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Abstract. Ocean dynamics is known to have a strong effect the global climate change

and on the composition of the atmosphere. In particular, it is estimated that about 70%

of the atmospheric oxygen is produced in the oceans due to the photosynthetic activity of

phytoplankton. However, the rate of oxygen production depends on water temperature

and hence can be affected by the global warming. In this paper, we address this issue

theoretically by considering a model of a coupled plankton-oxygen dynamics where the

rate of oxygen production slowly changes with time to account for the ocean warming.

We show that a sustainable oxygen production is only possible in an intermediate range

of the production rate. If, in the course of time, the oxygen production rate becomes too

low or too high, the system’s dynamics changes abruptly resulting in the oxygen depletion

and plankton extinction. Our results indicate that the depletion of atmospheric oxygen

on global scale (which, if happens, obviously can kill most of life on Earth) is another

possible catastrophic consequence of the global warming, a global ecological disaster that

has been overlooked.
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1 Introduction

Global warming has been an issue of huge debate and controversy over the last decade

because of its potential numerous adverse effects on ecology and society [44]. Ocean

makes about two-thirds of the Earth surface and also works as a huge heat capacitor,

and hence is expected to be heavily affected by the climate change. Discussion of the

effect of warming on the ocean dynamics usually focuses on possible changes in the global

circulation [74] and on the expected melting of polar ice resulting in the consequential

flooding on the global scale [61, 62]. Meanwhile, apart from the apparent hydrophysical

aspects of the problem, ocean is also a huge ecosystem and the effect of global warming

on its functioning may have disastrous consequences comparable or even worse than the

global flooding.

Functioning of marine ecosystems, with a particular interest in the plankton dynamics,

has long been a focus in ecological and environmental research [33, 46, 76]. One reason for

this is that plankton is the basis of the marine food chain; hence, a good understanding of

its dynamics is required for more efficient fishery [16, 22, 57]. In a more general context,

understanding of plankton dynamics is important for a reliable estimation of marine

ecosystems productivity [5, 38]. We mention here that mathematical modelling has proved

to be an efficient research tool to reveal the properties of the plankton dynamics using both

simple, conceptual models and more complicated ‘realistic’ ones [3, 5, 26, 57, 64, 66, 77].

Plankton is not only a key element of the marine food web but also have a significant

effect on the climate [11, 78] and the composition of the atmosphere, in particular, on the

amount of oxygen [33, 60]. Plankton consists of two different taxa such as phytoplankton

and zooplankton. Zooplankton are animals (e.g. krill) and phytoplankton are plants. As

most plants do, phytoplankton can produce oxygen in photosynthesis when sufficient light

is available, e.g. in the photic layer of the ocean during the daytime. The oxygen first

come to the water and eventually into the air through the sea surface thus contributing

to the total oxygen budget in the atmosphere. This contribution appears to be massive:

it is estimated that about 70% of the Earth atmospheric oxygen is produced by the ocean

phytoplankton [33, 60]. Correspondingly, one can expect that a decrease in the rate of

the oxygen production by phytoplankton may have catastrophic consequences for life on

Earth possibly resulting in mass extinction of animal species, including the mankind.

Therefore, identification of potential threats to the oxygen production is literally an issue

of vital importance.

It is well known that the water temperature has a notable effect on the phytoplankton

growth [4, 22, 72]. Because of its control on phytoplankton metabolic processes, the

temperature can be expected to affect the oxygen production and this has indeed been

observed in several studies [13, 46, 50]. Phytoplankton produces oxygen in photosynthesis

during the day but consumes it through respiration during the night. The surplus - i.e. the

difference (per phytoplankton cell) between the amount of oxygen produced during the
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day and its amount consumed during the night - is called the net oxygen production. It

is the net production that eventually contributes to the atmospheric oxygen. The matter

is that the photosynthesis rate and the respiration rate depend on the water temperature

differently [32, 73]. As a result, the net production is a function of temperature. The

temperature dependence of the net production observed in the sea was attributed to the

effect of local geophysical anomalies [73]. In this paper, we consider an increase in the

water temperature resulting form the global warming. Our goal is to understand what

can be the effect of the water warming on the coupled plankton-oxygen dynamics and

how it may affect the oxygen budget.

We address the above problem by means of mathematical modelling. Firstly, we de-

velop a conceptual plankton-oxygen model that takes into account basic processes related

to oxygen production in photosynthesis and its consumption, because of respiration, by

phyto- and zooplankton in a well-mixed (nonspatial) system. Secondly, we consider the

properties of the model (both analytically and numerically) and show that the system’s

dynamics is only sustainable in a certain parameter range, namely, for an intermediate

value of the oxygen production rate. The corresponding long-term system behavior is de-

termined either by a positive “coexistence” stable steady state or by a stable limit cycle.

Outside that range, the system does not possess positive attractors and the dynamics is

not sustainable resulting in plankton extinction and oxygen depletion. Thirdly, we con-

sider the system’s response to a gradual change in the oxygen production rate (the latter

being assumed to be a result of the global warming) and show that, once the production

rate surpasses a certain critical value, the system goes to extinction.

We then consider a spatially explicit extension of our model where plankton and

oxygen are carried around by turbulent water flows. In the parameter range where the

nonspatial system possesses a stable limit cycle, the spatial system exhibits the formation

of irregular spatiotemporal patterns. The patterns are self-organized in the sense that

they are not caused by any pre-defined spatial structure. We show that the response

of the spatial system to the gradual change in the oxygen production rate is similar to

that of the nonspatial one, i.e. a sufficiently large change in the production rate results in

the plankton extinction and oxygen depletion. Interestingly, the spatial system appears

to be sustainable in a broader parameter range so that plankton and oxygen persist for

values of the production rate where the nonspatial system goes extinct. We also show that

the spatial system may provide some early-warning signals for the approaching ecological

disaster (i.e. plankton extinction and oxygen depletion); in particular, we observe that,

prior to the disaster, the spatial distributions of plankton and oxygen become almost

periodical.
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2 Main Equations

Marine ecosystem is a complex system consisting of many nonlinearly interacting species,

organic substances and inorganic chemical components. Correspondingly, a ‘realistic’

ecosystem model can consist of many equations [24, 48]. However, since in this paper

we are mostly interested in the dynamics of the dissolved oxygen (for the sake of brevity,

the word ‘dissolved’ will be omitted below), in particular in the conditions of sustainable

oxygen production due to the phytoplankton photosynthetic activity, such a detailed de-

scription seems to be excessive. Instead, we consider a simple, conceptual model that

includes oxygen itself and the phytoplankton as its producer. The model also include

zooplankton as the effect of zooplankton on the oxygen-phytoplankton dynamics is ex-

pected to be important for two reasons: (i) because it is known to be a factor controlling

the phytoplankton density [33, 77] and (ii) the zooplankton obviously consumes oxygen

through breathing. The structure of the model is shown schematically in Fig. 1.

Figure 1: The structure of our conceptual model describing the interactions between oxy-

gen, phytoplankton and zooplankton. Arrows show flows of matter through the system.

Phytoplankton produces oxygen through photosynthesis during the day-time and con-

sumes it during the night. Zooplankton feeds on phytoplankton and consumed oxygen

through breathing; more details are given in the text.

Differential equations are known to be an efficient mathematical framework to describe

the plankton dynamics [24, 39, 40, 41]. We begin with the non-spatial case which is

relevant in the case of a well-mixed ecosystem. The corresponding model is given by the
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following equations:

dc

dt
= Af(c)u− ur(c, u)− vr(c, v)−mc, (1)

du

dt
= g(c, u)− e(u, v)− σu, (2)

dv

dt
= κ(c)e(u, v)− µv, (3)

where c is the concentration of oxygen at time t, u and v are the densities of phytoplankton

and zooplankton, respectively. The term Af(c) describes the rate of oxygen production

per unit phytoplankton mass. Whilst function f(c) describes the rate of increase in

the concentration of the dissolved oxygen because of its transport from phytoplankton

cells to the surrounding water (see the details below), factor A takes into account the

effect of the environmental factors (such as the water temperature) on the rate of oxygen

production inside the cells. Function g(c, u) describes the phytoplankton growth rate

which is known to be correlated to the rate of photosynthesis [26]; we therefore assume

it to depend on the amount of available oxygen. Terms ur and vr in Eq. (1) are the

rates of oxygen consumption by phytoplankton and zooplankton, respectively, because of

their respiration. The coefficient m is the rate of oxygen loss due to the natural depletion

(e.g. due to biochemical reactions in the water). The term e in Eq. (2) describes feeding

of zooplankton on phytoplankton. The consumed phytoplankton biomass is transformed

into the zooplankton biomass with efficiency κ, see the first term in the right-hand side of

Eq. (3). Since the well-being of zooplankton obviously depend on the oxygen concentration

(so that, ultimately, it dies if there is not enough oxygen to breathe), we assume that κ =

κ(c). Coefficients σ and µ are the natural mortality rates of the phyto- and zooplankton,

respectively.

In order to understand what can be the properties of function f(c), we have to look

more closely at the oxygen production. Oxygen is produced inside phytoplankton cells

in photosynthesis and then diffuses through the cell membrane to the water. Diffusion

flux always directed from areas with higher concentration of the diffusing substance to

the the areas with lower ones and it is the larger the larger is the difference between

the concentrations (cf. the Fick law). Therefore, for the same rate of photosynthesis, the

amount of oxygen that gets through the cell membrane will be the larger the lower is the

oxygen concentration in the surrounding water. Therefore, f should be a monotonously

decreasing function of c that tends to zero when the oxygen concentration in the water

is becoming very large, i.e. for c → ∞. The above features are qualitatively taken into

account by the following parametrization:

f(c) = 1− c

c + c0

=
c0

c + c0

, (4)

(known as the Monod kinetics) where c0 is the half-saturation constant.

Considering phytoplankton multiplication, we assume that g(c, u) = α(c)u−γu2 where

the first term describes the phytoplankton linear growth and the second term account for
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intraspecific competition. Here α(c) is the per capita growth rate and coefficient γ de-

scribes the intensity of the intraspecific competition. Phytoplankton produce oxygen in

photosynthesis (during the day) but it also needs it for breathing (mainly during the

night), therefore we assume that low oxygen concentration is unfavorable for phytoplank-

ton and is likely to depress its reproduction. On the other hand, a phytoplankton cell

cannot take more oxygen than it needs. Hence α should be a monotonously increasing

function of c tending to a constant value for c →∞. The simplest parametrization for α

is then given by the Monod function:

α(c) =
Bc

c + c1

, (5)

where B is the maximum phytoplankton per capita growth rate in the large oxygen limit

and c1 is the half-saturation constant. Thus, for g(c, u) we obtain:

g(c, u) =
Bcu

c + c1

− γu2. (6)

Note that, in the special case c = const, Eq. (1) can me omitted and the system (1–3)

reduces to a prey-predator system with the logistic growth for prey (phytoplankton):

du

dt
=

(
K(c)− u

)
γu− e(u, v)− σu, (7)

dv

dt
= κ(c)e(u, v)− µv, (8)

where the carrying capacity K(c) = (B/γ)c/(c + c1) appears to be a function of oxygen

concentration. We mention here that the prey-predator system has often been used in

plankton studies either to study some fundamental properties of the plankton dynamics

[57] or as an elementary ‘building block’ in more complicated models [48]. We consider

Holling type II response for the predator (zooplankton) and use the following standard

parametrization for predation:

e(u, v) =
βuv

u + h
, (9)

where β is the maximum predation rate and h is the half-saturation prey density.

The next step is to decide about the parametrization of plankton respiration, see

the second and third terms in the right-hand side of Eq. (1). For the phytoplankton

respiration, we apply the argument similar to the one used above for the phytoplankton

growth rate α(c) and describe it as

ur(c, u) =
δuc

c + c2

, (10)

where δ is the maximum per capita phytoplankton respiration rate and c2 is the half-

saturation constant.
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Regarding the zooplankton respiration, for many zooplankton species their oxygen

consumption is known to depend on the oxygen concentration [12, 13, 17]. The consump-

tion rate usually shows a linear increase at small oxygen concentration but tends to a

constant, saturating value at large oxygen concentration (cf. Fig. 1 in [12]). The simplest

parametrization of this kinetics is the Monod function:

vr(c, u) =
νcv

c + c3

, (11)

where ν is the maximum per capita zooplankton respiration rate and c3 is the half-

saturation constant.

Finally, with regard to the zooplankton feeding efficiency as a function of the oxygen

concentration, κ(c), there are generic biological arguments suggesting that it should be of

sigmoidal shape, i.e. being approximately constant for the oxygen concentrations above a

certain threshold but promptly decaying to zero for the concentration below the threshold

[42, 71]. Correspondingly, we parameterize it as follows:

κ(c) =
ηc2

c2 + c4
2

, (12)

where 0 < η < 1 is the maximum feeding efficiency and c4 is the half-saturation constant.

Considering Eqs. (1–3) together with (4), (6) and (9–12), our model takes the following

more specific form:

dc

dt
=

Ac0u

c + c0

− δuc

c + c2

− νcv

c + c3

−mc, (13)

du

dt
=

(
Bc

c + c1

− γu

)
u− βuv

u + h
− σu, (14)

dv

dt
=

ηc2

c2 + c4
2

βuv

u + h
− µv. (15)

Due to their biological meaning, all parameters are nonnegative.

Since Eqs. (13–15) will mostly be studied by simulations, it is convenient to introduce

dimensionless variables. Let us consider

t′ = tm, c′ =
c

c0

, u′ =
γu

m
, v′ =

βv

m
(16)

and the new (dimensionless) parameters as

B̂ =
B

m
, Â =

A

c0γ
, δ̂ =

δm

c0γ
, ν̂ =

νm

βc0

, σ̂ =
σ

m
, µ̂ =

µ

m
, (17)

ĥ =
γh

m
, η̂ =

ηβ

m
, and ĉi =

ci

c0

where i = 1, 2, 3, 4. (18)
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Equations (13–15) then turn into the following:

dc

dt
=

Au

c + 1
− δuc

c + c2

− νcv

c + c3

− c, (19)

du

dt
=

(
Bc

c + c1

− u

)
u− uv

u + h
− σu, (20)

dv

dt
=

ηc2

c2 + c4
2

uv

u + h
− µv, (21)

where primes and hats are omitted for the notations simplicity. Note that meaningful

range of dimensionless parameters is, generally speaking, different from that of the origi-

nal (dimensional) parameters; in particular, the dimensionless feeding efficiency η is not

necessarily less than one any more.

In the next section, we consider the steady states of the system (19–21), and its

transient dynamics will be considered in Section 3.3. A spatially-explicit extension of the

system (19–21) will be considered in Section 5.

3 Analysis and Preliminary Results

System (19–21) is rather complicated. In order to better understand it properties, it is

instructive to start the analysis with a simpler model that does not contain zooplankton,

which is obtained from (19–21) by setting v(t) ≡ 0.

3.1 Oxygen-phytoplankton system

The zooplankton-free model is given by the following equations:

dc

dt
=

Au

c + 1
− uc

c + c2

− c, (22)

du

dt
=

(
Bc

c + c1

− u

)
u− σu. (23)

Correspondingly, its steady states are the solutions of the following system:

Au

c + 1
− uc

c + c2

− c = 0, (24)
(

Bc

c + c1

− u

)
u− σu = 0. (25)

Equations (24–25) define the two (null)isoclines of the system, which we will call the oxy-

gen isocline and the phytoplankton isocline, respectively. The oxygen isocline is therefore

given by

u =
c(c + 1)(c + c2)

Ac2 + (A− 1)c− c2
. (26)
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Figure 2: (a) The (null)isoclines of the oxygen-phytoplankton system (24-25). Black

curves show the first (oxygen) isocline (26) obtained for c2 = 1 and A = 3, 5, 6 and 7

(from left to right, respectively); red curve shows the second (phytoplankton) isocline (27)

obtained for B = 1.8, σ = 0.1 and c1 = 0.7. (b) The steady state values of c (obtained as

the intersection points of the two isoclines) as a function of the controlling parameter A.

The phytoplankton isocline consists of two parts, i.e. of the following curve

u =
Bc

c + c1

− σ (u > 0), (27)

and the straight line u = 0.

We readily observe that (0, 0) is a steady state of the system. As for the positive equi-

libria (if any), it does not seem possible to solve Eqs. (26–27) explicitly. Instead, since

system’s equilibria are the intersection points of the two isoclines, important conclusions

can be made by analyzing the mutual position of the corresponding curves. Figure 2a

shows the isoclines (26) and (27) obtained for some hypothetical parameter values. There-

fore, system (24-25) can have two positive equilibria (c̃1, ũ1) and (c̃2, ũ2).

It is readily seen that the extinction state (0, 0) exists for all parameter vales. The

two positive equilibria only exist in a certain parameter range. Considering A as the

controlling parameter (for the reason that will be explained in Section 4) and taking into

account its effect on the shape of the oxygen isocline (cf. Fig. 2a), we conclude that the

positive equilibria are only feasible if A is not too small, i.e. above a certain critical value.

When the value of A decreases, the two positive steady states move towards each other,

so that they eventually merge and disappear; see Fig. 2b.

The stability of the steady states can be revealed by considering the direction of the

flow (dc
dt

, du
dt

) in the (c, u) phase plane of the system (22–23); see Fig. 3. It is straightforward

to see that the extinction state and the upper positive state are stable nodes whilst
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Figure 3: A sketch of the phase plane of the oxygen-phytoplankton system. Black and

red curves show the oxygen isocline and phytoplankton isocline, respectively, large black

dots show the steady states, black dashed curves show sample trajectories of the system,

arrows show the direction of the phase flow as given by vector (dc
dt

, du
dt

).

the lower positive state is a saddle (hence unstable). Thus, when A falls below the

critical value, the disappearance of the positive steady states happens in the saddle-node

bifurcation, so that only trivial the extinction state remains feasible. A similar change

in the system properties (i.e. the disappearance of the positive equilibria in a saddle-

node bifurcation) can also occur as a result of an increase in c1 or decrease in B. From

the ecological point of view, this bifurcation corresponds to an ecological disaster with a

complete depletion of oxygen and the extinction of phytoplankton.

3.2 Oxygen-phyto-zooplankton system: steady states analysis

We now proceed to the analysis of the equilibria of the full system (19–21). Obviously,

the steady state values are the solutions of the following equations:

dc

dt
= 0 =

Au

c + 1
− uc

c + c2

− νcv

c + c3

− c, (28)

du

dt
= 0 =

(
Bc

c + c1

− u

)
u− uv

u + h
− σu, (29)

dv

dt
= 0 =

ηc2

c2 + c4
2

uv

u + h
− µv. (30)

Correspondingly, the system possesses the following steady states:

• The trivial equilibrium E1 = (0, 0, 0) corresponding to the depletion of oxygen and

the extinction of plankton. It is readily seen that this equilibrium exists always,

regardless the choice of parameter values.
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• The two semi-trivial, boundary equilibria E
(1)
2 = (c̃1, ũ1, 0) and E

(2)
2 = (c̃2, ũ2, 0)

where the steady state values c̃i and ũi (i=1,2) are given by Eqs. (26–27). Corre-

spondingly, as was discussed in Section 3.1, these states exist only if A is above the

critical value.

• The positive (coexistence) equilibrium E3 = (c̄, ū, v̄).

Note that, whilst the existence of steady states E1, E
(1)
2 and E

(2)
2 can be readily seen,

the existence and uniqueness of E3 is not at all obvious. System (28–30) cannot be solved

analytically. Instead, Eqs. (28–30) were solved numerically with parameter values chosen

from a broad range, and it was established that a positive steady state exists unless A is

too large or too small.

Now we discuss the stability of steady states E1, E
(1)
2 , E

(2)
2 and E3. A general method

to reveal the stability of a steady state is to calculate the eigenvalues of the Jacobian

matrix (see Appendix). For the extinction state (E1), calculations are simple resulting in

λ1 = −1, λ2 = −σ and λ3 = −µ. Thus, the extinction state is always stable.

For the boundary state E
(1)
2 , we recall that the corresponding steady state (c̃1, ũ1) of

the oxygen-phytoplankton subsystem is a saddle; therefore, E
(1)
2 is unstable.

In order to reveal the stability of E
(2)
2 , we consider the characteristic equation of the

corresponding Jacobian matrix:
[(

− Au

(1 + c)2
− 1− uc2

(c + c2)2
− λ

)(
Bc

c + c1

− 2u− σ − λ

)
(31)

−
(

A

1 + c
− c

c + c2

)(
Bc1u

(c + c1)2

)]
·
(

u

u + h

(
c2

c2 + c4
2

)
− µ− λ

)
= 0,

where c and u are the steady state values given by Eqs. (26–27). Due to the structure

of the Jacobian matrix (see Appendix), Eq. (31) factorizes so that the part in the square

brackets corresponds to the oxygen-phytoplankton subsystem where we already know the

result: (c̃2, ũ2) is always stable, therefore both eigenvalues are negative. The stability of

E
(2)
2 is then determined by the third eigenvalue:

λ3 =
u

u + h

(
c2

c2 + c4
2

)
− µ. (32)

Unfortunately, Eq. (32) is not instructive because c and u are not known explicitly. In

order to reveal the stability of E
(2)
2 , we have to analyze it numerically; the results are

shown in Fig. 4 below.

Regarding the stability of the coexistence steady state E3, the corresponding char-

acteristic equation is very complicated and hence can only be solved numerically. We

obtain that, for this steady state, one eigenvalue is real and always negative whilst the

other two eigenvalues are complex conjugate where their real part can be positive or

negative depending on parameter values.
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Figure 4 summarizes the results of the steady states analysis as a map in parameter

plane (A, c1). Here c1 is chosen as the second controlling parameter because it describes

the effect of oxygen on phytoplankton growth. In Domain 3, i.e. for some intermediate

values of A, E3 is stable and E
(2)
2 is unstable. The system therefore exhibits bistability

(recall that E1 is always stable). With a decrease in A, E
(2)
2 becomes stable, so that for

the parameters in Domain 2 the system exhibits tristability. With a further decrease in

A, i.e. in Domain 1, E
(2)
2 disappears in a saddle-node bifurcation (see Section 3.1). For

approximately the same value of A, the coexistence state disappears as well so that, for

sufficiently small values of A, the only attractor of the system is the extinction state.

With an increase in A, i.e. in Domain 4, E
(2)
2 remains unstable (a saddle point) and

E3 looses its stability to become an unstable focus. For these parameters, the unstable

state E3 is surrounded by a stable limit cycle that appears through the Hopf bifurcation

when crossing from Domain 3 to Domain 4. With a further increase in A, the limit cycle

disappears through a nonlocal bifurcation when crossing from Domain 4 to Domain 5.

For parameter values from Domain 5, the only attractor of the system is the extinction

state E1.

0 0.5 1 1.5 2 2.5 3
0.1

0.2

0.3

0.4

0.5

0.6
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0.9

1
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1 4 532

Figure 4: A map in the parameter plane (A, c1) where different domains correspond

to different stability of equilibria E
(2)
2 and E3; see details in the text. Since the map is

obtained in numerical simulations, the position of the domains boundaries is approximate.

From the ecological point of view, the structure of (A, c1) parameter plane means that

the system is viable (in particular, ensuring sustainable production of oxygen) only in

the intermediate range of A. As we will show below, this observation have important

implications in the context of the climate change.

3.3 Numerical simulations

In the nonspatial system (19-21), the information about the steady states existence and

stability provides an exhausting overview of the large-time dynamics of the system. How-

ever, it does not always give enough details about the transient stage of the dynamics
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given by the evolution of specific initial conditions. Meanwhile, there is a growing un-

derstanding that the transient dynamics may be more relevant to the dynamics of real

ecosystems than the large-time asymptotics, cf. [34, 35]. In order to make an insight into

this issue, in this section we present the results of numerical simulations of the system

(19-21) choosing parameter values representative of all interesting dynamical regimes. We

fix most of the parameters at some hypothetical values as B = 1.8, σ = 0.1, c1 = 0.7,

c2 = 1, c3 = 1, c4 = 1, η = 0.7, δ = 1, ν = 0.01, µ = 0.1 and h = 0.1, but vary A in a

broad range.

Figure 5 shows the oxygen and plankton densities versus time obtained for parameter

A chosen in Domain 4 or Domain 5 (cf. Fig. 4). For parameters of Fig. 5a, the system

possesses a stable limit cycle so that the initial conditions promptly converge to oscillatory

dynamics. Parameters of Fig. 5b are further away from the Hopf bifurcation curve (i.e. the

boundary between Domains 3 and 4) so that the limit cycle is of a bigger size, which

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time

c,
u

,v

 

 

oxygen
phytoplankton
zooplankton

(a)

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time

c,
u

,v

 

 

oxygen
phytoplankton
zooplankton

(b)

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time

c,
u

,v

 

 

oxygen
phytoplankton
zooplankton

(c)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

c,
u

,v

(d)

Figure 5: Oxygen concentration (blue) and phyto- and zooplankton densities (green

and black, respectively) vs time obtained for the initial conditions c0 = 0.385, u0 = 0.3,

v0 = 0.1 and parameters (a) A = 2.02, (b) A = 2.0534, (c) A = 2.054, and (d) A = 4.

Other parameters are given in the text.
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Figure 6: Trajectories of the oxygen-phyto-zooplankton dynamical system shown in the

corresponding 3D phase space. Blue star shows the starting point (i.e. the initial val-

ues), red star shows the end point reached over the given time. Red diamond shows the

coexistence steady state E3, red circles show the zooplankton-free states E
(1)
2 and E

(2)
2 .

Parameters are the same as in Fig. 5.

results in sustainable oscillations of a much larger amplitude. The limit cycle disappears

for parameters of Fig. 5c, so that the species densities go to extinction after just a few

oscillations. Parameters of Fig. 5d are further into Domain 5, there is no limit cycle and

it is not surprising that the initial conditions promptly converge to zero. Interestingly,

the extinction is preceded by an outbreak, so that the initial values first show a significant

increase before starting decaying to extinction.

In order to make it easier to understand the system dynamics, as well as to trace

the changes in the system properties, we also use another way to present the simulation

results. Figure 6 shows the results of Fig. 5 as the trajectories in the corresponding three-

dimensional phase space. Here the red circles show the boundary steady states E
(1)
2 and

E
(2)
2 , the red diamond shows the positive coexistence steady state E3, the blue star shows

the initial conditions, i.e. the starting point of the trajectory, and the red star shows the

end point of the trajectory reached over the given simulation time. It readily seen that
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the peak in the species densities observed in Fig. 5d is the effect of the saddle point E
(1)
2 .

We mention here that, in the parameter range where the stable limit cycle exists, the

system has two attractors: the limit cycle itself and the extinction state E1. Hence the

dynamics depends on the initial conditions, i.e. which basin of attraction they belong

to. For the results shown in Figs. 5a-b and 6a-b, the initial conditions were chosen from

the attraction basin of the limit cycle. In case the initial condition are chosen in the

attraction basin of E1, the dynamics is less interesting as the trajectories approach the

origin without any oscillations (not shown here).

4 Effect of the global warming: results and

preliminary discussion

As was discussed in the introduction, variations in the local water temperature can have

an effect on the photosynthesis rate and hence on the net amount of oxygen produced

over the daily cycle [32, 73]. In our model (19–21) (or (13–15) in the original dimensional

variables), the rate of oxygen production is quantified by parameter A. In order to reflect

the effect of temperature T on photosynthesis, A becomes a function of T . In its turn, the

temperature is a function of time, so that A becomes a function of time too. Therefore,

we consider A = A(t) but keep other parameters fixed for the sake of simplicity.

Water temperature is known to fluctuate significantly on all temporal scales, e.g. hourly,

daily, monthly and annually [43]. A “realistic” function A(t) taking into account those

fluctuations is likely to be very complicated. However, since the purpose of this study is

to consider the effect of global warming conceptually rather than predictively, this level

of details seems to be excessive. Instead, in order to account for the general trend (and

not for details), we consider the simplest possible choice of A(t), i.e. the linear function:

A = A0 for t < t1, A = A0 + ω (t− t1) for t ≥ t1. (33)

Here t1 is the moment when the global warming started, A0 is the rate of net oxygen

production ‘before changes’, and parameter ω quantifies the rate of global warming.

Available data are meagre and it remains unclear what is the typical phytoplankton

response to an increase in the water temperature, i.e. whether the rate of oxygen produc-

tion by phytoplankton actually decreases or increases. Therefore, we consider two possible

scenarios: (i) where a higher water temperature facilitates oxygen production (ω > 0) and

(ii) where a higher temperature hampers oxygen production (ω < 0). Since global warm-

ing is a slow process, we consider ω to be very small, i.e. |ω| ¿ min{A,B, δ, σ, µ, ν η}.
For the initial value of A, we assume that prior to the climate change the ecosystem was

in a ‘safe state’, i.e. with the coexistence steady state E3 either being stable (Domain 3

in Fig. 4) or unstable but surrounded by a stable limit cycle (Domain 4), so that A0 is

chosen accordingly.
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Note that, with A now being a function of t, the system (19–21) becomes non-

autonomous and strictly speaking the results of the previous section do not immediately

apply. However, having assumed that A(t) is a slow changing function, we expect that

the properties of the corresponding autonomous system (i.e. with A = const) in different

parameter ranges (see Fig. 4) can provide a convenient skeleton for understanding the

effect of changes.

We begin with case (i), i.e. ω > 0. Based on the heuristic arguments above, the system

is expected to develop, in the course of time, oscillations of increasing amplitude as an

increase in A eventually moves the system further into Domain 4, hence further away

from the Hopf bifurcation curve. If the warming continues for a sufficiently long time,

which results in A becoming sufficiently large, in one can expect that all species should

go extinct (in particular, the oxygen concentration drops to zero) once the system moves

to Domain 5 where the only steady state of the autonomous system is extinction.

This appears to be in full agreement with simulations. Figure 7 shows the oxygen

concentration and plankton densities versus time obtained for the rate of warming ω =

10−5 and two different initial values of the oxygen production rate, Figs. 7a,c for A0 = 1.97

and Figs. 7b,d for A0 = 2. In both cases, A0 is in the parameter range where E3 is

a stable focus (Domain 3). Correspondingly, in both cases, at early times the system

exhibits oscillations of decreasing amplitude as the system is converging to the stable

steady state. In the case shown in Figs. 7a,c, the final value of the oxygen production

rate is A = 2 which is still below the Hopf bifurcation value (which is AH ≈ 2.01) so

that the oscillations eventually die out. However, in the case shown in Fig. 7b,d, the

final value of the oxygen production rate is A = 2.03 > AH . Correspondingly, although

the amplitude of the oscillations decreases at the beginning, it starts increasing when the

system passes the Hopf bifurcation point.

For parameter values that result in a larger final value of A, i.e. either a larger A0 or

a larger ω, the changes in the system dynamics can be more significant. Figure 8 shows

the oxygen concentration and the plankton densities vs time obtained for the same rate

of warming ω = 10−5 but larger initial values of the oxygen production rate, A0 = 2.024

and A0 = 2.048. In both cases, A0 lies in the parameter range where E3 is a unstable

focus surrounded by a stable limit cycle (Domain 4). For A0 = 2.024 (see Fig. 8a,c), the

warming leads to oscillations of steadily growing amplitude but without any qualitative

changes in the dynamics. However, for A0 = 2.048 (Fig. 8b,d), the increase in A results

in an ecological disaster where, after a number of oscillations of increasing amplitude,

plankton suddenly goes extinct and the oxygen concentration falls to zero. This sudden

and dramatic change in the dynamics obviously happens when A moves, in the course of

time, to the parameter range where there is no limit cycle and the only attractor of the

corresponding autonomous system is extinction (cf. Domain 5 in Fig. 4).

A similar dramatic change in the system dynamics can occur for a smaller, ‘safe’ value

of A0 but for a higher rate of global warming. Figure 9 shows the oxygen concentration
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Figure 7: (a,b) Oxygen concentration (blue) and the density of phyto- and zooplankton

(green and black, respectively) vs time obtained for ω = 10−5 and the initial conditions

c0 = 0.385, u0 = 0.3 and v0 = 0.1, the thick black line at the top shows A(t); (c,d) the

corresponding system trajectories shown in the 3D phase space of the system. (a,c) for

A0 = 1.97, (b,d) for A0 = 2, other parameters are given in the text (see the beginning of

Section 3.3).

and plankton densities obtained for A0 = 2 (as in Figs. 7b,d) and ω = 10−4. It is readily

seen that the effect of climate changes on the dynamics of the system follows the same

scenario where the system exhibits oscillations of increasing amplitude up to a certain

time but then suddenly go to extinction (oxygen depletion). A close look at A(t) (shown

by the thick black line) reveals that the disaster occurs for approximately the same value

of A as in Fig. 8b, i.e. for A ≈ 2.055.

Note that, since in our conceptual model (33) the global warming is assumed to con-

tinue indefinitely, the change in the system dynamics resulting in the catastrophic plank-
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Figure 8: (a,b) Oxygen concentration (blue) and the density of phyto- and zooplankton

(green and black, respectively) vs time; (c,d) the corresponding system trajectories in the

3D phase space of the system. (a,c) for A0 = 2.024, (b,d) for A0 = 2.048, other parameters

are the same as in Fig. 7.

ton extinction and oxygen depletion is bound to happen regardless the initial conditions

and the rate of change ω. A choice of smaller A0 or ω would only require a longer time for

A(t) to reach the dangerous range but could not avert the disaster. In particular, none of

the cases shown in Figs. 7 and 8a,c is sustainable; in each of these cases, if the system is

let to run for longer, it will inevitably end up in extinction.

We now consider case (ii) where an increase in water temperature hampers the oxygen

production, i.e. where ω < 0. As we have seen above, the effect of changes in the oxygen

production rate A on the system dynamics can be predicted and understood by estab-

lishing the correspondence between the value of A(t) at different time and the properties

of the system with A = const at different ranges of parameter A (see Fig. 4). Therefore,

one can expect that the plankton should go extinct and the oxygen concentration to drop

to zero once A becomes sufficiently small, i.e. when moving to Domain 1 where the only
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Figure 9: Oxygen concentration (blue) and the density of phyto- and zooplankton (green

and black, respectively) vs time obtained for A0 = 2 and ω = 10−4, other parameters are

the same as above. Thick black line shows A(t).

steady state of the autonomous system is extinction. This appears to be in full agreement

with simulations (that we do not show here for the sake of brevity). The dynamics is

somewhat trivial in this case. Concentration c and densities u and v remain close to their

steady state values (as given by E3); no oscillations were observed. At the moment when

A(t) reaches the critical value where E3 disappears, the densities start decreasing and

promptly approach the extinction state E1. As well as in case (i), the extinction occurs

regardless the initial conditions and the rate of warming ω; a choice of large A0 and/or

smaller ω only postpone the extinction but cannot avert it.

Therefore, we arrive at the conclusion that sustainable functioning of the plankton-

oxygen system is only possible in a certain intermediate range of the oxygen production

rate A. Since A is known to be a function of temperature, it suggests that sustainable

functioning is only possible in an intermediate range of temperatures. Even if the current

state of the system is safe, a sufficiently large warming (roughly estimated as 5-6◦C [73])

would inevitably lead to an ecological disaster resulting in a complete depletion of oxygen.

The above conclusion is made based on the properties of our model (19–21). The

question arises here as to how general and realistic this conclusion is as the model ap-

parently leaves many features of real marine ecosystems out of the scope. In particular,

the model (19–21) does not contain space, hence assuming that both oxygen and plank-

ton are distributed uniformly. Although this assumption is known to work well in some

cases (in the so-called “well-mixed” systems), it becomes irrelevant in a situation where

the non-uniformity of the plankton distribution becomes prominent and hence cannot be

neglected. Meanwhile, strongly heterogeneous spatial distribution of plankton is rather

common in marine ecosystems [23, 56, 76]. An observation that makes the spatial aspect

of the plankton dynamics especially relevant to this study is that conditions of species
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extinction can be significantly different in spatially-explicit models compared to their non-

spatial counterparts; see [67, 68, 69]. Because of the self-organized pattern formation, the

species may be able to persist in a parameter range where they would go extinct in the

nonspatial system [54]. In the next section, we consider a spatially-explicit version of the

model (19–21) and investigate how space may alter the effect of global warming on the

plankton dynamics and the oxygen production.

5 Spatial Dynamics

One factor that makes the ecosystem dynamics spatial is the movement of organisms. In

the marine environment, movement occurs because organisms either are entrained with

the turbulent water flows or possess the ability to self-motion, or because of a combined

action of the two mechanism. Phytoplankton is mostly passive but zooplankton can move

by itself. The relative importance of turbulent flows and self-motion depends on the

spatial scale and the spatial structure of the aquatic environment. For instance, because

of ocean stratification and the relatively small thickness of the upper (productive) ocean

layer, vertical migration of zooplankton is known to be very important and strongly affects

its vertical distribution and feeding rates [29]. On the contrary, horizontal self-motion is

thought to play a minor role compared to the effect of lateral turbulent mixing [70].

Correspondingly, for the purposes of this study we consider the following idealized

system. We assume that the vertical distribution of both phyto- and zooplankton is

uniform through the photic layer where most of the photosynthetic activity takes place.

For the horizontal distribution, we consider a one-dimensional (1D) space, which can be

interpreted as a transect along the 2D ocean surface. Oxygen concentration and plankton

densities are functions of space x and time t, i.e. c(x, t), u(x, t) and v(x, t). We neglect the

effect of zooplankton self-movement and consider the horizontal turbulence as the main

mechanisms of spatial transport. The turbulent mixing is known to be approximated well

by the turbulent diffusion [59, 64]; thus, from (19–21) we arrive at the following equations:

∂c

∂t
= DT

∂2c

∂x2
+

Au

c + 1
− δuc

c + c2

− νcv

c + c3

− c, (34)

∂u

∂t
= DT

∂2u

∂x2
+

(
Bc

c + c1

− u

)
u− uv

u + h
− σu, (35)

∂v

∂t
= DT

∂2v

∂x2
+

ηc2

c2 + c4
2

uv

u + h
− µv. (36)

Here DT is the turbulent diffusion coefficient and 0 < x < L where L is the size of the

domain.

For numerical simulations, it is convenient to introduce the dimensionless coordinate

as x′ = x
√

m/DT in line with our choice of other dimensionless variables; see the end

of Section 2. In terms of the system (34–36), it means that DT = 1. We emphasize
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that this is not a special choice of the turbulent diffusion coefficient but just a technical

consequence of our choice of dimensionless variables.

Equations (34–36) are solved by the finite differences using the zero-flux boundary

conditions. The results below are obtained for the mesh steps ∆x = 0.5 and ∆t = 0.01;

we checked that these values are small enough not to bring numerical artifacts.

Since we are mostly interested in conditions of sustainable oxygen production and this,

in our model, is quantified by parameter A, and also because the system properties were

shown to depend on A significantly, we consider the dynamics of the the system (34–36)

for different values of A but having other parameters fixed at some hypothetical values

as B = 1.8, σ = 0.1, c1 = 0.7, c2 = 1, c3 = 1, c4 = 1, η = 0.7, δ = 1, ν = 0.01, µ = 0.1,

h = 0.1 and L = 1000.

The choice of the initial conditions is a subtle issue. An arbitrary choice that is

not consistent with the system inherent properties may result in a very long transient

dynamics [65]. Combined with the effect of the global warming, cf. Eq. (33), the long-living

transients may result in a biased prediction about the system properties. Therefore, in

order to generate appropriate initial conditions, we first consider the following “tentative”

nearly uniform species distribution:

c(x, 0) = c̄, u(x, 0) = ū, v(x, 0) =

(
x− L

2

)
ε

L
+ v̄, (37)

were c̄, ū and v̄ are the steady state values (as given by the positive equilibrium E3, see

Section 3.2) and ε is an auxiliary parameter.
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Figure 10: Snapshots of the oxygen and plankton distribution over space at (a) t = 10000

and (b) t = 12000 obtained for the “tentative” initial conditions (37) and parameters

A = 2.05 and ε = 0.02. For this value of A, the local dynamics is oscillatory due to a

stable limit cycle. Other parameters are given in the text.
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It is known for other relevant diffusion-reaction systems that initial conditions (37)

result in pattern formation which is reflective of system’s complex dynamics [54, 57, 65].

This appears to be true for the system (34–36) as well. Figure 10 shows the spatial

distributions of oxygen and plankton obtained from (37) after the system (34–36) is run

for sufficiently long time to let the transient die out. Note that there is no any notable

qualitative difference between the distributions shown in Fig. 10a (obtained for t = 10000)

and Fig. 10b (obtained for t = 12000), which indicates that the system has reached its

dynamical equilibrium. Correspondingly, we consider distribution shown in Fig. 10a as

“inherent” and use it as the initial condition for other simulations shown below.

We now proceed to simulations for different values of A. Figure 11a shows the snapshot

of oxygen and plankton spatial distributions obtained at t = 10000 for A = 2.02. For

this value of A, the local dynamics is oscillatory; see Fig. 5a. The system dynamics is

sustainable and the irregular spatiotemporal pattern persists; no extinction occurs. The

amplitude of the spatial variation becomes somewhat smaller compared to the initial

condition shown in Fig. 10a, because the size of the limit cycle is smaller for this value of

A.

Figure 11b shows the oxygen and plankton distributions obtained at t = 10000 for

A = 2.054. Again we observe that, in a manner apparently similar to the above, the

system persists through formation of spatiotemporal patterns. However, there is one

important difference: we recall that, for this value of A, the nonspatial system goes to

extinction; see Fig. 5c. We therefore conclude that the conditions of sustainable system’s

functioning are less restrictive in the spatially explicit case.
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Figure 11: Snapshots of the oxygen and plankton spatial distribution obtained at t =

10000 for (a) A = 2.02 and (b) A = 2.054. Other parameters are given in the text. The

initial conditions are shown in Fig. 10a.

The above results were obtained for a fixed value of A. Now we are going to consider
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the effect of the global warming as is modeled by Eq. (33), i.e. where A changes with time.

Figure 12 shows snapshots of the oxygen and plankton distributions at t = 10000 obtained

for ω = 10−5 and different values of the initial oxygen production rate A0, Fig. 12a for

A0 = 2 and Fig. 12b for A0 = 2.048. The system remains sustainable and no extinction

occur. Interestingly, the corresponding ‘final’ values of A(t) are, respectively, A = 2.1

and A = 2.148, which in both cases is larger than the maximum possible A(t) in the

nonspatial system: recall that, for the parameters of Fig. 12b, the nonspatial system goes

extinct already at t ≈ 750, cf. Fig. 8b. However, a further increase in A, i.e. if the system

is let to run for a longer time, results in the system crash (i.e. extinction of plankton and

complete depletion of oxygen) also in the spatial system. Figure 13 shows the plankton

densities and oxygen concentration vs time obtained for parameters of Fig. 8b, Fig. 13a

shows the local densities (concentration) obtained at a fixed point in the middle of the

domain, i.e. c(x0, t), u(x0, t) and vc(x0, t) for x0 = 500, and Fig. 13b shows the spatially

averaged densities < c > (t), < u > (t) and < v > (t) where

< p > =
1

L

∫ L

0

p(x, t) dx, (38)

where p = c, u, v. It is readily seen that gradual decrease of the average densities is

followed by a sudden catastrophe when the oxygen production rate becomes too high.

Interestingly, as a response to an increase in A, the properties of the species spatial

distribution can change significantly in the course of time. Figure 14 shows the snapshots

of oxygen and plankton distribution at two different moments obtained for A0 = 2.05

and for ω = 10−4. Whilst at the beginning of the warming (see Fig. 14a obtained for
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Figure 12: Snapshots of the oxygen and plankton spatial distribution obtained at t =

10000 for A(t) given by Eq. (33) with ω = 10−5 and (a) A0 = 2, (b) A0 = 2.048. Other

parameters are given in the text.
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Figure 13: (a) System components distributions for fixed space x0 = 500 for t = 30000.

(b) System components integration vs. time. The system parameters are taken from

Figure 12b.

t = 200) the spatial distribution remains qualitatively similar to the initial conditions

(cf. Fig. 10a), in particular being prominently irregular, at a later time the distribution

becomes almost spatially periodical; see Fig. 14b obtained for t = 2950. Remarkably, for

this time A(t) ≈ 2.35, which is far beyond the safe parameter range of the corresponding

nonspatial system (cf. Fig. 5). We therefore observe that the spatial system is more
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Figure 14: Snapshots of the oxygen and plankton spatial distribution obtained at (a)

t = 200 and (b) t = 2950. A0 = 2.05 and for ω = 0.0001, other parameters are given in

the text.
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stable with regard to the changes in the oxygen production rate A as the extinction of

the corresponding nonspatial system occurred at A ≈ 2.055 (cf. Figs. 7 and 9). However,

a further increase in A leads to the system crash (recall that in our model the global

warming is assumed to continue indefinitely); in particular, for the parameters of Fig. 14,

extinction occurs at t ≈ 4000, i.e. for A(t) ≈ 2.4. The corresponding temporal dynamics

of the local and spatially averaged densities is shown in Fig. 15a and Fig. 15b, respectively.

It is readily seen that, some time before the average values start their fast terminal decline,

the amplitude of the irregular fluctuations decreases dramatically, which can be regarded

as an early warning signal of the approaching catastrophe.
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Figure 15: (a) System components distributions for fixed space x0 = 500 for t = 5000. (b)

System components integration vs. time. The system parameters are taken from Figure

14b.

In conclusion to this section, we mention that the response of the spatial system to a

decrease in A (i.e. when the global warming hampers the oxygen production, cf. case (ii)

in Section 4) appears to be similar to that of the nonspatial system. No pattern formation

has been observed and the extinction occurs at approximately the same values of A as in

the nonspatial system.

6 Discussion and Conclusions

Potential effect of the global warming on the dynamics of populations, communities and

ecosystems [15, 25, 51], terrestrial as well as aquatic [27, 63], has been an issue of a

vigorous discussion recently. The focus of attention has usually been on the population

dynamics to address the possibility of extinction or invasion of particular species [6, 14]

and/or possible changes in the community structure [7, 49]. However, the overall effect
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of the climate change on ecosystems is likely to be much broader and is not exhausted

by changes in species ranges and biodiversity loss. Indeed, ecosystems are not always

subjects of passive response to large-scale environmental changes but may have active

feedbacks. In particular, plankton systems are known to affect the climate on the global

scale and hence to contribute to the climate change significantly [11, 78].

One aspect of the plankton systems functioning that remains poorly investigated is

the effect of warming on the oxygen production by phytoplankton. Dynamics of the

dissolved oxygen in marine ecosystems has been a focus on increasing attention recently

[2, 8, 10, 42, 43, 58, 75] as the concentration of dissolved oxygen is one of the fundamental

environmental variables defining the well-being of a marine ecosystem. A decrease in the

oxygen concentration below a certain level can results in hypoxia and mass mortality of

marine fauna because of asphyxiation. Moreover, this is an issue of crucial importance not

only for marine ecosystems themselves but also for terrestrial ecosystems on the global

scale as about 70% of the atmospheric oxygen budget is produced in the oceans [33, 60].

However, the effect of water warming, in particular resulting from the global climate

change, has not been considered by now. In this paper, we address this issue using math-

ematical modelling. It has been observed both in a few field studies as well as in some

laboratory experiments that the overall rate of oxygen production by phytoplankton can

change significantly as a result of an increase in the water temperature [32, 73]. Corre-

spondingly, the goal of this study was to reveal the principle possibility of an ecological

disaster, such as large-scale oxygen depletion, caused by such a change resulting from the

global warming.

We have studied the oxygen-plankton dynamics using a mathematical model that takes

into account oxygen production in photosynthesis, plankton respiration and the effect of

zooplankton predation on phytoplankton; see Fig. 1. The model is described by a system

of three coupled ODEs in the nonspatial (well-mixed) case and by three corresponding

diffusion-reaction PDEs in the spatially explicit case. The system dynamics have been

revealed by some analytical approaches and extensive numerical simulations. We first

considered a nonspatial system to reveal the structure of the parameter space and showed

that the system is sustainable only for intermediate values of the oxygen production rate.

For a sufficiently low or sufficiently high oxygen production rate, plankton goes extinct and

oxygen is depleted. For a baseline oxygen-phytoplankton system neglecting the presence

of zooplankton, the system is sustainable unless the production rate becomes too low

(see Fig. 2b). We then considered the dynamics of the corresponding non-autonomous

system where the oxygen production rate slowly changes with time to take into account

the increase in the water temperature due to the climate change. We showed that a

sufficiently large increase or decrease in the production rate results is a bifurcation leading

to a sudden depletion of oxygen and plankton extinction.

The corresponding spatially explicit system exhibits a complicated spatiotemporal

dynamics typically resulting in the formation of a transient patchy pattern. Here we
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recall that plankton patchiness is a very common property of marine ecosystems [1, 23, 30,

52, 76] and the diffusion-reaction models of phyto-zooplankton dynamics have previously

been used to describe this phenomenon, e.g. see [64], also [53, 54, 57] and references

there. This self-organized pattern formation makes the system’s dynamics sustainable in

a somewhat broader range of oxygen production rate. However, a sufficiently large increase

or decrease in the production rate leads to plankton extinction and oxygen depletion. Our

main findings are summarized in the diagram shown in Fig. 16.

Our results have important implications. A lot has been said about detrimental con-

sequences of the global warming such as, for instance, possible extinction of some species

(and the corresponding biodiversity loss) and the large-scale flooding resulting from melt-

ing Antarctic ice. In this paper, however, we have shown that the danger to be stifled

is probably more real than to be drowned. Using a model of coupled oxygen-plankton

dynamics, we have identified another possible consequence of the global warming that

can potentially be more dangerous than all others. We have shown that the oxygen pro-

duction by marine phytoplankton can stop suddenly if the water temperature exceeds a

certain critical value. Since the ocean plankton produces altogether more than one half

of the total atmospheric oxygen, it would mean oxygen depletion not only in the water

but also in the air. Should it happen, it would obviously kill most of life on Earth.

Note that it was not our aim here to calculate precise critical values of the oxygen

production rate. Instead, our aim is to identify the new threat in principle rather than

to link our analysis to specific plankton species or specific marine ecosystems. Simi-

 O x y g e n d e p l e t i o n
in all models 

Low oxygen production rate High oxygen production rate 

O x y g e n d e p l e t i o n
 in 

three-species model S a f e r a n g e
 of the 

nonspatial system 

S a f e r a n g e
 of the 

spatial system 

Figure 16: Graphical summary of our main findings.
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larly, we do not attempt to estimate the value of the model parameters. In contrast to

other simulation studies where complicated ‘realistic’ marine ecosystem models were used

(e.g. [10, 24, 43]), our model is relatively simple. One benefit of this approach is that

the model becomes tractable semi-analytically (see Section 3) and the change in model’s

properties in response to relevant factors can be revealed and understood relatively easy,

cf. Section 3.1. Also, since our model takes into account only very general, generic inter-

actions in the oxygen-plankton system, we believe that the model predictions possess a

considerable degree of generality.

The downside of the model’s simplicity is that many processes are left out of the

scope. Thus, our study leaves a number of open questions. Firstly, in our model, the

ocean hydrodynamics is taken into account very schematically (i.e. as the turbulent diffu-

sion). However, the amount of oxygen entering the atmosphere through the ocean surface

is known to depend on details of the ocean circulation [31, 36, 47, 55, 74]. Although

it does not seem likely that ocean hydrodynamics can alter the dependence of oxygen

production on temperature, it seems probable that it can delay the oxygen transport

through the sea-air interface. How this delay may affect the atmospheric oxygen budget

remains to be investigated. Secondly, our model does not take into account the effect

of oxygen saturation and its dependence on temperature. Meanwhile, the solubility of

oxygen in water is known to decline with water temperature, which can be another factor

reducing the oxygen concentration [2, 36]. Thirdly, phytoplankton community consists

of hundreds of different species. To the best of our knowledge, data on the temperature

dependence of the oxygen production rate are currently available only for a handful of

species [32, 73]. How general is the observed response to an increase in water temperature

remains to be seen. Addressing these questions should become a subject of future research.
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7 Appendix

The Jacobian matrix J , i.e. the matrix of the linearized system (19–21), is as follows:

J =




− Au
(1+c)2

− 1− uc2
(c+c2)2

− νvc3
(c+c3)2

A
1+c

− c
c+c2

− νc
c+c3

Bc1u
(c+c1)2

Bc
c+c1

− 2u− vh
(u+h)2

− σ − u
u+h

uv
u+h

2cc42

(c2+c42)2
vh

(u+h)2
c2

(c2+c42)
uc2

(u+h)(c2+c42)
− µ


 (39)

Its specific form for each of the steady states is given below along with the corresponding

characteristic equation.

• Extinction state E1 = (0, 0, 0)

The Jacobian matrix (39) takes the following form:

J(0,0,0) =



−1 A 0

0 −σ 0

0 0 −µ


 , (40)

and the characteristic equation is

(1 + λ)(σ + λ)(µ + λ) = 0. (41)

• Zooplankton-free states E
(1)
2 and E

(1)
2

The Jacobian matrix:

J(c,u,0) =




− Au
(1+c)2

− 1− uc2
(c+c2)2

− λ A
c+1

− c
c+c2

− νc
c+c3

Bc1u
(c+c1)2

Bc
c+c1

− 2u− σ − λ − u
u+h

0 0 u
u+h

c2

c2+c42 − µ− λ


 , (42)

and the characteristic equation:

[(
− Au

(1 + c)2
− 1− uc2

(c + c2)2
− λ

)(
Bc

c + c1

− 2u− σ − λ

)
(43)

−
(

A

1 + c
− c

c + c2

)(
Bc1u

(c + c1)2

)]
·
(

u

u + h

(
c2

c2 + c4
2

)
− µ− λ

)
= 0,

where c and u are defined by Eqs. (26–27).

• Oxygen-phyto-zooplankton coexistence state E3
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J(c,u,v) =

(44)∣∣∣∣∣∣∣∣∣

− Au
(1+c)2

− 1− uc2
(c+c2)2

− νvc3
(c+c3)2

− λ A
1+c

− c
c+c2

− νc
c+c3

Bc1u
(c+c1)2

Bc
c+c1

− 2u− vh
(u+h)2

− σ − λ − u
u+h

uv
u+h

2cc42

(c2+c42)2
vh

(u+h)2
c2

(c2+c42)
uc2

(u+h)(c2+c42)
− µ− λ

∣∣∣∣∣∣∣∣∣

where c, u and v are defined by Eqs. (28–30).

30



References

[1] Abbott MR (1993) Phytoplankton patchiness: ecological implications and observa-

tion methods. In Levin SA, Powell TM, Steele JH (eds.). Patch dynamics. Lecture

Notes in Biomathematics, Vol. 96. Springer, Berlin 37–49

[2] Addy, K. and Green, L. (1997). Dissolved oxygen and temperature. Fact Sheet No. 96-

3, Natural Resources Facts, University of Rhodes Island.

[3] Allegretto W, Mocenni C, Vicino A (2005) Periodic solutions in modelling lagoon

ecological interactions. J Math Biol 51:367–388

[4] Andersson A, Haecky P, Hagstrom A (1994) Effect of temperature and light on the

growth of micro- nano- and pico-plankton: impact on algal succession. Mar Biol

120:511–520

[5] Behrenfeld MJ, Falkowski PG (1997) A consumers guide to phytoplankton primary

productivity models. Limnol Oceanogr 42:1479–1491

[6] Berestycki H, Desvillettes L, Diekmann O (2014) Can climate change lead to gap

formation? Ecol Compl 20:264-270

[7] Bonnefon O, Coville J, Garnier J, Hamel F, Roques L (2014) The spatio-temporal

dynamics of neutral genetic diversity. Ecol Compl 20:282-292

[8] Breitburg DL, Loher T, Pacey CA, Gerstein A (1997) Varying effects of low dissolved

oxygen on trophic interactions in an estuarine food web. Ecol Monogr 67:489–507

[9] Carpenter JH (1966) New measurements of oxygen solubility in pure and natural

water. Limnol Oceanogr 11:264–277
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