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Hyperspectral sensors acquire images in many, very narrow, contiguous spectral bands 

throughout the visible, near-infrared (IR), mid-IR and thermal IR portions of the 

spectrum, thus requiring large data storage on board the satellite and high bandwidth of 

the downlink transmission channel to ground stations. Image compression techniques 

are required to compensate for the limitations in terms of on-board storage and 

communication link bandwidth. In most remote-sensing applications, preservation of 

the original information is important and urges studies on lossless compression 

techniques for on-board implementation. This article first reviews hyperspectral 

spaceborne missions and compression techniques for hyperspectral images used on 

board satellites. The rest of the article investigates the suitability of the integer 

Karhunen–Loève transform (KLT) for lossless inter-band compression in spaceborne 

hyperspectral imaging payloads. Clustering and tiling strategies are employed to reduce 

the computational complexity of the algorithm. The integer KLT performance is 

evaluated through a comprehensive numerical experimentation using four airborne and 

four spaceborne hyperspectral datasets. In addition, an implementation of the integer 

KLT algorithm is ported to an embedded platform including a digital signal processor 

(DSP). The DSP performance results are reported and compared with the desktop 

implementation. The effects of clustering and tiling techniques on the compression ratio 

and latency are assessed for both desktop and the DSP implementation. 

 

1. Introduction 

In hyperspectral remote sensing, the terms imaging spectroscopy, imaging spectrometry, 

and hyperspectral imaging are often used interchangeably. The common definition for 

those terms is ‘the simultaneous acquisition of spatially co-registered images, in many 

narrow, spectrally contiguous bands, measured in calibrated radiance units, from a remotely 

operated platform’ (Schaepman et al. 2009). Hyperspectral sensors acquire images 

throughout the visible, near-infrared (IR), mid-IR, and thermal IR bands of the 

electromagnetic spectrum (Lillesand et al. 2008). A hyperspectral image is represented by 

three components, as shown in Figure 1: the width x in pixels; the height y in pixels; and a 

third component, additional to the spatial components, referred to as the spectral 

component, λ. This is given in nanometres (nm). The terms wavelength or band number are 

also used in the literature to denote the spectral component. 

Hyperspectral images have been used for various applications that require a large 

number of spectral bands to be taken, such as vegetation analysis (Green et al. 2008), 

disaster monitoring (Zhang et al. 2011), military purposes (Peter and Gary 2006), etc. As 

the numberof spectra increases, the amount of data to be transmitted back to the Earth 

increasestoo–which requires data compression to be incorporated in the imaging payload. 

 

                                                                                                                                                    
*
Corresponding author. Email: tv29@le.ac.uk 

mailto:tv29@le.ac.uk?subject=Question%20About%20IJRS%20Article%20-%20Investigation%20into%20lossless%20hyperspectral%20image%20compression%20for%20satellite%20remote%20sensing


2 N.R.M. Noor and T. Vladimirova 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  Hyperspectral image representation. 

 

The number of bands that could be captured is used to differentiate between 

hyperspectral and multispectral imaging. The ‘classical definition’ of hyperspectral imaging 

is that the number of bands involved is more than 10, and any lower than that is referred to 

as multispectral imaging (Borengasser et al. 2008a; Schaepman et al. 2009). However, the 

number of spectral bands is also defined to be in the range of 100 bands in some literature 

sources(Navulur 2007; Lillesand et al. 2008). In addition to that, the contiguity among 

bands and its spectral resolution (bandwidth) are also becoming an important feature of 

hyperspectral imaging that is different from multispectral imaging (Shippert 2003; 

Schaepman 2007). Hyperspectral images are said to have a very high spectral resolution, 

providing a better diagnostic capability for object detection, classification, and 

discrimination than multispectral images (Qian et al. 2008). 

With the number of spectral bands growing fast, hyperspectral images result in a very 

large data volume, requiring increased data storage and a high-bandwidth downlink 

transmission channel, which increases spacecraft cost. For example, a single image 

captured by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) occupies 134 

MB of storage. Image compression has become an effective solution in reducing the image 

data volume, which is cheaper than using a larger on-board storage and higher speed 

downlink communication. Other efforts to overcome this problem, such as having multiple 

ground stations and using a cross-linked distributed satellite system, seem to be practical 

but also rather costly. 

This article first presents an analytical review of hyperspectral spaceborne missions and 

compression techniques used on board satellites. The remainder of the article investigates 

the suitability of the integer Karhunen–Loève transform (KLT) (Hao and Shi 2003) for 

lossless inter-band compression in hyperspectral imaging payloads. The results of a 

substantial modelling experiment are presented. Design space exploration is carried out to 

investigate the impact of tiling and clustering techniques on the performance of the integer 

KLT algorithm. In addition, an implementation of the algorithm is ported to an embedded 

digital signal processor (DSP) and performance results are reported. Two types of test data 

are used in the experiments – airborne (AVIRIS) (NASA-JPL 2010b, 2010a) and 

spaceborne (Hyperion) (USGS 2011) hyperspectral images. 

The article is structured as follows: Section 2 gives an introduction to hyperspectral 

image compression. Section 3 reviews hyperspectral spaceborne missions with a focus on 

on-board image compression and image processing. Section 4 is an overview of the integer 

KLT algorithm and the clustering and tiling techniques. Design space exploration of the 

integer KLT algorithm is discussed in Section 5. Section 6 presents experimental results 

based on prototyping the algorithm on an embedded DSP platform. Finally, conclusions are 

given in Section 7. 
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2. Hyperspectral image compression: an introduction 

Compression of hyperspectral imagery adds a third dimension to compressing two-

dimensional (2D) digital images (Figure 1). The availability of a large number of 

spectralbands introduces spectral (inter-band) redundancy in addition to the spatial (intra-

band)redundancy present in 2D digital images. Spectral redundancy is due to the correlation 

(ordependence) present between different spectral bands, whereas spatial redundancy is due 

tothe correlation between neighbouring pixels in a spectral band (Rabbani and Jones 1991). 

When compressing hyperspectral images, both types of redundancy need to be removed 

inorder to achieve a good compression performance via a lossless or lossy process.  

In most of the cases, spectral decorrelation is performed first, followed by 

spatialdecorrelation used in 2D image compression as depicted in Figure 2. 

Spectraldecorrelation aims to reduce the spectral redundancy that exists between bands, 

whereas spatial decorrelation aims to reduce the spatial redundancy within a band. This 

schemehas been used widely in remote sensing (Qian and Fowler 2007; Blanes and Serra-

Sagristà 2009; Yu et al. 2009; Mat Noor et al. 2010), as well as in medical applications 

(Yodchanan et al. 2006a; Yodchanan et al. 2006b; Yodchanan 2008)for three-dimensional 

(3D) medicaldata. 

Both spectral and spatial decorrelation can be performed by either a lossless or a 

lossytransform, as shown in Figure 2. To achieve an overall lossless compression process, 

both the spectral and the spatial decorrelation stages should utilize lossless transformations. 

On the other hand, an overall lossy compression process can utilize not only lossy spectral 

and lossy spatial decorrelation modules (Zhang et al. 2009), but can also have one of the 

stages executed as lossless, e.g. using a lossless spectral decorrelation module and a lossy 

spatial decorrelation module(Baizert et al. 2001; Zhou et al. 2006). 

 

 

 

 

 

 

 

 

Figure 2.  Data flow for hyperspectral image compression. 

Different methods have been proposed for hyperspectral data compression (Pickering 

and Ryan 2006), such as (1) predictive coding, e.g. differential pulse code modulation 

(DPCM) (Mielikainen and Toivanen 2003), Consultative Committee for Space Data 

Systems (CCSDS) lossless multispectral and hyperspectral image compression standard 

(Hopson et al. 2012); (2) vector quantization (VQ) (Ying and Pearlman 2007); and (3) 

transform coding, e.g. KLT (Penna et al. 2006), discrete cosine transform (DCT) (Khayam 

2003), and wavelet transforms (Christophe et al. 2008). VQ methods can be seen as coding 

of the hyperspectral image in a cube form, where spatial and spectral decorrelations are 

processed in one single stage. Predictive and transform coding methods have been used to 

tackle both spectral and spatial decorrelation. 

The early hyperspectral image compression studies were based on DPCM(Pickering and 

Ryan 2006). This predictive coding technique predicts a current pixel value using the 
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neighbouring pixels and makes use of the difference between the real and predicted values 

(Roger and Cavenor 1996; Aiazzi et al. 1999). DPCM can be employed for spatial, spectral, 

and spectral–spatial decorrelation. Spatial predictive methods have been upgraded to 

perform inter-band compression via increasing the size of the neighbourhood from 2D to 

3D. However, according to Wang and Sayood (2006), the direct extension from 2D to 3D 

may not always provide tangible benefits, and sometimes can prove to be detrimental. 

Therefore, it is necessary to develop predictors that are specialized for 3D hyperspectral 

images. 

Vector quantization is a form of pattern recognition where an input pattern (i.e. the 

hyperspectral image) is ‘approximated’ by a predetermined set of standard patterns (Gersho 

and Gray 1992). The set of standard patterns is also known as a codebook. The difference 

between the original and approximated data and the codebook address are the compressed 

data that are needed for decompression (Pickering and Ryan 2006). Examples that use VQ 

for hyperspectral image compression are given by Ryan and Arnold (1997a) and Ryan and 

Arnold (1997b). VQ differs from the compression scheme, illustrated in Figure 2, since it 

encodes the data in one stage, covering both the spatial and the spectral domains. However, 

in the study by Pickering and Ryan (2000), DCT was applied in the spectral domain in 

order to compress the residual data produced by the mean-normalized VQ algorithm in the 

spatial domain, which may be seen as compliant with Figure 2. 

In transform coding, the original hyperspectral data are multiplied by a set of basis 

vectors to produce a set of product values (Pickering and Ryan 2006). The basis vectors 

differ depending on the particular transform used, e.g. discrete wavelet transform 

(DWT),DCT, and KLT (also known as principal component analysis, PCA). Transform 

coding suchas DWT and DCT can be used for either spectral or spatial decorrelation in 

hyperspectral compression (Baizert et al. 2001; Lee et al. 2002; Qian and Fowler 2007; 

Zhang et al. 2009). KLT, on the other hand, has been used for spectral decorrelation due to 

its intrinsic energy-compacting capability that is based on statistical method (Saghri et al. 

1995; Blanes and Serra-Sagristà 2009), e.g. KLT for spectral and DCT for spatial 

decorrelation in Saghri et al. (1995), DWT for spectral and spatial decorrelation in Liu and 

Zhao (2008) and integerKLT for spectral and DWT for spatial decorrelation as in Blanes 

and Serra-Sagristà (2009). 

Examples of coding standards that have been used widely in hyperspectral image 

compression are the Joint Photographic Experts Group (JPEG) and JPEG2000. JPEG 

hasseveral modes, e.g. a baseline mode, which is lossy and based on DCT and a 

losslessmode, which uses a predictive algorithm. JPEG2000 (Part I) is based on DWTusing 

the LeGall 5/3 filter for lossless compression and the Cohen–Daubechies–Feauveau(CDF) 

9/7 filter for lossy compression (Santa-Cruz et al. 2000). In most applications of 

hyperspectral compression, these standards have been used for spatial decorrelation(Hunt 

and Rodriguez 2004; Penna et al. 2005; Mat Noor et al. 2010; Qian and Fowler 2007). 

 CCSDS has recently published a new recommended standard for lossless multispectral 

and hyperspectral image compression for space applications (CCSDS 2012b). It is based on 

a predictive coding method that depends on the values of nearby samples in the current 

spectral band (where the reference pixel 𝑆𝑧,𝑦,𝑥is located) and P preceding spectral bands, 

where P a user-specified parameter. In each spectral band, a local sum of to produce the 

predictor output. Finally, the predictor output is coded using an entropy coder that is 

adaptively adjusted to adapt changes in the statistics of the mapped prediction residuals as 

defined in CCSDS (2012a). The algorithm provides spatial–spectral decorrelation in one 

stage. 

In this article, we investigate lossless hyperspectral image compression using the 

integerKLT transform as a spectral decorrelator. Further background material on 
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hyperspectraldata analysis and compression for remote sensing can be found in Richards 

(1993), Mather (2004), Borengasser et al. (2008a) and Lillesand et al. (2008). 

 

3. Review of hyperspectral spaceborne missions  

This section reviews all past, present, and planned future hyperspectral missions that were 

known at the time of writing this article. Hyperspectral missions were reviewed in several 

previous studies including airborne platforms (Buckingham et al. 2002; Shippert 2003; 

Buckingham and Staenz 2008; Guelman and Ortenberg 2009), the history of remote 

sensing, and instruments and data analysis (Schaepman 2007; Schaepman et al. 2009). To 

the best of the authors’ knowledge, none of the existing literature sources discusses image 

compression techniques from such missions. 

The main characteristics of the missions, ordered chronologically by launch date, are 

summarized in Table 1, which includes details about compression algorithms and payload 

data processing that were lacking in previous reviews. The first column of Table 1 specifies 

the satellite mission along with the hyperspectral instrument (in square brackets), its sensor 

type (e.g. filter, grating, prism, etc., in parentheses) and the respective literature sources. 

The next column covers the launch date and current status of the mission. Brief mission 

objectives and the scanning type (i.e. pushbroom (PB) or whiskbroom (WB)) are the 

content of the third and fourth columns, respectively. The total mass, payload mass and the 

category of the satellite according to Table 2 (Barnhart et al. 2009) are covered in the fifth 

column. Information related to payload data processing, such as the compression algorithm, 

processor and on-board memory, is given in the seventh to ninth columns. The payload 

imager specifications in terms of radiometric resolution, spectral range, spectral resolution, 

number of bands, and ground sampling distance (GSD) are covered in the 10
th

 to 14
th
 

columns. Explanation of spectral resolution terms, such as spectral sampling or full width at 

half-maximum (FWHM) of an input is given in Borengasser et al. (2008b) and ITT (2010). 

The downlink speed for transmission of the payload data to the ground station is in the last 

column of the table. Unavailable information is denoted by NA in the table. Items requiring 

clarification are labelled with superscript upper case letters and are explained briefly at the 

bottom of the table. Detailed description of the hyperspectral image compression and 

processing available on board is provided in the rest of the section. 

3.1 Hyperspectral missions in the 1990s 

The Midcourse Space Experiment (MSX) mission, which was a military mission, flew the 

first hyperspectral imagers in space in 1996. It carried nine hyperspectral sensors, called 

Ultraviolet and Visible Imagers and Spectrographic Imager (UVISI). The data 

controlsystem (DCS) could compress the 12 bits/pixel to 8 bits/pixel images using an 

imageprocessor (ADSP 2100 from Analog Devices Inc., Norwood, MA, USA) and a 

military standard processor (MIL-STD-1750A). Two tape recorders each of size 54 Gb 

(gigabits) were employed to store the images. The data were dumped to ground at a rate of 

25 Mb s
-1

(Huebschman 1996). 

Although failing shortly after being launched, Lewis has been acknowledged and 

referred to as the first civilian hyperspectral mission by Willoughby et al. (1996) and 

Wander (2007). The mission was launched on 23 August 1997, lost contact on 26 August 

and was destroyed after the spacecraft re-entered the atmosphere on 28 September of 

thesame year (Anderson et al. 1998). Data collection from the HSI imager and storage into 

aSolid State Recorder (SSR) were intended to take no more than 15 min of the 90 min 

orbitalperiod. Images in the SSR could be compressed using the on-board computer 

(Willoughby et al. 1996). 
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Table 1. Hyperspectral image compression systems on board space missions. 

Satellite/mission 

[sensor]      

(spectrometer type) 

Launch date 

(Status) 
Mission objectives 

Scanning 

type 

Mass (kg) 

Category 
Compression 

algorithms 

Payload data 

processing 

On-

Board 

memory(

Gbit) 

Radiometric 

resolution 

(bits) 

Spectral 

range 

(nm) 

Spectral 

resolution 

(nm) 

No. of 

bands 

GSD 

(m) 

Downlink 

speed(Mbps

) Satellite Payload 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

MSX [UVISI](filter 

wheel)(Stott et al. 

1996; Heffernan et al. 

1996; Skullney et al. 

1996; Huebschman 

1996) 

24, April 

1996(Retired 

in July 2008) 

Military purposes WB 2812 217 Large NA ADSP 2100& 

MIL-STD-

1750A 

108 12 110-

900 

0.5-4.3 272 100 - 800 

(nadir at 

900km alt.) 

25 

Lewis 

[HSI](filter)(Willoug

hby et al. 1996; 

Wander 2007; 

Marshall 1995) 

23, August 

1997(Failure 

after launched) 

Earth observation 

& remote 

sensing  

PB 385.6 NA Mini NA NA 40 12-

VNIR 

& 

SWIR 

400-

2500 

5 384 30 0.4-

274 

Terra, Aqua 

[MODIS](filter)(Fraz

ier 2010; Parkinson 

2003; Xiong et al. 

2006; Przyborski 

2011) 

18, December 

1999(Terra) 4, 

May 2002 

(Aqua)(Both 

running) 

Land & ocean, 

snow & ice, 

temperature, 

clouds & land 

cover 

monitoring 

WB 5190 

(Terra),2

934 

(Aqua) 

229 Large NA 12-MHz MIL-

STD 1750A 

NA 12 410-

14500 

NA 36 250, 500, 

1000 

150 

(Ku-

band) 

ARIES-1 [ARIES-

1](NA)(Guelman and 

Ortenberg 2009; 

Merton and 

Huntington 1999)A 

Planned-

2000(Cancelle

d-March 2003) 

Vegetation 

research 

NA <500 NA Mini NA NA NA NA 400-1000 

2000-2500 

1000-2000 

19 (FWHM) 

15 (FWHM) 

15 & 30 

(FWHM) 

32 

32 

32 

30 NA 

NEMO 

[COIS](grating)(Wils

on and Baugh 1999; 

Vincent 1999; Fisher 

et al. 1998) 

Planned-mid-

2000(never 

flown) 

DoD applications, 

land & water 

monitoring 

PB 295 141B Mini ORASIS Parallel array of 

DSPs 

(2.5GFLOPS) 

48 NA 400-

2500 

10 210 30, 60 150 - 

norma

l 

mode 

(X-

band) 

1 - 

tactica

l 

mode 

(S-

band) 
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MightySat II.1 

[FTHSI](Fourier 

Transform)(Barducci 

et al. 2006; Freeman 

et al. 2000; 

Yarbrough et al. 

2002) 

19, July 2000 

(turned off in 

August 2002) 

Air Force 

missions 

PB 121 20 Mini NA DSP-Quad C40 

(TMS320C40×4

) 

3 8/12 470-

1050 

85cm-1 256 28 1 
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EO-1 [Hyperion] 

(grating) (eoPortal 

2010; Pearlman et al. 

2000; Pearlman et al. 

2003; 

US_Geological_Surv

ey 2011; Smith and 

Kessler 1999; 

Rabideau et al. 2006) 

21, November 

2000(Running) 

Land imaging 

instrumentation 

PB 572 49 Medium Rice coding RISC processor-

Mongoose 5 

(12MHz) 

48 12 400-2500 ≈10 

(FWHM) 

220 30 105 (X-

band) 

Orbview-4 [OHIS] (NA) 

(eoPortal 2010) 

21, September 

2001(Launch 

failure) 

Earth observation 

for military & 

civilian 

WB 368 NA Mini No 

compression 

NA 32 12 400-2500 NA 200 8 150 (X-

band) 

PROBA-1 [CHRIS] 

(prism) (Cutter and 

Sweeting 2007; 

Bermyn 2000) 

22, October 2001 

(Running) 

Multi-angle earth 

observation & 

aerosol 

properties of 

atmosphere 

PB 94 14 Micro NA ADSP21020 1.2 12 400-1050 1.25-11.3 18, 62, 37 18/34 0.2 – 1 (S-

band) 

EnviSat [MERIS] 

(grating) (eoPortal 

2010; Louet 2001; 

Bezy et al. 1999; 

Dubock et al. June 

2001; ESA 2012) 

1, March 

2002(Ended on 

8, April 2012) 

Land & atmosphere 

monitoring 

PB 8140 200 Large NA NA 150 12 390-1040 1.25 

(spectral 

sampling) 

15 300, 1200 50/100 

(X-band) 

Mars-Express [OMEGA] 

(grating) (ESA 2009; 

Melchiorri et al. 

2006; Bonello et al. 

2004; Bibring et al. 

2004) 

2, 

Jun2003(Runnin

g) 

Mars surface 

exploration 

Visible-

PB 

IR-WB 

1120 113B Large Wavelet 

based 

compression 

TSC21020 

Temic Processor 

12 NA VNIR: 350-

1050 

SWIR-C: 

930-2690 

SWIR-L: 

2520-5090 

7.5 

 

14 

 

23 

352 300 0.23 

Aura [OMI& TES] 

(grating& Fourier 

Transform) (eoPortal 

2010; Schoeberl et al. 

2006; Wilson 2007; 

Tyler and Varanasi 

2001) 

15, July 

2004(Running) 

Climate & ozone 

monitoring 

PB 2967 65 (OMI) 

385(TES) 

Large NA 20 MIPS RISC 

Processor (TES) 

100 

(OMI) 

NA 270-500 

(OMI) 

3200-15400 

(TES) 

0.42-0.63 

(FWHM) 

(OMI) 

0.025cm-1 

(TES) 

740 

(OMI) 

1300×2400 

(nadir)(OMI

) 

530×5300 

(nadir)(TES) 

155 (X-

band) 

Mars Reconnaissance 

Orbiter [CRISM] 

(grating) (Beisser 

2011; Viotti 2008) 

12, August 2005 

(Running) 

Mars exploration PB 2180 32.92 Large NA NA 160 NA VNIR: 362-

1053 

IR: 1002-

3920 

6.55 

(spectral 

sampling) 

545 20 6 

(Continued) 
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Table 1. (Continued). 

Satellite/mission 

[sensor]      

(spectrometer type) 

Launch date 

(Status) 
Mission objectives 

Scanning 

type 

Mass (kg) 

Category 
Compression 

algorithms 

Payload data 

processing 

On-

Board 

memory(

Gbit) 

Radiometric 

resolution 

(bits) 

Spectral 

range 

(nm) 

Spectral 

resolution 

(nm) 

No. of 

bands 

GSD 

(m) 

Downlink 

speed(Mb

ps) Satellite Payload 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

IMS-1/TWSat [HySI-

T](wedge 

filter)(eoPortal 2010; 

Thyagarajan and 

Raghava Murthy 

2009) 

28, April 

2008(Running) 

Medium resolution 

imagery 

PB 83 3.4 Micro JPEG2000 NA 16 10 400-950 8 

(spectral 

sampling) 

64 550 8 

(S-band) 

TacSat-3 

[ARTEMIS](grating)(

eoPortal 2010; Davis 

and Straight 2006; 

Troxel et al. 2008b; 

Writers 2012) 

19, 

May2009(Ende

d on 30, April 

2012) 

Military purposes PB 400 170 Mini NA Xilinx field-

programmable 

gate array 

(FPGA) 

128 10 400-2500 5 

(spectral 

sampling) 

NA NA 45/137/27

4 

HERO 

[HERO](grating)(Ber

geron et al. 2008; 

Bergeron et al. 2005)C 

NA(In plan) Vegetation, 

environment & 

health 

monitoring 

PB 500 NA Medium Near-lossless 

Vector 

Quantization 

(VQ) 

Xilinx FPGA 

(Real-Time) 

Virtex II (Non 

Real-Time) 

1000 12 400-2500 ~10 

(FWHM) 

210 30 150 

(X-band – 

2 

channels) 

PRISMA 

[PRISMA](prism)(eo

Portal 2010; Galeazzi 

et al. 2008; Paolo et 

al. 2010; Sacchetti et 

al. 2009)D 

2012(In plan) Natural resources 

& atmosphere 

monitoring 

PB <500 <90 Mini NA NA 256 12 VNIR: 

400-1010 

SWIR: 

920-2505 

≤12 ~240 30 155 

(X-band) 

TAIKI [HSC-

III](grating)(Aoyanag

i et al. 2010; 

Aoyanagi et al. 2011; 

eoPortal 2010)E 

2012(In plan) Agricultural 

monitoring 

PB 50 10 Micro NA 32-bit RISC 240 10 400-1000 10 138 15 10 

(Ku-band) 

EnMAP 

[HSI](prism)(Hofer et 

al. 2010; Stuffler et 

al. 2007)) 

2014(In plan) Agriculture, 

forestry 

monitoring 

PB 870 325 Medium NA NA 512 14 420-2450 5 VNIR 

10 SWIR 

(spectral 

sampling) 

228 30 320 
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HyspIRI 

[HyTES](grating)(Buc

kner 2008; Green et al. 

2008; eoPortal 2010; 

Johnson et al. 2009; 

Hook et al. 2010; Hook 

2011)F 

2015 (In plan) Land surface 

composition  

PB 100 NA Mini NA NA NA NA 7500-12000 17.6 

(spectral 

sampling) 

256 36.4 

(20000 m 

alt.) 

NA 

HYPXIM [NA](prism) 

(Michel et al. 2010) 

               

-Challenging (2 

satellite 

constellation) 

before 2018 (In 

plan) 

Vegetation, 

geoscience, 

atmosphere, 

security & 

defence 

PB <195 60 Mini Adaptive 

compression 

NA NA NA 400-2500 10 210 15 150 

(X-band) 

- Performance  before 2020 (In 

plan) 

PB <605 ~100 Medium Adaptive 

compression 

NA NA NA VNIR-SWIR: 

400-2500 

Thermal IR: 

90-150 

VNIR-SWIR: 

10 

Thermal IR: 

90-150 

VNIR-

SWIR: 210 

Thermal 

IR: 40 

VNIR-

SWIR: 8 

Thermal IR: 

100 

270 

(X-band) 

 

 
Notes: 

NA, Information not available; PB, Pushbroom; WB,Whiskbroom 
A Australian Resource Information and Environment Satellite-1(ARIES-1) 
B The payload mass includes all the payloads of the mission. 
C Proposed satellite and sensor specification are discussed byBergeron et al. (2008). Mission was initially targeted to be launched in 2009 but no further information as of the 

time of writing could be found. 
D Most of the latest information is from Paolo et al. (2010) 
E Techniques to overcome large data are proposed but compression algorithms are not mentioned. 
F Mission requirement are discussed byGreen et al. (2008). Imager specifications for testing are given byJohnson et al. (2009), Hook et al. (2010),and Hook (2011). Prediction, 

KLT, wavelet & SPIHT algorithm are proposed byBuckner (2008) 
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Table 2. Satellite categories by mass. 

Group name Wet Mass (kg) 
 

Large/Small Satellite 
   

 

Large satellite > 1000  Large satellite 

Medium sized satellite 500 – 1000  

Mini satellite 100 – 500  Small satellite 

Micro satellite 10 – 100  

Nano satellite 1 – 10  

Pico satellite 0.1 – 1  

Femto satellite < 0.1  
    

 

The Terra mission was launched in 1999 and carried the Moderate Resolution Imaging 

Spectroradiometer (MODIS). MODIS was initially referred to as a non-hyperspectral 

sensor in Buckingham and Staenz (2008), but it has proven to be exceptionally useful for 

many applications and has since been categorized as a civilian hyperspectral sensor. A 12 

MHz Military Standard (MIL-STD) 1750A processor was used to pack the hyperspectral 

data from all 36 bands using a CCSDS data packet format (Frazier 2010). 

3.2 Hyperspectral missions during 2000 - 2005 

The Aqua mission, launched in 2002, also carried a MODIS sensor. Both the Terra 

andAqua missions are still nominally operational (eoPortal 2010), although a few of the 

payloads are not functional.  

The Naval EarthMap Observer (NEMO) mission carrying a Coastal Ocean Imaging 

Spectrometer (COIS) sensor was planned for launch in 2000, but never flew. This mission 

used a custom compression algorithm called the Optical Real-Time Adaptive Signature 

Identification System (ORASIS) on a parallel array of 2.5 GFLOPs (Giga floating-point 

operations per second) DSPs. ORASIS offered automated and adaptive signature 

recognition capability for image analysis of military and commercial imagery (Wilson and 

Baugh 1999). The signature recognition algorithm analyses each spectral band sequentially, 

discarding duplicate bands and processing only the unique spectral band to map the 

required location in the scene (Vincent 1999). Convex set methods and orthogonal 

projection techniques are used for the image analysis, followed the by creation of matched 

filters to decode the image (Palmadesso et al. 1995; Bowles et al. 1996). 

The MightySat II.1 satellite (2000–2002), carrying a Fourier Transform Hyperspectral 

Imager (FTHSI), is the first mission of its kind, encoding wavelength through an 

interferometer (Barducci et al. 2006). FTHSI shows the advantages of Fourier systems over 

dispersive hyperspectral imagers by recording the full spectra without any time delay and 

decoupling the spatial and spectral signatures (eoPortal 2010). A Quad C40 (QC40) 

processor comprising four TMS320C40 DSP chips was used for the payload processing 

(Barducci et al. 2006). Although no specific compression method has been reported, several 

algorithms for on-board processing have been implemented, such as apodization 

(improvement in the dynamic range of the image), spectral filtering, and fast Fourier 

transform (FFT). However, there were a few problems that rendered the on-board 

processing unrealistic and therefore the raw data were downloaded and processed on the 

ground (Barducci et al. 2006). 

The Earth Observing 1 (EO-1) mission, launched in 2000 with Hyperion as its imaging 

spectrometer, is still operational (eoPortal 2010). After capturing ground images, the data 

are sent to the payload processing unit called Wideband Advanced Recorder and Processor 

(WARP) and are stored inside a memory board with a capacity of 24×2 Gb (Smith and 
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Kessler 1999). A processor board inside theWARP comprising a 32 bit, 12 MHz Reduced-

Instruction-Set Computing (RISC) microprocessor, Mongoose 5, reads the images from the 

memory board and compresses them using the Rice algorithm (Rice and Plaunt 1971). The 

algorithm also reformats the data into Band Sequential (BSQ) format, one of the digital 

formats for storing a multi-spectral image in data memory, before sending it back to the 

memory boards (Smith and Kessler 1999).The image compression ratio achievable is 1.8 

depending on image entropy. 

The Orbview-4 mission, launched in 2001 and which carried the OrbView 

Hyperspectral Imaging System (OHIS), did not use any compression method for its 

hyperspectral data (eoPortal 2010). The mission was aborted due to a launch failure 

(Boucher 2001). 

The Project for On-Board Autonomy 1 (PROBA-1) mission, launched in 2001, is a 

European Space Agency (ESA) hyperspectral mission based on a micro-satellite platform 

that is still operational (eoPortal 2010). PROBA-1 carries the Compact High Resolution 

Imaging Spectrometer (CHRIS) imager from Surrey Satellite Technology Ltd. (SSTL), 

Guildford, UK. It was reported that a compression algorithm for it was under active 

development (Read 2003). The imager’s data processing unit (DPU), called payload 

processing unit, consists of a mass memory unit (MMU) for data storage (1 Gb), 

comprising a DSP (ADSP21020) for image processing during and post-acquisition 

(Bermyn 2000). The complete memory content can be dumped in at least two passes of 

about 10 min in 12 h, via downlink at tuneable data rates from 2 kb s
−1

 to 1 Mb s
−1

(Bermyn 

2000). (A pass refers to the satellite as seen from the ground station, for the duration of an 

active communications link.) 

The ESA Environmental Satellite (EnviSat) mission (2002–2012) carried the Medium 

Resolution Imaging Spectrometer (MERIS) (eoPortal 2010). Buckingham and Staenz 

(2008) have referred to MERIS as a hyperspectral sensor by design, but the datasets 

received are not hyperspectral. No information about the on-board data compression 

algorithmis available. Images captured by MERIS are processed by a video electronic unit 

anda digital processing unit. Raw data are transmitted to the ground and corrected 

thereafter(Bezy et al. 1999). 

Mars-Express, which was launched in 2003, is an interplanetary exploration mission 

that is aimed at visible and near-IR observation of the surface and atmosphere on Mars. 

According to Bibring et al. (2004), the hyperspectral imagery captured by the on-board 

imager, Observatoire pour la Minéralogie, l’Eau, les Glaces, et l’Activité (OMEGA), is 

compressed using a wavelet-based algorithm through its command and data processing unit 

(CDPU), followed by formatting of the processed data. The CDPU is based on a TSC21020 

Temic processor with 6 MB static random-access memory (SRAM) compressing and 

formatting of the data into a 3-D-packaged highly miniaturized cube. 

Aura is a mission launched in 2004 to monitor atmospheric and climatic changes using 

two hyperspectral imagers the ozone monitoring instrument (OMI) and the tropospheric 

emission spectrometer (TES), and is based on an IR-imaging Fourier Transform type of 

hyperspectral imager (Schoeberl et al. 2006). The command and data handling subsystem 

(C&DH) includes a 20 million instructions per second (MIPS) RISC processor with 128 

MB of RAM, 3 MB of electrically erasable programmable read-only memory (EEPROM) 

and a Versa Module Europa (VME) interface to the instrument communication and control 

bus. C&DH has a high-rated data buffer and formats all science data into 8192-byte 

CCSDS telemetry packets (Tyler and Varanasi 2001). 

Mars Reconnaissance is another Mars exploration mission, launched in 2005 to study 

the mineralogy and atmosphere of the red planet through its hyperspectral imager, the 

Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). The DPCM method is 

used for lossless image compression (Murchie et al. 2007). Processing options, such as 



International Journal of Remote Sensing 13 

 

 

offset subtraction, gain multiplication, and detector row selection can also be performed 

prior to compression. All image processing functions are supported by the processor system 

in the DPU. The processor system uses an Actel field-programmable gate array (FPGA) 

that also generates telemetry headers for image data before sending it to the spacecraft SSR 

for transmission to the Earth. 

3.3 Hyperspectral missions since 2006 

The Indian Microsatellite-1 (IMS-1), previously known as the Third World Satellite 

(TWSat), was launched in 2008. IMS-1 carries the hyperspectral imager HySI-T and 

isanother example of a micro-satellite platform based mission. On-board image 

compressionis performed using the JPEG2000 algorithm with a compression ratio of 3.4:1 

(eoPortal 2010). 

The Tactical Satellite-3 (TacSat-3) mission was launched in 2009 and was recently 

ended after the satellite was de-orbited and subsequently burned up in the Earth’s 

atmosphere (Writers 2012). This mission represents the current state of the art in 

hyperspectral missions flown to date. The hyperspectral imager (HSI) payload houses the 

Advanced Responsive Tactically EffectiveImaging Spectrometer (ARTEMIS), as well as a 

Responsive Avionics Reconfigurable Computer (RA-RCC) board and a G4-Single Board 

Computer (SBC) (Troxel et al. 2008a). The RA-RCC’s primary functions are payload 

control and processing of the sensor data.The RA-RCC consists of four FPGAs including 

one Actel RTAX2000 and three Xilinx V4LX160 co-processors (COPs). The COP FPGAs 

enable the deployment of various high-performance signal-processing algorithms providing 

libraries of predefined functions allowing developers to build custom functionality as 

required. The compression algorithms used on board the satellite are not disclosed in the 

open literature; however, as such algorithms could easily be implemented, as discussed by 

Troxel et al. (2008b). 

There are a number of hyperspectral missions that are at the planning stage, but very 

few details are available about compression methods to be incorporated into their imaging 

payload systems. It is suggested that the Hyperspectral Environment and Resource 

Observer (HERO) mission will use a VQ compression method implemented on an FPGA to 

support real-time and non-real-time operations (Bergeron et al. 2005) and the HYPXIM 

mission will utilize an adaptive compression method (Michel et al. 2010), but no specific 

methods are disclosed. No information regarding image compression on board the future 

missions PRISMA(PRecursore Iper Spettraledella Missione Operativa), TAIKI(meaning 

'big tree' in Japanese), EnMAP (Environmental Mapping and Analysis Program)and 

HyspIRI (Hyperspectral Infrared Imager)was found in the available literature at the time of 

writing this article. 

Table 3 lists the hyperspectral missions that have data compression capabilities on 

board, according to the literature. The need for on-board compression of hyperspectral 

imagery will grow in the future due to the even greater amount of valuable data that will be 

generated by the next generation of instruments. 

 
Table 3. On-board hyperspectral image compression 

Mission Launched Status Compression Scheme 

EO-1 2000 Running Rice coding 

Mars-Express  2003 Running Wavelet-based compression 

IMS-1 2008 Running JPEG2000 

NEMO   Cancelled Custom compression 

HYPXIM   Planned Adaptive compression 

HERO  Planned Vector quantization 
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4. The integer Karhunen-Loèvetransform 

The KLT has been used as a lossy spectral decorrelator to reduce spectral redundancy in 

multi-component image compression studies (e.g. hyperspectral imaging for remote sensing 

and magnetic resonance imaging (MRI) for medical applications (Yodchanan 2008)). KLT 

has also been applied to facial recognition (Nefian and Hayes 1998) and pattern finding in 

high-dimension data Quintiliano and Santa-Rosa (2003). 

When using KLT to encode a multi-component image (e.g. a hyperspectral image with 

N spectral bands), an N×N eigenvector matrix is generated called the KLT transform 

matrix. KLT is also known as principal component analysis (PCA). In PCA, a number, P, 

of principal components (PCs) are selected and sorted according to the eigenvalue, resulting 

in the eigenvector matrixP×N. When all PCs are retained (i.e. an N×Neigenvector matrix is 

generated), the PCA transform coding is referred to as KLT (Qian and Fowler 2007). In 

other words, spectral decorrelation using KLT is equivalent to PCA, in which the number 

of PCs is equal to the number of spectral bands. 

Due to the arrangement of PCs by eigenvalue, KLT is said to have energy compaction 

capabilitywhich is evidenced by the fact that the main details of the encoded image are 

visible in the first few eigen planes (spectral bands of the encoded image) followed by the 

remaining planes that do not have visible features. The remaining planes can be coarsely 

quantized (Saghri et al. 1995) and sometimes can even be dropped to increase the signal-to-

noise ratio (SNR) (Qian and Fowler 2007). This is the reason why KLT is the optimal 

method to reduce spectral redundancy or, in other words, similarity between bands. KLT 

has proven to be the most efficient spectral decorrelator compared with the DCT (Saghri et 

al. 1995) and the DWT (Qian and Fowler 2007). 

The output from KLT, however, is non-reversible since it consists of floating-point 

numbers and rounding is necessary, which leads to a lossy transformation. An 

approximation of KLT was proposed by Hao and Shi (2003) that is based on matrix 

factorization proposed in Hao and Shi (2001), representing the output in an integer form, 

hence it was called ‘Integer KLT’. As in the original KLT transform, the compression of a 

hyperspectral image with N number of bands will involve generating an eigenvector matrix 

A of size N×Nfrom the covariance matrix between each pair of bands. Matrix factorization 

will be applied on the A matrix, which is a non-singular (i.e. det(A) = |1|) matrix into four 

N×Nmatrices: a permutation matrix, P, and three other matrices called triangular 

elementary reversiblematrices (TERMs): L (lower TERM), U (upper TERM), and S (lower 

TERM). The factorization is not unique and depends on the pivoting method used that will 

affect the error between the integer approximation and the original KLT transformation 

(Lei et al. 2009). The intrinsic energy-compacting capability of KLT will be affected by the 

factorization, so the error should be minimized as much as possible. 

The integer KLT has the same characteristics as KLT except that it is reversible and 

therefore can be used for progressive lossy-to-lossless multi-component compression. 

Original and encoded images (grey level) for selected bands of the AVIRIS Low Altitude 

Scene 1 are shown in Figure 3and 4, respectively. By comparing the original and the 

encoded images, it can be seen that a significant portion of the detail is contained in the 

early eigen planes (shown as eigen planes 1, 5, and 10), which decreases towards the end(as 

in eigen planes 35, 40, and 45). Currently, there are no satellite missions that use aKLT-

based method for hyperspectral compression on board. 
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(a) (b) (c) (d) (e) (f) 

Figure 3. Original Low Altitude Scene 1 AVIRIS image from (a) spectral band 1, (b) spectral band 5, 

(c) spectral band 10, (d) spectral band 35, (e) spectral band 40, and (f) spectral band 45. 

      
(a) (b) (c) (d) (e) (f) 

Figure 4. Encoded Low Altitude Scene 1 AVIRIS image using integer KLT from (a) eigenplane 1, 

(b) eigenplane 5, (c) eigen plane 10, (d) eigenplane 35, (e) eigenplane 40, and (f) eigenplane 45. 

 

4.1 Integer KLT as a lossless spectral decorrelator 

Partial pivoting as part of integer KLT was introduced by Hao and Shi (2001),and several 

studies focused on different types of pivoting(Galli and Salzo 2004; Xin et al. 2007a, 

2007b). Quasi-complete pivoting (Galli and Salzo 2004) was reported as the best method to 

minimize the integer approximation error byBlanes and Serra-Sagristà (2009) and Lei et al. 

(2009)and was used byJing et al. (2008) and Yodchanan (2008). The integer KLT with 

quasi-complete pivoting was compared with the linear prediction and band differential 

methods to investigate the decorrelation performance, and it was shown that the integer 

KLT yields the highest compression ratio when combined with lossless JPEG2000 (Mat 

Noor et al. 2010).  

Here we present new experimental results comparing the integer KLT with another 

spectral decorrelation method, namely the multi-component compression algorithm in Part 

II of the JPEG2000 Standard. Table 4shows the performance of the integer KLT with

 
Table 4. Performance comparison of the integer KLT and JPEG2000 algorithms. 

Hyperspectral Images 
Multi-component 

JPEG2K 
Integer KLT+JPEG2K 

Improvement 

(%) 

Cuprite Scene 1 2.9362 3.2002 8.99 

Cuprite Scene 3 2.9174 3.1772 8.91 

Jasper Scene 1 2.8046 3.2113 14.50 

Jasper Scene 3 2.7732 3.2052 15.58 

Low AltitudeScene 1 2.6149 3.0001 14.73 

Low AltitudeScene 2 2.5860 2.9849 15.43 

Yellowstone CalibratedScene 0 3.2222 4.0101 24.45 

Yellowstone CalibratedScene 3 3.2980 4.1036 24.43 

Yellowstone CalibratedScene 10 4.1959 4.6296 10.34 

Yellowstone CalibratedScene 11 3.6306 4.2661 17.50 

Yellowstone CalibratedScene 18 3.2690 4.0546 24.03 

Maine Non-CalibratedScene 10 3.3517 3.8303 14.28 

Hawaii Non-CalibratedScene 1 3.4958 4.0151 14.85 
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quasi-complete pivoting and the multi-component JPEG2000 (MC-JPEG2K) algorithm 

for13 AVIRIS images(NASA-JPL 2010a, 2010b). The performance is evaluated in terms of 

the overall compression ratio where the lossless JPEG2000 (JPEG2K) algorithm is used for 

spatial compression. As can be seen from Table 4, the integer KLT brings an average 

improvement of 16%, which corroborates the previous findings ofMat Noor et al. (2010). 

The KLT algorithm is very computationally intensive and its approximation, the integer 

KLT, has even higher complexity due to the additional operations(i.e. matrix factorization). 

A low-complexity multiplierless reversible KLT was proposed byLei et al. (2009) based on 

the method suggested in Penna et al. (2006). A 3-D medical image with a spatial size 

ofM×Npixels is sampled into the matrix M'×N' (M'≤M and N'≤N),which isused to 

compute the covariance matrix and the factorization stage. Using a sampling factor ρ = 

M'×N' / M×N = 0.01, the three floating-point TERM matrices of the factorization stage are 

quantized into fractions with a denominator value equal to a power of 2. The integer KLT is 

then realized through shifts and additions without a multiplication. The proposed scheme 

achieves around 12% improvement in terms of execution time as compared to the case 

where ρ = 1 and floating-point TERM matrices were used. 

The integer KLT is suitable for hyperspectral missions that require lossless compression 

with high performance as shown above. Even though it is complex due to the covariance 

matrix calculation and factorization process, low-complexity schemes can improve its 

execution time. Remote sensing applications such as military reconnaissance, vegetation 

studies and natural resources monitoring could benefit from the lossless nature of the 

algorithm. 

 

4.2Clustering and tiling techniques for integer KLT 

Clustering and tiling techniques can be used in conjunction with the integer KLT algorithm. 

These approaches will not affect the losslessness of the algorithm. 

Clustering of integer KLT can be performed by encoding a group of n bands rather than 

the total number of bands N in a hyperspectral image, where n ≤N. To encode all of the 

bands, the process is repeated for c iterations, where c = N/n  is the number of 

clusters.Clustering of the integer KLT transform was performed through multilevel 

approaches(Yodchanan et al. 2006a; Yodchanan et al. 2006b; Yodchanan 2008; Blanes and 

Serra-Sagristà 2009). Blanes and Serra-Sagristà (2009)found that the multilevel, clustered 

version of the integer KLT could bring some degree of spectral scalability for lossy-to-

lossless coding in comparison with the normal clustering approach.  

Figure 5(Blanes and Serra-Sagristà 2009)shows a block diagram of normal and 

multilevel clustering. Multilevel clustering is a stacked version of the normal clustering 

performed on the higher energy components. The next level is derived from the previous 

levels until only one cluster is processed at the highest level.Introducing clustering in 

integer KLT reduces the memory usage, which is especially useful in embedded 

applications with constrained memory resources. Multilevel clustering process costs 

(2 − 1 𝑐⁄ )times the cost of a normal clustering and makes the algorithm slightly more 

complex. 

In the case ofa large spatial size of satellite images, tiling is applied before performing 

any kind of image processing (Yu et al. 2009). Tiling can also constrain error propagation 

to the smaller area of the tile rather than the whole spatial size of the original image. The 

introduction of tiling in compression of satellite images has been proved to increase the 

resilience of the image compression algorithm to single-event upsets (SEUs)induced by
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(a) Normal Clustering (b) Multilevel Clustering 

Figure 5.  Clustering strategies. 

 

radiation(Vladimirova and Steffens 2005; Vladimirova et al. 2006). However, the 

compression performance suffers if the tile size is too small. On the other hand, the tile size 

also determines the buffer size for the on-board storage, so it cannot be very large 

either(Mat Noor and Vladimirova 2011). A careful trade-off analysis is required to 

determine the right tile size. 

 

5. Integer KLT modelling 

In this section the integer KLT algorithm is characterised in terms of compression 

performance and latency. For the purpose of the integer KLT modelling, the algorithm was 

coded in C++ using previously developed Matlab code(Mat Noor et al. 2010; Mat Noor and 

Vladimirova 2011). This code was developed under the Visual Studio 2010 Ultimate Win32 

project. The open source mathematical library ALGLIB (Bochkanov 2011) was employed 

for eigenvector calculation. The code was executed on a desktop computer with Intel
®
 

Core
™

 i7 880 processor at 3.06 GHz, 16 GB of RAM and Windows 7 x64 Enterprise as the 

operating system. The JPEG2000 algorithm implementation of Kakadu V 6.3 (Taubman 

2010) was used for the lossless spectral and spatial decorrelation. The compression ratio 

(original size/compressed size) was evaluated inclusive of the four matrices (P, L, U and 

S). 

5.1 Experiment Outline 

Four hyperspectral images acquired from each of two hyperspectral sensors – the airborne 

AVIRIS (NASA-JPL 2010a, 2010b) and the spaceborne EO-1 Hyperion (USGS 2011) 

imager – areemployed as the test images in this modelling study. AVIRIS images are taken 

at the nominal altitude of 20 km (Green et al. 1998). The choice of AVIRIS is motivated by 

the fact that its datasets have been used widely in hyperspectral image compression 

research, providing a good basis for comparison (Penna et al. 2006; Zhou et al. 2006; Kiely 

and Klimesh 2009). AVIRIS data have also been used for simulation of spaceborne 

imagery (Abrams 1992; Kalman and Pelzer 1993; Willart Soufflet and Santer 1993; Wetzel 

1995). Hyperion is one of a few spaceborne hyperspectral imagers that are operational at 

the time of writing, and its imagery is employed to investigate integer KLT usability for 

implementation on board satellites. Hyperion is flown on the EO-1 satellite at 705 km 

altitude (Ungar et al. 2003). 

The AVIRIS and Hyperion test images are listed in Table 5, which includes the 

abbreviated names used in this article and the acquisition details. All AVIRIS images were 

cropped spatially to a size of 512×512 pixels from the upper left corner for all 224 bands. 

The false-colour representations of these datasets are shown in Figure 6(a)-(d). All 

Hyperion images were cropped to a size of 256×256. Out of 242 bands, only 196 bands,

Integer KLT

Integer KLT

Integer KLT

Integer KLT Integer KLT Integer KLT Integer KLTInteger KLT Integer KLT Integer KLT Integer KLT
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Table 5. AVIRIS and Hyperion datasets. 

Imager/Sensor Datasets Abbreviation Acquisition 

AVIRIS Jasper Ridge Scene 3 Jasper3 1997 datasets (NASA-

JPL 2010b) 

Low Altitude Scene 2 Low2 " 

Yellowstone Calibrated Scene 11 YellowstoneCal11 2006 datasets (NASA-

JPL 2010a) 

Yellowstone Calibrated Scene 18 YellowstoneCal18 " 

Hyperion EO1H0090112001140111PP_PF1_01 Greenland 20, May 2001 

EO1H0120312001129111P1_PF1_01 Boston 9, May2001 

EO1H0140362001127110PP_AGS_01 Edenton(image of 

Northeastern 

Regional Airport, 

Edenton) 

7, May 2001 

EO1H0150332001134111P1_AGS_01 Portobago(image of 

Portobago Bay) 

14, May 2001 

 

 

 

    
(a) Jasper3 (b) Low2 (c)YellowstoneCal11 (d)YellowstoneCal18 

    

(e) Greenland (f) Boston (g) Edenton (h) Portobago 

Figure 6. False-color representation for AVIRIS ((a)-(d)) and Hyperion ((e)-(h)) datasets. 

 

 

which were classified as unique and calibrated, have been extracted (i.e. bands 8-57 and 

bands79-224). False-colour representations of the images are shown in Figure 6(e)-(h). 

In this work, only the normal clustering approach is applied due to focusing on lossless 

compression. Ten different numbers of clusters, c, are employed for the AVIRIS images: 1, 

2, 4, 7, 8, 14, 16, 28, 32 and 56and seven for the Hyperion images: 1, 2, 4, 7, 14, 28, and 

49. When c = 1, the integer KLT is performed without a clustering. Four tile sizes are 

targeted for AVIRIS: 64×64, 128×128, 256×256 and 512×512 andthree tile sizes for 

Hyperion: 64×64, 128×128 and 256×256. Comparison with a second spectral 

decorrelation method – the multi-component transform of JPEG2000 Part II - is carried out. 

The overall block diagram for this modelling experiment is presented in Figure 7. 
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Figure 7.  Lossless hyperspectral image compression for on-board application. 
 

5.2 Compression performance analysis 

Table 6shows the compression ratio results achieved by modelling the compression scheme 

illustrated in Figure 7for the AVIRIS test images.The combined integer KLT and 

JPEG2000 (IntKLT+JPEG2K) compression model is applied tofourdifferent tile sizes. 

Similarly,Table 7shows the IntKLT+JPEG2K compression performancefor the Hyperion 

test images at three tile sizes. Each column in Table 6and7represents the compression ratio 

for a particular number of clusters, c. The highest compression ratio values, achieved for 

each image, tile and size are shaded in grey.  

Figure 8representsgraphicallythe relationship between ratio, tile and cluster sizes for the 

AVIRIS performance data in Table 6, where the highest compression values are marked by 

circles in the graphs.The graphical representation of the data for the Hyperion images in 

Table 7shows the same behaviour pattern, as that illustrated in Figure 8, despite the 

different nature of the image sources.As it can be seen from Figure 8,the highest 

compression ratio occursin cases when clustering was performed(i.e. at c>1), suggesting 

that clustering could increase the compression performance. It can also be seen clearly in 

Figure 8that an overly large number of clusters, c(i.e. performing the operations on a small 

number of bands)negativelyaffects the compression ratio (Saghri et al. 1995). By 

observingthe results across different tile sizes for each image in Figure 8andTable 6and7,it 

can be concluded that a smaller tile size could definitely result in poorer compression 

performance, which is in agreement withSalomon (2007). However, from the point of view 

of algorithm robustness, the smaller tiling size is beneficial with regard to constraining 

error propagation,as discussed in Section 4.2. 

For comparison purposes the multi-component transform of JPEG2000 Part II (MC-

JPEG2K), combined with the spatial JPEG2000 transform, was also applied to the test 

images followinga similar approach to the foregoing in terms of clustering and tiling. The 

MC-JPEG2K method utilizes the integer CDF 5/3 wavelet for the spectral decorrelation 

process. The modelling results obtained for the MC-JPEG2K based scheme showed the 

same pattern as that represented in Figure 8; however, in terms of compression performance 

the method lagged behind integer KLT.This can clearly be seen from Table 8, which 

presents the highest compression ratio values obtained using the IntKLT+JPEG2K and 

MC-JPEG2K algorithms and the correspondingnumber of clusters c as well as the 

improvement achieved by the integer KLT for the test images at all the tile sizes.The 

average improvement is around 9%, increasing with tile size within a 6% margin.  

Comparing the performance results for the two datasets in Table 6-8, it will be noted 

that the airborne imageshave a higher compression ratio than the spaceborne images. The 

AVIRIS average highest compression ratios (shaded cells) for the AVIRIS images (Table 

6and 7)are higher than thosefor Hyperion by 25%, 30% and 33%at tile sizes 64×64, 

128×128 and 256×256, respectively. Similarly, theperformance improvement achievedby 

integer KLT over MC-JPEG2Kfor the AVIRIS images isonaverage higher than that for the 

Hyperion datasets by 2.19%, 7.05% and 10.23% at thetile size 64×64, 128×128 and 

256×256, respectively. The different compression performanceofthe two types of 

hyperspectral images is due to a number of factors, including the distinctive nature of the 

imagers, etc. 

Hyperspectral 

image 

Clustering & 

tiling 
Integer KLT 

Lossless 

JPEG2000 

Compressed 
hyperspectral 

image 

Spectral 

decorrelation 

Spatial 

decorrelation 
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Table 6. IntKLT+JPEG2K compression ratio for AVIRIS (airborne) datasets with clustering and tiling. 

Tile Size 
No. of clusters, c 

(No. of bands/cluster) 

1 

(224) 

2 

(112) 

4 

(56) 

7 

(32) 

8 

(28) 

14 

(16) 

16 

(14) 

28 

(8) 

32 

(7) 

56 

(4) 
            

64×64 Jasper3 1.001 1.516 2.030 2.360 2.416 2.607 2.627 2.678 2.666 2.586 

Low2 0.979 1.467 1.944 2.243 2.298 2.470 2.491 2.541 2.533 2.468 

YellowstoneCal11 1.085 1.723 2.425 2.911 3.003 3.301 3.342 3.423 3.407 3.280 

YellowstoneCal18 1.070 1.686 2.346 2.791 2.867 3.125 3.151 3.190 3.166 3.006 

128×128 Jasper3 2.108 2.559 2.844 2.961 2.968 2.994 2.978 2.923 2.889 2.743 

Low2 2.011 2.419 2.676 2.778 2.790 2.814 2.803 2.759 2.733 2.609 

YellowstoneCal11 2.522 3.210 3.675 3.872 3.892 3.932 3.920 3.821 3.767 3.527 

YellowstoneCal18 2.443 3.079 3.494 3.659 3.664 3.686 3.659 3.531 3.475 3.212 

256×256 Jasper3 2.910 3.086 3.156 3.158 3.143 3.105 3.077 2.988 2.948 2.783 

Low2 2.724 2.881 2.950 2.952 2.946 2.913 2.892 2.818 2.787 2.647 

YellowstoneCal11 3.765 4.075 4.197 4.199 4.177 4.099 4.069 3.909 3.840 3.572 

YellowstoneCal18 3.587 3.868 3.965 3.955 3.924 3.847 3.800 3.616 3.553 3.260 

512×512 Jasper3 3.205 3.244 3.237 3.205 3.181 3.128 3.096 3.000 2.958 2.789 

Low2 2.985 3.022 3.025 2.996 2.986 2.939 2.913 2.833 2.801 2.656 

YellowstoneCal11 4.266 4.339 4.325 4.249 4.216 4.106 4.067 3.897 3.822 3.557 

YellowstoneCal18 4.055 4.126 4.093 4.032 3.985 3.883 3.834 3.630 3.568 3.268 
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Table 7. IntKLT+JPEG2K compression ratio for Hyperion (spaceborne) datasets with clustering and 

tiling. 

Tile Size 
No. of clusters, c(No. 

of bands/cluster) 

1 

(196) 

2 

(98) 

4 

(49) 

7 

(28) 

14 

(14) 

28 

(7) 

49 

(4) 

         

64×64 Greenland 0.993 1.411 1.784 1.998 2.154 2.190 2.169 

Boston 0.997 1.420 1.796 2.015 2.175 2.217 2.199 

Edenton 0.991 1.406 1.776 1.991 2.152 2.199 2.186 

Portobago 1.000 1.425 1.808 2.035 2.210 2.269 2.271 

128×128 Greenland 1.785 2.061 2.228 2.289 2.313 2.270 2.213 

Boston 1.800 2.078 2.245 2.309 2.333 2.295 2.241 

Edenton 1.777 2.048 2.215 2.278 2.309 2.278 2.229 

Portobago 1.807 2.090 2.266 2.339 2.380 2.356 2.321 

256×256 Greenland 2.224 2.323 2.368 2.370 2.353 2.288 2.222 

Boston 2.243 2.336 2.378 2.375 2.351 2.294 2.230 

Edenton 2.208 2.301 2.342 2.346 2.329 2.279 2.221 

Portobago 2.261 2.364 2.413 2.426 2.423 2.377 2.333 
         

 

  

(a) (b) 

  

(c) (d) 

 
Figure 8.  IntKLT+JPEG2000 compression ratio performance at different no. of clusters c and tile 

sizes for (a) Jasper3, (b) Low2, (c) YellowstoneCal11, and (d) YellowstoneCal18. 

5.3 Compression latency analysis 

In this analysis the execution time for the integer KLT compression process is measured 

without taking into account the input/output (I/O) time for the read/write operations from/to 

memory. In addition, the execution time accounts only for the integer KLT algorithm and 

does not include the time for performing spatial compression by Kakadu software. 
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Table 8. Comparison of maximum compression ratio for IntKLT+JPEG2K and MC-JPEG2K with 

clustering and tiling. 

Tile size 
Hyperspectral 

images 

MC-JPEG2K  IntKLT+JPEG2000 

Improvement 

(%) Compression 

ratio 

No. of clusters 

c 

(bands/cluster) 

 
Compression 

ratio 

No. of clusters 

c 

(bands/cluster) 
        

64×64 Jasper3 2.4276 28 (8)  2.678 28 (8) 10.31 

Low2 2.2943 32 (7)  2.541 28 (8) 10.75 

YellowstoneCal11 3.0604 28 (8)  3.423 28 (8) 11.85 

YellowstoneCal18 2.7764 28 (8)  3.190 28 (8) 14.90 

Greenland 1.9774 28 (7)  2.190 28 (7) 10.75 

Boston 2.0202 28 (7)  2.217 28 (7) 9.74 

Edenton 2.0144 28 (7)  2.199 28 (7) 9.16 

Portobago 2.0758 28 (7)  2.271 49 (4) 9.40 

128×128 Jasper3 2.6785 14 (16)  2.994 14 (16) 11.78 

Low2 2.5119 16 (14)  2.814 14 (16) 12.03 

YellowstoneCal11 3.4733 16 (14)  3.932 14 (16) 13.21 

YellowstoneCal18 3.1240 14 (16)  3.686 14 (16) 17.99 

Greenland 2.1463 14 (14)  2.313 14 (14) 7.77 

Boston 2.1875 14 (14)  2.333 14 (14) 6.65 

Edenton 2.1746 14 (14)  2.309 14 (14) 6.18 

Portobago 2.2407 14 (14)  2.380 14 (14) 6.22 

256×256 Jasper3 2.7776 7 (32)  3.158 7 (32) 13.70 

Low2 2.5979 8 (28)  2.952 7 (32) 13.63 

YellowstoneCal11 3.6412 8 (28)  4.199 7 (32) 15.32 

YellowstoneCal18 3.2597 8 (28)  3.965 4 (56) 21.64 

Greenland 2.2096 7 (28)  2.370 7 (28) 7.26 

Boston 2.2472 7 (28)  2.378 4 (49) 5.82 

Edenton 2.2361 7 (28)  2.346 7 (28) 4.91 

Portobago 2.3017 14 (14)  2.426 7 (28) 5.40 

512×512 Jasper3 2.8206 7 (32)  3.244 2 (112) 15.01 

Low2 2.6313 8 (28)  3.025 4 (56) 14.96 

YellowstoneCal11 3.7072 8 (28)  4.339 2 (112) 17.04 

YellowstoneCal18 3.3129 7 (32)  4.126 2 (112) 24.54 
    

 
   

 

Table 9and10 show the execution time recorded for performing integer KLT on AVIRIS 

and Hyperion datasets, respectively, at tile sizes defined in Section 5.1. Each of the time 

measurements was repeated five times and the average value was calculated. Each column 

in the tables represents the execution time for a different number of clusters, c. Shaded in 

grey are the latency values corresponding to the highest compression ratios in Table 6and7. 

The execution times for AVIRIS images are then represented graphically in Figure 9. The 

execution time for the Hyperion images showed the same pattern as that of the AVIRIS 

images, and therefore it is not visualized. The smaller graphs within the main graphs in 

Figure 9show the detailed behaviour between 5 and 25 seconds, where the circles mark the 

highest compression ratio values. It can be seen from Figure 9 that the fastest execution 

time is achieved by the largest number of clustersc = 56, although it does not yield the best 

compression ratio. 
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Table 9. Integer KLT execution time (seconds) on desktop computer for AVIRIS (airborne) datasets with clustering and tiling. 

Tile Size 
No. of clusters, c 

(No. of bands/cluster) 

1 

(224) 

2 

(112) 

4 

(56) 

7 

(32) 

8 

(28) 

14 

(16) 

16 

(14) 

28 

(8) 

32 

(7) 

56 

(4) 
            

64×64 Jasper3 755.849 88.607 18.961 10.422 9.585 7.139 7.564 6.963 5.859 4.874 

Low2 757.987 88.448 18.927 10.321 9.648 7.141 7.534 6.723 5.756 4.845 

YellowstoneCal11 755.517 88.763 18.999 10.415 9.571 7.125 7.391 6.731 5.599 4.835 

YellowstoneCal18 755.437 88.408 19.020 10.308 9.558 7.138 7.343 6.659 5.526 4.761 

128×128 Jasper3 209.412 35.261 13.196 9.346 8.560 7.103 6.603 5.289 5.059 4.549 

Low2 209.485 34.879 13.447 9.311 8.560 7.064 6.517 5.186 4.984 4.511 

YellowstoneCal11 209.520 34.979 13.179 9.358 8.464 7.091 6.673 5.243 5.025 4.492 

YellowstoneCal18 209.656 35.063 13.119 9.314 8.424 7.019 6.796 5.145 4.946 4.442 

256×256 Jasper3 75.675 21.770 12.755 10.152 9.295 7.776 7.123 5.319 5.151 4.623 

Low2 75.404 21.737 12.462 10.067 9.332 7.728 7.097 5.265 5.092 4.614 

YellowstoneCal11 74.918 21.855 12.417 9.990 9.217 7.760 7.110 5.269 5.107 4.534 

YellowstoneCal18 74.875 21.750 12.488 10.100 9.201 7.757 7.057 5.201 5.020 4.535 

512×512 Jasper3 50.610 19.937 12.894 10.972 10.054 8.291 7.690 5.827 5.636 4.907 

Low2 51.169 19.909 12.776 10.922 9.873 8.359 7.716 5.859 5.645 4.952 

YellowstoneCal11 51.003 20.061 12.779 10.966 9.857 8.365 7.704 5.818 5.725 4.846 

YellowstoneCal18 50.773 19.863 12.791 10.941 9.857 8.365 7.683 5.764 5.637 4.806 
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Table 10.  Integer KLT execution time (seconds) on desktop computer for Hyperion (spaceborne) 

datasets with clustering and tiling. 

Tile Size 
No. of clusters, c 

(No. of bands/cluster) 

1 

(196) 

2 

(98) 

4 

(49) 

7 

(28) 

14 

(14) 

28 

(7) 

49 

(4) 
         

64×64 Greenland 83.491 13.009 3.339 1.934 1.516 1.154 1.110 

Boston 83.236 13.133 3.323 1.981 1.528 1.146 1.067 

Edenton 82.733 13.120 3.323 1.963 1.524 1.106 1.083 

Portobago 83.646 13.135 3.354 2.075 1.419 1.095 1.035 

128×128 Greenland 25.022 5.898 2.745 1.778 1.420 0.982 1.888 

Boston 25.054 5.776 2.666 1.810 1.356 1.060 2.013 

Edenton 25.040 5.832 2.605 1.761 1.451 1.031 2.061 

Portobago 25.053 5.784 2.715 1.762 1.450 1.029 1.997 

256×256 Greenland 10.671 4.087 2.605 1.934 1.498 1.090 0.966 

Boston 10.842 4.088 2.590 1.904 1.451 1.076 0.968 

Edenton 10.827 4.087 2.620 1.871 1.449 1.045 0.971 

Portobago 10.701 4.071 2.606 1.889 1.466 1.093 0.966 
         

 

(a) (b) 

  

(c) (d) 

 
Figure 9. Execution time at different no. of clustersc and tile sizes for (a) Jasper3, (b) Low2, (c) 

YellowstoneCal11, and (d) YellowstoneCal18. 

 

The results clearly show that clustering can significantly improve latency. The reason 

for this may be that a larger number of clusters (i.e. a smaller number of bands to process) 

leads to a lower memory usage. However, the number of clusters must be selected based on 
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a trade-off between latency and performance as the compression ratio is lower when too 

few bands per cluster are to be decorrelated. 

It can also be observed from Figure 9 that the introduction of tiling does not affect 

latency performance significantly. This is mainly because the number of bands in a 

hyperspectral image is the main factor that will determine the size of the eigenvector 

matrix, A, in integer KLT, which will be used for factorization. However, at a smaller tile 

size, when c =1 and 2, latency results are poor. This might be because ratio between the 

spectral and spatial components is too high for the AVIRIS and Hyperion datasets in the 

case when c = 1, especially for tile sizes of 64×64 and 128×128 pixels. 

It can be seen from Table 9 and10 that the Hyperion images are processed more rapidly, 

taking an average of 1.11 s at the highest compression ratios (shaded cell) compared with 

6.77 s for the AVIRIS images at the 64×64 tile size. Similarly, the Hyperion datasets are 

encoded 5.65 and 8.60 s faster than the AVIRIS images at tile sizes of 128×128 and 

256×256, respectively. These differences are due to the fact that the 2D size of the AVIRIS 

datasets is four times larger than Hyperion (512×512 for AVIRIS and 256×256 for 

Hyperion) and in addition it has 28 more bands. 

 

6. Integer KLT prototyping  

This section is concerned with the implementation of integer KLT on an embedded 

hardware platform for rapid prototyping purposes. The integer KLT algorithm and software 

used for spatial compression were the same as those used in the desktop modelling 

described in Section 5. However, the implementation was somewhat restricted in terms of 

the clustering technique due to memory limitations. 

The platform is the DSP development system from Texas Instruments (TI), OMAP-

L137 EVM, which is based on the TIdual-core processorOMAP-L137, comprising the 

C6747 DSP and ARM9 processor cores, both running at up to 300 MHz. The software is 

developed in the C programming languageusingthe Code Composer Studio V3.3 with 

DSP/BIOS V5.41 as its real-time kernel. It comes with a compiler that is specifically tuned 

to maximize the performance of the executable code. Other features are a 64 MB SDRAM 

and an MMC/SD card slot, which are used to store the input and output images.The 

compression code runs on the C6747 DSP floating pointprocessor core without using any 

special instructions, such as intrinsic operators (Texas-Instruments 2010). 

Processing on the DSP board starts by fetching n out of N number of bands of the 

hyperspectral image from the MMC/SD card available on the board, which are moved into 

the local memory (SDRAM). The loaded spectral bands are encoded and stored back to the 

MMC/SD card along with the output coefficients. This process is repeated for c number of 

iterations until all N bands are encoded. With limited on-board memory (64 MB), only 16 

out of 224 bands of the AVIRIS images and only 49out of 196 bands of Hyperion 

hyperspectral images can be loaded into the memory at one time. This corresponds to 

cmin=224/16=14 (for AVIRIS) and cmin=196/49=4 (for Hyperion),which is the smallest 

number of clusters that can be processed. Therefore, only the numbers of clusters,c=14, 16, 

28, 32 and 56 for the AVIRIS images and c=4, 7, 14, 28 and 49 for the Hyperion images 

can be executed on the DSP due to the memory limitations. 

The integer KLT DSP version produced exactly the same output and the same 

compression ratio results as shown in Table 6and7, the only difference being that the DSP 

implementationstarted from number of clustersc=14for AVIRIS and c=4 for Hyperion, 

rather than from c=1.  

Table 11and 12show compression latency for the DSP implementation excluding the 

I/O time.Both datasets have been compressed with similar tile sizes as stated in Section 5.1. 

Each column in the tables denotes execution time for a different number of clusters,c. 
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Shaded cells are the latency values corresponding to the highest compression ratio reported 

in Table 6and 7. From comparison of Table 11and 12with Table 9and10,it can be seen that 

the latency of the integer KLT DSP implementation follows a similar pattern to that shown 

by the desktop system for larger number of clusters c. Overall, it takes around 3-5 minutes 

to encode the 224 bands of the AVIRIS images and 0.5-4 minutes for the Hyperion 

images.This timing is suitable for certain on-board image acquisition scenariosthat do not 

require compression ofthe satellite imagery continuously in real time.  

Table 11.Integer KLT execution time (seconds) on OMAP-L137 for AVIRIS (airborne) datasets with 

clustering and tiling. 

Tile Size 
No. of clusters, c 

(No. of bands/cluster) 

14 

(16) 

16 

(14) 

28 

(8) 

32 

(7) 

56 

(4) 
       

64×64 Jasper3 560.210 540.576 227.472 441.728 170.464 

Low2 560.420 540.629 227.463 441.758 170.437 

YellowstoneCal11 559.986 540.743 227.488 441.643 170.488 

YellowstoneCal18 560.553 540.719 227.439 441.692 170.394 

128×128 Jasper3 341.470 300.071 222.681 206.477 168.996 

Low2 341.135 300.045 222.603 206.421 168.992 

YellowstoneCal11 341.105 299.96 222.655 206.388 168.875 

YellowstoneCal18 341.075 299.875 222.637 206.335 168.819 

256×256 Jasper3 337.427 301.275 222.958 208.432 169.233 

Low2 337.122 301.191 222.893 208.340 169.259 

YellowstoneCal11 337.104 301.163 222.943 208.302 169.303 

YellowstoneCal18 337.086 301.117 222.922 208.244 169.297 

512×512 Jasper3 333.240 293.903 220.449 204.624 167.605 

Low2 332.949 293.724 220.283 204.526 167.643 

YellowstoneCal11 332.940 293.788 220.668 204.510 167.818 

YellowstoneCal18 332.931 293.768 220.589 204.409 167.817 
       

Table 12.Integer KLT execution time (seconds) on OMAP-L137 for Hyperion (spaceborne) datasets 

with clustering and tiling. 

Tile Size 
No. of clusters, c 

(No. of bands/cluster) 

4 

(49) 

7 

(28) 

14 

(14) 

28 

(7) 

49 

(4) 
       

64×64 Greenland 365.776 139.447 71.862 52.164 37.289 

Boston 365.764 139.587 71.890 52.136 37.387 

Edenton 365.724 139.601 71.904 52.248 37.240 

Portobago 365.736 139.517 71.876 52.276 37.363 

128×128 Greenland 248.585 112.292 68.283 51.34 36.837 

Boston 248.611 112.272 68.297 51.325 36.830 

Edenton 248.557 112.263 68.288 51.335 36.826 

Portobago 248.581 112.274 68.278 51.330 36.820 

256×256 Greenland 222.695 109.008 67.98 51.247 37.186 

Boston 222.702 109.019 67.99 51.265 37.177 

Edenton 222.704 109.025 67.981 51.262 37.164 

Portobago 222.690 109.016 67.994 51.250 37.188 
       

 

7. Conclusions 
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This article reviewed hyperspectral spaceborne missions and their main specifications, 

including compression capabilities available on board satellites. It is concluded that there 

are not many missions that support on-board hyperspectral image processing and only three 

missions, currently operational, have been reported to perform hyperspectral data 

compression on board. However, details of the compression techniques implemented are 

not available in the open literature. Future missions will have a greater spectral coverage 

using more bands at a smaller spectral sampling, which will lead to the generation of even 

greater amounts of valuable data, increasing further the importance of on-board 

hyperspectral image compression. 

In addition, an investigation into the suitability of the reversible KLT transform, called 

integer KLT, for lossless inter-band compression in hyperspectral imaging payloads was 

presented. The results of a comprehensive modelling experiment are given, taking into 

account the effects of clustering and tiling. It is found that clustering can significantly 

improve both compression performance and latency of the algorithm. Image tiling, on the 

other hand, does not markedly affect execution time but it is believed to have an impact on 

error resilience. However, small tile size combined with a low level of clustering can slow 

the processing significantly. 

The KLT algorithm was prototyped on an embedded platform and performance results 

were reported. The latency achieved was found to be suitable for certain remote-sensing 

scenarios. The speed of execution can further be increased through software and hardware 

optimization. Limitations of the prototyping board were identified, which prevented the 

testing of all possible combinations in terms of cluster and tile sizes. 

In summary, the use of clustering and tiling techniques facilitates the implementation of 

the computationally intensive integer KLT transform on board remote-sensing satellites. 

Both clustering and tiling can help to reduce memory usage since they scale down the 

granularity of the computational process whereby a smaller portion of the hyperspectral 

cube is processed at each iteration, leading to a smaller buffer size for the overall operation. 

This ‘divide and conquer’ approach renders the integer KLT suitable to future hyperspectral 

missions that will have a much greater number of spectral bands and a larger swathe width 

than at present. 
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