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Austin J. Cogan

ABSTRACT

Carbon dioxide is the largest anthropogenic contributor to global warming and atmo-
spheric concentrations have rapidly increased since the start of the industrial revolution.
Networks of surface in-situ carbon dioxide sensors provide precise and accurate mea-
surements of the global carbon dioxide concentration, including large scale temporal,
seasonal and latitudinal variations. However, these observations are too sparse to allow
the establishment of sub-continental carbon budgets, limiting the accuracy of climate
change projections and the ability to mitigate future levels of atmospheric carbon diox-
ide.

Satellite observations can provide data with dense spatial and temporal coverage over
regions poorly sampled by surface networks. Specifically, observations in the shortwave
infrared region are well suited for constraining carbon fluxes as they can provide to-
tal column carbon dioxide with high sensitivity to the source and sink locations at the
surface. The first dedicated greenhouse gases sensor, the Greenhouse gases Observing
SATellite (GOSAT), was launched in January 2009 by the Japanese Aerospace eXplo-
ration Agency (JAXA) and has successfully started to acquire global observations of
greenhouse gases, including carbon dioxide.

The Univerisity of Leicester Full Physics (UOL-FP) retrieval algorithm has been
designed to estimate total column carbon dioxide from GOSAT shortwave infrared ob-
servations. The initial results were compared to coincident ground based measurements
for a number of locations and compared on a global scale to a model. This showed an
accuracy and precison that should provide improved surface flux estimates. Additionally,
a bias correction scheme was developed that reduced observed geographical biases, al-
lowing surface flux uncertainties to be potentially reduced further. To further develop the
UOL-FP retrieval algorithm, a simulator capable of creating realistic GOSAT observa-
tions was built, allowing the investigation of different retrieval algorithm modifications,
which may lead to reduced source and sink flux uncertainties and therefore aid future
climate change forecasts.
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4.11 Comparison of XCO2 retrieved from GOSAT and XCO2 calculated from
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4.14 Correlation of the XCO2 bias with the ratio of band 2 to band 3 mean radi-
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4.17 Comparison of XCO2 retrieved from high gain GOSAT data with GEOS-
Chem XCO2 calculations for different MODIS land cover types. The
red dashed line shows the one-to-one line, B represents the mean XCO2
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Chapter 1

Introduction

1.1 Climate Change

The Intergovernmental Panel on Climate Change (IPCC) defines climate change as any
change in the mean state of a climate system over an extended period of time, such as
decades or longer, whether it be caused by natural variability or due to human activity
(IPCC 2001). The Earth’s mean climate is a consequence of incoming radiation from the
Sun and outgoing radiation from the Earth, known as the radiation budget. Variations
in solar radiation can also cause the climate to differ, which for instance can be caused
by fluctuations in the radiation emitted from the Sun or due to variations in the Earth’s
orbit. Also, various properties within the Earth’s atmosphere and surface can change the
amount of incoming and outgoing radiation, such as reflection, absorption, emission and
scattering of radiation.

Human activities have resulted in numerous changes of the atmosphere and surface
that can alter the radiation budget of the Earth, see Section 1.2.1. For instance, anthro-
pogenic emissions of greenhouse gases, such as carbon dioxide (CO2), have increased
rapidly over the last couple of centuries, leading to an enhancement of atmospheric ab-
sorption of outgoing radiation causing the Earth to become warmer (IPCC 2001). It
is important to be able to project future climate changes so that humans can mitigate
and adapt to the changing environments. The current knowledge of the Earth’s climate
system is largely due to historical measurements, such as ice cores, and recent direct
instrument observations (Houghton 2004). To this extent, recent climate variations have
been observed and an overview of this is shown in Figure 1.1.

The recent anthropogenic emissions of greenhouse gases are considered geologically
significant due to a rapid increase in temperature over a very short time frame (∼100
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years), see Section 1.2. The present global warming trend is predicted to cause the tem-
perature of the Earth to rise by 2-3 degrees to be similar to that of the mid-Pliocene where
temperatures were higher (particularly in higher latitudes), polar ice cover was reduced
and precipitation patterns were different (Robinson et al. 2008). Although the potential
temperature increase over North America, Europe and Asia would increase agricultural
productivity, this would unlikely compensate for substantial productivity losses in mid
and low latitudes due to limitations of the terrain and soil (Haywood et al. 2008). As a
consequence of higher temperatures, higher evapotranspiration would occur further re-
ducing the productivity of agriculture (Haywood et al. 2008). In addition to changes in
agriculture and precipitation, there may be many other consequences of global warming
that would require adaptation, such as human migration (McLeman & Smit 2006). Thus,
it is important to mitigate the temperature increase and one way to achieve this would be
to reduce anthropogenic greenhouse gas emissions, which are the main drivers of global
warming.

To attempt to achieve reduced emissions the Kyoto Protocol was adopted in 1997,
which commits numerous countries to not exceed their assigned anthropogenic emis-
sion quantities and to reduce emissions by 5% below 1990 levels between 2008-2012
(NATIONS 1998). Since 1997 there have been many advances in the understanding of
the climate, with the insight that it is more appropriate to limit CO2 emissions based
on a threshold of global temperature increase (Weaver 2011). The Copenhagen Ac-
cord (2009), proposed by the United Nations Framework Convention on Climate Change
(UNFCCC), defined that an increase of 2 K above the preindustrial level would be the
limit (NATIONS 2009). The second commitment of the Kyoto Protocol is proposed to
include this and determine emission limits upon this (Weaver 2011). However, for coun-
tries to know how to reduce emissions it is important to understand what the sources and
sinks are of each driver (e.g. gas, aerosol, land change) of climate change.
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FIGURE 1.1. An overview of recorded climate variations between 1970 and 2004,
showing temperature changes and locations of significant changes of physical sys-
tems (snow, ice, hydrology, and coastal processes) and biological systems (terres-
trial, marine, and freshwater). For each continental region the number of significant
changes and those correlating with temperature are given in the 2 x 2 boxes. These
regions include; North America (NAM), Latin America (LA), Europe (EUR), Africa
(AFR), Asia (AS), Australia and New Zealand (ANZ), and Polar Regions (PR). This
is also shown for a global-scale, Global (GLO), with it separated into Terrestrial

(TER), Marine and Freshwater (MFW). Figure taken from IPCC (2001).
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1.2 Global Warming

Global warming refers to the increases in mean global surface temperature, which pro-
vides one way to monitor climate change. Global surface temperatures have increased
rapidly since a pre-industrial age, as shown in Figure 1.2, indicative of a changing cli-
mate.

FIGURE 1.2. Northern Hemisphere temperatures over the last two millenia. Shows
temperature reconstructed from tree rings, corals, ice cores and historical records
(blue) and recent instrumental data (red), with the data smoothed (black) and two

standard error limits given (grey). Figure taken from IPCC (2001).

Whilst many different aspects could affect the surface temparature, measurements
taken from ice cores have shown a strong correlation between temperature increases and
atmospheric concentrations of CO2 and CH4 (IPCC 2001), see Figure 1.3 for example.
This is likely due to the greenhouse effect, whereby atmospheric greenhouse gases, such
as CO2 and CH4, cause the temperature of the atmosphere to increase (a more detailed
explanation of this is given in Section 1.2.2).

Human activities such as fossil fuel combustion and land use change have led to dra-
matic increases in atmospheric greenhouse gas concentrations. Model simulations using

4



FIGURE 1.3. Antarctic ice core measurements of temperature, methane and carbon
dioxide concentrations. Figure taken from IPCC (2001).

knowledge of the climate system predict that this will lead to increased global warming
and future climate change. Model projections from the IPCC First Assessment Report
(FAR) (IPCC 1990) and the Second Assessment Report (SAR) (IPCC 1996) estimated
global mean temperature increases of ∼0.3 K and ∼0.15 K per decade respectively,
with SAR including cooling effects from aerosols. The Third Assessment Report (TAR)
(IPCC 2001) suggested a similar projection as SAR. These projections have been com-
pared to recent observations that show an increase of ∼0.2 K per decade, see Figure 1.4,
showing the projections to be generally reasonable (IPCC 2007).
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FIGURE 1.4. Observed global mean surface warming compared to model projected
trends and ranges from the IPCC First (FAR), Second (SAR) and Third (TAR) As-
sessment Reports. B1 (blue) , A1B (green), and A2 (red) represent the mean pro-
jected trends and ranges from multiple model scenarios and the commitment (or-
ange) shows the mean predicted trend and range if greenhouse gas and aerosol con-
centrations were held constant from the year 2000. Figure taken from IPCC (2007).
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1.2.1 Radiative Budget

The Earth absorbs and reflects radiation from the Sun and emits infra-red radiation to-
wards space. For the Earth to be in dynamic equilibrium the incoming and outgoing
radiation must be of equal energy, which would result in a constant planetary tempera-
ture. The incoming solar flux energy intercepted by the day-side of the Earth’s surface,
Fi, per second can be written as

Fi = Fs (1− A)πR2
e (1.1)

where Fs is the solar flux constant (1368 Js−1m−2), Re is the radius of the Earth
(6.38x106 m), and A is the Earth’s albedo, representing the fraction of solar flux that is
reflected from the Earth’s surface. The outgoing infra-red radiation Fo per second from
the entire Earth’s surface is

Fo = 4πR2
eεST

4
e (1.2)

where ε is the surface emissivity, S is Stefan’s constant (5.67x10−8 Js−1m−2K−4) and
Te is the temperature of the Earth. Balancing the incoming and outgoing radiation, using
the Stefan-Boltzmann law, gives the temperature of the Earth as

Te =

[
Fs (1− A)

4εS

]1/4
(1.3)

If the Earth is assumed to be a black body, whose emissivity equals 1, with an albedo
of 30%, then the temperature of the Earth would be about 256 K. However, observations
have shown that the temperature of the Earth is closer to a value of 290 K. This elevation
in temperature is caused by the greenhouse effect.

1.2.2 Greenhouse Effect

Excluding anthropogenic contributions, the greenhouse effect raises the temperature of
the Earth to a level that is vital for many habitats. Essentially, the emitted infra-red
radiation from the Earth’s surface becomes absorbed by atmospheric molecules and is
re-emitted in all directions, such that some will be re-absorbed by the Earth’s surface
causing the surface temperature to increase. These atmospheric molecules correspond to
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gases with absorption bands in the infra-red wavelength range and are known as green-
house gases, as described in Table 1.1. Water vapour is by far the most abundant green-
house gas but has a very short lifetime of ∼8 days in the atmosphere (Trenberth 1998).
However, all other greenhouse gases exist for many years in the atmosphere so can con-
tribute to the greenhouse effect for prolonged periods (IPCC 2001).

Table 1.1. The main greenhouse gases and their quantities during a pre-industrial
time (1700-1800) compared to 1998 (IPCC 2007).

Gas Chemical Formula Pre-Industrial Level 2005 Level

Water Vapour H2O ∼0.03 ∼0.03
Carbon Dioxide CO2 280 ppm 379 ppm
Methane CH4 715 ppb 1774 ppb
Nitrous Oxide N2O 270 ppb 314 ppb
Ozone O3 24 ppb 34 ppb
Chlorofluorocarbons, CFC-11 0 ppt 251 ppt

CFC-12 0 ppt 538 ppt
CFC-113 0 ppt 79 ppt

Hydrochlorofluorocarbons HCFC-22 0 ppt 169 ppt
HCFC-141b 0 ppt 18 ppt
HCFC-142b 0 ppt 15 ppt

Methyl Chloroform CH3CCl3 0 ppt 19 ppt
Carbon Tetrachloride CCl4 0 ppt 93 ppt
Hydroflurocarbons HFC-125 0 ppt 3.7 ppt

HFC-134a 0 ppt 35 ppt
HFC-152a 0 ppt 3.9 ppt
HFC-23 0 ppt 18 ppt

Perflurorocarbons CF4 (PFC-14) 0 ppt 74 ppt
C2F6 (PFC-116) 0 ppt 2.9 ppt

Sulphur Hexafluoride SF6 0 ppt 5.6 ppt

Since the start of the industrial revolution the atmospheric concentrations for some
of these gases have rapidly increased leading to an enhanced greenhouse effect, hence
higher planetary temperature. To demonstrate this, consider a single gas layer consisting
of only greenhouse gases that is above a surface, as shown in Figure 1.5. Greenhouse
gases are transparent to the incoming radiation that consists of ultra violet (UV) and vis-
ible (VIS) wavelengths, but absorb the outgoing infrared radiation. Consider the surface
to be a black body that absorbs the incoming solar flux and emits infrared radiation.
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FIGURE 1.5. Illustration of a single gas layer.

The energy received by the surface is the sum of the solar energy and the energy
directed back to the surface from the gas layer, it can be expressed as

ST 4
g = ST 4

s + fST 4
a (1.4)

where f is the fraction of outgoing infra-red radiation absorbed by the gas layer and
Tg, Ts and Ta are the temperatures of the surface, solar flux and atmosphere respectively.
The radiative balance of the atmosphere can be simplified to be

fST 4
g = 2fST 4

a (1.5)

where the energy emitted from the surface is expressed by the left term of Equation
1.5 and the right term represents the sum of the energy that is absorbed by the gas layer
and then re-emitted partly to space and partly to back towards the surface. By substitution
the surface temperature is given as

Tg =

[
T 4
s(

1− f
2

)]1/4 (1.6)

If we assume f to be 0.75 then the surface temperature would be 30 K larger than
without any gas layer. Additionally, if there was a higher concentration of greenhouse
gases, then the fraction of outgoing radiation absorbed would be higher. For example, if
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we assume f to rise from 0.75 to 0.8 then the corresponding surface temperature would
increase by 2 K.
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1.2.3 Radiative Forcing

One way to assess and compare anthropogenic and natural drivers of climate change is
through radiative forcing. The radiative forcing value is defined as the change in the
average net irradiance at the tropopause (IPCC 2001) that occurs solely due to a driver of
climate change. Radiative forcing, RF, can be related linearly to the global mean surface
temperature change, ∆Tg, by

∆Tg = λRF (1.7)

where λ is the climate sensitivity parameter (IPCC 2007). Thus, a positive radiative
forcing value would indicate the surface warms on average and a negative value would
indicate a cooling effect on the surface. The radiative forcing for human influenced
drivers are shown in Figure 1.6, with greenhouse gases all being positive because they
absorb part of the outgoing radiation from Earth to space. Notably, CO2 gives the largest
radiative forcing and its production is largely due to human activities.

However, radiative forcing does not take into account the temporal, spatial and verti-
cal variations nor the lifetime of each driver of climate change. Therefore, to be able to
evaluate the potential climate change caused by anthropogenic emissions an alternative
method is required. Global Warming Potentials (GWPs) are one technique for assessing
these.
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FIGURE 1.6. Overview of the main components of radiative forcing with values
representing the forcings in 2005 with respect to a pre-industrial age of about 1750.
The black error bars give the range of uncertainty of the radiative forcing value.

Figure taken from IPCC (2007).
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1.2.4 Global Warming Potential

Strategies to limit anthropogenic climate change require a structure and comparative
quantification of the emissions of climate drivers. Global Warming Potentials are the
currently accepted method used to implement policies (NATIONS 1998) to allow multi-
ple anthrogenic emitters (e.g. industrial companies or countries) to impose reductions of
those emissions by the substitution of climate drivers, according to the specified emission
constraints (IPCC 2007). Although alternative methods have been designed (Kandlikar
1996, Hammitt & Adams 1996, Tol 2002, den Elzen & Lucas 2005) these include some
problematic issues so the simpler GWP method was developed and adopted for use in the
Kyoto Protocol (IPCC 2007). This compares the time-integrated global mean radiative
forcing of a 1 kg emission of the driver relative to that of CO2, which can be defined by

GWPi =

∫ TH
0

RFi (t) dt∫ TH
0

RFr (t) dt
−
∫ TH
0

ai [Ci (t)] dt∫ TH
0

ar [Cr (t)] dt
(1.8)

where RF is the radiative forcing, a is the radiative efficiency that is defined as the RF
per unit mass increase in atmospheric abundance, C(t) is the time-dependent abundance,
TH is the time horizon (i.e. 100 years in Kyoto Protocol), i represents the climate driver
considered, and r is the reference (i.e. CO2). This method clearly gives a GWP of 1 for
CO2, whilst for other gases such as CH4 and N2O have GWPs of 21 and 310 respectively.
The GWP of Halocarbons varies from 90 to 11700 and the GWP of Sulphur hexafluoride
is even higher with a value of 23900 (IPCC 2007). Although other substances have higher
GWPs than CO2 their abundances and emissions are far lower.

1.3 Role of CO2

Other than water vapour, CO2 is by far the most abundant greenhouse gas in the at-
mosphere contributing largely to global warming (IPCC 2007). In the absence of an-
thropogenic CO2 emissions, the carbon cycle had periods of millennia where large car-
bon exchanges were in near balance, implying nearly constant reservoir contents (IPCC
2007). The addition of fossil fuels as anthropogenic CO2 into the atmosphere has caused
some carbon exchanges to become unbalanced. To this extent, atmospheric CO2 con-
centrations have risen from a pre-industrial level of 280 ppm to a current level of about
385 ppm (IPCC 2007), as shown in Figure 1.7. Temperature has also increased over this
period, as shown in Figure 1.2, correlating with increased anthropogenic emissions of
greenhouse gases (IPCC 2007).
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FIGURE 1.7. Atmospheric concentrations of CO2, CH4 and N2O over the last 2
miilenia, showing rapid increases since about 1750 that are attributed to human ac-

tivities during the industrial revolution. Figure taken from IPCC (2007).

To improve global warming projection models, accurate knowledge of greenhouse
gases is required, especially that of CO2 which is the largest anthropogenic contribu-
tor. An overview of the current understanding of the carbon dioxide cycle is given in
Figure 1.8.

The combustion of fossil fuels has increased rapidly since the start of the industrial
revolution, emitting large amounts of anthropogenic CO2. Fossil fuels are the remains of
dead organisms that have undergone anaerobic decomposition. Coal is typically formed
on land where waterlogged soil inhibits aerobic decomposition or where organisms are
buried deep in soil quickly. Oil and natural gas are normally formed at the bottom of the
ocean where the water transport is very slow. Over millions of years the pressure and heat
created by the weight of the sediment above causes the remains to become compacted
and takes the form of the fossil fuels. When fossil fuels are combusted they produce CO2
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FIGURE 1.8. Diagram showing an overview of the main carbon dioxide cycle fea-
tures.

and the simplest example of this is for pure coal where the chemical reaction is

C + O2 → CO2 + hv (1.9)

and hv represents the energy released. Another example is that of natural gas which has
the reaction

CH4 + 2O2 → CO2 + 2H2O + hv (1.10)

Cement production is also a large source of anthropogenic CO2, accounting for about 5%

of global emissions (Pade & Guimaraes 2007). The production process requires fossil
fuel combustion and the conversion of limestone to Calcium Oxide (CaO) and CO2 (Pade
& Guimaraes 2007), called calcination. However, if cement products are exposed to the
atmosphere then CO2 will diffuse back into the cement, forming Calcium Carbonate
(CaCO3) (Pade & Guimaraes 2007). This process is known as carbonation and over 100
years carbonation CO2 uptake can account for most of the CO2 released from calcination,
acting as a sink of atmospheric CO2 (Pade & Guimaraes 2007).

Animals produce CO2 through respiration when the oxygen breathed in reacts with
carbohydrates in the presence of enzymes in cells to produce CO2, H2O and energy (hv),
as shown by

C6H12O6 + 6O2 → 6CO2 + 6H2O + hv (1.11)

Photosynthesis of vegetation is essentially the reverse of this chemical reaction and cap-
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tures CO2. However, photosynthesis only occurs for a lot of vegetation in the spring/
summer when they are growing, whilst in autumn/winter time they form litter on the
ground which undergoes biological decomposition that returns most of CO2 to the atmo-
sphere. Also, some vegetation is eaten by animals, transferring the carbon to the animals
which eventually will decay and contribute CO2 to the soil and atmosphere.

The top layer of soil is composed of litter or detritus, in which carbon only has a
lifetime of about 1 year due to microbial decay and erosion. The soil underneath com-
prises of∼5% living microbial biomass and∼95% humic material, which is a metabolic
by-product of microbial activity. This has been found to be hundreds of thousands of
years old, whilst the soil near the surface typically has a cycle of 30 years (Wigley &
Schimel 2000). Soil carbon is released with increasing temperature and so acts as an
additional global warming feedback (Fang & Moncrieff 2001). Thus, storage of carbon
in soils generally increases from low to high absolute latitudes due to slower decom-
position of dead plant material in colder environments. Additionally, the carbon stored
in frozen soils and permafrost can be released as CO2 by microbial aerobic respiration
under warming temperature conditions (Lee et al. 2010). Flooded soils, where oxygen
becomes depleted, have extremely low rates of decomposition and may accumulate large
amounts of organic matter as peat (Wigley & Schimel 2000). Also, some soil is found
as charcoals, especially where fires are frequent, although it is currently unknown how
much carbon exists there (Ohlson et al. 2009).

The change in land use can cause CO2 to be released into the atmosphere. Deforesta-
tion often includes the burning of vegetation and soil which produces CO2, and removes
the capture of CO2 by photosynthesis. Carbon is released during logging from the decay
of trees damaged in the harvest, decay of logging debris, and oxidation of wood products
(Hoscilo et al. 2011). If the forest is allowed to regrow then the long term net carbon loss
would be zero, providing no biomass burning takes place. However, sometimes when
logging occurs artificial rivers are created to transport the logged trees, thus lowering
the existing water table causing the top soil/vegetation to become dry. This in turn in-
creases the probability of biomass burning events occurring, that produce even more CO2

(Hoscilo et al. 2011). Agriculture both requires the land to be changed initially via de-
forestation, releasing CO2, and then the soil repetitively undergoes tillage which causes
additional CO2 to be released from the soil (e.g. Paustian et al. 2000, Jr. et al. 2005).

Biomass burning can occur naturally and artificially, across large areas of the world.
This has been observed by the National Aeronautics and Space Administration (NASA)
Moderate Resolution Imaging Spectroradiometer (MODIS) which showed that biomass
burning happened over &2% of land globally between July 2001 to June 2002 (Roy
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et al. 2008). The amount of global fires remained reasonably constant between 2002 and
2007, and declined during 2008 and 2009 by about 30% (van der Werf et al. 2010). The
main compound emitted from biomass fires is CO2. For efficient fires CO2 can account
for ∼99% of emissions, whilst smoldering fires could emit slightly less (∼90%) CO2

(Wooster et al. 2011). Carbon monoxide (CO) is the next dominant compound released
from fire emissions which can further react to produce more CO2 by

CO + OH→ CO2 + H (1.12)

The oceans contain ∼50 times that of atmospheric CO2 and ∼95% of it is in the
form of inorganic dissolved carbon; bicarbonate (HCO3

−) and carbonate ions (CO3
2−)

(Wigley & Schimel 2000). The rest is composed of organic carbon, consisting of living
organic matter, particulate and dissolved organic carbon (Wigley & Schimel 2000). Ter-
restrial CO2 can be transported to the oceans via the water flow in rivers. Additionally,
CO2 is transferred between the atmosphere and ocean via the air-sea interface, where it
changes between atmospheric and dissolved CO2 as

CO2(Atmospheric) 
 CO2(Dissolved) (1.13)

The dissolved CO2 converts to carbonic acid and vice versa by the reaction

CO2(Dissolved) + H2O
 H2CO3 (1.14)

The carbonic acid can convert to bicarbonate and carbonate ions by the ionizations

H2CO3 
 H+ + HCO−3 (1.15)

and
HCO−3 
 H+ + CO2−

3 (1.16)

CO2 is transported into the intermediate and deep ocean by water mass transport where
it can be stored for long durations. However, due to ocean circulations there is also a
source created from upwelling water (Wigley & Schimel 2000). Phytoplankton exists
near the ocean surface where it absorbs CO2 via photosynthesis (Follows et al. 2007).
Zooplankton feed on phytoplankton and in turn get eaten by larger marine organisms
(Stige et al. 2011). These organisms will normally die and sink to the bottom of the
ocean, but with a growing human population increasing numbers of these are fished and
eaten by terrestrial animals, so the carbon can contribute to both the soil and atmosphere
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subsequently. Bicarbonate can be converted to marine shell material that eventually sinks
to the ocean floor, fossilizing to become carbonaceous rock.

In some regions, such as arid and semi-arid climates, the underlying geology often
consists of carbonate rock. All surfaces undergo erosion, whether it be from precipita-
tion, wind blown particle impacts, contraction/expansion due to temperature, ice forma-
tion, geological factors, biological factors, or land use change. When carbonate rock is
broken down it releases inorganic carbon (CaCO3) into the atmosphere, this process is
known as pedogenic carbonate which becomes precipitated back to the surface (Wigley
& Schimel 2000). However, the pedogenic carbonate can be transported in the atmo-
sphere with the prevailing winds to an area of non-carbonate terrain, providing a net sink
of carbon from the atmosphere (Wigley & Schimel 2000).

CO2 has been previously measured from volcanoes (Ryan 2001) and is known to be
emitted in volcanic gas (Shinohara et al. 2011) as a consequence of decarbonation of
underlying carbonate rocks (Frondini et al. 2004). There are a number of difficulties
in measuring CO2 from volcanoes. For ground based observations this mainly includes
the inaccessibility and risk of taking measurements at the summits and the high level
of background CO2 concentrations (Spinetti et al. 2008). Whilst airborne observations
overcome most of these problems, both techniques have trouble measuring CO2 within
a volcanic plume (Burton et al. 2000).

One method to reduce the current levels of CO2 is the enhancement of natural sinks.
Forests and soils could be increased to sequester CO2 , however this requires a large land
mass (Chadwick et al. 2000) which would cause competition with agriculture. Also,
the CO2 captured by trees would only last for ∼100 years and that is provided that the
area does not undergo deforestation, logging, biomass burning or that it becomes unsuit-
able for forestry due to increasing temperatures from climate change (Baines & Worden
2004). Agricultural techniques could be modified to enhance soil CO2 sequestration but
this would not be a permanent sink (IPCC 2007). Although these natural sinks could be
increased, it is not a feasible method to use for large scale reductions in CO2.

Geological sequestration is another way that is currently being used to reduce CO2

concentrations. This method is capable of lowering fossil fuel emissions by over 80%

(Freund 2003) but has two disadvantages; it requires energy (so fossil fuels are depleted
quicker) and the CO2 has the potential to leak back into the atmosphere, possibly leading
to future climate change events (Keller et al. 2008). The rate of CO2 leaking depends on
where it is geologically stored (Freund 2003). Deep oceans will take centuries to leak.
Whilst geological reservoirs have a much longer timescale of millennia and sequestra-
tion in thermodynamically stable minerals will take even longer to leak (Freund 2003,
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Lackner 2003).
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1.4 Observations of CO2

Observations of CO2 can be made on a local scale and the scaled up to estimate regional
carbon fluxes, which are useful for land management and emission policies (Wofsy &
Harriss 2002). This bottom-up method can be limited by the distribution of observa-
tions, and regional scaling can be difficult where multiple ecosystem types, heteroge-
neous terrain or urban areas exist (Desai et al. 2008, Dolman et al. 2009, Riley et al.
2009). Alternatively, regional estimates can be made using a top-down approach, by
scaling down global surface flux estimates which are based on atmospheric observations
of CO2 (Ahmadav et al. 2009, Gurney et al. 2002a). Top-down observations have previ-
ously been limited to continental scales due to the complexity of regional carbon fluxes
(Desai et al. 2010). However, with improvements in remote sensing technologies, top-
down observations are approaching the point where they may be useful for the estimation
carbon fluxes on a sub-continental scale, which this thesis focases on.

CO2 has been measured in the atmosphere directly since 1957 (Wigley & Schimel
2000). The concentration and isotope records before then consist from evidence of ice
cores, moss cores, packrat middens, tree rings, and isotopic measurements of plantonic
and benthic foraminifera (Wigley & Schimel 2000). The longest record of atmospheric
CO2 concentrations is at Mauna Loa, which was started at the Institute of Oceanography
in 1958. The National Oceanic and Atmospheric Administration (NOAA) has continued
to measure in parallel here since 1974 until present (Tans & Keeling 2012). This is shown
in Figure 1.9 which clearly shows the annual increase and seasonal cycle of CO2.

In recent years there have been many in-situ measurements made from instruments
such as ground based, tower, and aircraft observations. These have been collected
into the GLOBALVIEW-CO2 product, as a Cooperative Atmospheric Data Integration
Project (Maserie & Tans 1995). This project includes the work of many organisations and
is coordinated by the Carbon Cycle Greenhouse Gases Group of the NOAA, Earth Sys-
tem Research Laboratory (ESRL). The measurement locations of this project are shown
in Figure 1.10.

Airborne measurements have previously been obtained from commercial airliners
typically, which normally provide data over short distances and mostly at a single al-
titude (Wofsy et al. 2010). However, the HIAPER Pole-to-Pole Observations (HIPPO)
programme has taken a sequence of measurements, going from North to South with ver-
tical information (Wofsy et al. 2010). These flights were made in 2009 and 2010, and
have shown both the latitudinal and vertical gradients of a number of trace gases, specif-
ically illustrating that CO2 has a low variability in the Southern hemisphere (Wofsy et al.
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FIGURE 1.9. Atmospheric carbon dioxide concentrations measured at Mauna Loa
between 1958 and 2012. The red line shows monthly data and the black line gives
the monthly data corrected for a smoothed seasonal cycle (Tans & Keeling 2012).

2010).

However, due to the variability of CO2 and lack of a comprehensive network of
measurement locations, in-situ observations only allow inferred carbon fluxes on a sub-
continental scale. Furthermore, their sparse and uneven distribution results in large un-
certainties in the natural carbon cycle for key regions such as tropical and boreal regions
(Hungershoefer et al. 2010, Gurney et al. 2002a). As shown by numerous synthetic
studies, densely sampled satellite observations of CO2 concentrations can help to reduce
uncertainties in estimated regional carbon fluxes if the observations have a precision of
1-2 ppm on a regional scale with no regional to continental scale geographical biases
(Rayner & O’Brien 2001, Houweling et al. 2004, Chevallier 2007b, Miller et al. 2007,
Feng et al. 2009, Baker et al. 2010, Hungershoefer et al. 2010, Palmer et al. 2011). Ad-
ditionally,Hungershoefer et al. (2010) investigated the concept of using a larger network
of ground based measurement sites, costing ∼200 Million Euros (roughly the same as
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FIGURE 1.10. Current GLOBALVIEW sampling locations of instruments measur-
ing CO2 (GLOBALVIEW-CO2 2011).

a satellite mission) and found that the model error reduction was far higher if satellites
are used, mainly due to the fact that remote sensing by satellite observations can provide
a high density of measurements globally (Hungershoefer et al. 2010). However, Palmer
et al. (2011) found that the benefit of the increased number of soundings of satellite ob-
servations is reduced with more correlated data. An example of the number of satellite
observations globally can been seen in Figure 1.12.

Unlike most in-situ measurements, satellites observe throughout the atmosphere rather
than at a single location and altitude, giving total column average concentrations. To val-
idate these remotely sensed observations, the Total Carbon Column Observing Network
(TCCON) of ground based Fourier Transform Spectrometers (FTS) was setup to retrieve
accurate and precise column averaged abundances of greenhouse gases (Wunch et al.
2011a). The locations of TCCON stations are given in Figure 1.13.

Observations of CO2 have been made from previous satellites. One notable ex-
ample is the SCanning Imaging Absorption spectroMeter for Atmospheric CHartogra-
phY (SCIAMACHY) instrument. This was launched onboard the ENVISAT satellite in

22



FIGURE 1.11. HIPPO 2009 CO2 measured concentrations (ppm) for different lati-
tudes and altitudes. The grey contour lines indicate the potential temperature. Figure

taken from Wofsy et al. (2010).

March 2002 and has allowed continental and seasonal variations in CO2 to be observed
(Barkley et al. 2006a, Buchwitz et al. 2005, Scheising 2009, Schneising et al. 2008), as
shown in Figure 1.14 which compares SCIAMACHY CO2 with model CO2 from the
NOAA ESRL CarbonTracker model (Peters et al. 2007). Also, the Atmospheric Infrared
Sounder (AIRS) instrument onboard the NASA Aqua satellite, launched in May 2002,
has provided information about CO2 in the upper troposphere globally, see Figure 1.15

for example. The main findings include a variability in the distribution of CO2 with
larger values observed over the northern hemispheric land masses and also a belt across
the southern hemisphere, both of which were not previously incorporated in models
(Chahine et al. 2008, Pagano 2011). Further details of previous satellite observations
of CO2 are given in Chapter 2.
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FIGURE 1.12. Nominal ground track measurement locations of the Greenhouse
gases Observing SATellite (GOSAT) for a 3-day orbital repeat cycle, with each mea-

surement location is shown by a blue circle.

FIGURE 1.13. Current Total Carbon Column Observing Network (TCCON) sites
located around the world. Figure taken from Wunch et al. (2011a).
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FIGURE 1.14. A comparison of column-averaged dry air mole fractions of CO2

retrieved from SCIAMACHY using the WFM-DOAS version 1.0 (WFMDv1.0) re-
trieval algorithm with CarbonTracker model calculations for three years. Figure

taken from Scheising (2009).
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FIGURE 1.15. Monthly average mid-tropospheric CO2 retrieved from AIRS for July
2010. Figure taken from Pagano (2011).
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1.5 Current understanding of the carbon cycle

It has been established in recent decades that over half the anthropogenic CO2 emitted
into the atmosphere has been sequestered into the oceans and terrestrial biosphere, leav-
ing the remainder in the atmosphere to accumulate (see Figure 1.16). This has lead to a
rise in atmospheric CO2 which has been observed since the start of the industrial revolu-
tion and reflects the inability of the natural carbon sinks to uptake the increased volume
of atmospheric CO2.

FIGURE 1.16. The budget of CO2 between 1959 and 2006. The upper panel shows
CO2 emissions to the atmosphere as combination of fossil fuel combustion, land-use
change and other emissions (primarily from cement production). The lower panel
shows the resulting atmospheric, ocean and land accumulations of CO2, where inter-
annual variations are driven by the land sink. Figure taken from Canadell et al.

(2007).
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Although anthropogenic CO2 emissions are consistently increasing, interannual CO2

variations are observed (Figure 1.16), which are primarily controlled by changes of CO2

flux between the atmosphere and terrestrial biophere (IPCC 2007). There is a lack of ac-
curate quantitative knowledge of the carbon sinks, specifically their identity, strength and
geographical distribution, as well as how they might change in the future and their po-
tential feedback on the carbon-climate system (Houghton 2002, Fung et al. 2005, IPCC
2007). Also, the fraction of atmospheric CO2 absorbed between the ocean and terrestrial
sinks is highly uncertain (see Figure 1.17), with some studies suggesting the ocean sink
to be dominant (e.g. Bopp et al. 2002) while others point to terrestrial reservoirs being
dominant (e.g. Fan et al. 1998, Bousquet et al. 1999, Pacala et al. 2001). The uptake of
carbon by the southern hemisphere oceans remains largely uncertain (Takahashi et al.
2002, McNeil et al. 2003), as does coastal ocean regions (Tsunogai et al. 1999, Muller-
Karger et al. 2005). The geographical distribution of the northern hemisphere terrestrial
sink has been suggested to be dominant in various regions, ranging from North America
(Fan et al. 1998) to Asia (Bousquet et al. 1999).

Numerous chemistry transport models have been previously used to estimate surface-
atmosphere CO2 fluxes using inversion techniques, which assimilated in-situ CO2 mea-
surements from flasks, continuous sensors, tall towers and aircraft flights. The Atmo-
spheric Tracer Transport Model Intercomparison Project (Transcom) provided an inter-
comparison of such models, giving estimates of the uncertainties in the net carbon fluxes
from oceans and terrestrial reservoirs (Gurney et al. 2002b). The regional flux uncer-
tainty estimates of the TRANSCOM experiment are summarised in Figure 1.18, showing
that the uncertainties are large enough that most ocean and terrestrial regions could be
net sources or net sinks (Gurney et al. 2002a). Furthermore, the experiment highlighted
that the existing network of CO2 measurements were too sparse and unevenly distributed,
leading to an under sampled system and hence the requirement for more measurements.

Presently, large uncertainties exist for climate-carbon cycle feedback mechanisms
(see Figure 1.19). It is expected that anthropogenic emissions will increase through-
out the 21st century, leading to a reduced CO2 uptake efficiency of oceans due to the
carbonate buffering mechanism, and of land due to the saturation of terrestrial sinks
(Friedlingstein et al. 2006). Additionally, the predicted change in future climate is es-
timated to suppress carbon sinks, therefore increasing the fraction of atmospheric CO2

(e.g. Gurney et al. 2002a, Friedlingstein et al. 2006). This creates a positive climate
change feedback that is highly uncertain, with current models estimating a rise in the
rate of increase of CO2 ranging between 4% and 44% (IPCC 2007).
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FIGURE 1.17. Fractional partitioning of the predicted increase in total emissions
that contribute to atmospheric CO2. Variations of the emissions partitioning as sim-
ulated by the C4MIP models up to 2000 are given by black letters and for the entire
simulation period to 2100 are given in red letters, where each letter represents a dif-
ferent model. The dotted box shows a constraint on the historical carbon balance
based which was based on records of atmospheric CO2 increase, estimates of total
emissions from fossil fuel combustion and land use change, and oceanic uptake of
anthropogenic CO2 (Sabine et al. 2004). The black and red diamond symbols give
the mean carbon partitioning of all the models for the historical and entire simula-
tion periods, respectively. The red line between these diamond symbols shows the
mean model tendency towards an increasing atmospheric fraction through the 21st

century, which is common to all models. Figure taken from IPCC (2007).
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FIGURE 1.18. The mean estimated CO2 sources and uncertainties for two different
inversion models for various ocean and land regions. For each region the left-hand
symbols are for a control inversion and the right-hand symbols are for an inversion
without any background seasonal biosphere flux. The mean estimated flux is shown
by a cross symbol, which includes all background fluxes expect fossil fuels. The
circle symbols represent the mean estimated uncertainty across all models. The
error bars give the standard deviation of the models’ estimated fluxes. The priori flux
estimates and their uncertainties are indicated by the boxes (solid for land, dashed
for ocean), where the central horizontal bar gives the prior flux estimate, and the top
and bottom of the box shows the prior flux uncertainty range. Figure taken from

Gurney et al. (2002a).
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FIGURE 1.19. The uncertainties in carbon cycle feedbacks estimated from C4MIP
models for the simulated period of typically 1860 to 2100. The top bar shows the
range that the climate-carbon cycle feedback is estimated to have on the airbourne
fraction of total emissions. Similarly, the middle 4 bars show the impact of climate
change on the carbon cycle, and the lower 3 bars give the direct response to increas-

ing atmospheric CO2 concentrations. Figure taken from IPCC (2007).
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1.6 Precision Requirements

CO2 inferred from global satellite measurements has been shown through numerous sen-
sitivity studies to improve carbon flux inversions provided the observations are precise
(Baker et al. 2006b, Dufour & Breon 2003, Houweling et al. 2004, Moa & Kawa 2004,
O’Brien & Rayner 2002, Rayner et al. 2002, Rayner & O’Brien 2001). These investi-
gations conclude that precisions between 1 - 10 ppm will reduce uncertainties of CO2

sources and sinks due to the dense global sampling of satellites. The spatial and tempo-
ral resolution of the satellite measurements and the surface flux inversion spatiotemporal
scale effects the requirement for precision (Houweling et al. 2004). The greater the pre-
cision the more beneficial the data will be for determining sources and sinks, but this
must also be balanced against what our current level of satellite technology, retrieval
method and validation system can reproduce (Miller et al. 2007). The most realistic
study (Rayner et al. 2002) has shown that satellites with a 8◦ x 10◦ monthly mean column
CO2 precision of 2.5 ppm or less would surpass the capability of existing surface net-
works in determining sources and sinks on a continental scale (Rayner & O’Brien 2001)
(see Figure 1.20). The ESA Climate Change Initiative (CCI) for the Essential Climate
Variable (ECV) Greenhouse Gases (GHG) provides the latest accuracy and precision re-
quirements for CO2 satellite observations that are based on studies of synthetic data (e.g.
Chevallier et al. 2005a, 2007a, 2009, Miller et al. 2007). It states a breakthrough require-
ment for satellite observations would be a <0.3 ppm accuracy (systematic error) and a
precision (random error) of <3 ppm for a single observation and <1 ppm for monthly
mean 1000 km2 observations. Additionally, it gives the ideal satellite requirement of
<0.2 ppm accuracy (systematic error) and a precision (random error) of <1 ppm for a
single observation and <0.3 ppm for monthly mean 1000 km2 observations (Buchwitz
et al. 2011).
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FIGURE 1.20. Comparison of global CO2 uncertainty and precision when no ob-
servations are assimilated (dotted line), observations from 56 ground based mea-
surement stations are assimilated (dashdotted line), simulated global coverage from
satellite observations are assimilated (solid line), and simulated global coverage of
oceans only from satellite observations are assimilated (dashed line). Figure taken

from Rayner & O’Brien (2001).
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1.7 Thesis Overview

The aim of this thesis is to develop an algorithm to estimate atmospheric CO2 from
space based observations and to assess the accuracy of these estimations by validating
them with independent in-situ observations. Satellites measurements, if acquired with a
high accuracy and precision, have the potential to reduce model flux uncertainties and
improve our knowledge of the carbon cycle, allowing the identification of surface sources
and sinks of CO2.

This thesis describes the development of a new retrieval algorithm capable of retriev-
ing CO2 from space borne measurements, called the University of Leicester Full Physics
(UoL-FP) retrieval algorithm. The second chapter provides the fundamental theories for
remote sensing and how these have been used by previous satellite instruments to infer
CO2. The first satellite that is proposed to meet this requirement, called GOSAT, is then
described. Chapter three explains the UoL-FP retrieval algorithm that was developed for
use with GOSAT observations. The retrieved CO2 estimates are validated against ground
based remote sensing measurements in the fourth chapter to assess the accuracy of the
algorithm. Chapter four also includes global comparisons to a global chemistry trans-
port model providing the first steps towards source/sink flux inversions and compares to
alternative retrieval algorithms to evaluate any obvious retrieval dependent biases. The
framework of the algorithm is developed in the fifth chapter by the creation of a simulator
that can be used to investigate multiple retrieval algorithm modifications, which may lead
to the development of a new retrieval algorithm method with improved CO2 precision.
Chapter six summarises the thesis and provides an outlook for future expansion.
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Chapter 2

Remote Sensing of Atmospheric CO2

2.1 Introduction to Remote Sensing of Atmospheric CO2

Satellite instruments can measure light at the top of the atmosphere that has come from
the Earth. These measurements can be made using active or passive remote sensing
techniques. Active sensing is where monochromatic light is sent from the satellite to
the Earth’s surface and then the reflected light is measured. The difference between
the original and measured light can then provide information about the content of the
atmosphere. However, this method requires high levels of power and only measures
light at specifc wavelengths. Passive sensing measures Sun light reflected off the Earth’s
surface, and the difference between the measured light and estimated light from the Sun
can provide information about the Earth’s atmosphere. This method requires much less
power, can measure multiple wavelength ranges and has a high accuracy.

The Sun emits light strongly in the visible and shortwave infrared (SWIR) range,
but any radiation absorbed by the Earth will be re-radiated at wavelengths in the ther-
mal infrared (TIR) range (the same range as the Earth’s surface naturally radiates at).
Space based TIR measurements therefore provide information where absorption oc-
curs throughout the atmosphere, especially in the upper troposphere where clouds are
present. Satellite SWIR measurements also provide information throughout the atmo-
sphere, but are more sensitive to reflection. Hence, SWIR observations are obstructed by
thick clouds. However, for cloud free scenes, SWIR measurements are most sensitive to
the lower troposphere, where there are more gas molecules, and can provide information
about the atmosphere just above surface CO2 sources and sinks.

As light travels through the atmosphere some of it gets absorbed by gas molecules
and some light will be absorbed or scattered by aerosols and clouds. Each of the different
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gases that make up the atmosphere will cause light to be absorbed at certain wavelengths
specific to the structure of that gas. Hence, remote sensing of specific wavelengths can
provide information about a particular type of gas, allowing its atmospheric concentra-
tion to be inferred.

FIGURE 2.1. Example radiances for each of the TANSO-FTS SWIR bands showing
absorption of different gases, where blue represents O2, green represents CO2, pink

represents CH4, and cyan represents H2O.

Figure 2.1 illustrates absorption by different atmospheric gases for some example
wavelength ranges, where lower radiance values typically mean absorption has occurred.
The amount of absorption that has occurred (i.e. how much the radiance is decreased by
compared to the continuum level) can be compared to tabulated information of a single
molecule to estimate how much of that gas exists.
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2.2 Fundamentals of Radiation in the Atmosphere

2.2.1 Light Absorption

The absorption spectral lines observed in measurements of atmospheric light are created
when light of a certain wavelength becomes absorbed by a molecule within the beam. If
a photon with energy δE=hv is absorbed then a molecule goes through a transition from
its ground energy state to an excited energy state, where h is Planck’s constant (6.626076
x 10−34 Js) and v is the frequency of the electromagnetic radiation. The total energy of
a molecule is given by the sum of the potential energy and kinetic energy, which can be
represented by the Hamiltonian operator Ĥ . The energy level, E, of a molecule must
obey the time independent Schrödinger equation

EΨ = ĤΨ (2.1)

where Ψ is the eigenvalue of the operator. During the absorption of light by a molecule,
there are additionally four contributing aspects that must be considered; the electronic,
vibrational, rotational and nuclear energies of the molecule. Assuming these to be in-
dependent (Born-Oppenheimer approximation), the Schrödinger equation can be solved
for each energy seperately and the total energy of a molecule can then be given as

E = EElectronic + EVibrational + ERotational + ENuclear (2.2)

where the eigenvalue is the product of each aspect:

Ψ = ΨElectronicΨVibrationalΨRotationalΨNuclear (2.3)

In the SWIR wavelength range the nuclear energies are small, whilst the electronic, vi-
brational and rotational energies are larger, with the vibrational energy being comparable
in energy to that of infrared radiation.

2.2.1.1 Rotational Transitions

Molecules can be considered as rigid structures that may rotate. This rotation can be
described about three orthoganal axes that pass through the molecules centre of gravity.
The axes A, B and C are defined such that the corresponding inertia, I, of the molecule
rotating around each axis is given as IA ≤ IB ≤ IC . The rotational energy can be given
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by

ERotational =
1

2
IAω

2
A +

1

2
IBω

2
B +

1

2
ICω

2
C (2.4)

where ω represents the corresponding angular velocity around each axis. The energy
is proportional to both inertia and angular velocity about each axis, which both depend
on the structure of the molecule. Thus, molecules are categorized by their structure, as
shown in Table 2.1.

Table 2.1. Molecule structure classification.

Classification Moment of inertia I Example molecules

Linear IA=0, IB=IC CO2, N2O
Symmetric top IA≤IB=IC† or IA=IB≤IC‡ CFCl3, NH3

Spherical top IA=IB=IC CH4, SF6, CCl4
Asymmetric top IA 6=IB 6=IC H2O

Symmetric top molecules can be sub-catagorised as prolate† or oblate‡ symmetric top
molecules.

However, the assumption of rigid structures rotating is only an approximation and in
reality there are clear deviations from this model.

2.2.1.2 Vibrational Transitions

Molecules may vibrate with a given number of modes. This is determined by the number
of degrees of freedom, where a molecule of x atoms has 3x degrees of freedom. However,
three of the degrees of freedom represent the translational motion of the molecule in
each axis direction and another three represent the rotational motion about each axis.
Therefore, 3x−6 degrees of freedom is the number of vibrational modes for a non-linear
molecule. For a linear molecule the rotational motion can be described by two degrees of
freedom, so the number of modes becomes 3x−5. Taking CO2 as an example, it is linear
and comprises of 3 atoms so has 4 vibrational modes, which are shown in Figure 2.2.

The energy associated with each vibrational mode, i, can be approximately described
by the harmonic displacements of each atom in the molecule which vibrate at a certain
characteristic frequency, vi. This is given by the equation

Ei,υ = hvi

(
υi +

1

2

)
(2.5)
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FIGURE 2.2. Illustration of CO2 vibrational motions, where the carbon atom is
shown in red and oxygen in blue. The black lines give the bonds between atoms,

with the arrows representing the vibrational movement direction.

where υ is the vibrational quantum number. However, in reality only harmonic dis-
placements for low vibrational modes are valid. Higher vibrational modes are better
characterised by anharmonic displacement, with the energy given by

Ei,υ = hvi

(
υi +

1

2

)
+ hvixi

(
υi +

1

2

)2

(2.6)

where x represents the anharmonicity constant.
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2.2.1.3 Vibrational-Rotational Bands

The energy needed for a molecule to rotate is much smaller than that for vibration. There-
fore, when a vibrational transition occurs a simultaneous rotational transition will ac-
company it. There may be multiple rotational transitions occuring simulataneously from
different energy levels. But because the rotational transitions are too close together to be
resolved they are grouped together as a vibration-rotation band (Griffiths & de Haseth
2007). The vibration-rotation band is generally defined by three branches; P, Q and R
branches. The P and R branches correspond to wavelengths higher and lower than the
band centre, respectively. Whilst the Q branch occurs during a vibration bending mode.
In the SWIR range, CO2 contains mostly strong P and R branches (Toth et al. 2008).

2.2.1.4 Line Shape

The spectral line intensity depends on the absorption by the interfering molecule, which
can be related as

S =

∫ ∞
−∞

Cvdv (2.7)

where S is the line intensity and C is the absorption cross section. The energy levels
during transitions change slightly due to external influences on the molecule and the loss
of energy in emission. Repeated energy transitions cause non-monochromatic radiances,
therefore spectral lines have a finite width. This can be expressed in terms of the shape
of the spectral line:

kv = SΦ (v − v0) (2.8)

where Φ(v−v0) represents the line shape factor of absorption at specific spectral dis-
tances from the line centre, v0. The broadening of lines depends on the damping of
molecular vibrations; a doppler effect resulting from differences in thermal velocities,
and any collisions between molecules.

Natural broadening of lines is caused by the loss of energy in emission. This can be
explained by the Heisenberg uncertainty principle, whereby the line width is inversely
proportional to the lifetime of an excited state (∆t), which in turn is related to the energy
of that quantum state (∆E=h∆v):

∆t ≈ 1

2π∆v
(2.9)

The line shape of natural broadening, ΦN , can be given as a Lorentz profile (Lorentz
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1906):

ΦN (v − v0) =
αL/π

(v − v0)2 + α2
L

(2.10)

where αL represents the natural Lorentz shape at half-width-half-maximum (HWHM).

Pressure broadening occurs due to the collisions of molecules and therefore is more
dominant in the lower atmosphere where more molecules exist. The line shape of pres-
sure broadening is also described by a Lorentz profile:

ΦP (v − v0) =
αL/π

(v − v0)2 + α2
L

(2.11)

At higher altitudes there are less molecules that can collide so the doppler effect
becomes important. If a molecule has a velocity in the line of sight and v<<c then the
doppler effect occurs:

v = v0

(
1± v

c

)
(2.12)

In Kinetic theory, translational states are in thermodynamic equilibrium and the proba-
bility that the velocity is between v and v+dv is p(v)dv. The maxwell distribution gives
p(v) such that

p (v) dv =
( m

2πkT

) 1
2
e

(
−mv

2

2kT

)
dv (2.13)

where k is Boltzmann’s constant, T is temperature and m is the mass. Combining Equa-
tions 2.12 and 2.13, the line shape of doppler broadening can be given as

ΦD (v − v0) =
1

αD
√
π

exp

[
−
(
v − v0
α2
D

)2
]

(2.14)

where the HWHM is αD
√
ln2 and

αD = v0

(
2KT

mc2

) 1
2

(2.15)

In the upper atmosphere both pressure and doppler broadening are important to con-
sider. Therefore, the line shapes of both are convolved to create a Voigt profile shape:

ΦV (v − v0) =
1

π
3
2

αL
αD

∫ ∞
−∞

1

(v′ − v0)2 + α2
L

exp

[
− (v − v′)2

α2
D

]
dv′ (2.16)

where the doppler shift is added to the pressure broadened line at wavenumbers v’−v0.

It is also possible for line-mixing to occur, where multiple absorption lines overlap.
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Recent studies have shown this must be taken into account for highly accurate retrievals
of XCO2 to be achieved (e.g. Hartmann et al. 2009, Lamouroux et al. 2010, Vangwichith
et al. 2009).

2.2.2 Radiative Transfer

2.2.2.1 The Radiative Transfer Equation

Passive space borne SWIR remote sensing instruments measure the intensity of elec-
tromagnetic radiation that has travelled from the Sun and been reflected off the Earth’s
surface towards the instrument optics, which is the focus of this study. This beam of
radiation travels through the Earth’s atmosphere where a number of different physical
processes can alter the intensity of the radiation. Figure 2.3 illustrates these processes
which include; absorption of radiation, radiation scattered out of the beam, single scatter-
ing of direct solar radiation into the beam, emitted radiation into the beam, and multiple
scattering of indirect diffuse radiation into the beam (both solar and emitted radiances).
The radiative transfer equation describes the change in the radiance of the beam for a
specified wavelength, dIλ, over the distance travelled, ds, and can be given for simplicity
as

dIλ = −dISO,λ − dIAO,λ + dISI,λ + dIMI,λ + dIEI,λ (2.17)

where the first term on the right hand side is the intensity of radiation scattered out of the
beam and is expressed as

dISO,λ = Iλσs,λds (2.18)

where I is the intensity and σs is the scattering extinction coefficient. The second term
of Equation 2.17 gives the intensity of radiation absorbed throughout the beam and can
be written as

dIAO,λ = Iλσa,λds (2.19)

where σa is the absorption extinction coefficient. The intensity of solar radiation directly
scattered into the beam by a single particle is represented in Equation 2.17 as the third
term and is given as

dISI,λ =

[∑
k

(σs,k,λ
4π

Ps,k,λ,µ,−µs,φ,φs

)]
Fs,λe

− τλ
µs ds (2.20)

where k represents different particles, P is the scattering phase function that describes
the angular distribution of scattering with directions, F is the total irradiance (solar ra-
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diation) at the top of the atmosphere, and Beer’s law is included with the exponential
term showing that the absorption of radiation increases exponentially with the optical
depth, τ . The fourth term of Equation 2.17 represents the multiple scattering of diffuse
radiation into the beam and is given by

dIMI,λ =

[∑
k

(
σs,k,λ
4π

∫ 2π

0

∫ 1

−1
Iλ,µ′,φ′Ps,k,λ,µ,µ′,φ,φ′dµ

′dφ′
)]

ds (2.21)

The final term of Equation 2.17 represents the emitted radiation into the beam. The
emission occurs in the infrared wavelength range whereby particles that have previously
absorbed radiation re-emit infrared radiation. This can be expressed as

dIEI,λ = σa,λBλ,Tds (2.22)

where Bλ,T represents Planck’s law, which gives the intensity emitted from a particle as
a function of wavelength and temperature. Planck’s law is given by

Bλ,T =
2hc2

λ5
[
e

(
hc
λkbT

)
− 1

] (2.23)

where h is Planck’s constant (6.6256 x 10−34 Js), c is the speed of light (2.9979 x 108

ms−1 in a vacuum), kb is Boltzmann’s constant (1.38 x 10−23 JK−1), and T is tempera-
ture. Thus, substituting Equations 2.18 to 2.22 into Equation 2.17 the radiative transfer
equation can be given as

dIλ,µ,φ
ds

= −Iλ,µ,φ (σs,λ + σa,λ) + Fs,λe
− τλ
µs

∑
k

(σs,k,λ
4π

Ps,k,λ,µ,−µs,φ,φs

)
+
∑
k

(
σs,k,λ
4π

∫ 2π

0

∫ 1

−1
Iλ,µ′,φ′Ps,k,λ,µ,µ′,φ,φ′dµ

′dφ′
)

+ σa,λBλ,T (2.24)
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FIGURE 2.3. Radiative transfer diagram, illustrating the unattenuated beam (left)
and the beam with multiple processes interacting with it (right), where the beam
orientation is µ, φ. The solar zenith angles of the beam and diffuse radiation is given
by θ and θ’, respectively. φ is the azimuth angle, φ’ is the azimuth angle of the
diffuse radiation, µ = cos θ, and µ’ = cos θ’. For downward radiances µ is negetively
assigned and for upward radiances µ is positively assigned. Adapted from Jacobson

(2005) and Liou (2002).
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2.3 Types of Scattering

Electromagnetic radiation becomes scattered when a particle is within the path of a light
wave, causing light to become reflected, refracted or diffracted, changing the direction
of the light path. The effect that the size of the particle has on scattering is defined by a
term called the size parameter, which for a spherical particle is given as

x =
2πa

λ
(2.25)

where x is the size parameter, a is the particle radius and λ is the wavelength of light.
Scattering can be defined with two types; Rayleigh scattering where x�1 and Lorenz-
Mie scattering where x&1.

The polarisation state of an electromagnetic wave can be described using four linearly
independent values referred to as the Stokes parameters:

I = EPE
∗
P + ESE

∗
S (2.26)

Q = EPE
∗
P − ESE∗S (2.27)

U = EPE
∗
S + ESE

∗
P (2.28)

V = −i (EPE
∗
S − ESE∗P ) (2.29)

where I is the total intensity of the wave, Q and U give the linear polarisations, V gives
the state of the circular polarisation of the wave, ∗ denotes the complex conjugate, and i
equals

√
−1. These parameters are based on the wave being characterised by the electric

field, E, being parallel (P) and perpendicular (S) to the incident plane. These stokes
parameters can be summarised by the Stokes vector

I =


I

Q

U

V

 (2.30)

The intensity of scattered light can be given in terms of the incident light (I0) by

I = P (Ω) I0 (2.31)

where P represents the phase matrix as a function of scattering angle, Ω. The phase
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matrix gives the phase function with polarisation, and can be defined as

P (Ω) =


P11 (Ω) P12 (Ω) 0 0

P12 (Ω) P22 (Ω) 0 0

0 0 P33 (Ω) P34 (Ω)

0 0 −P34 (Ω) P44 (Ω)

 (2.32)

The phase matrix is defined by the phase function, P, which gives the intensity as a
function of scattering angle. For spheres, P22=P11 and P44=P33.

When light is scattered by particles that are small compared to the wavelength of
light or the photons are elastically scattered, Rayleigh scattering occurs. The scattering
cross section for Rayleigh scattering, CRayleigh, is given as:

CRayleigh =
8πr6

3

(
2πn

λ

)4(
m2 − 1

m2 + 2

)2

(2.33)

where n is the refractive index of the surrounding medium (air), r is the radius of the par-
ticle and m is the ratio of the particle refractive index to n. Note that the Rayleigh scatter-
ing cross section is proportional to r6, so all air molecules will scatter and more scattering
will occur for longer light paths through the atmosphere (hence at higher SZAs). Addi-
tionally, this means that larger particles have a larger scattering cross section, but are
inversely proportional to wavelength, giving larger scattering cross sections at smaller
wavelengths. Thus, Rayleigh scattering is small in the SWIR range. The phase function
for Rayleigh scattering can be defined as

P (Ω) =
3

4

(
1 + cos2Ω

)
(2.34)

Figure 2.4 shows the phase function for Rayleigh scattering, which scatters light equally
in the forward and backward directions.

In the SWIR, Lorenz-Mie scattering dominates, where larger particles scatter light
(x&1). The direction of the scattered light becomes more towards the forward direction
(see Figure 2.4). For Lorenz-Mie scattering, the off diagonal terms of the phase matrix
are typically small, so polarisation will not affect intensity much. Thus, intensity can be
approximated by P11, which can be defined as

P11 (Ω) =
4π

k2CLorenz−Mie

|S1|2 + |S2|2

2
(2.35)
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where CLorenz−Mie is the scattering cross-section, k = 2πn/λ, and S1 and S2 represent
scattering amplitudes which are given as

S1 (Ω) =
∞∑
n=1

2n+ 1

n (n+ 1)
[anπn (cosΩ) + bnτn (cosΩ)] (2.36)

S2 (Ω) =
∞∑
n=1

2n+ 1

n (n+ 1)
[bnπn (cosΩ) + anτn (cosΩ)] (2.37)

where a and b are complex Mie coefficients that are expressed in terms of the spherical
Bessel functions, and the Mie angular functions are defined as

πn (cosΩ) =
1

sinΩ
P 1
n (cosΩ) (2.38)

τn (cosΩ) =
d

dΩ
P 1
n (cosΩ) (2.39)

where P1
n represent Legendre polynomials, where the number of terms is proportional to

the size parameter. Additionally, the strength of forward scattering can be indicated by
the asymmetry parameter which is given as

Q =
4

x2

[∑
n

n (n+ 2)

n+ 1
Re
(
ana

∗
n+1 + bnb

∗
n+1

)
+

2n+ 1

n (n+ 1)
Re (anb

∗
n)

]
(2.40)

where Re represents the effective radius.

Normally, the scattered light has the same wavelength as the incident light, this is
known as elastic scattering and both Rayleigh and Lorenz-Mie scattering are examples
of this. However, inelastic scattering can occur where a different wavelength is emit-
ted. This is often referred to as Raman scattering, although fluorescence can also be
considered an example of this.

The amount of radiation removed from a certain length of the light path by scattering
and absorption is known as the optical depth. The total column optical depth is the
total amount of light removed as it passes through the atmosphere towards the Earth’s
surface and as it travels throughout the atmosphere after being reflected towards the
satellite. The total optical depth is also the sum of the optical depth due to Rayleigh
molecules, R, aerosols, A, and atmospheric gases, G. As shown for Rayleigh and Lorenz-
Mie scattering, the amount of scattering varies with wavelength, therefore the optical
depth is wavelength dependent and can be expressed as

τ (λ) = τR (λ) + τA (λ) + τG (λ) (2.41)
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FIGURE 2.4. Example scattering phase function in polar coordinates for a homoge-
nous spherical particle of different sizes and wavelengths. An example of Rayleigh
scattering is shown in green. Whilst an example of Lorenz-Mie scattering is shown

by the solid black line. Figure taken from (Steinacker et al. 2003).

The optical depths at different wavelengths (1 and 2) can be related by the angstrom
coefficient:

α = −
log
(
τ1
τ2

)
log
(
λ1
λ2

) (2.42)

2.4 Atmospheric Scattering Particles

Although the type of scattering depends on the size of the particle, the direction and
strength of scattering also depends on the shape of the particle and its refractive index as
a function of wavelength in the Lorenz-Mie regime. In the atmosphere there is a large
variety of particles, both natural and anthropogenic.

Cloud particles form when the temperature is low enough for water vapour to con-
dense. However, condensation can only occur if there is a surface to condense onto.
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In the atmosphere minute particles (aerosols) act as condensation nuclei allowing water
vapour to condense to form clouds. Under normal conditions, water vapour will con-
dense into water droplets, unless below 0◦C when ice crystals form. However, under
certain conditions water droplets can exist below 0◦C and these are known as super-
cooled droplets. Since the type of cloud particle formed depends on temperature, water
droplets are found at low altitudes (e.g. Stratus and Cumulus clouds), ice crystals at high
altitudes (e.g. Cirrus, Cirrustratus and Cirrocumulus clouds) and a mixture of water and
ice at middle altitudes (e.g. Altostratus and Altocumulus clouds). Water droplets are
spherical in shape whilst ice crystals are uniaxial with a high variability (see Figure 2.6),
and both may grow due to coalescence (collison of droplets as they fall through the at-
mosphere) (Lawson et al. 2001). Additionally, the Bergeron process may create larger
cloud particles, whereby water molecules transfer from supercooled water droplets to
nearby ice crystals due to the vapour pressure difference between them (Liou 1992). The
refractive index of water and ice particles vary with wavelength as shown in Figure 2.5.
Water droplets typically have a radius between 1 and 40 µm and and due to their spher-
ical shape, scatter mostly in the forward direction with a smaller backwards peak (see
Figure 2.7). Ice crystals are larger in size, ranging between roughly 10 and 2000 µm, and
scatter slightly less in the forward direction. There is also a large range in size for mixed
phase (part water and ice) particles and these have similar scattering properties (Jourdan
et al. 2003).

The other type of particles that scatter light are aerosols. Some aerosols are created
naturally and these are generally well distributed around the world with sources cover-
ing large areas. Examples of this include; dust blown into the atmosphere from desert
regions, sea salt spraying/blowing into the atmosphere from oceans, organic compounds
from plant particles, and soot from biomass burning. These aerosols typically exist in
the troposphere and have a lifetime of a couple of weeks due to water vapour condens-
ing onto them and also due to coagulation of aerosols forming larger particles, both of
which will cause the aerosol to fall to the surface (Williams et al. 2002). Another source
of aerosols comes from volcanic eruptions which may throw up particles into the tropo-
sphere but also into the stratosphere where there is less water vapour for condensation to
occur so aerosol lifetimes of 1-3 years are possible (Robuck et al. 2002). Urban aerosols
tend to be anthropogenic and concentrated over small polluting regions in the lowest
kilometer of the atmosphere. Urban aerosols are complex due to the mixtures of aerosols
from various anthropogenic emission sources. Aerosols are highly variable in shape,
size and refractive index (Williams et al. 2002), see Figures 2.8 and 2.9 for examples.
Additionally, some aerosol types are hydrophobic whilst others are hydrophilic and may
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FIGURE 2.5. Example of real and imaginary refractive index of liquid and ice cloud
particles. The water refractive index values were obtained from Hale & Querry

(1973) and the ice from Warren (1984).

change in size and shape with humidity (Shettle & Fenn 1979).
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FIGURE 2.6. Example images of spherical water particles (left) and a few ice crystal
shape variations (centre and right). Obtained from Lawson et al. (2001).

FIGURE 2.7. Measured and retrieved scattering phase functions and particle size
distributions for water droplet clouds (a), mixed-phase clouds (b) and ice crystal

clouds (c). Figure taken from Jourdan et al. (2003).
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FIGURE 2.8. Example of real and imaginary refractive index of different three differ-
ent aerosol types; dust, soot and sea salt. The refractive index values were obtained

from Shettle & Fenn (1979).

FIGURE 2.9. Example images of aerosols from scanning electron microscopes cour-
tesy of USGS, UMBC (Chere Petty, and Arizona State University (Peter Buseck).
This shows a variety of aerosol shapes, including; volcanic ash (far left), pollen

(centre left), sea salt (centre right), and soot (far right).
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2.5 Previous Satellite Remote Sensing Observations of
CO2

The fundamental theories used for remote sensing described in the previous sections
has allowed CO2 to be inferred from satellite measurements for over three decades. A
summary of these observations is given below.

The Television and Infrared Operational Satellite Next Generation (TIROS-N) Oper-
ational Vertical Sounder (TOVS) have been included onboard the National Oceanic and
Atmospheric Administration (NOAA) polar meteorological satellites since 1978 (Chedin
et al. 2003, Smith et al. 1979). This instrument comprises of three sounding units; the
High-Resolution Infrared Radiation Sounder (HIRS-2), the Microwave Sounding Unit
(MSU) and the Stratospheric Sounding Unit (SSU). Atmospheric and surface emissions
can be inferred from HIRS-2 in seven channels; one at 15.0 µm, five channels around 4.3
µm, and one channel at 11.0 µm wavelength. The spectral bands around 15.0 µm and 4.3
µm observe radiances which highly depend on both atmospheric temperature and green-
house gas concentrations, such as CO2. Although CO2 has been retrieved from TOVS
it has an accuracy of the same order as the seasonal amplitude of atmospheric CO2 (ap-
proximately 10 ppm) (Engelen & Stephens 2004) and the vertical sensitivity is largest
in the mid-troposphere, making surface flux estimations have a large uncertainty. Ad-
ditionally, regional biases cause the inferred fluxes to be not useful for biogeochemical
analysis (Chevallier et al. 2005b).

The next generation of satellites that were capable of measuring CO2 were launched
in 2002. The SCanning Imaging Absoprtion spectroMeter for Atmospheric CHartog-
raphY (SCIAMACHY) instrument, launched onboard the ENVISAT satellite in March
2002, is a passive ultraviolet (UV) - visible (VIS) - near infrared (NIR) hyper-spectral
spectrometer designed to investigate tropospheric and stratospheric composition and pro-
cesses with a nadir instantaneuos field of view (IFOV) of 60 x 30 km2 at the ground
(Barkley et al. 2006, Bovensmann et al. 1999). Observations of CO2 were retrieved from
the 1.57 µm radiance channel (Barkley et al. 2006a, Buchwitz et al. 2005) and have
been shown to follow the CO2 seasonal cycle, but with a bias of approximately 4% and
standard deviation of about 3% to in-situ observations (Barkley et al. 2006b). The rela-
tive accuracy and precision were both determined to be 1-2% for monthly averages for
approximately a 7◦ x 7◦ footprint (Schneising et al. 2008). CO2 retrieved from SCIA-
MACHY observations were unable to meet the 1% precision required for a 8◦ x 10◦

footprint to improve upon surface network measurements (Barkley et al. 2006). The dif-
ferences between SCIAMACHY column average dry air mole fraction of CO2 (XCO2)
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with ground based observations and model data were attributed to the low variabilty of
global CO2 distribution, and the inherent difficulties in retrieval algorithms to be able to
account correctly for light scattering caused by clouds and aerosols (Houweling et al.
2005).

The SCIAMACHY instrument is most sensitive to CO2 concentrations near the bound-
ary layer due to it measuring in the near infrared (NIR) wavelength range. This sensitivity
can be expressed by an averaging kernel, which indicates how sensitive a retrieval algo-
rithm is to the true atmospheric profile for different altitude ranges. Figure 2.10 illustrates
how the averaging kernel for SCIAMACHY peaks close to the boundary layer.

FIGURE 2.10. SCIAMACHY NIR averaging kernels from the Full Spectral Initia-
tion (FSI) CO2 retrieval algorithm for a range of SZA using a spectral window of
1561.03 to 1585.39 nm and albedo of 0.2 (left), with the mean averaging kernel
given by the black dashed line. The normalised mean weighting function of AIRS
which observes in the TIR spectral range is given (right) for comparison. Figure

taken from Barkley et al. (2006).

Figure 2.10 also gives the averaging kernel of another instrument which is sensitive
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broadly thoughout the troposphere, peaking at 12 km in the tropics (Barkley et al. 2006).
This instrument, the Atmospheric Infrared Sounder (AIRS) instrument, was launched in
May 2002 onboard NASA’s AQUA satellite and is a high spectral resolution spectrom-
eter that measures radiances in the TIR wavelength range (3.7-15.4 µm) with an IFOV
of roughly 13.5 x 18 km2 at nadir. AIRS radiances have been assimilated directly into
the European Centre for Medium-Range Weather Forecasts (ECMWF) four-dimensional
variational (4D-Var) system, allowing tropospheric CO2 to be estimated (Engelen et al.
2004). However, due to atmospheric mixing in the upper troposphere, the CO2 concen-
trations estimated from AIRS are quite zonal and can only provide information about
broad features of surface fluxes (Chevallier et al. 2005a).

Similarly, the Infrared Atmospheric Sounding Inteferometer (IASI) and Advanced
Microwave Sounding Unit (AMSU), launched together onboard the European MetOp
platform in October 2006, can be used to retrieve CO2 in the upper troposphere using
the TIR wavelength range. Although these instruments provide accurate tropospheric
CO2 concentrations (0.5% monthly for a 5◦ x 5◦ footprint) they give little information on
surface fluxes (Chevallier et al. 2005a, Crevoisier et al. 2009).

Studies have revealed that retrievals of CO2 in the NIR exceed the performance of
those in the TIR and provide more lower tropospheric information, provided the atmo-
spheric scatterers are properley constrained (e.g. Christi & Stephens 2004). Furthermore,
using the combination of the 1.61 and 2.06 µm NIR CO2 bands with the 0.76 µm O2 A
band can provide precisions of 0.3-2.5 ppm when the scattering optical depth is less than
0.3 (Kuang et al. 2002). Encorporating the above, the latest generation of satellite in-
struments, launched in 2009, enable CO2 to be estimated from observed radiances in
these three bands. The NASA Orbiting Carbon Observatory (OCO) satellite consisted
of a grating spectrometer designed to measure these bands (Connor et al. 2008). Unfor-
tunately, during the launch of the OCO satellite, in February 2009, it failed to reach its
desired orbit so no observations were possible. However, the Japanese Greenhouse gases
Observing SATellite (GOSAT) was successfully launched into orbit in January 2009 to
become the first satellite with the potential to allow CO2 to be inferred within the required
precision (JAXA 2009).
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2.6 GOSAT

2.6.1 Overview

GOSAT was successfully launched on the 23rd January 2009 by JAXA’s H-IIA rocket
and was the first dedicated greenhouse gas satellite (JAXA 2009). Onboard GOSAT is the
Thermal And Near-infrared Sensor for carbon Observation (TANSO) that is comprised
of two instruments; a Fourier Transform Spectrometer (FTS) that is used to measure
greenhouse gases, and a Cloud and Aerosol Imager (CAI) that provides information
about the scene, such as cloud and aerosol quantities. Both instruments are kept looking
towards the Earth’s geocentric direction by a three-axis attitude control system. The
power required for this as well as the sensor operation is gained from two solar panels that
face the Sun. The satellite has a Sun synchronous orbit, optimising the power supply, and
is quasi-recurrent with 14 + 2/3 revolutions per day (Kuze et al. 2009). GOSAT provides
global measurements of total column CO2 from its SWIR bands and of mid-tropospheric
sub-columns from its TIR band.

The GOSAT project was developed jointly by the Japan Aerospace Exploration Age-
ncy (JAXA), the National Institute for Environmental Studies (NIES) and the Ministry
of Environment (MOE). Its primary aim was to estimate emissions and absorptions of
greenhouse gases with an increased accuracy on a sub-continental scale and to provide
the environmental administration with an assessment of forest carbon balances, regional
emissions and absorptions (JAXA et al. 2008). Research using GOSAT may provide
an increased understanding of the global distribution and temporal variations of green-
house gases. This could develop our knowledge of the carbon cycle on a global scale
and its influence on the climate, which is essential for the prediction of climate change
and its possible impacts. Additionally, it aims to lead to new developments in both Earth
observation satellite measurement techniques and the approach of greenhouse gas mea-
surements.

Studies have indicated (e.g. Kadygrov et al. 2009) that the assimilation of GOSAT
observations into inverse models may provide an uncertainty reduction greater than that
of surface networks alone and a larger improvement when both are assimilated (see
Figure 2.11). Furthermore, the regional reduction in uncertainty has been assessed (see
Figure 2.12 for example) and has shown large improvements over South America, Africa
and Asia (Kadygrov et al. 2009).
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FIGURE 2.11. Comparison of global CO2 flux uncertainties and standard deviation
of monthly mean observations of XCO2 estimated for the assimilation of existing
ground based measurement stations (dashdotted line), GOSAT (solid line), GOSAT
and ground based stations (dashed line), and a 50% reduction level of existing total

flux uncertainties. Figure taken from Kadygrov et al. (2009).
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FIGURE 2.12. Annual CO2 flux uncertainty reduction of GOSAT observations with
1.8 ppm precision for monthly mean and systematic error of 1 ppm. Figure taken

from (Kadygrov et al. 2009).
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2.6.2 Instruments

2.6.2.1 TANSO-FTS

TANSO-FTS comprises of three units; an electronic circuit unit, a control unit and an op-
tical unit. The electronic unit is composed of a main and a redundant digital processing
circuit that functions as a data processor, data-telemetries-commands-transmission inter-
face with the satellite bus system and includes the temperature controller. The control
unit acts as a controller for the cooling machine, the electronic cooling machine, the op-
tical path switcher and solar irradiance diffusing board. It also functions as a driver and
controller of the interferometer and the pointing mechanism. The optical unit contains
the pointing mechanism (with redundancy), the blackbody diffusing board, the solar ir-
radiance diffusing mechanism, the optical path switcher, monitoring camera, Fourier
interferometer, relay and band splitting optics, the detector optics, analogue processing
circuit and the cooling machine (Kuze et al. 2009).

The interferometer, based on the original Michelson interferometer (Michelson &
Morley 1887), is a device that can split a beam of radiation into two separate paths and
then recombine these after a path difference has been introduced. This creates a condition
whereby interference between the two beams can occur. The intensity variations of the
resulting beam is measured as a function of path difference by the detector.

The interferometer used by TANSO-FTS is of double pendulum type as shown in
Figure 2.13. It uses corner cube mirrors which are statically aligned with each other
and the rotary motor to maximise modulation efficiency with the minimum optical shear
(Kuze et al. 2009). These are attached to a swing arm that is moved by the rotary motor
with less than 1% speed stability, creating uniform frequency of the output modulated
signal (Kuze et al. 2009). A rotary speed of four seconds is required in order to achieve
a small enough sampling of the electrical bandwidth and the necessary signal to noise
ratio (SNR). This is used as the nominal time for interferogram acquisition, although
TANSO-FTS is also capable of faster scanning modes that allow denser observations but
at the expense of SNR (Kuze et al. 2009).

Between the mirrors is a beamsplitter, where a beam of radiation from an external
source can be partially reflected to one mirror and partially transmitted to the other mir-
ror. Once reflected from the mirrors both beams return to the beam split and are partially
reflected, transmitted and interfere. Due to the effect of interference, the intensity of the
beam at the detector depends on the optical path difference (OPD) of the two beams.
The OPD created are ± 2.5 cm, four times as long as the mechanical motion, and are
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FIGURE 2.13. TANSO-FTS instrument design showing the major optic components
and optical path. Figure taken from Kuze et al. (2009).

obtained to make both the real and imaginary spectra for suitable phase correction (Kuze
et al. 2009).

The width of the beam splitter was selected to be larger than the maximum OPD to
try to reduce the effects of channelling, which is caused by multiple reflections at the
band separation optics (Kuze et al. 2009). The resulting light is reflected from a collect-
ing mirror towards a circular slit, which due to its physical geometry forces the different
spectral bands to be adequately aligned. The circular slit’s geometry was designed to
provide the maximum efficiency while maintaining within the maximum IFOV diver-
gence for band 2 for 0.2 cm−1 spectral resolution (Kuze et al. 2009). This defines the
IFOV to be 15.8 mrad, equivalent to 10.5 km projected onto the surface of the Earth
(Kuze et al. 2009). The narrowed light passes to a collimating mirror and is then split
through dichroic filters for each band in series. To minimize the background TIR, these
filters transmit longer wavelength light and reflect shorter wavelength light. This min-
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imises the polarization sensitivity of the shorter wavelengths which then travel though a
narrow band-pass filter. These are divided by a beam splitter into two polarizations, par-
allel (P) and perpendicular (S), that are then measured by two detectors. The band-pass
filters are fixed to reduce channelling, to decrease stray light and to discard shorter wave-
length light to evade aliasing (indistinguishable signals). While band 1 is measured by
two Silicon detectors, both bands 2 and 3 are measured using Indium Gallium Arsenide
(InGaAs) detectors that are non-biased and cooled to -40 ◦C using thermoelectric coolers
which minimises dark currents. The TIR light is observed by a Photo-Conductive (PC)
Mercury Cadmium Telluride (HgCdTe) (MCT) detector that is cooled to 70 K using a
pulse tube cooler with low vibration, which does not influence the interferogram (Kuze
et al. 2009).

FIGURE 2.14. Example interferogram data. Figure obtained from JAXA et al.
(2008).

The interferogram is essentially the interference pattern of the two beams recorded as
the OPD changes, and an example of this is shown in Figure 2.14. The measured spectral
radiances are obtained by inverse Fourier transforming the interferograms and provide
information of absorption in the atmosphere. Figure 2.15 shows example radiances for
each of the GOSAT spectral bands.
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FIGURE 2.15. Example TANSO-FTS radiances for each spectral band with the main
atmospheric gases that absorb radiation within those bands shown. Figure taken

from JAXA et al. (2008).
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2.6.2.2 TANSO-CAI

TANSO-CAI consists of an electronics unit and an optics unit with the aim to observe
radiances which could allow different aerosol types and optical thicknesses to be derived.
The electronics unit functions as a data processor and command interface with the satel-
lite. The optics unit has three telescopes covering four spectral bands; 0.380± 0.005 µm
(band 1), 0.674 ± 0.005 µm (band 2), 0.870 ± 0.005 µm (bands 3), and 1.600 ± 0.01
µm (band 4). These bands were chosen specifically to avoid water vapour and oxygen
absorption, as well as to provide information on polarisation which can not be obtained
by the observing angles due to TANSO-CAI being very close to nadir (Kuze et al. 2009).
Additionally, each spectral band was selected to provide useful information; band 1 can
observe aerosols over land where the albedo is small, bands 2 and 3 are shorter/longer
than the red-edge where reflectance of vegetation changes, and band 4 gives measure-
ments in the same spectral region as the CO2 in TANSO-FTS band 2. TANSO-CAI has
a wide swath of ± 36.1◦ with continuous spatial coverage and higher spatial resolution
than TANSO-FTS providing sub-pixel information, such that it can detect clouds and
aerosols outside of the TANSO-FTS field of view (Kuze et al. 2009).

2.6.3 Observation Modes

GOSAT TANSO-FTS nominally performs a cross-track scanning pattern (see Figure 2.16)
where the number of lattice points can be varied from one to nine points per one cross-
track scan, with five points being normal (Kuze et al. 2009). Additionally, it can measure
in a specific observation mode which provides targeted observations for validation and
experimental purposes. It can also measure over the ocean using the sun glint mode,
aiming where the Sun light is reflected off of the waves of the ocean causing the radiance
to be very high. However, this can only be measured at certain solar zenith angles which
vary with latitude depending on the season. This overcomes the difficulty of measuring
SWIRs over the ocean that have very low albedo, hence a low radiance and low signal-
to-noise ratio (SNR). TANSO-FTS also applies a signal amplification factor (gain) to
the SWIR signals to amplify the signal to an appropriate voltage to compensate for high
and low intensities. It has the option of three gain levels; low, medium and high. Nor-
mally the high gain is used due to most land surfaces having a low albedo, however the
medium gain is applied over high albedo regions such as deserts. The fourth instrument
channel measures the TIR region that allows vertical profiling over both land and ocean.
SWIRs can only be measured in day time since it depends on reflected sun light, but
TIR measurements are made throughout both day and night time, as the Earth will ra-
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diate TIR from the surface. The instrument uses a solar irradiance (light directly from
the Sun) calibration for the SWIR observations and a blackbody calibration for the TIR
observations. It also performs deep-space and lunar calibrations for both SWIR and TIR
bands (Kuze et al. 2009). Furthermore, the specific observation mode has been utilised
for vicarous calibration of both TANSO-FTS and TANSO-CAI by aiming at the Railroad
Valley Desert in Nevada, USA (Kuze et al. 2011).

FIGURE 2.16. Diagram illustrating the observation points of TANSO-FTS in 5-point
mode for one scene over Australia during April 2009.
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2.7 Current Operational Performance

GOSAT has generally performed as expected during its current lifetime, however a cou-
ple of issues have arisen. The solar diffuser is used to calibrate the spectral radiances
observed by TANSO-FTS with the irradiance from the Sun. Unfortunately, degradation
of the solar diffuser has been found, see Figure 2.17. Since all TANSO-FTS spectral
radiances rely on the solar diffuser for signal calibration a correction would be required
for this. Until recently, a preliminary radiometric factors were provided by NIES to try
to compensate for the degradation. However, Yoshida et al. (2012) provides a more ac-
curate method of correction, but this has not been applied to the results shown in Chapter
4.

FIGURE 2.17. Solar diffuser degradation factor for each TANSO-FTS spectral band
and polarisation.

Secondly, instability has been found in the pointing mirror of TANSO-FTS leading
to the location of the observed points being incorrect. Microvibrations in the pointing
mirror increase towards larger pointing angles causing the outermost observation points
to become most affected with cross-track pointing being up to approximately 1 km incor-
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rect in some cases (Kuze et al. 2011). This is further complicated as the pointing mirror
also rotates along-track causing the outermost cross-track points to be at a larger angle.
Additionally, the pointing mirror reverses in the cross-track direction at the outermost
points, causing these points to be increasingly succeptable to unstable movements, with
errors in the IFOV location of up to about 10 km (Yoshida 2011). The pointing error
was preliminarily analysed by JAXA by comparing onboard camera (CAM) images with
TANSO-FTS locations. The amplitude of the offset and the variability was found to be
substantially reduced when using three cross-track points, rather than five points, likely
due to the pointing mirror being moved by smaller angles. Therefore, after August 2009
the nominal observation mode was changed from five to three points. The pointing error
has been investigated by NIES and a separate product (simplified L2 Input Data Sets) has
only recently been made available in 2012 which includes corrected geolocation data.

Also, a non-linear response of the band 1 detector to the intensity of incident radiation
was found recently (Frankenberg et al. 2011a) and is currently being characterised and
calibrated for (Crisp et al. 2012, Suto et al. 2011). Additionally, Frankenberg et al.
(2011a) found GOSAT observes fluorescence lines in the O2 A band. The latest TANSO-
FTS Level 1B datasets (130.130C, 141.141C, and 150.150C) released by NIES include
corrections for the band 1 detector.
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2.8 Summary

Although previous satellites have successfully provided global spatial and temporal trends
in CO2, their designs were not suited to the precision required to allow surface flux in-
versions to resolve sources and sinks of CO2 on a sub-continental scale. Both OCO and
GOSAT were specifically planned to meet this need, and with the successful launch of
GOSAT there is currently a satellite that could potentially allow precise CO2 measure-
ments to be inferred. The next chapter describes a new retrieval algorithm developed to
retrieve CO2 from GOSAT observations.
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Chapter 3

Retrieval of Atmospheric CO2 from
GOSAT

3.1 Algorithm Overview

The University of Leicester Full Physics (UoL-FP) retrieval algorithm was developed
to infer column-averaged dry air mole fractions of CO2 (XCO2) from GOSAT SWIR
measurements. UoL-FP retrieval utilises the algorithm developed for the NASA Orbit-
ing Carbon Observation (OCO) mission (Boesch et al. 2006, 2011, Connor et al. 2008,
Crisp et al. 2012, Parker et al. 2011), which was lost due to a launch vehicle malfunc-
tion (Boesch et al. 2011). The UoL-FP algorithm and the algorithm used for the NASA
Atmospheric CO2 Observations from Space (ACOS) project and the NASA OCO-2 mis-
sion (Crisp et al. 2012, O’Dell et al. 2012), are two parallel developments based on the
OCO algorithm and thus both algorithms follow a similar retrieval strategy. While the
UoL-FP algorithm utilises the OCO algorithm, the ACOS algorithm is a re-development
of it such that the implementation of both algorithms are independent of each other. Both
retrieval algorithms differ in their definition of the state vector, a priori values, and a pri-
ori covariances, especially in the treatment of aerosols and cirrus clouds. There are also
differences in spectroscopy, sounding selection methods, and post-screening criteria. All
of these aspects can lead to differences in algorithm performance and XCO2.

The UoL-FP retrieval algorithm comprises of a pre-processing algorithm, a cloud-
screen, a post-processing algorithm and the OCO Level 2 Full Physics retrieval algorithm
which has been modified to be used with GOSAT observations. This chapter provides de-
tails of the UoL-FP retrieval algorithm design and how XCO2 can be accurately retrieved
from GOSAT SWIR radiances.
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3.2 Retrieval Algorithm

The key problem of retrieving CO2 from measured SWIR spectra is that the discrete mea-
surements are a function of many parameters (e.g. CO2, H2O, CH4, albedo, temperature,
pressure, and aerosols) that we may or may not accurately know, creating an undercon-
strained situation with no unique solution. It is therefore necessary to use additional
prior information to constrain the solution to be realistic compared to real atmospheric
observations. An explanation of the relevant aspects of retrieval theory are given in this
section and a detailed description is given in Rodgers (2000). A brief overview of this
module, illustrating the main aspects involved, is shown in Figure 3.1.

The UoL-FP algorithm has been designed to accurately retrieve XCO2 from SWIR
spectra by simulateneously fitting the 0.76 µm O2 A band, the 1.61 µm and the 2.06 µm
CO2 bands (Boesch et al. 2006, 2011, Connor et al. 2008). The algorithm employs the
inverse method, where an iterative retrieval system based on Bayesian optimal estimation
(maximum likelihood estimation) fits the simulated spectral radiance to the measured
spectral radiance in order to infer XCO2 (Rodgers 2000). The OCO algorithm has been
modified to perform retrievals of XCO2 from each of the GOSAT SWIR bands using the
wavelength ranges of 0.7575-0.7722 µm, 1.5880-1.6231 µm, and 2.0399-2.0833 µm.

The simulated spectral radiance is derived using a forward model that uses solar, ra-
diative transfer, and instrument models to simulate the spectral radiance of a scene based
on a set of parameters, known as the state vector, with initial a priori values. The low-
streams interpolation functionality (O’Dell 2010) is used to accelerate the Linearized
Discrete Ordinate Radiative Transfer model (LIDORT) (Spurr et al. 2001) which is com-
bined with a fast 2-orders-of-scattering vector radiative transfer code (Natraj & Spurr
2007).
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FIGURE 3.1. Overview of the retrieval module used in the UoL-FP retrieval algo-
rithm.
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3.3 The State Vector

The state vector gives the retrieved parameters and consists of a 20-level profile of CO2

volume mixing ratio (VMR) and 20-level logarithmic extinction profiles of cirrus and
two aerosol types. The number of profile levels chosen provides a compromise between
retrieval accuracy and computational speed. In addition, the state vector includes mul-
tiplicative scaling factors for CH4 VMR and H2O VMR, an additive offset for a tem-
perature profile, surface pressure, surface albedo, spectral albedo slope, and spectral
shift/stretch. An additive O2 A band intensity offset is also retrieved to mitigate the
effects of fluorescence and the GOSAT Band 1 non-linear response to the intensity of
incident radiation, that is currently being characterized and calibrated (Crisp et al. 2012,
Frankenberg et al. 2011a, Suto et al. 2008). The state vector structure presently consists
of 97 state vector elements as shown in Table 3.1.

Table 3.1. State Vector for CO2 retrievals

Description Parameters Number of Elements

Aerosols 3 x 20 levels 60
CO2 20 levels 20

Albedo 2 x 3 bands 6
Dispersion 2 x 3 bands 6

Zero-Level Offset Scalar 1
Surface Pressure Scalar 1

Temperature Scalar 1
Water Vapour Scalar 1

CH4 Scalar 1
Total 97

The UoL-FP retrieval algorithm includes a pre-processing stage that generates all the
a priori values needed for retrievals and applies any neccesary calibrations to the GOSAT
measurements. These a priori values are used firstly in the cloud screen and then in the
CO2 retrievals. The cloud screen is based on an O2 A band retrieval of surface pressure
and is explained in detail in Section 3.21. The O2 A Band retrieval has a state structure
of 5 elements; surface pressure, albedo scaling, albedo slant, spectral shift and spectral
stretch. The retrievals for CO2 are then performed on only cloud screened exposures
and use a state structure that represents the atmosphere, surface and instrument (see
Table 3.1). The results from these CO2 retrievals are gathered together and subjected

71



to a post-processing stage, which essentially applies a post-screen to the results to only
keep retrievals which performed well, see Section 3.22. An overview of the algorithm
is given by Figure 3.2, showing the main steps involved to infer XCO2 from GOSAT
observations.

FIGURE 3.2. Overview of the UoL-FP retrieval algorithm, providing the flow of in-
formation passing between different steps of the algorithm. These steps are grouped
into four main modules; the pre-processing, cloud-screen, CO2 retieval and post-

processing modules.
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3.4 Forward Model

The forward model simulates spectra based on the state vector, x, that comprises of n
parameters, such as temperature, pressure and volume mixing ratios that are retrieved.
The measurement vector, y, represents a set of m measurements and can be related to the
state vector by

y = F(x,b) + e (3.1)

where the vector y is the measurement containing GOSAT radiances with measurement
error e, the foward function F represents the relationship between the measurement vec-
tor and state vector, and the forward function parameter, b, represents all non-retrieved
parameters that are used in the forward model but are assumed to already be accurately
known.

The forward model consists of three major modules; a radiative transfer (RT) model,
a solar model, and an instrument mode. The solar model described in Boesch et al.
(2011) was used, which provides a high-resolution empirical list of absorption lines for
the full solar disk. It includes over 20,000 absorption lines with their corresponding
frequency, strength and doppler width. The solar spectrum is obtained by calculating the
Planck function for the Sun and multiplying with the listed solar absorption lines. The
continuum radiance of the solar model is based on a polynomial fit to the NIR range of
the extra-terrestrial solar spectrum acquired by the SOLSPEC instrument (Thuillier et al.
2003). The solar model is assumed time independent but allows the continuum radiance
to be adjusted by the Earth-Sun distance. Figure 3.3 shows the solar continuum with
solar absorption lines for each SWIR band retrieved.

FIGURE 3.3. The solar continuum and solar absorption lines of each SWIR band
used in the UoL-FP retrieval algorithm.

The RT model calculates the transfer of radiation throughout the beam path based on
a priori information for atmospheric and surface parameters. It uses the LIDORT model
which simulataneously derives backscatter intensities for a plane parallel, multi-layered,
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multiple-scattering atmosphere at arbitrary elevation angles and a set of atmospheric vari-
ations. The computational speed of the RT model was increased by using two orders of
scattering and the low-streams interpolation functionality (O’Dell 2010). This computes
low accuracy line-by-line RT calculations which are corrected by an error curve derived
from the computation of both low and high accuracy RT calculations for a number of
wavelengths throughout the bands.

For absorption within the Earth’s atmosphere, the RT model utilises tabulated spec-
troscopic parameters for each trace gas. CO2 and O2 include line-mixing and are taken
from v3.2 of the OCO linelists (Crisp et al. 2012), whereas CH4 and H2O are from the
TCCON linelists (Wunch et al. 2011a). These are based on HITRAN08 (Rothman et al.
2009) with updates to CO2 (Toth 2005), H2O (Toth et al. 2008, Jenouvrier et al. 2007)
and CH4 (Frankenberg et al. 2011b). The absorption lines and strengths are applied to
the solar spectrum using Voigt line shapes.

The instrument model is used to generate noise and intensity and different wave-
lengths with respect to the instrument line shape (further discussed in Section 3.19),
using a priori information of the instrument parameters.
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3.5 Jacobian

Measurements are typically non-linear, so linearisation of the forward model about some
reference state, x0, is required to be able to examine the information content within a
measurement. Providing that the forward model is linear within the error bounds of the
retrieval, Equation 3.1 can be linearlised to get

y − F(x0) =
∂F(x)

∂x
(x− x0) + e (3.2)

where the partial derivative dF/dx denotes the sensitivity of the Forward model to the
change in the state vector, x. This quantity is known as the Jacobian, K, and is a matrix
consisting of m forward model elements (number of measurements) with respect to n
state vector elements (number of parameters retrieved). Thus if there are more elements
in the measurement vector than unknowns in the state vector (m>n) then the retrieval can
be described as over-constrained. Similarly if there are less elements in the measurement
vector than unknowns in the state vector (m<n) then the retrieval is under-constrained.
The state vector is described in detail in Section 3.3.

An example of the partial derivatives of each state vector element is given in Figures
3.4, 3.5 and 3.6, which were calculated during a CO2 retrieval from GOSAT for the 4th
September 2009 over Lamont/USA. Figure 3.4 gives the Jacobians of CO2, aerosols and
cirrus for each atmospheric retrieval level and wavelength retrieved. The Jacobian for
CO2 is large in the 1.61 and 2.06 µm bands, specifically where CO2 absorption lines
occur, and zero in the O2 A band where no CO2 absorption occurs. Additionally, the
Jacobian for CO2 remains large throughout the atmospheric profile. The aerosol/cirrus
Jacobians show some sensitivity to all absorption lines (O2, H2O, CO2, etc) in all three
wavelength bands. The aerosol Jacobian is larger towards lower atmospheric levels,
whilst the cirrus Jacobian is only sensitive at about 200 hPa, reflecting the optical depth
at each level.

Figure 3.5 shows the Jacobians of surface pressure, temperature, H2O, CH4 and O2 A
band zero level intensity offset for the same example retrieval. The Jacobian of surface
pressure shows sensitivity to absorption lines, whilst the temperature scalar Jacobian
appears inversely proportional to all absorption lines. The Jacobian of the H2O scale
factor relates to water vapour absorption lines, thus there is no sensitivity in the O2 A
band. Similarly, there are no CH4 absorption lines in the O2 A band, so the Jacobian of
the CH4 scale factor only corresponds to CH4 absorption lines in the 1.61 and 2.06 µm
bands. The zero level offset Jacobian only relates to the O2 A band where this intensity
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offset is retrieved.

The albedo, albedo slope and dispersion shift/stretch Jacobians for the example re-
trieval are shown in Figure 3.6. The albedo Jacobian is zero for all bands, showing no
sensitivity of the foward model to a change in albedo, since albedo acts to change the
overall intensity of each band and is not related to absorption. The albedo slope changes
the intensity and absorption across each band, so the Jacobian therefore shows sensitiv-
ity to all absorption lines and varies in sensitivity across each band. The dispersion shift
represents the wavelength shift needed for the Forward model to match the measured
spectra. Since the pre-processing module adjusts the wavenumbers of the GOSAT mea-
sured spectra to match a well known Solar absorption line, the dispersion shift will not
change much during a retrieval. Thus, the Jacobian of the dispersion shift is zero in all
bands. However, the dispersion stretch is also retrieved and the Forward model will be
sensitive to any variations of this as it can cause corresponding modelled and measured
absorption lines to differ in wavelength, as illustrated by the Jacobian.
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FIGURE 3.4. Example of the Jacobians of CO2, aerosols and cirrus profiles for
each SWIR band retrieved, with the measured signal from GOSAT given in the top
panels for reference. The profile levels are shown using different colours, where
red represents the boundary layer and black represents the top of the atmosphere.
This retrieval was from GOSAT SWIR radiances for the 4th September 2009 over

Lamont/USA and passed all screens.
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FIGURE 3.5. Example of the Jacobians of surface pressure, temperature, H2O, CH4

and O2 A band zero level intensity offset. This retrieval was from GOSAT SWIR
radiances for the 4th September 2009 over Lamont/USA.
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FIGURE 3.6. Example of the Jacobians of albedo, albedo slope and dispersion
shift/stretch. This retrieval was from GOSAT SWIR radiances for the 4th September

2009 over Lamont/USA.
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3.6 Inverse Method

In an under-constrained retrieval scenario there are less measurements than unknown
state vector elements. This can be constrained using a priori information.

In an over-constrained retrieval case there are more measurements than unknown
state vector elements, but even in an ideal situation the extra measurement information
does not provide any new information to the retrieval. It is more likely in reality that
there would be no solution that agrees with all of the measurements, since each will have
an error associated with it. Whether under or over-constrained, an optimal estimation
approach may be used to find the best solution.

3.7 Optimal Estimation

Optimal estimation uses an a priori estimate of the state vector to constrain the retrieval
to find reasonable solutions, which might not be possible from only the measurements.
Since this does not obtain a unique solution, the optimal solution can be gained by two
possibilities; the most probable state where dP(x,y)/dx=0 or the expected state, x̂, which
is the mean state averaged over its probability density function (PDF)

x̂ =

∫
xP(x | y) dx (3.3)

Assuming the probability fits a Gaussian model, hence the PDF is symmetric about its
maximum, the most probable state equals the expected state.

The most probable state is determined by minimising the cost function. The cost
function represents the different minimum costs yielded by optimising the difference
between the measured and modelled spectra as well as the difference between the state
vector and the a priori. The cost function can be written as

X2 = (y −Kx)TSy
−1(y −Kx) + (x− xa)TSa

−1(x− xa) (3.4)

where xa is the a priori estimate of the state vector. The most probable state can then be
expressed as

x̂ = xa + (KTSy
−1K + Sa

−1)−1KTSy
−1(y −Kxa) (3.5)
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3.8 Iterative Approach

The most probable state found might be far from the true solution. To reach a state
closer to the truth an iterative approach can be used, with each iteration re-running the
forward model but with priori information gained from the previous iteration. This priori
information is most likely to be closer to the true solution and would result in the forward
model producing a state closer to the truth. However, that may not always be the case.
Therefore, to attempt to obtain a solution closer to the truth the Gauss-Newton scheme
(Rodgers 2000) is used to force the state to significantly change to find a state closer to
the truth. This iterative approach minimises the cost function, such that for each iteration
step the foward model is used to re-calculate the Jacobians and the modelled spectra.
Assuming the retrieval is not too non-linear the Gauss-Newton iteration solution can be
given as

xi+1 = xi+
[
Sa
−1 + Ki

TSe
−1Ki

]−1 [
Ki

TSe
−1 (y − F (xi))− Sa

−1 (xi − xa)
]

(3.6)

where the first iteration, x0, is set to the a priori state vector, xa. However, if the solution
is too far from the true solution or if the retrieval is too non-linear then the Gauss-Newton
method becomes inadequate. In this scenario the Levenberg-Marquardt method (Rodgers
2000) is included whereby an adjustable factor, γ, is used to minimise the cost function.
The iteration is then

xi+1 = xi+
[
(1 + γ)Sa

−1 + Ki
TSe

−1Ki

]−1 [
Ki

TSe
−1 (y − F (xi))− Sa

−1 (xi − xa)
]

(3.7)
After each iteration γ is either increased or decreased by an arbitrary factor depending on
the cost function. If the cost function increases then γ is increased and the same iteration
is re-attempted. Whereas if the cost function decreases then γ is decreased, the state
vector is updated, and the next iteration is performed. This process continues until the
retrieval converges.

3.9 Convergence

At the end of an iteration three tests are performed. First, the updated cost function plus
the previous cost function is compared to the cost function forecast plus the previous cost
function to give a ratio, as described in Section 3.8. If this ratio is < 0.25 then the model
has diverged away from the measurement and the iteration is repeated with an increased
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γ factor. If the ratio is between 0.25 and 0.75 then the model has become closer to the
measurement but not close enough so another iteration is performed. If the ratio is >
0.75 then the model and measurement are said to have converged (Rodgers 2000). The
second test of convergence compares the error variance derivative (dσ2) with the dσ2 of
the previous iteration. If the difference is less than or equal to the number of state vector
elements then convergence is achieved, otherwise iterations are continued. The error
variance derivative is expressed as

dσ2
i = dxi+1

TŜ−1dxi+1 (3.8)

where the covariance of the retrieved state is given by Ŝ. Both of these tests must be
passed for the retrieval to actually converge. The third test computes the χ2 of the fit to
check quantitively how good the model compares to the measurement. If the normalised
χ2 is less than 1 then it is a good fit, between 1 and 10 is a reasonable fit, and greater
than 10 is a poor fit (Rodgers 2000). However, the normalised χ2 is also dependent on
the assumptions of noise.

Upon convergence the retrieved XCO2 can be resolved as

XCO2 = hTx̂ (3.9)

where the pressure weighting operator, h, has elements of zero for all non-CO2 elements.

The averaging kernel expresses the ability of the retrieval to constrain the true state,
hence how sensitive the algorithm is to the truth throughout the atmosphere, and is de-
fined as

A =
dx̂

dx
= SKTSeK (3.10)

where S is the a posteriori error covariance, which provides a measure of the estimated
accuracy of the solution and is given by

S = (KTSeK + Sa
−1)−1 (3.11)

The column averaging kernel can then be calculated as

aT = hTA (3.12)

where an averaging kernel with a value of 1 is good and 0 is bad. Additionally, the XCO2

error variance is computed by
σ2
XCO2

= hTSh (3.13)
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3.10 Covariance Matrix

The covariance matrix defines the correlation and constraint of a state vector element
within the retrieval scheme. Sy is the measurement error covariance matrix where the
diagonal elements are the variances of the individual elements of y and the off-diagonal
elements give the covariance between the different elements of y. Similarly the covari-
ance of the a priori data can be given by the covariance matrix Sa.

For all retrievals a single a priori covariance matrix has been used, with a column
variabiltiy of 12 ppm for CO2 (based on global estimates of Dufour & Breon (2003))
which decreases with altitude, by∼10% at the boundary layer to∼1% in the stratosphere
(see Figure 3.7). For surface pressure a standard deviation of 4 hPa was used to allow for
more difficult topographies. To account sufficiently for the expected large variability of
aerosols and cirrus clouds, the profiles were given a large flexibility with a covariance of
50 times the 1-σ uncertainty for each atmospheric level (see Figure 3.8).

FIGURE 3.7. CO2 covariance used for all retrievals of XCO2. Zero represents the top
of the atmosphere and 20 represents the boundary layer.
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FIGURE 3.8. Aerosol/cirrus covariance of 50 times the 1-σ uncertainty. Zero repre-
sents the top of the atmosphere and 20 represents the boundary layer.

3.11 Theoretical retrieval assessment of GOSAT
and OCO

To assess the potential of retrieving XCO2 from GOSAT SWIR bands, scenes were simu-
lated and retrieved for different surface types and SZAs using the OCO Level 2 retrieval
algorithm (Boesch et al. 2006), with the instrument model based on pre-flight infor-
mation of GOSAT. A non-apodized sinc-function was used to simulate the ILS for an
OPD of 2.5 cm and field of view (FOV) of 15.8 mrad. This relates to a full-width-
half-maximum (FWHM) of 0.35 cm−1 for band 1 and 0.27 cm−1 for bands 2 and 3 of
TANSO-FTS. The noise has been calculated for each band by using the SNR values
given in Suto et al. (2008), for an albedo of 0.3 and SZA of 30◦.

Figures 3.9 and 3.10 show the XCO2 averaging kernels and retrieval errors, respec-
tively, for different simulated scenarios. XCO2 error gives the expected error of XCO2

retrievals, which is found to be less than ∼1.5 ppm over all surfaces, except over snow
and ocean in nadir where the error is in the order of 1-2%. However, GOSAT measures
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over the ocean with the Sun-glint mode where the errors are low. Therefore, it is ex-
pected that GOSAT will not provide useful measurements of XCO2 over areas of inland
water where nadir mode is used, and over regions with snow cover (such as mountains,
poles, and seasonally high latitudes). The averaging kernels describe the sensitivity of
the instrument and retrieval algorithm to retrieve XCO2 at different altitudes. The aver-
aging kernels peak near the surface and remain high throughout the troposphere, hence
the XCO2 near the boundary layer is retrieved which will provide important insight into
the source and sinks of CO2 over land.

Similarly, Figures 3.11 and 3.12 show simulated averaging kernels and expected
XCO2 error for the OCO instrument for a variety of surface types. The averaging kernels
of OCO are very similar to that of GOSAT, however OCO is more sensitive at higher
SZAs over snow surfaces than GOSAT. The XCO2 error of GOSAT is in general higher
than OCO (e.g. ∼0.5 ppm larger for conifer/vegetation), although ocean (Sun-glint) and
desert surfaces show similar XCO2 errors as OCO. Also, GOSAT shows much higher
XCO2 errors (∼2 ppm larger) over snow and ocean (nadir) surfaces than OCO. Both in-
struments show that the XCO2 error depends on the surface type and increases with SZA
and AOD.

FIGURE 3.9. Calculated averaging kernels (AK) for simuated scenes of different
surface types and SZAs, all with a 0.1 total column optical depth and instrument

model based on GOSAT pre-flight characteristics.
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FIGURE 3.10. Calculated XCO2 error for simuated scenes of different surface types,
SZA, and total column optical depth. All simulations used an instrument model

based on GOSAT pre-flight characteristics.
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FIGURE 3.11. Calculated averaging kernels (AK) for simuated scenes of different
surface types and solar zenith angle, all with a 0.1 total column optical depth and
instrument model based on OCO pre-flight characteristics (courtesy of H. Boesch,

2009).
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FIGURE 3.12. Calculated XCO2 error for simuated scenes of different surface types,
solar zenith angle, and total column optical depth. All simulations used an instru-
ment model based on OCO pre-flight characteristics (courtesy of H. Boesch, 2009).
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3.12 Testing the spectral window setup

There are four CO2 absorption bands within the SWIR spectral range of TANSO-FTS
(see Figure 3.13); the 1.58 µm CO2 band (1.558 - 1.592 µm range), the 1.61 µm CO2

band (1.588 - 1.623 µm range), the 2.01 µm CO2 band (1.980 - 2.024 µm range), and the
2.06 µm CO2 band (2.040 - 2.083 µm range). Thus, providing a choice of wavelength
ranges to retrieve CO2 from. Additionally, there are two polarised signals available; par-
allel (P) and perpendicular (S) to the incident plane. Each of these absorption bands
and polarisations may result in a different retrieved XCO2 value, due to instrument and
spectroscopy variations. To test for any differences and to determine which bands or
polarisations are most suitable to use, each of these bands and polarisations were indi-
vidually used to retrieve XCO2.

FIGURE 3.13. The first TANSO-FTS band 2 and 3 radiances obtained, illustrating
the CO2 absorption regions within these bands. Figure taken from JAXA (2009).

The measured radiances were calibrated with the initial radiometric conversion coef-
ficients and the retrievals used the official GOSAT ILS from JAXA (version 006) (Kuze
et al. 2009) and tabulated absorption cross-sections of HITRAN08 (Rothman et al. 2009).
The a priori were obtained from the pre-processing module. A single Gaussian profile of
2 km height and width with an AOD of 0.075 and scattering optical properties of Kahn
type 4b (carbonaceous and dusty environments) were used for the a priori aerosol (Kahn
et al. 2001). The state vector included a 20 level profile of CO2, a scale factor for H2O,
albedo, albedo slope, and dispersion shift and stretch.
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Figures 3.14 and 3.15 show the retrieved XCO2 for each polarisation and CO2 ab-
sorption band for Park Falls/USA and Darwin/Australia, providing northern and south-
ern hemisphere scenes. The XCO2 values retrieved range between ∼325 ppm and ∼410
ppm, with the 2.01 µm XCO2 being generally∼20 ppm higher than that of the other CO2

bands. The 3rd exposure of Park Falls shows a different distribution of XCO2 than the
other two exposures. Using the official NIES TANSO-CAI L1B false RGB image of
this scene, this exposure appears to coincide with a cloud, whereas the other two expo-
sures appear cloud-free. Similarly, the 3rd and 8th exposures of Darwin show a different
distribution of XCO2 than the other two exposures and also coincide with clouds. This
highlights are few issues; some clouds remain even after the NIES cloud-screen has been
applied, the retrieved XCO2 of a cloudy exposure can be biased high or low, and the
amount that the XCO2 is biased for a cloudy exposure is different for each CO2 absorp-
tion band and polarisation. Furthermore, the retrieved XCO2 is similar (∼0.5 to 2 ppm
different) for each polarisation, but for cloudy exposures there is a large difference be-
tween polarisations (up to ∼25 ppm). If the cloudy exposures and 2.01 µm band XCO2

retrievals are neglected, then all the other XCO2 values retrieved are roughly consistent
(within ∼10 ppm of each other) and have a mean value of ∼389 ppm for Park Falls and
∼385 ppm for Darwin, which are very similar to the global levels of CO2 observed by
NOAA at Mauna Loa (Masarie & Tans 1995).

These preliminary results were all retrieved using a single spectral window, such as
the 1.61 µm CO2 band (1.588 - 1.623 µm range). However, Kuang et al. (2002) found
that using a combination of the 0.76 µm O2 A band, 1.58 µm and 2.06 µm CO2 bands
provided improved precisions in simulations.

O’Brien et al. (1998) demonstrated that the 0.76 µm O2 A band can provide con-
straints on surface pressure, which can be uncertain due to topographic and local weather
variations. Additionally, it can provide constraints on optical path length variations,
where uncertainties due to cloud and aerosol scattering can exist. Whilst the 1.58 µm
and 1.61 µm CO2 bands are almost free of other absorbing atmospheric gases, varia-
tions in water vapour produce uncertainties in the retrieved XCO2 by broadening the CO2

absorption lines slightly and effecting the dry-air fraction when calculating the XCO2

(Kuang et al. 2002). However, the 2.01 µm and 2.06 µm CO2 bands contain weak water
vapour absorption lines that can provide a constraint on the water vapour. The 2.01 µm
and 2.06 µm CO2 bands contain CO2 absorption lines that are strong enough to be sen-
sitive to scattering, so provide additional constaints on optical path length uncertainties
from clouds and aerosols (Kuang et al. 2002). However, the 2.01 µm CO2 band contains
lots of water vapour absorption that may cause intereference. Futhermore, the 1.58 µm
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FIGURE 3.14. XCO2 retrieved from GOSAT between 23rd - 30th April 2009 within
500 km of the Park Falls/USA TCCON site. Each retrieval was designed to retrieve
a single polarisation signal (P or S) and a single CO2 absorption band (shown by

different colours). The index represents different TANSO-FTS exposures.

CO2 band has O2 day glow emissions that may potentially perturb measurements in this
band (Boesch et al. 2006). O2 day glow emission is known to occur in the mesosphere
and thermosphere due to three mechanisms; the excitation of O2 from a collision with
an O(1D) atom produced in the photolysis of O2 or O3, resonant absorption of oxygen
bands (including the O2 A band), or the chemical reacton between two oxygen atoms
and either a N2 or O2 molecule (Sheese et al. 2010).

These preliminary results showed the XCO2 retrieved from GOSAT to be similar
between the different CO2 bands, with the exception of the 2.01 µm CO2 band which
gave much higher values (due to poor spectroscopy). Thus, to reduce spectroscopic
biases the 2.01 µm CO2 band should not be used. Additionally, the 1.61 µm CO2 band
gave XCO2 values closer to the 2.06 µm CO2 band than that of the 1.58 µm CO2 band, and
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FIGURE 3.15. XCO2 retrieved from GOSAT between 23rd - 30th April 2009 within
500 km of the Darwin/Australia TCCON site. Each retrieval was designed to retrieve
a single polarisation signal (P or S) and a single CO2 absorption band (shown by

different colours). The index represents different TANSO-FTS exposures.

since the 1.58 µm CO2 band contains day glow it is not appropriate to use. Therefore, the
combination of the 0.76 µm O2 A band, 1.61 µm and 2.06 µm CO2 bands was tested in
the UoL-FP retrieval algorithm. The O2 A band provides information on surface pressure
and aerosols, which is highly beneficial to help constrain the retrieval of XCO2.

XCO2 was retrieved from GOSAT using different spectral bands in the UoL-FP re-
trieval algorithm for observations within ±5 degrees over the Lamont/USA TCCON site
between April and September 2009. The exposures were pre-screened for a SNR > 50
and the NIES cloud-screen was used (Taylor et al. 2012). Figure 3.16 shows the differ-
ence in retrieved XCO2 from the 1.61 µm CO2 band with the retrieval setup to use either;
the 0.76 µm O2 A band with the 1.61 µm CO2 band, the 2.06 µm CO2 band, or all three
bands together. On average, there is little difference in XCO2 when including the O2 A

92



band, but the scatter in XCO2 is of the order of∼5 ppm. However, since the surface pres-
sure was fixed to the a priori assumption any constraints provided by the inclusion of the
O2 A band would not effect the surface pressure. The XCO2 retrieved from the 2.06 µm
CO2 band is higher on average but the XCO2 values lower than about 370 ppm are much
lower than that retrieved using the 1.61 µm CO2 band. These low values are potentially
influenced by aerosols which the 2.06 µm CO2 band is sensitive to, due to aerosol optical
properties have more effect in this wavelength range. When all three bands are retrieved
simultaneously, it produces XCO2 that appears an amalgam of the effects already found.
Although the precision of the data changes little between the different setups, it allows
for the possibility of additional constraints and potentialy useful additional parameters
to be retrieved such as surface pressure and clouds/aerosols.
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FIGURE 3.16. XCO2 retrieved from GOSAT using different spectral bands in the
UoL-FP retrieval algorithm for observations within ±5◦ of the Lamont/USA TC-
CON site between April and September 2009. The data was pre-screened and cloud
screened but no post-screening was applied. The top left panel shows the XCO2 re-
trieved using the 1.61 µm CO2 band compared with that retrieved when using the
1.61 µm CO2 band and the 0.76 µm O2 A band. The top right panel shows a com-
parison of the XCO2 retrieved from the 1.61 µm and 2.06 µm CO2 bands seperately.
The bottom panel shows the XCO2 retrieved using the 1.61 µm CO2 band compared
with that retrieved when using the 0.76 µm O2 A band, 1.61 µm and 2.06µm CO2

bands.
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3.13 Profile of Carbon Dioxide Concentration

The a priori CO2 profiles were obtained from 3 hourly model 3.75◦ longitude by 2.5◦

latitude gridded 2009 fields of the Laboratory of Climate Sciences and Environment
(LCSE) General Circulation Model of Laboratoire de Meteorologie Dynamique (LMDZ)
(Pickett-Heaps et al. 2011). A correction of 18.25 ppm was applied to the 2009 CO2

profiles that was derived from a comparison with National Oceanic and Atmospheric
Administration (NOAA) observations over Mauna Loa, see Figure 3.17. Additionally,
yearly increments of 1.63 ppm and 2.36 ppm were taken from global NOAA observations
(Masarie & Tans 1995) and applied to the CO2 profiles for 2010 and 2011 respectively,
to account for increasing atmospheric CO2 concentrations (see Figure 3.18).

FIGURE 3.17. XCO2 calculated for LMDZ 2009 model CO2 fields interpolated to
the time and location of CO2 observations of Mauna Loa/Hawaii, compared to XCO2

calculated for Mauna Loa observations (left). LMDZ XCO2 was found to be 18.25
ppm lower than Mauna Loa on average. After applying this offset to the LMDZ
XCO2 (right) a difference is still observed, with LMDZ estimating a smaller range of

XCO2 than observed by Mauna Loa.

However, the Mauna Loa comparison is only based on a small sample size, there-
fore the offset LMDZ XCO2 was compared to XCO2 retrieved from different TCCON
sites (see Figure 3.19), including; Lamont/USA, Park Falls/USA, Orleans/France, Bre-
men/Germany, Garmisch/Germany, Bialystok/Poland, Tsukuba/Japan, Darwin/Australia,
Wollonong/Australia, and Lauder/New Zealand. This analysis provides comparisons of
XCO2 for both northern and southern hemispheres at various locations, and shows the
calculated offset to give LMDZ XCO2 of similar value as TCCON for all locations. The
LMDZ XCO2 estimated for northern hemisphere sites shows a good comparison to TC-
CON with correlation coefficients ranging from 0.86 to 0.98. However, the LMDZ XCO2
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FIGURE 3.18. Mean yearly CO2 from NOAA in-situ observations (top) and the
yearly increment in CO2 (bottom).

is found to estimate a lower range of XCO2 values than observed by TCCON, as previ-
ously found with the Mauna Loa comparison. For the southern hemisphere sites, LMDZ
poorly reproduces the XCO2 retrieved from TCCON with correlation coefficients rang-
ing from 0.48 to 0.64. Again, the offset applied to LMDZ provides XCO2 values of a
similar mean value as TCCON for southern hemisphere sites. Thus, applying this offset
to the model CO2 allows the retrievals to use a CO2 a priori profile with values that are
on average closer to the truth.
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FIGURE 3.19. XCO2 calculated for LMDZ 2009 model CO2 fields interpolated to
the time and location of TCCON observations for nine different sites, compared to
the retrieved XCO2 from TCCON. The one-to-one line is shown in black and each
observation is shown by a black diamond. The correlation coefficient per site is

given by r.
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3.14 Methane Concentration

The a priori profile of CH4 is acquired from a TM3 model run (Houweling 2009) and
is interpolated to the desired latitude, longitude and time. This is only retrieved as a
scaling of the profile, assuming the profile shape to be true. The retrieval uses a standard
deviation of 0.32 for the CH4 scale factor.

3.15 Surface Pressure

The European Centre for Medium-Range Weather Forecasts (ECMWF) provides model
data that includes assimilated observations from surface buoy and satellite measurements
(ECMWF 2008). ECMWF provides atmospheric profiles of pressure, temperature and
specific humidity on a 1.125 degree by 1.125 degree global grid with 90 layers every 6
hours. Given the latitude, longitude and altitude of a site of interest the surface pressure
can be determined from these profiles. All 90 layer datasets can be converted onto 91
levels using coefficients provided by ECMWF (ECMWF 2007). ECMWF also provides
potential data, φ, for the lowest level of the same grid, which can be used to find the
geopotential height, Zg, of each grid point level as

Zg =
φ

g
(3.14)

where gravity, g, is calculated as a function of latitude and approximate altitude. Taking
the four surrounding grid points of the site of interest, the pressure, P, at the site altitude
can be found for each grid point by using the hydrostatic equation

P = P0e
− Z
Z0 (3.15)

where P0 is the pressure of the grid point level lower than the site altitude, Z is the
difference in altitude between the grid point level and the site altitude and Z0 is the scale
height defined as

Z0 =
RT

Mg
(3.16)

where R is the ideal gas constant, T is the average temperature across the differential,
M is the Molar mass of wet air and g is the gravitational acceleration as a function of
latitude and altitude. The Molar mass of wet air can be calculated by

M = ρd(1− SH) + ρwSH (3.17)

98



where SH is the ECMWF specific humidity, ρd is the dry air mass and ρw is the mass
of wet air. The site altitude can be obtained from a global digital elevation model with
a horizontal grid spacing of 30 arc seconds named GTOPO30 provided by the U.S. Ge-
ological Survey (USGS 1996). Note, that in the case that the site altitude is lower than
the lowest level of a grid point, the pressure is calculated with respect to the lowest level.
Also, the temperature and molar mass are extrapolated downwards based on the lapse
rate and gradient of the 5 lowest levels above, respectively. The surface pressure for the
site can then be resolved by interpolating the pressures with latitude, longitude and time.

To validate the surface pressure two sites were chosen; Southern Great Plains (SGP)
/USA, and Black Forest/Germany. Since pressure changes with altitude, highly variable
topographies will also vary in pressure. These sites are flat and mountainous in topog-
raphy respectively, providing an assessment of the extremes in topography where data
from observations are available. The Atmospheric Radiation Measurement (ARM) pro-
gram (Ackerman & Stokes 2003) has a central facility in SGP which takes in situ ground
based measurements of surface pressure using the Temperature, Humidity, Wind and
Pressure Sensors (THWAPS) (Peppler et al. 2008), which has a precision of 0.1 hPa and
an uncertainty of 0.7 hPa (ARM 2011a). Figure 3.20 shows that the surface pressure is
within 1 hPa of THWAPS observations. Surface Pressure observations were also made
by the ARM mobile facility that visited Black Forest, Germany, in 2007 with the Surface
Meteorological Instrument (MET) (Peppler et al. 2008), which has a precision of 0.1 hPa
and an uncertainty of 0.7 hPa (ARM 2011b). Figure 3.20 illustrates that over a moun-
tainous topography the surface pressure can still be resolved to within 1 hPa. Hence,
the surface pressure a priori could be constrained to less than 0.1%. In the retrieval a
standard deviation of 4 hPa is used to allow for more difficult topographies.

Initially, the a priori surface pressure was calculated for the centre of the TANSO-
FTS IFOV location. However, regions of large topographic variations may cause this
surface pressure to be unrealistic for the entire IFOV. Therefore, a new method was
created that calculates the surface pressure for all known altitudes within the IFOV. The
altitude information is obtained from GTOPO30 (USGS 1996) which has a 30-arc second
resolution (approximately 1 km), allowing roughly 70 surface pressures to be calculated
within the IFOV (∼10.5 km diameter) from which the mean and standard deviation can
be computed.

The a priori surface pressure was calculated using each method for GOSAT obser-
vations within ±5◦ of the Lamont TCCON site between April and December 2009.
Figure 3.21 gives a comparison of these surface pressures and shows differences up to
∼3.5 hPa, which is within the assumed a priori surface pressure 1-sigma uncertainty used
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FIGURE 3.20. Comparison of a priori surface pressure with in-situ ground based
measurements from ARM instruments in Southern Great Plains/USA and Black For-

est/Germany.

in the retrievals.

On average, a bias in retrieved surface pressure of∼4 hPa is observed (see Figure 3.22),
which is lower than reported by Crisp et al. (2012). This bias has been suggested to be
due to deficiencies in the O2 A band spectroscopy and that scaling the line strength of O2

could reduce it (Butz et al. 2011). For this retrieval, instead of scaling the line strength,
the systematic overestimates of surface pressure are corrected by normalizing the re-
trieved XCO2 with the ratio of retrieved surface pressure and ECMWF surface pressure.

The effect of normalising the retrieved XCO2 with the surface pressure ratio was
tested for retrievals from GOSAT. Figure 3.23 shows a one year comparison of the re-
trieved XCO2 globally with and without the surface pressure normalisation applied. In
general, the XCO2 becomes higher in value when the surface pressure normalisation is
applied, thus reducing the XCO2 bias compared to TCCON.

100



FIGURE 3.21. Comparison of surface pressure calculated for the GOSAT IFOV
centre and for the mean across the IFOV, for GOSAT observations within ±5◦ of
the Lamont TCCON site. All surface pressures were calculated from ECWMF and

interpolated to the time and location of the observation.
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FIGURE 3.22. Histogram of the difference between the retrieved surface pressure
from GOSAT observations between July 2009 and June 2010 globally, and ECMWF
surface pressure calculated for the times and locations of the GOSAT observations.
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FIGURE 3.23. Comparison of XCO2 retrieved from GOSAT with and without surface
pressure normalisation applied. Shown are pre-screened, cloud-screened and post-

screened GOSAT observations globally between July 2009 and June 2010.
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3.16 Temperature and Water Vapour

The ECMWF specific humidity data can be used to generate water vapour VMR profiles
using the equation

H2OVMR = 106

(
SH

((RdRw)− (SH((RdRw)− 1))

)
(3.18)

where Rd and Rw are the gas constants in dry and wet air respectively. ECMWF also
provides temperature profiles which, along with the H2OVMR, are interpolated with lat-
itude, longitude and time to the specific observation. A constant O2 VMR profile of
0.2095 is also used as an a priori. Often the retrieved surface pressure may be larger
than the a priori surface pressure such that the atmospheric profiles for temperature and
water vapour may be extrapolated below the a priori surface pressure value. In some
cases this results in spurious values in the lowest levels of the profiles. To resolve this
a static 20 level pressure grid is always used, and the a priori profiles are extrapolated
using the lapse rate for temperature and gradient for water vapour of the 5 atmospheric
levels above the surface pressure, such that a reasonable extrapolation occurs as shown
in Figure 3.24. The temperature and H2O profiles are assumed correct but the retrieval
is allowed to scale them. For the temperature offset a standard deviation of 3.2 K is used
and for the H2O scale factor a standard deviation of 0.32 is used.
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FIGURE 3.24. Example of the extraplolation technique used for temperature and
water vapour profiles. The black lines show the time interpolated profile with the
lapse rate/gradient applied, whereas the other profiles show the profiles for each
time frame which have been simply extrapolated below the surface pressure. These
profiles are already interpolated with latitude and longitude from four ECMWF grid

points.
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3.17 Aerosol Profiles

Atmospheric aerosols can scatter light into or out of the measured light path causing the
measured intensity to vary and the optical path length to change. Additionally, some
aerosols can absorb some of the light being measured, reducing the signal intensity and
effecting the absorption lines of trace gases. Initially, the retrieval algorithm was setup
to retrieve a single aerosol profile with an a priori AOD equal to the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) monthly mean AOD inferred for that 1◦ x 1◦

grid cell location. MODIS is a remote sensing instrument that is onboard the Terra and
Aqua satellites that were launched in 1999 and 2002, respectively. However, aerosols
are known to be highly variable and using a monthly mean AOD could potentially be
improved.

The ARM Climate Reseach Facility includes a network of ground-based instruments
located around the world. The central facility at Lamont/USA and the Darwin facility
in Darwin/Australia are both located near to the respective TCCON sites. AOD was
obtained from these ARM sites within the observation period of GOSAT using a Cimel
sunphotometer (CSPHOT) instrument. The CSPHOT measures direct solar irradiance
and sky radiance from the ground at visible and near infrared wavelengths to calculate
atmospheric absorption and scattering (Gregory 2011). It derives AOD with a high accu-
racy (between 0.01 and 0.02 (Gregory 2011)), providing a useful source of in-situ AOD.

XCO2 was retrieved from GOSAT using a single aerosol profile with an a priori AOD
equal to the ARM CSPHOT AOD closest temporally. The a priori AOD at the O2 A band
was calculated from CSPHOT AOD data at 0.50 µm and 0.87 µm using the angstrom
coefficient data by

τ0.76µm = τ0.87µm ∗
(
λ0.76
λ0.87

)−α0.50µm−0.87µm

(3.19)

where τ represents the AOD, λ the wavelength and α the angstrom coefficient. Figures 3.25

and 3.26 show the retrieved XCO2 from GOSAT over Lamont and Darwin, respectively,
when using ARM AOD as a priori. For comparison, the retrieved XCO2 from GOSAT
when using MODIS AOD as a priori and XCO2 inferred from TCCON are shown. The
XCO2 retrieved from GOSAT using ARM AOD is very similar in value to the XCO2 re-
trieved when using MODIS AOD and follow the same temporal pattern in general. Both
sets of GOSAT retrievals show a bias of about -6 ppm on average compared to TCCON,
with ARM AOD based retrievals being slightly lower than MODIS AOD based retrievals.

However, the ARM network is sparsely distributed globally, making it unsuitable to
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FIGURE 3.25. XCO2 inferred from TCCON compared with XCO2 retrieved from
GOSAT using the UoL-FP retrieval algorithm where the a priori aerosol AOD equals
either MODIS monthly mean AOD or ARM temporally closest AOD, calculated for
the O2 A band. All TCCON XCO2 data between April and mid-July 2009 from
the Lamont site is shown in green and only GOSAT observations within ±5◦ of
the TCCON site and within 2 hours of an ARM AOD measurement are given. All
retrieved GOSAT observations using MODIS AOD are given by cyan triangles and
those using ARM AOD by orange triangles. The daily mean of the retrieved XCO2

from GOSAT is given in blue and red where MODIS and ARM AOD were used
respectively (with error bars representing the XCO2 daily scatter). The retrieved
observations from GOSAT were post-screened for low χ2 in bands 1 and 2 to filter

out retrievals with poor fits of the simulated spectra to GOSAT spectra.

be used for global retrievals of XCO2 from GOSAT. Although satellite measurements of
aerosols exist, they are limited to only provide measurements at the locations and times of
their orbital paths, not coincident with GOSAT. Although GOSAT includes a cloud and
aerosol imager (TANSO-CAI) no aerosol data product has been released yet. Currently,
the only way to obtain temporally and spatially coincident aerosol information is to use
model estimates.
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FIGURE 3.26. XCO2 inferred from TCCON compared with XCO2 retrieved from
GOSAT using the UoL-FP retrieval algorithm where the a priori aerosol AOD equals
either MODIS monthly mean AOD or ARM temporally closest AOD, calculated for
the O2 A band. All TCCON XCO2 data between April and mid-July 2009 from
the Darwin site is shown in green and only GOSAT observations within ±5◦ of
the TCCON site and within 2 hours of an ARM AOD measurement are given. All
retrieved GOSAT observations using MODIS AOD are given by cyan triangles and
those using ARM AOD by orange triangles. The daily mean of the retrieved XCO2

from GOSAT is given in blue and red where MODIS and ARM AOD were used
respectively (with error bars representing the XCO2 daily scatter). The retrieved
observations from GOSAT were post-screened for low χ2 in bands 1 and 2 to filter

out retrievals with poor fits of the simulated spectra to GOSAT spectra.

The Global and regional Earth-system (Atmosphere) Monitoring using Satellite and
in-situ data (GEMS) provides re-analysis model AOD data on 1.125◦ x 1.125◦ grid cells
globally. GEMS includes two natural aerosol types, sea salt and desert dust, that are
surface and weather dependent. These aerosols types both have 3 different sizes; small,
medium and large. In addition to the natural aerosols, five anthropogenic aerosols are
included. These comprise of sulphate, hydrophilic/hydrophobic organic matter and
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hydrophilic/hydrophobic black carbon. The GEMS model obtains information about
these aerosols from the Global Fire Emission Database (GFED), the Speciated Particu-
late Emission Wizard (SPEW), and climatologies of the Emission Database for Global
Atmospheric Research (EDGAR) (Simmons 2010). Thus, the GEMS model incorporates
emissions of aerosols from fires as well as from domestic, industrial, power generation,
transport and shipping activites (Simmons 2010). To complement these aerosol sources,
the GEMS model assimilates global measurements of AOD from MODIS. One disad-
vantage of using the GEMS model is that it does not include any aerosol emissions from
volcanic activity. The GEMS model (experiment f1kd) provides the total AOD at mul-
tiple wavelengths every twelve hours at 00:00 and 12:00, with a model forecast every
three hours proceeding an analysis.

XCO2 was retrieved from GOSAT using a single aerosol profile with an a priori AOD
equal to the GEMS AOD interpolated to the time and location of the GOSAT observation.
The a priori AOD at the O2 A band was calculated from the GEMS 0.670 µm and 0.865
µm AOD data similar to Equation 3.19, where the angstrom coefficient was calculated
as

α0.670µm−0.865µm = −
ln
(
τ0.670µm
τ0.865µm

)
ln
(
λ0.670µm
λ0.865µm

) (3.20)

Figure 3.27 shows the retrieved XCO2 from GOSAT when using GEMS AOD as the a
priori AOD, compared to retrieved XCO2 when an a priori AOD of 0.15 was always used.
The retrieved XCO2 is very similar between the two methods, with slightly lower values
when GEMS AOD was used. This indicates that the a priori AOD, if not extreme in
value, does not affect the retrieval of XCO2 significantly.

Instead of retrieving aerosol extinction for each atmospheric level, one option could
be to retrieve the height, width and optical depth of a Gaussian shaped aerosol extinc-
tion profile. This test provides a different approach to aerosols, allowing the peak of
the aerosol distribution to be retrieved, rather than letting the optical depth of each at-
mospheric layer to vary individually. The retrieval algorithm was modified for this test
and XCO2 was retrieved from GOSAT between April 2009 and February 2010 for obser-
vations within ±5◦ of the Lamont TCCON site. Figure 3.28 shows this retrieved XCO2

compared to XCO2 inferred by TCCON. Between April and July 2009, the retrieved
XCO2 shows similar values to that previously seen in Figure 3.25. On average, the re-
trieved XCO2 is biased low compared to TCCON by roughly 6 ppm with large daily mean
scatters ranging from ∼2 ppm to ∼20 ppm. Thus, changing the way the aerosol profile
shape is retrieved does not improve the retrievals of XCO2.
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FIGURE 3.27. A comparison of XCO2 retrieved from GOSAT between April 2009
and April 2010 using the UoL-FP retrieval algorithm with an a priori optical depth
either equal to 0.15 always or equal to GEMS AOD. The retrieved observations were

pre-screened, cloud-screened, and then post-screened for low χ2 values.

In addition to the aerosol profile shape and optical depth, the optical properties as-
sumed could be changed. Instead of using a mixture of carbonaceous and dust aerosols
based on Kahn et al. (2001) for a single aerosol, different aerosol types could be given
seperate profiles. The retrieval algorithm was modified to retrieve four aerosol logarith-
mic extinction profiles, each a priori profile having a Gaussian shape with a height and
width of 2 km and an optical depth of 0.05. Using a Lorenz-Mie code (Mishchenko
et al. 2002) for spherical particles, these aerosols were given optical properties based on
GEMS medium sized desert dust, sulphate, hydrophobic organic matter and hydropho-
bic black carbon properties. Figure 3.29 shows the retrieved XCO2 from GOSAT using
this setup for observations within±5◦ of the Lamont TCCON site, compared to TCCON
XCO2. The retrieved XCO2 shows a reduced bias (∼4 ppm) compared to TCCON than
previously found and a much lower daily scatter, between 1 ppm and 8 ppm.
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An alternative method could be to use multiple aerosol mixtures rather than seperate
aerosol types, this would allow a faster computational time of the retrievals by reduc-
ing the number of state vector elements. To test this, aerosol optical properties were
computed using a Mie code for carbonaceous/dusty continental and carbonaceous/sooty
continental aerosol mixtures described in Kahn et al. (2001). Both these mixtures were
given the same a priori extinction profiles that were Gaussian shaped with a height and
width of 2km, and an optical depth of 0.05 each. Figure 3.30 shows the retrieved XCO2

from GOSAT for this retrieval setup, for observations between April 2009 and February
2010 within ±5◦ of the Lamont TCCON site. The retrieved XCO2 was found to have a
mean bias of ∼6 ppm and a daily scatter between 1 ppm and 10 ppm.

Furthermore, it is not just aerosols that can cause absorption and scattering of light in
the atmosphere, but clouds too. Although the cloud-screen already removes most obser-
vations influenced by clouds, some scenes are falsely flagged as clear. These scenes most
likely include thin cirrus clouds that are low absorbing, letting the light still be measured
by GOSAT. Therefore, the inclusion of cirrus in the state vector may allow these obser-
vations to still be retrieved successfully. A Gaussian shaped profile with a 10 km height,
2 km width and optical depth of 0.05 was used as a priori to test this. Optical properties
for an effective radius of 60 µm was assumed for a non-spherical ice particles obtained
from the Baum model (Baum et al. 2005a,b). The aerosol was setup the same as the
last test, where two aerosol profiles of the same profile shape were used with different
aerosol mixtures were used for the optical properties, but this test also includes the cirrus
profile described. The retrieved XCO2 is shown in Figure 3.31 for GOSAT observations
between April 2009 and February 2010 within ±5◦ of the Lamont TCCON site. Com-
pared to TCCON, the retrieved XCO2 has a daily mean bias of approximately 3 ppm and
a daily mean scatter between 1 ppm and 10 ppm. Importantly, less exposures were fil-
tered out by the post-screen, meaning that retrievals of exposures that previously poorly
fitted the measured GOSAT spectra are now retrieved. This gives XCO2 values within the
same range as the exposures whose retrievals previously fitted the measurements well.
Furthermore, the retrieved XCO2 shows a large increase of 3 ppm compared to exactly
the same retrievals but without the cirrus included. Thus, not only does this approach
produce a larger XCO2 dataset but it provides a lower bias.

Eguchi et al. (2007) found that cirrus clouds vary in height depending on the latitude,
with larger values towards the equator (as shown in Figure 3.32). Since the use of a
cirrus profile had a large effect on the retrieved XCO2, it was important to follow it up
by testing the use of profile shape that varies with latitude. Mean values of cirrus cloud
center heights and widths were obtained from Eguchi et al. (2007) for the tropics and
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FIGURE 3.28. XCO2 retrieved from GOSAT using the UoL-FP retrieval algorithm
with the aerosol height, width and optical depth retrieved. All pre-screened and
cloud-screened GOSAT observations within ±5◦ of the Lamont TCCON site be-
tween April 2009 and February 2010 were retrieved and post-screened for low χ2

values. The XCO2 retrieved from TCCON is given in green with the daily mean
shown in orange. The retrieved GOSAT XCO2 is given by cyan triangles and the

daily mean by blue circles, with the daily scatter given as error bars.

subtropics in both hemispheres, mid-latitudes in both hemispheres, and globally (see Ta-
ble 3.2). These values were interpolated onto a 1◦ latitudinal grid and for every grid point
a Gaussian shaped cirrus profile was created with the corresponding height and width.
Thus providing a latitudinal dependent cirrus profile that can be used with retrievals of
XCO2 from GOSAT.

Figure 3.33 shows a comparison of the retrieved XCO2 from GOSAT when using a
constant cirrus profile and when using a latitudinally dependent cirrus profile, for obser-
vations between April 2009 and February 2010 within ±5◦ of the Lamont TCCON site.
On average, higher XCO2 and a lower retrieved cirrus optical depth is retrieved when
a latitude dependent cirrus profile is used. Thus, using a latitudinally dependent cirrus
profile reduces the XCO2 bias to TCCON, by providing the retrieval with a more realistic
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FIGURE 3.29. XCO2 retrieved from GOSAT using the UoL-FP retrieval algorithm
with four different aerosol profiles retrieved. The a priori of each aerosol was given
a Gaussian shaped profile with a height and width of 2 km and optical depth of
0.05, but different optical properties. The optical properties were computed using a
Mie code for the GEMS medium sized desert dust, sulphate, hydrophobic organic
matter and hydrophobic black carbon. All pre-screened and cloud-screened GOSAT
observations within±5◦ of the Lamont TCCON site between April 2009 and Febru-
ary 2010 were retrieved and post-screened for low χ2 values. The XCO2 retrieved
from TCCON is given in green with the daily mean shown in orange. The retrieved
GOSAT XCO2 is given by cyan triangles and the daily mean by blue circles, with the

daily scatter given as error bars.

a priori assumption of the atmosphere.

Based on these tests, three atmospheric extinction profiles are used. Two of these
profiles are the same shape, Gaussian profile with a 2 km height and width, and have a
total column aerosol optical depth of 0.05 each (as shown in Figure 3.34). The only dif-
ference between these profiles are the aerosol properties used for each. Based on Kahn
et al. (2001) one uses classification 4b and the other uses classification 5b. Therefore
providing one profile designed for carbonaceous and dusty environments and the other
profile for carbonaceous and sooty environments. The third profile allows for the pos-
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FIGURE 3.30. XCO2 retrieved from GOSAT using the UoL-FP retrieval algorithm
with 2 aerosol profiles, both of Gaussian shape with a height and width of 2 km and
optical depth of 0.05 each. The optical properties were computed using a Mie code
for carbonaceous/dusty continental and carbonaceous/sooty continental aerosol mix-
tures described in Kahn et al. (2001). All pre-screened and cloud-screened GOSAT
observations within±5◦ of the Lamont TCCON site between April 2009 and Febru-
ary 2010 were retrieved and post-screened for low χ2 values. The XCO2 retrieved
from TCCON is given in green with the daily mean shown in orange. The retrieved
GOSAT XCO2 is given by cyan triangles and the daily mean by blue circles, with the

daily scatter given as error bars.

sibility of a cirrus cloud and is based on the height and thickness described in Eguchi
et al. (2007). A Gaussian profile of 0.1 optical depth was created for each of the latitude
regions described using the height and thickness given and then a look up table based on
every 1 degree of latitude was created globally by interpolating between these regions
with respect to latitude. Each retrieval uses the cirrus profile defined in the look up table
that is closest to the specific latitude of the retrieved scene. The cirrus properties are
constructed from ice cloud models based on the Baum model (Baum et al. 2005a,b). In
the O2 A Band the ratio of scattering to absorption for cirrus has very little dependence
on the particle radius but a high dependence on optical depth. Conversely at the 1.61 µm
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FIGURE 3.31. XCO2 retrieved from GOSAT using the UoL-FP retrieval algorithm
with a cirrus profile and 2 aerosol profiles. The cirrus a priori profile had a Gaus-
sian shape with a height of 10 km, width of 2 km and optical depth of 0.05. the
cirrus optical properties were obtained from the Baum model (Baum et al. 2005a)
and given a effective radius of 60 µm. Both aerosols had an a priori profile of Gaus-
sian shape with a height and width of 2 km and optical depth of 0.05 each. The
optical properties were computed using a Mie code for carbonaceous/dusty conti-
nental and carbonaceous/sooty continental aerosol mixtures described in Kahn et al.
(2001). All pre-screened and cloud-screened GOSAT observations within ±5◦ of
the Lamont TCCON site between April 2009 and February 2010 were retrieved and
post-screened for low χ2 values. The XCO2 retrieved from TCCON is given in green
with the daily mean shown in orange. The retrieved GOSAT XCO2 is given by cyan
triangles and the daily mean by blue circles, with the daily scatter given as error

bars.

and 2.03 µm bands, there is more absorption by cirrus and therefore a higher sensitivity
to the particle radius (Zhang et al. 2010). A large ice particle of an effective radius of 60
µm is assumed for all retrievals, to provide the retrieval algorithm with a high variability
of the ratio of scattering to absorption between bands.
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FIGURE 3.32. Cirrus cloud characteristics as a function of latitude, calculated from
the Geoscience Laser Altimeter System (GLAS) and the Ice, Cloud, and land Eleva-
tion Satellite (ICESat) between 1st October and 18th November 2003. The altitude
of the top of the cirrus cloud is given in blue, the altitude of the bottom of the cirrus
cloud is given in red and the cirrus cloud thickness is given in purple. The cirrus
cloud optical depth is given in orange and the cirrus cloud temperature is given in
green. The average Outgoing Longwave Radiation (OLR) obtained from NOAA

satellites during the same time period is shown in black (Eguchi et al. 2007).

Table 3.2. Mean cirrus cloud heights and widths calculated from GLAS and ICE-
Sat data for the tropics ans subtropics in both hemispheres, mid-latitudes in both

hemispheres, and globally (Eguchi et al. 2007).

Latitude region Latitude range Height [km] Width [km]

Tropics 15◦S - 15◦N 13.6 1.6
Subtropics (northern hemisphere) 15◦N - 30◦N 12.0 1.6
Subtropics (southern hemisphere) 15◦S - 30◦S 10.7 1.4
Middle latitude (northern hemisphere) 30◦N - 60◦N 9.2 1.6
Middle latitude (southern hemisphere) 30◦S - 60◦S 8.7 1.6
Globe 86◦S - 86◦N 10.3 1.6
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FIGURE 3.33. XCO2 retrieved from GOSAT between April 2009 and February 2010
within ±5◦ of the Lamont TCCON site, when a constant cirrus profile of Gaussian
shape with a height of 10 km and width of 2 km was assumed for all retrievals
compared to when a latitude dependent cirrus profile based on Eguchi et al. (2007)
was used. Both retrievals were otherwise setup the same and both were given an a
priori optical depth of 0.05 and the same optical properties. A comparison of the
retrieved XCO2 is given by the left panel and a comparison of the retrieved cirrus

optical depth is given by the right panel.
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FIGURE 3.34. Gaussian aerosol profiles of 2 km height width and with 0.05 AOD.
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FIGURE 3.35. Gaussian profiles based on the height and thickness described for
various regions by Eguchi et al, (Eguchi et al. 2007).
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3.18 Surface Properties

The albedo, α, is calculated from the spectral continuum of the GOSAT L1B using the
reflectivity

α =
πSGOSAT

SSolar cos(SZA)
(3.21)

where SZA is the solar zenith angle, and the Solar irradiance and observed GOSAT
radiance are given by SSolar and SGOSAT respectively. The retrieval uses two albedo
parameters for each spectral band, giving the albedo for the centre wavelength of the
band and the slope of the albedo. The slope of the albedo is set to zero in the a priori.
The covariance for albedo is completely open (standard deviation of 1) and the slope
a priori error uses a standard deviation of 0.01 cm−1 so that the band edges can vary
by 50% to compensate for any apodization artifacts introduced during the FFT of the
TANSO-FTS interferogram.

3.19 Instrument Properties

The recommended radiometric calibration and solar diffuser degradation correction (pre-
liminary factors) were applied to the GOSAT Level 1B files (050.050C, 080.080C, 110.1-
10C and 130.130C) which covered the years 2009 to 2011 and were acquired via the
GOSAT User Interface Gateway.

The radiative transfer model produces synthetic spectra for a specified observation
geometry and surface/atmospheric state. Before comparing these spectra to calibrated
measured spectra they are corrected for instrument dispersion, and convolved with the
instrument line shape (ILS) function and polarisation. For polarisation to be correctly
used a Mueller matrix (Kuze et al. 2009) is required to combine the different Stokes vec-
tors. However, the Mueller matrix is derived using the observation viewing angles which
are known to have pointing issues due to microvibrations causing instability. Therefore,
the intensity is approximated by using the mean of the polarised intensities:

I =
P + S

2
(3.22)

The noise is derived from the standard deviation of the out of band radiances for each
band (see Figure 3.36), which in the absence of noise would centre on zero. Similarly to
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the signal, the noise from each polarisation is combined as

N =

√
N2
P +N2

S

2
(3.23)

FIGURE 3.36. Example raw radiance for each GOSAT SWIR band showing out of
band characteristics used to derive the noise (grey).

Systematic structures in the residual of the spectral fit were found (typically solar
lines), that are most likely driven by insufficient spectroscopy. As a consequence, the
reduced χ2 of the spectral fit will increase with the theoretical SNR of the sounding. The
χ2 could become reduced by masking these spectroscopic peaks, which can be achieved
by increasing the noise.

Figure 3.37 shows the real mean squared (RMS)/Signal compared to 1/SNR for each
band for XCO2 retrieved from GOSAT for one 3-day cycle in June 2009. The noise can
be inflated by using an emperical relationship between the RMS/signal and 1/SNR for
each band (Crisp et al. 2012) of

RMS
Signal

= A+
B

SNR
(3.24)

where A and B are the coefficients derived (see Table 3.3). Using these coefficients the
noise was then modified by

Inflated Noise = A ∗ Signal +B ∗ Noise (3.25)

The GOSAT 3-day cycle was re-retrieved using the inflated noise and the difference of
retrieved χ2 of the fit for each band is shown in Figure 3.38. The χ2 was found to become
much lower when the noise was increased, as expected.

With the release of new TANSO-FTS L1B data versions, the noise coefficients were
re-calculated for each version. Figure 3.39 shows the fit of RMS/Signal and 1/SNR for
each band with each available data version shown, where September 2009 is L1B version
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FIGURE 3.37. Fit of relative RMS (RMS/Signal) and 1/SNR for each GOSAT SWIR
band retrieved by the UoL-FP algorithm for global observations of a 3-day orbital
cycle between 1st-3rd June 2009. Additionally, the difference between the retrieved
and expected χ2 is highlighted for different ranges in value. A linear fit of the data
is given by the dotted line for each band, with its equation provided in the top left of

each panel.

v050, December 2009 is L1B version v080, and May 2010 is L1B version v100. These
fits vary only slightly from the initial coefficients derived and are also similar to that
reported by ACOS (Connor 2010). For simplicity, the mean of the coefficients from each
L1B version was used.

Table 3.3. Derived coefficients used to inflate the noise.

Test A (Band 1) B (Band 1) A (Band 2) B (Band 2) A (Band 3) B (Band 3)

Initial (007.007V) 0.00159045 0.765909 0.00222652 0.544227 0.00637773 0.561081
1st-3rd September 2009 (080.080C) 0.0038452676 0.65677958 0.0021347245 0.70029702 0.0039319740 0.65454255
1st-3rd December 2009 (050.050C) 0.0045277149 0.57120579 0.0017439434 0.77762136 0.0039563910 0.63522226
1st-3rd May 2010 (100.100C) 0.0042883528 0.57437039 0.0023632774 0.51059092 0.0036055675 0.65775003
Mean 0.00422045 0.600785 0.00208065 0.662836 0.00383131 0.649172
ACOS (050.050C) 0.00234298 0.643008 0.00165767 0.634136 0.00287656 0.633723

However, recent updates in spectroscopy have reduced the systematic structures in
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the residual of the spectral fit, giving the expected χ2 values. Therefore, the original
noise is now sufficient to use.

The dispersion gives the pixel-wavelength mapping and consists of two parameters
for each band; the start wavenumber W and the wavenumber increment D needed to
reach the next pixels wavenumber. The wavenumber, ν, for detector pixel, i, and spec-
trometer, k, is given by

νi = Wk + iDk (3.26)

The dispersion is given in the GOSAT L1B data but requires adjusting in all SWIR
bands. This adjustment can be calculated by the difference of the spectra away from a
well known single strong Fraunhofer line, otherwise known as a Solar line, (12985.163
cm−1) in the O2 A band. Additionally, the O2 A band dispersion requires shifting one
spectral point lower to become approximately correct. It should be understood that al-
though all SWIR bands dispersions are adjusted they are only approximate and require
the dispersion to be retrieved.

To describe the response of the instrument to light with wavelength an instrument line
shape function (ILS) is used, which was obtained from the JAXA ILSF model (Kuze et al.
2009). Band 1 has the ILS provided for both polarisations due to band 1 being sensitive
to displacement of the optical axis with its shorter wavelengths, whereas bands 2 and 3
have accurate alignment. The ILS model gives the ILS for 3 different wavelengths in
band 1 and 4 different wavelengths in both bands 2 and 3.

To mitigate the effect of the GOSAT band 1 non-linear response to the intensity of
incident radiation on the retrieval of XCO2, an additive zero level intensity offset was
retrieved for the O2 A band. To check that the inclusion of this does not cause the
retrieved XCO2 to become worse, retrievals with and without the zero level offset applied
were retrieved for GOSAT pre-screened and cloud-screened observations for September
2009 globally. Figure 3.41 shows the comparison of retrieved XCO2 from retrievals with
and without the zero level offset retrieved in the O2 A band. For low XCO2 values,
slightly larger XCO2 values are found when a zero level offset is included in the retrieval.
However, in general, the XCO2 remains similar. This method may also partially mitigate
fluorescence observed by Frankenberg et al. (2011a).
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FIGURE 3.38. Comparison of retrieved χ2 and SNR for each GOSAT SWIR band
retrieved by the UoL-FP algorithm for global observations of a 3-day orbital cycle
between 1st-3rd June 2009. The left column shows the data for each band when the
original noise was used, and the right column shows each band when the inflated
noise was used. Note that the y-axis scales are different, giving much lower χ2

values when the inflated noise was used.

124



FIGURE 3.39. Linear fits of RMS/Signal and 1/SNR for each GOSAT SWIR band
retrieved by the UoL-FP algorithm for global observations of a 3-day orbital cycle
in 3 different time frames, covering different TANSO-FTS L1B data versions. The
initial/previous fit is shown in black and that reported similarly by ACOS in cyan.

125



FIGURE 3.40. ILS used in the retrievals for each GOSAT SWIR spectral band with
different wavenumbers given.
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FIGURE 3.41. Comparison of retrieved XCO2 from GOSAT using the UoL-FP re-
trieval algorithm with and without an O2 A band zero level offset retrieved. These
retrievals were performed on pre-screened and cloud-screened GOSAT observations

for September 2009 globally. Details of the algorithm are provided in Chapter 3.
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3.20 Pre-Processing Screen

A pre-screen is applied to all GOSAT observations during the pre-processing algorithm
such that only land observations with a SNR >50 in all bands are used. Although obser-
vations with a low SNR could be retrieved, it would result in a poor retrieval fit, since
small changes in the signal can not be distinguished from the noise. Also, poor retrieval
fits are expected over snow surfaces (see Section 3.11) so only scenes with a SZA <70◦

are used to reduce the computational requirement of performing retrievals globally. Ad-
ditionally, the pre-screen selects non-saturated measurements with an along-track angle
error <0.05, cross-track angle error <0.007, and where the IFOV surface pressure stan-
dard deviation is <10 hPa. The along-track and cross-track filters are used to keep only
measurements where the pointing has not been adversely affected by microvibrations.

The IFOV of TANSO-FTS is∼10 km in diameter and within this area the topography
can change greatly. Although the pre-processing uses the mean atmospheric conditions
within the IFOV, this might not provide useful a priori in extreme scenes. Also, the
surface can vary significantly over such a large region, leading to variations in albedo
that are unaccounted for in the retrieval. Since surfaces with a higher albedo reflect more
light the observed radiance will be biased towards that surface type and therefore that
location and not the entire IFOV scene. In this instance, the retrieval would require the
atmospheric conditions for that location and not the mean of the IFOV. Screening to
remove scenes with a high surface pressure variation helps mitigate this issue.

It is possible that during a TANSO-FTS observation the interferogram can become
saturated by light. If the interferogram becomes saturated, then when the FFT is per-
formed the spectral radiance and absorption lines will be larger everywhere leading to
a poor retrieval. Therefore, a new method for detecting GOSAT saturation was created
to allow these observations to be filtered out. This detection method uses the mean out-
of-band radiances, since the spectra should have higher values throughout the measured
spectral ranges when saturation occurs. Initially all three SWIR bands were analysed
but the saturation is best detected with this method in band 2, as shown in Figure 3.44.
The band 2 saturation detection was compared with the χ2 of XCO2 retrievals for band
2 (see Figure 3.45) and a clear trend was found with larger χ2 values. TANSO-FTS is
capable of measuring radiances using different gain modes, such that it can cope with
high intensity signals by using the medium gain so that saturation should not arise. To
attempt to determine why the saturation occurs, the maximum signal of band 2 was com-
pared with the saturation detection test for each gain mode. This is given in Figure 3.47,
which distinctly shows that saturation happens when the signal intensity is highest for
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observations using high gain. This highlights that the medium gain mode should be used
in additional measurement locations.

FIGURE 3.42. Mean out-of-band radiances of band 1 P (left) and S (right) compared
with latitude and retrieved XCO2 for 1st-7th September 2009 globally.

FIGURE 3.43. Mean out-of-band radiances of band 2 P (left) and S (right) compared
with latitude and retrieved XCO2 for 1st-7th September 2009 globally.

FIGURE 3.44. Mean out-of-band radiances of band 3 P (left) and S (right) compared
with latitude and retrieved XCO2 for 1st-7th September 2009 globally.

3.21 Cloud Screen

One major disadvantage of using SWIR observations is that the IFOV must be free of
thick clouds as these will cause irradiation to be reflected towards the satellite from
a higher altitude, that of the cloud, rather than the Earth’s surface where source/sink
information can be gained. Therefore, a cloud screen is necessary to filter out expo-
sures where thick clouds are within the IFOV. When irradiation gets reflected towards
the satellite from a thick cloud the effective surface is that of the cloud rather than the
Earth’s surface. This results in the surface pressure being that at the cloud altitude, which
typically is significantly lower than that at the Earth’s surface pressure. An estimate of
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FIGURE 3.45. Saturation test for band 2
P compared with the retrieval χ2 of band
2, for retievals of 1st-7th September 2009

globally.

FIGURE 3.46. Saturation test for band 2
S compared with the retrieval χ2 of band
2, for retievals of 1st-7th September 2009

globally.

FIGURE 3.47. Saturation test compared to
the maximum signal for band 2 P, with
high gain mode shown in red, medium
gain mode shown in blue, and exposures
which fail the both polarisation satura-
tion test thresholds shown in green. For
retievals of 1st-7th September 2009 glob-

ally.

FIGURE 3.48. Saturation test compared to
the maximum signal for band 2 S, with
high gain mode shown in red, medium
gain mode shown in blue, and exposures
which fail the both polarisation satura-
tion test thresholds shown in green. For
retievals of 1st-7th September 2009 glob-

ally.

the surface pressure can be obtained by performing an O2 A band retrievals where the
surface pressure is retrieved. A fast O2 retrieval is implemented, by using a small spectral
window (13056 to 13074.8 cm-1) where the surface pressure information is obtained, to
reduce the computational time as the cloud screen is performed on a large volume of
data (all pre-processed exposures). If the retrieved surface pressure is compared to the a
priori surface pressure then the difference in surface pressure can be determined. Since
the a priori surface pressure is well constrained, a surface pressure difference of greater
than 20 hPa would normally only occur if a thick cloud is present in the IFOV, thus the
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exposures can be cloud screened using this method.

This cloud screen approach has been verified by using a simulator (see Chapter 5)
to compare the O2 A band retrievals with the simulated cloud optical depth. Spectral
radiances for each GOSAT SWIR band were simulated using 61 level profiles of pres-
sure, water vapour VMR, CO2 VMR, O2 VMR, temperature, extinction for 11 different
aerosols, liquid water extinction and ice water extinction. Also included was surface
pressure and for each band values for albedo shift and slope, and spectral shift and
stretch. The cloud screening method was then applied to these radiances and the re-
trieved State Vector elements compared to the true values.

Figures 3.49 and 3.50 show histograms of the retrieved parameters for clear and
cloudy scenes, where clear scenes have a total column optical depth of less than 0.3.
This clearly shows how the difference in surface pressure can be used to screen for many
cloudy scenes, with the statistics given in Table 3.4. The cloud screen is shown to remove
∼86% of cloudy scenes and keep ∼94% of clear scenes.

The statistics can be compared to those of alternative cloud screening methods by cal-
culating two diagnostic quantities (Taylor et al. 2012); the accuracy of the cloud screen
to correctly classify clear and cloudy scenes, and the positive predictive value that spec-
ifies the percentage of clear scenes classified as clear. The accuracy, ACC, can be given
as

ACC =
True clear + True cloudy
Total number of scenes

= 87.90% (3.27)

and the positive predictive value, PPV, as

PPV =
True Clear

True Clear + False Clear
= 69.59% (3.28)

Taylor et al. (2012) compares two different cloud screening methods which have been
applied to GOSAT; a full O2 A band surface pressure retrieval method (ABO2 Cloud
Screen) and the CLAUDIA-CAI cloud screen which utilises the TANSO-CAI. The ACC
and PPV over land for the ABO2 cloud screen are 78.2% and 63.0%, and for the CLAUD-
IA-CAI cloud screen are 79.1% and 71.0% respectively. In that study the cloudiness truth
of the scenes was determined by the MODIS cloud mask product (MYD35), rather than
by simulated scenes. Although the values can not be directly compared to those of this
simulation as the simulated scenes do not include any variation of cloudiness within the
IFOV of the simulated observation, the values are in general similar.
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Table 3.4. Cloud screen statistics from simulations.

Description Number of Elements Percentage

Total 9923 100.00
Total clear truth 2544 25.64

Total cloudy truth 7379 74.36
True clear retrieved 2387 24.06
False clear retrieved 1043 10.51

True cloudy retrieved 6336 63.85
False cloudy retrieved 157 1.58

FIGURE 3.49. Histograms of χ2, surface pressure difference, albedo and dispersion
with frequencies seperated into true/false clear/cloudy, using the cloud screening
method described in this section for simulated observations of GOSAT for two repeat

cycles (6 days) globally.
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FIGURE 3.50. This shows the same as Figure 3.49 but with the x-axis scale reduced
such that more detail can be viewed where clear and cloudy scenes need distinguish-

ing.
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3.22 Post-Processing Screen

Some retrievals will inherently perform poorly due to incorrect prior assumptions. Addi-
tionally, by giving the aerosols a large flexibility it can increase the chances of retrievals
not coverging and obtaining the solution from a local minima, rather than the true opti-
mal solution. Therefore some quality assurance should be used with the retrieval results.
Post-screening criteria is applied to the successful retrievals to reduce the scatter and to
remove problematic and potentially biased retrievals. An overview of the empirically de-
rived post-screening criteria is shown in Table 3.5, with its application shown for a com-
bination of seven TCCON sites (see Chapter 4) over a two year period in Figure 3.51.
The post screen threshold values were inferred from correlations of various parameters
with the XCO2 bias between GOSAT and TCCON for coincident observations over La-
mont/USA and Darwin/Australia (see Chapter 4) and by considering the distribution and
scatter of global XCO2 data retrieved for August 2009.

Table 3.5. UoL-FP v3G Post-Screen parameter threshold limits.

Parameter Lower Threshold Upper Threshold

Outcome 1 2
Band 1 χ2 0.6 1.3
Band 2 χ2 0.6 1.5
Band 3 χ2 0.4 1.5
A Posterior Error 1.6
Number of Divergences 2
Retrieved - A priori Surface Pressure (hPa) 0 16
Retrieved Aerosol 1 Optical Depth 0.3
Retrieved Aerosol 2 Optical Depth 0.4
Retrieved Ice Optical Depth 0.05
Total Optical Depth 0.5
BTD 8-11 0
Cirrus Test 0.98 1.05
Retrieved Albedo Band 1 / Band 3 4
Retrieved Temperature Scale (K) -2
Retrieved H2O Scale Factor 0.7 1.3
Retrieved A priori Dispersion Band 2 Shift (cm−1) -0.022 0.022
Retrieved Intensity Offset -0.002 0.0014

The post-screen selects only converged retrievals with a good spectral fit (where the
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FIGURE 3.51. Box-wisker plot of XCO2 retrieved from GOSAT for seven TCCON
sites combined between April 2009 and May 2011. The effect of each post-screen

parameter is shown sequentially along the x axis.

normalized χ2 of the fit residual is ∼1) and a low posterior error of XCO2 (<1.6 ppm).
In addition, we also filter for a number of parameters related to thin clouds and aerosols,
which include: the difference between retrieved and ECMWF surface pressure (0-16
hPa), the retrieved cirrus optical depth (<0.05), the band 4 (TIR) brightness temperature
difference (BTD) between 8 µm and 11 µm (where >0 indicates cloud/cirrus), a test for
cirrus based on the radiance ratio of 2.1038 µm to 2.0906 µm (where cirrus absorption
occurs below a value of 0.98), and the ratio of 0.76 µm to 2.06 µm albedo that indicates
ice/snow if the value is >4. Scenes containing a large retrieved aerosol amount (AOD
>0.5) are also removed. Figure 3.52 gives the correlation matrix of the state vectors used,
showing many cross-correlations between statevectors. As most of the correlating state
vectors are included in previously mentioned filters, water vapour and temperature which
also show some correlation with XCO2 are used to remove cases where clear outliers exist
(indicating a poor retrieval).

Thin cirrus clouds will likely not be filtered out by the cloud screen and are diffi-
cult to detect in the SWIR spectral range so three different techniques were designed to
screen for cirrus clouds. The first method was to utilise the TANSO-FTS TIR band and
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FIGURE 3.52. Example correlation matrix of the state vectors used in the UoL-
FP retrieval algorithm, obtained from a XCO2 retrieval over Lamont/USA on April
22nd 2009. For the state vector profiles (e.g. CO2, aerosols and ice) the top of the
atmosphere is given by the 1st level. Note that only 19 levels are shown here due
to the retrieved surface pressure being higher than the two lowest a priori pressure

levels.

calculate the brightness temperature difference (BTD) between 8.3 and 11.15 µm, which
has previously been used with MODIS observations to characterise scenes with clouds
(Ackerman et al. 1998). This BTD can be calculated using Planck’s law as

BTD =

 hν8

k ln
(

1 +
2hν38
I8c2

)
−

 hν11

k ln
(

1 +
2hν311
I11c2

)
 (3.29)

where ν8 is the 8.3 µm wavenumber, ν11 is the 11.15 µm wavenumber, h is the Planck
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constant (6.62620x10−34 J s), c is the speed of light (2.99792458x108 m s−1) and k is
the Boltzmann constant (1.38062x10−23 J K−1). This technique should indicate if cirrus
clouds exist if the BTD is greater than ∼0 (Ackerman et al. 1998).

FIGURE 3.53. The retrieved XCO2 that has been filtered out due to the 8-11 µm BTD
threshold, for August 2009 globally.

The second technique uses the ratio of the retrieved albedo of band 1 to band 3.
In band 1 ice/snow has a very high albedo, whilst all other surface types have a lower
albedo. In band 3 ice/snow has the lowest albedo, with all other surfaces having low
albedos but higher than ice/snow. By using the ratio of band 1 to band 3 albedo, if the
scene contains ice/snow then the ratio will be larger. Thus this method has the potential
to detect cirrus (ice cloud). Additionally, it can detect surface ice/snow which would
also lead to a reduced accuracy in the XCO2 retrieval due to a lower SNR, so would be
preferable to screen out as well.

The third technique uses the fact that cirrus strongly absorbs radiances in the band 3
spectral range, with the absorption peaking towards the centre of the band. This cirrus
test makes use of this absorption peak by taking the ratio of the continuum radiance at the
edge of the band where the absorption is low (2.1038 µm) to the continuum radiance at
the middle of the band where at the peak cirrus absorption (2.0904 µm). If no cirrus exists
then the cirrus test would give a value of ∼1, but if cirrus does exist in the scene then the
value ought to be slightly <1. This is clearly demonstrated in Figure 3.55, which shows
the cirrus test values for the set of simulated scenes used in the cloud screen analysis, for
details see Section 3.21. This indicates that a threshold of ∼0.98 would be suitable to
remove scenes that contain cirrus.

Figure 3.56 shows the difference between with and without the post-screen applied
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FIGURE 3.54. Ratio of band 1 retrieved albedo to band 3 retrieved albedo for August
2009 globally. The upper plot shows its correlation with retrieved XCO2 with the
density of values given by colour and the red vertical line showing the threshold
limit. The lower plot shows the retrieved XCO2 that has been filtered out due to this

parameters threshold.

for parameters related to the quality of the retrieval performance. When no post-screen
is applied, a XCO2 bias is found with the number of divergences and the number of itera-
tions. There is also a large number of retrievals with poor χ2 values. Once post-screened,
the XCO2 biases are significantly reduced and only retrievals with a good spectral fit re-
main.

An example of the spectral fit and the fit residual is given in Figure 3.57, and shows
that in general the retrieval fits the measured radiance well with low residuals. However,
some structures remain in the residual indicating that some spectal lines are not fitted
well, with the larger residual peaks relating to solar absorption lines. Future updates in
spectroscopy could improve the spectral fit.
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FIGURE 3.55. Cirrus test for realistic simulated scenes, as described in Section 3.21.
It is compared against the simulated ice optical depth with the density of values given

by the colour scale.
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FIGURE 3.56. Example application of the post-screen on different parameters for
GOSAT pre-screened and cloud screened observations September 2009. The left
hand panels show the results when no post-screen is applied, and the right hand pan-
els show the same data but filtered using the post-screen. For each panel, the colour
represents the number of results within that bin with reference to the colourbar, the
pink line gives a linear fit of the data, and r gives the correlation of the parameter

against XCO2.
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FIGURE 3.57. Example spectral fits and fit residuals for each band retrieved, where
the measured radiances are given in red, the simulated radiances in green and the
residual in gray. This example exposure is located over Lamont/USA where the

surface is vegetation and the retrieved total optical depth was ∼0.1.
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3.23 Summary

This chapter described the UoL-FP retrieval algorithm and how it can be used to infer
XCO2 from cloud screened GOSAT SWIR measured radiances. The vertical sensitivity
and XCO2 error of GOSAT was assessed using pre-flight instrument information. This
shows surfaces with a low albedo in the wavelength range of the GOSAT bands (such
as ocean and snow) will result in errors of about 1%, whilst brighter surfaces give much
lower errors and better sensitivity to the boundary layer. The next chapter shows the
XCO2 inferred from GOSAT using the UoL-FP retrieval algorithm and compares with
ground based measurements, global chemistry transport model calculations and alterna-
tive retrieval algorithms.
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Chapter 4

Atmospheric CO2 retrieved from
GOSAT: Validation, model comparison
and algorithm intercomparison

4.1 Introduction

To assess the ability of the UoL-FP retrieval algorithm (version 3G) to accurately and
precisely estimate XCO2 from GOSAT, it is essential to compare this with alternative
observational data and independent model data. It is also useful to compare to alternative
algorithms as this can potentially indicate retrieval algorithm dependent biases. This
chapter provides an assessment of the UoL-FP retrieval algorithm through comparisons
with:

1. In-situ ground based observations of XCO2 derived from solar absorption spectra
measured by TCCON FTS instruments.

2. The GEOS-Chem global 3-D chemistry transport model atmospheric CO2 estima-
tions (Feng et al. 2011).

3. Alternative algorithms that retrieve XCO2 from GOSAT.

A total of 1,718,561 GOSAT observations globally over land between June 2009 and
May 2010 have been processed using the UoL-FP retrieval algorithm (v3G), reducing to
764,290 scenes (44.47%) once pre-screened. These were then cloud-screened, leaving
372,479 scenes (21.67%) that were retrieved. Details of this are given in Table 4.1.
Additionally, a total of 306,890 GOSAT observations over land for thirteen TCCON
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sites between April 2009 and May 2011. Once pre-screened and cloud-screened 24,980
(8.11%) observations remained, details of which can be found in Table 4.2.

Table 4.1. UoL-FP v3G retrieval statistics for 1 year of daytime, land only global
GOSAT observations.

Year Total Passed O2 Cloudy Clear Retrieval Passed
Month from L1B Pre-Screen Completed Exposures Exposures Completed Post-Screen
200906 126745 55303 51768 27863 23905 22881 5724
200907 139663 61514 57799 31098 26701 25660 7474
200908 139615 60201 56234 30330 25904 24928 7306
200909 141572 62622 56988 29217 27771 27012 6761
200910 150659 70907 63121 27433 35688 34135 6197
200911 146340 72724 64645 24510 40135 37844 4563
200912 149908 74701 67443 24562 42881 39356 4358
201001 146740 65452 58947 23001 35946 33295 4213
201002 145925 62328 56048 24161 31887 30089 3492
201003 158284 64685 59158 27064 32094 30811 3691
201004 138638 55586 50783 26310 24473 23207 3484
201005 134472 58267 54104 29010 25094 23719 5015
Total 1718561 764290 697038 324559 372479 352937 62278

4.2 Comparisons with TCCON CO2 measurements

TCCON is a network of ground-based, solar absorption, near infrared, Fourier transform
spectrometers that measure atmospheric columns of the gases CO2, CO, CH4, H2O and
others with a precision of 0.25% for CO2 (Wunch et al. 2010, 2011a), making it an ideal
dataset for validation of retrieved XCO2 from GOSAT. Since the TCCON instruments
are direct solar-viewing, the effects of aerosol and high cirrus cloud are negligible. To
maintain consistency between different TCCON observatories, all sites use the same
instrumentation and the same software for data processing and analysis. This includes
the conversion of raw interferograms into spectra, which are then spectrally fitted using
the GFIT algorithm with subsequent quality controls applied to the column abundances
(Wunch et al. 2011a). Wunch et al. (2010) compared the retrieved XCO2 from TCCON
with aircraft observations using 14 coincident profiles and found that a single, global
calibration factor of 0.989 accurately matches the data within the error. Subsequently,
Messerschmidt et al. (2011) found additional European TCCON sites to be consistent
with this calibration factor. Additionally, an airmass dependent correction factor was
applied as described in Wunch et al. (2011a).
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XCO2 retrievals from GOSAT were performed between April 2009 and May 2011
over thirteen TCCON sites; Lamont/USA, Park Falls/USA, Orleans/France, Bialystok/
Poland, Bremen/Germany, Karlsruhe/Germany, Garmisch/Germany, Sodankyla/ Finland,
Tsukuba/ Japan, Izana/Spain, Darwin/Australia, Wollongong/Australia, and Lauder/ New
Zealand. Figure 4.1 shows XCO2 retrieved from GOSAT compared with XCO2 inferred
from TCCON for each of these thirteen TCCON sites, where GOSAT observations
within a 5◦ radius are used. The lower right panel of Figure 4.1 gives the mean bias,
standard deviation and correlation of all daily mean coincident GOSAT XCO2 data com-
pared to TCCON daily mean coincident XCO2 data. This gives an overall bias of -0.08
ppm, scatter of 2.52 ppm and correlation of 0.72 between GOSAT and TCCON XCO2.

Although there are few daily coincidences between GOSAT and TCCON over Izana,
there is a good agreement between the single soundings for Izana, with GOSAT repro-
ducing the seasonal cycle very well but with a mean bias of approximately -3.36 ppm
compared to TCCON. Although the bias is small for Lauder (-0.44 ppm), there are very
few coincident points with TCCON and those that are coincident have a large standard
deviation of 4.11 ppm (using daily mean data). Similarly, Tsukuba has a low bias (-0.35
ppm), a large standard deviation (3.42 ppm) and only a small number of coincident points
between GOSAT and TCCON observations. Unlike most other sites, Tsukuba TCCON
data was not available for the duration of the GOSAT observations. Furthermore, there
was a lack of TCCON data available for the Karlsruhe and Sodankyla TCCON sites,
reducing the number of GOSAT/TCCON coincidences in those locations. Since few
GOSAT observations exist over Sodankyla, due to clouds, this site does not provide sta-
tistically meaningful data. The other sites all provide at least 200 coincidences between
GOSAT and TCCON.

Figure 4.2 gives the locations of each TCCON site and the locations of pre-screened
and cloud-screened coincident GOSAT observations. No GOSAT observations are ac-
tually observed directly at Izana, instead the coincident observations are located over
the Sahara desert. Only Lamont and Parkfalls have purely land within a 5◦ radius of the
site, all other sites include areas of ocean where observations either do not exist or are re-
moved in the pre-screen. Furthermore, Izana, Lauder and Tsukuba are located on islands,
thus reducing the number of GOSAT observations. However, many targeted observations
are made (using the specific observation mode) over Japan, within the coincidence range
of Tsukuba.

Bremen, Karlsruhe, and Garmisch TCCON sites are all located nearby each other,
with overlapping coincidence regions. Many GOSAT observations are coincident with
all three of these TCCON sites, hence making the overall GOSAT/TCCON comparison
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statistics biased towards these observations. Some of the GOSAT observations coinci-
dent with these three sites are also coincident with the Orleans TCCON site. Bremen
has the least number of coincident GOSAT observations that are also coincident with the
Orleans site. For these reasons, Garmisch and Karlsruhe will no longer be used in this
comparison.

Figure 4.3 shows the statistics of XCO2 retrieved from GOSAT compared to TC-
CON for different spatial coincidence limits. The number of coincident observations (or
sample size) increases with larger spatial coincidence thresholds, simply due to GOSAT
normally observing in a regular spatial pattern (such as the 5-point cross-track mode).
Hence, the choice of coincidence criteria should not only be a compromise between the
sample size and the spatial distance from a TCCON site, but must also take into account
the statistics between GOSAT and TCCON coincident data.

In general, the XCO2 bias between GOSAT and TCCON observations improves with
a smaller spatial coincidence (using daily mean coincident data). However, with a lati-
tudinal coincidence less than about 2◦ the bias becomes worse. The bias remains almost
constant below a longitudinal coincidence of 5◦, whilst higher longitudinal coincidence
limits produce larger biases. The bias calculated from coincident single soundings shows
the same patterns but with lower values overall.

The XCO2 standard deviation of daily mean coincident points is almost homogeneous
for all spatial coincidence thresholds considered, with a mean value of∼2.45 ppm. How-
ever, the XCO2 standard deviation of coincident single soundings increases with bigger
spatial coincidences (from∼2.2 ppm to∼2.7 ppm), especially with larger latitudinal co-
incidence limits. Similarly, the correlation coefficient of daily mean coincident GOSAT
and TCCON XCO2 is fairly homogeneous for all spatial coincidence limits with a value
of ∼0.76, whereas the correlation coefficient of XCO2 from coincident single soundings
decreases with larger spatial coincidences (from ∼0.76 to ∼0.68).

Using the statistics from both daily mean and single sounding coincident data, a lat-
itude threshold higher than 2◦ and a longitude threshold less than or equal to 5◦ would
provide the best GOSAT/TCCON comparison. A spatial coincidence of 5◦ would there-
fore provide a compromise between larger spatial coincidence limits with more observa-
tions and smaller latitude limits with reduced XCO2 standard deviations and correlation
coefficients.

Figure 4.4 shows the statistics of XCO2 retrieved from GOSAT compared to TCCON
for different temporal coincidence limits. In general, reduced temporal coincidence gives
in a small improvement in the XCO2 bias and standard deviation, but the number of
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observations increases with higher temporal limits. There are between 1 and 3 GOSAT
overpassing orbits of each TCCON site, providing all GOSAT observations within ∼70
minutes. Whereas, TCCON measurements are taken throughout daytime, observing the
variability of airmass transport and source/sink processes (Butz et al. 2011). Since the
diurnal cycle of CO2 changes rapidly, a large temporal coincidence for TCCON would
not reflect the same airmass as observed by GOSAT. Thus, as a compromise between the
number of observations and the diurnal cycle a temporal coincidence of ±2 hours would
be suitable.

All pre-screened, cloud-screened and post-screened GOSAT measurements over land
within a coincidence criteria of 5◦ of each TCCON site and ±2 hours of TCCON obser-
vations were used for only the seven TCCON sites selected. Figure 4.5 shows a compar-
ison of the retrieved XCO2 from GOSAT with coincident TCCON XCO2 data for these
seven TCCON sites (without averaging kernels applied). It also shows the correlation
of coincident daily mean GOSAT XCO2 with the average of all TCCON XCO2 within
±2 hours of each coincident GOSAT data. GOSAT XCO2 is observed to have values
consistent with TCCON retrievals for all sites for the entire time period and a very good
agreement between coincident data is found. In particular, the seasonal cycle observed
for northern hemispheric sites is well reproduced by GOSAT with correlation coefficients
between 0.56 and 0.85, similar to that observed by (Butz et al. 2011, Oshchepkov et al.
2012a, Wunch et al. 2011b). Consistent to the TCCON measurements, the two southern
hemisphere sites, Darwin and Wollongong, show weaker seasonal cycles than the north-
ern hemisphere sites. However, the retrieved XCO2 from GOSAT over Wollongong is
found to have a slightly enhanced seasonal cycle.

Gaps exist in the GOSAT and TCCON time-series due to clouds and instrumental
issues. The number of points per site varies mainly due to seasonal cloud cover and
the number of overpassing orbits. The number of soundings of each station varies from
260 for Bremen to 2445 for Lamont, with the number of coincident days with TCCON
between 19 and 261, respectively. The Lamont site has the largest sample size due to
multiple orbit overpasses within the coincidence criteria and less clouds than the other
sites.

Using the data for all sites (lower right in Figure 4.5), the average bias of GOSAT
compared to TCCON is calculated as -0.20 ppm with a standard deviation of 2.26 ppm
(using daily means), which is similar to that found by Butz et al. (2011) and lower than re-
ported by other algorithms Crisp et al. (e.g. 2012), Morino et al. (e.g. 2011), Oshchepkov
et al. (e.g. 2012a). Using single soundings instead of daily means, a standard deviation
of 2.46 ppm is found. The average of the bias per station is 0.10 ppm with a range of
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-0.87 to 0.77 ppm and a standard deviation of 0.56 ppm (using daily mean data). The
mean correlation coefficient between GOSAT and TCCON observations is found to be
0.75. The mean bias and scatter are largely influenced by the large number of soundings
over the Lamont site. The highest scatter is observed for Bremen, which has the lowest
number of scenes (see Table 4.3 for details).

The standard deviation of the retrieved XCO2 inferred from comparisons to coinci-
dent TCCON data is substantially (factor of ∼2 on average) larger than that predicted
from the a posterior error, which is found on average to be 1.14 ppm. The additional
scatter observed is likely introduced by cloud perturbations, variations of aerosols, and
other geophysical parameters. A similar value is reported by O’Dell et al. (2012) from
simulations.

There are some outliers between GOSAT and TCCON retrievals that have passed the
screening and are likely due to scattering caused by undetected clouds or aerosols. Thus,
the effect of applying a stricter post-screen was tested, where reduced upper threshold
limits were applied for the retrieved ice optical depth (0.03 limit), the retrieved total
optical depth (0.3 limit) and the ratio of retrieved band 1 albedo to band 3 albedo (2
limit). When applied, this caused many of the outliers to be removed, reducing the mean
bias to -0.08 ppm and the scatter to 1.92 ppm (of daily means), but at the cost of the
number of exposures (see Table 4.4 for details).

This comparison has not taken into account the effect of the different averaging ker-
nels A and a priori, which describe the sensitivity of a retrieval algorithm to the true state
throughout the atmosphere (Rodgers 2000, Rodgers & Connor 2003). The retrieved
XCO2 for GOSAT and TCCON depends on the averaging kernel and the a priori used in
the retrieval algorithm according to:

XCO2 = hTxa + hTA (x− xa) (4.1)

where hT is the transpose of the pressure weighting function (O’Dell 2010), x is the true
VMR profile, and xa is the a priori VMR profile. A consequence of Equation 4.1 is that
the true and the retrieved XCO2 will differ if A is different from the Unity matrix. This
difference is referred to as the smoothing error and it will be different for the GOSAT
and TCCON retrievals due to their different averaging kernels and a priori values.

An assessment of this effect on the comparison of XCO2 retrievals from GOSAT and
TCCON was performed by calculating the XCO2 retrieved from GOSAT and TCCON us-
ing GEOS-Chem model (described in Section 4.3) calculations as the true CO2 profile.
Since the GEOS-Chem model calculations will not necessarily represent the true atmo-
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spheric CO2 profiles these values for smoothing error differences will only represent a
rough estimate.

For each of the seven TCCON sites considered, GEOS-Chem was interpolated tem-
porally to the observation time of TCCON and GOSAT using the GEOS-Chem grid cell
that includes the TCCON site. The averaging kernels were applied to GEOS-Chem for
the period of April 2009 to December 2010 where both model, TCCON and GOSAT
data exist. Only TCCON data that was temporally closest to GOSAT data, which was
coincident within ±2 hours and 5◦ of each TCCON site was used.

The mean smoothing errors of TCCON and GOSAT were calculated as 0.12 ppm
and 0.27 ppm respectively. The mean smoothing error difference between the model
XCO2 with GOSAT averaging kernels applied and the model XCO2 with TCCON aver-
aging kernels applied was found to be -0.14 ppm. The average of the mean smoothing
error difference per station is -0.22 ppm with Lamont having the smallest mean smooth-
ing error difference of -0.05 ppm and Orleans having the largest mean smoothing error
difference of -0.50 ppm. The standard deviation of the mean smoothing error differ-
ence per site is 0.18 ppm. The mean of the scatter of the smoothing error difference
per station is 0.19 ppm, with a standard deviation of 0.09 ppm. The smoothing error
difference is observed to have a small seasonal cycle dependence, with northern hemi-
spheric sites varying from approximately -1.5 ppm to 0.5 ppm and a lower amplitude for
southern hemisphere stations where the seasonal cycle is reduced. Hence, for southern
hemispheric sites the difference of the smoothing errors has a very small impact on the
comparison of GOSAT with TCCON. However, for northern hemispheric sites there is a
seasonal cycle dependence between GOSAT and TCCON XCO2 due to the smoothing er-
ror difference (see Figure 4.9). If the point-by-point smoothing error difference is appied
to the coincident TCCON data, the mean bias of GOSAT compared to TCCON is found
to increase by 0.14 ppm but the standard deviation and correlation coefficient remain the
same (see Table 4.5 for further details). It cannot be expected that the estimates are nec-
essarily representing the correct value for each individual sounding as this would require
that the model reproduces the shape of the CO2 profile at each time step and location.
Indeed, it is found that including the smoothing error estimates from GEOS-Chem to the
GOSAT-TCCON comparisons worsens the comparisons for some sites while it improves
it for others.
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Table 4.2. Statistics for the UoL-FP v3G comparison to all 13 TCCON stations.

TCCON Total Passed Percent Passed Coincident
site from L1B pre-screen cloudy post-screen days

Sodankyla 35864 2858 74.25 83 19
(67.368◦ N)
Bialystok 29376 8321 61.16 459 54

(53.230◦ N)
Bremen 24054 5484 66.36 260 19

(53.100◦ N)
Karlsruhe 30371 8706 65.62 383 47

(49.100◦ N)
Orleans 24047 9511 61.32 715 47

(47.970◦ N)
Garmisch 25505 8479 65.02 328 40

(47.476◦ N)
Park Falls 33277 5785 55.52 421 86

(45.945◦ N)
Lamont 30984 9888 39.44 2445 261

(36.604◦ N)
Tsukuba 21636 3320 55.18 129 19

(36.051◦ N)
Izana 11614 1094 11.52 230 8

(28.300◦ N)
Darwin 17273 4511 39.64 990 54

(12.424◦ S)
Wollongong 13182 4971 50.45 570 56
(34.406◦ S)

Lauder 9707 1069 49.49 28 16
(45.038◦ S)

Total 306890 73997 56.49 7041 726
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FIGURE 4.1. Comparison of retrieved XCO2 from GOSAT with retrieved XCO2 from
thirteen TCCON site for coincident cloud-screened observations within 2 hours and
5◦ between April 2009 and May 2011. All TCCON data shown in light green,
coincident daily mean TCCON shown in dark green, all GOSAT data shown in light
red and daily mean GOSAT shown in dark red (with daily mean points with only
one value per day are represented by open circles). The average difference between
the daily means is given as the bias (ranging from -3.36 to 2.01 ppm), the standard
deviation of daily means by the Std (between 1.89 and 4.11 ppm) and the correlation
coefficient of daily means by r (-0.10 at Darwin to 0.85 at Park Falls). The lower
right panel gives the correlation of daily mean coincident retrieved GOSAT XCO2

with daily mean TCCON XCO2 within ±2 hours for the thirteen sites. This gives
an overall bias of -0.08 ppm, scatter of 2.52 ppm and correlation of 0.72 between
GOSAT and TCCON XCO2. There are no daily mean coincident TCCON points for
Izana, so no statistics exist for this location and therefore had no effect on the overall

bias, standard deviation or correlation coefficient.
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FIGURE 4.2. Locations of pre-screened and cloud-screened TANSO-FTS observa-
tions between April 2009 and May 2011 within 5◦ of thirteen TCCON sites. The
locations of the TCCON sites are represented by a blue circle and GOSAT observa-
tion locations are given by red circles. Additionally, a green surface represents land

and white shows an ocean surface. The dotted line represent a 2◦ grid.
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FIGURE 4.3. Statistics for a range of latitude and longitude coincidence limits for
the comparison of GOSAT and TCCON XCO2. The left column shows the mean
bias (top left), standard deviation (left second row), correlation coefficient (left third
row), and sample size of daily mean GOSAT XCO2 coincident with TCCON. Similar
statistics are shown in the right column where GOSAT single soundings are coinci-
dent with TCCON individual observations. Additionally, a temporal coincidence of

2 hours between GOSAT and TCCON observations was used.
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FIGURE 4.4. Statistics for a range of latitude, longitude, and temporal coincidence
limits for the comparison of GOSAT and TCCON XCO2. The sample size of coinci-
dent daily mean data (left column), mean bias of coincident daily mean data (middle
column), and standard deviation of coincident single soundings (right column) is
shown for three different temporal coincidence limits of GOSAT and TCCON XCO2.
The top row shows the statistics for a temporal coincidence of 30 minutes between
GOSAT and TCCON observations. Similarly, the middle and bottom row shows the

statistics for a temporal coincidence of 2 hours and 6 hours, respectively.
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FIGURE 4.5. Comparison of retrieved XCO2 from GOSAT with retrieved XCO2

from seven TCCON site for coincident cloud-screened observations within 2 hours
and 5◦ between April 2009 and May 2011. All TCCON data shown in light green,
coincident daily mean TCCON shown in dark green, all GOSAT data shown in light
red and daily mean GOSAT shown in dark red (with daily mean points with only
one value per day are represented by open circles). The average difference between
the daily means is given as the bias (ranging from -0.87 to 0.77 ppm), the standard
deviation of daily means by the Std (between 2.04 and 2.96 ppm) and the correlation
coefficient of daily means by r (-0.10 at Darwin to 0.85 at Park Falls). The lower
right panel gives the correlation of daily mean coincident retrieved GOSAT XCO2

with daily mean TCCON XCO2 within ±2 hours for the seven sites. This gives
an overall bias of -0.20 ppm, scatter of 2.26 ppm and correlation of 0.75 between

GOSAT and TCCON XCO2.

FIGURE 4.6. The Lamont/USA TCCON averaging kernel as a function of atmo-
spheric pressure for different SZA (left). The right panel shows these averaging

kernels for different SZA when interpolated onto a finer grid of 0.25◦.
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FIGURE 4.7. Example averaging kernels for TCCON and GOSAT over Lam-
ont/USA (left) and the corresponding CO2 VMR vertical profile (right). The es-
timated smoothing error for TCCON and GOSAT with respect to GEOS-Chem is
given, and the smoothing error difference between TCCON and GOSAT is stated.
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FIGURE 4.8. Correlation of GEOS-Chem with and without TCCON averaging ker-
nels applied for data within 5◦ of seven TCCON sites between April 2009 and De-
cember 2010 (left). Similarly, a correlation between GEOS-Chem with and without
GOSAT averaging kernels applied is shown in the centre. The mean difference (Diff)
or smoothing error between with and without averaging kernels applied is given for
TCCON and GOSAT. The smoothing error difference is estimated from a compar-
ison between GEOS-Chem with TCCON and GOSAT averaging kernels applied

(right).
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FIGURE 4.9. Calculated smoothing error differences for seven TCCON sites, for
coincident cloud-screened observations within 2 hours and 5◦ between April 2009
and December 2010. The standard deviation of the smoothing error difference values

are given by the Std (between 0.07 and 0.32 ppm).
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4.3 Comparisons to the GEOS-Chem model

One year of GOSAT XCO2 retrievals was compared with CO2 atmospheric concentra-
tions from the GEOS-Chem global 3-D chemistry transport model (v8-02-01) (Feng et al.
2011). The GEOS-Chem simulations use assimilated GEOS-5 meteorology from the
Global Modeling and Assimilation Office based at NASA Goddard to drive the model.
For the surface CO2 fluxes, GEOS-Chem assimilates annual fossil fuel emissions esti-
mated from CDIAC, biofuel emissions obtained from Yevich & Logan (2003) climatol-
ogy, monthly biomass burning emissions extracted from the third version of the Global
Fire Emission Database (GFEDv3) that uses observations of the land surface by ground-
based and satellite instruments, monthly ocean fluxes that are derived from sea-surface
pCO2 observations (Takahashi et al. 2009), and biospheric fluxes that are computed using
the CASA biosphere model (Randerson et al. 1997). The CASA model is three hourly
and is constrained by GEOS meteorology output and Normalized Difference Vegetation
Index (NDVI). The mixing depths and surface fields are updated every three hours and
the GEOS-5 meteorology is updated every six hours. The 4D fields include 47 vertical
levels and a horizontal grid resolution of 2◦ latitude by 2.5◦ longitude.

The GEOS-Chem simulations are forced by posterior fluxes inferred from the GLOB-
ALVIEW CO2 product, that includes 2009 and 2010 data (Maserie & Tans 1995). The
GLOBALVIEW data from 78 surface sites are assimilated to estimate monthly surface
fluxes over 144 global regions by using an ensemble Kalman Filter (EnKF) (Feng et al.
2009, 2011). Feng et al. (2011) reported that the GEOS-Chem model is within 1.5 ppm of
free and upper troposphere aircraft vertical profile measurements and CO2 retrieved from
AIRS observations. Additionally, GEOS-Chem is on average within 0.5 to 1.0 ppm of
observed partial CO2 columns from the HIAPER HIPPO project (James Barlow, personal
communication, 2012). The GEOS-Chem model vertical transport errors are estimated
to be less than∼2 ppm. This is supported by complementary model evaluation studies of
CH4, CH3CCl3, and SF6 (e.g., Fraser et al. 2011, Patra et al. 2011). TCCON XCO2 was
compared with that of GEOS-Chem (convolved with the TCCON averaging kernels) for
each of the seven sites considered in the previous section and GEOS-Chem was found
to have a mean bias of -0.09 ppm, standard deviation of 1.23 ppm and correlation co-
efficient of 0.93, comparing better than GOSAT with TCCON (see Figure 4.10). Based
on the current understanding of model performance it can be concluded that the model
should well reproduce large scale features of the atmospheric CO2 distribution and that
differences between GOSAT and GEOS-Chem are likely due to GOSAT retrieval biases.
Although, model errors could also contribute to any observed differences.

162



FIGURE 4.10. Comparison of XCO2 calculated from GEOS-Chem (with TCCON
averaging kernels applied) with retrieved XCO2 from seven TCCON site for cloud-
screened observations within 5◦ between April 2009 and May 2011. All TCCON
data shown in light green, coincident daily mean TCCON shown in dark green, all
GEOS-Chem data shown in light red and daily mean GEOS-Chem shown in dark red
(with daily mean points with only one value per day are represented by open circles).
The average difference between the daily means is given as the bias (ranging from
-0.56 to 0.79 ppm), the standard deviation of daily means by the Std (between 0.80
and 1.49 ppm) and the correlation coefficient of daily means by r (0.80 at Darwin to
0.97 at Orleans). The lower right panel gives the correlation of daily mean retrieved
GEOS-Chem XCO2 with daily mean TCCON XCO2 for the seven sites. This gives
an overall bias of -0.09 ppm, scatter of 1.23 ppm and correlation of 0.93 between

GEOS-Chem and TCCON XCO2.

Figure 4.11 shows the comparison between XCO2 from GOSAT and GEOS-Chem for
each season, where the GEOS-Chem CO2 profiles were interpolated to the locations and
times of the GOSAT observations, and convolved with the averaging kernel (Equation
4.1) to obtain XCO2 as measured by GOSAT. Overall, the spatial and temporal distri-
bution of XCO2 agrees well between GOSAT and GEOS-Chem. The mean difference
observed between GOSAT and GEOS-Chem XCO2 varies from -1.43 to -0.82 ppm sea-
sonally, with the standard deviation ranging from 2.41 to 2.71 ppm. High correlations of
the seasonal latitudinal gradient are found with correlation coefficients ranging between
0.73 and 0.96, but slightly poorer point-by-point correlation coefficients with values be-
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FIGURE 4.11. Comparison of XCO2 retrieved from GOSAT and XCO2 calculated
from GEOS-Chem CO2 profiles convolved with the scene-specific GOSAT aver-
aging kernel. For each season, GOSAT is shown at the top, GEOS-Chem in the
middle, and a zonal mean comparison of them at the bottom. The global maps in-
dicate the largest differences are observed over desert regions, such as the Sahara
and central Asia. The zonal mean comparison shows a very good agreement be-
tween GOSAT and GEOS-Chem. It also includes the average TCCON XCO2 from
each site which in general agrees, with observed differences mostly due to zonal

averaging of GOSAT/GEOS-Chem data.

tween 0.37 and 0.64. Between June 2009 and May 2010 the correlation between the
GOSAT and GEOS-Chem annual mean latitudinal gradient is 0.76 and the annual spatial
varability is found to have a global mean difference of -1.22 ppm, standard deviation of
2.59 ppm and correlation of 0.61 (not shown in Figures).

Over desert regions such as the Sahara, Saudi Arabia and Australia, differences are
found between GOSAT and GEOS-Chem of up to 3 ppm. The medium gain mode is
predominantly used over desert areas where surface reflectance causes the signal inten-
sity to be high. Suto et al. (2008) found that TANSO-FTS instrument micro-vibrations
produced a larger effect on medium gain observations and XCO2 retrievals of medium
gain have been observed to be ∼1% higher than that of high gain (Crisp et al. 2012).
However, XCO2 retrieved from the UoL-FP v3G algorithm for desert regions observed
with the high gain mode, such as central Asia, are found to also give similar differences
in XCO2 compared to GEOS-Chem. Since all these regions include high albedo in the
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1.61 and 2.06 µm CO2 bands and high levels dust, the XCO2 difference is not solely due
to gain issues (as suggested by Crisp et al. (2012)) but also potentially an aerosol or other
instrumental related issue.

FIGURE 4.12. Comparison of XCO2 retrieved from GOSAT and XCO2 calculated
from GEOS-Chem CO2 profiles convolved with the scene-specific GOSAT averag-
ing kernel, for a number of different regions between June 2009 and May 2010. The
locations of these regions are indicated on the map by the black boxes (top left).
The top centre and top right panels give the time series of GOSAT and GEOS-Chem
data for the northern and southern hemispheres, showing the seasonal cycle to be
well matched but with GOSAT data offset lower by -1.50 ppm in the northern hemi-
sphere and -0.63 ppm in the southern hemisphere. The second row of plots show
a very good agreement between GOSAT and GEOS-Chem both in value and sea-
sonality for regions containing urban environments. Below these, the time series of
forested regions are shown, with GOSAT reproducing the GEOS-Chem data very
well but with a larger scatter and fewer data points. The bottom panels show the
time series for 3 different desert regions, with GOSAT matching the seasonal cycle

of GEOS-Chem very well but offset lower in value from -0.86 to -2.99 ppm.

The time series of XCO2 from GOSAT and GEOS-Chem for a number of different re-
gions are shown in Figure 4.12. The seasonal cycle is found to match very well between
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GOSAT and GEOS-Chem for both northern and southern hemispheres, but a difference
of 1.5 ppm is observed in the northern hemisphere throughout the year and a smaller
difference of 0.63 ppm in the southern hemisphere. GOSAT and GEOS-Chem XCO2

show a high consistency for both Europe and the USA, with a XCO2 difference of 0.20
ppm and 0.56 ppm and correlation coefficients of 0.73 and 0.70, respectively. On av-
erage, GOSAT and GEOS-Chem agree for South Asia with a mean difference of 0.53
ppm and correlation coefficient of 0.68, but differences are viewed in the seasonal cy-
cle with GEOS-Chem over-estimating the XCO2 in autumn 2009 and under-estimating
during spring 2010.

Few GOSAT soundings are observed over the Amazon due to tropical clouds, and
those measurements that are retrieved have a large standard deviation (3.56 ppm) that
is potentially due to partial cloud contamination. Similarly, a larger scatter is seen in
tropical Africa during autumn and spring for GOSAT, whereas winter and summer have
a reduced scatter and have similar values as GEOS-Chem. A very high agreement is ob-
served for NW Russia with a correlation coefficient of 0.81 and a mean XCO2 difference
of 0.43 ppm.

In central Asia where a desert region is observed with the high gain mode, the sea-
sonal cycle of GOSAT and GEOS-Chem is observed to agree well (r=0.76), but consis-
tently with a ∼2 ppm difference in value. Also, a ∼3 ppm mean difference is found over
the Sahara between GOSAT and GEOS-Chem XCO2 where a desert region is observed
with the medium gain mode, but the seasonal cycle agrees well with a correlation co-
efficient of 0.80. Australia, which comprises partially of desert and is oberved partially
with medium and high gain modes, also shows a difference in XCO2 between GOSAT
and GEOS-Chem with a value of 0.86 ppm.
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4.4 Bias Correction Scheme

A bias correction method was developed to help identify and reduce the observed biases
of retrieved XCO2 from GOSAT, especially over desert areas. Similar to Wunch et al.
(2011b), this bias correction method is based on a multivariate linear regression of the
difference between pseudo observations and retrieved XCO2 from GOSAT between July
2009 to June 2010 over the region south of 25◦S where the variability of CO2 is low. The
pseudo-observations were generated using GEOS-Chem calculations to provide informa-
tion on vertical profile and spatial variations while the temporal variations and absolute
values were scaled to match Wollongong/Australia (34.406◦S) and Lauder/New Zealand
(45.038◦S) TCCON measurements. Initially all retrieval parameters and observation re-
lated parameters were used. Similar to Wunch et al. (2011b), the four parameters with
the highest correlation were identified and used to obtain the following equation:

Xbias-corrected
CO2

[ppm] = Xretrieved
CO2

[ppm] + 4.19

− 0.564 ∗ CO2 Signal Ratio

− 0.193 ∗ (∆P [hPa])

+ 56.8 ∗ Ice Optical Depth

+ 0.256 ∗ 10−5 ∗ O2 Albedo Slope (4.2)

These parameters have been identified by the regression which does not provide a
means of identifying the physical link. A correlation (r=0.37) of the XCO2 difference is
observed with the ratio of the mean signal of the 1.61 µm CO2 band to the 2.06 µm CO2

band (CO2 Signal Ratio), which may be a consequence of the spectroscopic differences
of the different CO2 bands, but might also relate to aerosols or albedo. Spectroscopic
errors may also result in systematic effects in the retrieved surface pressure as shown by
Wunch et al. (2011b) and the XCO2 difference is found to correlate (r=0.30) with delta
surface pressure (∆P), even though the XCO2 is already normalised with the surface pres-
sure ratio. An anti-correlation (r=-0.22) of the XCO2 difference with retrieved cirrus op-
tical depth (Ice Optical Depth) is observed which indicates the path length was altered.
Based on the geographical location of the bias correction for this parameter it can be
inferred that the ice optical depth refers to cirrus clouds. An anti-correlation (r=-0.29) of
the XCO2 difference is also found with the slope of the band 1 albedo (O2 Albedo Slope)
which may be due to errors in the O2 A band spectroscopy, zero-level offsets, or varia-
tions in signal intensity over vegetation regions that could be caused by not accounting
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FIGURE 4.13. Illustration of XCO2 calculated from GEOS-Chem within 5◦ of Wol-
longong/Australia and Lauder/New Zealand combined between April 2009 and De-
cember 2010 with TCCON averaging kernels applied (dark green) compared to
XCO2 inferred from TCCON (light green). When the daily mean difference between
GEOS-Chem and TCCON is applied as a ±5 day running mean to the GEOS-Chem
data, the GEOS-Chem XCO2 becomes closer in value to TCCON, as shown in Red.

for the known fluorescence (Frankenberg et al. 2011a).

Whilst Wunch et al. (2011b) found biases partially due to airmass and the O2 A band
signal, here no correlation is found between the airmass and the XCO2 difference (r =
0.01) nor the O2 A band signal (r=0.01). Additionally, a zero level offset in the O2 A
band is already retrieved to mitigate the effects of the GOSAT Band 1 non-linearity and
partially fluorescence (Butz et al. 2011, Frankenberg et al. 2011a, 2012, Suto et al. 2008).

This bias correction was applied to one year (June 2009 to May 2010) of XCO2 re-
trieved from GOSAT globally and compared to XCO2 calculated from the GEOS-Chem
model with GOSAT averaging kernels applied. The annual mean global difference is
found to be reduced from -1.22 ppm to -0.68 ppm and the correlation to increase from
0.61 to 0.74.

Figure 4.15 shows a comparison between GOSAT and GEOS-Chem XCO2 latitudinal
gradients for each season, comparing with and without the bias correction. The seasonal
latitudinal gradients show improvements with increases of the correlation between 0.01
and 0.18 depending on the season, for DJF the improvement in correlation coefficient is
marginal. The majority of the improvement occurs in the northern hemisphere, especially
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FIGURE 4.14. Correlation of the XCO2 bias with the ratio of band 2 to band 3 mean
radiance (top left), the retrieved cirrus optical depth (top right), the ∆P (bottom
left), and the retrieved band 1 albedo slope (bottom right). Where the bias is be-
tween GOSAT and the GEOS-Chem 3D chemistry transport model with GOSAT
averaging kernels applied and corrected with a fit to Wollongong and Lauder TC-

CON measurements. The colour gives the density of values within the bin range.

over the Sahara region.

The time series of bias corrected XCO2 retrieved from GOSAT compared to GEOS-
Chem data for different regions is shown in Figure 4.16. For most regions it is found
that the bias, standard deviation and correlation coefficient have improved. In partiuclar,
the bias correction has considerably reduced the larger differences previously seen over
desert regions; the difference over the Sahara has reduced from -2.99 ppm to -1.20 ppm,
the difference over Australia has reduced to about half, and the difference over cen-
tral Asia improved from -2.08 ppm to -0.94 ppm. However, for the Sahara region, the
standard deviation and correlation coefficient becomes worse. Also, for some regions
(Tropical Africa and NW Russia) it is found that the bias increases when applying the
bias correction.
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FIGURE 4.15. The top panels show zonal mean comparisons for each season of
XCO2 retrieved from GOSAT and XCO2 calculated from GEOS-Chem CO2 profiles
convolved with the scene-specific GOSAT averaging kernel. The bottom panel gives
revised comparisons where the GOSAT XCO2 was bias corrected. The latitudinal
gradients of the bias corrected GOSAT XCO2 match very well to GEOS-Chem with
correlations between 0.78 and 0.97. The bias correction leads to increases of the
correlation between 0.01 and 0.18, and shows a large improvement over the latitudes

that contain the Sahara.

170



FIGURE 4.16. Comparison of bias corrected XCO2 retrieved from GOSAT and
XCO2 calculated from GEOS-Chem CO2 profiles convolved with the scene-specific
GOSAT averaging kernel, for a number of different regions between June 2009 and
May 2010. The locations of these regions are indicated on the map by the black
boxes (top left). GOSAT agrees very well with GEOS-Chem for both hemispheres
and all regions. GOSAT shows a good reproduction of the seasonal cycle of GEOS-
Chem data, with the exception of south Asia where GOSAT is higher in the summer
period. Minor offsets exist over the desert regions, such as Australia, the Sahara,
and central Asia, which is a large improvement compared to the non-bias corrected
XCO2 shown in Figure 4.12. Additionally, the scatter of all regions is less than that
of the non-bias corrected XCO2. Furthermore, the bias correction has brought the

XCO2 over the Amazon to be of the same magnitude as GEOS-Chem.
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4.5 Comparisons of GOSAT with Land Surface Types

The XCO2 difference between GOSAT and GEOS-Chem was compared against the land
surface type for each observation. The surface type was determined by using the most
common land cover type within a coincidence of ±0.1◦ of the Moderate Resolution
Imaging Spectroradiometer (MODIS) Level 3 yearly 0.05◦ land cover type (MCD12C1)
for 2007 (assuming the land cover has not significantly altered between 2007 and 2010).
Figures 4.17 and 4.18 show this comparison for each of the GOSAT gain modes sepa-
rately.

For retrievals of GOSAT high gain data, GOSAT and GEOS-Chem correlate well
with XCO2 differences less than 0.23 ppm for surfaces that consist of forest, cropland,
savanna, wetland, or urban environments. However, larger XCO2 differences (up to ∼3.2
ppm) are found for surfaces that consist of desert, shrubland, grassland or snow.

Where medium gain data has been retrieved, XCO2 differences are found to be similar
to that of high gain data. The retrieved XCO2 from GOSAT is found on average to be∼1.5
ppm lower than GEOS-Chem over both shrubland and grassland surfaces. The largest
XCO2 difference of 2.75 ppm is observed over desert surfaces. The lowest difference
(0.35 ppm) is found over savanna surfaces. No observations over other surface types
exist due to the specific observation locations where medium gain was used. The XCO2

differences are found to be larger with certain land surface types, specifically deserts,
irrespective of the gain setting used.
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FIGURE 4.17. Comparison of XCO2 retrieved from high gain GOSAT data with
GEOS-Chem XCO2 calculations for different MODIS land cover types. The red
dashed line shows the one-to-one line, B represents the mean XCO2 difference, and σ
gives the standard deviation of XCO2. GOSAT and GEOS-Chem correlate well with
XCO2 differences less than 0.23 ppm for surfaces that consist of forest, cropland,
savanna, wetland, or urban environments. However, larger XCO2 differences (up
to ∼3.2 ppm) are found for surfaces that consist of desert, shrubland, grassland or

snow.
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FIGURE 4.18. Comparison of XCO2 retrieved from medium gain GOSAT data with
GEOS-Chem XCO2 calculations for different MODIS land cover types. The red
dashed line shows the one-to-one line, B represents the mean XCO2 difference, and σ
gives the standard deviation of XCO2. The retrieved XCO2 from GOSAT is found on
average to be ∼1.5 ppm lower than GEOS-Chem over both shrubland and grassland
surfaces. The largest XCO2 difference of 2.75 ppm is observed over desert surfaces.

The lowest difference (0.35 ppm) is found over savanna surfaces.
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4.6 Comparisons to alternative retrieval algorithms

The retrieved XCO2 from GOSAT using the UoL-FP algorithm was compared with five
alternative algorithms for two years of data over 11 TCCON sites; Lamont/USA, Park
Falls/USA, Sodankyla/Finland, Bialystok/Poland, Bremen/Germany, Orleans/ France,
Garmisch/Germany, Tsukuba/Japan, Darwin/Australia, Wollongong/Australia and Lauder/
New Zealand. The following sections give a brief description of each algorithm (futher
details are given in Oshchepkov et al. (2012b)).

4.6.1 NIES PPDF D Retrieval Algorithm

The National Institute for Environmental Studies (NIES) Photon Path Length Proba-
bility Density Function (PPDF) Differential Optical Absorption Spectroscopy (DOAS)
retrieval algorithm (NIES PPDF D) uses the maximum a posteriori method of optimal
estimation (Rodgers 2000) with the DOAS technique (Oshchepkov et al. 2012a). It
includes the HSTAR, high resolution RSTAR, radiative transfer model (Kokhanovsky
et al. 2010), based on a discrete ordinate algorithm (Duan et al. 2005) and uses tabu-
lated absorption cross-sections of HITRAN08 (Rothman et al. 2009). The solar model
is based on a high resolution solar irradiance database provided by Dr. R. Kurucz
(http://kurucz.harvard.edu/sun/irradiance2008/). The instrument model uses the official
GOSAT ILS from JAXA (version 006) (Kuze et al. 2009). It applies a pre-screen that
uses a PPDF based on the radiative transfer model (Bril et al. 2007, S. Oshchepkov &
Yokota 2008, Oshchepkov et al. 2009, 2011, 2012a) and the NIES cloud-screen (Tay-
lor et al. 2012). Only the 1.61 µm band was retrieved within the wavenumber range of
6180-6380 cm−1.

The a priori CO2 and CH4 were obtained from daily profiles of the NIES TM global
atmospheric transport model (Maksyutov et al. 2008). The a priori H2O, temperature
and surface pressure were extracted from 6 hourly model outputs from the Japan Me-
teorological Agency (JMA) on 0.5 degree horizontal resolution with 21 vertical levels.
The albedo a priori was taken from the 16-daily MODIS land surface albedo product
(MOD43B3) (Schaaf et al. 2002). The main differences between the retrieval algorithms
include the; a priori, pre-screen, radiative transfer model, and solar model.
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4.6.2 NIES L2 Retrieval Algorithm

The NIES L2 algorithm uses the maximum a posteriori method of optimal estimation
with the Levenberg-Marquardt method (Rodgers 2000) and an accurate single scattering
and approximate multiple scattering radiative transfer model of Duan et al. (2005). It
uses the same absorption cross-sections, solar model, ILS and a priori as the NIES PPDF
D retrieval algorithm. The polarisations were combined using a preliminary Mueller
Matrix providing a single intensity to be retrieved. It pre-screens for saturated H2O
absorption lines as a test for cirrus clouds and uses the NIES cloud-screen (Taylor et al.
2012). The state vector consists of CO2, CH4 and H2O 15-level VMR profiles, uniform
0-2 km AOD, surface pressure, albedo, dispersion and a temperature scaling factor. Only
the 1.61 µm band was retrieved with the wavenumber ranges of 6180-6380 cm−1 for CO2

and 5900-6150 cm−1 for CH4. Additionally, all solar absorption lines were omitted from
the retrieval.

The a priori aerosol optical properties and AOD were obtained from semi-real time
daily outputs of the three-dimensional aerosol transport model, the Spectral Radiation-
Transport Model for Aerosol Species (SPRINTARS) (Takemura et al. 2003), for soil
dust, carbonaceous, sulfate, and sea-salt aerosols uniformly distributed within a 2-km
layer from the surface (Yoshida et al. 2010). The key differences between the retrieval
algorithms include the; a priori, pre-screen, radiative transfer model, and solar model,
scattering approach, and the intensity used.

4.6.3 ACOS Retrieval Algorithm

The ACOS retrieval algorithm used for the NASA Atmospheric CO2 Observations from
Space (ACOS) project and the NASA OCO-2 mission is also based on the OCO al-
gorithm (like the UoL-FP retrieval algorithm) but has been re-developed (O’Dell et al.
2012, Crisp et al. 2012). Here, it used HITRAN08 absorption cross-sections (Rothman
et al. 2009) with additional line mixing in the O2 A band. It simultaneously retrieved
the O2 A band, the 1.61 µm and 2.06 µm CO2 bands with the average intensity of each
polarisation. The state vector consisted of a 20-level CO2 VMR profile and 20-level
logarithmic extinction profiles of two aerosols, cloud and cirrus. Additionally, surface
pressure was retrieved as well as a temperature offset, a scaling factor for H2O, albedo,
albedo slope and dispersion shift/stretch.

It obtained its a priori surface pressure, temperature, and water vapour from ECMWF.
The a priori CO2 VMR was extracted from latitudinal zonal land/ocean LMDZ 2004
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model fields. The a priori albedo was computed from GOSAT reflectance. The a priori
aerosol, cloud and cirrus profiles were constructed to provide a low altitude aerosol,
a middle altitude aerosol, a middle high altitude cloud, and a high cirrus cloud. The
optical properties of the aerosols used were types 2b and 3b from Kahn et al. (2001),
representing a mixture of dusty maritime and coarse dust and a mixture of carbonaceous
and black carbon maritime, respectively. The cloud and cirrus optical properties were
taken from the Baum model (Baum et al. 2005a,b). It used a pre-screen of SNR >70, a
cloud-screen based on the difference between ECMWF surface pressure and the surface
pressure retrieved from a full O2 A band retrieval (Taylor et al. 2012), and a post-screen
based on χ2 of each band, a posterior error, retrieved AOD, surface pressure and degrees
of freedom.

4.6.4 RemoTeC Retrieval Algorithm

The Netherlands Institude for Space Research (SRON) retrieval algorithm (Butz et al.
2011) uses the Phillips-Tikhonov regularisation method of the CO2 profile in addition
to the least sqaures difference minimisation method with Gauss-Newton method applied
(Rodgers 2000). These are balanced by a regularisation parameter. It uses a vector radia-
tive transfer model based on the Gauss-Seidel solution of the radiative transfer equation
and forward adjoint perturbation theory for the derivatives. It uses the tabulated ab-
sorption cross-sections of HITRAN08 (Rothman et al. 2009) and assumes AOD to be
negligible by forcing retrievals into vanishing aerosol and cirrus optical thickness. It si-
multaneuously retrieves the 1.61 µm CO2 band, CO2 concentrations and microphysical
properties of aerosol and cirrus particles. Filtered null-space components of the retrieved
CO2 profile are filled by 2005 model fields of CarbonTracker (Peters et al. 2007).

The a priori surface pressure, temperature and water vapour were obtained from
ECMWF, a priori CO2 from CarbonTracker 2005 model fields, and albedo from GOSAT
reflectance. The NIES cloud-screen (Taylor et al. 2012), a pre-screen of SNR>70 and a
post-screen based on χ2 and AOD was used.

4.6.5 Intercomparison Results

Only retrieved XCO2 within a spatial coincidence of 5◦ radius of a TCCON site was
used. All coincident statistics use the mean XCO2 within ±2 hours (±1 hour for NIES
01.XX and NIES PPDF D algorithms) for temporal coincidence to TCCON data and
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these values are daily averaged. These statistics are shown in Figure 4.19, which shows
the correlation of each algorithm with TCCON for all sites combined.

The NIES 01.XX algorithm shows a large offset to TCCON which is known to be
due to the existance of CO2 absorption lines within the solar irradiance database used
(Yoshida 2011). The NIES 01.XX results also have a large scatter which is most likely
due to the assumption of a fixed aerosol profile between 0 - 2 km altitude globally. The
ACOS B2.8 algorithm also has a large offset which is known to be mainly due to a
surface pressure bias of 11 hPa (Crisp et al. 2012). However, the ACOS B2.9 algorithm
attempts to correct for this surface pressure bias by scaling the O2 A band absorption lines
by a factor of 1.025 and also includes an O2 A band zero level offset to help alleviate
the effects of the band 1 nonlinearity. With these updates the ACOS B2.9 algorithm
correlates well (r= 0.77) with TCCON. The NIES PPDF D algorithm has the highest
correlation (r= 0.79) but the least amount of data. Currently it removes alot of useful
data that are only partially contaminated by optical path modification. The RemoTeC 1.0
algorithm also gives a good correlation (r= 0.76) with TCCON.

The UoL-FP algorithm (no bias correction applied) has the highest amount of data
and shows a good but slightly lower correlation (r= 0.72) with TCCON but has a num-
ber of outliers included which will affect this correlation. As shown in Section 4.2 if a
stricter post-screen is applied then the TCCON comparison statistics improve substan-
tially but at the cost of the amount of data. Most algorithms give a similar correlation to
TCCON (UoL-FP 3G, ACOS B2.9, Remotec 1.0 and NIES PPDF D) but the small dif-
ferences in the statistics should not be over-interpreted as the different screening applied
to each algorithm can easily account for these differences, and the screening can easily
be changed slightly to improve the statistics or allow more data.
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FIGURE 4.19. Correlation diagrams between GOSAT and ground based FTS mea-
surements of XCO2 for six algorithms. The GOSAT data were selected within a circle
of 5◦ latitude/longitude radius centered at each FTS station. The XCO2 from ground
based FTS data were the mean values measured within±2 hours (±1 hour for NIES
01.XX and PPDF D) of GOSAT overpass time and both GOSAT and TCCON data
were daily averaged. Red lines correspond to the best fit for all sites and green line
is one-to-one correspondence. The number of coincident scans and characteristics
of statistical relationships between ground based FTS and GOSAT XCO2 are listed

in the inserts of each panel.
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4.7 Conclusions

XCO2 retrievals from GOSAT using the UoL-FP v3G algorithm were performed and
show from comparison to ground-based TCCON data that the retrievals have a random
error of ∼2.5 ppm, twice the a posteriori error estimate. With stricter screening this
precision reduces to ∼1.9 ppm, which should be sufficient to allow improved surface
flux estimates (e.g., Chevallier 2007b, Chevallier et al. 2009, Miller et al. 2007).

The mean bias inferred from TCCON comparisons is 0.2 ppm with a station-to-
station variation of 0.56 ppm (standard deviation). Thus, over TCCON sites the XCO2

retrieval is very accurate with biases approaching only a few tenths of a ppm, which is
close to typical retrieval requirements of systematic bias for XCO2 (e.g. Chevallier 2007b,
Chevallier et al. 2009, Miller et al. 2007). The latest results from other algorithms (Bril
et al. 2007, Yokota et al. 2009, Butz et al. 2011, Morino et al. 2011, Wunch et al. 2011b,
Yoshida et al. 2010, Crisp et al. 2012, Oshchepkov et al. 2012a) find similar results with
a variation in the number of soundings potentially due to the screening criteria applied.

However, over desert regions, which are not observed by TCCON, it is found that the
retrieved XCO2 from GOSAT shows significant (up to ∼3 ppm) differences when com-
pared to GEOS-Chem model calculations which are believed to be biases in the GOSAT
retrieval. Similar findings have been reported in Crisp et al. (2012) who suggested that
these biases are related to instrument gain. Although here, biases are observed for desert
regions observed with both settings of the gain, leading to the speculation that these bi-
ases could be introduced by desert dust or related to the high surface albedo in the CO2

bands.

This study highlights the need for further algorithm improvements, especially over
the deserts, but improvements in instrument calibration or spectroscopy might also lead
to reduced biases for these regions. Until sufficient algorithmic improvements have been
achieved, one would suggest to either omit XCO2 retrievals over deserts or apply the
described bias correction method which significantly reduces the biases in our XCO2 re-
trieved over deserts. However, except for the desert regions, the XCO2 retrievals approach
the point where they should be useful for the inversion of CO2 surface fluxes with data
assimilation methods (e.g. Baker et al. 2010, Chevallier et al. 2009, Feng et al. 2009).
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Chapter 5

Developing an Improved Scattering
Approach

5.1 Scattering Issue

Clouds and aerosols can cause light to become scattered. This can have a number of
effects on a satellite measurement; light can be scattered into and contribute to the ob-
served radiance, light can scatter out of and reduce the observed radiance, and the photon
path length of the observed light can be changed. This can lead to biases in the retrieved
XCO2 and therefore any improvement on the current retrieval scattering approach used
would be highly beneficial. This chapter describes the development of a simulator and
its use to test a new scattering approach and its comparison to the XCO2 retrievals shown
in the previous chapter.

5.2 Simulator

5.2.1 Simulator Overview

The UoL-FP Simulator was developed to allow multiple SWIR retrieval approaches to
be assessed. Although the simulator has primarily been used to investigate alternative
aerosol methods for use in SWIR CO2 retrievals from GOSAT, it can be applied to
many different parameter issues (such as the assessment of the cloud screen, given in
Section 3.21). A flexible scheme enables parameters to be selected from various sources,
allowing the simulator to be easily modified for other applications. The simulator uses
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the UoL-FP retrieval algorithm to simulate spectral radiances based on a priori infor-
mation of various atmospheric/surface/instrumental parameters that are described in the
following sections. An overview of the simulator is given in Figure 5.1, showing the
main aspects involved to get from various source data to simulated radiances.

FIGURE 5.1. Diagram showing an overview of the simulator design, with arrows
showing the flow of information. Grey boxes represent source data, yellow boxes
indicate calculations being performed, purple boxes represent calculated selections
of source data, blue boxes show input data for the Foward model, and orange boxes

highlight the main computations of the Forward model.
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5.2.2 Instrument Inputs

The simulator was designed to allow multiple orbit schemes to be used. This has been
utilised to simulate spectral radiances for GOSAT orbits for two 3-day repeat cycles as
well as Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)
orbits for a six day period, although the flexibity could allow alternative observations to
be simulated. The parameters for the orbits of GOSAT are obtained from pre-processed
GOSAT L1B data, see Chapter 3. This includes the satellite position, solar and observing
angles, relative velocity, altitude and observed IFOV location.

To simulate a CALIPSO orbit, these parameters are obtained directly from CALIPSO
Level 1 data, but the retrieval algorithm remains setup for GOSAT observations such that
GOSAT observations are simulated but for a CALIPSO orbit path. Similarly, the spectral
dispersion is currently designed for the GOSAT SWIR bands with the GOSAT spectral
resolution of 0.2 cm−1. The same dispersion for each band is used for every simulation
to reduce any uncertainties this could potentially introduce.

The noise is derived as a function of the spectral signal using a modelled function
derived from real GOSAT high gain measurements. Equation 5.1 defines the function
and Table 5.1 gives the coefficients derived by comparing noise, N, with signal, S, from
pre-processed GOSAT L1B data for August 2009, as shown in Figure 5.2.

N = AS +B (5.1)

Table 5.1. GOSAT noise model coefficients.

GOSAT Band A B

1 0.0046960347 1.1245479E-09
2 0.0025181001 6.1902212E-10
3 0.0045985506 3.8230411E-10
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FIGURE 5.2. Correlation of real GOSAT noise and signal for August 2009 with the
post-screen applied. A linear fit of the correlation is shown in blue with the equation

of the fit giving the coefficients to be used in the GOSAT noise model.
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5.2.3 Radiative Transfer Inputs

5.2.3.1 Atmospheric Parameters

The atmospheric temperature, pressure and water vapour are derived from ECMWF op-
erational analysis data. The atmospheric CO2 is obtained from LMDZ 2009 data and
CH4 from the TM3 model. All these parameters are derived using the same method as
described in Chapter 3.

5.2.3.2 Surface Parameters

The albedo is generated from MODIS Level 3 16-day average global albedo data at
0.8585 µm, 1.6400 µm and 2.1300 µm. These wavelengths were selected as they are
reasonably close in wavelength to the three GOSAT SWIR wavelengths; 0.765 µm, 1.61
µm and 2.06 µm. The albedo for these three GOSAT bands are derived using the cor-
responding wavelength MODIS albedos as well as spectral dependence data from the
Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the Advanced Space-
borne Thermal Emission and Reflection radiometer (ASTER) for different surface types,
as defined in Table 5.2. MODIS Level 3 land cover data provides a global dataset of
surface/biome types, allowing each MODIS grid cell (0.05◦ x 0.05◦) to have its albedo
derived using the corresponding spectral dependance from either AVIRIS or ASTER.
The spectral dependence for each surface type is shown in Figure 5.3. The spectral de-
pendence, β, is interpolated to the wavelength of MODIS and that of the desired GOSAT
wavelength, λ. This provides a wavelength dependent ratio that is applied to the MODIS
albedo to get the albedo at the desired wavelength, as given by Equation 5.2. For sim-
plicity, the albedo slope was assumed flat within each band. Figures 5.4, 5.5 and 5.6

show the derived albedo globally for each GOSAT SWIR band using this method for
two 3-day repeat orbit cycles of GOSAT.

Albedoλ =
AlbedoMODISβλ

βMODIS

(5.2)
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Table 5.2. Spectral dependence source for each MODIS surface type.

MODIS Surface Type Spectral Dependency Source

Water Assumed constant albedo
Evergreen needleleaf forest AVIRIS: Evergreen needleleaf forest
Evergreen broadleaf forest AVIRIS: Evergreen broadleaf forest
Deciduous needleleaf forest AVIRIS: Deciduous needleleaf forest
Deciduous needleleaf forest AVIRIS: Deciduous broadleaf forest
Mixed forests AVIRIS: Mixed forest
Closed shrubland AVIRIS: Closed shrubs
Open shrubland AVIRIS: Open shrubs
Woody savannas AVIRIS: Woody savanna
Savannas AVIRIS: Savanna
Grasslands AVIRIS: Grassland
Permanent wetlands AVIRIS: Wetlands
Croplands AVIRIS: Croplands
Urban and built-up ASTER: Urban Scenario
Cropland/natural vegetated mosaic AVIRIS: Croplands
Snow and ice ASTER: Medium Snow
Barren or sparsely vegetated AVIRIS: Bare
Unknown Assumed constant albedo

186



FIGURE 5.3. Spectral dependence for the different surface types used from AVIRIS
and ASTER with vertical lines giving MODIS and GOSAT wavelengths used in the

albedo method.
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FIGURE 5.4. Derived Albedo for GOSAT band 1 for two 3-day GOSAT repeat orbit
cycles averaged into 5◦x5◦ grid cells.

FIGURE 5.5. Derived Albedo for GOSAT band 2 for two 3-day GOSAT repeat orbit
cycles averaged into 5◦x5◦ grid cells.
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FIGURE 5.6. Derived Albedo for GOSAT band 3 for two 3-day GOSAT repeat orbit
cycles averaged into 5◦x5◦ grid cells.
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5.2.3.3 GEMS Scattering Parameters

The GEMS model (experiment f1kd until October 2009 and f93i afterwards) provides
mass mixing ratio profiles (MMR) for eleven different aerosol types, ice water content
(IWC) MMR profiles and liquid water content (LWC) MMR profiles on 60 sigma levels
every twelve hours at 00:00 and 12:00, with a model forecast every three hours proceed-
ing an analysis. However, to reduce computational time only data for every six hours
was used. These sigma levels are converted to pressure layers, PLayer, using coefficients
A and B (provided by GEMS) and the surface pressure, P, as

PLayer = ALayer +BLayerP (5.3)

The pressure levels are determined by taking the middle pressure between layer pres-
sures. The MMR data are interpolated to each simulated observation location and time
using the four closest grid points for the two closest six hour intervals. The extinction
for each aerosol can then be derived from the MMR (Knappett 2012, Simmons 2010) by

E =
µζ

g
(5.4)

where E is the extinction, ζ is the MMR, g (gravity) is defined as 9.80665 and µ is
the mass extinction coefficient (MEC) for GEMS aerosols interpolated to the relative
humidity and O2 A band wavelength, see Figure 5.7. The relative humidity was derived
from the ECMWF specific humidity, S, by

RH =
pH2O

pLiquid
∗ 100 (5.5)

where RH is the relative humidity, pLiquid is the saturated vapour pressure and pH2O is
the partial pressure of water vapour which can be derived to be

pH2O =
SPMAIR

MH2O

(5.6)

The molecular mass of air, MAIR, and of H2O, MH2O, is assumed to be 28.97 g mol−1

and 18.015422 g mol−1 respectively. There are numerous ways to estimate the saturated
vapour pressure (Murphy & Koop 2005) but the method described by Murphy & Koop
(2005) currently provides the most suitable function throughout normal atmospheric tem-
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FIGURE 5.7. Mass extinction coefficients (MEC) for each of the GEMS aerosol
types (Benedetti 2010). Black carbon (BC1) and desert dust aerosols (DD1, DD2
and DD3) are assumed to be independent of humidity (top left), with hydrophilic
and hydrophobic black carbon having the same MEC. Organic matter (bottom left),
sea salt (top right) and Sulphate (bottom right) (OM1, SS1/SS2/SS3, and SO4) are

assumed to be humidity dependent.

perature ranges as well as for supercooled water.

ln(pLiquid) ≈ 54842763− 6763.22

T
− 4.210 ln(T )

+ 0.000367T + tanh[0.0415(T − 218.8)](
53.878− 1331.22

T
− 9.44523 ln(T ) + 0.014025T

)
(5.7)

The average extinction between layers is assumed as the extinction for each level with
the top and bottom levels assumed to have half of the closest layers extinction. To verify
that this method of calculating the extinction is approximately correct, it was computed
for a wavelength of 0.55 µm and compared to the GEMS AOD product at 0.55 µm. This
is shown in Figure 5.8 and proves to correlate well with some slight scatter. Note that
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the AOD, τ , was calculated by

τ =
Ei + Ei+1

2
|Pi − Pi+1| (5.8)

where E is the extinction, P is the pressure and i represents the atmospheric level. The

FIGURE 5.8. Comparison of the GEMS AOD 0.55 µm product with the calculated
AOD, where the GEMS AOD has been interpolated with latitude, longitude and time

to the simulated observations.

extinction profiles for ice and liquid clouds are calculated using the method by Slingo &
Schrecker (1982),

E =
3ζ

2Reffρ

RT

MgP
(5.9)

where the effective radius is given by Reff , ρ is the density (assumed 0.92 for ice and
1 for liquid), R is the ideal gas constant, and the second term on the right hand side is
added to convert from altitude layers to pressure layers. The effective radius of liquid
cloud particles was calculated using the Liu & Daum (2000) method. This is given as

Reff = 0.13

(
3RT

4πMP

) 1
3
(
ζ

N

) 1
3
−0.11

(5.10)

192



where N is 600 cm−1 over land. The method for the ice effective radius is taken from
Sun & Rikus (1999) and is given as

Reff =
1

2

[
3
√

3

8

(
45.8966ζ0.2214 +

(
0.7957ζ0.2535T − 83.15

))
(1.2351 + (0.0105T − 273.15))

]
(5.11)

where T is the layer temperature. Similarly, the extinction is converted from layers
to levels. Not only are the effective radii used within the extinction calculation, but the
effective radii at the pressure level where the maximum ice/liquid cloud extinction exists,
hence cloud height, is used to define the ice/liquid cloud scattering properties within the
retrieval. Ice and liquid cloud scattering properties were obtained from the Baum model
(Baum et al. 2005a,b) for different effective radii; every 5 µm between 10 to 90 µm for
ice cloud particles and every 1 µm between 4 and 64 µm for liquid cloud particles. For
each simulation the Baum model scattering properties with the effective radii closest to
that calculated from GEMS was used.

To check the simulated optical depths and effective radii provide an approximation
of the real world they have been compared to the MODIS TERRA Level 3 daily prod-
uct. A comparison of the AOD, given in Figure 5.9, shows that both the magnitude
and spatial distribution are very similar, which was expected since GEMS assimilates
MODIS AOD. Some difference are, however, expected due to the humidity being dif-
ferent. The calculated GEMS cloud and cirrus optical depths show a similar spatial
pattern, see Figure 5.10. Although, MODIS gives much higher values over the poles,
few GOSAT soundings will be observed at these latitudes and those that are will get
screened out. The magnitude of the cloud/cirrus optical depths are on average lower in
GEMS than MODIS. Figure 5.11 shows the effective radii of cloud/cirrus for GEMS
and MODIS. The GEMS water cloud effective radii have a similar spatial distribution
and magnitude as MODIS, although some differences can be seen over Siberia, the Hi-
malayas, and the south of the Indian Ocean. The GEMS cirrus cloud effective radii have
a similar magnitude on average, but are clearly lower than MODIS around the equator.
Although some differences exist between GEMS and MODIS the parameters still pro-
vide a range of reasonable values. Since these differences are specific to cloud/cirrus,
the effect is small as most cloudy scenes will be filtered out by a cloud screen.

Although the ice and liquid cloud properties were obtained from the Baum model,
the aerosol properties were derived from refractive index (RI) values and assumptions
of the GEMS aerosol sizes and modes (Benedetti 2010). However, the GEMS model is
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FIGURE 5.9. Comparison of calculated mean GEMS AOD (left) for all 6 hour time
frames and MODIS mean daily AOD (right) between 08/09/2009 and 14/09/2009.

Areas where no valid data exists is given by white.

FIGURE 5.10. Comparison of calculated mean GEMS liquid cloud (top left) and
ice cloud (top right) optical depth for all 6 hour time frames and MODIS mean
daily liquid cloud (bottom left) and ice cloud (bottom right) optical depth between

08/09/2009 and 14/09/2009. Areas where no valid data exists is given by white.

known to include spin-down effects mainly in the dust but also in all other aerosol types
(Morcrette 2012). This leads to the model overestimating the amount of small desert dust
particles and underestimating the amount of large desert dust particles (Morcrette 2012).
To compensate for this issue, the small and medium GEMS desert dust aerosols sizes
were replaced with accumulation mode desert dust particle sizes and the large GEMS
desert dust replaced by the coarse desert dust particle sizes from the climatology of
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FIGURE 5.11. Comparison of calculated mean GEMS liquid cloud (top left) and
ice cloud (top right) effective radius for all 6 hour time frames and MODIS mean
daily liquid cloud (bottom left) and ice cloud (bottom right) effective radius between
08/09/2009 and 14/09/2009. The effective radii at the atmospheric level where the
highest extinction exists is used for GEMS. Similarly, the MODIS retrieved effective
radii is most sensitive within the cloud/cirrus. Areas where no valid data exists is

given by white.

Kahn et al. (2001), such that the desert dust aerosols have larger sizes. The organic
matter, black carbon and sulphate aerosols were replaced by the equivilent aerosol sizes
from the Kahn et al. (2001) climatology which have less extreme sizes. The sea salt
aerosols were kept as the GEMS sizes as the quantity of these aerosols over land is much
smaller.

The RI of sulphate and sea salt were calculated by interpolating RI values from Hale
& Querry (1973) between 0.2 and 0.7 mm, Palmer & Williams (1974) between 0.7 and
2.0 mm and Downing & Williams (1975) between 2.0 and 1000 mm. Additionally, Tang
& Munkelwitz (1991) RI of 1.330 at 0.633 mm was used as the reference standard and
Kou et al. (1993) data was used for the imaginary RI between 0.7 and 2.7 mm. These
RI were computed for a humidity of 50% by spectrally interpolating between the RI of
the dry aerosols and the RI of water using formulas which were derived from accurate
laboratory measurements (Tang & Munkelwitz 1991, 1994, 1996) of the change in RI
with relative humidity of those aerosols (Lacis 2010).

The RI for hydrophobic and hydrophilic organic matter were obtained from Dick

195



et al. (2007) for a humidity of 4 − 10% and 44 − 76%, respectively. The RI for dust and
soot were taken from Shettle & Fenn (1979) and are not humidity dependant. Using these
RI values (shown in Figures 5.12 and 5.13) and the assumed sizes and modes given in
Table 5.3, the phase function moments, geometric cross-section, extinction and scattering
cross-sections and asymmetry parameter for each aerosol were computed using the Mie
code of Mishchenko et al. (2002). This computes the scattering of light by polydisperse
homogeneous spherical particles using Lorenz-Mie scattering (Mishchenko et al. 1999).
The radius standard deviation gives a measure of the width of the size distribution around
the effective radius, with the minimum and maximum radius providing the limits. All
GEMS aerosols are approximated with a log normal size distribution (Benedetti 2010)
that can be expressed as

n (r) = constant× r−1exp

[
−(ln r − ln rg)

2

2 ln2 σg

]
(5.12)

where r is the radius, rg is the geometric radius and σg is the standard deviation of the
radius. Using a range of sizes provides a polydisperse distribution which is more realistic
than a monodisperse sample since aerosols are highly variable in size (Williams et al.
2002). However, the desert dust types based on Kahn et al. (2001) are obtained (courtesy
of V. Natraj) from the OCO orbit simulator (O’Brien et al. 2009) which computes these
aerosols as polydisperse non-spherical homogenous particles.

The properties for the two log-normal size distribution modes (a and b) were com-
bined for each sea salt size using the method by Abdou et al. (1997). The two modes are
assumed equally weighted, such that the mean of the modes is used for the extinction
cross-section, scattering cross-section, geometric cross-section and asymmetry parame-
ter. The phase function, P, can be given by

P (Ω, λ) =
Paωa
ωa + ωb

+
Pbωb
ωa + ωb

(5.13)

where λ is the minimum and maximum wavelengths for each GOSAT SWIR band, Ω is
the scattering angle and ω is the single scattering albedo. Note that the asymmetry pa-
rameter gives an indication of the scattering direction, where a value of -1 gives a strong
backwards directed peak and 1 gives a strong forward directed peak. Figure 5.14 shows
the key derived properties for the eleven aerosols. It gives the asymmetry parameter for
each of the eleven aerosols, showing that all aerosols scatter strongly forward at the O2

A band wavelength and smaller aerosols have a weaker forward scattering peak with in-
creasing wavelength. The angstrom coefficient was calculated from the extinction cross
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FIGURE 5.12. Assumed refractive index real values for the GEMS aerosol types.

section, Cext, at different wavelengths by

α =
ln
(
Cextλ
Cextλr

)
ln
(
λr
λ

) (5.14)

where λr is the reference wavelength (in this case at the O2 A band) and λ is the wave-
length of the other bound that the angstrom coefficient is to be calculated between. Note
that the angstrom coefficients are lower for larger particles. The ability of each aerosol
to absorb or scatter light is shown by the single scattering albedo, which is simply the
ratio:

ω =
Csca
Cext

(5.15)

where Csca represents the scattering cross section. Black carbon has a low single scatter-
ing albedo, so is much more absorbing than the other aerosol types.

197



FIGURE 5.13. Assumed refractive index imaginary values for the GEMS aerosol
types.

The phase function of each aerosol type is given at each GOSAT band in Figures 5.15,
5.16, and 5.17, showing the scattering amount from a forward to backward direction.
Both dust types scatter strongly in the forward direction with a slight backwards peak.
Accumulation dust differs from coarse dust in the CO2 bands with a reduced backwards
peak. Sea-salt mostly scatters light in a forward direction with a minor backwards peak
and changes little between bands. The other aerosols all give similar scattering directions
of a weaker forward peak that reduces with increasing wavelength.
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Table 5.3. Aerosol sizes corresponding to the 11 GEMS aerosols (Benedetti 2010).

Aerosol Abbreviation Effective Radius Radius Standard Deviation Minimum Radius Maximum Radius

Small Sea Salt (mode a) SS1a 0.1992 1.90 0.0300 0.50
Medium Sea Salt (mode a) SS2a 0.1992 1.90 0.5000 5.00
Large Sea Salt (mode a) SS3a 0.1992 1.90 5.0000 20.00
Small Sea Salt (mode b) SS1b 0.1992 2.00 0.0300 0.50
Medium Sea Salt (mode b) SS2b 0.1992 2.00 0.5000 5.00
Large Sea Salt (mode b) SS3b 0.1992 2.00 5.0000 20.00
Small Desert Dust †‡ DD1 0.47 2.60 0.0500 2.00
Medium Desert Dust †‡ DD2 0.47 2.60 0.0500 2.00
Large Desert Dust †‡ DD3 1.90 2.60 0.5000 15.00
Hydrophobic Organic Matter †§ OM1 0.13 1.80 0.0070 2.00
Hydrophilic Organic Matter † OM2 0.124 1.80 0.0067 1.90
Hydrophobic Black Carbon † BC1 0.1180 2.00 0.0050 0.50
Hydrophilic Black Carbon †∗ BC2 0.14396 2.00 0.0061 0.61
Sulphate † SO4 0.08 1.88 0.0070 0.81

† Kahn et al. (2001) aerosol sizes used.
‡ Non-spherical aerosol (other aerosols are spherical).
∗ Hydrophilic black carbon was assumed a growth factor of 1.22 (Popovicheva et al.
2008).
§ Hydrophilic organic matter was assumed a growth factor of 1.05 (Malm et al. 2005),
but since the Kahn et al. (2001) organic matter is given as hydrophilic, the sizes were
scaled down by one over the growth factor to get the corresponding hydrophobic organic
matter sizes.
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FIGURE 5.14. Derived aerosol properties for each GEMS aerosol type for the start
wavelength of each GOSAT SWIR band. The angstrom coefficient between bands
1 and 2 is given by the green stars and the angstrom coefficient between bands 2
and 3 is given by the red diamonds. For both the single scattering albedo and the
asymmetry parameter band 1 is given by the purple triangles, band 2 by the green

stars and band 3 by the red diamonds.
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FIGURE 5.15. Derived phase function moments for the start wavelength of GOSAT
band 1 as a function of scattering angle for each of the eleven GEMS aerosol types.

An angle of zero points directly in the forward direction.
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FIGURE 5.16. Derived phase function moments for the start wavelength of GOSAT
band 2 as a function of scattering angle for each of the eleven GEMS aerosol types.

An angle of zero points directly in the forward direction.
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FIGURE 5.17. Derived phase function moments for the start wavelength of GOSAT
band 3 as a function of scattering angle for each of the eleven GEMS aerosol types.

An angle of zero points directly in the forward direction.
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5.2.3.4 CALIPSO Scattering Parameters

CALIPSO was launched in April 2006 and contains three instruments; the Cloud-Aerosol
LIdar with Orthogonal Polarization (CALIOP), the Imaging Infrared Radiometer (IIR),
and the Wide Field Camera (WFC). Here, data products of the CALIOP instrument have
been used to derive atmospheric profiles of aerosols, clouds and cirrus clouds. This can
be used instead of the GEMS aerosols/clouds.

The CALIPSO Lidar Level 2 aerosol profile data provides atmospheric profiles of
total extinction per 40 km ground track at a number of different wavelengths, as well
as altitude, pressure, temperature and relative humidity. The extinction profiles exist
on altitude levels but are needed on pressure levels for input into the UoL-FP retrieval
algorithm. To convert between altitude and pressure levels the hydrostatic equation can
be used

dP

dz
= −ρg (5.16)

where P is pressure, z is altitude, g is the acceleration due to gravity (assumed constant
and equal to a mean sea level value of 9.80665 m s−1), and ρ is the density. The density
can be substituted for as

dP

dz
= − g

1000

[(
Pdry

(RdryT )

)
+

(
Pwet

(RwetT )

)]
(5.17)

where temperature is T, the ideal gas constant for dry air is Rdry (which is the ideal gas
constant divided by the dry air mass, 0.02897 kg mol−1), the ideal gas constant for wet
air is Rwet (which is the ideal gas constant divided by the wet air mass, 0.018015422135
kg mol−1). The partial pressure of wet air Pwet can be derived from the relative humidity,
RH, and the saturated vapour pressure, pLiquid, using the method of Murphy & Koop
(2005) previous described in Section 5.2.3.3 by

Pwet = RH
pLiquid

100
(5.18)

The partial pressure of dry air is then obtained by

Pdry = P − Pwet (5.19)

To simulate GOSAT radiances the aerosol/cloud/cirrus extinctions need to be for the O2

A band, therefore CALIOP extinction profiles at 532 and 1064 nm are used. The total
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optical depth, τ , at each of these wavelengths can be calculated by

τ =
∑ dP

dz i
(Ei + Ei+1)

2
dPi,i+1 (5.20)

where E is extinction and and i denotes the atmospheric level. These optical depths can
be used to compute an angstrom coefficient that relates optical depth with wavelength.
The angstrom coefficient can be calculated as

α =
ln
(
τ532
τ1064

)
ln
(
λ1064
λ532

) (5.21)

The optical depth at the O2 A band (765 nm) is then approximated as

τ765 = τ532

(
λ765
λ532

)−α
(5.22)

The extinction profile at the O2 A band can be computed from the 532 nm extinction
profile by multiplying it by the ratio τ 765/τ 532.

The CALIPSO Lidar Level 2 Vertical Feature Mask (VFM) data seperates the at-
mospheric profile into many altitude layers and classifies what features exists in each
layer, such as clear air, cloud or aerosol. These features are also sub-catagorised for
each aerosol/cloud type, as shown in Figure 5.18. Any VFM data that was catagorised as
Invalid, Surface, Sub-Surface or No Signal was excluded from all computations. Strato-
spheric features were assumed to be cloud. Clouds were seperated into liquid and ice
clouds using the cloud phase, where horizontally and randomly orientated ice was taken
to be ice cloud, and unknown and water taken to be liquid cloud. Any aerosol that was
sub-catagorised as Non-determined or Other was assumed as desert dust.

The VFM data is seperated into three altitude ranges with numerous discrete layers
within each range; -0.5 to 8.2 km, 8.2 to 20.2 km, and 20.2 to 30.1 km. The lowest
altitude range gives VFM data for 15 discrete increments for every 5 km of the ground
track. However, the VFM data for the other altitude ranges are averaged over larger
ground track lengths. To obtain the VFM data on a regular grid the upper altitude data is
re-binned onto the same grid as the lowest altitude range.

The fractional amount of aerosol within an extinction profile layer, is calculated as
the number of discrete VFM increment layers that contain aerosol divided by the total
number of increment layers within the 40 km ground track. Similarly, the fractional
amount of cloud and sub-catagorised clouds/aerosols are calculated in the same way.
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FIGURE 5.18. CALIOP VFM for one orbit track with features given by different
colours. This example notably shows water clouds over the majority of the orbit
track, polluted dust and smoke over Southern Africa, and a large amount of desert

dust over the Sahara.

To get seperate extinction profiles for aerosol, liquid cloud and ice cloud the extinction
profile is split up into those three profiles for each layer according to the ratio of their
fractional amounts.

The particle properties for ice and liquid clouds are taken from the Baum model
(Baum et al. 2005a,b) as described in Section 5.2.3.3, using half of the effective particle
size obtained from CALIPSO IIR level 2 data as the effective radius for both liquid and
ice cloud particles.

Omar et al. (2004) estimates the aerosol properties of the CALIPSO model by com-
parisons to observations by AERONET. Each aerosol type is assumed to be a bi-modal
aerosol of fine and coarse modes (Mielonen et al. 2009, Omar et al. 2004, Simmons
2010), as shown in Table 5.4. Based on these parameters, the aerosol scattering prop-
erties for each aerosol type and mode were computed using the Mie code explained
in Section 5.2.3.3, where the RIs were interpolated linearly to the wavelength of each
GOSAT band. The volume fraction of each mode was used to weight the mixing of the
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modes using the method by Abdou et al. (1997), which states that the combined single
scattering albedo can be given as

ωMλ
=

k∑
k=1

fk,λωk,λ (5.23)

where M indicates the combined mixture, k represents each aerosol type/mode, and f is
the fraction used to weight the aerosols contribution to the mixture. Also, Abdou et al.
(1997) gives the combination of phase functions as:

P (Ω, λ) =
k∑
k=1

fkPk,λωk,λ
ωMλ

(5.24)

However, the UoL-FP retrieval algorithm was designed to calculate all scattering values
relative to the O2 A band. Therefore, Equation 5.23 and 5.24 use the relative single
scattering albedo of each aerosol. The relative extinction cross section for an aerosol can
be given as

Cextk,λrel =
Cextk,λ
Cextk,λr

(5.25)

The combined relative extinction cross section is then given by:

CextM,λrel =
k∑
k=1

fkCextk,λ
Cextk,λr

(5.26)

Similarly, the relative scattering cross section of the mixture is expressed by:

CscaM,λrel =
k∑
k=1

fkCscak,λ
Cscak,λr

(5.27)

The six aerosol types were then combined, weighted by the total column fraction of each
type, for each atmospheric aerosol extinction profile. The fraction of each aerosol type
that is used to create the aerosol property mixtures is shown in Figure 5.19. This, for
example, shows that aerosols over the Sahara are almost completely weighted to desert
dust.

The properties of each aerosol type are given in Figure 5.20, which shows a low
angstrom coefficient for all aerosol types. The single scattering albedo is highest for
clean marine aerosol, showing it is highly scattering and absorbs little light. For clean
continental, polluted dust and smoke aerosols about half gets scattered and half absorbed.
The asymmetry parameter shows all aerosol types to have a strong forward scattering
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FIGURE 5.19. Optical depth fractions of each of the CALIPSO aerosol types for
simulated scenes globally between 08/09/2009 to 14/09/2009.

peak at the O2 A band, with clean marine aerosol strongly forward scattering at all SWIR
bands of GOSAT. Dust, polluted dust, polluted continental and smoke aerosols all have
a reduced forward scattering at the CO2 bands compared to that of the O2 A band. The
phase functions (Figures 5.21, 5.22 and 5.23) show that the scattering directions of the
coarse modes changes little with wavelength, but the fine modes become much less for-
ward scattering, almost isotropic, at the wavelengths of the CO2 bands. This becomes
important as when the modes are combined the scattering direction at the CO2 bands
highly depends on the volume fractions used to weight the each modes contribution to
the aerosol type. For example, this is demonstrated by the polluted continental aerosol
that comprises approximately of half the fine mode and half the coarse mode, so the
forward scattering reduces for the CO2 bands as shown by the asymmetry parameter in
Figure 5.20.

To check the simulated scenes are realistic, the calculated aerosol/cloud/cirrus pa-
rameters were compared MODIS. Although the calculated effective radii for liquid and
ice clouds are designated the same for CALIPSO, the values have a reasonably large
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FIGURE 5.20. Derived aerosol properties for each CALIPSO aerosol type for the
start wavelength of each GOSAT SWIR band. The angstrom coefficient between
bands 1 and 2 is given by the green stars and the angstrom coefficient between bands
2 and 3 is given by the red diamonds. For both the single scattering albedo and
the asymmetry parameter band 1 is given by the purple triangles, band 2 by the
green stars and band 3 by the red diamonds. The aerosol types are represented as;
CM is Clean Marine, DD is Desert Dust, PC is Polluted Continental, CC is Clean

Continental, PD is Polluted Dust, and SM is smoke.

variation (between 0 and ∼60 µm) with the bulk of the data covering the ranges of both
liquid and ice effective radii from MODIS, as shown in Figure 5.24. Thus, the calculated
effective radii from CALIPSO provides a realistic basis for the cloud/cirrus properties
used in the simulations. Comparing the optical depth with MODIS, Figure 5.25, reveals
that both the liquid and ice cloud optical depths are highly under-estimated. However,
CALIPSO measurements can not penetrate through thick clouds at these wavelengths.
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FIGURE 5.21. Derived phase function moments for the start wavelength of GOSAT
band 1 as a function of scattering angle for each of the CALIPSO aerosol types and

modes. An angle of zero points directly in the forward direction.

Therefore, any extinction profile that should include a thick cloud will contain invalid
data and not be used. This leaves CALIPSO soundings that contain either thin or no
clouds, hence biasing the optical depths to lower values compared to MODIS. Addi-
tionally, this effectively acts as an initial cloud screen, since any scene containing thick
cloud would be filtered out. The optical depth calculated for aerosol has a similar range
as MODIS but with the values on average to be much lower than MODIS. Figure 5.26

shows the spatial distribution of AOD which follows the same patterns as both MODIS
and GEMS. Some differences in AOD are expected as both GEMS and MODIS provide
AOD data for coarse grids of &110 x 110 km (1◦ x 1◦), whereas CALIPSO AOD has
been calculated for a much smaller area of 0.07 x 40 km.
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FIGURE 5.22. Derived phase function moments for the start wavelength of GOSAT
band 2 as a function of scattering angle for each of the CALIPSO aerosol types and

modes. An angle of zero points directly in the forward direction.
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FIGURE 5.23. Derived phase function moments for the start wavelength of GOSAT
band 3 as a function of scattering angle for each of the CALIPSO aerosol types and

modes. An angle of zero points directly in the forward direction.

FIGURE 5.24. Correlation of the liquid (left) and ice (right) effective radius cal-
culated from CALIPSO with that retrieved from MODIS between 08/09/2009 to
14/09/2009 for CALIPSO soundings. The calipso soundings have much lower val-
ues for cloud/cirrus optical depths since the CALIOP measured radiance will often
not penetrate through clouds, leaving incomplete extinction profiles that get screened

out, hence removing most cloud scenes.
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FIGURE 5.25. Correlation of the aerosol (left), liquid cloud (centre) and ice cloud
(right) optical depth calculated from CALIPSO with that retrieved from MODIS

between 08/09/2009 to 14/09/2009 for CALIPSO soundings.

FIGURE 5.26. AOD calculated from CALIPSO between 08/09/2009 to 14/09/2009
for CALIPSO soundings.
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5.3 Initial Tests

To aid the construction of a new approach to atmospheric scattering it was first necces-
sary to determine which aspects are important in the retrieval of XCO2. Although there is
a high spatial/temporal variation of aerosols and clouds, this can essentially be described
by three components; the total column optical depth, the vertical distribution, and the
particle properties.

The first test was to investigate how the AOD affects the retrieved XCO2. Here the
simulator (with GEMS aerosols/clouds) was used to simulate GOSAT spectra for differ-
ent amounts of AOD, with each AOD scenario having 100 realistic scenes simulated. All
of these spectra were retrieved with the same aerosol profile (Gaussian shape peaking at a
height of 2 km with a width of 2 km), the same aerosol properties, the same a priori AOD
of 0.2, and all other a priori and statevectors the same. Figure 5.27 shows how the results
of this test demonstrate that the UoL-FP retrieval algorithm can accurately retrieve XCO2

within ∼0.1 AOD of the truth and remains within a XCO2 error of 0.03 ppm between a
true AOD of 0.025 to 0.4 range. The performance of the retrieval to accurately retrieve
XCO2 reduces for large differences (>0.2) between the a priori and true AOD, hence it is
important to provide the retrieval with an a priori AOD that is not too small or too large
as the retrieval will find it difficult to reach the true optimal solution.

Secondly, using the simulator in a similar fashion, the effect of the vertical distri-
bution of aerosol on retrieved XCO2 was assessed. Here, spectra were simulated with
a Gaussian shaped aerosol profile peaking at 2 km. The simulations used 100 realistic
scenes and all were retrieved using different scenarios of the a priori aerosol profile peak
height. Figure 5.28 shows that the mean resulting XCO2 error varies very little with the
peak height of the aerosol profile. However the range of XCO2 values increases with the
difference in height, with large differences between lower and upper altitudes.

To evaluate the impact of the aerosol properties on the retrieval of XCO2, spectra
were simulated for 100 realistic scenes using the Kahn aerosol mixture 4b. Retrievals of
XCO2 were performed on these simulated spectra for 11 different scenarios, where each
scenario used only the properties of a single GEMS aerosol type. The results are given
in Figure 5.29 and show that there is a large variation of XCO2 error. There are smaller
XCO2 errors for larger sized aerosols and larger XCO2 errors for smaller sized aerosols,
which is likely due to the Kahn 4b mixture being a combination of medium and large
sized particles. The aerosol properties cause the XCO2 error to be significantly higher
than that of AOD or vertical distribution differences. Hence it is by far the most crucial
aerosol component to get closest to truth for accurate XCO2 retrievals.
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FIGURE 5.27. Mean retrieved XCO2 of 100 simulated GOSAT spectra for different
AOD. The blue line gives the XCO2 error and the green line shows the AOD error,
with the standard deviation of the 100 results for each AOD scenario shown by the

errorbars.

Likewise, the same components were investigated for water clouds and cirrus clouds
in exactly the same manner, with the components replaced with cloud/cirrus respectively.
For the particle properties of both water clouds and cirrus clouds a range of effective radii
obtained from the Baum model (Baum et al. 2005a,b) were used.

Figure 5.30 shows that the retrieval achieves a low XCO2 error when the assumed a
priori cloud optical depth is within 0.15 of the truth, but increases rapidly with higher
optical depth differences. For cirrus, the retrieval only performs accurately where the a
priori optical depth is within 0.025 of the truth. The cirrus retrieval is extemely poor at
capturing the true optical depth which clearly has an impact on the XCO2 error above a
0.05 difference in optical depth. Since a cloud screen is applied to real GOSAT obser-
vations, scenes with a high optical depth will already be omitted from XCO2 retrievals.
Therefore, predominantly scenes with a low optical depth or cirrus will remain, revealing
that it is more important to get the a priori cirrus optical depth close to truth than cloud
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FIGURE 5.28. Mean retrieved XCO2 of 100 simulated GOSAT spectra for different
peak heights of a Gaussian shaped aerosol profile. The blue line gives the XCO2

error and the green line shows the AOD error, with the standard deviation of the 100
results for each height scenario shown by the errorbars.

optical depth.

The effect of cloud height is shown in Figure 5.32 and shows a clear relationship with
XCO2 error of ∼0.02 ppm/km. Figure 5.33 shows the effect of cirrus height and gives a
similar trend but with a larger gradient of ∼0.075 ppm/km and an anti-correlation with
retrieved optical depth. Again, cirrus has a far larger affect on XCO2 than water clouds
and it is important to have an accurate a priori assumption of cirrus vertical distribution.

Similarly, there is a trend of effective radius with XCO2 error (see Figures 5.34

and 5.35). The gradient is higher with cirrus than cloud, with values of∼0.35 ppm/10µm
and∼0.10 ppm/10µm respectively. The XCO2 error is approximately double that created
by incorrect optical depth or cirrus height, making it more vital to get closer to the truth
for retrievals of XCO2.
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FIGURE 5.29. Mean retrieved XCO2 from retrievals using different aerosol types
with 100 simulated GOSAT spectra. The blue line gives the XCO2 error and the
green line shows the AOD error, with the standard deviation of the 100 results for
each height scenario shown by the errorbars. The dust properties used were based
purely on GEMS, giving DD1, DD2 and DD3 as small, medium and large dust

particles, respectively.
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FIGURE 5.30. Mean retrieved XCO2 of
100 simulated GOSAT spectra for differ-
ent cloud optical depths. The blue line
gives the XCO2 error and the green line
shows the optical depth error, with the
standard deviation of the 100 results for
each optical depth scenario shown by the

errorbars.

FIGURE 5.31. Mean retrieved XCO2 of
100 simulated GOSAT spectra for differ-
ent cirrus optical depths. The blue line
gives the XCO2 error and the green line
shows the optical depth error, with the
standard deviation of the 100 results for
each optical depth scenario shown by the

errorbars.

FIGURE 5.32. Mean retrieved XCO2 of
100 simulated GOSAT spectra for differ-
ent peak heights of a Gaussian shaped
cloud profile. The blue line gives the
XCO2 error and the green line shows the
optical depth error, with the standard de-
viation of the 100 results for each height

scenario shown by the errorbars.

FIGURE 5.33. Mean retrieved XCO2 of
100 simulated GOSAT spectra for differ-
ent peak heights of a Gaussian shaped cir-
rus profile. The blue line gives the XCO2

error and the green line shows the optical
depth error, with the standard deviation of
the 100 results for each height scenario

shown by the errorbars.
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FIGURE 5.34. Mean retrieved XCO2 from
retrievals using different cloud effective
radii with 100 simulated GOSAT spectra.
The blue line gives the XCO2 error and the
green line shows the optical depth error,
with the standard deviation of the 100 re-
sults for each height scenario shown by

the errorbars.

FIGURE 5.35. Mean retrieved XCO2 from
retrievals using different cirrus effective
radii with 100 simulated GOSAT spectra.
The blue line gives the XCO2 error and the
green line shows the optical depth error,
with the standard deviation of the 100 re-
sults for each height scenario shown by

the errorbars.
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5.4 New Scattering Approach Design Basis

Whilst clouds have a large effect on the retrieval accuracy, a cloud screen could be used
to remove most cloud contaminated scenes in real retrievals of XCO2 from GOSAT. For
this reason the new scattering approach was designed to provide initially a better ap-
proach to aerosols. The current retrieval method (UoL-FP v3G) gives the retrieval a
large flexibility to allow more information from the measured radiance to be used to gain
aerosol information. However, this method relies upon the same two aerosol mixtures
globally. One way this method could be improved is to use aerosol mixtures that are
specific to the observed location and time. At present there are a number of observa-
tion methods that provide aerosol information (e.g. satellite observations, ground based
measurements and aircraft observations), however due to the fact that aerosols are highly
variable both spatially and temporally none of these sources can provide adequate infor-
mation for this approach. Thus, the new approach was designed to use model aerosol
information obtained from the GEMS model.

The aerosol extinction profiles for each of the eleven GEMS aerosol types were de-
rived using the method explained in Section 5.2.3.3. To keep the retrieval computational
time low and for direct comparison to the current retrieval method, the eleven aerosol
profiles were reduced to two profiles. For each GEMS latitude/longitude grid cell the
aerosol profiles are temporally interpolated to the local mid-day time, as GOSAT ob-
serves day-time SWIR radiances. Since the model only provides estimates and not the
true known aerosol information, some spatial smoothing is applied by taking the eight
closest surrounding grid cells. The mean profiles of each aerosol type are calculated for
this enlarged region and the two aerosol types which have the largest AOD are seperated
into two profile groups. The profile shape of all other aerosol profiles are correlated with
both of these two profiles and then added to the group of which each aerosol correlates
highest with. The aerosol profiles within each group are then added together to maintain
the total AOD. This selection method of grouping the aerosols ideally contains at least
one aerosol which will significantly contribute to the scene, allowing the retrieval to
utilise both profiles for flexibility. Clearly the case can exist where only one aerosol type
significantly contributes to a scene, in which case the retrieval would likely be forced to
only use that groups profile. To overcome this possibility and allow more adaptability to
the retrieval a lower AOD limit of 0.025 per group profile was enforced. There are cases,
such as desert dust over the Sahara, where the AOD can be too large for the retrieval
algorithm to accurately perform retrievals for (Kuang et al. 2002). To compensate for
this, where the combined total AOD is greater than 0.275 in value, both group profiles
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are reduced such that their ratio remains the same (with exception to the lower limit) and
their combined total AOD equals this upper limit. The aerosol properties of each group
were also designed to be specific to the scene by combining the individual aerosol types
of each group, using the method described in Section 5.2.3.3 where the AOD fractions
as the weighting of aerosol types contributing to the combination.

5.5 Comparison of Scattering Approach Tests

Although the new scattering approach design includes all three main aerosol compo-
nents, it is possible that certain aspects might not provide any benefit over the flexibility
of the current retrieval method. Therefore, in addition to the current retrieval method
and the new scattering design being compared though retrievals of simulated scenes,
each aerosol component of the new design is tested individually too. The next section
explains each of these tests and makes a comparison between them.

5.5.1 Model Based Simulations: Aerosols Only

Spectral radiances of two 3-day cycles of GOSAT were simulated with scenes containing
aerosols but not cirrus/clouds, using the GEMS model in the simulator. This provided
a total of 9858 simulated exposures that were distributed globally using the GOSAT 5-
point observation mode. The simulated spectra were retrieved using the same instrument,
surface and atmospheric variables with the exception of the aerosol components which
were different for each test;

• Use the current retrieval method (UoL-FP v3G) aerosol approach for reference
to compare new tests against. Here the cirrus profile is omitted leaving only two
aerosol profiles with a total AOD of 0.1.

• Use the current retrieval method but replace the AOD with that of the new scatter-
ing approach design.

• Use the current retrieval method but replace the aerosol profiles with that of the
new scattering approach design, where the profile shape is retained but its total
AOD is reduced to 0.1 for all scenes.

• Use the current retrieval method but replace the aerosol optical properties with that
of the new scattering approach design.
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• Use all three aspects of the new scattering approach design.

The retrievals of each test were quality filtered to remove any poor retrievals, similar
to the post-screening applied to the real GOSAT retrievals. However, many of the post-
screen filter parameters do not exist in the simulations, so a more basic screen was ap-
plied that filters for only converged retrievals with<3 divergences, a total retrieved AOD
of <0.3 and a difference between true and retrieved surface pressure of >-1 hPa. Not
only are these parameters included in the post-screen, the parameters and filter thresholds
were obtained empirically from comparisons with the XCO2 bias of the current retrieval
approach that was used to retrieve the simulated scenes. Figure 5.36 shows the XCO2

bias and number of exposures for each of the filter parameters, as well as the threshold
values that provide an appropriate compromise between the number of exposures and
maintaining a low XCO2 bias and scatter. Although stricter screening could be applied, it
would reduce the number of exposures and bias the screening to this retrieval approach
setup.

The statistics on the number of exposures passing the quality filter, the resulting
XCO2 bias and standard deviation of each test is given by Table 5.5. In addition to the
five retrieval tests stated above, the simulated scenes were retrieved using exactly the
same a priori values as used in the simulations, but one aerosol was used instead of all 11
aerosols. The one aerosol profile was the sum of all 11 aerosol profiles, so as to the keep
the profile shape and AOD the same, and the optical properties of the 11 aerosols were
mixed together (weighted with the total column AOD). The only difference between the
simulations and retrievals in this test was that the simulations mixed the aerosol optical
properties at each atmospheric layer, whereas the retrievals used the aerosol optical prop-
erties mixed for the total atmospheric column. This test results in a XCO2 bias of -0.02
ppm with standard deviation of 0.63 ppm, showing some small differences between the
retrieval and simulation that are due to the difference in mixing of optical properties and
other retrieval related artefacts.

The current retrieval method (UoL-FP v3G) has a XCO2 bias of 0.06 ppm and a stan-
dard deviation of 0.82 ppm. The new scattering approach method shows an improvement
upon this, with a lower XCO2 bias of 0.03 ppm and a reduced standard deviation of 0.69
ppm, such that it almost approaches the precision and accuracy of the retrievals using
the simulation a priori. Looking at each new scattering approach aspect seperately, using
the AOD produces a slightly higher bias of 0.07 ppm and a worse standard deviation of
0.92 ppm. Using the new profiles results in a slightly lower bias of 0.05 ppm but higher
standard deviation of 0.87 ppm (compared to the current retrieval method). When the
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new aerosol properties are used the standard deviation improves (0.76 ppm) but the bias
becomes slightly larger (0.07 ppm). In general, the difference in bias and standard de-
viation between the retrieval tests is small and all tests perform well on average (biases
<0.07 ppm). Furthermore, the number of exposures left once quality screened is similar
between retrieval tests, ranging between 50.3% and 54.1%.

Table 5.5. Retrieval statistics for each of the aerosol retrieval tests of aerosol only
loaded simulated scenes.

Aerosol test Number of ∆ XCO2 mean ∆ XCO2 σ

screened retrievals (ppm) (ppm)

Retrieval using simulation a priori 5249 -0.02 0.63

Current retrieval method (UoL-FP v3G) 4962 0.06 0.82

Current retrieval method with the new 4988 0.07 0.92
scattering approach AOD

Current retrieval method with the new 5002 0.05 0.87
scattering approach aerosol profiles

Current retrieval method with the new 5332 0.07 0.76
scattering approach aerosol properties

New scattering approach method AOD, 5297 0.03 0.69
aerosol profiles and aerosol properties

Figure 5.37 shows the difference between true and retrieved XCO2 of each retrieval
test to assess potential geographical biases. Large XCO2 differences are found over desert
regions in the current retrieval method (UoL-FP v3G), as already observed in compar-
isons between real GOSAT observations and GEOS-Chem model estimations (see Sec-
tion 4.3. Additionally, other biases can be seen in Europe, North East Asia, central and
southern Africa, and East USA. The retrieval using simulation a priori provides a ba-
sis for what could best be achieved and shows no desert biases and much lower biases
elsewhere in the world. Some small biases are found though, mainly located over East
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USA.

Similarly, the new scattering approach method also shows low biases throughout the
world, but the aerosol is quite similar to the aerosol used in the simulations so is expected
to perform well. Using each aspect of the new scattering approach method with the
current retrieval method provides tests that are quite different to the simulations. When
either the new AOD or new profiles are used the geographical biases remain similar to
that of the current retrieval method. However, when the new optical properties are used
the biases over the desert regions significantly reduce, as well as biases in other areas
such as Europe and central/southern Africa. This leaves only small geographical biases
similar to that produced by the new scattering approach method. Thus, changing the
aerosol optical depth and profile shape has little or no benefit to the retrieval of XCO2 but
using aerosol optical properties that are scene dependent and closer to the truth provides
a large improvement in XCO2. These results agree with the conclusion of the initial
aerosol tests. Hence, if scene dependent aerosol optical properties were used in retrievals
of XCO2 from real GOSAT measurements then better results would be expected.
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FIGURE 5.36. Comparison of XCO2 bias with each quality filter parameter for re-
trievals of aerosol only simulations using the current retrieval algorithm (right col-
umn). The screened data is given in blue and the data filtered out is shown in red.
The left column shows the corresponding number of exposures when different filter

thresholds are applied to each parameter.
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FIGURE 5.37. Difference between true and retrieved XCO2 of each retrieval test,
where a is the retrieval using the simulation a priori, b is the current retrieval method
with the new AOD, c is the current retrieval method, d is the current retrieval method
with the new aerosol profile shapes, e is the new scattering approach method, and f
is the current retrieval method with the new aerosol optical properties. Grey areas

show where no data exists.
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5.5.2 Model Based Simulations: Aerosols, Clouds and Cirrus

In real GOSAT observations the scenes would not just contain aerosols but also possibly
cirrus and water clouds, therefore it is neccessary to test how these would interact with
the aerosol methods. Here, the simulations are setup in exactly the same way as in the
previous section, but cirrus and water clouds are included in the scenes according to what
the GEMS model estimates. Before any retrievals were performed the simulated scenes
were cloud screened, where scenes were determined as clear if the O2 A band retrieved
surface pressure was within <20 hPa of the truth. The five different retrieval tests were
performed on 3281 cloud screen exposures and quality filtered. The resulting statistics
are given in Table 5.6. The new AOD method shows the lowest XCO2 bias and standard
deviation, but the smallest number of exposures. The differences between the statistics
of each test are quite small and all tests perform well on average (XCO2 bias<0.56 ppm).

Table 5.6. Retrieval statistics for each of the retrieval tests of aerosol/cirrus/cloud
loaded simulated scenes.

Aerosol test Number of ∆ XCO2 mean ∆ XCO2 σ

screened retrievals (ppm) (ppm)

Current retrieval method (UoL-FP v3G) 1362 -0.49 2.02

Current retrieval method with the new 1331 -0.43 1.89
scattering approach AOD

Current retrieval method with the new 1331 -0.55 2.09
scattering approach aerosol profiles

Current retrieval method with the new 1403 -0.51 2.01
scattering approach aerosol properties

New scattering approach method AOD, 1393 -0.56 1.97
aerosol profiles and aerosol properties

Figure 5.38 shows the difference between true and retrieved XCO2 of each retrieval
test to assess potential geographical biases. Some negative biases are found in all test
results, suggesting there to be a small issue with the simulations. Large regional biases
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are found over desert regions, such as the Sahara, in the current retrieval method (UoL-
FP v3G), the new AOD method, and the new aerosol profile shapes method. This bias
is significantly reduced when the new aerosol optical properties method is used or the
new scattering approach method is used. Changing the aerosol optical depth and profile
shape has little benefit to the simulated retrieval of XCO2 but using scene dependent
aerosol optical properties provides a large improvement in XCO2, as found in the previous
section. However, this may not be true for real retrievals due to GOSAT instrument
calibrations coupling with spectroscopy and aerosols.

FIGURE 5.38. Difference between true and retrieved XCO2 of each retrieval test,
where a is the current retrieval method with the new AOD, b is the current retrieval
method, c is the current retrieval method with the new aerosol profile shapes, d is
the new scattering approach method, and e is the current retrieval method with the

new aerosol optical properties.
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5.5.3 Verification with Satellite Based Simulations

Since GEMS data is used in both the simulations and the new scattering approach design
it is a partially circular test, such that one would expect the new scattering approach to
give high correlations. To break this circularity, completely independent aerosol infor-
mation from CALIPSO was used in the simulations instead of GEMS. The calipso based
simulations were cloud screened and then retrieved with each of the five tests.

A total of 4505 cloud screened exposures were retrieved and quality filtered (see
Section for details) with the statistics given in Table 5.7. There is very little difference
between the statistics of each test; XCO2 biases range between -0.08 to -0.01 ppm, the
standard deviation of XCO2 ranges from 1.24 to 1.39 ppm, and the number of exposures
range between 2997 and 3221. The current retrieval method (UoL-FP v3G) has the
lowest XCO2 bias but the largest standard deviation. The new aerosol optical properties
provide the largest number of exposures and the new scattering approach method gives
the smallest standard deviation. However, the differences between tests are so small that
a single test can not be justified as the best.

Table 5.7. Retrieval statistics for each of the retrieval tests of CALIPSO based
aerosol/cloud/cirrus loaded simulated scenes.

Aerosol test Number of ∆ XCO2 mean ∆ XCO2 σ

screened retrievals (ppm) (ppm)

Current retrieval method (UoL-FP v3G) 3193 -0.01 1.39

Current retrieval method with the new 2998 -0.03 1.29
scattering approach AOD

Current retrieval method with the new 2997 -0.08 1.30
scattering approach aerosol profiles

Current retrieval method with the new 3221 -0.03 1.29
scattering approach aerosol properties

New scattering approach method AOD, 3116 -0.05 1.24
aerosol profiles and aerosol properties
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Figure 5.39 shows the difference between the true and retrieved XCO2 of each re-
trieval test to assess potential geographical biases. The current retrieval method (UoL-FP
v3G) retrieves lower XCO2 values over most of the world, except for over desert regions,
such as the Sahara, where much higher values than the truth are retrieved. Similar bi-
ases are found in retrievals using the new AOD or new profiles. However, when the new
aerosol optical properties are used the biases over the desert regions reduce, as well as
the negative biases in other areas. Similarly, the new scattering approach method also
gives reduced biases, suggesting that it is influenced mostly by the aerosol optical prop-
erties and less so by the profile shape and AOD. Hence, using scene dependent aerosol
optical properties reduces geographical biases and thus gives an improvement in XCO2.
This concurs with the findings from the GEMS based simulations discussed in Sections
5.5.1 and 5.5.2.
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FIGURE 5.39. Difference between true and retrieved XCO2 of each retrieval test,
where a is the current retrieval method with the new AOD, b is the current retrieval
method, c is the current retrieval method with the new aerosol profile shapes, d is
the new scattering approach method, and e is the current retrieval method with the

new aerosol optical properties.
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5.6 Application to GOSAT

Although the simulations show that using spatially dependent aerosol optical properties
improves the current retrieval approach, the true outcome can only be found by testing it
with real measurements. XCO2 was retrieved using the spatially dependent aerosol opti-
cal properties method (to be further known as UoL-FP v3.4G) for the same GOSAT data
that was used in the UoL-FP v3G retrievals so that a direct comparison of the retrieved
results was possible. This includes XCO2 retrieved over 7 different TCCON sites for a
2 year period and one year globally with a comparison to the GEOS-Chem model, as
described in Chapter 4.

Figure 5.40 shows a comparison of XCO2 retrieved from GOSAT using the UoL-FP
v3.4G method with XCO2 retrieved by the TCCON. The same TCCON sites and data
have been used as that shown in Chapter 4. The mean GOSAT-TCCON bias of the
UoL-FP v3.4G retrieval algorithm is found to be -0.18 ppm with a standard deviation of
2.45 ppm and correlation coefficient of 0.70. Compared to the results of UoL-FP v3G
(see Chapter 4), this method shows a slightly lower bias but a slightly larger standard
deviation and slightly worse correlation coefficient. Table 5.8 gives the statistics for the
UoL-FP v3.4G retrieval method, showing that the number of retrieved exposures passing
the post-screen is 4494, which is lower than that found for UoL-FP v3G. Similarly, the
number of coincident exposures with TCCON is slightly less than that found for UoL-
FP v3G. However, it should be noted that the post-screen was optimised for UoL-FP
v3G and not for UoL-FP v3.4G, and could result in good retrievals being incorrectly
filtered out. To avoid this potential issue, the GOSAT-TCCON bias retrieved for UoL-
FP v3G and UoL-FP v3.4G were compared for only exposures that exist after post-
screening in both datasets. This is shown in Figure 5.41, and it is found that the UoL-FP
v3.4G method reduces the bias by -0.05 ppm. However, the bias is less important than
geographical biases which can be assessed with a comparison to the GEOS-Chem 3-D
chemistry transport model.

One year of global GOSAT data was retrieved using the UoL-FP v3.4G method.
Figure 5.42 shows a comparison of each season between GOSAT and GEOS-Chem, with
large scale features consistent with that previously found using UoL-FP v3G (see Chapter
4). However, in general, there are slightly more geographical biases than that found with
UoL-FP v3G. Additionally, the zonal mean comparisons show slightly worse correlation
coefficients, ranging between 0.62 and 0.94, with the majority of the differences being
towards the poles.

The time series of UoL-FP v3.4G XCO2 from GOSAT and GEOS-Chem for a number
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Table 5.8. Statistics for the UoL-FP v3.4G comparison to TCCON, where the bias,
σ and r were calculated using coincident daily mean data.

TCCON Total Passed Percent Passed Coincident Bias σ r
site from L1B pre-screen cloudy post-screen days (ppm) (ppm) (Pearson)

Bialystok 29376 8321 61.16 295 46 -0.25 2.81 0.76
(53.230◦ N)

Bremen 24054 5484 66.36 150 19 0.57 2.87 0.56
(53.100◦ N)

Orleans 24047 9511 61.32 508 46 0.28 2.44 0.83
(47.970◦ N)
Park Falls 33277 5785 55.52 315 69 -0.30 1.84 0.84

(45.945◦ N)
Lamont 30984 9888 39.44 1837 235 -0.32 2.37 0.66

(36.604◦ N)
Darwin 17273 4511 39.64 916 53 -1.21 2.42 -0.11

(12.424◦ S)
Wollongong 13182 4971 50.45 473 57 0.94 2.58 0.31
(34.406◦ S)

Total 172193 48471 53.57 4494 525 -0.18 2.45 0.70

of different regions are shown in Figure 5.43. The seasonal cycle is found to match very
well between GOSAT and GEOS-Chem for both northern and southern hemispheres, but
a difference of 1.59 ppm is observed in the northern hemisphere throughout the year and
a smaller difference of 0.79 ppm in the southern hemisphere, which are both larger than
that found with UoL-FP v3G. GOSAT and GEOS-Chem XCO2 show a high consistency
for both Europe and the USA, with a XCO2 difference of -0.43 ppm and -0.16 ppm and
correlation coefficients of 0.69 and 0.72, respectively. These values are similar to that
observed with UoL-FP v3G, as is that of South Asia, which on average, GOSAT and
GEOS-Chem agree with a mean difference of -0.27 ppm and correlation coefficient of
0.70, but differences are viewed in the seasonal cycle with GEOS-Chem over-estimating
the XCO2 in autumn 2009 and under-estimating during spring 2010.

The retrieved XCO2 over the Amazon shows a small improvement (compared to UoL-
FP v3G) with the bias reducing to 1.17 ppm and standard deviation reducing to 3.31 ppm.
Similarly, the bias and standard deviation over NW Russia is improved with values of
-0.38 ppm and 3.58 ppm, respectively. Tropical Africa remains very similar to that of
UoL-FP v3G.

In central Asia where a desert region is observed with the high gain mode, the sea-
sonal cycle of GOSAT and GEOS-Chem is observed to agree well (r=0.73), but con-
sistently with a ∼2 ppm difference in value, similar to that of UoL-FP v3G. Also, a
∼3 ppm mean difference is found over the Sahara between GOSAT and GEOS-Chem
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FIGURE 5.40. Comparison of UoL-FP v3.4G retrieved XCO2 from GOSAT with
retrieved XCO2 from seven TCCON site for coincident cloud-screened observations
within 2 hours and 5◦ between April 2009 and May 2011. All TCCON data shown
in light green, coincident daily mean TCCON shown in dark green, all GOSAT data
shown in light red and daily mean GOSAT shown in dark red (with daily mean
points with only one value per day are represented by open circles). The average
difference between the daily means is given as the bias (ranging from -1.21 to 0.94
ppm), the standard deviation of daily means by the Std (between 1.84 and 2.87 ppm)
and the correlation coefficient of daily means by r (-0.11 at Darwin to 0.84 at Park
Falls). The lower right panel gives the correlation of daily mean coincident retrieved
GOSAT XCO2 with daily mean TCCON XCO2 within ±2 hours for the seven sites.
This gives an overall bias of -0.18 ppm, scatter of 2.45 ppm and correlation of 0.70

between GOSAT and TCCON XCO2.

XCO2 where a desert region is observed with the medium gain mode, but the seasonal
cycle agrees well with a correlation coefficient of 0.76. Australia, which comprises par-
tially of desert and is observed partially with medium and high gain modes, also shows
a difference in XCO2 between GOSAT and GEOS-Chem with a value of -1.14 ppm. No
improvement is observed in any of these desert regions, compared to UoL-FP v3G.

In the UoL-FP v3G retrievals, XCO2 biases were found with most parameters (see
Chapter 4). Figure 5.44 shows a comparison of UoL-FP v3G and UoL-FP v3.4G results
for correlations of XCO2 with various retrieval parameters. The UoL-FP v3.4G method
significantly reduces all of these parameter biases, indicating that the retrieval performs
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FIGURE 5.41. Comparison of the point-by-point biases of UoL-FP v3G and UoL-
FP v3.4G retrieved XCO2 from GOSAT with retrieved XCO2 from seven TCCON
site for coincident cloud-screened observations within 2 hours and 5◦ between April
2009 and May 2011. UoL-FP v3G daily mean GOSAT-TCCON bias is shown in
red (with daily mean points with only one value per day are represented by open
circles). Similarly, the UoL-FP v3.4G daily mean GOSAT-TCCON bias is shown
in blue. The average bias difference ranges from -0.01 to 0.40 ppm, the standard
deviation (Std) ranges between 0.30 and 0.54 ppm, and the correlation coefficient
(r) has a station-to-station range of 0.98 to 0.99. The lower right panel gives the
correlation of the daily mean biases and shows an overall bias difference of -0.05
ppm, scatter of 2.34 ppm and correlation of 0.71 between UoL-FP v3G and UoL-FP

v3.4G. Hence, this shows UoL-FP v3.4G improves the XCO2 slightly.

much better. In Chapter 4, a bias correction scheme was introduced that attempts to
correct the retrieved XCO2 using four parameters that correlate most with the XCO2 bias.
Figure 5.44 shows the correlation of these parameters with XCO2 for the UoL-FP v3G
method and the UoL-FP v3.4G method. This shows that the UoL-FP v3.4G method
virtually removes the band 1 albedo slope bias and the band 2 / band 3 mean signal bias,
suggesting that these biases were not spectroscopy/signal related but actually aerosol
related biases and are corrected using this method. The biases with ice optical depth
and surface pressure difference still exist, indicating that these may not be related to
aerosols. The ice optical depth bias may potentially be due to the retrieval algorithm not
accounting sufficiently for cirrus/clouds, which has been shown to create XCO2 biases
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FIGURE 5.42. Comparison of UoL-FP v3.4G XCO2 retrieved from GOSAT and
XCO2 calculated from GEOS-Chem CO2 profiles convolved with the scene-specific
GOSAT averaging kernel. For each season, GOSAT is shown at the top, the differ-
ence between GOSAT and GEOS-Chem in the middle, and a zonal mean comparison
of them at the bottom. The global maps indicate the largest differences are observed
over desert regions, such as the Sahara and central Asia. The zonal mean compari-
son shows a good agreement between GOSAT and GEOS-Chem, but worse than that
observed with UoL-FP v3G (see Figure 4.11. It also includes the average TCCON
XCO2 from each site which in general agrees, with observed differences mostly due

to zonal averaging of GOSAT/GEOS-Chem data.

(see Section 5.3).
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FIGURE 5.43. Comparison of UoL-FP v3.4G XCO2 retrieved from GOSAT and
XCO2 calculated from GEOS-Chem CO2 profiles convolved with the scene-specific
GOSAT averaging kernel, for a number of different regions between June 2009 and
May 2010. The locations of these regions are indicated on the map by the black
boxes (top left). The top centre and top right panels give the time series of GOSAT
and GEOS-Chem data for the northern and southern hemispheres, showing the sea-
sonal cycle to be well matched but with GOSAT data offset lower by -1.59 ppm in
the northern hemisphere and -0.79 ppm in the southern hemisphere. The second
row of plots show a very good agreement between GOSAT and GEOS-Chem both
in value and seasonality for regions containing urban environments. Below these,
the time series of forested regions are shown, with GOSAT reproducing the GEOS-
Chem data very well but with a larger scatter and fewer data points. The bottom
panels show the time series for 3 different desert regions, with GOSAT matching
the seasonal cycle of GEOS-Chem very well but offset lower in value from -1.14 to

-3.38 ppm.
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FIGURE 5.44. Comparison of UoL-FP v3G and UoL-FP v3.4G results for correla-
tions of XCO2 with various retrieval parameters. The blue diamonds represent the
data, the red line gives a linear fit of the data with the equation of the fit given in red,

and the correlation coefficient is given by r.
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FIGURE 5.45. Comparison of UoL-FP v3G and UoL-FP v3.4G results for correla-
tions of XCO2 with each of the parameters previously used for the bias correction.
The blue diamonds represent the data, the red line gives a linear fit of the data with

the equation of the fit given in red, and the correlation coefficient is given by r.
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5.7 Scattering Conclusion

A flexible simulation algorithm was designed and used to test how various aerosol and
cloud components effect retrievals of XCO2. The aerosol properties were found to have
the largest effect on XCO2. The simulator was also used to test different aerosol setups
in the retrieval of XCO2, finding that spatially dependent AOD and profile shapes do
not reduce the XCO2 bias. However, spatially dependent aerosol optical properties show
an improvement in the XCO2 retrieved, with the bias and scatter reduced. Therefore, a
new approach was applied to real retrievals of XCO2 from GOSAT where the aerosol
optical properties were replaced with spatially dependent aerosol optical properties. A
comparison with seven different TCCON sites showed that the new approach reduces the
bias slightly. A comparison with GEOS-Chem showed that the geographical biases are
not improved. This may be due to potential problems with instrument calibration and
spectroscopy that are coupled with aerosols in the retrieval of XCO2. However, the biases
observed in different retrieval parameters, such as the band 1 albedo slope and the ratio
of band 2 to band 3 mean signal, have been significantly reduced and thus suggests the
new method removes some of the biases, but not all.
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Chapter 6

Conclusions

6.1 Assessment of GOSAT retrievals

CO2 retrievals with high accuracy and precision from satellites is a major challenge but
can be of great benefit for the understanding of the carbon cycle. Here, an existing
optimal estimation retrieval algorithm developed for the OCO mission was modified
and applied to retrieved CO2 from SWIR radiances observed by the Japanese GOSAT
satellite. The main developments of the algorithm included the setup of the instrument
and retrieval strategy as well as creation of the pre-processing, cloud screen and post-
processing aspects. These advancements set the algorithm apart from the original and
was therefore named as the UoL-FP retrieval algorithm.

The algorithm has successfully retrieved XCO2 from GOSAT observations for over
two years. Comparisons were performed to observations by the TCCON ground based
network with a mean smoothing error difference of -0.14 ppm. The single sounding
precision was found to be between 2.04 and 2.96 ppm and the bias between -0.87 and
0.77 ppm for seven TCCON sites distributed in the USA, Europe and Australia. Using
a stricter post-screen improves the comparison by reducing the single sounding precison
to 1.50 to 2.15 ppm and the bias to -0.6 to 0.7 ppm, but at the cost of the number of
exposures. The mean bias inferred from TCCON comparisons is very accurate with
mean biases approaching only a few tenths of a ppm, which is close to typical retrieval
requirements of systematic bias for XCO2 (e.g. Chevallier 2007b, Chevallier et al. 2009,
Miller et al. 2007). Future improvements in spectroscopy, instrument calibration and
atmospheric scattering are expected to provide improved results.

Global seasonal comparisons of retrieved XCO2 from GOSAT to model calculations
of the GEOS-Chem 3D chemistry transport model are demonstrated. A correlation of

242



0.61 was determined between GOSAT and GEOS-Chem, with a correlation of 0.76 for
the latitudinal gradient. A high level of consistency between GOSAT and GEOS-Chem
was observed over expected source regions for both the seasonal cycles and amplitudes
of XCO2. Large biases were found over central Asia and the Sahara, but with the devel-
opment of a bias correction scheme these were significantly reduced.

To further improve and test the retrieval algorithm, a simulator was built to allow
multiple retrieval approaches to be tested and was initially used to analyse the effects of
aerosols and clouds on the retrieval of XCO2. It was further used to develop a new scatter-
ing method for use in the XCO2 retrievals based on aerosol information from the GEMS
model. This new method was applied to real GOSAT XCO2 retrievals and a comparison
to TCCON gave an improvement of 0.02 ppm for the bias. Although a global compar-
ison with the GEOS-Chem model showed the geographical biases to become slightly
worse towards the poles, the biases of some retrieval parameters largely improved. This
simulator has provided a framework for future retrieval algorithm developments.

6.2 Outlook

6.2.1 Future Implications

The XCO2 retrievals approach the point where they should be useful for the inversion
of CO2 surface fluxes with data assimilation methods (e.g. Baker et al. 2010, Cheval-
lier et al. 2009, Feng et al. 2009). If assimilated into chemistry transport models, the
high density of globally inferred XCO2 from GOSAT has the potential to reduce model
uncertainties of surface fluxes, especially over regions poorly sampled by ground-based
measurements. This could lead to an improved quantification of terrestrial CO2 sources
and sinks, and therefore a better understanding of the carbon cycle. This would allow
more accurate predictions of future climate change and improved methods of adaptation.
Furthermore, as government legislations, both national and international, aim to reduce
future emissions of CO2, accurate predictions of global CO2 fluxes using satellite data
could allow improved policies and global monitoring.

6.2.2 Retrieval algorithm development

Improving the retrieval algorithm is an ongoing task and there are many ways that it could
be done. Any enhancement upon the existing spectroscopy would clearly be beneficial.

243



The a priori could also be improved, for example having the CO2 profiles for years
surpassing 2009 would provide better spatial estimates as it would include the biomass
burning for the actual years.

Although the aerosol approach has already been further developed, there is still other
options that could be explored that might prove to be superior. Such options might in-
clude; deriving aerosol information from TANSO-CAI as this would provide it exactly
for the TANSO-FTS observation location and time, using an alternative aerosol model
(e.g. SPRINTARS (Takemura et al. 2003)), or using generic small, medium and large
sized aerosol particles for the scattering properties as this could give a more flexible
scheme. The use of TANSO-CAI observations has been limited so far by data stor-
age constraints. However, with increased storage capabilities this data could potentially
provide information including; aerosol optical depth, aerosol type, cloud optical depth,
cloud type, and aerosol/cloud distribution within the IFOV. TANSO-CAI could then also
be used as an alternative cloud screening method as demonstrated by Taylor et al. (2012),
allowing the possibility of comparing cloud fraction with XCO2.

The simulator could be used to test many different retrieval designs, including new
approaches of aerosols, cirrus clouds and water clouds as well as retrieval algorithm
variations, such as using alternative spectral bands or different state vector parameters.
For this reason, the simulator could also be further developed to provide more realistic
simulations of scenes. This could involve albedo, topographic, aerosol, cirrus, and cloud
variations across the IFOV.

Possible ways to improve the present XCO2 could be to apply a new bias correc-
tion method or to advance the pre/cloud/post-screens. Finally, performing more detailed
inter-comparisons with alternative retrieval algorithms could indicate possible retrieval
algorithm dependent issues that could be improved.

6.2.3 Future missions

Whilst GOSAT was the first greenhouse gas dedicated satellite, there are many more
future missions currently planned. The next satellite that will allow CO2 to be retrieved
will be the Orbiting Carbon Observatory 2 (OCO-2) satellite through the NASA Earth
System Science (ESSP) program, for launch in 2014. OCO-2 will include one instrument
consisting of three high resolution grating spectrometers that will observe O2 and CO2

absorption bands with a spatial resolution of 1 x 1.5 km2 and swath width of 10 km. This
high spatial resolution instrument has the potential to make observations in the small
gaps between clouds, thus providing more measurements globally.
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It is proposed that in 2015/2016 the Tropical Carbon Mission (TCM) may launch,
which is a bilateral Earth Observation mission between the UK and US space agencies.
It will contain a NASA Orbiting Carbon Observatory 3 (OCO) instrument and a UK
Carbon Monoxide and Methane Spectrometer (CMS). It will measure between ± 35◦

latitude and will reduce sampling biases from clouds and the diurnal CO2 cycle by using
a precessing orbit at 430 km altitude and 35◦ inclination. This is proposed to complement
the OCO-2 mission by providing more measurements over the tropical regions.

There will be a GOSAT-2 satellite launching in 2016. Its design specifications will
be finalised this year, but it will likely be of similar design to GOSAT. This would have
the benefit of globally repeating measurements over the same locations, but with the
disadvantage of limited coverage.

The Carbon Monitoring Satellite (CarbonSat) is planned to be launched in 2018 as
part of the ESA Earth Explorer Opportunity Missions (EE-8). CarbonSat will comprise
of two instruments; a Cloud and Aerosol Imager (CAI) and an Imaging Spectrometer
(IS) that will observe radiances in the O2, CH4 and CO2 absorption bands. It will have
a spatial resolution of 2 x 2 km2 and swath of 500 km, providing a very large coverage
and highly dense dataset of observations globally.

For possible launch in 2018 is the MicroCarb satellite being developed as part of the
CNES microsatellite series. The instrument design will either be a scattering grating
spectrometer or a static Fourier Transform interferometer and will measure radiances in
the O2 and CO2 absorption bands. If this mission proves beneficial it could lead to a
constellation of microsatellites providing increased sampling.

The last mission currently planned is the Active Sensing of CO2 Emissions over
Night, Days and Seasons (ASCENDS) satellite for launch in 2021 or later as a NASA
Earth science decadal survey study. ASCENDS is currently planned to use laser-based
differential absorption of O2 and CO2. This active method would allow observations to
be made at night time, at high latitudes and through all seasons irrespective of how much
cloud exists. For improved flux interpretation, it is planned to also contain a passive CO
sensor.

The present retrieval algorithm and simulator were designed with a flexible scheme to
allow alternative instruments to be used. Therefore, these could potentially be used with
any of the future missions, allowing the development of a long-term dataset of XCO2.
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6.2.4 Final comments

This thesis describes a new retrieval algorithm capable of inferring XCO2 from remotely
sensed SWIR satellite observations. A comparison with coincident ground-based TC-
CON measurements shows that with strict filtering the retrieval algorithm should be suf-
ficient to allow improved surface flux estimates (e.g., Chevallier 2007b, Chevallier et al.
2009, Miller et al. 2007). Furthermore, over TCCON sites the XCO2 retrieval is very ac-
curate with biases approaching only a few tenth ppm, which is close to typical retrieval
requirements of systematic bias for XCO2 (e.g. Chevallier 2007b, Chevallier et al. 2009,
Miller et al. 2007).

The latest results from other algorithms (Bril et al. 2007, Yokota et al. 2009, Butz
et al. 2011, Morino et al. 2011, Wunch et al. 2011b, Yoshida et al. 2010, Crisp et al.
2012, Oshchepkov et al. 2012a) find similar results with a variation in the number of
soundings potentially due to the screening criteria applied. However, over desert regions,
which are not observed by TCCON, it is found that the retrieved XCO2 from GOSAT
shows significant (up to ∼3 ppm) differences when compared to GEOS-Chem model
calculations which are believed to be biases in the GOSAT retrieval. Similar findings
have been reported in Crisp et al. (2012) who suggested that these biases are related to
instrument gain. Although here, biases are observed for desert regions observed with
both settings of the instrument gain, showing that these biases are only partially due to
gain and this leads to the speculation that these biases could be introduced by desert dust
or related to the high surface albedo in the CO2 bands. This study highlights the need
for further algorithm improvements, especially over the deserts. However, except for the
desert regions, the XCO2 retrievals approach the point where they should be useful for the
inversion of CO2 surface fluxes with data assimilation methods (e.g. Baker et al. 2010,
Chevallier et al. 2009, Feng et al. 2009), which could then lead to a better understanding
of the carbon cycle and improvements in future climate predictions.

Finally, this thesis also describes new simulator that can be used for the development
of SWIR retrieval algorithms. Its use has been demonstrated for testing new scattering
methods for retrievals of XCO2 from GOSAT, but the flexibility of the simulator design
is such that it could be applied to future missions.
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