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Abstract

Background: Asthma is characterized by variable airflow obstruction, airway

inflammation, airway hyper-responsiveness and airway remodelling. Airway smooth

muscle (ASM) hyperplasia is a feature of airway remodelling and contributes to

bronchial wall thickening. We sought to investigate the expression levels of chemo-

kines in primary cultures of ASM cells from asthmatics vs healthy controls and to

assess whether differentially expressed chemokines (i) promote fibrocyte (FC) migra-

tion towards ASM and (ii) are increased in blood from subjects with asthma and in

sputum samples from those asthmatics with bronchial wall thickening.

Methods: Chemokine concentrations released by primary ASM were measured by

MesoScale Discovery platform. The chemokine most highly expressed by ASM

from asthmatics compared with healthy controls was confirmed by ELISA, and

expression of its cognate chemokine receptor by FCs was examined by immuno-

fluorescence and flow cytometry. The role of this chemokine in FC migration

towards ASM was investigated by chemotaxis assays.

Results: Chemokine (C-C motif) ligand 2 (CCL2) levels were increased in primary

ASM supernatants from asthmatics compared with healthy controls. CCR2 was

expressed on FCs. Fibrocytes migrated towards recombinant CCL2 and ASM

supernatants. These effects were inhibited by CCL2 neutralization. CCL2 levels

were increased in blood from asthmatics compared with healthy controls, and

sputum CCL2 was increased in asthmatics with bronchial wall thickening.

Conclusions: Airway smooth muscle-derived CCL2 mediates FC migration and

potentially contributes to the development of ASM hyperplasia in asthma.

Asthma affects over 300 million people worldwide and its

prevalence is ever increasing. It still remains a significant

cause of morbidity and mortality (1). Asthma is a complex

heterogeneous disease characterized by variable airflow

obstruction, airway inflammation, airway hyper-responsive-

ness and airway remodelling (2).

Airway remodelling denotes structural changes in the

airway wall including epithelial denudation and shedding,

basement membrane thickening, goblet cell hyperplasia,

subepithelial fibrosis, mucus hypersecretion and increased air-

way smooth muscle (ASM) mass as a consequence of ASM

hyperplasia and hypertrophy (2). Although the cause of

ASM hyperplasia is not yet completely understood, several

theories have been proposed. These include epithelial–mesen-

chymal transition, ASM proliferation and/or survival and

migration of resident mesenchymal stem cells or peripheral

blood progenitors [fibrocytes (FCs)] to the ASM bundle and

their differentiation into ASM (3, 4). Several chemotactic

pathways driving FC recruitment to ASM have been sug-

gested including chemokines and growth factors (5–7). How-

ever, in our earlier work, we reported that platelet-derived

growth factor (PDGF) was an important chemotactic factor

for FC recruitment but only contributed to about a fifth of

FC migration towards ASM (5). Furthermore, we were

unable to support a role for CCR3, 7, CXCR3 or 4 in

mediating migration towards the ASM (5). Therefore, other

important mechanisms promoting FC recruitment to the

ASM bundle in asthma need to be identified.
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ASM, airway smooth muscle; CCL2, chemokine (C-C motif) ligand

2; CT, computerized tomography; GINA, global initiative for asthma;

LTB4, leukotriene B4; PDGF, platelet-derived growth factor; PGE2,

prostaglandin E2; PTx, pertussis toxin; TXB2, thromboxane B2.
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We hypothesized that in asthma, there is an increased

release of chemotactic factors from ASM that promote FC

recruitment and that the concentration of this mediator or

mediators in the airway is related to bronchial wall thicken-

ing. We provide evidence for CCR2 expression on human

FCs and a role for CCL2 in modulating FC migration

towards the ASM bundle in asthma.

Materials and methods

Subjects

Healthy control and asthmatic subjects were recruited from

respiratory clinics and hospital staff and by means of local

advertising. Healthy subjects had no history of respiratory

disease. Subjects underwent extensive evaluation including an

extensive history, skin prick tests for common aeroallergens,

spirometry, methacholine challenge tests, sputum induction

(8) and Asthma Control Questionnaire (ACQ6) (9). Some

subjects also underwent video-assisted bronchoscopy with

bronchial biopsies and/or thoracic computerized tomography

(CT) scan as previously described (10, 11). Qualitative assess-

ment of bronchial wall thickening was performed as previ-

ously described by a single radiologist (11).

The diagnosis of asthma was made by a respiratory physi-

cian based on history and one or more of the following

objective criteria (maximum diurnal peak expiratory flow

variability >20% over a 2-week period, significant bronchodi-

lator (BD) reversibility defined as an increase in FEV1 of

>200 ml post-BD or a PC20FEV1 methacholine of <8 mg/

ml). Severe asthma was defined in accordance with the Amer-

ican Thoracic Society (ATS) workshop on refractory asthma

(12). Informed consent was obtained from all subjects, and

the study was approved by the Leicestershire, Northampton-

shire and Rutland Research Ethics Committee.

Cell isolation and culture

Pure ASM bundles were isolated from biopsies obtained at

bronchoscopy from well-characterized asthmatics and healthy

volunteers with additional nonasthmatic samples obtained

from lung resection. The clinical characteristics of ASM

donors are as shown in Table 1. ASM cells were cultured in

DMEM with Glutamax-1 supplemented with 10% FBS,

100 U/ml penicillin, 100 lg/ml streptomycin, 0.25 lg/ml

amphotericin, 100 lM nonessential amino acids and 1 mM

sodium pyruvate. ASM cell characteristics were determined

by flow cytometry with a-smooth muscle actin (SMA)-fluo-

rescein isothiocyanate (FITC)-conjugated antibody (Sigma,

Gillingham, Dorset, UK) (13).

Fibrocytes were isolated from peripheral blood and cultured

in fibronectin-coated (40 lg/ml) T25 tissue culture flasks, as

described previously (5). After 24 h, nonadherent cells were

removed. After 7–14 days, adherent cells were washed with

Hanks’ balanced salt solution and harvested with Accutase

(eBioscience, Wembley, UK). Cell counts and viability of the

initial isolated peripheral blood mononuclear cell fraction and

the final adherent cells were determined using trypan blue stain.

Viability was consistently >95%. In parallel, PBMC prepara-

tions were seeded onto fibronectin-coated eight-well chamber

slides (2 9 105 cells per well) and cultured as above. Fibrocyte

purity and differentiation were assessed by immunofluorescent

staining for CD34, aSMA and collagen I, as described previ-

ously (5). Fibrocyte purity was routinely >95%, with morpho-

logically distinct T cells accounting for the contaminants.

Analysis of basal mediator release in human ASM

supernatants

Airway smooth muscle cells were seeded in T75 culture flasks

at a density of 1.7 9 105 and grown to confluence over

2 weeks. Airway smooth muscle cells were serum-deprived in

insulin/transferrin/sodium selenite (ITS) media (Sigma) for

24 h. Fresh ITS media were then added, and cell-free super-

natants were collected after 24 h by centrifuging at 1300 rpm

for 8 min at 4°C. These were then stored at �20°C until

required. Basal levels of mediators were analysed using both

multiplex and single enzyme-linked immunosorbent assay

(ELISA) kits. Supernatants analysed for chemokine levels

were corrected for ASM cell numbers (106 cells). We mea-

sured CCL2-5, CCL11, CCL13, CXCL8, CXCL10 and

CXCL11 [MesoScale Discovery (MSD); MesoScale Diagnos-

tics, LLC (Rockville, MD, USA)] in pooled ASM superna-

tants of healthy (n = 11) and asthmatic (n = 10). Limits of

detection were 0.24–10 000 pg/ml. ELISA kits were used to

examine CCL2 (R&D Systems Inc., Abingdon, UK) in

healthy and asthmatic ASM supernatants from individual

donors. Limit of detection for CCL2 was 15.6–1000 pg/ml.

Measurement of CCL2 in supernatants from FC/ASM co-

cultures and monocultures

Airway smooth muscle cells were seeded onto 10 lg/ml fibro-

nectin-coated 60-mm2 tissue culture dishes at a density of

2 9 105 to reach confluence after 24 h. Airway smooth muscle

cells were serum-starved overnight. Fibrocytes were harvested

with accutase and labelled with CFSE (1 : 1000 in PBS), prior

to seeding at a density of 1 9 105 onto ASM cultures or 10 lg/
ml fibronectin-coated culture dishes as parallel FC monocul-

tures. Airway smooth muscle monocultures were also

Table 1 Clinical characteristics of airway smooth muscle donors

Nonasthmatic

(n = 18)

Asthmatic

(n = 18)

Age in years* 55 (4) 48 (3)

Male, n (%) 7 (39) 11 (61)

Smoking, n (%) 10 (56) 8 (44)

Current 05 06

Ex 05 02

Smoking (pack years)* 16 (5) 2 (1)

FEV1 current* 2.9 (0.3) 2.7 (0.2)

FEV1% predicted * 87.4 (4.4) 79.9 (4.9)

FVC* 3.7 (0.3) 4.0 (0.2)

FEV1/FVC ratio* 78.9 (6.8) 65.9 (2.8)

*Data expressed as mean (SEM) unless otherwise stated.
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maintained in parallel. Cell-free supernatants for ELISA were

collected following a further 7–8 days, spun at 1300 rpm for

8 min at 4°C and stored at �20°C until required. CCL2 levels

were then analysed by ELISA (R&D Systems Inc.).

Analysis of CCR2 receptor expression

Fibrocytes were stained with mouse monoclonal anti-human

CCR2 antibody (R & D Systems Europe Ltd., Abingdon, UK)

or isotype control (clone IgG2b; R & D Systems Europe Ltd.)

indirectly labelled with FITC (Dako, Ely, Cambridgeshire,

UK) and assessed by flow cytometry (BD FACScan; BD,

Oxford, UK) as previously described (14) and immunofluores-

cence following counterstaining of cell nuclei with 40,60-diami-

dino-2 phenylindole (Sigma) as described previously (15).

Fibrocyte migration

Migration of adherent FCs was studied using a previously

validated chemotaxis assay (16, 17). Airway smooth muscle

cells (2.5 9 105/well) were seeded onto fibronectin-coated

(1 lg/ml) eight-rectangular-well plates and allowed to

adhere overnight before removal by scraping of half the

ASM below a predrawn line on the well underside. Fibro-

cytes (4–8 9 104/well) were then added for 72 h before

experimentation, with pertussis toxin (PTx) (0.5 lg/ml, from

Sigma) added 18 h prior to experimentation. Photographs

of the FCs were taken along a predrawn line 5 mm below

the edge of the multicell layer or equivalent position in con-

trol wells at 1.5-h intervals over a 4.5-h time course. The

migration of individual FCs was tracked manually, and the

distance of migration was obtained by a blinded observer.

Additionally, we used a 24-well transwell migration assay to

measure the migration of detached differentiated FCs that had

been in culture for 1 week after isolation. The transwell inserts

were coated with 40 lg/ml fibronectin for 1 h at 37°C. Recom-

binant human CCL2 (50 ng/ml or 100 ng/ml; R & D Systems

Europe Ltd.) or conditioned medium from ASM cultures that

had been activated for 24 h with TNF-a (10 ng/ml) was added

to the bottom compartment of each well in the presence or

absence of mouse monoclonal anti-human CCL2 antibody

(5 lg/ml; R & D Systems Europe Ltd.) or isotype control and

with the exception of the negative controls. Fibrocyte cultures

were thoroughly washed several times with fresh medium to

remove nonadherent cells. Cultures were then detached using

accutase (eBioscience), and 1 9 105 FCs were added to the top

chamber of each well in duplicate. Cells were incubated for 4 h

at 37°C, at which point the cells present in the lower well were

recovered by means of pipetting, centrifuged at 250 g for

5 min and then resuspended in PBS for counting on a flow cy-

tometer by a blinded observer. Fibrocytes were readily distin-

guishable from T cells by their forward and side scatter

characteristics on flow cytometry.

Measurement of CCL2 in blood and sputum

CCL2 levels in plasma collected from healthy control subjects

and patients with asthma were measured (MSD; MesoScale

Diagnostics, LLC). Sputum CCL2 levels were measured

using multiplex assays from Myraid RBM (Austin, TX,

USA) as described previously, and some of these subjects

had participated in an earlier study (18).

Statistics

Statistical analysis was performed using PRISM version 6

(GraphPad, La Jolla, CA, USA). Analysis between groups

was performed by one-sample, paired or unpaired t-tests or

Mann–Whitney tests for parametric and nonparametric data,

respectively. For sputum CCL2 measurements, subjects were

dichotomized into presence or absence of bronchial wall

thickening. Between-group differences were analysed by

unpaired t-tests or Fisher’s exact test. A value of P < 0.05

was considered significant.

Results

ASM primes FC chemokinesis through a G-protein-coupled

receptor

We first explored the potential role of G-protein-coupled

receptors in regulating ASM-mediated FC chemokinesis. The

distance of migration of adherent elongated FCs was a mean

of 12.7 � 3.2 lm from the point of origin over 4.5 h (n = 5).

Airway smooth muscle significantly potentiated chemokinesis

of FCs by over twofold [34.9 � 5.7 lm, n = 6, P = 0.008,

(Fig. 1A)] from the point of origin over 4.5 h. PTx, an inhib-

itor of Gai receptor – G-protein coupling, significantly

attenuated ASM-primed FC chemokinesis by 34 � 9%,

[23.2 � 5.0 lm from the point of origin, n = 6, P = 0.014

(Fig. 1A)].

CCL2 levels are increased in ASM supernatants from subjects

with asthma

The role of a G-protein-coupled receptor in mediating FC

migration towards ASM implicated the involvement of

chemokines. Therefore, to determine whether the basal

release of chemokines is differentially expressed by ASM

from asthmatic subjects vs healthy controls, the concentration

of several key chemokines was initially screened in pooled

samples from healthy (n = 11) and asthmatic ASM superna-

tants (n = 10) using the MSD platform. The greatest differ-

ence observed in chemokine concentration between ASM

supernatants from asthmatics and healthy controls was a

twofold increase in basal CCL2 levels (Fig. 1B). CCL2 con-

centrations in these supernatants from individual subjects

were measured by ELISA and confirmed that CCL2 was

significantly increased in ASM supernatants from asthmatics

compared with healthy controls (1880 � 329 vs

947 � 203 pg/106 cells; P = 0.02, Fig. 1C).

We then assessed CCL2 release in supernatants from FCs

and ASM in co-culture and the sum total of CCL2 levels in

supernatants from the corresponding FC and ASM monocul-

tures. Airway smooth muscle monocultures showed signifi-

cantly higher CCL2 release compared with FC monocultures
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(n = 13, P = 0.0006). CCL2 levels were found to be signifi-

cantly increased in FC/ASM co-cultures (48472 � 10508 pg/

ml, n = 13, P = 0.003) relative to the sum total of corre-

sponding FC/ASM monocultures [11372 � 2064 pg/ml

(Fig. 1D)]. In co-cultures, ASM and FC proliferation was

not increased compared with the sum of their respective

monocultures over 7 days (8.7 � 14.7% increase in FC/ASM

in co-culture vs sum of FCs and ASM in monoculture,

P = 0.57). There was also no difference in the ratio of ASM/

FCs in monoculture vs co-culture (28.1 � 5.9 vs 22.9 � 5,

respectively, P = 0.35).

CCR2 is expressed on peripheral blood human FCs

CCL2 affects cell function through binding to cell surface

CCR2 receptors. To investigate the role of CCL2 in modulat-

ing FC migration, we therefore first assessed CCR2 expres-

sion on peripheral blood FCs. An example histogram of

CCR2 expression demonstrated by flow cytometry is shown

in (Fig. 2A). The proportion of primary cultured peripheral

blood FCs that expressed CCR2 on their cell surface was

10 � 1 (6–14)% [n = 5 (Fig. 2B)]. These observations were

consistent with a significantly higher geometric mean for

CCR2 fluorescence relative to its relevant isotype control

antibody [D geometric mean 151 � 22, n = 5 (Fig. 2B)].

Qualitative CCR2 immunoreactivity was also evident by

immunofluorescence in cultured FCs [representative image

from n = 5 (Fig. 2C)].

CCL2 promotes migration of peripheral blood FCs

We next sought to understand the role of CCL2 on FC

migration. Differentiated FCs migrated significantly in

response to stimulation with 100 ng/ml of recombinant

CCL2 [2.3 � 0.4-fold greater than control medium, n = 6,

P = 0.03 (Fig. 3A)] and ASM supernatant stimulated with
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Figure 1 Chemokine (C-C motif) ligand 2 (CCL2) levels are

increased in asthmatic airway smooth muscle (ASM) supernatants.

(A) ASM primes migration of fibrocytes (FCs) through a G-protein-

coupled receptor as demonstrated by inhibition with pertussis toxin

(PTx); (B) basal chemokine levels in pooled healthy and asthmatic

supernatants of ASM cells assessed by MesoScale Discovery plat-

form (MSD); CCL2 levels in (C) healthy and asthmatic ASM cell

supernatants and (D) supernatants from FCs and ASM mono- and

co-cultures assessed by ELISA. Data expressed as mean � SEM.
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TNF-a [5.0 � 0.6-fold greater than control medium, n = 5,

P = 0.002 (Fig. 3A)]. CCL2 (50 ng/ml) failed to induce a

significant increase in migration of differentiated human

FCs [1.4 � 0.2-fold greater than control medium, n = 6,

P = 0.08 (Fig. 3A)]. CCL2 neutralizing antibody signifi-

cantly inhibited recombinant CCL2-induced (100 ng/ml)

migration of FCs by 28.0 � 8.4%, n = 6, P = 0.02 (Fig. 3B)

and ASM supernatant-induced migration by 28.5 � 9.1%,

n = 5, P = 0.03 (Fig. 3B) relative to relevant isotype

controls.

In vivo CCL2 measurements

To validate and confirm our in vitro observations, we mea-

sured CCL2 levels in vivo. Plasma CCL2 concentration was

significantly increased in severe asthmatics (n = 14) compared

with healthy controls (n = 12) [136 � 14 vs 78 � 11 pg/ml,

P = 0.002 (Fig. 4A)]. Sputum CCL2 concentrations were

significantly increased in asthmatics with bronchial wall

thickening (129 � 31 pg/ml, n = 67, P = 0.008) compared to

those with no evidence of bronchial wall thickening

[47 � 16 pg/ml, n = 25 (Fig. 4B)]. The clinical characteristics

of the subjects with or without bronchial wall thickening are

shown in Table 2. In those with bronchial wall thickening vs

those without, there were no differences in demographics,

lung function, atopy, total IgE or sputum differential cell

counts between asthmatic subjects with or without bronchial

wall thickening.

Discussion

We report here for the first time that constitutive release of

CCL2 by primary ASM is increased in asthma, that ASM-

derived CCL2 promotes migration of FCs and that increased

sputum CCL2 is associated with bronchial wall thickening.

Together, these findings implicate a role for CCL2 in FC

trafficking to the ASM in asthma and possibly to consequent

ASM hyperplasia and airway remodelling.

Fibrocytes are peripheral blood-derived mesenchymal cell

progenitors, and their numbers are increased in ASM bundles

and in the peripheral blood of asthmatics (5). This increase

correlates with the degree of airflow obstruction (3), and they

have been implicated in contributing to ASM hyperplasia.

However, there is a limited understanding of the mechanisms

regulating their trafficking to the lungs. Earlier studies

have implicated a role for CXCR4/CXCL12 axis in the

recruitment of peripheral blood progenitors to the lung (6).

Interestingly, ASM-derived PDGF contributes to one-fifth of

FC chemokinesis towards ASM bundles (5). This suggested

that there are other potential mechanisms involved in this

process that need further elucidation. We have previously

shown that ASM-mediated FC chemokinesis was not modu-

lated by activation of CCR3, CXCR3 and CXCR4 by their

cognate ligands, and even though the CCL19/CCR7 axis

played a critical role in recruitment of differentiated mesen-

chymal cells within ASM bundles, it did not have any pre-

dominant effect in the recruitment of progenitors (5, 16).
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Figure 2 CC chemokine receptor (CCR)2 is expressed on periph-

eral blood fibrocytes (FCs). (A) A representative histogram (n = 5

independent experiments) illustrating cell surface CCR2 expression;

(B) proportion of FCs expressing CCR2 with absolute geometric

mean of CCR2 fluorescence on human FCs relative to its isotype

assessed by flow cytometry; (C) CCR2 expression on FCs con-

firmed by immunofluorescence. Data expressed as mean � SEM.
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However, here we found that ASM primes chemokinetic

migration of FCs predominantly via a Gi/o G-protein-depen-

dent mechanism, implicating a potential role of alternative

chemokines in driving FC recruitment to the ASM bundle

that we had hitherto overlooked.

We confirm here the role of recombinant CCL2 in mediating

FC migration (19) and demonstrate for the first time that

ASM-derived CCL2 promotes chemotaxis of FCs. Our find-

ings are consistent with a body of evidence supporting a role

for CCL2 in asthma. Airway structural and inflammatory cells

have been identified to be important sources for CCL2 (20–
22). CCL2 levels are higher in asthmatic bronchoalveolar

lavage (BAL) fluid, and an allergen challenge induces a further

significant release of CCL2 in BAL fluid of patients with

asthma (23). Histological findings demonstrate CCL2 expres-

sion in the bronchial epithelium, subepithelial macrophages,

blood vessels and ASM of asthmatic and nonasthmatic bron-

chial biopsies (24). Comparatively, the expression is stronger

in asthmatic epithelium and subepithelial layer (24). These

observations are consistent with in vivo findings. Increased

CCL2 levels are observed in animal models of allergic asthma

(25). Blocking CCL2 with a neutralizing antibody inhibits

release of macrophage-derived inflammatory mediators includ-

ing leukotriene B4 (LTB4), prostaglandin E2 (PGE2) and

thromboxane B2 (TXB2) and recruitment of monocytes, T

cells and eosinophils to the lung along with a reduction in the

degree of bronchoconstriction (26). Here, we extend these ear-

lier observations by demonstrating that the constitutive release

of CCL2 by ASM from asthmatics is increased compared with

healthy controls. We further demonstrate increased CCL2 lev-

els in FC/ASM co-culture beyond the sum of the concentration

of CCL2 released from each cell type in monoculture. Various

studies have shown an increased chemokine production in co-

cultures (27, 28). However, the mechanism remains to be deter-

mined yet. We also observed an increase in CCL2 in blood

from asthmatic subjects consistent with a previous observation

made by Chan and colleagues who recorded higher serum

CCL2 levels in asthmatics which were further increased during

an acute asthma attack (29). For the first time, we also report

that sputum CCL2 concentration is increased in asthmatics

with bronchial wall thickening.

Bronchial wall thickening is the hallmark of airway

remodelling, which together with airway inflammation con-

tributes to airway hyper-responsiveness and/or airflow

obstruction (30, 31). The major determinant of bronchial

wall thickening, luminal narrowing and airflow obstruction is

increased ASM mass (31–33). Thoracic CT scans are widely

recognized as a useful noninvasive measure of airway remod-

elling. Thicker airway walls have been identified in severe

asthmatics relative to mild asthmatics or healthy subjects,
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Table 2 Clinical characteristics of subjects recruited for sputum CCL2 analysis

Bronchial wall

thickening (n = 67)

No bronchial wall

thickening (n = 25) P-value

Age in years* 49 (2) 50 (3) 0.98

Male, n (%) 32 (48) 11 (44) 0.81

Smoking, n (%) 28 (42) 12 (48) 0.64

Current 04 04

Ex 24 08

Smoking (pack years)* 8.2 (2.3) 4.5 (2.1) 0.37

Oral corticosteroid use, n (%) 31 (46) 8 (32) 0.24

Daily prednisolone dose (mg)* 4.6 (0.7) 4.1 (1.4) 0.74

ICS dose† 2000 (1600–2000) 2000 (1000–2000) 0.87

Pre-BD FEV1* 2.2 (0.1) 2.3 (0.2) 0.57

Post-BD FEV1* 2.3 (0.1) 2.5 (0.2) 0.55

Pre-BD FEV1% predicted* 72.5 (2.9) 75.6 (4.1) 0.57

Post-BD FEV1% predicted* 78.0 (2.9) 79.9 (4.2) 0.73

Pre-BD FEV1/FVC ratio* 68.4 (1.6) 71.4 (2.7) 0.33

Post-BD FEV1/FVC ratio* 70.6 (1.5) 73.7 (2.5) 0.30

Atopy present, n (%) 34 (51) 9 (36) 0.24

Asthma severity classification

GINA 3 02 01

GINA 4 34 16

GINA 5 31 08

Sputum neutrophils, %‡ 69.3 (60.8–74.3) 71 (58.3–91.8) 0.57

Sputum macrophages, %‡ 14.9 (11.3–21.5) 8.8 (3.8–28.5) 0.92

Sputum eosinophils, %‡ 3.9 (2.5–6.0) 2.3 (0.5–5.8) 0.76

Sputum lymphocytes, %‡ 0.67 (0.5–1.0) 0.71 (0.3–1.3) 0.96

Sputum epithelium, %‡ 1.5 (0.8–2.0) 0.9 (0.3–2.5) 0.44

Total IgE, IU/l* 523 (99) 202 (45) 0.06

Sputum CCL2 (pg/ml)* 129 (31) 47 (16) 0.008

BMI, kg/m2* 29.6 (0.7) 30.1 (1.4) 0.74

ACQ6 score* 2.3 (0.1) 2.2 (0.2) 0.80

BD, bronchodilator; ACQ6, Asthma Control Questionnaire; BMI, body mass index; GINA, global initiative for asthma; CCL2, chemokine (C-C

motif) ligand 2.

Data expressed as *mean � SEM; ‡median (interquartile range). †Doses of all inhaled corticosteroids were converted to the equivalent dose

of beclomethasone dipropionate and expressed here as median dose (interquartile range).
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and this correlates with the degree of airflow obstruction (11,

34). Our recent work extended these observations by identi-

fying distinct asthma phenotypes using CT-derived airway

indices of airway remodelling and air trapping (35). Our

finding here that increased sputum CCL2 levels are associ-

ated with bronchial wall thickening in asthmatics implicates

CCL2 in airway remodelling and is consistent with the view

that CCL2 might promote ASM hyperplasia and consequent

changes in airway geometry. Interestingly, in an earlier

study, we did not find an association between sputum CCL2

and airway wall geometry (18). However, in this study, we

only measured the apical segment of the right upper lobe in

fewer subjects than studied in the current study; therefore,

the differences we found here might be a consequence of the

inclusion of all visible airways or that the previous study was

underpowered. These observations underscore the need for

further studies to define the relationship between CCL2

expression in the bronchial mucosa, bronchial secretions and

airway remodelling.

One of the main limitations of this study is the cross-sec-

tional design. Future studies need to include longitudinal fol-

low-up as this would allow a better understanding of the

dynamic association between CCL2 release and the natural

history of airway remodelling. Another limitation is subjec-

tivity in the assessment of bronchial wall thickening due to

the use of qualitative methods to describe these changes.

However, the observations were made by a single observer

with excellent intrasubject variability and allowed the assess-

ment of all the visible airways. Unfortunately, not all the

CTs used in this study were captured using a standardized

algorithm required for quantitative assessment of the whole

airway tree (35); and therefore, this approach should be con-

sidered for future studies. In this study, we did not measure

CCL2 release from healthy and asthmatic ASM cells follow-

ing priming with pro-inflammatory cytokines, which would

otherwise play a key role in disease pathogenesis in vivo. It

has been previously reported that CCL2 expression is up-reg-

ulated by IL-1, TNF-a and endothelin-1 (36–38). It is there-

fore possible that we may have underestimated the

expression and significance of asthmatic ASM-derived CCL2

and its potential contribution to FC migration. Based on our

previous and current observations, ASM-derived PDGF (5)

and CCL2 significantly contribute to FC chemotaxis. Other

ASM-derived mediators are likely to play a minor role in FC

migration. Another criticism of this study could be the lim-

ited effects of CCL2 neutralizing antibody in blocking the

effects of recombinant CCL2 on FC chemotaxis. A more

potent neutralizing antibody would provide a definitive

understanding of the proportionate role of CCL2 in promot-

ing in vitro FC migration. Despite these limitations, we

believe that our observations are robust and if at all, possibly

underestimate the role of CCL2 in driving FC migration.

In conclusion, these observations confirm previous findings

of increased CCL2 levels in asthma and suggest that ASM-

derived CCL2-mediated activation of CCR2 promotes FC

migration. Increased levels of sputum CCL2 are associated

with bronchial wall thickening. Targeting CCL2-mediated

FC trafficking to the airway may provide novel therapies to

modulate ASM hyperplasia and airway remodelling.
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