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A bstract

This thesis describes the design and flight testing of advanced robust multivariable control 
laws for high performance fly-by-wire helicopters. The control laws are synthesised using 
H qo optimisation, which provides robust stability against a wide class of systems with 
unmodelled dynamics and parametric uncertainty. This is the first time that an Hoo-based 

control system has been designed and successfully tested in both ground-based simulators 
and in real flight, on a fly-by-wire, variable stability helicopter.

The helicopter is a multivariable and highly nonlinear system. The dynamics vary signif­

icantly with the aircraft’s orientation in the three-dimensional inertial space, the magnitude 
and direction of the velocity vector and different loading configurations. This implies a high 
pilot workload during operational tasks. The developed control laws, provide the pilot with 
a means to fly the aircraft safely and effectively throughout its flight envelope.

Special attention is paid to the effects of high order rotor dynamics on the control 
law robustness and performance, to controller implementation issues and to the effects of 
aircraft configuration to the perceived handling qualities of the helicopter.

For systems that undergo large parameter variations, a novel gain scheduled methodol­
ogy is proposed, which not only stabilises the linearised plants within the scheduling vari­
able region, but also achieves Hoo performance control objectives. This method exploits 
the attractive observer-based structure of the Hoo loop shaping feedback compensators.
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Introduction

1.1 Background and previous work

This thesis is about the development and flight testing of robust multivariable feedback 
compensators for Fly-By-Wire (FBW) helicopters. The compensators are designed using 
advanced control theory (namely ffoo optimisation) and evaluated on the unique 205 Fly- 
By-Wire helicopter at the Flight Research Laboratory of the National Research Council of 

Canada. This is the first time that an H qq control law has been successfully flight tested 
on a FBW rotorcraft.

The main reason for investigating the effects of feedback on rotary wing vehicles is 
to improve their poor flying qualities which are due to cross-axis coupling, dynamic un­
certainty and open-loop instability. It is widely accepted that the provision of optimum 
handling qualities is best achieved through low cost improvements in aerodynamics and/or 
flight control laws, rather than fundamental changes to the vehicle. Designing a feedback 

compensator to alleviate the pilot’s workload can also be useful in allowing more actuating 
surfaces to be used than the pilot’s inceptors. The overall helicopter performance and pilot 
comfort during dynamic manoeuvring can be characterised by handling qualities ratings 
(HQRs), given by test pilots for specified tasks. The key question we shall be addressing 
is “how do we synthesise and evaluate a feedback compensator for rotary wing vehicles 
to ensure improved flying qualities in the face of high dynamic uncertainty and inherent 

cross-axes couplings?”
To eliminate the effects of cross-couplings and to compensate for uncertain dynamics 

is essential - yet both these problems are inherent to the rotorcraft configuration. In par­

ticular, the primary source of the vehicle handling deficiencies are the asymmetric forces 
and moments, produced by the rotor system. A rotating blade from the main helicopter 
rotor produces a distributed lift force causing velocity perturbations in all directions. For 
every rotation of 360 deg, the blade is aligned twice with the longitudinal and lateral axes, 

initiating perturbations in both pitch and roll loops of the helicopter. A pilot would feel

1



1.1 Background and previous work 2

these perturbations as sharp rate responses of the fuselage (typically within 1 — 1.5 sec), 
but insufficient aerodynamic damping alters the initial rate responses by giving rise to in­
cidence and sideslip variations. Unfortunately, these variations are mostly unpredictable 
as the strong main rotor wake creates unsteady aerodynamic effects around the aircraft’s 

body1. Similar phenomena occur due to the wake effects of the tail rotor. The closeness of 
the vertical fin to the rotor disk can have a significant impact on the helicopter’s ability to 
achieve right or left rotations about its normal axis. Although not very useful at hover, the 
fin adds directional damping in forward flight and with the horizontal stabiliser provides 
important “stiffness” to neutralise the unstable effects of the rotor-fuselage system.

These dynamic characteristics of the helicopter require complicated multivariable con­
trol inputs, which imply high pilot workload and the possibility of poor handling qualities. 
For example, let us look at a typical helicopter manoeuvre - a sidestep task, where the 
pilot has to laterally translate the rotorcraft mainly using rolling commands. Roll inputs 
will dominate the response, but at the same time longitudinal and heading excursions will 
be caused by the vertical offset of the tail rotor thrust and the vertical fin side-force from 

the centre of mass. Also, a significant amount of off-axis motion will be exerted by the 
inclination of the lift vectors on individual blade sections. Height does not remain con­
stant as the main rotor thrust is not perpendicular to the local horizon and lift no longer 
counter-balances the vertically directed rotorcraft’s weight. Therefore, the pilot needs to si­
multaneously coordinate heading angle (with the pedals), height (with the collective lever) 
and keep track over the ground (using longitudinal inputs). The level of cross coupling 
depends on the aircraft cross inertias and the particular characteristics of the rotor disk 

(teetering, hingeless etc.). Furthermore, at high speeds the piloting strategy may be differ­
ent. The pilot can use the left or right hand inceptors to initiate pitch motion - it all depends 

on the total airspeed, aerodynamic damping and the dihedral effects of the fuselage. From 
the above, it is not hard to see that unaugmented helicopters have poor handling qualities 
which are compensated for only at the expense of high pilot workload.

Over the years, much research has gone into the development of appropriate feedback 
compensation schemes to reduce pilot workload. Mechanical augmentation systems, such as 
the Bell stabiliser bar or the Hiller servo mechanism [25], were introduced to the rotor head 
as a means of enhancing the stability properties of the helicopter. With the introduction 
of very unstable airframes, the first feedback control concepts were developed. The electric 
signals from the gyros were compared with signals derived from the pilot stick and the 

resulting difference was used to drive the hydraulic actuators. This logic was implemented 

with analogue electronics and developed into the now widely used Stability and Control 

Augmentation Systems (SCAS).

Although SCAS offered significant weight savings over previous purely mechanical sys­

1The term “aircraft” refers to any type of flight vehicle. The distinction between fixed and rotary wing 
configurations should be clear from the text.



1.1 Background and previous work 3

tems, they were constrained to only 10% of the maximum actuator authority, which gave 
little assistance to the pilot in manoeuvring flight. There were two basic reasons for this 
limited control configuration. The first was the low reliability of the overall system hard­
ware that needed triple or quadruple back-ups to satisfy safety criteria. The second was 
the difficulty of synthesising analogue feedback compensators to meet the handling quality 
requirements. Inherent dynamic uncertainty and cross-axis coupling were hard problems 
to tackle with the existing control law design techniques. However, the advancement of 

computer technology has now made it possible to augment the pilot demands with appro­
priately modified sensor outputs within the Flight Control Computer (FCC), In physical 

terms, the FCC receives inputs in the form of electrical or optical signals, and then it uses 
the actuators to alter the aircraft mass centre coordinates and the magnitude and direction 
of the associated velocity vector. Such systems make possible the implementation of com­
plex nonlinear control laws, mode changing and gain scheduling, all of which improve the 
rotorcraft handling qualities. They also allow the detection of failures in sensors, actuators 
or other aircraft systems.

The first examples of such high-gain, multiply-redundant control laws appeared in fixed 
wing aircraft such as the F-16, F-18 and the Space Shuttle [1, 29]. On rotary wing vehicles, 
the first full-authority fiber-optic control system was the Advanced Digital/Optical Control 

System (ADOCS) program at NASA, tested on the UH-60 Black Hawk Helicopter [43]. 
The ADOCS program exposed some unknown, at that time, aspects of helicopter control 

laws, such as the importance of high frequency dynamics to high bandwidth controllers, the 
significance of total time delay to piloted handling qualities, and the difficulties of imple­
menting digital feedback compensators. Since the ADOCS program, experimental work has 
been conducted on the Bo-105 of the German Aerospace Establishment (DLR), using model 
following concepts similar to ADOCS [68], and on the NRC Bell 205 helicopter, primarily 
using feedforward and feedback gain scheduled matrices [8]. Most of these research efforts 
concentrated on flight testing feedback compensators synthesised using Single-Input-Single- 
Output (SISO) control design techniques with the exception of some early LQR/LQG-based 
systems reported in [8] and [37].

While the above experiments demonstrated the improvement of helicopter handling 

qualities (HQs) due to feedback compensation, they failed to address adequately the flight 
control system tolerance to uncertainty. Designed using a mathematical description of the 
helicopter, feedback compensators modify the dynamic response of the unaugmented system 

to the degree that the mathematical model represents the real aircraft. A mathematical 
model, however, is just a set of differential equations describing only the salient features 
of a real system. The formulation of such equations, using analytical or identification 
methods from wind tunnel or flight test data, is in itself a very difficult task. Every model 

consists of mechanical parts (rigid or flexible body), dynamic loads (forces and moments), 

the power plant (engines and inertial interference) and other exogenous factors. The states
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1.1 Background and previous work 4

describing the above subsystems are essential to build an “accurate” representation of the 
real system, yet we use finite-dimensional time-invariant mathematical models to synthesise 
the majority of flight control laws. This can be partly2 justified by the simplicity of ordinary 
differential equations, and the mathematically appealing form of the synthesised feedback 
compensator. The important point here is that with any mathematical description of a 
real process, model uncertainty will always be present. So, it is left to the compensator 
to ensure that the closed loop system remains insensitive to variations due to disturbances 
and noise.

In classical SISO feedback theory, this type of compensator is calculated to achieve good 

gain and phase margins and in this way robust stabilisation is achieved indirectly. However, 

for multi-input multi-output (M3MO) systems, as shown by Doyle and Stein [21], there are 
classes of systems (typically highly coupled with bad condition number), where loop by 
loop phase and gain margins can be misleading when addressing the system tolerance to 
uncertainties - and helicopter models often belong to this class of plants. Consider, for 
example, a typical quasi-static representation of a helicopter model G taken from [34], the 
singular values of which have been scaled to reflect output decoupling requirements (see 
Figure 1.1). The condition number k(G(juj)) (shown in Figure 1.2 as a function of frequency

i io
10

frequency ( ^ )
Figure 1.1 Singular values of the model G

••Hr?’'  f \...
   i...

frequency (■

Figure 1.2 Condition number of the model G

u)  is relatively large, which indicates that the closed loop system may be sensitive to multi­

input uncertainty3. That is, a small change in the input signal u can have a significant 
effect on the performance of the closed loop system. Thus, if the controller does not reject 
disturbances and noise, we may end up with a closed loop system that is either sensitive 

to  perturbations or requires an unrealistic amount of control effort to achieve the desired 

performance. This is certainly the case with inverse or SVD-based controllers and there

aHigher order dynamics such as flexible modes and non-stationary aerodynamics are difiicult to model,
as well as too expensive to estimate using wind tunnels or flight tests.

3Admittedly, this uncertainty may not occur in practice, however, it is the probability of small distur­
bances entering at the input of G that makes the argument valid.
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are several examples in the literature supporting this argument [63, ch3]. The ADOCS 

program mentioned earlier, is a good example of the system sensitivity to perturbations. 
The control law used inverse dynamics to cancel out the high order rotor states and PI 

feedback loops to compensate for the rigid body motion. One of the key-findings of that 
work was that accurate modelling of the rotor dynamics was critical to the success of these 
designs. The same argument is also valid for controllers designed with optimal methods. 
Despite the ability of the latter to handle multivariable plants in a more systematic way 
than their PID counterparts, they do not always guarantee tight bounds on internal and 
exogenous disturbances.

One of the most successful controller synthesis methods which addresses the robustness 
problems mentioned above is the Loop Shaping Design Procedure (LSDP) of McFarlane 
and Glover [45]. The method provides a stabilising controller while minimising the worst 
energy gain (ffoo-norm) of the transfer functions from the disturbances d to the plant inputs 

and outputs (u and y  in Figure 1.3 respectively). In this framework, the perturbed

Ga

\A~ 1

Figure 1.3 One degree of freedom configuration 

plant model is represented by a normalised left coprime factorisation

G aW  := ( j i # W  +  A * W ) - 1 ( iV ( * )  + A jjW ) (1.1)

where M ~ l (s)N(s) =  G(s) is the nominal plant, A ^(s), A ^(s) are bounded, stable un­

known transfer functions representing uncertainty, which satisfy || A ^(s), A ^ (s ) ||oo <  e, e >
0. We shall see later, in chapter 2 , how this set-up enables disturbance and noise rejection 
to be achieved. For the moment, we just point out that the system in Figure 1.3 represents 

a broad range of plants and the controller K  provides guaranteed robust stability against 

the perturbations A^-(s), A ^(s). This property of the LSDP controller is of central im­

portance in this thesis. It allows us, in chapter 3, to synthesise a robust controller for a 
highly uncertain model of the Bell 205 helicopter. In fact, the model we will use is just a 

set of body equations, derived with the Bell stabiliser bar on, with no knowledge of any 

rotor dynamics.



1.1 Background and previous work 6

In [46], McFarlane and Glover introduce performance requirements are using two weight­
ing functions, namely the pre- and post- compensators VFi(s), ^ ( s ) ,  in order to modify 
the open loop singular values of the model G(s). Guidelines for the choice of the pre- and 
post- compensator parameters are given by Freudenberg in [28] and Hyde in [56]. In this 

way, a controller can be designed using classical loop shaping ideas, while the robust sta­
bilisation solution ensures that robust properties against the perturbations A ^(s), A ^(s) 
are achieved - subject to an II ' lloo -norm being small. Furthermore, it was shown by Sefton 
[60] tha t the controller can be written as an exact observer and a state feedback , the form 
of which is appealing for real time implementation. This idea was very successfully used by 
Hyde in [56, 39] to implement a set of gain scheduled Hqq controllers on the VAAC Harrier 
aircraft [42].

The VAAC Harrier experience was important in demonstrating the application of mul­
tivariable control to fixed-wing aircraft. The controller tackled successfully the nonlinear 
behaviour of the Harrier from hover to wing-borne flight. However, it did not exploit the 
full potential of the Hoo methodology. By “potential” we mean the ability of the LSDP 

controller to “handle” a poorly modelled, highly coupled plant. This is because the control 

law was designed around the longitudinal motion of the aircraft stabilising pitch rate/flight 

path  and airspeed. These variables are largely independent in forward flight and the fre­
quencies around which pilots “close the loop” are far apart. This means that the workload 
associated with the left and right hand inceptors is largely independent and therefore “tol­
erable” by the human operator. Of course, in the hover regime the cross-axis coupling 
is significant, but pilots do not fly in this flight condition for extended periods anyway. 
In  addition, the Harrier aircraft is a low angle-of-attack airplane, which makes unsteady 
aerodynamic effects easier to predict. Thus, the overall aircraft nonlinear behaviour can be 

modelled “reasonably well” and the robustness of the Hoo controller is less of an issue.
In the rotary wing area, a number of Hoo methods have been used to design control laws 

for helicopters, namely mixed sensitivity [69, 77] and two degrees-of-freedom (DOF) loop 
shaping [78, 73, 27]. The two DOF methodology, has emerged as the most suitable method, 
to-date, for the helicopter control problem. With the resulting controller it is possible to 
guarantee robustness, to use the implementation of an exact observer, and to incorporate 

handling qualities requirements as required by the Aeronautical Design Standard ADS-33 
[2, 3]. In  real flight, however, these nice properties may not be valid. The guidelines for 
the choice of the weighting function W\ and W2  are provided in terms of gain requirements 
around the frequencies of the model right-half-plane zeros and poles. Thus, these guidelines 

are most effective on plant models that are “reasonably accurate”. This is particularly 

relevant to rotary wing vehicles, where the uncertainty in the aerodynamic parameters of the 

linear time-invariant representations, can lead to poor models and possibly inappropriate 

performance weights. In addition, apart from the Harrier flight tests discussed earlier, there 

is no other indication that the unstructured uncertainty model of the normalised coprime
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factors is a useful representation of unmodelled dynamics in hovering flight.

The experiments presented in chapters 4 and 5 address these questions in both quali­

tative and quantitative ways, using pilot opinion and data analysis, respectively. One of 
the findings, for example, suggests that we can use different linear time-invariant models 
to synthesise two controllers, which achieve similar HQRs in flight, however, the weighting 
functions in the Hoo syntheses can be different. In addition, when the design model includes 
detailed information about high order rotor dynamics, the resulting compensator is more 
robust to noisy feedback signals and more sensitive to gain variations, than a controller 
designed only with rigid body measurements, during the design process.

Considerable attention will also be paid in analysing the effects of the other aircraft 
systems to the perceived handling qualities. The pilot has to assess the control law under 

the influence of inceptor functionality, environmental conditions, visual cues, instrument 
readings, etc. All these factors may mask the actual controller performance and it can be 
difficult, even during the post flight analysis, to identify the flying qualities due to the Hoo 
controller alone. For example, depending on how much acceleration is achieved during a 

manoeuvre, test pilots can return different HQRs when evaluating the same controller with 
different right hand inceptors. Despite these practical difficulties, the control law behaviour 
is “transparent” to the pilot and the returned HQRs allow us to significantly improve both 
the controller robustness and performance.

1.2 Sum m ary o f contents

Details of the mathematical notation used, are given at the end of the introductory chapter. 

This contents of this thesis are outlined below:

C h a p te r  2 : In the first part of this chapter, we collect together some useful properties of 
Hoo loop shaping, which demonstrate how robustness and disturbance rejection are achieved 
with this method. Sections 2.2 and 2.3, highlight some important aspects of the original 
Loop Shaping Design Procedure, such as the guaranteed stability margin and the weighting 
function selection. Section 2.4 introduces the two DOF methodology, which allows us to 
include time domain requirements in the controller design process. This allows us to design 

a two DOF Hoo controller in section 2.5, the architecture of which accommodates different 

response types required in rotary wing flight control systems.

C h a p te r  3: The chapter begins with a presentation of the dynamics of the Bell 205 he­
licopter. Section 3.2, describes the quasi-static linear time-invariant mathematical model, 
alongside possible feedback strategies, modes of motion, and the Bell 205 stabiliser bar 
effects on the aircraft responses. This allows us to achieve two goals in section 3.3. Firstly, 
it is possible to explain the differences between the quasi-static models and flight test data,
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in both time and frequency domains. Secondly, it allows us to show, that enhancing the 
quasi-static models with Pade approximations to the time delay can benefit a great deal 
the control law design. Section 3.4 describes controller structure for real time implemen­
tation. In section 3.5, we develop a two DOF H00 loop shaping controller for the Bell 205 
helicopter, and in section 3.6 we present the preliminary findings from investigating the 
controller functionality on the Large Motion Simulator at DERA, Bedford. The chapter 
concludes with section 3.7, which discusses the results and gives useful guidelines for de­
signing prototype flight control laws.

C h a p te r  4 This chapter concentrates on the in-flight evaluation of the controller de­
signed in the previous chapter. Section 4.1, gives a general overview of the characteristics of 
the Bell 205 experimental aircraft, and section 4.2 describes the real time implementation 
of the controller and the conditions at the time of the flight test. Then, in section 4.3, we 
present the pilot comments after a full controller evaluation according to the ADS-33 stan­
dard manoeuvres, which are analysed quantitatively in section 4.4 using the recorded flight 

test data. The chapter concludes with 4.5, which discusses the flight test and proposes sev­

eral modifications to the overall flight control system to enhance the observed performance.

C h a p te r  5 Building on the proposed modifications from the previous chapter, we use 
in-flight evaluation of three newly designed controllers to: assess the effect of the rotor 
dynamics on the controller performance; compare the original LSDP methodology with the 
two DOF loop shaping and improve the handling qualities ratings (i.e. the perceived con­

troller performance). Section 5.3, compares the new high order models with the flight test 
data, and section 5.4 describes the design of the new control laws for the Bell 205 aircraft. 
In section 5.5, the flight test results are presented and in section 5.7, it is shown that suc­
cessful controller implementation, (at least in the continuous time case), requires the ratio 
of the largest to the smallest controller eigenvalues to be “reasonably small” . The chapter 
is summarised in section 5.6, and motivates “intelligent” gain scheduling algorithms, as a 
means of extending the operation of linear multivariable controllers.

C h a p te r  6 In chapter 6 , a general interpolation and robust control framework is formu­
lated. The chapter discusses, stability interpolation methods, right coprime factorisation, 
and gap metric results in section 6.2. In section 6.3, the proposed performance based gain- 

scheduling methodology is presented; the observer based controller structure is discussed, 

and a three-step optimisation approach to gain-scheduling is presented. In section 6.4, we 

apply the results of the proposed design methodology to the Lynx Mk7 high performance 

helicopter; the justification of the selected blending region and a robustness/gap metric 
analysis of the results are also discussed. Finally, in section 6.5, concluding remarks are 
briefly discussed.
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C h a p te r  7 draws together the main conclusions and contributions of this thesis. Sugges­
tions for further work are also given.

1.3 N otation

All systems considered are linear, time-invariant and finite-dimensional. A (proper) transfer 
function (matrix) is represented in terms of state-space data as:

:= C ( s I - A ) ~ 'B  + D,

alternatively written as (A, B, C, D), where A, B, C  and D are real valued matrices, and I  
is the identity matrix of appropriate dimension. If D  =  0, the zero matrix, then the system 
is strictly proper, and we shall write (A ,B ,C ).  The system is asymptotically stable if and 
only if each of the eigenvalues of the matrix A  has a strictly negative real paxt.

A B

C D

1.3.1 M ath em atica l n o ta tio n

X the field of real numbers
dB decibels: x  dB represents a gain of 10*/20

M the absolute value of the real number a
AT the transpose of the matrix A

A H the transpose of the complex conjugate of matrix A
det(A) the determinant of the square matrix A
[A]ij or Oij the (i,j)  element of the matrix A
A - 1 the inverse of the square matrix A

Amax (A) the largest eigenvalue of the square matrix A

Amin (A) the smallest eigenvalue of the square matrix A

P model matching parameter
(Ti(A) the ith  singular value of the matrix A

d(A) the largest singular value of the matrix A
the smallest singular value of the matrix A

«(A) the condition number of A, <r(A)/g(A)

diag{A} a diagonal matrix A

I identity matrix of unspecified dimension

In the n  x n identity matrix

3 v ^ I ;  sometimes an index, as in aij

log or log10 logarithm to base 10

Aci closed loop matrix
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M 0
M , N
M ,N

*(•)
C
C15C2

a,/3

Slang

Slat

6tr

Smr

P,q,r
F ,H

m
J

By

7
lay
G(s)
l l ^ l l o o

RHoo

Tzw
3
€

V

reference model
normalised left coprime factors
normalised right coprime factors
Full block perturbation matrix function

scheduling variable
plant envelope

scheduling range

angles of attack and sideslip respectively
Euler angles - earth referenced
longitudinal cyclic
lateral cyclic
tail rotor collective
main rotor collective
Angular rates - body referenced
control and filter Riccati gains
Lower linear fractional transformation

optimal cost function
scheduling functions for F  and H
v gap metric
stability margin
coherence function relating signal u to signal y
a continuous time transfer function (matrix)
supw a(G(juj)), if G is a continuous time transfer function (matrix)
set of asymptotically stable transfer functions G, with ||G||oo < 00

transfer function from signal w to signal z
‘there exists’
‘an element of’
‘for all’
‘not equal to’

1.3.2 Abbreviations

AC Attitude Command
ACAH Attitude Command Attitude Hold

ADOCS Advanced Digital Optical Control System

ADS Aeronautical Design Standard
CAD Computer Aided Design

CARE control algebraic riccati equation

DOF Degrees-of-Freedom
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DERA Defence Evaluation and Research Agency
FARE filter algebraic riccati equation
FCC flight control computer
FRL flight research laboratory
GCARE generalised CARE
GFARE generalised FARE
HELISIM helicopter simulation model
HQR handling quality rating

LFT linear fractional transformation

LHP left half-plane
LQG linear quadratic Gaussian
LSDP loop-shaping design procedure
LTI linear time-invariant
MIMO multi-input multi-output
NASA National Aeronautics Space Administration
NRC National Research Council
PI proportional plus integral
PID proportional-integral-derivative
RC Rate Command
RCAH Rate Command Attitude Hold
RHP right half-plane
SCAS stability control augmentation system
SISO single-input single-output
SVD singular value decomposition

1.3.3 List of variable names

ALPHA angle of attack (deg)
AX acceleration in x direction ( f t /sec2)
AY acceleration in y direction ( f t /sec2)

AZ acceleration in z direction ( f t /sec2)
BETA sideslip angle (deg)
COLACT collective actuator position (in)
CPA lateral stick sensitivity (non dimensional)

CPC pedal stick sensitivity (non dimensional)

CPB longitudinal stick sensitivity (non dimensional)
DANET lateral filtered stick inputs (in)
DENET longitudinal filtered stick input (in)

DPNET collective stick filtered input (in)
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DRNET pedal stick filtered input (in)
FDA lateral actuator deflection (in)

FDE longitudinal actuator deflection (in)
FDP collective actuator deflection (in)

FDR pedal actuator deflection (in)
HMDC indicated height ( f t )
HRA radar altitude ( f t )
LHACT left hand actuator position (in)
P roll rate (deg/sec)
PDYN dynamic pressure (p s f)
PHI roll attitude (deg)
PMIX mixed roll rate (deg/sec)
PSI heading angle (deg from North)

PSTAT static pressure (p s f)

Q pitch rate (deg/sec)
QMIX mixed pitch rate (deg/sec)
R yaw rate (deg/sec)
RHACT right hand actuator positions (in)
RMIX mixed yaw rate (deg/sec)
SACLA lateral stick input (in)
SACLE longitudinal stick input (in)

SACR pedal stick input (in)

SACP collective stick input (in)
TAS true airspeed (knots)
THETA pitch attitude (deg)
TRACT pedal positions (in)
TTOT Total temperature (deg K )
UMIX mixed airflow forward velocity (ft/sec)
UDOT forward velocity derivative ( f t /sec1)
UDMIX mixed airflow longitudinal velocity derivative (f t /sec2)
VMIX mixed airflow lateral velocity (ft/sec)
VDOT lateral velocity derivative ( f t /sec2)
VDMIX mixed airflow lateral velocity derivative ( f t /sec2)
WMIX mixed airflow vertical velocity (ft/sec)

WDOT vertical velocity derivative ( f t /sec2)
WDMIX mixed airflow vertical velocity derivative ( ft /sec2)



H qq loop shaping for helicopter flight control systems

2.1 loop shaping

In the previous chapter, we motivated the use of normalised coprime factors as a means 
of representing modelling uncertainty. In this chapter we will see how this uncertainty 

model leads to disturbance rejection in real systems. Of course, disturbances will always be 
present in the form of exogenous perturbations (wind gusts, atmospheric variations, etc.), 
or as parametric uncertainty (mechanical defects, sensor accuracy, etc.). In practice, these 
disturbances need to be bounded by some realistic value. To illustrate this idea in control 
terms, consider the configuration of Figure 2.1. In this Figure, du and dn represent para­
metric uncertainties at the actuators and measurements, whilst dy is a vector of exogenous 
disturbances. If the disturbance d y  is bounded, the total energy / 0°° d y ( t ) r d y ( t ) d t ,  injected

Figure 2.1 Feedback control configuration with disturbances

into the system by the signal d y ,  is finite. Thus, the energy gain from d y  to the y can
y{t)Ty{t)dt

be written as
Jo dy(t)T dv[t)dt dy{t)^

, and it is a measure of the disturbance effects on the

system. Taking the square root of the maximum energy gain from d y  to y, it is possible to 

write that

sup ('A J W J v l v i ; )0'5 =  auP °  (SoU*)) :=  II S «Uu ) Iloo (2.1)dy(t)to Jo a y( t)Td y{ t)d t  went

That is, we can express the effect of the exogenous disturbances d y  to y via a bound 
on the infinity norm of the corresponding transfer function S0(s) = (I  +  G(s)Ff(s))_1. In

13



2.1 Hqo loop shaping 14

equation (2.1), a (S0(ju))) denotes the maximum singular value of the transfer function S^1. 

If the feedback configuration of Figure 2.1 is internally stable2, the equations describing the 
system can be written as:

y = T0( r - d n )  + S0Gdu +  S0dy (2.2)

uk — K S 0(r -  dn) -  K S 0dy -  Tidu (2.3)

r — y =  S0(r -  dy) +  T0dn -  S0Gdu (2.4)

u =  K S 0( r - d n) - K S 0dy + Sidu. (2.5)

Here, $  =  (I +  K G ) ~ \  SQ = (I  +  G K )~ \  T{ = K G (I  +  KG)~l and Ta = G K (I  +  
G K )~l are the input, output, complementary input and complementary output sensitivities 
respectively. These transfer functions relate the disturbances to the internal signals u, uk, 

y  and r — y . Thus, by minimising the energy gains, as expressed by the || •lloo norms of 

S{, S0, Ti and Tc, we minimise the effects of the disturbances on the system. We can see
from equation (2.3) for example, that to achieve high tolerance against the perturbation

. . . . . .  . . / f°° uk{t)Tv-kifidt\n 'idu, it is necessary to minimise the maximum energy gains supdit(f)_̂ 0( ^ dt) and

sup^ffl^o ( r )° 5> which is equivalent to minimising the infinity norms of both 
the input and the complementary input sensitivity functions || Si and || T* H^.

The solution of such an energy gain minimisation problem, however, is not a straightfor­
ward task. Disturbance rejection requirements conflict at some frequencies since the distur­
bance signals contribute energy over the whole frequency spectrum. A popular paradigm 
for handling conflicting requirements is to minimise both the output and complementary 

output sensitivities. Their complementary nature, (S0 =  I —T0), shows that it is impossible 
to make Sa and Ta small at the same frequency. However, from the physics of a control 
system it is possible to discriminate between low and high frequency energy gains at the 
input, output and sensor points of Figure 2.1. For flight control systems, for example, the 
disturbances at the sensors are most critical at high frequencies. This motivates the use 
of weighting functions to impose frequency dependent constraints on the minimised energy 
gains. Consider, for example, two low-pass filters Ws and Wt- Then,

II W ,S0 IL  (2.6)

enforces tracking and disturbance attenuation at low frequencies, whereas

Wt~lT0 (2.7)OO

ensures that high frequency sensor noise will be rejected.
The disturbance rejection requirements at the model input, output and measurements

can also be stated in terms of singular value gains of the loop transfer functions La = G K

1In the sequel the dependence on the Laplace operator “s” is dropped for brevity.
2Fbr a definition of internal stability see [80, chi, ch5]
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and Li =  KG. The minimisation of || (I  +  GK) 1 for example, requires that a (G K )

frequencies where du is important. The conflicting requirements can also be expressed via 
the transfer functions La and L{. Examining equation (2.2) it is possible to deduce that 
achieving large q (GK) can amplify the sensor disturbances dn, if the frequencies over which 
q (GK) »  1 exceed (or are close to) the sensor bandwidth. This is because q (GK) »  1 ^  
a (S0) 1, which implies that y  =  T0(r—dn)+ S0Gdu+ S0dy ~  (r—dn). Similarly, equation
(2.5) shows that if q (GK) is larger than the achievable aircraft bandwidth, the controller

K  will amplify any disturbances and sensor noise since u =  K S 0(r — d n  — d y )  —  T i d u  —  

S{K(r -  d n -  d y )  — T i d u  «  G~l (r -  d n -  d y )  -  d u .

In summary, to meet the performance and robustness requirements for Figure 2.1, a 
controller K  should be designed such that it minimises

9 ( K ( I  + G K ) - 1) , 9 ( ( /  +  G K )-1) , 9 ( ( /  +  G K )-*(?) , a  ( ( /  +  K G ) - 1) (2.8)

q (G K ) , q (K G ) , q (K) at low frequencies and minimising a (GK) ,cr(KG) at high frequen­

cies, while keeping <r (K) “reasonably small”. These requirements are illustrated graphically

regions. That is, for good performance, q (GK) must have high gain for all frequencies be-

is large at frequencies where disturbance dy is significant. Similarly, to reduce the effects 
of the perturbations du on the plant output y, it is necessary to achieve large q (K) in the

at low frequencies and

(2.9)

at high frequencies. In terms of the loop gain functions this is equivalent to maximising

in Figure 2.2, where the singular values of the loop gain function G K  must avoid the shaded

low uji, and for good robust stability <j (GK) should roll-off before the shaded boundary at

u) > Wh • log(mag)

Figure 2.2 Design requirements in terms of the loop gain function GK
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2 .1.1 Hoo loop shaping  guaran tees

The above requirements are precisely what the Loop Shaping Design Procedure (LSDP) of 
McFarlane and Glover [45, 54] tackles. Minimising3

Koo
I

( I - G . K co)~1M r1 < 7 (2 .10)

i.e. the II ’ lloo -norm of the transfer function from the input disturbances d to the signals u 
and y in Figure 1.3, for the weighted plant model

G, =  W2GW i =  M r 'N ,  =  N .M . - 1

provides a stabilising controller K  = W \K OQW2  ̂ which guarantees that 

a (K X (I -  G . K ^ y 1)  <  7ct (M „ )o (W i)a (W 2)

o ( ( I - G , K oo)_1) < min{7CT(Af»)fc(Wr2),l +  7?W )fc(W r2)} 

a ^ { 1  -  G s K ^ r 1) <  m in{7<7 ( / / ,)  k{Wx), 1 +  7<t  ( M ^ k m ) }  

/  1 \  7^ (Ns)
» ( < / - c j U - o . )  <

a ^ I - K ^ G , ) - 1) < m i n { l + 7 a ( i V s ) f c ( » r1) ,7 C T (M !,)& (W r1) }  

?(Gs( / -J f 00G .r1if) < mm{l+-yo(Ms)k{W2),'i5{N3)k(W2)}

(2 .11)

(2 .12)

(2.13)

(2.14)

(2.15)

(2.16) 

(2.17)

In equation (2.11) the nominal plant model G is cascaded with two weighting functions 
W\, W 2 and expressed via its left and right normalised coprime factorisations. By “nor­
malised” we mean that

M SM * + N SN*S = I  (2.18)

for the left coprime factors, and

M S*MS + N S*NS = I (2.19)

for the right coprime factorisation4. In the case of a strictly proper weighted plant Gs =  
[A8, B s, C8, 0], it is a well known fact that the left coprime factors [Ns, Ms] can be obtained 
as

[Ns,Ms] =
’ As +  HCS B s H

Os 0 I
(2 .20)

Here, H  =  —ZC 8*, where Z  is the solution to the Generalised Filtering Algebraic Riccati 
Equation (GFARE)

A 8Z  Z A 8t  — ZCSTCSZ  -f- B sB st  =  0 (2.21)

3Positive feedback arrangement is used in Figure 1.3.
4Note that the additive uncertainty, against which the model is stabilised, is different for the left and the 

right coprime factorisations. However, the minimum of the left hand side of equation (2.10) is the same in 
both formulations. denotes the complex conjugate transpose operator.
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Note that the maximum singular values of the normalised coprime factors a (Ns), a (Ms),a , 

a  (Ms) can be expressed via the weighted plant model [75, chl8], [80, ch!6]:

a(G ,Y-a {N , ) = t ( N , )  = l T ? L
(GsY

a (M s) = a { M s) =
(

1

l +  ff(G,)'

(2.22)

(2.23)

Thus, equations (2.12) - (2.23) show that all the disturbances in Figure 2.1 axe bounded 
in magnitude; and the tightness of these bounds depends on the weighting functions W\ 
and W2 , the nominal plant G and the achievable 7  in equation (2.10). In terms of the 
loop gain functions a (G K )  and a (KG), Glover and McFarlane show that the controller 
K  =  ^ 1̂ 00^2 bounds the degradation of the specified loop shape Gs =  W2 GW1 both at 
the plant input and output. This degradation is no more than

a (W 2GW1) q ( K 00)
q  (KG) = q (W1K 0oW2G) = a (W iK x ,W2GW iW l - 1) > ----------------   (2.24)

at the plant input u and

q (GK) = q (GWlK<x>W2) = q {w 2̂ W 2GWiKXjW2'\ >

k{W{)

q (W2GW i ) q  (Koo) 

k(W2)
(2.25)

at the plant output y. Of course, one can argue that these bounds may not be tight because 
they depend on the condition numbers of the weights W\ and W2 . Experience has shown, 

however, that high order weighting functions give very little advantage in terms of desired 
loop shapes G K  and KG, while they significantly increase the order of the resulting dynamic 
compensator K  = W \K ^ W 2 - Thus, low order weights with small condition numbers k(W\) 
and k(W 2 ) are very common in loop shaping and this will be evident in all the controller 
designs in this thesis. Finally, in equations (2.24) and (2.25), the minimum singular values 
a (Kqq), are bounded by functions of u  (Gs) and 7 . This is a central result in [46, ch6] and 
it is formally stated below:

T h eo rem  1 Any controller, K qq, minimising 

isfies

Koo
I

{I — GsK OQ)~1M l

<j  (.Koo(ju)) >
Q(G8(jv)) -  v V  -  1 

V V  -  l a ( G s(jaj)) +  1

, also sat-

(2.26)

Vo; such that a (G s(ju>)) > sj'ft — 1.

Note that the plant Gs in the above theorem is assumed to be square for the bound to be 
strictly valid.
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We are now ready to summarise the Loop Shaping Design Procedure as developed by 
McFarlane and Glover:
1. Utilising the weighting functions W\ and W2 give a desirable shape to the shaped plant 
given by Gs = W2 GW 1 , where G is the nominal plant model. Wi, W2 must be chosen such 
that Gs does not contain any unstable hidden modes.
2 . Synthesise the stabilising controller by minimising

’ t f o o ' 
r ( I - G aK ^ r lM ; 1 (2.27)

1
00

3. Calculate the final feedback controller as K  =  WijKooW^-
Despite the simplicity of the above algorithm steps there are important practical as­

pects of multivariable loop shaping that the designer should take into account in order to 
arrive at a successful design. The following sections summarise the most important design 
considerations.

2 .2 S ca lin g

The open loop model inputs and outputs are scaled so that they reflect the desired (or 
achievable) actuator usage and output decoupling. A popular form of input-output scaling 
is to normalise all the signals with respect to unity. A well-scaled system will have singular 
values closer to each other compared to the original plant. However, the designer must 
ensure that scaling does not change significantly the directionality of the model G. This is 
particularly important for ill-conditioned plants as it can result in large gains being injected 
in the wrong directions, which makes robust stabilisation even more difficult to achieve.

2 .3 W eig h t se lec tio n

The philosophy of choosing a pre-compensator is to maximise as much as possible the feed­

back loop bandwidth, within the actuator constraints. Specifying a “desirable” weighting 
function W\ involves the introduction of integral action at low frequencies of the plant G, to 
reduce steady-state error, and to ensure good output tracking performance. In the case of 
a rate command system double integrators are commonly used to boost the low frequency 
gain of the rate signal. The pre-compensator is also utilised to introduce robust stability 
considerations in to the design procedure. This is achieved by introducing zeros around the 
frequency of any right half plane (RHP) zeros, large gain around the frequency of any RHP 

poles, and lead compensation to improve the phase response of the system.
This choice is easily justifiable in the classical feedback theory since the magnitude of a 

stable SISO transfer function L, around the cross-over uj0, is directly related to the phase 

margin (and therefore robust stability) of the system, via5 ir + /.L(ju0). Thus, for a stable 

6This property carries through to the MIMO case to the degree that the system is diagonally dominant.
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system L, the angle LL{ju0) can be written as the sum of the phase contributed by the 
minimum and non-minimum phase components [12, 22]:

Slope o f  \L(ju)\

a W  =  i r  ®  lncoth]4d»+  (2.28)
7T J-O O  d u  2  fUJQ +  Zi  * *—A

LLmin.phaae{jUo) £.Lnon-min.pha*eUuo)

In the above generalised version of Bode’s integral formula, the attenuation rate , 
around the cross over cjq, should be no more than 20 db/decade if robust stability/performance 
are to be maximised. If the zero in the pre-compensator is much higher than the frequency 

of the loop bandwidth, there is a strong possibility of large control effort being exerted. To 
avoid this situation, it is necessary either to lower the loop bandwidth, and therefore to 
compromise performance, or to improve the model around the cross-over region ujq. If the 
first choice is taken and the nominal plant is unstable, it is important not to reduce the 

gain in the feedback loop too much as the system may be destabilised. Further analysis 
about the limitations imposed by RHP poles and/or zeros can be found in [63, ch5] and 
the references therein.

It is important to note here that the RHP zeros zi,Z2 ,-..zn impose severe limitations 
on the robustness properties of the closed loop system. This is due to the phase lag they 
introduce, which reduces the achievable phase margin. For example, a first order Pade 
approximation of a time delay e~sT within a model, introduces a RHP zero at T z  — 2 =
0 &  z = 2/X, and therefore, a phase lag of

+ Zi<f>= L-
j(jjQ +  Zi = 28° (2.29)

u0=&P-

at aty =  rad/sec.
As with the weight W\, the post-compensator W2 can contain dynamic elements. One 

can argue that high gain at low frequencies via integrators can be implemented within 
the post-compensator; it also appears that in this way the designer avoids the difficulties 
associated with the input directionality of the plant. In practice, however, this can result 
in high frequency sensor noise being amplified. Choosing the W2 as first order low pass 
filters ensures that noisy measurements, above a desirable cut-off frequency, will not enter 
the feedback loop. In most design examples we will use an identity matrix for W2 weighting 
function. This may appear to be a limitation, but for many applications the singular value 

roll-off rates are adequate to provide the required disturbance rejection at high frequencies.

2.4 Incorporating tim e dom ain specifications

Incorporating time domain requirements into the Loop Shaping Design Procedure is not a 

straightforward task. Although the position of the zeros in the weighting functions governs
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the rise time and damping of the output response, there is no explicit relationship that 
uniquely determines the required gain guaranteeing desirable closed loop response charac­
teristics. To alleviate this problem one can introduce time domain specifications via an 
appropriately designed prefilter K \ so that the closed loop system tracks an ideal step re­

sponse model M 0. To find such a prefilter, one can use the standard Doyle and Glover 
algorithm in theory [20], to minimise a weighted cost of the form

II W iT r^yK , -  M0) 11̂  < 7 (2.30)

where Tr^ y is the closed loop transfer function in Figure 2 .1, M0 is defined according to 
some time domain specifications, and W  a weighting function used to penalise the difference 
Tr-+yKi — M 0 at frequencies where tracking requirements are important. This generic6 

method provides the designer with the freedom to tackle disturbance rejection and tracking 
requirements independently. However, it can lead to controllers of large dimensions since 
the prefilter requires extra weights to enforce the model matching cost of equation (2.30).

The two degrees-of-freedom (DOF) design procedure as introduced in [38, 18] guaran­
tees robust stability in the face of an ideal step response model and it does not significantly 
increase the controller dimension. This is because both feedback controller and prefilter are 

designed within a single design procedure, while the designer retains the freedom to specify 
disturbance rejection and tracking requirements separately. Figure 2.3 illustrates the block 
diagram of the two DOF setup. The closed loop response from the reference signals to 
the plant outputs follows that of a specified model M0. The controller K  is partitioned 
as K  =  [K\ K 2 ], where K \ is the prefilter and K 2  is the feedback controller. The inner 
feedback controller K 2 is used to meet the robust stability requirements while the prefilter 
K \ optimises the overall system to the command input. The use of the step response model 

is to ensure that
( I - G sK 2r l G ,K l - M 0 < 7  p - \  (2.31)

OO

where p is the model-matching parameter. From equation (2.31) it is obvious that as p 
increases (I  — G8K 2 )~l GsK \ —> M 0. By setting p equal to zero the two DOF setup reduces 
to the one DOF problem described earlier. The design cycle, given a plant with no direct 

feed-through term, can be described as follows7:

- 2

1. Select a pre-compensator W\ according to the guidelines given in section 2.3. Note 
that in this two DOF setup W2 must be a constant matrix. If we use dynamic W 2 , equa­

tion (2.31) implies that H00 optimisation forces the weighted output response to track the 

ideal model M 0.

6In the sense that it can readily accommodate unstable models.
7In [38] the algorithm iterates on two Riccati equation solutions, although one of those solutions should 

be zero. For more details see [72].
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+  V +

X> 0 -1

Figure 2.3 Two degrees-of-freedom configuration

2 . Select a desired closed-loop transfer function M 0 between the commands and controlled 
outputs.

3. Set the scalar parameter p to a small value greater than 1; in practice something in 
the range 1 to 3 will usually suffice. Very high values of p can lead to high 7  values and 
therefore less tight bounds on the loop disturbances as shown in equations (2.12)-(2.17).

4. Using the state space representations of the plant coprime factors (see equation (2.20)) 
and the ideal model Mq =  [Aq, Bo, Co, 0], form the generalised plant P  in the standard 

control configuration of Figure 2.4. In this Figure, P  relates the control and the exogenous

w
p

z

u V

K

Figure 2.4 General control configuration

signals (u and r,d) to the the measured and the error variables (pr,y and u ,y ,e). The 
equations governing the plant P  can be written as
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in transfer function form, or as

X ' a . 0 0 - H Bs '
Xo 0 A0 B0 0 0 X

u 0 0 0 0 I Xq

y = Cs 0 0 I 0 r
z p i -P 2C0 0 Pi 0 d

pr 0 0 p i 0 0 u

y  . c 0 0 / 0

(2.33)

with state space elements.

5. Solve the standard #oo optimisation problem for the plant P  using standard opti­
misation routines [9]. The resulting controller equations may be written as an exact plant 
observer and a state feedback

X Aa +  H Ca — B 8B 8t X ooii — BgB^XooW
X q 0 Ac

x
X q

+
0 - H  '

_ pBo 0

and

u = —B8T[Xooll ^ 0012]
X

X q

(2.34)

(2.35)

where Xqq =  [^0011 ^ 0012] is the partitioned generalised (according to the generalised 
plant P )  control Riccati equation solution. The reader can refer to [45], [63, ch9] for more 

information on the algebraic Riccati equations in if00 control and loop shaping synthesis.

6 . Partition the controller to a prefilter K \ and a feedback controller K 2 . The prefilter 
K \ is also scaled with a gain matrix S f  =  -KT£~1 (0) • # 2(0). This has been found to in­
crease the speed of the system’s response and to force the closed loop transfer function 
(I  — GaK 2 )~1GsK i to match the unit matrix at steady-state.

R em ark  2.4.0.1 The achieved minimum cost function in equation (2.30), in practice, is 
chosen slightly suboptimal. This is for two reasons. Firstly, (and most importantly), only a 
suboptimal controller can be written in an observer-based form (see [60]). Secondly, often 
the Hqo cost minimisation provides compensators with high frequency dynamics (i.e. very 
fast stable poles), which impose severe limitations on numerical realisation of the controlled. 
An intuitive explanation of this is that, since the closed loop transfer function Tw-+Z (from 

exogenous signals w to the error z in Figure 2 .4 ) tends to be all-pass, (TŴ ZT£^,Z =  I  

see [16]), the controller tries to compensate for the plant dynamics at a wide range of 
frequencies. Therefore, to “cancel out” the low gain of the plant at high frequencies, the

8Of course, it is possible to residualise the controller to eliminate these high frequency dynamics, but for 
the simulations and flight tests presented in this thesis a suboptimal solution is satisfactory.
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resulting controller will contain high frequency poles. The experience reported in [56] is 
that a suboptimal controller does not suffer from this drawback.

The robust stability properties claimed above will be demonstrated through designs and 
flight tests in chapters 3, 4 and 5. For the remainder of this chapter we will concentrate on 
a more generic control system architecture using a Westland Lynx Mk7 helicopter model. 
This architecture provides an attitude command (AC) response type at low speed and can 
be readily extended to a rate command (RC) at high speed flight. This response type is
a basic requirement in the Aeronautical Design Standard [3], but to this date there is no

straightforward mechanism for blending between low and high speed control law modes. So, 

in addition to its pedagogical value, the next section shows that Hqq loop shaping methods, 
can accommodate different control law architectures.

2.5 D esign exam ple

The Westland Lynx Mk7 is an agile, highly coupled, rotary wing vehicle. The model used 
for the control law design is given in a state space form and has been trimmed and linearised 
at 6 knots forward speed.

x  = Ax  +  Bu

y = Cx (2.36)

where

x  = ( p q r 9 < f > i j > u v w  S lat Qlong Qpedai)T 

U = ( Siat Slang Spedal)

Note that p , q, r are the body roll, pitch, and yaw angular velocities, respectively; 0, <f>, 
xj) the body pitch, roll, and yaw angles respectively; u, v, w the translational velocities in 

body-fixed coordinates; ©ia$, Qiongi ®pedai represent 1-st order actuator positions; and Siat, 
Siong> Spedai are the lateral cyclic, longitudinal cyclic, and pedal control inputs. Five of the 
above states comprise the output vector, namely </>, 0 , r, p, q.

To enable attitude and rate tracking at different flight modes, a mixed rate/attitude 
signal was used as a primary feedback variable. For pitch and roll loops these signals have 
the form

c\9 + czq (2.37)

C2 <t> +  C4 p (2.38)

Note that this is equivalent to feeding back proportional plus derivative signals, but with

the additional benefit that these signals are available over the whole flight envelope. The
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proportion of required rate to attitude, and vice versa, can be derived using different ar­

guments. For the AC system, for example, the rates contribute significant damping, and 

therefore the constants C3 and C4 must be chosen with that in mind. To see this, consider 
a simplified helicopter model G(s) = Ng/s 2 of the pitch dynamics, where Ng is the plant 
open loop gain (see Figure 2.5). Assuming negative feedback with a control law of the form

—*0

Figure 2.5 Simplified pitch loop dynamics

C1+C3S, the closed loop transfer function from r  to 6 becomes Tr_>y =  ^2TNg 3̂s+NgCi ' Thus, 
rate feedback contributes directly to the damping of the AC system through the parameter 
C3. In addition, this feedback scheme allows for blending between low and high speed flight 
modes in a smooth manner. Thus, if the designer uses gain scheduling between two con­

trollers the response type of the aircraft can be tailored to the mission task. Furthermore,
the mixed attitude-rate signal is particularly important for a rate command system. This 
is for two reasons: firstly, an attitude hold facility can be enabled within a single controller 
structure; secondly, it allows the elimination of the attitude effect on the rate so that rate 
tracking is easily achievable. In mathematical terms, this effect manifests itself via an 

imaginary axis zero in the plant model G. Using a mixed attitude-rate feedback signal the 

limiting transmission zeros on the pitch and roll loops can be slightly shifted such that the 
controller will not place any poles very close to the origin (see remark 2.4.0.1 in section 
2.4). The two following MATLAB9 scripts show a straightforward way to implement this 
scheme (ci and C2 define the proportion of attitude added to the rate signal).

»  cl=0; c2=0;
»  c3=l; c4=l;
»  P2 = Cc3 0 0 cl 0;

0 c4 0 0 c2;
0 0 1 0 0];

»  g=immilt (P2, g) ;
»  szeros(g)
ans =
-8.2724e-01 
-7.5328e-02 
-2.4163e-02

9MATLAB is a registered trademark of Mathworks Inc.
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-1 .1043e-14 
-4.6197e-16

W ith a mixed rate-attitude signal the two zeros at — 1.1043e —14 and —4.6197e —16 can be 

shifted to more desired locations. The magnitude of the new RHP zeros is exactly equal to 
the proportion of the secondary signal being added to the primary loop. In the following 
MATLAB script the two zeros have been shifted to —4.0000e — 01 and —3.9967e — 01.

»  cl=0.4; c2=0.4;
»  c3=l; c4=l;
»  P2 = [c3 0 0 cl 0;

0 c4 0 0 c2;
0 0 1 0 03 ;

»  gl=mmult(P2,g);
»  szeros(gl)
ans =
-8.2724e-01
-7.5328e-02
-2.4163e-02
-4.00000-01
-3.99670-01

For both low and high speed controllers, however, the proportion of the secondary signal 
must not change the gain and phase characteristics of the controlled loop at the cross-over. 
Should that happen, the stability (let alone the robustness) of the system can be jeopardised. 
In the Westland Lynx Mk7 control design presented in this section the constants ci, C2, 
C3 and C4 are determined initially for the linear controller synthesis and then they are 
modified appropriately during nonlinear simulations. The example describes the low speed 
Attitude-Command system. The Rate-Command can be designed in the same way, with 
the only difference being the higher order weighting function used to reduce the effects of 
the attitudes on the rates.

According to the procedure outlined in section 2.2, the designer must ensure all inputs 
and outputs are in compatible units. The design model contains all the inputs in rads of 
swashplate angular deflections. So, normalising them with respect to unity, unit of
deflection in each input direction will be equally important for the controller. Similarly, it 

is possible to scale the output vector. Note that these normalisations assume that the linear 

controller will be capable of providing the same tracking over the whole range of helicopter 

state variation. Although this is not entirely true, (especially for state variations much 

larger than the equilibrium conditions where the linearisation was performed), it provides 

a simple and straightforward method to scale an open loop plant (see Figure 2.6).
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Alternatively, scaling can also be performed with respect to dynamic pressure around 
the aircraft’s body. Although this method is not widely used, it allows the linear controller 

to be used over a very large range of altitudes and speeds. To see how this is done, recall 
the basic equations of aerodynamic forces and moments acting on the different helicopter 
components10. Fuselage forces and moments:

X ,  = ^ ( n R f S p U ^ f i a , , ^ ) ,  M j = i p i Q R f S p l f V f ^ f i a , , ^ )  
Yf  =  { Pm f S sU \ ! { a h 0; ), N , = \p {a R )2S ,l,V f 2cn f(qf ,0 f ) 
Zf  = %p(nR)2SpV2cz f (af ,Pf ), Lf  =  y m ) 2S ,lI U2clI(aI ,0 ! )

Empennage forces and moments:

Ztp =  ^p(UR)2StpU2cZtp (atp,Ptp) Mtp — {Itp +  %cg)Ztp 
Yfn =  2 P ^ ty ^U ^S fnCyfn{oifn) (3fn) Nfn =  — (lfn +  Xcg)Yfn

(2.39)

(2.40)

where Sp and Ss are the plan and side areas of the fuselage, C(.) are lifting coefficients 
(dependent on the incidence (a) and sideslip (/?) angles11), X ,Y ,Z ,  M ,N ,L  are the main 
fuselage forces and moments, If represents the distance of the moments to the fuselage ref­
erence point, 12 is the rotorspeed and R  is the blade radius. Note that the dynamic pressure 
q — (1/2 )pU2 is present as a direct proportion in each of the main fuselage and empennage 
equations. Therefore, the linear control law can be altered so that it compensates for the 
(\/2)pU 2 effects.

R em ark  2.5.0.1 The main reason for using q and not airspeed (U) for normalisation 

is that lift forces (and therefore blade stall) are functions of q rather than U alone. In 

addition, at higher altitudes air density p can be approximated using barometric altitude 

as p — &b{f0-¥gradh) ‘ Here> P ** the static pressure as a function of temperature p =

10We will describe in more detail these equations in chapter 5 for the Bell 205 helicopter.
11 Subscripts / ,  fn , tp denote fuselage, fin and tailplane respectively.
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» ( £ ) * * = ,  with po =  101325.0 P a , Tsrad = 0.0065 K /m , T0 = 288.15° K  (for height 
h <  11.000 m ), Rb =  287.05 m 2/s 2/° K  Bolzman’s gas constant, and g = 9.806 m /s 2 the 
vertical gravity acceleration at h =  0 m.

According to the procedure of section 2.3, inspection of the open loop model, reveals 
that it has a pair of unstable poles at 0.7 rad/sec.

»  rifd(spoles(g)>

real imaginary frequency damping

4.8995e-01 -5.24650-01 7.1785e-01 -6.8252e-01
4.8995e-01 5.2465e-01 7.1785e-01 -6.8252e-01

-5.0000e-01 -7.57530-01 9.0767e-01 5.5086e-01
-5.0000e-01 7.5753O-01 9.0767e-01 5.5086e-01
-1.6227e+00 0.0000e+00 1.6227e+00 1.0000e+00
-1.72270+00 0.0000e+00 1.7227e+00 1.0000e+00
-6.86100+00 0.0000e+00 6.8610e+00 1.0000e+00
-6.86100+00 O.OOOOe+OO 6.8610e+00 1.0000e+00
-6.8610e+00 0.0000e+00 6.8610e+00 1 . 00000+00
-8.84500+00 0.0000e+00 8.8450e+00 1 .00000+00
-3.2650e+01 0.00000+00 3.2650e+01 1.0000e+00

»

This means that, in at least two loops, the open loop gain around this frequency must 
be large enough to compensate for the unstable plant dynamics. Of course, it is difficult 
to relate explicitly, unstable poles to particular loops in a multivariable system. However, 
it is possible to characterise the “dominant” aircraft dynamics in terms of phugoid, short 
period, dutch roll, and spiral modes of motion. These modes appear in different frequencies 
and therefore can be used to give the designer a “feel” for the weight selection procedure. 

We will do that in the next chapter for the Hqq control law of the Bell 205 helicopter. 
For the moment, we note from Figure 2.6, that we need a constant gain (K a) to set the 
cross over frequencies of the plant at 3 — 4 rad/sec. This constant gain depends on the 
actuator capabilities and the vibrational characteristics of the aircraft and will be analysed 
in detail in the next chapter. For good tracking performance and an attenuation rate of 20 

dB/decade at the cross over, we use a weight of the form

»  Wla -  n d 2 sy s([1 1 .5 ] ,[1  0 ] ) ;
»  Wlb = n d 2 sy s([1 1 .5 ] ,[1  0 ] ) ;

»  Wlc -  nd2sys([1 1 .5 ] , [1 0 ]) ;

»  W1 -  daug(Wla,Wlb,Wlc);
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»  W2 = daug(l,l,l);
»  W2GscWl=nnmilt(W2,Gsc,W1,Ka);

The shaped plant W2 GscW \K a is shown in Figure 2.7 with solid lines. The cost function 

minimisation, in equation (2.10), ensures that the desired open loop cross gains are bounded 
from both sides, when an controller is calculated (see equations (2.24) over (2.25)). The
achieved loop gains are also shown on Figure 2.7, with dashed lines. The Hqq
controller has reduced the attenuation of the singular values and has “robustified” the loop 
against the normalised coprime perturbation model. In this example, the scalings and the 
constant gain K a have been absorbed into the dynamic weights W\ and W2 .

Having designed a weighting function W\ that provides good disturbance rejection, time 
domain specifications can be included directly in the design procedure using the two DOF 
approach described earlier. The user-defined step response model, M0 in Figure 2.3, is 
usually diagonal, emphasising maximum output decoupling and exhibiting ideal handling 
qualities.

»  roll_model = nd2sys(2.38~2,[1 2*0.8*2.38 2.38~2]);
»  pitch.model = nd2sys(2.38~2,[1 2*0.8*2.38 2.38^2]);
»  yawjmodel = nd2sys(4.90~2, [1 2*0.6*4.90 4.90*2]);
»  M_o = daug(roll_model,pitch_model,yaw_model);

Robust performance with respect to this ideal model is imposed with the model-matching 
parameter p according to equation (2.31). For our example p =  1.4. Finally, a slightly 
suboptimal controller was obtained using standard optimisation routines [9].

Test bounds: 2.3665 < gamma <= 5.0000

gamma hamx.eig x in f .e ig  p /f

5.000 1.0e-03 3.3e-10 p

3.187 1.0e-03 -9.7e+03 f
3.188 1.0e-03 3.5e-10 p
3.188 1.0e-03 3.5e-10 p

Gamma value achieved: 3.1875

Typically, a few iterations are carried to ensure that the stability margin 7  is not too high 

for the chosen value of p. Typically, the parameter p is used by the designer to trade off
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performance and robustness requirements. As p increases the stability margin 7  degrades; 

an example of such degradation for our helicopter example is shown in table 2.1. It is 
evident that the better the model-matching the less robust is the design we can achieve. 
Note the controller poles are —1.0269 *10-3  and —3.1049-10-2 . According to remark 2.4.0.1

p 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

lopt 2.92 3.00 3.09 3.18 3.28 3.37 3.47 3.57

Tfsubopt 3.21 3.30 3.40 3.50 3.60 3.71 3.81 3.92

Table 2.1 Stability margin as a function of p

the controller contains these poles in order to compensate for the effects of the open loop 
zeros. The magnitudes of the corresponding controller poles for this attitude command 
system are —1.0269 • 10-3  and —3.1049 • 10-2 . Note, however, that this is not an exact 
pole-zero cancellation like in other H00 design methods. In fact, one of the advantages 

of the Hqo LSDP method that the resulting controller does not enforce such cancellations 
between the plant and the controller.

»  rid f(sp o les(K su b ))

r e a l imaginary frequency damping

-1.0269e-03 0 . 0000e+00 1.0269e-03 l.OOOOe+OO
-3.1049e-02 0 . 0000e+00 3.1049e-02 1 .0000e+00

-1.8223e+00 0 . 0000e+00 1.8223e+00 1 .0000e+00

-1.99820+00 0 . 0000e+00 1.9982e+00 1 . 0000e+00

-2.00410+00 0 . 0000e+00 2.0041e+00 1 . 0000e+00
- 2 . 2012O+00 0 . 0000e+00 2 . 2012e+00 1 .0000e+00

-1.90400+00 -1.4280e+00 2.3800e+00 8 .0000e-01

-1.9040e+00 -1.4280e+00 2.3800e+00 8 .OOOO0-OI
-1.9040O+00 1.4280e+00 2.3800e+00 8 .0000e-01

-1.9040O+00 1.4280e+00 2.3800e+00 8 .0000e-01

-3.2640O+00 0 . 00000+00 3.2640e+00 1 .0000e+00

-2.94520+00 -3.92700+00 4.9087e+00 6 .0000e-01
-2.94520+00 3.9270e+00 4.9087e+00 6 .OOOO0-OI

-6.8610e+00 0 . 0000e+00 6.8610e+00 1 .0000e+00

-1.36420+01 -1.0714e+01 1.73470+01 7.8646e-01
-1.36420+01 1.0714e+01 1.73470+01 7.8646e-01

-1.95230+01 0 .0000e+00 1.9523e+01 1 .0000e+00

-2.07030+01 -6.35350+00 2.16560+01 9.5600e-01
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-2.0703e+01 6.3535e+00 2.1656e+01 9.5600e-01

-2.6509e+01 0 .0000e+00 2.6509e+01 1.0000e+00

The controller was implemented as in Figure 2.8. Note that the robust stability properties 
in equations (2.12) over (2.17) are associated only with the feedback controller K 2 in Figure 
2.8. To illustrate this, Figures 2.9 and 2.10 show the output and complementary sensitivity

1 ---------------------- n

Controller

Figure 2.8 Implementation of the two DOF controller

functions, Sa and T0, respectively. It is clear that the disturbances at the output and sensor 
point of the diagram 2.1 will be rejected above 6 rad/sec. As noted earlier, these bounds
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Figure 2.10 Complementary sensitivity func­
tion (i - g 8k 2) - 1g 8k 2

can also be expressed via the achieved loop gain function G8K,2 . Figure 2.11 shows the 
specified versus the achieved loop gains in the two DOF design procedure. Note that, due 
to the model matching part of the optimisation, the roll-off of the loop gains above 10 

rad/sec is higher than 20 dB/decade.

Figure 2.12 shows the output responses of the ideal model and the closed loop system 

to a unit step input on lateral cyclic. The ifoo controller provides excellent decoupling 
between the controlled outputs and the primary output response tracks satisfactorily the 
ideal model.

There are two aspects of the two degrees-of-freedom Hoq loop shaping controller that
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Figure 2.12 Output step responses of roll angle 

(solid) and the ideal model (dashed)

make it particularly attractive for helicopter applications. Firstly, the controller can be 
written as an exact observer plus a state feedback (see equations (2.34) - (2.35)). This 
property allows the feedback gains to be interpolated in a gain scheduling framework to 
capture known plant nonlinearities. Secondly, the controller can handle multivariable plants 
in a natural way, which allows for high levels of decoupling to be achieved. Experience shows 

that time responses, like those in Figure 2.12, are typical for helicopter control laws designed 
with two DOF FToo loop shaping. Unlike loop-by-loop approaches, where the compensator 

cross terms are designed implicitly, controllers account for all the cross-couplings in 

a single synthesis procedure, while the off-axis responses are bounded in magnitude. This 
is very important for real time applications as the off-axis model uncertainty can be quite 
significant. This decoupling potential, however, does not imply that a helicopter control 
problem can be treated as a “black box” by the designer. Most of real time applications 
require the designer to know not only the achievable performance of the vehicle, but also 
the possible deficiencies of the helicopter mathematical models. Only then it is possible to 
arrive at a successful controller design and implementation on a Fly-By-Wire helicopter.
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Design and piloted simulation of an loop shaping compensator for  
the Bell 205 airborne simulator

3.1 Introduction

We start this chapter by giving further motivation for the use of two degrees-of-freedom H qq 
loop shaping as an attractive design method for highly coupled systems. In the previous 
chapter, we concentrated on the disturbance rejection capabilities of loop shaping con­
trollers. It was also shown how it is possible to introduce time domain requirements using 
model matching, while preserving the robust properties of the initial configuration. In this 
chapter we elaborate on this methodology and design a loop shaping controller for an actual 
Fly-By-Wire (FBW) helicopter: the National Research Council of Canada (NRC) Bell 205 
Airborne Simulator. Firstly, we show the basic dynamic characteristics of the model used 
for controller design and compare them with experimental data. Next, we design the feed­
back compensator according to the example of the previous chapter, but relying heavily on 

flight mechanics knowledge about the actual vehicle. The synthesised controller was tested 
on the Large Motion System (LMS) within the Advanced Flight Simulator complex at the 
Defence Evaluation & Research Agency (DERA), Bedford. Pilot comment and Cooper- 
Harper handling qualities ratings were recorded. Based on these assessments, the chapter 
concludes by giving a number of guidelines for synthesising prototype flight control laws 

using Ifoo-related methods. These guidelines form the basis of the subsequent controller 
flight test which is presented in chapter 4.

The response type of a helicopter, e.g. ACAH, can be easily accommodated through 
the two-degrees-of-freedom controller synthesis as discussed in the previous chapter. In ad­
dition, ground-based design experience [74, 65, 64], shows that adequate output decoupling 

is best achieved through two DOF schemes (see Figure 2.8 in chapter 2). Recall that in 

the original one DOF design procedure of Glover and McFarlane, we essentially translate 

time domain requirements into frequency dependent weights and for a coupled multivariable 
system this can be a difficult task. The weighting function selection, described in section 
2.3, is most effective when either the desired loop bandwidths have similar crossovers, or

32
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when the controlled ouputs are largely decoupled in frequencies. In the case of the Bell 
205 helicopter, the open loop plant is severely coupled, and bandwidth specifications are 
different. The rotor and fuselage are dynamically coupled in the frequency range of the de­
sired closed-loop crossover and the rotor system is a dominant source of inter-axis coupling 
and dynamic uncertainty. The Bell 205 is “reasonably” agile in roll and yaw loops, but 
in pitch the achievable bandwidth is restricted by the mast-rocking mode of the teetering 
rotor system. The frequency of this mode is around 13.5 rad/sec and it appears as a strong 
flapping motion of the whole teetering rotor system which, if excited by the control system, 
can seriously damage the aircraft.

3.2 D escription o f th e  N RC B ell 205 flight dynamics m odel

The helicopter mathematical model used for control law design can be found in [34]. 
It comprises the standard six-degrees-of-freedom (DOF) stability and control derivatives. 
Only 6 states were available in the original state space description of the aircraft: three 
rotational rates and three translational velocities. Thus, to enable ACAH controller design, 

the model was augmented with the pitch and roll attitudes and their gravity-dependent 
couplings to force equations. Thus, the resulting six DOF state equations for the fuselage 
forces (X , Y, Z) and their corresponding moments (M, N, L) are given by

X  : u =  X uu  -I- X ww +  X qq +  X vv + X pp +  X rr +  g cos(9o)sin(<j)o)

Y  : v =  Yuu +  Yww +  Yqq +  Yvv +  Ypp + Yrr + g cos{<f>o)sin(90)

Z  : w =  Zuu +  Zww +  Zqq +  Zvv +  Zpp  +  Zrr +  g cos(0q)cos(</>0)
M i q — Muu  +  M ww +  M qq +  Mvv +  Mpp +  Mrr
N  : r = Nuu +  Nww +  N qq +  Nvv +  Npp  +  Nrr
L  : p  — Luu  +  L ww +  L qq +  Lvv +  Lpp  -I- Lrr

9 =  q

<j> = P

where 6q, </>o define the earth-measured equilibrium position of the helicopter. Heading 

is usually omitted from the description of the linear time invariant approximation of the 
model. This is because the heading angle appears only in the kinematic equation relating 
the rate of change of heading to the fuselage rates p, q and r.

(3.1)

3.2.1 Feedback signals

The feedback signals, derived from the sensors, include the primary controlled variables 9, </> 

in pitch and roll axes and yaw rate r  in the heading loop. Pitch and roll rates (q and p 

respectively) were also fed back to the controller to improve the closed loop damping (see 

the example corresponding to Figure 2.5). This choice can be further justified by noting 
that for low flap hinge offset and teetering rotor helicopters, such as the Bell 205, the
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changes in rotor hub forward (X) and lateral (Y) forces are the primary contribution to 
the pitch and roll moments about the aircraft’s centre of mass. Hence, when pitch and roll 
rate information is being used for feedback, the stability derivatives X q and Yp contribute 
directly to the aircraft damping.

The possibility of using heading rate ip instead of yaw rate r  as a primary feedback 
variable in the directional loop was also considered on the grounds that ip is an earth-based 
measurement perpendicular to the pitch and roll attitudes. However, design experience 
has shown that H 00 controllers handle the inter-axis coupling successfully with either of 
these measurements. An important point here is that the helicopter has essentially “rate- 
command” response characteristics particularly at high frequencies, where pilots are sub­
jected to high workload. Thus, the decoupling of body-axis rates p, q and r  (as a means of 
decoupling the attitudes and the directional axis) has been taken to be of higher priority 
than the interaction of p , q and ip.

3.2.2 Mode description

It can be argued that the six degrees-of-freedom model, described by the system of equations 
(3.1), is adequate for low-moderate frequency, handling qualities analysis. The rationale 
behind the neglected dynamics is that the higher rotor and inflow phenomena behave in a 
quasi-steady manner, i.e. they are much faster than the fuselage motions and have enough 
time to reach their steady state within the typical time constants of the whole aircraft 
response modes. We will revisit these assumptions later in chapter 5. More detailed on these 
assumptions, alongside the necessary conditions of weakly coupled systems, are discussed 

in detail in Padfield [53, appendix4].

Mode Real Imaginary Frequency Damping

1 8.0752e-02 -5.3177e-01 5.3787e-01 -1.5013e-01 Dutch roll
8.0752e-02 5.3177e-01 5.3787e-01 -1.5013e-01

2 8.7130e-02 3.2458e-01 3.3607e-01 -2.5926e-01 Phugoid
8.7130e-02 -3.2458e-01 3.3607e-01 -2.5926e-01

3 -1.0112e+00 0.0000e+00 1.0112e+00 l.OOOOe+OO Roll subsidence
4 -7.2787e-01 0.0000e+00 7.2787e-01 1.0000e+00 Heave subsidence
5 -5.4437e-01 3.0673e-01 6.2483e-01 8.7122e-01 Roll/pitch

-5.4437e-01 -3.0673e-01 6.2483e-01 8.7122e-01

Table 3.1 Dynamic modes of the Bell 205 helicopter at hover

Similar frequency separation arguments can be used when examining the basic modes 
of motion for a given linearisation. The resulting eigenvalues can be separated into slow 
and fast modes, the latter behaving in a quasi-steady manner. At hover, the basic modes 
of the Bell 205 helicopter are shown in table 3.1. The first two modes at low speed manifest
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Figure 3.1 The Bell 205 stabiliser bar

themselves as coupled longitudinal/lateral oscillations. As the forward speed increases, the 
first oscillation develops into the known dutch roll motion and the second into the phugoid 
mode. The roll/pitch coupling, shown as mode number 5, is essentially what we call short 

period in the fixed wing aircrafts, and the other modes are subsidences, having distinct 
meaning at hover, but develop into more coupled motions at high speeds. Roll subsidence, 
for example, becomes the roll/yaw coupling, while heave appears to be heavily coupled with 
pitch motion.

3.2.3 The stabiliser bar

Ignoring the high order rotor dynamics for the moment, the main characteristic of the model 
that can affect the control law design is that the derivatives in the equations (3.1), have 

been obtained assuming a Bell stabiliser bar active on the main rotor-head (see Figure 3.1). 
The purpose of the bar is to provide a time-lagged feedback of rotor-mast angular rates in 
longitudinal and lateral directions; the time lag being a result of the bar inertia and damping 
mechanism. The operation of the bar is based on its gyroscopic properties initiating pitch 
and roll damping moments proportional to the difference between the gyroscope and the 

swashplate deflection. These damping moments act in the pitch and roll directions of 
fuselage motion by constraining the motion of the rotor disk and therefore stabilising the 

aircraft. The bar, however, has been removed from the actual aircraft and therefore it is a 
primary source of uncertainty when designing feedback compensators using this linearised 
model. A detailed description of the bar equations can be found in [13]. Ignoring the high
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frequency motion of the bar, the resulting equations of motion become

=  - j f t l . n s+ c,q  1
=  - j r S lat - c s{pcos{im)) f

where Tj, is the time constant of the bar response, cs is the non-dimensional bar to blade 
linkage factor and im is the longitudinal shaft tilt. For the Bell 205 Ty ~  3 sec and cs = 0.16. 
The stabilising effect of the bar can also be seen from the schematic block diagram in Figure 
3.2. For both pitch and roll loops the effect of the stabiliser bar dynamics is subtracted

Long

Stick Stabiliser Bar

Lat
Stick Stabiliser Bar

-0.48
3s+ l

3s+ l
0.48

Stick to 
swashplate 

linkage

Stick to 
swashplate 

linkage

Figure 3.2 Stabiliser bar block diagram

from the longitudinal and lateral cyclic deflection respectively. Note the negative sign in 
the longitudinal stabiliser bar transfer function. It accounts for the sign difference between 
pilot induced commands (long stick in Figure 3.2) and pitch rate response in helicopters. 
Bearing in mind that the aerodynamic derivatives in equation (3.1) represent the helicopter 
dynamics for small perturbations, the initial model response can show how the stabiliser 
bar affects the initial rate responses in both the pitch and roll loops. The swashplate 
deflection in pitch (6iong in Figure 3.2) equals the sum of the feedforward and feedback 

loops and therefore, the initial pitch helicopter response (as predicted by the model) should 
be overestimated when compared to the actual response of the vehicle.

The bar has the opposite effect in the roll loop. In this case the overall feedback 
signal is subtracted from the pilot-induced demand. Thus, with the bar on, the model 
should underestimate the initial roll rate dynamic response when compared to the same 

rate response of the Bell 205. We shall see in the next section that the experimental 

results from the comparisons between the NASA model responses and the actual helicopter 
behaviour seem to confirm the above arguments.
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3.3 M odel validation

Validation of the NASA model against flight test data in both time and frequency domains 
revealed that the classical 6 DOF model roughly captures the salient rigid body modes. 
However, the omission of the stabiliser bar and other higher rotor dynamics introduce 
significant uncertainty.

Figures 3.4, 3.6, and 3.8 show a comparison of the NASA model and helicopter on- 
axis time responses to doublet inputs at 60 knots Indicated Air Speed (IAS) in lateral, 
longitudinal and directional axes respectively. The actuator signals used to obtain the flight 

test data as well as to drive the NASA model are shown in Figures 3.3, 3.5 and 3.7. Note 
that the comparisons are performed at 60 knots for two reasons. Firstly, the helicopter at 
high speeds is more stable than it is at hover so pulse inputs do not cause extreme attitude 
excursions from the linear perturbation approximation assumptions. Secondly, due to the 
cross-axis coupling at hover, it is more difficult for the pilot to perform pure inputs in one 

axis alone without contaminating the primary aircraft response with off-axis pilot induced 
perturbations. For both longitudinal and lateral loops the experimental data confirm the

4

3

2

1

0

1

2

3
0 0.78 1.56 2.34 3.12 3.90 4.68

time (sec)
Figure 3.3 Time history of doublet input in lat­
eral axis
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Figure 3.4 Comparison of flight test data and 
NASA 6DOF model responses to a doublet in­
put in lateral axis

previous analysis. The NASA model predicts lower roll and higher pitch rates; the difference 
being due to the absence of the stabiliser bar from the actual NRC Bell 205 as opposed 
to the calculation of the linearised models in [34]. From Figures 3.9, 3.10, 3.11, 3 .12, 
3.13, and 3.14, the experimental data show that, as with virtually all low order helicopter 

models, the off-axis responses of the NASA model are in the opposite direction of the actual 

aircraft responses. This is one of the major problems in the rotary wing modelling area, 

and high order dynamics such as rotor flapping, inflow, tail fin blockage, tail rotor blade 
root cut-out states are required to enhance the predictions of the quasi-static description 
shown in equations (3.1).
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NASA 6DOF model responses to a doublet in­
put to directional axis

FYom the time histories shown in Figures 3.4, 3.6, and 3.8, it can also be seen that 
there is a significant lag between the pilot input and the aircraft response, which is actually 

perceived as a pure time delay by the pilots. This is typical for teetering rotor helicopters 
where the fuselage is almost pendulously suspended from the rotor system and therefore 
the fuselage-mounted accelerometers pick up a lagged/delayed signal. FYom Figures 3.4, 
3.6, and 3.8, the time constant characterising this lag can be estimated to be 150 msec for 
the pitch and roll axes and 180 msec in yaw. To describe in a mathematically appealing 

form this inherent lag in the aircraft dynamic response, it is possible to use a low order lag 

filter y j+t 01 first order Pade approximation to the time delay , with the appropriate 
time constants, and to cascade it with the quasi-static description of equations (3.1). It 

is generally not clear from these time domain comparisons to decide whether a lag or a 
time delay can precisely characterise the aircraft motion. However, it is possible to identify
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the frequency-dependent phase difference between the modelled and the actual helicopter 
responses from frequency domain analysis as we shall see next.

To enable a frequency domain comparison of the quasi-static model and the actual he­
licopter responses, a set of open loop frequency sweeps was conducted at 60 knots IAS 
on the NRC Bell 205 helicopter and time histories of actuator activity, aircraft attitudes 
and angular rates were recorded. A frequency sweep is performed by starting from trim 
conditions and moving the inceptor in a sinusoidal trajectory starting with low frequency 
excursions and progressing to high frequency. Although the period of the sinusoid is con­
stantly increasing, the magnitude of the inputs is varied to keep the states near the trim 
conditions around which model and aircraft comparisons are to be made. At least two 

frequency sweeps in each loop were performed to ensure a sufficient amount of recorded 
data for further analysis.
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The open loop flight test data were cropped to isolate only the response to the control 
input, zero mean de-trended to remove any trim offset and the inputs were linearly de­

trended to remove the effects of drift caused by changes in the flight condition as a result 
of the test input. The processed data were then used to excite the NASA linear model, 

and Fast Fourier Transform spectral analysis was applied to the resulting input/output time 
histories in order to identify the frequency response magnitude and phase. For the measured 
input u(t) and output y(t), the estimated linear system frequency response function can be 
obtained as

R .
(3.3)G ( j » )  = 

Â  Mil'll

where Puu-> Puy are the auto and cross spectral density functions between u(t) and y(t) 
respectively.
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(dashed) to a frequency sweep input in yaw axis

Figures 3.15, 3.16 and 3.17 show a comparison of the flight test data (solid) and the 

NASA model (dashed) for a lateral, longitudinal and pedal frequency sweep respectively in 
terms of Bode magnitude and phase plots. To check that the approximation of the nonlinear 
input-output response does not introduce any unwanted phase errors a coherence function 
was calculated, indicating the fraction of the output spectrum which is linearly related to 
the the input u(t). The coherence function 72uy(t) is defined as

72U„ := 0 < 7„ y < ) < l
i  M l l i  M W

I p . (3.4)
u u *  y y

A value of 1 indicates linear relationship between y(t) and u(t) while a value of 0 indicates 
that the input and output are uncorrelated. We shall see later in chapter 4 the importance 
of 72uy(t) in assessing the closed loop system performance of the designed #00 controller. 
At the present time, 72uy(t) is used only to ensure that the flight test data adequately 
represent the helicopter dynamic response. Figures 3.15 - 3.16 suggest that at 60 knots 
forward speed the phase differences in the lateral and longitudinal axes vary from a few 
degrees at 0.2 rad/sec  up to 60° at 2 rad/sec respectively. Based on this observation a first 
order lag would account for up to 15° at 2 rad/sec and a first order Pade delay would ensure 

that up to 30° of phase difference (assuming a 150 msec time constant) is incorporated into 
the design model.

The use of a first order Pade approximation, as a means of explaining the phase differ­
ence in Figures 3.15 and 3.16, appears to be also valid from the flapping dynamics theory 
point of view. The main argument here involves the phase difference between the flapping 
response and the applied cyclic pitch [53, ch2]. According to the theory of the flapping



3.3 Model validation 42

rotor in air, the flap equation of motion can be written as

$  +  £ 0 ' +  =  §  (pcos(V>) -  qsm(ip)) +  |  (o -  ^  sin(-0) +  -  costy)) (3.5)

with the applied blade pitch given by

8 = So + Slang cos(ip) +  8iat sin(^) (3.6)

where <5o, <fyon<? and 8iat are the collective, longitudinal and lateral pitch respectively. As­
suming that the control activity and the period of fuselage angular motion are an order of 
magnitude greater than the flap time constants, equation (3.5) can be written in a quasi­

steady form as
=  /?o + faong COs(l/>) +  Aat Sm(</>) (3.7)

where (3q is the rotor coning angle and Aon$ and Aat are the longitudinal and lateral flapping

angles respectively, given by

Ao =  ( * ® _  s s r k )
A long  =  1 + 5 a 2 (S p S lo n g  — i j 0f +  ( S g ^  — l j  $  +  (^Sg +  y )  $ )

Aim = Y+Sp* {SPSlm + Qlong + (Sg +  “ ) £  -  (S/3y -  l )  $ )

(3.8)

In equation (3.8), represents the constant approximation of the inflow velocity over the 
rotor disk, £1 is the rotor speed, R  is the blade radius and Sp represents the blade stiffness, 
which can be written as a function of the Lock number 7  and the flapping frequency ratio

S g  =  8(A^ ~  1} (3.9)

From the above equations it is possible to see that the flapping response has approximately 
90° phase difference from the applied blade cyclic pitch. Since a Pade approximation 
introduces a 90° phase difference to the model used for control law design it appears that 
its use coincides with the general theory of flapping dynamics.

Despite the above analysis it is our belief that there is much more than a simple estima­
tion of the phase difference between the modelled and the actual aircraft response. Recall 
that the experimental data analysis was performed at 60 knots IAS, where the aerody­
namic loads on the fuselage and empennage are strong functions of forward velocity. Also, 

dihedral forces are very strong and it would not seem readily justifiable to extrapolate the 
results for the hover flight regime. Anyway, due to the absence of hover flight test data for 
more detailed analysis, the Pade approximation was used as a conservative1 estimate of the 

time delay between the predicted and actual aircraft response.
From the above discussion it can be seen that to tolerate the high degree of uncertainty 

in the linear model, the subsequent controller synthesis has to be biased strongly towards

1In the sense that a right half plane zero is introduced in the linear model imposing limitations on 
achievable performance. See equation (2.29) in chapter 2.
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low/moderate bandwidth robust stability as opposed to high bandwidth performance. This 

limits the potential of the loop shaping design procedure for high bandwidth control 
system design, but it is compatible with safety considerations which prefer a low bandwidth, 
when a prototype flight control system is first evaluated in-flight.

3.4 T he controller architecture

The primary purpose of the controller architecture is to tailor the handling qualities of the 

vehicle to the appropriate mission task. The controller structure is, in principle, indepen­
dent of the design method. However, certain properties of the control design method can 
be exploited to yield a modular and easily-implementable control law. Indeed, the state 
feedback observer-based Hqq compensator (see equations (2.34) and (2.35) in chapter 2), 
can provide a generic controller architecture for both disturbance rejection and command 
tracking in real time applications.

This generic controller architecture is shown in an analogue form in Figure 3.18. The pi­
lot demands are shown entering a dead-band and command shaping block. Dead-bands are 
important, particularly for rate command (RC) systems that might contain integral action 
in the command path, preventing the excitation of the controller dynamics with undesirable 

biodynamic interference caused by the n/rev  rotor disturbances and structural mode exci­
tations. Alongside dead-bands, shaping functions are used to tailor the stick sensitivity to 
the mission task and therefore they depend on the response qualities of the vehicle as well 
as the stick feel system. For instance, a RC response in pitch and roll should allow small 
amplitude responses and low rates to be achieved without any lags or over-sensitivity, while 
large amplitude demands should be executed with comfortable input forces. The shaping 
functions usually have non-linear character; however, harmonisation between the different 

response type requirements can also be achieved through linear functions, as it will be seen 
in the next chapter.

The frequency range of the input signals to be tracked by the control system is deter­
mined by the closed loop bandwidth. However, uncertainty in the design models makes the 
prediction of the closed loop bandwidth imprecise and therefore undesirable high frequency 
noise may be present in the command path. The low pass filter shown in the command 
path of Figure 3.18 (with cut-off frequency V  higher than the closed loop bandwidth) 
removes a large amount of high frequency noise and does not introduce significant lag into 
the control loop.

Next to the low pass filter, a scaling factor (Sf) guarantees zero steady-state error 

in the output response, and a command model (A0, B0) is utilised to tailor the aircraft 

response to the appropriate mission task. As in the design example presented in chapter 

2, the command model responses are specified using the damping and natural frequency 
parameters of a second order model for ACAH response type according to the ADS-33D
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Figure 3.18 The ifoo controller architecture
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rotorcraft specifications [3]. In this case though, we also use the agility parameter (see 
equation (3.13)) to impose time domain requirements. The agility parameter is defined 
as the peak angular rate necessary to achieve a desired attitude response and therefore it 
is directly related to the rate signal generated by the feedback compensator. Thus, the 

designer can trade-off how much rate feedback will be used to achieve good control system 

performance.
The feed-forward gain matrix (F2 ) in Figure 3.18 is the output injection gain from 

the solution of the Hqq robust stabilisation problem. In the controller equations (2.34) 
and (2.35) it is represented by F2  =  B sTX 00i2 . As in classical controller structures which 
use PID gains, this feed-forward element can be viewed as a “quickening” action on the 
command path demands in order to offset the feedback damping and open loop damping 
which would otherwise retard the command response.

The feedback signals are derived from the sensors and sensor noise may be filtered 
out via the frequency dependent filter W2 . The design of this noise attenuation block is 
done independently of the overall controller synthesis and it is used to emphasise sensor 

bandwidths and measurement fidelity over the frequency range of interest. W2  can also be 
used to remove the n /rev  structural vibration measurements picked up by the sensors. Later 
in chapter 5 this filter is specified as a first order filter to fulfil the noise attenuation role 
within the loop shaping design procedure. It is important to note here that H00 optimisation 
and other robust multivariable methods can also address the robustness implications of 
using W2  as an integral part of the design procedure.

As mentioned in the introduction, achieving robust high gain feedback in helicopter 

flight control system design is problematic because the rotor and fuselage are dynamically 
coupled in the frequency range of the desired closed-loop cross-over. It is widely known 
that if conventional rigid-body state feedback can be augmented with rotor state feedback, 
then robust control of the coupled body/rotor modes can be obtained at higher bandwidths 
than would otherwise be achievable. Ongoing experimental studies on a model-scale Ex­
perimental Rotor Rig Facility [26] have also suggested that - while based purely on output 
feedback from the rigid body dynamics - all observable states are reconstructed within an 
Hoo synthesis and hence the resulting feedback controller will implicitly include rotor state 
augmentation if rotor dynamics are included in the design model. The observer scheme 
shown in Figure 3.18 is unique among H qq methods in the sense that the observer is not 
calculated in a separate procedure. Instead, a stabilising controller is synthesised which 

can, if required, be written as an exact estimator preserving all the properties the designer 
specified during the controller synthesis [60, 72].

Using a 6-DOF rigid body model for control system design limits the full potential of the 

H qo technique for including rotor state augmentation. This, however, does not undermine 
the attractiveness of H00 loop shaping as a control design method; the inherent robustness 
properties and the modularity of the observer state feedback structure offer great insight
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to the helicopter control problem.
The pre-compensator W\ is used primarily to boost the low frequency gain of the open 

loop frequency response and also to specify desired closed loop bandwidths. The structure 
of this pre-compensator is essentially a proportional plus integral (PI) element, derived 
from SISO loop shaping ideas. Recall from the previous chapter that the simpler this pre­
compensator is, the lower its condition number can be. Thus, the better achievable bounds 
are obtained as described by relationships 2.12 over 2.17.

When maximum performance is a primary design specification, the uncertainty present 
in the models used for control law design may result in controllers that sometimes generate 

excessive rate or position demands. In these cases, actuator rate limiting may lead to pilot 
induced oscillations (PIO) that can compromise stability and performance. The designer 
uses extensive simulations to ensure that the actuators respect the vehicle limits and in 
most cases command path pre-filtering and reduction of the control gains (i.e. limiting the 
bandwidth) are obvious choices to prevent saturation. However, for invertible multivari­
able controllers, such as the two DOF compensator designed in the previous chapter, 
the Hanus anti-windup procedure [57] offers a straightforward solution to the saturation 
problem. Applications of this anti-windup procedure can be found in [40, 65].

For the controller shown in Figure 3.18 the remaining controller blocks are: the 

shaped plant (W2(s)G(s)Wi(s)) in state-space form (AS,B S}CS, 0), the Riccati gains F\ — 
B j X ooii, and H , which guarantee stability and performance against the normalised co­
prime perturbation description described in chapters 1 and 2. It has to be noted here that 
the designer’s visibility in those blocks is lost due to their multivariable nature when com­
pared to simple controllers using PID gains. However, this should not present a problem 
for implementation purposes since the implementation can be performed using state-space 
integration methods while the overall controller is viewed as a frequency response altering 
the vehicle’s dynamics.

3.5 Controller design for th e NRC B ell 205 FB W  helicopter

The overall design aim was to provide the helicopter with level 1 handling qualities through 
the robust stabilisation and de-coupling of the aircraft’s roll and pitch attitudes and yaw 
rate. In addition, it was decided to augment the heave axis in order to investigate to what 
extent the ifoo controller could decouple all four axes of the aircraft. Due to the lack 
of state information data, however, the vertical velocity measurement w was chosen for 
feedback although heave velocity (H) would be preferable as the tests would be carried out 
in the hover regime. The reasoning behind this is that pilots use ground-referenced cues 
for hovering tasks and therefore they “close the loop” around H  rather than w.

The design procedure started with the open loop singular values of the helicopter model 
being scaled to reflect the relative importance between the chosen outputs. Normalisation
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with respect to the maximum variable range was used in this case. This choice was taken 

on the grounds that we did not have a nonlinear representation of the Bell 205 dynamics 
and therefore it was difficult to use normalisation with dynamic pressure. This will not 
be a problem though as in the next chapter we will see that this controller will perform 
satisfactorily (considering the available linear models) over a wide speed range. In addition, 
this control law concentrates on the hover flight regime as this speed region is the most 
challenging for the flight control system.

As in the design example in the previous chapter, the scaled plant was pre-multiplied 
with the dynamic matrix W\ containing integral action to specify good tracking at low 
frequencies and disturbance attenuation at high frequencies. So, the pre-compensator W\ 
was chosen to give a slope of —1 (i.e. 20 dB/decade) to the magnitude of the loop transfer 
function W2 {ju>) G{jui) W\ {ju) at high frequencies while a zero at —2 was used to reduce 
the roll-off rate around the cross-over region i.e.

Wi(s) =

'  s±  2 
3 0 0 0

0
3 + 2

3 0 0

0 0
3 + 2

3 0

0 0 0
3 + 2

3

(3.10)

Note that the zero at —2 is slightly higher than the frequency of the two unstable modes 
shown in table 3.1. It is not straightforward to justify this choice only from ground-based 
linear simulations. The designer should also bear in mind that the frequencies of these 
modes can be different at flight conditions. Of course, the classical loop shaping ideas 
described in section 2.3 are valid; however, the more uncertain the linear model is, the 

harder it is to arrive at a suitable weighting function. A diagonal matrix W2  was used to 
enable pitch and roll rates to be fed back to the controller. The final form of W2 was:

W2 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5

(3.11)

Note that pitch and roll rates (p and q respectively) are fed back weighted with 0.5 which 

specifies how much they will contribute to the damping of the feedback loop. The open 
loop cross-over frequency was set to a desired value by pre-multiplying the weight W\ with 
an alignment gain matrix K a. This constant matrix was calculated as the real approximate 
inverse of the augmented helicopter model W2G{juj)W\(ju)) at 4 rad/sec. The selection of 
this cross-over frequency requires that all the underdamped modes to be controlled must be 
well within the control bandwidth. If this frequency is high then the controller will reduce
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the closed loop response lag and produce a stable closed loop insensitive to the feedback 
dynamics. However, the designer must have good knowledge of the actuator capabilities, 
so that excessive control action is avoided. A good rule of thumb is to push the cross-over 
frequency as high as possible until the robust properties, as viewed by the H00 stability 

K n
margin 7 Loo

I
(I — GaKoo)~l M ~l , deteriorate. The gain (singular values) of

the final shaped plant W2 G W \Ka is shown in Figure 3.19.

) 10_1 10° 101 
Frequency (* £ )

Figure 3.19 Shaped helicopter model
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Figure 3.20 Open loop singular values from all 
the inputs to each of the outputs.

R em ark  3.5.0 .1 Ideally, it would be desirable to shape each open loop singular value with­
out affecting the gain in the other loops. This is the reason for using a diagonal pre­
compensator W \. However, in practice, this loop-by-loop shaping procedure can be hard to 

perform. Figure 3.20 shows the maximum singular values from all the inputs to each of
I . From this Figure, 

to specify better tracking in
“ 1 -4  lloo’ “1-4 Hoo'

y?the outputs i.e. the norms
it can be seen that any combination of input gains intendeo 
pitch loop will unavoidably affect heave, especially between 0.9 and 1 rad)sec. So, there 
is a great possibility that by the time the low frequency gain in pitch is large enough for 
good tracking performance, the collective actuator may experience undesirably large control 
deflections. The alignment gain K a essentially cross-feeds the required amount of gain to 

achieve a diagonally dominant specified loop shape W2 G(ju))W\(ju) and thus to decouple 
the helicopter outputs to a large extent. When implementing the controller, this alignment 
matrix (alongside the input scaling) is absorbed into the diagonal pre-compensator.

Having found suitable loop shaping weights, the next step is to select a command 
model to reflect handling quality requirements. The command model for the chosen ACAH 
response type was represented by a standard second order transfer function (M0) with
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desired natural frequency (u)n) and damping factor (£) for each of the controlled outputs:

M° == 2 (3-12)S1 +  2 U)n{8 + 0)n£

The natural frequency parameter for each of the outputs was chosen to satisfy the minimum 
requirements on the peak angular rate necessary to achieve a desired pitch or roll attitude 
change which for a second order closed loop response is given by

Table 3.2 summarises the values used for this design example. The final controller was

Heave Roll Pitch Yaw
Damping (£) 0.9 0.9 0.9 0.7

Natural frequency (o;n) 1.6 3.6 1.2 10.99

Agility ( i t . ) 0.63 1.41 0.47 4.8

Table 3.2 Four-axes command model specifications

calculated via the two-Riccati equation solution of [20] and a suboptimal controller achieving 
a minimum cost of 7  =  4.63 was chosen for further analysis and implementation. Note the 
high 7 value returned by the #00 optimisation procedure. This is typical of models which 
include time delays in their mathematical representation.

A thorough analysis of the suboptimal controller was conducted via frequency response 
analysis, linear simulations and ground-based piloted trials. Figures 3.21 and 3.22 show the 

sensitivity and complementary sensitivity functions respectively. Note the large positive

! ! ! ! ! i ! ! § ! i i ! § ! ! ! 5 ! ! i ! i j ! ! S ! ! i § ! ^ !!i!?!l!!i§!HSh!§!aaĵ !!!!U!jj!{5!i}ajij§i85ĝ ji!js;jji!ren;ajjig|a;

g 10-! ! ! ! ! ! ! ! § ! ! ! j e i s s ! i ! ! ! !!!j&gj£Egi!!!j!!!!j!!!!B!!!

!!!!!!!!S jy ^ !3H!!!)!!ETO®5!!!!BM!!SS!S!!!!B!!!!S8i iE 5!!!!E!!H!E!i8!5i

Frequency (^ 4) Frequency (*— )

Figure 3.21 Sensitivity function S0 =  ( /  — Figure 3.22 Complementary sensitivity func- 

G8K 2 )~1 - Bell 205 control law tionTa =  ( I —G8K 2)~1G8K 2 - Bell 205 control
law

area under the sensitivity plot 50. This is the so called waterbed effect and it is due to the
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RHP zeros introduced by the first order Pade approximations to the time delay (see [63, 
ch5]). From the complementary sensitivity plot it is easy to deduce that the controller will 
reject all disturbances above 11 rad/sec. Thus, any excitation of the rotor rocking-mast 

mode above that frequency is unlikely to be caused from the sensors.
Figures 3.23 - 3.34 show the state and actuator responses of the Bell 205 to step de­

mands on heave, pitch, roll and yaw controlled outputs. The primary loop responses are 
superimposed with the demands and the actuator deflections include the blade trim offsets 
in swashplate angular units. These Figures indicate a good design and as a consequence 
the controller was coded in FORTRAN and transferred to the Large Motion Simulator for 
piloted simulations.
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3.6 P iloted  sim ulation results

Whilst the design model was a linear quasi-static approximation of the helicopter, the model 
used for the piloted trials was the nonlinear HELISIM model [52], configured as a Bell 205 
using data from [34] and [49] to provide a full flight envelope model for real-time ground- 

based piloted simulation. This was because the HELISIM Bell 205 configuration was not 
available at the time of the controller design process. The major modelling assumptions will 
be described later in chapter 5. For the moment, we just point out that comparisons of flight 
test data with the simulation model indicated that both model and actual vehicle behaved 
similarly in moderate speeds, but it was unknown how much uncertainty was present in 
the hover region. However, it was felt that the control law should be insensitive to these 
variations and that the closed loop simulation was adequate for HQ analysis.

The simulator configuration used a single-seat generic helicopter cockpit mounted on 
the Large Motion System which is capable of significant accelerations, velocities and dis­

placements in pitch, roll, yaw and heave axes, and - depending on the orientation of the 

cockpit - either surge or sway axes. Visual cues were displayed via a photo-textured imag­
ing system through five collimated cathode-ray-tube monitors mounted to approximate the 
field of view from the right hand seat of the helicopter. The image system provides a 
number of general landscape databases over which more detailed ADS-33D style task cues 

were superimposed. The single-seat cockpit was configured with standard cyclic, collective
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and pedal controls with representative force-feel characteristics. The seat was dynamically 
driven to provide vibration and gravitational acceleration cueing along with audio cueing 
of rotorspeed and blade flap. Standard attitude indicator, airspeed, barometric and radar 
altitude, compass and torque instruments were provided on two colour head-down multi­
function displays. The transport delays of the visual system following a control input were 
not considered to affect the handling qualities since the delays contributed from the Bell 
205’s teetering rotor system are similar in length-approximately 120 — 150 msec.

The test scenario of the simulations involved the execution of a subset of ADS-33D 
manoeuvres primarily for hover and moderate speeds. The pilot was allowed some time to 
become familiar with the controller characteristics and functionality before specific tasks 
were performed. The analysis focused on the handling qualities for low, moderate, and high 
aggression tasks near the aircraft’s limits. Comments on the closed loop system stability, 
inter-axis coupling, task performance and pilot workload were reported and Cooper-Harper 
ratings were recorded. The Cooper-Harper ratings scale shown in Figure 3.36 provided an 
appropriate mechanism for compiling pilot comment. On this scale ratings of 1-3 imply 

that achievable performance is satisfactory without improvement. Ratings of 7 or more 
mean that the controller has to be modified.

The controlled system’s stability and performance were tested over a wide range of 
rotorcraft speeds until the linear controller robustness margins were “exhausted”. It was 
found that degradation with speed was small and this gave confidence in moving onto a 
flight test. The operational envelope of the Bell 205 helicopter extends up to 120 knots 
IAS. However, in practice the speed envelope is limited to 90 — 95 knots as the teetering 
rotor system induces significant fuselage vibrations which result in increased stressing loads 
on the airframe. It was felt that a conservative approach would be the most appropriate in 
this case, and therefore it was decided that in-flight evaluation should present no problem 
for the hover regime and possibly moderate speeds.

Four Mission Task Elements (MTEs) were chosen as the basis for the control law sim­
ulation: bob-up, side-step, quick-hop and spot-turn. A description of each task and the 

relevant results are summarised below. A pictorial representation of the tasks can be found 
in appendix B.

Bob-up: This task is dominated by heave axis response; the pilot has to vertically 
translate the aircraft from a stabilised hover at 10 m, bob-up through 50 f t  and establish a 
line-of sight between the top of the marker post and two marker boards positioned on the 
ground beyond. The task objective was to assess the primary heave response for damping 
and adequacy of control power, for different aggression levels, checking the torque limits 

and coupling into pitch, roll and yaw axes. Desired performance: to maintain plan position 
variations <  ±10 f t ,  height variations < ±5 f t ,  heading excursions < ±5° and maintain 

torque <  100% (maximum continuous limit). Adequate performance: to maintain plan 

position variations < ±15 f t ,  height variations <  ±10 f t ,  heading excursions <  ±10° and
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maintain torque < 116% (maximum transient limit)

Side-step: From a precision hover, the pilot was required to perform a side-step ma­
noeuvre along a marked reference line give an initial roll attitude of 10°, 20° or 30° (defining 
low, moderate and high levels of aggression) to acquire and maintain a new precision hover 
at the far end of the course as quickly as possible. Desired performance: to maintain plan 
position variations < ±10 f t ,  height variations < ±10 f t ,  heading variations <  ±5°2 and 
torque to be maintained <  100% (maximum continuous limit). Adequate performance: to 
maintain plan position variations < ±15 f t ,  height variations < ±15 f t ,  heading variations
<  ±10° and torque to be maintained <  116% (maximum transient limit)

Quick-hop (Acceleration - Deceleration): This task is similar to the side-step but pitch 
is the primary axis. FVom a stabilised hover the pilot was required to perform a 500 f t  

quick-hop manoeuvre along a marked reference line with an initial pitch attitude of 10°, 20° 
or 30° (defining low, moderate and high levels of aggression) to acquire and maintain a new 
precision hover at the far end of the course as quickly as possible. Desired performance: to 
maintain plan position variations < ±10 f t ,  height variations < ±10 f t ,  heading variations
< ±3° and torque to be maintained < 100% (maximum continuous limit). Adequate 
performance: to maintain plan position variations <  ±15 f t ,  height variations <  ±15 f t ,  

heading variations <  ±6° and torque to be maintained < 116% (maximum transient limit).

3.7 Discussion

FVom the recorded pilot comments it was deduced that there were no major problems 
associated with the stability and vehicle limits that are of primary importance in a piloted 
assessment of a novel control law. There was some coupling in pitch (or more accurately in 
fore and aft directions), which was largely attributed to the vertical velocity measurement 
w being used to decouple the helicopter axes. As mentioned earlier, pilots use ground-based 
visual cues for hovering tasks and therefore it is more natural to “close the loop” around 
height rate (H) using main rotor collective inputs. Therefore, selecting w as a primary 
feedback variable in the heave axis implied that the helicopter was displaced along the 
vertical velocity vector by the controller and the pilot needed to make adjustments in the 
fore and aft directions to correct the rotorcraft response with respect to height rate (H).  

Although the coupling was not considered to be a significant problem, it was decided to 
leave the collective open loop for the first flight test. This was also a safety requirement of 
the flight test team - pilots prefer to have a direct command over main rotor torque forces 

and therefore they stay in touch with the aircraft.

The controller was designed with emphasis on robust stability and it generally gave slow

2According to ADS-33D document, heading has to be kept within ±10° for desired and ±15° for adequate 

performance. During the simulator trials this limit was reduced to ±5° and ±10°. This practice seems 

justified on the grounds that on the simulator there are no wind gusts
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responses which resulted in some overshoots. This is because the predictability of the rates 
of attitude changes becomes difficult for the pilot especially for aggressive manoeuvring. It 
is also known that a RC response type would be desirable for high aggression tasks, while 
AC AH is more appropriate for degraded visual environments (UCE> 1). In this work an 
ACAH response type was chosen over a RC because it provides greater levels of stability 
(rather than performance) which was seen as the main objective at this stage. Also, no 
turn coordination was provided as this could easily be added at a later stage. Further 
improvements in de-coupling and primary responses were made before the first flight on the 
Bell 205 aircraft. Figure 3.35 shows the pilot HQ ratings returned for each of the executed 
tasks. As the aggression level increased the controller performance deteriorated. It should 
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Figure 3.35 Handling Qualities Ratings: ground-based simulations for different aggression levels

be noted here that the HELISIM model used in the piloted simulation was developed 
independently from the control law design (the latter was based on the NASA models) 
which boosted the designer’s confidence about the controller’s functionality. In general, the 
overall objectives of the trial were met and the test pilot gained sufficient experience about 
the control law behaviour.

So far, we have seen that piloted simulations are very useful in investigating the func­

tionality of a novel control law and thus reducing the risks associated with the first flight. 
However, simulator trials are limiting in terms of conclusive statements about the controller 
performance and the handling qualities of the helicopter. Realistic atmospheric phenomena, 
such as wind gusts and turbulence, are difficult to model and hence to use in simulation. The
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out-of-cockpit view and the other visual cues can be limiting for aggressive manoeuvring and 
therefore the necessity of a real flight test seems indisputable. However, a number of useful 
guidelines for designing and implementing prototype controllers on FBW helicopters can 
be drawn from the simulation trials. These guidelines follow closely the design philosophy 
reported in [39] for fixed-wing vehicles and can be summarised as follows:

i) Design for low bandwidth capitalising on robust stability rather than performance. 

Hqo and related methods are very attractive for this task since they deal explicitly 
with the unmodelled plant dynamics.

ii) Use approximate integrators when implementing weighting functions containing inte­
gral action. Rounding errors and finite digit arithmetic can easily perturb some of the 
closed loop eigenvalues to the right half complex plane. If the feedback and forward 
parts of the controller are implemented using Euler integration in a single state space 
system then approximate integrators are necessary to guarantee the stability of the 
integration algorithm (see chapter 5 section 5.7 for more details).

iii) During the first flights do not augment the heave loop. Pilots prefer a heave inceptor 

to function similarly to the manually flown aircraft. The demanded torque forces on 
the main rotor are of primary importance for structural integrity and safety of the 
helicopter.

iv) Make sure that the core controller is functioning satisfactorily before designing any 
outer loops that complicate the overall response of the vehicle.

v) Do not attempt to fine tune the control law based on the simulator trials alone. It 
is more effective to finalise the control law gains after qualitative feedback from the 
pilots and the inspection of the flight test data.

We shall see in the next chapter that this philosophy is clearly reflected in the test pilot’s 
comments and the handling qualities evaluation. It will also be seen that following the 

above guidelines we will able to build up on the success of the first flight and finally to 
obtain reasonable agreement between the piloted simulation and the flight test results.
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Aggression Minimal Low Moderate High Maximum

□ A O

Vehicle

Characteristics

Satisfactory 

or better

Minor

deficiencies

Moderate

deficiencies

Objectionable

deficiencies
Major
deficiencies

Primary response □ A O

Stability □ A O

Coupling □ A O

Vehicle limits □ A O

Thsk Performance Clearly within 

desired limits

Marginally

desired

Clearly within 

adequate limits

Marginally

adequate

Adequate perf. 

not achievable

□ O A

Thsk Workload Minimal Moderate Considerable Extensive Intolerable

□ A O

Table 3.3 Handling qualities summary - Bob-up task

Bob-up task Pilot comment

□ A little coupling into roll and yaw. One minor overshoot.

A The pilot needs to get it right from the beginning of the manoeuvre. 
Minor fore and aft coupling.

O One overshoot. Coupling into yaw, heading wandered ±  5 degrees. 

Some fore and aft activity but not much coupling in roll.

Vehicle limits difficult to observe and they limited the pilot’s 
performance.

Table 3.4 Bob-up task: Low (n), moderate(A), high aggression (O)

Aggression Minimal Low Moderate High Maximum

□ A O

Vehicle Satisfactory Minor Moderate Objectionable Major
Characteristics or better deficiencies deficiencies deficiencies deficiencies

Primary response □ A O

Stability □ A O

Coupling □ A O

Vehicle limits □ A O

Ihsk Performance Clearly within Marginally Clearly within Marginally Adequate perf.

desired limits desired adequate limits adequate not achievable

□ A 0

Task Workload Minimal Moderate Considerable Extensive Intolerable

□ A 0

Table 3.5 Handling qualities summary - Sidestep task
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Sidestep task Pilot comment

□ No problem. Easy to do.

A A bit slow, it required some pilot anticipation to get the 

deceleration right. If you get it wrong you’d overshoot. 

Some fore and aft activity.

O Maximum aggression used (the pilot was limited by

the stick displacement). Predictable, well de-coupled but not fast, enough

at the last stages of the manoeuvre. Some fore and aft coupling.

Table 3.6 Sidestep task: Low (U), moderate(A), high aggression (O)

Aggression Minimal Low Moderate High Maximum

□ A O

Vehicle

Characteristics
Satisfactory 

or better

Minor

deficiencies

Moderate

deficiencies

Objectionable
deficiencies

Major
deficiencies

Primary response □ A O

Stability □ A  0

Coupling □ A O

Vehicle limits □ A O

Task Performance Clearly within 

desired limits

Marginally

desired
Clearly within 

adequate limits

Marginally

adequate

Adequate perf. 

not achievable

□ A O

Thsk Workload Minimal Moderate Considerable Extensive Intolerable
□ A O

Table 3.7 Handling qualities summary - Quick-hop task

Quick-hop task Pilot comment

□ Not a problem.

A Coupling into roll, difficult to maintain track

0 Again difficult to maintain track due to roll coupling. Considerable

workload due to the poor field of view

Table 3.8 Quick-hop task: Low (U), moderate(A), high aggression (O)



Flight testing  an  #«*> controller on the B ell 205 fly-by-w ire helicopter

In this chapter, we describe the flight test results of the JEZoo controller, designed in chapter 3, 
on the Bell 205 FBW helicopter. Whilst the ground-based simulation trials are useful for an 
initial assessment of the controller, a reliable investigation of the controller’s performance 
can be made only in flight. We shall address the issue of robust stability by repeating 
the experiments performed on the Motion Simulator on the real aircraft: the Canadian 
National Research Council (NRC) Bell 205 Airborne Simulator. The additional benefit of 
these flight tests is that apart from the qualitative assessment of the controller the recorded 
flight test data allow for a quantitative analysis of the controller performance. It should be 

remembered though that these assessments are valid only to the extend that the controller 
design model and the actual helicopter behaviour are similar.

The objectives of the experiments presented in the next two sections focus on three 
tasks, namely:

•  Evaluation of the controller in hover and at moderate speeds

• Assessment of the robust stability properties of the ifoo-based control system

• Comparison of the in-flight performance and handling qualities ratings with:

i) desk-top computer-based predictions, in order to provide guidance for future 
designs based on Hqq optimisation;

ii) motion-based piloted simulations to enable better models to be derived; and

iii) the latest handling qualities specifications ([3]) to assess overall performance.

The chapter concludes with a summary of the experimental findings from the evaluation of 
the Hqq controller and a number of suggestions for further enhancement of the # 00-based 
system.
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4.1 T h e  B ell 205 fly -by-w ire  h e lic o p te r

The NRC Bell 205 airborne simulator shown in Figure 4.1 is an extensively modified version 
of the Bell 205A-1 general-purpose helicopter and serves as a fly-by-wire variable stability 
platform for the in-flight simulation of other aircraft, in-flight investigation of control system 
characteristics and investigation of cockpit systems. The standard Bell 205A-1 helicopter

Figure 4.1 The NRC Bell 205 Airborne Simulator

has an all-metal semi-monocoque fuselage and is powered by a single turbo-shaft engine. 
Since the arrival of the Bell 205 at the NRC, several modifications have been carried out 
to enable FBW capabilities. These modifications can be summarised as follows:

• The helicopter is configured to have a Safety Pilot (SP) flying from the left-hand seat 
and an Evaluation Pilot (EP) flying from the right-hand seat. The original aircraft 
actuators have been replaced with specially built dual mode electro-hydraulic actua­
tors that can be either electrically or mechanically controlled. During normal flight 
these actuators behave the same way as the original actuators and are mechanically 
actuated. During FBW flight, these actuators are electrically controlled by the EP to 
change the swashplate angles, but can be mechanically overridden if the safety pilot 
exceeds a given control breakout force.

• The standard Bell 205A-1 stabiliser bar has been removed to enhance the control 
response of the teetering rotor and the cyclic-to-elevator has been fixed in position 
with the interlink to the cyclic removed.

• The tail rotor assembly has been replaced with a Bell 212 wide-cord, right side 
mounted tail rotor.

A more detailed description of the NRC Bell 205 facility can be found in [8, 59].
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Roll Pitch Yaw

Damping (C) 0.9 0.9 0.7

Natural frequency (o;n) 3.6 1.2 10.99

Agility U Y J 1.41 0.47 4.8

Table 4.1 Rotational-axes command model specifications

4.2 Flight test

Following the piloted simulation trials presented in the previous chapter, the controller was 
redesigned to accommodate the pilot’s comments from the piloted simulations. The heave 
loop was left unaugmented so that the pilot has a direct “feel” of the resulting torque 
from the heave inceptor demands. Thus, the parameters of the ideal model used in the 
controller synthesis were fixed as shown in table 4.1 and a suboptimal controller achieving 
7  =  4.9, was finally synthesised. Frequency and time response analysis was performed and 
the resulting responses were similar to those in chapter 3 (see section 3.5).

4.2.1 C oding and  software requirem ents

A “continuous-time” version of this controller was coded in C for the on-board computer of 
the Bell 205. The dynamic parts of the controller (the feedback observer, the ideal model 
and the weighting function W\) were numerically integrated using Euler-type integration. 
The iteration rate was set at 15 msec, which is compatible with the clock rate of the NRC 
Bell 205 Motorola 68040 processor. The control law code used for the integration can be 
found in appendix A. It is out of the scope of this thesis to provide the whole listing of the 
flight control software. There are thousands of lines of code monitoring the overall FBW 
system within which the controller code was executed only once per cycle.

The headers describe roughly the sub-blocks of the routine. In the initialisation the 
sensitivity of the dead-banded pilot demands (DANET, DENET, DRNET) is reduced by a 
factor of five and the feedback variables axe being trimmed at the required flight condition.

Variables FSW_REG and BIT_8 set the conditions for mixed rate feedback. This feed­
back provides delay-free predictor-type rate signals for the control system. The functionality 
of this feedback will be discussed in the next chapter. For the evaluations presented here 
the pilots disabled this feature.

The rest of the code integrates the continuous controller states as seen in the con­
troller block diagram (see Figure 3.18 in chapter 3). Note that the number of states being 

integrated is: six for the ideal model, 14 for the feedback controller and three for the 
pre-compensator.

Several ground checks were carried out to ensure that the computational requirements of 
the overall on-board software did not exceed the available microprocessor computing power.
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Testing of the controller on the ground revealed that with zero feedback signals any inceptor 
input would result in a fast unstable response (indeed, there is no reason why it shouldn’t). 
To ensure that the instability arose from the zero feedback and not from the controller 
implementation, the original eight-state design model used for controller design was also 
programmed into the on-board computer and the controller was simulated in closed loop 
form. Playback of the recorded signals confirmed the similarity of the closed loop output 
responses observed in the computer simulations and the aircraft on-board computer, and 
subsequently the helicopter was rolled out for flight tests.

Successful engagement was achieved on the first flight and a total of 8 hours FBW time 
was accumulated in one week. The weather conditions for the handling qualities evaluation 
on the final day were recorded as: wind - westerly 5 — 25 knots; temperature 25 to 30° 
Celsius; visibility good (UCE=1); humidity 50 — 85%; typical fuel load, 1400 lbs.

4.2.2 In cep to r configuration

The Evaluation Pilot (EP) used a side-stick 2 +  1 +  1 configuration; a two-axis force sensing 
side-stick was used to command pitch and roll attitudes with a conventional collective lever. 

Unfortunately the active force-feel system for the conventional controls was unserviceable 
which meant that the evaluations were performed with zero spring force (non-centring 
pedals).

4.2.3 In s tru m en t C onfiguration

The current configuration of the NRC Bell 205 helicopter incorporated a set of standard 
head down instruments, but no airspeed indication was available below 30 knots. At the 
time of the flight test Doppler ground speed information was also not available. The EP 
was provided with torque indicators which were driven electrically with a 5% bias upwards 
for safety margins.

4.2.4 P ilo t experience

The evaluation pilot was a qualified test pilot who’s flight hours were 3900 with 3700 on 
rotary wing aircraft. Previous experience on Bell 205s was limited with some 20 hours flown 
approximately 10 years before the evaluation.

4.2.5 Test m anoeuvres

The flight test plan covered both open- and closed-loop evaluation at hover/low speed and 
informal assessment at higher forward speeds (> 45 knots) in the circuit around the NRC 
airfield. Open-loop testing consisted of step, doublet and frequency sweep inputs in each 
axis for model identification purposes. Data recorded from closed loop tests were used for
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benchmarking against ADS-33D open-loop criteria as well as to provide the pilot with an 
overall feel of the dynamic performance of the controller. The core element of the handling 
qualities evaluation, were the hover/low speed flight test manoeuvres described in chapter 
3 with the addition of one single-axis task in yaw and two multi-axis tasks as defined by 
the ADS-33D specification. A short description of the extra manoeuvres is given below:

Spot-turn (Turn-to-target): This manoeuvre is initiated from a precision hover at an 
altitude of approximately 50 f t  with a rapid heading demand through 180° to acquire and 

track a stationary ground target, while maintaining plan position. The primary objective 
of the task is to check for ability to recover from a rapid turn with sufficient precision and 
to assess the cross coupling between the rotorcraft axes. Desired performance: to maintain 
plan rotorcraft position of a reference point on the ground within 6 f t  to maintain altitude 
and heading within ±3 f t  and ±3° respectively, and to complete the turn in less than 5 
sec. Adequate performance: to maintain plan position within 12 f t ,  altitude within ±6 f t ,  
heading within ±6° and to complete the turn in less than 10 sec.

Precision hover: From a ground speed between 6 and 10 knots the pilot is required to 
fly to the target point (at 45° from the aircraft heading) and establish a stabilised hover. 
Desired performance: to attain hover within 3 sec of the initiation of the deceleration and 
maintain a stabilised hover for at least 30 sec; to maintain plan position within ±3 f t  
altitude within ±2 f t ,  and heading below ±5°. Adequate performance: to maintain plan 
position within ±6 f t  of the ground reference point, altitude below ±4 f t  and heading less 
than ±10°.

Pirouette: From a stabilised hover the pilot is required to translate the rotorcraft along 
a circumference of a 100 f t  radius circle at an altitude of 10 ft, keeping the aircraft nose 
pointed at the centre of the circle. Desired performance: to maintain a position of 10 f t  from 

the circumference of the circle, to keep altitude less than ±3 f t ,  to maintain heading with 
respect to the circle centre less than 10° and to complete the circle within 45 sec. Adequate 
performance: to maintain the position from the circumference of the circle within 15 f t ,  
altitude within 10 f t  heading within ±15° and to complete the circle within 60 sec.

4.3 H andling qualities evaluation

Initially, the pilot flew a few circles around the designated flight test area which gave 
an overall assessment of the aircraft handling up to 80 knots IAS. Although the control 
law did not incorporate any turn coordination signal - a basic requirement providing the 
appropriate response type in lateral/directional axes during forward flight. The following 
comments were made:
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4.3.1 Forw ard flight - pilot observations

The longitudinal cyclic inputs were dead beat and predictable but a little sluggish. Roll 
response was lightly damped and the bank angle was limited to about ±30°. Flight path 
control was easy and there was little coupling between the cyclic axes. Although the 
response was adequate for, say, instrument flight, the ability of the controller to maintain 
roll attitude was poor as the bank angle tended to wander about 3 — 5°. Pitch attitude 
hold was good and airspeed hold (through the pitch axis) was relatively good.

The aircraft responses to collective were as expected with small amounts of coupling 

into roll and yaw. These off-axis responses were suppressed with minimal pilot workload.
Pedal inputs were hard to coordinate in order to achieve the turn desired. The controller 

was found to be increasing the pilot workload due to two effects: the yaw rate response type 
in combination with the non-centring pedals made turn coordination a difficult manoeuvre 
to execute.

4.3.2 M ission ta sk  elem ents - pilot O bservations

A number of practice runs (typically 2-3) were made on each MTE for familiarisation 
purposes before an evaluation was conducted. The evaluation was followed by a pilot self 
de-brief using a cockpit questionnaire similar to the ground-based trials. At the end of each 
sortie a more detailed de-brief was conducted with the engineers. It should be noted that 

all the MTEs were flown in the presence of a 15 — 20 knots cross wind. Below is a brief 
summary of pilot comment.

Side-step: The right side-step was flown up to maximum aggression1 and desired perfor­
mance limits were achieved in all but the yaw axis. Demanded bank angles were up to 25° 
to initiate the manoeuvre and up to 30° to arrest the manoeuvre. The roll rate response was 
deemed adequate for the task, but the pilot found selecting a desired bank difficult with the 
force-sensing side-stick. During deceleration strong coupling with the pitch axis caused the 
aircraft to drift. However, it was possible to suppress this coupling with small but frequent 

longitudinal inputs. The dominant workload factor in this manoeuvre was poor heading 
control and only adequate performance was achieved in this axis. Also, torque monitoring 
contributed significantly to the pilot workload as the power margins were barely adequate; 
HQR 5.

Quick-hop: Similar to the side-step, the quick-hop task was flown to maximum aggres­
sion. However, in this case the torque limits were almost reached. Pitch response was crisp, 

predictable and satisfactory for the task. Commanded angles were 25 — 30° and very little 
off-axis activity was noted. However, torque monitoring increased pilot workload. Deceler­

1 Maximum aggression denotes the force level that the pilot applied to the side-stick which does not 

necessarily imply that the aircraft reached its attitude limits. For cyclics with motion it means that the 

stick was deflected fully until the stop position
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ating with 30° nose up required a lot of pedal activity and only marginal heading control 
performance was achieved. As the aircraft pitched down to the hover a large couple in to 
roll was observed and considerable pilot effort was necessary to establish a stabilised hover. 
Despite this, desired performance was achieved in all axes, but the yaw response made the 

execution of the task difficult; HQR 5.
Precision hover: The precision hover manoeuvre into the wind was easy to conduct and 

it was easy to achieve the desired performance. The roll hold was not as tight as the pilot 
would have liked and the bank angle oscillated by ±2°. Significant pedal activity had to be 
used again to compensate for small heading excursions (±2°); HQR 4.

Pirouette: Considerable pilot workload was required to complete the task, especially to 
achieve the desired yaw rate, to maintain adequate yaw pointing task performance. Roll 

control was only just adequate and the ground speed was fairly constant. Frequent pitch 
inputs were necessary to compensate for the pitch transients as the rotorcraft was flown 
into and out of the wind. The overall performance was marginally adequate which resulted 
in extensive workload; HQR 5.

Turn-to-target: Very little cross coupling was observed during the initial pedal input. 
The yaw rate generated was satisfactory for the task and a 180° rotation was achieved in 
less than 5 sec. During more rapid turns some coupling between roll and yaw was observed 
and moderate pilot workload was required to compensate for this activity. Demanding 
opposite yaw rate to arrest the manoeuvre resulted in a smooth, predictable and well- 
damped response so that the required heading was repeatedly achieved (less than ±2°) with 
a single input and no overshoots. The primary response was characterised as outstanding, 
ideal for rapid weapon aiming; HQR 4.

The above handling qualities ratings are summarised in Figure 4.2 and can be seen to 

be comparable to the ground-based piloted simulations.

4.4 Q uantitative analysis of the flight test data

Figure 4.3 presents a flow chart of the data analysis procedure, for the set of data that were 
collected from the on-board sensors of the NRC Bell 205 helicopter. As shown in the chart, 
the primary objective of the test data analysis is to gain information about the achieved 

bandwidths and phase delays, and to provide qualitative and quantitative analysis of the 
helicopter handling qualities. For the tasks A, B  and C (estimation of closed loop frequency 
responses) we shall use the transfer function estimation methods as in chapter 3; task E 
was completed in the previous section and the remaining task D (characterisation of the 
pilot workload) will be addressed using the Power Spectral Density (PSD) function of the 
input control activity. Figure 4.4 shows a typical PSD function consisting of two frequency 
components relating the input control activity to guidance and stabilisation tasks. The cut­
off frequency on a PSD plot illustrates the pilot workload and it is defined as the frequency
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at which 70% of the energy has been accounted for2. The stabilisation frequency is aircraft 
dependent (governed by rigid rotor inertia and rotor design) and remains constant. As the 
task difficulty increases, both the cut-off frequency and the magnitude of the navigation 
components will increase. When the guidance and stabilisation tasks overlap the increase 
in pilot workload is dramatic, which indicates high levels of aggression are needed to cope 
with the coupling and therefore an increased HQR is anticipated.

Forward flight: From the EP’s comments it is evident that a tighter attitude hold loop 

would improve the rotorcraft response. It has to be noted here that the controller was 
designed using a hover linearisation from ([34]) and it was intended to be primarily for 
low speed. The fact that the helicopter could be flown with confidence up to 80 knots

2In a sense the cut-off frequency is analogous to the 3 dB cross-over frequency for servomechanisms
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IAS is thought to be very encouraging for the evolution of the ifoo-based control system. 

The increased pilot workload due to the inconsistency of the pedal inputs with the desired 
response type is not difficult to explain. In forward flight pilots can demand heading 
changes using pedals as well as lateral stick inputs. This is because the directional stability 
increases with airspeed and heading naturally changes through rolling demands. Therefore, 
the unaugmented aircraft has a naturally coordinated turn which was suppressed by the 
control law in order to achieve yaw rate tracking. To avoid this rate suppression it is 

customary to construct a turn coordination signal from the output measurements and cross­
feed it to the pedal demands. However, as mentioned earlier, the evaluation was intended 

to be for hover speed and therefore a turn-coordination loop was not considered important.
Side-step: The difficulty in maintaining heading was primarily attributed to the non­

centring pedals. The pilot had to make frequent and often large corrections which con­
siderably increased his workload. Figure 4.5 shows the time histories of pitch, bank and 
heading angles during a side-step task. From the Figure it can be seen that as soon as the
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Figure 4.5 Time histories of the pitch, bank, and heading angles during side-step task

helicopter achieves 20 — 23° of roll attitude there is an evident cross coupling into yaw which 
is maintained within desired performance limits3 only at the expense of high pilot workload. 
The achieved bank angles (23.6° and —30.5°) were reached within 1.7 and 5.4 sec from the 
initiation of the manoeuvre. Therefore, since the task was flown to maximum aggression, 

the roll rate generated by the controller should have been faster in order to achieve these

3Recall that heading has to be kept within ±10° for desired and ±15° for adequate performance
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attitudes within 1.5 sec from the initiation of the positive and negative lateral accelera­
tions as ADS-33D requires. The EP also commented on the difficulty in commanding roll 
angles with the side-stick inceptor. This is “almost” certainly the case as the bank attitude 
seems to be constant at —16° between 3.90 and 4.68 sec. The “almost” is justified on the 
grounds that the EP’s attention could also have been diverted to compensate for the pitch 
and heading attitude excursions which occurred around 3.90 sec. From the PSD plot of
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Figure 4.6 Power spectral estimates of input signals during side-step task

the of the pilot inputs (Figure 4.6) it can be observed that the activity in the longitudinal 
channel consists of one guidance region of large magnitude and two smaller peaks related 
to stabilisation frequencies. The pilot effort in the stabilisation frequencies was necessary 
to compensate for the strong pitch transients during the deceleration phase as reported by 
the test pilots. However, in the EP’s comments this longitudinal activity was of secondary 

importance as the heading excursions approached the limits of the desired performance. 
In any case, the HQR rating returned (HQR=5), was definitely representative of the pilot 

workload, since the EP’s effort in the stabilisation frequencies was considerable.
Quick-hop: Similar arguments to those employed on the side-step manoeuvre can be 

used to explain the yaw activity reported by the EP during the deceleration phase of the 
quick-hop manoeuvre. Figure 4.7 shows the time histories of the pitch, bank and heading 
attitudes during a quick-hop task. The helicopter, initially, achieved —19.6° of pitch attitude 

and a demand of 23.9° was required to decelerate the aircraft. Desired performance (in 
terms of cross-couplings) was achieved in all axes, but the controller was slow and the pitch

Lateral cyclic :
Pedal":.............:......
Longitudinal cyclic

Cut-off frequency
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Figure 4.7 Time histories of the pitch, bank, and heading angles during a quick-hop task

rate generated was not adequate to meet the attitude quickness (-£§) requirements. Figure 
4.8 shows the PSD plot of the input activity during the quick-hop task. It can be seen that 

frequent stick inputs in the lateral loop were of significant magnitude in the stabilisation 
frequencies and this was clearly reflected in the pilot’s comments.

Pirouette: As with the other manoeuvres, demanding the required yaw rate with zero 
spring pedal stiffness imposed a high workload on the pilot. This workload was further 
increased by two factors: a) The aircraft was yawing into and out of the wind direction 
and the horizontal stabiliser was generating large pitching moments causing the aircraft to 
shift in the fore and aft directions, b) The combination of a force sensing side-stick with 
the particular ifoo ACAH controller was unfamiliar to the EP. The controller had been 

designed for robust stability and not for performance and therefore, the control response 
of the aircraft was slow. Thus, the predictability of the commanded rates was poor, which 
did increase the overall workload.

Precision hover: Although the plan variation of the rotorcraft was not measured, due to 
the absence of GPS information, the data recorded confirm the pilot observations about the 
roll and heading variations. Figure 4.9 shows the bank and heading attitudes and indicated 
altitude (IA). Indeed, for most of the manoeuvre the bank and heading angles oscillated 
±2°, while IA varied only ±1 f t .  This motivates further the need for a heading hold loop 
as well as a tighter attitude hold as encountered in forward flight.
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Figure 4.8 Power spectral estimates of input signals during a quick-hop task

Turn-to-target: In all the previous manoeuvres, the secondary task of heading control 
had been found to dominate pilot workload. However, for the turn-to-target manoeuvre 
where heading control was the primary task, the pilot commented very favourably on the 
outstanding ability to rapidly and precisely stabilise on a given heading. Figure 4.10 shows 
the pitch, roll and heading angles during a 180° turn-to-target manoeuvre. From Figure 
4.10 it can be seen that the 180° turn was completed within 5.2 sec and the heading was 
stabilised within 2.5° from the chosen ground reference. The coupling into longitudinal and 
lateral loops was not of significant magnitude as in the previous tasks. This observation 
can also be confirmed from the PSD plot of the inceptor signals (Figure 4.11), where minor 
cross activity was required to maintain the plan position of the helicopter. Note that the 
small pilot effort in the stabilisation frequencies indicates that the yaw rate wash-out was 
highly predictable and well-damped. Therefore, given full attention, the pilot was able to 
compensate for the lack of force-feel on the pedals and desired performance was relatively 
easy to achieve.

Frequency sweep testing was conducted to establish the achievable bandwidths and 

phase delays for comparison with the desk-top simulations. At least two frequency sweeps 

were flown in each axis to ensure that good records were available for identification pur­

poses. Figures 4.12, 4.14 and 4.16 show the frequency sweep inputs recorded from lateral, 

longitudinal and yaw inceptors, respectively. The data were pre-processed and Fast Fourier 
Transform spectral analysis was applied to the resulting input /output histories to identify



4-4 Quantitative analysis of the flight test data 73

d
-2

3  -1 0  

■a —is§
b0
-S - 2 0

Q>
M -2 5

11

10

9

8 15.62 23.43 31.24 39.05 46.86 54.67 62.48 70.290 7.81
time (sec)

Figure 4.9 Time histories of the bank angle, heading angle and indicated altitude during a precision 

hover manoeuvre.

the closed loop frequency response magnitudes and phases. Figures 4.13, 4.15 and 4.17 
show the estimated closed loop frequency Bode plots alongside their respective coherence 
function plots for these sweep inputs. Note that for the estimation of the pitch and yaw 
closed loop frequency responses the rate measurements were used (shifted by the inverse 
of the Laplace operator). This is because the rate sensors can provide less noisy signals 
(when compared with attitude measurements) as well as because heading crossed the 180° 
discontinuity during the frequency sweep. The coherence functions indicate that the 
identified linear responses are valid up to 5 rad/sec for roll, 7 rad/sec for pitch and 3.5 
rad)sec for yaw. The reduced coherence values on Figures 4.13, 4.15 and 4.17 are primarily 
due to

i) the non-linear relationship between input and output, and

ii) the off-axis inputs required to trim the helicopter at the current flight condition.

Both these are of primary concern when evaluating control laws in-flight as argument i) 
relates to the level of compensation of the helicopter non-linearities in the primary axis 
and argument ii) is a measure of the de-coupling performance of the controller. From the 

definition of the coherence function 72uy{t) p~~pyy we can see that if the off-axis control 

is uncorrelated with the on-axis inputs there will be a resulting drop in the coherence 
values. On the other hand, if the off-axis control correlates to the input-output signals 

of interest, then the resulting coherence will not necessarily reflect the true errors in the 

transfer function estimates. Therefore, the inherent coupling between the four axes of the
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noeuvre.

helicopter has to be minimised by the pilot (or the flight control system in a closed loop 
setting) for meaningful frequency domain analysis to be carried out.

Based on the phase definition of the bandwidth4 the calculated closed loop bandwidths 

for the controlled axes are shown in table 4.2 alongside the predicted values from desk-top 
simulations of the previous chapter. These discrepancies again highlight the significant

Pitch Roll Yaw
(rad/sec) (rad/sec) (rad/sec)

Predicted 1.83 3.11 3.18
Achieved 1.50 1.90 1.51

Table 4.2 Predicted and achieved bandwidths

level of uncertainty in the design model and suggest that the controller needed more lead 
compensation for better phase response. The required lead compensation can be provided 
by using a mixed rates approach as shown in [8] where a predictor-type rate feedback is 

employed to avoid the inherent delay in the aircraft response.

4For flight control systems, a phase margin of at least 45° is required to ensure that the controller can 
tolerate the outer biodynamical loop of the human operator.
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Figure 4.11 Power spectral estimates of input signals during a turn-to-target task

4.5 Force-feel system  “transparency”

An important factor during the first flight test is the integration of the pilot inceptors with 
the flight control system. Extensive studies ([11]) have shown that sticks with even limited 
motion are superior to rigid force-sensing sticks in the real flight environment. The main 
reason is that pilots have a direct feel via the stick deflection of what is being demanded. The 
pilot should not be conscious about the stick even during a first flight - and in these flight 
trials the EP did express difficulty in applying a desired force (i.e issuing the appropriate 
attitude demand). The F-16 late modifications also support this point of view5. In addition, 

human operators are rarely able to make precise demands along strictly Cartesian axes i.e 
fore-aft and left-and-right. Conventional sticks employing motion produce less inter-axis 
cross-talk than those with no displacements. Unfortunately the angles between the axes 
of the stick arm were not measured to check whether they were rotated to the left to 
align them with the right forearm. Therefore, it is hard to say with confidence if some of 
the cross-axis activity recorded in flight is due to undesired off-axis inputs6. On the other

5The early versions of the F-16 used a force-sensing stick from the A-7 Corsair aircraft, but it was 
later replaced by a stick with small amount of movement which greatly improved the perceived aircraft 
characteristics.

6An extreme example of off-axis inputs was the Grippen disaster during its first flight. The Grippen stick 
axes were rotated 18° to the left to align the grip with the arm and reduce wrist fatigue. During the flight 
tests, to avoid a severe divergent PIO, at low altitude, the pilot reverted to an instinctive fore and aft arm 
action, applying simultaneous full nose up and roll demands which resulted in the left wing tip striking the 
ground.
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hand, experiments on the NRC Bell 205 helicopter with force-sensing side-sticks have shown 
exactly the opposite - handling qualities Level 1 performance is achievable with a force- 
sensing side-stick. There is an evident contradiction here between the pilot’s comments and 
previous experience with force-sensing side-sticks which may be attributed to the following: 
without undermining the importance of both views it is believed that the problem stems 
from the combination of the force-feel system with the Hqo flight control system. The 
ACAH controller was designed for low bandwidth, which made the predictability of the 
rate of attitude changes hard. This problem was further exaggerated by the unfamiliarity 
of the EP with the force-sensing stick and the lack of the pedal spring stiffness. Therefore, 
it can be concluded that these unharmonised force-feel characteristics masked some of the 
performance potential of the Hqo controller.

Towards the end of the July 1997 Hqq flight test campaign, several modifications to the 
controller were proposed to enhance the observed performance. Better integration of the 
force-feel system with the controller seems to be an obvious improvement. Ideally, a centre 
stick would be needed to correlate the findings with the ground-based simulations. We will 
describe briefly this experiment in the next chapter in section 5.5.4. A heading hold function 
also needs to be designed and implemented either within the i?oo controller or as an outer 
loop which is engaged when yaw rate demands fall below a given threshhold representing 
the pedal centring area. In addition, it would be possible to further alleviate the pilot 
workload, due to the high torque activity, if some form of heave augmentation is used to 

enable carefree handling. However, the first priority for the control law enhancement is to 
remove the limiting quasi static assumptions of chapter 3 (section 3.2.2), by including rotor 
state infomation to the mathematical description of the design model. This is because the 
rate sensors essentially provide a feedback signal, which contains high order rotor modes 
such as flapping motion. The inherent lag in this feedback signal, combined with uncertain 
structural modes, not only limits the achievable performance of the helicopter, but it can 
also result into a divergent closed loop response of the system. Thus, alongside the modelling 
of the high order modes, provisions to use a predictor-type rate feedback were also thought 
to be important to avoid possible excitation of uncertain structural modes by the control 
system. By predictor-type rate feedback we mean a feedback signal reconstructed from the 

low frequency component of the actual sensor output and the high frequency section of a 
lag-free model of the helicopter. We will see the details of such a reconstruction in section 
5.3.1.



Helicopter handling qualities improvement using rotor dynamics and 
H qq optimisation. D esign analysis and flight test results

5.1 Introduction

The justification for using the six-degrees-of-freedom linear time invariant (LTI) model 
described in section 3.2, was largely based on the quasi-steadiness assumptions of the rotor 

dynamics. That is, the dynamic characteristics of the tip-path-plane have the same angular 
velocity as the rotor shaft; cyclic inputs are instantaneously converted to tip-path-plane 

angles. Of course, the Pade approximations accounted for the time delay between the 
aircraft responses and the cyclic input, but this doesn’t imply that the transient behaviour 
of these responses was predicted adequately. Recalling the flapping equation (3.5), note 
that the tip-path-plane motion is governed by a second order differential equation, which 
includes not only inertial dynamics, but also aerodynamic damping. These effects give rise 
to rotor motions with natural frequencies close to the aircraft control system bandwidth. 
Thus, including the high order rotor dynamics to the controller design and analysis can 
have a significant impact on the achievable aircraft responses.

Similar arguments can be found in early research efforts by Ellis [24] and Heimbold 
[35]. Both authors suggested that any analysis of high gain feedback should include the 
dynamics of the rotor as the aircraft without them gives a deceptive impression of high 

stability. More recently, Takahashi in [67] used a mixed sensitivity formulation to the i/oo 
optimisation problem to compare flight control laws designed with and without rotor state 
feedback. It was observed that the controller designed without rotor state feedback not 
only was more sensitive to gain variations as opposed to the controller synthesised with 
state feedback, but it also had the potential to pass approximately twice as much noise to 
the actuators near the one-per-rev frequency.

In this chapter, we will go a little further by presenting flight experiments substantiating 

the above claims. Of course, the main objective of the chapter is to improve the achieved 
handling qualities of section 4.3.2. However, instead of using mixed sensitivity formulation 
for the controller synthesis, we will rely on the appealing form of the two DOF H00 loop
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shaping compensator and on model improvements from the inclusion of rotor dynamics to 

the design model.
As a first approximation of the higher order dynamics consider the equivalent centre 

spring model of a helicopter rotor. In terms of this centre spring model the flap frequency 

ratio Ap can be written as

Â  =  1 + ^ 2  (5 1 )

where Kp, Ip, and U are the rotor stiffness, flapping inertia, and rotorspeed respectively. 
For the teetering rotor of the Bell 205 (see Figure 3.1) the two blades are connected to the 
rotor shaft via a single flap hinge. There is no transfer of moments to the hub and the spring 
stiffness of the equivalent centre spring model can be assumed to be zero. Therefore, the 
flapping frequency ratio Ap can be set to unity. This implies that the flapping frequency A 
equals the rotorspeed, which for the Bell 205 helicopter is 33 rad/sec. In practice, however, 

this value is much lower due to the coupling of the rotor dynamics with the fuselage motion. 
Using the method of Chen in [15] it can be shown that the resulting regressing and advancing 
flapping modes have undamped natural frequencies of 13.5 and 64 rad/sec, respectively. 
Of these modes, the regressing flap is most important since its frequency is low enough 
to restrict the achievable aircraft bandwidths. This value appears to be much higher than 
the bandwidths of the Bell 205 helicopter, however, from the sensitivity plot in Figure 
3.22, (chapter 3), we can see that to achieve bandwidths between 1—2 rad/sec in-flight the 
complementary sensitivity had to be rolled-off just before 11 rad/sec. Thus, it is of primary 

importance that the linear models predict “reasonably well” these low frequency flapping 
dynamics and as we shall see later in the chapter this is crucial in achieving improved 

handling characteristics of the aircraft.

5.2 A  High order m odel for the NRC Bell 205 helicopter

The aims of this section are two-fold: to show the main modelling assumptions incorporated 
in the high order model and to compare the resulting linear model with open loop flight 
test data. Identifying those attributes that have a direct impact on control law design, it is 
possible not only to design a successful control law, but also to give a qualitative description 
of the handling quality assessment results presented later in this chapter.

The nonlinear model has its origins in a generic helicopter simulation model called 
HELISIM. The HELISIM code is an implementation of the dynamic equations of motion 

for a single rotor helicopter developed in [52]. The overall aircraft equations are formulated 

using a Newtonian approach with respect to the body axes and integrated numerically. In 
the next two sections we shall give a brief description of the Bell 205 HELISIM-based model 
in terms of rotor and body components.
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5.2.1 Rotor

The main rotor has been modelled using an equivalent centre spring model with zero stiffness 
with respect to the shaft axis system. The rotor assumes only flapping and coning modes 
whilst lag dynamics, air compressibility, blade stall, tip losses and unsteady aerodynamics 
are neglected. The lag motion in zero stiffness rotors is very small and therefore neglecting 
it appears to be justified. Stall and compressibility effects can be ignored because the 
operational flight envelope of the Bell 205 helicopter is limited up to 90 knots. If tip losses 
and unsteady aerodynamics are modelled the resulting equations become very complex with 
little gain in terms of performance and response predictions. Root and tip lift losses account 
for only a small per cent of total power, and unsteady aerodynamics require extensive wind 
tunnel testing and empirical adjustment to predict accurately airfoil-induced moments (see 
for example Goman in [23, ch8]). In addition, these approximations allow relatively simple 
closed form solutions of the acting forces and moments to be obtained.

Using the above simplifications the lift (q) and drag (c^) coefficients can be written as

ci =  aoa (5.2)

c<i =  Q o + Cdia2 (5.3)

That is, ci is just a linear function of the local blade incidence a  and q* is given in terms 
of a mean value q/o and a term to account for the changes in a.

The dynamics describing the flapping response of the rotor have already been introduced 
in chapter 3 (see section 3.2, equation (3.5)). FVom this second order differential equation, 
it is not difficult to see that obtaining flapping solutions of the form

/? =  /?o +  Piong cosWO +  sin(i/>) (5.4)

requires that p, q and ^  behave in a quasi static manner. In other words, to use the 
mathematically appealing form of equation (5.4), we need to assume that flapping dynamics 
have a negligible effect on the stability and control of the helicopter. At first glance, this 
seems to be a “contradiction”, since one of the motivations for introducing flap motion 
to the model is to remove the limiting quasi static assumptions in the system description. 
However, these assumptions are valid only for small flapping angles achieving a new steady 
state one-per-rev following each incremental change in control activity and fuselage angular 
motion. Mathematically, this means that for a small integration step, equation (5.4) gives 
accurate solutions to the flapping equation (3.5). For the Bell 205 helicopter the 33 rad/sec

rotor speed corresponds to 0.19 sec for one blade revolution. Thus, if the fuselage response

is less that 0.19 sec the above assumptions are justified. This can be easily seen from the 
comparisons of the flight test data and the NASA quasi static model of chapter 3. The 

fuselage responses to pilot doublet inputs were approximately 0.15 sec delayed for both pitch 
and roll loops (see Figures 3.4 and 3.6). The final form of the three dominant rotor modes
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(coning, longitudinal and lateral flapping) has been expressed in multi-blade coordinates 
and it can be found in [52, appendixD]. Note that engineering experience suggests that 
the coning angle can be neglected for a teetering rotor; the blades are rigidly coupled and 
coning motion is very small. However, setting (3q to zero does not give any significant gain 
in terms of mathematical simplification of the model and thus coning has been left in the 
description of the system.

Similar to the main rotor, the tail rotor is also of a teetering type, consisting of two 
blades attached to their shaft via a single flap hinge. The aerodynamics of the tail rotor 
blades are governed by the same assumptions as described earlier, however, blade flapping is 

almost negligible for the tail rotor and therefore has been left out of the model. In addition, 
a tail/fin blockage and tail rotor cut-out scale factor have been introduced to account for 
the effects of the vertical fin on the rotor-exerted side-force.

5.2.2 Fuselage, ta ilp lane and fin

The equations of fuselage, tailplane and fin force and moment contributions have already 
been introduced in chapter 2 (see equations (2.39), (2.40)). From these expressions it can 
be seen that for a given rotorspeed (assuming constant air density), the lift coefficients 
c(ot, /3) determine the aircraft behaviour. From the existing data, the forces and moments 
have been represented by first order functions of a  and /3 and implemented in a look up 
table form.

The overall eight degrees-of-freedom helicopter mathematical description in the body 
axis system can be written in the standard form:

u = -(w q  -  vr) +  £  -  g sin((9)M
Yv = —{ur — wp) +  — g cos(0) sin(0)

w = -  (vp -  uq) +  jj  -  g cos (0) sin(0)

IxxP  =  (Iyy -  I z z )q r  +  Ix z (r +  pq)  +  L

lyyQ ~  (Izz  Ixx)rP  +  Ixz{r  ̂ ~ P ^ )  +  M

IzzY — [Ixx ~  Iyy)PQ  " I "  IxzijP — qr) N

(5.5)

(5.6)

4> =  P  + q$in(<f>)tan(0) +  r  cos(</>) tan(0)
0 =  qcos(<J>) — r  sin(0) ► (5.7)

= flsm W s^jy  +  r c o s ^ j ^ y

where X , Y , Z, L, M, N  are the force and moment contributions from all the body 

components (fuselage, tailplane, fin). Note that in the Euler equations (5.7) the cross 
couplings are fully modelled, unlike in the NASA six degrees of freedom representation of 
(3.1).
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5.3 Comparisons w ith  flight test data

The 19 nonlinear equations of the Bell 205 (9 body, 4 actuators and 6 flapping states) 
were trimmed and linearised at 60 knots flight condition for comparisons with flight test 
data. As in section 3.3, time and frequency domain analysis was used to give a qualitative 
description of the differences between the aircraft response and the open loop linearisations. 
The actuator signals used to drive the high order models are the same with those used in 
chapter 3 and they are shown in Figures 3.3, 3.5 and 3.7 for the lateral, longitudinal and 
pedal inputs respectively. Figures 5.1, 5.2 and 5.3 show the primary and the off axis 
responses to a lateral doublet input in time domain. From these Figures it can be seen
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that the high order model predicts the aircraft response reasonably well. In particular, 

the inclusion of the actuator and flapping states has resulted in a response with virtually
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no lag characteristics and better predictions of the achievable roll rate, as opposed to the 
NASA model response shown in Figure 3.4. Good agreement between flight data and high 
order model responses can also be observed in the roll-to-yaw cross coupling prediction. 
Figure 5.3 illustrates the yaw rate response to the doublet input in lateral axis. The 
initial response of the model follows very well the aircraft response for at least 1 sec. The 
discrepancies between 2.34 and 3.90 sec are possibly due to absence of the rotor wake in 
the model description. In spite of these deficiencies, the anticipated cross coupling appears 

to be substantially improved from the NASA model predictions in Figure 3.10. However, 
the roll-to-pitch coupling does not seem to be in very good agreement as shown in Figure 

5.2. When compared to the responses of Figure 3.9 one can see that even before the 
doublet input, around 1.56 sec, there is a significant residual in pitch rate in the nonlinear 
model predictions. We will see similar pitch rate discrepancies later in the pitch-to-yaw 
and yaw-to-pitch response predictions, which lead us to the speculation that the actuator 
trim position of the longitudinal actuator (as calculated from the trimming procedure) is 
not very close to the actual aircraft trims during these manoeuvres. As for the magnitude 
of the discrepancies between the flight data and the linearisations, in both quasi static and 
high order models, the over-sensitivity of the model can be partly explained due to the 
rotor wake effects on the tailplane. However, despite these discrepancies, the high order 

model has captured the correct sign of the aircraft pitch rate response.

B E L L  205 B E L L  205H O M H O M
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Figure 5.6 Comparison between flight test data 
and high order model yaw rate responses to a 
doublet input in the longitudinal axis

Figures 5.4, 5.5 and 5.6 show the on-axis and off-axis responses to a doublet input in 

longitudinal loop. Despite the high order model transient response before the input was 

applied (around 2.34 sec), the pitch rate response follows very closely the aircraft behaviour 
and seems to be significantly improved, when compared with its quasi-static counterpart 
in Figure 3.6. The inherent aircraft lag is accurately captured and the peak rate generated 

after the initial input has minor differences with the actual aircraft response. However, in



Pi
tch

 
rat

e 
(|

ff
) 

Ya
w 

rat
e 

(|f
f)

/

5.3 Comparisons with flight test data 86

both off-axis responses significant discrepancies can be observed. Firstly, in Figure 5.5 the 

high order model seems to be less responsive than the quasi static linearisation in Figure
3.11. As a result, it cannot follow closely the aircraft movement below 3.12 sec. Secondly, 
the pitch-to-yaw coupling shown in Figure 5.6 seems to be less predictable considering that 
at 60 knots flight condition with a 4 deg/sec pitch rate, the response in yaw loop should not 
be very large. Similar rate unpredictability in pitch loop during yaw doublet input can be 
seen in Figure 5.9. These differences were somewhat unexpected, since all primary responses 
including some off-axis couplings are very well predicted. As an example, Figures 5.7 and 
5.8 illustrate the yaw and roll rates generated during a directional doublet input. Thus, it 
is evident that the high order model responses represent very well the aircraft dynamics in 
the primary loops, however, the cross couplings to pitch rate are poorly modelled.
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l b  complete the analysis we present the relative comparisons of the high order model and 
aircraft responses in the frequency domain. Similar to chapter 3 (section 3.3) longitudinal, 
lateral and pedal sweeps were performed and the results are shown in Figures 5.10, 5.11 and
5.12, respectively. For all the primary loops both the gain and phase plots show significant 
improvement, when compared to the early quasi static representations in Figures 3.16, 3.15 
and 3.17.
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Figure 5.12 Comparison between open loop 
flight test data (solid) and nonlinear model re­
sponses (dashed) to a frequency sweep input in 
directional axis

To summarise, the high order nonlinear model predicts the actual aircraft responses 
better than the quasi static representation used to design the control laws in chapter 3. 
There is an improvement in each of the primary loops, however, some off-axis responses 
(especially those involving significant pitch motion) still remain in error. Due to the highly 

nonlinear plant behaviour, it is generally very difficult to justify with certainty how these 
predictions can be improved. For example in [17] and [44], the lateral distribution of induced 
velocity produced by the main rotor was identified as a primary source of strong pitch-yaw 
cross coupling. Thus, it is likely that the identified deficiencies of the model are due to other 
interactional aerodynamic phenomena not captured by the current linearisations. Despite 
that, we will see that the synthesised controller in section 5.4.3 improves the perceived 
performance of the helicopter and thus achieves good ratings by the test pilots.

5.3.1 Feedback Signals

The feedback signals include pitch and roll attitudes (0, 0) and rates (q, p). In the heading 

loop, yaw rate (r) was used as a primary feedback variable and heading angle (0) along 

with indicated airspeed (Ui) were also fed back to enable a heading hold function.
In chapter 4, we motivated the use of a predictor-type rate signal for pitch and roll loops. 

The rationale behind this feedback is that the structural noise from the high frequency
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angular variables can be “filtered-out” using a complementary filter with a cut-off frequency 
(cuc) at 11 rad/sec (just before the aircraft mast-rocking mode). For example, if q is the 
measured pitch rate signal and qm the output of a longitudinal transfer function model of 
the helicopter, the overall feedback signal g/ can be written as

q f  =  q  +  q m — —  ( 5 . 8 )
8 Uf 8 +  Uf

where qm is given by
=  (5.9)

s +  Mg

Here, Siong represents the longitudinal actuator input and Mq, Lslong are the primary roll 
damping and control derivatives respectively1. On the on-board computer of the Bell 
205 both derivatives are implemented via a second order function of indicated airspeed. 
Note that the use of primed2 instead of their unprimed counterparts makes no difference 
in the real time implementation of the feedback signal g/. This is because the lateral- 
directional expressions in 5.6 are independent of the form in which the derivatives appear 

in the linearised equations of motion.
Experience in using the mixed-rate feedback was originally reported in [8], where a 

Linear Quadratic Regulator (LQR) was designed for the Bell 205 aircraft. The LQR control 
law was found to be unstable in flight without the use of a predictor-type signal. A similar 
experiment was carried out with an controller, which was designed using a quasi-static 
linearisation of the Bell 205 helicopter. The bandwidths of the #00 controller were slightly 
higher than the predicted bandwidths shown in Table 4.2, in chapter 4. When tested in 
flight, the controller was found to be unstable in pitch direction. However, when mixed rate 
signals were used for feedback the controller was stable, although not worth evaluating. This 
suggests that the mixed rate feedback did filter-out some of the undesirable noise picked 
up by the sensors, and therefore, it is a useful tool when designing compensators using 
quasi-static linearisations.

5.4 Controller design

Before proceeding with the description of the control law tested on the Bell 205 aircraft in 
August 1998, it is necessary to substantiate a number of observations made in chapters 2 
and 3. These observations referred to the benefits of using a single or a two DOF Ha0 loop 
shaping procedure to satisfy the ADS-33 Handling Qualities requirements [3]. We know 
for example, that within the one DOF methodology, it is possible to use a W2 weighting 
function to explicitly impose disturbance rejection requirements on the controller input. On

xThe term “damping” refers to the aerodynamic properties of the airframe for different values of Mq and 
not to the damping factor within a pure control context.

2Primed derivatives eliminate the appearence of the inertia terms in the equations of motion. For details 
see [34],
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the other hand, using a two DOF procedure enables the designer to achieve better output 
decoupling - at least in the ground-based simulations. Thus, the objective of this section is 
to provide evidence, from the experimental point of view, as to which formulation is best 
applicable to the helicopter stabilisation problem. To make valid comparisons though, the 
different compensators should be designed to achieve the same bandwidth specifications 
and, of course, flight tested under the same conditions.

The model for the two designs was a 19th order hover linearisation equivalent to the 
60-knot model described earlier. Admittedly, using a high order design model leads to 
compensators of large dimensions, which can be difficult to implement within the time 
frame requirements of the flight control computer. Thus, a smaller dimension system was 
obtained by residualising heading (</>), the collective actuator (5cou) and the two coning 

states (A), A>). Each of the above residualisations is justified on different grounds, however, 
care must be taken so the original model dynamics are not altered significantly in the 
frequency range of interest. For example, the collective actuator was omitted since the 
heave loop was to be unaugmented. Also, heading is independent from the short period 
stabilisation problem and alongside the small coning angles for the teetering rotor (see 
section 5.2.1) it does not have any significant effect on the model dynamics.

Figure 5.13 shows the model frequency responses of the 19-state high order linearisation 
(solid line) and the 15-state residualised model (dashed line). The frequency responses of 
the two models coincide over the plotted frequency range. Further reduction of the model 
can be achieved by truncating the longitudinal and lateral flapping derivatives Aon^ and 
A at’ The resulting 13-state realisation is also shown in Figure 5.13 (* line)3

5.4.1 M ode descrip tion

Eigenvalue decomposition of the final 15-state linearisation shows that it is considerably 
more difficult to identify the dynamic modes of the aircraft motion as opposed to the quasi­
static realisation of chapter 3. From table 5.1 it is straightforward to identify the two 
flapping and the actuator modes because of their high frequency and their time constants 
respectively. However, the effects of the main rotor on the fuselage modes give rise to 

subsidences, which are difficult to characterise in terms of classical aircraft motions. For 
example, mode 7 represents a well damped flap-roll motion which is considerably faster 
(due to the lower fuselage inertia in roll) than the flap-pitch motion shown as mode 3.

Examination of the final 3-input 5-output system revealed that there are also three 

left-half-plane (LHP) zeros at —0.38, —0.0010 and —2 • 10-5 . Although not constraining 

the achievable performance of the closed loop system, the magnitude of these LHP zeros

sBalanced truncation of the plant normalised coprime factors is more effective in truncating a high order 
model. However, the resulting state space system is an equivalent realisation of the original model and it is 
not possible to relate the states of the reduced model to the physical system. For details see [33].
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Figure 5.13 Frequency responses of the high order model (solid), 15th order residualised (dashed) 
model and 13th order model (*).

can impose severe limitations during the controller implementation. This will be analysed 
in detail in section 5.7.

5.4.2 One degree-of-freedom synthesis

To achieve closed loop bandwidths between 2 — 3 rad/sec the pre-compensator W\ was 
chosen to give a slope of 20 dB/decade to the magnitude of the loop transfer function 
W2 (jw )G (ju)W i (ju)) with a zero at —2 around the cross-over region i.e.

s ~|-2 
s 0 0

W M  = 0 s+ 2 
s 0

0 0 s+2
s

The position of the zero here is justified using inspection of the closed loop damping and 
steady state errors of the output responses. An alignment matrix at 2.5 rad/sec was also 
used to give the desired cross over of the open loop frequency responses. Note that the 
alignment frequency is located well within the targeted closed loop bandwidths, as opposed 
to the higher cross over used in the design of chapter 3. Design experience shows that 
this is good practice when rotor state information is included in the design model. This 

is probably because the additional rotor states enable good models to be obtained at high 
frequencies. This implies that the discrepancies between the predicted and achieved closed 
loop bandwidths should be reasonably small since the ball of uncertainty the controller has 
to compensate for is smaller.

The post-compensator W 2 was defined as first order filter to accommodate the low pass 
section of the feedback signal described in equation (5.8). The cut-off frequency u)j was set
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Mode Real Imaginary Frequency Damping

1 -0.354 0 0.354 1 Heave subsidence
2 0.132 -0.347 0.372 -0.35 Phygoid

0.132 0.347 0.372 -0.35
3 -0.413 0 0.413 1 Flap/Pitch
4 -0.091 -0.499 0.507 0.18 Dutch Roll

-0.091 0.499 0.507 0.18
5 -1.033 0 1.033 1 Roll subsidence
6 -4.433 -2.295 4.992 0.88 Regressing flap

-4.433 2.295 4.992 0.88

7 -5.560 0 5.560 1 Flap/roll
8 -12.579 0 12.579 1 Longitudinal
9 -12.579 0 12.579 1 Lateral
10 -25.000 0 25.000 1 Pedal
11 -7.564 -66.794 67.221 0.11 Advancing flap

-7.564 66.794 67.221 0.11

Table 5.1 High order model Bell 205 modes

at 11.5 rad/sec, just below the frequency of the mast rocking mode of the aircraft. The 
final W2  post-compensator had the form

1 0 0 0 0

0 1 0 0 0

0 0 <Vf
s+iiif 0 0

0 0 0 U)f
S+UJf 0

0 0 0 0 U)f 
8+Uf .

The singular value gains of the final shaped plant WzGWyKa are shown in Figure 5.14. 

The solution of the robust stabilisation problem gave a 21-state controller which achieved 
a minimum cost 7  of 2.5. Table 5.2 shows the predicted bandwidths and phase delays 
calculated according to the ADS-33 requirements [3].

Pitch Roll Yaw
Bandwidth 

Phase Delay
2.36
0.20

2.56
0.20

2.22

0.07

Table 5.2 Bandwidths and Phase delays of the single DOF compensator

5.4'2-1 Nonlinear simulations 

Typical step inputs in all controlled axes were simulated to check the operation of the 

control law. Figures 5.15 - 5.17 show the output responses to input demands on collective
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Figure 5.14 Weighted frequency response of the Bell 205 helicopter

actuator. From these Figures it can be seen that the coupling between the controlled 
variables 6, <f> and heave loop is negligible. In particular, heading changes do not exceed 5° 
although much better decoupling could be achieved if the heave loop was also augmented. 
Similarly, Figures 5.18 - 5.20 show the nonlinear time domain output responses to step 
inputs of ±20° in pitch loop. Again the off axis couplings into pitch are minimal. For 
example, in Figure 5.18 roll attitude excursions reach 2° at 9 sec into the manoeuvre. This 
is indeed very small interaction considering that at that moment the helicopter is already 
flying with an airspeed above 20 m/sec. In all the other cases, decoupling is also very good. 
Step inputs in roll attitude and yaw rate (Figures 5.21 - 5.23 and 5.24 - 5.26 respectively) 
show the primary variables being tracked satisfactorily and the attitudes being captured 
without significant overshoots or steady state errors.

9998
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5.4.3 Two degrees-of-freedom synthesis

Having analysed the performance of the one degree-of-freedom compensator it was decided 
to lower the pre-compensator integral gains and to eliminate the W2  weighting function 
from the controller synthesis. The final pre-compensator had the form

s+0.25
s 0 0

w ^ s )  = 0 s+0.25
s 0 (5.12)

0 0 3+0.5
3

A second order reference model was defined to enable model following controller synthe­
sis to be performed. As in the previous chapter the ideal model consisted of second order 
transfer functions the parameters of which are shown in Table 5.3 below

Roll Pitch Yaw

Damping (£) 0.9 0.9 0.7

Natural frequency (o;n) 4.0 1.2 9

Agility ( £ & ) 1.57 0.47 3.94

Table 5.3 Command model specifications - Design models include rotor state information

Note that the specifications above are slightly different than the ones shown in chapter 
4 (table 4.1). This is because the inner loop was modified, and thus the reference model 
had also to be altered to trade off achievable output response characteristics. The trade-off 
was performed according to the standard H00 two DOF methodology. If, for example, the 
stability margin 7  was sufficiently small (large) and the speed of the output response had to 

be made faster (slower), the ideal model parameters were used alongside the model matching 
parameter p to achieve this objective. For this design example p = 1.9 for all the primary 

loops and the natural frequency parameters were used to tune the H00 controller. The 
resulting suboptimal stability margin was 7  =  3.9 and the sensitivity and complementary 
sensitivity functions are shown in Figures 5.27 and 5.28 respectively. Table 5.4 shows the 
predicted bandwidths and phase delays calculated according to the ADS-33 requirements.

Pitch Roll Yaw
Bandwidth 

Phase Delay
1.59
0.24

3.16
0.20

3.49
0.08

Table 5.4 Predicted bandwidths and phase delays of the two DOF compensator

5.4-3.1 Nonlinear simulations

As in the previous section, step inputs in all controlled axes were simulated to ensure that 
the controller provides adequate decoupling between the three primary axes of the Bell 205 
helicopter. Figures 5.29 - 5.31 show the output responses to input demands of ±2° to the
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jjjj?jI!gSni§|j!j!»ilWfTgg'gpî j?jjgjj|!li§fSBl!iS§lij!§§jl£5SSliSlflSIIISI|l*ls

"!!!!ll̂ !!SJ3!!M!!S!!!!!3a!3S!!!!!?!!!!3S!SE!!!!S!!!!SE!E!S!!!!!E!!!3!!!!!2!!‘ 

!!!!!!pf!!!!lHlii!!!!!l!!!!!i5i335!!'!!3!!i!S5iCT!!!!S!!!!Sg!!p!!M!E|'!3!{!!!3!!E

iff1 i(P i(f i(? i(?
Frequency ( ^ )

Figure 5.27 Two degree-of-freedom compen­
sator, output sensitivity function

O

101 

10° 

10-1 

1(T:

icH

ltr4

1(T5

j j!j! jj |j j3jfj^TT^ j5 5 | |B !j!{'g| Sj1 j| 5^ ||g j j jS jB5!^ 5 !jjig|jj|  j|t3j|!S?TTgj 5 5 |^ S

!HiiH|!tgtj|»;!!Rin»»m$!!!{{!!i!|»4im|!!gmn|̂ »U|!|tnVî lĤ l>i»!na|»33
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Figure 5.28 Two degree-of-freedom compen­
sator, complementary sensitivity function

collective actuator. The heading coupling is minimal not exceeding 2.2°. Figures 5.32 - 
5.34 show a simulated acceleration manoeuvre consisting of a pulse input of ±20° in pitch 
loop. Again the off axis couplings into pitch are minimal. Roll attitude excursions reach 
just 1.8° at 7 sec while the airspeed is more than 20 m/sec. Step inputs in roll attitude and 
yaw rate are shown in Figures 5.35 - 5.40. Note the attitude capture in both manoeuvres. 
The controller has minimised the inherent aircraft roll-to-yaw coupling, which implies that 
it should also minimise the pilot workload in the lateral-directional tasks.
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Figure 5.32 Two degrees-of-freedom compen­
sator, —20° pitch attitude demand
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5.4.4 Implementation and testing

Three controllers were implemented on the Bell 205 aircraft: the one and two DOF com­
pensators described earlier and a two DOF controller designed using the 13-state truncated 
model described in section 5.4. Provisions were made so that each of these controllers could 
be engaged from the aircraft console with or without the mixed rate feedback signals. For 
the one DOF controller though, only the high frequency part of equation (5.8) was fed back 
to the controller since the low frequency filter was incorporated in the weighting function 

W 2  (see equation (5.11)).
Earlier in section 4.2.1 the implemented two DOF H00 controller was integrated using 

Euler-type numerical techniques. However, the stability of a numerical integration using 

Euler-type methods does not depend only on the relationship between the sampling rate 
and the largest controller eigenvalue, but also on the ratio of the largest and the smallest 
controller eigenvalues. When this ratio is very large, Euler-type integration techniques are 
insufficient to guarantee the required accuracy of the integration algorithm. This will be 
discussed in detail in section 5.7. For the moment we merely point out that the feedback 
compensators were discretised and updated as a set of difference equations within the time 
frame of the overall flight control law. As before, the code was written in ANSI standard C 
and debugged using a pre-programmed linear model on the on-board computer of the Bell 
205 aircraft. The closed loop simulation ensured that the implemented compensator was 
functioning as intended and the aircraft was rolled out of the hangar for flight tests.

5.5 Flight test

The objective of the test plan was to evaluate the best of the three implemented compen­
sators according to the ADS-33 standard [3]. It should be noted here that to judge which 
of the three controllers was best for in-flight evaluation test pilots were asked to familiarise 
themselves with each flown configuration using a variety of small and moderate amplitude 

inputs in all axes, at different frequencies. Upon completion of this preliminary investiga­
tion a full evaluation of the best implemented controller was conducted by flying standard 

ADS test manoeuvres (see for example section 4.2.5).

5.5.1 Inceptor configuration

The Evaluation Pilot (EP) used a centre-stick 2 +  1 +  1 configuration; that is, a two- 

axis centre-stick was used to command pitch and roll attitudes, spring centred pedals to 
command yaw rate and a conventional collective lever. The three-inceptor configuration is 

shown in Figure 5.41.
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Figure 5.41 The three-inceptor configuration Figure 5.42 The central console

5.5.2 In s tru m en t configuration

The flight instruments were laid in the cockpit in a standard Bell 205 set-up. Figure 5.42 

shows the central console of the B205 experimental aircraft (see also chapter 4, section 

4.2.3).

5.5.3 P ilo t experience

The evaluation pilot was a qualified test pilot who had 1500 flying time on rotary wing 

aircraft. Previous experience on Bell 205s exceeded 500 hours flown approximately 5 years 

before the evaluation.

5.5.4 H andling qualities evaluation

The evaluation presented in this section is primarily based on qualitative pilot comments 

rather than quantitative analysis of the flight test data. This is because during the eval­
uation flight a system fault resulted in the data being unreadable from the Bell 205 data 

recorder facility.

Initial engagement of the controllers confirmed that all of them were working satis­

factorily with or without mixed feedback rates. This was consistent with the designer’s 

expectations since rotor state information was included in the design model.

Engagement of the one DOF controller quickly showed that there was significant inter­

axis coupling between roll and yaw loops tha t required extensive pilot workload to be com­

pensated for. The aircraft responses were not very predictable, which was a good indication 

that the control law did not have sufficient bandwidth to allow the pilot high frequency 

compensation. In addition, the safety pilot cyclic stick (see Figure 5.42) was slightly oscil­

latory in pitch direction at around 3 H z. This was evidence that the integral gains in the 

pitch loop may have been too high. However, there is another equally important argument 

explaining the pitch oscillations. Earlier in section 5.3 Figures 5.6 and 5.9 suggested that 

the pitch and yaw loop cross couplings are poorly predicted by the model. Thus, any a t­
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tempt to push the roll and yaw bandwidths reasonably high (in order to enable the pilot 

to “get in the loop”) can result in excessive gain being injected into the pitch channel. As 
pitch is the slowest loop, which is bandwidth-limited by the dynamics of the rotor system, 
the developed pitch oscillation was perceived as an early warning of the mast-rocking mode 
being excited. Based on this, one can argue that MIMO controllers, which compensate for 
all the model cross couplings (even the erratic ones), are limiting if the couplings are poorly 
modelled. However, in the author’s opinion the accurate modelling of a flying vehicle is 
(and should be) very much part of the controller design loop. The key point is to synthe­
sise feedback compensators by taking into account as many model inaccuracies as possible. 
Some examples can be found in [23, ch8,ch9]. For the moment we just point out that one 
route alleviating the erroneous cross compensation is to design a pitch controller separately 

from the lateral-directional loops.
Engagement of the two DOF controllers confirmed that both of them were very similar 

and minor differences could be identified by the test pilots. These differences were related 
to the activity of the safety pilot cyclic stick and the damping of the helicopter responses. 
In particular, the compensator designed using rigid body measurements alongside flapping 
angles and their derivatives, provided better damping and less actuator activity when com­
pared to the compensator designed without the flapping derivatives. Of course, on the basis 
of a single flight experiment one cannot draw conclusive statements about the use of rotor 
states and their derivatives for high bandwidth feedback systems - especially when basic 
cross couplings are not well predicted by the design model. However, the fact that both 

controllers were insensitive to mixed feedback rates (as opposed to the experience reported 
in [8] and in section 5.3.1), coupled with the test pilot’s comments about the difference 
between the two compensators, does suggest that the more rotor states are used in the 

controller design process, the more insensitive the controller is to gain variations, and thus, 
the bigger the potential for disturbance rejection and high bandwidth flight control laws.

From the preliminary flight tests on each of the three implemented control laws it was 
decided finally to proceed with a full evaluation of the two DOF compensator designed using 

rigid body measurements with flapping angles and their derivatives. The following section 
describes the findings from the in flight evaluation according to the ADS-33 standard.

5.5.5 Mission task elements - pilot observations

Similar to section 4.3.2, each Mission Task Element (MTE) was flown a couple of times 

before an evaluation was conducted. All MTEs were flown on the same day with a tem­

perature of 26° in a 5 — 10 knots cross wind. The aircraft was approximately 3330 kg with 
a slightly shifted centre of gravity in the aft direction. Below is a brief summary of pilot 
comment.
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General comments: The controller was borderline level 1, but still slightly unpredictable 
in roll axis. Heading appeared slighlty oscillatory during the arrest of the manoeuvre. The 
performance during the precision hover task was satisfactory, but all the controlled axes 
could be faster for high gain tasks.

Side-step: In general, the transient response was slow and some small amplitude high 
frequency oscillations were observed; despite that, the attitude capture was good. The 
aircraft required one to two additional pilot inputs to generate the desired roll rate. Because 
of this it was difficult to achieve the highest level of aggression. Some coupling into heading 
was observed (especially in the left side-step) which was not difficult to compensate for; 
HQR =  4.

Quick-hop: In the primary loop the acceleration was predictable but a little slow. As 
a result it seemed difficult to stop the aircraft at the desired position. During deceleration 
roll loop appeared to be a little oscillatory similarly to the side-step task although it was 
not a problem for the pilot to compensate for these oscillations. During acceleration some 
coupling into heading loop was detected, however, heading was kept within borderline 

performance at the expense of increased pilot workload. Because of this the resulting HQR 
was 4.

Precision Hover: For low gain tasks the performance was satisfactory. However, for high 
aggression inputs the aircraft seemed to respond slowly. Despite the fact that the pilot was 
using almost half the precision hover box (see Figure B.3 in appendix B) stabilising the 
helicopter required extensive effort. Heading loop also appeared slightly slow and required 
considerable pilot attention; HQR =  4.

Pirouette: Small frequent pedal inputs were required to compensate for heading changes 
and the ground speed seemed to be slightly oscillatory (in a sense that frequent pilot inputs 
were necessary to keep the speed constant during the manoeuvre). The pilot didn’t like 
the fact that too much time was necessary to stop the aircraft from oscillating. Also 
performing the left pirouette was a little harder. However, the controller seemed to provide 
adequate angular rates and the pilot could successfully compensate for any undesirable 
cross couplings; HQR =  4.

Turn-to-target: There were some objectionable deficiencies in the primary response due 
to the inability of the controller to capture heading accurately during deceleration; the 5 sec 
limit was feasible only with extensive pilot workload. Despite the large overshoots in the 
primary loop no significant coupling was detected and the rate generated by the controller 
was adequate. There was also some minor translational motion which required some cyclic 
activity; HQR =  5.

The above handling qualities ratings are summarised in Figure 5.43.
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Figure 5.43 Handling Qualities Ratings - two degrees-of-freedom compensator

5.6 Discussion

Side-step: The primary concern here is the slow roll rate generated by the controller. This 
is an indication that the roll bandwidth may have been less than required by the helicopter 
for aggressive manoeuvring. The cause of the high frequency small amplitude oscillations 
(or ratcheting in flight test jargon) is difficult to pinpoint accurately. Previous research 
suggested that roll ratcheting is linked to the aircraft force-feel system [32]. However, roll 
ratchet tendencies are most severe with force-sensing side-sticks and in this experiment the 
roll inceptor was a centre-stick. Thus, it is more likely that the reason for the oscillatory 

roll behaviour was a small lateral PIO.
Quick-hop: Prom the pilot’s comments it is evident that there was significant coupling 

into heading which resulted in the awarded HQR. This was not surprising considering the 
erroneous predictions of the cross coupling between pitch and yaw loops (see Figure 5.6). 
The reason that it was difficult to stop the aircraft during deceleration was more likely a 
combination of poor heading control and the lack of visual cues to the pilot when the aircraft 
had a pitch angle more than 15 — 20 degrees. From the pilot’s point of view the visual cues 
become available when the aircraft nose drops significantly. Also, it seems that the heading 
loop does not provide sufficient bandwidth to enable the pilot to quickly compensate for 

the subsequent heading errors.

Precision Hover: In this task the pilot’s comments suggest that the initial accelerations 

provided by the controller axe not adequate for high gain inputs. To achieve high accel­
erations as required, the rate generated by the controller should have been much higher.

FT-FLK3HT TEST

LEVEL 2 
(ADEQUATE)

LEVEL 2 
(DESIRED)
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Redesigning for higher pitch loop bandwidth seems to be an obvious solution to the prob­
lem. Given a faster rate response the acceleration would be closer to what the test pilots 
would have liked. In addition, further improvement could be achieved by using a lower 
order ideal model in the model matching part of the Hqq synthesis. Despite the fact that 
a second order output response is what we aim to achieve, the overall aircraft behaviour 
might contain additional dynamics - usually unmodelled modes that the controller can not 
compensate for. This results in flight controllers with excessive lag and/or very small initial 
acceleration. Therefore, using a smaller dimension ideal model can alleviate this problem 

to a large extend.
Pirouette: In this multi-axis manoeuvre, heading seems to be less of an issue since the 

pilot’s attention is diverted to pitch and roll axis at the same time. The ground speed 
oscillations are more likely to be caused by a slightly under-damped lateral mode coupled 
with the wind direction. If the aircraft’s attitude capture is oscillatory, the horizontal lift 
vector component from the main rotor (which induces the aircraft’s translational motion) 
will not be constant in magnitude and direction. Thus, ground speed oscillations can easily 
occur especially when the aircraft flies out of the wind direction.

Turn-to-target: The objectionable pilot comments during this task remain largely unex­
plained. Although the model prediction in the yaw axis seemed very good and simulations 
showed that the controller should perform satisfactorily (see Figures 5.7 and 5.38 respec­
tively), it is difficult to explain why the primary helicopter response had objectionable 

deficiencies. The translational motion, however, is easily explained. Pilots perform the 
turn-to-target task starting from the wind direction flying into the wind (see the manoeu­
vre description in chapter 4, section 4.2.5). Thus, as the aircraft oscillates around the 
targeted heading angle a fair amount of translational motion is exerted by the impinging 
wind on the fuselage surfaces.

Although the above discussion is based only on qualitative results, several conclusions 
can be made. Firstly, comparing the achieved HQRs with the HQRs obtained in the 
previous chapter there was an obvious improvement in the perceived aircraft responses. This 

improvement could be partially attributed to the inclusion of high order rotor dynamics 
in the controller design process. Secondly, careful consideration of high order dynamics 
(alongside guaranteed frequency response bounds by the controller synthesis method), can 
eliminate the need for predictor-type filters and make the control system more robust to 
high frequency uncertainty. Using such filtering methods can be more beneficial when 

designing compensators based only on low-frequency rigid body dynamics and actuator 

states. Finally, the last flight test campaign gave better insight on how to modify weighting 

functions in jETqo optimisation to achieve bandwidth improvements. This is because the 

weight selection procedure becomes more effective when an accurate model is used for 

control law design.
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5.7  M ultivariable com pensators and stability  of euler-type integration
algorithm s

The aim of this section is to justify the choice we made to approximate the continuous time 
differential equations of the controller using difference equations. According to Shannon’s 
theorem (or sample rate rule) [61, chlO], when a control law is implemented on a digital 
computer, the system is expected to give adequate performance if the sample rate is at 
least 2 times faster than the largest controller eigenvalue. When a compensator is designed 
“by hand”, using graphical techniques, Shannon’s rule is satisfied implicitly or explicitly. 
However, for multivariable controllers (e.g. Hqo, aO this requirement can be met only 
indirectly by solving the suboptimal synthesis problems or residualising any undesired fast 
controller dynamics. The key question we shall be addressing here is “whether the sample 
rate rule is sufficient to guarantee that a MIMO compensator will perform adequately when 

implemented on a digital computer with Euler-type integration techniques?” The answer 
is surprisingly simple. Unlike the popular understanding, Shannon’s theorem does not 
guarantee satisfactory operation of the compensator unless the ratio of the largest to the 
smallest compensator eigenvalues is not very “large”. Given a sufficiently small sample 
rate, the designer has to take into account the accuracy of the integration algorithm to 
ensure proper control law functionality. This is very important for H00 compensators since 
the poles of the feedback compensator tend to have the same magnitudes with the LHP 
transmission zeros of the design model (see remark 2.4.0.1 in chapter 2).

To justify the above arguments consider the second order system described by

2 / 1  1
u (s +  M )(s+ m ) s2 + (M  + m)s + M m  

or in state space form by

(5.13)

0 1 0
X =

—m M  — (m +  M )
x  +

1
u, y = [1 0] (5.14)

In equation (5.14), M  and m  represent the largest and the smallest eigenvalues of the
system, s is the Laplace operator and x , u are the state and control vectors respectively. It
can easily be shown that the evolution of the states can be written as

x(t) =  [«,] +  C2e(- m,) M  (5.15)

where (vi, V2 ) are the eigenvectors and Ci, C2 depend on the initial conditions z(0).

Define the ratio of the largest to the smallest eigenvalues as ^  =  a  &  M  = am. Then, 
the controller state derivative x  can be written as

x(t) =  [ui] -  mC2^ ~ mt) [v2]
=  —amCie(~Mt)[vi] — mC2e(~mt)[v2] (5.16)
=  —m{aCie(~Mt) [«i] +  C2^~mt  ̂[v2]}
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In equation (5.16) C\ and C2  are assumed to be constants, M  »  m  such that M +  ra ~  M .
Let A T represent the integration step. Ignoring the constants C\ and C2 from the 

exponential terms of equation (5.16), we can see that for a sufficiently small AT, (say 
A T =  10-2 ), term e( -mAT)[V2] is finite and term ae^~MAT [̂v 1] also converges. However, 

for large values of M  the final value of e(-AfAT) does not approach zero and given that the 
ratio =  a  is “large” the resulting controller state derivatives can take very large values.

To illustrate the above assume that M  = 20, m  = 10~4 and AT =  10~2. Then the term 
ae(-MAT) =  200000e” 20'0 01 =  1.62 • 105 (see Figure 5.44).

1.8 
1.6 
1.4 

 ̂ 1.2 
w 1

SIS 0.8 
0.6 
0.4 
0.2

Integration step (DT)

Figure 5.44 Convergence of ae  ̂ MAT)

The values in the above example were not chosen arbitrarily. In fact they are comparable 
with the smallest and the largest eigenvalues of the two DOF controller designed in section
5.4.3 (see the MATLAB script below).

» r i f  d(spoles (K) )
real imaginary frequency damping

-2.8537e-005 0.0000e+000 2.8537e-005 1.0000e+000
-1 .1101e-003 0.0000e+000 1.1101e-003 1.0000e+000
-2.4682e-001 0.0000e+000 2.4682e-001 1.0000e+000
-2.4901e-001 0.0000e+000 2.49018-001 1.00008+000
-3.8671e-001 0.0000e+000 3.8671e-001 1.00008+000
-9.9039e-001 0 .0000e+000 9.90398-001 1.0000e+000
-1.0811e+000 -5.23608-001 1.2012e+000 9.0000e-001
-1.0811e+000 5.23608-001 1.2012e+000 9.0000e-001
-1.7977e+000 0.0000e+000 1.79778+000 1.0000e+000
-2.6821e+000 0.0000e+000 2.6821e+000 1.OOOOe+OOO
-3.60378+000 -1.7453e+000 4.0041e+000 9.0000e-001
-3.60378+000 1.7453e+000 4.0041e+000 9.0000e-001
-5.35898+000 -5.8228e+000 7.9135e+000 6.7718e-001
-5.35898+000 5.82288+000 7.9135e+000 6.7718e-001
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-6.3000e+000 6.42730+000 9.00000+000 7.00000-001
-6.3000e+000 -6.42730+000 9.00000+000 7.00000-001
-7.18530+000 7.51760+000 1.03990+001 6.90950-001
-7.18530+000 -7.5176O+000 1.03990+001 6.90950-001
-1.32410+001 0.00000+000 1.32410+001 1.00000+000
-1.47090+001 0 .00000+000 1.47090+001 1 .00000+000

-1.5826O+001 0.00000+000 1.58260+001 1 .00000+000
-2.15220+001 0 . 00000+000 2.15220+001 1.00000+000
-7.56140+000 -6.67870+001 6.72140+001 1.12500-001
-7.56140+000 6.6787O+001 6.72140+001 1.12500-001

There are several ways of avoiding the effects of the large exponential term ae^~MAT^. 
Firstly, the step size can be increased so that the initial derivatives have smaller values. 
However, it can easily be shown using time domain analysis, that in that case, updating the 
controller states according to the rule a: (AT) =  x(0 )+ x-A T , the integration error becomes 
very large. In other words Shannon’s theorem is violated. Secondly, the designer can use a 
different integration technique (such as Runge-Kutta or backward Euler methods). In the 
latter case though, the computational demands on the flight control computer are increased 

and the controller coding task becomes cumbersome.
Given a continuous time controller, in the author’s opinion, the best remedy to alleviate 

the Euler integration problem is to use difference equations to approximate the continuous 
time derivatives with their discrete time counterparts. It is believed that the resulting 
computational delay did not have a large effect on the handling qualities evaluation because 
it was small compared to the delays contributed by the teetering rotor and swashplate 
systems.

5.8 Concluding remarks

In this chapter we investigated, primarily, the use of rotor states to achieve better handling 

qualities than  in chapter 4, where quasi-static models were employed for controller design. 
Pilots reported improved HQRs with compensators designed on models, which included 
both first and second order main rotor flapping states. In turn, these compensators achieved 
better disturbance rejection than their “quasi-static counterparts”, which do not function 
satisfactorily without the use of mixed rate feedback signals. The results seem to coincide 
with theoretical observations based on ground-based simulations. In addition, we gave 

experimental evidence on the advantages of the two DOF loop shaping over, the original, 
one DOF H qq LSDP method for the helicopter control problem. This also confirms design 
experience from previous research efforts. Finally, it was shown that Shannon’s theorem 

does not guarantee adequate performance of a MIMO compensator, when the controller is 

implemented using Euler-type integration techniques. The designer has also to take into
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account the ratio of the largest to the smallest controller eigenvalues to ensure the stability 

of the integration algorithm.
The pilot comments about the helicopter behaviour in chapter 4 (section 4.4) as well 

as in chapter 5 indicated that although the controller was flown up to 80 knots in forward 
flight, its performance was not satisfactory. In this case, it is common practice to design 
another compensator for the high speed region (> 45 — 50 knots). “Linking” (or gain 
scheduling) the two H qq compensators can be done in a linear fashion for simplicity (see 
[40]), however, with no guarantees about the stability (let alone the performance) of the 
closed loop system. In the next chapter, a systematic methodology will be presented for the 
optimal design of a gain scheduled Hqq loop shaping compensator, which not only stabilises 
the linearised plants in the blending region, but also achieves Hqq performance control 

objectives.



Optim al design of multivariable, observer-based, gain-scheduled 
compensators

6.1 Introduction

Linear controller design techniques are the most commonly used design tools in industry. 
They are easy to apply and the control solution is fairly visible to systems engineers. 
However, for helicopters with large operating envelopes, linear designs are quite often driven 
beyond their limits. The assumptions regarding small deviations from nominal conditions 
are no longer satisfied. Airspeed dependent dynamics and different loading configurations 
may degrade significantly the guaranteed performance.

Over the last decade research in multivariable control laws seems to have tackled par­
tially the problem of deviations from nominal conditions by improving the robustness of 
the control laws. Indeed, guaranteeing robustness against modelling errors and excursions 
from the design point proves a very effective tool in reducing the number of linear designs 
required across the flight envelope.

The purpose of gain-scheduled control, in general, is to design a time-varying controller 
K  scheduled upon a parameter vector C,(t) to achieve desired closed-loop performance (from 
w z, see figure 6.1) throughout the region of operation.

™(t) z{t)

m

Figure 6.1 Gain-scheduling control: general case
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A number of linear parameter-varying (LPV) controller design methods for LPV plants 
have recently appeared in the literature. These methods make use of a fixed Lyapunov 
function to characterize stability and performance. There are two general frameworks. The 
first framework concerns LPV plants with a linear fractional dependence on the scheduling 
parameter vector £; parameter variations are treated as equivalent uncertainties, and a 
single robust controller is designed and scheduled upon these special uncertainties ([51], 
[5], [6]). The second framework is based on the notion of quadratic performance; 
it uses directly the LPV form of the gain-scheduled controller with the same parameter 
dependence as the plant to bound the performance of the LPV system in an L2-norm sense 
([7], [10]). In addition, gain-scheduling approaches based on the concept of parameter- 
dependent Lyapunov functions have appeared in [4], [36], [76].

These LPV approaches usually produce conservative designs,due to the large number of 
scheduling parameters that has to be considered in the problem. In addition, the original 
LPV methods provide no guarantee that an LPV controller can be determined for a given 
LPV plant and a scheduling variable region. In the present work, the interest is on the two- 

step approach that involves an interpolation process to schedule linear point controllers. 
First, a set of linearised plants is obtained for a set of values of the scheduling parameters, 
and linear controllers for these linearised plants are designed. Then, a schedule is designed 

that links these controllers as the operating envelope is traversed. This approach has been 
used in [41], [40], [50], with no guarantee, however, that the resulting interpolated con­
troller stabilises the corresponding linearised plant. Lately, stability preserving controller 
interpolation schemes have appeared in [47], [66] for observer-based compensators and in 
[64] a new idea was presented, which minimised an cost function in order to determine 
an optimal-like scheduling function for a helicopter control problem.

In this chapter, we present a realistic optimisation method for gain-scheduling observer- 
based controllers that not only guarantees stability, but also achieves Hqo performance 
objectives along the ideas of [64]. The method can be used to maintain a smooth transition 
from low to high speed flight conditions in a predictable manner. In other words, the 
designer can ensure that blending between low and high speeds is done smoothly without 
causing discomfort to the pilot.

6.2 A n interpolation and robust control framework

6.2.1 Stability preserving interpolation

For any pair (A, B) of state-space matrices, under certain conditions, a number of stabilising 
matrices { K ^ i  =  1, ..,r}  can be selected such that all eigenvalues of (A + BKi) are located 

in the left half plane. In what follows, we will need to determine a composite, interpolating 

state feedback gain that will include all individual gains K{ discussed above. The following 

lemma has been proven in [66]:
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L em m a 6.2.1 Suppose that {K i,i — l , . . ,r}  stabilize {A,B), that is (A +  BK{) is asymp­
totically stable for each i =  1 , r. There exist symmetric, positive definite matrices 
{W i,i =  l , . . , r }  such that for any constants {A* > 0,i =  l , . . ,r}  , not all zero, the in­
terpolating matrix

K  =  (X \K \W \ + • • • +  X r K r W r ^ W !  +  • • • +  XrWr)_1 (6.1)

stabilises (A ,B ).

Note that the symmetric, positive definite matrices above are such that the following matrix 

inequalities hold

W dA  + B K t f  + (A + BKi)W i < 0 ,  i =  1, ..,r  (6.2)

As a direct result of the above lemma, for the case of two stabilising gains K \ and K 2, there 
exist symmetric, positive definite matrices W\ and W2 such that for the interpolating gain

K  =  (AlfiWi +  (1 -  X)K2W2)(XW1 +  (1 -  A ) ^ ) -1 (6.3)

the matrix { A +  B K )  remains asymptotically stable for all values of A in [0,1].
The results above determine the interpolating matrix for a fixed pair of matrices (A, B). 

These results can be extended to the case where a set of such pairs of matrices are available; 
these matrices could be obtained, for example, from linearisations of a nonlinear plant at a 
fixed set of values of the scheduling parameters.

Consider a single scheduling parameter £ varying in [Cl ? C2] • A pair of feedback gains 

K \, K 2 has been determined which stabilises (A(£i), B (£1)) and (A (^), £ (£ 2)) respectively. 
Assuming that there is an overlapping region within [Ci>C2] such that K \ stabilises

(A (C ),£ (0) for every £ € [Ci,/?i], and K 2 stabilises (A (C),£(0) for every C [cti,C2]; we 
say that (K U K 2) cover [Cl, C2]-

The design objective is to determine an optimal continuous feedback gain with depen­
dence upon the scheduling parameter K (£) which stabilises (A((),B(£)) for any distinctive 

value of C in [Cl7 C2]* In view of Lemma 6.2.1, we can define such a continuous gain as 
follows

K ( 0
K i

[ A ( C ) t f i ^ i  +  (1  -  \{Q )K 2W2] [A (C )W i +  (1 -  A ( ( ) ) W 2 ] _ 1 , C e  [ a u p i \

k 2, C £  ( ^ 1 , C2]
(6.4)

Note that it is the optimal selection of A(£) in the entire region [a\,f3\] to additionally 
meet specific H qo performance criteria that is of interest here. When only stability is 
considered, it is quite common to select A(£) =  ; note that this reduces to the case of
linear interpolation [66].
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Similar to the state feedback case, results can be obtained for an interpolating state 
observer gain matrix which includes state observer gains that individually stabilise a pair 
{A, C). The following lemma holds:

L em m a 6.2.2 Suppose that {L i,i =  stabilise (A,C), that is (A  + LiC ) is asymp­
totically stable for each i — l , . . , r .  There exist symmetric, positive definite matrices 
{P i,i =  l , . . , r }  such that for any constants {pi > 0,i =  1,..,/} , not all zero, the in­
terpolating matrix

L  — { p \ P \  H h P i P i )  1 (^iPiLi -|----- + p i P i L i ) (6.5)

stabilises (A, C).

For the state observer case, the symmetric, positive definite matrices above satisfy the 
following matrix inequalities

(A + L iC fP i  + Pf {A + LfC) < 0, i = 1 , (  (6.6)

Again, for a single scheduling parameter £ varying in [Cl > C2] ? we consider a pair of 
state observer gains L \, L 2  which stabilises (A(£i), C(Ci)) and (A ^ ) ,  respectively.

Assuming an overlapping region [ai,/?i] within [C15C2] such that L\ stabilises (A(£), C(()) 
for every £ G [Cb/?i], and L 2 stabilises (A(£), C(£)) for every £ G [c*i, C2]* we can easily 
select a continuous state observer gain L(£) that stabilises (A(C), (?(£)) for any value of £ 
in [Ci, C2] as follows

m
L u
W C ) P i  +  (1 - r t c m r 1 M Q P 1 L 1  +  (1 - M C ) ) f t L 2 ] , C e  ( a , , A] (6.7)
£ 2 , C g  (^ 1 , C2]

Note that similar stability preserving interpolation results have appeared in [47], where 
an observer-based controller structure is used, as in the sections that follow.

6.2.2 R igh t coprim e factorisation

Suppose 6r(s) is a strictly proper real-rational matrix with a stabilisable and detectable 
realisation

Then, a normalised right coprime factorisation of Gs(s) has a realisation

A s B s

C s 0
(6.8)

N,8 \ s
Mo

(  AS + B SF B s
s_

C8 0
{ F I

\
(6.9)
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where N s, M s satisfy equations (2.11) and (2.19) (see chapter 2, section 2.1.1); F  = —B jX ,  
and X  =  X T >  0 is the unique stabilising solution to the Generalised Control Algebraic 
Riccati Equation (GCARE)

A j X  +  X A S -  X B sBst X  + CSTCS =  0 

We consider the class of perturbed plants described by

GP = (Ns + A N,)(M , + A M, ) - i

(6 .10)

(6 .11)

where Ajvfl € 'H^0. The generalised plant P(s) for this case of perturbations is given 

by

0 =

0 - M , - 1
1 - G

M ,- 1
G

U>2

V u  )
(6 .12)

w i

W2

-1

Figure 6.2 Right coprime configuration 

where, as illustrated in Figure 6.2, the exogenous signals are defined as

(  W \
w —

W2
= (  AjV” )  d = A d\*M.)

In state-space form, the generalised plant P(s) from equation (6.12)is given by

P  =

(  A, 0 B m

0 - I
1 0

- B s \

/

(6.13)

(6.14)F

V ~Cs

Assuming that a controller K  internally stabilises the nominal system Gs =  NaM s~l then 
the system is robustly stable if and only if

I M i ’.JQ IL  =  I\m T \ I  -  K G ,)-1 (K  - / ) | |  <  7 =  - ,e  > 0 (6.15)

where F}(.) denotes a Lower Linear Fractional Transformation (LLFT). The closed-loop 

configuration of the generalised uncertainty model with a feedback controller is illustrated 

in Figure 6.3.
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w

u

Figure 6.3 Generalised uncertainty model with feedback controller

A particular controller satisfying the cost function of equation (6.15) can be implemented 
in an observer form of McMillan degree equal to that of the plant. This so-called central or 
maximum entropy controller has the following state-space form [71]

K  =

where F  is as defined before,

As +  BSF  +  HCS - H
(6.16)

H  =  t 2[ ( 1 - 7 2) /  +  £ X ]-1ZCt  (6.17)

and Z  — Z T >  0 is the unique stabilising solution to the Generalised Filtering Algebraic 
Riccati Equation (GFARE) (see equation (2.21) in chapter 2). Note that with F , H  as 
defined above, the eigenvalues of (As + B SF) and (As +  HCS) have strictly negative real 
parts [71].

6.2.2.1 Closed-loop system 

Consider the generalised plant P  as in equation (6.14), and the controller u =  K (s)y  from 

(6.16). The closed-loop system of Figure 6.3, that is the transfer function Tzw from the 
exogenous signal w to the error signal z, has the following state-space form

Tzw = Fi(P ,K ) =_ f  Ad B d \

i, c d Dd )

A s —B SF 0 B s ^

= HCS A s +  B SF  +  HCS - H  0

{ F F 0 - l )

(6.18)
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It is easy to show that

e ig ( ^ )  =  e i g ( ^  As + ~B Bf + H C )

. ( A S + BSF  -H C , \
e l g (  0 A S + HC J

= eig(jla +  B ,F ) U eig(j4s +  HCS) (6.19)

So, if F  and H  are selected such that the eigenvalues of (A, +  BSF) and (A  +  HCS) have
strictly negative real parts, then in view of equation (6.19), the closed-loop system Tzw of
(6.18) is asymptotically stable.

6.2.3 G ap m etric

The gap metric [79, 70, 30, 31], has extensively been used over the last decade to quantify 
the distance between uncertain feedback systems. The t'-gap metric of Vinnicombe [71], 

is of interest here since it admits a frequency response interpretation. According to this 

interpretation, the distance between any two linear systems Gi(s), (^ (s), that have the 
same number of inputs and outputs, can be calculated from their frequency responses, 
provided that an encirclement condition is met.

Sl/(GU G2) = <

with

' ||«r(G il G2)||oo, if de t(/ +  G2G\) t^OVw, and
wno ( det(J +  G*2Gi)) +  rf(Gi) - 1](G2) -  ^0(^ 2) =  0,

1, otherwise.
(6.20)

* (Gi ,  G2) = (I +  G2Gm2)-H G  1 -  G2)(I +  G IG O -i, (6.21)

where wno(p) is the winding number of a scalar transfer function g{s), that is the number of 
counterclockwise encirclements around the origin by g(s) evaluated on the Nyquist contour 
indented around the right of any imaginary axis poles of <?(s); rj(G) and ?7o(Cr) denote the 
number of open right-half plane and imaginary axis poles respectively of a matrix transfer 
function G(s). More details on the z'-gap metric and its computation can be found in [71], 
[80], where an alternative definition in terms of normalised coprime factorisations is also 

given.

In the context of section 6.2.2, for a plant G(s) and a controller AT(s), we define a generalised 

stability margin, bG,K> in terms of an Hqq norm of the size of the transfer function from 

signals w\ and W2  to signals u and y , in Figure 6.2; [60, 71, 80]
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bG,K — i

I
K

(j - gjo- ' J g / ]

o,

if K  stabilises G

otherwise

(6.22)

The following robust stability result, initially shown for the gap metric in [31], can be found 
in [71] for the z'-gap metric:

T h eo rem  6.2.3 Given a nominal plant G a  compensator K , and a number then: 

[G2 ,K] is stable for all plants G2 satisfying S^G i, G2 ) < (  i f  and only i f  boi,K > (■

The above theorem implies that any compensator K  that stabilises a nominal plant G\ 
with a stability margin bGx,K =  will also stabilise any plant at a distance less than £, as 
measured by the z'-gap metric ^ (G i, G^)- The usefulness of this result will be exploited as 
an analysis tool in section 6.4.2.

6.3 Gain-scheduling

Our design goal is to determine an optimal gain-scheduling function for a family of linear 

plants, where the scheduling variable £ E [Cl 5 C2] - Note that the analysis that follows is not 
application-specific; the proposed optimisation methodology to gain-scheduling has been 
motivated from a helicopter control problem, but it can be applied to any other family of 

linear plants.
To demonstrate the applicability of the scheduling algorithm in section 6.3.3, we will use, 

the 12th-order Westland Lynx Mk7 helicopter model from the design example of chapter 2 
(see section 2.5). The reason for using a Lynx-like rather than the Bell 205 helicopter here 
is that the former is much more agile (due to the main rotor system) and thus it is a more 
challenging problem in terms of performance requirements.

The 12-state Lynx representation was trimmed at different values of the forward speed 
U (which was chosen to be the scheduling variable (). This choice was justified on heuristic 

grounds, primarily for two reasons. Firstly, the scheduling variable must vary slowly with 

the plant dynamics. Secondly, it should capture the plant nonlinearities. For a helicopter, 
the dynamic pressure (and therefore forward speed) are the most important parameters 
affecting its dynamics. These effects have already been discussed in chapter 2 (see section 

2.5, equations (2.39) - (2.40)).

6.3.1 Justifica tion  of b lending region

Using a single controller at hover (and at negative airspeeds) is highly desirable as robust 

stabilisation has to be maximised. Earlier experience in [19] suggests that for a Lynx
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helicopter a controller designed at hover can be successfully flown up to 80 knots. Therefore, 

a second linear controller was designed at 80 knots, which was used until the upper edge of 
the flight envelope.

However, as the aircraft accelerates from hover to high speed flight, it becomes more 
stable (due to the fuselage lift and the impingment of the rotor airflow on the horizontal
stabiliser). Consequently the flight control system has to “adapt” to the new conditions
in the transition period. Thus, the choice of the blending region [ai,/?i] is not arbitrary. 
The designer must ensure that blending between low and high speeds can be done in a 
predictable manner to the pilot. The term “predictability” here refers to the way the 
human operator flies the helicopter. From the pilot’s point of view the controller should 
ensure a natural response of the vehicle as well as minimal workload during the transition 
from low to high speed flight. In our design study, this blending region was chosen between 
14 and 26 m/sec (oti =  28 and =  52 knots respectively). Note that the lower limit of this 
blending region is just when aerodynamic measurements become available and the upper 

limit reflects the speed region where the helicopter becomes aerodynamically stable.

6.3.2 C ontro ller s tru c tu re

Recall from chapter 2 that the models {(^(s),? € C15C2} have the following state-space 
form

x  =  A(U) x  +  B(U) u

y = C(U) x  (6.23)

where the state and control vectors are

X = (p q r e <f> Ub Vb Wb S lat Slang % e d a l )T

u  =  ( $ la t $ lo ng  $ p e d a l)

Five of the above states comprise the output vector, namely 0, 6, r, p, q.
The Loop Shaping Design Procedure (LSDP), was used to shape the linearised plants 

above, as described in chapters 2, 3 and 5. The weights specifying good tracking perfor­
mance at low frequencies and disturbance rejection at high frequencies were

Wi = S-^ — h ,  W2 = diag(0.05,0.05,0.05,0.025,0.025) (6.24)s
which resulted in shaped plants given by GSi =  W2GiW\. For simplicity, the same weights 
have been used for all the linearised plants.
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For each linearised plant1

G‘ = y  i 6 CT& (6.25)

the right coprime framework of the previous section is considered, and the central controller 
of equation (6.16) for F,  H  defined in terms of the solutions X ,  Z  of GCARE (6.10) and 
GFARE (6.17) respectively can be implemented, as illustrated in Figure 6.4.

Cs(v)

Figure 6.4 Hqq controller in observer form

As discussed in [71, 58], it is this particular observer form of the controller that makes 

the right coprime factorisation for a plant G\ =  appealing, since the injection of

reference signals r  in the fashion illustrated in Figure 6.4 results in y = NfQi. The filter 
gain Qi can easily be computed to give zero steady state tracking error. Therefore, such a 
controller implementation results in a closed-loop system that is not only robustly stable 
to perturbations (6.11) in Gf, but also maintains a well-behaved tracking response.

6.3.3 A n op tim isa tion  approach  to  gain-scheduling

From the previous section, it is apparent that for each linearised plant Gf, the robust con­

troller of (6.16) can easily be computed in terms of the state-space matrices of Gf via the 
Riccati equations (6.10), (6.17). Therefore, for each linearisation point, the stabilising con­
troller can be fully described by the set of matrices (AJ, B f, C-, Fi, Hi). In the next section 

we summarise a gain scheduling algorithm which uses this set of stabilising controllers to 
ensure the stability of the closed-loop system, and also maintain a certain control perfor­

mance.

1Note that the subscript (•)* is replaced by (-)a for notational convenience. Thus, Ma is written as Ma, 
Na as Na etc. represents distinct linearisation points.
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S tep  1 (m a tr ix  in te rp o la tio n ) As a first step, we perform a high order polynomial 
fitting with respect to the scheduling variable U through the state-space matrices of the 
shaped linearised models {Cr|,i =  (i, ...£2}- As a result, we obtain continuous matrix func­
tions Ain(U), Bin (U), Cin (U) for all values of the scheduling variable within the flight 

region [C l, C2]; iu other words, we define

Gin(U)
A i n { V ) B i n ( U )

C i n ( U ) 0
P  6 [C i,ft] (6.26)

For integer values of U , this polynomial fitting should result in an accurate approximation 
of the models described by

G\m  _ Ai" Bf* '
c f 0

* e C i , C 2  ( 6 .2 7 )

For our design example a third order polynomial fitting was adequate to capture the non- 
linearities of the models in (6.27). It will be shown later using gap metric analysis (see 

section 6.4.2), that these approximation models G f1 are very close to the ideal linearised 
plants G*. From now on, we consider these approximation models G\n, in our study, in 
place of the ideal models Gf. Note that with this assumption the results of section 6.2.2.1 
can directly be used as shown in the following steps; the validity of this assumption will be 
confirmed again by the gap metric analysis in section 6.4.2.

S tep  2 (s tab ility  p reserv ing  gains) In this part, the objective is to find a pair of
stabilising control gains (Fl ,F r ) for A,n(C/),Bin(U) that cover the transient flight region 
[ai,(3\] in the sense of section 6.2.1; in other words, these two gains need to stabilise 
(Ain (U), Bin (U))  for all U € [ai, A] in the fashion of (6.4). Similarly, we need to determine 
a pair of filter gains (Hl , H r ) that stabilise (Ajn((7),Cin{U)) for all U E [<*i,A] in the 
fashion of (6.7).

These control gains are computed in terms of the solutions of (6.10) for the shaped 
linearised plants G® 1 and GJX respectively, in the control scheme illustrated in Figure 6.4. 
Note tha t is designated as the low-speed control gain, since it stabilises (Ain(U),Bin (U)) 

for U  G [C l, A ] ,  and Fpt is designated as the high-speed control gain, since it stabilizes 
(Ain (U) jB in(U))  for U  6 [ai,C2]> Therefore, as discussed in section 6.2.1, a continuous 
control gain F(U)  which stabilises (Ajn(C/),Bin(U)) for all values of U  E [Ci, C2] is given by

ai j
F(U) =  < [\(U)Fa iWai +  (1 - A(l7))Ff t WA ] WCOW'a, +  (1 - A ( 1 0 W 1 U 6 [<*!,/?!] 

(6.28)
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where the symmetric positive definite matrices Wai, Wpx are such that

WaAA? + B?Fair  +  (A r  + BTFai)Wai < o \  , =
Wh (A ^  + Bj"F>1)r  + (A ? + B l '‘F„l )W/3l <  0 J

Similar to the control gains, (Hai, Hpx) were found to be pair of such filter gains as described 
above, computed in terms of the solutions of (6.17) for the shaped linearised plants Gsa i, 
Gpx respectively. Note that Hai, the low-speed filter gain, stabilises (Ain(U), Cin(U)) for 

U E [Ci, A ], and Hpx, the high-speed filter gain, stabilises (Ain(U), Cin(U)) for U E [«i,C2]-
Therefore, as discussed in section 6.2.1, a continuous stabilising filter gain F(U) for all

values of U E [C l, C2] is given by

H(U) =

where

H,an 17 € [ 6 , 0 1 )

\n(U)Pai + (1 -  u m p * ] ' 1 \»(V)PaiHai + (1 -  u m P f f M , u  e lauft] 
H h ,  1 / 6  ( f t , C 2]

(6.30)

* (6.31)
( A ? + H aiC r)TPa i + P w (A? + Haf i ln) < 0 
(A f +  H ^ C f f P ^  +  Ph  (Af* +  H p f i? )  < 0

The optimal selection of these nonlinear scheduling functions A(t/). /i(f/) e  [0,1] to addi­

tionally satisfy Haa performance objectives is discussed in the next step. First, we define 
the controller in terms of the state-space matrices of the approximation linearised models 
Gin (U)  and the control, filter gains F(U) ,  H (U ) of (6.28), (6.30), as follows

K in(U) =
Aj„(!7) +  Bin(U)F(U) + H(U)Cin(U)

F(U)
-H(U) tle[ai,ft] (6.32)

Step 3 (optimal selection of scheduled gains) For each linearisation point, we con­
sider the controller

„  _  „  Ar+Brnua+HWic,
F(Ui) 0

As discussed in section 6.2.2.1, the poles of the closed-loop configuration of the approx­
imation plants G\n with the above controllers Ki are determined by the eigenvalues of 
[A™ +  BinF(Ui)) and (A\n +  H(Ui)C\n). It should now be apparent why the approxima­

tion models G\n were preferred in place of the ideal models Gf in step 1. Therefore, the
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selection of F (U ), H(U) as in equations (6.28) and (6.30), ensures the asymptotic stability 
of the closed-loop system Fi(Pln,K i), as in (6.18), with

f 0 Btn _ B in

p in  _ 
■*» — F(Ui) 0 - I I

{  - c ? I 0 0

Our objective is to determine the scheduling functions A(C/$), in (6.28), (6.30) for
each integer value Ui of the scheduling variable U in the blending region [a\,(3i] such that 
a satisfactory Hqq control performance is also achieved. Therefore, A([/*), fJ>(Ui) can be 
chosen to minimise the effect of the exogenous signals w on the error signal z, that is to 
minimise the Hqq performance cost ||F/(TJ” , .Ki)||oo- Clearly, this is a minimisation problem 
tha t has to be solved by a parameter optimisation approach. However, due to numerical 
inefficiency in minimising the || • ||oo norm function (|| • ||oo is not defined on the ju -axis) we 
have chosen to minimise the following cost:

1 N 2 
[A(toiV)] Ji==N ^ [  (max {°’ [amax K i)^)\uf=un) -  7]} ) (6.35)

where {o;n , n  =  1 , N }  is a sufficient set of N  frequency points within the “significant” 
frequency range (typically where the pilot workload is high) , 7 is the desired value for the 
Hqo cost ||Fi(P/n , ifiJHoo, and the scheduling parameters A,/x are limited in [0,1]. Note that 
a minimum cost Ji =  0 implies that , Ki)(jLj)\u=Un < 7 ,for n  =  1 , N . Therefore,

the frequency grid defined by {o;n,n  =  1,.., N }  should be appropriately chosen such that 
for a  zero cost J*, the performance criterion ||Fi(Pin, i£i)||oo < 7 can readily be determined. 
It should be noted that similar cost functions have been used in [62], [48].

The minimisation of the above cost functions {Ji, i 6 30,50} determines the values of the 
scheduling functions {[A(C/»), ̂ {Ui)],i  = 30,.., 50} for all the integer values of the scheduling 
variable U in the desired blending region (ai =  28,(3\ =  52 knots). Polynomial fittings 
with respect to the scheduling variable U are performed through these distinct values of 
A ,/i resulting in continuous functions X{U),fi(U) for U 6 28,52, which in turn define the 
control and filter gains F(U ), H(U) as in (6.28), (6.30) respectively. With these gains, as 
discussed before, the closed-loop system is robustly stable and also achieves desired i /00 

control performance. An illustrative example is given in the following section.

6.4 Gain scheduling optim isation results

The results of the three-step optimisation approach to gain-scheduling of section 6.3.3 to 
the helicopter linearised models of section 6.3 are presented next.
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6.4.1 Optimisation results

The minimisation of the cost functions {J i,i E 30,50} is performed using standard routines 
from the MATLAB Optimisation Toolbox [14]. Note that the chosen grid of frequencies 
consists of N  =  100, equally spaced logarithmic frequency points {a;n,n  =  1 , 1 0 0 }  in the 
frequency region [10-2 ,101] rad/sec. The desired value for the Ifoo cost \\Fi(Pfn, K i)||oo was 
selected as 7 =  3.2. Note that this is a reasonable target value for 7 considering the fact 

that the optimal value of the i f00 cost (6.15) for all the ideal linearised helicopter plants 
G\ of (6.25) with the weight functions of (6.24) has been computed, [46], to be within the 
range 2.75 ±  0.03.
The results of the optimisation procedure for the optimal values of A([/;), fi(Ui) are illus­
trated in Figure 6.5. As discussed in section 6.3.3, these distinct values of the scheduling 
functions are polynomially fitted with respect to U to give continuous scheduling functions 
X(U), p(U)  in the blending region [14,26] m/sec. Therefore, in view of (6.28), (6.30), we 
can easily implement the interpolating controller (6.32) for this region that will ensure a 
smooth transition from the low-speed, defined in terms of (Fa i,H ai), to the high-speed 
controller, defined in terms of (F /g1, ffg j .
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Figure 6.5 Optimal values for X(Ui), n{Ui)

Figure 6.6, shows a frequency domain comparison between the ideal shaped plants {Gs2qK\q) 
and the loop gains achieved from the proposed optimisation procedure {G2qK.2q) at 20 
m/sec; i.e. within the blending region of the gain schedule. Note that G |0 is the helicopter 
linearised model as in (6.25), K 2q the central controller in the control configuration of 
Figure 6.4, computed as in (6.16) in terms of the solution of GFARE (6.17), and K 20 is the 
interpolating controller as determined by the optimisation procedure. It is quite apparent 

that the interpolating controller K 20 results in loop gains close to the ones obtained by the 
ideal controller K 2q. Similar plots are obtained when comparing the loop gains at different
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Figure 6.6 Comparison of ideal {G^qK ^) and optimised (G20A20) loop gains 

speeds in the scheduling region [ai,/3i].

6.4.2 G ap m etric  analysis

In section 6.3.3, we stated that the proposed optimisation approach was in terms of the 
approximation models G\n (6.27) instead of the ideal linearisation models Gf (6.25). As 

a result, we have the same state-space matrices {Af1, £?|", C f1} for both the shaped plant 
Gf" (6.27) and the observer-based controller Ki (6.33) in the control configuration of Figure 
6.4. As discussed in section 6.2.2.1, this directly implies that the asymptotic stability of the 
closed loop Fi(Pfn ,K i), with Pfn as in (6.34), is determined by the asymptotic stability of 
[Af1 4- B\nF(Ui)]  and [Af1 +  Therefore, by selecting F(U), H(U)  as in (6.28)
and (6.30) respectively, with A(C/), fJ-{U) determined by the minimisation of (6.35), the 
eigenvalues of [Af1 -I- BfnF(Ui)], [Af1 +  H(Ui)C}n] are guaranteed to have negative real 
parts, and therefore the asymptotic stability of Fi(Pfn, Ki) is guaranteed as well.
It is evident that upon completion of the design procedure of section 6.3.3, we need to make 
sure that the determined optimal controllers Ki for the approximation models G f1 (6.27) 
also stabilise the ideal models Gf in equation (6.25). In other words, we need to show that 
the stability margin of the closed-loop configuration involving (Gf1, Ki) is such that the 
ideal model G f, whose approximation Gf" is, can also be stabilised by the same controller 

Ki .

Taking into account the z'-gap metric of section 6.2.3, it suffices to show that the robust 
stability margin bGinKi for the closed-loop configuration of (Gf1, Ki) is larger than the z'-gap 

metric <J„(Gf*, Gf) that measures the distance between the ideal and approximation shaped 
plants Gf and Gf" respectively. The results are shown in Table 6.1. We can clearly see that 
for all linearisation points, the stability margins bGin K. are significantly larger than the



6.4 Gain scheduling optimisation results 126

distances between the plants as measured by £„(Gjn, Gf); and so the optimal controllers Ki 
do indeed stabilise the ideal linearisation models Gf (6.25). Therefore, we can conclude that 
the optimal controller K in(U) (6.32) determined by the proposed optimisation methodology 
stabilises the helicopter shaped plants Gf (6.25).

U{ (m/sec) bGin,Ki
14 0.0056 0.1492

15 0.0034 0.1855
16 0.0042 0.2876

17 0.0045 0.2650

18 0.0050 0.2478
19 0.0055 0.2183
20 0.0056 0.2692
21 0.0155 0.2544

22 0.0166 0.2805

23 0.0201 0.2782

24 0.0102 0.2853
25 0.0090 0.2758

26 0.0056 0.2824

Table 6.1 Gap metric analysis

Note that the effectiveness of the matrix interpolation of the shaped linearised models 
{Gf, i = Ci, -5 C2} i*1 step 1 of section 6.3.3, in other words the closeness of the interpolated 
linearised plants G\n to the ideal linearised plants Gf, is also demonstrated in Figure 6.7 for 
U = 20 m/sec. Similar plots are obtained for all values of U  in the blending region [a i , /y .

10_2

2■4 0 2 410 10 10 10 10
Frequency ( ^ )

Figure 6.7 Comparison of ideal G|0 and interpolated G£ft shaped plants
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6.4.3 Gain-scheduled controller in simulation

The gain-scheduled controller, designed in the previous section, was tested in simulation on 
the nonlinear Lynx Mk7 model trimmed at 20 m/sec. Manoeuvres in the roll, pitch, and 
yaw axis a have been performed, and the results are given in Figures 6.8 over 6.16 below. 
Figures 6.8 over 6.10 and Figures 6.11 to 6.13 show the output responses to input demands 
in the roll and pitch attitudes respectively, whereas Figures 6.14 to 6.16 give the responses 
to a yaw rate demand.

We can see that the controller achieves a relatively good tracking performance for all 

three axes manoeuvres. Note that the coupling into the other loops (especially during the 
rolling manoeuvre) is due to the dihedral forces around the aircraft at 40 knots forward 
speed. The rate of change of the control delflections observed is typical for controllers with 
static gains at the pilot inputs. This is usually addressed with command path prefiltering. 
In general, we can conclude that the optimal gain-scheduled controller provides smooth 
transition from low to high speed flight conditions, which was the objective of this work.
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6.5 S u m m a ry

A systematic methodology has been presented for the optimal design of gain-scheduled 
observer based compensators for a family of linear plants. These plants are usually lineari­
sations derived from a nonlinear model for frozen values of the scheduling parameters. The 
proposed methodology determines a gain-scheduled controller that not only stabilises the 
linearised plants within the scheduling variable region, but also achieves ffoo performance 
control objectives.



Conclusions and suggestions for future research

7.1 Summary

This thesis describes the world’s first ffoo control law, which was designed and tested 
in flight, on a unique experimental helicopter: the Bell 205 variable stability helicopter. 
Designing and flight testing such prototype compensators is instrumental in demonstrating 
the applicability of Hqq control theory to flight control.

A three-tonne helicopter, aggressively manoeuvring in turbulent atmosphere is more 
than a simple application - it is a very challenging problem, due to its complexity and it 
multivariable nature. The fact that was successfully used on a helicopter enforces our 
belief that this design methodology is fairly generic and can be applied to other industrial 
problems. In the process of designing and flight testing the control laws, many useful 

issues relating to the design and implementation have been highlighted. This work has 

given some answers, closing the gap between theory and practice, and has advanced the 
application of active control technology to real engineering problems.

7.1.1 T he  m ain  con tribu tions

• Hoo Loop shap ing  an d  th e  helicop ter control problem : It has been shown that 
the robust stability guarantees of Hoo loop shaping make the method very useful for 
the helicopter control problem. The design example, which demonstrates these robust 
stability properties, is also utilised to introduce a multivariable control law structure 
that can be used over the whole rotorcraft flight envelope.

•  A nalysis o f th e  s tab ilise r effects b a r on th e  ro to rcraft behaviour: Compar­

isons between experimental data and quasi-static mathematical models, confirm the 
analytical predictions about the effects of the Bell stabiliser bar on the helicopter 

responses. The outcome of these comparisons is very helpful in designing a flight 
control law and interpretating its performance on the real aircraft.

131
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D esign  a n d  p ilo ted  sim ulation  o f an  Hoo loop shaping com pensator for th e  
B ell 205 a irb o rn e  sim ulator: A two degrees-of-freedom Hqo loop shaping com­
pensator has been designed for the experimental Bell 205 helicopter. The controller 
was synthesised using quasi-static linearisations and tested in piloted simulation us­
ing high order nonlinear models developed independently. Good performance and 
robustness were achieved.

R ea l tim e  im p lem en ta tio n  issues of m ultivariable controllers: Implementing 

multivariable controllers in state space form is not common in the aerospace indus­
try. The designed controllers were updated in real time using Euler-type integration 
techniques as well as difference equations. It was shown that the popular Shannon’s 
sampling rule does not guarantee satisfactory real time operation of a control law, 
when Euler integration is used to update the compensator’s equations. The designer 
must also ensure that the ratio of the largest and smallest eigenvalues of the compen­
sator is “reasonably small” .

In-flight evalu a tio n  o f Hoo loop shaping controllers: Three Hoo controllers were 
tested in flight. The first was designed using quasi-static linearisations and two DOF 

Hoo loop shaping. The second and the third compensators were synthesised using one 
and two DOF Hoo loop shaping; for both these controllers we used high order models, 
which included high order rotor dynamics. Extensive experimental evaluations were 
carried, to highlight their differences and obtain handling quality ratings by the test 
pilots. This was the world’s first in-flight investigation of an Hoo controller on a rotary 
wing aircraft.

A nalysis o f th e  effects o f th e  a irc ra ft configuration on th e  assessm ent of 

flight co n tro l laws: The effects of other aircraft systems and environmental condi­
tions on the perceived handling qualities were analysed in detail.

Q u a n tita tiv e  analysis o f an  Hoo loop shaping com pensator: The qualitative 
opinions of the test pilots were verified using flight test data analysis. This analysis 
enabled us to compare the predicted and achieved helicopter performance and to 
propose several modifications for the enhancement of the control law performance.

A greem en t be tw een  p ilo ted  sim ulations and  flight te sts: Very good agreement 
between the ground based piloted simulations and the in-flight investigations has been 

achieved. This highlights the usefulness of ground based piloted assessments as well 
as demonstrates the effectiveness of a carefully planned flight test.

Effects o f h igh  o rd e r ro to r  dynam ics to  iToo-like control law design: It was 

shown that the performance of the Hqq compensator was improved when high order 

rotor dynamics are included in the controller design process. This compensator is
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more sensitive to gain variations than a controller designed only with rigid body 

measurements.

•  R o b u stn e ss  im provem ents from  using high o rder ro to r dynam ics and  Hqo 
o p tim isa tio n : In-flight investigations showed that mixed rate predictor-type feed­
back, which Alters out a significant amount of noise from the measurements can be 
eliminated if an i/oo-like controller is designed with models which include high order 
rotor states.

•  O p tim a l design  o f m ultivariab le , observer-based, gain-scheduled com pen­
sa to rs: A new systematic methodology Hqq loop shaping compensator, which not 

only stabilises the linearised plants in the scheduling region, but also achieves i/oo 
performance control objectives.

7.2 Suggestions for future research

During the course of this work, a number of issues arose, which could be fruitfully investi­
gated in the future.

• The high order nonlinear model used in chapter 5 was shown to have significant 
deficiencies in predicting the Bell 205 cross axis responses. Further work needs to be 
undertaken to arrive to a more representative model of the Bell 205 aircraft. Including 

a dynamic inflow model (e.g. P itt and Peters [55]), wake distortion effects, and engine 
parameters in the nonlinear model would be a good start in the this direction. The 
dynamic inflow is largely responsible for the pitch-roll cross couplings and engine 
information would improve greatly the heave-yaw interaction.

•  The gain scheduling procedure developed in chapter 6 was demonstrated using nonlin­
ear simulations. It would be very beneficial if a gain scheduled controller was designed 
and tested in piloted simulation as well as in real flight.

• In chapter 6 we used only two scheduling variables for the control and filter Riccati 
gains H  and F , respectively. This implies that each of the entries of these Riccati 

gains uses the same function to achieve the robustness and performance requirements 
in the scheduling region. For multivariable systems a greater number of scheduling 
functions would be desirable to meet the design requirements.

•  Linear Parameter Varying theory has allowed us to address the gain scheduling prob­

lem in a more systematic way, since a global control law is synthesised in a single 
procedure, where stability and performance are guaranteed. We believe that for a 
successful application of the LPV method, the LPV model should take into account 
the inherent dynamics of the control problem. This is because of two reasons. Firstly,
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if a  pure LPV model is used for synthesis, the equations of motion must be trans­
formed to a form which minimises the number of scheduling variables. Secondly, if 
interpolation of Jacobi linearisations is used to set up a quasi LPV model and the 
state space entries are used as scheduling variables, the designer must have a clear 
understanding which state space entry is more influential to the dynamical behaviour 
of the system. Then one can trade-off not only the number of scheduling variables, 
but also their range which is being used to calculate the gain scheduled controller. It 
is obvious here, that a shorter range of scheduling region greatly reduces the concer- 
vatism of the LPV solution to the problem.

A useful tool to assist in the above point would be a qualitative notion of the distance 
between two LPV plants. A similar measure to the gap metric for linear systems is 
required.

An important practical aspect of any gain scheduled system is the robustness proper­

ties of the synthesis algorithms to perturbations in the scheduling variable. In a real­
istic environment, parametric perturbations will always be present and the scheduling 
scheme must provide guarantees against these perturbations.

Further development of the Bell 205 i?oo controller would be beneficial.

It would also be very interesting to test different control law design techniques on 
the Bell 205 variable stability helicopter e.g a sliding mode, /i synthesis or a dynamic 
inversion controller. This will allow to make comparisons between the different con­

troller synthesis techniques as well as to find out which method is best applicable to 
the helicopter control problem.
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C ontroller Code

/* INITIALIZATION */
r [0] = -DENET/5; 
r [1] = DANET/5; 
r [2] = -DRNET/5;

state [0] = (THETA - thO)*DEG2RAD;
state [1] = (PHI - phO)+DEG2RAD;
state [2] = (R - rO)*DEG2RAD;
state C3] = (Q - qO)*DEG2RAD;
state [4] = (P - pO)*DEG2RAD;

if  (FSW.REG & BIT_8){
state C2] = (R_MIX - rO)*DEG2RAD;
state [3] = (Q_MIX - qO)*DEG2RAD;
state [4] = (P_MIX - pO)*DEG2RAD;
>

/* FORWARD CONTROLLER

for ( i=0 ; i<6; i++ ) {
BRM1 [i] = 0.0;
for ( j-o ; j <3; j++ ) {
BRM1 [i] += BoSF[i][j] * rCj] ;
>
>
for ( i=0 ; i<6; i++ ) {

141
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AoXo [i] = 0.0;
for ( j=0; j<6; j++ ) {
AoXo [i] += Ao[i][j] * Xo[j];
>

>

for ( i=0; i<6; i++ ) {
XoDOT [i] = AoXo [i] + BRM1 [ i] ;

>

for ( i=0; i<6; i++ ) {
Xo [i] += XoDOT [i] * DELT;
>

for ( i=0; i<5; i++ ) {
RM2 [i] = 0.0;
for ( j=0; j<6; j++ ) {
RM2 [i] += F2 [i] Cj] * Xo [j ] ;
>

>

/* FEEDBACK CONTROLLER */

for ( i=0; i<14; i++ ) {
HCS [i] = 0.0;
for ( j=0; j <5; j++ ) {
HCS [i] += HF[i] [j] * state [j];
>

>

for ( i=0; i<14; i++ ) {
BSX [i] = 0.0;
for ( j=0; j<5; j++ ) {
BSX [i] += BS[i] [j] * RM3 [j ] ;
>

>

for ( i=0; i<14; i++ ) {
ASX [i] = 0.0;
for ( j=0; j <14; j++ ) {
ASX [i] += AllK[i] [j] * XHAT[j] ;
>

>

for ( i=0; i<14; i++ ) {
XHATDOT [i] = HCS [i] + BSX [i] + ASX [ i ] ;
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y
for ( i=0; i<14; i++ ) {
XHAT [i] += XHATDOT [i] * DELT;
>

for ( i=0; i<5; i++ ) {
RM4 [i] = 0.0;
for ( j=0; j<14; j++ ) {
RM4 [i] += FI [i] [j] * XHAT[j] ;
>

>

for ( i=0; i<5; i++ ) {
RM3 [i] = RM2 [i] + RM4 [ i ] ;
>

/* PRE COMPENSATOR

for ( i=0; i<3; i++ ) {
BRM3 [i] = 0.0;
for ( j=0; j<5; j++ ) {
BRM3 [i] += BW[i] [j] * RM3[j] ;
>
>
for ( i=0; i<3; i++ ) ■{
DRM3 [i] = 0.0;
for ( j=0; j<5; j++ ) {
DRM3 [i] += DWCi] [j] * RM3[j] ;
>
>

for ( i=0; i<3; i++ ) {
AWXW [i] -  0.0;
for ( j=0; j <3; j++ ) {
AWXW [i] += AW[i] [j] * XWEj] ;
>

>

for ( i=0; i<3; i++ ) {
XWDOT E i 3  = AWXW E i ]  + BRM3 E i ] ; 

>

for ( i=0; i<3; i++ ) {
XW E i ]  += XWDOT E i ]  * DELT;
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>

for ( i=0; i<3; i++ ) {
CWXW [i] = 0.0;
for ( j=0; j<3; j++ ) {
CWXW [i] += CW[i][j] * XW[j];
}
>

for ( i=0; i<3; i++ ) { 
drive [i] = CWXW [i] + DRM3 [ i] ; 
>

* fda = drive [l]/2.54;
* fde = drive [0]/2.54;
* fdr = drive [2]/2.54;
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