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Multiscale Modelling of Heteroepitaxial Thin Films

Tong Wang*

Mechanics of Materials Research Group,

Department of Engineering, University of Leicester,

Leicester, LEI 7RH, UK

Abstract
Multiscale models are developed to investigate the evolution of heteroepitaxial thin 

films at high temperatures via surface diffusion. Continuum models for the kinetics and 
thermodynamics are derived from atomistic potentials in chapter 2. A modified Lennard- 
Jones potential is used to introduce a coordination dependence to generate a surface stress. 
Novel hybrid atomistic-continuum models are developed in chapter 3 to investigate the static 
elastic field around a surface step. They have atomic scale resolution in the non-linear region 
around the defect. Linear elasticity is used away from the discontinuity,. An analytic force 
dipole model and the finite element method are chosen to represent the continuum.

The kinetics of surface evolution are then investigated using an atomistic off-lattice 
Kinetic Monte Carlo (KMC) model. This allows the atoms on the surface of a lattice statics 
simulation to evolve via diffusive events, and readily incorporates the non-linear effects of 
strain on the system thermodynamics and kinetics. The flattening process of a rough surface is 
considered in chapter 4. The results are compared with a derivative microscopic step flow 
model in chapter 5, which is extended to consider asymmetric steps. The parameters in the 
step flow model are obtained from the interatomic potentials and are used to determine the 
macroscopic surface mobilities.

The evolution of strained surfaces is investigated in chapter 6. The surface is found to 
be stable below a certain strain magnitude, in contradiction of the predictions of conventional 
theories. A new theory based on a discontinuous (cusped) surface energy orientation function 
is proposed to explain this. At high strains roughening of the film leads to the formation of 
sharp valleys. These stress concentration features are preferred sites for the nucleation of 
dislocations. The nucleation process is modelled along with the subsequent rearrangement of 
surface material due to the local strain relaxation.

Keywords:
Multiscale modelling, heteroepitaxial thin film, Off-lattice KMC, surface evolution, 
dislocation formation.

* E-mail: tongwng@hotmail.com
i

mailto:tongwng@hotmail.com


Acknowledgements

I would like to thank my supervisors, Dr. Simon Gill and Professor Alan Cocks, for 

their advice and support during my PhD project. Dr. Gill has given me much training in the 

field of materials modelling. His Java code has made my simulation results look beautiful and 

has allowed me to focus on new research areas. Professor Cocks introduced me to this new, 

challenging research field and motivated me to explore material modelling. I am grateful for 

my supervisors’ support and patience. I would also like to acknowledge the UK Engineering 

and Physical Science Research Council (EPSRC) for financial support.

I would like to thank Dr. Paul Spencer for his help with the atomistic models and 

computer officer Dr. Phil Brown for his support of the Unix-system, because much of my 

computational work was performed on our groups 6-cpu SGI 0rigin2000 server. I would also 

like to extend my thanks to my colleagues within the Mechanics of Materials group and other 

groups in the Department of Engineering at the University of Leicester.

Lastly I would particularly like to thank my wife, Dan Liu, and my daughter, Danyu, 

for their encouragement and support, and my parents in China for their continued support.



Contents

CONTENTS

ABSTRACT.................................................................................................................... I

ACKNOWLEDGEMENTS.............................................................................................II

0.0 INTRODUCTION.................................................................................................1

1.0 INTRODUCTION TO SURFACES...................................................................... 3

1.1 Surface phenomena.................................................................................................3
1.1.1 Surface characterization..........................................................................................3
1.1.2 Relaxation and reconstruction of surface............................................................. 5
1.1.3 Roughening transition temperature....................................................................... 7
1.1.4 Strained surfaces, heteroepitaxy and surface roughening................................. 7

1.2 Surface models...................................................................................................... 10
1.2.1 Atomistic surface models......................................................................................11

(a) Inertial methods............................................................................................... 12
(b) Non-inertial m ethods......................................................................................12

1.2.2 Continuum surface m odels.................................................................................. 13
1.2.3 Multiscale surface models.....................................................................................15

(a) Step flow models............................................................................................. 15
(b) The quasicontinuum method......................................................................... 16
(c) Coarse-Grained Molecular Dynamics (CGMD).........................................17
(d) Accelerated Molecular Dynamics.................................................................17

2.0 AN ATOMISTIC SURFACE MODEL...............................................................18

2.1 Interatomic potentials...........................................................................................18
2.1.1 Lennard-Jones (LJ) potential............................................................................... 18
2.1.2 Lennard-Jones with bond-order (LJ+BO) potential..........................................19

2.2 Bulk properties (“closed box”) for LJ potential................................................20
2.2.1 The fundamental cell.............................................................................................20
2.2.2 Analytical solutions of Young’s modulus and Poisson’s ratio ...................... 22
2.2.3 Non-linear excursions of the bulk strain energy density ................................ 24

2.3 Surface properties (“open box”) for LJ potential..............................................24
2.3.1 Surface energy and surface stress.......................................................................25

(a) Surface energy................................................................................................. 25
(b) Surface stress.................................................................................................. 27

2.3.2 Non-linear surface effects for LJ potential........................................................29

2.4 Surface properties for LJ+BO interatomic potential........................................29

iii



Contents

2.4.1 Analytical solution................................................................................................ 30
2.4.2 Non-linear surface effects for the LJ+BO potential......................................... 32

2.5 Relaxation of a circular atomic cluster............................................................... 32
2.5.1 Analytical solution................................................................................................ 33
2.5.2 Numerical method................................................................................................. 34

3.0 ANALYSIS OF A SURFACE STEP................................................................37

3.1 Continuum force dipole model............................................................................ 38

3.2 A mixed atomistic and continuum force dipole model.....................................39
3.2.1 The M odel...............................................................................................................39
3.2.2 Surface stress in the continuum dipole m odel.................................................. 41
3.2.3 Numerical results for mixed atomistic-dipole model....................................... 42

3.3 Combined atomistic and finite element models................................................. 43
3.3.1 Using the Finite Element Method (FEM) in the continuum region...............44
3.3.2 Surface transformation strain...............................................................................45
3.3.3 Numerical implementation................................................................................... 47
3.3.4 Results and discussion..........................................................................................48
3.3.5 Summary.................................................................................................................51

4.0 AN ATOMISTIC MODEL OF SURFACE DIFFUSION................................... 52

4.1 Introduction.......................................................................................................... 52

4.2 An off-lattice KMC model for surface diffusion................................................53
4.2.1 The on-lattice KMC m odel..................................................................................53
4.2.2 The off-lattice KMC m odel.................................................................................55

4.3 Calculating the activation energies..................................................................... 57
4.3.1 Adatom diffusion on an unstrained flat surface................................................57
4.3.2 Diffusion on a strained flat surface.....................................................................59
4.3.3. Attachment/detachment to/from surface steps................................................. 61

4.4 Decay of an unstrained sinusoidal surface......................................................... 67
4.4.1 Off-lattice KMC sim ulations...............................................................................67
4.4.2 Flattening of a long wavelength sinusoid ( A^=150)....................................... 70

(a) High temperature regime ( T  =0.3-0.45)..................................................... 70
(b) Low temperature regime ( T  =0.1-0.108).................................................... 72

4.4.3 Flattening of a short wavelength sinusoid ( A x=61)........................................ 76

(a) High temperature regime ( T =0.3-0.45)..................................................... 76
(b) Low Temperature Regime ( T  =0.1-0.108).................................................79

4.5 Discussion of simulation results for the decay of an unstrained sinusoidal 
surface...........................................................................................................................82

4.6 Summary............................................................................................................... 84

iv



Contents

5.0 STEP FLOW MODELS OF SURFACE DIFFUSION.......................................85

5.1 Basic step flow model for symmetric steps......................................................... 85
5.1.1 Diffusion Limited versus Attachment-Detachment Limited Grow th............87

5.2 Macroscopic constants from interatomic potentials.........................................87
5.2.1 Equilibrium concentration of adatoms near a non-interacting step, C eq 87
5.2.2 The attachment-detachment rate, k .....................................................................89
5.2.3 The terrace diffusion coefficient, Ds ................................................................. 90

5.3 An asymmetric step flow model.......................................................................... 91
(a) The m odel........................................................................................................91
(b) The step flow parameters...............................................................................92
(c) A simple macroscopic DL model..................................................................95
(d) ADL growth.....................................................................................................96

5.4 Elastic interaction from force dipole model....................................................... 96

5.5 Step flow simulations of the decay of an unstrained sinusoidal surface..........98

5.6 Summary..............................................................................................................104

6.0 DIFFUSION ON STRAINED SURFACES.................................................... 105

6.1 Morphological change........................................................................................ 105

6.2 Stability of strained surfaces............................................................................. 106
6.2.1 Continuum theory............................................................................................... 106
6.2.2 Roughness param eters........................................................................................110

(a) RMS roughness............................................................................................. 110
(b) Height-height correlation function............................................................. 110

6.2.3 Off-lattice KMC simulation...............................................................................111
(a) Roughening of an LJ surface...................................................................... 112
(b) Roughening of an LJ+BO surface............................................................. 115
(c) Comparison between the roughening wavelength of the LJ and LJ+BO 
surfaces................................................................................................................. 119

6.3 Relaxation of a rough surface by dislocation nucleation................................ 120
(a) Formation of a single dislocation................................................................121
(b) Formation of multiple dislocations............................................................ 124

6.4 Summary............................................................................................................. 127

7.0 DISCUSSION AND CONCLUSIONS................................................................. 129

APPENDIX................................................................................................................ 134

A : Elastic constants from the atomistic model...................................................... 134

B : The displacement on the boundary................................................................... 136



Contents

C : The relationship between the strains and displacements...............................137
C. 1 Three-noded triangular elem ent...........................................................................137
C.2 Six-noded quadratic triangular elem ent............................................................. 139

D : Gaussian Quadrature......................................................................................... 141

E : Surface diffusion and shape change.................................................................. 143

F : Orientational dependence of the surface energy for an unstrained surface .145
F.l An LJ surface.......................................................................................................... 145
F.2 An LJ+BO surface..................................................................................................146

G : Newton-Raphson scheme for atomistic energy minimization........................148

REFERENCES: 152



Chapter 0.0 Introduction

0.0 INTRODUCTION

Semiconductor thin films are the main components for fabricating modem electronic and 

optoelectronic devices. The performance of a device can be enhanced by a process known as 

‘strain engineering’ for heteroepitaxial thin film systems. Epitaxy comes from the Greek 

words ‘epi’ meaning ‘on’ and ‘taxis’ meaning ‘arrangement’. Thin films are formed by the 

deposition of the film material on to an underlying substrate. In epitaxial systems, the film 

adopts the lattice structure (arrangement) of the substrate. Heteroepitaxial systems are ones in 

which the film and substrate are different materials with the same lattice structure but 

different lattice spacings. The film is consequently strained to be coherent with the substrate. 

This elastic mismatch strain dramatically affects the kinetics and thermodynamics on the film 

surface. At high temperatures a film will evolve to relieve this strain leading to a strain- 

induced morphological instability [1][2]. The competition between the elastic strain energy 

and the surface energy favours surface roughening at a particular wavelength. This is a 

promising processing route for producing self-organized nanostructures, such as quantum 

dots, which are difficult to be produced by standard lithographical techniques [3][4].

The promise of this type of nanotechnology to open up a new frontier in device 

performance has motivated many researchers in the fields of engineering, mechanics, physics, 

chemistry and mathematics to investigate the rich diversity of mechanical and electrical 

behaviour at the nanoscale in the last two decades. The influence of surfaces naturally 

becomes more important at small scales as the surface to volume ratio increases. Hence better 

understanding of surfaces is imperative for developing methodologies for controlling the 

evolution of surface morphologies, compositions and defect structures in heteroepitaxial thin 

films.

There are traditionally two separate approaches to modelling the evolution of surfaces: 

continuum models and atomistic models. Continuum models use macroscopic conservation 

laws and constitutive relations in order to obtain analytical and/or numerical predictions of 

material behaviour, e.g. [5]-[8]. They have been very successful for solving solid and fluid 

mechanics problems at the macroscopic length scale. They are, however, increasingly 

inaccurate as the length scale is reduced to the nanometer scale. This is particularly true near 

defects or discontinuities such as dislocation cores, crack tips, and steps on a surface. Full
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resolution is only achieved through atomistic simulations [9]-[ 11] which can accurately model 

the physical processes underlying the materials behaviour. However, these methods are very 

restrictive on the size and simulation time of the models due to the large computational 

overhead.

In recent years, alternative modelling approaches have been developed to couple 

atomistic and continuum models [ 12]-[ 18] and smoothly pass information up the hierarchy of 

length and time scales. Step models [19]-[22] are a further step towards representing the 

inherent discreteness of surfaces at the atomic scale. They resolve the discontinuities in the 

surface (steps) individually and use classical elasticity theory to describe their interactions. 

The quasicontinuum method goes further by employing an atomistic description in the 

vicinity of the step where classical theory breaks down, and a classical continuum description 

to represent the equilibrium response due to the far field deformation. The bridge between the 

atomistic and continuum models needs to be carefully constructed to consistently transfer 

information between them.

The work in this thesis develops alternative models for the evolution of elastically 

strained surfaces and compares them with the predictions of results obtained using traditional 

approaches. There is a brief overview of some of the common physical phenomena observed 

on strained surfaces in Chapter 1, along with a discussion of the main modelling techniques. 

Macroscopic surface parameters are derived from atomistic models in Chapter 2 to develop a 

consistent continuum model. The elastic field around a single static surface step is 

investigated using novel hybrid atomistic-continuum models in Chapter 3. Atomistic 

simulations of sinusoidal surface evolution are presented in Chapter 4 and compared with a 

derivative step flow model in Chapter 5. Finally Chapter 6 models the strained surface 

roughening process through large morphological change and looks at the critical conditions 

for the nucleation of defects.

~ 2 ~



Chapter 1.0 Introduction to surfaces

1.0 INTRODUCTION TO SURFACES

This chapter provides a brief review of some of the common surface phenomena that are 

observed on atomistic surfaces which are generally not accounted for in continuum 

representations of a surface. This is followed by a summary of current modelling techniques 

used in the analysis of surfaces.

1.1 Surface phenomena

Surface physics has become an important branch of microscopic solid-state physics. This is a 

consequence of the development of advanced microscopy and experimental techniques. 

Semiconductor surfaces (or interfaces) are important as they exhibit unique electronic and 

optical properties which have important potential applications in novel microelectronic 

devices.

1.1.1 Surface characterization

From a mechanical perspective, an atomistic surface is characterised by the distribution of 

surface steps, the structure of those steps and the interactions between them. Figure 1.1(a) 

shows a picture of an Si(001) surface imaged by a Scanning Tunnelling Microscope (STM) 

[19]. The schematic side view shown in Figure 1.1(b) illustrates a simplified representation of 

this surface in two-dimensions (2D) as a number of steps separated by terraces. This 2D 

model necessarily assumes that the step fronts are straight which, as Figure 1.1(a) shows, is 

not always the case.

In practice semiconductor devices are fabricated on vicinal surfaces which have a 

small miscut angle from a high symmetry plane. Such surfaces generate a substantial density 

of steps. Elastic interactions between the steps can lead to step bunching under some 

conditions [24], as shown in Figure 1.2. Tersoff et al. [25] simulated the evolution of step- 

bunching based on Burton-Cabrera-Frank (BCF) theory [26]. The predicted evolution of the 

surface morphology is shown in Figure 1.3(a). Initially steps collect in small bunches but then 

the bunches progressively coarsen into larger bunches over time. Hence the number of steps 

bunching together rises over with time as in Figure 1.3(b). See reference [27] for a recent 

review on developments in this area.

~ 3 ~
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(a)

terrace

(b)

Figure 1.1 : (a) Picture of an Si(OOl) surface [19]. (b) Schematic side view of (a) showing 
surface can be represented in 2D as a number of steps separated by terraces.

Figure 1.2 : A 15x15 jum Atomic Force Microscopy (AFM) image of an Si(OOl) surface
heated to 1040"C for 18h with the direction current applied along the [010] direction. The 
black bands are the step bunched regions. The bright regions between two bunched regions

are the surface terraces [24].

~ 4 ~
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1.2

Figure 1.3 : Simulation of step-bunching [25]. (a) Surface morphology at evolution time F=0, 
0.1, 0.7 and 4.7 from bottom to top, (b) Step-bunching size <n> vs time.

1.1.2 Relaxation and reconstruction of surface

This subsection describes the atomic structure of a surface in more detail. Unlike bulk atoms, 

surface atoms do not have full coordination with neighbouring atoms. Due to the absence of 

neighbouring atoms on one side, the interatomic forces in the uppermost lattice places are 

changed. The equilibrium position for surface atoms is different than that for bulk atoms. This 

type of lattice relaxation [28] is illustrated in Figure 1.4(a) for a simple cubic lattice with bulk 

lattice constant a. The topmost atomic layers relax normal to the surface by adopting a 

slightly different lattice spacing. Another surface relaxation process, common in covalently 

bonded semiconductors, is surface reconstruction. In Figure 1.4(b) the topmost atomic layer is 

reconstructed into a surface net with double periodicity distance 2a to minimize the total 

potential energy of the body. In Figure 1.4(c) the topmost atomic layer has alternatively 

empty rows. One of the most complex and beautiful surface reconstructions is the (7x7) 

reconstruction on the Si( 111) surface [29] illustrated in Figure 1.5.

From a macroscopic point of view, surface reconstruction is considered as a phase 

transition in which surface energy and surface stress are discontinuous functions of strain and 

temperature. Recent experiments have been done by Brihuega et al. [52] to investigate the

(3x3) to (>/3 x V3) reversible phase transition of Pb on Si(l 11) surface by means of variable 

temperature scanning tunnelling microscopy as shown in Figure 1.6. It tracks the same 

surface region over various temperatures so that the transition can be observed directly.

~ 5 ~
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(a) Relaxation (b) Reconstruction (c) Missing row reconstruction

Figure 1.4 : Schematic illustration of the different mechanisms by which surface atoms can 
rearrange to minimize the total potential energy of a surface.

Figure 1.5 : High Resolution Electron Microscope (HREM) image of a (7x7) reconstruction
on the Si( 111) surface [29].

Figure 1.6 : Phase transitions of Pb on a Si(l 11) surface [52].
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1.1.3 Roughening transition tem perature

The macroscopic behaviour of a surface is commonly divided into two distinct temperature 

regimes separated by a roughening transition temperature, TR. Above TR the surface can be 

approximately treated as an isotropic object (see Figure 1.7(a)) because thermal energy 

dominates the surface evolution. Terrace sizes are reduced as steps are spontaneously created 

everywhere and the behaviour of individual steps becomes less important. Macroscopically it 

is observed that faceting of surfaces is reduced or even completely disappears. These 

observations are well explained by the widely used Herring-Mullins continuum theory in 

which the surface energy is a constant or a smooth function of orientation. This is discussed in 

more detail in Chapter 5.

(a ) T > T r ( b )T < T R

Figure 1.7 : Schematic illustration of equilibrium crystal shapes at finite T [32].

However, the situation is different below TR. Surface energy dominates over thermal 

energy and governs the surface evolution. The evolution is therefore regulated by the 

behaviour of the steps. Macroscopically this causes the surface to adopt a facetted 

morphology. There are sharp cusped minima in the surface energy at particular orientations 

which favour the formation of facets at these angles. Again, this will be discussed further in 

Chapter 5.

1.1.4 Strained surfaces, heteroepitaxy and surface roughening

Thin films, especially heteroepitaxial semiconductor thin films, are widely used to fabricate 

microelectronic and optoelectronic devices. Heteroepitaxial thin films are most commonly 

deposited on a substrate by Molecular Beam Epitaxy (MBE) [28]-[31]. In heteroepitaxy the 

atomic lattice constant of the deposited film material is different from that of the substrate 

material. This is illustrated in Figure 1.8. Mismatch in heteroepitaxial thin films can generate

~ 7 ~
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large elastic strains, e.g. in typical systems such as Sii_xGex the strain is 4.2x%, and in InxGai_ 

xAs the strain is as high as 7x%. This strain can enhance the electronic and optical properties 

of the subsequent device. The strain can be adjusted by altering the composition x  of the film 

in a process known as ‘strain engineering’.

Substrate

Figure 1.8 : If a film material is epitaxially deposited on to a substrate material with a similar 
crystal lattice structure, then the film will form a coherent interface with the substrate and 

adopt the underlying atomic arrangement. In heteroepitaxy, the film material has a different 
lattice constant than the substrate leading to the generation of an elastic mismatch strain in the

film.

At high temperatures the surface of strained films can evolve as a result of kinetic processes, 

predominantly surface diffusion. The evolution is driven by the elastic mismatch strain. The 

initially flat surface of a stressed solid is unstable and causes the profile to roughen. The strain 

energy is minimised if the surface roughens with the smallest wavelength possible. However 

surface energy favours a flat surface (no roughening). The consequence of this competition 

between the two driving forces is a strong preference for a system to roughen at a particular 

wavelength [l][2][33]-[35]. This is clearly illustrated in Figure 1.9 which shows an AFM 

image of the morphology of a lOnm thick 18% Ge film annealed at 850°C for 5 min [50]. 

The surface has roughened and produced an undulating profile with a remarkably regular 

spacing of about 200nm. The smoothness of the profile indicates that the surface energy is 

fairly isotropic, i.e. independent of surface orientation. This suggests that the temperature is 

above TR. The length and time scales associated with surface roughening are determined by 

the thermodynamics and the kinetic processes. In different case, some other driving forces 

and kinetic processes may be involved [36] [37].
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Figure 1.9 : AFM image of the morphology of a lOnm thick 18% Ge film annealed at 850°C 
for 5 min due to surface roughening promoted by a 0.75% elastic mismatch strain [50].

The experiments by Floro et al [51] of a 20% Ge film deposited on a Si(001) buffer layer at a 

lower temperature of 750°C show the evolution of strain driven coherent islands during 

heteroepitaxial growth due to surface roughening, as shown in Figure 1.10. After only a small 

amount of material has been deposited, it can be seen in Figure 1.10a that a regular array of 

islands have formed. Unlike Figure 1.9 they are square-based pyramids with (501) facets. The 

surface energy dominates at this smaller scale and the lower temperature promotes facet 

formation. As more material is deposited, the shapes of the islands change from small huts to 

larger domes. This is because the islands start to impinge and repulsive elastic interactions 

between them become more important and larger islands are favoured.

These self-organised nanostructures, in which a periodic array of islands with a 

narrow size distribution is formed, are a potentially useful processing route for 

nanoengineered devices. If the islands are below about 50nm in width then they are known as 

‘quantum dots’. This is because they exhibit unique electronic properties due to quantum 

effects that are significant at this scale. For example, InGaAs dots have been demonstrated to 

produce lasers with light of a constant wavelength which is independent of temperature. This 

is potentially beneficial for use in fibre-optic communications networks, which currently 

require expensive control circuitry to compensate for changes in the wavelength with 

fluctuations in temperature.
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Figure 1.10 : Hut to Dome transition in Six_xGex / 5/(001) with x=0.2 at 750°C. AFM & SEM 
images of (a) hut clusters (104A deposited) and (b) dome clusters (275A) [51].

1.2 Surface models

The sub-section gives a brief introduction to different modeling techniques. These surface 

models are classified as either atomistic, continuum (meaning macroscopic) or multiscale 

(indicating a continuum model incorporating an atomistic length or time scale). As illustrated 

in Figure 1.11, traditional models are pertinent to a particular single scale.

Time (s)

103

1

10'3

10-6

10'9

1012

Kinetic
Monte
Carlo

m  i

Classical

lnm lpm

C ontinuum
M ethods

1mm lm
length

Figure 1.11 : A simple schematic diagram showing the current regions of application for

different classical modeling methods.

-  10-
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1.2.1 Atomistic surface models

Material properties such as kinetic properties (e.g. surface diffusivity), surface properties (e.g. 

surface energy) and bulk mechanical properties (e.g. Young’s modulus) are defined by the 

interactions between the constituent atoms. This can be expressed mathematically in terms of 

the total potential energy of the system as a function of the atomic coordinates. This permits a 

relationship between structure and properties to be constructed. The fundamental input into an 

atomic simulation is therefore the interatomic potential. As discussed below, the type of 

potential, and the level of complexity required, depends on the subtlety of the features that are 

being modelled.

Ab-initio (or first principles) methods are based on the laws of quantum mechanics. 

They can calculate the geometric and electronic structure of an atomic system simply from the 

most basic knowledge of the atomic number of the constituent atoms by solving Schrodingers 

equation. A popular, simplified ab-initio method is (electronic) density functional theory 

(DFT) in which a description of all the electrons in the solid is reduced to the problem of 

determining the correct electron density. There are very highly computational overheads 

associated with this method. Typically, it is restricted to 10-100 atoms [40]. Low-level 

methods such as these are required to accurately model some surface features such as surface 

reconstructions.

Empirical interaction potentials can be attractive to modellers as the electrons are not 

explicitly accounted for in the interaction between atoms. It makes computations less 

expensive and allows millions of atoms to be considered. The embedded-atom method [41] is 

a higher order method for metals which does not calculate the electron density explicitly. It 

consists of a traditional pair potential and the embedding energy. The embedding energy is a 

function of the local electron density which is simply defined in terms of the number and 

proximity of neighbouring atoms. However, these simpler potentials have been shown to 

underestimate the stacking fault energy of dislocations [17] and cannot predict surface 

reconstructions as they are usually calibrated using bulk properties.

Very simple pair potentials, such as the Lennard-Jones “6-12” potential, have been 

widely employed to describe rare-gas atoms and simple metals systems. However, this has no 

environmental dependence, such that the difference between behaviour on the surface and in 

the bulk is not accounted for [9]. In general, the more neighbours an atom has, the weaker the

~ 11 -
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bond to each neighbour will be [42]. For example, in the case of a free surface, the strength of 

surface atom bonds to their neighbours is bigger than the bonds of their bulk counterparts. 

This effect can be simply modelled by introducing a bond order term, which makes the pair 

potential a function of the atoms co-ordination number.

For covalent systems, such as semiconductors, a coupled two- and three-body 

interatomic potential is used. Three-body potentials have a dependence on the angle between 

bonds. One example is the Stillinger-Weber potential for Si [43]. This potential has been 

successfully applied in some range of atomistic simulation [43]-[46] although it cannot 

describe the behaviour of nantetrahedral silicon [47].

The different types of atomic simulation can be classified into inertial (dynamic) and 

non-inertial (quasi-static) methods.

(a) Inertial methods

Molecular Dynamics (MD) is used to model the kinetics of atomic rearrangement at 

finite temperature. The forces between atoms are computed from the spatial derivative of the 

total potential energy. The trajectories of the atoms are integrated over time using Newtons’ 

law [49] given the mass of the atoms. Very large scale classical MD simulations can model up 

to 100 million atoms for up to a few nanoseconds.

(b) Non-inertial methods

At zero temperature, the method of Lattice Statics (LS) can be used to find the 

equilibrium configuration of an atomic lattice. The basic idea of the Lattice Statics approach 

is to compute the total energy of the system (sum of the interatomic potentials) in the vicinity 

of some local minimum. The total energy is then minimised as a function of the atomic 

displacements. The mass of the atoms actually plays no part in this method.

The Monte Carlo (MC) method offers a method for studying the evolution of such 

atomic systems over long time scales. This is a practical method for studying infrequent 

events such as diffusional rearrangement. The MC method can generate configurations of a 

system with the correct equilibrium statistical distributions if kinetics are not important. A 

number of possible events are allowed and the energy change associated with each event 

prescribed. Events are randomly chosen. If the energy decreases then the event is accepted, if 

the energy increases then the event is only accepted with a certain probability. There is no 

connection between the events chosen and real time so it is not applicable to kinetic models.

~ 12-
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In many systems, the kinetics are critical in determining the final equilibrium state 

that it evolves to, if it reaches a final equilibrium state at all. In many processes, the time 

required to reach equilibrium is also of interest. Hence it is necessary to consider the driving 

force (energy change) and the kinetics to model the evolution of a dynamic system correctly. 

Kinetic MC has been developed to solve these problems [69] [70]. This uses Harmonic 

Transition State Theory (HTST) to determine the transition rates between states from the 

transition energy barrier between the states. The probability of an event occurring is weighted 

according to its transition rate. Events are picked from this probability-weighted list of events. 

Hence the faster events are more likely to be picked and hence more likely to occur. Time is 

correctly incremented between events according to a Poisson distribution. Thus the two 

ingredients in the KMC method are the identification of all of the possible events in the 

system and the determination of the rates at which these events occur.

In the last few years, the off-lattice KMC model [71] [72] has been developed to 

investigate island growth in heteroepitaxial thin film systems. It is based on a real crystal 

lattice and allows for continuous particle positions. It uses real interatomic potentials and 

hence the transition energies between states can be calculated exactly for any event. Thus it 

can faithfully include the effect of strain and defects and correctly represent the underlying 

physics of strain-induced film growth. The off-lattice KMC model is explained more fully in 

Chapter 4.

1.2.2 Continuum surface models

A continuum or macroscopic description of surface evolution is commonly used due to its 

simplicity and ability to cover a range of length and time scales. It can even be used to 

reasonably predict features close to the atomic scale in a few cases, such as the critical size for 

the nucleation of stable clusters. However, it is best suited to the representation of large 

collections of atoms undergoing (relatively) large scale rearrangement where particular details 

of the atomic surface are not important. This is most applicable above the roughening 

transition temperature, TR.

The relaxation of a (l-i-l)D1 unstrained sinusoidal surface has been widely 

investigated. Surface energy is the only significant driving force. This causes the surface to 

evolve towards a state which minimizes its surface area, i.e. it flattens. Above TR, the wavy

1 A two-dimensional model will naturally consider a one-dimensional surface. This type of surface model is 
commonly known as a (1+1)D model. In three-dimensions, the two-dimensional surface model is known as a 
(2+l)D  model.
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surface can be treated as an isotropic object, because terrace diffusion dominates the process 

at that high temperature and moving up and down steps is relatively easy. The widely used 

Herring-Mullins’s theory [55] shows that a sinusoidal surface perturbation will decay as a 

sinusoid for an isotropic surface energy, i.e. y = constant. This is shown schematically in 

Figure 1.12a. If the surface energy is orientation dependent ( y = y(0)), as shown in Figure

d 2y
1.12b, then the surface stiffness, f t  = y{0) + , replaces the surface energy as the driving

d~0

force2. Below the roughening transition temperature, the surface energy is singular in the 

vicinity of a high symmetry orientation (see Figure 1.12c). This makes it difficult to be treated 

correctly by a continuum model. Step flow models have been developed to describe the 

surface dynamics below TR in terms of discrete microscopic objects [55][56]. The surface 

chemical potential is discrete and facets are a natural result of the model description. It 

overcomes the singular problem of surface energy in continuum models. These are discussed 

later in Chapter 5.
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(a) (b) (c)

Figure 1.12 : Three common macroscopic surface energy descriptions (a) isotropic surface 

energy, (b) smooth orientation dependent surface energy and (c) cusped surface energy. The 

first two are appropriate above the roughening transition temperature, where thermal 

excitations are sufficient for the surface not to get strongly trapped in a particular orientation, 

although (b) describes a weak orientational preference. Case (c) is applicable below the 

roughening temperature where thermal energy is less dominant and the surface has a strong 

driving force for facet formation at particular angles, e.g. for the case shown 0° and ±45°.

2 For a constant surface energy, the surface energy and surface stiffness are the same.
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The relaxation of strained surfaces provides further challenges. The strain-induced 

morphological instability was first studied by Asaro and Tiller[33] and then further developed 

by Grinfeld [1] and Srolovitz [2] independently. It is known as the ATG instability. The linear 

ATG instability analysis for isotropic surface energy concludes that the initially flat surface of 

an elastically stressed body is unstable with respect to the growth of perturbations with 

wavelengths greater than a critical wavelength. A cusped surface energy can stabilise a film to 

perturbations of a critical size if it is orientated at a facet angle [39]. Nonlinear analysis allows 

the film evolution to be followed through large morphological changes, leading to the 

formation of cusp-like valleys with singular stress concentration near the cusp tip [4]. Such 

high stress concentrations act as potential sites for the nucleation of dislocations to relax the 

overall strain of an elastically stressed body. Latterly, 3D numerical methods for handling 

large amplitude surface fluctuation have also been developed [38] [39].

1.2.3 Multiscale surface models

In surface science, morphology is associated with a macroscopic property of solids and refers 

to the macroscopic form or shape of the surface. On the other hand, structure is associated 

more with a microscopic, atomistic picture and is used to denote the geometrical arrangement 

of atoms. Sometimes one has to describe the surface from both macroscopic and microscopic 

viewpoints. These so-called multiscale models can be classified into two types: sequential and 

concurrent. In sequential models the interaction between different scales is weak. Statistical 

information can be obtained at the smallest scale and then passed up to the next scale in a 

hierarchical manner. In concurrent models, the different scales are strongly coupled but some 

coarse-graining of the system is possible to reduce its total numbers of degrees of freedom. 

Elastic interactions provide a strong coupling between scales and hence this thesis 

concentrates on concurrent modelling techniques.

(a) Step flow  models

As we have seen in section 1.1, a vicinal or rough surface typically consists of multiple 

terraces and steps. The analysis of individual surface steps is therefore essential to understand 

the interaction of steps with other steps, adatoms and vacancies. As discussed earlier, this is 

particularly important below the roughening transition temperature. Apart from entropy, the 

elastic field of a step is the dominant mechanism required for understanding interactions of 

adatoms, steps, and phase boundaries [21][22]. To model stress-induced crystal growth, one 

must first obtain a suitable description of the step-induced elastic field. Marchenko and
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Parshin [19] first brought the notion of dipoles into linear elastic theory to model surface 

defects such as steps from classical electromagnetic theory. Rickman and Srolovitz [20] and 

Steward et al. [21] used methods based upon the same idea to model the elastic field as a 

multipole expansion of a mechanically equivalent force distribution on a half-plane. Kukta 

and Bhattacharya [22] obtained the second order solution for a single step and two steps 

which is an important modification as steps approach each other. The general conclusion is 

that the far field stress of an isolated surface step is well approximated by the force dipoles 

model in 2D half plane [19] [20] although the strength of the dipoles depends on the atomistic 

detail of the step. A combined continuum/atomistic method for calculating the correct dipole 

strength is developed in Chapter 3.

Latterly, a continuum description of surface evolution based on the discrete features of 

the system has been paid more attention [8]. Such ‘step flow’ models describe the evolution 

on a strained or unstrained surface by following the motion of individual surface steps [8]. In 

these models the different kinetics of adatom diffusion across the terraces and 

attachment/detachment of atoms to/from steps can be incorporated. Variational principles 

based on step flow have even been developed to study the dynamics of nanoscale surface 

modulations below the roughening temperature [57]. These are simple multiscale models in 

the sense that they incorporate an atomistic length scale, the step height.

(b) The quasicontinuum method

This is a zero-temperature (Lattice Statics) method for crystalline solids in which the 

fine-grained atomistic region is replaced by a coarse-grained finite element representation 

where the macroscopic behaviour is predictable [13][14][58]. This reduces the total number of 

degrees-of-freedom in the system and allows large problems to be solved in a reasonable 

time. Interatomic potentials are used to inform the continuum regions about the constitutive 

response of the crystal to ensure consistency between the atomistic and continuum regions. 

The configuration that minimizes the total potential energy (sum over atomistic and 

continuum contributions) is then computed.

The quasicontinuum method has been developed [59]-[61] and successfully applied to 

the field of solid mechanics [62]-[64] to model the behaviour of defects such as dislocations, 

crack tips, grain boundaries and analyze nanoindentation experiments. It has also been applied 

to biological molecules in order to study the interactions of proteins and DNA [65]. There 

have recently been attempts to extend this method to finite temperature [90]. The principle 

difficulty encountered when going to finite temperature is phonon reflection at the fine-
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grained/coarse-grained interface causing localised heating. Special matching conditions are 

required to avoid this [66] [67].

Other similar approaches can also be found in the literature, in which a consistent hand 

shaking is implemented between the two regions [12] [16]. Kohlhoff et al [12] constructed an 

overlap region between the atomistic core and the FE continuum and used non-local elasticity 

theory to describe this zone. Broughton et al [16] described the system in terms of a 

Hamiltonian, which was developed into a dynamic finite temperature parallel algorithm. This 

had three regions: a first-principles (DFT) quantum mechanics region embedded in a classical 

atomistic region embedded in a linear elastic finite element region.

(c) Coarse-Grained Molecular Dynamics (CGMD)

The equations of motion in CGMD are derived directly from finite temperature MD 

through a statistical coarse graining procedure [15]. They keep consistent with traditional MD 

as the mesh size is reduced to the atomic scale. This model is valid for dynamic perturbations 

to multiscale systems with defect-free crystalline lattices, such as the resonant behaviour of 

Nano-Electro-Mechanical Systems (NEMS).

(d) Accelerated Molecular Dynamics

MD is limited to very small time scales well below the time scales of diffusive events. 

In recent years, many approaches have been developed to overcome the limitations of MD by 

trying to accelerate it to model infrequent events such as surface diffusion. There are a 

number of accelerated molecular dynamics algorithms such as (modified potential) 

hyperdynamics, parallel replica dynamics and temperature accelerated dynamics [68]. 

However, these methods cannot yet reach macroscopic time scales and are still restricted to 

the nanometer length scale.
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Chapter 2.0 An atomistic surface model

2.0 AN ATOMISTIC SURFACE MODEL

One goal of solid mechanics is to understanding the connection between the structure of a 

material and its properties. In this section, we wish to relate the continuum properties of a

consistent multiscale models in which the continuum region has the same linear elastic 

response as the atomistic region.

We look at two types of atomic interactions to calculate the total energy of the system: 

the Lennard- Jones (LJ) potential, and the LJ potential with an additional bond order (BO) 

term. Firstly we look at the bulk properties of Young’s modulus (E) and Poisson’s ratio (v) 

using the LJ model and a “closed box” configuration. Then we investigate the surface 

properties of surface energy (y) and surface stress (/) using an “open box” configuration. The 

analysis is then repeated for the LJ with BO model. Finally the LJ model with BO is 

employed to simulate the elastic relaxation of a circular atomic cluster.

2.1 Interatomic potentials

2.1.1 Lennard-Jones (LJ) potential

The LJ potential is a simple pairwise interaction potential, such that it is only a function of the 

distance between the nuclei of two atoms, r.

where the material parameter co0 defines the bond strength and a  defines the preferred 

interatomic separation. The LJ potential is illustrated in Figure 2.1. In the absence of other 

atomic interactions, the equilibrium atomic separation, r0 = 21/6cr = 1.12<r, occurs at the 

energy minima, E = - c d 0 . The LJ potential generates a stable 2D structure with a regular 

triangular lattice. Equation (2-la) is often rewritten as

material to the properties of the underlying atomic lattice. This is vital for the development of

(2- la)

(2- lb)
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Figure 2.1 : Interatomic potential.

2.1.2 Lennard-Jones with bond-order (LJ+BO) potential

The LJ potential describes the interaction between bulk atoms, i.e. where every atom has a 

full coordination of 6 nearest-neighbour atoms. It does not account for the change in the 

strength of bonds between atoms of reduced coordination, such as at interfaces etc. As shown 

in Figure 2.2, atoms at a flat surface have a coordination number of 4. Bonds between these 

surface atoms are generally stronger than those between bulk atoms due to the enhanced 

electron density (due to unsaturated bonds). At the atomic scale, surface properties play a 

significant role and cannot be ignored. Consequently, a bond-order term [9] is introduced to 

incorporate a coordination number dependence on the bond strength. The LJ+BO potential is 

written as

E =  (O r

\  12

\ Tu
- ( * / !  + b J2 >

/  \ 6

\ rj J
(2-2)

where b and bj2 are the half-bond strengths of the two connecting atoms which produces 

the bond j between them. Tersoff [9] gives their expression as follows

6,=4 + A"Zi")2" (2-3)

where the parameters are n = 10, J3 = / 4, Z, is the coordination number of atom i and D is a 

constant. To be comparable with the LJ potential we find that D = 1.2258 when Z;. = 6 , i.e.
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bjt = 1. The bond strength for atoms with 4 nearest neighbours is therefore 1.184, i.e. this 

type of surface bond is 18.4% stronger than a bond in the bulk.

4-4

Surface

Bulk

Figure 2.2 : Various bond strengths and coordination numbers for surface and bulk atoms. 

2.2 Bulk properties (“closed box”) for LJ potential

In this section, the bulk properties of Young’s modulus and Poisson ratio are determined for 

the LJ atomistic potential. As there is always full coordination in the bulk, the BO term plays 

no role in these calculations.

2.2.1 The fundamental cell

The stable lattice structure is triangular (see Figure 2.3). We impose symmetrical boundary 

conditions on all sides of our “closed box” periodic unit cell. We will determine the elastic 

properties of the box by applying elastic strains, e pq, and determining the change in potential

energy of the system. The indices p,q =1,2 relate to the two principal coordinate directions. 

From Figure 2.3 we can see that there are only 3 types of bonds (/'= 1,2,3) as shown in Figure 

2.4.
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—  Symmetry

Symmetry Symmetry

Figure 2.3 : “Closed box” unit cell.

1=3

Figure 2.4 : Type of bonds.

We choose the smallest unit cell which can represent the whole lattice. This fundamental cell 

is shown in Figure 2.5. Its undeformed length is r0 and width i s ^  r0. We assume the

thickness of each cell is r0 such that the volume of a cell V0 = ̂ Y2 r03. In a bulk cell the 

number of bonds of the 3 types are 1 (= Vi + lA + lA ) ,  1,1 respectively.
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1/4 1/4 1/2

1/2 1/4 1/4

Figure 2.5 : Fundamental cell with distribution of bonds.

2.2.2 Analytical solutions of Young’s modulus and Poisson’s ratio

From the above fundamental cell, it is easy to calculate the total potential energy by summing 

over all of the bonds weighted contribution. In terms of the LJ potential, the energy per cell 

can be formulated as

where co0 is the unit of energy (eV or J), rQ is original atoms spacing ( A or m), r . is the 

length of bond j, and /?, = = /?3= 1 are the number of bonds of each type 7= 1,2,3 in a cell.

It is convenient to use dimensionless parameters so we choose the unit of length to be r0, and 

the unit of energy to be 0)Q. Hence r. = r- r0, where r. is the dimensionless interatomic 

separation, and cob =Wba)0, where Wb is the dimensionless bond energy.

When the fundamental cell is deformed elastically, the energy per cell can be written 

in terms of the strains as

=® o2 X
3

(2-4)

(2-5)

where
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Pi = 2 e u +e?t + e 12

P 2  - Y i e  11 + X f n  +  K f 2 2  +  Y £ 22 +  £ 12 +  £  1 2  (2 +  £ \ \ +  £ 2 2 )  ’

/?3 = Y i  f  1J + X £ \ 1 + X ̂ *22 + X ̂ 22 + £ \2 ~ ̂ 2  *̂12 (2 + *̂11 + £ 22 )

The normal strains, eu and f 22, are in the x-direction and y-direction respectively, and yn is 

the shear strain. A detailed derivation of this transformation is given in Appendix A.

For small strains, the second order binomial expansion of equation (2-5) gives a 

quadratic approximation for the (dimensionless) energy per unit cell

a> t = 'L 0 i { 9P i 2 - 1) (2-6)
y=i

or

  81 2 81 2 e A 2 rsr-t n.o)b = — €n h ~ £*22 + 5 4 yn + 21e ue22 — 3.

The (dimensionless) bulk stresses at a point can be related to the bulk strains by

& i j  ~  C i j k l £ k l

(2-7)

(2-8)

where cr. = ct.Vq / coq are the dimensionless stresses and cijkl = cijklVQ I coQ are the

dimensionless elastic constants. The (dimensionless) strain energy density and the elastic 

constants are therefore

1 _
Q.h = — (7 £ ——ECh  -  ** i l l ' l l  -  ij  i j k l  k l  ’

dm
C ijk l  ~ de,jdekl2 « v 2

So the elastic constants, C in this case, are obtained from (2-6), (2-7) and (2-9) as follows

(2-9)

C = 81
1 X 0 ' 

X i o
o o / ,

Comparing this expression with the material stiffness matrix for an isotropic, linear elastic 

continuum under plane stress conditions

l - V ‘

1 v  0 

v  1 0
o o y j i - v )

demonstrates that the LJ potential produces a linear elastic continuum consistent with a 

Poisson ratio of v = / 3 and a Youngs’ modulus of E  = 72 or E = 12o)0 / V0.
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2.2.3 Non-linear excursions of the bulk strain energy density

We take a “closed box” as shown in Figure 2.3 with 20 atoms per row and 10 rows. A normal 

strain is applied in the jc-direction. The atoms on the boundary are constrained such that they 

can only move tangential to the boundary.

The total sample energy for a range of normal strains (-6% to +6%) is shown in Figure 

2.6 along with the analytical solution of (2-6). The analytical solution is symmetric about 

e ,, =0 as expected. This predicts that the material deforms the same under compression or 

tension which is reasonable for small strains less than 1%. The numerical results show that the 

material deforms less readily under compression at strains less than 1%, a regime which is 

pertinent to heteroepitaxial systems (where compressive mismatch strains can reach 5-10%).

C om parison  b etw een  num erical and analytical

-0.1 -0.05 0 0.05 0.1
-440

 Analytical

- -  Numerical-460>»CT>
k -0)
g -480
co+-<o

-500

-520

S t r a i n  i n  x - d i r e c t i o n

Figure 2.6 : Comparison between numerical and analytical results for bulk total strain energy
as a function of normal strain.

2.3 Surface properties (“open box”) for LJ potential

In the next two sections we derive two surface properties, the surface energy (y )  and the 

surface stress (f), from the two interatomic potential models, LJ and LJ+BO.
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2.3.1 Surface energy and surface stress

(a) Surface energy

Surface energy is due to the presence of unsaturated bonds at a free surface. These bonds have 

a higher energy than saturated bonds (in the bulk) and this increase in energy is represented 

by the continuum property of surface energy (energy per unit area of surface). We take as our 

reference state the situation where an infinite bulk material is cut in half between two layers 

and two surfaces are produced as shown in Figure 2.7. We consider an atomic sample with M  

atoms per row and N  rows cleaved along the mid-horizontal plane. Figure 2.8 shows the 

consequent surface cell. The sample consists of (M  -  \ \ N  - 1) unit cells. Consider half the 

sample of size N x x N  , where M  = N x and N  = 2N  . The volume of the half sample is 

therefore Vb = (Nx -1  )(iVv - / 2)

In the surface cell, the bonds are such that P X=Y2 and f$2 = = 1. The (dimensionless)

energy per surface cell, Ws + Wb, is written as the sum of bulk and surface contributions, such 

that cos = d)sco0 is the additional energy of a surface cell above that of a bulk cell. From (2-5) 

we have

=i(36£„2- l )  (2-10)

and Wb is given by (2-7).
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Nx

Nx

N

M

Figure 2.7 : The surface energy is calculated by dividing a bulk sample in half. The surface
energy is the increase in energy.

1/2 1/2

1/2

Figure 2.8 : The fundamental surface cell. Saturated bonds are solid lines. Unsaturated bonds
are shown as dashed lines.

There are (Nx - l )  surface cells in the half sample so the total energy per half sample is the 

sum of bulk (b) and surface (s) contributions
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E = E„ + E,

= W„(Nx - l i N y - / 2)+Ws(Nx - l ) .
(2- 11)

We write the surface contribution as

E , = T , A , = T , ( N , - 1 ) ,

where 7 s = 7 sO)0!rQ is surface energy density, As = Asr02 is the surface area. As

Es = E -  Eb we can write

(2- 12)

Equations (2-7) and (2-10) then give

(2-13)

At a free surface, the stresses normal to the surface are zero so o 22 = cr12 = 0 . For a surface 

cell

_ d(d>h + 0) .)

* "

which yields f 22 = -V£n and yn = 0 with v = / 3, consistent with linear elastic theory.

The consequence of this is that (2-13) simply yields f s = 1 for the L-J potential model,

i.e. it is independent of surface strain. The significance of this is investigated in the next sub­

section.

(b) Surface stress

Surface stress is related to surface energy. It arises due to the fact that atoms relaxed in a 

surface plane have a different natural lattice spacing than those relaxed in the bulk. This is 

because they have a different coordination number. For the bulk and surface to be 

commensurate the surface atoms must be strained (or stressed) to adopt the bulk lattice 

spacing. This is illustrated in Figure 2.9.
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Relaxed surface as < ►

fy

Relaxed bulk

a b

fy

Apply
surface
stresses

Stressed surface

Figure 2.9 : For the bulk and surface to be commensurate the surface atoms must be strained
(or stressed) to adopt the bulk lattice spacing.

If the surface atomic spacing, as , is greater than the bulk atomic spacing, ab, then the surface 

stress is negative (compressive). Similarly, if as < ab, the surface stress is positive (tensile). 

The stress in the surface monolayer is given by

_ a(«2>fc+ (qs )
de,

g ;» = _v_S i i ,  (2-14)

subject to the following conditions for a traction free surface,

cf’ = % ^ )  = 0 and
0 £  22

However, the surface stress,/, is the component of the stress in the surface due to the surface 

properties only. It does not include the bulk stress due to an applied strain. Hence, using (2- 

12),

}=K-ŷi= | ^ - -  (2-i5)den

This is the usual definition for surface stress in a solid. The factor of ^  arises because a

surface cell has a 50% higher stiffness than a bulk cell. This is because the surface horizontal 

bond is not shared with an adjacent cell (i.e. it counts as one bond not half a bond). 

Consequently the stress is 50% higher for a given strain. For the LJ potential, equation (2-13)
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implies that /  = 0 , i.e. the surface stress is zero because the lattice spacings in the surface 

and bulk are the same ( as = ab).

2.3.2 Non-linear surface effects for LJ potential

An “open box” lattice configuration is constructed. There are three symmetry boundaries 

upon which no displacement normal to the boundary is allowed. The fourth boundary is a free 

surface and is unconstrained. Numerical results for large normal strains with the full non­

linear LJ potential are compared with the analytical result of (2-6) in Figure 2.10. As 

expected, the analytical results show no dependence on the sign of the strain. The surface 

energy contribution is not a function of strain in this case, so the open box configuration is 

similar to that for the closed box, the only difference being the addition of a (constant) excess 

surface energy in the open box configuration.

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

-490

 Analytical

Numericaloc
LU

I
oh-

-510

-530
Strain in x-direction

Figure 2.10 : Comparison between numerical and analytical solutions for the total potential
energy of a LJ lattice with a free surface.

2.4 Surface properties for LJ+BO interatomic potential

In this section, the properties of surface energy and surface stress are derived for the LJ+BO 

potential. The method is identical to that followed in the previous section.
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2.4.1 Analytical solution

Figure 2.11 illustrates the bonding in a surface cell with bond order. A bond represented by 3 

lines is stronger than one with 2 lines etc. A bond represented by 1 line is equivalent to a 

normal L-J bond. From (2-5) we can therefore write the surface energy per cell for the LJ+BO 

potential as

ty.
4

Z Pj
7=1

hY2

4

Z P,
7=1

1
(l+Pj

\ 6

bn +bj2
(2- 16)

where /?, = y2 with bu +bn =2, = /?3 =1 with b2X +b22 = b3X +&32=2.184, and J34 =1 with

b4\ +&42 =2.368.

\ _ /  1/2

1/2

Figure 2.11: Surface cell with bond order.

The excess surface energy per cell is formulated in a similar manner as (2-6),

+ ( 2 1 - » yl
7=1

= lO.OOe,,2 - 4 A 4 e n 2 - 4 .4 2 y n 2 - 3 .3 1 f ,£ 22 +2.76en + 1 .66f22 -1 .24,

(2-17)

where d)b is given by (2-7). At the free surface we again have a 22 = r X2 = 0 . This implies that 

Y\2 -  0 and from

= s a f e + w jcr22 =
de

— l l . l e 22 + 23.7fn +1.66 — 0
22

we have
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£ s22 =-0.0228 -0 .3 2 6 ^ ,.

This implies that there is a small contraction in the thickness of the surface monolayer even in 

the absence of applied strain. This is because of the increased strength of the surface bonds 

normal to the surface. Equation (2-12) still applies so the surface energy density can be 

expressed as

f s = -7 .4 bu2 + 2.2e n + 0.21. (2-18)

This expression for the surface energy for the LJ+BO potential is compared with the 

expression derived from the LJ potential in Figure 2.12. It is clear that the surface energy for 

the LJ+BO potential is significantly less than that for the LJ potential (for a flat surface). The 

LJ+BO surface energy is zero at a strain of -7.6%. This occurs because the excess energy of 

the LJ+BO surface cells increases less rapidly with compressive strain than the energy of the 

bulk cells.
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bond orderQ)
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Figure 2.12 : Surface energy per unit cell for the LJ and LJ+BO potentials.

Using (2-15), equation (2-18) implies that the surface stress is

/  = 2 .2-14 .8£n . (2-19)

From (2-15), the actual stress in the surface is = 93.3fn +2.2.  This is zero

when £u = -0 .026 which means that the equilibrium lattice spacing on the surface is
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0.974 r0. The strain dependence is usually ignored in which case the approximate surface 

stress would be f  - 2 . 2 .

2.4.2 Non-linear surface effects for the LJ+BO potential

A comparison between the analytical expression for the total energy of the “open box” sample 

derived in the previous sub-section and a numerical solution is shown in Figure 2.13. Both 

predict that the total energy is minimised at a non-zero (negative) strain. This is because the 

number of surface cells (19) is not negligible compared to the number of bulk cells (19x9.5),

1.e. it is roughly 10% surface. The non-linear effects are consequently significant above 1% 

strain and below -3% strain. The non-linear softening in tension and stiffening in compression 

is similar to the previous results.

-0.06 -0.03 0 0.03 0.06
-500

-510>.CT)
1 -<D
£  -520  Analytical

Num erical

£ -530

-540

Strain only in x-direction

Figure 2.13 : Total potential energy of the “open box” sample for the LJ+BO potential as a
function of extensional strain.

2.5 Relaxation of a circular atomic cluster

In the previous section, the properties of a flat, unstepped surface have been investigated and 

analytical expressions have been derived. In this section, the more complicated morphology 

of a curved surface will be investigated, in which surface steps are expected to play a role.
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The stress state induced by surface effects in a small circular atomic cluster is analysed from 

this perspective.

2.5.1 Analytical solution

A circular disk is investigated under plane stress conditions. The total energy of the disk is the 

sum of the bulk, Eb and surface, Es , contributions. A homogeneous surface is expected to

exert a uniform hydrostatic pressure, -P, on the bulk as shown in Figure 2.14. The strain 

energy in the bulk (assuming linear elasticity) can then be expressed as

£ t =>2(£r, A + < V ^ ) - ^ 2
=  0 - y ) p 2 j a {  2 =  _ E _ e 2 ^ 2  • (2-20)

E  (1-v)

where E is Young’s modulus, v  is Possions ratio, R is the radius of the disk and e0 is the 

hydrostatic strain.

Figure 2.14 : The surface is assumed to exert a uniform pressure on the bulk.

The total surface energy is the integral of the surface energy density over the total surface area

2 jc
E, = \ y A £ y,0 )Rd0 ,  (2-21)

0

where ys{es,0) is the surface energy which is assumed to be a function of the surface

strain, e s, and the surface orientation, 0 . The surface strain is the hoop strain at the surface
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which is equivalent to the hydrostatic strain in the bulk, i.e. es = e0. As a first approximation,

we ignore the orientational dependence of the surface energy (due to surface steps) and 

minimize the total energy to determine the value of the hydrostatic strain. We have therefore

=  2— —  e0nRl + ^ 2 a R  = 0 , 
de0 (1 -v )  de0

which, given the definition of surface stress from (2-15), leads to

_ ( l ^ v )  fo  or p R =   fo  (2-22)

E )  { ER )

where we have assumed the surface stress is a linear function of strain, f  = f 0 + Afe0, in 

accordance with (2-19). For the LJ potential, we found that f 0 = 0 so the hydrostatic pressure

is zero. This is not surprising as the surface bonds have the same equilibrium length as the 

bulk bonds so the surface is commensurate with the bulk in the absence of strain. For the 

LJ+BO potential we expect from (2-19) that f 0 = 2.2 and p f - A f  = -0.14 in dimensionless 

form (for a flat surface). An interesting observation about the predicted stress/strain state in 

the cluster is that a length scale, l = - p p - A/ = 0.14r0, has been introduced simply by

consideration of continuum quantities. The relative size of the surface monolayer volume has 

not been included. This predicts that the effective hydrostatic force on the cluster, f  = PR, is 

not a constant as normally assumed, but will depend on the cluster size. These analytical flat 

surface predictions for curved surface behaviour are compared with numerical curved surface 

calculations in the next sub-section.

2.5.2 Numerical method

An atomic approximation to a circular disk is made by keeping all the atoms in a regular 

triangular lattice with centres within a radius R of the central coordinate, as shown in Figure 

2.15. Each atom is assigned a variable horizontal and vertical position, except for the central 

atom (which is fixed in both directions) and one off-centre atom (which is fixed so that it can 

only move in a radial direction) to prevent rigid body translation or rotation of the disk.
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Figure 2.15 : Numerical construction of the circular atomic cluster.

The total energy of the disk can then be formulated in terms of the variable atomic positions 

from the sum of all the interatomic potentials. This non-linear function can then be minimised 

using a conjugate gradient solver to find the atomic positions for the lowest energy 

configuration. Dimensionless units are used throughout. The LJ+BO potential is used (as no 

displacements are induced for the LJ potential).

A simulation result for a disk of radius R = 43.3 is shown in Figure 2.16. The radial 

displacements of all the atoms, u, are plotted as a function of their radial distance from the 

centre of the disk, r. For a hydrostatic strain field we know that u = re0, so, from subsection

2.5.1, we expect the slope of the curve to be constant and equal to e0 . This is approximately

true in Figure 2.16. The scatter in the data is due to the surface steps (or orientational 

dependence of the surface energy) which we have neglected in the analytical model.

Simulations for a range of disk radii were performed and the results are shown in 

Figure 2.17 with the predictions of continuum theory (2-22). One can immediately see that the 

size effect predicted in (2-22) is only significant for very small disks (7?<10) but that the trend 

it predicts does concur with that seen in the numerical simulations. There is a significant 

difference which is not too surprising as a homogenised continuum theory is not expected to 

be very representative at these small scales. The PR value for the smallest disk (R=4) is 

largest. This is because this small cluster is hexagonal (see Figure 2.15 as an example) and the 

corner atoms have a low coordination number of three so their three bonds are very strong and 

induce a strong contraction in the surface. As the size of the clusters increases, the PR value 

gradually asymptotes towards a constant value, as expected. This is below the value of 2.2 

predicted by the analytical result, but again, this is not entirely surprising as this was
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developed from a flat surface approximation which ignores the effect of surface steps, step 

interactions and surface curvature. The fact that the surface contraction for the curved surface 

is less than that expected for a flat surface indicates that the surface steps lower the effective 

surface stress. This will be explored in more detail in the next chapter in which atomistic 

surface steps are considered.
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Figure 2.16 : Radial atomic displacements in a circular disk of radius 43.3 as a function of 
radial distance from the centre for the LJ+BO potential.
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Figure 2.17 : Comparison of PR as a function of cluster radius from analytic model, (2-22),
and numerical simulation.
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3.0 ANALYSIS OF A SURFACE STEP

The surface of an epitaxial thin film typically consists of multiple terraces and steps. The 

analysis of an isolated surface step is important to understand the interaction of steps with 

other steps, steps with adatoms and vacancies, and consequently the entire growth process of 

thin films. Steps can interact with other defects in two essential ways: via their long-range 

elastic fields or entropic fields due to concentration gradients. The latter will be discussed 

again in Chapter 4, but for now we focus on the elastic interactions between steps.

Recent advances in TEM (Transmission Electron Microscopy) and FIM (Field Ion 

Microscope) experiments [53] [54] allow the elastic field of surface features to be investigated 

experimentally. There are also theoretical models for the elastic field based on linear elastic 

theory [21] [22]. The difficulty with these models is the non-linear elastic region surrounding 

the step (which defines the elastic strength of the step) is represented by constants which are 

not related to the atomistic interatomic potential. It is the aim of this section to relate the 

strength of the step elastic field to the interatomic potentials. This could be achieved using an 

atomistic model of the type used in last chapter. In practise this is difficult due to the large 

number of atoms required due to their long range elastic interactions with the (remote) 

boundary. It is generally accepted that the far stress field of an isolated 2D surface step is well 

approximated by a continuum point multipoles model on an elastic half plane [19] [20]. 

Hence, in this chapter, we develop a number of mixed atomistic and continuum models to 

calculate the strength of steps. This concept is schematically illustrated in Figure 3.1. The 

non-linear response of the step and its neighbouring atoms are resolved in atomic detail. This 

region interacts with the rest (majority) of the body which is represented by a linear elastic 

model.
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Figure 3.1 : An isolated surface step. The region around the step ( r < rct) is resolved in 
atomistic detail and interacts with the rest of the body which is represented by continuum

linear elasticity.

3.1 Continuum force dipole model

This section introduces the continuum point multipole theory which will be used to represent 

the elastic far field of the surface step outside of the atomistic region (i.e. for r > rct, where rct

is a critical radius, see Figure 3.1). In the theory of elasticity, an arbitrary force distribution on 

an elastic half-space can be exactly described by a distribution of elastic multipoles.

F„> = I .//W  x mdx (3-1)

where F0i is the point force (monopole) in the ith direction, Fu is the point dipole, F2i is the 

quadrupole (and in general Fmi is the 2m dipole), i=x or z, and f x(x) and f z(x) are the 

components of the distribution of step-induced force. In the absence of epitaxial surface 

strains there is no net surface force so F0 is zero. In general only the lowest order multipoles 

are important in determining the far-field of a surface step [21]. Hence we only consider the 

contribution of force dipoles d x = Fu and d z = Fu , shown in Figure 3.2, where

d x = j f x[x)xdx and d z =  j f z(x)xdx . (3-2)
L L

The z-dipole is commonly approximated as d z = ysa , where ys is the (constant) surface 

energy density and a = r0 is the step height. The resulting stress field, expressed in polar co­

ordinates [73], is
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( J .  =

<jQ =0

2d .. cos 20 + 2d. sin 20
7tr'

d x sin 2 0 -  2d. cos 0
T  =  —  -------------------------------------- ------------------------

7tr

(3-3)

(3-4)

(3-5)

Figure 3.2 : An long range elastic field of an isolated step is approximately represented by
point dipoles dx and d z.

3.2 A mixed atomistic and continuum force dipole model

The purpose of this section is to obtain the numerical value of the two point dipole strengths, 

dx and d z, (given a step geometry and interatomic potential model) by coupling an atomistic 

model with and the continuum force dipole model of the previous section.

3.2.1 The Model

Lattice Statics (LS) calculations will be employed to determine the equilibrium deformed 

field within the atomistic region (see Figure 3.1). Outside of the atomistic region, the elastic 

deformation field will be approximated by the continuum point dipole model. The bridge 

between the atomistic and continuum models are the displacements on the interface between 

the two regions. The displacements on the boundary of the LS simulation will be defined by
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the displacements predicted by the force dipole field, i.e. the displacements of the boundary 

atoms, uib(dx,d z), are only functions of the point dipole strengths, d x and d z . The total 

potential energy of body can therefore be written as

E,„, = Ea{U» ’Uzi<UJ  ■“ / ) +  EM , ’d z) (3_6)
— Ea (uxi, uzi, d x, d z) + Ec (d x, d z)

where suffices a and c denote the atomistic and continuum regions respectively, uxi and uzi

are the x  and z displacements of the ith atom, and u j  and u j  are the displacements of 

boundary atoms. The formulation of the boundary displacements is presented in Appendix B. 

In the following, Ea(uxi,uzi, d x, d z) and Ec(dx, d z) will be simply written as Ea and Ec 

respectively.

In the atomistic region, the total potential energy is based upon the LJ+BO potential 

(see Chapter 2) and can be written as

I 2 > »i j>i

( \  rn

v'if J

12 /  \ 6

- ( bt +b rr

J ' r. , ‘j y
(3-7)

where the summation is over all atoms i and ^  is the distance between atoms i and j.

In the continuum region, one can write

Ec = E c0+AEc (3-8)

where Ec0 is the (constant) potential energy of the undeformed body (which plays no role in

determining the deformed field) and AEc is the change in the potential energy of the

continuum region due to the deformation. For a linear elastic body we know that

A Ec = X  \ a ij£ijdV .

where Q is the volume of the region. For plane stress conditions and polar coordinates this is

f t  CO

=  X j f(<Tr£r + <?e£e +  2Tre£re )r dr d 0 . (3-9)
- * A «

Using (3-3) to (3-5) with the normal constitutive equations for linear elasticity yields

= 7 7 ^ r [(3 + v K 2 +(5 + 3 v K 2], (3-10)
4E7TK
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where E and v are material Young’s modulus and Poisson ratio respectively, R is the cut-off 

radius. A minimum energy solution for (uxi,uzi,d x, d z) can now be obtained numerically

using an appropriate numerical solver. However, for consistency with the atomic model, the 

continuum model must take into account the interaction between the step and the surface 

stress field. This is addressed in the following subsection.

3.2.2 Surface stress in the continuum dipole model

As mentioned by Kukta and Bhattacharya [22], Shilkrot and Srolovitz [74], and Srolovitz and 

Hirth [75], the stress field around a step on an unstrained surface arises due to a discontinuity 

in the surface stress. We have already seen in Chapter 2 that the LJ potential will not induce a 

stress field in a surface as it is a zero surface stress potential. Hence the LJ+BO potential is 

employed. A surface stress will be induced in the surface monolayer of the atomistic region. 

An equivalent surface stress must therefore also be added into the continuum region for 

consistency.

We assume that a stress component crs exists in a layer of thickness b on the surface, 

as depicted in Figure 3.3. The surface stress field can therefore be written as

fcr for 0 < z < £
cr =

0 for z > b
(3-11)

<7Z= 0 . (3-12)

Su rface

Bulk

<7. a
to 1

.cr, = 0

(J. <7 = 0

ra

Figure 3.3 : Continuum surface stress model induces a stress into an atomic scale surface

layer of thickness, b.
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Assuming b «  R , superposition yields the combined surface stress state due to the dipole 

stresses (for 0 = ±7t 12) and surface stress

<rx = - ^ f  + a s , (3-13)
7DC

a z = z a =Q (3-14)

for z<b. The change in energy of the continuum region due to this surface layer is

s „ r b (  2 d x Y_, „ r b (  2d A
AE = 2 f —  r  + cr, d x - 2 [ —  f

* 2f i l  ax2 \  * 2E l  icx2
dx . (3-15)

With (3-10), the total elastic energy in the continuum region is therefore

AE = — 1- [ { 3  + v ) d 2 +(5 + 3 v ) d 2] - 4d:,b<T’ + b<7‘ (3-16)
AEnR2 ' 2 nER E

where the last term is an infinite constant (due to an infinite surface) which can be neglected 

in the minimization process. This expression replaces (3-10) in the total energy formulation, 

where we have f  =bcrs from (2-15).

3.2.3 Numerical results for mixed atomistic-dipole model

Two numerical methods are used to get an accurate solution to the energy minimisation 

problem defined by (3-6), (3-7) and (3-16). The fully non-linear conjugate gradient method is 

used to obtain a crude first approximation to the minimum energy configuration. This initial 

guess is then utilised in a Newton-Raphson method to solve a succession of global linear 

problems to converge to the correct solution. The conjugate gradient implementation is trivial 

as only the object function ( ET0T) needs to be prescribed as a function of the degrees-of- 

freedom. The Newton-Raphson method scheme is given in Appendix G.

The system is non-dimensionalised for the numerical calculations. The unit of length 

is the equilibrium atomic spacing r0 , and the unit of energy is the bond strength, co0 . Other

— E r 3
non-dimensional parameters are therefore E = — — = 72 and v = / 3 (from Chapter 2),

<y0
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The results for the calculation of d x and d z are shown in Figure 3.4. The results are

consistent with the force dipole continuum approximation, in the sense that the values 

converge to a reasonably constant value as the size of the atomistic simulation increases in 

radius. If the force dipole model was wrong one would expect to see a distinct size effect. It is 

interesting to see that the linear elastic dipole approximation is valid for an atomistic 

simulation with radius R > 3. This demonstrates that the non-linearity at the core of the 

surface step is very localised. The average dipole values are d x= 3.93 and d z= 2.14. The x- 

dipole is larger than the z-dipole (by a factor of roughly two) which is consistent with other 

theoretical and experimental findings [21]. The slight variability in the dipole values 

coincides with the geometrical disparity between the discrete atomistic and semi-circular 

continuum step regions.

w 4 
©
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xi 3

CD
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S  2
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c u t - o f f  r a d i u s ,  R

Figure 3.4 : Calculated force dipoles, d x and d z, for an isolated surface step for different size

atomistic simulations, R .

3.3 Combined atomistic and finite element models

In the previous section, the far-field of an isolated surface step was demonstrated to be

adequately represented by point force dipole approximation. This technique is effective for

steps on an infinite elastic half-plane. One of the deficiencies in this model was the lack of

precise geometric compatibility between the discrete atomistic region and the semi-circular

continuum region. In addition, the elastic half-space was of a uniform height, whereas the
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height should differ by the step height on either side of the step. It is of general interest to 

resolve these issues and to see if this method can be extended to a more general technique 

where the form of the far-field is not known apriori. For instance, for more complex defect 

structures or steps interacting in more constrained (non-infinite) geometries. In this 

subsection, we will employ the Finite Element Method (FEM) to represent the linear elastic 

far-field.

3.3.1 Using the Finite Element Method (FEM) in the continuum region

A general linear elastic far-field from a defect can be accurately represented by the FEM if the 

elastic strains are small. The problem is similar to before, in the sense that the total potential 

energy needs to be formulated and the lowest energy configuration found in terms of the 

positional degrees-of-freedom. The potential energy of the atomistic region has already been 

determined in (3-7). As before, the relevant potential energy in the continuum region is the 

elastic strain energy. This energy is calculated using the FEM by dividing the continuum 

region into elements. If the body forces and surface stress are ignored, the total elastic energy 

in the bulk FE continuum region is the sum over all the strain energies of the individual 

elements

where £(j and cijkl are the strain and material stiffness tensors respectively, Ve is the

elemental volume (or area in 2D). The elemental energies are assembled into the global elastic 

energy so as to obtain the total elastic energy. A detailed derivation of the elemental elastic 

strain energy is presented in Appendix C, but the general form is quite standard and can be 

written as

where [k e] is the elemental stiffness matrix, and [ue] is a matrix containing the (unknown) 

displacement degrees-of-freedom of the elements nodes.

(3-17)
elements

where the elastic energy of bulk element e, Ue, can be written as

Ve

(3-18)

U be = U u ' f [ k ’ K u ‘ \, 
2

(3-19)
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Triangular elements are used with six nodes and an unstructured triangular mesh was 

generated using a free 2D Delaunay triangulation routine called ‘Triangle’ [78]. A typical 

triangular mesh is shown in Figure 3.5. Near the atomistic region, the size of the elements is 

constrained to the atomic scale to retain high resolution in that highly strained area and to be 

compatible with the atomistic region. The FE nodes at the atomistic/continuum interface are 

chosen to coincide with the positions of atoms on this boundary. Far from the atomistic 

region, the sizes of the elements can be enlarged to decrease the total number of degrees of 

freedom and minimize the computational cost.

m s m

Figure 3.5 : Triangular FE mesh of continuum region. The small atomistic region is omitted 

but occupies the top-centre semi-circular region.

3.3.2 Surface transformation strain

When atomistic and continuum models are coupled together, it is important for the 

continuum model to be consistent with the atomistic model. As we have already seen in 

section 3.1, one consequence of this is that the surface stress generated by the LJ+BO 

potential in the atomistic region must also be represented in the continuum region. This is 

achieved by introducing a surface transformation strain, e T, into the surface monolayer of the 

FE model. As seen in Chapter 2, this is a mismatch strain
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due to a different equilibrium lattice spacing for the surface, as , and bulk, ab, atoms. This 

strain is negative for the LJ+BO potential (see Chapter 2).

I
Surface region Surface region

Bulk region

Note: b = height of monatomic layer

Figure 3.6 : FE region is divided into surface and bulk regions.

To take this difference between bulk and surface into account, the FE region is divided 

into surface and bulk regions. We assume that both of the surface and bulk regions have the 

same material properties and are coherent with one another. The elastic energy in the surface 

region can be written as

U ‘fe = 2 X ’ ’ (3-21)
surface
element

where the elastic energy of surface elements is given by

C  FE ~  {/ l  \ ( £ ij ~  £ ij ) c ijkl ( £ kl ~  £ kl ) d V
K

= / 2[ue]T[ke][ue] - [ u e]T[Re] + U0

where eJj(=[£T]) is the surface transformation strain tensor (matrix), [&e]is the same as 

before, [/?*] = j[£T]T[Ce][Be]dV is the elemental force matrix, and U0 is a constant. The
Ve

surface transformation strain can be written as

£ 7X V "

[£r ] =
T

£ y
= 0

T
/ x y  _ 0
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where e s is the desired surface strain.

One can assemble the whole elemental matrices in both surface and bulk regions to 

find the total elastic energy as

where [K FE], [RFF] and [uFE] are the global stiffness, force and nodal displacement matrices 

respectively. An iterative scheme for converging to a minimal global energy configuration is 

described in the next section.

3.3.3 Numerical implementation

The aim is to minimize the total combined coupled energy of the atomistic (3-7) and FE (3- 

22) regions

where the atomistic potential energy, Ea([uLS ]), is a non-linear function of the displacements 

in the atomistic (Lattice Statics) region, [u^  ] = \ua | uac ], which includes the 

atomistic/continuum boundary displacements [uac] as well as the other atomistic 

displacements [ua]. The continuum potential energy is a quadratic function of the nodal 

displacements in the FE region, [uFE] = [uc \ uac], which includes the atomistic/continuum 

boundary displacements and the other continuum displacements, [uc ].

The numerical strategy is similar to the one used in the mixed atomistic-dipole model 

of section 3.2. An initial guess at the minimum energy configuration is obtained using a non­

linear, conjugate gradient (CG) solver. A global, linear Newton-Raphson (NR) method is then 

used to converge to an optimal solution. The CG method is simple as only the above objective 

function needs to be prescribed.

For the NR method, the non-linear potential is expanded to second order about the 

current guess for the LS displacements, [w^],  and written as a quadratic approximation, 

compatible with the FE functional form

f e  ]  f e  ]  f e  3  f e  ] constant,
(3-22)

Eto! — Ea([uLS ]) + ] [Efe][uf e ] \uf e ] [Rfe ], (3-23)
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(3-24)

= X [ u l s  ] r \-k l s  ] [ u l s  ]  “  \-u l s  f  ] + constant

The total energy of (3-23) can therefore be assembled into the form

E-t o t  = y2[u]T [K][u]-[u]T [R] + constant. (3-25)

where all the atomistic/nodal degrees-of-freedom are contained in [u] = [uLS\ uFE]. An 

improved estimate at the lowest energy configuration can therefore be obtained from the 

minimum energy condition

and the process repeated until convergence is obtained.

3.3.4 Results and discussion

The radius of the atomistic region is 10 atomic spacings in the following non-dimensional 

calculation. The FE region is 100x50 spacings. Firstly, the inclusion of the surface 

transformation strain is tested to ensure that the atomistic and continuum regions are 

compatible in the absence of a step or any defects. The analysis of Chapter 2 predicts that 

e s ~ -0 .026. The horizontal displacement of a surface atom on the boundary between the 

atomistic and FE regions is plotted in Figure 3.7. If the atomistic and FE regions are 

consistent then the displacement should be zero by symmetry. The displacement reaches a 

zero value for e s between -0.026 and -0.03. This is consistent with the above prediction and 

demonstrates that the surface transformation strain is effective in reproducing surface stress 

conditions compatible with those found in the atomistic simulation.

(3-26)
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Figure 3.7 : In the absence of a step or any other defect, the horizontal displacement of a 

surface node on the atomistic/FE boundary should be zero when the surface transformation 

strain in the continuum region correctly balances the surface stress in the atomistic region.

This occurs at a strain of -2.6%.

The minimum energy configuration is now determined in the presence of an isolated 

surface step for the LJ+BO potential. The displacement field in the FE region calculated using 

the mixed LS and FE model is shown in Figure 3.8. The displacement components on the 

atomistic/continuum interface are shown in Figure 3.9 for both the atomistic/force dipole 

model of section 3.2 and the atomistic/FE model developed in this section. The results are 

very similar which reinforces the confidence in the predictions of both models. The nodes at 

both the lower and higher terrace surfaces move away from the step in jc-direction as expected 

for a positive d x force dipole. In the y-direction, the nodes on the higher terrace surface move 

down and the nodes on the lower terrace surface move up, again consistent with a positive 

(anticlockwise) d z force dipole. This is consistent with the experimental observations [21].
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Figure 3.8 : Coloured contours show the displacement field in the FE continuum region with 

the FE mesh. The surface and bulk regions are easily seen.
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Figure 3.9 : Displacement components of boundary nodes at the atomistic/continuum 
interface for (a) point dipole continuum (section 3.2) and (b) FE continuum (section 3.3).

3.3.5 Summary

Lattice Statics (LS) and the Finite Element Method (FEM) are coupled together to analyze the 

elastic displacement field of an isolated surface step. To complement the effect of the 

relaxation (in the atomistic region) on the continuum FE region, a surface transformation 

strain is added into the surface layer in the continuum region to retain consistency with the 

atomistic region. Numerical results demonstrate the validity of this approach.
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4.0 AN ATOMISTIC MODEL OF SURFACE DIFFUSION

4.1 Introduction

In the absence of stress, the wavy surface of a thin film will want to evolve to a flat surface to

minimize its free surface energy. At high temperatures it can achieve this via surface 

diffusion. As thin films are used in the fabrication of nanodevices, we investigate this 

relaxation process here at the atomistic length scale. It is also of interest to explore the 

correlation between continuum and atomistic models at this length scale (on the order of 

nanometres). Generally, there are two approaches to investigating the decay of a perturbed 

surface:

(a) Continuum models

The continuum approach was derived by pioneer researcher Herring and then 

developed by Mullins [55]. In this case, the macroscopic driving force is surface energy 

which tends to flatten the wavy surface. The dominant kinetic process is surface diffusion. 

Bulk diffusion is neglected. The evolution of the height of a perturbed (low curvature) 1+1D 

surface, h(x,t) , is described by the Herring-Mullins equation

ys is the surface energy density, Q is the atomic volume, 8  is the density of adatoms on the 

surface, kB is Boltzmann constant and T is absolute temperature. This equation predicts that 

the amplitude of a sinusoidal surface will decay as an exponential function of time as

characteristic decay time and A is the wavelength of the sinusoid surface. Details are given in 

Appendix E. These equations are valid at macroscopic length scales above the roughening

dh _ g d 4h
dt dx4 ’

(4-1)

where B = — determines the decay rate and £> is the coefficient of surface diffusion,
kBT

A = A0 exp( - t / r ) , (4-2)

where Aq is the initial amplitude of the sinusoidal wave, r  =
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temperature (see section 1.1.3). Below the roughening transition temperature, the process of 

surface diffusion is complicated because the individual surface steps can be the critical feature 

in determining the relaxation rate. In this case, the surface energy is highly anisotropic with 

facets forming at singular cusps. This regime is difficult to model using conventional 

continuum models. In recent years, step flow models have been developed to describe discrete 

microscopic kinetics of the surface [55]. We will investigate the application of these models 

to this problem over a range of temperatures in Chapter 5.0.

(b) Atomistic models

Another way to investigate surface relaxation is by resolving all the atoms individually 

(see section 1.2.1). Molecular Dynamics (MD) is a commonly used atomistic method but it is 

limited to very small time scales and cannot reach the time scales of diffusive events. Kinetic 

Monte Carlo (KMC) simulations are better in this regard as they have a flexible time scale 

which can be extended to cover the real process of thin film evolution. In the last few years, 

an off-lattice KMC model [71] [72] has been developed which uses real interatomic potentials 

so that it can correctly represent the underlying physics of strain-induced film growth. This 

model will be used here and is explained more fully in the next section.

4.2 An off-lattice KMC model for surface diffusion

The KMC algorithm will initially be described in its normal context: the on-lattice KMC 

model. This will then be extended to the more powerful off-lattice KMC model in the 

subsequent subsection.

4.2.1 The on-lattice KMC model

The KMC algorithm is different from the standard Monte Carlo (MC) algorithm in that it 

relates simulation time to real time. The KMC algorithm therefore needs to know all the rates 

of all possible events in which an atom jumps from one site to another one before determining 

which event might happen. Harmonic Transition State Theory (HTST) [83] predicts that the 

rate of an event i can be written as

Ej
Ri =  v0e l‘T (4 3 )

where v0 is the atomic vibration frequency for all atoms (typically 1010s -1), Ei is the 

activation energy for the event (or energy barrier between two states, i.e. sites), kB is
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Boltzmanns constant and T is absolute temperature. All possible events are tabulated with
N

their associated rates. Given the sum of all the rates, R = ^ j Ri , the probability for an event i
i=l

is /?,.//?. An event i is chosen and performed according to a uniformly distributed random 

number between 0 and R . The time increment between the changes of configuration is given 

according to a Poisson distribution P(r) = Re-/?r such that

r  = _ l M
R, (4-4) 

where p  is a uniformly distributed random number between 0 and 1.

This process is now described for a simple solid-on-solid (SOS) model. The surface 

profile is defined by the height of each column of atoms, as shown in Figure 4.1. The columns 

are indexed by position, hl,-‘-,hi_l,hi,hi+l,'--,hn. The activation energy of an event is defined

by the number of lateral neighbours that an atom has, i.e. E i = n E h where E h is half the

(negative) bond energy and n is the number of lateral neighbours. Because there is always a 

bond below the atom, only lateral bonds are important. For an adatom (atom with no lateral 

neighbours) E t = 0, for an atom on a step edge (one lateral neighbour) E { = E h , and for an

atom in the surface (two lateral neighbours) E t = 2E h . A wavy surface tends to reduce its

surface energy. Hence surface atoms will stick to step edges and fill in holes (low energy 

sites) so as to flatten the surface. The SOS model is known as an on-lattice model as the 

atoms can only occupy pre-defined positions. On-lattice KMC models ignore the effect of 

elastic distortion due to defects (such as surface steps) on the activation energy. This is 

especially important in heteroepitaxially strained structures.

Step ed ge adatom terrace

Figure 4.1 : SOS model of an atomic surface.
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4.2.2 The off-lattice KMC model

Unlike the on-lattice KMC method, the off-lattice KMC method allows atoms to occupy any 

position in space as in a real atomic lattice. The interactions between atoms are defined by the 

interatomic potentials. Hence the elastic surface and kinetic properties of an off-lattice KMC 

model are completely defined by the interatomic potential. The Lennard-Jones (LJ) 

interatomic potential (with and without bond order) was introduced in Chapter 2.0 and was 

used to derive its associated elastic and surface properties. We utilize this potential again in 

this section to explore the corresponding surface kinetic properties associated with this 

potential. The equilibrium 2D lattice structure is therefore triangular with each atom having 

six nearest neighbours.

The appropriate rate for a diffusive event is still modelled using equation (4-3) but the 

activation energy is not pre-determined. As a system moves from one state (bind site) to 

another, its potential energy changes from one local energy minima to another, as illustrated 

in Figure 4.2 for a 1+1 dimensional surface. The transition energy peaks at the saddle point. 

The activation energy is defined to be the difference between the saddle-point energy and the 

initial binding site energy

~ "̂saddle “  b̂inding • (4"5)

The saddle-point energy can be calculated from the current lattice configuration using a 

minimum energy path method. A frozen crystal [81] [82] approximation is used to speed up 

the calculation of the activation energy. This means that all the atoms except the hopping 

atom are fixed during the transition process.

Energy
Saddle point

Activation energy 
Ei=E saddle - E binding

Binding site

Position

Figure 4.2 : Activation energy in 2D.
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Another significant difference between on-lattice and off-lattice KMC is the complexity of 

determining the list of events. The events are pre-defined for a rigid (on-lattice) surface model 

but this is not the case for a flexible (off-lattice) model. Some rules for choosing events must 

be defined. These rules depend on the positions of atomic nearest neighbours (see Figure 4.3). 

For simplicity we label atomic six neighbours R (for right neighbour), RU (for right-upper), 

RD (for right-down), L (for left), LU (for left-upper) and LD (for left-down neighbour). To 

ensure that an atom is always in a stable position, it is assumed that an atom must always have 

RD and LD neighbours and that an atom can only hop a distance less than two atomic 

spacings. Consequently, the following steps are used in the off-lattice KMC simulation to 

determine the list of events :

1. Identify all movable surface atoms. A movable atom can be identified in terms of the 

situation of its nearest neighbours (see Figure 4.3). An atom is taken to be movable if both 

the RU and LU positions are empty, i.e. it has no neighbouring atoms immediately above 

it. A secondary criteria that a movable atom must fulfil is that its nearest R or L neighbour 

is also movable or vacant, otherwise there is not a neighbouring vacant site available for 

the movable atom to move into.

2. A hopping event for a movable atom is only possible in the direction of a nearby vacant 

receptor site. There are six receptor sites for a movable atom. These are shown in Figure

4.4 and fall into the following three categories :

• al/a2 sites -  the atom in R/L position is also a movable atom and also has a R/L 

neighbour respectively.

• bl/b2 sites -  there is no R/L atom but the RD/LD atom has a R/L atom 

respectively.

• cl/c2 sites -there is no R/L atom and RD/LD atom has no R/L atom respectively.
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LU RU

LD RD

Figure 4.3 : Definition of an atom neighbouring sites : right (R), right-upper (RU), right-down 
(RD), left (L), left-upper (LU) and left-down (LD).

Figure 4.4 : There are six possible receptor sites (al, a2, b l, b2, c l and c2) for a movable
atom to hop into if vacant.

4.3 Calculating the activation energies

The activation energies calculated in the off-lattice KMC simulation are determined from the 

instantaneous crystallographic arrangement. However, the magnitude of these energies is 

explored in this section for various diffusive events of particular importance.

4.3.1 Adatom diffusion on an unstrained flat surface

For a 1+1 dimensional surface, the minimum energy path method [81] [82] is employed to 

calculate the saddle-point energy and bind-site energy for various transition events. In this 

method, an atom is moved horizontally across the surface of a frozen lattice to a new bind site
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in a sequence of steps of a / 40, where a is the atomic spacing. After each step the atom is 

allowed to relax in the vertical direction. In this way a minimum energy path can be 

calculated. The maximum energy on this path is the saddle-point energy. The saddle-point 

energy minus the initial bind-site energy is the activation energy (4-5). The minimum energy 

path for an adatom diffusing across a flat surface is shown in Figure 4.5a. The LJ interatomic 

potential is employed with a cut-off radius of rtj > 3<J ~ 2.67 r0. The horizontal force acting on

the adatom as it follows the minimum energy path is shown in Figure 4.5b. The force is zero 

at the bind-sites and the saddle-point. This means that they are extremum points. It is useful to 

note that if we choose the same material parameters as those used by Biehl and Much [71] we 

get the same activation barrier of E{ * 0.57eV .

-109.5

-109.8

- 110.1

-110.4
0.2 0.4 0.6

Position of an adatom in x-direction
0.8

(a)

3.0

0.0

-3.0
P o s i t i o n

(b)

Figure 4.5 : (a) The minimum energy path for an adatom hopping between two sites on an 
unstrained flat surface, (b) The horizontal force on the adatom during the transition.
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4.3.2 Diffusion on a strained flat surface

Heteroepitaxial thin films can be highly strained. It is therefore necessary to study the 

relationship between activation energy and strain. There is a mismatch strain of ex = -4%  for

the typical semiconductor system of Ge on Si. Figure 4.6 shows that the activation energy for 

adatom diffusion with the LJ potential will reduce from 0.7 eV for zero strain to 0.66 eV for a 

strain of -4%. This means that adatom diffusion is easier on a compressed lattice than an 

unstrained lattice.

Strain=0.0

Strain=-4%
0.80

0.60
>*p
fc 0.40

0.20

0.00
0.5

P o s i t i o n  o f  a n  a d a t o m  i n  x - d i r e c t i o n

Figure 4.6 : Effect of strain on the minimum energy path for adatom diffusion on a flat
surface.

More detail about the effect of strain on the activation energy is shown in Figure 4.7. The 

contribution of binding energies and saddle-point energies to the activation energy is shown 

in Figure 4.7a and Figure 4.7b. The binding and saddle-point energies are calculated for three 

cases here: an atom in the surface layer before hop-out, an adatom near a hole in the surface 

layer before hop-in and an adatom on a flat surface (see Figure 4.8). The activation energy for 

adatom diffusion in Figure 4.7c is the lowest and increases almost linearly with increasing 

tensile strain. Hence adatom diffusion is the easiest mechanism for rearrangement of the 

surface material and it occurs more readily on a compressed surface than an extended one. 

This is interesting as linear continuum theory predicts that the sign of the strain does not 

influence the evolution of heteroepitaxial systems, although experimentally this has been 

observed to have an effect [4]. The activation energy for an adatom hopping into a hole in the 

surface is slightly higher but obeys a similar relationship. Hop-in has a higher saddle-point
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energy than adatom diffusion because the atom that would occupy the vacant hole site is not 

there to help pull the adatom through its transition. The highest activation energy in Figure 

4.7c is for an atom hopping out of the surface. This is significantly higher than for the other 

mechanisms and hence will be a relatively infrequent event. It is high because the atom has a 

very low binding energy when embedded in the surface. The hop-out activation energy is an 

approximately quadratic function of strain, i.e. either tensile or compressive strain aids 

hopping out of the surface. This is because the moving atom has two lateral neighbours in this 

case.
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Figure 4.7 : Effect of strain on (a) binding energy, (b) saddle-point energy and (c) activation 
energy for adatom diffusion, hop-in and hop-out.

(a) (b) (c)

Figure 4.8 : Three cases for the calculation of binding energies : (a) hop-out, (b) hop-in and
(c) adatom diffusion on a terrace.

4.3.3. Attachment/detachment to/from surface steps

From an atomistic perspective, a wavy surface consists of steps and terraces. When adatoms 

attach or detach from surface steps, the activation energy should be different from that for 

diffusion over a flat surface. The energetics of this process is especially critical below the 

roughening transition temperature. To investigate this we construct an island of atomic height 

on a flat surface, as shown in Figure 4.9. A representative atom is then dragged over the 

island to find its minimum energy path. The energy landscape obtained in this manner is 

shown in Figure 4.10 for the LJ potential and LJ+BO potentials. In the case of LJ +BO, the 

crystal needs to be relaxed (to minimize its total potential energy) as this interatomic model 

induces a surface stress which is discontinuous due to the steps in the surface (see Chapter 3).
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Periodic boundary conditions are used and the atoms in the bottom two layers are fixed. After 

relaxation of the whole system, all atoms except the hopping atom are frozen.

20

Figure 4.9 : Initial island of atomic height on the surface.

The adatom energy landscape for the LJ and LJ+BO potentials shown in Figure 4.10 

was obtained by moving an adatom over the surface. Here adatom energy refers to the 

potential energy of the representative adatom calculated from its nearest- neighbour and 

second nearest-neighbour bonds. One can find in this instance that the diffusion barrier for 

LJ+BO is bigger than that for LJ. Although surface atoms with the LJ+BO potential have 

stronger bonds than those with the LJ potential it is expected that the former will be more 

mobile due to the increased driving force from surface tension and surface stress. So the 

adatom energy landscape for the LJ+BO potential in Figure 4.10 is misleading as the bond 

energy of the atoms neighbouring the moving adatom also changes as their coordination 

number (and hence bond order) changes.

 For LJ potential

For LJ+BO potential

P o s i t i o n  i n  x - d i r e c t i o n

Figure 4.10 : Energy landscape over a surface step for LJ and LJ+BO potentials.
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Figure 4.11 shows the change in the total energy of all the atoms except the adatom 

and also the change in the total energy of all atoms including the adatom. As expected, the 

first curve is not constant during adatom movement because the bond order of the atoms 

surrounding the representative adatom varies as well as that of the representative adatom as it 

moves along the minimum total energy path. The second curve shows that the total energy 

landscape for the LJ+BO potential is no longer smooth (compare this with the adatom energy 

curves in Figure 4.10). The reason for this is that the interatomic potential calculation is 

restricted to a cut-off radius of rtj > 3 <r « 2.67r0 within second nearest-neighbour range and

that the bond strengths undergo a discrete change as the coordination number of the adatom 

changes. However this does not affect the value of the activation energy. The correct energy 

landscape including the change in energy of all the atoms is shown for both potentials in 

Figure 4.12.

—  For all atoms 
except of adatom  

 For all atoms-594
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Figure 4.11 : Total energy landscape over a step for LJ+BO.
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Figure 4.12 : Total energy landscape of representative atom dragged over the island for (a) LJ
and (b) LJ+BO potentials

The schematic energy landscape in Figure 4.13 demonstrates that there are a few 

energy barriers which dominate the global diffusion process. The activation energies for the 

five associated events are labelled K1 through to K5 as shown in Figure 4.13a. Here AT is the 

adatom diffusion barrier or the activation energy for terrace diffusion. The barriers for 

attaching to a step from the upper terrace and from the step terrace are K2  and K5 

respectively. K 2 includes the Ehrlich-Schwoebel barrier. This will be discussed in more 

detail in the next subsection. The barriers for detaching from a step to the upper terrace and
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the step terrace are K 3 and K4  respectively. The results from Figure 4.12 are listed in Table 

4.1. When bond-order is considered in the LJ potential model, the surface diffusion barrier K1 

is 0.56Uo smaller than the barrier without bond-order where Uo is the unit of energy in the LJ 

potential. This is consistent with previous results : adatoms will diffuse easier with bond-order 

than without due to the tensile surface strain associated with the bond-order potential.

• ---------------

o o o o 
o o o o o o o

>o

1

-1.5

2 K5
K3

-2.5 K4

•3

-3.5
25 26 27 28 29 30 31

P o s i t i o n  ( a t o m i c  s e p e r a t i o n = 1 )

(a)

K2 K3
K5 K4

(b)

Figure 4.13 : Five key events for surface diffusion, (a) Schematic of the energy landscape for 
an adatom dragged over a surface step showing energy barrier for associated events, (b) K 2 

and AT5 are barriers for attaching to a step from the terrace above and the step terrace 
respectively; £ 3  and K4 are barriers for detaching from a step to the upper terrace and to the 

step terrace respectively; Kl is the barrier for adatom diffusion on a terrace.
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Barriers (unit: U0)

LJ potential Diffusion Attaching step Detaching step

K1 K2 K5 K3 K4

Without bond-order 0.702 1.019 0.584 2.129 1.584

With bond-order 0.559 0.922 0.423 1.671 1.394

Table 4.1 : Effect of bond-order in LJ interatomic potential on various barriers.

4.3.4 The Ehrlich-Schwoebel barrier

The Ehrlich-Schwoebel (ES) barrier is the increase in the activation energy experienced by an 

adatom wishing to jump down a step above that which it would experience for normal terrace 

diffusion. This is illustrated in Figure 4.14. This barrier is over-estimated in 1+1 dimensional 

systems. In 2+1 dimension systems an adatom can jump down a step by crossing at the 

saddle-point between two energy peaks on the edge of a step. In 1+1 dimensions the adatom 

must cross the energy peak. Overestimation of this barrier leads to the formation of mounds 

even in homoepitaxial growth because adatoms are reflected by the top of steps and remain on 

the upper terraces to nucleate further steps. The K2 activation energy must therefore be 

manually corrected to avoid this unphysical phenomenon. The affect of the size of the 

correction will be investigated in the numerical simulations of the next section.
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Figure 4.14 : Energy landscape over a step showing the Ehrlich-Schwoebel barrier for an 
adatom descending a step. The upper terrace is up to position 28.5, the lower terrace is

position 29 onwards.

4.4 Decay of an unstrained sinusoidal surface

4.4.1 Off-lattice KMC simulations

In this section the evolution of an unstrained surface is modelled. The surface is initiated with 

a sinusoidal surface profile. The Herring-Mullins equation (4-1) predicts that the surface 

profile will evolve as a sinusoid and that the amplitude will decay exponentially with time (4- 

2). The amplitude of the sinusoid is monitored during the evolution and is determined from 

the discrete Fourier series for a sinusoid of wavelength A as

atoms in a monolayer, N  is the number of layers, Ax is the atomic spacing and Ay is the 

distance between layers.

(4-6)

The initial configuration of the simulation has an amplitude of A = —N yA y , with

mean wavelength A = N xAx, where N x is the number of
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We take two sizes of sample to investigate the effect of the distance between steps: (1) 

A^=61 and N =14; and (2) = 150 and N y= 14. Two temperature regimes are chosen to

show the effect of temperature on the flattening of the sinusoidal surface. The first regime is 

at high temperature : T=03T0, 0.35 T0, and 0.4 T0. The second regime is at low temperature :

T = 0 .iro, 0.103ro and 0.108T0. Temperature is non-dimensionalised with respect to a 

reference temperature in the simulation, T =T/T0 , where T0 = U 0/ k B , U0 is the unit of 

energy in the LJ potential. Udink and Frenkel [113] predict that the melting point is at about 

0 .5 ro~ r o for a 2D LJ simulation, so diffusion is expected to be an important relaxation 

mechanism in at least the higher of these two temperature regimes.

Note that KMC is a statistical simulation method. Simulations with the same initial 

starting conditions will give slightly different results. Ideally macroscopic parameters, such as 

diffusion coefficients, should be obtained from averaging over many such simulations. 

However, for the problems under investigation here, very little statistical scatter is observed in 

the diffusion data, so most results are obtained from only one or two simulations.

Simulation procedure

The off-lattice KMC simulation is conducted as follows:

(1) Define initial configuration and enforce the periodic boundary conditions.

(2) Identify all movable atoms.

(3) Determine all events and their hopping intervals, i.e. the start site and end site.

(4) Relax the lattice (i.e. minimize the energy):

• Relax the lattice locally (within R < ?><rs ~ 2.67r0 around the latest event) 

after every event.

• Only relax the lattice globally after every 10 events as this is 

computationally expensive.

(5) Calculate the activation energies and the subsequent rate for all possible events.

(6) Choose an event according to its probability and implement it.

(7) Return to step (2) and repeat process until evolution period has been completed.
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Eliminating the Ehrlich-Schwoebel barrier

As discussed in section 4.3.4, the Ehrlich-Schwoebel (ES) barrier should be eliminated for an 

event where an adatom attaches to a step edge from the terrace above. However, once the ES 

barrier is removed, simulations of the flattening of a sinusoidal surface still show that the 

surface tends to form mounds instead of a flat surface. The reason is that, after the elimination 

of the ES barrier, an adatom has the same probability to jump across the terrace as it does to 

jump down and attach to the step edge. This enhances the adatoms chances to remain on the 

upper terrace and join together with other adatoms and form mounds. Hence the ES barrier is 

still overestimated in the 1+1 dimensional case. Thus we eliminate an extra ES barrier (see 

Figure 4.14), say 1.2 times the ES barrier calculated in 1+1 dimensions. This increases the 

probability that an adatom will jump down from a terrace to attach to a step. When the off- 

lattice KMC simulation is performed again with this extra ES barrier elimination, the 

sinusoidal surface flattens. How large should the extra ES barrier elimination be and does it 

affect the evolution of the surface significantly? From Table 4.1, the ES barrier is K2-K1 

which is 0.32 U0 for the LJ potential and 0.36 U0 for the LJ+BO potential. Two different

values for the extra ES barrier were used, 0.45U0 and 0.65U0. Simulation results for the

LJ+BO potential, shown in Figure 4.15, demonstrate that the evolution is only weakly 

dependent on the extra ES barrier height, i.e. attachment to a step from the upper terrace is no 

longer a rate-limiting process as expected.
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Figure 4.15: The amplitude of sinusoidal profiles of wavelength A =61 decay exponentially 
at a temperature of T =0.3 for the LJ+BO potential. Two curves (A & B) are produced by 
eliminating an extra Ehrlich-Schwoebel (ES) energy of 0.45 U0, the other two (C & D) by

eliminating an extra ES energy 0.65 Ua. This shows that eliminating an extra Ehrlich-
Schwoebel energy to enhance diffusion of adatoms down steps does not affect off-lattice 

KMC simulations of the flattening of a sine wave above a certain value.

4.4.2 Flattening of a long wavelength sinusoid ( N x =150)

(a) High temperature regime (T  =0.3-0.45)

Here Ax=150 and the distance between neighbouring steps in the initial morphology is about

four atomic spacings. An example of the flattening of a sinusoidal surface at T =0.45 is 

shown in Figure 4.16. These results are for the LJ+BO potential and snapshots are taken at 

0%, 10%, 20%, 40%, 70% and 100% of the total evolution time. At this high temperature the 

surface is rough but it retains a sinusoidal profile on average over time.

The decay of the natural log of the amplitude of a sinusoidal surface with time is 

shown in Figure 4.17 at three different high temperatures for the LJ and LJ+BO potentials. 

All the results are consistent with the exponential decay (4-2) predicted by Herring-Mullins
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continuum theory (4-1). The LJ+BO potential case decays faster than the LJ case. This is 

discussed in section 4.5.

(a) 0% total time

(b) 10% total time

(c) 20% total time

(d) 40% total time

(e) 70% total time

(f) 100% total time

Figure 4.16 : Flattening of a sinusoidal surface at high temperature ( T = 0.4570) for large 
inter-step spacing ( A^=150) with BO at (a) 0%, (b) 10%, (c) 20%, (d) 40%, (e) 70% and (f) 

100% of the total evolution time 37x10'6 . (Red indicates high strain and blue low strain.)
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(a) LJ potential
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(b) LJ+BO potential

Figure 4.17 : Amplitude (at the logarithmic scale) vs time plot showing the exponential decay 
of the amplitude of the sinusoidal surface at high temperatures and large inter-step spacing (a) 
for LJ and (b) LJ+BO potentials, where normalized amplitude is the amplitude A divided by

the atomic spacing a.

(b) Low temperature regime (T  =0.1-0.108)

An example of low temperature evolution for this wavelength ( Ax = 150) at T -  0.103 for the

LJ+BO potential is shown in Figure 4.18. Snapshots of the evolution are taken at the time 0%, 

10%, 20%, 40%, 70% and 100% of the total evolution time. The surface is much smoother
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than seen for the similar case at high temperatures (see Figure 4.16). The surface evolution is 

much more reminiscent of step flow and the sinusoidal morphology is preserved throughout.

The decay of the natural log of the amplitude with time for a range of low 

temperatures is shown in Figure 4.19. The decay is exponential for both LJ and LJ+BO 

potentials as at higher temperatures. This implies that the dominant diffusion process is the 

same for both temperature regimes.

The Herring-Mullins continuum theory of (4.1) also predicts an Arrhenius relationship

f  A
between D y  and the activation energy AE ,  i.e. Dsys = DsQys exp

k BT  /

, where the

surface energy is assumed to be constant (this is true to first order temperature fluctuations) 

and Ds0 is a pre-exponential diffusion constant. The relationship between In(Dsys) and

inverse temperature for the results from Figure 4.17 and Figure 4.19 are shown in Figure 4.20. 

The slope is the negative of the activation energy. The activation energy for the LJ and 

LJ+BO models are 1.92 co0 and 1.91 coQ respectively, indicating that the difference between

them is small. The activation energy is not a diffusion barrier directly but it is defined by a 

weighted combination of these barriers. The relationship between the activation energy and 

the diffusion barriers will be investigated further in section 5 and is a major motivation for 

this work.
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(a) 0% total time

:-9Z5#iefttoo

(b) 10% total time

(c) 20% total time

(d) 40% total time

(e) 70% total time

(f) 100% total time

Figure 4.18 : Flattening of a sinusoidal surface at low temperature ( T  = 0.103) for large inter­
step spacing (^ = 1 5 0 )  with BO at (a) 0%, (b) 10%, (c) 20%, (d) 40%, (e) 70% and (f) 100%

of the total evolution time.
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(b) LJ+BO

Figure 4.19 : Amplitude (at the logarithmic scale coordinates) vs time plots showing the 
exponential decay of the sinusoidal surface at low temperatures and large inter-step spacing

(a) for LJ and (b) LJ+BO potentials.
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Figure 4.20 : Relationship between In{Dsys) and inverse temperature for the long wavelength
sinusoid ( v = 150).

4.4.3 Flattening of a short wavelength sinusoid ( N x= 61)

(a) High temperature regime (T  =0.3-0.45)

For the narrow simulation cell with A^=61 (i.e. wavelength A =61), the distance between 

neighbouring steps in the initial surface morphology is two or three atomic spacings. A 

typical example of the flattening of a sinusoidal surface at a high temperature of T =0.45 is 

shown in Figure 4.21. The LJ+BO potential is used and the snapshots are taken at 0%, 10%, 

40% and 100% of the total evolution time. As expected, the surface profile is rough at this 

high temperature but it retains a sinusoidal profile on average over time.

The decay of the amplitude of the sinusoidal surface over time for cases with and 

without bond-order is shown in Figure 4.22 (a) and (b) at three different high temperatures. 

The lower the temperature, the slower the decay of the wavy surface as expected. Figure 4.22 

shows that the decay of the amplitude at the logarithmic scale is linear for these temperatures 

which indicates exponential decay, in agreement with the Herring-Mullins continuum theory 

of (4-2).
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(a) 0% total time

(b) 10% total time

(c) 40% total time

(d) 100% total time

Figure 4.21 : Flattening of a sinusoidal surface at high temperature (T  = 0.45T0) for short 
inter-step spacing ( N x=6l) with BO at (a) 0%, (b) 10%, (c) 40% and (d) 100% of the total 
evolution time 3x10~6. (Red indicates high strain and blue indicates low strain. The colour 
scheme is the same as Figure 4.16. The only different is the size of the visualised atoms).
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(b) LJ+BO potential

Figure 4.22 : Amplitude at logarithmic scale vs time plot showing the exponential decay of 
the amplitude of the sinusoidal surface at high temperatures and small inter-step spacing (a)

for LJ and (b) LJ+BO potentials
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(b) Low Temperature Regime (T  =0.1-0.108)

An example for the short inter-step spacing ( N x = 6 \)  at T = 0.103 for the LJ+BO potential

is shown in Figure 4.23. Snapshots of the evolution are taken at the time 0%, 20%, 40% and 

100% of the total evolution time. Comparing these simulations to those at a high temperature 

(see Figure 4.21), the surface is much smoother. Steps are annihilated by the surface 

flattening but are rarely created. It is much more reminiscent of a step flow process.

Sinusoidal decay for the short wavelength case (A = 61) at three low temperatures 

( T  =0.1, 0.103 and 0.108) are investigated by off-lattice KMC simulation in Figure 4.24 for 

both the LJ and LJ+BO potentials. This low temperature evolution can be envisaged as a 

process of steps smoothly flowing over the surface, unlike the very rough, highly chaotic 

motion in the higher temperature regime. It can be seen from Figure 4.24 that there is now a 

larger difference between the decay rates for the LJ and LJ+BO potentials. As before, the 

amplitude for the LJ+BO potential decays faster than for the LJ potential. The log(amplitude) 

vs time plot for the LJ potential, shown in Figure 4.24a, is linear indicating exponential decay. 

However, the decay curve for the LJ+BO potential, shown in Figure 4.24b, is not linear over 

the whole evolution time. The decay shows two regimes: rapid decay in the initial stage, 

where the typical terrace length is about 2-3 atomic spacings, and decay with a longer 

characteristic time at lower amplitudes.
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(a) 0% total time

(b) 20% total time

(c) 40% total time

(d) 100% total time

Figure 4.23 : Flattening of a sinusoidal surface at low temperature ( T =0.103) for small 
inter-step spacing ( A^=61) with BO at (a) 0%, (b) 20%, (c) 40% and (f) 100% of the total

evolution time.
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(b) LJ+BO potential.

Figure 4.24 : log(Amplitude) vs time plots showing the decay of the sinusoidal surface at low 
temperatures and small inter-step spacing is (a) exponential for the LJ potential but (b) not so

clearly exponential for the LJ+BO potential.
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The relationship between In(Ds/ s) and inverse temperature for small inter-step

spacing for the LJ and LJ+BO potentials from Figure 4.24 (a) and (b) is shown in Figure 4.25. 

The activation energy data for the LJ+BO potential at low temperatures is approximate as the 

logarithmic decay is not exactly linear. However, the data all falls on the same line showing 

that, if there is a change in the decay mechanism at low temperatures, it is not sufficiently 

dominant at the temperatures considered to have a strong effect on the overall decay rate. The 

activation energy is 1.87 co0 for the LJ potential and 1.94ry0 for the LJ+BO potential.

25
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Figure 4,25 : Relationship between In(Dsys) and inverse temperature for the short
wavelength ( N x =61) case.

4.5 Discussion of simulation results for the decay of an unstrained 

sinusoidal surface

The simulation results of section 4.3 and 4.4 pose a number of questions. These questions will 

be addressed in the context of the step flow model of Chapter 5.

(a) Wavelength dependence

A sinusoidal surface obeying Herring-Mullins theory (4-2) will decay as a sinusoid and the 

amplitude will decay exponentially with a characteristic rate a  = Dsys(27rl/L)4(A full 

derivation is given in Appendix E). This rate is the (negative) slope of the log(amplitude) vs 

time plots. This expression can be tested as it predicts that the mobility parameter,

D,r. =a(Z / 2  is only a function of temperature and independent of the sample
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wavelength. Plotting ar(A/2;r)4 against inverse temperature in Figure 4.26a for the two 

wavelengths considered shows that the mobility predictions do not coincide and hence 

suggests that the simulation results cannot be explained by Herring-Mullins theory. By

contrast, a plot of ar(A/2/r)2 against inverse temperature in Figure 4.26b demonstrates that the 

decay rate has a X 1 dependence rather than a ?C dependence.

LJ (Nx=61)
-B—LJ (Nx=150) 

LJ+BO (Nx=61) 
X LJ+BO (Nx=150)

S 20

2 4 6 8 10

inverse temperature

(a)

20
LJ (Nx=61)
LJ (Nx=150) 
LJ+BO (Nx=61) 
LJ+BO (Nx=150)

15

10

5
2 4 6 8 10

inverse temperature

(b)

Figure 4.26 : Weighted characteristic decay rates as a function of inverse temperature for the 
LJ and LJ+BO potentials should give a wavelength independent mobility such that all points

fall onto the same line, (a) or(/t/2;r)4 shows that the decay rate does not have a X 4 

dependence and (b) a ^ / l T t ) 1 shows that the decay rate does have a X 2 dependence.
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(b) Effect o f bond order

In all cases, the LJ+BO potential simulations decay slightly faster than the LJ potential 

simulations. This could simply be because the dominant diffusion barriers are smaller for the 

LJ+BO potential. Another factor is the surface stress that accompanies the LJ+BO potential. 

This will cause an elastic deformation of the body and will generate a long range elastic 

interaction between steps. This could be significant in accelerating the decay or it may be 

negligible.

(c) Change in dominant diffusion mechanism?

Is the non-exponential decay seen in Figure 4.24 (b) for the short wavelength sinusoid at low 

temperatures for the LJ+BO potential evidence of a change in the dominant mechanism for 

surface flattening? The initial decay has a particular characteristic decay rate, but at small 

amplitudes of one or less, the decay adopts another, smaller, characteristic decay rate. This 

must be related to the diffusion length between steps and suggests that any pertinent surface 

diffusion model must incorporate this length scale.

4.6 Summary

Off-lattice KMC simulations have been employed to investigate the relaxation of an 

unstrained sinusoidal surface in 1+1 dimensions. At high temperatures the surface is rough, 

but at lower temperatures the surface evolves by a smooth step flow mechanism. The decay of 

the amplitude of the sine wave is found to be exponential in the majority of cases, consistent 

with Herring-Mullins’ theory. However, the surface mobility is found to have a X 2 

dependence which is not consistent with this theory. The LJ+BO potential model decays 

slightly faster than the LJ potential model. The decay for the LJ+BO potential model for the 

short wavelength sinusoid at low temperatures is not well described by an exponential curve, 

indicating that another diffusion mechanism may be significant in this regime. These 

questions will be addressed in the next Chapter.
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5.0 STEP FLOW MODELS OF SURFACE DIFFUSION

In the previous chapter, the flattening of an unstrained sinusoidal surface was investigated via 

off-lattice KMC simulations. At high temperatures and/or large wavelengths the decay of the 

amplitude was found to be exponential, as predicted by Herring-Mullins theory. The 

activation energy for the surface mobility is expected to be related to the energy barriers for 

the five basic diffusional processes. A macroscopic step flow model is investigated here in an 

attempt to relate the rates of these elemental processes to the overall macroscopic diffusion 

rate. In addition, it was found in chapter 4.0 that at low temperatures and small wavelengths 

the decay was not exponential. It is expected that the attachment/detachment kinetics at the 

steps becomes more important under these conditions. The underlying reason for this is 

investigated from the basis of the extended step flow models outlined in this section.

5.1 Basic step flow model for symmetric steps

From an atomistic point of view, a surface consists of a system of terraces bounded by steps 

as shown in Figure 5.1. Based on the dynamics of steps from the Burton-Cabrera-Frank 

(BCF) theory[26], a basic step flow model [55][56] has been developed to capture the motion 

of individual steps so as to investigate the evolution of the crystal surface. The basic model 

for symmetric steps is elaborated here and then extended to asymmetric steps in section 5.3. 

The symmetric step assumption means that a step interacts with its upper and lower terraces 

in an identical way.

J  n- 1

Jn

adatom

E L

Figure 5.1 : Surface consists of multiple terraces and steps. Ax is the terrace length.
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The nth terrace is between the nth and (rc+l)th steps. The atomic flux over the nth 

terrace due to the adatom concentration gradient is

J n(x) = - D sVC n(x) (5-1)

where Ds is the adatom diffusion coefficient and Cn (x) is the adatom concentration field on

the nth terrace. Generally the time scale of step motion is much larger than that of surface 

diffusion. The adatom concentration field always reaches a steady state before the steps move. 

Thus the adatom concentration field Cn ( jc)  can be written as

C „W  = a„ +bnx , (5-2)

where an and bn are constants, and jc is the position on the terrace. The end steps of the nth 

terrace are at positions jcn and jcn+1 so xn < x < xn+1. The step edge flux is determined by the 

attachment-detachment rate k as follows

y„U„) = -* |c „ (* „ ) -c /« J
Jn(Xn„) = k [ c j X ^ ) - C „ ^ ]  

where xn is the position of the «th step and Cneq is the equilibrium adatom concentration at 

x n, which depends on the step chemical potential p n as

-  (  „ \
= C ,q e x p (-^ -)  = C eq 

k eT
(5-4)

where C eq is the equilibrium concentration of a non-interacting step, k B is the Boltzmann 

constant and T is the absolute temperature. The chemical potential of a thermodynamic 

system is the amount by which the energy of the system would change if an addition particle 

were introduced without a change in the entropy and volume of the system. Here p n refers to 

the change in the energy due to addition of one atom to the face of step n. Eliminating the 

unknown constants an and bn using (5-1), (5-2) and (5-3) yields an expression for the 

constant terrace flux as follows 

D (c eq -  C eq)
J " = ™    ' (5 ' 5>

- T -  + Xn+l- * nk

Given the terrace fluxes, the velocity of the nth step can be obtained in terms of mass 

conservation such that

^  = s „ 0 ( y „ (5-6)
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where Q is the atomic volume (area) of the solid and sn = ±1 is the sign of the step. A step is

said to have sign +1 if the upper terrace is to the right of the step and -1 if it is to the left of 

the step.

5.1.1 Diffusion Limited versus Attachment-Detachment Limited Growth

There are two extremes in the kinetics of this type of surface evolution model: diffusion 

limited (DL) growth and attachment-detachment limited (ADL) growth. The process which 

dominates depends on the relative magnitude of the terrace length Ax (see Figure 5.1) and the 

characteristic length Ds I k .

DL growth occurs if 2Ds / k «  A x . In this case the surface evolution rate is limited by

the diffusion of adatoms over the (possibly long) terraces and steps have little influence on the 

growth [55]. This is the classical picture of surface diffusion and leads to an exponential 

decay law.

ADL (or non-diffusion limited) growth occurs when 2Ds Ik  »  Ax because diffusion

over the terraces is relatively fast (they are short or diffusion is quick) and attachment- 

detachment to/from steps determines the evolution rate. This type of process is expected to 

lead to an inverse time decay law [55].

5.2 Macroscopic constants from interatomic potentials

This section relates some of the parameters in the step flow model, such as the adatom

diffusion coefficient, Ds , the equilibrium concentration of a noninteracting step, C eq, and the

attachment-detachment rate, k, to the step energy profile model of Figure 4.13 in the previous 

chapter.

5.2.1 Equilibrium concentration of adatoms near a non-interacting step, Ceq

The adatom concentration, C eq, is the density of adatoms per surface site, which is the 

probability that a surface site is occupied by an adatom. The equilibrium adatom density is 

often written as

f - A E  ^
C eq = exp J ad

V  k B T  j
(5-7)
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where AEad is the additional energy required to produce an adatom from the surface. The

easiest mechanism for this is detachment of an atom from a step. Here we determine whether 

this model is correct and, if so, what the value of this additional energy is.

a d a t o m s t e p

B

Figure 5.2 : An adatom near a noninteracting step.

At equilibrium, the rate of attachment of adatoms to a step depends on the probability that the 

site next to the step is occupied (position A in Figure 5.2) and is given by Ceqrmach, where

A ttach  -  v 0 exp( ^ a tta c h  I hBT) and &attach is the energy barrier to attachment to a step.

Conversely, the rate of detachment of atoms from a step depends on the probability that the

site next to the step is unoccupied and is (1 - C eq)rdctach, where rdetach = v0 exp(-fcdetach l k BT )

and &detach is the energy barrier to step detachment from a step. The energy barriers, fcattach and

d̂etach» can determined from the interatomic potentials for a specific step configuration.

At equilibrium, the rate of attachment to a step should be equal to the rate of 

detachment from the step

C eq exp
- k attach

V ^ iff
= ( 1 - C e<?)exp

— k detach

V ^ f f

or

exp

C eq =

-  k detach

kaT

exp '  attach

V ^ iff
+ exp

( ~ k detach

kBT
exp

k — kdetach attach

k BT

(5-8)
+ 1

The detachment energy barrier is normally greater than the attachment barrier. Therefore, at

sufficiently low temperatures where k detach attach »  kBT , one can write

(*eq exp - ( * . detach attach

k BT

Hence AEad = k“detach attach for the symmetric step model.
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For an isolated, non-interacting step, the energy barriers for attachment and 

detachment for the LJ and LJ+BO potentials are shown in Figure 4.12. If we denote these as

âttach and detach then the equilibrium adatom concentration around a non-interacting step is

1
C eq =

exp
( £  -  k ^

detach attach

k j  ,
+ 1

The effect of strain on barrier energies has been investigated in Figure 4.7c. It is clear that 

only the detachment (hop-out) process is strongly affected by strain and that it is independent 

of the sign of this strain (to first order). Also, the energy barrier decreases with strain. 

Therefore, if we denote the difference in chemical potential of the nth step above that of an 

isolated step (due to elastic interactions with other steps) to be p n then, to first order we can

write the energy barriers as fcattach and &detach -  p n. The equilibrium concentration around the 

nth interacting step is therefore

1 r M . '
C f  = — 7 ^ --------- =----------------- “  C ‘q exP T +  (5' 9)' k - k  -  u  'detach attach M 'nexp

k„T
+ 1

y k BT J

where the second term is the approximation at low temperatures. This reproduces the regular 

expression (5-4).

5.2.2 The attachment-detachment rate, k

Step flow occurs under non-equilibrium conditions. In this case, the rate of attachment to a 

step is not equal to that of detachment from a step. A net flux results such that

^  n ^  r J attach ^  n )  ̂ detach ^  attach ^detach )  ^detach* ( ^ ” 1 0 )

where Cn is the (non-equilibrium) adatom concentration around the «th step. Equation (5-9) 

can be written as

C eq(r + r  ̂— v — 0n V attach detach ’ detach *

The flux (5-10) is then

^ = ( C „ - 0 ( r attach+ rdetach). (5-11)

Comparison with (5-3) gives the attachment-detachment rate as
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— v 4- r
attach detach

f
f  ^oII exp

k
V V

^attach

“attach + exp
kBT

(5-12)
J )

(1 - 0
using (5.9). In step flow models, k is assumed to be constant, but this indicates that it depends 

on the chemical potential of the step. However, at low temperatures, the adatom concentration

is small and hence k ~ rattach is a constant.

5.2.3 The terrace diffusion coefficient, D

Consider two adjacent surface sites i and i+ 1 on the nth terrace far from a step such that they 

have the same chemical potential (excluding entropy). The adatom concentration on site i is 

denoted C' etc. An adatom hopping from site i to site i+ 1 requires site i to be occupied and

site i+l to be unoccupied. Hence the hopping rate is given by rsC ln{ \ - C lf x) where the rate

for the hopping process is given by rs = v0 exp
f

and k . is the diffusion barrier for

adatom diffusion on terraces (see Table 4.1). Conversely, an adatom hops from site i+ 1 to site 

i at a rate given by rsC f x (1 -  C ln). The total net flux is therefore

j = r , [ c : o - 0 - 0 1 - 0 ]
=  ' V ( C ' - C ; + 1 )  ( 5 - 1 3 )

dC„
= -D .

dx

where the last term is in the macroscopic limit. This is identical to the step flow model 

expression (5-1) in which the adatom terrace diffusion coefficient is given by

Ds = a v0 exp
k f T j

where a is the atomic separation.
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5.3 An asymmetric step flow model

The problem with the symmetric step flow model of Israeli and Kandel, outlined in section 

5.1, is that it relies on elastic interaction between steps to drive the evolution by generating a 

chemical potential difference between steps. As we have seen in Chapter 4, the surface decay 

rate for the LJ and LJ+BO potentials is quite similar, although the two potentials are very 

different in some ways. For the LJ+BO potential, the reduced surface lattice spacing does 

generate an elastic interaction between steps via the surface stress. However, the LJ potential 

has a uniform lattice spacing and there is no elastic deformation of the body, and hence no 

elastic interaction between steps. The Israeli and Kandel model predicts that the LJ potential 

case will not evolve at all, i.e. all the steps have the same chemical potential. This is clearly 

not the case. In fact, the similarity in decay rates between the LJ and LJ+BO potential models 

suggests that elastic interaction is not the dominant driving force for step flow. This problem 

is addressed as follows.

(a) The model

Here the symmetric step flow model of section 5.1 is extended to asymmetric steps. In 

Figure 4.12 and Table 4.1, the attachment and detachment energies are not clearly defined as 

there are two directions from which an adatom can attach or detach, either to/from the lower 

terrace or to/from the upper terrace. This model introduces an asymmetry in the step, such 

that attachment-detachment rate for a step to/from the upper terrace, k (+ \) , can be different 

to the attachment-detachment rate for a step to/from the lower terrace, k ( - 1). Similarly, the 

equilibrium adatom concentration near a step on the upper terrace, C enq(+1), can be different 

from that on the lower terrace, C enq (-1).

The step edge fluxes (5-3) now become dependent on the sign of the steps

The adatom concentration, C enq(s), and attachment-detachment rate, k(s ) , are defined as

J M = - ^ n i c A x n) - c ; \ s j \

such that, combined with (5-1) and (5-2), the terrace flux of (5-5) is now

(5-14)

before in (5-9) and (5-12) but now the energy barriers used depend on the sign of the 

argument s such that
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\k2 i f s  = + l \k3 i f s  = +l
*"»**(*) = {*5 if j  = - l  = |  j., i f j  = _ j

where the constant k2 to k5 are given in Table 4.1 for the LJ and LJ+BO potentials. The 

adjustment to the ES barrier must be accounted for such that k2 —» k2 — kES where k 2 is the 

diffusion barrier for attachment to a step from the upper terrace and k ES is the extra Ehrlich- 

Schwoebel barrier described in the section 4.4.1 of Chapter 4.

(b) The step flow parameters 

We write (5-14) as

j  = — —  (5_15)

to clearly illustrate that there are two principal temperature-dependent kinetic parameters,

M(s„,s„+l) = D ,{cn+r ( - s „ +l) - C n“'( Sn)) and U s „ s IHt) = D1 + which
v k(s„) * ( - « „ ,) ,

depend on the nature of the terrace. There are three types of terrace: slope ( sn = sn+l), peak (or 

top) terrace ( sn = - s n+l = +1) and trough (or bottom) terrace ( s n = - s n+l = -1 ).

If elastic step interactions are ignored, i.e. C ef  (5) = C enq (s ) , we see that the flux on the 

peak and trough terraces is necessarily zero, i.e. M (+ l,-l)  = M (-l,+ l)  = 0 . This renders the 

characteristic diffusion length for peak and trough terraces, L (+ l,-l) and L (-l,+ l) 

ineffective. However, the upper and lower terraces can still evolve without material transport 

on these terraces. The flux on an downward slope, as shown in Figure 5.5 c, is normally non­

zero and is determined by M (+l,+l) and L (+ l,+ l). The flux on an upward slope is the same 

but in the opposite direction (as required by symmetry) as M ( - l , - l )  = -M (+ l,+ l) and 

L ( - l ,- l )  = L(+l,+l). These two parameters are plotted in Figure 5.3 for the LJ and LJ+BO 

potentials, using a (dimensionless) ES correction energy of kES =0.45 (for the remainder of 

this chapter we will take a = O)0 = 1 and non-dimensionalise all times with respect to an

attempt frequency of lO ^s '1). The first thing to notice is that the overall step mobility, 

Af(+1,+1), is significant which implies that there is a strong asymmetry in the kinetic 

characteristics of the steps. It increases with temperature as expected, and there is a significant 

difference between the LJ and LJ+BO potentials (note the log scale) without elastic effects 

being considered. Secondly, it is interesting to observe that the characteristic diffusion length,
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L (+ l,+ l), increases with temperature (against expectation) and that it is small, typically being

less than one or two atomic spacings. We therefore can expect L(+l,+l) < x n+l - x n, which

implies, from section 5.2, that diffusion-limited (DL) growth dominates, i.e. diffusion over the 

terraces is more important than attachment-detachment to/from steps.

1 8 ^
16 

14 

12
log(M(+1 ,+1)]j0

8 

6

6 1/kT 8 10 12
Legend 

U +B O  ES=0.45 
U  ES=0.45

(a)

0.8

0 . 6 -

Yegend
U +B O  ES=0.45  

-  U  ES=0.45

(b )

Figure 5.3 : The characteristic step flow parameters of (5-15) for the LJ and LJ+BO potentials 
as a function of inverse temperature for an ES adjustment barrier of kES =0.45 : (a)

ln(M(+l,+l)) and (b) L (+ l,+ l).

The effect of the choice of the adjustment to the ES barrier, lcES , is explored in Figure 

5.4. The mobility parameter, M (+ l,+ l), is only positive above a certain value of kES. One 

can easily show that the critical conditions for M (+1,+1) >0 is kES > k2 + k4 - k3 - k5. For the
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LJ potential this is -0.11 and for the LJ+BO potential this is about 0.29. This means that the 

LJ potential model should exhibit decay even without an adjustment to the ES barrier ( k ES =0)

but that the LJ+BO potential model will only exhibit decay if kES >0.29, i.e. for k ES <0.29 a

sinusoidal surface profile will grow in amplitude not decay. This is because it is much easier 

for adatoms to go up steps than down them. The encouraging thing is that the effect of the 

extra-ES barrier on both the mobilities saturates above a certain level, such that in both cases 

increasing kES above 0.45 will have no significant effect.

- 0.2 0.2 0.4
ES

0.6 0.8
Legend

U
------------- U+BO

(a)

- 0.2 0.2 0.6 0.8

Legend
U +B O
U

(b)

Figure 5.4 : The characteristic step flow parameters of (5-15) for the LJ and LJ+BO potentials 
as a function of the ES adjustment barrier, kES, for a temperature of T = 0.1: (a) 

ln(M (+!,+!)) and (b) ln(L(+l,+l)).
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The diffusion length, L (+ l,+ l) , is also very small for k ES >0.45 so this can also be 

neglected. However, the diffusion length becomes very large for a low k ES of less than about 

0.2. This suggests a cross-over from DL kinetics to ADL kinetics. There is a critical value for 

k ES above which L(+l,+l) —»0 as T  —» 0 and below which L(+l,+l) —> oo as T  —» 0 . This

can easily be shown to be k ES = k 2 - k x which is 0.317 for the LJ potential and 0.431 for the

LJ+BO potential. If the ES barrier is above this value then the kinetics is always DL at low 

temperatures.

(c) A simple macroscopic DL model

As discussed in section 5.2, in the limit of L(+l,+l) «  x n+l -  x n, we can write the flux on an 

upward slope terrace from (5-15) approximately as

j n = _ M (+1-+1> (5 . 16)
n + 1 n

(  2kx
Given a sinusoidal surface profile described by h{x, t) = Aft)  sin , one can write the

I  A

macroscopic flux for small slopes as

J  = - & L d x  = —  f — ] COsf— 1. (5-17)
 ̂dt dt l7r ‘ I 3 J2 k )  \  A )

The macroscopic slope is approximately related to the terrace length by 

dh a _  /  2k \ r 2 7dC
COS

) \  A* J

(5-18)

so, using (5-18), the terrace flux of (5-16) can be equated with the macroscopic flux of (5-17) 

to yield

d A _  M (+!,+!) |" 2 g V A 9
dt a v ^  J

This predicts that the surface will decay as a sinusoid and that the decay is exponential with a

(  2kcharacteristic decay rate of a  = Dsy  \ —  where the macroscopic surface mobility can be
A

equated with the terrace mobility, Ds ys = This expression is consistent with the
a

findings from the off-lattice KMC simulations of section 4.5 in that it exhibits a X 1 

dependence.
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(d) ADL growth

As discussed in section 5.2, in the limit of L(+l,+l) »  x n+l -  x n, we can write the flux on an 

upward slope terrace from (5-15) approximately as

M (+l,+ l)
L(+1.+1)

This means that the flux across each slope terrace is the same (ignoring elastic effects) and is 

controlled by attachment/detachment to/from steps, i.e. terrace diffusion is very quick. As 

steps only move due to a flux difference, this means that steps between two slope terraces will 

not move in pure ADL growth. Only the steps bordering the peak and trough terraces will 

move, as the flux on the peak and trough terraces is zero. A sinusoidal surface will not decay 

as a sinusoid. Most of the surface will remain static, whilst the top step moves to remove the 

top terrace and the bottom step moves at an identical rate in the opposite direction to fill the 

bottom terrace. Macroscopic material transport is independent of the length of the surface as 

the flux is constant. Therefore the time to decay will simply depend on the volume of material 

which needs to be transported, not the distance it needs to be transported. For a given 

wavelength, this is proportional to the initial amplitude of the surface.

5.4 Elastic interaction from force dipole model

The elastic field around an isolated surface step was investigated in Chapter 3. It was shown 

that it can be approximated by two force dipoles, d x and d z, on an elastic half-plane. Kukta

[88] has determined the interaction energy (per unit depth) between two such steps (denoted i 

and j ) as

C(dx2 + s is jd z2) C(st - S j ) d x 2 h0
,J 2  _  * 3r;: 7t r;.

(
41n — + 1

r.
ij ij V lJ

(5-21)

2(1 - v  )where C = ------------ , sk =±1 defines the orientation of the kth step, h0(~ a) is the step
kE

X j - X i is the distanceheight, b is a structural parameter on the order of step height and ri}

between the steps. The last term is a higher order correction term for the interaction between 

steps of opposite sign (as shown in Figure 5.5 a and 5.5b) which is only significant when the 

steps are close together. For the purposes of this work, this higher order correction term is 

ignored, for consistency with the Israeli and Kandel symmetric step flow model [55].
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1

S. = +1 s, = -1  

(a)

i__ r
S ; =  -1  S ; = +1

(b)

s i = - i  = + i

(C) (d)

Figure 5.5 : Four different end step configurations for a terrace.

For simplicity, the interaction energy between two similar steps (as shown in Figure 5.5 c and

R 2 2
5.5d) is written as E tj = , where fd = 2C(dx + d z ) .  The interaction energy between two

2 rv

opposite steps (as shown in Figure 5.5 a and 5.5b) is written as E.. =-@—, where
l r 'ij

P  = 2 C { d 2 - d 2).

From section 3.2.3, it has been shown that d x = 3 .93—  and d z = 2 .1 4 —  with
a a

3 _

C = 0.0079— for the LJ+BO potential. Hence J3 = 0.3\5co0a and jd = 0.17ky0a . This 
coo

implies that similar steps repel each other (the interaction energy is reduced by them moving 

apart), and that steps of opposite sign also repel each other. This is at odds with conventional 

models in which steps of opposite sign are usually deemed to attract each other [55]. This 

helps symmetric step flow models to produce the desired curvature driven decay. However,

one typically finds d x > d z in material systems [21] which suggests 0 <  {d < fd , i.e. steps of

opposite sign repel. It also implies that the interaction energy between opposite steps is less 

significant than that between similar steps.
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To investigate sinusoidal decay, the evolution of a sinusoidal waveform is 

investigated, as shown in Figure 5.6. As the simulation is deterministic, only half a 

wavelength (containing a peak and a trough) needs to be considered. This consists of a total of 

N  steps. It is assumed that a step only interacts with its two nearest neighbours. The elastic 

contribution to the chemical potential is therefore

// — £01 + ^ 12] _  j f_  , ]f_
' ~ a*, "  /23 h}

where ln = x n -  x n_y, f  = 2xl + y2 A and lN+l = Y> A -2xN .

X n

Xn

Xo X1

X
►

- A / 4 A / 4

Figure 5.6 : Step labelling for the step flow model of a sinusoidal surface.

5.5 Step flow simulations of the decay of an unstrained sinusoidal surface

The evolution of a surface consisting of discrete surface steps can now be followed using 

equation (5-6), given the terrace fluxes (5-14) for the asymmetric step flow models, which 

depend on the step chemical potentials through (5-9) which are given by (5-22). The 

geometric set-up was described in the previous section. The initial waveform consists of 8 

steps generating an approximately sinusoidal profile of amplitude 4. The material constants of 

section 5.3 are used with an extra-ES barrier of kES =0.45.

To investigate the decay of the stepped surface, the step density is introduced to 

describe the profile slope as

D(x,t) = --------------  , (5-23)
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x  + Jf
where x  = - w+l̂ —— and a is the height of a step. Israeli and Kandel [55] demonstrate that

the decay of the amplitude is approximately

A{t) = maxw D(x,t) (5-24)

for DL growth. For strongly ADL growth this is not applicable as the step density only 

evolves at the peaks and troughs of the surface (see section 5.3d) where the step density is a 

minimum.

The evolution of the amplitude for the step flow model described is compared in 

Figure 5.7 with the KMC results of Figure 4.19 and Figure 4.24 for the low temperature 

regime (where a process consistent with the step flow model is observed). Figure 5.7a shows 

that the correspondence is very good for long terraces ( N x=150), and Figure 5.7b shows that 

the correspondence is excellent for short terraces (iVA=61), which is very encouraging. The

step flow model results are not shown for an amplitude less than one as there are only two 

steps in the system at this point and the amplitude cannot be well approximated.

4.0

■ T=0.100 (step flow)
- T=0.100 (KMC)

• T=0.103 (step flow)
T=0.103 (KMC) 

a T=0.108 (step flow) 
T=0.108 (KMC)

3 .5 -

3 .0 -

V  2 .5 -  -o3
^  2 .0 -

1 .0 -

0.5
0.0 0.5 1.0 1.5 2.0

time

(a)
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T=0.100 (step flow) 
T=0.100 (KMC) 
T=0.103 (step flow) 
T=0.103 (KMC) 
T=0.108 (step flow) 
T=0.108 (KMC)

0.40

time

(b)

Figure 5.7 : A comparison between the results of the step flow model and off-lattice KMC 
results for the decay of the amplitude of a sinusoidal surface for the LJ potential and low 

temperatures and (a) N x = 150 and (b) N x=6\.

The characteristic step flow model parameters discussed in section 5.3 suggest that the 

diffusion length is small so that DL kinetics dominate. We now compare the step flow 

simulation results with the simple DL model of (5-16) to test this approximation (bearing in 

mind that (5-16) is in itself an approximation to a pure DL step flow model). Figure 5.8

/  X Vcompares the surface mobility, Ds ys = a  - — | , calculated from the exponential decay
2 k ,

curves of the step flow simulations with the predictions of (5-16), i.e. Dsys = y ^ M ( + 1,+1) as

the normalised step height is a =^Y2 ■ The simple DL model of (5-16) is accurate to within 

10% of the simulation results over the whole temperature range for both the LJ and LJ+BO 

potentials and hence is an adequate approximation of step flow under the conditions 

considered.
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Figure 5.8 : A comparison of the surface mobility, Dsys , as a function of inverse temperature
calculated from step flow simulations and the simple DL model of (5-16) for (a) LJ and (b)

LJ+BO potential.

The similar comparison is now made between the off-lattice KMC results for the 

surface mobility, calculated using Dsys = » anc* simple DL model, calculated

from Dsys = y ^ M { + 1,+1). The results in Figure 5.9 show that the correspondence is very

good for the LJ potential over the whole temperature range. This is somewhat surprising as 

the evolution at high temperatures is rough and does not resemble step flow. The low 

importance of steps in the representative DL model probably accounts for the good
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correspondence. The agreement for the LJ+BO potential model is poor, however (note that a 

log scale reduces the perceived difference). As the LJ and LJ+BO models are only slightly 

different, the LJ model is in fact a much better predictor of LJ+BO behaviour than the LJ+BO 

model. The reasons for this are not the elastic interaction or change in mechanism to ADL 

growth, as neither of these are found to be of much significance in the step flow simulations. 

The main factor that determines the rates are the diffusion barriers, k x to k5, determined from

the interatomic potentials in Chapter 4 and given in Table 4.1. Assuming that these are correct 

for the LJ+BO potential, the explanation for the difference between the KMC and step flow 

models could be because, as seen in section 4.3.2, the diffusion barriers can be modified by 

the strain state of the underlying surface. There is no strain in the LJ model, but there is a 

variation in the surface strain in the LJ+BO model (see Chapter 2.0) due to the close 

proximity of other steps. As shown in Figure 4.7c, this level of strain could modify the 

diffusion barriers by 10-20% which would significantly affect the macroscopic surface 

mobility.

The non-exponential decay seen in Figure 4.24b is not a strong effect and hence is 

probably not due to a change in mechanism as this is not predicted by the step flow model. It 

may be an unaccounted elastic effect, as the simple dipole model used in the step flow 

simulations is not a good approximation for steps that are in close proximity to one another. 

Kukta et al. [88] suggest that the interaction between close steps can be quite complex and not 

well-represented by dipole models. They have seen that individual steps can repel each other 

at separations less than 3 spacings and more than 15 spacings, but between at intermediate 

spacings they can attract one another. They have also seen that step bunches can behave in a 

collective manner which is different to that of individual steps.
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Figure 5.9 : A comparison of the surface mobility, Dsys , as a function of inverse temperature
calculated from the off-lattice KMC simulations of section 4.4 and the simple DL model of

(5-20) for (a) LJ and (b) LJ+BO potential.
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5.6 Summary

The symmetric step flow model of Israeli and Kandel has been reviewed and is found to be 

lacking some of the fundamental physics of surface diffusion. It predicts that flattening of an 

unstrained (LJ potential) surface is impossible in contradiction of our findings. The model 

was consequently expanded to look at asymmetries in the step behaviour. The parameters in 

this model were related to the diffusion barriers for the five fundamental surface diffusion 

processes identified in section 4.3.3. Simulations of this step flow were then compared with 

the off-lattice KMC results of sections 4.3 and 4.4. Diffusion Limited (DL) growth was found 

to dominate the kinetics. The results were found to be in very good agreement for the LJ 

potential. This demonstrated that the individual diffusion barriers could be assembled in a 

non-trivial way to correctly predict the macroscopic surface mobility. The results were not in 

good agreement for the LJ+BO potential. This is assumed to be due to the additional 

complexity of surface strain and its effect on the diffusion barriers and interactions between 

steps and adatoms and other steps.
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6.0 Diffusion on strained surfaces

6.1 Morphological change

As introduced in section 1.1.4, heteroepitaxial semiconductor thin films are the main 

materials for fabricating microelectronic and optoelectronic devices. The possibility of 

creating self-organised nanostructures through this route has been of great interest [101]. This 

requires control of the strain-induced morphological change in these systems. This 

roughening of a strained surface has been widely investigated using the Azaro-Tiller-Grinfeld 

(ATG) instability theory [1][2]. This shows that the initially flat surface of a strained film is 

unstable for an isotropic surface energy. Reduction in the elastic stored energy of the thin film 

drives the roughening towards the shortest possible wavelength. Meanwhile surface energy 

wishes to flatten the perturbed surface and drive the system to the longest possible 

wavelength. This competition between the elastic stored energy and surface energy favours 

the formation of a particular roughening wavelength, as shown in Figure 6.1. As the surface 

continues to roughen (beyond a small perturbation) cusp-like valleys form with a singular 

stress concentration near the cusp tip [4], Such high stress concentrations provide preferential 

locations for the nucleation of dislocations, another strain energy reduction mechanism.

In this chapter, the stability of a strained surface is first investigated using a novel 

small perturbation continuum theory for anisotropic surfaces. In the subsequent section, off- 

lattice KMC simulations are performed to investigate the roughening of a strained surface for 

various strains. The results of these predictions are then compared with the continuum theory. 

Finally, off-lattice KMC simulations are then used to investigate the roughening of surfaces in 

the non-linear large perturbation regime.
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Flat film

surface roughening

Figure 6.1 :

6.2 Stability of strained surfaces

6.2.1 Continuum theory

A sinusoidal surface profile is chosen to investigate the evolution of a strained surface. The

< 2K \
height of the surface is h{x,t) = A(t)cos — jc , where X is the wavelength of the sinusoidal

U  J
perturbation and A(t) is the amplitude of the perturbation at time t. Assuming that the 

perturbation slope is always small (i.e. A «  X)  the normal velocity of the surface is given by

dh ■ (  2tc
v„ ~ —  = A cos 
" dt

—j- j t l ,  where the dot indicates differentiation with respect to time. Mass

conservation gives

Atomic flux

relieved

High stress concentration

Morphological change (roughening) of a strained surface is induced by a 
reduction in the elastic strain energy [4],
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, AX . ( i n
V =  sin — x

I n  { X

I f  + v„=° , (6-1)

where J s is the volumetric surface flux. For the sinusoidal surface morphology,

. To calculate the evolution of the surface we use a kinetic variational

principle [5] which states that the surface evolves such that the variational functional

n  = + G (6-2)

is minimised with respect to the kinematic degrees of freedom of the system (in this case

simply A ). The first term is the dissipation potential

y  = -  \ j , 2dx = * 2f  , (6-3)
2 j  D  2D , I  \f>n D,

where Ds is a diffusion coefficient (surface diffusivity). The second term is the rate of change

of Gibbs free energy. This provides the driving force for change. The driving forces in this 

case are surface energy and elastic stored energy. The Gibbs free energy is therefore

G = Gx +Ge = j y s (0)ds + J wdV  , (6-4)
5 V

where y x is the surface energy per unit area (which might be a function of the surface 

orientation 0 ) and w is the elastic stored energy per unit volume.

The surface energy contribution can be written as

g , = j r .  <y > *  “  )j< <*><>+ y ^ ) d x

dh
where the final expression is in the limit of small slopes, in which case 0 ~  — . To make

dx

analytical progress we expand the surface energy function around the flat surface orientation 

(taken to be 6  = 0 ) up to second order

rs(0) = ro + r>\0\+yr202- (6-5)

where the yi are constants. The absolute value of the linear term, \6>\, is taken to satisfy the 

symmetry requirement that ys {-6)  = ys (0). This term produces a cusp (discontinuity in the

derivative of the surface energy function) at 0 = 0 (see Figure 1.12c). The novelty of this
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model is to include the effect of this cusp in the surface energy. The existence of such a cusp 

is well supported by the simplified analysis for the surface energy density of an unrelaxed, 

unstrained surface given in appendix F. Therefore, to second order, the surface energy 

contribution per wavelength is

Gs = + 2x 2(y0 + •

The elastic strain energy, w(x), at a point, x , on the surface of a film with a slightly

undulating surface varies from the strain energy of an unperturbed film, w0 = / 2 pEe \ , by a

small amount, where eQ is the mismatch strain and p = 1 for plane stress and p  = (1 -  v 2)~l

for plane strain conditions. This perturbation to the elastic field can be represented by 

imposing a continuous distribution of infinitesimal point forces over the surface [35]. In this 

case

w(x) = w0 i - l  j.
77" J

d h (Q

d f
d (

( x - f )

, 8 A n  ( 2 71
1 cos — JC

z  U  ,
(6-6)

where £  is the surface location of a given point force. The rate of change of the elastic strain 

energy per wavelength is

A

Ge = | wvnds = Jw(x)vn (x)dx = -4^w 0AA

which predicts that the strain energy in the film is always reduced by roughening and that this 

is independent of the roughening wavelength.

The variational function of (6-2) is therefore

A2/13n  = + 4 yx +27T2y ------4mv0A A ,
16tt2D, ( ' X

(6-7)

where the surface stiffness parameter, f —ys (0) +

This is minimised when = 0 , so
dA

z 2r s
d 0 :

= yQ + y2, has been introduced.
0=0
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Integration with respect to time gives the evolution equation for the surface profile as

A(t) = (A0 - B 0) exp (t/r) + B0 (6-8)

where t  = ----- =--------------------  is the characteristic roughening time, A0 is the amplitude at
\6 tt Ds(2wQX -T ty )

2y , X
time t - 0, and B0 = --------- -— -— . The fastest growing wavelength, Xm, is the wavelength

n(2w 0X -  j k )

that is expected to be physically observed. This maximises the growth rate A such that

(A)-£o)'d_
dX

= 0 and is given by

4 - 1 ^ -  « w )3(w0 -  wc)

Ywhere w = —— is a critical strain energy density. No growth is predicted to occur for strain 

energy densities below the critical strain energy density. The optimum growth rate at the

optimal wavelength is ^  = ^ ^ S^W{) W(̂ ... Note that the optimal growth rate is
T y

independent of the kinetic model, i.e. the alternative kinetic model of section 5.3c would also 

predict the result of (6-9), although the growth rate would be different.

Equation (6-9) is a novel result because it shows that a cusp in the surface energy can 

stabilise a thin film against roughening. If there is no cusp ( y l = 0 ) then the critical strain 

energy for roughening is zero and the surface is always unstable. In this case the classical

2 7tf
ATG result [1][2] is reproduced, i.e. Xm = — —. If the surface energy is cusped the critical

3 w0

strain energy density is inversely proportional to the initial amplitude, A0, indicating that the 

surface is only stable to perturbations below a certain size. Typically one might consider the 

initial perturbation to be the height of an atomic step such that A0 = ^ /2 a0.
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6.2.2 Roughness parameters

In nature most surfaces are rough rather than smooth, especially at a very small scale. 

Roughness parameters need to be extracted or estimated statistically to characterise the 

roughness of a surface. Many roughness parameters exist [94] such as the average surface 

height, the root-mean-square (RMS) roughness, the skewness & the kurtosis, the auto­

correlation function, the height-height correlation function and the power spectrum. A few of 

these are useful in the analysis of surfaces with a periodic roughness and these are introduced 

here.

(a) RMS roughness

The RMS roughness is also known as the interface width, CO. It is one of the most important 

parameters to characterise a rough surface and is defined for our discrete atomic surface as

where < h > N = — ^ h t is the (constant) mean surface height.

(b) Height-height correlation function

Sometimes very different rough surfaces have the same RMS roughness. This is because the 

frequencies of the height fluctuations are different. A connection between two heights in 

different positions needs to be constructed. The height-height correlation function provides 

this information and is defined as

where m is the distance between two heights in different positions. Note that the height-height 

correlation function is not accurate for large m values as the number of data points is small.

In the analysis of mounded surfaces, Zhao et al. [95][96] proposed that the height- 

height correlation function has the following form

where f  is the system correlation length, A is the average mound separation and a  is the 

roughness exponent ( 0 < « < 1 ) .  This describes how wiggly the surface is. For example, 

a  = 0.7 corresponds to a locally smooth surface structure while a  = 0.3 corresponds to a

(6- 10)

(6- 12)
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more jagged local surface morphology. The expected form of this function is plotted in Figure 

6.2 for a small and a large system correlation length.

H(r)
0.8

0.4

0 1 2 3 4

log(r)

(a)

H(r)

0.5

2 3 40 1
log(r)

(b)

Figure 6.2 : The height-height correlation function for a  -  1 and X = 20 for a correlation 
length that is (a) small (40) and (b) large (100). The distance between the first two peaks is 

the most accurate estimate of the mound separation.

6.2.3 Off-lattice KMC simulation

The off-lattice KMC model of chapter 5 is naturally suitable for investigating the evolution of 

strained surfaces. The atoms can relax to find the global minimum elastic energy 

configuration and the effect of strain on the activation energy for surface diffusion is fully 

accounted for. A lattice block of 100x30 atoms was chosen with an initially flat surface. The 

atoms of the two bottom layers were fixed so as to apply a uniform mismatch strain. Periodic

~ 111 ~



Chapter 6.0 Diffusion on strained surfaces

boundary conditions were used on the vertical sides of the sample. All other atoms are free to 

move in any way. Simulations were performed using the LJ and LJ+BO potentials.

(a) Roughening o f an LJ surface

Snapshots of an example simulation for a mismatch strain of ex = -0.06 and a temperature of

T = 0.5 are shown in Figure 6.3 at different times. The simulation shows that the initially 

flat strained surface is unstable and quickly roughens. Visually it is possible to see that a 

particular roughening wavelength develops although this is a stochastic process and, as 

expected, there is a certain amount of randomness to the morphology. The evolution of the 

surface is therefore better quantified by the evolution of the roughness parameters. It is 

interesting to note that no roughening occurs at strains of lower magnitude. The expected 

wavelength is approaching the order of the system size which may be a factor, but the surface 

would still be expected to roughen at a wavelength below the optimum value. This supports 

the predictions of the small perturbation theory of (6-9) that the anisotropic surface energy 

can stabilise a strained film below a critical strain.

(b) N=500
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JUL

(c) N=5,000

(d) N= 10,000

(e) N=20,000

(f) N=75,000

Figure 6.3 : Snapshots of an off-lattice KMC simulation of the roughening of an LJ surface 
subject to a mismatch strain of £x = -0 .06 . N  is the number of atomic jumps performed to
achieve the structure shown. Note that only part of the bulk region is shown. The colours 

indicate the strain energy of each atom where blue indicates low strain energy and red
indicates high.

The RMS roughness is shown in Figure 6.4 as a function of time for a range of off-lattice 

KMC simulations at different compressive mismatch strains. The roughness is initially zero as 

the surface is flat. It increases rapidly at first and then proceeds to grow more slowly over
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time. Small perturbation theory predicts that the initial growth rate of the roughness 

(amplitude) will be exponential. This happens so rapidly at the beginning that it is difficult to 

observe. The second slower growth phase must therefore be due to large perturbation effects. 

This is expected as the roughness cannot continue to grow indefinitely (at a particular 

wavelength). It is of interest to note that the surfaces roughen more quickly at smaller strains 

( e x = -0 .0 6 ) and less quickly at large strains ( e x = -0.08). At first sight this is not expected

2 7  ̂  ^  \  2 ̂ 4

as the characteristic growth rate (from section 6.2.1) i s  1— ^ —   - .  This predicts that
r

an increase in strain energy should increase the growth rate. However, the surface diffusivity 

is also strongly dependent on strain. This result indicates that the evolution occurs more 

slowly on a highly compressed surface. Also, this result applies to the initial rapid growth 

stage rather than the slower growth stage of the developed mounds.

2.0

0.8
 Strain=-0.06
 Strain=-0.065

Strain=-0.07
 Strain=-0.075
 Strain=-0.08

2.0E-06

0.4

0.0 I-----
0.0E+00 5.0E-07 1.0E-06 1.5E-06

T i m e

Figure 6.4 : RMS roughness for various strains for the LJ surface

The height-height correlation functions for various strains are plotted in Figure 6.5. They are 

all similar to the example height-height correlation function in Figure 6.2b indicating that the 

system correlation length is large compared to the mound separation. This indicates a strong 

driving force for global organisation of the structure. However, the correlation length is of the 

order of the system size so it is also probably an artefact of the small system size and periodic 

boundary conditions. As stated in section 6.2.2b, the average mound separation A can be 

extracted from the distance between the first two peaks of the height-height correlation
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functions. This is a much more accurate and representative means of determining the 

wavelength than a simple visual inspection of the surface.

8.0
 Strain=-0.06
 Strain=-0.065

Strain=-0.07
 Strain=-0.075
 Strain=-0.08
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Figure 6.5 : Height-height correlation function at various strains for the LJ surface

It is interesting to note at this point that these 2D simulations represent the evolution 

of 2D surface ridges. This has been observed in the initial stage of annealing experiments of 

the heteroepitaxial system [50][93][97]. However, these ridges are unstable and a transition 

occurs from 2D surface ridges into 3D islands. The small perturbation theory in section 6.2.1 

predicts that the optimal wavelength is the same in 2D or 3D so these calculations are 

expected to be fairly representative of a 3D situation.

(b) Roughening o f  an LJ-vBO surface

The effects of surface stress on the roughening of a strained surface are now considered with 

the introduction of the bond order term. The simulation conditions are identical to those used 

for the LJ potential in the previous subsection. The evolution of a surface subject to a 

mismatch strain of £x = -0.06 is shown in Figure 6.6. The relaxation process is very similar

to that of an LJ surface seen in Figure 6.3, although the initial evolution of the roughness in 

Figure 6.6b is not as uniform as that in Figure 6.3b. The most obvious difference between 

them is the chosen roughening wavelength. The wavelength for LJ+BO is longer than that for 

LJ as the surface stress tends to flatten the perturbed surface.
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(a) N=0

(b) N=500

(c) N=5,000

(d) N= 10,000

(e) N=20,000
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(f) N=56,500

Figure 6.6 : Roughening of a strained LJ+BO surface for a mismatch strain of £x = -0.06
using an off-lattice KMC simulation.

As before, the roughness parameters for these simulations at various strains have been 

calculated and are shown in Figure 6.7. Comparison between the LJ and LJ+BO RMS 

roughness evolution in Figure 6.4 and Figure 6.7a immediately shows a difference that is not 

readily observed by visual inspection. They are similar in the sense that they both undergo a 

very rapid roughening in the initial stages and that the final roughness of the large strain 

simulations (£^ .= -0 .08) is smaller than that of the smaller strain ones ( f x = -0 .0 6 ).

However, the large strain simulations roughen more quickly at the beginning for the LJ+BO 

surface which is not the case for the LJ surface. The final roughness of the LJ+BO surface is 

also much larger over a similar time scale. One explanation for this is that the surface strain in 

the LJ+BO simulation is lower than that in the LJ simulation. Recall from section 2.4.1 that 

the surface stress of (2.28) is minimised whenf^ = -0.026 . This means that the surface strain 

energy will be lowered by the bond-order terms when the surface is in a state of compression 

near this value. It was seen for the U  surface that the smaller strain values ( ex = -0 .0 6 )

produced a surface which roughened more quickly than the more highly strained surfaces. It 

is expected that the reduction in the surface strain in compression by the bond-order terms 

means that the LJ+BO surface behaves a bit like an LJ surface at a mismatch strain of reduced 

magnitude. This is consistent with the RMS roughness results. One point of interest about the 

LJ+BO surface is that the thermodynamics in tension are expected to be different from that in 

compression. This could be an explanation for some results of Gao and Nix [4] who observed 

different behaviour between Ge on Si (compression) and Si on Ge (tension).

The height-height correlation results in Figure 6.7b are similar to the example in 

Figure 6.2a possibly indicating a lower system correlation length. The second peak is less

~  117 ~



Chapter 6.0 Diffusion on strained surfaces

well defined so the roughening wavelength is not as accurately measured. This is partly due to 

the longer wavelengths in the LJ+BO systems (again consistent with a lower strain) which in 

some cases are approaching the system size.

Strain=-0.06
Strain=-0.065
Strain=-0.07
Strain=-0.075
Strain=-0.08

0.0E+00
 !---------------------------1-----
5.0E-07 1.0E-06

T i m e

1.5E-06

(a)

Strain=-0.06
Strain=-0.065
Strain=-0.07
Strain=-0.075
Strain=-0.08

10

D i s t a n c e ,  r

(b)

Figure 6.7 : Roughness parameters from off-lattice KMC simulation for the LJ+BO surface at 
various mismatch strains, (a) RMS roughness and (b) height-height correlation function.



Chapter 6.0 Diffusion on strained surfaces

(c) Comparison between the roughening wavelength o f the LJ and LJ+BO surfaces

The wavelengths obtained from the height-height correlation plots in Figure 6.5 and Figure 

6.7b for the roughening of the LJ and LJ+BO surfaces respectively are shown as a function of 

mismatch strain in Figure 6.8. From (6-9) the wavelength is expected to vary as 

4 7iy
= ------- r—— — where the non-dimensionalised Young’s modulus, E, is 72 (see section

w 3 E (£ 2 - e l )  h

2.2) and e c is a critical strain below which no roughening occurs. Two curves of this form

are fitted to the data and are shown in Figure 6.8. The fit is clearly very good. For the LJ

surface the fitting parameters are y = 1 and ec = 0.028. For the LJ+BO surface they are

7 = 1.4 and £c = 0 .028. The critical strain for each is the same. Given that ec2 is 

proportional to the strength of the surface energy cusp, yx, this is not surprising as the 

unstrained surface energy density models of (F-l) and (F-2) predict similar values for this 

parameter, with yx =0.577 and yx =0.558 for the LJ and LJ+BO surfaces respectively. 

However, both models predict that y -  0 which implies that the optimal roughening 

wavelength is zero. This is clearly not the case. The difference could be for two reasons.

d 2ZPredictions for the surface stiffness, y  = ys (0) +
d0<

, are very sensitive as the second
0=0

derivative can be an order of magnitude larger than the surface energy density and can change 

rapidly given small changes in the surface energy model. Also, the surface energy density 

models are for unrelaxed, unstrained surfaces. It is expected that the surface parameters will 

be heavily modified by the effects of strain, including step relaxation and step-step 

interactions, which are ignored in Appendix F. The difference between the two models can be 

simply stated: the LJ+BO wavelength is 40% larger than that of its LJ counterpart at the same 

strain.
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Figure 6.8 : Roughening wavelength as a function of mismatch strain for LJ and LJ+BO 
surfaces obtained from off-lattice KMC simulations.

6.3 Relaxation of a rough surface by dislocation nucleation

As seen in the off-lattice KMC simulations of section 6.1, critically strained surfaces are 

unstable and will roughen at a particular wavelength. As the roughening process proceeds the 

amplitude of the surface undulation increases and the stress in the troughs grows. This stress 

concentration can lead to rapid migration of atoms from this region causing the formation of a 

deep, sharp groove, commonly referred to as a cusp [4]. This is illustrated in Figure 6.9a. The 

high stresses at the cusp tip make them strong potential sources for the nucleation of 

dislocations. This suggests that there is a critical point during the evolution at which a misfit 

dislocation will be nucleated at a surface valley. This is shown in Figure 6.9b. It is expected 

that the nucleation of a dislocation will locally reduced the elastic strain energy at the cusp tip 

making it a favourable site for atoms to jump into again. This will lead to a refilling of the 

cusp trough and a coalescence of the two islands between. Also, it is a process by which a 

dislocation can enter a material without glide. This process is shown in Figure 6.9c. Here we 

simulate the process of dislocation nucleation on roughened surfaces using the off-lattice 

KMC model. This is ideal for this simulation as it allows for the rapid creation of highly non­

linear elastic features such as dislocations but also evolves the surface over the much longer
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diffusive time scales. The following simulations are the first to combine diffusion and 

dislocation nucleation.

Surface evolution under compressive strain

Formation of dislocations at the tips of the surface valley

Island growths laterally by the introduction of dislocations 
trapped due to surface diffusion

T T T T

Figure 6.9 : Relaxation of the high stress concentration at the cusp tips by the formation of 
dislocations leads to the creation of low energy sites above the dislocation and the subsequent

filling of the cusp [4].

(a) Formation o f  a single dislocation

This section presents the results on an off-lattice KMC simulation of an LJ surface for a 

sample size of 100x30 atoms, normalized temperature of T  =0 .5  and mismatch strain of 

£ ^ = -0 .0 6 . Snapshots of the evolution are shown in Figure 6.10. Initially the surface

roughens at a particular wavelength as seen before. Sharp, deep grooves are formed in the 

surface creating effective islands of material between them. In Figure 6.10c it can be seen that 

a dislocation is generated at one of these surface valleys. Figure 6.10d shows that it is 

subsequently trapped behind the free surface by the motion of surface atoms back into the 

trough. This leads to the effective coalescence of the islands after a long time (as shown in 

Figure 6.1 Of). The dislocation appears below the first surface monolayer and is therefore 

nucleated by a rapid atomic rearrangement. The dislocation can then move along the glide 

plane underneath the island to find its minimum energy position. The change in the strain
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energy breaks the balance between the previous strain energy and surface energy and drives a 

change in the surface morphology. Another mechanism for dislocation nucleation could be 

atoms jumping on to surfaces sites which do not correspond to fully coherent lattice sites.

(b) N= 13x500

(c) N= 14x500

W M W A l frrfrrrrrfrrfJrrrrr

(d) N=20x500
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(e) N=40x500

(f) N= 185x500

Figure 6.10 : Formation of the a misfit dislocation during the roughening of a strained LJ 
surface by off-lattice KMC simulation. Note that not all of the bulk atoms are shown. N  is the

number of atomic jumps.

Formation of misfit dislocations from cusps in roughened heteroepitaxial thin films have been 

found in experiments [50]. An example of such a dislocation is shown in Figure 6.11. The 

dislocation is found in the bottom of a rounded trough which was initially sharp and has 

refilled once the dislocation has relieved the local strain energy.
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illSla

Figure 6.11 : Cross-section TEM image of a V-shaped defect at the tip of the cusp valley for a

500-A-thick Si07SGe022 / Si film [50].

(b) Formation o f  multiple dislocations

The results presented here are produced in a similar way to those presented in the previous 

subsection, except the compressive strain has been increased from ex = -0.06 to

e x = -0 .065. Snapshots of the evolution are taken every 500 atomic jumps. Particular profiles

of interest are shown in Figure 6.12. As before, the surface is unstable and roughens. The first 

misfit dislocation is formed at a surface valley and then trapped as shown in Figure 6.12c. The 

second dislocation is generated at the surface valley in a similar fashion to the first one in 

Figure 6.12e. The third dislocation is nucleated in Figure 6.12f. This is of more interest as it is 

formed in a different way to the others. The previous dislocations formed under the surface 

monolayer, whereas this misfit dislocation is formed at the edge of the island. It then glides 

along the slip plane underneath the island to a lower energy position. This movement occurs 

without significant atomic rearrangement on the surface. The nucleation site is referred to as 

an edge as the cusp is not sharp. Instead there is a small flat region which separates the
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islands. Finally a fourth dislocation is formed at one of the two remaining cusps in Figure 

6.12i. The cusp is then refilled and the dislocation buried as before.

Vrrrr

(a) N=0

(b) N=12*500

(c) N=13*500, the first dislocation is generated.

(d) N=30*500
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(e) N=31*500, the second dislocation is generated.

(f) N=54*500, the third is formed at the edge of an island.

(g) N=55*500, the third misfit dislocation glides into the island along the plane of the bottom

of the island.

(h) N= 109*500
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(i) N =110*500, the fourth is formed at the surface valley.

(j) N=460*500

Figure 6.12 : Dislocation-induced coalescence of islands by off-lattice KMC simulation using
the LJ potential.

One interesting observation on the nucleation process is that the time of the 

dislocation formation can be approximately fitted as 2n~xtdisloc, where n is the number of 

dislocations and tdisloc is the time of forming the first dislocation. This suggests that the

nucleation process is a stochastic one. Initially the elastic strain energy is high and the 

probability of dislocation is large. As the strain energy decreases by successive dislocation 

formation the probability for further dislocation nucleation diminishes.

6.4 Summary

In this section, the morphological stability of a strained surface has been investigated from 

both a continuum perspective and an atomistic perspective. Both of these approaches show 

that the flat strained surface is unstable above a critical strain magnitude, but that a 

discontinuous minima in the strain energy can stabilise a strained film below this strain 

magnitude. The competition between the strain energy and the surface energy leads to the 

surface roughening at a particular wavelength. This is consistent with the results of 

experiments. The wavelengths seen in the off-lattice KMC simulations are in good agreement 

with the general predictions of small perturbation analysis but the exact fitting parameters are
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not clearly determined from analytical calculations. The initial small amplitude sinusoidal 

waviness of the surface is seen to develop into a cusped profile for large perturbations in the 

non-linear regime. These cusps are stress concentration sites and act as preferential locations 

for dislocation nucleation. The off-lattice KMC simulations presented demonstrate two 

mechanisms for the formation of the misfit dislocations: (1) a misfit dislocation is generated 

at a surface valley and then trapped by the motion of the surface; (2) a misfit dislocation is 

nucleated at the edge of the island and then glides along the plane of the bottom of the island 

into the island.
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7.0 Discussion and Conclusions

This thesis has proposed and investigated models for the thermodynamics and kinetics of 

heteroepitaxial systems at different length and time scales. In this final chapter, the main 

achievements of this work are summarized and discussed in the context of progress in the 

subject area and further work.

In chapter 2, an atomistic model based on the Lennard-Jones (LJ) potential with and 

without bond-order (BO) has been used to derive macroscopic bulk properties such as 

Young’s modulus and Poisson ratio, and macroscopic surface properties such as surface 

energy and surface stress. The latter property arises due to the difference in lattice spacing 

between bulk and surface atoms in the LJ+BO model. The predicted surface energy for the 

LJ+BO potential is only 21% of the LJ value. The thermodynamics of the two systems would 

therefore be expected to differ substantially at the nanoscale. This difference has been 

explored further in subsequent chapters. As discussed below, a difference has been observed, 

although it is less substantial than the values for the surface energy would suggest. This is 

because the surface energy values are for a flat surface. It is well known that steps on the 

surface are often the principal features in controlling the thermodynamics of a vicinal surface. 

The kinetics must also be considered.

The thermodynamics of an individual surface step were considered in chapter 3. This 

introduced the problem of multiple length scales, as the elastic field generated by a 

discontinuity in the surface stress (which only occurs with the LJ+BO potential) acts over a 

long range. The large atomistic lattice statics model required to represent the substrate and 

surface would involve too many degrees-of-freedom for efficient calculation. A novel hybrid 

atomistic-continuum models has been developed to remove many of the redundant degrees- 

of-freedom by combining the atomistic model with an equivalent continuum one. Both a force 

dipole model and a finite element model were used to model the continuum. Complications in 

this type of concurrent multiscale model arise for two reasons. Firstly, the surface and bulk 

elastic properties of the atomistic model must be derived to construct a consistent continuum 

representation. In this case this was achieved in chapter 2. Secondly, the transfer of 

information between the two descriptions must be smooth and accurate. This was achieved by 

creating a linkage between the displacements on the boundary between the atomistic and
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continuum regions. The surface stress in the LJ+BO model was represented by a 

transformation strain in the surface layer in the continuum region. This naturally introduces a 

length scale into the continuum region. Using a continuum approximation for the surface in 

this way is unique. Other multiscale approaches have retained the atomistic representation for 

the surface [12] [16]. These models are all zero-temperature models in that only the 

equilibrium positions of atoms are considered whilst their finite temperature lattice vibrations 

are ignored. Finite temperature effects are important for dynamic effects such as dislocation 

motion (which is easier at higher temperatures). Some preliminary work has been done on 

finite-temperature multiscale models [66] [67] but they are still in their infancy. This type of 

dynamics is ignored in this thesis, as the time scales of interest are diffusive (of the order of 

seconds) rather than inertial (of the order of nanoseconds). This evolution of surfaces by 

surface diffusion has been investigated in the remaining chapters.

Chapters 4 and 5 explored the flattening of a rough (sinusoidal) surface by surface 

diffusion. The driving force is a reduction in surface energy, although there is also a small 

elastic driving force in the case of the LJ+BO potential due to the presence of a surface stress. 

Chapter 4 investigated this phenomena using an appropriate atomistic model. A novel off- 

lattice Kinetic Monte Carlo (KMC) model has been developed. This essentially allows a fully 

relaxed lattice statics simulation to evolve over time via diffusive events which occur over 

long time scales. The only significant limitation is that the possible events must be prescribed 

previously. This is not a major setback in 2D where the events are obvious, but is more 

limiting in 3D. The off-lattice KMC model allows for full, non-linear atomic interactions and 

calculates the transition energy barrier between states accurately for each event. It can 

therefore include the effect of strain on the thermodynamics and kinetics, and also allow for 

the possibility of defect nucleation and motion in the atomic lattice. However, as with all 

atomistic simulations, the computational overhead is large which places a limitation on the 

size of the samples that can be considered. Overall it has been found that the decay of the 

amplitude of the sine wave is found to be exponential in the majority of cases, consistent with 

the standard Herring-Mullins’ continuum theory for surface diffusion over an isotropic 

surface. However, the surface mobility is found to have a A~2 dependence (for a sinusoid of 

wavelength A ) which is not consistent with this theory. The LJ+BO potential model decays 

slightly faster than the LJ potential model. This goes against our initial expectation as the 

surface energy for the LJ+BO model is only 21% of that in the LJ model. Also, the decay for 

the LJ+BO potential model for the short wavelength sinusoid at low temperature is not well
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described by an exponential curve, indicating that the kinetics of step attachment and 

detachment are significant at low terrace lengths and temperatures.

A continuum microscopic step flow model has been developed in chapter 5 to predict 

the results of the atomistic simulations in chapter 4. The motivation for this is three-fold. 

Firstly, this process allows us to gain further understanding of the dominant mechanisms 

involved in the surface evolution. Secondly, the step flow simulations are very fast compared 

to the atomistic ones. Development of a representative step flow model for a surface would 

allow much larger problems to be investigated. Thirdly, the step flow model is a useful 

intermediate stage between the atomistic and a higher order continuum model and has 

allowed a relationship between the atomistic potentials and macroscopic surface parameters to 

be developed. It was found that a symmetric step flow model in the literature was insufficient 

to predict the flattening of the surface. The model was consequently expanded to look at 

asymmetries in the step behaviour. Parameters in the new step flow model were related to the 

diffusion barriers for the five fundamental surface diffusion processes around a step. 

Simulations of step flow were then compared with the off-lattice KMC results. Diffusion 

Limited (DL) growth was found to dominate the kinetics (i.e. motion of atoms across terraces 

rather than around steps). The results were found to be in very good agreement for the LJ 

potential. This demonstrated that the individual diffusion barriers could be assembled in a 

non-trivial way to correctly predict the macroscopic surface mobility. The A~2 dependence of 

the surface mobility was explained. However, the results were not in good agreement for the 

LJ+BO potential. This was assumed to be due to the additional complexity of surface strain 

and its effect on the diffusion barriers and interactions between steps, adatoms and other 

steps. This suggests that this area would benefit from further investigation, possibly making 

the transition energy barriers dependent on strain.

The full scenario of heteroepitaxial surface evolution is explored in chapter 6. The 

widely accepted continuum Azaro-Grinfeld-Tiller (ATG) theory proposes that an initially flat 

surface under an applied strain is unstable and will roughen at a particular wavelength due to 

the competition between surface energy and elastic strain energy. This theory was 

investigated using the off-lattice KMC model of chapter 4, which naturally accounts for the 

full affects of strain. The simulation results showed that the surface was stable below a certain 

strain magnitude, contradicting the predictions of the well established ATG theory. However, 

the films did roughen at a strain magnitude above about 5%. Height-height correlation 

functions were used to characterise the surface morphology and demonstrated that a particular

~ 131 ~



Chapter 7.0 Discussion and conclusions

roughening wavelength developed. A novel extension of the ATG theory has been proposed 

which removes the assumption that the surface energy is a smooth function of surface 

orientation and considers a cusped surface energy function. This theory correctly predicts the 

form of the relationship between the roughening wavelength and the applied strain, although 

the exact fitting parameters are not easily related to the assumed macroscopic properties 

precisely due to the complexity of the problem. The wavelengths for the LJ+BO potential are 

larger than those for the LJ potential by 40% indicating that this system possesses a higher 

surface stiffness. Again this goes against the expectations of the simple surface energy model 

of chapter 2 which predicts that the LJ+BO potential has a much lower surface energy. This 

shows that these systems exhibit a rich range of phenomena which requires further research. 

Periodic surface profiles of 2D ridges formed in the initial stages of roughening have been 

observed in annealing experiments of SiGe heteroepitaxial thin films[50][97]. However, these 

2D ridges always evolves into 3D isolated islands. It would be a challenging but useful 

extension of this work to extend the off-lattice KMC simulation to three dimensions. This 

would allow for real transition energy barriers to be calculated (without the necessity for the 

removal of an extra Ehrlich-Schwoebel barrier) and allow for purely 3D phenomena such as 

surface reconstructions and diffusion along steps.

Finally, chapter 6 concludes with a highly novel investigation into the interaction 

between diffusion and defect nucleation. Annealing experiments have shown that a surface 

can roughen to such an extent that sharp cusps form at surface valleys. These stress 

concentration features are expected to play a crucial role in the nucleation of misfit 

dislocations. Off-lattice KMC simulations demonstrate this process and provide useful 

information about the mechanics of dislocation formation and the consequent change of 

surface morphology. Misfit dislocations are inevitably generated in heteroepitaxial thin films 

at large misfit strains. Traditionally, the formation of dislocation has been modelled in terms 

of a gliding process [103][ 104], [109]. Assuming the free surface is fixed, a dislocation loop 

after nucleation expands on a preferred glide plane. If mass transport over the surface takes 

part in the misfit strain relieving, dislocations can be formed without glide [105]. Off-lattice 

KMC simulations demonstrate such nucleation of dislocations during the roughening of a 

strained surface.
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Figure 7.1 : High-resolution electron microscopy (HREM) image of InAs island on GaP [100]

As mentioned before, the atomistic off-lattice KMC simulations are slow. This 

restricts the size of the sample that can be considered. This is particularly restrictive in the 

analysis of strained films as there are long range elastic interactions. The formation of 

mounds with a wavelength which is a significant fraction of the system size is therefore 

undesirable and only avoidable at very high strains at which the wavelength is small. It would 

be useful to improve the implementation of the off-lattice KMC algorithm by making the 

calculations more efficient and more intelligent [108]. This would allow for actual 

heteroepitaxial systems using more representative interatomic potentials to be considered. 

Amongst other things, this could be used to model the phenomena of step bunching, or the 

growth of heteroepitaxial islands by the Stranski-Krastanov mode (e.g.. Ge on Si with -4% 

mismatch strain) or the Volmer-Weber mode (e.g. InAs on GaP with -11% mismatch). The 

latter requires a two species model which is a trivial extension to the existing off-lattice KMC 

model. In general, epitaxial growth at high mismatches is by island formation rather than 

layer by layer growth. Several experiments have been done for the growth of heteroepitaxial 

thin films at high mismatches to study the formation of strain-relieving dislocations [98]

[99] [100]. Initially the island growth is almost vertical until the formation of a dislocation at 

the edge of an island. This reduces the strain energy of the island as it is no longer coherent 

with the substrate and leads to rapid lateral growth of the island. These islands grow by 

periodic lateral growth each time that a new dislocation is formed at the edge of the island. 

Figure 7.1 shows the results of this process in a high-resolution electron microscopy (HREM) 

image of an InAs island grown on GaP.
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A : Elastic constants from the atomistic model

Co-ordinate transformation is illustrated in Figure A-l due to the deformation. The strains for 

2D are defined  as

x ’ 0  + 0 £X?
(1 + 0

(A-l)

where x  and y  are unit vectors, x.' /  are deformed unit vectors, , e  and £xy are the

strains in x-direction, y-direction and shear strains. And e„  s  — v .7 * x v  2 '  xy

(b)(a)

Figure A -l : Co-ordinate transformation, (a) Undeformed basis, x and y  are unit vectors, (b)

Deformed basis.

A segm ent is deformed to as shown in Figure A-2. P_i ,P_j ,P_i',P_/ can be

expressed as
A AE, = x,x+y, y,

E ,  -  x jX+ y t y , (A-2)

Ei'=xt£+y,?,

E j ' ^ X j X ' + y j / .

where x'=  (1 + e „ ) x  + e  y  and >>’= f „ x  + (1 + f „ )  v are obtained from eqn(A-l).
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Figure A-2 :A segment PjPj  is deformed to Pj'P

For undeformed segment P t P . ,

ra2 = (xj -  xi)2 + (?, -  y,)2 (A-3)

For deformed segment P t 'P j 1,

V 2= I k  -  x > X1+*J + k  ~>< k f  + I k  -  *, + k  y, Xi + )]2 • (a-4 )
For 6-nearest neighbour atoms illustrated in Figure A-3, the deformed distances between 

atom i and j are calculated in terms of equation (A-4). They are expressed as

rn '2 =  r i i '1 =  r 0 \ \  +  p { )

'2 = 5̂ '2 =  0̂2 (l + /?2 ) -

* ,2 = r(6li = r02(l + * )

where

A =2e„+el+e%

Pi =Yie„ + Y ^  +%£„ +%e2„ +e%
Pi = Y e» +y*ei +Yi £„ + K <  +e% + e„ )

i (0,0),

Figure A-3 : Atom i with 6 nearest-neighbour atoms.
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B : The displacement on the boundary

In polar co-ordinates, u and v are defined as the radial and tangential component of the

displacement. Strain components can be written as

du
( B - ! )

(B-2>r rdO

du dv v 
r r e = ^ Z + 2 -------rdd dr r (B-3)

where £r is the strain in radial direction, £e is the tangential strain, and y r6 is the shearing 

strain [76].

Hooke’s law for plane stress is

e , = ^ { < y , - v o e ),  (B-4)
E

£0 = ^ s - v < 7 , ) ,  (B-5)
E

n « = 7 7 ^ .  (B-6)
Lr

E
w h e re G = —7- r, and E & v  areYoung’s modulus and Poisson ratio. Substituting

2(1 + v)

expression (B-4-B-6) into Hooke’s law, u and v can be obtained from (B -l-B -3) as follows

2d r cos 20 + 2d ? sin 20
u —---------------------------------

xEr  (B-7)

1 — z , . _  , (l + t ))d7
v = ------- (d r s in 2 0 - d 7 cos20)+------ —

xEr xEr  (B-8)

The displacement component in x and z direction can be written as

ux = u sin 0  + v cos 0  (B-9)
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C : The relationship between the strains and displacements

The elastic energy of the element can be then rewritten as

v . = ^  \[ue]T[B‘ }T[CeI B eW W
Ve , (C-0)

=~[ur]T[k‘ }[ue]

where [*:'] = \{B']][Be is the elemental stiffness matrix. It can be calculated
Vfe

numerically by using Gaussian integration in Appendix D.

C .l Three-noded triangu lar element

In practice the elements are not the same shape. An isoparametric element is used to map 

general triangular element as shown in Figure C .l.

JC

(0,1)

Mapped to

(0,0) (1,0)

(a) (b)

Figure C.l : Three-noded linear triangular element: (a) real three-noded triangular element,

(b) Isoparametric element

A linear mapping function is introduced to express point displacement («,v) within general 

element in Figure C .l a in terms of the point (£,77) in Figure C .lb  as
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u(^ ,p) = nx(^ ,p )ux + n2(^ ,p )u2 + n3(^ ,p)u3, (C-l)

v (£  p) = nx (£, 77)v, + n2 (£, p) v2 + n3 (£, t/)v3, (C-2)

where w,, v ,, m2, v2, w3 and v3 are nodal displacements. The shape functions are

n2( ^ V )  = ^  

n}<4,r}) = rj.

We know the strains = M ^ l , ^  = M i2> and y  = M l «  + M t 2 >  for 2D ease.a *\ V /XVox oy oy dx

So the strain vector is expressed as

[ f M f i ' k  J,

where the strain displacement matrix in 2D for three-noded triangular element is

H =

r u.
d 0

1

v.dx
d n, 0 n0 0 n, 0

and [m' ]  =0 1 I j I
dy 0 nx 0 n2 0 n3 V 2

d d U3
_dy dx

_ V 3 _

One then needs to find the above derivatives. Differentiating shape functions by parts one has

dni

dnt
dp

+
dx d£ dy d<*

+ ■
dx d p  dy dp  

where the Jacobian is

dy 3jc dy dnt dnt

H
dy

= h
dx dy

dx
dnt = W

dx
dn(

dp dp dp . d y  _ . d y  _

{x2 - x x) (y 2 - y x)
U 3 - x t ) (y3 - y , )

Hence
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dni dnt
dx 1 1<N111

dnt (x3 -  X,) (x2 -  X, ) _ dni
dp

where | / |  = |(y3 -  y x )(x2 -  x ,) -  ( y 2 -  y x )(x3 -  x, )| is the determinant of the Jacobian matrix. 

Thus the strain displacem ent matrix for three-noded triangular element is written as

\rbr.J
- ( y ^ - y i )  °  ( y * - y i )  0  - ( y 2 - y \ )  0

0 (x3 — x2) 0 -  (x3 -  jc, ) 0 (x2 -  x ,)

(x3 - x 2) - ( y 3- y 2) - ( x 3 - x , )  (y3- y {) (x2 - x {) - ( y 2- y x)

C.2 Six-noded quadratic triangular element

The above three-noded element is known as the constant strain element. It doesn’t 

approximate well to a continuous strain field. Generally six-noded quadratic triangular 

elements are most w idely used 2D elements as shown in Figure C.2.

* x

Figure C.2 : Six-noded quadratic triangular element

The Jacobian matrix can be expressed generally as

dx dy
ni.f(£’1Dx i nl,((4’'n)yi

dx dy_ ni . ^ ’1i )y l
d p drj
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where i =1, 2, ...o r 6 is a number o f nodes and n,£(%,p) = ^ n' ^  . The shape function can

be written as

n i = ( l - r j - £ ) ( \ - 2 n - 2  4 ) ,  

n2 = # (  2 £ - l ) ,  

n3 = 77(2 7 - 1) , 

n4 = 4 ( 1 - 7 - ^ ,

«5 = - 

n„ = 4 7 ( 1 - 7 - ^ ) .

Hence

dni dni

dx 1 ~  ni ^ i ~ n^ y i
dni

~ \ J \ ~ ni,nx i ni4x i _
dni
drj

where the determinant of the Jacobian is | / |  = (ni^ n j TJ -  ni T]n ^ ) x ty } = N ijx iy j . 

Thus the strain displacement matrix is presented as

[ s ']  = r jT t '/  V  ••• b' ... b6e],

where
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D : Gaussian Quadrature

In my case there may be two types of triangular elements to be considered: three-noded linear 

element and six-noded quadratic element as shown in Figure D. 1.

(0,1)

( g , f l ) \  (0.5,0.5)
(0,0.5)

(0,0) (1,0)
(0.5,0)

(b)

(0,1)

(1,0)(0,0)

Figure D . 1 : Local numbering and positioning of nodes (filled circle) and integration points 

(open  circle) for (a) three-noded triangular element and (b) six-noded triangular element

For triangu lar elements there are two local coordinates (£  and 77), as described in Appendix 

C. The linear interpolation of displacements is provided for three-noded triangular element. In 

order to  obtain the elemental stiffness matrix [keJ, the integral over the area within the 

triangular element is numerically estimated as

k

, 7 7 ) f  [c][B‘ ({ ,n ) \ j ( t , r i ) \d & n  = \\f(£.Tl)d&T]  = , (D-l)
7 = 1

where / ( £ ,7 7 ,) is  the value of the function /  at the Gaussian point (£., T]i ) and vv( is the 

weight fac to r of the Gaussian point i.

Three-noded linear triangular elements have one Gaussian point (see Figure D .l) with 

position (£ ,, 77,) = (1 / 3,1 / 3) and weight factor = 1.
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Six-noded quadratic triangular element have three Gauss points. The position and 

weight factors of the integration points are given in Table D .l. Note that the sum of the 

weight factors is equal to 1.

Point £ TJi

1 1/6 2/3 1/3

2 1/6 1/6 1/3

3 2/3 1/6 1/3

Table D .l : 3-point Gaussian integration for 6-noded triangular elements
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E : Surface diffusion and shape change

A sinusoidal surface profile is used to analyse the process of the surface diffusion here. The 

height of sine wave at any point is given as

. ( i n  ^ 
inh(x,t)  = A(r)sin

v ^
(E-l)

where A(t) is the amplitude in the time t and A is wavelength. The driving force for 

evolution of the surface is the surface energy

E . = r . \ >  (E-2)

where ys is the surface energy density or an additional energy which the surface is cleaved 

from the bulk, and As is the surface area.

A system will tend to reduce the total chemical potential, i.e. atoms will travel along 

the gradient of a chemical potential, / / .  The flux J s crossing unit length on the surface is 

proportional to the chemical potential gradient

_  DsS d f i
(E ' 3)

where Ds is the surface diffusivity or diffusion coefficient, kBT  is the thermal energy, S  is 

the number of atoms per unit area (adatom density), and the derivative along the surface 

d /d s  approximates to d /d x  for small slopes.

For mass conservation, the rate of the change of height of the surface is given as

—  = - £ 2 ^ -  (E-4)
dt ds

where Q is an atomic volume. Substituting (E-3) into (E-4) one can obtain 

dh DsX l  d 2ju
dt k BT ds

(E-5)

The velocity of a surface profile is therefore proportional to the second derivative of the 

chemical potential of surface atoms.
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We only have surface energy to drive the surface diffusion in the system. It can be 

shown that in this case the chemical potential is

H = -C ly ,K (E-6)

where ys is surface energy density and K

d h
dx2

t \ 3 / 2

( d h ^
is the curvature of the surface.

1+ —\ d x

Assuming dh!dx  «  1, (E-5) can be rewritten as

dh _  d 4h
dt dx4

(E-7)

D y C l 2S
where B = —— ------- . For a purely sinusoidal surface the decay of the amplitude is

k BT

d A _ _ J 2 7 r _  
d t ~  1 X

\ 4

This has solution A(t) = A0 exp ( -a t )  where A0 is the amplitude at the time t = 0 and

a  = B
r l n \ 4 n , n 2 x rD sy , n 2s

k DTB V

2 K
T
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F : Orientational dependence of the surface energy for an unstrained 

surface

F.l An LJ surface

As we have seen in Chapter 2, the surface energy density for an unstrained flat atomic surface 

constructed from atoms which interact via the LJ potential given in (2.1) is simply the 

saturated bond energy per unit area. The energy of bonds at the surface is the same as in the 

bulk for this potential, so some simple analytical expressions can be derived. Consider the 

surface step shown in Figure F. 1. The unsaturated (dangling) bonds on the surface are shown 

as dotted lines. Each dangling bond contributes half the energy of an unstrained saturated 

bond of Y2 co0 (the energy from this bond is divided evenly between the two surfaces that are 

created when the bond is broken).

Figure F. 1 : An LJ surface with a surface step. An unstrained saturated bond (solid lines) 
contributes co0 to the bulk energy. Each unsaturated (dangling) bond (dotted lines) 

contributes half the saturated bond energy, y2 co0, to the surface energy.

A flat surface containing N  atoms will have a surface energy of 2 N x y 2 c o Q = N ( O 0  and

a length N a n . The surface energy density is therefore y(0) = = —  as found before in
N a 0  a 0

section 2.3.
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If one surface step is introduced to the flat surface, as shown in Figure F .l, then the 

surface energy of N  atoms will be 2Nxy2O)0 = NcoQ as before (as the atom at the bottom of

the step contributes / 2(O0 and the atom at the top of the step contributes 3x y 2co0 equalling a

total of 2coQ for 2 atoms). The horizontal dimension of the N  atom surface is (TV -  y2)a0 and

the height is aQ so the macroscopic surface length is taken to be

tfoVCiv ~ y ) 2 + ( ^ A ) 2 = ao^lN2 - N  + 1. The surface energy density of the unstrained 

stepped surface is therefore

r , W  = 7 = = —
VN - N  + l ao

Sfor 2< N  <o°,  where the macroscopic slope is given by tan0  = —- .  Substituting 6  for

N  in this equation yields a non-dimensionalised surface energy density of

y s (0) = cos 6  + y s  |sin 6\ (F-1)

for \0\ < %.  For small angles this can be written to second order as f s(0) = 1 + y20 2.

Comparison with (6-5) gives / 0 = 1 , y x =0.577 and y 2 = ~ l  and therefore the surface 

stiffness is predicted to be y  = 0 .

F.2 An LJ+BO surface

A similar simplistic treatment for estimating the surface energy can be utilised for the LJ+BO 

potential. The major difference here is that there is a surface stress and the surface undergoes 

an elastic relaxation due to this. A flat surface was fully analysed with elastic relaxation in 

section 2.4 and predicted that y s -  0.21 at zero applied strain. An atom on the surface has a

coordination number of 4 and has two (shared) 4-4 bonds with other surface atoms and two 4- 

6 bonds with bulk atoms (coordination number of 6). The change in potential energy of these 

bonds with respect to the energy of a bulk bond (- Q)0) is shown in Table F.l
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Bond type (i-j) Change in energy from bulk 

bond, AV. = 2 - b .  -  b t
lJ  1 J

3-4 -0.406 coQ

3-5 -0.313 ct)0

3-6 -0.222 cy0

4-4 -0.368 co0

4-5 -0.275 co0

4-6 -0.184<y0

5-6 -0.091 co0

6-6 0

Table F. 1 : The difference between the energy of a LJ+BO bond in the bulk (with full 
coordination, 6-6) and a bond near the surface (with reduced coordination, i-j).

The energies of poorly coordinated atoms are much lower (stronger) than that of a bulk bond 

at the bulk lattice spacing (although the total energy per atom is lower in the bulk due to the 

greater number of bonds). The non-dimensionalised surface energy density on a flat LJ+BO 

surface is 1 + 2 x /2 AVU + =0.264. This compares quite favourably with the fully relaxed

value of 0.21. Therefore we proceed as in section F.l and look at the change in energy due to 

the introduction of a step. The atom at the base of the step has a coordination of 5 and the 

atom at the top of the step has a coordination of 3. The surface energy of a surface of N  atoms 

will therefore have an energy of

0.264(N -  4) + 4 + A V34 + A V35 + AV36 + A + AV45 + 4AV46 + 3AV56 = 0.264N + 0.351. The 

surface energy density is thus

_ _ 0.264N  + 0.351 .  ̂ _ __0i . _| /T- onys {0) = — .  : —  = 0.264cos 0  + 0.558 sin 0\ (F-2)
J n 2 - n  +  \

Comparison with (6-5) gives y0 = 0.264, yx = 0.558 and y2 = -0 .264 and therefore the 

surface stiffness is again predicted to be y  = 0 .
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G : Newton-Raphson scheme for atomistic energy minimization

The total energy (3-6) can be approximated as a quadratic using Taylors expansion

E{dlt+ A d )=  E(du) + ~  A d + - A d T - — A d ,  \_o - .1  v_o / 9 _  2 _  dd dd _>
1 d = d n 1 J

Ad + — Ad (G-l)

where d 0 is the initial guess for the degrees of freedom (DOF) vector, Ad  is the change of 

DOF. Minimizing the energy, one can obtain the simultaneous linear equations as follows

the components of the change in the DOF vector are Ad t .

In this case, the local components for the atomistic region are determined by the 

interaction between two bonded atoms. All local components can then be superposed into a 

global matrix or vector. The detailed procedure of forming the local simultaneous linear 

equations will be introduced below.

There are three kinds of the interatomic interaction: (1) both atoms are located within 

the atomistic region, (2) one atom within the atomistic region and the other on the boundary,

(3) both atoms on the boundary. For case (1), the interatomic potential can be written as

W o ] = M . (G-2)

where

the components of the stiffness matrix are k„ = ---------- ,
lJ dd(ddj

the components of the force vector are / .

(G-3)

where

distance between atom i and j.  One can then write

k ' l o ; J = k ' . , (G-4)
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where

k / ] =

—  p z + A2a 2 
I H 2

~ ~ j aP  + A2a p

-  —  p 2 -  A2a 2
I 2

A
/

a p  + A2(xp -  A2a

—j~aP  ~ A2a P

— p 2 + A 2a 2 
I 2

a p  -  A2a p

I
a p  -  A2a p - - ± a 2 - A 2p 2 A

/
a p  + A2aP

- j - a p  -  A2a p

- — a 2 -  A2p 2 
I 2H

~ ~ aP  + A2a p  

^ a 2 + A 2p 2

W J  =  A \ a , p , - a - p \
5

\D e I =\u ,u ,u .u,L a J  L xi  ’  v i ’ jc; ’  vv J

a<?A, = — 2-
with 3r

/ - = /

For cases (2) and (3), atom i or j  or both is located at the boundary. The degrees of 

freedom will be exchanged from atomic displacement to d x and d z . For example, one may 

assume that atom i is located on boundary. One rewrites the terms of (G-4) as follows

\Dq \pd x •> Ad z ,u ■ ,u ■ ]

[ r /N
de de de dea a   a   a

dd d d 7 dx ■ d y .x j *' j

where
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and

a*,* 2 sin 0  r
a a , ~~ kER

ay,6 2 cos 6
ddx kER

dx*' 2 cos 6?
ddz tiER

ay,6 2 s in #

[ l - ( l  + i>)cos2 £ ] = « „ ,

[u -  (l + l>)sin2 9\ = a ^,,

dd, lE R  12

where R  = /  (x, -  x0 )2 +(y, - y o Y  is the distance between atom i and the step, 0  is the angle 

between R and the z-direction, and and a V7 all are constants.

The local stiffness matrix is

k d

d 2ea d 2e0 d 2e„
ddxddz

a 2*„

dd dx j
•* J

ddxdy

a 2* /
dd,dd. d d 2 ddzdxj ddzdy

dd dx ■
•* J

ddzdxj d x 2

a 2e«

dxjdy

a 2k
dd ,d y t ddzdyt dxjdyj

where

aX

d 2e

= a.
dX;

2 ^^xx^yx b ~\ bdxi dyi

ddxddt <*xx“ xz
dX;

T + ( a xxa yz + a yxa xz )

*y-

d 2
h h + a yxayz , &2

a*, ay, ay ;
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a v  a2 a:
d d d x :

A  J

= a
X X  b

+ ao ~\ }'x ~\ b ~ v
d x  d x , dy, d x ,1 j •' * j

d 2i
a

a d ,ay y -  dx»dyj yx dy fdyj

av a + <2,.,
ddzdxj xz dxfdxj yz dyfdXj

d 2ea a2 d
“ -  ~ —  +a.= a

ddzdy j xz dxt dy j yz dyt dyj

a v  A
Y  = —  p 2 + A 2a ‘

dx;  i

av
dxjdyj i

a/3 + A2aP

d 2ea _  A,

a y /
= i a  + A 2p ‘

A, = av
with

dr' r=l. Note that the motions of atoms on the boundary are constrained by

continuum theory as opposed to Lattice Statics.
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