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ARTICLE INFO ABSTRACT
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Ocean and Land Colour Instrument (OLCI). The development and validation of in-water algorithms for the accurate
retrieval of biogeochemical parameters is thus of key importance if the potential of MERIS and OLCI data is to be
fully exploited for lake monitoring. This study presents the first extensive validation of algorithms for
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Iﬁé}ggm& chlorophyll-a (chl-a) retrieval by MERIS in the highly turbid and productive waters of Lake Balaton, Hungary. Six

Chlorophyll-a algorithms for chl-a retrieval from MERIS over optically complex Case 2 waters, including band-difference and

Inland waters neural network architectures, were compared using the MERIS archive for 2007-2012. The algorithms were

Validation locally-tuned and validated using in situ chl-a data (n = 289) spanning the five year processed image time series

Eke ‘?i;:am“ and from all four lake basins. In general, both band-difference algorithms tested (Fluorescence Line Height (FLH)
gorithm

and Maximum Chlorophyll Index (MCI)) performed well, whereas the neural network processors were generally
found to much less accurately retrieve in situ chl-a concentrations. The Level 1b FLH algorithm performed best
overall in terms of chl-a retrieval (R?> = 0.87; RMSE = 4.19 mg m~>; relative RMSE = 30.75%) and particularly
at chl-a concentrations of >10 mg m™> (R*> = 0.85; RMSE = 4.81 mg m™>; relative RMSE = 20.77%). However,
under mesotrophic conditions (i.e., chl-a < 10 mg m~3) FLH was outperformed by the locally-tuned FUB/WeW pro-
cessor (relative FLH RMSE < 10 mg m—3 = 57.57% versus relative FUB/WeW RMSE < 10 mg m > = 46.96%). An

ensemble selection of in-water algorithms is demonstrated to improve chl-a retrievals.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

The optical complexity inherent to lakes and other inland waters
poses many challenges to the accurate retrieval of biogeochemical
parameters using satellite remote sensing (IOCCG, 2000, 2006).
Many standard chlorophyll-a (chl-a) retrieval algorithms originally
developed for open ocean waters (optically dominated by phytoplankton
and their breakdown products) tend to fail when applied to more turbid
inland and coastal waters whose optically properties are strongly
influenced by non-covarying concentrations of non-algal particles
(NAP) and coloured dissolved organic matter (CDOM) (IOCCG, 2006;
Matthews, 2011). In addition, the continentality of the atmospheres
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overlying inland and coastal waters and the proximity of the adjacent
land surface means that standard approaches to atmospheric correction
over ocean waters are not always reliable. In view of these challenges,
there is a clear need to develop and validate atmospheric (Moore,
Aiken, & Lavender, 1999) and in-water (Doerffer & Schiller, 2007,
2008; Matthews, 2011; Odermatt, Gitelson, Brando, & Schaepman,
2012) algorithms specifically for use in highly turbid inland and coastal
waters.

The MEdium Resolution Imaging Spectrometer (MERIS) collected
data from aboard the European Space Agency's (ESA) Envisat satellite
from March 2002 until April 2012 and provided observations at spectral
(15 bands from 412.5 to 900 nm), radiometric (16-bit), spatial (300 m
at full resolution) and temporal (three day revisit cycle at the equator)
resolutions unprecedented by other satellite sensors which allows for
improved insights into the concentrations of optically active substances
in large lakes, and thereby into the dynamics of these lakes more generally
(Koponen et al., 2008; Matthews, Bernard, & Winter, 2010; Odermatt,
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Gitelson, Brando, & Schaepman, 2012). Although MERIS is no longer ac-
tive, a wealth of archive data remains yet to be fully exploited. Further-
more, the forthcoming Ocean and Land Colour Instrument (OLCI) to be
operated on the ESA Sentinel-3 satellites will provide continuity to and
to improve upon the data collected by MERIS (Aschbacher &
Milagro-Pérez, 2012; Donlon et al., 2012). The continued validation of
MERIS products for lakes will strongly inform algorithm development
for Sentinel-3 OLCI because of its MERIS heritage.

In recent years, a number of constituent retrieval algorithms for use
over coastal and lake waters have been developed. Some are intended
specifically for use with or are compatible with MERIS data, and are
automated and made available as part of the Basic ERS & ENVISAT
(A)ASTER MERIS (BEAM) toolbox (Fomferra and Brockmann, 2005).
These include artificial neural network approaches trained to varying
parameter concentration and optical property ranges (e.g., the Case 2
Regional (C2R) (Doerffer & Schiller, 2007), the FUB/WeW (Schroeder,
Schaale, & Fischer, 2007), the Eutrophic Lake (EUL) and Boreal Lake
(BL) (Doerffer & Schiller, 2008) processors), and the band ratio,
height-above-baseline Maximum Chlorophyll Index (MCI) and Fluores-
cence Line Height (FLH) algorithms (Gower, Doerffer, & Borstad, 1999,
Gower, King, Borstad, & Brown, 2005). Many of these same, or similar,
algorithms will be adaptable to the forthcoming OLCI sensor on
Sentinel-3. However, these algorithms have not been widely validated
across the continuum of optical water types found in lakes, particularly
in highly turbid phytoplankton- or sediment-dominated waters. Prior
to their operational use in research, monitoring and management
activities, rigorous validation analyses are required to understand the
associated performance and uncertainty, to then select the optimal
algorithm or combination of algorithms to apply to a given water body
in order to achieve the most robust retrieval of the parameter(s) of
interest. It has been widely demonstrated that an algorithm performing
well in one lake or type of lake may not prove transferable to another lake
or another type of lake and vice versa (Kallio et al., 2001; Matthews,
2011; Odermatt, Gitelson, Brando, & Schaepman, 2012), and site-
specific and regional validation is therefore very important.

Several of the algorithms listed above have been evaluated individu-
ally and in various combinations in terms of their retrieval performance
for a number of parameters and for diverse lake conditions. Binding,
Greenberg, Jerome, Bukata, and Letourneau (2010) applied the C2R,
FLH, and MCI algorithms, with and without the “smile effect” (caused
by slight variation in centre wavelength for a given band across the
MERIS field-of-view (Bourg, D'Alba, & Colagrande, 2008)) correction
and Improved Contrast between Ocean and Land (ICOL) processors
applied, to evaluate chl-a retrieval from MERIS imagery of Lake of
the Woods (Canada/USA) during an intense algal bloom, and also
compared these with the standard MERIS algal_2 product. A validation
of the C2R, EUL and BL processors' atmospheric correction, IOPs and
water quality constituents (chl-a, gelbstoff absorbance, and total
suspended matter) was carried out over several European and African
lakes by Koponen et al. (2008) and Ruiz-Verdd et al. (2008). Alikas and
Reinart (2008) evaluated chl-a retrieval from Lakes Peipus (Estonia/
Russia), Vattern and Vanern (Sweden) using the MERIS standard Case
1 (algal_1) and Case 2 (algal_2) chl-a products, in addition to related
total suspended matter and yellow substance retrievals. C2R and ICOL
were evaluated in application to perialpine lakes (Odermatt, Giardino,
& Heege, 2010) and to Lake Trasimeno (Italy; Giardino, Bresciani, Villa,
& Martinelli, 2010). Odermatt, Pomati, et al. (2012) report validation re-
sults of C2R, EUL and FUB WeW with ICOL applied for Greifensee
(Switzerland), including the consideration of in situ measurements at
various depths and locally-tuned coefficients relating neural network re-
trieved pigment absorption to chl-a concentration. Gege and Plattner
(2004) investigated the performance of MERIS standard L2 products
over Lake Constance (Germany), and Matthews et al. (2010) applied
C2R and EUL processors, in addition to a suite of empirical algorithms,
to Lake Zeekoevlei (South Africa). From such studies, a range of results
was found to arise, whereby a given algorithm or processor having

performed well in some instances and/or locations, failed in others due
to the specific local conditions and limitations of the various algorithms.
Lake Balaton (Hungary) itself encompasses a broad range of conditions,
and it is expected that some of the algorithms listed above would per-
form well in some instances and vice versa. Therefore, a validation of
algorithms intended for optically-complex waters and available
within the BEAM image processing toolbox was undertaken.

In this study, we present the first comprehensive algorithm validation
exercise over Lake Balaton. Six algorithms of differing architecture for
application to optically complex waters were assessed: the C2R, BL,
EUL, FUB/WeW, and MCI/FLH processors. The lake is well suited to
satellite validation activities because of its large size, complex optical
water types encompassing waters with high and varying concentrations
of chl-q, total suspended matter (TSM) and CDOM and the availability of
existing in situ data from long-term monitoring programmes. With few
exceptions (e.g., Alikas & Reinart, 2008; Giardino et al., 2010; Odermatt
etal., 2010), many previous validation studies have focused on a specific
event or a limited time period. Likewise, validation of Landsat chl-a
retrievals was previously carried out for Lake Balaton over a short
time period (Tyler, Svab, Preston, & Kovacs, 2006). In this study, we
used measurements of chl-a from the monitoring programmes
spanning all seasons for all years of study and covering the full
spatial extent of Balaton to investigate differences in MERIS algorithm
performance across space and time. The ultimate aim of this study is
to evaluate and compare the performance of these algorithms under
the range of optical conditions presented by Lake Balaton so as to
identify the most appropriate algorithm(s) for MERIS processing
and to inform future Sentinel-3 OLCI work.

2. Study site

Lake Balaton, in western Hungary (46°50 N, 17°40 E; Fig. 1), is the
largest lake in central Europe by surface area, covering 596 km?
(Herodek, Lackd, & Virag, 1988; Szabd et al., 2011). Its very shallow
depth means that Balaton is a unique system, as both a habitat and a
recreational resource, but also in terms of its optical properties. The
lake has a mean depth of 3.3 m (max. 10.4 m), and is polymictic in
that it does not undergo permanent or seasonal stratification. Its fine,
calcareous bottom sediment is easily resuspended causing its character-
istically turbid waters with high particulate inorganic matter concentra-
tions (Istvanovics et al., 2007). Secchi depth generally ranges between
0.2 and 1.8 m, depending largely on wind conditions and resulting
sediment resuspension, and is highly variable both spatially and
temporally (Gyorgy, Tatrai, & Specziar, 2012; Herodek et al., 1988).
Phytoplankton composition also exhibits distinct seasonal trends
with diatoms dominant during the spring bloom and cyanobacteria
dominant during the summer-fall bloom (Mézes et al., 2006). The
phytoplankton community also varies spatially within the lake.
Nitrogen-fixing bacteria tend to dominate in all basins during the
summer period, but the abundance of chlorophytes and dinophytes
increases significantly towards the more mesotrophic conditions
encountered in the eastern basin.

There is a gradient in total phytoplankton biomass along the main
NE-SW longitudinal axis of the lake, resulting from the fact that the
south-westernmost basin, Basin 1 (Keszthely), tends to be the most
nutrient enriched (eutrophic to hypertrophic) and the northeastern-
most basin, Basin 4 (Siofok), is least nutrient enriched (generally classified
as mesotrophic). The trophic status of the middle basins, Basin 2
(Szigliget) and Basin 3 (Szemes), falls somewhere in between (Mozes
et al., 2006; Présing et al., 2008). This gradient is related to nutrient
loading from the Zala River, which flows into the westernmost basin
and is the lake's main tributary. The lake has endured major problems
with eutrophication and algal blooms, especially in the 1970s and
1980s, but water quality has improved in recent years due to improved
management of nutrient inputs.
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Fig. 1. Locations of Lake Balaton in western Hungary (inset), and the regularly sampled points at the centres of each of its four main basins of the Balaton Limnological Institute (BLI) and the
Central Transdanubian (Regional) Inspectorate for Environmental Protection, Nature Conservation and Water Management (KdKVI), in situ data used in this study.

3. Methodology
3.1. MERIS chlorophyll-a algorithms

The C2R processor was developed to compliment the retrieval
algorithm designed for use with MERIS data over clear ocean waters,
as the latter would often fail in more optically complex conditions
(Doerffer & Schiller, 2007). A neural network (NN) inversion approach
was adopted to achieve the dual requirements of accuracy and efficiency
for operational processing as part of the MERIS ground segment,
consisting of coupled forward and backward neural networks. A separate
neural network module first performs atmospheric correction, using
geometric and reflectance data of L1b input imagery. Reflectance of
eight MERIS spectral bands, post-atmospheric correction, and three
angles are then used as input into the in-water algorithm and result in
the output of three inherent optical properties (IOPs) at MERIS band
2 (443 nm) (particle scattering (b_tsm), absorption coefficient of
phytoplankton pigments (a_pig) and absorption coefficient of gelbstoff
(a_gelb); Doerffer & Schiller, 2007). The derived IOPs are then converted
to constituent concentrations based on measured mass-specific [OP
(SIOP) coefficients. As IOPs are also provided as output, the user retains
the option of specifying their own SIOP set to suit their particular region
(Doerffer & Schiller, 2007).

IOP and in-water constituent concentration data from cruises in
optically complex coastal waters, mainly in the North Sea, as well
as in the North Atlantic, Baltic Sea and Mediterranean Sea, were
used to establish the bio-optical model, followed by HydroLight™
simulation of a large radiance reflectance dataset to train the coupled
inverse and forward NNs. Concentration ranges within which the
C2R processor has been trained are 0.016-43.18 mg m~> chl-g,
0.0086-51.6 g m~> TSM and 0.005-5 m~ ' gelbstoff (a_gelb (443))
(Doerffer & Schiller, 2007; Table 1). Both the EUL and the BL processors
replicate the atmospheric correction and coupled inverse/forward
neural network architecture of the C2R processor, making use of the
same MERIS spectral and angular inputs, but unlike C2R are trained
using bio-optical data from eutrophic Spanish and boreal Finnish lakes
(Doerffer & Schiller, 2008; Koponen et al., 2008). The training ranges
for chl-a were 0.5-50 mg m~> and 1-120 mg m—>, 0.1-20 g m > and

Table 1

Chl-a, TSM and CDOM training ranges of the neural network processors.
Processor chl-a (mg m™3) TSM (g m—3) CDOM (a440 m™1)
C2R 0.016-43.18 0.0086-51.6 0.005-5
EUL 1-120 0.42-50.9 0.1-3
BL 0.5-50 0.1-20 0.25-10
FUB/WeW 0.05-50 0.05-50 0.005-1

0.42-50.9 ¢ m~> for TSM, and 0.25-10 m~ ! and 0.1-3 m~! for CDOM
(acpom(442)) for the BL and EUL processors respectively (Doerffer &
Schiller, 2008; Table 1).

The FUB/WeW processor is also based on artificial neural network
architecture trained using radiative transfer simulations. Unlike
the C2R, EUL and BL algorithms, however, the FUB/WeW processor
uses MERIS TOA radiances as input into four separate NNs used to
simultaneously derive concentrations of gelbstoff/yellow substance
absorbance at 443 nm, chl-a, and TSM directly, as well as atmospherically
corrected water-leaving reflectance for MERIS bands 1-7 and 9, and
Aerosol Optical Thickness at four wavelengths (Schroeder et al., 2007).
Concentration ranges used in the NN training were 0.05-50 mg m™ >
chl-a, 0.05-50 g m~—3 TSM, and 0.005-1 m~! CDOM (acpom(443))
(Schroeder et al., 2007; Table 1).

The MCI/FLH processor makes use of the height of a peak related to
chl-a concentration above a baseline (Gower, Brown, & Borstad, 2004,
1999, 2005, Gower et al., 1999, 2005). Because red and near-infrared
wavelengths are used, the masking of pigment spectral features by
CDOM and TSM, most strong in the blue and green spectral regions, is
largely avoided (Gower et al., 1999). Both algorithms take the general
form presented in Eq. (1),

FLH/MCI = L2—k # [L1 + (L3—L1)((\2—\1)/(A\3—\1))] (1)

whereby L2 is the radiance or reflectance (depending on the use of L1b
or L2 input data) measured in the peak wavelength, N2, and L1 and L3
are the radiance or reflectance of the baseline wavelengths, N1 and A\3.
k is a constant with the default value in BEAM = 1.005, set differently
from one so as to reduce the effect of thin cloud (adapted from Gower
et al,, 1999; Brockmann Consult, Hamburg). However, whereas the MCI
uses the peak of MERIS band 9 (708 nm) above bands 8 (680.5 nm)
and 10 (753 nm), the FLH algorithm uses the peak of MERIS band 8
(680.5 nm; associated with solar-induced chl-a fluorescence) above
bands 7 (664 nm) and 9 (708 nm) (Gower et al., 2005). The exact
bands used in either algorithm are adjustable and can be defined by the
user. The most appropriate choice of peak wavelength has been found
to generally co-vary with chl-a concentration level (Matthews, Bernard,
& Robertson, 2012). Here, the original band settings are used. The
coefficients of the relationship between either FLH or MCI and chl-a
can then be determined empirically for the study region and applied
to retrieve chl-a concentrations from L1b or atmospherically corrected
L2 MERIS data (Gower et al.,, 1999, 2005; Matthews et al., 2012).

3.2. MERIS processing

All images within the archive of L1b MERIS 300 m full resolution, full
swath, georeferenced (FSG) data available for Lake Balaton from January
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2007 until April 2012 were processed using the PHenology And
Vegetation Earth Observation Service (PHAVEOS) developed through
the Value Adding Element of ESA's Earth Observation Market Develop-
ment programme (Lankester, Dash, Baret, & Hubbard, 2010). Although
originally intended to facilitate the extraction of terrestrial vegetation
biophysical parameters (Normalized Differential Vegetation Index,
fraction of Absorbed Photosynthetically Active Radiation, Leaf Area
Index, etc.) from large volumes of data, the main steps comprising
the PHAVEOS processing chain are equally applicable to the retrieval
of optically active water constituents when appropriate algorithms
are included in the processing chain.

MERIS image tiles containing Lake Balaton were extracted from
the archive via a vector-based region of interest mask in PHAVEOS.
The MERIS data were then geolocated using Accurate MERIS Ortho-
Rectified Geo-location Operational Software (AMORGOS (Bicheron
et al., 2008)) prior to further processing. The code for the C2R, EUL
and BL processors, including their atmospheric correction NN modules,
and the MCI/FLH processors was adapted for PHAVEOS and the
AMORGOS corrected L1b MERIS FSG imagery were provided as
inputs into the processing chain. The outputted IOPs and constituent
concentrations were then resampled to a 250 m grid (Fig. 2). The
FUB/WeW processor was implemented separately through Visat
BEAM v.4.10 (Brockmann Consult, Hamburg) but using the same
AMORGOS-corrected L1b MERIS FSG imagery inputted into PHAVEOS.

The mean of each retrieved parameter was extracted from a 3 x
3 pixel kernel (approximately 0.56 km? surface area) corresponding to
the geographic location of the in situ chl-a data. This included the
chl-a concentration and a_pig(443) (absorption by pigment at 443 nm)
from the C2R, EUL and BL processors, algal_2 (log; (chl-a concentration))
from the FUB/WeW processor, and MCI and FLH indices from the
MCI/FLH processor. In this study we restricted the matchups to the
same day as the MERIS overpass assuming that the chl-a concentration
would not change significantly in this time period. Samples were
typically acquired within three hours of image acquisition.

MERIS FRS 1P

AMORGOS
correction

SMILE
correction

A total of 1409 MERIS images acquired between January 2007 and
April 2012 with full or partial coverage of Lake Balaton were identified
by PHAVEOS. Of these, 68 coincided with matchup in situ data
measured on the same day as image acquisition. This resulted in a
total of 289 in situ matchups across the four basins, although the
final number of matchups for each processor differed due to flagging
(see reported n in Table 4). All Level 1 flagged matchups corresponding
with pixels identified as “invalid”, “coastline”, land (“land_ocean”),
“bright”, “suspect” or at risk of glint (“glint_risk”), as well as those
flagged by the given neural network at the Level 2 were excluded.
Level 2 C2R, EUL and BL processor flags excluded were land, cloud or
ice pixels (“land”, “cloud_ice”, determined by default expressions of
specific bands' reflectance greater or lesser than defined thresholds
or the reflectance of another band), atmospheric correction, top-of-
standard-atmosphere and top-of-atmospheric reflectance in band
13 out of the training range (“atc_oor”, “tosa_oor” and “toa_oor”),
large solar zenith angle (“solzen”), water leaving reflectance out of
scope (“wlr_oor”), concentration out of training range (“conc_oor”),
spectrum out of training range (“ootr”; set by default as chi square
greater than 4.0), wind speed greater than 12 m s~ ' (“whitecaps”)
and “invalid”. Level 2 FUB/WeW processor flags excluded were
“Level 1b_masked”, and input (in) or output (out) retrieval failure
of chlorophyll-a (chl), yellow substance (yel), total suspended matter
(tsm) and atmospheric correction (atm) (“chl_in”, “chl_out”, “yel_in",
“yel_out”, “tsm_in", “tsm_out”, “atm_in” and “atm_out”). Remaining
matchups were used in algorithm calibration and validation.

The matchup dataset was randomly divided, using 70% of the
matchups for algorithm calibration, followed by validation using
the remaining 30%. For calibration, the derived MCI/FLH indices and
a_pig(443) values from C2R, EUL and BL processors were related to the
measured concentration of chl-a via ordinary least squares regression.
The absorption of particulate matter at 440 nm (ap,(440)) was calculated
from the retrieved FUB/WeW algal_2 product, using the equation and
coefficients from Schroeder (2005) and Bricaud, Morel, Babin, Allali,

Atmospherlc C2R, EUL, BL
correction
Constituent -{ mMcl |- c2rR }-{ EUL |- BL

retrieval

Resample to
map grid

Fig. 2. The PHAVEOS image processing chain employed, including geometric correction, optional atmospheric correction, constituent retrieval using the selected algorithms, and resampling

to the 250 m map grid.
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(KdKVI) and BLI surface and water column integrated samples (b).

and Claustre (1998) (Table 3), and ordinary least squares regression
between ap(440) and in situ chl-a concentrations was then used to
locally tune the algorithm as for the other processors. For all algorithms,
linear, exponential and power relationships were tested and the rela-
tionship producing the highest resulting coefficient of determination
(R?) was selected. The validation of all the algorithms was evaluated
in terms of R?, absolute and relative root mean standard error (RMSE),
and bias, calculated via comparison of retrieved chl-a against the in
situ chl-a concentrations. Algorithm performance was assessed for all
basins combined, as well as per lake basin, and the potential to optimise
chl-a concentration retrievals through the application of different
algorithms under different conditions (e.g., per basin) was explored.

3.3. In situ validation data

In situ data for MERIS validation was obtained from two routine
monitoring programmes on Lake Balaton by the Balaton Limnological In-
stitute (BLI) of the Hungarian Academy of Sciences Centre for Ecological
Research and the Central Transdanubian (Regional) Inspectorate for
Environmental Protection, Nature Conservation and Water Management
(K6zép-dunantali Koérnyezetvédelmi, Természetvedelmiés Viziigyi
Feliigyeloség (KdKVI)). KdKVI samples are collected at four locations,
at the centre of each of the four main basins of the lake. BLI samples
are collected from five locations across the lake, also at the centres of
each of the main basins as well as to the east of the Tihany Peninsula
(Fig. 1). A total of 692 chl-a measurements were available from the
period January 2007 to April 2012, coinciding with the period for
which MERIS image data used in this study were also available. Chl-a
was determined by spectrophotometry following sample filtration
using Whatman GF/C filters (1.2 pm), extraction in hot methanol (in
the case of the BLI; Iwamura, Nagai, & Ishimura, 1970) or ethanol (in
the KdKVI laboratory) and clarification by centrifugation.

KdKVI samples are taken from the surface layer (top < 0.5 m),
whereas the BLI collects bulk samples integrated over the total water
column depth of the sampling location. An experiment carried out
biweekly over the full ice-free period of 2012 compared the concentra-
tions derived from coinciding surface and water column integrated
samples. Samples were collected and analysed by the BLI (n = 80
comparisons), and a non-parametric Mann-Whitney U-test applied,
given the non-normal distribution of the measured concentrations. BLI
and KdKVI samples taken from the centre of the same basin on the
same date and analysed in the laboratories of the two institutions
following their standard protocols were similarly compared (n = 7).
This was undertaken to reveal any systematic differences between the
two archive datasets and to determine whether both sets of archive
data would be suitable for use as satellite retrieval matchups.

In all cases - BLI water column integrated and BLI surface, BLI surface
and KdKVI surface, and BLI water column integrated and KdKVI surface -
coinciding samples were found to resemble closely (Fig. 3). The U-test
(Mann-Whitney rank sum test) applied to chl-a concentrations of
coinciding BLI surface and BLI water column integrated pairs of samples
confirmed that no significant difference exists between the medians of
the two groups (P = 0.501). Likewise, no significant difference was
found between the medians of the BLI surface samples and KdKVI
surface samples (P = 0.902), or BLI water column integrated samples
and KdKVI surface samples (P = 0.710). Any difference between the
datasets is therefore expected to be due to random variability and not
systematic effects of the different methods. This is likely a result of the
relatively well-mixed nature of Balaton, and the two datasets were
thus combined for use in all analyses.

4. Results
4.1. Chlorophyll-a retrieval performance

Descriptive statistics for the in situ matchup subset used here are
found in Table 2, for the full lake and per basin. The full range of in
situ chl-a concentrations from this study is 1.50-57.0 mg m~ 3, with
decreasing concentrations generally from west to east (basins 1 to 4),
as per the well-known trophic gradient of Lake Balaton, described in
Section 2. Matchups where in situ chl-a concentrations exceeded the
training range of a neural network-based algorithm were excluded
from calibration and validation of that particular algorithm.

C2R, EUL, and BL matchups were flagged similarly at the Level 2
(remaining n = 166, 168 and 130 respectively), mainly as a result
of invalid pixels and atmospheric correction and water leaving radiance
out of the training range (“atc_oor”, “wlr_oor”), with all additional
matchups flagged by BL, and not by C2R or EUL, associated with water
leaving radiance reflectance out of range (“wlr_oor”). The FUB/WeW
processor was found to exclude more matchups than any of the other
three neural network algorithms due to Level 2 flags being raised

Table 2

Descriptive statistics of the in situ matchup data used in this study (chl-a (mg m—3)).
Basin n* Min. Max. Mean Med. St. Dev.
Full lake 201 1.50 57.00 12.75 8.90 11.14
1 59 3.30 57.00 17.37 12.69 12.65
2 47 4.40 46.48 16.09 11.92 11.34
3 38 2.20 41.45 12.87 9.21 10.57
4 57 1.50 13.62 5.14 430 2.72

* Number of matchup points after removing those flagged at Level 1.
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(remaining n = 108), including all matchups where in situ chl-a
exceeded 30 mg m~3 (Fig. 4d, Fig. 5d). After Level 1 flagged matchups
were excluded, approximately 70% of the Level 2 flags raised by the
FUB/WeW processor were due to atmospheric correction failure
(“atm_in" and “atm_out”), with the others resulting from constituent
retrieval failure (various combinations of “chl”, “yel” and “tsm” “in”
and “out”). Because no Level 2 flags are raised by FLH or MCI, these
present a larger number of matchups than for the neural network
processors (n = 201 after L1 flags are removed).

Coefficients of determination (R?), equations and tuning coefficients
relating FLH and MCI indices and neural network a_pig(443) (C2R, EUL
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and BL) and ap,;(440) (FUB/WeW) to chl-a concentrations, retrieved
by regression against the unflagged in situ matchups using a
randomly selected 70% of the matchup data, can be found in Fig. 4
and Table 3. Power functions were found to produce the highest
correlation between neural network retrieved pigment absorption
and in situ chl-a concentrations in all cases (R? = 0.46 for C2R; R? =
0.42 for EUL; R? = 0.48 for BL; and R? = 0.36 for FUB WeW), and linear
relationships optimised the chl-a retrieval of both MCI and FLH
algorithms (R? = 0.62 and 0.78 respectively). The neural network
processors' default equations and coefficients are also presented in
Table 3 for comparison.
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Fig. 4. Calibration of the selected algorithms (C2R (a), EUL (b), BL (c), FUB/WeW (d), FLH (e), and MCI (f)) through regression between a_pig(443) (C2R, EUL, BL processors), a,(440)
(FUB/WeW processor), MCI/FLH indices and matchup in situ chl-a concentrations. 70% of the matchup datasets was used for the calibration step.
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Fig. 5. Chl-a retrieval performance of the six selected and locally calibrated algorithms (C2R (a), EUL (b), BL (c), FUB/WeW (d), FLH (e), and MCI (f)) relative to matchup in situ data. Performance
statistics reported in the insets are for all basins combined. Individual basin matchups are indicated by colour-coding and further per basin matchup statistics are reported in Table 4. 30% of the
full matchup datasets was used for this validation step.

The remaining 30% of the matchup dataset was used to compare

validation results of all six locally tuned algorithms. Validation retrieval
performance of each is presented in Fig. 5, with additional performance

indicators found in Table 4. The FLH algorithm was found to perform
best in terms of R? (0.87) and RMSE (4.19 mg m~3; 30.75%) for the
full lake (Table 4; Fig. 5e), although relative RMSE ranges from 23.25
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Local tuning of algorithms using 70% of the in situ Lake Balaton chl-a data and a_pig(443), a,(440) or MCI/FLH indices.

165

Processor n? R? Locally tuned equation Original equation

C2R 116 0.46 Chl-a = 33.42 » a_pig(443)%! Chl-a = 21 = a_pig(443)'04
EUL 118 0.42 Chl-a = 61.84 « a_pig(443)"! Chl-a = 31.45 « a_pig(443)°
BL 91 0.48 Chl-a = 35.06 « a_pig (443)%%° Chl-a = 62.61 « a_pig(443)12%¢
FUB/WeW 76 0.36 Chl-a = 20.41 = a,(440)*>8 Chl-a = 105.21 « a(440)"*8¢
L1b FLH 141 0.78 Chl-a = —8.08 « FLH + 10.33 n.a.

L1b MCI 141 0.62 Chl-a = 3.91 « MCI + 11.31 n.a.

¢ 70% of number of matchup points after removing those flagged by the processor.
b Doerffer and Schiller (2007).

¢ Doerffer and Schiller (2008).

4 Schroeder (2005), Bricaud et al. (1998).

to 68.86% when considered per basin. In general, an underestimation of
in situ chl-a concentrations is observed for all neural network proces-
sors and MCI above approximately 10 mg m~> (Fig. 5). MCI relative
RMSE for the full lake is 48.63%, ranging from 40.73 to 49.18% for each
individual basin. Relative RMSE of the neural networks is more variable;
65.98% for the full lake and ranging from 54.11 to 66.23% in the case of
C2R, 68.31% for the full lake and ranging from 30.20 to 82.12% for EUL,
60.61% and ranging from 39.78 to 61.47% for BL, and 45.43%, ranging
from 32.17 to 46.63% for FUB/WeW.

The mapped products from the six locally-tuned processors are com-
pared in Fig. 6, during a bloom event in the westernmost basins which
took place in early August 2010. At the time of the image acquisition
presented here, same day in situ chl-a concentrations were measured
as 38.5 and 7.0 mg m~ > in basins 1 and 4 respectively. Here, FLH is
found to quite accurately retrieve chl-a concentrations during the
bloom event, and reveals bloom extent and detail of spatial features,
although low concentrations in basin 4 are overestimated by the algo-
rithm. All the other algorithms do capture a SW-NE trending trophic
gradient, however bloom concentrations are not accurately retrieved
by any. These are slightly underestimated in MCI mapping, and greatly

underestimated in that of FUB/WeW, with C2R, EUL and BL processor
mapping falling between. Over the full five years analysed in this
study, FLH is found to consistently and accurately capture bloom events
as well as timing of onset and decline (Fig. 7).

Evaluating the algorithms in terms of performance for each of the
four main lake basins independently (Table 4), it can be observed that
although FLH is the best performing overall and for the three western-
most basins (relative RMSE < 30%) (basins 1-3; Fig. 1), its performance
is relatively poor in Basin 4 (relative RMSE > 68%). Considering Fig. 5, it
is clear that most FLH retrievals from Basin 4 are characterised by chl-a
concentrations less than approximately 10 mg m~>, Although fewer in
number, Basin 1-3 chl-a retrievals less than approximately 10 mg m >
in concentration (i.e., from non-bloom periods) are also poorly
retrieved by FLH (Fig. 5e). Considering only retrievals of >10 mg m >
from all basins, overall FLH performance improves by almost 10%
(relative RMSE 20.77% compared with 30.75% including the full concen-
tration range of matchups, and relative RMSE of retrievals for concen-
trations <10 mg m~> = 57.57%) (Table 5). An ensemble approach
was then applied, whereby chl-a concentrations retrieved by the
FLH algorithm as chl-a concentration of <10 mg m~—> were then

Table 4
Chl-a retrieval performance parameters of each selected algorithm for the full lake and each Lake Balaton basin separately. R? > 0.7 and relative RMSE < 40% are highlighted in bold.
Basin Processor n? Slope Intercept R? Bias RMSE Rel. RMSE
(mg m~?) (mg m™?) (%)

Full lake C2R 50 0.38 7.02 0.43 —0.10 7.53 65.98
EUL 50 0.50 6.49 0.33 1.46 6.85 68.31
BL 39 0.39 7.02 0.48 —222 9.25 60.61
FUB/WeW 32 0.43 4.09 0.65 —0.76 3.83 45.43
L1b FLH 60 0.85 1.52 0.87 —0.49 4.19 30.75
L1b MCI 60 0.65 3.83 0.69 —0.91 6.62 48.63

1 C2R 13 0.22 13.80 0.21 1.71 10.21 66.23
EUL 12 0.20 13.92 0.01 5.01 9.09 82.12
BL 12 0.22 14.94 0.18 —1.60 11.79 55.62
FUB/WeW 6 0.08 9.39 0.16 —0.17 4.86 46.63
L1b FLH 16 0.93 —1.51 0.92 —2091 477 23.25
L1b MCI 16 0.48 6.79 0.58 —3.80 9.69 4718

2 C2R 12 0.24 8.75 0.40 —2.11 8.39 58.67
EUL 15 0.25 10.86 0.27 —0.53 8.89 58.32
BL 8 0.21 10.15 0.59 —6.70 11.96 56.36
FUB/WeW 6 0.26 6.29 0.56 —347 5.66 42.75
L1b FLH 14 1.19 —2.48 0.91 0.05 3.64 26.58
L1b MCI 14 1.06 1.67 0.77 2.54 5.65 41.29

3 C2R 8 0.31 6.97 0.53 —3.05 7.88 54.11
EUL 8 0.93 0.72 0.72 0.09 2.90 30.20
BL 8 0.37 7.20 0.56 —2.81 5.91 39.78
FUB/WeW 8 0.47 3.53 0.74 —1.02 3.63 42.61
L1b FLH 12 0.79 141 0.91 —2.10 4.65 27.76
L1b MCI 12 0.68 1.31 0.86 —4.06 6.82 40.73

4 C2R 17 0.23 5.04 0.23 1.32 2.81 58.53
EUL 15 0.22 4.61 0.04 133 2.58 61.62
BL 11 0.09 5.09 0.02 0.80 2.90 61.47
FUB/WeW 12 0.63 2.34 0.81 0.48 1.61 32.17
L1b FLH 18 0.48 5.08 0.11 2.30 3.67 68.86
L1b MCI 18 0.62 3.11 0.23 1.08 2.62 49.18

2 30% of number of matchup points after removing those flagged by the processor.
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Fig. 6. Chl-a concentration mapping by the different processors (C2R (a), EUL (b), BL (c), FUB/WeW (d), FLH (e), and MCI (f)) during a bloom event in August 2010.

processed instead by the FUB/WeW processor. Relative RMSE of FUB/
WeW retrievals of <10 mg m~> = 46.96%, an improvement of almost
11% over FLH at low concentrations, although the number of matchups
decreases from n = 34 to n = 22 due to the more extensive flagging of
the FUB/WeW processor. The two datasets (FLH > 10 mg m~ 3, FUB/
WeW < 10 mg m~>) were then combined, resulting in a 4.3%
improvement to the overall retrieval performance above the application
of the FLH algorithm alone, as measured by the relative RMSE
(Table 5).

5. Discussion
The overall inaccuracy of chl-a concentration retrievals by the neural

network algorithms used in this study is apparent in the mapped
products (Fig. 6), initial algorithm calibration (Fig. 4; Table 3) and

matchup validation statistics alike (Fig. 5; Table 4), highlighting
that the application of these algorithms to monitoring Lake Balaton
phytoplankton blooms would not be appropriate. Results are consistent
with validation results for the EUL processor chl-a retrievals over a similar
concentration range in Spanish lakes, whereby concentrations were
greatly underestimated above approximately 10 mg m~—3 (Koponen
et al., 2008). Validation of the C2R processor in the Canadian/American
Lake of the Woods revealed a similarly limited range of retrieved chl-a
concentrations, 10-15 mg m™> over much of the lake surface compared
to the 2-70 mg m~> range of in situ sampled concentrations (Binding
et al., 2010). However, whereas Binding et al. (2010) and others
(Odermatt et al.,, 2010; Ruiz-Verdd et al., 2008) report an overestimation
of chl-a for concentrations of <20 mg m ™2, no systematic overestimation
is found at any concentration level for either the C2R or EUL processors in
the current work (Fig. 5a, b), and only 1-2 outlying points are found to
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Fig. 7. January, 2007 to December, 2011 time series comparing FLH chl-a retrievals and in situ chl-a measurements from Basin 1 (Fig. 1).

significantly overestimate chl-a at concentrations less than approximately
15mgm >,

Both band-difference algorithms (FLH, MCI), and especially FLH,
were found to generally outperform all neural network type processors
investigated here. Although the specific relationship between the FLH
or MCI values and chl-a concentration found here performs well for
Lake Balaton, this is not directly transferable to other lake systems, rath-
er local tuning would again be required. For example, application of the
L1 MCI slope and intercept coefficients found by Binding et al. (2010)
(6.166 and 6.347 respectively; Table 6) results in the underestimation
of chl-a concentrations of the current study (bias = —5.06 mg m >, rel-
ative RMSE = 70.28%, compared with bias = —0.91 mg m™3, relative
RMSE = 48.63% achieved through local tuning (Table 4)). Similarly,
local tuning applied to the selected NN processors here would not be
expected to be transferable to other sites. The relationships obtained
between chl-a concentrations retrieved by some of the investigated al-
gorithms (using default SIOPs in the cases of neural networks) and in
situ chl-a concentrations reported for other sites, elsewhere in the liter-
ature and over similar chl-a concentration ranges as Balaton are re-
ported in Table 6, and are compared with relationships obtained for
Balaton between in situ concentrations and the processors' default
chl-a products (prior to local tuning using a_pig(443) so as to be
comparable with the other studies). Although chl-a retrievals from
the C2R, EUL, BL and FUB/WeW processors were partially locally tuned
in the current work through modification of SIOP coefficients used to
convert a_pig(443) or ap,(440) retrieved by the algorithm to chl-a con-
centrations, overall performance remains relatively poor. This suggests
that the retrieval of a_pig(443) and ap,(440) over Lake Balaton by the
neural networks was itself not accurate and that the band difference al-
gorithms are more reliable in this case.

An important difference between the two algorithm types investi-
gated here - band-difference and neural network-based - is that,
whereas the FLH and MCI algorithms use top-of-atmosphere radiance
data without atmospheric correction for chl-a retrieval, the neural
network processors all perform an atmospheric correction, whether in
a separate module prior to deriving constituent concentrations or
concurrent with constituent retrieval. In the case of the neural network
type processors, the relative contributions of potentially unreliable
atmospheric correction and IOP or constituent retrieval itself to
the poor overall performance are not known, but can each play an

important role. For example, in validating the EUL processor over largely
eutrophic Spanish lakes, Koponen et al. (2008) report a significant
improvement to chl-a retrievals when in situ measured reflectance is
input directly into the constituent retrieval module of the processor,
bypassing the atmospheric correction module. Although an underesti-
mation of chl-a at high concentrations remained, it was much less
pronounced.

The strong, negative relationship found here between the FLH
algorithm and the in situ chl-a dataset for Lake Balaton (Fig. 4) suggests
that rather than fluorescence underpinning the physical basis of the
algorithm in this instance, that chl-a absorption and/or phytoplank-
ton backscattering are dominant, as has been reported elsewhere for
meso-, eu- and hypertrophic waters (Binding et al., 2010; Matthews
et al., 2012). The algorithm is nonetheless found to robustly retrieve
chl-a concentrations (Fig. 5e; Table 4). This negative relationship may
also indicate cyanobacteria dominance, as suggested by Binding et al.
(2010) as well as Wynne et al. (2008) and Matthews et al. (2012),
although information on phytoplankton species composition is lacking
in the current investigation. This is due to the majority of cyanobacteria
chl-a being contained within the non-fluorescing Photosystem I, and
therefore not contributing to the fluorescence signal (Johnsen &
Sakshaug, 1996; Matthews et al., 2012; Mimuro & Fujita, 1977).

The chl-a retrieval performance of the FLH algorithm generally
improves with higher chl-a concentration, over the ranges investigated

Table 5
Improvement to chl-a concentration retrievals of <10 mg m~> and overall using an en-
semble FLH-FUB/WeW processor approach over retrievals using FLH alone.

Processor n R? Bias RMSE Rel. RMSE
(mgm~2) (mgm) (%)

<10 mgm—3

FLH 34 011 -0.19 3.64 57.57

FUB/WeW 22 026 0.85 297 46.96

Improvement —12 015 —0.66 0.67 10.61

Full data range

FLH 60 087 —049 4.19 30.75

FLH-FUB/WeW ensemble 48 090 —0.09 4,07 26.47

Improvement —12 0.03 0.40 0.12 4.28
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Table 6

Comparison of relationships between in situ measured chl-a and MCI or neural network derived chl-a reported in the literature over similar concentration ranges as Lake Balaton, and

those for Lake Balaton.

Study Model Chl-a range R? Current model® Current R?
(mgm~?)
Alikas and Reinart (2008) 0.86 * C2R chl-a ~0-35 0.52 1.63 « C2R chl-a + 1.09 0.46
Binding et al. (2010) 6.17 « L1b MCI + 6.35 1.9-70.5 0.77 3.91 « L1b MCI + 11.31 0.62
Binding et al. (2010) 0.66 * C2R chl-a + 7.13 0.16 1.63 « C2R chl-a + 1.09 0.46
Binding et al. (2010) —0.13 « EUL chl-a + 17.68 0.19 2.01 « EUL chl-a — 0.57 0.42
Binding et al. (2010) 0.44 « BL chl-a + 7.57 0.21 0.65 * BLchl-a + 3.25 0.46
Koponen et al. (2008)? 2.86 « EUL chl-a — 1.15 1.2-53.2 0.97 2.01 « EUL chl-a — 0.57 0.42
Koponen et al. (2008)" 0.62 * EUL chl-a + 3.13 4-19 0.92 2.01 « EUL chl-a — 0.57 0.42
Odermatt, Pomati, et al. (2012)¢ 7.87 « C2R chl-a — 2.92 ~5-40 0.40 1.63 + C2R chl-a + 1.09 0.46
Odermatt, Pomati, et al. (2012)¢ 12.20 * EUL chl-a — 3.17 ~5-40 041 2.01 « EUL chl-a — 0.57 042
Odermatt, Pomati, et al. (2012)¢ 1.27 + WeW chl-a + 4.70 ~5-40 0.39 0.30 + WeW chl-a + 4.63 0.32

2 Spanish lakes.
b Lake Victoria.

¢ Relationship between in situ chl-a and MERIS MCI or uncalibrated mean chl-a of neural network processors, using calibration dataset.

4 Obtained using 5 m depth averaged fluorescence profile in situ measurements.

here, with best performance in basin 1, decreasing towards basin 4.
Basin 4 is distinct from the other three basins in that it is considered
to be mesotrophic, instead of eutrophic (M6zes et al., 2006). This
finding is comparable to other studies where the use of red-NIR
band combination algorithms only retrieved valid chl-a concentrations
above a certain chl-a concentration threshold, typically between 8 and
20 mg m~> (Dominguez Gémez, Alonso Alonso, & Alonso Garcia,
2011).In contrast, the neural network type processors generally per-
formed better at lower chl-a concentrations (basin 4 vs. basins 1-3),
as measured by the relative RMSE of each (Table 4). The potential
overall improvement to be gained from applying the FUB/WeW
where relatively low, mesotrophic (<10 mg m~3) chl-a concentra-
tions have been identified by FLH, and FLH elsewhere is demonstrat-
ed in Table 5. Although overall improvement is limited (a 4.28%
reduction in relative RMSE was obtained through the ensemble ap-
proach as compared with applying only FLH), improvement to re-
trievals of <10 mg m~> was more substantial (a 10.61% reduction in
the relative RMSE). In considering high chl-a concentration bloom
events alone, the application of only FLH can be considered reliable for
the onset detection and monitoring of bloom events for lake manage-
ment. On the other hand, such a stepwise, ensemble FLH-FUB/WeW
processor approach could be considered to optimise chl-a concentration
retrievals, including at low concentrations.

An important point to note is that although attention was paid to
apply algorithms only within the range of chl-a concentrations used
in their training in the case of the neural network processors, and to
exclude flagged pixels which may also be beyond training ranges,
validation data are lacking regarding TSM concentrations, water
leaving spectra and IOPs. Should these be beyond the training ranges,
they would be expected to adversely impact the chl-a retrievals. This
is necessary to consider for the application of algorithms where in
situ data are less available than would be ideal. Knowledge and
consideration of conditions, if not validation of all constituents and
I0OPs, are recommended where possible. Although CDOM measure-
ments are not routinely available, concentrations typically range
from 0.3 m~ ! in the westernmost basin to 0.01 m™~ ! in the eastern-
most basin. TSM concentrations are highly variable in Lake Balaton
and typically ranged from 2 to 70 g m~ > over the five year period,
although concentrations between 90 and 115 ¢ m > were measured
on several occasions, exceeding the ranges of the neural network
algorithms. Such high and variable TSM concentrations may also
influence the specific FLH and MCI coefficients found for Lake
Balaton, as they would affect the baseline above or below which
the given index is calculated.

6. Conclusions

MERIS satellite data have been demonstrated here to be effective,
not only in detecting the occurrence of bloom events in Lake Balaton
through archive imagery, but also in accurately retrieving chl-a concen-
trations during both algal bloom events and non-bloom periods, across
all seasons over a five-year time series and across the spatial extent of
the lake. The results suggest the potential for valid time series analysis
using MERIS imagery. A locally-tuned FLH model was found to result
in the best chl-a retrievals from the six algorithms tested, although
the negative relationship between the derived FLH index and in situ
chl-a suggests a physical basis related to chl-a absorption and/or phyto-
plankton backscattering rather than fluorescence. The transferability of
this algorithm to forthcoming Sentinel-3 OLCI data and the improved
channel configuration of this sensor for atmospheric correction and
water constituent retrievals over turbid waters support the feasibility
of applying similar approaches in the future. This will be key to the gen-
eration of consistent satellite time series and to the development of op-
erational water quality products for lakes globally. The realisation of
operational products for lakes will substantially support the require-
ments of the ongoing basis towards meeting European Commission
Water Framework Directive for spatially cohesive water quality moni-
toring, including the concentration of phytoplankton biomass.

The variable performance of the algorithms tested underlines that
atmospheric and in-water models must be carefully selected and vali-
dated prior to reliable use for a given site or optical water type. Widely
variable results using the same processors have been found from lake to
lake, and caution must be taken when applying unvalidated algorithms.
Likewise, within-lake variability in optical properties may necessitate
the use of two or more different algorithms for optimal retrievals, as
has been demonstrated here for Lake Balaton.
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