereby it first sorts each cluster according to size (i.e. number of residues in a 

cluster) and calculates the average conservation of a cluster. The average conservation 

(Averagecons) is calculated as follows: 

 Averagecons = ni

N j

 (4-3) 

 

where ni refers to the sum of the conservation of residues i of a cluster and Nj is the total 

number of residues of a cluster (i.e. cluster size). If some clusters are the same size, they 

are re-ranked according to their average conservation. 

 

 

Figure 4-5: Overview of the clustering steps performed in PROTIN_ID. The above 

protein is transforming growth factor-beta receptor (TGF-beta receptor). The first seed 

residue of this protein has its distances from its alpha carbon to all other Top-20 

extracted surface residues’ alpha carbon atoms computed. This process is also 

performed for every other surface residue. The result is an all-against-all alpha carbon 

distance matrix. The next step begins with a seed residue to start a cluster. All nearest 

residue neighbours within 7 Å from it are clustered. This is repeated for the new 

residues of a cluster until no neighbours remain for all residues in a cluster. The final 

result is a cluster of 17 residues of which 10 are true interface residues.    
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The top-ranking cluster of conserved residues is predicted as being part of the protein 

interface by PROTIN_ID.  Previous studies have demonstrated that interface residues 

are in close proximity to each other in three-dimensional structural space (Ahmad et al, 

2010; Guharoy and Chakrabarti, 2010). It is hypothesized that interface residues would 

be part of the top-ranking cluster (see section 5.7). Furthermore, clustering allows the 

filtering out of lone residues on a protein surface and sorting clusters by size eliminates 

smaller clusters, which may be part of small molecule binding sites (Guharoy and 

Chakrabarti, 2010; Ofran and Rost, 2007b). In Figure 4-6, it can be seen that clustering 

of residues for two proteins adrenoxin and transforming growth factor beta receptor 

(TGF-beta receptor) results in the largest clusters with interface residues comprising 

them and the isolation of smaller lone clusters that consist entirely of non-interface 

residues. Moreover, the proteins’ conservation maps, which display the level of 

conservation on their surfaces, indicate that the larger clusters are more conserved than 

the smaller ones. These maps can be a useful aid to the users of the PROTIN_ID 

method as they can be used to expand the top cluster if required by increasing the 

clustering radial cut-off.  

 

4.3.3 PROTIN_ID theoretical restraints output for use in protein-protein docking  

 

The first output file created by the PROTIN_ID method is a cluster of conserved 

interface residues prediction file that contains all clusters ranked by size and average 

conservation (see Figure 4-7). The top cluster prediction can be inputted as direct active 

residue restraints in the HADDOCK docking method (see section 3.8.1) for query 

proteins in order to guide docking sampling (Dominguez et al, 2003).  

 

The second set of files created by PROTIN_ID are a PDB file (with conservation scores 

in the B-factor column) coupled with a PyMol script to generate the conservation map 

of the query protein, and another PDB file with its respective PyMol script to generate 

all clusters in different colours (sorted by size and average conservation) predicted for 

the protein as shown in Figure 4-6 (Delano, 1998). Both these sets of query protein 

PyMOL visualization files are meant to complement each other and guide the user into 

making an informed decision for later use of theoretical restraints in docking. 
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Figure 4-6: PROTIN_ID clustering and conservation map features. The effect of clustering in isolating lone clusters from the largest cluster is 

shown when the Top-20 conserved surface residues are clustered for two proteins. A) The Adrenoxin protein has 4 clusters predicted. Three 

clusters are small and isolated clusters (hot pink 1 residue, yellow 2 residues, and red 1 residue) in the front and back of the protein’s structure 

with respect to the largest cluster (light blue). These small clusters are comprised of non-interface residues. The largest cluster contains 16 

residues, including 12 interface residues. Based on its conservation map, it can be seen that the largest cluster is comprised of more conserved 

residues relative to the smaller clusters. B) The transforming growth factor-beta receptor has three clusters in total. Two clusters are small and 

isolated with regards to the largest one and contain non-interface residues (yellow 2 residues; red cluster 1 residue). The largest cluster comprises 

17 residues, including 10 interface residues. Also, it is comprised of more conserved residues than the smaller clusters in the conservation map. 
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1M9Z.pdb 
~~~~~~~~~~~~~~~~~~~~~~~~ 
 
Clustering 20 residues from 77 surface residues (20 extraction) using a 7 Angstrom(s) radial 
cutoff: 
17, 0.73, Cluster_1 ==> 81 59 32 30 27 118 119 122 46 52 51 50 49 48 47 78 54 
2, 0.73, Cluster_2 ==> 100 126 
1, 0.73, Cluster_3 ==> 66  

 

Figure 4-7: An example of PROTIN_ID’s clusters of conserved interface residues 

prediction file for the transforming growth factor-beta receptor protein (TGF-beta 

receptor) is shown. In this file, the top prediction (i.e. Cluster_1) followed by the small 

and isolated clusters are indicated. The Top-20 residues are shown that have been 

extracted from 77 surface residues for this protein. The clustering of Top-20 residues 

was performed using a 7 Å radial cut-off. Each cluster is ranked by size (ex. 17 for the 

largest cluster) and then average conservation of a cluster (0.73), if two clusters are the 

same size. In this case, since all clusters have the same average conservation value, they 

are ranked by size.  

 

 

The third file outputted by PROTIN_ID is a multiple sequence alignment of the query 

sequence and its homologous sequences (i.e. hits) as seen in Figure 4-4. A user may 

choose to manually re-edit the alignment or add other sequences to this alignment and 

then resubmit this file along with the query protein’s PDB file to PROTIN_ID for re-

prediction. PROTIN_ID allows a user to input a multiple sequence alignment derived 

from third party sources along with an input PDB file. In this case it initiates its 

protocol from the conservation score step to score the MSA and assign the residue 

conservation values to the query protein’s residues. By default CLUSTAL, FASTA, and 

HSSP alignments are recognized. However, HSSP alignments from the HSSP alignment 

database are first converted into FASTA format using the program MView (version 

1.52) prior to conservation score analysis (Brown et al, 1998; Dodge et al, 1998). 
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4.4 Conclusion 

 

In general, most interface predictors utilize sequence and structural data to derive 

interface predictive features (see sections 1.8 and 1.9.4 and table A-2). Sequence data is 

represented in the form of a multiple sequence alignment, which is generated 

automatically. In some instances, manual re-editing of MSAs becomes necessary when 

they are unstructured, and this becomes a limiting factor when performed in a high-

throughput setting of generating theoretical restraints for many proteins. For sequence 

data analysis, useful and user-friendly features were introduced to improve interface 

residue prediction performance by reducing the factors that cause MSA errors, which 

require manual re-editing by the user, and these new features distinguish PROTIN_ID 

from other interface predictors (see sections 1.8 and 1.11 and table A-3). These features 

introduced involve filtering and editing hit sequences prior to multiple sequence 

alignment generation. The filtering steps use the fraction of coverage of the hit to the 

query to remove short sequences, and a feature that removes redundant (i.e. identical) 

sequences from a sequence dataset to reduce overrepresentation of identical sequences 

in an MSA. In addition, the editing heuristic removes N/C-terminal overhangs and 

insertions in hit sequences that do not have corresponding residue counterparts in the 

query sequence of interest, resulting in better prediction results when comparing MSAs 

generated with (refined) and without (unrefined) the editing heuristic for the same 

number of sequences (see sections 2.2.2 and 4.3.1). Also, an implicit effect of the 

editing heuristic is that residues that are misaligned are likely aligned in the appropriate 

sequence columns in refined MSAs relative to their original positions in unrefined 

MSAs. This implicit effect is a result of the removal of alignment error-inducing factors 

(ex. long N-terminal overhangs), which cause residues to be aligned in the wrong 

regions, because other unlikely residues present in such overhangs are occupying their 

sequence columns.  

 

Structural data is represented by a query protein’s PDB coordinate file. The clustering 

of the top-20 conserved surface residues (≥15% ASA) in three-dimensional structural 

space using their alpha-carbon coordinates from a PDB file allows conserved residue 

clusters to be identified and sorted by size and average conservation when two clusters 
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have the same size. It also eliminates lone residues from the final prediction. A recently 

published method, CCRXP, has a similar protocol to PROTIN_ID, but lacks these 

practical and user-friendly features introduced in PROTIN_ID, namely the filtering and 

sequence editing heuristics, and the ranking of conserved residue clusters, which are 

useful to improve interface residue prediction (Ahmad et al., 2010). Also, if an 

experimentally solved protein structure is not available, it is possible to use homology 

models of proteins for prediction of interface residues using PROTIN_ID, which is not 

implemented in CCRXP. Furthermore, third-party MSAs may be used in PROTIN_ID, 

but this option is not present in CCRXP. The PROTIN_ID webserver has also been 

implemented for ease of use and convenient access for users in the generation of 

theoretical restraints for data-driven docking (Figure 4-8). In addition to this, a 

PROTIN_ID script that runs on Linux and UNIX operating systems is available to users 

that can be used in high-throughput prediction of clusters of conserved interface 

residues of unbound proteins.  

 

In order to assess the prediction performance of the newly developed PROTIN_ID 

method, it will be systematically tested on a dataset of unbound proteins known to 

interact (Benchmark 4.0). The results for the unbound proteins will be compared to their 

known protein-protein complexes to examine PROTIN_ID’s performance in interface 

residue prediction relative to random prediction (see Chapter 5). Furthermore, 

benchmarking of the new PROTIN_ID method’s performance against other methods 

(ex. CCRXP) is useful to assess it strengths and highlight areas for further development 

of the method (see Chapter 6). Upon satisfactory optimization of PROTIN_ID’s 

parameters and performance testing, the method will be applied to generate theoretical 

restraints to drive protein-protein docking to improve docking performance (see Chapter 

7). 
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Figure 4-8: The input web interface of PROTIN_ID. The interface is divided into PDB file input, alignment file input, and parameters sections. 

The minimal input is a PDB file to upload to run the method. In addition a multiple sequence alignment can be uploaded in combination with a 

PDB file. 
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Chapter 5 

 

Prediction of protein-protein complex interface residues 

 

5.1 Introduction 
 

Most cellular processes are driven by protein-protein interactions (see section 1.2). It is 

important to consider whether protein interface residues that drive these interactions are 

more conserved in comparison to the remainder of protein surface residues. Protein 

complexes and in particular intra-species protein complexes may have a tied 

development pattern in the evolutionary lifespan of an organism (actual hypothesis Ha). 

This may allow an evolutionary signal to be detected. For example, an enzyme-inhibitor 

interaction may have evolved into it current mature regulatory state where its interface 

residues are conserved because of functional constraint, and its interface is detectable 

because of this. On the other hand, it may well be possible that protein interfaces are no 

more conserved than the remainder of protein surface residues given that proteins can 

be promiscuous in nature. Therefore, conservation differences between a protein’s 

interface and (non-interface) surface are no better than random, indicating an absence of 

an evolutionary signal (null hypothesis ‘Ho’). To disprove the null hypothesis, statistical 

analyses of conservation signal differences between interface and rest of surface (ROS) 

residues of intra-species protein complexes were performed. The findings were 

discussed in the context of previous work (see section 5.5).  

 

 

If interface residues emit a detectable conservation signal, it would be desirable to 

utilize it as a predictive property for such residues. For example, this would allow 

predicted interface residues to be applied as sampling restraints in protein-protein 

docking of two proteins known to interact (see section 1.6.1.1). However, the 

application of sequence conservation as an interface residue predictive feature is a 

debated topic. This issue is addressed in this chapter and an approach is explored where 

sequence conservation of surface residues is coupled with their spatial clustering (i.e. 

using known protein structures) to predict conserved interface residue clusters. This 

strategy is applied in the protein interface predictor, PROTIN_ID, which is used here. 
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Performance evaluation is done as a cluster is grown (to optimize PROTIN_ID) and is 

compared in terms of interface prediction reliability to a scenario where clustering is not 

applied, but residues that are conserved are predicted as interface residues. Both 

clustering and non-clustering are also compared in the framework of interface 

prediction at random to gauge their contributions in terms of interface prediction 

reliability.  

 

 

5.2 Dataset for analysis of protein-protein interactions 
 

The Benchmark 4.0 dataset is a manually curated dataset of protein-protein complexes 

(Hwang et al, 2010). There are a total of 176 structures of protein complexes in this 

dataset composed of intra-species, inter-species, and antibody-antigen interactions (see 

section 3.2). For each protein complex, its unbound (i.e. free form) protein constituents 

are available.  Only intra-species binary complexes were selected for statistical analysis, 

which included their unbound proteins. This is because intra-species proteins evolve in 

the same organism in the context of an important biological function crucial for an 

organism’s survival in which they are involved (ex. enzymatic inhibitory activity; 

Johnson et al., 2007). This allows the comparison of interface versus ROS residue 

conservation signals directly, which was done for binary interactions, and is useful for 

training of PROTIN_ID. All intra-species non-binary complexes (ex. three or more 

chains in a complex) were excluded from analysis because they may have overlapping 

interface residues, making an interface of interest difficult to predict by an interface 

predictor, if knowledge is not known in advance of other interfaces to exclude them 

from the final predictions. Because inter-species interactions are composed of proteins 

from different organisms they were excluded from analysis as a result. The antibody-

antigen interactions were also excluded from analysis (see section 1.9.3).  
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5.3 Classification of residues of the dataset into interface and the rest of the 
surface 

 

The number of interface residues, the rest of the surface residues (ROS), and core 

residues were calculated for the unbound proteins of intra-species binary complexes 

dataset based on the interface residues determined for the same proteins in their bound 

form (see section 3.2.1). This data is summarized in Table 5-1. Using the CAPRI 

interface distance criterion, overall 2,928 ‘bound’ interface residues were yielded ≤ 5 Å 

in distance for the proteins in the bound pose of the dataset. Next the same proteins of 

the dataset in the unbound poses were examined to see if the same interface residues 

were present. It was found that 2,829 ‘unbound’ interface residues were present in total 

in the dataset. There are 99 interface residues fewer in the total number of interface 

residues of the unbound proteins. This is because they are not found in those proteins’ 

structures (i.e. in their PDB files). In the training of a protein interface predictor only 

unbound structures should be used, mimicking a blind prediction test (see section 3.5). 

Therefore, such interface residues found only in the bound proteins, but not in their 

unbound counterparts are discarded from training.  

 

 

There are a total of 25,132 residues for the unbound proteins in the dataset. Using the 

solvent accessibility criterion (≥ 15% accessible surface area %, ASA), they were 

divided into surface and core residues (see section 3.2.1). Accordingly, there are 17,256 

surface residues and 7,876 core residues. The surface residues consisted of 2,498 

interface residues that overlap with the distance criterion-derived unbound interface 

residues, and the remaining 14,759 residues are non-interface surface residues (rest of 

the surface, ROS). There are 331 interface residues < 15 % solvent accessibility cut-off 

and they are classed as core residues and hence are not included in further statistical 

analysis. The percentage of ASA interface residues out of the total surface residues is 

14.5% for the unbound proteins dataset. As a result, there is a substantial bias towards 

ROS residues. 
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Table 5-1: Total interface, core, and rest of the surface residues of the unbound dataset 

of binary intra-species complexes. The bound proteins’ total interface residues of the 

dataset are included for comparison. 

Bound proteins 

total interface 

residues 

(Distancea) 

Unbound proteins 

total interface 

residues (ASA%b) 

Unbound proteins 

total ROSc 

residues (ASA%) 

Unbound proteins 

total core residues 

(ASA%) 

2,928 2,498 14,759 7,876 
a CAPRI distance criterion (≤ 5 Å) to derive interface residues. 
b Accessible surface area % criterion (≥15%) to derive interface residues. 
c ROS = rest of the surface non-interface residues. 

 

 

The average interface sizes were calculated for the two interface criteria for the 

unbound and bound proteins, and this is summarized in Table 5-2. The unbound ASA% 

average interface size calculated (20.31) differs by approximately three residues in 

comparison to the unbound interface average (23.00) determined by the distance-based 

criterion. This comparison is important because, in real-world terms, the ASA% is the 

only criterion that can be used to determine surface residues from the core residues of a 

protein. Therefore, this division into surface and core residues is an attempt to maximize 

the number of interface residues in the extracted surface residues. The ASA% is an 

interface residue predictive feature (see section 1.7.2). Using an ASA% threshold allows 

the discernment of how many interface residues above the threshold are determined on 

average as surface residues in the dataset. And the comparison of this ASA% interface 

residue average to the known unbound distance-based interface average size acts as a 

gauge to determine the suitability of the ASA% cut-off. Of course the lower the ASA% 

threshold the closer the ASA% interface residue average is to the distance-based 

average, which means more residues are designated as surface (and ROS). This 

threshold used (i.e. ≥ 15% ASA) indicates a negligible loss of interface residues 

(approximately three residues) and justifies using this specific solvent accessibility cut-

off in the PROTIN_ID interface prediction method (see Chapter 4). Those 331 ‘lost’ 

interface residues (found in 61 complexes studied) that are under the 15% solvent 

accessibility threshold had average solvent accessibilities of 5.76% (STDVs of 4.68) 

and 2.41% (STDVs of 3.96) for the side and main chains, respectively. This means the 
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ASA% threshold would have had to be lowered considerably just to extract those 

interface residues. Doing this would likely introduce many core residues as surface 

residues, which are conserved (Mintseris and Weng, 2005a). This would make it more 

difficult to assess the difference between interface and ROS conservation difference. It 

is worth mentioning that the same ASA% cut-off has been used in an earlier study for 

previous versions (1.0 and 2.0) of the protein-protein benchmark (de Vries et al, 2006; 

Mintseris et al., 2005b; Chen et al., 2003a). 

 

Given that structural discrepancies can exist where residues are not found in an unbound 

chain relative to its bound chain counterpart, these missing residues can also be part of 

the interface. As mentioned previously, 99 interface residues are not found from the 

unbound chains compared to the bound chains. Comparing the averages of the bound 

vs. unbound interface based on the distance-based criterion indicates a minor difference 

of approximately one residue on average that is missing. This indicates that the loss of 

the 99 interface residues is negligible.   

 

An important use of the calculated averages in table 5-2 is that they are relevant to 

calculate what is expected for interface prediction at random. This random prediction is 

important to know as it allows comparison to the prediction performance of an interface 

predictor method to determine if it performs better than random, is no better than 

random, or is worse than random prediction (see section 5.7). 

 

Table 5-2: Calculated averages of the unbound/bound interfaces and unbound rest of 

surface (ROS) residues of the dataset of binary intra-species complexes. The solvent 

and distance-based definitions were used for the unbound/bound protein interfaces. The 

standard deviations of the average interface sizes are indicated in parentheses. 
 

Unbound 

protein 

interface 

ave. (15% 

ASA) 

Unbound 

protein 

interface 

ave. (≤5 Å 

distance) 

Bound 

protein 

interface 

ave. (≤5 Å 

distance) 

Unbound 

protein 

ROS 

surface ave. 

(15% ASA) 

20.31 

(±6.77) 

23.00 

(±8.09) 

23.80 

(±8.21) 

119.99 

(±80.44) 
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5.4 Analysis of protein interface residue conservation vs. ROS residue 
conservation 

 

Conservation signals were calculated using seven different evolutionary conservation 

scores (available in PROTIN_ID) using multiple sequence alignment data for all dataset 

proteins (see sections 3.3 and 3.4). Using all conservation scores allows comparison of 

their results regarding interface residue versus ROS residues evolutionary conservation. 

The difference in conservation signal between interface and the rest of a protein’s 

surface was calculated by subtracting the average ROS residue surface conservation 

signal from the average interface residue conservation signal (see section 3.6). The 

resulting signal difference values (∆Cons) can be a positive, negative, or zero value, 

which represents the presence of an interface conservation signal greater than the ROS, 

the presence of the non-interface surface residue signal greater than interface residues, 

or no detectable interface signal conservation because both the interface and the 

remainder of the surface residues are equally conserved and negate each others effects. 

Why are differences necessary to calculate? In a typical multiple sequence alignment, 

background noise may be introduced through difficult to align sequence regions, 

causing alignment errors, for example. This introduction of background noise equally 

affects the separately measured conservation signals of interface and the rest of the 

surface residues since they are derived from the same multiple sequence alignment. By 

calculating the ∆Cons values, this noise does not affect the positive or negative direction 

of the ∆Cons value of the interface conservation signal vis-à-vis the remainder of the 

non-interface surface residues. This effectively allows for statistical analysis to quantify 

the extent of statistical significance or lack thereof of ∆Cons. 

 

5.4.1 The probability distribution of empirical data (∆Cons) 

 

Any statistical analysis assumes certain preconditions are satisfied upon its application. 

As such, knowing the probability distribution the empirical data (i.e. ∆Cons) 

approximately models is important for applying suitable statistical tests (i.e. parametric 

or non-parametric) for valid data analysis to determine if interface conservation is more 

conserved than ROS residues (Park, 2008). Otherwise applying an incorrect statistical 

analysis that assumes data are normally distributed, for example, to data that does not 
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follow this statistical model will result in unreliable interpretations (Park, 2008).  To 

apply the appropriate statistical test, the ∆Cons data was tested for normality (see 

section 3.6). Accordingly, histogram distributions of ∆Cons and their respective Q-Q 

plot diagnostic tests indicate that the underlying distribution relationship between 

interface and non-interface surface residues follows the Normal distribution (Figure 5-

1). In the Q-Q plots, the quantiles of the actual data are plotted against those of the 

theoretical distribution (Normal distribution). In the Q-Q plot, the intersecting diagonal 

line represents the existence of perfect agreement between theoretical and actual data 

and implies that the actual data are normally distributed (Park, 2008). The plotted 

∆Cons empirical data residuals in all Q-Q plots have a linear pattern with respect to the 

intersecting diagonal lines. In addition, a normality test (Skewness-Kurtosis test) was 

applied to demonstrate that the data is normally distributed. This Skewness-Kurtosis 

test’s null hypothesis is that the data are normally distributed. If the null hypothesis is 

disproven, then the data is not normally distributed. The p-values of this test show that 

no significant departure of normality has been observed, accepting the null hypothesis 

with regards to the data being normally distributed (Table 5-3).  

 

 

Other normality tests (Shaprio-Wilk and Shapiro-Francia tests) were applied on the data 

and produced p-values in agreement with the Skewness-Kurtosis test, accepting the 

conclusion that the data are normally distributed. Two forms of normality tests 

(graphical and numerical) were conducted to determine the probability distribution the 

∆Cons data follow (i.e. normal distribution or not) as a precursor to the actual statistical 

analysis, which examines the significance of the conservation of interface residues to 

the ROS residues. All tests agree that the empirical data (∆Cons) calculated from all 

seven conservation scores are normally distributed, which means that parametric tests 

can be applied for the next step of analysis. 
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Figure 5-1: Histogram distributions of the differences (∆Cons, see equation 3-20) 

between average interface and rest of surface (ROS) residues of the dataset. The 

intersecting line at 0 marks no difference in conservation between the interface and the 

rest of a protein surface. ∆Cons  > 0 indicates an interface conservation signal. ∆Cons < 

0 indicates a non-interface surface residue signal. It can bee seen that ∆Cons > 0 for the 

majority of the data distribution, indicating an interface conservation signal. The 

Shannon entropy and Jensen-Shannon divergence scores are shown with the Q-Q plots 

for each score below it. Q-Q plots depict the relationship between theoretical Normal 

distribution data (X-axis) and the actual experimental data (∆Cons, Y-axis). The 

intersecting diagonal line illustrates perfect agreement between empirical and 

theoretical data. As the residuals of the empirical data depict a linear pattern along the 

diagonal line, this suggests that the data follows the normal distribution.
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Table 5-3: Comparison of conservation score averages of total surface ASA%, ROS ASA%, and interface residues ASA%. The standard 

deviations of the average conservation values are indicated in parentheses. The ∆Cons > 0 shows that the majority of the interface conservation 

signals are better than the ROS ASA%. The Normality test P values were obtained from the Skewness-Kurtosis test. The null hypothesis (Ho) that 

indicates that the ∆Cons values follow the normal distribution is not rejected for all scores. The 95% Confidence Interval shows the upper and 

lower bound range limits of ∆Cons. Paired t test P values indicate the probabilities of the ROS residue conservation signal (∆Cons < 0), no 

detectable conservation signal between both groups of residues (∆Cons ≠ 0), and the interface residue conservation signal (∆Cons > 0). 
 

Conservation 
scores 

ASAa total 
surface 

ASA 
ROS 

ASA 
interface 

Difference 
(∆Cons) 

Difference above 
random (∆Cons%) 

 
Normality 
test p value 

 

 
95% 

Confidence 
Interval 

 
P value 
∆Cons < 0 

 
P value 
∆Cons ≠ 

0 

 
P value 
∆Cons > 

0 

Shannon entropy 0.53 (0.11) 
0.52 

(0.11) 
0.61 (0.13) 0.10 (0.11) 79% 0.09 0.08 – 0.12 1.0b < 0.001c < 0.001 

Property entropy 0.56 (0.11) 
0.54 

(0.11) 
0.64 (0.14) 0.10 (0.12) 76% 0.18 0.08 – 0.13 1.0 < 0.001 < 0.001 

Property relative 
entropy 

1.59 (0.37) 
1.53 

(0.38) 
1.85 (0.46) 0.33 (0.37) 79% 0.42 0.26 – 0.40 1.0 < 0.001 < 0.001 

Relative entropy 0.52 (0.12) 
0.50 

(0.12) 
0.60 (0.13) 0.10 (0.11) 80% 0.16 0.08 – 0.12 1.0 < 0.001 < 0.001 

JS-divergence 0.5 (0.10) 
0.49 

(0.10) 
0.57 (0.11) 0.08 (0.09) 75% 0.11 0.06 – 0.09 1.0 < 0.001 < 0.001 

Von Neumann 
entropy 

0.62 (0.11) 
0.60 

(0.11) 
0.69 (0.13) 0.09 (0.10) 77% 0.11 0.07 – 0.11 1.0 < 0.001 < 0.001 

Sum of pairs 
 

2.00 (0.68) 
1.87 

(0.68) 
2.53 (0.96) 0.66 (0.81) 77% 0.13 0.51 – 0.80 1.0 < 0.001 < 0.001 

a ASA% = Accessible surface area percentage. 
b  P value 1.0 (> 0.05) indicates no significance. 
c P value < 0.001 indicates extreme significance. 
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5.4.2 Statistical analysis of the empirical data (∆Cons) 

 

For all the histogram distributions of ∆Cons calculated for all evolutionary conservation 

scores, the results suggest that interface residues are more conserved than the remainder 

of a protein’s surface where the majority of protein interfaces have ∆Cons% > 0 (table 

5-3). ∆Cons% is the percentage of data greater than zero ∆Cons. This indicates that for 

the majority of interfaces, their conservation signals are greater than the ROS residues 

(Figure 5-1). As the ∆Cons data follows the Normal distribution, parametric statistical 

tests were applied to ascertain the significance of ∆Cons (greater than zero) for all 

conservation scores used (see section 3.6). The confidence interval (CI), which 

describes the precision of the population mean (µ) of ∆Cons, was calculated. The CI 

takes into account sample size and variability (standard deviation σ) when performing 

the analysis (Motulsky, 2007). The CI describes the 95% chance that the true population 

µ is defined within the CI range as delineated by the CI upper and lower bound limits. 

For example, for 95% of samples of the population (independently and randomly 

sampled) the CI reflects the probability that the true population mean is within the CI 

range and a 5% chance for the remaining 5% of the samples that it is beyond the CI 

range limits. Additionally, calculating the 95% CI allows the consideration of where the 

CI limit lower boundary falls in comparison to no detectable interface conservation 

signal (zero ∆Cons). The interface conservation signal significance over the rest of a 

proteins surface (ROS) is demonstrated when the lower bound CI limit of ∆Cons is 

greater than zero ∆Cons. Indeed, for all evolutionary conservation scores applied it is 

observed that there is a 95% chance that all scores show lower bound CI ranges where 

∆Cons  > 0. For example, the Jensen-Shannon divergence has a ∆Cons mean of 0.08 

with a lower bound CI limit 0.06 (∆Cons minimum) to an upper limit of 0.09 (∆Cons 

maximum), indicating a good precision of the score’s ∆Cons. All other scores are also in 

agreement, highlighting that there is an interface conservation signal to be exploited in 

the prediction of a protein-protein interface site since their ∆Cons averages and ∆Cons 

minimum are greater than zero (Table 5-3).  

 

 

Taken as a whole, the dataset used for statistical analysis represents a sample of intra-

species interacting proteins derived from a greater population of interacting proteins that 
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have evolved together in the same species. The CI provides the opportunity to make a 

broader inference about the interface conservation signal (∆Cons) by extrapolating the 

findings based on the sample to the population it is derived from. Since the calculated 

CI ranges for each score’s ∆Cons mean show good precision, indicating that there is a 

95% chance that the population ∆Cons mean (µ ∆Cons) is similar to the sample ∆Cons 

mean, there is a 95% probability that future extensions to the current dataset would have 

a 95% CI within the calculated ranges for all conservation scores. This means that if the 

current dataset were enlarged to include more intra-species interacting proteins, there is 

a 95% chance that the current CI results indicate that the ∆Cons population mean is > 0, 

which shows that interface residues are more conserved than the rest of the surface 

residues. 

 

 

To complement the CI analysis, the Paired t-test was used to assess the statistical 

significance of the ∆Cons given that the null hypothesis’s assumption is that there is no 

difference between interface and the rest of a protein’s surface in terms of residue 

conservation (see section 3.6). The probabilities of actually observing the current ∆Cons 

of all scores were computed. Table 5-3 summarizes the probabilities of ∆Cons changes. 

It can be seen that for all evolutionary conservation scores the probabilities that ∆Cons 

shifts in favor of interface or non-interface residue conservation (∆Cons ≠ 0) is 

extremely significant for all scores (p-value <0.001). This result is statistically 

significant and rejects the null hypothesis’s assertion that no conservation signal is 

present between interface residues and other non-interface surface residues. However, 

the current result (∆Cons ≠ 0) only means that there is a conservation signal, but it does 

not elaborate if it is in favour of interface (actual hypothesis Ha) or ROS residues. 

Seeing that ∆Cons ≠ 0 indicates the presence of a conservation signal, this ∆Cons 

conservation signal could be a positive value (i.e. interface residues conservation signal, 

∆Cons > 0) or a negative value (i.e. ROS residues conservation signal, ∆Cons < 0). The 

P values of negative ∆Cons values are 1.0, which indicates no statistical significance to 

suggest that the conservation signal is present because ROS residues are more 

conserved than interface residues. This makes sense, as the lower bound CI limits of 

∆Cons were all greater than zero in the CI statistical analysis (i.e. no detectable 

conservation signal for ROS residues). This is confirmed for all conservation scores and 

therefore ROS residues do not have conservation signals that are more apparent than 
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protein interface residues. In contrast positive ∆Cons P values are <0.001, indicating a 

statistically significant result and confirmed by the CI ranges computed for all scores in 

Table 5-3. All conservation scores form a consensus with regards to this. This accepts 

the actual hypothesis (Ha), and indicates a detectable conservation signal in favour of 

protein-protein interfaces when compared to non-interface surface residues. 

 

 

It has been demonstrated that an interface conservation signal is present from analysis 

of the current dataset using parametric statistical tests that are based on the data being 

normally distributed. The statistical analysis does not support evidence to the contrary 

to accept the null hypothesis. For further confirmation of the results, the application of 

non-parametric tests that assume no underlying probability distribution (i.e. 

preconditions) for the data was performed to analyse the ∆Cons significance for all 

evolutionary conservation scores (see section 3.6). The bootstrap approach and the 

Wilcoxon matched pairs test, for computing the CI and P values, respectively, both 

concur with the above results computed by the parametric tests. Overall, the evidence is 

in support of the actual hypothesis (Ha) in that interface residues are more conserved 

than ROS residues. The statistical data when looked at in the context of the interface 

size vs. non-interface surface residue size (see section 5.3) becomes more pronounced 

and illustrates the significance of the detectable conservation signal for protein 

interfaces given that they form 14.5% of the 17,256 unbound surface residues.  

 

 

5.5 Interface vs. non-interface surface conservation: the views of others  
 

Early work done by Grishin and Phillips (1994) focused on five enzyme oligomer 

proteins and sought to determine if interface residue conservation between subunits of 

oligomeric enzyme complexes is present and appreciable. They applied an identity 

score to examine the positional percentage identity of interface amino acids per 

sequence pair in a multiple sequence alignment compared to total sequence identity of 

the sequence pair. This allowed the analysis of the evolutionary rate difference of 

interfaces with respect to the rest of the surface.  They concluded that interface residues 

are approximately 1.5 times more conserved than other surface residues, while enzyme 



 
 

117 

active sites and core residues showed the most appreciable conservation. This study 

bases its conclusions on a small dataset and on a reduced model of quantifying 

conservation based on comparing identities. However, accounting for physicochemical 

properties (see section 3.4.3, for example) of the interface amino acids may have 

improved their conservation signal (Valdar, 2002; Valdar, 2001). Nonetheless, based on 

the results of their study an interface conservation signal is still present waiting to be 

exploited. In another study, Valdar and Thornton (2001) analysed 6 homodimer proteins, 

using a more sophisticated score similar to the sum-of-pairs score (see section 3.4.8). 

They compared the conservation of interface residues vs. surface residues (that included 

interface residues) equal to the interface residues in number. They employ three ways: 

(1) interface residues vs. randomly selected surface residues, (2) interface residues vs. 

randomly selected structurally neighbouring surface residues and (3) interface residues 

vs. an almost circular patch of residues equalling the interface residues in number. 

Based on these thorough analyses, they concluded that interface residues are more 

conserved than the rest of the surface residues. Like Grishin and Phillips’ (1994) study, 

the final conclusions are based on a small dataset. Prompted by the dataset size 

limitations of the previous studies, Caffrey, et al. (2004) used a considerably larger and 

diverse dataset to examine interface vs. non-interface surface residue conservation. 

Their dataset consisted of 64 proteins composed of 54 obligate complexes (42 

homodimers and 12 heterodimers) and 10 transient complexes. Using the Von Neumann 

entropy score (see section 3.4.7) they conducted two analyses. The first analysis was 

comparing interface residues’ conservation average to the rest of the surface’s 

conservation average. They observed that interface residues were more conserved than 

the rest of the surface, producing a statistically significant result. Another analysis was 

comparing surface (i.e. non-interface and interface surface residues) residue patches’ 

average residue conservation to that of the interface patches. Their results did not 

indicate statistical significance in support of interface conservation over the rest of the 

surface patches. Caffrey, et al. (2004) concluded that although the interface is more 

conserved than non-interface surface residues, because interface conservation vs. 

surface patches conservation was not significant in their patch analysis, evolutionary 

conservation as the only factor to predict interface residues is not sufficient. Burgoyne 

and Jackson (2006) took a different approach when analyzing interface conservation for 

97 transient complexes. They divide a protein’s surface into smaller sizes (clefts) and 

observed that interface conservation is not striking compared to surface residue clefts 
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when ranking clefts by conservation. Other studies also found that when compared to 

surface patches, interface patches did not display a significant conservation signal and 

that evolutionary conservation should be used with other features of protein interfaces 

and not by itself to predict interfaces (Capra and Singh, 2007; Reddy and Kaznessis, 

2005). Mintseris and Weng (2005a) took a more cautious approach when analyzing 

interface conservation versus the rest of the surface, arguing that the estimation of 

conservation of non-interface surface residues is not an accurate estimate but an upper 

bound limit as the surface residues may contain other interface residues (i.e. crypto-

interface residues). While acknowledging the possibility of crypto-interface residues 

being present in the rest of the protein’s surface, Mintseris and Weng (2005a) compare 

conservation between core, interface, and surface/interface (i.e. non-interface surface) 

residues for 91 transient and 41 obligate complexes and show that the interface 

conservation is higher (statistically significant) than the surface/potential crypto-

interface mixture but lower than core residues (Mintseris and Weng, 2005a). Bordner 

and Abagyan (2005), who show that interface residues are more conserved than the rest 

of the surface of proteins in the bound form for 518 homodimers, 157 hetero-dimers, 

and 862 multimers, also highlight the presence of crypto-interface residues classed as 

non-interface surface and their diminishing effect on prediction accuracy of transient 

heterodimer complexes. Choi, et al. (2009) in their study argued that multiple interfaces 

should be taken into account when comparing interface conservation vs. the rest of the 

surface. Their dataset consisted of 3844 protein complexes (bound form only) from 

which they isolated a total of 2646 interfaces (2344 and 302, obligate and transient 

interfaces, respectively). They demonstrated that interface conservation vs. the rest of 

the surface is improved and statistically significant when multiple interfaces are 

considered. This was more apparent for proteins where the rest of the surface was more 

conserved than a single interface and taking other multiple interfaces into account; the 

multiple interfaces were more conserved than the rest of the surface. 

 

 

Some studies have much larger dataset sizes than the one used in this study and there 

are two reasons for this. Firstly, some datasets are composed of bound complexes only 

(Choi et al., 2009; Bordner and Abagyan, 2005), whereas the analysis of interface 

residue versus ROS residue conservation performed in this work was based on unbound 

proteins, which is important as these proteins will be used for testing of the 
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PROTIN_ID method prediction performance, simulating a realistic setting to predict 

interface residues (see section 5.6). Furthermore, the unbound proteins used in this work 

will be later applied in data-driven docking using PROTIN_ID’s theoretical restraints to 

drive docking (see Chapter 7). Secondly, the dataset of this work is based on only intra-

species interacting proteins, reducing the number of complexes in comparison to the 

other dataset of Mintseris and Weng (2005a).  

 

 

To recap, previous studies compared average interface residue conservation (single or 

multiple interface models) versus the average rest of the surface residue conservation 

and showed that indeed the interface residues are more conserved, which is statistically 

significant. This is in agreement with the current analysis performed for interface and 

ROS residues in this work (see section 5.4.2). Therefore, there is a possibility to extract 

this signal by prediction. In some studies, they have implemented predefined protein 

surface patches of average interface size (Caffrey et al, 2004) or smaller sizes (clefts) 

(Burgoyne and Jackson, 2006) and did not yield an interface conservation signal that 

was significant when compared to other surface patches or clefts using conservation as a 

predictive factor. One question to ask is: are interface residues equally conserved 

relative to each other? If not, then only those residues exhibiting conservation may be 

used in interface prediction. If they are identified first, creating patches should then 

follow, which are examined to determine if a patch conservation signal is significant. 

Therefore, an approach should be tailored based on this observation. Herein, this is 

achieved through extracting a specific number of surface residues sorted by 

conservation, which are then clustered (i.e. structural window) according to proximity 

in three-dimensional space to create patches composed of clusters of conserved 

residues. This approach is implemented in the PROTIN_ID interface predictor and will 

be examined below.  

 

 

 

 

 



 
 

120 

5.6 Interface residues’ conservation relative to one another 
 

An analysis of interface residue conservation at different levels of conservation was 

carried out. Figure 5-2 shows the interface residue conservation of the entire dataset of 

interface residues compared to all ROS residues’ conservation at different levels of 

conservation windows sorted from high to low conservation (calculated using the 

Jensen-Shannon divergence score, see section 3.4.6). Holistically, interface residues on 

average are more conserved than ROS residues. But it can be observed that individual 

interface residue conservation is spread out from low conservation to high conservation 

with other surface residues occupying the same window ranges. This non-homogeneity 

in interface residue conservation agrees with an earlier finding, indicating the 

differences of evolutionary pressure on interface residues (Guharoy and Chakrabarti, 

2005). Relating this data to the core-rim interface model (see section 1.4.4), core 

residues are more conserved than rim residues (Guharoy and Chakrabarti, 2005). This 

implicitly indicates that conserved residues are also localized near to each other under 

the assumption they are core residues, according to the core-rim model.  

 

 

It can also be seen that there are highly conserved ROS residues, which may be part of 

small molecule binding sites or other multiple interfaces. As such, if the goal is to 

retrieve all residues for the interface of interest directly, this may be hampered by a 

likely increase in the presence of conserved ROS residues (i.e. crypto-interfaces 

residues), which may influence patch analysis. In the context of generating theoretical 

(conservation) restraints in protein-protein docking, conserved ROS residues are not 

important for docking of two proteins since they play no role in the interaction of the 

proteins of interest, and if included, may have the undesirable effect of misdirecting 

data-driven docking sampling, producing incorrect binding poses in the final docked 

models (see section 1.6.1.1). Therefore these residues’ presence should be minimized in 

a final interface prediction, while maximizing the presence of the number of residues of 

the interface of interest to ensure sufficient data is present to drive docking. 
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Figure 5-2: Histogram distributions of all interface residues (red) compared to rest of 

the surface residues (ROS, green) of the dataset, according to different conservation 

windows (calculations were performed using the Jensen-Shannon divergence score). 

Low and high conservation are 0 and 1, respectively. Holistically, interface residues on 

average are more conserved than rest of the surface residues. It can be seen that 

interface residues are spread out at different conservation windows, indicating non-

homogeneity of conservation. This is the same for the rest of the surface residues. 

Attempting to predict all interface residues will increase background noise from the 

ROS residues. The ROS residues may be highly conserved because they are small 

molecule binding sites or crypto-interface residues. 
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5.7 Use of clustering to improve prediction of interface residues 
 

Since interface residues differ in conservation, it is hypothesized that high ranking 

surface residues (sorted by conservation) will be comprised of ‘N’ conserved interface 

residues that are in close proximity in three-dimensional space (i.e. cluster of conserved 

residues) when visualized on a protein’s surface. This means that if the top-N conserved 

surface residues are extracted, some of those residues may be residues of the interface 

of interest. Therefore, it may be possible to identify such residues since they could be in 

close proximity to each other through spatial clustering, which may also eliminate 

isolated residues to increase interface prediction reliability. An alternative to extracting 

top-N residues sorted by conservation is to use an absolute binary conservation cut-off 

and select residues above this cut-off; however, this approach was found to introduce 

many ROS residues, which may decrease prediction reliability through the increase of 

ROS residues in clusters. This is supported in a recent study, which has indicated that 

taking top-N residues instead of using absolute score cutoffs improves interface 

prediction reliability (de Vries and Bonvin, 2011a).  

 

 

To test this hypothesis of taking top-N residues, the PROTIN_ID method was used to 

generate clusters of top-20 extracted surface residues sorted by conservation for all 

unbound proteins of the dataset (see Chapter 4 for description of PROTIN_ID). The 

top-20 residues extracted is equal to the average size of the (unbound) interface (see 

table 5-2). As stated earlier, the use of unbound proteins is necessary to ensure a 

realistic setting, especially for later use of theoretical restraints to drive docking (see 

Chapter 7). If bound proteins were used in this analysis, interface residues may possibly 

be in closer proximity because of bound pose conformational changes, introducing bias 

and may artificially enhance the effect of spatial clustering (see section 1.9.2). Indeed, a 

recent study suggested that using bound proteins for training resulted in better 

performance of methods in general when compared to using unbound proteins in 

training (de Vries and Bonvin, 2011a).  

 

 

Starting with a seed residue from the Top-20 residues, a cluster was systematically 

increased in size to examine the extent of interface residues (True positives, TPs) that 
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cluster and to minimize the presence of ROS residues (False positives, FPs) in each 

unbound protein’s final cluster (see section 3.5). More than one cluster of varying size 

may be generated for a single protein and clusters were ranked according to the cluster 

size first (i.e. number of residues in a cluster) and then average residue conservation of a 

cluster if two or more clusters were equal in size to re-rank them. The top ranked cluster 

is taken as the final interface prediction. In order to examine the effectiveness of 

clustering on the dataset as a whole, the average TPs (Interface residues, 20) and FPs 

(ROS residues, 120) of the entire dataset (see table 5-2) are needed for comparison to 

the average cluster generated by PROTIN_ID for the entire dataset. This average cluster 

size generated by PROTIN_ID was statistically analyzed by performance measures to 

examine the effect of clustering (see section 3.5). Table 5-4 displays the average cluster 

sizes when extracting the top-20 surface residues and clustering them at incremental 

cut-offs (from 4 - 8 Å) with the statistical analysis of each cluster. On average, when the 

top-20 surface residues are extracted, about 7 interface and 13 ROS residues are 

extracted. The next step is to maximize the ratio of TP:FP such that it is better than the 

random ratio of TP:FP (Kufareva, et al, 2007).  

 

Random TP to FP ratio is derived from the average interface size (20.31) compared to 

the average ROS size (119.99) fractions’ of the total surface (Table 5-2). Therefore the 

minimum (normalized) ratio is one interface residue to six ROS residues. If 100 

residues are sampled from N population of surface residues (i.e. 17,256), then it is 

expected that 14.5 residues are interface residues and the remaining 85.5 are ROS 

residues. The TP (specificity) and FP fractions of random prediction for interface and 

ROS residues are approximately 14.5% and 85.5%, respectively. It can be seen that as 

the clusters are grown more TPs are included as are FPs in the growing cluster. To 

analyze the significance of each grown cluster, the TP fraction (specificity) and FP 

fractions are computed. The TP fraction quantifies the fraction of correctly predicted 

TPs in a cluster as it is grown by 1 Å (see equation 3.5.2). Also, the FP fraction 

computes the fraction of FPs present in a cluster (see equation 3.5.3). It can be seen that 

all TP fractions for the differing radial cut-offs are greater than random (14.5%) with an 

average fraction of 43.6%. This is also the same for the average FP fraction of 56.4% 

being smaller than 85.5%. This indicates that, for example, for 4.42 interface residues at 

the cluster radial cut-off of 7 Å an equivalent of 5.76 FP residues are clustered. This 

value is lower than the random value of 23.61 FP residues for every 4 TP residues.  
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Table 5-4: The extraction of the top-20 conserved surface residues by PROTIN_ID. The top-20 residues contain about 7 interface residues (true 

positives) with the remaining 13 residues as the rest of the surface (false positives). Clustering residues at increasing distance cut-offs increases 

the TP count. The FP count is also increased but minimized, compared to the minimum ratio of TPs to FPs (2:12), when selecting 14 surface 

residues at random. Clustering demonstrates that a TP signal can be exploited at improved ratios when comparing the TP and FP counts. TP and 

FP fractions indicate the cluster TP and FP percentages. TP and FP rates indicate how much actual TPs and FPs are present from the pool of TPs 

(20) and FPs (120) (table 5-3). Accuracy reports how successfully correct TPs are predicted in the cluster and successfully correct FPs have not 

been predicted in the cluster from the total 120 ROS residues. The F-measure and MCC measure increase as more TP residues are clustered; 

indicating that the effect of clustering is better than selecting the same number of residues of a cluster at random, where random is 0 for both 

measures. The average cluster conservation indicates that the clusters are conserved.   

  Radial 
cut-off 

(Å) 

Extracted 
interface 

TP 
count 

FP 
count 

Cluster 
size 

(TP+FP) 

TP fraction 
(Specificity) 

FP 
fraction 

TP rate 
(Sensitivity) 

FP 
rate Accuracy 

F-
measure MCCa 

CS 
average 

4 6.72 2.02 2.37 4.39 0.46 0.54 0.1 0.02 0.85 0.16 0.16 0.71 

5 6.72 2.27 2.91 5.18 0.44 0.56 0.11 0.02 0.85 0.18 0.16 0.71 

6 6.72 3.44 4.46 7.89 0.44 0.56 0.17 0.04 0.85 0.25 0.2 0.7 

7 6.72 4.42 5.76 10.19 0.43 0.57 0.22 0.05 0.85 0.29 0.23 0.7 

8 6.72 5.15 7.47 12.62 0.41 0.59 0.25 0.06 0.84 0.31 0.24 0.7 
 

a MCC = Matthews correlation coefficient 
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Figure 5-3 displays the TP and FP counts for the top-20 most conserved residues when 

beginning clustering from 3 - 23 Å and creating clusters at 1 Å increments until all 20 

surface residues are clustered in the final cluster at 23 Å. The clusters are compared to 

what is expected at random and it is shown that clustering achieves better TP retrieval 

than random. Furthermore, the TP and FP average counts are shown for the entire 

dataset when the top-N conserved residues are extracted, starting from 2 – 20 residues 

and incrementing by one residue each time. Each absolute residue extraction values are 

taken as the final prediction without applying spatial clustering of the residues. When 

compared to the spatial clustering approach, it can be seen that clustering minimizes the 

FP count unlike the conservation-only extraction approach, improving prediction 

reliability (i.e. TP fraction), with the best clustering cutoff at 7 Å that is furthest away 

from the conservation-only data. If all top-20 residues are clustered or conservation-

only extraction is performed, they are still better than random, however, this introduces 

more FPs, which when used in data-drive docking studies may result in incorrect 

docking solutions because of sampling in the wrong area of interest. This may be 

caused if some residues are on different ‘sides’ of a protein. This is where clustering is 

most useful in removing such lone residues through FP reduction (see Figure 4-6 and 

section 2.3). 

 

Both the TP and FP rate refer to the number of interface/ROS residues present in a 

patch out of the total observed interface/ROS residues (see equations 3.5.4 and 3.5.5). It 

can be seen that TP rate increases as cluster size is grown and more TP residues are 

incorporated in the cluster, ranging from 10% - 25% of the observed number of average 

interface residues (i.e. 20.31 interface residues). Because the aim is to retrieve the 

highest conserved interface residues since it was shown that interface residues are non-

homogeneous in conservation (see section 5.6), and attempting to retrieve them all 

would increase the number of FPs in a cluster (see Figure 5-2), it can be seen that the 

spatial clustering approach reduces the fraction of FPs in a cluster, which is reflected in 

the FP rates from 4-8 Å. These values range from 2 - 6% of the observed number of FPs 

(i.e. 119.99). 
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Figure 5-3: Clustering of the top-20 most conserved surface residues extracted for all 

proteins of the dataset. The average interface (True positives TP) and ROS (False 

positives FP) residues in the extracted Top-20 residues for all proteins are about 7 and 

13, respectively. Clustering (black) is initiated with a 3Å radial cut-off and incremented 

by 1 Å at a time to form a new cluster. All extracted TPs and FPs are clustered at 23 Å. 

Clusters are compared to the top-N conserved residue extraction, starting from 2 – 20 

residues, incrementing by one residue each time (green). Absolute residue extraction 

values are taken as the final prediction without the application of clustering. Both 

approaches are compared to random prediction (red). It can be seen that the effect of 

clustering improves the retrieval of TPs compared to random prediction and minimizes 

the effect of FPs when compared to conservation-only extraction, making it a useful 

approach for generating theoretical restraints for data-driven docking.  
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The accuracy measure quantifies the proportion of TPs and TNs (True negatives) 

correctly predicted (see equation 3.5.1) (Xue et al, 2011a). It can be seen that the 

accuracy is stable at all clustering cutoffs with an average value of 85% for the clusters. 

The accuracy measure’s value should be taken as an approximation of performance of 

the clustering as the accuracy measure assigns the same weight to both correct TPs and 

non-prediction of FPs, resulting in optimistically high values due to the biased ratio of 

interface to ROS residues (de Vries et al, 2008). The accuracy measure has been 

featured for completeness. The F-measure computes the harmonic mean of the TP 

fraction (specificity) and the TP rate (sensitivity) (Van Rijsbergen, 1979) (see equation 

3.5.6). A zero F-measure score indicates that no TPs are added to a cluster. It can be 

seen that the F-measure increases as the TP fraction and TP rate increase during 

clustering, thus signifying the presence of TPs in a cluster and highlighting the impact 

of the clustering approach for predicting interface residues. Because there is a skewed 

ratio of interface to ROS residues, a balanced evaluation is required for this imbalanced 

phenomenon and this is provided by the Matthews correlation coefficient (MCC) 

(Ezkurdia et al, 2009; Carugo, 2007; Baldi et al, 2000; Matthews, 1975) (see equation 

3.5.7). The MCC score for the random prediction of TPs is 0. It can be seen that MCC 

increases as a cluster is grown from 0.16 – 0.24, indicating that predicting interface 

residues is better than random prediction.  

 
It can be seen that prediction using the strategy of clustering conserved residues 

produces results better than random prediction. This is because not all interface residues 

are equally conserved, but those that are conserved are clustered. This observation is in 

agreement with previous studies. For example, Landgraf, et al. (2001) demonstrate the 

effect of clustering in predicting functional residues that are conserved. They analyzed a 

mixed dataset of protein-protein complexes (13 transient and 12 obligate complexes) 

and other protein-non-protein complexes; hence the approach they use is general-

purpose in the type of functional residue predicted. A study by Guharoy and 

Chakrabarti (2010) used larger datasets of transient proteins in their bound forms (204 

protein-protein complexes and Benchmark3.0), showing that conserved interface 

residues are clustered together (Hwang et al., 2008). They also demonstrate this for 

obligate interactions, using a separate dataset. In this chapter, a dataset of unbound, 

transient complexes was analyzed to identify clusters of conserved residues without the 

knowledge of bound pose conformational changes, and this is larger than the dataset 
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used by Landgraf, et al. (2001) (i.e. 13 transient complexes). This is important as it is 

necessary for later protein-protein docking of these unbound proteins using theoretical 

restraints to guide docking (see Chapter 7). Clustering has been applied to cluster 

around clusters. For example, Chung, et al. (2006) apply clustering in a support vector 

machine (see section 1.7.3.1) to eliminate lone residues from their final prediction of 

interface residues and also expand clustering around a minimum of three predicted 

interface residues (i.e. seed residues) to include other non-predicted residues around 

them. In essence, this approach uses spatial clustering to grow clusters of non-predicted 

residues around predicted residues. However, this strategy resulted in a marginal 

decrease in TP fraction and a marginal increase in TP rate after clustering when 

compared to before clustering. 

 

5.8 Conclusion 
 

Intra-species proteins evolve in the same organism and are thus subject to evolutionary 

pressure to maintain their interactions in the context of an important biological process. 

This hypothesis (actual hypothesis, Ha) was tested in this work through comparison of 

interface and ROS residue conservation, which is an important and debated topic. In 

this chapter, a dataset of intra-species interacting proteins was derived from 

Benchmark4.0 to examine this phenomenon (Hwang et al., 2010). Using intra-species 

interacting proteins, predictive interface features were applied to identify interface 

residues for training of the PROTIN_ID method (ex. solvent accessibility, conservation 

residue extraction, and spatial clustering), and this was examined in the context of 

whether interface residues are more conserved than ROS residues or not. It was 

observed that a 15% solvent accessibility cutoff to determine surface residues from core 

residues was suitable to identify interface residues, which had been identified using a 

distance-based definition, that were above the cutoff ( i.e. solvent accessible). There 

were some interface residues that were under this cutoff with low average solvent 

accessibilities. As such, lowering the 15% cutoff to extract those interface residues 

would be risky as it would introduce conserved core residues, which may mask surface 

interface residues’ conservation signals. This finding is important as it allows 

application of this cutoff (15% solvent accessibility) as the default cutoff in the 

PROTIN_ID method for extracting surface residues of unbound proteins for any future 

predictions. Ultimately, it was observed that interface residues are a minority of overall 
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surface residues (14.5%), allowing the comparison of interface and ROS residue 

conservation. 

 
Analyzing interface conservation and ROS conservation revealed that there exists an 

interface conservation signal that is statistically significant, supporting the actual 

hypothesis (Ha). When attempting to predict interface residues, other studies divided a 

protein’s surface into patches or clefts, and reported that conservation of interfaces is 

not significant by itself for prediction of interface residues (see section 5.5). It was 

shown that interface residues are non-homogenous in conservation and extracting the 

top-20 most conserved residues and clustering them using the PROTIN_ID method 

results in the best ranked cluster of predicted interface residues, which is better than 

random prediction. This was confirmed by the clustering performance measures, 

particularly the Matthews correlation coefficient. Compared to conservation-only 

extraction, the usefulness of clustering is in the reduction of ROS residues, improving 

prediction reliability. It was found that 7 Å clustering cutoff starting from a seed residue 

had the best reduction of ROS residues in the final cluster when compared to the 

conservation-only prediction approach. Based on these observations, the top-20 residues 

and 7 Å clustering cutoffs are included as final default values in the PROTIN_ID 

method.   

 
It was revealed in this work that an interface conservation signal exists in the statistical 

analysis of the dataset, which can be exploited to retrieve interface residues via spatial 

clustering. Based on this, parameterization of the PROTIN_ID method using interface 

residue predictive features to predict such residues was achieved. This allows the use of 

this method in performance benchmarking with other methods (see Chapter 6). In 

addition, the generation of theoretical restraints of the method is useful to utilize in 

data-driven docking to compare its performance to ab initio docking (see Chapter 7). 

Furthermore, this allows the combination of theoretical restraints with NMR data 

(chemical shift perturbation data, CSP, and residual dipolar couplings, RDCs) to 

examine where the CSP restraints overlap with the theoretical restraints in the data they 

provide, and where they provide non-overlapping data to boost the interface residue 

recall. In combination with RDC orientational restraints, this consensus-data can be 

useful to examine the improvement in docking performance compared to standard 

CSP/RDC-driven docking  (see Chapter 7). 
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Chapter 6 

 

Benchmarking of the PROTIN_ID Method 

 

6.1 Introduction 
 

Many interface predictors have been developed with differing features and aims (see 

section 1.8 and tables A-1 to A-3). This chapter examines the performance of the 

PROTein INterface IDentification predictor (PROTIN_ID, see Chapter 4) compared to 

the other recently published interface residue predictors Clusters of Conserved 

Residues-XP (CCRXP) (Ahmad et al, 2010) and WHat Information does Surface 

Conservation Yield? (WHISCY) (de Vries et al, 2006). The rationale to select these two 

methods for comparison was as follows. CCRXP is similar in design to PROTIN_ID 

and it also seeks to predict conserved residue clusters that are part of protein-protein 

interfaces, specifically hot spot residues (Ahmad et al, 2010). As such, both predictors 

have overlapping aims and it was for this reason that CCRXP was selected for 

benchmarking performance comparison with PROTIN_ID. WHISCY is primarily 

designed in generating docking restraints to be used in the HADDOCK docking 

method. This aim is similar to PROTIN_ID’s and it is for this reason that WHISCY has 

been selected for benchmarking. Metrics to measure the performance of each predictor 

have been implemented and the results have been analysed. In this analysis the dataset, 

interface definition, and performance metrics are standardized, thus allowing a 

meaningful comparison between the predictors. Such a comparison of PROTIN_ID with 

CCRXP and WHISCY is important as it highlights the strengths and weaknesses, which 

can assist in predictor development and their improvement (Aniba et al, 2010). Just 

comparing each predictors’ reported performance in the literature with PROTIN_ID’s 

performance can be misleading, since the predictors have been tested on different 

datasets, use different interface definitions, and use a limited number of performance 

metrics for self-evaluation (Ezkurdia et al, 2009). All predictors have been compared to 

each other using their default settings when using their own multiple sequence 

alignments (MSAs) (see section 3.7). Furthermore, since both PROTIN_ID and 

WHISCY accept external MSAs, both use the other predictor’s default MSA as input to 

examine their performance.  
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6.2 Description of CCRXP and WHISCY predictors 
 

In this section an overview of both WHISCY and CCRXP methods’ protocols will be 

discussed. Both methods utilize structural and sequence data to derive interface residue 

predictive features to be used in their predictions (see section 1.7.2). 

 

6.2.1 Overview of the WHISCY predictor 

 

The WHISCY predictor by default uses a HSSP multiple sequence alignment (MSA) as 

a basis to calculate the conservation of a query protein when its PDB file is inputted in 

the method. A HSSP alignment is created for each protein deposited in the PDB 

database, using sequence homologues, and an alignment is stored in the HSSP database 

(Dodge et al., 1998). WHISCY can also accept as input a user-provided multiple 

sequence alignment. A score derived from a Dayhoff matrix (Dayhoff et al, 1978) for 

each surface residue of the query protein is determined through pair-wise alignment of 

homologous sequences to the query sequence. This is performed while taking into 

consideration the sequence distance (i.e. divergence) of the hit from the query through a 

maximum likelihood tool. WHISCY also weights all hit sequences to eliminate bias 

introduced by redundant sequences (i.e. identical or overrepresented in a specific 

species) present in a HSSP alignment prior to calculating conservation. The sequence 

weight is determined by ranking all hit sequences by their distance and calculating the 

weight of each hit sequence as half its sequence distance difference from the next 

sequence ranked below it (de Vries et al., 2006). Next, each residue’s conservation score 

is changed to a p-value, which is divided by the residue’s interface propensity (de Vries 

et al, 2006). The p-value is then changed back to a conservation score. As such, residues 

more likely to be part of an interface are scored higher than those that are not. Using the 

query protein’s structure, mapped surface residues that form patches and those that are 

spread out on the query protein’s surface have their scores weighted according to 

distance from each other by a smoothing function. Closely proximal residues score 

higher than those that are not since interface residues are more likely to be clustered 

together (de Vries et al, 2006). Finally all scored surface residues are sorted by 

conservation and all residues above a conservation score cut-off are predicted as 
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interface residues. 

 

6.2.2 Overview of the CCRXP predictor 

 

The CCRXP predictor requires the PDB file of the query sequence and uses the query 

FASTA sequence extracted from the PDB file to perform a BLAST search against the 

UniRef90 database (Suzek et al, 2007; Altschul et al, 1990). The top 50 sequences from 

the BLAST report are retrieved from UniRef90 to generate an MSA using the ClustalW 

MSA program (Larkin et al, 2007). Following this, the MSA is then scored by the Sum-

of-pairs evolutionary conservation measure (see section 3.4.8) of the Scorecons server 

to calculate conservation (Valdar, 2002). This evolutionary conservation score takes into 

account sequence redundancy by weighting sequences. This is accomplished by 

computing the average genetic distance, which is the weighting factor, of a sequence to 

all other sequences (Valdar, 2002). The next step in CCRXP involves extracting all 

query residues above a conservation score cut-off and computing their geometric 

distances of their atoms from each other to generate clusters of conserved residues. All 

generated clusters are annotated by structural properties such as secondary structure 

composition, average solvent accessibility (via the DSSP program) and evolutionary 

conservation, and cluster size (Kabsch and Sander, 1983). Other properties like packing 

densities and dipole moments are also calculated for all clusters. 

 

The final clusters generated by CCRXP are not processed further to recommend which 

cluster is the final prediction. However, the CCRXP authors recommend that the 

important features to identify in the final output of the predictor are cluster size and high 

cluster conservation, and in their work, they demonstrate that functionally important 

residues (hotspots) were located in large clusters (Ahmad et al, 2010). Therefore the 

cluster sorting heuristic implemented in PROTIN_ID (see Chapter 4) has been applied 

to sort CCRXP clusters according to size and then by average conservation if two 

clusters are equal in size; the top-ranking cluster is selected as the final prediction. Since 

both predictors are similar in design and outcomes, this allows an appropriate 

comparison to be made between interface residue prediction performance of CCRXP 

and PROTIN_ID.  
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6.3 The selected test dataset for benchmarking 
 

In this study, the protein-protein complex datasets used by the authors of the WHISCY 

and CCRXP predictors were selected for performance analysis. The WHISCY dataset 

was derived from Benchmark versions 1.0 and 2.0 (Mintseris et al, 2005b; Chen et al., 

2003a). The CCRXP dataset was taken from a recent study (Tuncbag et al, 2009). Only 

intra-species protein complexes that consisted of two interacting chains were used for 

testing, following the criteria established in this work (see section 5.2). Overall, 26 

proteins (13 protein complexes) were used to compare all the predictors’ interface 

residue prediction performance. 

 

6.4 Comparison of interface predictions of the predictors on the test dataset 
 

The average number of interface residues (20.3), rest of surface (ROS) (107.4), and total 

surface residues (127.7) was determined from the proteins of the dataset (Table 6-1). 

The interface and ROS averages derived from all proteins of the dataset represent the 

random ratio of true positives (interface residues; TP) to false positives (ROS; FP) that a 

predictor is expected to surpass to predict better than random. The minimum 

(normalized) TP to FP ratio is 1.0 interface residue to 5.3 ROS residues. This indicates 

that if 100 surface residues were sampled randomly from the total population of surface 

residues, 15.9 will be interface residues while the rest are ROS residues (84.1). The TP 

(specificity) and FP fractions at random prediction are 15.9% and 84.1%, respectively. 

Naturally, the performance of any benchmarked predictor under consideration should be 

better than random prediction.  

 

It is also important to consider the prediction performance depending on the objectives a 

predictor is aiming for (de Vries and Bonvin, 2008). On the one hand, a predictor may 

be interested in only predicting a few number of interface residues while minimizing 

false positives in the final prediction. This would ensure a final prediction enriched in 

true positives (TPs). However, on the other hand, a predictor may aim to predict as 

many interface residues as feasible, which comes at the expense of introducing more 

false positives in the final prediction. A predictor that fulfils its designed goals does not 

necessarily mean that it produces high scores for all standard benchmark performance 
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metrics. This is because performance metrics, while greatly informative in their own 

right, are designed to highlight different aspects of predictor performance. A predictor 

may be rated low by one performance measure (ex. TP rate) designed for over 

prediction of TPs, while still fulfilling its aims that it is designed for, and be rated high 

by another performance measure (ex. TP fraction) that focuses on the integrity of the 

prediction (i.e. minimize FPs). Consequently the statistical measure to be used for 

performance assessment ultimately depends on the purpose a predictor is designed for 

and seeks to fulfil (de Vries and Bonvin, 2008). The PROTIN_ID predictor has been 

developed to generate protein-protein docking restraints. As such, it has been optimized 

to predict sufficient interface residues, while minimizing the number of false positives. 

Certainly it is possible to incorporate more interface residues in the final prediction in 

PROTIN_ID but this introduces more false positives, which may affect the generation 

of reliable protein complex models when the prediction data are used as restraints in 

protein-protein docking. In this light, the most appropriate performance measures when 

comparing PROTIN_ID to the other predictors are TP fraction (specificity), FP fraction, 

FP rate, and to some extent TP rate (sensitivity) (see section 3.5). The TP rate measures 

the amount of interface residues recalled from the total pool of observed interface 

residues for all proteins of the dataset. Therefore with PROTIN_ID it relates to the 

number of interface residues that can be predicted at a minimal expense of false 

positives (FPs). A predictor that seeks to maximize interface residues in its final 

prediction will aim for a high TP rate. Both TP fraction and TP rate of a method can be 

combined in one measure, the F-measure. A standard measure like Matthew’s 

correlation coefficient (MCC) while undoubtedly important, generally reports high 

values for predictors that favour over prediction (de Vries and Bonvin, 2008). A 

predictor like PROTIN_ID will achieve lower values if compared to a predictor 

designed for over prediction of TPs even if it produces perfect predictions (i.e. 100% TP 

fraction) while being assessed by these measures. All described measures are applied in 

this study for completeness (see section 3.5). 
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Table 6-1: The comparison of interface prediction performance using standard performance metrics is indicated for the PROTIN_ID, CCRXP, 

and WHISCY interface residue predictors when run at their default settings. The average interface, rest of surface (ROS), and total surface 

residues of the dataset and their standard deviations in parentheses are indicated. 

Predictor Interface ROS 
Surface 

Residues 

TP 

count 

FP 

count 

Total 

count 

(TP+FP) 

TP fraction 

(Specificity) 

FP 

fraction 

TP rate 

(Sensitivity) 

FP 

rate 
Accuracy 

F-

measure 
MCCa 

PROTIN_ID  4.42 5.69 10.12 0.44 0.56 0.22 0.05 0.83 0.29 0.22 

CCRXP 5.23 18.35 23.58 0.22 0.78 0.26 0.17 0.74 0.24 0.08 

WHISCY 

20.31 

(±6.96) 

107.38 

(±66.62) 

127.69 

(±69.23) 

5.27 7.50 12.77 0.41 0.59 0.26 0.07 0.82 0.32 0.23 

 

a MCC = Matthews correlation coefficient 
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6.4.1 Benchmarking the predictors using the TP and FP fractions  

 

The TP fraction results of the predictors for the entire dataset are shown in table 6-1 (see 

Tables A-6 to A-10 of the Appendix for individual proteins’ results). The PROTIN_ID, 

WHISCY, and CCRXP predictors achieve 44%, 41%, and 22% TP fractions, 

respectively. This measure is important to compare the integrity (i.e. minimization of 

FPs) of the final predictions for all predictors, if reliability of predictions is most 

essential especially when applied as restraints in protein-protein docking. As expected, 

all predictors’ TP fractions are greater than the random TP fraction (15.9%). This was 

also observed for the predictors’ FP fractions where they were all lower than the 84.1% 

random FP fraction. PROTIN_ID achieves a marginally better TP fraction when 

compared to WHISCY. This is because the TP/FP count difference on average between 

the methods is minor since both are designed to generate docking restraints and aim to 

generate a satisfactory number of TPs in the final prediction without over prediction in 

order to minimize the number of FPs (de Vries et al, 2006).  

 

Both methods’ TP fractions are significantly better than CCRXP’s TP fraction. The TP 

fraction of PROTIN_ID (and WHISCY) is two times better, which is relevant 

considering both predictors apply a similar approach for prediction. The reason why 

CCRXP has the lowest TP fraction is due to the average final prediction (23.58 

residues), which is higher than the average final predictions for the other predictors 

WHISCY (12.77) and PROTIN_ID (10.12). This suggests CCRXP favours over 

prediction. Out of these 23.58 residues, a higher number are FP residues (18.35). This 

increased CCRXP’s FP fraction (78%) and resulted in the lowest TP fraction. In contrast 

WHISCY, which generates 12.77 residues on average for a prediction, has a similar TP 

count (5.27) to CCRXP, but has a significantly lower FP count (7.50).  

 

6.4.2 Benchmarking the predictors using the TP and FP rates and accuracy measures 

 

Both CCRXP and WHISCY have the same TP rates of 26%, whereas PROTIN_ID has a 

lower value of 22% (see section 3.5.4). This difference in TP rates is marginal, as it is 

due to an approximately one interface residue difference between the average TP count 



 137 

of PROTIN_ID with the other predictors’ TP counts. PROTIN_ID has the lowest FP 

rate (5%), which is a marginal difference compared to WHISCY, because it has the 

lowest number of FPs from the total number of ROS residues (107.38) introduced in its 

final prediction. This analysis of the two measures depends on the design goals of a 

predictor. Both PROTIN_ID and WHISCY are designed for generating protein-protein 

docking restraints and aim to strike a suitable balance between TPs and FPs in their 

predictions. They produce similar results when comparing TP and FP rates, indicating 

that PROTIN_ID is as efficient and competitive as WHISCY.  

 

The CCRXP predictor also has a TP rate of 26% that is higher than PROTIN_ID’s 

(24%) and this is also due to an approximately one residue difference in their final TP 

counts. Interestingly, CCRXP’s over prediction has not resulted in a TP rate that is 

substantially higher than the rest of the predictors but it has only resulted in the highest 

FP rate (17%), which is 3.4 times more than PROTIN_ID’s FP rate (5%). Overall, 

PROTIN_ID and WHISCY achieve similar performance based on the TP and FP rate 

metrics since they overlap in their defined goals. In contrast, CCRXP incorporates more 

FPs in its prediction (i.e. FP rate) with a minor increase in TPs (i.e. TP rate), resulting in 

a decrease in prediction reliability.  

 

The PROTIN_ID, WHISCY, and CCRXP predictors’ interface prediction data were 

used to generate receiver operator characteristic (ROC) curves and their respective areas 

under the curves (AUC) at certain false positive rate (FPR) ranges (see table 6-2 and 

figure 6-1). This analysis examines the prediction performance of the predictors in an 

unbiased and independent manner. This is made possible as all prediction cut-offs, 

including the default predictor cut-off, are considered in this analysis, allowing the 

comparison of the performance of the predictors by their AUCs (via a standard AUC 

comparison statistical test and 95% CI analysis). The CCRXP interface predictor source 

code could not be obtained from its author. Therefore, all prediction cut-offs 

implemented in the CCRXP webserver version were used in this analysis. The 

relationship between the TP and FP rates of all predictors are compared to each other in 

ROC analysis (Fawcett, 2006). The objective of this comparison is to show the TP rate 

performance of a predictor while gauging its capability of reducing the FP rate (Figure 

6-1). An ideal situation would be when a predictor generated predictions where all 

interface residues were correctly predicted without any ROS residues incorporated in 
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the prediction. 

 

The AUC values (i.e. AUC1.0) for all predictors at an FPR of 1.0 are indicated in table 6-

2. WHISCY’s AUC (0.6864) is marginally higher than PROTIN_ID’s AUC (0.6828), 

however, this difference is not significant, as indicated by the p-value (0.8515). This 

result is supported by the 95% CI analysis, which shows that the 95% CI range extends 

from negative to positive values for the ∆AUC1.0 between these predictors (see table 6-2). 

Because the lower bound limit of the 95% CI is negative, this indicates that 

PROTIN_ID may also have a higher AUC than WHISCY, or that their AUCs’ difference 

is zero (∆AUC = 0), as it is also amongst the calculated 95% CI range. In addition, it can 

be seen that localized regions (FPRs 0.084-0.428, and 0.494-0.859) of the ROC curves 

for the PROTIN_ID and WHISCY predictors differ from one another (see figure 6-1 

and table 6-2). For these localized AUC comparisons, the differences were not 

significant (see table 6-2). This is also indicated in the 95% CI analysis, which follows 

the same outcome as the 95% CI analysis at an FPR of 1.0.  

 

In summary, the holistic and localized (FPR: 0.084-0.428) analyses for the AUCs 

suggest the absence of evidence to support the observation that WHISCY’s marginally 

better interface prediction performance is significantly better than PROTIN_ID’s 

performance on the same protein-protein complex dataset. This indicates that 

PROTIN_ID is as competitive and useful as the WHISCY predictor. 

 

Compared to CCRXP, both methods have higher AUC values than CCRXP (0.5151), 

which is closest to random prediction (0.5), and this difference is significant (p-value  

<0.0001). The 95% CI analyses for both predictors compared to CCRXP have lower 

bound limit values greater than zero (∆AUC = 0), eliminating the likelihood that 

CCRXP can perform better than PROTIN_ID or WHISCY. The decrease in prediction 

reliability of CCRXP is caused by the increase of FPs (over prediction) in its 

predictions, which has resulted in similar prediction reliability to a random interface 

predictor.  
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Table 6-2: Comparison of area under the curves (AUC) for the PROTIN_ID, WHISCY, 

and CCRXP interface predictors. AUCs for PROTIN_ID and WHISCY are compared at 

three FPR ranges (1.0, 0.084-0.428, and 0.494-0.859). Both interface predictors are 

compared to CCRXP at FPR1.0. The 95% Confidence Interval indicates the upper and 

lower bound range limits of AUC differences (∆AUC) for the FPR ranges. The AUC 

comparison statistical test P value indicates the probability that ∆AUC is statistically 

significant at the 5% significance level. 

Interface predictor PROTIN_ID WHISCY CCRXP 

AUC1.0 0.6828 0.6864 0.5151 

AUC0.084-0.428 0.1655 0.1829 N/A 

AUC0.494-0.859 0.3202 0.3072 N/A 

PROTIN_ID vs. 
WHISCY 

∆AUC P value 
(∆AUC) 

95% Confidence 
Interval (∆AUC) 

FPR1.0 0.0036 0.8515 -0.0342 - 0.0414 

FPR0.084-0.428 0.0174 0.1219 -0.0047 - 0.0395 

FPR0.494-0.859 0.0130 0.4181 -0.0185 - 0.0445 

∆AUC1.0 
P value 
(∆AUC) 

95% Confidence 
Interval (∆AUC) PROTIN_ID vs. CCRXP 

(FPR1.0) 
0.1677 <0.0001a 0.1296 - 0.2058 

∆AUC1.0 
P value 
(∆AUC) 

95% Confidence 
Interval (∆AUC) WHISCY vs. CCRXP 

(FPR1.0) 
0.1713 <0.0001 0.1332 - 0.2094 

 
a P value < 0.0001 indicates extreme significance. 
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Figure 6-1: ROC curves comparing the PROTIN_ID, WHISCY, and CCRXP protein 

interface predictors. The AUC1.0 values at an FPR range of 1.0 are shown for all 

interface predictors in parentheses. TP rate represents the recall of interface residues, 

while FP rate signifies the number of FP positives (ROS residues or noise) from the 

total number of observed ROS residues incorporated in the prediction of a predictor. An 

ideal predictor seeks to maximize TP rate and minimize FP rate. The intersecting red 

line (y = x) represents random prediction such that the TP rate equals the FP rate. Any 

curves above the random diagonal line represent prediction better than random, whereas 

curves below the line are considered predictions worse than random.  

 

 

 

The fraction of correctly predicted TPs and TNs as described by the accuracy measure 

(see section 3.5.1) is highest for PROTIN_ID (83%) followed by WHISCY (82%), and 

CCRXP (74%). As discussed earlier (see section 5.7), the accuracy weights both correct 

predictions of TPs and TNs equally and, due to the skewed ratio of interface to ROS 

residues, results in an optimistically high value. Even so, it can be seen that CCRXP’s 

accuracy is lower than the other predictors’ accuracies due to the increased number of 
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FPs incorporated in its predictions. PROTIN_ID and WHISCY perform similarly due to 

their reduced number of FPs both fulfilling their intended design goals of generating 

protein-protein docking restraints. 

 

6.4.3 Benchmarking the predictors using the F-measure and Matthews correlation 

coefficient 

 

The F-measure describes the harmonic mean by taking into account the TP fraction 

(specificity) and TP rate (sensitivity) measures, which are weighted equally, of a 

predictor (see section 3.5.6). The WHISCY predictor has a higher F-measure (0.32) 

when compared to PROTIN_ID (0.29) and this is mainly because of the 4% difference 

between PROTIN_ID and WHISCY’s TP rates, which is approximately one extra TP 

residue on average in WHISCY’s TP count. This has translated in a value that 

marginally boosted WHISCY’s F-measure compared to PROTIN_ID’s F-measure. The 

F-measure of CCRXP is the lowest at 0.24. This is due to the predictor having the 

lowest TP fraction, caused by an increase of FP residues in its final prediction, which 

has been the factor that has reduced this measure even though the predictor has the same 

TP rate as WHISCY.  

 

The final measure in this analysis is the Matthew’s correlation coefficient and it 

provides a holistic interpretation of the performance of the predictors when compared to 

the F-measure since it takes into account the true negative data (i.e. ROS residues not 

predicted as interface) and other components that make up the positive and negative 

classes of a confusion matrix (see section 3.5.7 and Table 3-1 of Chapter 3). It can be 

seen that overall PROTIN_ID has a similar MCC (0.22) to WHISCY (0.23). Their MCC 

difference is minor as both methods seek to minimize FPs in their predictions. In 

contrast, CCRXP has the lowest MCC of 0.08 and is closest to random prediction (i.e. 

0) due to a high number of FPs in its prediction. 
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6.5 The performance differences of the interface predictors on different 
complexes 

 

The general performance of the interface predictors at the dataset level has been 

described. Herein, the performances of the predictors will be examined at the individual 

protein complex level. For example, there were certain proteins where one predictor 

performed well on such cases (i.e. >0 MCC), whereas other predictors did not (i.e. ≤0 

MCC). There are eleven examples where this is the case (see appendix tables A6 to A-

8). For instance, there are five cases where both PROTIN_ID and CCRXP extracted 

correctly predicted interface residues (TPs), but generated unsuccessful predictions 

because the correctly predicted interface residues could not be clustered (1BRS 

(CCRXP), 7CEI (PROTIN_ID) receptor proteins and 1FIN (CCRXP), 1E6E (CCRXP), 

and 2PCC (both predictors) ligand proteins). The TP residues extracted for these 

proteins were further apart than the cluster radial distance cut-offs used by both 

predictors to cluster them together in the final cluster and possibly generate successful 

predictions, as defined by the MCC performance metric (i.e. >0 MCC). An example of 

this is 1BRS complex’s receptor protein, it was found that CCRXP extracted 7 TP 

residues that could not be clustered in one cluster and possibly lead to a successful 

interface prediction because the residues were not in close proximity to each other. A 

possible means to improve PROTIN_ID to deal with this scenario would be to select 

more than one cluster for its final prediction. To be effective and useful, such an 

implementation to improve PROTIN_ID would need to be tested via ROC analysis 

against the current top-ranking cluster implementation to ascertain if its AUC is 

significantly different.  

 

Two examples (1EWY receptor and 1FQ1 ligand proteins) specifically failed for 

CCRXP due to poor quality MSA alignment columns, resulting in low conservation 

scores for MSA columns of interface residues. This prevented such TP residues from 

being extracted by CCRXP. In other protein cases (1E6E receptor protein (both 

predictors) and 1SPB ligand protein (PROTIN_ID)), it was ascertained that there were 

better aligned ROS residue MSA columns compared to the MSA interface residue 

columns. For these proteins, this resulted in high ROS residue conservation scores by 

PROTIN_ID and CCRXP and caused their final predictions to contain a majority of 

ROS residues (CCRXP - 1E6E receptor protein and PROTIN_ID - 1SPB ligand protein) 
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or entirely ROS residues (PROTIN_ID - 1E6E receptor protein). For the 1FIN 

complex’s receptor protein, PROTIN_ID predicted a top ranked cluster of ROS 

residues. In the top-20 extracted surface residues for this example only three residues 

were TPs. Two TPs formed lone residue clusters and the remaining TP residue was part 

of a small two-residue cluster. Therefore, the few interface residues extracted by 

PROTIN_ID could not make a substantial impact on its prediction performance. Upon 

closer inspection of the 1FIN receptor protein’s MSA, it was revealed that the interface 

residue MSA columns were composed of different amino acids, increasing the residue 

diversity of such MSA columns. This resulted in low conservation scores as calculated 

by the Jensen-Shannon divergence score applied in PROTIN_ID. Because of this, a few 

interface residues were part of the top-20 extracted residues for this protein case.  

 

Regarding the WHISCY predictor, it was unsuccessful for 1BXI complex’s ligand 

protein (-0.15 MCC). The steps in which the final score is predicted in WHISCY are 

more than one, unlike the other predictors where a conservation score is directly applied 

to score MSA columns. The effects of these steps (ex. sequence distance calculation) are 

difficult to disentangle. For 1BXI complex’s ligand protein, it is possible that the 

interface residues did not predict with high WHISCY conservation scores simply 

because they did not appreciably differ in behaviour from the WHISCY evolutionary 

matrix used to predict them.  

 

Finally, in contrast to the unsuccessful examples mentioned above, the successful 

performances of PROTIN_ID, WHISCY, and CCRXP on the individual proteins of the 

dataset  (ex. 1WQ1 complex’s ligand protein) were due to generally well-aligned 

interface residue columns in their MSAs. This resulted in high conservation scores 

being computed for such interface residues and led to significant (i.e. >0 MCC) and 

successful predictions for these protein cases by these predictors. There were proteins 

where all the predictors were unsuccessful in predicting their interfaces (i.e. <0 MCC). 

This is because conserved alternative binding sites were being predicted for these 

proteins. 
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Although PROTIN_ID and WHISCY overall perform equally well, for individual 

protein cases it was seen that they do perform differently in successful predictions, or 

even both fail to predict certain protein cases of the dataset. Where PROTIN_ID is 

successful and WHISCY is not (and vice versa) or where both are not successful, it 

would prove useful to combine them to create a compound conservation score predictor. 

Both these predictors apply conservation scores that differ in computation of 

conservation based on the commonness (or prevalence) of a residue. For example, 

arginine is more frequently occurring than tryptophan. As such, columns of conserved 

arginine or tryptophan score differently using the WHISCY conservation score or the 

Jensen-Shannon divergence score applied in PROTIN_ID. PROTIN_ID would score the 

conserved tryptophan column higher than that of the arginine column, because it has a 

lower background frequency (i.e. less common), and regards it as more strikingly 

conserved (see section 3.4.5). WHISCY takes the opposite route and scores the arginine 

column higher simply because it has more substitutable amino acid alternatives based 

on physico-chemically property than a tryptophan. Therefore, a highly conserved MSA 

column of arginine residues suggests evolutionary constraint that does not tolerate even 

physico-chemical substitution to similar alternative residues (Valdar, 2002). Potential 

cases where an interface is composed of common and uncommon residues may prove to 

be more successfully predicted when WHISCY and PROTIN_ID are combined. 

 

In addition further improvements of both predictors would require addition of more 

interface predictive features and this would improve the prediction performance of both 

predictors for cases for which they already achieved success, and possibly for those 

where both produced unsuccessful predictions. Moreover, there are examples where 

both WHISCY and PROTIN_ID agree on the surface region of a protein such that their 

predictions overlap in terms of correctly predicted interface residues. For example, for 

the 1E6E ligand protein PROTIN_ID and WHISCY correctly predict 12 and 16 

interface residues. The 12 residues predicted by PROTIN_ID were predicted by 

WHISCY. In blind protein prediction scenarios, this form of prediction strategy would 

be useful to assign confidence to a protein surface region (or subset region) where both 

predictors agree in prediction. It suggests the predictors are likely correct in predicting 

the true interface when they agree than scenarios where they disagree.  
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6.5.1 The underlying factors that caused PROTIN_ID and CCRXP performance 

differences 

 

Based on the above results, it is important to determine the factor that contributed to an 

improved performance by PROTIN_ID compared to CCRXP. The main difference 

between both methods’ performance lies in the number of average FP residues in their 

final predictions. CCRXP incorporated more FPs, which was reflected in its 

performance evaluation, and this was examined further. Table 6-2 shows a comparison 

of the total number of residues predicted as interface residues by both predictors in their 

final predictions for all dataset proteins. CCRXP predicts more residues (613) than 

PROTIN_ID (263). When broken down into their respective actual TPs and FPs, 

CRRXP has 21 TPs more than PROTIN_ID, but this comes at the cost of 329 additional 

FPs.  

 

Table 6-2: The comparison of total TPs and FPs for all proteins of the dataset as 

predicted by the CCRXP and PROTIN_ID predictors when run at default settings. 

 

Class CCRXP PROTIN_ID 

True positives (TP) 136 115 

False positives (FP) 477 148 

Total 613 263 

 

 

The dissimilarity in FPs is due to the implementation of the residue extraction steps in 

both methods prior to the final clustering step. In CCRXP, conserved residues above an 

absolute binary conservation score cut-off are extracted prior to the final clustering step, 

whereas the PROTIN_ID predictor extracted the top-N (default 20) surface residues and 

then clustered them. Since CCRXP extracts all residues above a binary conservation 

score cut-off, this introduces many ROS residues in its predictions (see section 5.7). As 

such, many conserved ROS residues in close proximity to each other will be extracted 

and clustered, increasing cluster size as a result. As an example, the receptor protein of 

the 1GLA complex is composed of a total of 497 residues, and the prediction generated 

by CCRXP resulted in 39% of these residues (i.e. 194) clustered in the final prediction, 
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which were all FP residues. This indicates the impact of the binary conservation score-

based extraction step on prediction performance. Another example is the 1WQ1 

complex’s receptor protein for which CCRXP produced a prediction of 58 residues 

composed of 19 TPs and 38 FPs. In CCRXP, results like these bias the proportion of 

predicted residues in favour of FP residues even though TPs are predicted, resulting in 

decreased overall performance. For 1GLA’s protein, both PROTIN_ID and WHISCY 

also failed to predict any TPs but, as they extract fewer surface residues, they reduce the 

effect of noise introduced from conserved ROS residues. As a consequence, these failed 

results consisting of only FPs (PROTIN_ID 4 FPs, WHISCY 7 FPs) do not have the 

same impact on these methods’ overall performance as for CCRXP since they extract 

fewer FPs. The failure of these predictors on the 1GLA protein may be likely due to 

alternative binding sites, which exhibited a stronger conservation signal. For 1WQ1’s 

protein, PROTIN_ID (11 TPs from 16 total residues) and WHISCY (6 TPs from 9 total 

residues) produced fewer TPs than CCRXP, however, their predictions are more reliable 

due to fewer FPs in their predictions than CCRXP.  

 
In PROTIN_ID the stringent extraction cut-off reduces the number of ROS FPs in the 

overall final prediction (see section 5.7), which explains dissimilarity in performance 

between PROTIN_ID and CCRXP. 

 

6.5.2 Performance analysis of WHISCY and PROTIN_ID using their respective MSAs 

as input for each other 

 

The HSSP and UniRef90 alignments used by WHISCY and PROTIN_ID were 

reciprocated as input into each predictor. It was observed that the effect of this on 

prediction performance is more noticeable on PROTIN_ID than for WHISCY (table 6-

3). PROTIN_ID has a reduced TP count (3.69) and increased FP count (6.5) when HSSP 

alignments are used even though the size of the final prediction is approximately 10 

residues, which is the same as when the default UniRef90 alignments are used. This has 

caused a decrease in TP fraction and an increase in FP fraction compared to its default 

setup. Furthermore, this is evidenced in its TP and FP rates, which have decreased and 

increased, respectively. Finally, this has had a decreasing effect on the F- and MCC 

measures where both decrease, but a minor effect on the accuracy measure.  
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Table 6-3: The comparison of interface prediction performance is indicated for the 

PROTIN_ID-HSSP and WHISCY-UniRef90 interface predictors. The default MSAs for 

these two predictors is reciprocated as input into each other. 

Method TP 
count 

FP 
count 

 
Total 
count 

 

TP 
frac. 

FP 
frac. 

TP 
rate  

FP 
rate 

Acc.a F-
measure 

MCCb 

PROTIN_ID  3.69 6.5 10.19 0.36 0.64 0.18 0.06 0.82 0.24 0.16 

WHISCY 5.31 8.31 13.62 0.39 0.61 0.26 0.08 0.82 0.31 0.22 

a Acc. = Accuracy 
 

b MCC = Matthews correlation coefficient 

 

 

The WHISCY predictor’s performance was minor compared to its default setup. Only 

its FP count (8.31) has increased compared to its default setup’s FP count; there is a 

negligible difference between the TP counts. Even with the increase in FP count, the 

impact on the other performance measures for WHISCY is minor with slight differences 

in TP/FP fractions and the remaining other measures have slight differences also. This 

suggests this drop in PROTIN_ID’s performance scores stems from the alignments 

used. As such, the structure of HSSP alignments (ex. presence of sequence fragments) 

may be the differentiating factor in prediction performance for PROTIN_ID. To explore 

this, a closer inspection of the UniRef90 and HSSP alignments revealed that in most 

alignments sequence fragments, causing the presence of gapped columnar regions, and 

duplicate and overrepresented sequences were more apparent than in the UniRef90-

based alignments. This indicates that HSSP alignments require further editing to be 

improved. This shift in alignment quality has had a greater impact on overall 

PROTIN_ID performance than on WHISCY’s performance. With HSSP alignments, 

PROTIN_ID is not able to use its built-in features designed to improve the structure of 

an alignment such as the fraction of coverage measure, sequence redundancy filter, and 

the sequence editing heuristic prior to conservation analysis, which has impacted on its 

performance (see section 4.3.1). Since PROTIN_ID uses a conservation score (default is 
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Jensen-Shannon divergence, see section 3.4.6) that calculates evolutionary conservation 

based on the analysis of a column, the presence of artificial (i.e. not biologically 

important) gaps from sequence fragments introduces gap penalties during column-based 

conservation analysis, or in cases where a column has greater than 30% gaps, its 

conservation analysis is not performed since it is likely not functionally significant 

(Capra and Singh, 2007). This has affected the final conservation score of an alignment 

column(s) and influenced final predictions. Furthermore, since a conservation window 

is applied (see section 3.4.1) that takes into account the background conservation with 

respect to the current column analysed the presence of such gaps bearing no biological 

significance would also affect the final conservation score of the column(s) of interest in 

PROTIN_ID.  

 

A comparison of total TP/FP count for PROTIN_ID when UniRef90 and HSSP 

alignments were used as input showed that there were 96 and 115 TPs for HSSP and 

UniRef90 alignments, respectively (Table 6-4). There were 19 residues fewer in the 

HSSP TP count and 21 extra FP residues where PROTIN_ID ‘s FP count increased from 

148 to 169 FP residues when HSSP alignments were used. With regards to WHISCY, its 

performance did not dip significantly when using UniRef90 alignments. WHISCY was 

more robust in performance, which may be due to its design in scoring conservation. As 

mentioned previously (see section 6.2.1), WHISCY defines pair-wise alignments of hit 

sequences to the query sequence and calculates the conservation for residue pairs 

individually for each sequence, taking into account each hit’s sequence distance from 

the query, which is done independently from other residue pairs Also, background 

conservation in the form of residue smoothing is implemented after alignment analysis 

where it is reliant on the proximity of residues to each other in the three dimensional 

structure of a query protein (unlike the conservation windows). All pairwise scores for a 

given residue of the query sequence determined are summed to determine the final score 

for that query residue’s position. This is different in comparison to the columnar 

conservation score used in PROTIN_ID. Therefore, its means of calculating 

conservation may not be sensitive to alignment issues in HSSP alignments as 

PROTIN_ID was. This allowed WHISCY to retain robustness even with alignments 

where there were bad regions present (de Vries et al, 2006). In addition, WHISCY used 

all of its built-in functionality to ensure maximal analysis and optimal predictions 

according to its design for any alignment. These overall aspects of WHISCY allowed it 
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to derive relevant prediction data from both HSSP and UniRef90 MSAs and produce 

similar prediction performance overall, while avoiding the errors present in the HSSP 

alignments. This is not the case for PROTIN_ID and highlights the need to implement 

the use of all of its features even when an external alignment is used (future work). For 

example, for the ligand protein of the 1FIN complex, the difference in general in the 

UniRef90 and HSSP MSAs is that the latter has short sequence fragments where N or C 

termini are missing. PROTIN_ID generated 100% TP fraction (5 of 5 TPs) for the 

former MSA, whilst for the latter MSA it produced only FPs in its prediction (0 of 5 

TPs), indicating the impact of alignment quality on prediction because of the presence 

of artificial gaps in the HSSP MSA resulting in the enforcement of gap penalties in 

PROTIN_ID. In contrast, WHISCY produced the same number of TPs for both MSAs, 

but had more FPs in its final prediction using the former MSA (12 of 25 HSSP, 12 of 31 

UniRef90). Where both HSSP and UniRef90 MSAs were of similar quality, 

PROTIN_ID produced identical results (7 of 8 TPs) as illustrated for the 1BXI 

complex’s ligand protein. Unlike the previous MSA, no sequence fragments were 

present in the same abundance, allowing PROTIN_ID to produce the same result. For 

the same protein, using either HSSP or UniRef90 MSAs, WHISCY did not predict a 

result (i.e. all surface residues were under WHISCY score cut-off - UniRef90) or 

produced only FPs (0 of 3 TPs - HSSP). 

 

This analysis of PROTIN_ID with external alignments highlights the strengths of 

PROTIN_ID’s current default protocol where it generates refined UniRef90 MSAs 

based on new features to implicitly improve MSAs. Applying the same concepts to 

improve alignments as implemented in the default PROTIN_ID protocol to HSSP 

alignments should allow PROTIN_ID to display a similar performance as its default 

setting that was found to perform as competitively to WHISCY. The findings indicate 

the importance of benchmarking in its ability to highlight areas for further improvement 

in future development of PROTIN_ID. 
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Table 6-4: The comparison of total TPs and FPs for all proteins of the dataset as 

predicted by PROTIN_ID using the UniRef90 (default) and HSSP alignments as input.  

Class PROTIN_ID-UniRef90 PROTIN_ID-HSSP 

True positives (TP) 115 96 

False positives (FP) 148 169 

Total 263 265 

 

 

6.6 Conclusion 
 

The comparison of PROTIN_ID was performed with other predictors (CCRXP and 

WHISCY) for evaluating its performance and highlighting areas for further 

development. Performance comparison of the methods was conducted using a unified 

dataset, interface definition, and standard performance metrics. The selected methods 

for benchmarking overlapped with PROTIN_ID in design or aim. CCRXP was selected 

for comparison as it is similar in design and also predicts clusters of conserved residues. 

Like PROTIN_ID, WHISCY is designed to generate theoretical restraints to be used in 

data-driven docking and was selected for comparison to PROTIN_ID for this reason. 

 

From a user’s viewpoint, the reliability of a method’s predictions in the context of the 

aim that a method seeks to fulfil is an important factor. This influences the choice of the 

method by the user. The two performance measures important in this framework are the 

TP fraction (specificity) and TP rate (sensitivity). According to the TP fraction metric, 

PROTIN_ID (0.44) performs marginally better than WHISCY (0.41), and both methods 

perform significantly better than CCRXP (0.22). This is because CCRXP incorporates 

more false positive residues (on average) in its predictions than the other methods. 

Based on the TP rate metric, CCRXP (0.26) and WHISCY (0.26) perform marginally 

better than PROTIN_ID (0.22). Other performance evaluation metrics employed in this 

study (ex. accuracy, F-measure, MCC, and ROC curve analysis with AUC comparisons) 

also indicated that the performances of PROTIN_ID and WHISCY are not significantly 

different. At the individual protein case level, performance differed such that one could 

aim for an enhanced predictive performance based on a compound conservation score 

approach. Furthermore, additional interface predictive features would be useful to 
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enhance their predictive capabilities. Finally, a useful prediction approach would be the 

assignment of high confidence to blind predictions when both predictors overlap in 

prediction. This has a potential to improve prediction success in such scenarios.   

 

The performance evaluation metrics (including ROC curve analysis with AUC 

comparisons) scored CCRXP lower due to over prediction. It has the highest FP rate 

score (0.17) compared to WHISCY (0.07) and PROTIN_ID (0.05). This is due to 

CCRXP’s binary conservation score cut-off extraction step, which extracted many ROS 

residues, causing more to be clustered and integrated in its prediction results. This 

resulted in PROTIN_ID and WHISCY being significantly better than CCRXP. Besides 

the performance difference between them, PROTIN_ID has additional user-friendly 

features that distinguish it from CCRXP, which are convenient to a user interested in the 

generation of clusters of conserved residues for later application in data-driven docking 

(see Chapter 4 and section 4.4). 

 

In comparison to WHISCY, PROTIN_ID provides access to the latest sequence data 

from the UniRef90 database in order to construct up-to-date MSAs for predicting 

protein interface residues. PROTIN_ID’s local sequence database is updated with each 

new release (biweekly) of UniRef90 (Suzek et al., 2007). In contrast, WHISCY relies 

on the HSSP database for alignments, which is not updated regularly in its entirety. 

Instead only HSSP files that have not been updated for more than 6 months are updated 

(Joosten et al, 2010). Therefore, HSSP alignments that are out-of-date (<6 months old) 

are present in the database. WHISCY in its default design utilizes available PDB 

structures and their HSSP MSAs to generate predictions. As a consequence, newly 

deposited protein structures in the PDB do not immediately have a HSSP alignment 

generated for it. In terms of generating theoretical restraints for docking, retrieval of the 

latest sequence data is essential for a user. Of course, it is possible to supply a third-

party alignment to WHISCY but this will involve gathering homologous sequences 

manually that are needed for alignment with a query sequence of interest to create an 

MSA, and this MSA may require manual editing afterwards. These steps are already 

automated in PROTIN_ID in a user-friendly manner (see Chapter 4). With PROTIN_ID 

it is possible to generate an alignment for newly released structures and even homology 

models automatically. Homology models can be used in WHISCY, but only by 

manually creating custom MSAs. PROTIN_ID’s default performance compared to it 
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using HSSP alignments revealed that PROTIN_ID’s performance decreases. This is due 

to the poorer alignment quality of HSSP MSAs. The future development of 

PROTIN_ID will include processing any third-party MSAs in the same manner as it 

generates refined UniRef90 alignments in its current protocol. This is to avoid 

diminishment of prediction performance caused by any errors in third-party MSAs. 

 
In this work, it was shown that PROTIN_ID is as competitive to WHISCY and CCRXP, 

and useful for generation of theoretical restraints to be applied in data-driven docking 

(see Chapter 7). 
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Chapter 7 

 

The docking of protein-protein complexes using theoretical and 

experimental restraints 

 

7.1 Introduction 

 

This chapter examines the effect of using theoretical restraints (i.e. interface 

predictions) generated by the newly developed PROTIN_ID algorithm (see Chapter 4) 

to guide protein-protein docking of binary interacting proteins. HADDOCK is designed 

to accept theoretical and experimental restraints to guide docking of two or more 

proteins. This feature is ideal for docking using theoretical restraints. The performance 

of data-driven docking using theoretical restraints was compared to ab initio docking 

also performed in HADDOCK. The aim is to test the performance (i.e. number of 

correct models produced) of guided docking compared to ab initio docking when using 

theoretical data. The ultimate goal is using residual dipolar couplings (RDCs) and 

chemical shift perturbation data (CSP), both obtained from NMR experiments, in 

combination with theoretical data to drive docking. Both CSP and theoretical data seek 

to map the interface of two interacting proteins, suggesting complementary to each 

other when combined in a protein-protein docking context, especially if some interface 

residues do not display significant CSP signals (van Dijk, et al., 2005a). Therefore, the 

extent of overlap or lack thereof between these types of data was examined in the 

context of interface coverage. RDCs provide orientational information between two 

interacting proteins and their usefulness has been demonstrated in HADDOCK.  

 

It is possible to generate biologically useful protein-protein complex models when using 

RDCs and CSPs in docking on their own (van Dijk, et al., 2005a). The addition of 

theoretical restraints to CSP and RDC data in docking was examined to determine if 

there is an improvement over CSP/RDC data docking. Different combinations of data-

driven docking were performed and compared to each other to demonstrate the 

effectiveness of using all forms of restraints on docking performance. To the best of my 

knowledge, this study is the first to examine the impact on docking performance of 



 
 

154 

using of theoretical, CSP, and RDC docking restraints in combination. 

 

7.2 Datasets used for protein-protein docking 

 

The protein-protein docking dataset1 used is derived from Benchmark 4.0 (see sections 

3.2 and 3.8). A protein complex was included in the docking dataset1 when both of its 

unbound protein chains predicted ≥ 10% TP rate (see section 3.5.4) when analysed by 

PROTIN_ID, irrespective of the number of false positives present in the final prediction 

(i.e. theoretical restraints). This was to ensure that a significant number of true positives 

composed the theoretical restraints to be used to drive docking with HADDOCK, 

according to the MCC measure (see section 3.5.7). A total of 24 complexes out of the 

intra-species dataset (61 complexes) fulfilled this criterion (≥ 10% TP rate) and were 

included in the docking dataset1. All protein chains under < 10% TP rate are assumed to 

lack sufficient theoretical restraints data to generate successful results in data-driven 

docking. They were not included in the docking dataset1 for testing. However, they are 

included in the final statistical analysis, which summarizes the performance for data-

driven docking (i.e. conservative estimate taking into account these ‘unsuccessful’ 

cases) and is compared to ab initio docking. As such, the whole dataset of complexes 

taken from Benchamark4.0 (see section 3.2) is accounted for both data-driven and ab 

initio docking.  

 

A second dataset2 was also created comprising protein complexes that had RDC and 

CSP data associated with them. The protein complexes were identified following a 

keyword-based search strategy (see section 3.9). Briefly, protein complexes were 

identified when they were linked with terms representing RDCs and CSPs. It was found 

that two protein complexes of the docking dataset1 (1GGR and 1J6T) satisfied this 

condition. A further two protein complexes not part of Benchmark 4.0 were found 

(1OO9 and 2L0T) that satisfied this criterion. It was ascertained that RDC data for the 

2L0T protein was incorrect and hence is not included in the analysis. 2L0T was still 

included along with 1OO9 in the protein-protein docking dataset1 as both provide useful 

theoretical restraints data (i.e. ≥ TP 10% rate for both unbound chains) to examine. This 

also increased the main docking dataset1 to 26 complexes. Overall, dataset2 is composed 

of three complexes for testing. 
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7.3 Data-driven and ab initio docking with HADDOCK  

 

The theoretical restraints generated by PROTIN_ID for each unbound protein per 

complex were put into HADDOCK as ambiguous interaction restraints (see section 

3.8). A corresponding ab initio run (control) for each complex using the same unbound 

proteins was performed using center of mass restraints. The final water refined solutions 

for the data-driven and ab initio runs were analysed and compared to each other in 

terms of the number of correct models and their energy ranking. Although the sampling 

process is set to produce 1000 models (default) in HADDOCK, it has been recently 

recommended that for ab initio runs a minimum of 5000 solutions should be produced 

(de Vries et al., 2010). However, for data-driven runs, using data generated by 

bioinformatics interface predictors, 1000 solutions are satisfactory (de Vries et al., 

2010). For computational efficiency, all runs were performed using default settings. 

However, to test for bias, docking runs (ab initio and data-driven) where performed for 

three test cases setting the number of solutions generated at the rigid-body docking 

stage to 5000 (see section 7.3.3).  

 

7.3.1 Analysis of correct models using CAPRI and Fraction of native contacts criteria 

 

For all docking runs, two criteria were followed to evaluate the predicted protein 

complexes. The first is the CAPRI criteria (Critical Assessment of Prediction of 

Interactions), which combines (using Boolean expressions) different features of 

assessing a predicted model’s geometric fit to a known experimental model (Lensink et 

al., 2007; Méndez et al., 2003; Wodak et al., 2003). This is achieved by determining the 

fraction of native contacts (Fnat) between complex proteins, the orientation of a ligand 

protein of a predicted complex with its counterpart of a known complex (L-rmsd), and 

the fit between the interface regions of predicted and known complexes (I-rmsd) (see 

section 3.8.2). Using CAPRI criteria, a correct model can be classified into one of three 

groupings (acceptable, medium, and high) depending on the similarity of the correctly 

docked model to the known experimentally determined complex. The second evaluation 

criterion uses solely the Fnat measure and has been applied in previous work (Bourquard 
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et al., 2011). This is a less stringent evaluation and as such all correctly docked models 

(≥ 0.1 Fnat) are regarded as being near-native and grouped into one of three classes 

(acceptable, medium, and high) based on the number of native contacts detected (see 

section 3.8.2). The Fnat criterion is directly related to theoretical restraints used in 

docking, provided that the restraints have interface residues to guide docking in the 

right direction. Therefore, the more interface residues in the theoretical restraints, the 

better the chance of improving Fnat. In some scenarios, predicted models generated have 

actual native contacts, but may be classified as incorrect in CAPRI due to global 

orientational errors of their complex components. Such near-native models may still 

provide biologically valuable information of interest to the scientific community and 

disregarding them can be wasteful (Bourquard et al., 2011). This provides a justification 

in using this less stringent evaluation for analysis given that a possibility exists of 

biologically relevant near-native complexes being produced during docking, but are 

classified as incorrect by CAPRI analysis. Both evaluation criteria assess a docking 

algorithm’s sampling performance, allowing the examination of the effect of addition of 

theoretical restraints in HADDOCK and comparing this with unrestrained (ab initio) 

docking. The objective is to determine if there are significantly more correct models in 

the data-driven runs compared to ab initio runs (actual hypothesis, Ha). It may be 

possible that both run types produce no significant difference in correct models (null 

hypothesis, Ho). 

 

7.3.2 General comparison of data-driven versus ab initio docking with HADDOCK 

 

The results of data-driven versus ab initio docking for CAPRI evaluation are shown in 

table 7-1. For CAPRI analysis, there are 17 and 9 complexes from the dataset1 that 

produced correct models for the data-driven and ab initio docking runs in the final 200 

refined solutions, respectively. Of the 17 cases for data-driven docking, 10 protein 

complexes generated a statistically significant higher number of correct models, which 

represents 38% of the total dataset1 and 59% of the 17 complexes. In contrast, only one 

protein complex (1Z0K) for the ab initio runs produced significantly better results out 

of the 9 cases, which is 4% of the docking dataset1 and 11% of the 9 complexes. This is 

the only ab initio result that differed from the actual hypothesis where it produced a 

significant number of correct models than the data-driven run. In the 1Z0K data-driven 
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run, the restraints produced 92 models with Fnats greater than the CAPRI threshold (0.1 

Fnat). These models’ proteins are in the wrong orientation and have high I- and L-rmsds, 

which are beyond the CAPRI minimum thresholds. This prevented the data-driven run 

from being more successful than the ab initio run. However, there are more cases that 

are successful for the data-driven (38%) runs than ab initio runs (4%) of the docking 

dataset1. The dataset1 represents a sample of the whole intra-species complexes derived 

from Benchmark4.0 dataset. As some cases were excluded, a conservative estimate that 

accounts for those excluded cases that would likely produce no meaningful results (i.e. 

< 10% TP rate), and thus is a summary statistic, indicates that 16% cases are successful 

for data-driven runs when compared to the same cases in the ab initio runs. For the ab 

initio runs of dataset1, they represent a sample of the 63 complexes and the results based 

on dataset1 are extrapolated for all complexes and scaled accordingly to calculate the 

summary statistic, resulting in 4% cases that are successful when compared to the same 

cases in the data-driven runs. For the remaining cases of the whole dataset based on the 

combined summary statistics, both data-driven and ab initio docking did not produce a 

significant difference in correct models (80%). Overall, the success rate of data-driven 

docking (16%) is four times higher than ab initio docking (4%) based on CAPRI 

criteria. This supports the actual hypothesis indicating that data-driven using theoretical 

restraints generates significantly more correct models compared to ab initio docking of 

the entire dataset. 

 

For dataset1, only acceptable and medium quality models were generated for both types 

of docking; no high models were produced. Medium quality models occurred in 50% of 

protein complexes displaying statistical significance for data-driven docking runs, 

whereas the ab initio run which produced only 1 medium model was not statistically 

significant run (1SYX). For both run types the first correct model was ranked within the 

top 50 generated models for 7 out of 10 data-driven runs and 1 out of 9 ab initio runs 

that showed statistical significance. Comparing runs for which a significant number of 

correct models were generated to runs producing non-significant results, the first best-

ranked correct model (lowest energy correct model) is not ranked lower for statistically 

significant runs than non-significant runs.  
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Table 7-1: CAPRI analysis of data-driven vs. ab initio docking. The number of correct models out of 200 is shown. Correct models are grouped 
as either acceptable (*) or medium (**). No high models (***) were produced. The best ranked correct model and its CAPRI grouping is 
indicated. The P values < 0.05 (Fisher exact test) are indicated. The TP fractions and TP rates for receptor (R) and ligand (L) proteins of the 
theoretical restraints used for the data-driven runs are indicated. 

Ab initio Data Ab initio Data TP fraction TP rate 
Complex 

Ab 
initio 

Data 
** * ** * 

Best 
rank 

Best 
rank 

P value 
R L R L 

2HRK 0 33 0 0 8 25 - 4** <0.0001 0.55 0.88 0.43 0.47 
1XD3 2 33 0 2 1 32 124* 19* <0.0001 0.69 0.60 0.50 0.45 
1O2F 1 30 0 1 0 30 15* 6* <0.0001 0.33 0.61 0.15 0.85 
1WQ1 0 24 0 0 0 24 - 6* <0.0001 0.69 1 0.41 0.31 
1OO9 0 32 0 0 2 30 - 59* <0.0001 0.75 0.62 0.50 0.40 
2L0T 1 22 0 1 7 15 115* 14* <0.0001 0.70 0.67 0.64 0.63 
3CPH 0 21 0 0 0 21 - 1* <0.0001 0.60 0.71 0.50 0.67 
2OOB 2 20 0 2 18 2 66* 79** <0.0001 0.33 0.47 0.63 0.67 
2O3B 0 9 0 0 0 9 - 32* 0.0036 0.63 0.50 0.24 0.44 
1EWY 0 7 0 0 0 7 - 22* 0.0148 0.40 0.30 0.22 0.19 
1Z5Y 0 4 0 0 0 4 - 18* 0.1231 0.71 0.44 0.36 0.25 
2J7P 0 3 0 0 0 3 - 34* 0.1231 0.50 0.30 0.12 0.11 
1JK9 0 4 0 0 0 4 - 114* 0.1231 0.76 0.67 0.57 0.22 
1P9D 0 3 0 0 0 3 - 65* 0.2481 0.72 0.76 0.72 0.65 
2NZ8 0 2 0 0 0 2 - 36* 0.4987 0.60 0.83 0.27 0.29 
1J6T 2 1 0 2 0 1 113* 76* 1 0.43 0.64 0.18 0.69 
1Z0K 8 1 0 8 0 1 13* 112* 0.0036 0.86 0.45 0.27 0.56 
1GGR 1 0 0 1 0 0 41* - 1 0.33 0.64 0.11 0.60 
1SYX 2 0 1 1 0 0 1** - 0.4987 0.33 0.45 0.17 0.64 
1UR6 1 0 0 1 0 0 21* - 1 0.40 0.40 0.27 0.21 
2J0T 0 1 0 0 0 1 - 175* 1 0.78 0.62 0.33 0.57 

1GRN 0 0 0 0 0 0 - - 1 0.40 0.82 0.17 0.43 
1BKD 0 0 0 0 0 0 - - 1 0.67 1 0.19 0.19 
2OT3 0 0 0 0 0 0 - - 1 0.75 1 0.26 0.19 
1FQ1 0 0 0 0 0 0 - - 1 0.29 0.64 0.13 0.37 
1F6M 0 0 0 0 0 0 - - 1 0.83 0.60 0.23 0.41 
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Based on Fnat evaluation, the number of cases that produced correct models for both run 

types increases (Table 7-2). This is because of the less stringent evaluation. This is 

observed in the number of correct models (NOCs) produced for both types of runs. 25 

out of 26 test cases produced correct models when theoretical restraints were used. For 

ab initio docking, 17 complexes produced correct models. As expected, a greater 

number of test cases produced correct models than with CAPRI evaluation. This is also 

reflected in the number of statistically significant cases, which have increased to 18 

cases (69% of dataset1 and 72% of the 25 complexes). No ab initio runs produced 

statistically significant runs, including 1Z0K, which was successful under CAPRI 

criteria. This is because the analysis to determine significance or not is a comparison of 

the correct models produced of both run types. Based on Fnat, the data-driven 1Z0K run 

produced 92 correct models to the 1Z0K ab initio run’s 15, which was the reason for 

this. There was little increase in near-native models (7) to supplement the 8 CAPRI 

correct models generated by the 1Z0K ab initio run. This is precisely due to the absence 

of restraints to guide docking. Some (eight) runs that were not significant under CAPRI 

evaluation, however, were under Fnat evaluation (ex. 1GRN), signifying that the 

theoretical restraints used are having their intended effect in driving docking and 

producing a significant enrichment of near-native models. They were unsuccessful in 

CAPRI because of orientational errors based on L-rmsd and I-rmsd used in CAPRI.  

 
Like with docking evaluated by CAPRI criteria, summary statistics were calculated for 

both run types based on the Fnat measure. A conservative estimate for data-driven runs 

indicates that 29% of cases are successful when compared to the same cases in the ab 

initio runs. The ab initio docking did not produce cases that were successful compared 

to data-driven docking on dataset1. When extrapolated (based on results of dataset1) to 

represent all 63 complexes, the summary statistic indicates 0% cases that are successful 

when compared to the same cases in the data-driven runs. This is because the analysis 

for significant results (for CAPRI or Fnat measures) is dependent on the NOCs produced 

by both run types that are compared to ascertain if significance exists. Only one case 

was successful under CAPRI criteria for ab initio docking (1ZOK, 8 correct models 

compared to one model in data-driven docking), but the same case did not a produce 

significant NOCs (15 for ab initio to 92 for data-driven docking). It is for this reason 

that 0% of ab initio cases produce no significant results when extrapolated to all 

complexes based on the Fnat criterion. Besides the significant cases, there are 71% 
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remaining cases of the whole dataset that do not produce a significant difference in 

correct models for both run types. Overall, the success rate of data-driven docking is 

better than ab initio docking based on the Fnat measure. This confirms the results shown 

using CAPRI criteria and supports the actual hypothesis such that theoretical data-

driven docking generates significantly more correct models vs. ab initio docking. 

 
More high, medium, and acceptable quality near-native models were generated for 

restraints-driven runs than their ab initio counterparts in dataset1. These near-native 

models were found in all significant runs of data-driven docking. 61% of the significant 

runs produced medium quality near-native models and only 17% of those runs had high 

models. Ranking of the first correct near-native model was within the top 50 for all 

significant runs (100%), which is an improvement over ranking under CAPRI 

evaluation, because of the less stringent criterion.  

 

7.3.3 Docking runs using 5000 rigid body models in HADDOCK 

 
Docking runs (ab initio and data-driven) were performed for three test cases (2L0T, 

1Z0K, and 1F6M) setting the number of solutions generated at the HADDOCK rigid-

body docking stage to 5000 to examine if an increase in models affects the results 

significantly. 2L0T and 1Z0K were selected because they produced significant numbers 

of models (under CAPRI criteria) for data-driven and ab initio runs using 1000 models 

(default), respectively. 1F6M was neutral since both run types failed to generate any 

correct models for it (under CAPRI criteria). For 1F6M, both run types did indeed not 

produce any correct models. The data-driven 1Z0K run produced one acceptable model 

and this is the same result as the default run (1000 models). An interesting result was 

the ab initio 1Z0K run, which did not produce any correct models according to CAPRI 

(or Fnat criteria). This was because all the top-200 refined models were incorrect. The 

2L0T run produced the opposite result in that the data-driven run produced more correct 

models (34), when compared to 22 correct models when default settings are run. 

However, the difference of 12 models is not significant (p-value = 0.1124). The ab initio 

2L0T run produced no correct models. In summary, raising the number of rigid-body 

structures to 5000 (from 1000) produced similar results in data-driven docking. In 

general, this is also the same for the ab initio runs, indicating that increasing the number 

of models to 5000 (from 1000) for HADDOCK did not affect the results significantly. 
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Table 7-2: Fnat analysis of data-driven vs. ab initio docking. The number of correct models (≥ 0.1 Fnat) out of 200 is shown. Correct models are 
grouped as either acceptable (*), medium (**), and high (***). The best ranked correct model and its Fnat grouping is indicated. The P values < 
0.05 (Fisher exact test) are indicated. The TP fractions and TP rates for receptor (R) and ligand (L) proteins of the theoretical restraints used for 
the data-driven runs are indicated. 

Ab initio Data 
Ab 

initio 
Data TP fraction TP rate 

Complex 
Ab 

initio 
Data 

*** ** * *** ** * 
Best 
rank 

Best 
rank 

P value 
R L R L 

2HRK 1 153 0 0 1 4 21 128 180* 1* <0.0001 0.55 0.88 0.43 0.47 
1XD3 8 119 0 1 7 0 7 112 12* 2* <0.0001 0.69 0.60 0.50 0.45 
1O2F 1 72 0 0 1 0 7 65 15* 6* <0.0001 0.33 0.61 0.15 0.85 
1WQ1 0 48 0 0 0 0 0 48 - 2* <0.0001 0.69 1 0.41 0.31 
1OO9 2 136 0 0 2 0 19 117 4* 5* <0.0001 0.75 0.62 0.50 0.40 
2L0T 2 119 0 0 2 6 16 97 83* 1* <0.0001 0.70 0.67 0.64 0.63 
3CPH 0 154 0 0 0 0 11 143 - 1** <0.0001 0.60 0.71 0.50 0.67 
2OOB 4 54 0 1 3 18 1 35 14* 3* <0.0001 0.33 0.47 0.63 0.67 
2O3B 4 101 0 0 4 0 8 93 3* 1* <0.0001 0.63 0.50 0.24 0.44 
1EWY 0 12 0 0 0 0 0 12 - 19* 0.0004 0.40 0.30 0.22 0.19 
1Z5Y 0 107 0 0 0 0 2 150 - 3* <0.0001 0.71 0.44 0.36 0.25 
2J7P 0 26 0 0 0 0 0 26 - 1* <0.0001 0.50 0.30 0.12 0.11 
1JK9 1 106 0 0 1 0 2 104 115* 3* <0.0001 0.76 0.67 0.57 0.22 
1P9D 0 63 0 0 0 0 3 60 - 2* <0.0001 0.72 0.76 0.72 0.65 
2NZ8 0 4 0 0 0 0 0 4 - 36* 0.1231 0.60 0.83 0.27 0.29 
1J6T 8 14 0 0 8 0 0 14 29* 12* 0.2726 0.43 0.64 0.18 0.69 
1Z0K 15 92 0 4 11 0 0 92 13** 1* <0.0001 0.86 0.45 0.27 0.56 
1GGR 4 10 0 1 3 0 0 10 18* 5* 0.1719 0.33 0.64 0.11 0.60 
1SYX 2 4 1 1 0 0 0 4 1*** 85* 0.6851 0.33 0.45 0.17 0.64 
1UR6 3 8 0 0 3 0 0 8 21* 43* 0.2201 0.40 0.40 0.27 0.21 
2J0T 1 149 0 0 1 0 0 149 15* 1* <0.0001 0.78 0.62 0.33 0.57 

1GRN 0 45 0 0 0 0 0 45 - 1* <0.0001 0.40 0.82 0.17 0.43 
1BKD 0 27 0 0 0 0 0 27 - 3* <0.0001 0.67 1 0.19 0.19 
2OT3 1 2 0 0 2 0 0 1 51* 3* 1 0.75 1 0.26 0.19 
1FQ1 0 1 0 0 0 0 0 1 - 23* 1 0.29 0.64 0.13 0.37 
1F6M 0 0 0 0 0 0 0 0 - - 1 0.83 0.60 0.23 0.41 
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7.3.4 Examination of protein type and protein docking difficulty of the docking dataset 

 
The docking dataset1 was examined in the context of protein-protein interaction type 

and docking difficulty as categorized in Benchmark 4.0 and their relation to the number 

significant cases producing correct models in the data-driven runs (Hwang et al., 2010; 

Hwang et al., 2008; Mintseris et al., 2005b; Chen et al., 2003a). The relevant protein-

protein interaction types of this study are enzymes/inhibitors or substrates, and ‘other’ 

interactions, whereas antibody/antigen interactions were excluded because of difficulty 

of generating theoretical restraints for them (see section 5.2). All protein complexes are 

classified according to docking difficulty based on structural changes during protein 

interaction (Hwang et al., 2010). The protein complexes included in the docking 

dataset1, which were not part of the original benchmark 4.0 (see sections 3.2 and 7.2), 

were classified according to the same criteria applied to generate Benchmark 4.0.  

 
Table 7-3 summarizes the percentage of statistically significant complexes for the 

protein interaction types under the different docking difficulty classes for the docking 

dataset. It can be seen that in general the percentage of statistically significant cases 

combined (i.e. Total) for both enzyme and ‘other’ interaction categories decreases as 

docking difficulty increases according to CAPRI or Fnat evaluation criteria. In addition, 

there is a clear improvement in the significance percentage in each docking difficulty 

category of the Fnat evaluation when compared to their CAPRI equivalents. For 

example, for the hard docking difficulty class of the ‘other’ proteins under CAPRI 

criteria, none of the protein complexes generated a statistically significant number of 

correct models, whereas in the Fnat evaluation for the same difficulty class there is a 

67% improvement. A similar type of improvement is also demonstrated for the 

combined difficulty classes of the ‘other’ protein complexes when evaluated by the Fnat 

criterion (76%) compared to CAPRI criteria (35%). Because of the disparity in the total 

number of enzymes and other protein complexes, the percentages of statistical 

significance differences are misleading when compared. However, a greater 

improvement in the increase in significance percentage from CAPRI to Fnat evaluation 

is observed for ‘other’ protein complexes than for the enzyme complexes. The inclusion 

of Fnat evaluation has demonstrated that the seemingly unsuccessful (not significant) 

docking cases of varying docking difficulties analysed by CAPRI criteria, especially the 

difficult class, are indeed successful and significant in that biologically meaningful 
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complexes can be produced. This can been seen in the combined totals of each docking 

difficulty class of both protein interaction types from CAPRI to Fnat evaluation. 

 
 

Table 7-3: The percentage of statistically significant enzyme (enzyme/inhibitor or 

substrate) and other complexes classed according to docking difficulty (rigid, medium, 

and hard) when analysed according to CAPRI and Fnat criteria in the docking dataset1. 

The number of significant protein complexes out of the total complexes is indicated in 

parentheses. N/A (not applicable) indicates the lack of medium docking difficulty cases 

in the docking dataset1 for the enzyme category.  

Type Enzyme Other Enzyme Other 

Difficulty CAPRI 
Total 

Fnat 
Total 

Rigid 40% (2/5) 60% (3/5) 50% (5/10) 60% (3/5) 100% (5/5) 80% (8/10) 

Medium N/A 33% (3/9) 33% (3/9) N/A 67% (6/9) 67% (6/9) 

Hard 50% (2/4) 0% (0/3) 29% (2/7) 50% (2/4) 67% (2/3) 57% (4/7) 

Total 44% (4/9) 35% (6/17) 38% (10/26) 56% (5/9) 76% (13/17) 69% (18/26) 

 

 

7.3.5 Comparison between protein docking’s production of correct models and 

theoretical restraints prediction quality 

 
The number of correct models (NOCs) produced by docking based on CAPRI and Fnat 

evaluation for each protein complex was compared to interface prediction quality as 

measured by TP fraction and TP rates (see sections 3.5.2 and 3.5.4) to determine their 

relationship with each other (see tables 7-1 and 7-2). Each protein complex had a single 

TP fraction and TP rate calculated by combining the data for its receptor and ligand 

protein components. The objective is to determine the extant of correlation existing 

between the NOCs and either protein complex TP fraction or TP rate to determine the 

magnitude of positive, negative, or lack of correlation between them at the protein 

complex level. Spearman’s rank correlation, which is a non-parametric analysis, was 

applied since it assumes no underlying probability distribution for the data (Motulsky, 

2007). This analysis determines whether an increase in TP fraction or TP rate of the 
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PROTIN_ID theoretical restraints used for docking influences the NOCs produced 

during docking. It may be that both interface prediction quality measures have no 

significant relationship with the NOCs, which is the null hypothesis (Ho). Table 7-4 

summarizes the results of this analysis. 

 

Table 7-4: The correlation between protein complex TP fraction and TP rate each 

compared with the number of correct models (NOCs) generated for the protein 

complexes of the dataset1. The 95% Confidence Interval (CI) shows the upper and 

lower bound range limits of the Spearman’s rank correlation coefficient (Spearman r). P 

values indicate the probabilities of the likelihood of a positive correlation relationship 

with the number of correct models produced and either TP fraction or TP rate. 

TP fraction and NOCs TP rate and NOCs Evaluation 

type Spearman 

r 
95% CI P value 

Spearman 

r 
95% CI P value 

CAPRI 0.16 -0.26 – 0.52 0.45 0.44 0.05 – 0.71 0.02a 

Fnat 0.32 -0.09 – 0.64 0.11 0.47 0.09 – 0.73 0.01a 

a P value (< 0.05) indicates statistical significance. 

 

It can be seen that for CAPRI and Fnat evaluation, the correlation coefficients produced 

for both TP fraction and rate association with the NOCs are positive values. The 

correlation coefficient values are higher for the TP rate than for the TP fraction in 

CAPRI and Fnat evaluation. To examine the significance of all the correlation coefficient 

values, the 95% confidence interval (CI), which quantifies the precision of the 

determined correlation coefficient, giving the 95% probability that a correlation 

coefficient value is within the calculated upper and lower bound limits, was calculated 

for both TP fraction and TP rate. Furthermore, the probability that NOCs and TP 

fraction or TP rates do not have any correlation and that positive correlation coefficient 

values observed occurred by chance is calculated by p values. Both CI and p value 

analyses are complementary. For TP fraction of CAPRI and Fnat evaluations, the CI 

ranges are from negative to positive values. Because the lower bound limits of the CI 

are negative values, this suggests that their association does not indicate a tendency of 

the NOCs and TP fraction to increase together. Also, the 0 correlation coefficient value, 

which represents no correlation, is within the calculated range of CI values. In addition, 
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both p values (CAPRI p = 0.45, and Fnat p = 0.11) support the CI data and indicate lack 

of statistical significance, suggesting the absence of evidence that the positive 

correlations are genuine, but due to chance. On the other hand, the TP rates in CAPRI 

and Fnat evaluation both have upper and lower bound limits of the CI that are positive 

values, excluding the possibility of no correlation (i.e. Spearman r = 0) and negative 

correlation. The CI analysis suggests a tendency for NOCs and TP rate to increase 

together and is unlikely due to chance, which is also supported by p values that are 

statistically significant. From the data, it appears TP rate has a more positive correlation 

than TP fraction on protein docking’s ability to generate NOCs. This suggests that 

theoretical restraints used in docking are more influential if they have a high TP rate. 

However, simply taking all the surface residues of two unbound proteins as theoretical 

restraints in docking would fulfil the criterion of having a high TP rate by generating 

100% TP rates. But such docking runs would sample the entire surfaces of both input 

proteins instead of localized surface regions thereby generating similar results as ab 

initio runs. It is possible that the generation of NOCs may more likely be a qualified 

combination of TP rate with a reduction in false positives as indicated by the TP 

fractions (table 7-1).  

 
In general, there are 18 protein complexes that have statistically significant NOCs and 

high TP rates and fractions when both statistically significant results of CAPRI and Fnat 

evaluation are pooled. For example, the protein complexes 1OO9 and 1P9D both have 

high TP rates and fractions for their unbound protein complex receptor (>50% TP rate 

and >70% TP fraction) and ligand (>40% TP rate and >60% TP fraction) proteins. 

1OO9 has high NOCs for both CAPRI (32) and Fnat (136) evaluation while 1P9D has 

high NOCs (63) for the Fnat criterion. Figure 7-1 shows the L-rmsd, I-rmsd, and Fnat for 

both 1OO9 and 1P9D protein complexes when data-driven and ab initio docking are 

compared. It can be seen that the effect of theoretical restraints localizes protein 

docking sampling to specific binding poses as shown by the clouds of models produced 

for Fnat, L-rmsd, and I-rmsd. In general, more than one distinct cloud is formed in data-

driven docking and this may be due to the manipulation of the restraints in HADDOCK 

where 50% of restraints are randomly removed during the initial rigid body docking 

stage in HADDOCK. This heuristic is performed to remove the presence of false 

positive residues. It may not always succeed in doing this and may remove more true 

positives, which may have contributed to the cloud of models (ex. L-rmsd and I-rmsd) 
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beyond the acceptable thresholds defined for correct models (see section 3.8). Also 

theoretical restraints (as ambiguous interaction restraints) do not provide orientational 

information of two input proteins, but localized sampling information (Dominguez et 

al., 2003). 

 
Consequently, the formation of different clouds is likely due to random restraint 

removal and orientational errors where one protein is rotated incorrectly with respect to 

its partner. Such orientational errors are captured by L-rmsd and I-rmsd measures in 

CAPRI evaluation. In comparison to data-driven runs, ab initio docking does not have 

any restrictions on docking sampling and, as can be seen, models produced are more 

dispersed as a consequence. For the Fnat, most ab initio models are localized at 0 Fnat, 

reflecting the greater surface area beyond the true interface of both input proteins that 

HADDOCK is sampling. This is also evident in both rmsd evaluations with a formation 

of a dispersed cloud, indicating as with Fnat, the non-specific effect of ab initio sampling 

(Figure 7-1).  

 
In terms of energy ranking, most data-driven models are lower in energy than the ones 

produced by ab initio docking. However, the HADDOCK score is not able to 

discriminate efficiently in ranking between correct and incorrect models produced 

through data-driven docking. At least one correct model is obtained in the top 200 final 

refined (out of 1000 rigid body models) HADDOCK solutions in the majority of cases, 

indicating the effectiveness of the HADDOCK score in selecting correct models from 

many incorrect ones. Nevertheless, the ideal goal would be to have such models 

consistently ranked as the best (i.e. lowest energy) such that the better quality correct 

models (ex. high or medium) would be ranked higher than those of lesser quality (ex. 

acceptable) and then followed by incorrect models. This has not been consistent in 

recent CAPRI evaluation of docking programs and scoring functions (Lensink et al. 

2010; Lensink et al., 2007). Reliable prediction of binding free energies using docking 

scoring functions is at its nascent stages (Fleishman et al., 2011; Melquiond et al., 2011; 

Kastritis and Bonvin, 2010). However, latest developments such as a recently released 

binding affinity benchmark, or the application of a docking (and by extension its 

scoring function) to distinguish true interacting proteins from non-interacting proteins 

will provide insights into the development and application of improved scoring 

functions (Kastritis et al., 2011; Wass et al., 2011b).  
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Figure 7-1: HADDOCK score versus Fnat, L-rmsd, and I-rmsd evaluators for data-driven (black) and ab initio (red) docked models generated for 

the 1OO9 and 1P9D complexes. All models are compared to experimentally solved 1OO9 and 1P9D complexes to derive the rmsds and Fnat. The 

combination of all three evaluators is what defines CAPRI criteria, whereas the evaluation of the presence of near-native models utilizes the Fnat 

criterion solely. It can be seen that the use of theoretical data to drive docking generates correct binding poses in comparison to ab initio docking. 



 
 

168 

 

It can be seen in Figure 7-1 that some incorrect models are ranked better (i.e. lower 

energy) than correct models. Even amongst the pool of correct models, their 

HADDOCK score ranking is varied. For instance, in the 1OO9 docking results the best 

ranking correct models (CAPRI or Fnat evaluation) are not the best in terms of binding 

pose quality (see tables 7-1 and 7-2). In Figure 7-2(A, B) the best-ranked 1OO9 correct 

(CAPRI) and ab initio models’ binding poses in relation to the known experimentally 

determined 1OO9 complex are compared. The Fnat, L-rmsd, and I-rmsd values are 0.29, 

7.1 Å, and 3.0 Å, respectively for the data-driven model, which is classified as 

acceptable under CAPRI criteria. The ab initio model in comparison has Fnat, L-rmsd, 

and I-rmsd values violating the evaluation criteria thresholds. This is illustrated by the 

ligand interface of the ab initio model being in the opposite direction of the true binding 

interface of the reference protein complex. Some near-native models classified as 

incorrect by CAPRI due to orientation errors in L-rmsd and I-rmsd may still provide 

biologically useful information. Figure 7-2(C) displays an example of a superimposed 

near-native model that does not satisfy CAPRI criteria (i.e. incorrect) compared with the 

known 1P9D protein complex and the best ranked ab initio model (Figure 7-2D). The 

near-native model produced by data-driven docking has 0.25 Fnat, whereas the ab initio 

model has none. It is considered incorrect due to orientational errors as measured by L-

rmsd and I-rmsd. In spite of this, the number of correct native contacts (i.e. interface 

resides with correct intermolecular interactions) predicted in this model provides a good 

starting point for further investigative research. 
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Figure 7-2: The comparison of the data-driven and ab initio models of 1OO9 (A & B) 

and 1P9D (C & D) with their experimentally determined protein complexes. The 

receptor proteins (green) of all models are superimposed on the receptor (green) of the 

experimental complex to illustrate the binding poses of the ligand proteins (yellow) of 

all models with respect to the ligand protein of the experimental complex (red). A) Best 

ranked data-driven docked model. B) Best ranked ab initio docked model. C) Near-

native docked model. D) ab initio docked model. 
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7.3.6 The failure of certain protein docking cases 

 

Only 8 protein complexes did not produce significant NOC for data-driven docking in 

relation to ab initio docking according to Fnat criteria. There are possible reasons for 

their failure. Firstly, there are examples for which a substantial number of near-native 

complexes were produced, but were not regarded as statistically significant due to a 

high number of near-natives complexes produced in their ab initio comparison runs that 

undercut their significance (ex. 1J6T, 1GGR, and 1UR6). Secondly, other protein 

complexes produced a few near-native models for both run types (2NZ8, 1SYX, 2OT3 

and 1FQ1) and hence were not statistically significant. Thirdly, only 1F6M produced no 

near-native models for data-driven and ab initio runs. A closer examination of the 

theoretical restraints data used for docking revealed that there are native contacts 

correctly predicted for both unbound receptor and ligand proteins. It was observed that 

136 of 200 models were produced with Fnat values spanning 0.017 – 0.089. To 

determine if acceptable or better models were not selected based on low energy scores 

in HADDOCK’s water refinement stage, the rigid-body stage’s models (1000) were 

examined. The same Fnat value range was found for 590 of 1000 models, excluding this 

possibility. The total possible true interfacial residue-residue pairs Fnat that can occur 

based on the theoretical restraints was determined to be 0.164, which is above the Fnat 

minimum threshold. In theory HADDOCK had minimum data to produce acceptable 

models based solely on the Fnat criterion, its failure is likely due to the small number of 

residue pairs derived from the theoretical restraints data combined with HADDOCK 

randomly removing some of those restraints. This may have resulted in the restraints not 

being sufficient for HADDOCK to effectively sample and predict correct models for the 

1F6M complex (see Figure 7-3).  
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Figure 7-3: Theoretical data mapped onto the surface of 1F6M complex protein and 

compared to the real 1F6M interface. The actual interface (red), true positive interface 

predictions (blue), and false positive interface predictions (green) are shown. 

HADDOCK was unsuccessful in predicting correct models for this complex because of 

a small number of possible native contact residue pairs (Fnat 0.164) derived from the 

prediction data combined with HADDOCK randomly removing some of those 

restraints. A) Thioredoxin reductase (receptor protein; PDB: 1CL0). B) Thioredoxin-1 

(ligand protein; PDB: 2TIR).  
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7.4 The use of experimental and theoretical data to improve protein-protein 

docking performance 

 

Theoretical data have been applied in protein-protein docking as a means to improve 

docking sampling and scoring of docked protein complex models using front- or back-

end approaches (see section 1.10). In this work, systematic front-end application of 

conservation data to drive docking has indicated that in general data-driven docking 

using theoretical restraints outperforms ab initio runs, generating statistically significant 

results. Likewise, the use of prediction data to re-rank docked models has demonstrated 

encouraging results in recent work (Huang and Schroeder, 2008). In addition, in a 

related approach re-ranking with structurally derived ‘conservation’ data of protein 

complexes of interest originating from their known homologous protein complex 

counterparts has been shown to be successful when compared to a docking approach’s 

ranking of models (Xue et al., 2011b). Relatedly using experimental data such as CSP 

and RDC data to drive protein docking for front-end docking application has been 

demonstrated successfully (van Dijk, et al., 2005a; Clore and Schwieters, 2003; 

Dominguez et al., 2003; McCoy and Wyss, 2002). Moreover, back-end application 

using CSP data solely or in combination with RDC data has achieved considerably 

effective ranking of docked models (Stratmann et al., 2011; Montalvao et al., 2008; 

Dobrodumov and Groenborn, 2003; Morelli et al., 2001). It is possible that theoretical 

and CSP data complement one another by mapping potential interface regions of two 

interacting proteins to aid protein docking algorithms in predicting intermolecular 

interactions of two partner proteins. Coupling their use with RDC orientational restraint 

data in protein docking simulations also allows the relative orientation of two protein 

partners with respect to each other to be enforced, decreasing orientational errors that 

may otherwise arise in there absence. Ultimately, the examination of whether it is 

possible to improve docking performance using consensus-data derived from 

experimental and theoretical sources to drive docking when compared to CSP/RDC-

driven docking is the target. The case studies described below represent the examination 

of consensus-data derived from the merger of CSP, RDC, and theoretical data in front-

end application to protein docking. 
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7.4.1 Application of RDCs, CSPs, and theoretical restraints for docking of the 1OO9 

protein complex 

 

1OO9 is a complex formed by the interaction of matrix metalloproteinase (MMP-3) and 

its partner known as tissue inhibitor of metalloproteinase (TIMP-1). MMP-3 is a zinc 

endopeptidase involved in extracellular matrix protein breakdown during 

embryogenesis and tissue regeneration (Arumugam and Van Doren, 2003a). MMP-3 is 

controlled by TIMP-1 and the interruption of this regulation results in, as an example, 

arthritis and cancer (Gomis-Rüth et al., 1997).  

 

CSP data obtained for both proteins were used as ambiguous interaction restraints 

(AIRs) for docking along with RDC data as described in section 3.9.1 (Arumugam et 

al., 2003b; Arumugam et al., 1998).  The mapping of the CSP and theoretical data on 

the MMP-3 and TIMP-1 protein surfaces is indicated in Figure 7-4(A, B). Furthermore, 

the TP fractions and TP rates for CSP, theoretical, and CSP/theoretical (i.e. consensus 

data) restraints for all docking runs performed are shown in Table 7-5. Treating the CSP 

data using standard performance metrics to evaluate interface predictors, allows a 

comparison between CSP and theoretical data to gauge their contributions in terms of 

true positive (i.e. interface residue) recall and precision. It must be highlighted that 

passive residues used with the CSP restraints were considered as CSP data even though 

they have insignificant CSPs but are in close proximity to active residues that have been 

identified as having significant CSPs (Dominguez et al., 2003). This is because passive 

residues are part of the CSP docking restraints and as such the TP fraction and TP rate 

analysis of the CSP data takes into account passive residues. In Figure 7-4 (A, B) it can 

be seen that there is overlap between the theoretical and CSP data for both proteins of 

the complex. This overlap includes active and passive residues of the CSP data. This 

indicates that experimentally identified (active) residues with significant CSPs are 

conserved. In addition, residues (passive) with less significant CSPs but are in close 

proximity to active residues are also conserved. Therefore, the knowledge of passive 

CSP residues’ conservation from theoretical data allows their “promotion” to active 

residues, which was done in the consensus-data driven runs (section 3.9.1). 
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Figure 7-4: CSP and theoretical data mapped onto the surfaces of 1OO9 (A & B), 1J6T 

(C & D), and 1GGR (E & F) complex proteins. Non-overlapping CSP (active and 

passive) and theoretical data are coloured red and blue, respectively. Theoretical data 

overlapping with CSP-active and CSP-passive are coloured magenta and green, 

respectively. A) MMP-3 B) TIMP-1 C) E2AMtl D) HPr E) E2AGlc F) HPr 
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Table 7-5: Comparison of CAPRI and Fnat analysis of consensus-data (ALL = CSPs, RDCs, and theoretical restraints) and experimental data-
driven docking (CSPs/RDCs restraints) for 1OO9, 1J6T, and 1GGR complexes. Various combinations of the theoretical and experimental data 
data-driven runs are included along with the ab initio runs for comparison. The number of correct models (NOCs) out of 200 is shown. They are 
grouped as acceptable (*), medium (**), or high (***). The best ranked correct model and its CAPRI or Fnat grouping is indicated. The statistical 
significance is indicated by bold NOCs values for data-driven runs vs. ab initio runs. An italicized ‘ALL’ docking run value indicates statistical 
significance when compared to CSPs/RDCs docking run. The TP fractions and TP rates of receptor (R) and ligand (L) proteins derived from the 
restraints used to drive docking are indicated for all runs.  

CAPRI  b Fnat TP fraction TP rate 
Complex 

NOCs *** ** * 
Best 
rank 

NOCs *** ** * 
Best 
rank 

R L R L 

1OO9               
Ab initio 0 0 0 0 - 2 0 0 2 4* - - - - 

TH 32 a 0 2 30 59* 136 0 19 117 5* 0.75 0.62 0.50 0.40 
CSPs 47 0 0 47 16* 106 0 5 101 4* 0.54 0.71 0.61 0.60 

CSPs/TH 35 0 0 35 4* 111 0 9 102 4* 0.54 0.67 0.65 0.70 
CSPs/RDCs 116 0 4 112 1* 140 0 43 97 1* 0.54 0.71 0.61 0.60 

ALL 157 0 7 150 2* 171 2 87 82 2* 0.54 0.67 0.65 0.70 
1J6T               

Ab initio 2 0 0 2 113* 8 0 0 8 29* - - - - 
TH 1 0 0 1 76* 14 0 0 14 12* 0.43 0.64 0.18 0.69 

CSPs 7 0 2 5 5** 142 2 4 136 1* 0.79 0.67 0.71 0.77 
CSPs/TH 35 0 25 10 3** 162 25 9 128 2* 0.67 0.61 0.76 0.85 

CSPs/RDCs 137 0 87 50 11** 143 22 74 47 5* 0.79 0.67 0.71 0.77 
ALL 168 0 83 85 1** 176 44 108 24 1*** 0.67 0.61 0.76 0.85 

1GGR               
Ab initio 1 0 0 1 41* 4 0 1 3 18* - - - - 

TH 0 0 0 0 - 10 0 0 10 5* 0.33 0.64 0.11 0.60 
CSPs 69 0 48 21 1** 161 36 29 96 1*** 0.79 0.68 0.65 0.87 

CSPs/TH 30 0 21 9 1** 158 18 4 136 1*** 0.65 0.58 0.65 0.93 
CSPs/RDCs 183 11 99 73 1** 185 77 76 32 1*** 0.79 0.68 0.65 0.87 

ALL 180 9 49 122 1*** 180 51 91 38 1*** 0.65 0.58 0.65 0.93 
a P value < 0.05 indicates statistical significance (Fisher exact test). 
b No *** models were found according to CAPRI criteria. 
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For MMP3 and TIMP-1, there are non-overlapping theoretical restraint residues that are 

part of the interface, indicating that theoretical restraints can provide additional true 

positives when included with CSP data in consensus-data docking. This is important to 

demonstrate because if all theoretical restraints overlap with CSP data and/or provide 

only non-overlapping false positive data they do not offer additionally relevant data for 

the protein docking sampling process. Consequently, the combination of theoretical 

restraints and CSP data results in an increase in TP rate to 0.70 and 0.65 for both ligand 

(TIMP-1) and receptor (MMP-3) proteins, respectively, suggesting their practical use 

with CSP data in consensus-data driven docking. This is a significant achievement 

considering that the CSP data have higher TP rates than the theoretical data, meaning 

that the experimental data identified higher numbers of interface residues than the 

theoretical data. The TP fractions for both proteins are decreased, which is not 

surprising, because of inclusion of false positives (i.e. ROS residues) caused from 

combining the two sets of data.  

 

As discussed earlier (section 7.3.5), TP rates have a higher correlation with NOCs than 

TP fractions provided that the TP fractions are not too low. In this case, the TP fractions 

of the consensus data are over 50% for ligand and receptor consensus restraints, which 

is high specificity. All data-driven runs produced a statistically significant number of 

correct models in comparison to the ab initio run for CAPRI and Fnat evaluation. 

Docking using theoretical (TH), CSP, and combining CSP/TH data (i.e. consensus-data) 

was implemented to examine docking performance minus orientational restraints in 

comparison with the runs using them (CSP/RDC and consensus-data/RDC). The NOCs 

are generally similar for the TH, CSP, and CSP/TH runs, according to CAPRI 

evaluation with differences that are not statistically significant. However, the use of 

RDCs increased the NOCs produced with the consensus-data/RDC (‘ALL’) run having 

a statistically significant result compared to the standard CSP/RDC run (Table 7-5). 

Furthermore, more models are converged and populate the first cluster for RDC 

incorporating runs than for the rest of the runs that do not use RDC data (Figure 7-5). 

The mean I-rmsd of the first cluster of the ‘ALL’ run is 3.4 Å (STDV of 0.85 Å), which 

is lower than the CSP/RDC run’s first cluster I-rmsd mean of 4.2 Å (STDV of 1.43 Å). 

The remaining runs have similar means for their first clusters to the CSP/RDC run (ex. 

CSP and CSP/TH runs) or the ‘ALL’ run (TH run). However, these runs have smaller 

clusters containing correct models. There are distant clusters with high I-rmsds and low 
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energies, and this is especially notable for data-driven runs that do not use RDC data. 

The reason these distant clusters have similar (or better) HADDOCK scores for some of 

their models than correct models of the first clusters is due to several charged patches 

on the MMP-3 and TIMP-1 proteins, preventing the HADDOCK score from 

discriminating between correct and incorrect models that may be different by, for 

example, 180° rotations of their ligand proteins from the correct models’ ligand 

proteins. And this may explain the absence of a clear overall positive linear correlation 

between energy and I-rmsd of correct and incorrect models in all 1OO9 runs.  

 

Chiefly, acceptable models are produced for all runs. The ‘ALL’ run has the highest 

number of medium models (7). The ranking of the first correct model for CAPRI 

evaluation improves when RDC data is used. Consensus data docking only generated 

one correct model in the top ten ranked docked models, whereas adding RDCs with 

consensus data produced 8 correct models in the top ten models. This is higher than 

standard CSP/RDC, which generated 6 correct models in the top ten models. Docking 

using TH or CSP restraints do not have ranked models in the top-ten HADDOCK score-

ranked models.  

 

As expected, the RDC incorporating CSP data-driven run shows that the application of 

orientational restraints for both 1OO9 partners clearly influences the NOCs generated in 

docking and ranking of correct models. This is particularly significant as CAPRI criteria 

take into account the L and I-rmsd for model assessment of orientational errors, 

showing that more models are satisfying the criteria hence the higher NOCs. The effect 

of using TH data with CSP and RDC restraints in providing additional true positives is 

pronounced as it boosts the NOCs and improves ranking of correct models even though 

multiple charged patches are present on both ligand and receptor proteins.  
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Figure 7-5: HADDOCK score versus I-rmsd for consensus-data (ALL = CSPs, RDCs, 
and theoretical restraints) and experimental data-driven docking (CSPs/RDCs restraints) 
for the 1OO9 complex. Various combinations of the theoretical and experimental data-
driven runs, including ab initio docking are included for comparison. All models are 
compared to the experimentally solved protein complex to derive the I-rmsd. Structural 
clusters are coloured differently. Ab initio models are not clustered due to diversity of 
poses, resulting in small structural clusters. Red points and crosses indicate the cluster 
means and standard deviations for the HADDOCK score and I-rmsds, respectively. 
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The Fnat evaluation of the runs indicates that the consensus data/RDC performs the best 

with statistically significant results when compared to the CSP/RDC run. The ‘ALL’ run 

is also better than the runs, which lack RDCs in docking. The TH, CSP, and CSP/TH 

runs amongst themselves show a greater difference in NOCs where the TH run 

generated the highest number of statistically significant NOCs than the CSP and 

CSP/TH runs based on the Fnat criterion. This is interesting considering that the TH 

run’s restraint data has the lowest TP rates for both ligand and receptor proteins than the 

other runs. To investigate this further, the rigid-body stage models (1000) were 

examined to ascertain the NOCs. These were found to be similar in number for the runs 

with differences that were not significant (TH 228, CSP 235, and CSP/TH 242 NOCs). 

Thus, the TH run was successful in the Fnat evaluation because the HADDOCK score 

ranked more NOCs in the top-200 models for it than the other runs. In terms of model 

quality, RDC-less data-driven runs produced more acceptable (*) models with less 

medium (**) models compared with the RDC-implementing runs that enrich both 

acceptable and medium categories. The ‘ALL’ run produced the most medium quality 

models and the only high quality models (2), underscoring the effect of using 

consensus-data/RDC to improve docking performance. Because the Fnat criterion is less 

stringent in comparison to CAPRI criteria, the inclusion of more correct near-native 

models has an impact on the ranking of the first correct near-native model. For all runs, 

the first correct model (*) is ranked amongst the top ten HADDOCK score-sorted 

models. The ‘All’ data-driven run produced 9 correct near-native models ranked in the 

top ten, which was higher than the CSP/RDC run which produced 7 correct models. All 

RDC-less runs produced 4 correct models in the top ten ranked solutions. The ab initio 

run produced only 1 correct model ranked in the top ten. The capability of consensus-

data/RDC docking in enriching in correct models in the top-ten ranked solutions is 

likely due to an increased number of near-native models produced during docking 

sampling. 

 

7.4.2 Application of RDCs, CSPs, and theoretical restraints for docking of the 1J6T 

protein complex 

 
The 1J6T complex is created by the interaction of cytoplasmic domain A of the 

mannitol-specific phosphotransferase enzyme II (E2AMtl) and the histidine-containing 

phosphocarrier protein (HPr). This protein complex is a part of the bacterial 
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phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) that 

phosphorylates carbohydrates while transferring them through bacterial cell membranes 

(Cornilescu et al., 2002).  

 

The CSP and RDC data were obtained and applied for docking (section 3.9.1) of this 

complex (Clore and Schwieters, 2003; Cornilescu et al., 2002). The mapping of CSP 

and TH data on both receptor (E2AMtl) and ligand (HPr) proteins indicate that there is a 

contribution of true positives from the TH data when combined with CSP data (Figure 

7-4C, D). Furthermore, it can be seen that conservation of experimentally identified 

active residues and their neighbouring passive residues (HPr ligand protein) of CSP data 

is present, as overlap exists with TH data. As stated previously, passive residues are 

designated active if conserved (section 3.9.1). The quantitative contribution of TH data 

shows an increase in the TP rate for both ligand (0.85) and receptor (0.76) proteins 

when it is combined with CSP data (Table 7-5). The TP fractions for both proteins 

decrease, but are still acceptable since they indicate >60% specificity for both proteins. 

In comparison to the ab initio run, only the RDC-incorporating and consensus data-

driven (CSP/TH) runs produced statistically significant runs according to CAPRI 

criteria (Table 7-5). RDC data improved the results appreciably with the consensus 

data/RDC run producing the most NOCs (168) when compared to the standard 

CSP/RDC run (137), and this difference in NOCs is a statistically significant result. 

Figure 7-6 indicates the I-rmsds of the docked models compared to the reference 1J6T 

complex as a function of the HADDOCK score for all runs. Both RDC-incorporating 

runs produced the most correct models that converge in their first clusters than the other 

data-driven runs, producing the same I-rmsd cluster mean of 2.4 Å (STDVs of 0.57 Å 

(‘ALL’) and 0.56 Å (CSP/RDC)), but they differ in average energies due to differences 

in the ambiguous interface restraint (AIR) energy term of the HADDOCK score, which 

reflects AIR violations. For the CAPRI criteria, the TH run did not produce enough 

NOCs because the majority of 200 complexes generated in TH docking had Fnat values 

under 0.085 and orientational restraint errors as indicated by L and I-rmsd values, which 

where above the CAPRI cut-offs. Interestingly, the CSP run, which had higher TP 

fractions and TP rates than the TH run also did not produce a significant result for 

CAPRI criteria due to orientational errors in its generated models. Both CSP and TH 

runs’ first cluster had I-rmsd means of 4.6 Å and 5.9 Å, respectively (STDVs of 1.03 Å 

and 1.29 Å, respectively). It seems that higher TP rates were needed to generate 
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significant results as indicated in the CSP/TH run, which generated a mean I-rmsd for 

the first cluster of 4.1 Å (STDV of 0.83). For the TH, CSP, and CSP/TH runs, it can be 

seen that the majority of models cluster at I-rmsd values >9 Å.  

 

 

 

 

Figure 7-6: HADDOCK score versus I-rmsd for consensus-data (ALL = CSPs, RDCs, 
and theoretical restraints) and experimental data-driven docking (CSPs/RDCs restraints) 
for the 1J6T complex. See the legend of Figure 7-5 for further details. 
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These distant clusters have arisen because of the nature of the ambiguous interaction 

restraints used in docking, whether derived from CSP or TH data, which do not provide 

orientational input to docking sampling, and this explains the enrichment of incorrect 

models in those clusters where ligand proteins are rotated incorrectly with respect to the 

true ligand’s binding pose to the receptor protein, especially for the TH and CSP runs. 

These clusters exist in the RDC-incorporating runs with similar incorrect orientational 

poses for their ligands (180°) as the models produced in the CSP and CSP/TH runs, 

however, they are smaller in size, indicating the effect of the RDC data in enriching the 

first clusters with more NOCs and minimizing these orientational errors. The average 

cluster energies for these clusters differ between RDC-incorporating and RDC-less runs 

because the HADDOCK score incorporated additional RDC-energy terms for the 

former runs. 

  

In general, the correct and incorrect models differ by 180° rotation of their ligands even 

when RDC data is used. With RDC data, there are four possible 180° orientations of 

proteins in a complex with respect to the axes of an alignment tensor, which is four-fold 

degeneracy, and combining this data with ambiguous interaction restraints data (ex. CSP 

data) usually identifies the protein-protein orientation out of the possible four that 

agrees with both sets of data. For this protein complex, the combination of RDC and 

ambiguous interaction restraints data has resulted in two-fold degeneracy reduction, 

causing the majority of models to adopt two ligand poses that differ by 180° rotations, 

and this can be removed through the enforcement of restraints to favour the orientation 

most compatible with the CSP data (Clore and Schwieters, 2003). It can also be seen 

that the distant clusters have better HADDOCK scores as correct models for all runs. 

This is due to an extended charged patch on the receptor (E2AMtl), which includes the 

interface, where models localize on it, preventing HADDOCK discriminating the 

correct models from incorrect ones.  

 

The correct models for the consensus-data/RDC (‘ALL’) run represent a balanced 

proportion of acceptable (83) and medium (85) quality models based on CAPRI 

assessment, which constitutes the highest number of NOCs produced altogether when 

compared to the other runs. Although the RDC-incorporating runs generated the most 

NOCs, because of inconsistency of discrimination by the HADDOCK score between 

correct and incorrect model ranking, the ranking of the correct models in the top ten 
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solutions was affected. For example, no correct models were ranked in the top ten for 

standard CSP/RDC docking. The first correct model is ranked 11th and is of medium 

quality for this run. For consensus data/RDC docking, only 4 correct models were 

ranked in the top ten where the 1st ranked model is of medium (**) quality. The CSP/TH 

generated 4 correct models, while the CSP run produced 1 correct model in their top ten 

ranked solutions. The correct solutions of the TH and ab initio runs were not ranked in 

the top ten, instead they are ranked 76th and 113th, respectively.  

 

For Fnat evaluation, all runs except the TH data run produced statistically significant 

results compared to the ab initio run. The reason for the failure of the TH run was 

explained previously (see section 7.3.6). The consensus data/RDC run produced more 

near-native models (176) versus conventional CSP/RDC docking (143), which is a 

statistically significant result. In addition, it produces more near-native models than the 

rest of the runs that do not use RDCs, although the difference between its result and the 

CSP/TH run’s result (162) is not statistically significant. Comparing the RDC-less data-

driven runs’s results to each, the CSP/TH run’s result (162) is statistically significant 

compared to the CSP and TH runs. This may be due to the higher TP rates for the 

docking restraints used in the CSP/TH run. In terms of model quality, the consensus 

data/RDC run generated the highest proportion of high (44) and medium (108) Fnat 

models along with 24 acceptable models and this is a superior result when contrasted to 

the standard CSP/RDC docking. It is interesting to note that whilst CSP/TH docking 

produced a statistically significant number of near-native models compared to 

RDC/CSP docking and a non-significant difference compared to consensus/RDC 

docking, this achievement is not reflected fully in model quality. Most models for 

CSP/TH runs are enriched in the acceptable (128) Fnat category with only a few models 

(9) of medium quality. Although 25 models are rated as high for CSP/TH docking, 

however, the RDC-incorporating runs produced more medium quality models, and an 

almost double number of high models were produced by the consensus data/RDC run, 

highlighting the effect of orientational restraint data’s influence on docking 

performance. The ranking of top ten models is improved under Fnat evaluation. The 

‘ALL’ run produced more (6) near-native models ranked in the top ten solutions than the 

CSP/RDC run (1), where a high near-native model is ranked first for the ‘ALL’ run. 

Only the CSP/TH (7) and CSP (8) runs produced near-native models in top ten solutions 

from the non-RDC integrating runs. While these runs produced more near-native 
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models in the top ten then the ‘ALL’ run and in one case (CSP) ranked as 1st a near-

native model, the ‘ALL’ has the best quality model ranked in first place by HADDOCK. 

The results based on CAPRI and Fnat assessment of the E2AMtl-HPr docking 

demonstrate that consensus/RDC data driven docking enriches in the number of correct 

models compared to standard CSP/RDC docking. 

 

7.4.3 Application of RDCs, CSPs, and theoretical restraints for docking of the 1GGR 

protein complex 

 

The 1GGR complex is an interaction involving glucose-specific phosphotransferase 

enzyme IIA (E2AGlc) and the histidine-containing phosphocarrier protein (HPr). Like 

the 1J6T complex (section 7.4.2), this protein complex participates in the bacterial 

phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) that 

phosphorylates carbohydrates and transfers them through bacterial cell membranes 

(Wang et al., 2000). Both protein complexes share the same ligand protein (HPr), 

however, their receptor proteins differ in primary sequence and tertiary structure (Clore 

and Schwieters, 2003).  

 

The CSP and RDC data were applied for protein docking of this complex as discussed 

in section 3.9.1 (de Vries and Bonvin, 2011b; Clore and Schwieters, 2003). The 

mapping of CSP and TH data is indicated for both ligand (HPr) and receptor (E2AGlc) 

proteins in Figure 7-4 (E, F). It can be seen that TH data contribute non-overlapping 

true positive residues to the ligand protein, increasing the TP rate to 0.93 for this protein 

combined with a TP fraction of 0.58 (Table 7-5). No additional non-overlapping true 

positive residues are provided for the receptor protein by the TH data, keeping the TP 

rate at 0.65. Instead all non-overlapping residues (blue) are false positives that are in 

close proximity to the experimentally identified residues, and this has decreased the TP 

fraction to 0.65. For both proteins’ TP fractions, their specificity is >50%, which is 

satisfactory. There exists overlap between CSP (active and passive) and TH identified 

residues, indicating that these experimentally identified residues and their neighbours 

are conserved. As described previously, the presence of overlapping passive residues 

that are conserved designates them to active residue status (section 3.9.1).  
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All runs except the TH run produce more NOCs, which are statistically significant 

results, when compared with the ab initio run under CAPRI assessment. All the TH 

run’s models had orientational restraint errors exceeding CAPRI cut-offs for L-rmsd and 

I-rmsd, rendering them all as incorrect according to CAPRI criteria. These errors may 

stem from the fact that TP rate contribution for the receptor protein is low (0.11), 

preventing adequate docking sampling in the correct binding region of the receptor 

protein in order to generate a pool of CAPRI acceptable binding poses during docking. 

The NOCs produced for the ‘ALL’ (180) and CSP/RDCs (183) are similar in number, 

indicating the absence of statistical significance in the difference between them (Table 

7-5). The possible reason for this is that the addition of TH data only contributed to 

increase in TP rate for the ligand protein, but not the receptor protein. This lack of 

increase of receptor TP rate does not improve upon existing information provided by the 

CSP data to improve docking sampling’s generation of NOCs. Indeed, it was 

demonstrated that when TH data improved the TP rates for both ligand and receptor 

proteins this resulted in a boost in the NOCs generated in both 1OO9 and 1J6T docking 

runs that coupled consensus data with RDCs (sections 7.4.1 and 7.4.2).  

 

The NOC results of CSP/TH (30) and CSP (69) runs indicate a statistically significant 

difference in favour of the CSP run. This may be due to the random removal of 

restraints in HADDOCK that possibly removed more true positives during docking for 

the CSP/TH run coupled with the effect of the false positive restraints when the CSP 

and TH restraints were combined. This reduced the number of correct solutions 

produced because of the incorrect binding poses for the models produced relative to the 

known 1GGR experimentally solved complex. An examination of the docking data 

revealed that more models fulfilled the L-rmsd and I-rmsd criteria for CSP docking than 

CSP/TH docking, indicating an increase of models with orientational errors in CSP/TH, 

suggesting that indeed this may be the case. 

  

The I-rmsds of all 1GGR runs’ models as a function of HADDOCK score are shown in 

Figure 7-7. The RDC-incorporating runs produced the majority of models that converge 

in their first cluster (i.e. with the lowest I-rmsd average) than the RDC lacking runs. The 

consensus data/RDC and standard CSP/RDC runs produced I-rmsd cluster means of 2.7 

Å (STDV of 0.82 Å) and 2.1 Å (STDV of 0.75 Å), respectively. The CSP and CSP/TH 
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runs have similar I-rmsd means (CSP/TH 2.0 Å and STDV of 0.30 Å, CSP 2.3 Å and 

STDV of 0.34 Å) for their best clusters to the RDC-incorporating runs, but have a lower 

convergence of models that populate these clusters. The clusters for the TH run are all 

above the 4.0 Å threshold for the I-rmsd criterion and hence the best cluster has an I-

rmsd mean of 5.9 Å (STDV of 0.46 Å), indicating the orientational errors of the models. 

 

For all runs that produced a greater amount of correct models compared to the ab initio 

run, the HADDOCK score discriminates between correct and incorrect models such that 

the best clusters are clearly identified. This is due to a charged patch of the interface of 

the HPr protein coupled with the shape complementarity between the two interfaces of 

the ligand and receptor proteins, allowing HADDOCK to discriminate between correct 

and incorrect models (Dominguez et al., 2003; Wang et al., 2000).  

 

Both RDC-incorporating runs enrich the acceptable (*) and medium (**) categories 

more than the other runs with the exception of the CSP run, which enriched the medium 

quality category with 49 models. More models of acceptable category are produced for 

the ‘ALL’ run, whereas the standard run produces more medium quality models. This 

difference may be attributed to increased false positives from the TH data for the 

receptor protein, which may have had an impact on sampling of docking binding poses 

thereby enriching the acceptable category for the ‘ALL’ run. Both RDC-incorporating 

runs produce a significant number of high (***) models, indicating the success of the 

docking for this complex. Examination of the top ten solutions ranked by the 

HADDOCK score indicates that the RDC-incorporating runs produce 10 correct models 

in the top-ten solutions, according to CAPRI criteria. The CSP/TH and CSP runs 

produced 2 and 9 correct solutions ranked in the top ten models, respectively. 
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Figure 7-7: HADDOCK score versus I-rmsd for consensus-data (ALL = CSPs, RDCs, 

and theoretical restraints) and experimental data-driven docking (CSPs/RDCs restraints) 

for the 1GGR complex. See the legend of Figure 7-5 for further details. 
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This difference in the ranking of correct models may be attributed to the smaller amount 

of correct models produced in the CSP/TH run. Ab initio docking produces only one 

acceptable quality model and it is ranked 41st by HADDOCK. Although the ‘ALL’, 

CSP/RDC, and CSP runs produced a similar amount of correct models ranked in the top 

ten solutions, the quality of the models ranked in the top ten solutions differs somewhat. 

For the ‘All’ run the 1st ranked (i.e. best scored) model is of high quality, whereas for 

the other two runs their best-ranked model is of medium quality. Indeed, there are 3 

high quality models ranked within the top-four models for the ‘ALL’ run, whereas the 

CSP/RDC run had only one high model in the top ten models and it was ranked 8th best 

overall with other models ranked acceptable or medium quality scoring better than it. 

The CSP run only produced 9 medium quality models in the top ten solutions. 

Therefore, even though the overall difference in NOCs among the RDC-incorporating 

runs is not significant, the enrichment of better quality models in the ‘ALL’ docking run 

is improved in the top-ten ranked solutions compared to the standard CSP/RDC run. 

This is also the case when the ‘ALL’ run is compared to the CSP run.   

 

For the Fnat evaluation of the runs, the ‘ALL’ and the CSP/RDC runs produce 180 and 

185 correct near-native models, respectively. Here the difference in 5 near-native 

models is not significant. The RDC-incorporating runs’ results are statistically 

significant when compared to the runs that do not utilize RDC data. The CSP/TH (158 

near-native models) and CSP (161 near-native models) runs do not have a significant 

difference compared to each other. However they both excel the TH and ab initio runs 

in NOCs produced. In model quality terms, the RDC-including runs have similar 

numbers for the acceptable Fnat category, but differ in NOCs produced for the medium 

and high quality Fnat categories. The ‘ALL’ run has higher NOCs (91) of medium 

quality than the CSP/RDC run, whereas the CSP/RDC has higher NOCs (77) for the 

high category of models. Like the CAPRI evaluation, this difference in the spread of 

models may be due to higher false positives incorporated for the receptor protein’s 

docking restraints from the TH data, which may have influenced docking sampling in 

the ‘ALL’ run, resulting in less high quality models and greater medium quality models 

in contrast to the CSP/RDC run.  

 

The ranking of the top-ten scored models for the RDC-incorporating runs under Fnat 

evaluation parallels the results of the CAPRI evaluation in that 10 correct models in the 
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top-ten ranked solutions are found. This was also the result for the CSP run. The 

CSP/TH run had 6 correct models ranked in the top ten models. Although the TH run 

produced 10 near-native models overall, 2 of them are ranked in the top-ten. The ab 

initio run does not produce any models ranked in the top-ten solutions. The quality of 

the models ranked in the top-ten solutions is similar for the runs. It can be seen that all 

runs (except the TH and ab initio runs) produced a high quality model ranked 1st and 

this is because the Fnat restraints are less stringent as they do not take into account 

orientational errors. Overall, the difference in the generation of NOCs for the 1GGR 

complex between the ‘ALL’ and CSP/RDC runs is not significant because the TH data 

when combined with the CSP data only increases the TP rate for the ligand protein and 

not the receptor. The TH data for the receptor increased the number of false positive 

residues, which influenced the docking sampling. Such residues may be conserved 

because of structural reasons. Additional interface residue discriminators are required to 

combine with the current TH data to predict the interface residues not predicted via TH 

and CSP data sets. This would be important for the receptor protein and would likely 

result in a non-overlapping contribution by both data sets, increasing the TP rate. The 

outcome would be significant NOCs being generated when compared to the RDC/CSP 

1GGR run. 

 

7.5 Conclusion 

 

The application of theoretical restraints of the PROTIN_ID method to guide protein-

protein docking to improve its performance was examined. This was compared to ab 

initio docking.  The docking results were assessed using standard performance measures 

of the protein docking community (CAPRI), including the less stringent Fnat measure. 

Docking runs were performed using a docking dataset (26 complexes) comprising 

unbound proteins that fulfilled a minimum (≥10%) TP rate cut-off when theoretical 

restraints were generated for them using PROTIN_ID. Complexes under the 

conservation TP rate cut-off were removed since they were assumed to have few 

restraints to generate successful results in data-driven docking. Data analysis based on 

the docking dataset and extrapolated to account for the excluded complexes (<10% TP 

rate cut-off) demonstrated that docking is improved in the generation of correct models 

through the use of theoretical restraints compared to ab initio docking for both CAPRI 
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and Fnat measures. Specifically, a 16% success rate for all cases (i.e. conservative 

estimate) was determined for data-driven docking based on CAPRI criteria, which is 

four times more successful, compared to 4% in ab initio docking. For the less stringent 

Fnat evaluation, a success rate of 29% (i.e. conservative estimate) was observed relative 

to no success (0%) in ab initio docking. The difference in success rates for ab initio 

docking for both CAPRI or Fnat measures is because the analysis for significant results 

in the docking dataset cases is dependent on the number of correct models produced by 

both data-driven and ab initio runs per case that are compared to ascertain if 

significance exists. Only one example produced a significant number of CAPRI correct 

models in favour of ab initio docking in the docking dataset, resulting in a 4% success 

rate under CAPRI criteria when extrapolated to the entire dataset of (63) complexes. 

The same example did not produce a significant result when analysed by the Fnat 

criterion; however, its data-driven run counterpart produced significant results. When 

extrapolating to the entire dataset, this resulted in no cases for ab initio docking that 

produced significant results based on a comparison between the run types according to 

the Fnat measure.  

 

The success of using theoretical restraints to improve docking compared to ab initio 

docking paved the way for further examination of using theoretical and CSP data 

(consensus data) combined with RDC orientational restraints data to assess its impact 

on docking performance. This was compared to standard CSP/RDC docking 

simulations. Three case studies were examined for which RDC and CSP data were 

obtainable. In general the performance of consensus data/RDC-driven docking 

improves the generation of correct docking solutions compared to standard CSP/RDC 

docking based on CAPRI and Fnat measures. The improvement in docking is applicable 

specifically when CSP and theoretical data both map the same area on a protein’s 

surface, resulting in the further inclusion of true positive (interface) residues for both 

ligand and receptor proteins. This is because there are theoretical data that do not 

overlap with the CSP data, increasing the number of true positives. If different areas on 

a protein’s surface are identified by both restraints, then it is more likely that the 

theoretical restraints have possibly predicted another binding site. In this scenario, they 

are not applicable for use with CSP data to drive docking. When both CSP and 

theoretical restraints localize on the same protein surface’s region, passive residues, 

which have insignificant CSPs and/or are in close proximity to (active) residues with 
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significant CSPs, were converted to active residues since they were conserved based on 

the theoretical restraints that overlapped with them. To recapitulate, the improvement in 

docking using consensus-data was demonstrated when CSP and theoretical data are 

restricted to the same region of a protein’s surface. Upon satisfying this condition, this 

allows the HADDOCK docking program to further restrict the docking sampling to the 

area of interest and boost docking performance by significantly increasing the number 

of correct models produced compared to standard CSP/RDC docking. 
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Chapter 8 

 

Conclusions 

 

 

Determining interfaces of proteins is a significant step for characterizing protein 

complexes and contextualizing their functions within the wider protein interactome. 

Prior to the onset of this research study, protein interface predictors were found to be 

limited with respect to interface prediction through use of sequence data and clustering 

of prediction data (see table A-3). Firstly, no attempt was made to systematically 

examine explicit transient protein multiple sequence alignment improvement and its 

effect on conservation signal retrieval by previous predictors, which used conservation 

as an interface predictive feature, to improve interface prediction. Secondly, the effect 

of three-dimensional clustering of interface prediction data accuracy was not explored 

systematically in previous predictors to ascertain its effect on interface prediction 

accuracy. In this work a new protein-protein interface predictor (PROTIN_ID) was 

introduced that addressed these deficiencies and sought to identify protein interface 

residues through implementing explicit MSA sequence data editing and interface 

prediction data clustering heuristics to improve interface prediction quality. These 

heuristics were tested on the latest Benchmark 4.0 dataset of transient protein 

complexes (Hwang et al., 2010). The results of this study corroborate the hypotheses 

that both heuristics significantly improve interface prediction accuracy compared to not 

applying them. Thus the PROTIN_ID predictor implements novel and useful features 

for predicting interface residues. Compared to current interface predictors (WHISCY 

and CCRXP) with similar interface prediction goals, PROTIN_ID was found to perform 

as well as WHISCY and outperform CCRXP (Ahmad et al., 2010; de Vries et al., 2006).  

 

In the context of whether interface residues were more conserved compared to rest of 

surface residues (ROS), it was demonstrated that interface residues were indeed more 

conserved, using seven different conservation scores, which is in agreement with 

previous findings (Choi et al., 2009; see section 5.5). However, previous work indicated 

the absence of prediction significance to distinguish interface patches from ROS 

patches, using evolutionary conservation (Burgoyne and Jackson, 2006; Caffrey et al., 
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2004; see section 5.5). In this work, an evolutionary conservation-based clustering 

heuristic, implemented in PROTIN_ID, was shown to significantly predict interfaces 

residue clusters. This approach exploits the conservation signal of interface residues 

more effectively than in previous work. This is in agreement with recent findings, which 

showed that interfaces are non-homogenously conserved, and those residues, which are 

conserved, are clustered together (Guharoy and Chakrabarti, 2010; Guharoy and 

Chakrabarti, 2005).  

 

During this study and after its completion, other interface predictors have been 

published. Like PROTIN_ID, they also implemented novel concepts for predicting 

protein interfaces. For example, Li et al., (2008) trained an SVM-based predictor that 

utilized neighbour residue profiles at the sequence and structural levels during training. 

Both structural and sequence profiles concepts have been implemented separately in the 

previous predictors of Wang et al., (2006) and Ofran and Rost (2003a), respectively. 

This predictor combined both concepts to construct a holistic neighbour profile utilizing 

8 predictive features (ex. hydrophobicity, sequence conservation, physicochemical 

properties, solvent accessibility, side-chain environment, secondary structure, and 

sequence and spatial distance) to predict core interface residues. This predictor uses a 

PSI-BLAST profile to compute conservation. It could be combined with PROTIN_ID’s 

sequence editing heuristic and conservation score implementation to enhance the 

conservation signal retrieval during its training stage, as it was determined that the PSI-

BLAST profile conservation predictive feature of the predictor contributed most to the 

accuracy measure compared to the rest of the predictive features during cross-validation 

of their predictor (Li et al., 2008). PROTIN_ID’s clustering heuristic could be applied 

to cluster top-N ranked surface residues predicted by the method of Li et al., (2008) to 

improve core interface prediction accuracy through elimination of potential noise 

created by false positive residues. Another notable predictor used only electrostatic 

desolvation profiles for prediction of interface sites (Fiorucci and Zacharias, 2010a). 

This predictor scanned protein surfaces to identify sites with low desolvation penalties, 

which are predicted as putative interface sites, using the finite-difference Poisson-

Boltzmann method. When implemented with other interface discriminative features, it 

has a potential to improve interface prediction. Applied with PROTIN_ID, this 

desolvation profile concept could be used to develop PROTIN_ID’s cluster ranking and 

improve its interface prediction success rate.  
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The application of PROTIN_ID’s theoretical restraints to docking performance was 

investigated using the HADDOCK method. It was demonstrated that theoretical 

restraints-driven docking was more successful than ab initio docking, when evaluated 

with stringent or relaxed metrics, generating significantly more correct models for a 

higher percentage of the test dataset than ab initio docking. The current findings agree 

with previous work by de Vries et al. (2006) who used WHICSY’s prediction data to 

guide docking, and this was contrasted to ab initio docking. Additionally, PROMATE 

prediction data was also combined with WHISCY data to repeat the same runs, which 

showed greater guided-docking performance improvement. However, in their work de 

Vries et al. (2006) conduct docking using the initial rigid-body docking stage of 

HADDOCK, and used a relaxed evaluation metric for docking performance assessment. 

In contrast, in this work the full HADDOCK protocol was applied and stringent CAPRI 

criteria were used to evaluate docking results, providing a more realistic framework for 

the study. Although, combination of PROTIN_ID restraints with another predictor’s 

restraints (ex. WHISCY) was not assessed on docking performance here, the same 

principle of consensus data was explored in this study through the novel combination of 

NMR data (CSP/RDC) with theoretical restraints, achieving an improvement over 

docking runs using only PROTIN_ID’s restraints. It was demonstrated that this 

approach improved the performance of data-driven docking compared to standard 

experimental (CSP/RDC) docking overall. Recent work showed that using 

heterogeneous experimental data to filter docking solutions (i.e. back-end docking) in a 

novel meta-docking approach led to improved ranking of acceptable quality models or 

higher (61% ranked 1st) for Benchmark 4.0 cases (Schneidman-Duhovny et al., 2012; 

Hwang et al., 2010). Although both studies showed that docking performance can be 

improved, they differ in the sources of data integrated in the step of their docking 

procedures (front-end vs. back-end docking). It would be valuable to extend the work of 

Schneidman-Duhovny et al., (2012) to include more data sources such as consensus 

interface predictor data (including PROTIN_ID predictor data) with the experimental 

data (RDC and CSP) to improve their back-end docking approach further. Thus using 

more experimental and/or theoretical sources to expand consensus-data would make 

significant inroads in docking performance improvement. Recent steps have been taken 

to achieve this. For example, de Vries and Bonvin (2011a) used prediction data 
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generated from a consensus predictor (CPORT) composed of six individual interface 

predictors (including WHISCY) to guide HADDOCK docking, and showed that 

docking performance was better than HADDOCK ab initio docking and as competitive 

to ZDOCK. Schneider and Zacharias (2012) combined the ATTRACT docking method 

with the meta-PPISP (composed of three predictors) prediction data to drive docking of 

unbound proteins (Qin and Zhou, 2007a; Fiorucci and Zacharias, 2010b; Mintseris et 

al., 2005b; Zacharias, 2003). It was found that data-driven docking was more successful 

than ab initio docking (77% vs. 65% success rate). Compared to this current work and 

others, the main difference in this study is the effect ATTRACT has on docking 

performance. For example, Schneider and Zacharias (2012) compared their results to 

CPORT prediction data-driven docking and ab initio docking both using HADDOCK, 

which achieved 41% and 15% success rates, respectively. The prediction performance is 

more significant using both ATTRACT docking approaches compared to CPORT-

driven or ab initio HADDOCK docking. This is because input prediction restraints are 

applied as force field weights to bias sampling to the predicted region on a protein’s 

surface, while also permitting other surface regions to be sampled (Schneider and 

Zacharias, 2012). In contrast, HADDOCK data-driven docking sampling is exclusive to 

the region of interest, and can produce incorrect results if the prediction data are 

completely incorrect. In another study, Li and Kihara (2012) used the CPORT interface 

predictor with a different docking method, PI-LZerD, to analyze their approach on 

Benchmark 2.0 (de Vries and Bonvin, 2011a; Venkatraman et al., 2009). PI-LZerD 

allows more flexible sampling (unlike HADDOCK) by sampling around prediction data 

defined on two input proteins’ surfaces. Compared to CPORT-HADDOCK, their 

approach’s success rate was better (24.6% vs. 15.8%). Both ATTRACT and PI-LZerD 

are more sampling tolerant and would be useful to apply in future work to extend this 

study using all Benchmark 4.0 complexes (Hwang et al., 2010). It is anticipated that 

prediction performance would improve for most cases due to their sampling efficiency. 

This would also be true when combining prediction data with other sources of 

experimental data. 

 

 

The field of interface prediction is growing rapidly. Upon the conclusion of this work, 

future research directions were identified to improve and extend this field of interface 

prediction. For example, current predictors are designed on the basis that protein 
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interactions have negligible conformation change, which is reflected in the training and 

testing datasets used to develop them. This is not always the case as some protein 

interfaces are difficult to predict because of high conformational change upon complex 

formation. Correctly predicted interface residues in their unbound forms would be far 

apart, where it would not be apparent that they are proximal interface residues. Further 

studies are required to address this. For instance, a starting point would be to generate 

conformational ‘snap shots’ of a protein (ex. from Molecular Dynamics) to allow 

ensemble interface prediction (e.g., via PROTIN_ID) and merge their results (or 

provide conformational prediction ‘snap shots’) to determine if proximity associations 

exist between predicted residues. Another problem is the lack of standardization in 

terms of training and testing datasets and interface residue definitions. Most predictors 

utilize different interface definitions and developmental datasets, when reporting their 

predictors’ performance evaluation (ex. specificity, sensitivity, etc.). This makes it 

unsuitable to compare their reported performances. A way forward is to create standard 

non-redundant transient protein datasets based on datasets reported in previous work. 

The standard datasets can be categorized based on biological functionality of the 

transient complexes and the number of known interaction partners per protein to 

determine all possible interface residues from the ROS residue group.  

 

Another way of improving interface predictors would be the incorporation of more 

useful interface residue predictive features. Swapna et al., (2012) have shown that 

interface residues of transient proteins with the lowest B-factors were mostly interface 

core residues, indicating their rigidity. Additionally, interface core residues were 

observed to be significantly more rigid than ROS residues. To compute the rigidness of 

surface residues, they applied a normalized backbone B-factor measure. This interface 

residue predictive feature can be combined with others implemented in current interface 

predictors to improve interface prediction quality. Using their approach is advantageous 

as the predictive data is derived from unbound proteins unlike the approach of Chung et 

al., (2006) who in contrast utilized B-factor data derived from bound models, which can 

introduce bias in terms of ‘inflated’ predictor performance (see section 1.9.2). The novel 

features introduced in this work and recent studies suggest that practical application of 

such features has the potential to boost prediction performance. An important 

achievement has recently been made in a recent study published after the completion of 

this current work. Segura et al., (2011) used multiple sources of interface predictive 
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features (ex. structural, sequence, and energy based) to develop a predictor. This 

predictor produced ROC area under the curve value (AUC) of 0.85 on Benchmark 3.0 

(excluding antibody-antigen complexes) (Segura et al., 2011). This indicates the benefit 

of applying many heterogeneous predictive features in interface prediction. While the 

AUC cannot be meaningfully compared to PROTIN_ID’s AUC value due to differing 

protein complexes in their datasets and interface definitions used, it is not surprising 

that the predictor of Segura et al., (2011) produced a high AUC due to multiple 

heterogeneous interface residue predictive features being implemented. As such, these 

heterogeneous features would be beneficial in future development of PROTIN_ID and 

other predictors to improve their prediction performance. Another dimension to enhance 

and improve interface predictors would be to add a component based on known 

homologous protein complexes (i.e. protein complex-level predictive feature) and use 

the data as an interface predictive feature in combination with other heterogeneous 

interface residue predictive features. Indeed using structural data was shown to improve 

prediction performance in a recent study (Xue et al., 2011a). Such new and improved 

interface predictors would be useful especially in their combination with experimental 

data in the application of high-throughput docking for predicting protein complexes. 
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Appendix 
 
 
Table A-1: The advantages (green) and disadvantages (red) of predictors for categories regarding training and testing datasets and predictor 
performances on these datasets predictor are shown. A dash (-) indicates no information could be obtained. A category not applicable for a 
predictor is indicated as ‘N/A’. 

Predictor 

Developmental 
datasets (including 

testing): 
Transient only or 

mixed 
(obligate/permanent 

and transient) 
complexes 

Developmental 
dataset: transient 
proteins bound or 

unbound? 

Specificity and 
sensitivity/ or 

accuracy 
performance % 
(developmental 
testing dataset) 

Independent 
testing dataset: 

transient, 
obligate, or 

mixed complexes 

Independent 
testing dataset: 

transient proteins 
bound or 
unbound? 

Specificity and 
sensitivity 

performance % 
(Independent testing 

dataset) 

ET- 
Mihalek et al., 

2004; 
Litcharge et 
al., 1996a 

N/A N/A N/A N/A N/A N/A 

SHARPE2- 
Murakami 
and Jones, 

2006; Jones 
and Thornton, 

1997a 

Mixed Bound models used 
Specificity: >70 

Sensitivity: - 
N/A N/A N/A 

Obligate complexes Landgraf et 
al., (2001) Transient complexes 

Bound models used N/A N/A N/A N/A 

Transient (68 
proteins) 

unbound 
Specificity: 61.4 
Sensitivity: 38 

Cons-PPISP 
Chen and 

Zhou (2005) 

Mixed (Obligate 
homodimer 

complexes present 
both): 

i. Training set (1156 
proteins) 

ii. Testing set (100 

Bound models used 
Specificity: 80 
Sensitivity: 51 Transient (8 NMR 

complexes) 
unbound 

(8 NMR proteins) 
Specificity: 69 
Sensitivity: 47 
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proteins) 

Fariselli et al., 
(2002) 

Mixed (Obligate 
complexes present) 

Bound models used 
Specificity: 72 
Sensitivity: 56 

N/A N/A N/A 

ISIS- 
Ofran and 

Rost (2006, 
2003) 

Predicted as transient 
(may contain 

obligates) 
N/A 

Specificity: ~61 
Sensitivity: 20 

N/A N/A N/A 

ProMate-
Neuvirth et 
al., (2004) 

Transient only 
(Obligate complexes 

are removed) 

Unbound models 
used 

Specificity: ≥ 50 
Sensitivity: ≥ 20 
both for 67% of 

dataset 

N/A N/A N/A 

Crescendo- 
Chelliah et 
al., (2006) 

Transient only 
Mixed bound/ 

unbound dataset 
Specificity: > 50 

for 85% of dataset 
N/A N/A N/A 

Koike and 
Takagi (2004) 

Mixed (Obligate 
complexes present) 

Bound models used 
Specificity: 56.1 
Sensitivity: 44.6 

N/A N/A N/A 

Keil et al., 
(2004) 

Mixed (Obligate 
complexes present) 

Bound models used 
Specificity: N/A 
Sensitivity: 44 

N/A N/A N/A 

Mixed (Obligate 
complexes present) – 
Leave-one-out (LOO) 

cross validation 
dataset (180 proteins) 

Bound models used 

Specificity: ≥ 50 
Sensitivity: ≥ 20 
both for 76% of 

dataset 

Mixed (47 
proteins) 

Bound models used 

Specificity: ≥ 50 
Sensitivity: ≥ 20 
both for 72% of 

dataset 

Subset of dataset: 
Obligate (114 

proteins) 
Bound models used 

Specificity: ≥ 50 
Sensitivity: ≥ 20 
both for 82% of 

dataset 

PPI-Pred- 
Bradford and 

Westhead 
(2005) 

Subset of dataset: 
Transient (66 

proteins) 
Bound models used 

Specificity: ≥ 50 
Sensitivity: ≥ 20 
both for 65% of 

Transient (57 
proteins) 

Bound models used 

Specificity: ≥ 50 
Sensitivity: ≥ 20 
both for 53% of 

dataset 
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dataset 

Bordner and 
Abagyan 
(2005) 

Mixed (Obligate 
complexes present): 

i. 5-fold cross 
validation dataset 

(632 protein 
complexes) 

 

Bound models used 
Specificity: 34 
Sensitivity: 64 

Transient (43 
protein 

complexes) 
- 

Specificity: 22 
Sensitivity: 67 

Mixed (Obligate 
complexes present) – 
Leave-one-out (LOO) 

cross validation 
dataset (180 proteins) 

Bound models used 

Specificity: ≥ 50 
Sensitivity: ≥ 20 
both for 82% of 

dataset 

Subset of dataset: 
Obligate (114 

proteins) 
Bound models used 

Specificity: ≥ 50 
Sensitivity: ≥ 20 
both for 84% of 

dataset 

Bradford and 
Westhead 

(2006) 

Subset of dataset: 
Transient (66 

proteins) 
Bound models used 

Specificity: ≥ 50 
Sensitivity: ≥ 20 
both for 79% of 

dataset 

N/A N/A N/A 

Hoskins et al., 
(2006) 

- 
Mixed bound/ 

unbound dataset 

Specificity: > 50 
for 79% protein 
interfaces in the 

dataset 

N/A N/A N/A 

Chung et al., 
(2006) 

Mixed (Obligate 
complexes present) 

i. 3-fold cross 
validation dataset 

(274 protein 
complexes) 

Bound models used 
Specificity: 50 

Sensitivity: 67.3 
N/A N/A N/A 

Wang et al., 
(2006) 

Mixed (Obligate 
complexes present) – 

(LOO) cross 
validation dataset (69 
protein complexes) 

Unbound models 
used 

Specificity: 49.7 
Sensitivity: 66.3 

N/A N/A N/A 
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PINUP- 
Liang et al., 

(2006) 

Transient only 
(Obligate complexes 

are removed)- 
(LOO) cross 

validation dataset (57 
proteins) 

Unbound models 
used 

Specificity: 44.5 
Sensitivity: 42.2 

Transient (68 
proteins) 

Unbound models 
used 

Specificity: 29.4 
Sensitivity: 30.5 

WHISCY- 
de Vries et 
al., (2006) 

Transient complexes 
only (57 proteins) 

Bound models used 
Specificity: 33 
Sensitivity: 30 

Transient 
complexes (38 

proteins) 

Unbound models 
used 

Specificity: 40.8 
Sensitivity: 26.7 

Transient (86 
proteins) 

- 
Specificity: 47 
Sensitivity: 43 SPPIDER- 

Porollo and 
Meller (2007) 

Mixed 
i. k-fold cross 

validation dataset 
(435 proteins) 

 

Bound models used 
Specificity: 67 

Sensitivity: 52.7 Mixed (149 
proteins) 

Bound models used 
Specificity: 63.7 
Sensitivity: 60.3 

Obligate complexes 
are present (tested 
separately from 

transient complexes) 

Specificity: ≥ 33 
Sensitivity: - 

HotPatch- 
Pettit et al., 

(2007) 
Transient complexes 

Mixed (Unbound 
and bound models) 

Specificity: ≥ 33 
Sensitivity: - 

N/A N/A N/A 

Mixed (Permanent 
complexes present): 

i. 3-fold cross 
validation dataset 

(748 proteins) 

Bound models used 
Specificity: 60 
Sensitivity: 50 

Subset of dataset: 
Permanent (552 

proteins) 
Bound models used 

Specificity: 65.5 
(average) 

Sensitivity: 58 
(average) 

Mixed (Obligate 
complexes 
present) – 

(180 proteins) 

Bound models used 
Specificity: 61.8 
Sensitivity: 50 

PIER- 
Kufareva et 
al., (2007) 

Subset of dataset: 
Transient (196 

proteins) 
Bound models used 

Specificity: 49 
(average) 

Sensitivity: 50 
(average) 

Transient 
complexes (91 

complexes) 
- 

Specificity: ≥25 
Sensitivity: 80 
both for 82% of 

dataset 
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Konc and 
Janežič 
(2007) 

Mixed (Obligate 
complexes present) 

Bound models used 
Specificity: ~ 42 

Sensitivity: ~ 46.6 
N/A N/A N/A 

Negi and 
Braun (2007) 

- 
Unbound models 

used 
Accuracy: ~ 70 N/A N/A N/A 
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Table A-2: The advantages (green) and disadvantages (red) of predictors for categories based on dataset essentials for predictor training, the use 
of structural and/or sequence predictive features for predictor development, miscellaneous details, and availability of a predictor webserver or 
download for each interface residue predictor are indicated. A dash (-) indicates no information could be obtained. A category not applicable for 
a predictor is indicated as ‘N/A’. 
 

Predictor 

Biological or 
crystal 
packing 

interaction 

Antibody-
antigen 
(Ab/Ag) 

interaction 
exclusions 

ROS residue 
removal 
during 

training (with 
cross-

validation) 

Benchmarking 
to other 

predictors 

Sequence 
and/or 

Structural 
data usage 

Miscellaneous 
Webserver or 

download 
available 

ET- 
Mihalek et al., 

2004; 
Litcharge et 
al., 1996a 

- N/A N/A No 

Sequence 
(latest) and 

structure data 
used 

- 
Webserver 
available 

SHARPE2- 
Murakami and 
Jones, 2006; 
Jones and 
Thornton, 

1997a 

Crystallization 
interactions 

avoided 
(manually 
curated 
dataset) 

(Ab/Ag) not 
removed from 

dataset 
N/A No 

Only 
structural 
data used 

Manually 
curated dataset 

used 
 

Webserver 
available 

Landgraf et al., 
(2001) 

- 
(Ab/Ag) not 
included in 

their analysis 
N/A No 

Sequence 
(latest) and 

structure data 
used 

- No 

Cons-PPISP 
Chen and Zhou 

(2005) 

Crystallization 
interactions 

present 

Removed 
(Ab/Ag) from 
training and 

testing dataset 

No No 

Sequence 
(latest) and 

structure data 
used 

Four FPs are 
converted to 
TPs in their 
prediction 
based on 

proximity to 
TPs 

 

Webserver 
available 

Fariselli et al., - - No No 
Sequence 

i. Highly Only source 
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(HSSP- not 
latest) 

(2002) 
Structural 

data 

redundant 
training set; 

ii. Permissive 
interface 

definition used 
(~40%) 

code available 
(upon request) 

ISIS- 
Ofran and Rost 
(2007, 2003) 

N/A - No No 

Only 
sequence 

(latest) data 
used 

- 
Webserver 
available 

ProMate-
Neuvirth et al., 

(2004) 
N/A 

Removed 
(Ab/Ag) from 
training dataset 

No No 

Sequence 
(latest) and 

structure data 
used 

i. Able to 
accept 

potentially new 
interface 
predictive 

properties as 
input (User-

friendly) 
ii. Manually 

curated dataset 
used 

Webserver 
available 

Crescendo- 
Chelliah et al., 
(2006; 2004) 

N/A 
(Ab/Ag) not 

included 
N/A No 

Sequence 
(user-input) 
and structure 

data used 

- 
Webserver 
available 

Koike and 
Takagi (2004) 

Crystallization 
interactions 

present 

(Ab/Ag) not 
removed from 
training dataset 

Yes 
Direct 

benchmarking 
performed 

Sequence 
(latest) and 

structure data 
used 

- No 

Keil et al., 
(2004) 

Crystallization 
interactions not 

removed 

(Ab/Ag) not 
removed from 

dataset 
No No 

Only 
structural 
data used 

Not a manually 
curated dataset 

(77% of the 
PDB-1999 is 

used) 

No 
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PPI-Pred- 
Bradford and 

Westhead 
(2005) 

Crystallization 
interactions 

removed 
- No 

Direct 
benchmarking 

performed 

Sequence 
(latest) and 

structure data 
used 

Manually 
curated dataset 

used 

Webserver 
available 

Bordner and 
Abagyan 
(2005) 

Crystallization 
interactions 

avoided(Swiss-
Prot ver.) 

(Ab/Ag) not 
included 

No (avoided) No 

Sequence 
(latest) and 

structure data 
used 

Manually 
curated dataset 
used (Swiss-

Prot 
verification) 

No 

Bradford and 
Westhead 

(2006) 

Crystallization 
interactions 

removed 
- No 

Direct 
benchmarking 

performed 

Sequence 
(latest) and 

structure data 
used 

Manually 
curated dataset 

used 
No 

Hoskins et al., 
(2006) 

N/A 
(Ab/Ag) not 

included 
N/A No 

Only 
structural 
data used 

- 
No 

 

An FP is 
converted to a 

TP in their 
prediction 
based on 

proximity to 3 
TPs 

Chung et al., 
(2006) 

- - Yes No 

Sequence 
(latest) and 

structure data 
used 

Structural 
conservation is 

used 

No 

Wang et al., 
(2006) 

- - Yes 
Direct 

benchmarking 
performed 

Sequence 
(latest) and 

structure data 
used 

Permissive 
interface 

definition used 
No 

PINUP- 
Liang et al., 

(2006) 
N/A 

Removed 
(Ab/Ag) from 
training dataset 

No 
Direct 

benchmarking 
performed 

Sequence 
(latest) and 

structure data 
used 

Manually 
curated 

datasets used 
for training and 

independent 

Webserver 
available 
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testing 

Sequence 
(HSSP- not 

latest) 
WHISCY- 

de Vries et al., 
(2006) 

N/A 
Removed 

(Ab/Ag) from 
training dataset 

No 
Direct 

benchmarking 
performed Structural 

data used 

i. Manually 
curated dataset 

used 

Webserver 
available 

SPPIDER- 
Porollo and 

Meller (2007) 

Crystallization 
interactions 

removed (via 
PQS server) 

- No 
Direct 

benchmarking 
performed 

Sequence 
(latest) and 

structure data 
used 

i. Difference 
between 

predicted and 
actual solvent 
accessibility 

used 
ii. All available 

alternative 
interfaces are 
assigned to 
Positive or 
Negative 

classes prior to 
training 

Webserver 
available 

HotPatch- 
Pettit et al., 

(2007) 

Crystallization 
interactions 

avoided 
(Manually 
curated) 

(Ab/Ag) not 
included 

No No 
Only 

structural 
data used 

Manually 
curated dataset 

used 

Webserver 
available 

PIER- 
Kufareva et al., 

(2007) 

Crystallization 
interactions 

avoided 
(Swiss-Prot 
verification) 

Removed 
(Ab/Ag) from 
training dataset 

No 
Direct 

benchmarking 
performed 

Only 
structural 
data used 

Manually 
curated 

datasets used 
for training 
(Swiss-Prot 
verification) 

and 
independent 

testing 

Webserver 
available 
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Konc and 
Janežič (2007) 

N/A N/A N/A No 
Only 

structural 
data used 

A small 
developmental 

dataset was 
used 

No 

InterProSurf-  
Negi and 

Braun (2007) 
- 

(Ab/Ag) not 
removed from 

dataset 
N/A No 

Only 
structural 
data used 

- 
Webserver 
available 
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Table A-3: The limitations (red) of interface residue predictors are indicated. These are addressed in this study (see section 1.11 for details). A 
category not applicable for a predictor is indicated as ‘N/A’. 

Predictor 

Conservation data source: 
Multiple sequence alignment 

(MSA) or PSI-BLAST 
PSSM 

Explicit sequence data editing 
heuristic generated MSA vs. 

automatically generated 
MSA: A comparison by 
systematic analysis of 

transient proteins (hetero-
complexes) 

Interface residue 
prediction data 

clustering vs. non- 
residue clustering: 
A comparison by 

systematic analysis 
of unbound 

transient proteins 
(hetero-complexes) 

Application of interface 
prediction and 

experimental (NMR) 
data-driven protein-

protein docking? 

ET- 
Mihalek et al., 2004; 

Litcharge et al., 1996a 
MSA No No No 

SHARPE2- 
Murakami and Jones, 

2006; Jones and 
Thornton, 1997a 

N/A N/A N/A N/A 

Langraf et al., (2001) MSA No No No 

Cons-PPISP 
Chen and Zhou (2005) 

 
(PPISP, Zhou and 

Shan, 2001) 

PSI-BLAST PSSM N/A No No 

Fariselli et al., (2002) MSA (HSSP sequence profile) No No No 
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ISIS- 
Ofran and Rost (2006, 

2003) 
PSI-BLAST PSSM N/A N/A No 

ProMate-Neuvirth et 
al., (2004) 

PSI-BLAST PSSM N/A No No 

Crescendo- 
Chelliah et al., (2006; 

2004) 
MSA No No No 

Koike and Takagi 
(2004) 

PSI-BLAST PSSM N/A No No 

Keil et al., (2004) N/A N/A No No 

PPI-Pred- 
Bradford and 

Westhead (2005) 
MSA No No No 

Bordner and Abagyan 
(2005) 

MSA No No No 
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Bradford and 
Westhead (2006) 

MSA No No No 

Hoskins et al., (2006) N/A N/A No No 

Chung et al., (2006) 
MSAstruc and PSI-BLAST 

PSSM 
No No No 

Wang et al., (2006) 
MSA and MSA (HSSP 

sequence profile) 
No No No 

PINUP- 
Liang et al., (2006) 

PSI-BLAST PSSM N/A No No 

WHISCY- 
de Vries et al., (2006) 

MSA (HSSP) No No No 

SPPIDER- 
Porollo and Meller 

(2007) 
MSA and PSI-BLAST PSSM No No No 
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HotPatch- 
Pettit et al., (2007) 

N/A N/A No No 

PIER- 
Kufareva et al., (2007) 

N/A N/A No No 

Konc and Janežič 
(2007) 

N/A N/A No No 

Negi and Braun (2007) N/A N/A No No 
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Table A-4    

Complex 

  Non-

editing 

heuristic: 

unrefined 

MSA  

(Top-20 hit 

score) 

 Editing 

heuristic: 

refined 

MSA  

(Top-20 hit 

score) 

Top-20 hit score 

fractional 

difference  

(Δtop-20) 

1E6E_A:B_r 0 0 0 

1E6E_A:B_l 0.3 0.6 0.3 

1EWY_A:C_r 0.2 0.25 0.05 

1EWY_A:C_l 0.3 0.3 0 

2O8V_A:B_r 0.1 0 -0.1 

2O8V_A:B_l 0.6 0.65 0.05 

2PCC_A:B_r 0.15 0 -0.15 

2PCC_A:B_l 0.25 0.25 0 

7CEI_A:B_r 0.2 0.2 0 

7CEI_A:B_l 0.1 0.05 -0.05 

1B6C_A:B_r 0.2 0.3 0.1 

1B6C_A:B_l 0 0.05 0.05 

1BUH_A:B_r 0.05 0.05 0 

1BUH_A:B_l 0.4 0.35 -0.05 

1E96_A:B_r 0.1 0 -0.1 

1E96_A:B_l 0.3 0.45 0.15 

1FQJ_A:B_r 0.2 0.15 -0.05 

1FQJ_A:B_l 0.3 0.75 0.45 

1GLA_G:F_r 0 0 0 

1GLA_G:F_l 0.1 0.25 0.15 

1GPW_A:B_r 0.3 0.25 -0.05 

1GPW_A:B_l 0.55 0.55 0 

1K74_A:D_r 0.5 0.5 0 

1K74_A:D_l 0.4 0.15 -0.25 

1KTZ_A:B_r 0 0.1 0.1 

1KTZ_A:B_l 0 0.5 0.5 

1QA9_A:B_r 0.15 0.1 -0.05 

1QA9_A:B_l 0.05 0.15 0.1 

1S1Q_A:B_r 0.3 0.15 -0.15 

1S1Q_A:B_l 0.35 0.4 0.05 

1XD3_A:B_r 0.15 0.6 0.45 

1XD3_A:B_l 0.7 0.55 -0.15 

1Z0K_A:B_r 0.35 0.45 0.1 

1Z0K_A:B_l 0.4 0.45 0.05 

1Z5Y_D:E_r 0 0.45 0.45 

1Z5Y_D:E_l 0.2 0.45 0.25 

1ZHI_A:B_r 0.05 0.05 0 
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2HQS_A:H_r 0.1 0.2 0.1 

2HQS_A:H_l 0.25 0.7 0.45 

2OOB_A:B_r 0.05 0.25 0.2 

2OOB_A:B_l 0.3 0.4 0.1 

1M10_A:B_r 0 0.25 0.25 

1M10_A:B_l 0.25 0.05 -0.2 

1NW9_B:A_r 0.15 0.1 -0.05 

1NW9_B:A_l 0.5 0.25 -0.25 

1GRN_A:B_r 0.5 0.6 0.1 

1GRN_A:B_l 0.3 0.55 0.25 

1HE8_B:A_r 0.25 0.25 0 

1HE8_B:A_l 0 0 0 

1WQ1_R:G_r 0.6 0.6 0 

1WQ1_R:G_l 0.9 0.9 0 

1XQS_A:C_r 0.05 0.65 0.6 

1XQS_A:C_l 0 0.05 0.05 

2CFH_A:C_r 0.1 0.45 0.35 

2CFH_A:C_l 0.1 0 -0.1 

2HRK_A:B_r 0.3 0.3 0 

2HRK_A:B_l 0.1 0.35 0.25 

2NZ8_A:B_r 0.5 0.6 0.1 

2NZ8_A:B_l 0.25 0.65 0.4 

1FQ1_A:B_r 0.1 0.15 0.05 

1FQ1_A:B_l 0.1 0.4 0.3 

1BKD_R:S_r 0.6 0.55 -0.05 

1BKD_R:S_l 0 0.5 0.5 

1IRA_Y:X_r 0.15 0.05 -0.1 

1IRA_Y:X_l 0.35 0.2 -0.15 

1JMO_A:H_r 0.1 0.05 -0.05 

1JMO_A:H_l 0.1 0.45 0.35 

1R8S_A:E_r 0.55 0.55 0 

1R8S_A:E_l 0.6 0.85 0.25 

2OT3_B:A_r 0.15 0.5 0.35 

2OT3_B:A_l 0.45 0.5 0.05 

1GXG_A:C_r 0 0 0 

1GXG_A:C_l 0.25 0.1 -0.15 

1OC0_A:B_r 0 0.05 0.05 

1OC0_A:B_l 0.4 0.5 0.1 

2J0T_A:D_r 0.15 0.5 0.35 

2J0T_A:D_l 0.2 0.35 0.15 

1FFW_A:B_r 0.1 0.1 0 

1FFW_A:B_l 0.35 0.55 0.2 

1H9D_A:B_r 0.1 0 -0.1 

1H9D_A:B_l 0.45 0.5 0.05 

1PVH_A:B_r 0 0 0 
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1PVH_A:B_l 0.05 0.15 0.1 

1ZHH_A:B_r 0.05 0.05 0 

1ZHH_A:B_l 0.2 0.15 -0.05 

2A5T_A:B_r 0.15 0.2 0.05 

2A5T_A:B_l 0.05 0.2 0.15 

2FJU_B:A_r 0 0 0 

2FJU_B:A_l 0.35 0.35 0 

1JIW_P:I_r 0.3 0.2 -0.1 

1JIW_P:I_l 0.05 0.3 0.25 

1MQ8_A:B_r 0 0.15 0.15 

1MQ8_A:B_l 0 0.25 0.25 

1R6Q_A:C_r 0.35 0.4 0.05 

1R6Q_A:C_l 0.15 0.3 0.15 

1SYX_A:B_r 0.25 0.4 0.15 

1SYX_A:B_l 0.45 0.45 0 

2AYO_A:B_r 0.1 0.55 0.45 

2AYO_A:B_l 0.55 0.75 0.2 

2J7P_A:D_r 0.45 0.45 0 

2J7P_A:D_l 0.15 0.45 0.3 

3CPH_G:A_r 0.25 0.45 0.2 

3CPH_G:A_l 0.2 0.65 0.45 

1F6M_A:C_r 0.1 0.25 0.15 

1F6M_A:C_l 0.55 0.5 -0.05 

2O3B_A:B_r 0.2 0.45 0.25 

2O3B_A:B_l 0.45 0.45 0 

1JK9_B:A_r 0.55 0.65 0.1 

1JK9_B:A_l 0.4 0.45 0.05 

2I9B_E:A_r 0.15 0.15 0 

2I9B_E:A_l 0.15 0.3 0.15 

1GGR_A:B_r 0.05 0.3 0.25 

1GGR_A:B_l 0.35 0.45 0.1 

1J6T_A:B_r 0.1 0.45 0.35 

1J6T_A:B_l 0.35 0.45 0.1 

1O2F_A:B_r 0 0.25 0.25 

1O2F_A:B_l 0.3 0.55 0.25 

1P9D_S:U_r 0.35 0.65 0.3 

1P9D_S:U_l 0.65 0.65 0 

1UR6_A:B_r 0.05 0.2 0.15 

1UR6_A:B_l 0.6 0.6 0 

3EZA_A:B_r 0 0 0 

3EZA_A:B_l 0.55 0.65 0.1 
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Table A-5: Overview of the intra-species binary protein complexes of Benchmark4.0. 

Complex function Complex Receptor Ligand 

Enzyme/electron transport 
protein 

1E6E_A:B 
Adrenoxin 
reductase 

Adrenoxin 

Enzyme/electron transport 
protein 

1EWY_A:C 
Ferredoxin 
reductase 

Ferredoxin 

Enzyme/electron transport 
protein 

2O8V_A:B 
PAPS 

reductase 
Thioredoxin 

Enzyme/electron transport 
protein 

2PCC_A:B 
Cyt C 

peroxidase 
Cytochrome C 

Enzyme/enzyme inhibitor 
protein 

7CEI_A:B 
Colicin E7 
nuclease 

Im7 immunity 
protein 

Receptor inhibitor/Receptor 1B6C_A:B 
FKBP 

binding 
protein 

TGFbeta receptor 

Enzyme/enzyme regulatory 
protein 

1BUH_A:B CDK2 kinase Ckshs1 

Components of the enzyme 
complex NADPH oxidase 

1E96_A:B Rac GTPase p67 Phox 

Signal transducer protein/Signal 
transducer inhibitor protein 

1FQJ_A:B Gt-alpha RGS9 

Enzyme/Non-competitive 
enzyme inhibitor 

1GLA_G:F 
Glycerol 
Kinase 

Glucose specific 
phosphocarrier 

Molecular bienzyme complex’s 
subunits 

1GPW_A:B HISF protein 
Amidotransferase 

HISH 
Hetero-dimeric receptors of 

transcriptional factor complex 
ARF6 

1K74_AB:DE RXR-alpha PPAR-gamma 

Cytokine (signalling) 
protein/Receptor 

1KTZ_A:B TGF-beta TGF-beta receptor 

Receptor/ligand interaction 1QA9_A:B CD2 CD58 
Protein transport complex 1S1Q_A:B UEV domain Ubiquitin 
Enzyme/Enzyme substrate 1XD3_A:B UCH-L3 Ubiquitin 

Protein transport enzyme 
(PTE)/PTE effector protein 

1Z0K_A:B 
Rab4A 
GTPase 

RAB4 binding 
domain of 
Rabenosyn 

Electron transport 
protein/enzyme  

1Z5Y_D:E 
N-term of 

DsbD 
E.coli CCMG 

protein 

Chromatin silencing proteins  1ZHI_A:B 
BAH domain 

of Orc1 
Sir Orc-interaction 

domain 
Maintenance of bacterial outer 

membrane integrity  
2HQS_A:H TolB Pal 

Ubquitin-binding enzyme 
(UBE) /Ubiquitin (promoter of 
protein dimerization of UBE 

2OOB_A:B 
Ubiquitin 

ligase 
Ubiquitin 
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and hence UBE biological 
activity)  

Cause reduction in platelet 
velocity at vascular damaged 

areas and are important in 
haemostasis and thrombosis  

1M10_A:B 

Von 
Willebrand 
Factor dom. 

A1 

Glycoprotein IB-
alpha 

Enzyme/enzyme inhibitor 
protein  

1NW9_B:A Capase-9 BIR3-XIAP 

Enzyme/enzyme activating 
protein  

1GRN_A:B * 
CDC42 
GTPase 

CDC42 GAP 

Enzyme activating 
protein/activated enzyme  

1HE8_B:A Ras GTPase PIP3 kinase 

Enzyme/enzyme regulatory 
protein (inactivates enzyme)  

1WQ1_R:G * Ras GTPase Ras GAP 

Protein chaperone 
(PC)/Nucleotide exchange 
protein which inhibits PC 

nucleotide affinity   

1XQS_A:C HspBP1 
Hsp70 ATPase 

domain 

Core sub-complex component of 
the transport protein particle 

(TRAPP) complex  
2CFH_A:C BET3 TPC6 

Components of the aminoacyl-
tRNA synthetase (aaRS) protein 

complex  
2HRK_A:B 

Glutamyl-t-
RNA 

synthetase 

GU-4 nucleic 
binding protein 

Enzyme/enyme activator protein 
(activates the enzyme by the 
exchange of bound GDP for 

GTP)  

2NZ8_A:B Rac GTPase 
DH/PH domain of 

TRIO 

Enzyme/enzyme inhibitor 
(inactivates enzyme)  

1FQ1_A:B CDK2 kinase CDK inhibitor 3 
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Enzyme/enzyme 
inhibitor  

1PXV_A:C Cystein protease 
Cystein protease 

inhibitor 
Enzyme/ Nucleotide 

exchange protein 
(allows nucleotide 
exchange for the 

enzyme)  

1BKD_R:S Ras GTPase Son of Sevenless 

Receptor/receptor 
protein antagonist 

(inhibits Il-1 by binding 
to the receptor)  

1IRA_Y:X Interleukin-1 receptor 
Interleukin-1 

receptor antagonist 
protein 

Thrombin protease 
inhibitor/Protease  

1JMO_A:HL Heparin cofactor Thrombin 

GTP-binding protein 
(enzyme)/guanine-

nucleotide exchange 
factor  

1R8S_A:E Arf1 GTPase Sec 7 domain 

GTP-binding protein 
(enzyme)/nucleotide 

exchange factor  
2OT3_B:A Rab21 GTPase Rabex-5 VPS9 

Enzyme/enzyme 
inhibitor  

1GXD_A:C 
proMMP2 type IV 

collagenase 
Metalloproteinase 

inhibitor 2 
Protein (PAI-1)/ PAI-1 

activator protein (causes 
fibrinolysis inhibition 
when PAI-1 is active) 

1OC0_A:B 
Plasminogen activator 

inhibitor-1 

Vitronectin 
Somatomedin B 

domain 

Enzyme/enzyme 
inhibitor  

2J0T_A:D 
MMP1 Intersitial 

collagenase 
Metalloproteinase 

inhibitor 1 
Sensory signal 

transmission proteins 
(chemoreceptors to the 

flagellar motors 
transmission)  

1FFW_A:B 
Chemotaxis protein 

CheY 
Chemotaxis protein 

CheA 

Components of 
heterodimeric 

transcription factor 
known as core binding 

factors  

1H9D_A:B 
Runx1 domain of 

CBFa1 

Dimerisation 
domain of CBF-

beta 

Receptor/receptor 
protein (cytokine)  

1PVH_A:B 
IL6 receptor beta chain 

D2-D3 domains 
Leukemia 

inhibitory factor 
Signal transduction 

proteins in the quorum 
sensing communication 
process:  periplasmic 

receptor/ inner 
membrane sensor 

protein  

1ZHH_A:B 
Autoinducer 2-binding 

periplasmic protein 
LuxP 

Autoinducer 2 
sensor 

kinase/phosphatase 
LuxQ 

Components of NMDA 
(N-methyl-D-aspartate) 

2A5T_A:B 
NMDA receptor R1-
4A subunit ligand-

NMDA receptor 
R2A subunit 
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receptor  binding core ligand-binding core 
Participate in signalling 

cascade: Enzyme/ 
Protein activator of 

enzyme  

2FJU_A:B Phospolipase beta 2 Rac GTPase 

Enzyme/enzyme 
inhibitor  

1JIW_P:I 
Alkaline 

metalloproteinase 
Proteinase inhibitor 

Intercellular adhesion 
proteins  

1MQ8_A:B ICAM-1 domain 1-2 
Integrin a-L I 

domain 
Enzyme/activity 
modulator of the 

enzyme  
1R6Q_A:C 

Clp protease subunit 
ClpA 

Clp protease 
adaptor protein 

ClpS 

Components of the 
spliceosome  

1SYX_A:B 
Spliceosomal U5 15 

kDa protein 

CD2 receptor 
binding protein 2 
C-ter fragment 

Deubiquitinating 
enzyme/ubiquitin  

2AYO_A:B 
Ubiquitin carboxyl-

terminal hydrolase 14 
Ubiquitin 

GTPases sub-units of 
the signal recognition 

particle co-translational 
targeting complex  

2J7P_A:D SRP GTPase Ffh 
Cell division 
protein FtsY 

Rab small 
GTPase/GDP/GTP 
exchange reaction 
regulator of Rab  

3CPH_A:G 
Ras-related protein 

Sec4 

Rab GDP-
dissociation 

inhibitor 

Redox reaction proteins 
protein 

1F6M_A:C Thioredoxin reductase Thioredoxin 1 

Enzyme/enzyme 
inhibitor  

2O3B_A:B NucA nuclease 
NuiA nuclease 

inhibitor 
Metallochaperone 

(trafficking factors), 
which delivers copper 

co-factor to activate the 
enzyme (i.e. 
apoenzyme)  

1JK9_A:B CCS metallochaperone 
SOD1 superoxide 

dismutase 

Receptor/receptor 
protein  

2I9B_A:E 
Urokinase 

plasminogen activator 
surface receptor 

Urokinase-type 
plasminogen 

activator 
Signal transduction 

proteins involved in the 
phosphoenolpyruvate 

sugar 
phosphotransferase 
system (PTS) signal 
transduction pathway  

1GGR 
Glucose-specific 

phosphotransferase 
enzyme IIA component 

Phosphocarrier 
protein HPr 

Signal transduction 
proteins involved in the 
phosphoenolpyruvate 

sugar 
phosphotransferase 

1J6T 
PTS system mannitol-

specific EIICBA 
component 

Phosphocarrier 
protein HPr 
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system (PTS) signal 
transduction pathway  
Signal transduction 

proteins involved in the 
phosphoenolpyruvate 

sugar 
phosphotransferase 
system (PTS) signal 
transduction pathway  

1O2F 
Glucose-specific 

phosphotransferase 
enzyme IIA component 

PTS system 
glucose-specific 

EIICB component 

Proteosomal 
subunit/modulator of 

subunit  
1P9D 

26S proteasome non-
ATPase regulatory 

subunit 4 

UV excision repair 
protein RAD23 

homolog A 

Proteins involved in the 
ubiquitination pathway  

1UR6 
Ubiquitin-conjugating 

enzyme E2 D2 

CCR4-NOT 
transcription 

complex subunit 4 
Signal transduction 

proteins involved in the 
phosphoenolpyruvate 

sugar 
phosphotransferase 
system (PTS) signal 
transduction pathway  

3EZA 
Phosphoenolpyruvate-

protein 
phosphotransferase 

Phosphocarrier 
protein HPr 
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Table A-6: PROTIN_ID default            

Complex 
TP 

count 
FP 

count 
Cluster 
count 

Total 
Interface

_res 

Surface 
only_res 

Total 
Surface 

Cluster 
TP_frac 

Cluster 
FP_frac 

TP 
rate 

FP 
rate 

Specificity Accuracy 
F-

measure 
MCC 

1A0O_A:B_r 0 10 10 12 76 88 0.00 1.00 0.00 0.13 0.00 0.75 0.00 -0.14 

1A0O_A:B_l 8 7 15 14 43 57 0.53 0.47 0.57 0.16 0.53 0.77 0.55 0.40 

1BRS_A:D_r 3 7 10 20 66 86 0.30 0.70 0.15 0.11 0.30 0.72 0.20 0.06 

1BRS_A:D_l 13 5 18 16 51 67 0.72 0.28 0.81 0.10 0.72 0.88 0.76 0.69 

2PTC_E:I_r 8 3 11 20 124 144 0.73 0.27 0.40 0.02 0.73 0.90 0.52 0.49 

2PTC_E:I_l 10 10 20 13 35 48 0.50 0.50 0.77 0.29 0.50 0.73 0.61 0.44 

1FIN_A:B_r 0 5 5 41 160 201 0.00 1.00 0.00 0.03 0.00 0.77 0.00 -0.08 

1FIN_A:B_l 5 0 5 27 131 158 1.00 0.00 0.19 0.00 1.00 0.86 0.31 0.40 

1SPB_S:P_r 4 1 5 33 129 162 0.80 0.20 0.12 0.01 0.80 0.81 0.21 0.26 

1SPB_S:P_l 5 13 18 17 42 59 0.28 0.72 0.29 0.31 0.28 0.58 0.29 -0.02 

1E6E_A:B_r 0 7 7 26 279 305 0.00 1.00 0.00 0.03 0.00 0.89 0.00 -0.05 

1E6E_A:B_l 12 4 16 24 55 79 0.75 0.25 0.50 0.07 0.75 0.80 0.60 0.49 

1EWY_A:C_r 4 6 10 18 177 195 0.40 0.60 0.22 0.03 0.40 0.90 0.29 0.25 

1EWY_A:C_l 3 7 10 16 56 72 0.30 0.70 0.19 0.13 0.30 0.72 0.23 0.08 

7CEI_A:B_r 0 12 12 19 52 71 0.00 1.00 0.00 0.23 0.00 0.56 0.00 -0.27 

7CEI_A:B_l 0 8 8 17 81 98 0.00 1.00 0.00 0.10 0.00 0.74 0.00 -0.14 

2PCC_A:B_r 0 5 5 15 177 192 0.00 1.00 0.00 0.03 0.00 0.90 0.00 -0.05 

2PCC_A:B_l 1 4 5 16 63 79 0.20 0.80 0.06 0.06 0.20 0.76 0.10 0.00 

1GLA_G:F_r 0 4 4 15 250 265 0.00 1.00 0.00 0.02 0.00 0.93 0.00 -0.03 

1GLA_G:F_l 2 5 7 16 82 98 0.29 0.71 0.13 0.06 0.29 0.81 0.17 0.09 

1WQ1_R:G_r 11 5 16 27 86 113 0.69 0.31 0.41 0.06 0.69 0.81 0.51 0.43 

1WQ1_R:G_l 10 0 10 32 182 214 1.00 0.00 0.31 0.00 1.00 0.90 0.48 0.53 

1FQ1_A:B_r 2 5 7 16 179 195 0.29 0.71 0.13 0.03 0.29 0.90 0.17 0.14 

1FQ1_A:B_l 7 4 11 19 93 112 0.64 0.36 0.37 0.04 0.64 0.86 0.47 0.41 
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1BXI_A:B_r 0 10 10 18 78 96 0.00 1.00 0.00 0.13 0.00 0.71 0.00 -0.16 

1BXI_A:B_l 7 1 8 21 45 66 0.88 0.13 0.33 0.02 0.88 0.77 0.48 0.44 
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Table A-7: CCRXP            

Complex 
TP 

count 
FP 

count 
Cluster 
count 

Total 
Interface_res 

Surface 
only_res 

Total 
Surface 

Cluster 
TP_frac 

Cluster 
FP_frac 

TP 
rate 

FP 
rate 

Specificity Accuracy 
F-

measure 
MCC 

1A0O_A:B_r 0 5 5 12 76 88 0.00 1.00 0.00 0.07 0.00 0.81 0.00 -0.10 

1A0O_A:B_l 9 3 12 14 43 57 0.75 0.25 0.64 0.07 0.75 0.86 0.69 0.61 

1BRS_A:D_r 0 7 7 20 66 86 0.00 1.00 0.00 0.11 0.00 0.69 0.00 -0.16 

1BRS_A:D_l 2 1 3 16 51 67 0.67 0.33 0.13 0.02 0.67 0.78 0.21 0.22 

2PTC_E:I_r 18 33 51 20 124 144 0.35 0.65 0.90 0.27 0.35 0.76 0.51 0.46 

2PTC_E:I_l 7 2 9 13 35 48 0.78 0.22 0.54 0.06 0.78 0.83 0.64 0.55 

1FIN_A:B_r 18 36 54 41 160 201 0.33 0.67 0.44 0.23 0.33 0.71 0.38 0.19 

1FIN_A:B_l 0 9 9 27 131 158 0.00 1.00 0.00 0.07 0.00 0.77 0.00 -0.11 

1SPB_S:P_r 11 9 20 33 129 162 0.55 0.45 0.33 0.07 0.55 0.81 0.42 0.32 

1SPB_S:P_l 3 5 8 17 42 59 0.38 0.63 0.18 0.12 0.38 0.68 0.24 0.08 

1E6E_A:B_r 1 10 11 26 279 305 0.09 0.91 0.04 0.04 0.09 0.89 0.05 0.00 

1E6E_A:B_l 4 13 17 24 55 79 0.24 0.76 0.17 0.24 0.24 0.58 0.20 -0.08 

1EWY_A:C_r 1 16 17 18 177 195 0.06 0.94 0.06 0.09 0.06 0.83 0.06 -0.04 

1EWY_A:C_l 11 10 21 16 56 72 0.52 0.48 0.69 0.18 0.52 0.79 0.59 0.47 

7CEI_A:B_r 5 1 6 19 52 71 0.83 0.17 0.26 0.02 0.83 0.79 0.40 0.39 

7CEI_A:B_l 0 4 4 17 81 98 0.00 1.00 0.00 0.05 0.00 0.79 0.00 -0.09 

2PCC_A:B_r 0 7 7 15 177 192 0.00 1.00 0.00 0.04 0.00 0.89 0.00 -0.06 

2PCC_A:B_l 1 10 11 16 63 79 0.09 0.91 0.06 0.16 0.09 0.68 0.07 -0.11 

1GLA_G:F_r 0 194 194 15 250 265 0.00 1.00 0.00 0.78 0.00 0.21 0.00 -0.40 

1GLA_G:F_l 4 10 14 16 82 98 0.29 0.71 0.25 0.12 0.29 0.78 0.27 0.14 

1WQ1_R:G_r 19 39 58 27 86 113 0.33 0.67 0.70 0.45 0.33 0.58 0.45 0.21 

1WQ1_R:G_l 3 3 6 32 182 214 0.50 0.50 0.09 0.02 0.50 0.85 0.16 0.17 

1FQ1_A:B_r 14 38 52 16 179 195 0.27 0.73 0.88 0.21 0.27 0.79 0.41 0.41 

1FQ1_A:B_l 0 5 5 19 93 112 0.00 1.00 0.00 0.05 0.00 0.79 0.00 -0.10 



 
 

223 

1BXI_A:B_r 0 6 6 18 78 96 0.00 1.00 0.00 0.08 0.00 0.75 0.00 -0.12 

1BXI_A:B_l 5 1 6 21 45 66 0.83 0.17 0.24 0.02 0.83 0.74 0.37 0.35 
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Table A-8: WHISCY default            

Complex 
TP 

count 
FP 

count 
Cluster 
count 

Total 
Interface_res 

Surface 
only_res 

Total 
Surface 

Cluster 
TP_frac 

Cluster 
FP_frac 

TP 
rate 

FP 
rate 

Specificity Accuracy 
F-

measure 
MCC 

1A0O_A:B_r 0 13 13 12 76 88 0.00 1.00 0.00 0.17 0.00 0.72 0.00 -0.17 

1A0O_A:B_l 1 1 2 14 43 57 0.50 0.50 0.07 0.02 0.50 0.75 0.13 0.11 

1BRS_A:D_r 2 1 3 20 66 86 0.67 0.33 0.10 0.02 0.67 0.78 0.17 0.20 

1BRS_A:D_l 7 0 7 16 51 67 1.00 0.00 0.44 0.00 1.00 0.87 0.61 0.61 

2PTC_E:I_r 6 2 8 20 124 144 0.75 0.25 0.30 0.02 0.75 0.89 0.43 0.43 

2PTC_E:I_l 1 1 2 13 35 48 0.50 0.50 0.08 0.03 0.50 0.73 0.13 0.11 

1FIN_A:B_r 14 24 38 41 160 201 0.37 0.63 0.34 0.15 0.37 0.75 0.35 0.20 

1FIN_A:B_l 12 13 25 27 131 158 0.48 0.52 0.44 0.10 0.48 0.82 0.46 0.36 

1SPB_S:P_r 5 1 6 33 129 162 0.83 0.17 0.15 0.01 0.83 0.82 0.26 0.31 

1SPB_S:P_l 5 0 5 17 42 59 1.00 0.00 0.29 0.00 1.00 0.80 0.45 0.48 

1E6E_A:B_r 11 29 40 26 279 305 0.28 0.73 0.42 0.10 0.28 0.86 0.33 0.26 

1E6E_A:B_l 16 5 21 24 55 79 0.76 0.24 0.67 0.09 0.76 0.84 0.71 0.60 

1EWY_A:C_r 8 18 26 18 177 195 0.31 0.69 0.44 0.10 0.31 0.86 0.36 0.29 

1EWY_A:C_l 6 5 11 16 56 72 0.55 0.45 0.38 0.09 0.55 0.79 0.44 0.33 

7CEI_A:B_r 1 1 2 19 52 71 0.50 0.50 0.05 0.02 0.50 0.73 0.10 0.09 

7CEI_A:B_l 0 2 2 17 81 98 0.00 1.00 0.00 0.02 0.00 0.81 0.00 -0.07 

2PCC_A:B_r 0 10 10 15 177 192 0.00 1.00 0.00 0.06 0.00 0.87 0.00 -0.07 

2PCC_A:B_l 3 11 14 16 63 79 0.21 0.79 0.19 0.17 0.21 0.70 0.20 0.01 

1GLA_G:F_r 0 7 7 15 250 265 0.00 1.00 0.00 0.03 0.00 0.92 0.00 -0.04 

1GLA_G:F_l 6 2 8 16 82 98 0.75 0.25 0.38 0.02 0.75 0.88 0.50 0.47 

1WQ1_R:G_r 6 3 9 27 86 113 0.67 0.33 0.22 0.03 0.67 0.79 0.33 0.30 

1WQ1_R:G_l 18 7 25 32 182 214 0.72 0.28 0.56 0.04 0.72 0.90 0.63 0.58 

1FQ1_A:B_r 7 27 34 16 179 195 0.21 0.79 0.44 0.15 0.21 0.82 0.28 0.21 

1FQ1_A:B_l 2 4 6 19 93 112 0.33 0.67 0.11 0.04 0.33 0.81 0.16 0.10 
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1BXI_A:B_r 0 5 5 18 78 96 0.00 1.00 0.00 0.06 0.00 0.76 0.00 -0.11 

1BXI_A:B_l 0 3 3 21 45 66 0.00 1.00 0.00 0.07 0.00 0.64 0.00 -0.15 
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Table A-9: PROTIN_ID HSSP            

Complex 
TP 

count 
FP 

count 
Cluster 
count 

Total 
Interface_res 

Surface 
only_res 

Total 
Surface 

Cluster 
TP_frac 

Cluster 
FP_frac 

TP 
rate 

FP 
rate 

Specificity Accuracy 
F-

measure 
MCC 

1A0O_A:B_r 0 10 10 12 76 88 0.00 1.00 0.00 0.13 0.00 0.75 0.00 -0.14 

1A0O_A:B_l 8 4 12 14 43 57 0.67 0.33 0.57 0.09 0.67 0.82 0.62 0.51 

1BRS_A:D_r 5 4 9 20 66 86 0.56 0.44 0.25 0.06 0.56 0.78 0.34 0.26 

1BRS_A:D_l 11 5 16 16 51 67 0.69 0.31 0.69 0.10 0.69 0.85 0.69 0.59 

2PTC_E:I_r 8 1 9 20 124 144 0.89 0.11 0.40 0.01 0.89 0.91 0.55 0.56 

2PTC_E:I_l 5 14 19 13 34 47 0.26 0.74 0.38 0.41 0.26 0.53 0.31 -0.02 

1FIN_A:B_r 0 10 10 41 160 201 0.00 1.00 0.00 0.06 0.00 0.75 0.00 -0.12 

1FIN_A:B_l 0 5 5 27 131 158 0.00 1.00 0.00 0.04 0.00 0.80 0.00 -0.08 

1SPB_S:P_r 4 2 6 33 129 162 0.67 0.33 0.12 0.02 0.67 0.81 0.21 0.23 

1SPB_S:P_l 4 14 18 17 42 59 0.22 0.78 0.24 0.33 0.22 0.54 0.23 -0.10 

1E6E_A:B_r 0 7 7 26 279 305 0.00 1.00 0.00 0.03 0.00 0.89 0.00 -0.05 

1E6E_A:B_l 12 4 16 24 55 79 0.75 0.25 0.50 0.07 0.75 0.80 0.60 0.49 

1EWY_A:C_r 0 10 10 18 177 195 0.00 1.00 0.00 0.06 0.00 0.86 0.00 -0.07 

1EWY_A:C_l 2 7 9 16 57 73 0.22 0.78 0.13 0.12 0.22 0.71 0.16 0.00 

7CEI_A:B_r 0 12 12 19 52 71 0.00 1.00 0.00 0.23 0.00 0.56 0.00 -0.27 

7CEI_A:B_l 0 4 4 17 81 98 0.00 1.00 0.00 0.05 0.00 0.79 0.00 -0.09 

2PCC_A:B_r 0 8 8 15 178 193 0.00 1.00 0.00 0.04 0.00 0.88 0.00 -0.06 

2PCC_A:B_l 2 11 13 16 65 81 0.15 0.85 0.13 0.17 0.15 0.69 0.14 -0.05 

1GLA_G:F_r 0 3 3 15 251 266 0.00 1.00 0.00 0.01 0.00 0.93 0.00 -0.03 

1GLA_G:F_l 2 6 8 16 82 98 0.25 0.75 0.13 0.07 0.25 0.80 0.17 0.07 

1WQ1_R:G_r 9 3 12 27 86 113 0.75 0.25 0.33 0.03 0.75 0.81 0.46 0.41 

1WQ1_R:G_l 11 0 11 32 182 214 1.00 0.00 0.34 0.00 1.00 0.90 0.51 0.56 

1FQ1_A:B_r 0 16 16 16 179 195 0.00 1.00 0.00 0.09 0.00 0.84 0.00 -0.09 

1FQ1_A:B_l 6 5 11 19 93 112 0.55 0.45 0.32 0.05 0.55 0.84 0.40 0.33 
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1BXI_A:B_r 0 3 3 18 78 96 0.00 1.00 0.00 0.04 0.00 0.78 0.00 -0.09 

1BXI_A:B_l 7 1 8 21 45 66 0.88 0.13 0.33 0.02 0.88 0.77 0.48 0.44 
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Table A-10: WHICSY UniRef90            

Complex 
TP 

count 
FP 

count 
Cluster 
count 

Total 
Interface_res 

Surface 
only_res 

Total 
Surface 

Cluster 
TP_frac 

Cluster 
FP_frac 

TP 
rate 

FP 
rate 

Specificity Accuracy 
F-

measure 
MCC 

1A0O_A:B_r 1 15 16 12 76 88 0.06 0.94 0.08 0.20 0.06 0.70 0.07 -0.10 

1A0O_A:B_l 0 0 0 14 43 57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1BRS_A:D_r 1 2 3 20 66 86 0.33 0.67 0.05 0.03 0.33 0.76 0.09 0.05 

1BRS_A:D_l 8 0 8 16 51 67 1.00 0.00 0.50 0.00 1.00 0.88 0.67 0.66 

2PTC_E:I_r 6 1 7 20 124 144 0.86 0.14 0.30 0.01 0.86 0.90 0.44 0.47 

2PTC_E:I_l 0 0 0 13 35 48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1FIN_A:B_r 11 23 34 41 160 201 0.32 0.68 0.27 0.14 0.32 0.74 0.29 0.13 

1FIN_A:B_l 12 19 31 27 131 158 0.39 0.61 0.44 0.15 0.39 0.78 0.41 0.28 

1SPB_S:P_r 4 2 6 33 129 162 0.67 0.33 0.12 0.02 0.67 0.81 0.21 0.23 

1SPB_S:P_l 3 0 3 17 42 59 1.00 0.00 0.18 0.00 1.00 0.76 0.30 0.36 

1E6E_A:B_r 10 36 46 26 279 305 0.22 0.78 0.38 0.13 0.22 0.83 0.28 0.20 

1E6E_A:B_l 17 6 23 24 55 79 0.74 0.26 0.71 0.11 0.74 0.84 0.72 0.61 

1EWY_A:C_r 8 18 26 18 177 195 0.31 0.69 0.44 0.10 0.31 0.86 0.36 0.29 

1EWY_A:C_l 4 4 8 16 56 72 0.50 0.50 0.25 0.07 0.50 0.78 0.33 0.24 

7CEI_A:B_r 1 1 2 19 52 71 0.50 0.50 0.05 0.02 0.50 0.73 0.10 0.09 

7CEI_A:B_l 0 1 1 17 81 98 0.00 1.00 0.00 0.01 0.00 0.82 0.00 -0.05 

2PCC_A:B_r 1 15 16 15 177 192 0.06 0.94 0.07 0.08 0.06 0.85 0.06 -0.02 

2PCC_A:B_l 3 10 13 16 63 79 0.23 0.77 0.19 0.16 0.23 0.71 0.21 0.03 

1GLA_G:F_r 0 15 15 15 250 265 0.00 1.00 0.00 0.06 0.00 0.89 0.00 -0.06 

1GLA_G:F_l 8 3 11 16 82 98 0.73 0.27 0.50 0.04 0.73 0.89 0.59 0.54 

1WQ1_R:G_r 15 8 23 27 86 113 0.65 0.35 0.56 0.09 0.65 0.82 0.60 0.49 

1WQ1_R:G_l 17 4 21 32 182 214 0.81 0.19 0.53 0.02 0.81 0.91 0.64 0.61 

1FQ1_A:B_r 6 26 32 16 179 195 0.19 0.81 0.38 0.15 0.19 0.82 0.25 0.17 

1FQ1_A:B_l 2 6 8 19 93 112 0.25 0.75 0.11 0.06 0.25 0.79 0.15 0.06 
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1BXI_A:B_r 0 1 1 18 78 96 0.00 1.00 0.00 0.01 0.00 0.80 0.00 -0.05 

1BXI_A:B_l 0 0 0 21 45 66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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