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Abstract

Nonlinear State Estimation Algorithms and their Applications

Bharani Chandra Kumar Pakki

State estimation is a process of estimating the unmeasured or noisy states using the
measured outputs and control inputs along with process and measurement models. The
extended Kalman filter (EKF) has been an important approach for nonlinear state estima-
tion over the last five decades. However, EKFs are only suitable for ‘mild’ nonlinearities
where the first-order approximations of the nonlinear functions are available and they also
require evaluation of state and measurement Jacobians at every iteration.

This thesis presents a few linear and nonlinear state estimation methods and their
applications. To start with, we investigate the use of the linear H∞ filter, which can deal
with non-Gaussian noises, in a control application. The efficacy of the linear H∞ filter
based sliding mode controller is verified on a quadruple tank system. The main tools for
nonlinear state estimation are cubature Kalman filter (CKF) and its variants. A solution
to simultaneous localisation and mapping (SLAM) problem using CKF is proposed. The
effectiveness of the nonlinear CKF-SLAM over EKF- and UKF-SLAM is demonstrated.

We propose a couple of new nonlinear state estimation algorithms, namely, cubature
information filters (CIFs) and cubature H∞ filters (CH∞Fs), and their square root versions.
The CIF is derived from an extended information filter and a CKF. The CIF is further ex-
tended for use in multi-sensor state estimation and its square root version is derived using
a unitary transformation. For non-linear and non-Gaussian systems, we fuse an extended
H∞ filter and CKF to form CH∞F which has the desirable features of both CKF and an
extended H∞ filter. Further, we derive a square root CH∞F using a J-unitary transforma-
tion for numerical stability. The efficacies of the proposed algorithms are evaluated on
simulation examples.
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Chapter 1

Introduction

1.1 Background and Motivation

Control systems design is necessary for almost all practical systems. The task of a con-

trol engineer is to design the controller to stabilise an unstable system and/or to achieve

the desired performance in the presence of dynamic perturbations including parametric

uncertainties, and disturbance and noise. In general, there are two categories of control

systems, the open-loop and closed-loop control systems [1]. In an open-loop control sys-

tem, the output has no effect on the control action. For a given input, the system gives

a certain output. In the presence of disturbances or dynamic perturbations, the stability

and tracking property of open-loop systems are not guaranteed. In open-loop systems, no

measurements are made at the output for control purpose and hence it does not have the

feedback mechanism. Closed-loop control systems are also known as feedback control

systems. In a closed-loop system, the outputs are measured and compared with the refer-

ence signals to generate the errors. Based on these error signals, the controller generates

the inputs to the system which help the outputs to reach their desirable values.

Any dynamical system can be represented by a set of state variables. If all the state

variables are used to obtain the control signals, it is called as state feedback control system

and if the controller is based on the measured outputs, then it is called as output feedback

1



Chapter 1: Introduction 2

Figure 1.1: An example of a combined state estimation - control approach.

systems. In most of the real-world applications it is always not possible to access the

complete state information due to the limitations on sensors and or cost consideration. If

some of the sensors are very noisy or expensive or heavy, then it is not advisable to use

them to measure the states. Rather, one can use the state estimation methods to obtain the

unavailable states using the output information.

The control systems can be classified in to several ways like; linear and nonlinear,

deterministic and stochastic, time-varying and time-invariant, lumped and distributive

parameter systems, etc. These control systems can be designed based on the output

or state information. State feedback controllers include pole placement control, linear

quadratic regulator (LQR), dynamic inversion, etc. and output feedback controllers in-

clude proportional-integral-derivative (PID) control, linear quadratic Gaussian control,

etc. Many controllers can be designed based on either state feedback or output feedback

like sliding mode control, H∞ control, model predictive control, etc. One can also note

that; even if the complete state information is not available, the state feedback controllers

can be designed using estimated states from state estimation methods. A combined state

estimation - control approach is shown in Figure 1.1. If the state estimator in Figure 1.1 is

the Kalman filter, then this approach reduces to linear quadratic Gaussian (LQG) control.

A similar kind of approach has been explored in Chapter 2 using a sliding mode control

and an H∞ filter.

State estimation is a process of estimating the unmeasured states using the noisy out-

puts, control inputs along with process and measurement models. It has been an active



3 1.1 Background and Motivation

Wiener filter Kalman filter
Mainly used for signal estimation. Can be used for both signal and state esti-

mation.
Both signals and processes noises should
be stationary.

Kalman filter is a generalisation of Wiener
filter for non-stationary signals.

Can be obtained by spectral factorisation
methods.

Requires the solution of the matrix Riccati
equation.

Basically, Wiener filter is a frequency do-
main approach.

Kalman filter is a time domain (state
space) approach.

Table 1.1: Key differences between Wiener and Kalman filters [9].

research area for several decades. Similar to control systems, state estimation can also

be classified as linear and nonlinear, deterministic and stochastic, etc. The earliest state

estimation problem was considered in the field of astronomical studies by Karl Friedrich

Gauss in 1795, where the planet and comet motion was studied using the telescopic mea-

surements [2]. Gauss used the least square method as the estimation tool. After more than

140 years of Gauss’ invention, Andrey Nikolaevich Kolmogorov [3] and Norbert Wiener

[4] solved the linear least-square estimation problem for stochastic systems. Kolmogorov

studied discrete least-estimation problems, whereas, Wiener studied the continuous-time

problems [5]. Wiener filter1 is a useful tool in signal processing and communication the-

ory. But when it specially comes to the state estimation, Wiener filter is seldom used as it

only deals with the stationary processes. Rudolf Emil Kalman extended the Wiener’s work

for more generic non-stationary processes in the path breaking paper [7]. The Wiener filter

was developed in the frequency domain and is mainly used for signal estimation, whereas,

the Kalman filter was developed in the time domain for state estimation. Key differences

between Wiener and Kalman filters are given in Table 1.1.

As the main emphasis of this thesis is on the state estimation, the Wiener filter will

not be further discussed.

The Kalman filter can be defined as “an estimator used to estimate the state of a

1In general, the term ‘filter’ is frequently used for state estimators in the estimation literature. This is
due to Wiener, who studied the continuous-time estimation problem and noted that his algorithm can be
implemented using a linear circuit. In circuit theory, the filters are used to separate the signals over different
frequency ranges. Wiener’s solution extended the classical theory of filter design to problems of obtaining
the filtered signals from noisy measurements [6].
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linear dynamic system perturbed by Gaussian white noise using measurements that are

linear functions of the system state but corrupted by additive Gaussian white noise [8]”.

The Kalman filter and its variants are the main estimation tool for practical systems in

the past several decades. The Kalman filter can be represented in an alternative form

as the information filter, where the parameters of interest are the information states and

the inverse of covariance matrix rather than states and covariance. Information filters

are easier in initialisation compared to conventional Kalman filters and the update stage

is computationally economic, and it can be easily extended for multi-sensor fusion; for

more details please see [9, 10]. Both Kalman and information filters can be derived in the

Gaussian framework and they need accurate process and measurement models. The early

success of the Kalman filter in 1960s in aerospace applications is due to the availability

of accurate system models, which are obtained after spending millions of dollars on the

space program [11]. However, it is not worth to spend that huge amount of money in

most other industrial applications to get an accurate model. One of the alternatives to the

Kalman filter is to develop the estimator using the concepts of robust control. Several

researchers have explored the robust control theory, specially an H∞ theory, to develop

robust state estimators [12, 13, 14, 15, 16, 17]. In H∞ filters, the requirements on the

accurate models or ‘apriori’ statistical noise properties can be relaxed to certain extent.

In real-time implementation of Kalman filters, the propagated error covariance matri-

ces may become ill-conditioned, which eventually hinders the filter operation. This can

happen if some of the states are measured with greater precision than others, where the el-

ements of covariance matrix corresponding to accurately measured states will have lower

values, while the other entries will have higher values. These types of ill-conditioned co-

variance matrices may cause numerical instability during the online implementation. To

circumvent these difficulties, one can use square root Kalman filters, where the square root

of the error covariance matrices are propagated. Some of the key properties of square root

filters are symmetric positive definiteness of error covariances, availability of square root

factors, doubled order precision, improved numerical accuracy, etc. [ 6, 23, 24, 25, 26].
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Similar to square root Kalman filters, the information and H∞ filters were also explored

as square root information filters [27, 28, 29] and square root H∞ filters [ 6, 30].

Initially the Kalman filter was developed for the linear systems. However, most of

the real-world problems are nonlinear and hence the Kalman filter has been further ex-

tended for nonlinear systems. Stanley F. Schmidt was the first researcher to explore the

Kalman filter for nonlinear systems, while doing so he developed the so called extended

Kalman filter (EKF), see [31] for fascinating historical facts about the development of the

EKF for practical applications. However, EKFs are only suitable for ‘mild’ nonlineari-

ties where the first-order approximations of the nonlinear functions are available and they

also require evaluation of state Jacobians at every iterations. To overcome some of the

limitations of EKF, an unscented Kalman filter (UKF) has been proposed [32, 33], which

is a derivative free filter. The UKF uses the deterministic sampling approach to capture

the mean and covariances with sigma points and in general has been shown to perform

better than EKF in nonlinear state estimation problems. The UKFs are further explored

in information domain for decentralised estimation [34, 83, 36]. There are a few other

nonlinear estimation techniques found in the literature, to name a few, Rao-Blackwellised

particle filters [38], which are the improved version of particle filters [39], Gaussian fil-

ters [40], state dependent Riccati equation filters [41, 42], sliding mode observers [43],

Fourier-Hermite Kalman filter [44], etc.

Recently, the cubature Kalman filter (CKF) [45] has been proposed for nonlinear state

estimation. CKF is a Gaussian approximation of Bayesian filter, but provides a more

accurate filtering estimate than existing Gaussian filters. In this thesis, we explore the

CKF for multi-sensor state estimation and for non-Gaussian noises. The efficacy of the

proposed methods are demonstrated on various simulation examples.
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Figure 1.2: Flow-chart of the thesis.

1.2 Thesis Organisation and Contributions

A graphical representation of the thesis is shown in Figure 1.2. The thesis is organised in

the following manner.

Chapter 2 begins with mathematical preliminaries of Kalman and H∞ filters. The detailed

derivation of Kalman filter and the game theory approach to the discrete H∞ filter is briefly

discussed. In this Chapter, we propose a combined use of sliding mode control (SMC)

and an H∞ filter for a quadruple-tank system. It is assumed that, out of the four states only

two states are available. The complete state vector is estimated using an H∞ filter and the

SMC is designed based on the estimated states. The proposed H∞ filter based SMC can



7 1.3 List of Publications

be easily extended for other practical systems.

Chapter 3 discusses the nonlinear state estimation methods like EKF, UKF and, most

focussed on CKF. A solution to the Simultaneous Localisation and Mapping (SLAM)

using CKF is presented. Different simulations are performed to compare EKF-, UKF-

and CKF-SLAM.

In Chapter 4, the cubature information filter (CIF) is first derived from an extended

information filter and a CKF. The CIF is then extended to multi-sensor state estimation,

where the data from various nonlinear sensors are fused. For numerical accuracy, square

root cubature information filter is further developed for the single sensor as well as multi-

sensor cases. The efficacy of the multi-sensor square root CIF is validated on a permanent

magnet synchronous motor example.

Chapter 5 deals with the fusion of an extended H∞ filter and CKF to form a cubature

H∞ filter (CH∞F). The CH∞F is derived for state estimation of nonlinear systems with gen-

eral noises; not limited to Gaussian noises. The square root CH∞F is then derived using

the J-unitary transformation. The effectiveness of the square root CH∞F is demonstrated

on a continuous stirred tank reactor problem. The combined control and estimation prob-

lem is considered and a number of simulations are performed to verify the efficacy of the

square root CH∞F in the presence of Gaussian and non-Gaussian noises.

Finally, the concluding remarks on the proposed methods and a detailed future work

scheme are presented in Chapter 6.

1.3 List of Publications

1. K. P. Bharani Chandra, D.−W Gu and I. Postlethwaite, “Square−root cubature

information filter,” IEEE Sensors Journal, vol. 13, no. 2, pp. 750−758, 2013.

2. A. Bajodah, H. M. Tariq, K. P. Bharani Chandra, R. Ahmed and D.−W Gu, “Fault

tolerant control of aircraft actuating surfaces using generalized DI and integral SM

Control,” Journal of Intelligent and Robotic Systems, vol. 69, pp. 181−188, 2013.



Chapter 1: Introduction 8

3. K. P. Bharani Chandra and D.−W Gu, “Nonlinear state estimation algorithms

in aerospace control systems,” Book chapter in Computational Intelligence in

Aerospace Sciences, (Editors: M. Vasile and V. M. Becerra), AIAA, 2014.

4. K. P. Bharani Chandra, D.−W Gu and I. Postlethwaite, “SLAM using EKF, EH∞

and mixed EH2/H∞ filter,” in Proceedings of IEEE International Symposium on

Intelligent Control (Multi−Conference on Systems and Control), Yokohama, Japan,

Sept., 2010.

5. K. P. Bharani Chandra, D.−W Gu and I. Postlethwaite, “Cubature information fil-

ter and its applications,” in Proceedings of IEEE American Control Conference,

California, July, 2011.

6. K. P. Bharani Chandra, D.−W Gu and I. Postlethwaite, “Fusion of an extended H∞

filter and cubature Kalman filter,” in Proceedings of 18th IFAC World Congress,

Italy, Sept., 2011.

7. K. P. Bharani Chandra, D.−W Gu and I. Postlethwaite, “Cubature Kalman filter

based localization and mapping,” in Proceedings of 18th IFAC World Congress,

Italy, Sept., 2011.

8. K. P. Bharani Chandra, H. Srikanthan, D.−W Gu, B. Bandyopadhyay and I.

Postlethwaite, “Discrete−time sliding mode control using an H∞ filter for a quadru-

ple tank system,” in Proceedings of 12th IEEE workshop on Variable structure sys-

tems (VSS), Bombay, India, Jan., 2012.

9. K. P. Bharani Chandra, D.−W Gu and I. Postlethwaite, “Nonlinear state estimation

for induction and permanent magnet synchronous motors,” in Proceedings of IEEE

International workshop on Electronics Machine, Power Electronics and Engineer-

ing, Lushan, China, April, 2012.



9 1.3 List of Publications

10. K. P. Bharani Chandra, D.−W Gu and I. Postlethwaite, “Cubature H∞ information

filter,” European Control Conference, Zurich, Switzerland, July 2013.

Another couple of papers have been submitted for possible publication in journals.



Chapter 2

Linear State Estimation and its

Application in Control Theory

2.1 Introduction

State estimation is the process of estimating the state vector using uncertain and inaccu-

rate measurements along with the control inputs, process and measurement models. It has

been an active research area for several decades and plays a key role in practical applica-

tions. Real-life applications of the state estimation include state and parameter estimation

in chemical process plants, electrical machinery, data assimilation, econometrics, fault

detection and isolation, control system design, etc., where either sensors are noisy or it

is difficult to measure the states. Linear state estimation deals with the state estimation

of linear systems and linear measurement models. Although, all the practical systems

have nonlinearities in process and measurement models; it is worth to explore some of

the linear state estimation methods, which can be easily extended to nonlinear systems.

In this chapter, we will consider the description on the Kalman and H∞ filters. These two

methods are the most relevant linear estimation methods required for further chapters.

The usage of state estimation in a control application is also explored in this chapter. The

control mechanism used to control the heights of the quadruple-tank system is sliding

10
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mode control. The combined control and estimation for a quadruple tank is considered.

It is assumed that only two states of the quadruple-tank are available and the complete

state vector is estimated using the state estimation methods. The estimated states from the

filters are then used for sliding mode control.

The rest of this chapter is structured as follows. Section 2.2 introduces the discrete-

time Kalman filter. In particular, Section 2.2.1 details the process and measurement mod-

els, Section 2.2.2 derives the Kalman filter and the basic equations of the Kalman filter

are summarised in Algorithm 1. Section 2.3 deals with the H∞ filter and is summarised

in Algorithm 2. Section 2.4 examines the combined state estimation and sliding mode

control for a quadruple-tank system, detailed simulations in the presence of Gaussian and

non-Gaussian noises are presented in Section 2.5 and this chapter is concluded in Section

2.6.

2.2 The Discrete-Time Kalman Filter

The Kalman filter is a set of mathematical equations that provides an efficient computa-

tional (recursive) way to estimate the state vector of a system. In this chapter, Kalman

filter is described in discrete-time.

2.2.1 Process and Measurement Models

Consider the discrete linear process and measurement models as

xk = Fk−1xk−1 +Gk−1uk−1 +wk−1, (2.1)

zk = Hkxk +vk, (2.2)

where k ≥ 1 is the time index, xk is the state vector, uk is the control input, zk is the

measurement, wk−1 and vk are the process and measurement noises, respectively.
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The process and measurement noises are assumed to be a Gaussian-distributed1 ran-

dom variables, which have zero means and covariances of Qk−1 and Rk,

wk−1 = N (0,Qk−1)

vk = N (0,Rk)

where N represents the Gaussian or normal probability distribution.

The process and measurement noises at any time are assumed to be independent of

the state of the system

E [wixT
j ] = 0, E [wiwT

j ] = Qiδi j ∀ i, j

and

E [vixT
j ] = 0, E [vivT

j ] = Riδi j ∀ i, j

where δi j is the Dirac function and E [·] is the expectation operator.

2.2.2 Derivation of the Kalman filter

The derivation in this section closely follows the one given in [50] and [51]. The Kalman

filter gives an estimate, x̂i| j, which minimises the mean-squared estimation error condi-

tioned on the measurements sequence, Z j = [z1,z2, . . . ,z j]. The estimated state is the

expected value of state conditioned on the measurements sequence and is given by

x̂i| j = E[xi|Z j]. (2.3)

1The Kalman’s original derivation did not use the Baye’s rule and does not require the exploitation of
any specific error distribution information. The Kalman filter is the minimum variance estimator if the noise
is Gaussian, and it is the linear minimum variance estimator for linear systems with non-Gaussian noises
[7, 11, 32, 46].
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The error between the actual and estimated states is

xe,i| j = xi − x̂i| j (2.4)

and the covariance of x̂i| j is

Pi| j = E[xe,i| jxT
e,i| j|Z j]. (2.5)

The Kalman filter is a recursive algorithm consisting of prediction and update stages. In

the prediction stage, the state and the covariance at kth instant are predicted based on

the information at (k−1)th instant. Once the measurement is obtained at kth instant, the

predicted state and covariance are used to form the updated state estimate and updated

covariance at kth instant. This process then repeats recursively.

The predicted state can be obtained by taking the expectation of the state model con-

ditioned on measurements up to (k−1)th instant and is given by

x̂k|k−1 = E[xk|Zk−1]

= E[(Fk−1xk−1 +Gk−1uk−1 +wk−1)|Zk−1]

= Fk−1E[xk−1|Zk−1]+Gk−1uk−1 +E[wk−1|Zk−1]

= Fk−1x̂k−1|k−1 +Gk−1uk−1. (2.6)

Similarly, the predicted covariance at kth instant based on (k−1)th can be found as

Pk|k−1 = E[(xe,k|k−1xT
e,k|k−1)|Zk−1]

= E[(xk − x̂k|k−1)(xk − x̂k|k−1)
T |Zk−1]

= E[(Fk−1xk−1 −Fk−1x̂k−1|k−1 +wk−1)(Fk−1xk−1 −Fk−1x̂k−1|k−1 +wk−1)
T |Zk−1]

= Fk−1E[(xk−1 − x̂k−1|k−1)(xk−1 − x̂k−1|k−1)
T |Zk−1]FT

k−1 +E[(wk−1wT
k−1)|Zk−1]

= Fk−1Pk−1|k−1FT
k−1 +Qk−1. (2.7)

The predicted measurement and the innovation vector, which is the difference between
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actual measurement and the predicted measurement, can be obtained as

ẑk|k−1 = E[zk|Zk−1]

= E
[
Hkxk +vk|Zk−1

]
= Hk(E[xk|Zk−1]+E[vk|Zk−1]

= Hkx̂k|k−1 (2.8)

and

νk = zk − ẑk|k−1

= zk −Hkx̂k|k−1. (2.9)

After obtaining the predicted state and covariance, the next task is to obtain the updated

state and covariance for the recursive process. The updated state vector can be obtained

from the predicted state and the innovation vector and is given as

x̂k|k = x̂k|k−1 +Kkνk (2.10)

where, Kk is the Kalman gain, which dictates the influence of the innovation on the up-

dated state vector. The error between the actual and updated states are given by

xe,k|k = xk − x̂k|k

= xk − [x̂k|k−1 +Kkνk]

= xe,k|k−1 −Kkνk

= xe,k|k−1 −Kk(zk −Hkx̂k|k−1)

= xe,k|k−1 −Kk(Hkxk +vk −Hkx̂k|k−1)

= xe,k|k−1 −Kk(Hkxe,k|k−1 +vk)

= (I−KkHk)xe,k|k−1 −Kkvk (2.11)
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where, I is the identity matrix of an appropriate size.

The covariance update can be written as

Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)
T |Zk]

= E[xe,k|kxT
e,k|k|Zk]

= E[{(I−KkHk)xe,k|k−1 −Kkvk}{(I−KkHk)xe,k|k−1 −Kkvk}T |Zk]

= E[(I−KkHk)xe,k|k−1xT
e,k|k−1(I−KkHk)

T − (I−KkHk)xe,k|k−1vT
k KT

k

−KkvkxT
e,k|k−1(I−KkHk)

T +KkvkvT
k KT

k |Zk]

= (I−KkHk)E[xe,k|k−1xT
e,k|k−1](I−KkHk)

T − (I−KkHk)E[xe,k|k−1vT
k |Zk]KT

k

−KkE[vkxT
e,k|k−1|Zk](I−KkHk)

T +KkE[vkvT
k |Zk]KT

k

= (I−KkHk)Pk|k−1(I−KkHk)
T +KkRkKT

k

= Pk|k−1 −KkHkPk|k−1 −Pk|k−1HT
k KT

k +KkRkKT
k . (2.12)

By taking the trace2 on both sides of Eq. (2.12) yields

Tr(Pk|k) = Tr(Pk|k−1)−2Tr(KkHkPk|k−1)+Tr(Kk(HkPk|k−1HT
k )K

T
k )+Tr(KkRkKT

k )

(2.13)

To evaluate the updated covariance, Pk|k, the Kalman gain , Kk is also required. The next

task is to find the Kalman gain. The Kalman filter aims at minimising the mean-square

2

(Pk|k−1HT
k KT

k )
T = KkHkPk|k−1

Tr(Pk|k−1HT
k KT

k )
T = Tr(KkHkPk|k−1)
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estimation error. By taking the partial derivative3 of Eq.(2.12) with respect to Kk gives

∂Tr(Pk|k)

∂Kk
=−2Pk|k−1HT

k +2KkHkPk|k−1HT
k +2KkRk. (2.14)

By equating the right hand side of Eq. (2.14) to 0 yields

−2(I−KkHk)Pk|k−1HT
k +2KkRk = 0. (2.15)

By solving Eq.(2.15) for Kk yields

KkRk = Pk|k−1HT
k −KkHkPk|k−1HT

k

Pk|k−1HT
k = Kk(Rk +HkPk|k−1HT

k )

Kk = Pk|k−1HT
k (HkPk|k−1HT

k +Rk)
−1. (2.16)

Alternative form of updated covariance can be obtained by substituting Eq.(2.16) in

Eq.(2.12)

Pk|k = (I−KkHk)Pk|k−1 (2.17)

and

P−1
k|k = P−1

k|k−1 +HT
k R−1

k Hk. (2.18)

The Kalman filter is now summarised in Algorithm 1.

2.3 Discrete-Time H∞ Filter

The Kalman filter assumes the process model has known dynamics and the noise sources

has known statistics. However, these assumptions may limit the application of estimators

3For any matrix, M, and a symmetric matrix, N,

∂Tr(MNMT )

∂M
= 2MN.
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Algorithm 1 The Kalman Filter
Initialise the state vector, x̂0|0, and the covariance, P0|0 (set k = 1).
Prediction

Evaluate the predicted state and covariance using

x̂k|k−1 = Fk−1x̂k−1|k−1 +Gk−1uk−1

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 +Qk−1.

Measurement Update
The updated state and covariance can be obtained as

x̂k|k = x̂k|k−1 +Kkνk

Pk|k = (I−KkHk)Pk|k−1

where,

νk = zk −Hkx̂k|k−1

Kk = Pk|k−1HT
k (HkPk|k−1HT

k +Rk)
−1.

in many applications, as the process dynamics and noise statistics are not exactly known

or may not be available. To overcome some of these limitations of Kalman filters, a few

researchers have proposed H∞ filters [12, 13, 14, 15, 16, 17, 29].

This section presents a brief introduction to an H∞
4 filter which minimises the worst-

case estimation error. This is in contrast to the Kalman filter which minimises the expected

value of the variance of the estimation error. Furthermore, H∞ does not make any assump-

tions about the statistics of the process and measurement noise. For a detailed formulation

and derivation see for example [11], [15], [48] and [47].

The discrete-time process and observation models can be written as

xk = Fk−1xk−1 +Gk−1uk−1 +wk−1, (2.19)

zk = Hkxk +vk, (2.20)

where k is a time index, xk is a state vector, uk is a control input, zk is a measurement

4H∞ filters minimizes the worst case energy gain from the noise input to the estimation error; which is
equivalent to minimising the H∞ norm.
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vector, and wk−1 and vk are the process and measurement noises. These models are almost

similar to that of the Kalman filter described in the Section 2.2.1; except the assumption

on noises. The noise terms wk−1 and vk may be random with possibly unknown statistics,

or even they may be deterministic. They may have a non-zero mean.

In H∞ filter, instead of directly estimating the state one may estimate a linear combi-

nation of states

nk = Lkxk. (2.21)

By replacing L with the identity matrix, one can directly estimate the state vector.

In the game theory approach to H∞ filtering, the performance measure is given by

J∞ =
∑N

k=1 ∥nk − n̂k∥2
Mk

∥x0 − x̂0∥2
P−1

0
+∑N

k=1(∥wk∥2
Q−1

k
+∥vk∥2

R−1
k
)

(2.22)

where P0, Qk, Rk, and Mk are symmetric positive definite weighing matrices chosen

by the user based on the problem at hand. The norm notation used in this section is

∥e∥2
Sk
= eT Ske.

In this dynamic game theory framework, there are essentially two players: the de-

signer and the nature. The designer’s goal is to find the estimate of the error nk − n̂k so

that the cost J∞ is minimised, while the nature’s goal is to maximise J∞. The numerator

of J∞ is the energy of the estimation error and the denominator can be considered as the

energy of the unknown disturbances. The nature can simply put large magnitudes of wk,

vk, and x0 to achieve its ultimate goal, and this makes the game unfair to the designer.

Thus, the J∞ is defined with (x0 − x̂0),wk, and vk in the denominator. Then, the nature

needs to cleverly choose those disturbances in order to maximise nk − n̂k; likewise the

designer also should be smart to find an estimation strategy to minimise nk − n̂k.

The task of the H∞ filter is to minimise the state estimation error so that J∞ is bounded

by a prescribed threshold under the worst case wk, vk, and x0

supJ∞ < γ2 (2.23)



19 2.3 Discrete-Time H∞ Filter

where “sup” stands for supremum, γ > 0 is the error attenuation parameter.

Based on Eq.(2.23), the designer should find x̂k so that J∞ < γ2 holds for any distur-

bances in wk, vk, and x0. The best the designer can do is to minimise J∞ under worst case

disturbances, then the H∞ filter can be interpreted as the following ‘minmax’ problem

min max J∞

x̂k wk,vk,x0

(2.24)

For detailed analysis and solution procedure to the H∞ filtering problem see [47] and [11].

In this section, we use the H∞ filter algorithm given in [49], as the relevant equations in

this approach are closely related to that of the Kalman filter.

The predicted state vector and auxiliary matrix of H∞ filter are

x̂k|k−1 = Fk−1x̂k−1|k−1 +Gk−1uk−1

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 +Qk−1

and the updated state and inverse of the updated auxiliary matrix can be obtained as

x̂k|k = x̂k|k−1 +K∞[zk −Hkx̂k|k−1] (2.25)

P−1
k|k = P−1

k|k−1 +HT
k R−1

k Hk − γ−2In (2.26)

where

K∞ = Pk|k−1HT
k [HkPk|k−1HT

k +Rk]
−1 (2.27)

and In denotes the identity matrix of dimension n×n.

An H∞ filter is summarised in Algorithm 2, which has the similar structure to that of

the Kalman filter.

It is interesting to note that, for very high values of γ , the updated auxiliary matrix

of H∞ filter in Eq.(2.26) and the covariance matrix of the Kalman filter in Eq.(2.18) are

equivalent. Hence, the H∞ filter’s performance can be matched with that of the Kalman
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Algorithm 2 H∞ Filter
Initialise the state vector, x̂0|0, and the auxiliary matrix, P0|0 (set k = 1).
Prediction

1: Evaluate the predicted state and auxiliary matrix using

x̂k|k−1 = Fk−1x̂k−1|k−1 +Gk−1uk−1

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 +Qk−1.

Measurement Update
1: The updated state and the inverse of auxiliary matrix can be obtained as

x̂k|k = x̂k|k−1 +K∞νk

P−1
k|k = P−1

k|k−1 +HT
k R−1

k Hk − γ−2In

where,

νk = zk −Hkx̂k|k−1

K∞ = Pk|k−1HT
k (HkPk|k−1HT

k +Rk)
−1

filter, but the reverse is not true.

2.4 State Estimation and Control of a Quadruple-Tank

System

In the previous sections, the Kalman and H∞ filters were discussed. This section deals

with the combined state estimation and control problem for a quadruple-tank system using

Kalman filter and H∞ filter. The controller design is based on the sliding mode control

(SMC), which involves a stable sliding surface design followed by a control law design

to ensure the system states onto the chosen surface [63]. We present the combined SMC

and H∞ filter for the quadruple-tank. Although we will only explore this approach for the

quadruple-tank, it can be applicable to many other practical systems. The basic structure

of this approach is shown in Figure 2.1. In this section, firstly, a brief literature survey on

quadruple-tank system is given. The mathematical model of the quadruple-tank system is

then presented, which is followed by SMC design and combined SMC-H∞ filter closed-
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Figure 2.1: A new combined SMC-H∞ filter approach.

loop simulations.

2.4.1 Quadruple-Tank System

The quadruple-tank is an interesting multivariable plant consisting of four interconnected

tanks and two pumps [53] that some researchers have used to explore different control and

estimation methods. Decentralised proportional-integral (PI) control, internal model con-

trol (IMC) and H∞ controllers have been designed for the quadruple-tank system [52],

and it was shown that the IMC and H∞ controllers provided better performance than

the PI controller. Different nonlinear model predictive controllers were proposed in [54]

and [55], interconnection and damping assignment passivity based control for quadruple-

tank system was given in [56]. A nonlinear sliding mode control (SMC) with feedback

linearisation was proposed and implemented in [57].

It is a well known fact that all the states are required for state feedback controller

design. However, in most of the practical applications, the states are not always available

for feedback. Similarly, in the quadruple-tank system, only the first two states are assumed

to be accessible for feedback and hence either one has to rely on output feedback control

methods or the remaining two states are to be estimated for state feedback SMC design.

The usage of an extended Kalman filter and high gain observers for the state estimation of

a quadruple-tank system is given in [58], state estimation in non-Gaussian domain using

particle filter is described in [59]. A very few researchers have demonstrated combined
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controller-observer scheme for quadruple-tank. In [60], Kalman filter is used for the

estimation of unavailable states of a quadruple-tank system and the controller is based on

PID and IMC.

In this section, discrete-time SMC using the Kalman and H∞ filters is designed for

the quadruple-tank. Nonlinear sliding surface proposed in [63] and [64] is considered to

achieve better performance. The SMC for a quadruple-tank is also reported in [57]. But,

our approach is different from [57] in two aspects. In [57], the objective is to control

only two states and linear sliding surfaces are constructed using only the first two states.

However, in this section the main emphasis is to control all the four states and nonlinear

sliding surfaces are designed using complete state information. Secondly, SMC given in

Theorem 1 of [57] require the full state information. Whereas, we have assumed only two

states are available from sensors and the complete state vector is estimated using Kalman

and H∞ filters.

The quadruple-tank system is shown in Figure 2.2, which consists of four intercon-

nected tanks, two pumps and two level sensors. For more details, see [53] for continuous

time plant model. The quadruple-tank is discretised using Euler’s method with sampling

time of ∆T = 0.1s. The discrete-time nonlinear quadruple-tank model is

xk+1 =


x1k +∆T (− a1

A1

√
2gx1k +

a3
A1

√
2gx3k +

γ1k1
A1

u1)

x2k +∆T (− a2
A2

√
2g2k +

a4
A2

√
2gx4k +

γ2k2
A2

u2)

x3k +∆T (− a3
A3

√
2gx2k +

(1−γ2)k2
A3

u2)

x4k +∆T (− a4
A4

√
2gx4k +

(1−γ1)k1
A4

u1)


where, the state vector x, consist of water levels of all tanks is x = [x1,x2,x3,x4]

T . The

inputs are the voltages to the two pumps, [u1,u2]
T and the outputs are the voltage from

level measurements of the first two tanks. Ai is the cross section of Tank i and ai is cross

section of outlet hole. The first input u1, directly effects the first and fourth states, whereas

the second input u2, has direct influence on second and third states. The outputs are the
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Figure 2.2: Quadruple-Tank System [53].
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Parameters Values
A1, A3 (cm2) 28
A2, A4 (cm2) 32
a1, a3 (cm2) 0.071
a2, a4 (cm2) 0.057

kc (V/cm) 0.5
g (cm/s2) 981

Table 2.1: Quadruple-tank parameters.

measured level signals, kcx1 and kcx2. The additive process and sensor noises are added

to the state and output vectors, respectively. The parameter values used for simulation are

given in Table 2.1.

One of the typical features of this quadruple-tank process is that, the plant can ex-

hibit both minimum and non-minimum phase characteristics [53]. In this section, the

control and estimator design are done at the non-minimum phase operating point. The

corresponding parameters for this operating point are

[x0
1,x

0
2,x

0
3,x

0
4] = [12.6,13,4.8,4.9]

[k1,k2] = [3.14,3.29]

[γ1,γ2] = [0.43,0.34]

The quadruple-tank is linearised at the above operating point and is given below

xk+1 = Fxk +Guk +wk (2.28)

zk = H+vk (2.29)
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where, the state space matrices are

F =



1+ a11∆T
2
√

x0
1

0 a13∆T
2
√

x0
3

0

0 1+ a21∆T
2
√

x0
2

0 a24∆T
2
√

x0
4

0 0 1+ a31∆T
2
√

x0
3

0

0 0 0 1+ a41∆T
2
√

x0
4



G =



b1∆T 0

0 b2∆T

0 b3∆T

b4∆T 0


H =

 kc 0 0 0

0 kc 0 0


and the parameters are

a11 = − a1
A1

√
2g, a12 = a3

A1

√
2g, a21 = − a2

A2

√
2g, a24 = a4

A2

√
2g, a31 = − a3

A3

√
2g, a41 =

− a4
A4

√
2g, b1 =

γ1k1
A1

, b2 =
γ2k2
A2

, b3 =
(1−γ2)k2

A3
, and b4 =

(1−γ1)k1
A1

.

2.4.2 Sliding Mode Control of Quadruple-Tank System

This section deals with the SMC of quadruple-tank system. The objective is to control

all the four states, unlike in [57], where only two states are controlled. For an improved

performance, nonlinear sliding surfaces are considered during SMC design. Using a non-

linear sliding surface, the damping ratio of a system can be varied from its initial low

value to final high value. The initial low damping ratio results in a faster response and the

later high damping avoids overshoot. Thus the nonlinear surface ascertains the reduction

in settling time without any overshoot [63], [64].
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2.4.2.1 SMC Design

The plant in Eq.(2.28) is not in the regular form, as the input matrix G does not have any

zero-row vectors. Before designing the SMC control, the plant need to be transformed

in the regular form. The plant can be transformed into the regular form by using the

transformation matrix

T =



− 1
b1

0 0 1
b4

0 − 1
b2

1
b3

0

0 0 1
b3

0

0 0 0 1
b4


.

The new transformed system can be written as

yk+1 = (T FT−1)yk +T Guk +T Gwk (2.30)

where yk = T xk and it can be further expressed as

yk+1 =

 yu,k+1

yl,k+1

=

 y11 y12

y21 y22


 yu,k

yl,k

+
 0

Gl

uk +

 0

Gl

wk (2.31)



27 2.4 State Estimation and Control of a Quadruple-Tank System

where
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2
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Gl =

 0 ∆T

∆T 0

 .
2.4.2.2 Nonlinear Sliding Surface Design

The performance of the SMC based closed loop system can be enhanced by using the

nonlinear surfaces [63], [64] and hence in the present work the nonlinear sliding surface

is considered.

Let the nonlinear sliding surface [63] be

sk = cT
k yk (2.32)

where

cT
k = [K −ψ(zk)yT

12P(y11 −y12K) I2] (2.33)

and I2 is the second order identity matrix.
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The gain matrix,

K =

 −0.66651 −0.2026

0.06417 −0.6641

 (2.34)

is obtained by solving the linear quadratic regulator (LQR) problem for y11 and y12, such

that (y11 − y12K) have stable eigenvalues. The weighting matrices considered for LQR

design are

Qlqr =

 10 0

0 10

and Rlqr =

 10 0

0 10

 .
The matrix P, required for Eq.(2.33) is obtained by solving the following Lyapunov equa-

tion

P = (y11 −y12K)T P(y11 −y12K)+W. (2.35)

By selecting W as I2, the corresponding P matrix is

 1223.39 −32.47

−32.57 162.17

 .
The nonlinear function, ψ(zk), can be chosen as [63]

ψ(zk) =

 −β1e−m1|x0
1,k−1| 0

0 −β2e−m2|x0
2,k−1|

 (2.36)

where β1, β2, m1 and m2 are tuning parameters. These parameters are chosen as unity and

ψ(zk) is chosen such that it satisfies the below condition [64], [65]

2ψ(zk)+ψ(zk)yT
12Py12ψ(zk)≤ 0. (2.37)
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2.4.2.3 Control Law

In this sub-section, the control law will be derived. From Eq.(2.32), sk+1 can be written

as

sk+1 = cT
k+1yk+1

sk+1 = cT
k+1T xk+1. (2.38)

By using Eq.(2.28) and (Eq.2.38), sk+1 can be written as

sk+1 = cT
k+1T Fxk + cT

k+1T Guk + cT
k+1T Gwk. (2.39)

In discrete-time sliding mode control, one of the objectives is to achieve the sliding sur-

faces, sk = 0 in finite time [63]. This can be achieved by an equivalent control law [66]

by setting

sk+1 = 0. (2.40)

By using Eq.(2.39) and Eq.(2.40), the control law can be derived as

cT
k+1T Fxk + cT

k+1T Guk + cT
k+1T Gwk = 0 (2.41)

and

uk = −(cT
k+1T G)−1(cT

k+1T Fxk + cT
k+1T Gwk). (2.42)

The aforementioned control law contains uncertain terms or process noise. However, in

general these uncertain terms are not known and hence they can be replaced by the average

of known bounds of these terms [64]. The modified control law can be written as

uk =−(cT
k+1T G)−1(cT

k+1T Fxk +dm). (2.43)
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where dm is the average of lower and upper bounds of cT
k+1T Gwk. From Eq.(2.43), it

can be seen that the control law at kth time instant require the information at k+1th time

instant, and in general is not feasible. However, from Eq.(2.33) and Eq.(2.36), only the

output information at kth instant (x1,k and x2,k) is required to find ck+1 and hence the

control input, uk, can be evaluated using the output information at kth instant.

2.4.3 Stability of the nonlinear sliding surface

From Eq.(2.31),

yu,k+1 = y11yu,k +y12yl,k (2.44)

During the sliding, sk = 0, and hence Eq.(2.32) can be written as

cT
k yk = 0 (2.45)

⇒
[
K −ψ(zk)yT

12Pyeq I2
][

yu,k ylk

]T
= 0 (2.46)

⇒ yl,k =−[K −ψ(zk)yT
12Pyeq]yu,k (2.47)

where yeq = y11 −y12K.

From Eq.(2.44) and Eq.(2.47)

yu,k+1 = y11yu,k +y12(−[K −ψ(zk)yT
12Pyeq])yu,k (2.48)

= (y11 −y12K)yu,k +y12ψ(zk)yT
12Pyeqyu,k (2.49)

= (y12ψ(zk)yT
12P+ I)yeqyu,k. (2.50)

The stability of the nonlinear sliding surface can be proved by using the Lyapunov theory

(see Appendix A for more details). Let us assume the Lyapunov function for the system

defined in Eq.(2.50) is

Vk = yT
u,kPyu,k. (2.51)
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The increment of Vk is

△Vk = Vk+1 −Vk (2.52)

= yT
u,k+1Pyu,k+1 −yT

u,kPyu,k

= (yT
u,kyT

eq +yT
u,kyT

eqPy12ψ(zk)yT
12)P(yeqyu,k +y12ψ(zk)yT

12Pyeqyu,k)−yT
u,kPyu,k

= yT
u,kyT

eqPyeqyu,k +yT
u,kyT

eqPy12ψ(zk)yT
12Pyeqyu,k +yT

u,kyT
eqPy12ψ(zk)yT

12Pyeqyu,k +

yT
u,kyT

eqPy12ψ(zk)yT
12Py12ψ(zk)yT

12Pyeqyu,k −yT
u,kPyu,k

= −yT
u,k(P−yT

eqPyeq)yu,k +yT
u,kyT

eqPy12[2ψ(zk)+ψ(zk)yT
12Py12ψ(zk)]yT

12Pyeqyu,k

= −yT
u,kWyu,k +MT [2ψ(zk)+ψ(zk)yT

12Py12ψ(zk)]M (2.53)

where M = yT
u,kyT

eqPy12.

From Eq.(2.37) and Eq.(2.53), one can write

∇V ≤−yT
u,kWyu,k. (2.54)

Since the increment of the Lyapunov function is negative definite, the equilibrium point

for Eq.(2.50) is stable, and hence the designed nonlinear sliding surface is stable. In a

similar way by constructing the Lyapunov function of sliding surface, sk+1, the increment

of the Lyapunov function can be easily shown as negative definite which in turn proves

the existence of sliding mode [64].

2.5 Simulations and Results

By using the filter Algorithms described in Section 2.2 and Section 5.2, all the four states

of quadruple-tank are estimated using x1 and x2 . One may note that, the control input u

required for the quadruple-tank is obtained from SMC controller given in Section 2.4.2.

This proposed scheme for a quadruple-tank system is shown in Figure 2.3. The process

noise is added to all the four states, whereas the measurement noise is added to the last
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Figure 2.3: Proposed scheme using SMC and H∞ filter for quadruple-tank system

two states only; the quadruple-tank block in Figure 2.3 assumed to have additive noises

and hence separate noises are not added in the block diagram. The usage of the H∞ filter

in this work is required for two purposes; it is used to estimate the two unavailable states,

and to inherently filter out the process and sensor noises. One may note that in this work

although the first two states of the quadruple-tank are available from sensors, we are still

using the full order state estimation rather than reduced order state estimation. The first

two estimated states are less noisy than actual measured states and are beneficial for the

state feedback SMC control design.

This section describes the various simulations done for closed loop quadruple-tank

system. Although, the controller and estimator designs are done for linearised model, the

simulations in this section are performed on full nonlinear model. The SMC given in Sec-

tion 2.4.2 and the estimator in Sections 2.2 and 5.2 are considered in the simulations. The

first two sensed states from quadruple-tank are given to filters, which then estimates all

the four states. These estimated states from estimators are used by the SMC, which then

provides the input to the quadruple-tank system. The initial values of the plant are per-

turbed by +15% of their nominal values, and the objective is to bring back the perturbed



33 2.5 Simulations and Results

states to the actual initial conditions. The chosen initial covariance matrix, P0|0, is

P0|0 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

Two sets of simulations are performed to show the efficacy of the proposed method

and are compared with the Kalman filter’s response. The first set involves the closed loop

simulation in the presence of Gaussian noises and the second one involves the simulation

with non-Gaussian noises.

2.5.1 Simulation in the presence of Gaussian noises

In this subsection, it is assumed that plant and sensor noises, wk and vk, are zero-mean

Gaussian. The standard deviations for all the four states and the measurements are 0.0316.

The corresponding covariance matrices for the Kalman filter are

Q =



0.001 0 0 0

0 0.001 0 0

0 0 0.001 0

0 0 0 0.001


R =

 0.001 0

0 0.001

 .
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Actual SMC−KF

Figure 2.4: Actual and estimated states of the quadruple-tank using the Kalman filter in
the presence of Gaussian noises.
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The tuning parameters for the H∞ filter simulations are

Q =



0.01 0 0 0

0 0.01 0 0

0 0 0.01 0

0 0 0 0.01


R =

 0.01 0

0 0.01

 .
and the performance bound, γ , is chosen as 1. These tuning parameters are chosen by

trial and error method. One can note that, the chosen standard deviations for process and

measurement noises using H∞ filter are higher than the Kalman filter. The closed-loop

performance can further be improved by using rigorous tuning methods; at the cost of

increased computation complexity.

The SMC based quadruple-tank levels using the Kalman filter are shown in Figure

2.4, whereas for the H∞ filter are shown in Figure 2.5. In both figures, the actual and

estimated perturbed states reaches their actual values in the finite time. The estimated

states closely follows the actual states and the error between them decreases with time.

From the initial transient response, it can be seen that the H∞ filter’s response is faster

than that of the Kalman filter’s. The estimation errors for the SMC based Kalman and H∞

filters for Gaussian noises are shown in Figure 2.6. The root mean square error (RMSE)

plots are shown in Figure 2.7, where the SMC based on H∞ filter shows the better per-

formance in the presence of the Gaussian noises. The maximum state estimation errors

over the simulation time (∞-norm) for SMC based Kalman filter’s four states are 1.2051,

1.3111, 2.8799 and 1.4693, respectively and for the SMC based H∞ filter are 0.7185,

0.7254, 1.6648 and 0.8921, respectively. In simulations, the quadruple-tank is excited by

Gaussian noises for both the Kalman and H∞ filters’. In the Kalman filter, if the standard

deviation of noises once fixed then the corresponding covariances are the square of the
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Figure 2.5: Actual and estimated states of the quadruple-tank using H∞ filter in the pres-
ence of Gaussian noises.
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Figure 2.6: Estimation errors for the quadruple-tank using Kalman and H∞ filters in the
presence of Gaussian noises.
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Figure 2.7: RMSEs using Kalman and H∞ filters in the presence of non-Gaussian noises.

standard deviations. However, in the H∞ filter, there is a freedom to select tuning param-

eters irrespective of the noises. Both Kalman and H∞ filters’ performances can further

improved by tuning Q and R. The results in this section are shown for the full nonlinear

model. When the same simulations are repeated with linear open-loop plant model, the

Kalman filter’s response is better than the H∞ filter’s response, as the Kalman filter is the

optimal estimator for linear-Gaussian systems.

2.5.2 Simulation in the presence of non-Gaussian noises

In most of the real-life applications, the assumption of zero-mean and Gaussian noises

are not valid. To validate the proposed approach; non-zero mean, non-Gaussian noises
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Figure 2.8: Actual and estimated states of the quadruple-tank using the Kalman filter in
the presence of non-Gaussian noises.
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are considered for the simulations. The process and measurement noises are

wk =



0.01+0.01× sin(0.1k)

0.01+0.01× sin(0.1k)

0.01+0.01× sin(0.1k)

0.01+0.01× sin(0.1k)


vk =

 0.01+0.01× sin(0.1k)

0.01+0.01× sin(0.1k)

 .
The maximum magnitudes of wk and vk are used in the noise covariance matrices for

the Kalman filter. For the H∞ filter, the tuning parameters given in the Section 2.5.1 are

considered. The closed loop simulations with the sinusoidal noises are shown in Figures

2.8 and 2.9. One can notice that the simulations with the non-Gaussian noises are similar

to the Gaussian case. The H∞ filter’s response converges faster than the Kalman filter’s

response.

The estimation errors for the SMC based Kalman and H∞ filters for non-Gaussian

noises are shown in Figure 2.10. The RMSE plots are shown in Figure 2.11, where the

SMC based on H∞ filter shows the better performance in the presence of the non-Gaussian

noises. The small offsets are due to the non-zero bias of the noises, which were intention-

ally added to verify the effectiveness of the H∞ filter in the presence of non-zero mean

noises. The ∞−norms of state estimation errors over the simulation time for SMC based

Kalman filter’s four states are 1.2004, 1.3677, 2.9674 and 1.4793, respectively and for

the SMC based H∞ filter are 0.7185, 0.7254, 1.6648 and 0.8921, respectively.

2.6 Conclusions

In this chapter, the basic concepts and algorithms for the Kalman and H∞ filters, and

their application in the control theory have been presented. The combined sliding mode

control and H∞ filter scheme for practical systems are proposed. The proposed scheme
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Figure 2.9: Actual and estimated states of the quadruple-tank using H∞ filter in the pres-
ence of non-Gaussian noises.
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Figure 2.11: RMSEs using Kalman and H∞ filters in the presence of non-Gaussian noises.

is implemented on a simulation example of a full nonlinear quadruple-tank system. The

first two states of the quadruple-tank are assumed to be available and the remaining two

states are estimated using the filters; the estimated states are then used for the sliding

mode control design. The efficacy of the proposed approach for quadruple-tank is verified

by extensive simulations. The Kalman and H∞ filters based sliding mode control are

compared for a quadruple-tank and it was found that the H∞ filter based sliding mode

control outperforms the Kalman filter based sliding mode control. It was also shown

that the proposed scheme not only works for Gaussian and non-Gaussian noises, but also

works for non-zero mean noises. This chapter mainly explores the linear state estimation

methods and their applicability to the control theory; the next chapter will focus on non-

linear state estimation methods and their application.



Chapter 3

Nonlinear State Estimation and CKF

SLAM

3.1 Introduction

Nonlinearity can be a challenging issues in the controllers and observers design. Almost

all the practical systems are inherently nonlinear [18], [19], and there are cases when lin-

ear controllers or estimators designs for nonlinear systems are tedious. In this chapter, the

main emphasis is given to the nonlinear state estimation methods and their application.

The Kalman filter and its variants are the main estimation tool for practical systems from

the past several decades. However, Kalman filter was actually derived for linear systems

[7] and later it has been extended for nonlinear applications [31]. The extended version

of the Kalman filter for nonlinear systems is known as an extended Kalman filter (EKF).

Similar to Kalman filter, EKF also has the prediction and measurement update stages. In

EKF, the plant and measurement models are linearised about the best available estimate.

EKFs are only suitable for ‘mild’ nonlinearities where the first-order approximations of

the nonlinear functions are available and they also require evaluation of state Jacobians at

each iteration. In some of the practical applications, these approximations will degrade

the overall performance. To handle some of the issues with the EKF, a derivative free un-

44
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scented Kalman filter (UKF) [32] was proposed; which uses the sigma point to capture the

mean and covariance of the nonlinear system. More recently, the cubature Kalman filter

(CKF) was proposed as an alternative to the UKF. CKF is a Gaussian approximation of

Bayesian filter, but provides a more accurate filtering estimates than existing Gaussian fil-

ters. There are a few other nonlinear estimation techniques found in the literature, namely,

Rao-Blackwellised particle filters [38], which are the improvised version of particle filters

[39], Gaussian filters [40], state dependent Riccati equation filters [41,42], sliding mode

observers [43], Fourier-Hermite Kalman filter [44], adaptive filters [21,22], etc.

This chapter is divided in to two parts; the first part deals with the EKF, UKF and

CKF. The means and covariances of the polar-to-rectangular coordinate transformation

using linearised, unscented and cubature transformations are investigated. In the second

part, we propose a solution to simultaneous localisation and mapping (SLAM) using CKF

and is compared with EKF- and UKF-SLAM.

The rest of this chapter is structured as follows. Section 3.2 deals with the discrete-

time EKF and Section 3.3 deals with the unscented transformation and UKF. Cubature

transformation and CKF are briefed in Section 3.4. A solution to SLAM using CKF is

detailed in Section 3.5.2. Finally, Section 3.6 concludes this chapter.

3.2 Extended Kalman Filter

Consider the discrete nonlinear process and measurement models as

xk = f(xk−1,uk−1)+wk−1 (3.1)

zk = h(xk,uk)+vk (3.2)

where k is the time index, xk ∈Rn is the state vector, uk is control input, zk is the measure-

ment, wk−1 and vk are the process and measurement noises, respectively. These noises

are assumed to be zero mean Gaussian-distributed random variables with covariances of
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Qk−1 and Rk.

Similar to Kalman filter, EKF is also a recursive process consisting of prediction and

measurement update but it requires Jacobians of the process and measurement models.

The predicted state vector and covariance matrix can be written as

x̂k|k−1 = f(x̂k−1|k−1,uk−1) (3.3)

Pk|k−1 = ∇fxPk−1|k−1∇fT
x +Qk−1 (3.4)

and the updated state and covariance can be obtained as

x̂k|k = x̂k|k−1 +Kk[zk −h(x̂k|k−1)] (3.5)

Pk|k = (In −Kk∇hx)Pk|k−1 (3.6)

where In denotes the identity matrix of dimension n×n and the Kalman gain is

Kk = Pk|k−1∇hT
x
[
∇hxPk|k−1∇hT

x +Rk
]−1

. (3.7)

The Jacobians of f and h, ∇fx and ∇hx, are evaluated at x̂k−1|k−1 and x̂k|k−1, respectively.

EKF is summarised in Algorithm 3; for detailed formulation and derivation of EKF, please

see [9] and [11].

3.2.1 Nonlinear Transformation and the effects of Linearisation

The EKF described in Section 3.2 was based on the first order Taylor series approximation

of nonlinear functions. This subsection investigates the effects of linearisation on nonlin-

ear transformation of polar to cartesian coordinates and the estimation error analysis. One

can expect the similar error in EKF, when it applied to nonlinear systems as it uses the

first-order linearisation. The similar discussion has been considered in [11,32,33,46]. In

mapping application, the vehicle (robot/UAV) takes the observation of the landmarks and
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Algorithm 3 Extended Kalman Filter
Initialise the state vector, x̂0|0, and the covariance matrix, P0|0 (set k = 1).
Prediction

1: The predicted state and covariance matrix are

x̂k|k−1 = f(x̂k−1|k−1,uk−1)

Pk|k−1 = ∇fxPk−1|k−1∇fT
x +Qk−1.

Measurement Update
1: The updated state and covariance can be obtained as

x̂k|k = x̂k|k−1 +K
[
zk −h(x̂k|k−1)

]
Pk|k = (In −Kk∇hx)Pk|k−1

where the Kalman gain is

Kk = Pk|k−1∇hT
x
(
∇hxPk|k−1∇hT

x +Rk
)−1

.

outputs the range and bearing of the landmarks. While continuing in motion, the vehicle

builds a complete map of landmarks. For the successful completion of this mapping task,

one of the key steps is to detect the landmarks. The most common sensors used in robotic

mapping is laser [37], which outputs the range and bearing of the landmarks. Mostly,

these outputs have to be converted to the cartesian coordinates for further analysis and

control design.

Consider the polar to cartesian nonlinear transformation given by

 x

y

= h(x) =

 r cosθ

r sinθ

 (3.8)

where x, consisting of range and bearing is x = [r θ ]T , and [x y]T are the cartesian

coordinates of the target. It is assumed that r and θ are two independent variables with

means r̄ and θ̄ , and the corresponding standard deviations are σr and σθ , respectively.



Chapter 3: Nonlinear State Estimation and CKF SLAM 48

The range and bearings in polar coordinates frame can be further written as

r = r̄+ re (3.9)

θ = θ̄ +θe (3.10)

with r̄ = 1 and θ̄ = π
2 . re and θe are the corresponding zero-mean deviations from their

means. It is assumed that re and θe are uniformly distributed1 between ±rm and ±θm,

respectively. A similar scenario has been considered in [11].

The means of x and y, x̄ and ȳ, can be obtained by taking the expectations of x and y

as given below

x̄ = E(r cosθ)

= E[(r̄+ re)(cos(θ̄ +θe))]

= E[(r̄+ re)(cos θ̄ cosθe − sin θ̄ sinθe)]

= E[−r̄ sin θ̄ sinθe − re sin θ̄ sinθe]

= E[−sinθe] (∵ re and θe are independent)

=
1

2θm
[cosθe]

θm
−θm

(from 3.11)

= 0 (3.12)
1If a variable x is uniformly distributed between a and b, U(a,b), then the nth moment of x is

E(xn) =
1

b−a

∫ b

a
xndx. (3.11)
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and

ȳ = E(r sinθ)

= E[(r̄+ re)sin(θ̄ +θe)]

= E[r̄ sin θ̄ cosθe + re sin θ̄ cosθe + r̄ cos θ̄ sinθe + re cos θ̄ sinθe]

= E(r̄ sin θ̄ cosθe)

= E(cosθe)

=
1

2θm
[sinθe]

θm
−θm

(from 3.11)

=
sinθm

θm
< 1. (3.13)

Similarly, the covariance can be obtained as [11]

Px,y = E

[ (x− x̄)

(y− ȳ)

][
(x− x̄)

(y− ȳ)

]T


= E

[ r cosθ

r sinθ − sinθm
θm

][
r cosθ

r sinθ − sinθm
θm

]T


=

 1
2(1+σ2

r )
(

1− sin2θm
2θm

)
0

0 1
2(1+σ2

r )
(

1+ sin2θm
2θm

)
− sin2 θm

θ 2
m

 (3.14)

Simulations were performed to see the true mean and covariance ellipse of the nonlinear

polar to cartesian coordinate transformation. From now onwards, the means of x and y

given in Eqs. (3.12) and (3.13) are called as true mean and the ellipse formed by the

first and fourth elements of the Px,y given in Eq.(3.14) is called as true ellipse. 2000

measurement samples were generated by taking the true range and bearing values of the

target location and adding a zero-mean re and θe, which are uniform distributed between

±0.02 and ±20◦. The corresponding plot is shown in Figure 3.1. The range is varying

from r̄± rm i.e. (1±0.02) and the bearing is varying from θ̄ ±θm i.e.
(π

2 ±0.3491rad
)
.
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Figure 3.1: 2000 random points (∗) are generated with range and bearings, which are
uniformly distributed between ±0.02 and ±20◦.

These random points are then processed through the nonlinear polar to cartesian coordi-

nate transformation and are shown in Figure 3.2. The nonlinear mean and the standard

deviation ellipse are also shown in Figure 3.2.

From Eqs.(3.12) and (3.13), the mean of x is 0 and for the y is less than 1; the same

can be seen in Figure 3.2, where the means of x and y are 0 and 0.9798 (which is less than

1), respectively.

3.2.1.1 Polar to Cartesian Coordinates Transformation: First order linearisation

In this subsection, the polar to cartesian coordinates transformation using first order lin-

earisation will be analysed. The mean of Eq.(3.8) can be obtained by taking the expected

values on both sides and can be written as

E

 x

y

= E

 r cosθ

r sinθ

 (3.15)
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Figure 3.2: 2000 random measurements are generated with range and bearings, which are
uniformly distributed between ±0.02 and ±20◦. These random points are then processed
through the nonlinear polar to cartesian coordinate transformation and are shown as ∗.
The true mean and the uncertainty ellipse are represented by • and solid line, respectively.

To analyse the effects of linearisation, the nonlinear terms in Eq.(3.15) are expanded using

Taylor’s series (the second and higher order derivative terms are neglected).

h̄(x) ≃ E


 x̄

ȳ

+∇S

∣∣∣∣
x̄

 x− x̄

y− ȳ


 (3.16)

=

 x̄

ȳ

+∇S

∣∣∣∣
r̄,θ̄

E

 x− x̄

y− ȳ

 (3.17)

=

 r̄cos θ̄

r̄sin θ̄

 (3.18)

=

 0

1

 (3.19)
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where ∇s

∣∣∣∣
r̄,θ̄

is the Jacobian of s evaluated at (r̄, θ̄) and is given by

∇s

∣∣∣∣
r̄,θ̄

=

 cosθ −r sinθ

sinθ r cosθ


∣∣∣∣∣∣∣
r̄,θ̄

(3.20)

=

 0 −1

1 0

 (3.21)

The linearised covariance [11] of Eq.(3.8) is

P = ∇s

∣∣∣∣
r̄,θ̄

Pr,θ ∇s

∣∣∣∣T
r̄,θ̄

(3.22)

where

Pr,θ = E


 r− r̄

θ − θ̄


 r− r̄

θ − θ̄


T (3.23)

=

 σ2
r 0

0 σ2
θ

 (3.24)

and, σr and σθ are the standard deviations of r and θ , respectively.

The linearised mean and the standard deviation ellipse along with the true mean and

true uncertainty ellipse are shown in Figure 3.3. It can be seen that the linearised mean

and standard deviation ellipse are not consistent with the true mean and true uncertainty

ellipse. The true mean is located at (0,0.9798), whereas the linearised mean is located at

(0,1). One can see similar linearisation errors in EKF, which uses the first order Jacobians

of the state and measurement models.
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Figure 3.3: 2000 random measurements are generated with range and bearings, which are
uniformly distributed between ±0.02 and ±20◦. These random points are then processed
through the nonlinear polar to cartesian coordinate transformation and are shown as ∗.
The true mean and the linearised mean are represented by • and �, and true and linearised
uncertainty ellipses are represented by solid and dotted lines, respectively.

3.3 Unscented Kalman Filter

In Section 3.2.1, effects of the Jacobi linearisation in calculating the mean and covariance

of a nonlinear transformation was anlaysed. In this section, a derivative free unscented

transformation and unscented Kalman filter (UKF) will be discussed. Unscented transfor-

mation is founded on the intuition that “it is easier to approximate a Gaussian distribution

than it is to approximate an arbitrary nonlinear function” [32]. In unscented transforma-

tion, a set of deterministic sigma points are chosen and are propagated through the non-

linear function and then a weighted mean and covariance are evaluated. The unscented

transform ensures the higher accuracy than linearisation approach.
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3.3.1 Unscented Transformation

Consider the nonlinear function given by s = h(x) where x ∈ Rn. The mean and covari-

ance of the random variable x are x̄ and Px, respectively. The mean and covariance of s, s̄

and Ps, using unscented transformation can be obtained using Algorithm 4.

Algorithm 4 Unscented Transform
1: Compute the 2n+1 weighted sigma points

χ0 = x̄

χ i = x̄+
[√

(n+λ )Px

]
i
, i = 1, . . . ,n

χ i = x̄−
[√

(n+λ )Px

]
i
, i = n+1, . . . ,2n (3.25)

where, [. . .]i denotes the i− th column of [. . .]. Set the corresponding weights as

W x
0 =

λ
n+λ

W P
0 =

λ
n+λ

+(1−α2 +β )

W x
i =

1
2(n+λ )

, i = 1, . . . ,2n

W P
i = W x

i , i = 1, . . . ,2n (3.26)

where
λ = α2(n+κ)−n. (3.27)

The suggested values for α , β and κ are 1×10−2or1×10−3, 2 and 3−n, respectively
[46, 33].

2: Propagate the sigma points through the nonlinear function

si = h(χ i), i = 0, . . . ,2n. (3.28)

3: The mean and covariance of s are

s̄ ≈
2n

∑
i=0

W x
i si, i = 0, . . . ,2n (3.29)

Ps ≈
2n

∑
i=0

W P
i (si − s̄)(si − s̄)T , i = 0, . . . ,2n.. (3.30)
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3.3.1.1 Polar to Cartesian Coordinate Transformation - Unscented Transformation

Consider the nonlinear polar to cartesian coordination given in Eq.(3.8). In this section,

the unscented transformation given in Algorithm 4 will be used to obtain the mean and

covariance of Eq. (3.8). The size of the state vector is n= 2, the parameters α , β and κ are

selected as 0.01, 2 and 1, respectively and λ using Eq.(3.37) is −1.9997. The remaining

parameters used in the simulations are the same as given in Section 3.2.1. The sigma

points using Eq.(3.25) can be calculated as

χ0 =

 r̄

θ̄

=

 1

π
2


χ1 = x̄+

[√
(n+λ )Px

]
1
=

 1+σr
√

n+λ
π
2


χ2 = x̄+

[√
(n+λ )Px

]
2
=

 1

π
2 +σθ

√
n+λ



χ3 = x̄−
[√

(n+λ )Px

]
3
=

 1−σr
√

n+λ
π
2


χ4 = x̄−

[√
(n+λ )Px

]
4
=

 1

π
2 −σθ

√
n+λ

 (3.31)

where,

Px =

 σ2
r 0

0 σ2
θ

 (3.32)
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The corresponding weights are

W x
0 =

λ
n+λ

=−6665.66 (3.33)

W P
0 =

λ
n+λ

+(1−α2 +β ) =−6662.66 (3.34)

W x
1 = W x

2 =W x
3 =W x

4 = 1666 (3.35)

W P
1 = W P

2 =W P
3 =W P

4 = 1666 (3.36)

where

λ = α2(n+κ)−n =−1.9997. (3.37)

The transformed sigma points using Eq.(3.28) are

s0 = h(χ0) = h


 r̄

θ̄


=

 0

1


s1 = h(χ1) = h


 1+σr

√
n+λ

π
2


=

 0

1+σr
√

(n+λ )


s2 = h(χ2) = h


 1

π
2 +σθ

√
n+λ


=

 cos
(

π
2 +σθ

√
(n+λ )

)
sin
(

π
2 +σθ

√
(n+λ )

)


s3 = h(χ3) = h


 1−σr

√
n+λ

π
2


=

 0

1−σr
√

(n+λ )


s4 = h(χ4) = h


 1

π
2 −σθ

√
n+λ


=

 cos
(

π
2 −σθ

√
(n+λ )

)
sin
(

π
2 −σθ

√
(n+λ )

)
 .(3.38)
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Once the sigma points and its corresponding weights, and the transformed sigma points

are obtained; the mean and covariance of s can be calculated as

s̄ ≈
4

∑
i=0

W x
i si (3.39)

Ps ≈
4

∑
i=0

W P
i (si − s̄)(si − s̄)T . (3.40)

A similar simulation scenario given in Section 3.2.1 is repeated with unscented transfor-

mation and the corresponding results are shown in Figure 3.4. The mean and covariance

of unscented transformation along the true and linearised are shown in Figure 3.4. It

is very hard to see the true mean as it is hidden behind the unscented transform. The

true, linearised and unscented transformation means are located at (0,0.9798), (0,1) and

(0,0.9797), respectively. The error covariances for true, linearised and unscented trans-

formation are 0.1991 0

0 0.0213

 ,
 0.2015 0

0 0.0115

and

 0.2015 0

0 0.0310

 . (3.41)

The uncertainty ellipse using unscented transformation is comparatively unbiased as com-

pared to that of the linearised uncertainty ellipse. It can also be seen that the uncertainty

ellipse for unscented transformation given in Figure 3.4 does not match with that of true

ellipse along the y-axis. One of the reasons for this mismatch is due to the negative λ .

For more details please see the last paragraph of Section 3.4. The unscented transform

response can be further improved by tuning α , β and κ .

3.3.2 Unscented Kalman Filter

Unscented Kalman filter (UKF) is a recursive filter based on unscented transformation. In

Section 3.3.1, the advantages of unscented transform over the linear approximation were

demonstrated.
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Figure 3.4: 2000 random measurements are generated with range and bearings, which are
uniformly distributed between ±0.02 and ±20◦. These random points are then processed
through the nonlinear polar to cartesian coordinate transformation and are shown as ∗.
The true, linearised and unscented transformation means are represented by •, � and
�, respectively. True, linearised and unscented transformation uncertainty ellipses are
represented by solid, dotted and dashed-dotted lines, respectively.

Consider the discrete process and measurement models give in Eqs.(3.1) and (3.2).

Similar to EKF, UKF can also be expressed in two stages, prediction and measurement

update, and is briefed in Algorithm 5. For more details on UKF, please see, for example

[11] and [33].

Algorithm 5 Unscented Kalman Filter

1: Initialise the state vector, x̂0|0, and the covariance matrix, P0|0 (set k = 1)

Prediction
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2: Calculate the prediction sigma points

χ0,k−1|k−1 = x̂k−1|k−1

χ i,k−1|k−1 = x̂k−1|k−1 +
[√

(n+λ )Pk−1|k−1

]
i
, i = 1, . . . ,n

χ i,k−1|k−1 = x̂k−1|k−1 −
[√

(n+λ )Pk−1|k−1

]
i
, i = n+1, . . . ,2n (3.42)

where λ can be calculated using Eq.(3.27).

3: Propagate the sigma points through the nonlinear process model

χ∗
i,k|k−1 = f(χ i,k−1|k−1,uk−1), i = 0, . . . ,2n. (3.43)

4: Predicted state and covariance can be obtained as

x̂k|k−1 =
2n

∑
i=0

W x
i χ∗

i,k|k−1 (3.44)

Pk|k−1 =
2n

∑
i=0

W P
i (χ∗

i,k|k−1 − x̂k|k−1)(χ∗
i,k|k−1 − x̂k|k−1)

T +Qk−1 (3.45)

where the weights, W x
i and W P

i , can be calculated using Eq.(3.26).

Measurement Update

1: Calculate the update sigma points (these sigma points are calculated using predicted

mean and covariance, x̂k|k−1 and Pk|k−1)

χ0,k|k−1 = x̂k|k−1

χ i,k|k−1 = x̂k|k−1 +
[√

(n+λ )Pk|k−1

]
i
, i = 1, . . . ,n

χ i,k|k−1 = x̂k|k−1 −
[√

(n+λ )Pk|k−1

]
i
, i = n+1, . . . ,2n (3.46)

2: Propagate the sigma points through the nonlinear measurement model

zi,k|k−1 = h(χ i,k|k−1,uk), i = 0, . . . ,2n. (3.47)
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3: Predicted measurement, covariance and cross-covariance can be calculated as

ẑk|k−1 =
2n

∑
i=0

W x
i zi,k|k−1 (3.48)

Pzz,k|k−1 =
2n

∑
i=0

W P
i (zi,k|k−1 − ẑk|k−1)(zi,k|k−1 − ẑk|k−1)

T +Rk (3.49)

Pxz,k|k−1 =
2n

∑
i=0

W P
i (χ i,k|k−1 − x̂k|k−1)(zi,k|k−1 − ẑk|k−1)

T (3.50)

where the weights, W x
i and W P

i , can be calculated using Eq.(3.26).

4: Update mean and error covariance can be obtained as

x̂k|k = x̂k|k−1 +Kk(zk − ẑk|k−1) (3.51)

Pk|k = Pk|k−1 −KkPzz,k|k−1KT
k (3.52)

where the Kalman gain, Kk, is

Kk = Pxz,k|k−1P−1
zz,k|k−1. (3.53)

3.4 Cubature Kalman Filter

The CKF is the closest known approximation to the Bayesian filter that could be designed

in a nonlinear setting under the Gaussian assumption. Unlike EKF, CKF filter does not

require evaluation of Jacobians during the estimation process. EKF require the first order

Taylor’s series approximation, where the nonlinear functions are approximated by Jaco-

bians, and the UKF performance is completely dominated by the tuning parameters, α ,

β and κ . Whereas, CKF neither require Jacobians like EKF nor the additional tuning

parameters like UKF. Hence CKF is an appealing option for nonlinear state estimation

when compared with EKF or UKF [45]. The basic steps required for CKF are described

in this section. One can see [45] for more details.
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3.4.1 CKF Theory

Consider a nonlinear system with additive noise defined by process and measurement

models in (3.1) and (3.2).

The key assumption of the CKF is that the predictive density p(xk|Dk−1), where

Dk−1 = (ul,zl)
k−1
l=1 denotes the history of input-measurement pairs up to k − 1, and the

filter likelihood density p(zk|Dk) are both Gaussian, which eventually leads to a Gaussian

posterior density p(xk|Dk). Under this assumption, the CKF solution reduces to how to

compute their means and covariances more accurately.

The CKF is a two stage procedure comprising of prediction and update.

3.4.1.1 Prediction

In the prediction step, the CKF computes the mean x̂k|k−1 and the associated covariance

Pk|k−1 of the Gaussian predictive density numerically using cubature rules. The predicted

mean can be written as

x̂k|k−1 = E [f(xk−1,uk−1)+wk−1|Dk−1] (3.54)

Since wk−1 is assumed to be zero-mean and uncorrelated with the measurement sequence,

we get

x̂k|k−1 = E [f(xk−1,uk−1)|Dk−1]

=
∫

Rn
f(xk−1,uk−1)p(xk−1|Dk−1)dxk−1

=
∫

Rn
f(xk−1,uk−1)N (xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1. (3.55)
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Similarly, the associated error covariance can be represented as

Pk|k−1 = E
[
(xk − x̂k|k−1)(xk − x̂k|k−1)

T |zk−1

]
=

∫
Rn

f(xk−1,uk−1)fT (xk−1,uk−1)N (xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1

−x̂k|k−1x̂T
k|k−1 +Qk−1. (3.56)

3.4.1.2 Measurement Update

The predicted measurement density can be represented by

p(zk|Dk−1) = N (zk; ẑk|k−1,Pzz,k|k−1) (3.57)

where the predicted measurement and associated covariance are given by

ẑk|k−1 =
∫

Rn
h(xk,uk)N (xk; x̂k|k−1,Pk|k−1)dxk (3.58)

Pzz,k|k−1 =
∫

Rn
h(xk,uk)hT (xk,uk)N (xk; x̂k|k−1,Pk|k−1)dxk − ẑk|k−1ẑT

k|k−1 +Rk (3.59)

and the cross-covariance is

Pxz,k|k−1 =
∫

Rn
xkhT (xk,uk)N (xk; x̂k|k−1,Pk|k−1)dxk − x̂k|k−1ẑT

k|k−1. (3.60)

Once the new measurement zk is received, the CKF computes the posterior density

p(xk|Dk) and can be obtained as

p(xk|Dk) = N (xk; x̂k|k,Pk|k), (3.61)

where

x̂k|k = x̂k|k−1 +Kk(zk − ẑk|k−1) (3.62)

Pk|k = Pk|k−1 −KkPzz,k|k−1KT
k (3.63)
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with the Kalman gain given as

Kk = Pxz,k|k−1P−1
zz,k|k−1 (3.64)

It can be seen that in the above prediction and measurement update equations, the

Bayesian filter solution reduces to computing the multi-dimensional integrals, whose in-

tegrands are of the form nonlinear f unction×Gaussian. The heart of the CKF is to find

the multi-dimensional integrals using cubature rules.

3.4.1.3 Cubature Rules

The cubature rule to approximate an n-dimensional Gaussian weighted integral is

∫
Rn

f(x)N (x; µ,P)dx ≈ 1
2n

2n

∑
i=1

f(µ +P
1
2 ξi) (3.65)

where P
1
2 is a square root factor of the covariance P satisfying the relation P = P

1
2 P

T
2 ; the

set of 2n cubature points are given by {ξi} where ξi is the i− th element of the following

set

√
n





1

0
...

0


, . . . ,



0
...

0

1


,



−1

0
...

0


, . . . ,



0
...

0

−1




(3.66)

These cubature rules are required to numerically evaluate the multi-integrands in the pre-

diction and update stage of the CKF.

The cubature points required for prediction step are

χ i,k|k−1 = P
1
2
k−1|k−1ξi + x̂k−1|k−1 (3.67)
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where i = 1,2, ...,2n and n is the size of the state vector.

The propagated cubature points through the process model are

χ∗
i,k|k−1 = f(χ i,k−1|k−1,uk−1). (3.68)

The predicted mean and error covariance matrix from (3.55), (3.56) and (3.65) are

x̂k|k−1 =
1

2n

2n

∑
i=1

χ∗
i,k|k−1 (3.69)

Pk|k−1 =
1

2n

2n

∑
i=1

χ∗
i,k|k−1χ∗T

i,k|k−1 − x̂k|k−1x̂T
k|k−1 +Qk−1. (3.70)

By using (3.58)−(3.60) and (3.65), the predicted measurement and its associated covari-

ances are

ẑk|k−1 =
1
2n

2n

∑
i=1

zi,k|k−1 (3.71)

Pzz,k|k−1 =
1
2n

2n

∑
i=1

zi,k|k−1zT
i,k|k−1 − ẑk|k−1ẑT

k|k−1 +Rk (3.72)

Pxz,k|k−1 =
1
2n

2n

∑
i=1

χ i,k|k−1zT
i,k|k−1 − x̂k|k−1ẑT

k|k−1 (3.73)

where

zi,k|k−1 = h(χ i,k|k−1,uk) (3.74)

χ i,k|k−1 = P
1
2
k|k−1ξi + x̂k|k−1. (3.75)

The updated state and covariance can be obtained using Eqs.(3.62)-(3.64). The CKF is

summarised in Algorithm 6.

Algorithm 6 Cubature Kalman Filter

1: Initialise the state vector, x̂0|0, and the covariance matrix, P0|0 (set k = 1).

Prediction
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2: Factorise the covariance matrix, Pk−1|k−1

Pk−1|k−1 = P
1
2
k−1|k−1P

T
2
k−1,k−1

where P
1
2
k−1|k−1 is the square root factor of Pk−1|k−1.

3: Calculate the cubature points

χ i,k−1|k−1 = P
1
2
k−1|k−1ξi + x̂k−1|k−1, i = 1, . . . ,2n

where ξi is the i− th element of the following set

√
n





1

0
...

0


, . . . ,



0
...

0

1


,



−1

0
...

0


, . . . ,



0
...

0

−1




.

4: Propagate the cubature points through the nonlinear process model

χ∗
i,k−1|k−1 = f(χ i,k−1|k−1,uk−1), i = 1, . . . ,2n.

5: Predicted state and covariance can be obtained as

x̂k|k−1 =
1

2n

2n

∑
i=1

χ∗
i,k−1|k−1

Pk|k−1 =
1

2n

2n

∑
i=1

χ∗
i,k−1|k−1χ∗T

i,k−1|k−1 − x̂k|k−1x̂T
k|k−1 +Qk−1.

Measurement Update

1: Factorise the predicted covariance, Pk|k−1

Pk|k−1 = P
1
2
k|k−1P

T
2
k|k−1.



Chapter 3: Nonlinear State Estimation and CKF SLAM 66

2: Evaluate the cubature points (these cubature points are calculated using predicted

mean and covariance, x̂k|k−1 and Pk|k−1)

χ i,k|k−1 = P
1
2
k|k−1ξi + x̂k|k−1.

3: Propagate the cubature points through the nonlinear measurement model

zi,k|k−1 = h(χ i,k|k−1,uk).

4: Predicted measurement, covariance and cross-covariance can be calculated as

ẑk|k−1 =
1

2n

2n

∑
i=1

zi,k|k−1

Pzz,k|k−1 =
1

2n

2n

∑
i=1

zi,k|k−1zT
i,k|k−1 − ẑk|k−1ẑT

k|k−1 +Rk

Pxz,k|k−1 =
1

2n

2n

∑
i=1

χ i,k|k−1zT
i,k|k−1 − x̂k|k−1ẑT

k|k−1

where the Kalman Gain is

Kk = Pxz,k|k−1P−1
zz,k|k−1.

5: Update mean and error covariance can be obtained as

x̂k|k = x̂k|k−1 +Kk(zk − ẑT
k|k−1)

Pk|k = Pk|k−1 −KkPzz,k|k−1KT
k .

3.4.2 Cubature Transform

Consider the nonlinear function given by s = h(x) where x ∈ Rn. The mean and covari-

ance of the random variable x are x̄ and Px, respectively. The mean and covariance of s, s̄
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and Ps, using cubature transformation can be calculated using Algorithm 7.

Algorithm 7 Cubature Transform
1: Compute the 2n cubature points

χ i = x̄+P
1
2
x ξi, i = 1, . . . ,2n (3.76)

where P
1
2 is the square root factor or P and ξi is the ith column of

√
n




1
0
...
0

 , . . . ,


0
...
0
1

 ,


−1
0
...
0

 , . . . ,


0
...
0
−1


 . (3.77)

The corresponding weights are

Wi =
1

2n
, i = 1, . . . ,2n (3.78)

2: Propagate the cubature points through the nonlinear function

si = h(χ i), i = 1, . . . ,2n. (3.79)

3: The mean and covariance for s can be calculated as

s̄ ≈
2n

∑
i=0

Wisi, i = 0, . . . ,2n (3.80)

Ps ≈
2n

∑
i=0

Wi(sis
T
i − s̄s̄T ), i = 0, . . . ,2n. (3.81)

3.4.2.1 Polar to Cartesian Coordinate Transformation - Cubature Transformation

In this section, the polar to cartesian coordinate transformation given in Section 3.2.1

will be analysed using cubature transformation. The cubature transformation given in

Algorithm 7 will be used to obtain the mean and covariance of Eq. (3.8). The parameters

in this section are the same as given in Section 3.2.1.
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The cubature points using Eq.(3.76) can be calculated as:

χ1 = x̄+P
1
2
x ξ1 = x̄+

[√
nP

1
2
x

]
1

=

 1+σr
√

n

π
2


χ2 = x̄+P

1
2
x ξ2 = x̄+

[√
nP

1
2
x

]
2

=

 1

π
2 +σθ

√
n


χ3 = x̄+P

1
2
x ξ3 = x̄−

[√
nP

1
2
x

]
3

=

 1−σr
√

n

π
2


χ4 = x̄+P

1
2
x ξ4 = x̄−

[√
nP

1
2
x

]
4

=

 1

π
2 −σθ

√
n

 (3.82)

The transformed cubature points using Eq.(3.79) are

s1 = h(χ1) = h


 1+σr

√
n

π
2


=

 0

1+σr
√

(n)


s2 = h(χ2) = h


 1

π
2 +σθ

√
n


=

 cos
(

π
2 +σθ

√
(n)
)

sin
(

π
2 +σθ

√
(n)
)


s3 = h(χ3) = h


 1

π
2 +σθ

√
n


=

 0

1−σr
√

(n+)


s4 = h(χ4) = h


 1

π
2 −σθ

√
n


=

 cos
(

π
2 −σθ

√
(n)
)

sin
(

π
2 −σθ

√
(n)
)
 . (3.83)

Once the cubature points and its corresponding weights, and the transformed cubature
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Figure 3.5: 2000 random measurements are generated with range and bearings, which are
uniformly distributed between ±0.02 and ±20◦. These random points are then processed
through the nonlinear polar to cartesian coordinate transformation and are shown as ∗.
The true-, linearised-, unscented transformation- and cubature transformation means are
represented by •, �, � and ⋆, respectively. True, linearised, unscented transformation
and cubature transformation uncertainty ellipses are represented by solid, dotted, dashed-
dotted and dashed lines, respectively.

points are obtained; the mean and covariance of s can be calculated as

s̄ ≈
4

∑
i=1

Wisi (3.84)

Ps ≈
4

∑
i=1

Wi(sis
T
i − s̄s̄T ). (3.85)

Simulations in Sections 3.2.1 and 3.3.1 are repeated along with cubature transformation

and the corresponding results are show in Figure 3.5. The true mean is at (0,0.9798), the

linearised mean is at (0,1), the unscented mean is at (0,0.9797) and the cubature mean

is at (0,0.9798). It is very hard to see the means of different transformations in Figure

3.5 as they are overlapped. By zooming the area around the means, they can be clearly

distinguished and are shown in Figure 3.6. The uncertainty ellipse using cubature trans-
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Figure 3.6: Zoomed view of means in Figure 3.5.

formation is very close to the true one and is consistent as compared to that of unscented

or linearised uncertainty ellipses. By choosing κ = 0, unscented transformation response

can be matched with cubature transformation response [11].

Although UKF and CKF are derived or proposed from different philosophies, they

can be compared in several aspects. UKF uses 2n+ 1 sigma points, where as the CKF

require 2n points. UKF requires more tuning parameters than the CKF (CKF only requires

filter initial conditions, and process and measurement covariance matrices, whereas UKF

requires extra a few additional parameters). The suggested tuning parameter for UKF

is κ = 3− n [33]. If the number of states are more than three, the tuning parameter κ ,

becomes negative and may halt the UKF operation. It is quite interesting to see that, by

using κ = 0 in the UKF, and α =±1, β = 0 and κ = 0 in the scaled UKF, the sigma- and

cubature-points are the same [45,67]. However, there is no mathematical justification for

choosing these parameters for UKF.
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3.5 Simultaneous Localisation and Mapping

This section presents the mathematical framework employed in the study of the Simul-

taneous Localisation and Mapping (SLAM) problem and presents a solution to SLAM

using CKF.

Autonomous vehicles are required to determine their own states, since most of their

actions (such as surveillance, reconnaissance, autonomous navigation etc.) depends on

the state information. Localisation is the process of estimating a vehicle’s position and

orientation based on landmarks or beacons. Localisation based on an a priori map re-

quires the knowledge of the environment defined by the location of different landmarks

and hence the environment needs to be explored in advance. As a consequence, the au-

tonomous vehicle is limited to operating within the known environment. If it is necessary

to extend the environment of operation, new areas have to be surveyed before autonomous

localisation can take place. This difficulty can be overcome by SLAM, see [68] for more

details.

The SLAM problem asks: Is it possible for a vehicle to be placed at an unknown

location in an unknown environment and to build incrementally a consistent map of the

environment while simultaneously determining its location within this map? SLAM has

been an active research area for several years and its solution is seen as the “holy grail”

by the robotics community [37]. Initial research into this area began with a landmark

paper by Smith, Self and Cheeseman which introduced the concept of a stochastic map in

which a mobile robot acquires knowledge about its location and organises its environment

by making sensor observations in different places and at different times, see [69].

The most common representation used in SLAM is a state-space model with additive

Gaussian noise leading to the well known EKF, see [37]. Nonlinear functions are used

to represent the process and the measurement model and states are estimated using a

recursive process (time update and measurement update). During the state prediction and

update stage, linearisation is needed to compute an estimate of the new robot position in
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the map as well as the correlated position of the landmarks inside the covariance matrix.

However, the EKF approach for SLAM is only suitable for ‘mild’ nonlinearities where

first-order approximations of the nonlinear functions are suitable. In order to address

problems caused by linearisation, the use of an UKF, appears to be an appealing option,

see [33]. The UKF uses the deterministic sampling approach to capture the mean and

covariances with sigma points and in general been shown to perform better than the EKF

in nonlinear estimation problems. The usage of UKF for large scale outdoor environments

SLAM was proposed in [70].

Rao-Blackwellised particle filter (RBPF) is also used to solve the SLAM problem

(FastSLAM) [71], [72] and [73]. The UKF and RBPF is fused in SLAM application to

form Unscented FastSLAM and deals with some of the limitations of FastSLAM, see

[74]. The mean and covariances are updated by using the UKF to avoid the linearisation

errors and Jacobian calculations in the feature estimates. The state-dependent Riccati

equation (SDRE) filtering has also been used for UAV localisation as an alternative of

EKF localisation, see [42].

In this section, we propose the usage of CKF for nonlinear state estimation of SLAM.

The augmented state vector of vehicle states and the location of landmarks are estimated

using CKF.

3.5.1 The Vehicle, Landmark and Sensor Models

SLAM can be performed by storing the vehicle pose and landmarks in a single state

vector, and estimating it by a recursive process of prediction and measurement update. In

SLAM, the vehicle starts typically at an unknown location without a priori knowledge of

landmark locations. The vehicle is mounted with a sensor which is capable of identifying

the landmarks. The most common sensor used for SLAM is a laser, which takes the

observation of the landmarks and outputs the range and bearing of the landmarks. While

continuing in motion, the vehicle builds a complete map of landmarks and uses these

to provide estimates of the vehicle location. By using the relative position between the
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vehicle and landmarks in the environment, both the position of the vehicle and the position

of the features or landmarks can be estimated simultaneously.

3.5.1.1 Vehicle Model

Bicycle model is one of the most common vehicle models used for the SLAM application.

Several researchers has demonstrated their SLAM solutions in bicycle models [75]. The

vehicle model used in this chapter is the common bicycle model, assuming that the control

inputs are given by the wheel velocity, Vk−1, and steering angle, γk−1 and L is the distance

between the front or rear set of wheels and the time interval ∆T denotes the time from

k−1 to k, see [32], [75] for more details. The vehicle’s state vector represents its location

and orientation and is given by

[
xvk

]
=


xvk

yvk

ϕvk

=


xvk−1 +∆TVk−1 cos(ϕvk−1 + γk−1)

yvk−1 +∆TVk−1 sin(ϕvk−1 + γk−1)

ϕvk−1 +∆TVk−1
sin(γk−1)

L


In the above equations, the process noise wk−1 is eliminated. One popular way to include

the process noise in the process model is to insert the noise terms into the control signal

u such that

uk−1 = unk−1 +wk−1 (3.86)

where unk−1 is a nominal control signal and wk−1 is a zero mean Gaussian distribution

noise vector with covariance matrix, Qk−1.

3.5.1.2 Landmark Model

In the context of SLAM, a landmark is a feature of the environment that can be observed

using vehicle’s sensor. Different kinds of landmark are used in SLAM like point land-

marks, corners, lines, etc. For the SLAM algorithm, the feature states are assumed to be
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stationary. Landmarks can be represented by the following expression

xmk = xmk−1 (3.87)

The SLAM map is defined by an augmented state vector formed by the concatenation of

the vehicle and feature map state.

xa(k) =

[
xT

vk
xT

m(k)

]T

(3.88)

3.5.1.3 Sensor Model

It is assumed that the vehicle is equipped with a range-bearing sensor that takes obser-

vations of the features of the environment. Laser and sonar sensors are two examples of

range-bearing sensors that can be used on a vehicle. Given the current vehicle position

xvk = [xvk yvk ]
T and the position of an observed feature xmk = [xik yik ]

T , the range and

bearing can be modelled as

zik =


√

(xvk − xik)
2 +(yvk − yik)

2

tan−1
(

yvk−yik
xvk−xik

)
−ϕ(k)

+
 vrk

vθk

 (3.89)

where ‘i’ denotes the feature number and, vrk and vθk represents the noises in range and

bearing measurements.

3.5.2 CKF SLAM

This section describes the use of CKF for estimating the state vector of SLAM. As com-

pared to EKF SLAM, this approach need not requires the evaluation of Jacobians during

the prediction and update stages, which makes this approach more promising for achiev-

ing the better accuracy. In this chapter, we have used the CKF for state estimation. The

CKF SLAM is detailed in Algorithm 8. During the prediction stage, the state vector is

augmented with the control inputs and the error covariance matrix with process noise
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covariance matrix, Qk−1. This augmentation accounts the uncertainty in the control in-

puts, which then effects the state vector. The estimated state and covariance can then be

obtained using the cub cal function. The cub cal function described in Algorithm 9,

and veh model represents the state equations of the vehicle model. In the measurement

update stage, first the cubature point array and square root factor of the error covariance

matrix are obtained as given in steps 1-2. Once the cubature points are evaluated, they

are propagated through the nonlinear measurement model (steps 3). Then the predicted

measurement, covariance matrices and Kalman gain are evaluated in step 4. The updated

state vector and corresponding covariance matrix can be evaluated using step 5.

Algorithm 8 CKF SLAM

Prediction

1: Augment the state vector and covariance matrix

x̂v
k−1|k−1 =

[
x̂T

v,k−1|k−1 Vk−1|k−1 γk−1|k−1

]T

Pv
k−1|k−1 =

 Pv
k−1|k−1 0

0 Qk−1



2: Predict the state vector and covariance matrix

[
x̂k|k−1 Pk|k−1

]

using the cub cal function given in Algorithm 9. The inputs to the cub cal function

are veh model, x̂v,k−1|k−1, Pv
k−1|k−1 and the outputs are predicted state vector and

covariance matrix.

Measurement Update
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1: Factorise the predicted covariance, Pk|k−1

Pk|k−1 = P
1
2
k|k−1P

T
2
k|k−1.

2: Evaluate the cubature points

cpi,k|k−1 = P
1
2
k|k−1ξi + x̂k|k−1.

3: Propagate the cubature points through the nonlinear measurement model

zi,k|k−1 = h(cpi,k|k−1,uk).

4: Predicted measurement, covariance and cross-covariance can be calculated as

ẑk|k−1 =
1

2n

2n

∑
i=1

zi,k|k−1

Pzz,k|k−1 =
1

2n

2n

∑
i=1

zi,k|k−1zT
i,k|k−1 − ẑk|k−1ẑT

k|k−1 +Rk

Pxz,k|k−1 =
1

2n

2n

∑
i=1

χ i,k|k−1χT
i,k|k−1 − x̂k|k−1ẑT

k|k−1

where the Kalman Gain is

Kk = Pxz,k|k−1P−1
zz,k|k−1.

5: Update mean and error covariance can be obtained as

x̂k|k = x̂k|k−1 +Kk(zk − ẑT
k|k−1)

Pk|k = Pk|k−1 −KkPzz,k|k−1KT
k .

Once the landmarks are detected, they can be augmented with the vehicle states. This can

be obtained by using state augmentation algorithm given in Algorithm 10. During the pro-
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cess of state augmentation, first the state vector is augmented with observations and the

corresponding error covariance matrix with measurement noise covariance matrix. The

augmented state vector of vehicle states and observed landmarks, and the correspond-

ing covariance matrix can be evaluated using which is detailed in Algorithm 10. Once

the set of landmarks are observed and augmented in the state vector, the prediction and

measurement update given in Algorithm 8 are repeated. One should also note that, once

the landmarks are detected, the new augmented state vector with landmarks should be

processed, rather than vehicle states alone, in Algorithm 8. The new augmented state

vector will now have the vehicle states and the detected landmarks’ locations. SLAM

efficiency can be improved by revisiting the landmarks and is known as loop closing in

SLAM literature.

Algorithm 9 [x̂o P̂o]=cub cal(f, xin, Pin)
1: Calculate the cubature point array, ξi .
2: Factorise the covariance, Pin

Pin = P
1
2
inP

T
2
in.

3: Evaluate the cubature points

cpi = x̂in +P
1
2
inξi.

4: Propagated the cubature points through nonlinear model

χ i = f(cpi).

5: The state vector and corresponding covariance matrix

x̂o =
1
2n

2n

∑
i=1

χ i

Po =
1
2n

2n

∑
i=1

χ iχ
T
i − x̂x̂T .

3.5.3 Simulation Results

This section includes simulation results of SLAM using EKF, UKF and CKF. The ba-

sic SLAM package is available in [76], and is modified for this work. The process and
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Algorithm 10 State Augmentation
1: Augment the state vector(with observation) and covariance matrix(with measurement

noise covariance matrix)

x̂a
k =

[
x̂T

k zT
k

]T
Pa

k =

[
Px,k 0

0 Rk

]
.

2: Evaluate the augmented model

aug model =

 x̂a
k

xv + zr cos(zθ +ϕv)
yv + zr sin(zθ +ϕv)


3: The augmented state vector and corresponding covariance matrix, x̂a and Pa, can be

calculated using the cub cal function given in Algorithm 9. The inputs to the cub cal
function are aug model, x̂a

k , and Pa
k and the outputs are x̂a and Pa.

observation models used for the simulations are given in Section 3.5.1. In the following

numerical experiments, the velocity of the vehicle is V = 3m/s, the steering angle range

is from −30◦ < γ < 30◦ and the maximum rate of change in steer angle is 20 deg/sec. The

controls are updated at every 0.025 seconds and observations occur at every 0.2 seconds.

The range-bearing sensor has a forward-facing 180◦ field-of-view and maximum range of

30 metres. Similar parameters has also been considered in [75]. In our case, we assumed

the landmarks as point features as they are the simplest representation of any landmarks.

One can represent the landmarks by lines, etc. The trajectory of the vehicle is known and

thirty seven landmarks were randomly spread, the simulation scenario is shown in Fig-

ure 3.7. It is assumed that the vehicle starts from origin. Once it detects any landmarks,

then those landmarks positions are augmented in the state vector and this process is called

as mapping. This process continues until the robot completes its trajectory. During this

process, the robot localise itself in the landmarks map, which is called as localisation. In

SLAM, the robot performs both localisation and mapping simultaneously.

The measure of the filter consistency is examined over the average error norm (J̄k)
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Figure 3.7: Simulation scenario showing the trajectory of the vehicle (solid line) and
landmarks (∗).

over N Monte Carlo simulations. The error norm of the positions is given by

J(i)k =

√
(xi

k − x̂k
i)

2
+(yi

k − ŷk
i)

2 (3.90)

where ‘i’ shows the i− th simulation.

500 Monte Carlo simulations were performed for SLAM algorithms for low and high

Gaussian noisy environments. For the first scenario, the process and observation noises

are σv = 0.1m/s,σγ = 1◦, and σr = 0.1m,σθ = 1◦, respectively. A sample EKF SLAM

simulation results with low intensity noises are shown in Figures 3.8 and 3.9. Figure 3.8

shows the reference, actual and EKF estimated trajectories along with the actual and es-

timated landmarks using EKF SLAM. The reference trajectory (dotted line) in Fgiure 3.8

is generated based on the given way-points, and the actual trajectory (solid line) shows

the actual path traveled by the vehicle. The actual path is different from the reference

trajectory is due to the constraints imposed on the vehicle parameters like the bounds on

maximum steering angle and its rate. The first column in Figure 3.9 shows the actual and

estimated states and the second column shows the estimation errors in the three states. In

the presence of low intensity noises, the actual and estimated states are very close to each
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Figure 3.8: Simulation scenario showing the reference (dotted line), actual (solid line)
and EKF estimated (dashed line) trajectories in the presence of the low intensity noises.
The actual and estimated landmarks are represented by ∗ and �, respectively.

other. The estimation errors in xv, yv and ϕv using EKF SLAM are 0.5235, 0.4203 and

6.2801, respectively. UKF SLAM with low intensity noises are shown in Figures 3.10 and

3.11. Figure 3.10 shows the reference, actual and UKF estimated trajectories along with

the actual and estimated landmarks using UKF SLAM. The selected UKF tuning param-

eters α , β and κ are selected as 0.001, 2 and 3−n, respectively. The estimation errors in

xv, yv and ϕv using UKF SLAM are 0.2970, 0.2912 and 6.2792, respectively. CKF SLAM

with low intensity noises are shown in Figures 3.12 and 3.13. Figure 3.12 shows the refer-

ence, actual and EKF estimated trajectories along with the actual and estimated landmarks

using EKF SLAM. The estimation errors in xv, yv and ϕv using CKF SLAM are 0.1645,

0.1505 and 6.2790, respectively. In the presence of low intensity noises, the estimation

errors using CKF SLAM are lower as compared to that of EKF and UKF SLAM. The

average RMSE plots of 500 Monte Carlo simulation using EKF, UKF and CKF SLAM

are shown in Figure 3.14. The maximum RMSEs for EKF, UKF and CKF SLAM are

0.3390, 0.1446 and 0.0370, respectively.
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Figure 3.9: EKF SLAM with low intensity noises (σv = 0.1m/s,σγ = 1◦ and σr =
0.1m,σθ = 1◦). The solid and dashed lines in the first column represents the actual and
estimated vehicle states and the second column shows the corresponding error plots.
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Figure 3.10: Simulation scenario showing the reference (dotted line), actual (solid line)
and UKF estimated (dashed line) trajectories in the presence of the low intensity noises.
The actual and estimated landmarks are represented by ∗ and �, respectively.

The average error norm over N Monte Carlo simulations is computed as

J̄i =
1
N

N

∑
i=1

J(i)k (3.91)

For the second scenario, the process and observation noises are σv = 1m/s,σγ = 10◦,

and σr = 1m,σθ = 10◦, respectively. A sample EKF SLAM simulation results with high

intensity noises are shown in Figures 3.15 and 3.16. Figure 3.15 shows the reference, ac-

tual and EKF estimated trajectories along with the actual and estimated landmarks using

EKF SLAM. The first column plots shows the actual and estimated states and the second

column shows the estimation errors in the three states. In the presence of low intensity

noises, the actual and estimated states are very close to each other. The estimation errors

in xv, yv and ϕv using EKF SLAM are 6.7578, 2.9467 and 6.2882, respectively. UKF

SLAM with low intensity noises are shown in Figures 3.17 and 3.18. Figure 3.17 shows

the reference, actual and UKF estimated trajectories along with the actual and estimated

landmarks using UKF SLAM. The estimation errors in xv, yv and ϕv using UKF SLAM

are 3.0894, 3.7740 and 6.2512, respectively. CKF SLAM with high intensity noises are
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Figure 3.11: UKF SLAM with low intensity noises (σv = 0.1m/s,σγ = 1◦ and σr =
0.1m,σθ = 1◦). The solid and dashed lines in the first column represents the actual and
estimated vehicle states and the second column shows the corresponding error plots.
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Figure 3.12: Simulation scenario showing the reference (dotted line), actual (solid line)
and CKF estimated (dashed line) trajectories in the presence of the low intensity noises.
The actual and estimated landmarks are represented by ∗ and �, respectively.

shown in Figures 3.19 and 3.20. Figure 3.19 shows the reference, actual and CKF esti-

mated trajectories along with the actual and estimated landmarks using ECKF SLAM..

The estimation errors in xv, yv and ϕv using CKF SLAM are 1.5148, 2.7968 and 6.2402,

respectively. In the presence of high intensity noises, the estimation errors using CKF

SLAM are lower as compared to that of EKF and UKF SLAM. The average RMSE plots

of 500 Monte Carlo simulation using EKF, UKF and CKF SLAM are shown in Figure

3.21. The maximum RMSEs for EKF, UKF and CKF SLAM are 45.8431, 22.5368 and

7.8337, respectively.

In some of the Monte Carlo simulations, the vehicle could not able to finish the full

trajectory in the UKF SLAM; due to the unavailability a square root factor of the error

covariance matrix. The similar instability of UKFs are discussed in [45]. The average

simulation times for EKF-, UKF- and CKF-SLAM simulations are 28.43 s, 51.23s and

50.12 s, respectively. EKF SLAM requires the least average simulation time as compared

to UKF and CKF SLAM. CKF SLAM is slightly faster than the UKF SLAM; as UKF

propagates 2n+ 1 sigma points whereas CKF propagates 2n cubature points. In all the

simulations, the CKF SLAM outperforms the EKF and UKF SLAM.
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Figure 3.13: CKF SLAM with low intensity noises (σv = 0.1m/s,σγ = 1◦ and σr =
0.1m,σθ = 1◦). The solid and dashed lines in the first column represents the actual and
estimated vehicle states and the second column shows the corresponding error plots.
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Figure 3.14: Average RMSE of the vehicle positions [xv,yv]
T over 500 simulations with

σv = 0.1m/s,σγ = 1◦ and σr = 0.1m,σθ = 1◦. Solid, dotted and dashed lines represents
EKF, UKF and CKF SLAM, respectively.
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Figure 3.15: Simulation scenario showing the reference (dotted line), actual (solid line)
and EKF estimated (dashed line) trajectories in the presence of the high intensity noises.
The actual and estimated landmarks are represented by ∗ and �, respectively.
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Figure 3.16: EKF SLAM with high intensity noises (σv =m/s,σγ = 10◦ and σr =m,σθ =
10◦). The solid and dashed lines in the first column represents the actual and estimated
vehicle states and the second column shows the corresponding error plots.
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Figure 3.17: Simulation scenario showing the reference (dotted line), actual (solid line)
and UKF estimated (dashed line) trajectories in the presence of the high intensity noises.
The actual and estimated landmarks are represented by ∗ and �, respectively.
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Figure 3.21: Average RMSE of the vehicle positions [xv,yv]
T over 500 simulations with

σv = 1m/s,σγ = 10◦ and σr = 1m,σθ = 10◦. Solid, dotted and dashed lines represents

EKF, UKF and CKF SLAM, respectively.
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Figure 3.18: UKF SLAM with low intensity noises (σv = 1m/s,σγ = 10◦ and σr =
1m,σθ = 10◦). The solid and dashed lines in the first column represents the actual and
estimated vehicle states and the second column shows the corresponding error plots.
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Figure 3.19: Simulation scenario showing the reference (dotted line), actual (solid line)
and CKF estimated (dashed line) trajectories in the presence of the high intensity noises.
The actual and estimated landmarks are represented by ∗ and �, respectively.

3.6 Conclusions

This chapter has presented and analysed a few nonlinear state estimation methods and

their application. The considered nonlinear estimation methods are EKF, UKF and CKF.

To analyse the effects of the linearsation and other transforms, polar to cartesian coor-

dinates transformation example was considered. It was shown the means and standard

deviation ellipses using unscented and cubature transforms outperforms the nonlinear

transformation using linearisation. While estimating means, unscented transform has

more estimation error than the cubature transform. These nonlinear state methods are

further explored in SLAM problem. We proposed the use of the cubature Kalman filter

for SLAM. The proposed algorithm does not requires the evaluation of Jacobians during

the prediction and update stage and hence is a derivative free SLAM. The efficacy of the

algorithm is verified by simulations. Two types of Gaussian noises are used in the sim-

ulations and it was shown that CKF SLAM outperforms EKF and UKF SLAM, in both

cases.

In this chapter, estimation algorithms based on single sensor in the presence of Gaus-
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Figure 3.20: CKF SLAM with low intensity noises (σv = 1m/s,σγ = 10◦ and σr =
1m,σθ = 10◦). The solid and dashed lines in the first column represents the actual and
estimated vehicle states and the second column shows the corresponding error plots.
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sian noises are presented. However, in many real-life applications multi-sensor state es-

timation provides a better solution and hence in the next chapter, multi-sensor state esti-

mation will be explored.



Chapter 4

Cubature Information Filters

4.1 Introduction

In Chapter 3, extensions of Kalman filter for nonlinear systems were discussed. In those

methods, the state vector and the covariance matrix were propagated at different stages

to estimate the state vector. An algebraically equivalent form of extended Kalman fil-

ter (EKF), the extended information filter (EIF), has been proposed in the literature to

cope with some of the issues of EKF [9, 10]. In EIFs, the parameters of interest are the

information states and the inverse of covariance rather than states and covariance. In-

formation filters are easy in initialisation compared to conventional Kalman filters, the

update stage is computationally economic and it can be easily extended for multi-sensor

fusion. Kalman filter can deal with multi-sensor state estimation; but the update stage

becomes quite cumbersome during the process of fusing the data from different sensors.

Compared to the Kalman filter, the major advantage of information space is its structural

and computational simplicity which makes it applicable to multi-sensor and decentralised

estimation [10]. One of the key features of information filters are their ability to effec-

tively handle the multi-sensor state estimation. Indeed, EIF has several advantages over

EKF; for more details see [9, 10]. However, both EKFs and EIFs are only suitable for

‘mild’ nonlinearities (where the first-order approximations of the nonlinear functions are

93



Chapter 4: Cubature Information Filters 94

available) and they also require evaluation of state Jacobians at every iteration. In this

chapter, we propose a cubature information filter (CIF) by embedding cubature Kalman

filter (CKF) with an EIF architecture for nonlinear systems. A square root version of

cubature information filter (SRCIF), is derived for numerical efficiency. Both CIF and

SRCIF are further developed for multi-sensor state estimation. The applicability of the

proposed SRCIF is demonstrated on multi-sensor state estimation of a permanent magnet

synchronous motor model. The rest of the chapter is structured as follows. Section 4.2

includes the preliminaries of the EIF and some important equations of CKF, and Section

4.3 describes the CIF. Section 4.4 is devoted to SRCIF. Section 4.5 includes numerical

simulations and concluding remarks are presented in Section 4.6.

4.2 Extended Information Filter and Cubature Kalman

Filter

This section presents a brief introduction to EIF and CKF. For detailed formulations and

derivations of these filtering algorithms, please see for example [10] for EIF and [45] for

CKF.

4.2.1 Extended information filter

EIF is an algebraic equivalent of EKF, in which the parameters of interest are informa-

tion states and the inverse of the covariance matrix (information matrix) rather than the

states and covariance. EIF can be represented by a recursive process of prediction and

measurement updates. The EIF equations are summarised below.

Consider the discrete nonlinear process and measurement models as

xk = f(xk−1,uk−1)+wk−1 (4.1)

zk = h(xk,uk)+vk (4.2)
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where k is the time index, xk is the state vector, uk is the control input, zk is the measure-

ment, wk−1 and vk are the process and measurement noises, respectively. These noises

are assumed to be zero mean Gaussian-distributed random variables with covariances of

Qk−1 and Rk.

The conventional filter deals with the estimation of state vector, x̂ along with the cor-

responding variance matrix, P. Whereas, the information filter deals with the information

state, y, and the corresponding information matrix (inverse of the covariance matrix),

Y. The predicted information state vector, ŷk|k−1, and the predicted information matrix,

Yk|k−1, are given as

ŷk|k−1 = Yk|k−1x̂k|k−1 (4.3)

Yk|k−1 = P−1
k|k−1 =

[
∇fxY−1

k−1|k−1∇fT
x +Qk−1

]−1
(4.4)

where Pk|k−1 is the predicted covariance matrix and

x̂k|k−1 = f(x̂k−1|k−1,uk−1). (4.5)

The updated information state vector, ŷk|k, and the updated information matrix, Yk|k, are

ŷk|k = ŷk|k−1 + ik (4.6)

Yk|k = Yk|k−1 + Ik. (4.7)

The information state contribution, ik, and its associated information matrix, Ik, are

ik = ∇hT
x R−1

k

[
νk +∇hxx̂k|k−1

]
(4.8)

Ik = ∇hT
x R−1

k ∇hx (4.9)
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where the measurement residual, νk, is

νk = zk −h(x̂k|k−1,uk) (4.10)

and ∇fx, and ∇hx are the Jacobians of f and h evaluated at the best available state (Ja-

cobians for prediction and update equations are evaluated at x̂k−1|k−1 and x̂k|k−1, respec-

tively).

One of the key advantages of the information filter over Kalman filter is the update

stage, where the updated information state and information matrix can be obtained by

simply adding the associated information contributions to the predicted information state

and information matrix. One can refer [10] for a detailed derivation of the information

filter.

For the nonlinear information filter, recovery of state and covariance matrices are

required at different stages and is an active area of research [77−80]. The state vector and

covariance matrix can be recovered by using left division 1 [79]

x̂k|k = Yk|k\ŷk|k (4.11)

Pk|k = Yk|k\In (4.12)

where In is the state vector sized identity matrix. Initialisation in the information space

is easier than in the Kalman filter and the update stage of information filter is computa-

tionally simpler than the Kalman filter. EIF can be shown to be more efficient than the

EKF. But some of the drawbacks inherent in the EKF still affect the EIF. These include

the nontrivial nature of the derivations of the Jacobian matrices (and computation) and

linearisation instability [10].

1x = A\B solves the least square solution for Ax = B such that ∥Ax−b∥ is minimal.
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4.2.2 Cubature Kalman filter

Although the CKF has been described in Chapter 3, for completeness some of the key

prediction equations required for the CIF’s derivation are repeated in this section.

The cubature points required for the prediction step are

χ i,k−1|k−1 =
√

Pk−1|k−1ξi + x̂k−1|k−1 (4.13)

where i = 1,2, ...,2n, n is the size of the state vector and ξi is the i− th element of the

following set

√
n





1

0
...

0


, . . . ,



0
...

0

1


,



−1

0
...

0


, . . . ,



0
...

0

−1




(4.14)

.

The propagated cubature points through the process model are

χ∗
i,k|k−1 = f(χ i,k−1|k−1,uk−1). (4.15)

The evaluated mean and error covariance matrix are

x̂k|k−1 =
1

2n

2n

∑
i=1

χ∗
i,k|k−1 (4.16)

Pk|k−1 =
1
2n

2n

∑
i=1

χ∗
i,k|k−1χ∗T

i,k|k−1 − x̂k|k−1x̂T
k|k−1 +Qk−1 (4.17)
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The predicted measurement and its associated covariances are

ẑk|k−1 =
1
2n

2n

∑
i=1

zi,k|k−1 (4.18)

Pzz,k|k−1 =
1
2n

2n

∑
i=1

zi,k|k−1zT
i,k|k−1 − ẑk|k−1ẑT

k|k−1 +Rk (4.19)

Pxz,k|k−1 =
1
2n

2n

∑
i=1

χ i,k|k−1zT
i,k|k−1 − x̂k|k−1ẑT

k|k−1 (4.20)

where

zi,k|k−1 = h(χ i,k|k−1,uk) (4.21)

χ i,k|k−1 =
√

Pk|k−1ξi + x̂k|k−1. (4.22)

4.3 Cubature Information Filter

This section presents the CIF algorithm, which uses CKF in an EIF framework. The main

idea is to derive the prediction step from CKF and the update step from EIF.

Let the information state vector and information matrix be given by ŷk|k−1 and Yk|k−1.

The factorisation of the inverse information matrix is required to evaluate Sk−1|k−1, which

is then required for the propagated cubature points.

[
Yk−1|k−1

]−1
= Sk−1|k−1ST

k−1|k−1 (4.23)

where Sk−1|k−1 is a square root factor of
[
Yk−1|k−1

]−1. The evaluation of cubature points

and propagated cubature points can then be given as

χ i,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1 (4.24)

χ∗
i,k|k−1 = f(χ i,k−1|k−1,uk−1) (4.25)

where i = 1,2, ...,2n and n is the size of the state vector.
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The factorisation of the error covariance matrix, the evaluation of cubature points

and propagated cubature points for the process model, as required for CIF, are shown in

(4.23)−(4.25).

From (4.4) and (4.17), and (4.3) and (4.16)

Yk|k−1 = P−1
k|k−1 =

[
1

2n

2n

∑
i=1

χ∗
i,k|k−1χ∗T

i,k|k−1 − x̂k|k−1x̂T
k|k−1 +Qk−1

]−1

(4.26)

and

ŷk|k−1 = P−1
k|k−1x̂k|k−1 (4.27)

= Yk|k−1x̂k|k−1 (4.28)

=
1

2n

[
Yk|k−1

2n

∑
i=1

χ∗
i,k|k−1

]
. (4.29)

In the measurement update of CIF, the first two steps involve the evaluation of propagated

cubature points and the predicted measurement is given below. The propagated cubature

points for the measurement model can be evaluated as

χ i,k|k−1 = Sk|k−1ξi + x̂k|k−1 (4.30)

zi,k|k−1 = h(χ i,k|k−1,uk). (4.31)

The predicted measurement is

ẑk|k−1 =
1

2n

2n

∑
i=1

zi,k|k−1. (4.32)

The information state contribution and its associated information matrix in (4.8) and

(4.9) are explicit functions of the linearised Jacobian of the measurement model. But

the CKF algorithm does not require the Jacobians for measurement update and hence it

cannot be directly used in the EIF framework. However, by using the following linear

error propagation property [36, 82], it is possible to embed the CKF update in the EIF
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framework. The linear error propagation property for the error cross covariance matrix

can be approximated as [82]

Pxz,k|k−1 ≃ Pk|k−1∇hT
x . (4.33)

By multiplying P−1
k|k−1 and Pk|k−1 on the RHS of (4.8) and (4.9) we get

ik = P−1
k|k−1Pk|k−1∇hT

x R−1
k

[
νk +∇hxPT

k|k−1P−T
k|k−1x̂k|k−1

]
(4.34)

Ik = P−1
k|k−1Pk|k−1∇hT

x R−1
k ∇hxPT

k|k−1P−T
k|k−1. (4.35)

Using (4.33) in (4.34) and (4.35) we get

ik = P−1
k|k−1Pxz,k|k−1R−1

k

[
νk +PT

xz,k|k−1P−T
k|k−1x̂k|k−1

]
(4.36)

Ik = P−1
k|k−1Pxz,k|k−1R−1

k PT
xz,k|k−1P−T

k|k−1 (4.37)

where

Pxz,k|k−1 =
1

2n

2n

∑
i=1

χ i,k|k−1zT
i,k|k−1 − x̂k|k−1ẑT

k|k−1. (4.38)

The updated information state vector and information matrix for the CIF can be obtained

by using ik and Ik from (4.36) and (4.37) in (4.6) and (4.7).

One may note that, unlike for the information filter, zero initialisation is not possible

in nonlinear information filter. The evaluation of cubature points requires the square root

of the covariance matrix. The state vector and covariance matrix can be recovered by

(4.11) and (4.12). The CIF algorithm is summarised in Algorithm 11.

4.3.1 CIF in Multi-Sensor State Estimation

One of the main advantages of the information filter is its ability to deal with multi-

sensor data fusion [10, 85]. The information from different sensors can be easily fused

by simply adding the information contributions to the information matrix and information
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Algorithm 11 Cubature Information Filter
Prediction

1: Evaluate the information matrix and the information state vector

Yk|k−1 = P−1
k|k−1

ŷk|k−1 = Yk|k−1
1

2n

2n

∑
i=1

χ∗
i,k−1|k−1

where

Pk|k−1 =
1

2n

2n

∑
i=1

χ∗
i,k|k−1χ∗T

i,k|k−1 − x̂k|k−1x̂T
k|k−1 +Qk−1

and χ i,k|k−1 can be obtained from (4.25).
Measurement Update

1: Evaluate the information state contribution and its associated information matrix

Ik =Yk|k−1Pxz,k|k−1R−1
k PT

xz,k|k−1YT
k|k−1

ik =Yk|k−1Pxz,k|k−1R−1
k

[
νk +PT

xz,k|k−1YT
k|k−1x̂k|k−1

]
where

Pxz,k|k−1 =
1

2n

2n

∑
i=1

χ i,k|k−1zT
i,k|k−1 − x̂k|k−1ẑT

k|k−1.

2: The estimated information vector and information matrix of CIF are

Yk|k = Yk|k−1 + Ik

ŷk|k = ŷk|k−1 + ik.

The state and covariance can be recovered using (4.11) and (4.12).

vector [10, 85]. In multi-sensor state estimation, the available observations consist of

measurements taken from different sensors. The prediction step for multi-sensor state

estimation is similar to that of the Kalman or information filter. In the measurement update

step, the data from different sensors are fused for an efficient and reliable estimation [81].

Let the different sensors used for state estimation be given by

z j,k = h j,k(xk,uk)+v j,k; j = 1,2, ...D (4.39)

where ‘D’ is the number of sensors.
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The CIF algorithm can be easily extended for multi-sensor data fusion in which the basic

update step of CIF is similar to EIF [10]. The updated information vector and information

matrix for multi-sensor CIF are

ŷk|k = ŷk|k−1 +
D

∑
j=1

i j,k (4.40)

Yk|k = Yk|k−1 +
D

∑
j=1

I j,k. (4.41)

By using (4.36) and (4.37), the information contributions of multi-sensor CIF are

I j,k = MT
j,k|k−1R−1

j,k M j,k|k−1 (4.42)

i j,k = MT
j,k|k−1R−1

j,k [ν j,k +M j,k|k−1x̂k|k−1] (4.43)

where

MT
j,k|k−1 = P−1

k|k−1P j,xz,k|k−1. (4.44)

4.4 Square Root Cubature Information Filter

This section presents a brief description of the square root extended information filter

(SREIF) and a derivation of the square root cubature information filter (SRCIF). One

of the most stable and numerically reliable implementations of the Kalman filter is its

square root version [8]. In this the square root covariance matrix is propagated to make

the overall filter robust against round-off errors. Some of the key properties of the square

root filter are: symmetric positive definite error covariances, availability of square root

factors, doubled order precision, improved numerical accuracy [29, 8, 11, 45]. Similarly,

in the information domain square root versions of information filters are preferred [29].

These added advantages of square root filters are the motivation for the development of

SRCIF.

The following notation is used throughout this chapter. Given a positive definite ma-
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trix F , then F and F−1 can be factorised as

F = (F1/2)(FT/2) (4.45)

F−1 = (F−T/2)(F−1/2). (4.46)

4.4.1 Square Root Extended Information Filter

In this subsection, the square root extended information filter (SREIF), which is required

for the SRCIF derivation is briefly discussed. The prediction step of SREIF is not required

in this work and hence it is not presented. For more details on SREIF see [29, 6]. The

measurement update step for SREIF is [6]

 P−T/2
k|k−1 ∇hT

x R−T/2
k

x̂T
k|k−1P−T/2

k|k−1 zT
k R−T/2

k

Θ =

 P−T/2
k|k 0

x̂T
k|kP−T/2

k|k ⋆

 (4.47)

and in information space, it is

 YS,k|k−1 ∇hT
x YR

ŷT
S,k|k−1 zT

k YR

Θ =

 YS,k|k 0

ŷT
S,k|k ⋆

 (4.48)

where ŷS, YS and YR are the square root factors2 of y, Y and R−1, respectively. ‘⋆’

represents the terms which are irrelevant for SREIF and Θ is a unitary matrix which can

be found using Givens rotations or Householder reflections3 [8]. If Θ is partitioned

2Square root factors of information matrix and information state

P−1 = P−T/2P−1/2

⇒ Y = YsYT
s

P−1x = P−T/2P−1/2x
⇒ y = Ysys.

3The basic structure of the Householder matrix, Θ, is

Θ = I− 2
cT c

ccT
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as [Θ1 Θ2;Θ3 Θ4], then the updated information state vector and the corresponding

information matrix can be written as

ŷT
S,k|k = yT

S,k|k−1Θ1 + zT
k YRΘ3 (4.50)

YS,k|k = YS,k|k−1Θ1 +∇hT
x YRΘ3. (4.51)

The measurement update stage of SREIF can be extended for multi-sensor state esti-

mation [81]. In this, the data from different sensors are fused for an efficient and reliable

estimation.

The measurement update step for SREIF using ‘D’ sensors is

 YS,k|k−1 ∇hT
1,kYR,1,k ∇hT

2,kYR,2,k . . . ∇hT
D,kYR,D,k

ŷT
S,k|k−1 zT

1,kYR,1,k zT
2,kYR,2,k . . . zT

D,kYR,D,k

Θ =

 YS,k|k 0

ŷT
S,k|k ⋆

 .
(4.52)

4.4.2 Square Root Cubature Information Filter

In this subsection, the square root information filter for nonlinear systems is derived. The

proposed algorithm is derived from SREIF [29] and CKF [45], and is called as square root

cubature information filter. The square root factors of covariance matrices can be found

using the QR4 decomposition and the leftdivide operator. Furthermore, this approach can

be extended to multi-sensor data fusion.

4.4.2.1 SRCIF Prediction

1: Evaluate the cubature points

χ i,k−1|k−1 = P1/2
k−1|k−1ξi +xk−1|k−1. (4.53)

where c is a column vector and I is the identity matrix of the same dimension.
4QR is orthogonal triangular decomposition and can be found in MATLAB using the command ‘qr’.
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2: Evaluate the propagated cubature points

χ∗
i,k|k−1 = f(χ i,k−1|k−1,uk−1). (4.54)

3: Estimate the predicted state

x̂k|k−1 =
1

2n

2n

∑
i=1

χ∗
i,k|k−1. (4.55)

4: Estimate the square root factor of the predicted error covariance and information ma-

trix

Sk|k−1 =

[
qr
(
X ∗

i,k|k−1 YQ,k−1

)T
]T

(4.56)

YS,k|k−1 = Sk|k−1\I (4.57)

where YQ,k−1 is a square root factor of Qk−1 and

X ∗
i,k|k−1 =

1√
2n

[
χ∗

1,k|k−1 − x̂k|k−1 χ∗
2,k|k−1 − x̂k|k−1 . . . χ∗

2n,k|k−1 − x̂k|k−1

]
.

(4.58)

5: Evaluate the square root information state vector

ŷS,k|k−1 = YS,k|k−1x̂k|k−1. (4.59)

4.4.2.2 SRCIF Measurement Update

From (4.47), one can see that the measurement update stage of SREIF requires the lin-

earised measurement model, ∇H. By using the below statistical error propagation prop-
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erty [82], the derivative-less measurement update step for the SRCIF can be derived.

Pzz = cov(z)

= E[(z− ẑ)(z− ẑ)T ]

= E[∇hxx−∇hxx̂)(∇hxx−∇hxx̂)T ]

= ∇hxcov(x)∇hT
x

= ∇hxP∇hT
x . (4.60)

Let P1/2
zz and P1/2 denote the square root factor of Pzz and P. Then (4.60) can be expressed

as

P1/2
zz PT/2

zz = ∇hxP1/2PT/2∇hT
x (4.61)

and the covariance matrix in (4.61) can be factorised as

P1/2
zz = ∇hxP1/2 (4.62)

PT/2
zz = PT/2∇hT

x . (4.63)

Pre-multiplying ∇hT
x YR by P−T/2

k|k−1PT/2
k|k−1 gives

∇hT
x YR = P−T/2

k|k−1PT/2
k|k−1∇hT

x YR

= P−T/2
k|k−1PT/2

zz,k|k−1YR. (4.64)

From (4.48) and (4.64) we get

 YS,k|k−1 YM,k|k−1

ŷT
S,k|k−1 zT

k YR

Θ =

 YS,k|k 0

ŷT
S,k|k ⋆

 (4.65)

where

YM,k|k−1 = P−T/2
k|k−1PT/2

zz,k|k−1YR. (4.66)
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As in (4.56), the square root factor of the predicted error covariance matrix is evaluated.

Similarly, the square root factor of the measurement error covariance matrix, PT/2
zz,k|k−1, can

be evaluated. The estimated state vector and the square root factor of the error covariance

matrix required for SRCIF prediction can be recovered using (4.65), (4.11) and (4.12).

The derived SRCIF can then be extended to multi-sensor data fusion. The prediction

stage of the SRCIF in multi-sensor state estimation is similar to SRCIF.

By using (4.64), (4.66) and (4.52), the multi-sensor SRCIF measurement update step

for multi-sensor SRCIF is YS,k|k−1 Y1,M,k|k−1 Y2,M,k|k−1 . . . YD,M,k|k−1

ŷT
S,k|k−1 zT

1,kYR,1,k zT
2,kYR,2,k . . . zT

D,kYR,D,k

Θ =

 YS,k|k 0

ŷT
S,k|k ⋆

 . (4.67)

The derivation of the update stage of the multi-sensor SRCIF is given below. By expand-

ing LHS of (4.67), yields (4.68)

 YS,k|k−1 Y1,M,k|k−1 Y2,M,k|k−1 . . . YD,M,k|k−1

ŷT
S,k|k−1 zT

1,kYR,1,k zT
2,kYR,2,k . . . zT

D,kYR,D,k

ΘΘT



YT
S,k|k−1 ŷS,k|k−1

YT
1,M,k|k−1 YT

R,1,kz1,k

YT
2,M,k|k−1 YT

R,2,kz2,k

...
...

YT
D,M,k|k−1 YT

R,1,kzD,k


=

 YS,k|k 0

ŷT
S,k|k ⋆


 YT

S,k|k ŷS,k|k

0 ⋆

(4.68)

By using ΘΘT = I, (4.68) can be further expressed as

 ∑D
j=1 Y j,M,k|k−1YT

j,M,k|k−1 +YS,k|k−1YT
S,k|k−1 ∑D

j=1 Y j,M,k|k−1YT
R, j,kz j,k +YS,k|k−1ŷS,k|k−1

∑D
j=1 zT

j,kYR, j,kYT
j,M,k|k−1 + ŷT

S,k|k−1YT
S,k|k−1 ∑D

j=1 z j,kYR, j,kYT
R, j,kz j,k + ŷT

S,k|k−1YT
S,k|k−1


=

 YS,k|kYT
S,k|k YS,k|kŷS,k|k

ŷT
S,k|kYT

S,k|k ⋆

 .(4.69)
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By equating the corresponding terms of LHS and RHS of (4.69) and by using

Y = YsYT
s (4.70)

y = Ysys (4.71)

we get

ŷk|k = ŷk|k−1 +
D

∑
j=1

is, j,k (4.72)

Yk|k = Yk|k−1 +
D

∑
j=1

Is, j,k (4.73)

where

Is, j,k = Y j,M,k|k−1YT
j,M,k|k−1 (4.74)

is, j,k = Y j,M,k|k−1YT
R, j,kz j,k. (4.75)

From (4.66) and (4.74), we get

Is, j,k = P−T/2
k|k−1PT/2

j,zz,k|k−1R−T/2
j R−1/2

j P1/2
j,zz,k|k−1P−1/2

j,k|k−1. (4.76)

Using (4.63) in (4.76), we get

Is, j,k = ∇hT
j,xR−1

j,k ∇h j,x. (4.77)

From (4.33) and (4.77), we get

Is, j,k = P−1
k|k−1P j,xz,k|k−1R−1

j,k PT
j,xz,k|k−1P−T

k|k−1

= MT
j,k|k−1R−1

j,k M j,k|k−1 (4.78)

which is the same as (4.42) and hence the decentralised SRCIF is equivalent to the decen-



109
4.5 Speed and Rotor Position Estimation of a Two Phase Permanent Magnet

Synchronous Motor

tralised CIF. Similarly, the corresponding analysis can be easily done for the information

vector contribution, is, j,k.

In a similar way, the square root UIF can be easily derived.

4.5 Speed and Rotor Position Estimation of a Two Phase

Permanent Magnet Synchronous Motor

In this section, we will consider the state estimation of a two phase permanent magnet

synchronous motor (PMSM) [11]. The PMSM has four states, the first two states are

currents through the two windings, the third state is speed and the fourth state is rotor

angular position. The inputs to the motor are the voltages, u1,k and u2,k. The objective is

to estimate the rotor angular position and speed of PMSM using the two winding currents.

The discrete-time nonlinear model of PMSM is [11]



x1,k+1

x2,k+1

x3,k+1

x4,k+1


=



x1,k +Ts(−R
L x1,k +

ωλ
L sinx4,k +

1
Lu1,k)

x2,k +Ts(−R
L x2,k − ωλ

L cosx4,k +
1
Lu2,k)

x3,k +Ts(−3λ
2J x1,k sinx4,k +

3λ
2J x2,k cosx4,k −

Fx3,k
J )

x4,k +Tsx3,k


the outputs and inputs are

 y1,k

y2,k

=

 x1,k

x2,k

 ,
 u1,k

u2,k

=

 sin(0.002πk)

cos(0.002πk)

 .
Note that, in this thesis one of the main aims is to show the efficacy of the proposed state

estimation algorithms. The plant models are discretised using Euler’s method. However,

one can investigate other discretisation methods like Runge-Kutta methods, etc.

The following parameters are considered for the simulations: R = 1.9Ω, λ=0.1, L =
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Figure 4.1: Actual and estimated states using SREIF and SRCIF.
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Figure 4.2: RMSE of PMSM using SREIF and SRCIF.

0.003H, J = 0.00018, F = 0.001 and Ts = 0.001 s. The covariance matrices for the process

and measurement noises

Q =



11.11 0 0 0

0 11.11 0 0

0 0 0.25 0

0 0 0 1×10−6


, R = 1×10−6I2

are added to the plant and measurement models. The initial conditions for all the plant

states are 0, the initial information vector is selected from N

([
1 1 1 1

]T

,I4

)
.

The speed and the rotor angular position are estimated using SREIF, SRUIF and SRCIF.

The SRUIF tuning parameters are α = 0.001, β = 2 and κ = 3−n [84]. Over 500 Monte-

Carlo runs were performed to analyse the performance of the estimates. Figure 4.1 shows

a typical result of one of the Monte-Carlo simulations. In Figure 4.1 the estimated SRCIF

states are very close to the actual states, whereas estimated states using SREIF fail to

converge to the actual states. Note that the speed in Figure 4.1 is negative as the PMSM
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Figure 4.3: Actual and estimated states of PMSM using decentralised SREIF and decen-
tralised SRCIF.

is simulated based on an open-loop control strategy. The desired speed tracking can be

achieved by designing a closed-loop control system, which is beyond the scope of this

work. The root mean square error (RMSE) plot for the PMSM’s speed is shown in Figure

4.2. The peaks in Figure 4.2 are due to the sudden change in rotor angle which occurs

at rotor angle of 2π , where SREIF estimation is poor. The average RMSE values over

simulated time are 8.1874 and 2.2909 for SREIF and SRCIF, respectively. In some of the

simulations, the SRUIF response is unstable and hence its performance is not shown in

the plots. One of the reasons for this divergent behaviour of SRUIF is the unavailability

of the positive definite square root matrices, which halts the filter. The similar instability

of unscented filters is discussed in [45]. To show the effectiveness of the multi-sensor

SRCIF, data from two different sets of sensors are used in the simulations. The noise

covariances of the two sensors are

R1 = 1×10−6I2 and R2 = 2.5×10−5I2.
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Figure 4.4: RMSE of PMSM using decentralised SREIF and decentralised SRCIF.

The simulation results for state estimation of the PMSM using multi-sensor SREIF and

SRCIF are shown in Figure 4.3. Although fault detection and isolation are not the main

scope of this work, state estimation in the presence of data loss is simulated in this case.

It is assumed that the first and second sensor fails to give any output from 0.5 to 0.7

s and from 2 to 2.5 s, respectively. The first two actual states and its estimates using

decentralised SREIF, SRCIF almost overlap and hence they are not shown in Figure 4.3.

It can be seen that state estimates using multi-sensor SRCIF in presence of data loss are

very close to each other. The sudden changes in the rotor position and angle at 0.5 and 2 s

are due to the data loss. The average RMSE values over simulated time are 8.0975 and

2.5747 for multi-sensor SREIF and SRCIF, respectively. The RMSE plot for PMSM in

the presence of data loss is shown in Figure 4.4 and it can be seen that, using two different

sensors, the multi-sensor SRCIF outperforms multi-sensor SREIF.
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4.5.1 Simulations of PMSM without limiting the rotor position from

0 to 2π radians

In this section, the simulations given in the previous section are repeated without limiting

the rotor position from 0 to 2π radians. Over 500 Monte-Carlo runs were performed to

analyse the performance of the estimates. Figure 4.5 shows a typical result of one of the

Monte-Carlo simulations. In Figure 4.5 the estimated SRCIF states are very close to the

actual states, whereas estimated states using SREIF fail to converge to the actual states.

The RMSE plot for the PMSM’s speed is shown in Figure 4.5. The average RMSE values

over simulated time are 15.17 and 0.5582 for SREIF and SRCIF, respectively.

The simulation results for state estimation of the PMSM, without limiting the rotor

position from 0 to 2π , using multi-sensor SREIF and SRCIF are shown in Figure 4.7. It is

assumed that the first and second sensor fails to give any output from 0.5 to 0.7 s and from

2 to 2.5 s, respectively. The first two actual states and its estimates using decentralised

SREIF, SRCIF almost overlap and hence they are not shown in Figure 4.7. It can be seen

that state estimates using multi-sensor SRCIF in presence of data loss are very close to

each other. The sudden changes in the rotor position and angle at 0.5 and 2 s are due to

the data loss. The average RMSE values over simulated time are 14.3804 and 1.5487 for

multi-sensor SREIF and SRCIF, respectively. The RMSE plot for PMSM in the presence

of data loss is shown in Figure 4.8 and it can be seen that, using two different sensors, the

multi-sensor SRCIF outperforms multi-sensor SREIF. Note that the RMSE plots shows

the RMSE of the PMSM’s speed only and hence the plots given in Figure 4.2 and 4.6, and

4.4 and 4.8 looks similar.

4.6 Conclusions

In this chapter, we have proposed a cubature information filter (CIF) and its square root

version (SRCIF) for nonlinear systems. The proposed filters are derived from an extended
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Figure 4.5: Actual and estimated states using SREIF and SRCIF; without limiting the
rotor position to 2π radians.
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Figure 4.6: RMSE of PMSM using SREIF and SRCIF; without limiting the rotor position
to 2π radians.

information filter, a cubature Kalman filter and their square root versions. The CIF and

SRCIF have the following desirable properties

1. They do not require the evaluation of Jacobians during the prediction and measure-

ment update stages.

2. The update step is computationally simpler.

3. The SRCIF is numerically stable and reliable.

4. They are easy to extend for multi-sensor state estimation.

The efficacy of the proposed algorithms are verified by simulations. The multi-sensor

SRCIF is applied to state estimation of PMSM and is compared with SREIF and SRUIF.

It is also shown that the SRCIF, when applied to multi-sensor state estimation outper-

forms SREIF and SRUIF. One of the advantages of information filters is to deal with state

estimation with multiple sensors.
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Figure 4.7: Actual and estimated states of PMSM using decentralised SREIF and decen-
tralised SRCIF; without limiting the rotor position to 2π radians.
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Figure 4.8: RMSE of PMSM using decentralised SREIF and decentralised SRCIF; with-
out limiting the rotor position to 2π radians.

The proposed algorithms can be further explored in robotics and aerospace applica-

tions, where data from different sensors are fused to achieve reliable state estimates.



Chapter 5

Cubature H∞ Filters

5.1 Introduction

In Chapter 3, EKF, UKF and CKF were discussed and in Chapter 4, CKF was further ex-

tended in information domain to deal with multi-sensor state estimation. However in the

previously discussed nonlinear state estimators, the statistical properties of the noises are

assumed to be known apriori and, in addition, they may not be robust against parametric

uncertainties. This chapter deals with the derivative free state estimation for nonlinear

systems with non-Gaussian noises using CKF and EH∞F. In H∞ filters, neither the accu-

rate model nor the ‘apriori’ statistical noise properties are required [17], [48], [47], [49],

[11]. The extended version of H∞ filters [49] and extended H∞ filter (EH∞F), still require

Jacobians during the state estimation of nonlinear systems, which may degrade the perfor-

mance of highly nonlinear systems. The mixed H2/H∞ filter combines the best features

of Kalman filtering and H∞ filtering [86-88].

In this chapter, we present a cubature H∞ filter by embedding CKF with EH∞F for

nonlinear, non-Gaussian systems, furthermore, a square root version is derived. The ap-

plicability of the square root cubature H∞ filter is demonstrated on the nonlinear state

estimation of a closed loop continuous stirred tank reactor (CSTR), in the presence of

Gaussian and non-Gaussian noises. The control variable of CSTR is a function of the

119
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estimated states and is computed by a feedback linearisation method [93]. The rest of the

Chapter is structured as follows. Sections 5.2 and 5.3 include the preliminaries of the ex-

tended H∞ filter and CKF, respectively. Section 5.4 describes the cubature H∞ filter and its

square root version is derived in Section 5.5. Section 5.6 includes numerical simulations

and concluding remarks are presented in Section 5.7.

5.2 An Extended H∞ Filter

This section presents a brief introduction to an EH∞F. An H∞ filter for linear systems

was discussed in Chapter 2, for a detailed formulation and derivation of EH∞F see for

example [48] and [49].

The discrete-time process and observation models can be written as

xk = f[xk−1,uk−1]+wk−1 (5.1)

zk = h[xk,uk]+vk (5.2)

where k is a current time index, xk ∈ Rn is a state vector, uk ∈ Rq is a control input,

zk ∈R p is a measurement vector, and wk−1 and vk are the process and observation noises.

The noise terms wk and vk may be random with possibly unknown statistics, or they may

be deterministic. They may have a non-zero mean. Instead of directly estimating the state

one can estimate a linear combination of states.

In the game theory approach to H∞ filtering [17], [49], the performance measure is

given by

J∞ =
∑N

k=1 ∥nk − n̂k∥2
Mk

∥x0 − x̂0∥2
P−1

0
+∑N

k=1(∥wk∥2
Q−1

k
+∥vk∥2

R−1
k
)

(5.3)

where P0, Qk, Rk, and Mk are symmetric positive definite weighing matrices chosen

by the user based on the problem at hand. The norm notation used in this section is

∥e∥2
Sk
= eT Ske. This is the same performance measure which was discussed in Section for

linear systems. A linear H∞ filter can be easily extended to nonlinear systems by replacing
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the linear state and measurement matrices with their Jacobians, and by slightly modifying

the predicted state equation. In this Chapter, we have used the EH∞F algorithm given

in [49] and is given below.

The predicted state vector and auxiliary matrix are

x̂k|k−1 = f(x̂k−1|k−1,uk−1) (5.4)

Pk|k−1 = ∇fxPk−1|k−1∇fT
x +Qk (5.5)

and the inverse of the updated auxiliary matrix can be obtained as

P−1
k|k = P−1

k|k−1 +∇hT
x R−1

k ∇hx − γ−2In (5.6)

where In denotes the identity matrix of dimension n×n.

The updated state is

x̂k|k = x̂k|k−1 +K∞[zk −h(x̂k|k−1)] (5.7)

where

K∞ = Pk|k−1∇hT
x [∇hxPk|k−1∇hT

x +Rk]
−1 (5.8)

The Jacobians of f and h, ∇fx and ∇hx, are evaluated at x̂k−1|k−1 and x̂k|k−1, respectively.

5.3 Cubature Kalman filter

For the completeness, some of the key prediction equations described in previous chap-

ters are repeated in this section. These prediction equations are required for the CH∞F’s

derivation.

The cubature points required for the prediction step are

χ i,k−1|k−1 =
√

Pk−1|k−1ξi + x̂k−1|k−1 (5.9)
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where i = 1,2, ...,2n and n is the size of the state vector.

The propagated cubature points through the process model are

χ∗
i,k|k−1 = f(χ i,k−1|k−1,uk−1). (5.10)

The evaluated mean and error covariance matrix are

x̂k|k−1 =
1

2n

2n

∑
i=1

χ∗
i,k|k−1 (5.11)

Pk|k−1 =
1
2n

2n

∑
i=1

χ∗
i,k|k−1χ∗T

i,k|k−1 − x̂k|k−1x̂T
k|k−1 +Qk−1 (5.12)

The predicted measurement and its associated covariances are

ẑk|k−1 =
1
2n

2n

∑
i=1

zi,k|k−1 (5.13)

Pzz,k|k−1 =
1
2n

2n

∑
i=1

zi,k|k−1zT
i,k|k−1 − ẑk|k−1ẑT

k|k−1 +Rk (5.14)

Pxz,k|k−1 =
1
2n

2n

∑
i=1

χ i,k|k−1zT
i,k|k−1 − x̂k|k−1ẑT

k|k−1 (5.15)

where

zi,k|k−1 = h(χ i,k|k−1,uk) (5.16)

χ i,k|k−1 =
√

Pk|k−1ξi + x̂k|k−1. (5.17)

5.4 Cubature H∞ filter

This section describes the cubature H∞ filter algorithm, which uses an EH∞F in the CKF

framework. It can be seen from the Section 5.2, that EH∞F requires Jacobians, and the

CKF detailed in Section 5.3 assumes that the statistical noise properties are known during

the state estimation. In this section, we present a nonlinear estimation algorithm in which
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neither the Jacobians nor the statistical noise properties are required for state estimation.

It can be useful in the presence of parametric uncertainties. If some of the statistical

properties of noises are known apriori, then it can be incorporated in the proposed method.

The proposed cubature H∞ filter is an heuristic approach, which has the advantages of

both CKF and an EH∞F. The main aim is to develop a filter which should be a derivative

free filter like CKF and have the robustness properties of an EH∞F. The idea is to use

the prediction step of CKF and the update step of H∞ filter. It is not straight forward to

just replace the prediction stage from the CKF and update stage from EH∞F to form the

cubature H∞ filter. The main difficulty is due to the update stage of EH∞F, where one of the

key steps is the evaluation of Jacobians. For the derivative free cubature H∞ filter, these

Jacobians are approximated using the linear propagation property. In the cubature H∞

filter, the prediction step is similar to CKF, which involves the factorisation of the error

auxiliary matrix, evaluation of cubature and propagated cubature points for the process

model and estimation of the predicted state and predicted error auxiliary matrix, see [45]

for more details. The aim of this section is to fuse an EH∞F and CKF to obtain a filter

which will have the desirable properties of both filters. The update step of the EH∞F

requires linearised Jacobian of the measured model, while it does not explicitly exist in

the CKF framework. However, by using the following linear propagation property [82]

and [36], it is possible to embed the EH∞F in the CKF framework. The linear error

propagation property for the error covariance and cross covariance can be approximated

as [82]

Pxz,k|k−1 ≃ Pk|k−1∇hT
x (5.18)

Pzz,k|k−1 ≃ ∇hxPk|k−1∇hT
x (5.19)

Now we will use (5.18) to determine the update step of the cubature H∞ filter. By mul-

tiplying P−1
k|k−1 and Pk|k−1, and their transposes on the second term of RHS of (5.6) we
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get

∇hT
x R−1

k ∇hx = P−1
k|k−1Pk|k−1∇hT

x R−1
k ∇hxPT

k|k−1P−T
k|k−1 (5.20)

and by using (5.18) in (5.20) we get

∇hT
x R−1

k ∇hx = P−1
k|k−1Pxz,k|k−1R−1

k PT
xz,k|k−1P−T

k|k−1 (5.21)

By using the inverse of the updated auxiliary matrix and EH∞F gain , (5.6) and (5.8),

(5.18) and (5.19) we get

Kc∞ = Pxz,k|k−1(Pzz,k|k−1 +Rk)
−1 (5.22)

P−1
k|k = P−1

k|k−1 +P−1
k|k−1Pxz,k|k−1R−1

k PT
xz,k|k−1P−T

k|k−1 − γ−2In (5.23)

The recovery of a covariance matrix from an information matrix is an active area of re-

search [77-80]. The auxiliary matrix Pk|k can be recovered from (5.23) by using MAT-

LAB’s leftdivide operator [79]

Pk|k = P−1
k|k\In. (5.24)

The predicted step of the cubature H∞ filter is similar to the prediction step of CKF

[45]. The cubature H∞ filter algorithm is summarised in Algorithm 12.

Algorithm 12 Cubature H∞ Filter

Initialise the state vector, x̂, and the auxiliary matrix, P (set k = 1).

Prediction

1: Factorise

Pk−1|k−1 = P1/2
k−1|k−1PT/2

k−1,k−1. (5.25)

2: Evaluate the cubature points, Xi,k−1|k−1

Xi,k−1|k−1 = P1/2
k−1|k−1ξi + x̂k−1|k−1 (5.26)
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3: Evaluate the propagated cubature points, X∗
i,k|k−1

X∗
i,k|k−1 = f(Xi,k−1|k−1,uk−1) (5.27)

4: Estimate the predicted state, x̂k|k−1

x̂k|k−1 =
1

2n

2n

∑
i=1

X∗
i,k−1|k−1 (5.28)

5: Estimate the predicted auxiliary matrix, Pk|k−1

Pk|k−1 =
1

2n

2n

∑
i=1

X∗
i,k−1|k−1X∗T

i,k−1|k−1 − x̂k|k−1x̂T
k|k−1 +Qk−1 (5.29)

Measurement Update

1: Factorise

Pk|k−1 = P1/2
k|k−1PT/2

k|k−1. (5.30)

2: Evaluate the cubature points

Xi,k|k−1 = P1/2
k|k−1ξi + x̂k|k−1. (5.31)

3: Evaluate the propagated cubature points of measurement model, Zi,k|k−1

Zi,k|k−1 = h(Xi,k|k−1,uk) (5.32)

4: Estimate the predicted measurement, ẑk|k−1

ẑk|k−1 =
1

2n

2n

∑
i=1

Zi,k|k−1 (5.33)
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5: Estimate the measurement auxiliary matrix, Pzz,k|k−1

Pzz,k|k−1 =
1

2n

m

∑
i=1

Zi,k|k−1ZT
i,k|k−1 − ẑk|k−1ẑT

k|k−1 +Rk (5.34)

6: Estimate the cross auxiliary matrix, Pxz,k|k−1

Pxz,k|k−1 =
1

2n

m

∑
i=1

Xi,k|k−1ZT
i,k|k−1 − x̂k|k−1ẑk|k−1 (5.35)

7: Estimate the gain matrix, Kc∞

Kc∞ = Pxz,k|k−1(Pzz,k|k−1 +Rk)
−1. (5.36)

8: Estimate the updated state

x̂k|k = x̂k|k−1 +Kc∞(zk − ẑT
k|k−1). (5.37)

9: Estimate the inverse of the updated auxiliary matrix, P−1
k|k

P−1
k|k = P−1

k|k−1 +P−1
k|k−1Pxz,k|k−1R−1

k PT
xz,k|k−1P−T

k|k−1 − γ−2In. (5.38)

10: Recover the auxiliary matrix, Pk|k, using (5.24).

If the statistical properties of noises are known, then in the cubature H∞ filter they can

be directly used as noise covariance matrices. If the statistical properties of noises are

not known, then the desired performance can be achieved by using ‘Q’ and ‘R’ as tuning

parameters. The selection of an attenuation parameter, γ , is also crucial for the existence

of the filter. One can either use an appropriate fixed γ or a time-varying γ described

in [47].
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5.5 Square root Cubature H∞ Filter

During the real-time implementation of state estimation algorithms, the propagated error

covariance matrices may become ill conditioned, which eventually halts the filter opera-

tion. This can happen if some of the states are measured with greater precision than other

states, where the corresponding elements of covariance matrix with accurately measured

states will have lower values, while the other entries will have higher values [11]. These

type of ill-conditioned covariance matrix may cause numerical instability during the on-

line implementation. To circumvent these difficulties, one can use square root filters,

where the square root of the error covariance matrices are propagated. Some of the key

properties of square root filters are symmetric positive definite error covariances, avail-

ability of square root factors, doubled order precision, improved numerical accuracy, etc.

[45], [11], [6], [26], [8].

Along the lines of square root Kalman filters, a few researchers have explored square

root H∞ filters. In [30], square root algorithms for H∞ apriori, aposteriori and filtering

problems are developed in Krein space. The square root H∞ information estimation for

a rectangular discrete-time descriptor system is described in [89], where the inverse of

the covariance matrices (information matrices) are propagated. In [90], square root H∞

estimators for time-variant descriptor systems are developed. One of the main differences

in deriving the square root Kalman and H∞ filters is the use of a rotation matrix. The

square root Kalman filter uses the unitary matrix1, whereas the square root H∞ filter use

the J-unitary matrix.

In this section, we will first derive the update step of the square root H∞ filter and

then the square root cubature H∞ filter will be discussed. The following notations for the

matrices are used.
1When J is the identity matrix, unitary matrix is a special case of J-unitary matrix.
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Given a symmetric matrix F, then F and F−1 can be factorised as

F = (F1/2)S(FT/2) (5.39)

F−1 = (F−T/2)S(F−1/2) (5.40)

where S is the signature matrix.

5.5.1 Square root H∞ filter

The prediction step of the square root H∞ filter is omitted here as it is not required for

the derivation of the square root cubature H∞ filter. The measurement update step of the

square root H∞ filter is

 −∇hT
x R−T/2

k P−T/2
k|k−1 γ−1In

R1/2
k ∇hxP1/2

k|k−1 0

ΘJ =

 0 P−T/2
k|k 0

R1/2
e 0 0

 (5.41)

where ΘJ is a J-unitary matrix.

Once the square root factor of the auxiliary matrices Pk|k and Re = ∇hxPk|k−1∇hT
x +Rk

are obtained, the gain matrix of square root H∞ filter can be obtained as

KS∞,k = P1/2
k|k−1PT/2

k|k−1∇hT
x R−T/2

e R−1/2
e (5.42)

The update state of square root H∞ filter is

x̂k|k = x̂k|k−1 +KS∞,k(zk −h(x̂k|k−1)) (5.43)

The measurement update in (5.41) can be easily derived by squaring both sides2,

2If b = aΘ, with Θ as J-unitary matrix, then [30]

bJbT = aΘJΘT aT = aJaT
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 −∇hT
x R−T/2

k P−T/2
k|k−1 γ−1In

R1/2
k ∇hxP1/2

k|k−1 0

ΘJJΘT
J


−R−1/2

k ∇hx RT/2
k

P−1/2
k|k−1 PT/2

k|k−1∇hT
x

γ−1In 0



=

 0 P−T/2
k|k 0

R1/2
e 0 0

J


0 RT/2

e

P−1/2
k|k 0

0 0

 (5.44)

The J-unitary matrix for (5.44) can be chosen as

J =


Ip 0 0

0 In 0

0 0 −In

 (5.45)

where Ip and In denotes the identity matrices of dimension p× p and n×n, respectively.

By using ΘJJΘT
J = J, (5.44) can further be written as

 P−1
k|k−1 +∇hT

x R−1
k ∇hx − γ−2In 0

0 ∇hxPk|k−1∇hT
x +Rk

=

 P−1
k|k 0

0 Re

 (5.46)

One can see that the first entries of (5.46), and (5.42) are the same as the inverse of the

updated auxiliary matrix and the gain of the H∞ filter described in Section 5.2 and hence

the square root extended H∞ filter derived in this section is equivalent to the extended H∞

filter in Section 5.2.

5.5.2 Square root Cubature H∞ Filter

In this subsection, the derivative-free square root cubature H∞ filter for nonlinear systems

is derived. The square root CKF is a nonlinear filter which deals with only Gaussian noises

[45] and the square root H∞ filter detailed in Section 5.1 can deal with non-Gaussian
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noises but it requires Jacobians during the nonlinear state estimation. The proposed al-

gorithm is derived from the square root CKF and square root H∞ filter, and is called as

square root cubature H∞ filter. The main advantages of the square root cubature H∞ filter

are derivative-less nonlinear estimation and its capability to deal with the non-Gaussian

noises. The prediction step of the square root cubature H∞ filter is the same as for the

square root CKF [45].

5.5.2.1 Square root Cubature H∞ Filter Measurement Update

From (5.41), one can see that the measurement update stage of square root H∞ filter

requires the linearised measurement model, ∇h. By using the below statistical error prop-

agation property [82], the derivative-free measurement update step for the square root

cubature H∞ filter can be derived as

Pzz ≃ E[(z− ẑ)(z− ẑ)T ]

≃ E[∇hxx−∇hxx̂)(∇hxx−∇hxx̂)T ]

≃ ∇hxcov(x)∇hT
x

≃ ∇hxP∇hT
x (5.47)

Let P1/2
zz and P1/2 be the square root factors of Pzz and P. Then (5.47) can be expressed as

P1/2
zz PT/2

zz = ∇hxP1/2PT/2∇hT
x (5.48)

and further (5.48) can be written as

P1/2
zz = ∇hxP1/2 (5.49)

PT/2
zz = PT/2∇hT

x (5.50)
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By pre-multiplying P−T/2
k|k−1PT/2

k|k−1 to ∇hT
x R−T/2

k and by using (5.50) we get

∇hT
x R−T/2

k = P−T/2
k|k−1PT/2

k|k−1∇hT
x R−T/2

k

= P−T/2
k|k−1PT/2

zz,k|k−1R−T/2
k (5.51)

By using (5.49) and (5.51) in (5.41), the measurement update of the square root cuba-

ture H∞ filter can be written as

 −P−T/2
k|k−1PT/2

zz,k|k−1R−T/2
k P−T/2

k|k−1 γ−1In

R1/2
k P1/2

zz,k|k−1 0

ΘJ =

 0 P−T/2
k|k 0

R1/2
e 0 0

(5.52)

The derivation of (5.52) is given in Section 5.5.3 and the computation of square root

cubature H∞ algorithm is summarised in Algorithm 13.

5.5.3 Derivation of Update Step in Square root Cubature H∞ Filter

By expanding LHS of (5.52), we get

 −P−T/2
k|k−1PT/2

zz,k|k−1R−T/2 P−T/2
k|k−1 γ−1In

R1/2 P1/2
zz,k|k−1 0

ΘJJΘT
J


−R−1/2P1/2

zz,k|k−1P−1/2
k|k−1 RT/2

P−1/2
k|k−1 PT/2

zz,k|k−1

γ−1In 0



=

 0 P−T/2
k|k 0

R1/2
e 0 0

J


0 RT/2

e

P−1/2
k|k 0

0 0

(5.53)

By using ΘJJΘT
J = J and (5.45); (5.53) can be written as

 P−1
k|k−1 +P−T/2

k|k−1PT/2
zz,k|k−1R−1

k P1/2
zz,k|k−1P−1/2

k|k−1 − γ−2In 0

0 Pzz,k|k−1 +Rk

=

 P−1
k|k 0

0 Re


(5.54)
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By using the statistical approximations (5.18) and (5.50) we get

Pxz,k|k−1 ≃ Pk|k−1∇hT
x

= P1/2
k|k−1PT/2

k|k−1∇hT
x

= P1/2
k|k−1(∇hxP1/2

k|k−1)
T

= P1/2
k|k−1PT/2

zz,k|k−1 (5.55)

By equating the corresponding terms of LHS and RHS of (5.54) and by using (5.55) in

(5.54) we get

P−1
k|k = P−1

k|k−1 +P−1
k|k−1Pxz,k|k−1R−1

k PT
xz,k|k−1P−T

k|k−1 − γ−2In (5.56)

and

Re = Pzz,k|k−1 +Rk (5.57)

which is same as (5.23) in the cubature H∞ filter.

Algorithm 13 Square root Cubature H∞ Filter

Initialise the state vector, x, and the square root of the auxiliary matrix, P1/2 (set

k = 1). Prediction

1: Evaluate the cubature points

Xi,k−1|k−1 = P1/2
k−1|k−1ξi +xk−1|k−1 (5.58)

2: Evaluate the propagated cubature points

X∗
i,k|k−1 = f(Xi,k−1|k−1,uk−1) (5.59)
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3: Estimate the predicted state

x̂k|k−1 =
1
2n

2n

∑
i=1

X∗
i,k|k−1 (5.60)

4: Estimate the square root factor of the predicted auxiliary matrix using the QR3 de-

composition

P1/2
k|k−1 =

[
qr
(
Xi,k|k−1 Q1/2

)T
]T

(5.61)

where

Xi,k|k−1 =
1√
2n

[
X1,k|k−1 − x̂k|k−1 X2,k|k−1 − x̂k|k−1 . . .X2n,k|k−1 − x̂k|k−1

]
(5.62)

Measurement Update

1: Evaluate the cubature points

Xi,k|k−1 = P1/2
k|k−1ξi + x̂k|k−1. (5.63)

2: Evaluate the propagated cubature points

Zi,k|k−1 = h(Xi,k|k−1,uk) (5.64)

3: Evaluate the square root factor of measurement auxiliary matrix

P1/2
zz,k|k−1 =

[
qr
(
Zi,k|k−1 R1/2

k

)T
]T

(5.65)

where

Zi,k|k−1 =
1√
2n

[
Z1,k|k−1 − ẑk|k−1 Z2,k|k−1 − ẑk|k−1 X2n,k|k−1 − ẑk|k−1

]
(5.66)

3QR is orthogonal triangular decomposition and can be evaluated by using MATLAB command ‘qr’.
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4: Evaluate the square root of updated auxiliary matrix using

 −P−T/2
k|k−1PT/2

zz,k|k−1R−T/2
k P−T/2

k|k−1 γ−1In

R1/2
k P1/2

zz,k|k−1 0

ΘJ =

 0 P−T/2
k|k 0

R1/2
e 0 0

 (5.67)

5: Evaluate the gain matrix using

KSC∞,k = Pxz,k|k−1R−T/2
e R−1/2

e (5.68)

where

Pxz,k|k−1 = P1/2
k|k−1PT/2

zz,k|k−1

6: Evaluate the updated state using

x̂k|k = x̂k|k−1 +KSC∞,k(zk − ẑk|k−1) (5.69)

7: Recover the square root factor of the updated auxiliary matrix, P1/2
k|k , using

P1/2
k|k = P−1/2

k|k \In. (5.70)

5.6 State Estimation of a CSTR

In order to evaluate the performance of the square root cubature H∞ filter, the state esti-

mation of a continuous stirred tank reactor (CSTR) in the presence of Gaussian and non-

Gaussian noises is considered. The process model for an irreversible, first-order chemical

reaction, A → B which occurs in a CSTR is [91-92]

ĊA =
q
V
(CA f −CA)− k0 exp

(
−E
RT

)
CA (5.71)

Ṫ =
q
V
(Tf −T )+

−∇H
ρCp

k0 exp
(
−E
RT

)
CA +

UA
V ρCp

(Tc −T ) (5.72)



135 5.6 State Estimation of a CSTR

The state vector (CA and T ) consists of concentration and temperature of the reactor and

the measured output, h is temperature of the CSTR, T .

The following parameters are considered for the simulations [92]:

q = 100L/min, E
R = 8750K, CA f = 1mol/L, K0 = 7.5× 1010min−1, Tf = 350K, UA =

5000J/minK, V = 100L, Tc = 300K, ρ = 1000g/L, CA = 0.5mol/L, Cp = 0.239J/gK,

T = 350K and (∇H) = 5000J/mol.

The process and measurement noises, wk and vk, are added to the process and mea-

surement models. The control variable, coolant temperature Tc, is computed using input-

output feedback linearisation [92]

Tc =
ζ −L f h(x)

Lgh(x)
(5.73)

The Lie derivatives L f and Lh, and ζ are

L f h(x) =
q
V
(Tf −T )+

−∇H
ρCp

k0 exp
(
−E
RT

)
CA −

UA
V ρCp

(T ) (5.74)

Lgh(x) =
UA

V ρCp
(5.75)

ζ = 50z+10(Tset point −T ) (5.76)

where z can be obtained by integrating

ż = Tset point −T.

The control input is evaluated at the estimated states. The plant is discretised using Euler’s

method with a sampling time of 0.01s and the reactor set-point is 400 K. The objective

is to estimate the full state vector of closed-loop CSTR using noisy temperature measure-

ments. The simulations with perfect measurement noise are also performed. The selected
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Figure 5.1: Actual and estimated states in the presence of non-Gaussian noises.

tuning parameters for the square root cubature H∞ filter are γ = 1 and

Q =

 0.001 0

0 0.5

and R = 0.001

5.6.1 State estimation in the presence of non-Gaussian noises

In this sub-section, state estimation of the CSTR using a square root cubature H∞ filter

in the presence of non-Gaussian, non-zero mean, time-varying noises is considered. The

process and measurement noises are

wk =

 0.01+0.05× sin(0.1k) 0

0 1+ sin(0.1k)

 (5.77)

vk = 1+0.1× sin(0.1k). (5.78)

The CSTR model is initialised at x0 = [0.4 340]T and the chosen associated auxiliary

matrix is P0|0 = [0.001 0;0 0.01]. The initial state estimate is randomly selected from
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Figure 5.2: RMSEs of x1 in the presence of non-Gaussian noises.

a uniform distribution of U(x0,P0|0). The maximum magnitudes of wk and vk are used in

the noise covariance matrices for the square root CKF. The actual and estimated states,

and the RMSEs using square root CKF and square root cubature H∞ filter are shown in

Figures 5.1 and 5.2, respectively. The offsets in RMSE plots are due to the non-zero bias

of the noises, which were intentionally added to verify the effectiveness of the square

root cubature H∞ filter in the presence of non-zero mean noises. The maximum RMSEs

for the square root CKF and the square root cubature H∞ filter are 0.7372 and 0.1116,

respectively. Hence, the square root cubature H∞ filter would appear to be well suited for

non-linear state estimation in the presence of non-Gaussian noises. We have not compared

the filters response in the presence of Gaussian noises as any Kalman filter’s performance

can be achieved by tuning the H∞ filter parameters. Similarly, the square root CKF’s

performance can be replicated using the square root cubature H∞ filter, but the reverse is

not possible.
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Figure 5.3: RMSEs of x1 with perfect measurements.

5.6.2 State estimation with perfect measurements

To illustrate the effectiveness of the square root cubature H∞ filter, the case of perfect

measurements is considered. Non-square root estimators have the tendency to diverge

due to singularity issues. There are many ad-hoc methods available to circumvent these

problems. However, in most cases, the presence of the square root filter inherently solves

these numerical issues [9, 8, 11]. Simulations using the non-square root cubature H∞ filter

for the perfect case are not presented, as its response diverges after 3−4 time steps. In this

section, for the non-Gaussian case, the simulations in the Section 6.1 are repeated with

perfect measurements. In the Gaussian case, the standard deviations of the two states for

process noise are considered as 0.1. The magnitude of the measurement noise is assumed

to be zero (perfect measurement) for both Gaussian and non-Gaussian simulations. The

corresponding results are shown in Figure 5.3. It can be seen that the RMSEs, using

square root cubature H∞ filters in the presence of Gaussian and non-Gaussian are within

an acceptable range.
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5.7 Conclusions

In this Chapter, we have presented a cubature H∞ filter and its square root version for

nonlinear systems. The proposed filter is derived from an extended H∞ filter fused with a

cubature Kalman filter. The advantages of the proposed filter are

1. It can deal with highly nonlinear systems with Gaussian and non-Gaussian noises.

2. It does not require the evaluation of Jacobians for nonlinear state estimation.

3. If the statistical properties of the noises (Gaussian) are known, then they can be

incorporated in the proposed estimation method. If they are not known, then the Q

and R matrices can be used as tuning parameters.

4. The overall robustness of the filter can be enforced by tuning the attenuation pa-

rameter, γ .

5. The square root cubature H∞ filter is inherently numerically stable filter, as it prop-

agates the square root of the auxiliary matrix.

The effectiveness of the square root cubature H∞ filter was demonstrated by numerical

simulations. The states of a continuous stirred tank reactor were estimated by using the

square root cubature H∞ filter in the presence of Gaussian as well as non-Gaussian noises.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis has presented a few linear and nonlinear state estimation methods, their exten-

sions and applications. This section summarises the main findings and contributions.

6.1.1 An H∞ filter based Sliding Mode Control

Linear state estimation methods and their application in control theory were explored.

The Kalman filter and H∞ filter were the main tools for linear estimation methods. Both

Kalman and H∞ are optimal filters, Kalman filter minimises the variance of the estimation

error and H∞ filter minimises the worst-case estimation errors. An H∞ filter has several

advantages over the Kalman filter, like its ability to deal with uncertain systems, non-

Gaussian noises, etc. but its usage in control applications is not fully explored. The use of

an H∞ filter for a sliding mode controller (SMC) was proposed. The efficacy of the com-

bined SMC-H∞ filter was demonstrated on a quadruple-tank system. The controller and

estimator designs were done for linearised model, but the simulations were performed on

full nonlinear model. This combined approach was successful in controlling all four lev-

els of the tank using only two states. The proposed scheme not only worked for Gaussian

and non-Gaussian noises, but also worked for non-zero mean noises. More details can be
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seen in Chapter 2.

6.1.2 Simultaneous Localisation And Mapping (SLAM) using Cuba-

ture Kalman Filter (CKF)

Recently, the CKF was proposed as an alternative to EKF and UKF. It has not yet fully

explored in the estimation, control and robotics communities. A solution to SLAM using

CKF was proposed. The proposed solution does not requires the evaluation of Jacobians

during the prediction and update stage and hence is a derivative free SLAM. The efficacy

of the proposed algorithm is verified by simulations. Two types of Gaussian noises are

used in the simulations and it was shown that CKF SLAM outperforms EKF and UKF

SLAM, in both cases. More details are given in Chapter 3.

6.1.3 Cubature Information Filters

An information filter is a key tool to handle multi-sensor state estimation, where the in-

formation state and information matrix are propagated. One of the main advantages of the

information over conventional filter is its simpler measurement update. When it comes

to multi-sensor state estimation nonlinear systems, the preferred method EIF. EIF is an

extension of information filter for nonlinear systems. One of the main limitations of EIF

is the use of Jacobains in the prediction and measurement update and hence are suitable

for only mild nonlinearities. It require evaluation of state and measurement Jacobians at

every iteration. In Chapter 4, we have proposed a derivative-free cubature information

filter (CIF) for nonlinear systems. The CIF was formed by embedding CKF with an EIF

architecture. A square root version of CIF (SRCIF) was also proposed for numerical effi-

ciency. Both CIF and SRCIF are further developed for multi-sensor state estimation. The

CIF and SRCIF have the following desirable properties

1. They do not require the evaluation of Jacobians during the prediction and measure-

ment update stages.
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2. The update step is computationally simpler.

3. The SRCIF is numerically stable and reliable.

4. They are easy to extend for multi-sensor state estimation.

The applicability of the proposed SRCIF was demonstrated on multi-sensor state esti-

mation of a permanent magnet synchronous motor model (PMSM). It was shown that,

SRCIF when applied to PMSM outperforms square root extended information filter and

square root unscented information filter. More details on CIFs can be seen in Chapter 4.

6.1.4 Cubature H∞ Filters

An H∞ filter has several advantages over conventional Kalman filter. A linear H∞ filter

can be easily extended to nonlinear systems by replacing the linear state and measure-

ment matrices with their Jacobians, and by slightly modifying the predicted state equa-

tion. Similar to EIF, due to the requirement of Jacobians, EH∞F is only suitable for mild

nonlinearities. To circumvent this issue we proposed derivative-free cubature H∞ filters

(CH∞F’s) in Chapter 5. The CH∞F was formed by embedding CKF with EH∞F. Similar

to SRCIF, a square root CH∞F (SRCH∞F) was derived for numerical efficiency. The CH∞

and SRCH∞F have the following desirable properties

1. It can deal with nonlinear systems with Gaussian and non-Gaussian noises.

2. It does not require the evaluation of Jacobians for nonlinear state estimation.

3. If the statistical properties of the noises (Gaussian) are known, then they can be

incorporated in the proposed estimation method. If they are not known, then the Q

and R matrices can be used as tuning parameters.

4. The overall robustness of the filter can be enforced by tuning the attenuation pa-

rameter, γ .
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5. The square root cubature H∞ filter is inherently numerically stable filter, as it prop-

agates the square root of the auxiliary matrix.

The effectiveness of the SRCH∞F was demonstrated by numerical simulations. The com-

bined control-estimation problem for a continuous stirred tank reactor (CSTR) was con-

sidered. A feedback linearsation method was opted for a control design. The states of

a CSTR were estimated by using the SRCH∞F in the presence of Gaussian as well as

non-Gaussian noises. These estimated states were fed back to feedback linearisation con-

troller. More details on CH∞Fs can be seen in Chapter 5.

Most of the work in this thesis has already been accepted or published in [98-107].

6.2 Future Work

The presented work can be further extended in several directions. One can broadly extend

the work in the following areas

• Cubature H∞ information filters

• Cubature information smoothers

• Stability analysis of the proposed methods

• Tuning of filter parameters

• Applications

6.2.1 Cubature H∞ Information Filters

In this thesis, the CIF was derived to deal multi-sensor state estimation and the CH∞F

was derived for generic noises. These two methods can be fused to form a derivative-

free cubature H∞ information filter. The cubature H∞ information filter can be handy for

multi-sensor state estimation with generic noises for nonlinear systems. Preliminary work



Chapter 6: Conclusions and Future Work 144

on cubature H∞ information filter is given in the [106]; a square root version of this filter

can further derived for numerical efficiency.

6.2.2 Cubature Information Smoothers

In estimation literature, smoother is basically an estimator which estimates the states using

the future measurements. Smoothing can do a better job than the Kalman filter by using

additional measurements made after the time of the estimated state vector [8]. Smoother

plays an important role in several practical applications. One of our immediate future

work is to develop a derivative-free cubature information smoother for nonlinear systems.

Cubature information smoother propagates the information state and information vector

and hence they can be easily extended for multi-sensor state estimation.

6.2.3 Stability Analysis of Proposed Methods

A few researchers have considered the stability analysis of EKF. From the stability anal-

ysis, it is possible to know the conditions for which the estimation error diverges. One

of the obvious extensions of our work is to perform the stability analysis of the proposed

methods. According to our knowledge, stability analysis of the CKF is not yet done. Be-

fore considering the stability analysis of the proposed methods, it is worth to perform the

stability analysis of the CKF followed by CIF and CH∞F.

6.2.4 Tuning of Filter Parameters

One of the important issues in the filtering methods is tuning. In this thesis, not much

attention was given to the selection of tuning parameters, Q,R, x̂0|0,P0|0,γ , etc. If these

tuning parameters are properly tuned based on some optimisation methods, then the over-

all performance can be further improved. One of the future research directions is to use

some advanced optimisation methods to tune these parameters. In this thesis we have also

not explored the parametric uncertainty analysis for the filters; specially, H∞ filters have
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the capability to deal uncertain systems. This aspect of derivative-free CH∞F can further

be explored.

6.2.5 Applications

The proposed methods can be further extended to several challenging applications. In

Chapter 4, the state estimation of open-loop PMSM is considered. For real-time imple-

mentation, high fidelity models with complete control-estimation mechanism is required

and hence one can explore the proposed methods for real electrical machines. A couple

of important applications of multi-sensor state are re-entry vehicle tracking and air traffic

control [96,95], where the SRCIF can be further explored. The SRCH∞F can further be

explored in real-life applications where the Gaussian assumptions are not valid.



Appendix A

Lyapunov Stability for Discrete-time

Systems

The discrete-time system can be written as

xk = f[xk−1,k] (A.1)

where k is a current time index, xk ∈ Rn is a state vector. Lyapunov stability theorem for

discrete-time system [97] states that, if in a neighbourhood of the equilibrium point, xe,

there exists a function, V, such that

• V(x,k) is positive definite

• The rate of change of V(x,k), ∆V(x,k), along any solution of Eq.(A.1) is negative

semi-definite, then the equilibrium point, xe, is stable.
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