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The self-assembly of heteroepitaxial quantum dots on ultrathin substrates is analyzed within the
context of small perturbation theory. Analytical expressions are derived for the dependence of the
quantum dot separation on the substrate thickness. It is shown that the substrate thickness is critical
in determining this separation when it is below the intrinsic material length scale of the system. The
model is extended to simultaneous dot growth on both sides of the substrate. It is shown that
vertically anticorrelated structures are preferred with an increase in the dot separation of 15% above
that found in the one-sided case. © 2011 American Institute of Physics. �doi:10.1063/1.3583447�

The instability of elastically strained heteroepitaxial thin
films leads to the self-assembly of quantum dot �QD� nano-
structures. Known as the Asaro–Tiller–Grinfeld �ATG�
instability,1 the size and spacing of the QDs is determined by
the competition between the energetic driving forces �strain
and surface energy� and the kinetics of the material transport
process �surface diffusion�. Recently, it has been shown that
some control of the QD size and spacing can be achieved
through varying the thickness of the substrate.2,3 The ener-
getics of the system are strongly affected when the thickness
of the substrate is comparable with the QD length scale. For
ultrathin substrates, such as nanomembranes,2,4 significant
stress relief can arise due to bending of the substrate. The
local strain field beneath the QDs is also modified due to the
proximity of the lower free surface. If QDs are simulta-
neously deposited on both sides they can interact through the
substrate to create a vertically anticorrelated QD structure.2

In this paper the ATG instability model is extended to con-
sider growth of QDs on ultrathin substrates to quantify how
the substrate thickness affects the QD size and spacing and
their spatial correlation.

The problem is formulated within the context of a ki-
netic variational principle,5 whereby

� = � + Ġ , �1�

has contributions from the dissipation potential, �, which
represents the work done in material transport, and the rate

of change in the Gibb’s free energy of the system, Ġ, which
provides the driving force for the evolution. The optimal
kinetic field is that which render the variational functional
stationary, ��=0.

First we consider a single planar epitaxial film of thick-
ness h0 �see Ref. 6 for morphological effects�. This is subject
to a perturbation of amplitude A�t� and wavelength �, such
that h�x , t�=h0+A�t�sin�2�x /��, as shown in Fig. 1. Mass
conservation requires that �d�js� /dx�+vn=0, where js is the
material surface flux and the normal velocity of the surface

vn� ḣ for small slopes �A���. The dissipation potential �per
unit wavelength� is then

� = �
0

� js
2

2Ds
dx =

�3

16�2Ds
Ȧ2, �2�

where Ds is the surface diffusion coefficient.
The Gibb’s free energy has surface energy and elastic

strain energy contributions. For an isotropic surface energy
density, �0, and a surface elastic strain energy density, w�x�,
one has5

Ġ = �
0

�

��0	 + w�vndx , �3�

where 	�x���d2h /dx2� is the surface curvature.
The elasticity problem consists of two parts: global

bending/stretching of the substrate by the initially planar
film; and a local sinusoidal contribution from the thin film
perturbation, as shown in Fig. 1. These are solved separately
and combined through linear superposition. The film in Fig.
1 is subject to a �compressive� mismatch strain 
m�0 which
is relaxed by bending of the assembly. Let the thickness of
the substrate be 2c and assume the variation in the normal
strain in the x-direction through the thickness is linear such
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FIG. 1. �Color online� Geometry of the film-substrate assembly �top�. The
epitaxial film experiences a mismatch strain 
m and a sinusoidal surface
perturbation of amplitude A and wavelength �. The assembly can relieve the
strain by a combination of global elongation and bending �middle� with the
addition of a sinusoidal component due to the local surface waviness �bot-
tom�. Contours show magnitude of stress �x in the substrate.
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that 
x�y�=
0+Ky, where K is the �elastic bending� curvature
of the assembly and 
0 is a uniform elongation. The total
elastic strain energy �per wavelength� is

W =
1

2
�

−c

h0+c

�x
xdy =
E�

2
�

−c

c


x
2dy

+
E�

2
�

c

h0+c

�
m + 
x�2dy , �4�

where the normal stress in the x-direction, �x=E�
x, and E�

= �E / �1−
2�� is given by the Young’s modulus E and Pois-
son’s ratio 
 of the substrate and film �assumed to be the
same�. This is minimized when

K = −
3�
m

c�1 + ��3 
0 = −
��2 − � + 1��
m

�1 + ��3 , �5�

where �=h0 /2c is the film-to-substrate thickness ratio.
The total strain on the top surface of the film is

now 
x
++�
x

+, where 
x
+=
x�h0+c�= �
m�1−2�− �1 /2��2� / �1

+��3	 is the uniform strain due to extension/bending and �
x

is the perturbation to the strain field due to the waviness in
the film profile. This latter contribution can be modeled for
small slopes as a distributed surface traction, whereby the
surface shear stress component �xy =−E�
x

+�dh /dx�.7 The in-
ternal stresses must satisfy the standard biharmonic equation8

�4�

�x4 + 2
�4�

�x2 � y2 +
�4�

�y4 = 0, �6�

where �x=�2� /�y2, �y =�2� /�x2 and the shear stress
�xy =−�2� /�x�y. The solution is

� = sin��x���C1 + yC3�cosh �y + �C2 + yC4�sinh �y� ,

�7�

where �=2� /�. The constants Ci are chosen to satisfy the
boundary conditions �y =0 and �xy =−E�
x

+A� cos��x� on the
top surface �at y=c�� and �y =0 and �xy =0 on the bottom
surface �at y=−c��, where c�=c+ �1 /2�h is the half-thickness
for this assembly. Hence the strain perturbations on the upper
�+� and lower ��� surfaces are

�
x
� = − 
x

+A��g1 � g2�sin��x� , �8�

where the functions

g1��� =
cosh2 �

� 1
2sinh 2� + �� g2��� =

sinh2 �

� 1
2sinh 2� − �� , �9�

with �=2�c� /�, define the substrate thickness effect in rela-
tion to the dot spacing, �. These functions are shown in Fig.
2. For ultrathin substrates ���1�, gi→Bi /�, where B1=1 /2
and B2=3 /2. For thicker substrates ���1�, gi→1 and the
ATG result5 is recovered as required.

The total strain energy density on the surface is w�x�
= �1 /2���x

++��x
+��
x

++�
x
+��E�
x

+�
x
++w0

+ for small pertur-
bations, where w0

+= �1 /2�E��
x
+�2=w0f��� is the constant

strain energy on the film surface, w0= �1 /2�E�
m
2 is the strain

energy in a film on a thick substrate and f���= �1−2�
− �1 /2��2�2 / �1+��6. Hence

w�x� = w0
+�1 − 2A�g sin��x�� , �10�

where g���=g1+g2, and the rate of change in Gibbs free
energy �3� is

Ġ = − 2�
w��,�� −
��0

�
�AȦ , �11�

where the strain energy w�� ,��=w0f���g��� accounts for
both the global bending/extension of the substrate, f���, and
the local sinusoidal deformation field due to the film pertur-
bation, g���.

The variational functional �1� is defined by �2� and �11�.
The growth rate that minimizes this functional is Ȧ=�A,
where

� =
16�3Ds

�4 �w��,��� − ��0� . �12�

The observed �fastest growing� wavelength will be that
which maximizes �. This stationary value occurs when

dg

d�
+

3g

�
=

2�0

c�w0f���
. �13�

This has no simple solution but the wavelength can be ap-
proximated in the thin and ultrathin regimes as

�

�0
=

1

f���
for c �

�

2�
, �14�

�

�0
=�12��1 + ��

Bf���
c

�0
for c �

�

2�
, �15�

where B=2�B1+B2�=4 and �0=2��0 /3w0 is the ATG �thick
substrate� wavelength. The range of validity of these ap-
proximations can be seen in Fig. 3. It suggests that taking the
smaller of the two wavelengths gives a reasonable rough
estimate. It can be seen that the wavelength becomes increas-
ingly dependent on the substrate thickness as its thickness c
decreases below �0 /2�f���. Such a decrease in the QD spac-
ing with decreasing substrate thickness has been observed by
Ritz et al.2 for Ge QDs on 6 and 23 nm Si nanomembranes.
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FIG. 2. �Color online� The two functions, g1 and g2, define the surface strain
perturbation �8� and depend on the substrate thickness relative to the dot
separation, �.
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Substitution in Eq. �12� gives the optimal growth rate

�

�0
= f���4 for c �

�

2�
, �16�

�

�0
= 
 Bf���

12��1 + ��
�0

c
�2

for c �
�

2�
, �17�

where �0=81Dsw0
4 /�0

3 is the classic ATG growth rate.
The analysis is now extended to consider simultaneous

growth of QDs on both sides of the substrate. Introduce a
film on the lower ��� surface with a surface profile h�x , t�
=h0+A�t�sin��x+��, where � is the phase difference be-
tween the top and bottom growth modes. The strain pertur-
bation on the top surface �+� is the superposition of the two
fields, �8�, so for the two-sided case

�
x
+ = − 
x

+A���g1 + g2�sin��x� + �g1 − g2�sin��x + ��� ,

�18�

The rest of the analysis proceeds as before. There is no bend-
ing of the assembly �due to symmetry� and hence f���
=1 / �1+2�� from pure extension. The strain field interactions
give B=B1�1+cos ��+B2�1−cos ��. The expected growth
mode is the one that maximizes the growth rate �17� and
hence maximize B. The minimum value of B=1 occurs when
the dots are vertically correlated ��=0�. The maximum value

of B=3 occurs when the dots are anticorrelated ��=��.
These two scenarios are shown in Fig. 4. Hence it is always
expected that dots will be vertically anticorrelated when they
can influence each other through the ultrathin substrate. This
corresponds with experimental observations.2 It is predicted
that the wavelength for two-sided growth will be 2 /�3
=1.15 times the value in the single-sided case.

In conclusion, an analytical model for the stability of
epitaxial films on an ultrathin substrate has been presented.
The substrate thickness effect is incapsulated in the functions
f��� �stress relief due to bending/extension� and g��� �stress
change due to surface modulation�, where �=h0 /2c is the
ratio of film thickness �h0� to substrate thickness �2c� and
�=2�c� /� depends on the ratio of the total thickness �c�� to
the QD separation ���. It is found that the substrate thickness
is critical in determining this wavelength for c�� /2�. Fur-
thermore, it is shown that vertically anticorrelated QD struc-
tures are preferred for two-sided growth and that the dot
separation will be 15% greater than in the single-sided case.
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FIG. 3. �Color online� The relative wavelength �QD spacing� as a function
of the relative substrate thickness for two different relative thicknesses of
epitaxial film ��=0 and 0.1�.
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FIG. 4. �Color online� Vertically anticorrelated QD growth is strongly pre-
ferred over correlated growth. Contours show magnitude of stress �x in the
substrate.
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