Under consideration for publication in Knowledge and Information
Systems

Mining Sequential Patterns from
Probabilistic Databases

Muhammad Muzammal

Department of Computer Science
Bahria University, Islamabad, Pakistan.
muzammal@bui.edu.pk

Rajeev Raman

Department of Computer Science
University of Leicester, UK.
r.raman@mcs.le.ac.uk

Abstract. This paper considers the problem of sequential pattern mining (SPM) in
probabilistic databases. Specifically, we consider SPM in situations where there is uncer-
tainty in associating an event with a source, model this kind of uncertainty in the prob-
abilistic database framework and consider the problem of enumerating all sequences
whose expected support is sufficiently large. We give an algorithm based on dynamic
programming to compute the expected support of a sequential pattern. Next, we pro-
pose three algorithms for mining sequential patterns from probabilistic databases. The
first two algorithms are based on the candidate generation framework — one each based
on a breadth-first (similar to GSP) and a depth-first (similar to SPAM) exploration
of the search space. The third one is based on the pattern growth framework (similar
to PrefixSpan). We propose optimizations that mitigate the effects of the expensive
dynamic programming computation step. We give an empirical evaluation of the prob-
abilistic SPM algorithms and the optimizations, and demonstrate the scalability of the
algorithms in terms of CPU time and the memory usage. We also demonstrate the
effectiveness of the probabilistic SPM framework in extracting meaningful sequences in
the presence of noise.

Keywords: Mining Uncertain Data; Sequential Pattern Mining; Probabilistic Databases

Received Apr 11, 2013
Revised May 11, 201/
Accepted Jun 14, 2014

2 Muzammal and Raman
1. Introduction

The sequential pattern mining (SPM) problem, or finding frequent sequences of events
in data with a temporal component, was first introduced by Agrawal and Srikant [1]
and has been studied extensively in literature [2-5]. In classical SPM, it is assumed
that the data to be mined is deterministic. However, data obtained from many real-life
applications is inherently noisy or uncertain [6]. Probabilistic databases is a popular
framework for modelling uncertainties in data [7], and captures a wide range of ap-
plications [6]. Recently several data mining and ranking problems have been studied
in this framework, including top-k [8, 9] and frequent itemset mining (FIM) [10-16].
This paper is the first to consider algorithms for uncertain SPM in the probabilistic
databases framework (however, other kinds of uncertainty in SPM have been previously
studied [17, 18]).

In classical SPM, the event database consists of tuples (eid, e, o), where e is an event, o
is a source and eid is an event-id which incorporates a time-stamp. A tuple may record
a retail transaction (event) by a customer (source), or an object (source) recorded by a
camera (event). Since event-ids have a time-stamp, the event database can be viewed
as a collection of source sequences, one per source, containing a sequence of events
(ordered by time-stamp) associated with that source, and the classical SPM problem is
to find patterns of events that have a temporal order that occur in a significant number
of source sequences.

Uncertainty in SPM can occur in three different places: the source, the event and the
time-stamp may all be uncertain (in contrast, in FIM, only the event can be uncer-
tain [10, 11, 13]). In this work, we focus on uncertainty in the source which we refer
to as source-level uncertainty (SLU). Uncertainty in the source attribute could arise in
situations such as:

(a) a customer (source) purchases some items (event) from a superstore, and provides
identity information e.g. by filling a form. As the customer’s details may be incom-
plete or imprecise, multiple matches may emerge in the customer database and thus
uncertainty is introduced in the source attribute.

(b) a vehicle (source) is identified by a camera (event) using methods such as auto-
matic number plate recognition (ANPR), which are inherently noisy. For exam-
ple, a sample tuple in the SIGHTING (time t, camera location 1, vehicle Z)
relation that records vehicle sightings may look like SIGHTING (103, p, {(Y81 UV:
0.6) (YB1 UV: 0.3) (Y81 UU:0.1)}) which means that a vehicle was recorded pass-
ing a camera at location p at time 103, but the number plate of the vehicle was
uncertain, and could have been Y81 UV, YB1 UV or Y81 UU, with certainties 0.6,
0.3 and 0.1 respectively. To mine patterns such as “10% of cars pass camera X,
then camera Y and later camera Z”, we consider each car as a source and each
sighting as an event.

In such scenarios, it is certain that an event occurred (e.g. a customer bought some
items, a vehicle passed a camera) but the source associated with that event is uncertain.
The software which performs the matching would typically assign confidence values to
the various alternative matches. A notable example of a large scale database gathering
data using ANPR technology is the UK police database [19], and studies suggest that
even the most advanced ANPR systems have only upto 90% accuracy even under most
suitable weather conditions [20]. We model the above scenarios by assuming that each
event is associated with a probability distribution over possible sources that could have
resulted in the event. This formulation thus shows attribute-level uncertainty in the
source attribute [7].

In Muzammal and Raman [21], two measures of “frequentness”, namely ezpected sup-
port and probabilistic frequentness, used for FIM in probabilistic databases [11, 13],
were adapted to SPM. It was shown that although probabilistic frequentness is more
descriptive than expected support, even deciding if a sequence in an SLU database

Mining Sequential Patterns from Probabilistic Databases 3

is probabilistically frequent is #P-complete [21]. This paper is focussed on efficient
algorithms for SPM in an SLU database under the expected support measure. Our
contributions are as follows:

1. We give a dynamic programming (DP) algorithm to determine efficiently the prob-

ability that a given source supports a sequence (the source support probability), and
show that this is enough to compute the expected support of a sequence in an SLU
database.

. We propose two algorithms based on the candidate generation framework, one each

based on a breadth-first and a depth-first exploration of the search space, and
an algorithm based on the pattern growth framework using the idea of projected
databases, to find all frequent sequences in an SLU database according to the
expected support criterion.

. To speed up the support computation, we exploit properties of the DP to obtain

algorithms for:

(a) highly efficient computation of frequent 1-sequences, which allows us to compute
all frequent 1-sequences in a (projected) database in linear time,

(b) incremental computation of the DP matrix, which allows us to minimize the
amount of time spent on the DP computation, and

(¢) probabilistic pruning, where we show how to rapidly compute an upper bound
on the probability that a source supports a candidate sequence.

. We empirically evaluate our algorithms, demonstrating their scalability in terms of

CPU time and memory usage, as well as the effectiveness of the above optimizations.

. We empirically demonstrate the effectiveness of the probabilistic SPM framework

at extracting meaningful sequences in the presence of noise.

1.1. Significance of Results

We now highlight some key findings:

The source support probability algorithm ((1) above) shows that in probabilistic
databases, FIM and SPM are very different — there is no need to use DP for FIM
under the expected support measure [10, 12, 13].

In an SLU database, there are dependencies between different sources. For example,
consider a sample SLU database having just one event e, but the source associated
with this event could be one of sources X or Y, each with probability 0.5. Were
these probabilities independent, the probability that e is associated with neither X
nor Y would be (1 —0.5) x (1 — 0.5) = 0.25. However, since we are modelling the
situation that e is guaranteed to have occurred, and there is no third source that
could have given rise to e, it is impossible (i.e. probability 0) that e is associated with
neither X nor Y. It is therefore slightly unexpected that despite this dependency, we
can calculate the expected support efficiently (recall that determining probabilistic
frequentness was shown to be intractable in [21]).

The breadth-first and depth-first algorithms (2) have a high-level similarity to GSP
[2] and SPADE/SPAM [3, 5]. However, since checking if a sequence is supported by a
source requires a relatively expensive DP computation, significant modifications are
needed to achieve good performance. The efficiency of our algorithms also depends
upon the ideas ((3) above) of incremental computation, and probabilistic pruning.
Although there is a high-level similarity between this pruning and a technique of
[12] for FIM in probabilistic databases, the SPM problem is more complex, and our
pruning rule is harder to obtain.

4 Muzammal and Raman

— Although the pattern growth approach (FP-tree) does not adapt well to the un-
certain FIM [22], we show with the help of experiments that this is not the case
for uncertain SPM — the pattern growth approach (PrefixSpan [4]) when adapted
to the uncertain case (using customized fast frequent 1-sequence computation and
incremental support computation), appears to be more scalable in terms of CPU
time and memory usage than the candidate generation counterparts.

1.2. Related Work

Classical SPM has been studied extensively [2-5]. Modelling uncertain data as prob-
abilistic databases [6, 7] has led to several ranking/mining problems being studied
in this context. The top-k problem (a ranking problem) has been studied intensively
(see [8, 9, 23] and references therein). In particular [9] highlights subtle issues in the
semantics of the term “top-k” when applied to probabilistic databases.

FIM in probabilistic databases was studied under the ezpected support measure in [10,
12, 13] and under the probabilistic frequentness measure in [11, 14]. As computing the
probabilistic frequentness of an itemset in an uncertain database is a computationally
expensive task, Calders et al. [16] and Wang et al. [15] propose approximating the
probabilistic frequentness of an itemset. Sun et al. [14] proposed mining association
rules from uncertain data. Tong et al. [22] give a comparison of different uncertain FIM
algorithms in terms of CPU time and memory usage.

In probabilistic SPM, the individual attributes in a sequence of records, namely the
time-stamp, the event and the source, or the sequence itself may be uncertain. To the
best of our knowledge, apart from [21], the SPM problem in probabilistic databases
has not been studied under current settings, i.e. considering uncertainty in the source
attribute and using the expected support measure. Uncertainty in the time-stamp at-
tribute was considered in [18] — we do not consider time to be uncertain. Muzammal and
Raman [21] proposed two models of uncertainty, namely event-level uncertainty (ELU)
and source-level uncertainty (SLU) and adapted two measures of frequentness, namely
expected support and probabilistic frequentness from uncertain FIM to probabilistic
SPM. Yang et al. [17] studies SPM in “noisy” sequences, but the model proposed there
is very different to ours — it is similar to but less flexible than the ELU model in [21],
as it does not allow us to express uncertainty in the source, the focus of this paper —
and does not fit in the probabilistic database framework. Furthermore, the measure of
support of a candidate sequence (the probability of the “best alignment”) is very differ-
ent from ours and does not have a natural “possible worlds” interpretation, particularly
if used for SLU. Hooshadat et al. [24] considered uncertainty in the event (similar to
the ELU model in [21]) and proposed UAPRIORI algorithm to compute frequent se-
quences using the expected support measure. Zhao et al. [25] considered uncertainty in
the event (in a way similar to the ELU model in [21]) and the sequence, and proposed
pattern-growth algorithms using the probabilistic frequentness measure. Probabilistic
frequentness was shown to be #P-Complete for the SLU model by [21]. Wan et al.
[26] considered mining frequent episodes (sub-sequences) from uncertain sequence data
using the ELU model and the probabilistic frequentness measure, and proposed the
probabilistic frequent serial episode mining problem and also an exact and an approx-
imate solution for the problem. Achar et al. [27] proposed a pattern-growth based
algorithm for the probabilistic frequent serial episode mining problem.

2. Problem Statement

We first review the classical SPM problem [1, 2]. See Table 1 for a list of useful notation.

Mining Sequential Patterns from Probabilistic Databases 5

Table 1. A list of useful notation.

Notation Meaning

Dp Probabilistic Database

D* Possible World

Sup(s, D*) Support of a sequence s in a possible world D*

ES(s,DP) Expected Support of a sequence s in DP

Xi(s,D) An indicator variable with value 1 if s is a sub-sequence of source
sequence for source i, 0 otherwise

Pr(s < Df) Probability that s is a sub-sequence of source sequence for source %

E() Expectation of a random variable

Cj Candidate sequence of length j

L; Frequent sequence of length j

DsP An s-projected database, where s is a sequence (and is a prefix)

2.1. Classical SPM

Let Z = {i1,i2,...,1q} be a set of items and S = {1,...,m} be a set of sources. An
event e C 7 is a collection of items. A database D = (ri,r2,...,rn) is an ordered
list of records such that each r; € D is of the form (eid;, e;,0;), where eid; is a unique
event-id, including a time-stamp (events are ordered by this time-stamp), e; is an event
and o; is a source.

A sequence s = (s1,82,...,8q) s an ordered list of events. The events s; in the sequence
are called its elements. The length of a sequence s is the total number of items in
it, i.e. E;Zl |s;|; for any integer k, a k-sequence is a sequence of length k. Let s =

(s1,82,...,8q) and t = (t1,t2,...,tr) be two sequences. We say that s is a subsequence
of ¢, denoted s =< ¢, if there exist integers 1 < i1 < 42 < --- < iq < 7 such that
sk C tiy, for k =1,...,q. The source sequence corresponding to a source i is just the

multiset {e|(eid, e, i) € D}, ordered by eid. For a sequence s and source 4, let X;(s, D)
be an indicator variable, whose value is 1 if s is a subsequence of the source sequence
for source ¢, and 0 otherwise. For any sequence s, define its support in D, denoted
Sup(s, D), as Y " Xi(s, D).

The objective is to find all sequences s such that Sup(s, D) > 6 for some user-defined
threshold 0 < 0 < m.

2.2. SLU Database

We define an SLU database D? to be an ordered list (r1,...,r,) of records of the form
(eid, e, W) where eid is an event-id, e is an event and W is a probability distribution
over S; the list is ordered by eid. The distribution W contains pairs of the form (o, c),
where 0 € § and 0 < ¢ < 1 is the confidence that the event e is associated with source
o and Z(a,c)ew ¢ = 1. An example can be found in Table 2.

The possible worlds semantics of D? is as follows. A possible world D* of D? is generated
by taking each event e; in turn, and assigning it to one of the possible sources o; €
W,. Thus every record 7; = (eid;,e;, W;) € DP takes the form r; = (eid;,ei,0:),
for some o; € S in D*. By enumerating all such possible combinations, we get the
complete set of possible worlds. We assume that the distributions associated with each
record 7; in DP are stochastically independent; the probability of a possible world
D* is therefore Pr[D*] =], Prw,[oi]. For example, a possible world D* for the
SLU database of Table 2 can be generated by assigning events ei,es and es to X
with probabilities 0.6,0.3 and 0.7 respectively, and ez to Z with probability 1.0, and

6 Muzammal and Raman

Table 2. A sample SLU database.

eid e w

e1 (a,d) (X,0.6)(Y,0.4)

€2 (a) (Z,1.0)

es (a,b) (X,0.3)(Y,0.2)(Z,0.5)
eq (b, ¢) (X,0.7)(Z,0.3)

Table 3. The complete set of possible worlds for the SLU database of Table 2 along with their
probabilities. The right-most column shows the support of the sequence s = ((a)(b)) in each
possible world.

D* X Y Z Pr(D*) Sup(s, D)
Dy (a, d)(a,b)(b, c) O (a) 0.126 1
D; (a,d)(a,b) O (a)(b, c) 0.054 2
D3 (a, d)(b, c) (a,b) (a) 0.084 1
Dj (a,d) (a,b) (a)(b, ¢) 0.036 1
D3 (a, d)(b, c) O (a)(a, b) 0.210 2
Dg (a,d) 0 (a)(a, b)(b,) 0.090 1
Dz (a,b)(b, c) (a,d) (a) 0.084 1
Dg (a, b) (a,d) (a)(b, c) 0.036 1
Dg (b, c) (a,d)(a,b) (a) 0.056 1
D7, 0 (a,d)(a,b) (a)(b, c) 0.024 2
D, (b, ¢) (a,d) (a)(a, b) 0.140 1
D7, 0 (a,d) (a)(a, b)(b, ¢) 0.060 1

Pr[D*] = 0.6 x 1.0 x 0.3 x 0.7 = 0.126. The complete set of possible worlds for the SLU
database of Table 2 is shown in Table 3. As every possible world is a (deterministic)
database, concepts like the support of a sequence in a possible world are well-defined.
The definition of the expected support of a sequence s in D? follows naturally:

ES(s,D’)= Y Pr[D"]x Sup(s, D"). (1)
D*€PW (DP)

The problem we consider is:

Given an SLU database DP, determine all sequences s such that ES(s, D?) > 6, for
some user-specified threshold 6, 0 < 6 < m.

Since there are potentially an exponential number of possible worlds, it is infeasible
to compute ES(s, DP) directly using Eq. 1; next we show how to do this computation
more efficiently using linearity of expectation and dynamic programming.

3. Computing Expected Support

P-sequence. A p-sequence is analogous to a source sequence in classical SPM, and is
a sequence of the form ((e1,c1) ... (ex,ck)), where e; is an event and ¢; is a confidence
value. In examples, we write a p-sequence (({a,d}, 0.4), ({a, b}, 0.2)) as ((a,d : 0.4)(a,b:
0.2)). An SLU database D? can be viewed as a collection of p-sequences DY, ..., D%,
where DY is the p-sequence of source 4, and contains a list of those events in D? that
have non-zero confidence of being assigned to source i, ordered by eid, together with
the associated confidence (see Table 4(R)).

However, the p-sequences corresponding to different sources are not independent, as

Mining Sequential Patterns from Probabilistic Databases 7

Table 4. The SLU database of Table 2 transformed to p-sequences (R). Note that in the
p-sequences representation, the event e; (marked with {) must be associated with exactly one
of the sources X and Y in any possible world.

eid e w

p-sequence
e (a,d) (X,0.6)(Y,0.4) D% (a,d:0.6)"(a,b:0.3)(b,c:0.7)
€2 (@) (£,1.0) DY (a,d:0.4)7(a,b:0.2)
es (a,b) (X,0.3)(Y,0.2)(Z,0.5) it (@:1.0)(a,b: 0.5)(b,c: 0.3)
e4 (b,c) (X,0.7)(Z,0.3) z A

illustrated in Table 4(R). Thus, one may view an SLU database as a collection of
p-sequences with dependencies in the form of x-tuples [9]. Despite the dependencies,
we show that we can still process the p-sequences independently for the purpose of
expected support computation:

Lemma 3.1. Given an SLU database D? in the form of p-sequences and a sequence
s, we can compute the expected support of s in D? by computing the source support
probability for each source i independently, that is ES(s, D) = > ™ Pr(s < D).

Proof. Any possible world D* of D? is a deterministic database. Therefore, the support
of s in D*, denoted by Sup(s,D*), equals > " X;(s,D*), where X;(s,D") is the
indicator variable whose value is 1 if source o; supports s in D* and 0 otherwise
(Section 2). From Eq. 1 we get that:

ES(s,DP) =" . Pr[D*] % X" Xi(s, D)
=3 > . Pr[D*] % Xi(s,D*)
=> i E[Xi(s, D7), (2)

where (abusing notation slightly) we have introduced a new indicator random variable
Xi(s,DP), whose value is 1 in all those possible worlds where source o; supports s,
and 0 in all other possible worlds, and E(-) denotes the expected value of a random
variable. Since X; is a 0-1 variable,

E[Xi(s, D")] = Pr[s < Df], 3)

where the right-hand quantity in Eq. 3 is the probability that source i supports a
sequence s, and is referred to henceforth as the source support probability.
Thus, from Equations 2 and 3, we show that:

ES(s,D") = > 1" Pr[s 2 DY], (4)
which proves the lemma.]

We now give an example to explain Lemma 3.1. Consider a sequence s = ((a)(b)) and
the probabilistic database DP of Table 4. The probability that source X supports s is
the sum of probabilities of all the possible worlds where X supports s, i.e. the possible
worlds DT, D3, D3, D5 and D3, and thus Pr[s < D%] = 0.1264 0.054 +0.084 + 0.210+
0.084 = 0.558. Similarly, Pr[s < D% | and Pr[s < D7] are computed as 0.08 and 0.035,
respectively. Thus, Pr[s < D?] = 0.058 + 0.08 4 0.035, the same value obtained directly
from Eq. 1.

Although Lemma 3.1 reduces the computation of expected support to computing source
support probabilities, the latter can still not be done naively: e.g., if DY = ((a,b :
ci)(a,b 1 ca)...(a,b : cq)), then there are O(¢**) ways in which a sequence s =
((a)(a,b)...(a)(a,b)) could be supported by source i. In the next section, we give

k times
an algorithm that uses DP to compute the source support probability.

8 Muzammal and Raman

Table 5. Computing Pr[{(a)(b)) X D%] using DP in the SLU database of Table 4. In Table 5,
the value A[2,3] is the probability that the sequence ((a)(b)) is supported by source X.

(a,d:0.6) (a,b:0.3) (b,c:0.7)
A[0,0) =1 A[0,1] =1 Af0,2] = 1 Af0,3] = 1
((a)) A[1,00 =0 A[L,1]] =04 x0+ A[1,2] =0.7x 0.6+ A[1,3] =0.72
0.6 x1=0.6 0.3 x1=0.72
((a)(b)) A[2,00=0 A[2,1] =0 A[2,2] = 0.7 x 0+ A[2,3] = 0.3 x 0.18+
0.3 X 0.6 = 0.18 0.7 x 0.72 = 0.558

3.1. Source Support Probability

We now discuss how to compute Pr[s < D?]. Given a p-sequence DY = ((e1,c1),. .., (er,cr))
and a sequence s = (s1,..., Sq), we create a (¢4 1) x (r + 1) matrix A; s[0..q][0..r] (we
omit the subscripts on A when the source and sequence are clear from the context). For
1<k<qgand1l<?<r, Ak, £ will contain Pr[{s1,...,sx) = {((e1,c1),..., (ee,)]
For example, the cell A[2,3] in Table 5 contains the value Pr[{(a)(b)) < D%] i.e. the
probability that the sequence ((a)(b)) is supported by the source sequence of source X.
We set A[0,¢] =1 for all £, 0 < £ <r and A[k,0] =0 for all 1 < k < ¢, and compute
the other values row-by-row. For 1 < k < g and 1 < ¢ < r, define:

« _) ce ifspCep
Cre = { 0 otherwise (5)

The interpretation of Eq. 5 is that cj, is the probability that e, allows the element s
to be matched in source ¢; this is 0 if s € e, and is otherwise equal to the probability
that e, is associated with source i. Now we use the equation:

Al €] = (1— i) % Alk, € — 1] + cho % A[k — 1,6 — 1] (6)

The reason Eq. 6 is correct is that if sy Z e, then the probability that (si1,...,sx) =<
(e1,...,er) is the same as the probability that (si,...,sx) < {(e1,...,ec—1) (note that
if sp Z eg then ¢, = 0 and A[k,¢] = A[k,¢ — 1]). Otherwise, cj;, = c¢, and we have
to consider two disjoint sets of possible worlds: those where e, is not associated with
source % (the first term in Eq. 6) and those where it is (the second term in Eq. 6).

Lemma 3.2. Given a p-sequence D and a sequence s, by applying Eq. 6 repeatedly,
we correctly compute Pr[s < D).

Table 5 shows the computation of the source support probability of an example sequence
s = ((a)(b)) for source X in the SLU database of Table 4. Similarly, we can compute
Pr[s < DV] = 0.08 and Pr[s < D7] = 0.35, so the expected support of ((a)(b)) in the
SLU database of Table 4 is 0.558 + 0.08 + 0.35 = 1.288, the same value obtained by the
direct application of Eq. 1.

4. Candidate Generation

We now describe probabilistic SPM algorithms based on the candidate generation
framework. We describe two candidate generation approaches based on a breadth-first
(BFS) and a depth-first (DFS) exploration of the search space. Our proposed BFS ap-
proach is similar to GSP [2], and our DFS approach is similar to the depth-first variant
of SPADE [3] (SPADE has a breadth-first variant as well) or SPAM [5], in search space
exploration.

Although the DP algorithm proposed in Section 3 computes the expected support of a
sequence in an SLU database in polynomial rather than exponential time, the support
computation is performed repeatedly as there could potentially be a large number of

Mining Sequential Patterns from Probabilistic Databases 9

candidate sequences which need to be tested for being frequent. We first give some
optimizations to speed up the support computation task.

4.1. Optimization

In this section, we describe two optimizations for the DP step:

1. Fast Frequent 1-sequence Computation: that is, computing all frequent 1-sequences
in a single scan of the database in linear time.

2. Incremental Support Computation: that is, reusing the already computed results
for DP.

Further, we show two properties of expected support that can be used to prune the
search space.

3. Apriori Pruning: that is, pruning a candidate sequence if any of its subsequences
is not frequent.

4. Probabilistic Pruning: that is, eliminating potential infrequent candidate sequences
without support computation.

‘We now elaborate on each of these below.

4.1.1. Fast Frequent 1-sequence Computation

The DP algorithm can be used to find all frequent 1-sequences by applying Lemma 3.2
and Eq. 2. However, a naive approach e.g. for each 1-sequence ((z)), z € Z, computing
ES({(z)), D?) by applying Lemma 3.2 and Eq. 2, will require |Z| scans of the database.
In classical SPM, the task of finding all frequent 1-sequences can be performed in linear
time in a single scan over the database. We show that we can achieve the same, i.e.
find all frequent 1-sequences in linear time in a single scan over the database, in the
probabilistic case as well.

We first give a simple intuitive closed-form expression for the source support probability
of a 1-sequence. Given a 1-sequence s = ((x)), € Z, and a p-sequence D? of length r,
the probability with which source i supports s can be computed as:

r

Pr(s < DY) =1-[J(1 - ci). (7)

=1

The term on the right in Eq. 7 is the complement of the probability that s is not
supported by D?, which in other words, is the probability with which source ¢ supports
s. It is easy to verify by induction that using Eq. 7 gives the same answer as we get by
applying Lemma 3.2.

For example, consider a 1-sequence ((a)) and the p-sequence for source X. Pr[{(a)) <
D%] is computed as 1 — [(1 — 0.6) * (1 — 0.3) * (1 — 0.0)] = 0.720, using Eq. 7; the same
as obtained by Eq. 1 directly.

We now describe a procedure for computing the expected support of all 1-sequences.
Initialize two arrays F' and G, each of size |Z|, to zero and consider each source 7 in turn.
If DY = ((e1,c1),...,(er,cr)), for k =1,...,r take the pair (ex, cx) and iterate through
each = € ey, setting Fz] := (1 — ¢) if F[z] = 0, and setting Flz] := Flz] * (1 — cx)
otherwise. It is clear that for all z such that F[z] # 0, F[z] = [[,_,(1 — ¢j,), and so
1 — F[z] is the source support probability for the sequence ((z)). For all = such that
Flz] # 0 we set G[z] = G[z] + 1 — F[z], and then reset F[z] to zero (we use a linked
list to keep track of non-zero entries in F' rather than scanning F'). At the end, for any
1-sequence s = ((z)), where z € Z, G[z] = ES(s, DP).

10 Muzammal and Raman
4.1.2. Incremental Support Computation

Let s and ¢ be two sequences. Following Ayres et al. [5], we say that ¢ is an S-extension
of s if t = s- {z} for some item x, where - denotes concatenation (i.e. we obtain t by
appending a single item as a new element to s), and we say that ¢ is an I-extension of s if
s =(S1,...,8q) and t = (s1,...,sqU{x}) for some z & sq, and x is lexicographically not
less than any item in sq (i.e. we obtain ¢ by adding a new item to the last element of s).
For example, if s = ((a)(b, ¢)) and = = d, S- and I-extensions of s are {(a)(b,c)(d)) and
((a)(b, ¢, d)) respectively. Similar to classical SPM, for an existing frequent sequence s,
we generate candidate sequences t that are either S- or I-extensions s, and compute
ES(t,D?) by computing Pr[t < D?] for all sources 4. While computing Pr[t < D?], we
will exploit the similarity between s and ¢ to compute Pr[t < D?] more rapidly. For
example, if s = ((a)(b,¢)) and t = {(a)(b,c)(d)) (an S-extension of s), the DP rows for
((a)), {(a)(b)), and ((a)(b,c)) would be the same for any source ¢ (the same holds for
I-extensions of s) and therefore, could be reused in support computation.

Let ¢ be a source, D = ((e1,c1),...,(er,cr)), and s = (s1,...,8q) be any sequence.
Now let A; s be the (¢4 1) x (r + 1) DP matrix used to compute Pr[s < D?], and let
Bi,s denote the last row of A; s, that is, B;s[f] = Ass[g,] for £ = 0,...,r. We now
show that if ¢ is an extension of s, then we can quickly compute B;; from B;,, and
thereby obtain Pr[t < D?] = B, [r]:

Lemma 4.1. Let s and t be sequences such that ¢ is an extension of s, and let ¢ be a
source whose p-sequence has r events in it. Then, given B; s and D?, we can compute
B+ in O(r) time.

Proof. If ¢ is an S-extension of s, i.e. t = s - {x} for some item z, then B; s is the
last-but-one row of A; s, and we have the information needed to compute the last row
(cf. Eq. 6).

Now consider the case where t is an I-extension, i.e. ¢ = (s1,...,54 U {z}) for some
x & sq. Firstly, observe that since the first ¢ — 1 elements of s and t are pairwise equal,
the first ¢— 1 rows of A; s and A; ; are also equal. The (¢—1)-st row of A; , is enough to
compute the g-th row of A; ¢, but we only have B; s, the g-th row of A; ;. In general we
cannot calculate the entire (¢ — 1)-st row of A; s from the g-th row, that is, we cannot
“reverse” the DP calculation but we can compute enough entries of A; s to compute
the g-th row of A; ;.

We compute A;[q,¢] for £ = 0,...,r in that order. By convention, A;[q,0] = 0, so
consider £ > 0. If ¢, = sq U {x} < ey, then A;[q,f] = Aslg, ¢ — 1], and we can move
on to the next value of ¢. If t; C es, then s; C e, and so:

Ai,s[q%] = (1 — Cg) * Ai,s[qf— 1] + co * Ai,s[q -1,/ 1].

Since we know B; s[¢] = Ais[q, £], Bis[l — 1] = Ais[g, ¢ — 1] and c¢, we can compute
Ais[g — 1,£ — 1]. But this value is equal to A;¢[g — 1,¢ — 1], which is the value from
the (¢ — 1)-st row of A;+ that we need to compute A; ¢[q,¢] = Bi:[{].

O

Algorithm 1 Incremental Support Computation (I-extension case)
1: Biﬂg[O] =0
2: forall/=1,...,r do
if t;, Z e, then
Bii[f] = B[t — 1]
else
Biyll) = (1 —cg) * B y[l — 1]+ (B s[l] — Bis[l — 1] % (1 —)

Mining Sequential Patterns from Probabilistic Databases 11

Table 6. Example illustrating the incremental support computation of B; ¢ for t = ((a)(b, ¢))
from B; s where s = ((a)(b)), by computing Pr[t < D] in the database of Table 2. Note that
the row corresponding to ((a)) is not available.

(a,d:0.6) (a,b:0.3) (b,c:0.7)
(@) 04x0+06x1=06 07x06+03x1=072 0.72
((a) (b)) 0 07x0+03x06=018 03x0.18+0.7x0.72 = 0.558

((1—0.7) x 0) + (0.558—
0.18 % (1 — 0.7)) = 0.504

[}
(=)

{(a)(b,¢))

The pseudo-code for incremental support computation (I-extension case) is given in Al-
gorithm 1, and an example of this computation is given in Table 6.

4.1.8. Apriori Pruning
We note that an apriori property holds in the probabilistic setting as well, which is

used similarly to classical SPM to prune the search space.

Lemma 4.2. Given two sequences s and ¢, and an SLU database D?, if s is a subse-
quence of ¢, then ES(s, D?) > ES(t,DP).

Proof. For any two sequence s and t where s is a subsequence of ¢, we know by the
apriori property that for all possible worlds D* € PW (DP?), Sup(s,D*) > Sup(t, D*),
and from Eq. 1 we have,

ES(s,DP?) = ZD*EPW(DP) Pr[D*] * Sup(s, D*)
> ZD*ePW(Dp) Pr[D*] x Sup(t, D*)
= ES(t,DP)

4.1.4. Probabilistic Pruning

We now describe a pruning technique that allows us to eliminate potential infrequent
candidate sequences s without fully computing the expected support of s in DP. For
each source i, we obtain an upper bound on Pr[s < D?], the probability with which
source ¢ supports s, and add up all the upper bounds; if the sum is below the threshold,
s can be pruned. We first show:

Lemma 4.3. Let s = (s1,...,5,) be a sequence, and let D? be a p-sequence. Then:
Pr[s X D] < Pr[(s1,...,8q—1) =< D¥] % Pr[(sq) = D?].

Proof. Let A = A; s be the DP matrix for computing Pr[s < D?]. For £ = 0,...,r, let
pe = Pr(sq) < ((e1,c1),. .., (ee,ce))]; pr therefore is precisely Pr[(sq) < D?]. We take

po = 0, and for £ = 1,...,r, we can compute p, using the equation: p, = (1 — cj,) *
Pe—1 + ¢y, Where ¢, is as defined in Eq. 5. We now prove by induction on £ that:

substituting £ = r in Eq. 8 proves the lemma. We now prove Eq. 8, which clearly holds
for £ =0 since Aq,0] = A[g — 1,0] = po = 0. Subsequently:

Alg, 0] = (1 — cqe) * Alq, £ = 1] + cge x Al[g — 1,£ — 1] (Eq. 6)
<(Q—cp)*Alg— 1,0 — 1) xpe_1 4+ cpex Alg— 1,0 — 1] (Eq. 8)
< Alg—1,0—1] % ((1 — Che) *De—1 —|—c:;g)

12 Muzammal and Raman

l[q—1,£—1]*pe

<A
< Alg —1,4] * pe.

O

We now indicate how Lemma 4.3 is used. Suppose, for example, that we have a candi-
date sequence s = ((a)(b,c)(a)), and a source X. By Lemma 4.3:

Pr(((a)(b,)(a)) < DA] < Prl{(a)(b,¢)) < D%] * Pr[((a) < D%]
< Pr{{(a)) = D] * Pr[((b,c)) < D] * Pr{{(a)) < D]
< (Pr[((a)) < D%))* » min{Pr[((8)) < D%], Pr(((c)) < DXI}.

Observe that the quantities on the RHS are computed as intermediate results during
the fast frequent 1-sequence computation, and can be saved in a small data structure
associated with each source. Of course, if Pr[{(a)(b,c)) =< D%] is available, an even
tighter bound is Pr[{(a)(b, ¢)) < D%] * Pr[((a)) < D%].

4.2. Breadth-First Exploration

An overview of our BFS approach is in Algorithm 2. We now describe some details.
Each execution of lines (6)-(11) is called a phase. In the j-th phase, C; is the set of
candidate j-sequences and L; is the set of frequent j-sequences. Line 4 is performed
using the fast frequent 1-sequence computation (see Section 4.1.1). Line 6 is done as
in [2]: two sequences s and s’ in L; are joined iff deleting the first item in s and the
last item in s’ results in the same sequence, and the result ¢ comprises s extended with
the last item in s’. This item is added as a new element if it was a separate element
in s’ (t is an S-extension of s) and is added to the last element of s otherwise (¢ is
an I-extension). Thus, {(a)(b,c)(d)) joins with {(b,c)(d, e)) to yield {(a)(b,c)(d,e)) and
((a,b)(c,d)) joins with ((b)(c, d)(e)) to yield {(a,b)(c,d)(e)). The join of two 1-sequences
((a)) and ((b)), results in both {(a)(b)) and {(a,b)) being output.

We apply apriori pruning to the set of candidates in the (j + 1)-st phase, Cjt1, and
probabilistic pruning can additionally be applied to Cj4+1 (note that apriori pruning
has no effect on C2, and probabilistic pruning is the only possibility).

Algorithm 2 Breadth-First Exploration

1: Input: SLU probabilistic database DP and support threshold 6.
2: Output: All sequences s with ES(s, DP) > 6.

3 J 1

4: Ly < ComputeFrequent-1(DP)

5. while L; # () do

6: Cjt1 + Join L; with itself

7: Prune Cj14

8: for all s € Cj41 do

9: Compute ES(s, D?) (using DP (Section 3))

10: Lj41 < all sequences s € Cj41 s.t. ES(s, DP) > 6}.
11: j+gJ7+1

12: Stop and output L; U...UL;

Step 9 is divided into two main sub-steps. We consider each source ¢ in turn and perform
the following operations:

— Find a subset N; j4+1 of Cj41 that may be supported by source 4 (this step is called

Mining Sequential Patterns from Probabilistic Databases 13

narrowing). N; j+1 must include all sequences s in Cj41 such that Pr[s < DY] is
strictly greater than zero.

— For all sequences s € N; j+1, compute Pr[s < D] and update ES(s, D?).

Denote the set of all frequent j-sequences that have non-zero expected support in DY
by Li,;. After computing Li in Step 1, we store L;; for all 4, for the entire duration
of the algorithm, and with each s € L; 1, we also store Pr[s < D?] in case probabilistic
pruning is used.

Given N; j4+1 we now discuss computing the support of a sequence ¢ in source i after we
have computed the support of a sequence s. Since computing Pr[t < D?] is expensive
and requires j + 1 rows of a DP matrix to be computed, we attempt to reuse partial
answers as follows. If we compute the support of ¢ immediately after computing the
support of s, where s = (s1,...,8q4) and t = (t1,...,), then if s and ¢ have a common
prefix, i.e. for k = 1,2,...,2, sy = tx, then we start the computation of Pr[t < D?]
from t,41.

Algorithm 3 Depth-First Exploration

Input: SLU probabilistic database DP and support threshold 6.
Output: All sequences s with ES(s, DP) > 6.
L+ 0, L, 0
Ly < ComputeFrequent-1(DP)
for all sequences x € L; do
L, + Call TraverseDFS(z, L)
L+ LUL,
Output all sequences in L

4.3. Depth-First Exploration

An overview of our depth-first approach is in Algorithm 3. We first compute Li, the
set of frequent 1-sequences (line 4), and assume that L, is in ascending order. We then
explore the pattern sub-lattice (lines 5-6), the details of which are given in Algorithm 4,
and report all frequent sequences (line 8).

Consider a call of TraverseDFS(t, L1) (Algorithm 4), where ¢ is some k-sequence and
is obtained by appending a frequent item x to s, either as an S-extension of s or as
an I-extension of s. Prior to the support computation, we check all lexicographically
smaller (k — 1)-subsequences of ¢ (which would have been explored previously) for
frequentness, and reject t as infrequent if this test fails (lines 7 and 15). We can then
apply probabilistic pruning to ¢, and if ¢ is still not pruned, we compute its support
(lines 8 and 16). If at any stage, ¢ is pruned, or if it is found to be infrequent, we do not
consider x, the item used to extend s to t, as a possible alternative for S-extensions in
the recursive tree under ¢ (lines 13 and 21), as in [5]. Observe that for sequences s and
t, where t is an S- or I- extension of s, if Pr[s < D?] = 0, then Pr[t < D¥] = 0. When
computing ES(s, D?), we keep track of all the sources where Pr[s < D?] > 0, denoted
by S°. If s is frequent then when computing ES(t, D?), for any sequence ¢ that is an
S- or I- extension of s, we need only to visit the sources in S°.

Furthermore, with every source i € S°, we assume that the array B; s (see Section 4.1.2)
has been saved prior to calling TraverseDFS(s), allowing us to use the incremental
support computation. By implication, the arrays B;, for all prefixes r of s are also
stored for all sources i € S8), so in the worst case, a source may store up to k arrays,
if s is a k-sequence.

14 Muzammal and Raman

Algorithm 4 Depth-First Traversal

1: Input: SLU probabilistic database DP and a sequence s.
2: Output: All possible extensions of s with ES(s, DP) > 6.
3

: function TraverseDFS(s, L1)
4: L+ 0

5. for all valid z € Ly do

6: t<« (s-{x}) {S-extension}

7. if t is not pruned then

8: Compute ES(t, DP)

9: if ES(t,D?) > 6 then

10: L+ LUt

11: TraverseDFS(¢, L)

12: else

13: Mark {z} as invalid S-extension item.
14: t < (s1,...,8¢U{x}) {I-extension}

15 if ¢ is not pruned then

16: Compute ES(t, DP)

17: if ES(t,D?) > 6 then

18: L+ LUt

19: TraverseDFS(t, L1)

20: else

21: Mark {z} as invalid I-extension item.

22: return L
23: end function

5. Pattern Growth

We now give a pattern growth algorithm similar to PrefixSpan [4] for enumerating all
frequent sequences. We first give a few definitions.

Definition 5.1 (weak-prefix). Given a sequence s = (s1,...,54) and a p-sequence
t={(t1,c1),...,(tr,cr)), s is called a weak-prefix of ¢ if there exist indices 1 < j1 < j2 <
... < jq <rsuch that (1) s; Cty;, forall 1 <i < (¢g—1), and for all k, j; < k < jit1,
siy1 tx, and (2) sq C tj,, and all the items in t;, — s, are lexicographically after
those in sq.

Definition 5.2 (weak-suffix). Given a sequence s = (s1,...,sq) and a p-sequence
t={(t1,c1),...,(tr,cr)), where s is a weak-prefix of ¢, a p-sequence u = ((ugq, ¢q), - - -,
(ur, cr)) is the weak-suffix of ¢ with respect to s, where ux = (tx — sx) for k = ¢, and
up =tg, fork=q+1,..., 7.

For example, for a p-sequence s = ((a : 0.3)(a, b,d : 0.8)(b, c : 0.4)(d, e : 0.5)), sequences
such as ((a)) and {(a)(b,c)) are weak-prefixes of s, whereas ((a)(c,d)) and ((a)(c)(b))
are not. For the weak-prefixes ((a)) and ((a)(b)), the weak-suffixes of s are {(a,b,d :
0.8)(b,c: 0.4)(d,e : 0.5)) and ((—,d : 0.8)(b,c: 0.4)(d, e : 0.5)) respectively, where ‘—’
means that one or more items in the event are part of the weak-prefix. In what follows,
we sometimes use prefix and suffix rather than weak-prefix and weak-suffix when it is
clear from the context.

According to [4], the set of all frequent sequential patterns can be partitioned into
as many subsets as the number of frequent 1-sequences. If {(z1),...,{zn)} are all 1-
sequences, the i-th subset is prefixed with (z;), 1 <4 < n. Then, based on each prefix,
each subset of sequential patterns could be further subdivided recursively. To mine the
subset of sequential patterns based on a prefix, the projected database corresponding to

Mining Sequential Patterns from Probabilistic Databases 15

that prefix need to be constructed. We first give the definition of a projected database
in the probabilistic case.

Definition 5.3 (Projected Database). Given a probabilistic database DP in the
form of p-sequences DY, ..., D%, and a sequence s, an s-projected probabilistic database
D*'? is the collection of weak-suffixes of the p-sequences in DP with respect to the weak-
prefix s.

For example, consider a sample probabilistic database having two p-sequences {{(a :
0.4)(b,c : 0.7)(a,d, e : 0.3)),{(a,b : 0.9)(a,b,d : 0.8)(d,e : 0.3))}. For a sequence ((a))
as a weak-prefix, an ((a))-projected database is {{(b,c : 0.7)(a,d,e : 0.3)),{((—,b :
0.9)(a,b,d : 0.8)(d,e:0.3))}.

PrefixSpan works as follows. It first finds the complete set of frequent 1-sequences. Next,
the set of projected databases is constructed prefixed with each frequent 1-sequence.
Then, in each projected database, it again finds the set of frequent 1-sequences local
to that projected database, and keeps on building and mining the projected databases
this way, recursively.

It appears that based on the definitions of weak-prefix (Definition 5.1) and projected
database (Definition 5.3), corresponding projected databases could be constructed and
using the fast frequent 1l-sequence computation (Section 4.1), the complete set of se-
quential patterns could be obtained. However, in the probabilistic setting, it is not
correct to simply perform the fast frequent 1-sequence computation in a projected
database. For example, consider a sample probabilistic database having two source
sequences {((a : 0.5)(b : 0.5)(b : 0.5)(a : 0.5)),((a : 0.5)(b : 0.5)(a : 0.5)(b : 0.5))}.
An ((a))-projected database will contain two suffixes {((b : 0.5)(b : 0.5)(a : 0.5)), ((b :
0.5)(a : 0.5)(b : 0.5))}. When considering whether {(a)(b)) is frequent, it is not correct
to compute the expected support of (b) in the projected database. For example, both
suffixes above would give the same contribution (0.75) to the support of (b) in the pro-
jected database, but clearly their support for ((a)(b)) is different. The second sequence
can form ((a) (b)) in three ways: the first a, implicit in the weak prefix, with either of the
two b’s, or the second a with the second b, so its contribution to the support of {(a)(b))
is 0.75. The first sequence can form ((a)(b)) in only two ways, and its contribution is
0.5. See Table 7 for an example of this computation.

We now show that we can use the DP algorithm along with the fast frequent 1-sequence
computation to find all frequent sequences using the pattern growth framework.

5.1. Pattern Growth Algorithm

An overview of our pattern-growth algorithm is in Algorithm 5. Assuming that the
probabilistic database DP contains only the frequent items, we first compute the set of
frequent 1-sequences Li. Assume L; is in ascending order. For each 1-sequence (z), we
first create an (x)-projected database D®?, and also compute the B; . arrays for each
suffix ¢ in D®? and then call the ProjectedDB(z, D®?) sub-routine recursively.

In the ProjectedDB(s, D*?) sub-routine, we compute all the frequent S- and I-extensions
of s using a modification of fast frequent 1-sequence computation. We call the computa-
tion of all S- and I-extensions of a sequence s the pattern-growth step, and elaborate on
it in the coming section. Then, for every sequence ¢ which is a frequent S- or I-extension
of s, we create a (t)-projected database D*? and also compute B; : arrays, and call the
ProjectedDB(t, D"?) sub-routine recursively to mine all frequent sequential patterns.

We now elaborate on the pattern-growth step.

5.2. Pattern Growth Step

Pre-conditions:

16 Muzammal and Raman

Algorithm 5 Pattern-Growth Algorithm

: Input: SLU probabilistic database DP and support threshold 6.
: Output: All sequences s with ES(s, DP) > 6.

L; + ComputeFrequent-1-sequences(DP)
: for all sequences = € L; do

Compute B; , arrays

Call ProjectedDB(z, D*P)

: function ProjectedDB(s, D*P)

Lg + Compute Frequent S-extensions
: L1 < Compute Frequent I-extensions
: Output all Frequent Sequences {s extended with z, for all z in Lg and L;}
: for all x € Lg do

t < (s-{z}) {S-extension}
Compute B;; arrays
ProjectedDB(t, DP)

: for all x € L; do

t < (s1,...,8¢U{x}) {I-extension}
Compute B;; arrays
ProjectedDB(¢, DP)

: end function

e el e e el el e
© X TP AN O

1. s ={(s1,...,8q) is a previously discovered frequent sequence.
2. An (s)-projected database D*? is available.
3. The B s arrays for all sources ¢ in D®? are also available.

Objective. To compute the expected support of all the S- or I-extensions of s in one
pass over the database, and thus discover all frequent extensions of s.

5.2.1. S-extension Computation

We first compute the frequent S-extensions of s as follows. Initialize two arrays F' and
G, each of size |Z|, to zero. Recall that an (s)-projected database D®? is a collection
of suffixes of s in DP, where a suffix is of the form ((ug,cq),..., (ur,cr)). As the B;
arrays have already been computed, we consider each suffix of s in D*? in turn, and
for every item x in ug, for k = ¢+ 1,...,r, update F[z] as follows:

Flz] .= ((1 — ck) * F[z]) + (e * Bis[k — 1]). 9)

We keep track of all the non-zero entries in F[z], and once we are finished with a suffix,
we update G[z] := G[z] + F[z] and reset F[x] to zero. After all the suffixes of s in D*P
have been processed, all the entries in G[z] > 6 correspond to frequent S-extensions of
s. An example of this computation is shown in Table 7.

5.2.2. I-extension Computation

For the I-extensions case, we use the same arrays F' and G as in the S-extensions
case. Given the suffixes of s in D*P we consider every suffix of s in turn. As a suffix
is of the form u = ((ugq,cq), ..., (ur,cr)), the possible I-extensions of s in u could be
the items in ux — sx for k = q,...,r, where s C wur and all the items in ur — sk
are lexicographically after those in si. Considering every event wj in v in turn where

Mining Sequential Patterns from Probabilistic Databases 17

Table 7. An example of computing the expected support of all S-extensions of s = ((a)) for a
sample p-sequence D = ((a, d,e : 0.6)(b,c : 0.3)(a,b,c: 0.7)(c,d, e : 1.0)). The cells in columns
labelled (i)(iv) show the entries in F array after each event in DY is processed. The values in
the column (iv) are updated to G.

D? (a,d,e:0.6) (b,c:0.3) (a,b,c:0.7) (¢,d,e:1.0)
B s 0.60 0.60 0.88 0.88
((a)) 0.000 0.000 (1—0.7) % 0+ 0.420
(0.7 % 0.6) = 0.420
(b)) 0.000 (1-0.3) % 0+ (1 —0.7) % 0.180+ 0.474
(0.3%0.6) =0.180 (0.7%0.6) = 0.474
(@) 0.000 (1-0.3) % 0+ (1 —0.7) % 0.180+ (1—1) %0.474+
(0.3 % 0.6) = 0.180 (0.7 % 0.6) = 0.474 (10.88) = 0.880
(d)) 0.000 0.000 0.000 (1—1) % 0.0+
(10.88) = 0.880
((e)) 0.000 0.000 0.000 (1—1)%0.04+

(1 %0.88) = 0.880

(i)

(i)

(iif)

(iv)

sk Cug, fork=gq,..

., 7, we update F[z] for every item z lexicographically after those

in Sk, in ug — sx as follows:
Flx]:= (1 — cx) * Fz] + (Bi,s[k] — Bs,s[k — 1] * (1 — ck)). (10)

We repeatedly update G similar to the S-extensions case, and after all the suffixes of
s in D®P have been processed, all the entries in G such that G[z] > 6 correspond to
frequent I-extensions of s.

6. Empirical Evaluation

We now report on an empirical evaluation of our algorithms. We study the usefulness
of probabilistic pruning, and also evaluate the scalability, memory usage, and relative
performance of our algorithms. Finally, we evaluate the effectiveness of probabilistic
SPM framework in extracting useful information in the presence of noise.

6.1. Experimental Setup
We begin by describing the datasets used for experiments, and the SLU data generation.
6.1.1. Datasets

We use both real and synthetic datasets in our experiments. Note that these are all
deterministic datasets which we transform to the probabilistic form as described below
([10, 11, 13-15] also used this approach). The real dataset gazelle is from Blue Martini
Software, and was used for KDD-CUP’2000 [28]. The dataset is the web click stream
data of a webstore (gazelle.com), and contains a total of 29,369 customer (source)
sequences. A customer may have multiple sessions associated with it, and a session
may contain multiple page visits. The click stream information contains the session

18 Muzammal and Raman

start/end time, and also the page visit date/time and the sequence number. Therefore,
all the page visits by a customer can be transformed to a single click stream of page
visits (source sequence), ordered by a time-stamp. There are a total of 1,423 distinct
web pages, 35,722 sessions and 87,546 page visits. For more details see Kohavi et al.
[28].

The synthetic datasets are generated using the IBM Quest data generator [1]. In our
experiments, we fix the number of items! N = 2K and set the rest of the parameters
except the number of source sequences D and the average number of events per source
sequence C, to default values. The default values for the remaining IBM Quest param-
eters are as follows: average number of items per itemset 7' = 2.5, number of potential
frequent itemsets Ny = 5000, number of potential frequent sequences Ng = 100, aver-
age number of itemsets per frequent sequence S = 7 and average number of items per
itemset in a frequent sequence I = 2.

We follow the naming convention of Zaki [3]: a dataset named CiDjK means that the
average number of events per source sequence is ¢ and the number of source sequences
is j (in thousands). For example, the dataset C10D20K has on average 10 events per
source sequence and 20K source sequences. As the rest of the parameters are either
fixed or set to default values, we do not mention these parameters explicitly hereafter.

6.1.2. SLU Data Generation

We transform the above mentioned deterministic datasets to the probabilistic form
as follows. Recall that a deterministic database D = <7"17 ...,Tn), is an ordered list of
tuples of the form (eid, e, o), where eid is an event-id (including a time-stamp), and e is
the event which is associated with a source o (Section 2). In an SLU database D?, the
source attribute o is replaced by a probability distribution W over sources (Section 2).
In order to introduce uncertainty into our deterministic database D, we choose a noise
parameter § € [0, 1], which controls the degree of uncertainty about a tuple r; being
associated with the same source j in DP as it was in D. While generating an SLU
database, we set the number of sources in W to be at most two, unless stated otherwise.
Specifically, while generating an SLU database D? from D, we process every tuple r; in
D in turn as follows. We generate a value p € [0, 1] from a Poisson distribution with a
mean value d: in the SLU database D?, the tuple r; is associated with the same source j
as it was in D with a probability 1 — p, and is associated with some other randomly
chosen source o, € S, k # j, with probability p. Note that if the value of ¢§ is low, there
is a greater chance that r; is associated with the same source j in D? as it was in D. In
our experiments, we set 6 = 10%, unless stated otherwise. The p-sequences in the SLU
database DP are the source sequences of probabilistic events ordered by a time-stamp.
In what follows, we use the term ‘synthetic dataset’ for a dataset generated using IBM
Quest data generator and then, transformed to SLU form and similarly, ‘real dataset’
refers to gazelle transformed to SLU form. Further, in our experiments, we express
the support threshold 6 as a percentage of number of source sequences D, rather than
an absolute number 0 < 6 < m, for convenience’ sake.

6.1.3. Experiments Outline

We implemented the above algorithms in C# (Visual Studio .Net 2010), executed on
a machine with a 3.2GHz Intel CPU and 3GB RAM running Microsoft Windows XP
(SP3). To obtain the results (running time, memory usage or others), we generate three
probabilistic instances of each deterministic dataset, and run each of our algorithms on
every probabilistic instance several times, and report the averages.

1 In this section, we use parameter names derived from [1] rather than those introduced in
Section 2 for consistency with previous work. For example, we use N rather than ¢ to denote
the number of items.

Mining Sequential Patterns from Probabilistic Databases 19

We evaluate the proposed probabilistic SPM algorithms as follows. We first demonstrate
the effectiveness of probabilistic pruning. Then, we test the scalability of our algorithms,
and report the CPU cost of each algorithm under various parameter settings. In addition
to reporting the running times, we also monitor the memory usage of our algorithms,
and report the peak memory used by each algorithm in terms of %age of the total
system memory (RAM). Finally, we evaluate the effectiveness of probabilistic SPM
framework in the presence of noise §, and contrast the results obtained from data in
the presence of noise to those obtained from data without any noise.

6.2. Probabilistic Pruning

Given a sequence s = (s1,. .., 8q) and a source 4, recall that the objective in probabilistic
pruning is to compute an upper bound on the probability that s is supported by source ¢,
and that we compute the upper bounds for s in BFS and DFS differently. In BFS, we
store L; 1 along with their probabilities for source ¢, and compute the upper bound as
follows:

Pr[s < D] < Pr[(s1) X DP] *...x Pr[(sq) = DY]. (11)

In DFS, we already have computed the value Pr[(s1,...,sq—1) = D?], and obtain the
upper bound as below:

Pr[s X D?] < Pr[(s1,...,8q-1) X D¥] x Pr[(sq) = D?]. (12)

To show the effectiveness of probabilistic pruning, we report the percentage of the
infrequent candidate sequences that passed apriori pruning and were later eliminated
by the probabilistic pruning, for candidate 2-sequences onwards. Note that the apriori
pruning does not help for candidate 2-sequences, and probabilistic pruning is the only
option.

We now describe our experiments. We choose gazelle and two representative synthetic
datasets, namely C10D10K and C20D10K converted to SLU with § = 10%, and report
the results both for BFS and DFS in Fig. 1, for § = 5% and 10% for synthetic datasets
and for 8 = 0.02% and 0.04% for gazelle. We have following observations:

1. We observe that probabilistic pruning is particularly effective in eliminating po-
tential infrequent candidate 2-sequences both for synthetic and real datasets. We
observe over 90% reduction by probabilistic pruning for infrequent candidate 2-
sequences in most cases (all sub-figures of Fig. 1 except (ii) and (iv)).

2. We also observe that probabilistic pruning is more effective for relatively harder
instances, for example, for C10D10K at 6 = 5% vs. 10%.

3. We observe that in BFS, probabilistic pruning does not help for synthetic datasets
for candidate 3-sequences onwards, and becomes progressively less effective for
gazelle as well for candidate 3-sequences onwards whereas in DFS, we see an
overall reduction in the number of infrequent candidate sequences — upto a 50%
reduction in the infrequent candidate sequences for synthetic datasets and upto a
70% reduction for gazelle — both for synthetic and real datasets. It might suggest
that a tighter upper bound (Eq. 11 vs. Eq. 12) needs to be computed for BFS as
well, however, storing the probability with which a (j — 1) prefix of a j-sequence is
supported by source i for all candidate j-sequences with every source, is memory
intensive and would limit the execution of BFS even for smaller datasets.

We conclude from the above observations that probabilistic pruning is effective for can-
didate 2-sequences both for BFS and DFS. However, probabilistic pruning either did
not help or was less effective in BF'S for candidate 3-sequences onwards, whereas it was
effective overall in DFS, both for synthetic and real datasets. We therefore, turn prob-
abilistic pruning ‘ON’ for BF'S only for candidate 2-sequences, and turn probabilistic
pruning ‘ON’ for DFS for the entire duration of the algorithm.

20 Muzammal and Raman

Dataset = C10D10K, Noise = 10%, 6 = 5% Dataset = C10D10K, Noise = 10%, 6 = 10%
100 BFST—— BFST——
DFS = 50 - DFS e
E E
S S
5 & 5 4l
: :
Y S
g g
g g a0l
g g
E L £
8 s 10
B 2 B & q, 2 B [2, & Q
Yo, o, P, o, o Yoy oy oy oy o T
® (i)
Dataset = C20D10K, Noise = 10%, 6 = 5% Dataset = C20D10K, Noise = 10%, 8 = 10%
100 + BFS T 4 100 BFSC——
DFS 90 DFS mmmm -
3 B ool
2 2
g g TF
g g oor
§ § sor
g g 4«
g 8 wr
£ £ L
8 s @
10 |

R RN

(iii) (iv)
Dataset = gazelle, Noise = 10%, 6 = 0.02% Dataset = gazelle, Noise = 10%, 6 = 0.04%
100 BFS —— r BFS ——
DFS === DFS ===
B B
5 5
g 8 g
g g
2w 2
]]
g g
g g
£ E
B B

< E3 < &, &, 2 < R <, &,
T, T Ty Ty M T T T e T
™) (vi)
Fig. 1. Effectiveness of Probabilistic Pruning for BFS and DFS. In these graphs, each bar

indicates the percentage of infrequent candidate sequences eliminated by probabilistic pruning
that passed apriori pruning.

6.3. Scalability Analysis

We evaluate the probabilistic SPM algorithms, namely BFS, DFS and PGA, as follows.
We first demonstrate the scalability of these algorithms, and report the CPU time of
each algorithm under various parameter settings. In addition to reporting the CPU
times, we also monitor the memory usage of these algorithms, and report the peak
memory used by each algorithm in terms of percentage of the total system memory
(RAM). Finally, we contrast the performance of the probabilistic SPM algorithms with
each other.

6.3.1. CPU Cost

We consider four parameters in our experiments, the support threshold 0, average
number of events per source sequence C, the number of source sequences D, and the

Mining Sequential Patterns from Probabilistic Databases 21

number of sources in the distribution W. Clearly, if the other three parameters are
fixed, decreasing the 6 values, or increasing: (a) the average number of events per
source sequence C, (b) the number of source sequences D or (c) the number of sources
in W, all make an instance harder. For IBM Quest datasets, we test our algorithms
against four parameter i.e. for varying 6 values, for increasing C, for increasing D, and
for increasing number of sources in W. As the number of source sequences D and the
average number of events per source C is fixed for gazelle, we only test our algorithms
for varying 6 values in case of gazelle.

Varying 6. In the first set of experiments, Fig. 2(i) and (ii), we test our algorithms
for varying 6 values for gazelle, and for a representative synthetic dataset C10D10K.
We observe that for both synthetic and real data sets, the running time increases quite
rapidly as 6 decreases (note that the y-axis is logarithmic).

To get an insight into this behaviour, we obtain the total number of frequent se-
quences for varying 6 values in Fig. 3(i), and also the distributions of frequent sequences
in Fig. 4(i) and (ii), for the set of experiments reported in Fig. 2(i) and (ii). We ob-
serve that decreasing 6 results in a sharp increase in the number of frequent sequences
(Fig. 3(i)), and we can also see that the number of frequent sequences increase for
sequences of all lengths (Fig. 4(i) and (ii)) and consequently, we witness an increase in
the running times for all algorithms.

Increasing C. In another set of experiments, Fig. 2(iii) and (iv), we test the scala-
bility of our algorithms for increasing average number of events per source sequence C,
by keeping the number of source sequences D constant at 10K, and report the running
times for two values of 0, for 0 = 25% and 12.5%.

The running time graphs in Fig. 2(iii) and (iv) show that a linear increase in C results
in an exponential increase in the running times for all algorithms. Similar to our earlier
experiments for varying 6 values, we obtain the total number of frequent sequences
in Fig. 3(ii), and the distributions of frequent sequences in Fig. 4(iii) and (iv), for the
set of experiments in Fig. 2(iii) and (iv). We observe that an increase in C results in
rapid increase in the number of frequent sequences (Fig. 3(ii)), and almost doubles the
length of maximal frequent sequences (Fig. 4(iii) and (iv)), which would suggest the
increased running itmes observed.

Increasing D. We also test the scalability of our algorithms for increasing number
of source sequences D, Fig. 2(v) and (vi). We set the average number of events per
source sequence C' = 10, and report the running times for representative 6 values at
0 = 2% and 1%.

We observe that all our algorithms scale linearly for increasing D, although the running
time graphs show that the rate of increase of the CPU cost for DFS is greater than for
BFS. Note that the distributions of frequent sequences or lengths of maximal frequent
sequences are largely unaffected as D increases, and we do not report those explicitly.

Increasing |WW|. We test the scalability of our algorithms for increasing number of
sources in W, Fig. 2(vii) and (viii). We set the number of source sequences D = 10K,
average number of events per source sequence C' = 10, and report the running times
for representative § values at § = 10% and 20%.

We observe that all our algorithms scale linearly for increasing |W|, although the run-
ning time graphs show that the rate of increase of the CPU cost for DFS is greater
than for BFS and PGA, similar to the increasing D case.

Comparison of Algorithms. We now contrast our algorithms in terms of CPU
time for the set of experiments in Fig. 2. We first focus on the candidate generation
algorithms, BFS and DFS. We observe that while BFS is more efficient than DFS in

22 Muzammal and Raman

Dataset = C10D10K, Noise = 10% Dataset = gazelle, Noise = 10%
10° [1 10° [1
a10°r 1 S 10]
8 8
c c
g10°] gu°r |
E E
=) =)
£10° 1 £10° 1
5 5
4 4
10' || BFS —— 1 10' || BFS —— .]
1 2 3 4 0.015 0.025 0.035 0.045
0 values (in %age) 0 values (in %age)
(@) (i)
D = 10K, Noise = 10%, 6 = 25% D = 10K, Noise = 10%, 6 = 12.5%
10° 1 108 -]
't] Bt]
< <
8107 | q 8| 1
£ £
E 2 E 2
g10°r 1 £10° 4
2 2
10t b B 10t b BFS —— |4
0 10 20 30 40 0 10 20 30 40
Average length of source sequences Average length of source sequences
(iii) (iv)
C =10, Noise = 10%, 8 = 2% C =10, Noise = 10%, 8 = 1%
60000 [q
15000 || BFS —e— q
& 12000 | 1 o 45000 |]
8 8
c c
g 0f 1 8
E E 30000]
g ewor 1 g
g g
2 2000 |] £ 15000 1
or L L L L L] op L L L L L
0 10 20 30 40 0 10 20 30 40
Number of source sequences (in 000's) Number of source sequences (in 000's)
) (vi)
D= 10K, C =10, 8 = 1%, Noise = 10% D= 10K, C =10, 8 = 1%, Noise = 20%
Rl T y— 1 Rl T y— 1
DFS DFS
40000 | POA — 40000 (| POA - —
8 8
£ 30000 | 4 £ 30000 | 4
8 8
E E
S 20000 - 1 S 20000 1
= =
c c
5 5
@ 10000 - q @ 10000 - q
-
ot 1 ot 1
1 2 3 4 5 1 2 3 4 5
Number of sourcesin W Number of sourcesin W

(vii) (viii)

Fig. 2. CPU time (in seconds) for BFS, DFS and PGA under different parameter settings for
gazelle and representative synthetic datasets.

Mining Sequential Patterns from Probabilistic Databases 23

D = 10K, Noise = 10% D = 10K, Noise = 10%
10° F 10° a
jazelle
9 =0015% Clng(JK
@ 6=0.25% 8 10° b
8 .. &
B - 3
g.ms E g .
= 0=050% " g0
2 g
§ 510°
5 10 | 8
o
o £ 2
c S0f
z
10° | 10t .
Decreasing 6 Increasing C
® (ii)

Fig. 3. Number of frequent sequences, for varying 6 values for gazelle and C10D10K, and for
increasing C (Fig. 2).

Dataset = C10D10K, Noise = 10% Dataset = gazelle, Noise = 10%
05 F T T T T — T T T T T
10° 1
g . &
%10 r] %104 L B
g10° 1 &
g 3 10° f
g g
5 107 q 5 102]
o1 o1
k-] k-]
E o 5
Zz 07 1 210t 1
2 4 6 8 10 2 4 6 8 10
Length of frequent sequences Length of frequent sequences
(@) (i)
D = 10K, Noise = 10%, 6 = 25% D = 10K, Noise = 10%, 6 = 12.5%
05 T T T T — T T T T
& &
g r 1 g
§ §
gt 1 5
3 3
g g
5107 [1 5
o1 o1
2 2
ot 1 5
z 0 z
0 3 6 9 12 0 4 8 12 16
Length of frequent sequences Length of frequent sequences
(iii) (iv)

Fig. 4. Distribution of frequent sequences for gazelle and representative synthetic datasets
for the set of experiments in Fig. 2(i)-(iv).

CPU cost (Fig. 2(i), (v), (vi)), DFS is better for increasing C (Fig. 2(iii)-(iv)) and also
for gazelle at 6 = 0.015%.

We can explain this behaviour considering the following key differences in BFS and
DFS.

1. The candidate generation mechanism in DFS is different from BFS — DFS joins
L;_1 with L1 to obtain C}, whereas BFS joins L;_; with itself for the purpose —
and thus, when the size of L; is larger than L;_1, more candidate sequences are
generated for DFS as compared to BFS. However, when L;_; is significantly larger
than Li, for example for gazelle at § = 0.015% or for C40D10K at 6 = 25%, CPU
cost for BFS is higher than DFS.

2. In DFS, only partial apriori pruning is possible whereas BF'S makes full use of the

24 Muzammal and Raman

apriori pruning and thus in DFS, considerably more candidate sequences need to
be considered for the later stages i.e. probabilistic pruning and expected support
computation.

3. Probabilistic pruning helps DFS more than the BFS as shown in Fig. 1.

Thus, depending on the interplay of these three factors, namely (1) number of can-
didate sequences generated (2) partial vs. full apriori pruning and (3) effectiveness of
probabilistic pruning, BF'S may outperform DFS, or vice-versa.

Now comparing candidate generation algorithms with the pattern-growth algorithm,
we can see that PGA is more efficient than both BFS and DFS in all our experiments
(Fig. 2). In Fig. 2(iv) at C' = 40, we can see that only PGA manages to finish in a
reasonable time, whereas both BFS and DFS do not finish even beyond 80 hours of
execution.

Based on the above observations, we conclude that PGA is the most efficient overall in
terms of CPU cost, whereas BFS and DFS have relatively higher CPU cost. We further
conclude that while the performance of BFS and DFS depends on various parameter
settings, PGA is rather oblivious to individual parameter settings and has a relatively
stable behaviour.

6.3.2. Memory Usage

We also monitor the memory usage of our algorithms for the set of experiments in Fig. 2,
and report the peak memory used by each algorithm as a percentage of total system
memory (RAM) in Fig. 5.

In Fig. 5(i) and (ii), we see that BFS has high memory requirements at very low 0
values whereas DFS and PGA are relatively stable, for example at 0 = 0.015% for
gazelle and at 6 = 0.025% for C10D10K, the memory usage for BFS increases sharply
(upto 60% of system memory) whereas it remains under 10% for DFS and under 2%
for PGA.

In Fig. 5(iii) and (iv), we observe that DFS has higher memory requirements for in-
creasing C, whereas BF'S consumes relatively less memory. We observe a sharp increase
for BFS in Fig. 5(iv) as compared to Fig. 5(iii) at a low 6, for 8 = 12.5% vs. 25%.
We observe that the memory usage for PGA remains rather stable and increasing C
(Fig. 5(iii) and (iv)), or varying 6 (6 = 25% vs. 12.5%) does not significantly affect the
memory usage of PGA.

In Fig. 5(v) and (vi), we observe that all the algorithms require relatively less memory
as compared to the other experiments in Fig. 5 (Fig. 5(i)—(iv)). We observe that the
memory usage for PGA almost doubles with a two-fold increase in the database size, for
example for D = 20K vs. 40K in Fig. 5(v) and (vi). We also observe that the memory
usage of PGA is not affected by decrease in 6, Fig. 5(v) and (vi) at 8 = 2% vs. 1%,
similar to the observations in Fig. 5(i)— (iv). In Fig. 5(vii) and (viii), we see behaviours
similar to (v) and (vi), as the memory requirements remain rather stable for increasing
Asin BFS, all the candidate sequences in a phase are processed altogether, BF'S has high
memory requirements at low 6 due to storing and processing all candidate sequences
simultaneously. Further, we store some additional information in DFS and PGA to
speed-up the support computation. For instance, we store B; s arrays along with the
list of sources that support s in DFS, and only the B; s arrays in PGA. It appears as
if storing the B; s arrays works well with PGA as it helps speed up the algorithm and
the memory requirements also remain rather stable. Thus, we can conclude from the
above set of experiments that PGA is the most scalable algorithm in terms of memory
usage as well in contrast with both BFS and DFS.

We conclude from the set of experiments in this section that the pattern growth ap-
proach extends the advantages that it is argued to have over candidate generation
approaches in classical SPM setting, to the probabilistic case as well. In the candidate

Mining Sequential Patterns from Probabilistic Databases 25

Dataset = C10D10K, Noise = 10% Dataset = gazelle, Noise = 10%
60 18 F
g g *°f]
g o] Q wf g
k] k] »
o 4}] o t 1
g g
S S 10} 1
£ =0f — £ .
§ §
> 20r q > 6r 1
s 10f] g
... 2|]
0 T T i i 0 L L L L L L
05 1 15 2 0.015 0.020 0.025 0.030 0.035 0.040
8 values (in %age) 8 values (in %age)
(@) (i)
D = 10K, Noise = 10%, 6 = 25% D = 10K, Noise = 10%, 6 = 12.5%
40 | BFS =—+— 4 60 - 4
o o
Q Q
@ @
S 30 1 5 451 1
@ @
2 2
X X
S wf i < 2l f
ki ki
3 3
& &
g or 1 £ 5r]
= =
0 0
0 10 20 30 40 0 10 20 30 40
Average length of source sequences Average length of source sequences
(iii) (iv)
C =10, Noise = 10%, 8 = 2% C =10, Noise = 10%, 8 = 1%
o 12r N o B 1
3 3
5 5 12} 1
o ol] o
g g
£ £ °r 7
6]
§ g |
2 2
§ §
§ 3 7 5 5|]
= =
0 . . . 0 . . .
0 10 20 30 40 0 10 20 30 40
Number of source sequences (in 000's) Number of source sequences (in 000's)
) (vi)
D= 10K, C =10, 8 = 1%, Noise = 10% D= 10K, C =10, 8 = 1%, Noise = 20%
16 | BFS —e— 1 16 1
—~ DFS —~
§ |l g
B 12¢ q 5 12]
o o
g g
< <
g g} E < 8f 1
g g
3 3
pal pal
§ §
5 4] 5 4]
= =
0 0
0 1 2 3 4 5 0 1 2 3 4 5
Number of sourcesin W Number of sourcesin W

(vii) (viii)

Fig. 5. Memory usage (in terms of %age of system memory used) for the set of experiments
in Fig. 2.

26 Muzammal and Raman

Table 8. A deterministic database (i) converted to SLU databases (ii-iv). The events a1, a2
and a3 represent the same itemset {a} but with different event-ids. The support of the sequence
((a)) is 2 in the deterministic case, and the expected support of ((a)) is 2, 1.6 and (0.875 +
0.75 + 0.5 =) 2.125 respectively in SLU databases (ii-iv).

source sequence p-sequence
Dx (a1)(az) DY (a1 : 1.0)(az2 : 1.0)
Dy (a3) DY, (a3 : 0.6)
Dy — DY, (a3 : 0.4)
() (i1)
p-sequence p-sequence
D% (a1 : 1.0)(a2 : 1.0)(a3 : 0.4) D% (a1 : 0.5)(az : 0.5)(as : 0.5)
DY (az : 0.6) DY (a1 : 0.5)(as : 0.5)
DY, - DY, (a2 : 0.5)

(iii) (iv)

generation approaches, while BFS suffers from high cost of maintaining candidate se-
quences at low 6 values, DFS can not take full advantage of the apriori pruning and
therefore, performance of both the approaches is deteriorated for relatively harder in-
stances. In summary, PGA scales well both in terms of CPU cost and memory usage
as compared to BFS and DFS for the set of experiments we consider.

6.4. Effectiveness of the Probabilistic SPM Framework

We now report on an evaluation of effectiveness of the probabilistic SPM framework,
specifically how well the probabilistic SPM approach is able to extract meaningful
data in the presence of noise §. Note that such studies have not been performed for
probabilistic frequent itemset mining in literature [10, 11, 13].
We discuss the methodology we use. As discussed previously, the datasets used in our
experiments are all deterministic datasets, and we artificially introduce uncertainty
(noise §) into our datasets. An advantage of generating probabilistic data this way is
that we can compare the frequent sequences obtained from deterministic data with
those obtained from probabilistic data, to assess the effectiveness of probabilistic SPM
framework in the presence of noise 6. We use the standard measures of precision and
recall from information retrieval for the purpose [29, Chapter 8], which are defined as
follows: given a set of frequent sequences R retrieved from a deterministic dataset, let
R’ be the set of frequent sequences retrieved from the probabilistic dataset obtained
by adding noise to the deterministic dataset. Then,
/
Precision = M7 Recall

_|RNR|
|RY| '

R

We evaluate the probabilistic SPM framework using both real and synthetic datasets.
We report overall precision and recall for the complete set of frequent sequences, as
well as for frequent k-sequences for k =1,...,7 (i.e. precision and recall for sequences
of individual length). In our experiments, we vary the noise parameter 6 from 5% to
20% both for real and synthetic datasets, and keep the rest of the parameters fixed.
Observe that as a result of the noise introduced by us, the support of an individual
sequence in the resulting probabilistic database may be equal to, less than or more
than its support in the original deterministic dataset, as shown in Table 8.

Mining Sequential Patterns from Probabilistic Databases

Table 9. Precision and recall results for synthetic dataset C10D10K.

Dataset k-sequences overall
C10D10K 1 2 3 4 5 6 7
0 =2%
6 =5%
Precision 1.00 0.95 0.96 099 0.96 0.98 1.00 0.97
Recall 1.00 098 0.97 098 097 0.96 0.95 0.98
§ = 10%
Precision 1.00 092 0.92 098 090 0.95 1.00 0.94
Recall 1.00 098 0.97 097 096 0.93 0.77 0.97
6 = 20%
Precision 1.00 0.86 0.81 0.89 0.82 0.84 1.00 0.86
Recall 1.00 096 094 095 094 093 0.34 0.95
0=1%
5§ =5%
Precision 1.00 095 0.93 097 096 0.95 0.99 0.95
Recall 1.00 0.99 097 097 0.98 0.98 0.88 0.97
6 = 10%
Precision 1.00 0.93 0.88 0.95 0.91 090 0.98 0.92
Recall 1.00 0.98 095 095 0.95 096 0.84 0.96
§ = 20%
Precision 1.00 0.89 0.80 0.87 0.84 0.82 0.96 0.86
Recall 1.00 096 0.92 090 092 094 0.76 0.93
Table 10. Precision and recall results for synthetic dataset C20D10K.
Dataset k-sequences overall
C20D10K 1 2 3 4 5 6 7
6 = 20%
6 =5%
Precision 1.00 1.00 0.96 0.92 0.93 0.89 1.00 0.92
Recall 1.00 1.00 1.00 0.99 0.99 1.00 0.59 0.99
§ = 10%
Precision 1.00 1.00 094 0.83 0.84 0.85 1.00 0.86
Recall 1.00 1.00 1.00 0.99 1.00 1.00 0.44 0.98
& = 20%
Precision 1.00 1.00 0.87 0.79 0.71 0.79 1.00 0.77
Recall 1.00 1.00 1.00 0.97 0.99 1.00 0.31 0.97
0 =10%
5§ =5%
Precision 1.00 093 096 094 094 0.95 0.99 0.96
Recall 1.00 0.99 1.00 1.00 0.98 0.99 0.98 0.99
6 = 10%
Precision 1.00 091 096 092 0.86 0.88 0.96 0.91
Recall 1.00 1.00 0.98 1.00 097 0.99 0.97 0.98
§ = 20%
Precision 098 0.8 091 0.8 0.81 0.78 0.86 0.83
Recall 1.00 099 095 096 096 0.96 0.96 0.95

27

28 Muzammal and Raman

6.4.1. Synthetic Datasets

In the first set of experiments, Table 9, we consider the dataset C10D10K at 6 = 2% and
1%, and report the precision and recall results for different values of ¢, for § = 5%, 10%
and 20%. In another set of experiments, Table 10, we consider the dataset C20D10K at
0 = 20% and 10%, and report the precision and recall results similar to Table 9.

We observe that for the datasets we consider, namely C10D10K (for 0 = 2%, 1%) and
C20D10K (for 8 = 20%,10%), change in C or 6, does not significantly affect preci-
sion/recall. However, when § is varied (between 5% to 20% in our experiments), both
precision and recall are affected. Thus, whilst precision is slightly worse than recall when
4 is increased, we get over 90% overall recall in our experiments in Tables 9 and 10.
Further, we get over 80% overall precision as well except for C20D10K for § = 20% and
8 = 20%, where it is 77% (Table 10).

We next give precision and recall against frequent k-sequences of length upto 7. We
have the following observations:

1. We observe that recall is near perfect for small values of k, and declines when the
value of k increases e.g. for k = 6 or 7, whereas precision is affected by an increase
in § rather than an increase in the sequence length.

2. We also observe that recall is not good for long sequences and especially, when
d is also high, for example, for 7-sequences at 6 = 20%, in C10D10K at 0 = 2%
or in C20D10K at # = 20%. This is not entirely unexpected as longer sequences
would tend to have lower support (and would thus be closer to the threshold) in
the deterministic database, and the noise would tend to further lower the support
of long sequences.

3. It is also interesting to note that whilst overall recall remains relatively unaffected
for different values of 0, we get slightly better recall for lower values of 0, for instance,
for 7-sequences in C20D10K at 0 = 20% vs. 0 = 10%.

We conclude from the set of experiments in Tables 9 and 10 that for the datasets
we consider and the expected support and noise thresholds, we get encouraging preci-
sion/recall results overall as well as for sequences of different lengths, even when noise
is relatively high.

0.4.2. gazelle

We now evaluate the effectiveness of probabilistic SPM framework for gazelle. In our
experiments (Table 11), we report precision and recall results for two values of 6, for
0 = 0.04% and 0.03%, and vary the noise parameter § between 5% to 20% similar to
synthetic datasets.

We observe that although precision is generally good, recall is rather poor. Further, the
longest sequences seem to be worse affected by noise. For example, whilst the overall
precision is near perfect for the set of experiments in Table 11, even the highest overall
recall is only 0.67 which is for § = 0.04% at 6 = 5%, whereas overall recall gets as
low as 20% for 6 = 0.03% and for 6 = 20%. A similar observation can be made about
sequences of individual lengths i.e. precision is perfect or near perfect but recall is very
low. In other words, we can say that although most of the extracted sequences are
relevant, there are not many of them.

Our understanding of a low recall is that the sequences with the highest expected
support are not able to pass the support threshold 6 or in other words, 0 is too high.
It might suggest that the 6 values need to be fine tuned, or in other words, revised
downwards in order to improve recall (see [30] for a discussion on soft thresholds for
pattern mining). It is obvious that revising 0 downwards in order to improve recall will
be at the cost of some precision i.e. precision is likely to deteriorate as a consequence.
One important issue is that it is not clear how to systematically adjust the 6 values.
In our experiments, we revise 6 by setting 6 = 0 x (1 — §) (there could be other ways as

Mining Sequential Patterns from Probabilistic Databases 29

Table 11. Precision and recall results for gazelle.

Dataset k-sequences overall
gazelle 1 2 3 4 5 6 7
6 = 0.04%
6 =5%
Precision 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00
Recall 1.00 0.81 0.57 0.40 0.20 0.08 0.00 0.67
5§ =10%
Precision 1.00 0.99 1.00 1.00 1.00 0.00 0.00 1.00
Recall 1.00 0.68 0.39 0.20 0.06 0.00 0.00 0.53
6 = 20%
Precision 099 098 1.00 1.00 0.00 0.00 0.00 1.00
Recall 1.00 046 0.16 0.03 0.00 0.00 0.00 0.41
0 = 0.03%
5§ =5%
Precision 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Recall 1.00 0.77 0.50 0.31 0.17 0.05 0.01 0.50
6 =10%
Precision 1.00 099 1.00 1.00 1.00 1.00 0.00 1.00
Recall 1.00 0.65 0.31 0.14 0.04 0.00 0.00 0.36
5§ =20%
Precision 1.00 0.98 1.00 1.00 1.00 0.00 0.00 0.99
Recall 1.00 0.45 0.11 0.02 0.01 0.00 0.00 0.20

well), and the rows labelled as ‘Change’ in Table 12 show the effect of this adjustment
on precision and recall. For example, a value +0.20 in the ‘Change’ row under recall
means that recall improved by 20% as a result of revising 6, whereas the values in the
corresponding precision and recall rows show the updated precision and recall values.
We report the updated precision and recall results after revising 6 in Table 12. As
expected, we see some improvement in recall at the cost of precision. For example,
observe an improvement of over 40% in overall recall, at the cost of a nearly 20% decline
in precision, for § = 0.03% and § = 20%. The results are encouraging for sequences of
individual lengths as well; for example, observe 54% and 59% improvement in recall for
frequent 2- and 3-sequences respectively, for § = 0.03% and § = 20%. However, precision
declines as a consequence: observe a 31% and 5% decline in precision respectively, in
the aforementioned case. Further, the recall is still not good for longer sequences e.g.
for 6- or 7-sequences and this might suggest that the 6 needs to be fine tuned in each
phase or alternatively, for sequences of each length. However, it is not clear how to do
this.

Thus, we can suggest from the set of experiments we consider that 6 needs to be fine
tuned in order to get better precision/recall results for gazelle.

Concluding our discussion on the effectiveness of the probabilistic SPM framework in
the presence of noise, we say that we get encouraging precision/recall results overall as
well as for sequences of individual lengths, for our considered synthetic datasets. How-
ever, the recall was rather poor for gazelle which we were able to improve considerably
by an adjustment in 0, albeit at the cost of some precision.

7. Conclusions and Future Work

We have considered the problem of finding all frequent sequences in an SLU database
under the expected support measure. We have proposed three algorithms, two based on
the candidate generation and one based on the pattern growth framework; our empirical

30 Muzammal and Raman

Table 12. The updated precision and recall results for gazelle after 6 is revised. The rows
labelled as ‘Change’ show the improvement/decline (4/-) in the precision and recall results
after 0 is revised.

Dataset k-sequences overall
gazelle 1 2 3 4 5 6 7
0 = 0.04%
5§ =5%
Precision 0.96 0.98 1.00 1.00 1.00 1.00 0.00 0.99
Change -0.04 -0.02 0.00 0.00 0.00 0.00 0.00 -0.01
Recall 1.00 0.99 0.82 0.65 0.37 0.16 0.00 0.86
Change 0.00 +0.18 +0.25 +0.25 +0.17 +0.08 0.00 +0.19
5 =10%
Precision 0.94 0.88 0.99 1.00 1.00 1.00 0.00 0.93
Change -0.06 -0.11 -0.01 0.00 0.00 0.00 0.00 -0.07
Recall 1.00 0.99 0.80 0.51 0.20 0.03 0.00 0.84
Change 0.00 +0.31 +0.41 +0.31 +0.14 +0.03 0.00 +0.31
6 =20%
Precision 0.84 0.67 0.95 1.00 1.00 0.00 0.00 0.78
Change -0.15 -0.31 -0.05 0.00 0.00 0.00 0.00 -0.22
Recall 1.00 1.00 0.75 0.28 0.06 0.00 0.00 0.86
Revised 6 0.00 +0.54 +0.59 +0.25 +0.06 0.00 0.00 +0.45
0 = 0.03%
6 =5%
Precision 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Change -0.04 -0.01 0.00 0.00 0.00 0.00 0.00 0.00
Recall 1.00 0.98 0.77 0.55 0.37 0.17 0.07 0.77
Change 0.00 +0.21 +0.27 4+0.24 40.20 0.12 0.06 +0.22
6 = 10%
Precision 0.94 0.90 0.99 1.00 1.00 1.00 0.00 0.95
Change -0.06 -0.09 -0.01 0.00 0.00 0.00 0.00 -0.05
Recall 1.00 0.98 0.75 0.44 0.20 0.03 0.00 0.68
Change 0.00 +0.33 +0.44 +0.30 +0.16 0.03 0.00 +0.32
5 =20%
Precision 0.89 0.69 0.91 0.99 1.00 0.00 0.00 0.80
Change -0.11 -0.29 -0.09 -0.01 0.00 1.00 0.00 -0.19
Recall 1.00 1.00 0.72 0.25 0.05 0.00 0.00 0.61
Change 0.00 +0.55 +0.61 +0.23 +0.04 0.00 0.00 +0.41

evaluation shows that the pattern growth approach is more scalable than the candidate
generation approaches, as observed in the deterministic case. In contrast it has been
noted that when mining frequent itemsets from uncertain data, the pattern growth
approach (FP-tree) does not scale well [22]. We have also shown that the probabilistic
SPM framework is effective in extracting meaningful patterns from SLU data using the
expected support measure.

This is one of the first studies on efficient algorithms for this problem, and naturally
a number of open directions remain, including expanding the range of “interesting
objects”, e.g. finding maximal frequent sequences or having a more restricted definition
of the “subsequence” relation. However, equally challenging is exploring further the
notion of “interestingness”. In this paper, we have used the expected support measure,
which has the advantage that it can be computed efficiently for an SLU database — the
probabilistic frequentness [11] is provably intractable for SLU databases [21]. A number
of other longer-term challenges remain, including creating a data generator that gives
an “interesting” SLU database and considering more general models of uncertainty

Mining Sequential Patterns from Probabilistic Databases 31

(e.g. it is not clear that the assumption of independence between successive uncertain
events is justified).

Acknowledgements. We are grateful to the anonymous reviewers for making useful
suggestions in improving this work.

References

(1

2]

[10]

[11]

[12]

[13]

[14]

[15]

Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In
Philip S. Yu and Arbee L. P. Chen, editors, ICDE, pages 3—14. IEEE Computer
Society, 1995. ISBN 0-8186-6910-1.

Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: Gen-
eralizations and performance improvements. In Peter M. G. Apers, Mokrane
Bouzeghoub, and Georges Gardarin, editors, EDBT, volume 1057 of LNCS, pages
3-17. Springer, 1996. ISBN 3-540-61057-X.

Mohammed Javeed Zaki. SPADE: An efficient algorithm for mining frequent se-
quences. Machine Learning, 42(1/2):31-60, 2001.

Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto, Qiming
Chen, Umeshwar Dayal, and Meichun Hsu. Mining sequential patterns by pattern-
growth: The PrefixSpan approach. IEEE Transactions on Knowledge and Data
Engineering, 16(11):1424-1440, 2004.

Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. Sequential pattern
mining using a bitmap representation. In KDD, pages 429-435. ACM, 2002. ISBN
1-58113-567-X.

Charu C. Aggarwal, editor. Managing and Mining Uncertain Data. Springer, 2009.

Dan Suciu and Nilesh N. Dalvi. Foundations of probabilistic answers to queries.

In Fatma Ozcan, editor, SIGMOD Conference, page 963. ACM, 2005. ISBN 1-
59593-060-4.

Qin Zhang, Feifei Li, and Ke Yi. Finding frequent items in probabilistic data. In
Wang [31], pages 819-832. ISBN 978-1-60558-102-6.

Graham Cormode, Feifei Li, and Ke Yi. Semantics of ranking queries for prob-
abilistic data and expected ranks. In ICDE, pages 305-316. IEEE, 2009. ISBN
978-0-7695-3545-6.

Charu C. Aggarwal, Yan Li, Jianyong Wang, and Jing Wang. Frequent pattern
mining with uncertain data. In Elder et al. [32], pages 29-38. ISBN 978-1-60558-
495-9.

Thomas Bernecker, Hans-Peter Kriegel, Matthias Renz, Florian Verhein, and An-
dreas Ziifle. Probabilistic frequent itemset mining in uncertain databases. In Elder
et al. [32], pages 119-128. ISBN 978-1-60558-495-9.

Chun Kit Chui and Ben Kao. A decremental approach for mining frequent itemsets
from uncertain data. In Takashi Washio, Einoshin Suzuki, Kai Ming Ting, and
Akihiro Inokuchi, editors, PAKDD, volume 5012 of LNCS, pages 64—75. Springer,
2008. ISBN 978-3-540-68124-3.

Chun Kit Chui, Ben Kao, and Edward Hung. Mining frequent itemsets from
uncertain data. In Zhi-Hua Zhou, Hang Li, and Qiang Yang, editors, PAKDD,
volume 4426 of LNCS, pages 47-58. Springer, 2007. ISBN 978-3-540-71700-3.
Liwen Sun, Reynold Cheng, David W. Cheung, and Jiefeng Cheng. Mining un-
certain data with probabilistic guarantees. In Bharat Rao, Balaji Krishnapuram,
Andrew Tomkins, and Qiang Yang, editors, KDD, pages 273-282. ACM, 2010.
ISBN 978-1-4503-0055-1.

Liang Wang, Reynold Cheng, Sau Dan Lee, and David Wai-Lok Cheung. Accel-
erating probabilistic frequent itemset mining: a model-based approach. In Jimmy

32

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

24]

[25]

[26]

[27]

[28]

29]

[30]

Muzammal and Raman

Huang, Nick Koudas, Gareth J. F. Jones, Xindong Wu, Kevyn Collins-Thompson,
and Aijun An, editors, CIKM, pages 429-438. ACM, 2010. ISBN 978-1-4503-0099-
5.

Toon Calders, Calin Garboni, and Bart Goethals. Approximation of frequentness
probability of itemsets in uncertain data. In Geoffrey I. Webb, Bing Liu, Chengqi
Zhang, Dimitrios Gunopulos, and Xindong Wu, editors, ICDM, pages 749-754.
IEEE Computer Society, 2010.

Jiong Yang, Wei Wang, Philip S. Yu, and Jiawei Han. Mining long sequential
patterns in a noisy environment. In Michael J. Franklin, Bongki Moon, and Anas-
tassia Ailamaki, editors, SIGMOD Conference, pages 406-417. ACM, 2002. ISBN
1-58113-497-5.

Xingzhi Sun, Maria E. Orlowska, and Xue Li. Introducing uncertainty into pattern
discovery in temporal event sequences. In ICDM, pages 299-306. IEEE Computer
Society, 2003. ISBN 0-7695-1978-4.

Wikipedia. http://en.wikipedia.org/wiki/anpr — Wikipedia, the free encyclope-
dia, 2010. URL {http://en.wikipedia.org/wiki/ANPR}. [Online; accessed 30-
April-2012].

Liam Keilthy. ANPR System performance. In Marko Ruh and Gerhard Trost-
Heutmekers, editors, Parking Trend International. European Parking Association,
June 2008. URL {http://www.parkingandtraffic.co.uk/Measuring’20ANPRJ,
20Systemy20Performance.pdf}. Online; accessed 30-June-2012.

Muhammad Muzammal and Rajeev Raman. On probabilistic models for uncertain
sequential pattern mining. In Longbing Cao, Yong Feng, and Jiang Zhong, editors,
ADMA (1), volume 6440 of LNCS, pages 60-72. Springer, 2010. ISBN 978-3-642-
17315-8.

Yongxin Tong, Lei Chen, Yurong Cheng, and Philip S. Yu. Mining frequent item-
sets over uncertain databases. PVLDB, 5(11):1650-1661, 2012.

Ming Hua, Jian Pei, Wenjie Zhang, and Xuemin Lin. Ranking queries on uncertain
data: a probabilistic threshold approach. In Wang [31], pages 673-686. ISBN 978-
1-60558-102-6.

Metanat Hooshadat, Samaneh Bayat, Parisa Naeimi, Mahdieh S. Mirian, and Os-
mar R. Zaiane. Uapriori: An algorithm for finding sequential patterns in prob-
abilistic data. In Cengiz Kahraman, Faik Tunc Bozbura, and Etienne E. Kerre,
editors, UMKEDM, pages 907-912. World Scientific, 2012. ISBN 978-9814417730.

Zhou Zhao, Da Yan, and Wilfred Ng. Mining probabilistically frequent sequential
patterns in uncertain databases. In Elke A. Rundensteiner, Volker Markl, Toana
Manolescu, Sihem Amer-Yahia, Felix Naumann, and Ismail Ari, editors, EDBT,
pages 74-85. ACM, 2012. ISBN 978-1-4503-0790-1.

Li Wan, Ling Chen, and Chengqi Zhang. Mining frequent serial episodes over
uncertain sequence data. In Giovanna Guerrini and Norman W. Paton, editors,
EDBT, pages 215-226. ACM, 2013. ISBN 978-1-4503-1597-5.

Avinash Achar, Ibrahim A, and P. S. Sastry. Pattern-growth based frequent serial
episode discovery. Data Knowl. Eng., 87:91-108, 2013.

Ron Kohavi, Carla Brodley, Brian Frasca, Llew Mason, and Zijian Zheng. KDD-
Cup 2000 organizers’ report: Peeling the onion. SIGKDD Ezplorations, 2(2):86-98,
2000.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. Introduction
to Information Retrieval. Cambridge University Press, New York, NY, USA, 2008.
ISBN 0521865719, 9780521865715.

Willy Ugarte, Patrice Boizumault, Samir Loudni, and Bruno Crémilleux. Soft

threshold constraints for pattern mining. In Jean-Gabriel Ganascia, Philippe
Lenca, and Jean-Marc Petit, editors, Discovery Science, volume 7569 of Lecture

Mining Sequential Patterns from Probabilistic Databases 33

Notes in Computer Science, pages 313-327. Springer, 2012. ISBN 978-3-642-33491-
7.

[31] Jason Tsong-Li Wang, editor. Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada,
June 10-12, 2008, 2008. ACM. ISBN 978-1-60558-102-6.

[32] John F. Elder, Frangoise Fogelman-Soulié, Peter A. Flach, and Mohammed Javeed
Zaki, editors. Proceedings of the 15th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Paris, France, June 28 - July 1, 2009,
2009. ACM. ISBN 978-1-60558-495-9.

Author Biographies

Muhammad Muzammal is an Assistant Professor in the Com-
puter Science Department at Bahria University, Islamabad. He re-
ceived PhD degree in Computer Science from University of Leicester
in 2012. His research interests are in data mining, uncertain data and
human-centred computing.

Rajeev Raman obtained his B. Tech and PhD degrees from IIT
Delhi and the University of Rochester in 1986 and 1993 respectively.
He held research positions at the Max Planck Institute for Informatics
and at the University of Maryland before joining King’s College Lon-
don as a Lecturer (Assistant Professor). He has been a Professor at
the University of Leicester since 2001 (and served as Head of the Com-
puter Science Department from 2003-06). His primary research inter-
ests are in algorithms and complexity, particularly data structures
and parallel algorithms, and applications of randomised techniques.
Recently his interests have lain in succinct, or highly space-efficient,
data structures, and is currently looking to apply succinct data struc-
tures to improve the scalability of data mining algorithms. He is on
the editorial boards of the J. Discrete Algorithms (Elsevier) and the
Computer Journal (OUP) and has served as PC member or chair of
about 40 conferences.

Correspondence and offprint requests to: Muhammad Muzammal, Department of Computer
Science, Bahria University, Islamabad, Pakistan. Email: muzammal@bui.edu.pk

