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RESOLUTION AIRBORNE S-BAND RADAR DATA 

Ramesh Kumar Ningthoujam 
Abstract 

Synthetic Aperture Radar (SAR) data are utilized for improved mapping of forest cover 

and biophysical retrieval due to its sensitivity to forest canopy and structure. It is 

important to study the forest structure and biophysical parameters because it constitutes 

the major forest aboveground biomass (AGB). The S-band SAR frequency has not been 

consistently investigated for forest monitoring due to the lack of long-term data. Using 

the recent AirSAR campaign (2010-2014) over Savernake Forest and Wytham Woods 

in southern England, this thesis presents methods for analysing S-band SAR data for 

soil and forest canopies using the radiative transfer Michigan Microwave Canopy 

Scattering (MIMICS-I) model. The first result chapter shows that dominant scattering 

behaviour of S-band frequency arises from ground/trunk interactions with little direct 

crown scattering across all polarisations and incidence angles. The S-band backscatter 

shows significant sensitivity to both soil moisture content and surface roughness. 

Simulation experiments related to forest degradation show low co-polarisation 

backscatter due to reduced canopy component and tree density at S-band. Using the 

above information, the second result chapter shows that S-band HH- and VV- 

backscatter and Radar Forest Degradation Index (RFDI) data produces forest/non-forest 

classification map at 6 m resolution with 70% overall accuracy (kappa coefficient, κ = 

0.41) while 63% overall accuracy (kappa coefficient, κ = 0.27) for the 20 m resolution 

map in a Maximum Likelihood algorithm. S-band data is also useful for mapping 

various non-forest cover types and monitoring forest cover changes over time due to the 

loss of volume scattering when forest canopies are removed. Using the field measured 

forest biomass, the third result chapter reveals that S-band radar backscatter correlates 

well with forest AGB. A consistent S-band backscatter/ biomass relationship is found, 

suggesting increasing backscatter sensitivity to forest AGB up to 100 t/ha with least 

error varying 90.46 - 98.65 t/ha at 25 m resolution (stand level) in low to medium 

incidence angles. The implications of these results are that S-band SAR data like the 

longer L-band SAR is highly suitable for mapping forest cover and monitoring cover 

changes and be able to retrieve low biomass stands below 100 t/ha.   
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Chapter 1: Introduction 

1.1. Global carbon cycle 

 

The equation of the global budget for atmospheric carbon-dioxide (CO2) is critically 

important for understanding the impacts of climate change. The concentration of 

atmospheric CO2 has been unprecedentedly increased from around 277 parts per 

million (ppm) since 1750 (Joos and Spahni 2008) to 402.52 ppm in January 2016 

(Dlugokencky and Tans 2014) (Figure 1.1). The majority of carbon (C) emissions 

come from fossil fuel burning, cement production and large-scale land-use change 

(Ciais et al. 2013, Prentice et al. 2001). Of the total amount of CO2 emitted into the 

atmosphere, nearly half of it remains in the atmosphere while the other half is 

absorbed into the oceans and the terrestrial biosphere (Ciais et al. 1997). However, 

the shared partition between these two reservoirs of carbon has been the subject of 

considerable debate change (Prentice et al. 2001). Therefore, to better understand 

the present carbon cycle and future climate change projection for supporting future 

climate policies, accurate assessment of CO2 emissions and their redistribution 

among the biosphere is critically important (Le Quéré et al. 2014). 

 
Figure 1.1. The graph shows recent monthly mean CO2 measured at Mauna Loa 

Observatory, Hawaii. The dashed red line represents the monthly mean values, 

centered on the middle of each month while black line represents the same, after 

correction for the average of 7 adjacent seasonal cycles. Image reproduced with 

copyright permission from the Scripps Institution of Oceanography.  
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The terrestrial biosphere is currently either exchanging or absorbing atmospheric C 

particularly at the regional scale, for example in the Northern Hemisphere between 

40°N to 70° N latitude. These changes in the Northern Hemisphere have been 

reported as a result of seasonal changes on terrestrial greenness based on vegetation 

growth trend analysis (Dixon et al. 1994, Kauppi et al. 1992), satellite remote 

sensing (Myneni et al. 2001, Nemani et al. 2003, Tucker et al. 2001), modelling 

(Lucht et al. 2002, Piao et al. 2015) and eddy covariance techniques (Valentini et al. 

2000). On the contrary, it has been observed that land ecosystems may also become 

a source of large atmospheric CO2 concentrations due to the changing climate 

system and intensive human activities (Cox et al. 2000), thus providing a positive 

feedback to a warming world towards the end of the twenty-first century 

(Friedlingstein et al. 2006). 

 

Globally, seasonal variations of atmospheric CO2 and dynamic climatic variables 

provide a complex and varying environment for different species of forest 

composition, structure, growth and its activity (for example, phenology and 

productivity). The climatic variables particularly air temperature, water availability 

and solar radiation along with the available atmospheric C acting as the resource 

responsible for the dynamic processes, structure, composition and functions in the 

forest ecosystem (Churkina and Running 1998, Churkina et al. 1999). For instance, 

air temperature and solar radiation together are responsible for forest growth 

covering around 60 % of the land ecosystem particularly in tropical forests (Nemani 

et al. 2003). On the other hand, the temperate forest ecosystem of North America 

and Eurasia in the northern latitudes is limited by cold winter temperatures with 

cloudy summers. 

 

1.2. Forest cover  

 

Globally, forest biome occupies an area of approximately 42 million km2. These 

forests are concentrated in tropical, temperate and boreal lands occupying 30% of 

the land biosphere (Bonan 2008). They are amongst the most important natural 

ecosystems on earth (Potapov et al. 2008a, Potapov et al. 2008b) due to their 

importance as global timber stocks (MEA 2005), cultural values and responsible for 

global climate variability, evapo-transpiration (Avissar and Werth 2005) and bio-
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geochemical fluxes at regional scales (Bojinski et al. 2014, Foley et al. 2005). Forest 

cover has also been used as a proxy for the assessment of threats to biodiversity and 

ecological integrity (Butchart et al. 2010) and estimation of terrestrial C emissions 

to atmospheric CO2 concentrations (Miles and Kapos 2008). Emission of forest 

carbon is basically related to large-scale deforestation and clear-felled not lesser 

than a hectare area primarily concentrated in the tropical forests of South America, 

Africa and Southeast Asia (Rosenqvist et al. 2003). 

 

Several studies have highlighted that human activities could alter the future of forest 

cover in terms of its composition, structure and function particularly in old growth 

forests of tropics. These anthropogenic activities are categorized as- physical (e.g. 

temperature, precipitation, radiation and climate change), chemical (e.g. 

atmospheric CO2 concentrations, nutrient depositions) and biological (e.g. land-use 

change, wood extraction, hunting) (Lewis et al. 2004, Lewis et al. 2009, Wright 

2005, Wright 2010) drivers. Therefore, The amount of forest cover and loss can be 

used as an input to management programmes related to different international 

strategic initiatives to protect its biodiversity (SCBD 2001), to reduce C emission 

from deforestation and degradation (Mollicone et al. 2007) and to stimulate use of 

sustainable forest management practices. 

 

Recently, two satellite based forest and non-forest cover maps have been produced 

globally using both optical and Synthetic Aperture Radar (SAR) data. The optical 

data corresponds to finer spatial resolution Landsat data in assessing the forest cover 

(tree percent cover) and change (annual forest gain and loss) at global scale between 

2000 and 2010 (Hansen et al. 2013). Figure 1.2 provides the percent tree cover map 

for the year 2000 in the southern England from Landsat data at 30 m resolution 

(Hansen et al. 2014). Due to the low solar illumination in the northern high latitudes, 

radar satellite have been utilised for a consistent wall-to-wall mapping of forest 

cover across the globe. The SAR based forest/non-forest cover map is related to the 

Phased Arrayed L-band Synthetic Aperture Radar (PALSAR) sensor from the 

Advanced Land Observing Satellite (ALOS). HV backscatter PALSAR data have 

demonstrated the capability of producing 25 m global F/NF cover maps from 2007 

to 2010 achieving around 85% overall accuracy (Shimada et al. 2014) (Figure 1.3 

for southern England region) (JapanAerospaceExplorationAgency 2014).  
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Figure 1.2. Percent tree cover map for the year 2000 in the southern England region from 30 m spatial Landsat data (Savernake forest: red 

polygon) (Insert: UK map with Granule: 60°N, 10°W frame) (Source: Global Forest Change 2000-2014 (Hansen et al. 2014)). Image 

reproduced with copyright permission from the Global Forest Change, University of Maryland.  
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Figure 1.3. Forest/ non-forest map for year 2010 in the southern England region from PALSAR mosaics at 25 m resolution (Savernake 

forest: red polygon) (Insert: UK map with Grid 15: N21°W0002° frame) (Source: PALSAR Global Forest/ non-forest map 

"2010"(JapanAerospaceExplorationAgency 2014)). Image reproduced with copyright permission from the Japan Aerospace Exploration 

Agency.
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1.3. Forest degradation 

One of the largest uncertainties of terrestrial ecosystem and carbon cycle at regional 

to global scales is related to large-scale deforestation and degradation of forest. 

Basically, deforestation and degradation of forest are too closely inter-related that 

they cannot be separated as individual processes. Deforestation is large-scale clear-

cutting of existing forest and changing into other land-use such as agriculture and 

settlements. On the other hand, forest degradation can be put together as ‘change in 

crown cover and loss of biodiversity’ (Sitaula et al. 2005) due to ‘logging and forest 

fires’ which reduces the ‘carbon stock and productivity’ of the forest in a ‘long-

term’ (Verolme and Moussa 1999). But the appropriate use of this definition 

applies to those areas where old growth forest lost their characteristics and values 

either by logging, wildfire or insect invasion (Putz and Redford 2010). 

In the tropics, more than 20% of forests are affected by selective logging (Asner et 

al. 2009) due to canopy damage and fragmentation (Asner et al. 2006) and leaving 

forests highly susceptible to drought and fire (Cochrane 2003). They create forest 

with structure characterised by homogeneous canopy structure (Okuda et al. 2003), 

reduction in stem density (Slik et al. 2002) and total basal area (Bonnell et al. 2011) 

having a medium-sized tree stands (Bonnell et al. 2011) and reduced aboveground 

biomass (Blanc et al. 2009). Moreover, selectively logged areas are having more 

open canopy gaps with increased light intensities (Osazuwa-Peters et al. 2015). 

Models utilising the data from the Barro Colorado Island (BCI) 50 ha plot of 

Panama from unlogged plots predict that up to 70% carbon may be lost due to 

selectively logged forests (Bunker et al. 2005). 

 

Over the last two decades, a net global C emission of 4.04 Gt CO2 yr-1 from 

deforestation and 0.8 Gt CO2 yr-1 from degradation has been estimated (Federici et 

al. 2015). However, the rates of degradation can be equivalent or more than the 

amount of deforestation at local scale (Zhuravleva et al. 2013). In fact, Margono et 

al. (2012) reported that almost 97% of new deforestation fronts do occur in 

previously disturbed or in different stages of degradation in Sumatra Island, 

Indonesia. Recently, van Lierop et al. (2015) found a strong relationship between 

degradation and net forest loss by region and climatic zone taking partial canopy 

cover reduction (at 250m spatial and 2000-2012 time frame of MODIS) as a proxy. 
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Moreover, forest degradation often begins at a very finer scale, NovaSAR 6m 

resolution data could provide a useful and better than other available datasets from 

Sentinel-1, ALOS-2 and other SAR sensors that provide global coverage. 

Therefore, a robust and reliable method for estimating quantitatively undergoing 

forest degradation in time and space is critically important (UNFCCC 2008). 

1.4. Forest aboveground biomass 

 

Forests play a pivotal role in biophysical interactions and bio-geochemical 

exchanges (Foley et al. 1994) and constitute one of the principle and dynamic 

component of the global C cycle. For example, it has been estimated that on an 

annual basis, half of the atmospheric CO2 is exchanged with the land biosphere 

through plant’s photosynthesis (Ciais et al. 1997) and linking ~45% of terrestrial C 

to the land ecosystem Net Primary Productivity (NPP) in the form of forest 

aboveground biomass (AGB). The land ecosystem also regulates exchanges of 

energy, water and processes between atmosphere and land biosphere. Although at 

leaf level, all the direct processes and feedback on physiological processes have 

been well quantified, however, the impact of these processes at the ecosystem level 

remains unclear. This is important because the terrestrial ecosystem is main driver 

of global inter-annual atmospheric CO2 variability (Peylin et al. 2005).  

 

Several studies have shown that a major global C sink has been found in forest 

ecosystems (Ballantyne et al. 2012) particularly in old-growth forests (Luyssaert et 

al. 2008, Malhi and Phillips 2004). In forest ecosystem, terrestrial C is sequestered 

in the form of AGB as trunks, branches and leaves while soil carbon as 

belowground biomass (BGB) (Malhi et al. 2002). For instance, long-term 

monitoring plots in the forest ecosystems particularly in tropics have shown 

increased forest fragmentation and vulnerability to fires due to large-scale and rapid 

changes of forest biomass (Malhi and Phillips 2004). Moreover, forest biomass is 

also strongly associated with biodiversity (Bunker et al. 2005). Information related 

to forest canopy and biophysical characteristics such as tree height, density and 

AGB is important in modelling the state, condition and functioning of forest 

(Rosenqvist et al. 2003); useful as a means to mitigate the changing global climate 

and its uncertainties related to terrestrial ecosystem (Pagani et al. 2009). 
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Understanding the spatial and temporal patters of AGB in forests is important for 

several reasons (Malhi and Phillips 2004). First, AGB information can provide 

insights into the possible drivers responsible for structural, process, functional and 

compositional changes of forest (Phillips and Lewis 2014). Second, biomass 

estimations can also provide information on emission factors for estimating carbon 

losses from processes related to deforestation and forest degradation (Willcock et al. 

2012). Third, field AGB estimates can also assist in calibration and predictions of 

carbon utilising optical, microwave or LiDAR (Light Detection And Ranging) 

remote sensing techniques (Baccini et al. 2012, Saatchi et al. 2011a). Finally, 

biomass information can deliver data for parameterisation and validation of the 

large-scale ecosystem model predictions and their responses to a changing 

environment (Piao et al. 2013, Sitch et al. 2013). Hence, timely and accurate 

information on forest cover, its extent and AGB found in these forests is critically 

necessary to simulate the exchange of energy and carbon budget for present and 

future scenarios. 

 

This thesis contributes to the knowledge about the monitoring of temperate forest 

using remote sensing technique for both mapping forest cover and relating with 

forest AGB. For this study, Synthetic Aperture Radar (SAR) data working on S-

band frequency in forest ecosystem is being investigated utilising both SAR data 

and modelling. In particular, mapping of forest/ non-forest (F/NF) cover and relating 

to average tree diameter at breast height (DBH), canopy height (H) and forest AGB 

in mixed temperate forests of the United Kingdom (UK) are investigated. This 

research was conducted using high-resolution airborne S-band SAR data acquired 

during two AirSAR Campaigns (June 2010 and 2014), field data from test sites 

(Savernake Forest and Wytham Woods) and with spatial scales at pixel to stand 

levels. Although the present work is purely based on AirSAR campaign data and 

modelling approach, its applicability may be restricted to these particular data, time 

of acquisition, model type and test site. Yet, the findings and conclusions drawn 

have important implications that are applicable in a wider context particularly within 

the mixed deciduous temperate forest of the northern latitude.    

 

 

 



 9 
 

1.5. Aims and Overview of Thesis 

The mapping of forest cover and biophysical characteristics (structure and 

aboveground biomass) have been generated using robust, spatially resolved and 

systematic (repeated) remote sensing data particularly radar data at longer 

wavelengths (that is P- and L-band). In spite of the potential of SAR data, 

knowledge of the accurate radar wavelength and polarisation for a consistent 

monitoring of forest, its degradation and biophysical retrieval at local to global scale 

is still limited. Thus, there is a continued requirement for new experimental data and 

further improvement of the existing allometric models for biomass retrieval based 

on radar backscatter. This includes the forthcoming radar based P-band ‘BIOMASS 

Mission’ as part of ESA’s Earth Explorer mission concept (Le Toan et al. 2011) and 

NASA’s Decadal Survey Mission (previously called Deformation, Ecosystem 

Structure and Dynamics of Ice- DESDynl-R, now called NISAR) carrying an L-

band SAR and a multi-beam LiDAR operating at 1064 nm (Hall et al. 2011).  

From the UK perspectives, the concept of NovaSAR-S Mission is also under-

developing which will carry S-band SAR sensor at low cost missions (Bird et al. 

2013). However, the radiative nature of S-band radar wavelength is limitedly 

investigated over forest canopies related to forest cover, its degradation and 

biophysical characteristics in spite of the recently launched S-band Huan Jing (HJ) -

1C satellite from China in 2012 (OSCAR 2015). Therefore, the overall aim of this 

research is to explore S-band SAR backscatter sensitivity to forest ecosystem that 

whether this particular wavelength be useful for mapping forest cover, change 

analysis and structure retrieval. 

The structure of thesis is outlined as follows: 

Chapter 1 introduces the general background of the research related to importance 

of carbon cycle, forest cover, degradation and forest aboveground biomass across 

different ecosystem. Chapter 2 discusses radar remote sensing and different 

microwave canopy models for retrieving backscatter returns from forest canopies 

followed by detailed comprehensive literature review related to forest/non-forest 

cover mapping, forest degradation and biophysical characteristics focusing on 

boreal and temperate regions using radar data. This also includes the forthcoming 

NovaSAR-S Mission configurations related to this study. 
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Chapter 3 provides the full methodology related to different research questions 

addressed. This also includes the details of test sites (Savernake Forest and Wytham 

Woods), Michigan Microwave Canopy Scattering model (MIMICS-I) 

parameterisation and SAR-data processing chain. Finally, field data surveyed in 

2012 and 2014 in Savernake, ancillary data from Forestry Commission for 

Savernake site and Environmental Change Network data for Wytham are also 

covered.  

Chapter 4 presents the MIMICS-I simulation result of S-band signal interaction with 

soil moisture and surface roughness. This also includes forest canopy scattering as a 

function of different frequencies (X-, C-, S-, L-band), polarisations (co- and cross-) 

and radar look angles (15-45°) for both deciduous and conifers. Lastly, this chapter 

provides the radiative nature of S-band backscatter interaction with degraded forest.  

Chapter 5 also presents the result of S-band SAR data in mapping forest/non-forest 

classes based on Maximum Likelihood Classification (MLC) algorithm in 

Savernake test site. The S-band derived forest/non-forest at StripMap and ScanSAR 

resolutions was validated using the PALSAR-based forest/non-forest at 25 m spatial 

resolution. This also includes the assessment of forest cover change detection 

between 2010 and 2014 over the same site and results are based on different 

simulations in line with NovaSAR-S configuration (StripMap, ScanSAR) in aid of 

Landsat based forest loss data.  

Chapter 6 provides the results based on retrieval of forest biophysical characteristics 

(average tree diameter, canopy height and forest AGB) at S-band SAR backscatter 

and further prediction and cross-validation of forest biomass using regression 

equations for Savernake and Wytham sites, two years and at pixel to stand levels.  

Chapter 7 brings together all the research findings from the previous chapters and 

syntheses them with individual conclusions for MIMICS experiments related to soil, 

forest canopy and degradation of forest; forest cover/ change mapping and forest 

biophysical parameter retrieval. General conclusions are provided specifically 

related to NovaSAR-S mission applicability and potential for forest/non-forest cover 

and biomass retrieval in future perspectives and limitations for this research. 
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Chapter 2: Review of the literature 
2.1. Microwave remote sensing 

 

For a consistent and systematic study on the global monitoring of forest ecosystem 

and its processes in space and time, satellite remote sensing technology offers 

efficient method in terms of larger area coverage and repetitive observations. 

Several studies have highlighted the potential of optical data utilising multi-

temporal to acquire cloud-free imageries for studying forest ecosystem. However, 

operational monitoring for forest are often hampering particularly in tropics and in 

higher latitudes due to persistent cloud cover and low solar illumination 

respectively. For an operational system to monitor these forest in high spatial and 

temporal resolutions, microwave remote sensing technology is a complementary 

tool due to their advantages such as weather independent, cloud penetration and 

more sensitivity to forest structure and its biophysical parameters (Woodhouse 

2006a).  

 

Microwave based sensors used microwave radiation with wavelengths from about 1 

centimetre to few tens of centimetres. Additionally, they can provide information 

related to sea wind and wave direction which cannot be possible by visible and 

infra-red sensors. Two types of microwave remote sensing exist: active and passive 

sensors. The active microwave sensors receives the microwave radiation (or pulse) 

being transmitted or scattered from target (e.g. forest canopy) which is incident 

while microwave radiation emitted from target is received by the passive microwave 

sensors. Examples of active sensors include Synthetic Aperture Radar (SAR), 

microwave scatterometers and radar altimeter while microwave radiometer is a 

passive microwave sensor.  

 

2.1.1.  RADAR 

 

RADAR is an acronym for RAdio Detection and Ranging. It is an active microwave 

remote sensing system using microwaves (or radio waves) and can operate day and 

night irrespective of weather conditions. Basically, the radar sensor (with antenna) is 

mounted on an aircraft which transmits microwave pulse in direction perpendicular 
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to the flight direction, hence called as Side-Looking Airborne Radar (SLAR) or Real 

Aperture Radar (RAR). Spatial resolution of radar imagery is basically determined 

by the transmitted wavelength, length of the antenna and distance between the target 

and sensor. This is feasible only for airborne systems where distance between the 

target and sensor/ platform are only up to few kilometre. On the contrary, space-

borne systems are limited by long distances up to hundreds of kilometres and larger 

antenna size (to obtain high resolution data). Radar operates in a wide range of 

frequencies from a few MHz to hundreds of GHz. Table 2.1 gives the nomenclature 

used by radar community and examples for past, active and future radar missions. 

 

Table 2.1.Different radar frequencies of space-borne used by radar community 

(IEEE Standard 521-1984). 

Radar 
letter 

Frequency Wavelength (cm) Examples of space-borne platform 

    
UHF (P) 300-1000 MHz 100.0 - 68.0 BIOMASS 

L 1-2 GHz 30.0 - 15.0 JERS-1,ALOS PALSAR-1, ALOS 
PALSAR-2 

S 2-4 GHz 15.0 - 7.5 Almaz-1, HJ-1C, NovaSAR-S, 
NISAR 

C 4-8 GHz 7.5 - 3.8 Envisat- ASAR, Radarsat-1/2, 
Sentinel 1A, RISAT-1 

X 8-12 GHz 3.8 - 2.5 TerraSAR-X, TanDEM-X 
*Underlined- Completed, Italics- Active and Bold- Future 

2.1.2. The Radar Equation 

 

There are two basic equations that govern the performance of a radar system- the 

Signal-to-Noise-Ratio (SNR) and the range resolution. The received microwave 

pulse to a sensor is a combination of target information with noise. This can be 

governed by the SNR as a function of the radar system, the range to the target and 

properties of the scattering target. Therefore, the SNR is defined as the ratio 

between the received power and the noise power. For a mono-static system using 

coherent integration during time tdwell it is given by  
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𝑃𝑃𝑎𝑎𝑣𝑣𝑔𝑔 is the average transmitted power, 𝜆𝜆 is the wavelength of the transmitted wave, 𝐺𝐺 is the gain of the antenna, 𝑅𝑅 is the one-way distance (range) to the target, 𝑘𝑘𝐵𝐵𝑇𝑇𝑠𝑠 
gives the system noise power per unit bandwidth, 𝐶𝐶𝑏𝑏 is a filter mismatch factor and 𝐿𝐿 is a loss factor. Finally, 𝜎𝜎 is the radar cross section (RCS), with unit m2, which is a 

measure of the scattering strength of a target. A perfectly reflecting sphere has an 

RCS equal to its cross-sectional area. Thus, the RCS can be thought of as the cross-

sectional area of a sphere which gives the same scattered power as the target. The 

return echo which is often RCS is called the radar backscatter which is a unit less 

variable. The backscattering coefficient is defined so that the average RCS from a 

distributed target with ground area 𝐴𝐴 is 𝜎𝜎 = 𝐴𝐴⋅𝜎𝜎0. 

 

2.1.3. Synthetic Aperture Radar  

 

Unlike RAR system with large-sized and fixed antenna limitations, Synthetic 

Aperture Radar (SAR) is an active coherent side-looking radar system which 

transmits microwaves energy with known relative phases and synthesizes an antenna 

much larger than the physical antenna to produce high resolution imagery. This 

works with two approaches involving the Doppler beam sharpening and the 

principle of coherently combining a collection of low-resolution antennas in order to 

provide a greatly improved resolution. Using this technique, the Earth’s features 

have been successfully imaged to a meter or below spatial resolution along the 

direction of the flight even from space-borne systems.  

 

2.1.4. Speckle  

 

In all types of coherence data including SAR imagery there is random interference 

(constructive and destructive) of the wavelets scattered by the target within one 

resolution pixel creating noise-like granulation called speckle (Woodhouse 2006a). 

Speckle is a noise-like scattering phenomenon embedded in the image itself possibly 

due to insufficient resolution of the sensor to resolve individual scatterers within an 

imaged pixel. For example, the received signals complex amplitude is the sum total 

of all the returns from all individual scatterers within a resolution cell. Thus, areas 

with strong backscatter will exhibit more variability than areas of weak backscatter. 

The presence of speckle in SAR data reduces the visibility of the imagery hence 
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decreasing the discrimination of the target. To minimise speckle effect in SAR 

imagery, incoherent averaging is performed. Basically, three main approaches are 

employed: First, using the Doppler phenomenon where several parts often called 

‘looks’ are averaged incoherently termed to be ‘multi-looking’. Second method 

involves averaging the neighbouring pixels using a windowing size function and 

third method utilizes averaging multiple SAR images over the same area provided a 

constant backscattering in the area of interest with dynamic speckle phenomena 

between image acquisitions (Woodhouse 2006a). However, there is a trade-off 

between the speckle minimisation and spatial resolution of the SAR image. 

Additionally to tackle the speckle problem prior to analysis, application of speckle 

reduction filters (Shupe and Marsh 2004, Shimabukuro et al. 2007) or aggregation 

of pixels (Kiage et al. 2005, Lang et al. 2008) are commonly employed approaches. 

 

2.1.5. Radiometric SAR Calibration 

 

The merits of SAR images in studies related to resource management can only be 

made provided the measurements of RCS (radiometric calibration) are met. 

Radiometric calibration may be achieved through internal or external calibration or 

using both. Internal calibration involves precise calibration of antenna and processor 

gains at transmit and receive antenna, radar look angles in elevation and azimuth 

direction. This also include Doppler tracking, elevation angle tracking, range cell 

migration correction, look extraction, slant-to-range conversion for precise 

calibration. Comparatively, it is easier to calibrate SAR imagery based on external 

target with known RCS characteristics. For example, a set of distributed targets or 

point target have been commonly used for calibration where corner reflectors are 

commonly employed for point target calibration (Dobson et al. 1986).  

2.2. SAR scattering in forest 

 

Theoretically, the received backscatter carries information related to forest 

characteristics (e.g. canopy structure, architecture and biophysical parameters) due 

to their interactions and scattering. Therefore, to derive these forest biophysical 

characteristics, it is critical to understand the different scattering theory of radar 

pulse. Secondly, microwaves are also electromagnetic waves, hence the scattering 
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mechanism for light governing the size, shape and material (its dielectric constant) 

of the canopy components in proportion to the incident wavelength is also 

applicable to microwave. Thus, it is highly recommended to avoid SAR data 

acquired during rainy days (or season) as they are very sensitive to dielectric 

constant (moisture content) of soil and forest being imaged and may lead to 

misinterpretation of the recorded backscatter.  

 

In the microwave domain, there are three main interactions related to the size of the 

forest canopy (that is component and structure) and wavelength used termed to be 

Optical, Rayleigh and Mei types of scattering. First, optical scattering is related to 

very large canopy components (e.g. stem or trunk diameter) than the incident 

wavelength. It is also known as non-selective scattering as the scattering do not vary 

with wavelength. Second, Rayleigh scattering is related to very small components 

than the wavelength used where the scattering drops off very quickly with 

increasing wavelength. This may be related to size, shape and density of leaf and 

branches. Finally, Mei scattering refers to those scattering related with the size of 

the component between Rayleigh and Optical scattering where the effect of resonant 

occur. This implies that for a small change in the target size (leaf, branch) or 

wavelength used, a very sensitive type of scattering occurs. This effect of resonance 

is due to the coherent scattering from the different parts of the target’s surface being 

imaged as a function wavelength size (Woodhouse 2006a).  

 

The scattering behaviour in microwave domain has been largely addressed in the 

literature with specifically related to forest aboveground biomass through 

backscatter: biomass relationships with a level of saturation point (Imhoff 1995, 

Sandberg et al. 2011, Saatchi et al. 2011b, Baker et al. 1994, Le Toan et al. 1992). 

But, the underlying knowledge of these scatterings within different forest canopies, 

branching level and number stand density is poorly addressed. For instance, study 

by Woodhouse (2006b) have reported the dominance of a single-layer scattering 

between the two extremes of Rayleigh and optical to the changes in scatter number 

density rather than resonance effect via increasing canopy opacity. This study 

implies that the saturation level of radar backscatter to high forest canopies is also 

associated with low forest density having low growing stock/ biomass. In general, 
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the actual scattering from target depends on its physical size, shape, orientation 

including its building material (i.e., dielectric constant) and number density.  

 

Applications of SAR data for studies on forest cover and biophysical retrieval have 

used X-, C-, L- and P-band data. However, current knowledge of the scattering 

behaviour of S-band SAR in forested areas is very limited. To date, S-band SAR 

data have not been easily available. The first S-band SAR observations from space 

were provided by the Russian Almaz-1 satellite, which carried a single-polarisation 

HH S-band SAR sensor operating between 1991 and 1992. The senor look angle 

range is 20 to 70° with standard range of 32 to 50° and two experimental ranges of 

20 to 32° and 50 to 70°. Very few studies of Almaz-1 data are available in the peer-

reviewed literature, with a small number in oceanography (Ivanov and Litovchenko 

1997), geology (Elizavetin and Paillou 1997) and forestry/ plantation (Fransson et 

al. 1999, Olsson et al. 1991, Rosenqvist 1996, Yatabe and Leckie 1995).  

 

Since the Almaz-1 mission, innovative in radar technology has vastly improved in 

terms of radiometric quality, signal processing and data transmission. New interest 

in S-band SAR has led to the launch of the Environment and Disaster Monitoring 

Satellite HJ-1C from China with a single polarisation VV S-band (3.2 GHz) SAR 

instrument (Du et al. 2010) and the forthcoming NovaSAR-S satellite, which is the 

first in an intended constellation of low-cost radar satellite being manufactured in 

Britain (Bird et al. 2013). 

 

2.3. NovaSAR-S Mission 

 

The concept of NovaSAR-S comes from the Surrey Satellite Technology Limited’s 

(SSTL) long-term expertise in making small satellite since the 1980s. For example, 

the Disaster Monitoring Constellation (DMC) operated by five nations could 

provide data with high spatial and temporal resolution in dealing with disaster 

monitoring and climate change. NovaSAR-S is being built by SSTL and Airbus 

Defence and Space (UK), designed as a small, light-weight S-band (3.1-3.3 GHz) 

SAR satellite at low cost missions (Bird et al. 2013). It will carry an active micro-

strip patch phased array (3 x 1 m) on board the first S-band SAR satellite from the 

UK.  
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NovaSAR-S satellite is a complex payload with multi-mode having fully-

polarimetry capabilities which can acquire data in both sun-synchronous and near 

equatorial orbits, the unique state-of-the-art covering pan-tropics and higher 

latitudes. NovaSAR-S will carry S-band SAR sensor with specifications listed in 

Table 2.2. The phase array antenna consisting of 18 phase centres can steer beam 

across track to collect data over 580 km using four operational modes under varying 

polarisations, swath, resolution, incidence angles and looks combinations as 

specified in Table 2.3. For example, in a sun-synchronous orbit, single NovaSAR 

satellite could achieve a 12.5 day repeat cycle in StripMap mode up to 2.2 day 

repeat cycle in equatorial orbit (15°). If three satellites were operated in 

constellation, then repeat-coverage in StripMap will be increased to every 3.5 days 

in sun-synchronous orbit or every day in equatorial orbit. Finally, the first 

NovaSAR-S is expected to get launch by 2016-2017 (Bird et al. 2013). 

Table 2.2. NovaSAR-S specification. 

Parameter Specification 
Orbit Polar sun synchronous (10.30 LTAN) (dawn/dusk) 

Near equatorial(15°low inclination) 
Altitude 580 km 

Operating 
frequency 

3.1- 3.3 GHz (S-band) 

Ambiguity ratio < -18 to -16dB 
Sensitivity StripMap (<-17.5dB), ScanSAR (<-18dB), Maritime (<-

12dB) and ScanSAR wide (<-19dB) 
Number of 

beams 
18 strips 

Repetitivity 14 to 3.5days (1-3 ScanSAR) in sun-synchronous 
6.2 to 1 day (1-3 ScanSAR) in equatorial 15° 

12.5 to 3.5 days (1-3 StripMap) in sun-synchronous 
2.2 to 1 day (1-3 StripMap) in equatorial 15° 

 

Table 2.3. Operational modes in NovaSAR-S SAR. 

Imaging 
mode 

Operating 
polarisation 

Swath 
(km x km) 

Resolution 
(m) 

Incidence 
angles (°) 

Number 
of looks 

StripMap  
 
 

Dual, tri or 
quad 

20 6 16-25.4 4 
13-20 21.8- 31.2 

ScanSAR 100 20 15.8- 25.4 4 
50 25- 29.4 

Maritime 750 30 48.1- 73.1 1 
ScanSAR 

Wide 
140 30 14-27.4 4 
55 27.4- 32 
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2.4. Microwave Canopy Scattering Modelling 

 

For the past three decades, significant efforts in microwave remote sensing have 

been devoted to increase the forest classification accuracy and for estimating 

biophysical parameters particularly AGB retrieval. This is possible due to the 

polarimetric nature of SAR data by identifying the physical behaviour of the 

scattering mechanisms that contribute to the radar backscatter for both classification 

and biophysical purposes (Beaudoin et al. 1994). Furthermore, numerous studies 

have also revealed that longer wavelengths show greater sensitivity to forest 

biomass with HV-polarisation channel (Le Toan et al. 1992, Mermoz et al. 2015, 

Saatchi et al. 2007, Saatchi et al. 2011b, Sandberg et al. 2011). To validate these 

experimental results from SAR data analysis, understanding the relationships 

between SAR backscatter and forest parameters becomes critically important and 

necessary. For example, backscatter at P- or L- band utilising AIRSAR data is 

highly correlated to forest biophysical parameters (that is forest age, DBH, H and 

trunk biomass) of maritime pine forest (Le Toan et al. 1992).  

 

In spite of the above observation, the sensitivity of backscatter to different canopy 

parts (leaves, branches and trunk) cannot be easily quantified due to the inter-

relationship between forest parameters. Therefore, the radiative transfer based 

Massachusetts Institute of Technology (MIT) model (Yueh et al. 1992) was used to 

interpret the physical link between the backscatter and the biomass and found that 

VV- or HV- backscatter are affected by forest crown volume, canopy structure, 

moisture content and related to AGB (Beaudoin et al. 1994). Hence, several 

researchers have investigated the scattering mechanisms of forest parameters based 

on microwave canopy scattering models (Brolly and Woodhouse 2013, Brolly et al. 

2012, Karam et al. 1995, Karam and Fung 1988, Liang et al. 2005, Sun and Ranson 

1995, Sun et al. 1991, Ulaby et al. 1990, Wang et al. 1993a, Wang et al. 1993b, 

Wang and Imhoff 1993, Woodhouse 2006b).  

 

Knowledge of S-band backscatter to crop and forest canopy classification (Guida et 

al. 2012, Natale et al. 2012) and AGB retrieval (Rosenqvist 1996) is very limited. A 

study on polarimetric radar from a single fir tree and group of young fir using 

Entropy (H)/ Alpha (α) decomposition techniques and time domain revealed main 
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scattering from the green needles and branches at S-band (Lopez-Sanchez et al. 

2000). For the group of young fir, S-band backscatter has high penetration level than 

X- and C-band resulting to lower vegetation volume. Similarly, Lopez-Sanchez et 

al. (2006) also reported volume scattering to be the dominant mechanism with S-

band backscatter due to uniform distribution over the whole maize plant using 

decomposition technique. Likewise, Sun et al. (2012) have reported that S-band 

backscatter is influenced by the dynamics of the canopy structure of wheat crop (in 

different growing stages) particularly from heading to milking stage at ~40° 

incidence angle. This study was carried out in wheat fields in northern China using 

ground measurements, tower-based S-band scatterometer and MIMICS model. 

 

The sensitivity of soil component to the radiative nature of S-band frequency was 

investigated by Du et al. (2010) in preparation for HJ-1C launch. They found 

reasonable level of accuracy of R2 = 0.68 (in soybean) and 0.71 (in corn) between 

observed and soil moisture retrieval at VV-polarisation channel. The algorithm 

works with S-band modeled backscatter from vegetation using first-order scattering 

model and soil scattering from the Advanced Integral Equation Method with 

simplification of a radar backscatter model for bare soil. To explore the radiative 

nature of S-band backscatter in terms of forest ecosystem, it is utmost important to 

understand the interaction mechanisms governing the S-band backscatter from forest 

canopy and its components. For this research study, the first order canopy scattering 

model of MIMICS (Ulaby et al. 1990) is used to examine the strength of S-band 

backscatter responses from forest canopy and to identify dominant scattering from 

different canopy parts (components). Specifically, the varying sensitivity of S-band 

backscatter responses from forest canopy against soil and identifying the dominant 

scattering from forest canopy parts will develop our understanding to draw further 

conclusions on forest cover mapping and forest parameters retrieval at S-band radar 

frequency. 

 

Essentially, canopy scattering models help to understand the complex interaction of 

microwave backscatter with different components of the forest canopy and structure 

(leaves, needle, twigs and trunks) as a function of SAR system properties 

(wavelength, incidence angle and polarisations) (Liang et al. 2005, Sun and Ranson 

1995, Ulaby et al. 1990, Wang and Imhoff 1993). In fact, modelling the effect of 
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forest canopy structure on microwave propagation is a difficult task due to the 

complex tree structure and their sensitivity to electromagnetic characteristics 

(Bosisio and Dechambre 2004). This involves solving the interactions of canopy 

components with microwave radiation from two perspectives: (1) Geometrically, 

forests can be modelled as a continuous random medium with discrete scatter 

(different shapes and sizes) embedded in a homogeneous volume. 

(2) Electromagnetically, these models can be classified as either to the wave theory 

or radiative transfer (RT) theory (Liang et al. 2005).  

 

Model with wave theory works with modelling the canopy components as a set of 

dielectric cylinders and discs on the basis of Maxwell’s equation. On the contrary, 

models based on radiative transfer theory works with propagation of energy and are 

more appropriate than the wave approach. Because canopy (leaves, needles and 

branches) have discrete configurations and dielectric constants much larger than that 

of air (Ulaby et al. 1990). 

 

Generally, most models consist of two-layer canopy with upper canopy layer 

comprising of leaves, needles and branches while trunks as lower layer (Ulaby et al. 

1990) (Figure 2.1). Structurally, the canopy is divided into three main regions as 

crown, trunk and underlying ground region. All the components of a tree canopy 

and ground are characterized by a set of dielectric models in terms of moisture 

content and microwave frequency. Different models account for different scattering 

mechanisms propagating through canopy, trunk interaction and backscattered from 

the ground surface. Some of the RT based microwave canopy scattering models 

have been described in next section:  
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Figure 2.1. Overview of MIMICS model structure with different interaction components (DG-direct ground, DC-direct crown, C-G-crown-

ground, G-C-G- ground-crown-ground, GC-ground crown, G-T or T-G-ground/trunk) from forest canopies (Ulaby et al. 1990). Image 

reproduced with copyright permission from the Radiation Laboratory, University of Michigan. 
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2.4.1.  Water Cloud Model 

The Water Cloud model (WCM) is based on single scattering mechanism that 

considers the canopy of vegetation as a cloud containing water droplets randomly 

distributed within the canopy (Attema and Ulaby 1978). Total backscatter returns 

are expressed as a function of the volumetric moisture content of the soil and 

vegetation. Generally, for a given polarisation the WCM simulation is expressed as: 

 

σ0 pp = σ0veg +σ0veg+soil+ L2σ0 
soil      (2.1) 

 

where σ0 pp is the like-polarisation total backscatter coefficient, σ0veg is the 

backscatter contribution of the vegetation cover, σ0veg+soil is the multiple scattering 

involving vegetation elements and the soil surface, σ0 
soil is the backscatter 

contribution of the soil surface and L2 is the two-way vegetation attenuation 

(Attema and Ulaby 1978). The second term in equation 2.1 represents the 

interaction of the incident radiation between the vegetation and the underlying soil. 

Additionally, WCM accounts for backscattering from surface and canopy only and 

ignore higher order of scattering interactions and scattering that might occur in the 

canopy gaps. WCM is simpler than any other models developed later as it requires 

fewer input parameters.     

 

The WCM could predict a significant positive relationship with varying 

polarisations between 8 and 18 GHz frequency for four different crop types 

(alfalafa, corn, milo and wheat) having error between 1.1 to 2.6 dB. This model can 

also provide information related to attenuation from soil and vegetation layers to 

the backscatter.   

 

2.4.2. Santa Barbara Canopy Backscatter Model  

The canopy scattering model developed in the University of California at Santa 

Barbara (SBCBM) is related to discontinuous canopy layer by treating trees as 

discrete crowns (ellipsoids) and trunks (cylinders) located above a ground surface. 

Essentially, this model is more relevant to woodlands with low density tree stands 

and discrete crowns rather than a uniform layer (Sun et al. 1991). The model works 

on solving RT theory to a gap probability approach based on geometric-optical 
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canopy modelling. This approach allows modelling of sparsely wooded areas, and 

potentially the whole spectrum from nearly closed canopy forest to woodland. 

Finally, four scattering mechanisms are considered: surface backscattering, crown 

volume scattering, multipath crown-ground and ground/trunk interactions.  

HH-polarisation backscatter is largely determined by the trunk/ground interaction at 

high incidence angles while crown scattering in VV-polarisation backscatter. 

Otherwise, three scattering mechanisms related to trunk/ground, crown-ground and 

direct ground are comparable in lower incidence angles for both polarisations. 

Comparatively, an increased but little contribution from crown scattering to the 

total backscatter has been observed at all polarisations with increasing incidence 

angles. For HV-polarisation channel, dominant scattering is largely determined by 

the crown and crown-ground mechanism to the total backscattering possibly due to 

inadequate backscatter from surface layer from sparse canopy cover (low density). 

2.4.3. Michigan Microwave Canopy Scattering (MIMICS) Model 

Michigan Microwave Canopy Scattering (MIMICS) model developed in University 

of Michigan is a two-layer canopy model with upper canopy layer consisting of 

leaves, needles, branches and trunks as lower layer which works on a first-order 

solution of the RT equations based on Foldy’s method (function of height within 

the canopy) (Ulaby et al. 1988a) (see Figure 2.1). Structurally, MIMICS has three 

main regions in tree canopy- crown, trunk and underlying ground region. For an 

individual tree, the crown layer is assumed to be spheroidal in shape with height 

and diameter. It also contains branches and needles modelled as dielectric cylinders 

and characterised by a joint probability density function (pdf) in the case of 

coniferous species. 

For deciduous type the crown section contains leaves modelled as flat rectangular 

discs and characterised by a joint pdf. The trunk section consists of an average 

height and average diameter with their orientation being characterised by the joint 

pdf. The underlying ground surface is characterised by its roughness as a function 

of root mean square (rms) height and a roughness correlation function of soil with 

different combination of soil types. All the components of a tree canopy including 

ground are characterized based on dielectric models in terms of moisture content, 

microwave frequency and physical temperature.  
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MIMICS model contain seven terms in the first-order solution which account for 

seven scattering mechanisms propagating through canopy, trunk interaction and 

backscattered from the ground surface. These terms includes (1) ground/trunk 

interaction component (2) total crown backscatter and (3) direct ground backscatter. 

The total crown backscatter consists of three main contributions resulting from (1) 

direct crown backscatter (2) ground and crown layer and (3) ground scattered 

directly back to the ground from crown layer and re-directed in the specular 

direction by the ground. MIMICS model has been developed into three generations: 

MIMICS- I (continuous or closed-crown geometries) (Ulaby et al. 1990); MIMICS-

II (discontinuous or open-crown geometries) (McDonald and Ulaby 1993) and 

MIMICS -III (periodic row structured vegetation canopies) (Whitt and Ulaby 

1994). Of the existing RT microwave based models, the MIMICS model is widely 

used in studies related to agriculture and vegetation (Lin 2009, Ulaby et al. 1990). 

 

At L-band, MIMICS-I model has predicted the ground/trunk mechanism as the 

dominant across the incidence angles for HH-polarisation channel while at 

intermediate angular range for VV-polarisation channel from deciduous canopy. On 

the contrary, total-crown scattering dominates for both HH- and VV-polarisation 

channel at X-band due to lower penetration level.       

 

2.4.4. Multi-MIMICS Model 

To account for complex forest structure as a function of varying tree height, a 

multi-layered RT Multi-MIMICS model was developed in the University of 

Michigan (Liang et al. 2005). This model considered overlapped layers to account 

for mixtures of tall and short tree crowns with stands of mixed-species composition 

and age gradients. In this model, a tapered trunk model is introduced by cascading 

layers with increasing trunk radius instead of using a uniform stem. 

At P-band, dominant scattering arises from interactions between trunks, large 

branches and ground surface. For example, a major scattering occurred largely due 

to ground and large branches interaction and also direct large branch scattering at 

VV- and HV-polarisation channels. At L-band, major scattering occurs from 

trunk/ground interactions at HH-polarisation channel while VV- and HV-channels 

contributions were largely mainly from the large branches. At C-band, scattering 
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from the small branches dominated in co-polarisation channel while HV-

polarisation backscatter received scattering from both small and larger branches. 

The Multi-MIMICS model provides an improved backscatter/biomass relationship 

and showed better agreement with AIRSAR backscatter in forest ecosystems of 

Queensland in Australia (Liang et al. 2005). 

2.4.5.  Massachusetts Institute of Technology (MIT) Model 

 

In the forest canopy, the structure of canopy also provide partially coherent 

scattering by different canopy components in the microwave domain. The RT model 

developed in the Massachusetts Institute of Technology (MIT) is based on clustered 

vegetation structures with reference to the relative phase information associated 

with structured scatterers (Yueh et al. 1992). This model involves calculation of 

scattering function of each scatterer by incorporating the phase interference of 

scattered field from each component/ parts.  

 

At P-band, HH-polarisation channel has been mainly contributed from trunk/ground 

double bounce scattering where the backscatter is sensitive to trunk radius and 

density. VV- and HV-polarisation channels on the other hand, are being dominated 

by branch scattering from the crown. Backscatter prediction using MIT model has 

seen a good agreement with AIRSAR backscatter at P-band sensitivity to forest 

AGB in Landes pine forest of France (Beaudoin et al. 1994, Hsu et al. 1994). The 

strongest relationship of biomass/HV-backscatter in this maritime pine could 

possibly be due to the strong relationships between biomass in each canopy parts 

i.e., the crown, trunk and total AGB and branch diameter being the best predictor of 

the biomass of single branch or total canopy in this study site (Beaudoin et al. 1994).  

 

2.4.6. Karam Model 

The RT backscatter model developed by Karam et al. (1995) at the University of 

Texas, contains non-diagonal extinction matrices that account for the differences in 

propagation constants and the attenuation rates between the vertical and horizontal 

polarisations. This model was developed to simulate second-order radiative transfer 

equation for layered vegetation to account for the inner layer and inter-layer 

double-bounce scattering. The canopy layer can be represented up to three layers, 
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with the branches and leaves (or needles) within each layer being represented by 

randomly positioned finite-length dielectric cylinders. Different scatterer types with 

20 maximum can be represented by randomly oriented distribution having different 

dielectric properties.     

At P-band, HH- and VV-polarisation channel exhibit from the long branches and 

trunk/ground interaction particularly in young trees while only contribution from 

branch dominates in older trees. Only long branches seem to be dominant 

contributor to cross-polarisation channel for all ages. At L-band, scattering from 

twigs and branches are the main contributors to both co- and cross-polarisation 

channels. At C-band, both co- and cross-polarisation channels are dominantly arises 

from needles. Comparisons of the multi-frequency SAR backscatter against model 

predictions for both forest age and biomass from pine stands of Les Landes forest, 

France showed good agreements (Karam et al. 1995). 

2.4.7. Cylinder Model  

Cylinder model consists of a rough dielectric surface upon which a layer of trunks 

and branches are randomly distributed without the leaves, needles and twigs 

components (Durden et al. 1989). This model being developed for conifer species 

at L-band frequency assumed twigs and needles to be neglected due to their 

insensitivity to the polarisation signature at low- frequency. This model could 

construct the complete set of amplitude scattering matrix and Stokes matrix 

utilising the magnitude and phase at four polarisations.  

The model indicates smaller backscatter from the trunks than total backscatter due 

to the other mechanisms for the selected forest type. This study also shows the 

strong dependence of the orientation of the cylinder to the backscatter return (in this 

case cylinder is oriented normal to the incident angle). At incidence angle ~45 to 

50°, near vertical orientation of the standing trunk showed low backscatter returns 

with maximum scattering being directed towards the ground resulting to double-

bounce scattering. On the contrary, backscatter from branches is much stronger 

than from trunks due to the varying orientation of the branches. Therefore, a 

dominant branch scattering or the double-bounce mechanisms may exhibit 

depending on the surface condition and tree density using this model and found 

good agreement against observed SAR data.  
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2.4.8. A 3- Dimensional Model 
 

This model takes into account the spatial distribution of individual trees in a forest 

stand as a function of different canopy components comprising of crown and trunk. 

A layer of underlying forest floor represented by ground layer is modelled with gap 

component determined by the different shapes, sizes and orientation of individual 

trees. Five levels of backscatter returns were derived from crown, trunk and ground 

layers based on time interval of radar pulse.  

Model simulations suggest that at longer wavelengths P- and L-band, strong 

backscatter arises from trunk/ground double-bounce backscatter due to the flat 

surface. However, the backscatter attenuation from canopy components (leaves, 

branches and twigs) increases from low to high frequency bands. VV-polarisation 

channel shows stronger backscatter than HH- and HV-polarisation channel 

resulting to weaker scattering from the lower part of the crown layer. Finally, 

comparison of the A 3- Dimensional model derived and AIRSAR backscatter 

reveal significant and positive results for all frequencies (P-, L- and C-band) and 

polarisations (highest for L-band) over the hemlock forest stand in Maine, USA 

(Sun and Ranson 1995). 

From the above available literatures on different microwave canopy scattering 

models, there is a general reflection that low frequencies at P- and L-band exhibited 

a stronger scattering from forest canopy than high frequencies X- and C-band. The 

co-polarisation channel (HH- and VV-) exhibited stronger scattering than cross-

polarisation channel in almost all the models. This strong scattering from both co- 

and cross polarisation channels are predominantly arises from interactions between 

trunks, large branches and ground surface across the incidence angles and from low 

to high frequencies. The radiative nature of S-band frequency in forest ecosystem is 

relatively mysterious due to low S-band data availability and conflicting results in 

few studies.   

2.5. Mapping of forest/ non-forest cover  

 

Approximately 47% of the Earth’s land surface was assumed to be covered by 

closed forest about 8000 years ago based on numerous global and regional 
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biogeographic information (Billington et al. 1996). Following the Industrial 

Revolution, nearly 30 % of the world’s land area is forested due to wildfires, 

drought, logging and large-scale deforestation particularly in the tropics (Shvidenko 

et al. 2005). Within this area, different forest types occur based on climatic (at 

global), soil, topography and disturbance factors at landscape level (Pan et al. 2013). 

They also constitute about 80 % of terrestrial AGB as a function of forest growth 

(e.g. regeneration) and mortality (e.g. logging, deforestation) (Shvidenko et al. 

2005). The extent of losses in forest area and forest biomass (productivity) caused 

by human activities has been progressively substantial resulting to significant 

greenhouse gas emissions and regional to global climate changes and carbon 

budgets (UNEP et al. 2009). Therefore, accurate measurement of the forested areas 

and spatio-temporal variations in the biomass of these forests at local, national to 

global scales are needed. This includes development of accurate forest cover 

monitoring algorithm and data products essential for monitoring and management of 

forest (Hansen et al. 2008). However, the accuracies related to mapping forest types 

and density cover varies depending on the type of tools and methods used.  

 

The United Nation’s Food and Agriculture Organization (UN FAO), provides 

estimates of global forest cover at 5-10 year intervals since 1946 based on national 

statistics but complemented by remote sensing data (FAO 2012a, FAO 2012b). 

Remote sensing technology can provide a robust and continuous data on existing 

forest areas because of its synoptic observation having different sets of spectral, 

spatial and temporal information (Cihlar 2000, DeFries et al. 2007) given the cost 

and time of field inventory data. Additionally, the vegetation structure information 

retrieved by remotely sensed data can also be used as prospective inputs to 

ecosystem models for testing model predictions and to calibrate models (Hurtt et al. 

2010). Therefore, in most of the maps showing areas of forest and non-forest (F/NF) 

at regional to global scale, use of optical remote sensing data is the primary source 

with reliable accuracy achieved but seems to be in-complete (GOFC-GOLD 2010). 

 

Over the past decades, different forest cover maps at continental to global scales 

have been developed. In major global forest cover mapping programmes, different 

finer (e.g. Landsat, SPOT) to medium (e.g. MOderate Resolution Imaging 

Spectrometer: MODIS and Medium Resolution Imaging Spectrometer: MERIS) to 
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coarser (e.g. Advanced Very High Resolution Radiometer: AVHRR) spatial 

resolutions with optical sensors are widely used (Arino et al. 2008, Kim et al. 2014, 

Hansen et al. 2013, Bartholomé and Belward 2005, DeFries et al. 1998, Defries and 

Townshend 1994, Friedl et al. 2010, Loveland et al. 2000). Recently, two studies 

have demonstrated the feasibility of finer spatial resolution Landsat data in assessing 

the forest cover and change (annual forest gain and loss) at global scale between 

2000 and 2010 (Hansen et al. 2013) and between 1990 and 2000 (Kim et al. 2014).  

 

All the optical derived products are generated for a single year or period due to 

persistent cloud cover. Secondly, optical data are primarily sensitive to top-most 

layer of forest canopy due to shorter wavelength resulting to spectral reflectance, 

absorption and transmittance from leaves and canopy components. Despite its 

capabilities, optical data are basically sensitive to cloud cover, atmospheric aerosol 

and low solar illumination particularly in the tropics and higher latitudes 

respectively. Because of the spectral sensitivity to weather conditions and finer to 

coarse spatial with low to high temporal resolutions, the existing global F/NF data 

revealed considerable disagreements particularly between different forest types and 

in mixed vegetation classes (forest to herbaceous types) and uncertainties across 

spatial scales (Giri et al. 2005, Herold et al. 2008, Herold et al. 2006, Jung et al. 

2006). 

Microwave sensors such as SAR have emerged as a complementary tool for a 

reliable and more accurate mapping of forest cover and its changes due to their 

cloud penetration and weather independent (Lefsky and Cohen 2003). However, the 

utility of SAR data in forest cover are varied, and at times controversial. These 

includes: (1) lack of long-term SAR data from space-borne radar systems; (2) lack 

of appropriate methodology at different scales; (3) difficulty in interpreting radar 

backscatter data due to sensitivity to structural, geometric and volumetric scattering 

particularly at low frequencies (Simard et al. 2000). For instance, single polarisation 

X-band data show limitations in the separation of forest classes particularly in 

tropical secondary forest (Castro et al. 2003).  

 

Studies utilizing TerraSAR-X data suggest that satisfactory results for land cover 

particularly forest classifications can be achieved using multiple polarisations. 

Therefore, polarimetric multi-temporal X-band SAR from TerraSAR-X have 
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achieved high accuracy in forest classification in the temperate forests of Germany 

(Breidenbach et al. 2009). Even, synergistic use of TeraSAR-X data with high 

resolution LiDAR data have achieved high accuracy reaching up to 90% in forest 

mapping in Austria (Perko et al. 2011). However, single polarisation X-band SAR 

based bistatic coherence from TanDEM-X have been investigated for mapping 

forests and other land cover classes in a tropical peat land are of Indonesia (Schlund 

et al. 2014). This study could also differentiate open from closed forest canopies 

where classification accuracy of 85% overall accuracy was achieved using 

coherence and textural information.   

 

On the other hand, SAR sensor with low-frequency L-band is preferably utilised in 

mapping forested areas more accurately at regional to global scale. This is evident in 

international science application projects, for example the Global Rain Forest 

Mapping (GRFM) (Rosenqvist et al. 2000) in the tropical rainforest of South 

America, Africa, Asia and Australia; Global Boreal Forest Mapping (GBFM) 

(Rosenqvist et al. 2004) in Canada, Siberia, Europe and Central Africa Mosaic 

Project (CAMP) (Malingreau et al. 1997) in Africa etc.  

 

In South American Amazon basin, Japanese Earth Resources Satellite (JERS-1) 

mosaic data acquired during dry and wet seasons with 100 m spatial resolution have 

successfully mapped 14 land cover types including mature and secondary forest 

based on mean backscatter and first order textural information achieving 78% 

accuracy level at 1 km scale (Saatchi et al. 2000). Seven first order textural features 

were computed and used to separate different classes based on a statistical distance 

with B-distance or the Jeffries-Matusita distance. They have used a two-stage 

classifier based on a posterior MLC technique and decision rules on both MLC and 

texture measures resulting to sensitivity to structure, biomass and moisture content 

(dry season) and inundated vegetation (wet season). Furthermore, Podest and 

Saatchi (2002) have demonstrated that 100 m mosaic JERS-1 backscatter and 

texture information can also be reliably suitable for mapping F/NF and the flooded 

vegetation with very high accuracy (>90%) level.  

 

On a regional scale mapping, for example in the Central Africa of Gabon, Simard et 

al. (2000) have reported the potential of the JERS-1 data in discrimination of 
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different land cover classes particularly urban, swamp, temporarily/ permanent 

flooded vegetation, woody savanna, grass savanna, forest, open forest and raphia at 

an overall accuracy level of 80%. This study is based on decision tree classifier 

scheme utilizing multi-scale amplitude backscatter and textural information being 

extracted from JERS data. Amplitude backscatter data could classify different land 

cover such as savanna, forests and flooded vegetation while discrimination of 

different flooded vegetation classes such as permanent flooded vegetation, low 

mangroves and raphia are easily done using texture measures. The possibility of 

classifying the coastal vegetation is possible due to the explicit nature of temporal 

changes in the decision tree structure.  

 

Likewise, using the similar methodology based on a decision tree classifier and the 

decision tree diagram, large scale mapping of flooded areas utilizing the combined 

L- and C-band data (Simard et al. 2002). This study could discriminate high and low 

mangroves and flooded forest in Gabon at 84% overall accuracy level against 66% 

(L-band) and 61% (C-band) alone. Similarly, fusion of 100 m mosaic L- and C-band 

from JERS-1 and ERS-1 having different incidence angles have demonstrated the 

potential mapping of lowland rain forest, permanently flooded forest and 

periodically flooded forest with 76.3% overall accuracy level (Mayaux et al. 2002).    

 

The SAR data from the Phased Arrayed L-band Synthetic Aperture Radar 

(PALSAR) sensor from the Advanced Land Observing Satellite’s (ALOS) is better 

than its predecessor JERS-1 for studying forest characteristics due to its similar 

wavelength with additional multiple polarisations, varying incidence angles and 

higher spatial resolutions. Additionally, L-band data having greater penetration level 

of forest canopies and weaker scattering from rough surfaces. For example, HV-

backscatter PALSAR data have demonstrated the capability of producing 25 m 

global F/NF cover maps from 2007 to 2010 achieving around 85% overall accuracy 

(Shimada et al. 2014). This study used region-specific threshold values of HV 

backscatter coefficients as forest and non-forest have larger differences in HV 

gamma naught than those in the HH-channel. They found a stable temporal 

backscatter between 2006 and 2010 from F/NF in both HH and HV polarisations at 

global scale. Finally, it is estimated that forest cover during the study period 

decreased to 1.62 million hectare (around -0.042%) (Shimada et al. 2014). 
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At regional scale, in the Sumatra Island of Indonesia with varying topography, flat 

swampy lands and extensive tropical rain forests, Fine Beam Single (FBS) PALSAR  

data have demonstrated its capability in  discrimination of forest cover from non-

forest achieving around 79.34% overall accuracy and Kappa coefficient = 0.51 

(Thapa et al. 2014). They utilized multi-resolution image segmentation (to minimise 

forest heterogeneity) and threshold (based on backscatter and object shape 

homogeneities) techniques. Having the threshold fitting with HV-polarisation at -

11.5 dB has found good correspondence against reference data producing 65% 

(forest) and 86% (non-forest) producer’s accuracy. Later, multi-temporal Fine Beam 

Dual polarisation (FBD) PALSAR data have also shown good discrimination of 

palm plantation against mature forest based on MLC algorithm with an accuracy 

level of 97% (Kappa coefficient of 0.64) (Morel et al. 2011). This study was 

conducted in the tropical forest and oil palm plantation in the Sabah province of 

Malaysia (Southeast Asia) where they found a significance decrease in the accuracy 

by adding a logged forest class to the classification.  

 

Similarly, utilising 50 m ortho-rectified FBD PALSAR mosaic forest cover map of 

the year 2009 for Southeast Asia was generated (Dong et al. 2012). The 

methodology for forest cover map is based on HH, HV, HH/HV and HH-HV 

PALSAR threshold values and decision tree method attaining a high overall 

accuracy of 93.3% and a Kappa coefficient of 0.9 at 50 m resolution. Cross-

validation against 300 m MERIS derived GlobCover, 500 m MODIS Land cover 

MCD 12Q1 data and FAO FRA calculations revealed closest spatial agreement to 

the FAO FRA 2010 estimates having detail and high spatial information with high 

accuracy (88% producer’s accuracy and 95% user’s accuracy) than Globcover and 

MCD12Q1 forest maps. 

 

In addition to SAR backscatter, texture information was found to be most important 

useful property of SAR data at different wavelengths for classification of tropical 

primary forest (van der Sanden and Hoekman 1999). This study cover primary 

forest, selectively logged forest, secondary forest and other land cover classes of 

tropical forest in Guyana and Colombia where identification of primary forest 

required three C-, L-, P-band; secondary forests and logged forests with two C-, L-, 
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and/or P-band and non-forested areas using either single L- or P-band channel. Use 

of texture features in mapping different forest types have also been covered in 

Brazilian Amazon (Podest and Saatchi 2002, Saatchi et al. 2000) and Central Africa 

(Simard et al. 2000).  

 

Studies have also shown that combination of optical and SAR data provides 

complete and complementary information which increases the accuracy level of 

land cover classification (Ban et al. 2010) as SAR derived forest maps would have 

some noise introduced by soil moisture and complex environment. For instance, in 

the large scale forested area of Brazilian Amazon, mapping of evergreen forest at 

500 m spatial resolution is carried out by integrating L-band PALSAR and MODIS 

vegetation index data (Sheldon et al. 2012). In this, PALSAR based forest map is 

derived based on HH, HV and HH/HV ratio and decision tree framework with 

threshold while temporal profile analysis of Land Surface Water Index (LSWI) 

provides the MODIS derived forest map. The combined evergreen forest map based 

on spectral properties from MODIS and structural properties from PALSAR 

corresponds to approximately 96.7% agreement between PALSAR-derived and 

MODIS-derived forest maps. 

 

Furthermore, to support Reducing Emissions from Deforestation and forest 

Degradation (REDD) over tropical forest of Southeast Asia, integration of high 

resolution 50 m mosaic PALSAR and MODIS NDVI at 250 m data have 

demonstrated the potential mapping F/NF cover at 50 m spatial resolution in large-

scale areas of China reaching an overall accuracy of 96.2% and Kappa coefficient of 

0.9 (Qin et al. 2015). This study utilizes similar methodology of Dong et al. (2012) 

working on decision tree classification algorithm using signatures from PALSAR 

backscatter data. The accuracy of this PALSAR-MODIS NDVI derived map shows 

a good linear relationship against forest maps of China National Forestry Inventory, 

Japan Aerospace Exploration Agency (JAXA) and Food and Agriculture 

Organisation’s Forest Resources Assessments (FAO FRA).  

 

While most of the SAR based forest mapping has used X-, C-, L- and P-band data, 

current knowledge about the suitability of S-band for mapping forest cover is very 

limited. For example, few recent studies have investigated S-band SAR data 
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acquired by Airborne demonstrator on vegetated areas in the UK test sites. This 

includes the study conducted by Guida et al. (2012) who demonstrated good 

classification of six different crop canopies using S-band data and H/α and Pauli’s 

polarimetric decomposition techniques. This study was conducted in the agriculture 

crop areas of Marlborough near Savernake forest in southern England. Similarly, S-

band backscatter appears to have high sensitivity to forested areas using H/α and 

Pauli’s polarimetric decompositions than the X-band backscatter (Natale et al. 

2012). The test site is located in the forested areas of Baginton site of southern 

England. Using the Pauli’s decomposition technique, S-band backscatter appears to 

produce larger volume scattering from the forest canopy than the surrounding non-

vegetated areas in comparison to X-band backscatter.  

 

Additionally, study by van Beijma et al. (2014) have demonstrated the capability of 

airborne X- and S-band SAR data in mapping detailed salt marsh vegetation habitats 

in combination with elevation and optical data. This study was conducted in the 

Loughor Estuary of the Gower Peninsula in Wales where a mixture of different 

vegetation occurs in different zonations. The methodology consists of analysing 30 

spatial variables including X- and S-based different polarimetric decompositions in 

a Random Forest classifier. This study shows that the differentiation of different 

vegetation habitats was better with S-band (overall accuracy of 78.2%, Kappa 

coefficient = 0.71) while X-band provided the best vegetation extent information 

(overall accuracy of 91.55%, Kappa coefficient = 0.83). Yet, there have been no 

studies on the capability of S-band SAR backscatter in mapping forest cover and 

changes in the temperate region of wider European region including the UK sites. 

 

2.6. Identification of forest degradation, clear-cut and forest fire 

Remote sensing as a tool can be used for a consistent monitoring of degradation 

inside forest due to larger area coverage and as frequently as possible even in 

inaccessible areas with time and cost effective. However, remotely sensed data can 

only be effective provided ground based information related to degradation of forest 

is supported. This is because identification of degradation in terms of size (small) 

and rate (gradual) is not easy using remote sensing data alone but often requires 

contemporary field data (Rosenqvist et al. 2003). Also, information related to C 



 

 35 
 

emissions from forest degradation is even more challenging than the extent of 

degraded areas (Souza Jr et al. 2005) because forest biomass cannot be directly 

measured from space through remote sensing techniques (Woodhouse et al. 2012).  

 

In spite of the above limitations, several studies have reported identification of forest 

degradation. For example, study with X-band single-pass utilizing TanDEM-X 

satellite can discriminate open forest (as a proxy of degraded) from closed 

undisturbed forest and have achieved an overall accuracy of 85% and Kappa 

coefficient of 0.84 (Schlund et al. 2014). It was carried out in the peat swamp forest 

in Central Kalimantan, Indonesia where areas of open to closed canopy forest, 

grassland, shrub land and wetlands exist. This level of accuracy was achieved using 

bistatic system based on interferometric coherence and textural information with 

feature selection process in comparison to both monostatic acquisition and bistatic 

scattering coefficients. The bistatic coherence was primarily due to volume 

decorrelation of forest canopy constituents and closely related to the canopy structure 

information in comparison to bistatic scattering coefficients.  

In the Tapajos region of Brazilian Amazon, single JERS-1 imagery have been 

reported to detect primary forest and disturb areas (non-forest, regenerating forest) 

with 91.4% and 73% accuracy level for both disturbances (Grover et al. 1999). The 

site is a primary forest having many cleared land and different age class regenerating 

forest. This study uses different techniques of speckle reduction where simulated 

annealing has reported to be best algorithm for JERS data and could discriminate 

areas of forest disturbance from primary forest by their lower backscatter. This result 

is being supported with model predictions using MIMICS-I model. Similarly, 

monitoring of primary forest, secondary forest, pasture-crops and deforestation in 

Brazilian Amazon have been conducted based on supervised Bayesian algorithm 

with the Shuttle Imaging Radar-C (SIR-C)/X-SAR satellite data (Saatchi et al. 1997). 

This classification has achieved around 72% overall accuracy level with increased up 

to 87% when only three land cover classes are taken in account particularly 

regrowth-disturbed forest areas. 

SAR backscatter relationship with plantation has also been investigated utilizing 

multi-temporal JERS-1 data (1992-1997) (Takeuchi et al. 2000). This study has 

found the multi-temporal L-band data in monitoring the process of plantation (initial 
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stage of development up to maturity) as a function of dynamic variability of 

backscatter changes. They observed decreased backscatter intensity around -4 to -6 

dB corresponding to early stage of plantation while post fire or deforestation 

producing a strong and increased 4-6 dB due to single-bounce scattering from felled 

trees (e.g. trunks). This result was cross-validated using optical high resolution SPOT 

data. The site is a tropical primary forest with swamp forest and plantation 

accompanied by burnt felled trees in the southern Sumatra Island of Indonesia.   

Using the AIRSAR L- and P-band SAR data with Cloude-pottier decomposition 

technique have demonstrated the possibility of detecting forest degradation levels 

(Trisasongko 2010). This study works on the premises that intact forests having high 

Entropy value due to strong volume scattering mechanism while low Entropy values 

due to increasing single random scattering mechanism from degraded landscape 

having dead stands without leaves or branches. The site is a dense tropical forest of 

Indonesia covering diverse ecosystem with valuable timber species and mangroves in 

the coastal areas. The study used Support Vector Machine supervised classification 

technique for generating land cover map depicting intact forest and levels of 

degradation on the basis of Entropy values being decomposed by Cloude-Pottier 

technique.       

For discriminating forest and deforested areas, multi-temporal JERS-1 with 

segmentation process was utilized through comparing post-classification (imageries 

separately) against pre-classification (all imageries) techniques (Thiel et al. 2006). 

This study was carried out in five different test sites of temperate (Germany, UK and 

Sweden) and boreal (Russia) with different management practices of clear-cutting in 

all sites except Germany with thinning operation. The pre-classification method 

outperformed with an accuracy level of 90% for both forest cover and logging 

operations. Using the advanced L-band PALSAR sensor in bi-temporal FBD mode 

have detected the clear-cuts of forest achieving 90% accuracy with RMSE<10% 

particularly around the edges of the clear cuts (Pantze et al. 2014). This study uses 

polynomial based histogram matching for radiometric normalization, initial change 

detection with amplitude ratio thresholding iteratively and Markov random field 

(spatial, spectral) based change detection in an automatic unsupervised change 

detection approach. It was carried out in two clear-cut areas of hemi-boreal and 

boreal forest of Sweden with known recent clear-cuts using SPOT data.    



 

 37 
 

In the central Mozambique region of African ecosystem dominated by miombo 

woodland, mapping of carbon flux due to small-scale deforestation and forest 

degradation using FBD mode PALSAR backscatter combined with 90 m Shuttle 

Radar Topography Mission (SRTM) elevation data have been investigated (Ryan et 

al. 2012). This study utilizes a methodology where PALSAR backscatter being 

regressed and bootstrapped based on 96 field plots with threshold to generate 

temporal AGB maps (carbon). They reported a reduction in forest biomass from 

2007 to 2010 from forest degradation contributing 67% but at high uncertainty level. 

Other studies utilising the synergy of PALSAR and optical data have also reported 

promising results. For instance, FBD PALSAR and Landsat data between 2007 and 

2010 have demonstrated mapping of deforestation and degradation with an accuracy 

level of 88% and 89.3% respectively (Reiche et al. 2013). It was carried out in the 

rich tropical forest having high deforestation and degradation in Central Guyana. The 

study works on detecting forest degradation at sub-pixel level using Landsat while 

classifying forest and deforestation with PALSAR data based on decision tree 

algorithm and feature threshold using normalized Jeffries-Matusita distance.      

In Lucas et al. (2006), the integration of AIRSAR L-band and Landsat-derived 

foliage projected cover data by simple thresholds showed possible mapping of 

woody regrowth. This study was conducted near Injune in Central Queensland 

(Australia) where areas of forest cover, agricultural clearings and woody regrowth 

dominated by Acacia harpophylla exists. However, the discrimination of woody 

regrowth using individual Landsat or SAR data was not possible. Additionally, study 

was carried out in differentiation of early-staged regrowth from mature forest using 

PALSAR backscatter and Landsat-derived foliage projective cover data (Lucas et al. 

2014). This study was conducted in the Brigalow Belt Bioregion of Queensland, 

Australia where different stages of growth exists dominated by briglow (Acacia 

species). User’s and producers’ accuracies for early regrowth corresponds to 81% 

and 69% while combined mature to intermediate stage forests with lower accuracy 

achieving 71% and 89%. 

Fire eliminates vegetation cover, its component and also reduces moisture content 

due to damaged foliage and canopy components. Radar backscatter intensity is 

sensitive to structure, scattering components and moisture condition of the vegetation 
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canopy. Because of the changes in vegetation canopy components and moisture 

condition due to fire, this in turn, results in changes in both backscatter intensity and 

phase. For example, the dominant volume scattering from typical healthy vegetation 

canopy decreases as a result of randomly single and surface scattering from the open 

canopy and exposed ground surface. Therefore, the moisture condition and 

roughness of the ground surface will play an important contributor to the backscatter 

return. Studies have shown that longer wavelengths are sensitive to variations in the 

moisture and surface roughness of soil (Shi et al. 1997) and vary as a function of 

incidence angle (Rahman et al. 2008). For example, SAR backscatter increases with 

increasing soil moisture ranging between 0 and 40% (Baghdadi et al. 2007) 

following a logarithmic function (Ulaby et al. 1986). 

Several studies have reported the dynamic backscatter changes due to fire-affected 

forested areas utilising multi-temporal SAR data. The study conducted by French et 

al. (1996) have found backscatter from recent forest fire to be influenced by the 

canopy damage, moisture condition of soil and regrowth status in post-fire. They 

reported strong changes in the backscatter of 3-6 dB with C-band SAR from ERS-1 

from burnt scars in Alaska boreal forests that relates to the moisture condition of the 

soil. Additionally, using the multi-temporal ERS-1 data acquired before, during and 

after fire season in East Kalimantan, Indonesia (1997-98), Siegert and Ruecker 

(2000) found a decrease of 2-4 dB in backscatter due to fire under dry condition in 

comparison to unburned areas. Because significant backscatter intensity differences 

between burned and unburned areas was observed in dry weather conditions. In this, 

significant decrease of backscatter up to 5.5 dB was recorded after fire from non-

forest and plantation areas due to maximum soil exposure with scattering from the 

unburnt canopy structure in comparison to fire affected forested areas. 

In the Mediterranean region, few studies have attempted to establish radar 

backscatter relationship with fire disturbances. For example, comparison of X-,C- 

and L-band with burn severity estimates derived from Landsat data and field 

measurements have been investigated (Tanase et al. 2010). The study highlighted the 

co-polarisation backscatter increased with burn severity for shorter wavelength while 

opposite for L-band backscatter to higher soil moisture condition, resulting to 

distinguish between unburned and highly burned forest at X- and C-band. They 

found that cross-polarisation backscatter showed better relationship with burn 
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severity estimation for both C- and L-band data. From the modelling perspective, the 

radiative nature of the C-band backscatter from burned pine canopy was investigated 

utilising a discrete scattering model (Kalogirou et al. 2014). The predicted 

backscatter changes was found to be highly related to the changes in soil moisture, 

increased exposure of surface and canopy damage by fire. Therefore, the impacts of 

fire in forest appears to be mainly governed by the reduction in the canopy 

components (leaves, twigs, branches) from the imaging microwave perspectives 

(Kalogirou et al. 2014, Tanase et al. 2010).        

Detection of forest degradation, clear-cut or fire scar using S-band SAR sensor is 

very uncertain due to limited radiative knowledge of S-band backscatter to forest 

canopy. Even the S-band backscatter responses to varying levels of processes 

involved in degradation, clear-cut or intermediate is very limited and may provide 

high ambiguity. Few studies have highlighted positive results utilising S-band SAR 

from Russian Almaz-1 satellite to be superior to ERS-1 data in discrimination of 

clear felled against forested areas (Yatabe and Leckie 1995). This study was 

conducted in mixed coniferous and broad-leaved forests of Ontario in Canada. In the 

same way, multi-temporal Almaz-1 have also highlighted higher capability in 

identifying clear felled against forested areas based on segmentation of homogenous 

areas using SPOT data (Fransson et al. 1999). The test site is carried out in a boreal 

conifer belt of northern Sweden where 32 ha of recently clear felled with 464 ha of 

forested areas. This study has correctly classified clear felled areas ~61.4% using 

mean textural features derived from first order histogram. Nevertheless, there have 

been any studies on investigating the S-band SAR backscatter in detection of forest 

degradation, clear-felled or logged in the temperate forest of the UK region in 

comparison to other SAR wavelengths. 

2.7. Retrieval of forest structure and aboveground biomass 

Forest aboveground biomass (AGB) is defined as the sum total of the biomass 

located in trunks and branches as the main component in a particular stand. On a 

broader sense, it is a by-product of several ecological and biological processes 

regulated with climate, soil and disturbance in forest ecosystem. Hence, evaluation of 

forest AGB is useful as a means to reduce errors in the estimation of global carbon 

cycle and its fluxes. On a local scale, the stock of forest AGB is usually derived from 
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ground census through harvesting or tree biometric measurements using sampling 

plots and empirical allometric model (Brown 1997).  

 

Individual tree AGB is the product of its aboveground volume (m-3) and its average 

mass density (kg m-3). Individual tree AGB measurements by direct harvesting are 

expensive and laborious job. Instead, biomass can be reliably estimated using 

indirect allometry approach. This method works with deriving the allometric 

equations, i.e., equations relating to field measurements to AGB due to the inter-

relationship between the different parameters of a tree (DBH, H, tree species and 

age). At plot level, AGB refers to the sum of all the individual tree aboveground 

biomass related to the product of aggregated individual timber volume and average 

volumetric density in the plot. In fact, allometry based biomass derivation using tree 

physical properties are not representative of the actual forest biomass (Clark and 

Kellner 2012).   

 

Aboveground biomass estimation on tree level allometric equations are often 

associated with errors due to up-scaling to larger areas (Chen et al. 2015), hence 

larger plot sizes greater than 0.25 ha is required to represent the normal biomass 

distribution with reduced coefficient variation below 20% (in the case of tropical 

forest) (Saatchi et al. 2011b). Forest biomass and structural information required are 

contiguous in regional to global scale; hence direct measurements of forest structure 

and biomass are far too expensive to be practical. Rather, an approach based on 

satellite remote sensing to produce spatially contiguous forest structure and biomass 

maps at finer spatial resolution through extrapolating the ground measurements at the 

tree level to regional to global scales is required.  

 

Remote sensing is a promising technology to map forest biophysical characteristics 

at varying scales from landscape, national and continental scales (DeFries et al. 2007, 

GOFC-GOLD 2010, UNFCCC 2008). For instance, forest stand height has some 

relationships with SAR backscatter acquired at longer wavelengths for conifers (Le 

Toan et al. 1992) but this trend is less clear particularly with deciduous stands (Sader 

1987). With the shorter wavelength, weak relationship of backscatter to stand height 

may be primarily governed by the lesser penetration into the canopy due to the crown 

closure (Sieber and Noack 1986), rather the backscatter is more closely related to the 



 

 41 
 

patterns of the canopy envelope. Moreover, the backscatter intensity is strongly 

sensitive to the properties of terrain (slope, aspect) and may not be useful for height 

estimation. Towards this, SAR interferometry (interferometric phase) (Balzter 2001) 

and high-resolution radar based stand profiling (Hyyppä et al. 2000) provides 

alternative methods for height estimation at X-/C-band.  

Forest AGB cannot be directly measured from space, but the biomass estimates 

based on ground measurements can be calibrated and predictions of biomass using 

optical reflectance or SAR backscatter can be made (Dong et al. 2003, Woodhouse et 

al. 2012). A number of techniques and new methodologies for estimating forest AGB 

based on remotely sensed data have been proposed but is particularly challenging 

due to complex forest structure (Lu 2005, Steininger 2000). Furthermore, validation 

of model predicted AGB involves uncertainty and large error being propagated from 

trees to plots and pixels level (Chen et al. 2015). This is because the ground 

measured biomass used to calibrate the remote sensing based models are rarely 

measured directly (Clark and Kellner 2012). Instead, tree physical properties are 

being used through allometric models.  

Despite wide use of optical data for forest characterisation, information on forest 3-D 

structure and biophysical characteristics are limited. For example, optical data 

derived Leaf Area Index (LAI) from AVHRR sensors have generated biomass 

changes in northern forest indicating larger C sink on decadal time scale due to 

distinct seasonality (Myneni et al. 2001). In the optical data, the dominant scattering 

behaviour is predominantly governed by spectral reflectance, absorption and 

transmittance properties of canopy components (upper layer) particularly leaf 

material, chlorophyll content etc. Because of these properties, optical data are 

quickly saturated with the complex forest structure and increased growing stock 

volume/ biomass content. On the contrary, scattering in the microwave domain is 

mainly controlled by the size, shape, texture and orientation of the larger scattering 

components in the canopy structure, e.g. branches, twigs and soil roughness as a 

function of longer wavelength than optical data. Hence, SAR data seems to be an 

alternative and more promising tool for supporting studies related to forest structure 

and biophysical parameters retrieval due to more scattering from the canopy 

components through deeper penetration level in the forest canopy (Imhoff 1995, 

Lucas et al. 2010). 
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The SAR backscatter from forest is not solely determined by the forest biological 

parameters, e.g. biomass but fundamentally dependent on dielectric properties (in 

particular moisture content) of canopy components and forest structure (size and 

orientation of leaves, branches, height, stand density) (Imhoff 1995, Lucas et al. 

2010, Rosenqvist et al. 2007, Woodhouse et al. 2012). Moreover, the backscatter to 

biomass relationship and level of saturation is also dependent on the structure and 

nature of the forest (density and size) under observation and vary across 

environmental conditions (Woodhouse et al. 2012). For example, Lucas et al. (2010) 

has revealed better estimation of PALSAR derived AGB from forest and woodland 

during minimal surface moisture content due to highest backscatter dynamic range 

within large-sized and stem density in Queensland, Australia. On the contrary, study 

conducted in the primary and degraded tropical forests of Central Kalimantan, 

Indonesia, Englhart et al. (2011) have misrepresented relationship of AGB up to 600 

t/ha using combined multi-temporal TerraSAR-X and PALSAR data. However, this 

result draws special attention from a wider SAR community (Woodhouse et al. 2012) 

supported by modelling perspectives (Woodhouse 2006b, Brolly et al. 2012).  

Recently, two biomass maps focusing on tropical forest of South America, Africa 

and Southeast Asia have been published at 500 m (Baccini et al. 2012) and 1 km 

(Saatchi et al. 2011a) resolutions utilising LiDAR data from the Ice, Cloud and Land 

Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) with 

MODIS and Quick Scatterometer (QuickSCAT) radar data respectively. Comparing 

these biomass maps revealed substantial differences particularly in areas with limited 

field data (Mitchard et al. 2013). Large differences are found in forested areas at 

country level while, greater agreement at regional to biome level.  

To further validate these biomass maps at regional scale, a large independent field 

data from the tropical forests of the Amazon basin was utilized and found significant 

spatial variations in forest structure and biomass with over- or under-estimated by > 

25% at basin level (Mitchard et al. 2014). This study has highlighted that remotely 

sensed data cannot reliably measure woody density or species assemblages. On the 

contrary, Saatchi et al. (2015) have claimed that estimation of regional biomass 

variation based on random and limited ground-based forest inventories can be 

unrepresentative, yet regional biomass estimation can be achieved by spatially 

resolved, systematic and repeated measurements of forest structure via remote 



 

 43 
 

sensing techniques with ground data. These studies have highlighted the importance 

and lack of data integration from multiple sources.  

There are many regression based studies in which the relationship between forest 

biophysical characteristics and SAR backscatter at varying wavelengths and 

polarisations has been investigated. For this research, only those studies conducted in 

boreal and temperate sites are covered.  

Shorter wavelength X-band data in interferometric mode (InSAR) have been found 

to relate with mean stand height and stand top height with high accuracy of 2.5 m 

and 2.9 to 4.1 m respectively (Balzter et al. 2007a). From the InSAR data, scattering 

phase centre height is being estimated using elevation terrain model and surface 

model while stand top height is estimated from the yield class models of the Forestry 

Commission. The site is a temperate pine managed forests of Thetford Forest, UK.  

Additionally, Balzter et al. (2007b) have presented forest canopy height mapping 

based on dual-wavelength InSAR at X- and L-band achieving an accuracy of 3.49 m 

error against LiDAR height model. In this study, the terrain elevation model is 

derived using L-band interferometry while the surface height model is derived using 

X-band interferometry based on the different scattering phase centres. This site is 

deciduous woodland of Monks Wood Nature Reserve in the UK comprising of 

different vegetation type and density.  

 

In recent times, researchers are also focusing on forest canopy profiles for stand 

height estimation utilising very high resolution active scatterometer. For instance, 

Hyyppä and Hallikainen (1993) used the Helsinki University of Technology 

Scatterometer (HUTSCAT) mounted on a helicopter to measure the forest canopy 

profiles based on the range difference between maximum backscattered power as a 

function of distance to the sensor (along the flight line). This study was carried out in 

the pine and spruce forests of Finnish Forest Research Institute in Helsinki. They 

found a significant correlation of R2 = 0.9 and 1 m Standard deviation for both 

Lorey’s mean and dominant tree height of 100 tallest trees particularly pine with C-

band frequency. Later, retrieval of forest stand mean height and stem volume was 

compared based on various remote sensing data estimates (Landsat, SPOT, 

hyperspectral AISA, ERS-1/2 Tandem and HUTSCAT) (Hyyppä et al. 2000). This 

study found that radar-derived stand profiles at C-band frequency based on 



 

 44 
 

HUTSCAT obtained with 100 m spacing was the most appropriate data to mean 

height (R2 = 0.77, Standard error of 2.97 m) and stem volume (R2 = 0.68, Standard 

error of 55.7 m3/ha) retrieval.  

 

Similarly, using the same methodology, prediction of mean height with improved 

accuracy of 1.6 m (R2 = 0.88) and stem volume of 31 m3/ha (R2 = 0.85) at stand level 

was achieved based on C- and X-band derived stand profiles (Hyyppä et al. 1997). 

This study also reported that stand profile at X-band appears to be highly significant 

to mean height due to higher attenuation at X-band through low penetration 

capability relative to C-band data. Furthermore, in the southern Finland, TerraSAR-X 

stereo SAR data have been used to predict plot stem volume up to 400m3/ha and 

RMSE = 34%. This result is based on forest variables calculated with 109 circular 

sample plots where average H and DBH were also correlated with RMSE equivalent 

to 14% and 19.7% respectively (Karjalainen et al. 2012).  

Multi-temporal C-band from ASAR sensor have highlighted an improvement in the 

retrieval of growing stock volume up to 300 m3/ha and RMSE between 34.2% and 

48.1% at 1 km scale in boreal forest (Santoro et al. 2011). This study was performed 

in the boreal forest of Central Siberia (Russia), Sweden and Quèbèc (Canada) 

utilising coarse resolution ScanSAR mode at 100 m and 1 km resolution based on 

BIOMASAR retrieval algorithm being calibrated with Water Cloud Model. Recently, 

using the similar methodology with hyper-temporal ASAR data, estimation of forest 

growing stock volume in the wider region of the northern hemisphere has been 

conducted at 1 Km resolution (Santoro et al. 2015). A least uncertainty in the boreal 

and temperate forest while sub-tropical forest having the largest is being recorded 

particularly in regions with very high stock volume and fragmented forest landscapes 

having an average RMSE 29%. 

 

There are some studies utilising the coherence data acquired by ERS-1/2 and in 

combination with JERS-1 data. For example, Drezet and Quegan (2007) have 

estimated the forest AGB as a function of forest age structure predicted by C-band 

ERS Tandem coherence. In this, C-band coherence data is calibrated using the forest 

age GIS data of Britain and Water Cloud Model predictions at forest stand level. This 

study provides radar-derived forest age structure of Britain covering nearly 3 million 
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hectares of forest with age and biomass information at individual forest stands level. 

During the period of investigation in 1995, forest carbon uptake was predicted three 

times higher than the national inventory estimates.  

 

In the boreal region, Wagner et al. (2003) have investigated mosaics of C-band ERS-

1/2 Tandem coherence and L-band JERS-1 to determine the growing stock volume 

of Siberian boreal forest. They have developed an adaptive empirical model 

calibrated using forest inventory data from 38 sites to classify growing stock volume 

classes based on coherence and backscatter data. The classification algorithm for 

volume interval classes was made on the basis of the ecological and commercial 

attributes of the Russian Forestry Services. The forest classes identified were open or 

≤20 m3/ha (early re-growth), 21-50 m3/ha (forest re-growth), 51-80 m3/ha (forest re-

growth) and >80 m3/ha (commercial mature forest). This calculated stock volume 

classes were classified using MLC algorithm and used as input for an iterated 

contextual classifier. The algorithm has achieved up to 80 m3/ha accuracy level of 

stock volume at 50 m spatial resolution in boreal forest having volume ranging from 

150 m3/ha in the middle taiga to 250 m3/ha in the southern taiga. The classification 

accuracy is 86% overall accuracy and Kappa coefficient of 0.72 in Siberia site.   

 

Further validation of the algorithm was carried out in temperate pine forest plantation 

(Thetford Forest, UK), semi-natural boreal forest (Siggerfora, Sweden) and tropical 

rainforest of Amazon (Rondonia, Brazil) (Tansey et al. 2004). The classification 

accuracies for forest growing stock volume achieved an average of 70% overall 

accuracy and Kappa coefficient 0.22 to 0.43 in Siggerfora and Thetford forest 

respectively. 

 

In the Central Alaska, studies have also demonstrated low moisture content to be 

important environmental factor responsible for high sensitivity to biomass. For 

example, Harrell et al. (1995) have demonstrated the sensitivity of SAR backscatter 

from ERS-1 and JERS-1 data to density, height and total biomass (R2 = 0.25 for 

ERS-1 and 0.66 for JERS-1). This study was conducted in the 32 boreal forest sites 

of Alaska where different ABG levels of Black Spruce and White Spruce stand grow. 

Furthermore, Harrell et al. (1997) have found L-band from SIR-C sensor to be 

sensitive to the AGB retrieval particularly with HV-polarisation backscatter. This 
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study being conducted in the pine forests of southern United States has shown that 

SAR data acquired during dry season achieved better relationship with lowest RMSE 

for all AGB levels. Combining multi-temporal JERS with Landsat data have shown 

high sensitivity achieving R2 = 0.79 and improved the saturation level of forest 

volume in the boreal forest of south-eastern Finland (Rauste 2005). This result was 

achieved based on the imageries acquired over summer season during the peak 

phonological growth in boreal forest. Using the JERS data only, a stable and 

consistent strong relationship (R2 between 0.4 and 0.66) from over the summer 

growing season is also evident.   

There are also studies using the low frequency SAR data at P-band and L-band 

acquired by both airborne (e.g. NASA-JPL AIRSAR) and satellite data (ALOS). For 

instance, in 29 forest sites of boreal forest in Alaska, a strong positive logarithmic 

relationship was found with the FBD PALSAR backscatter against the forest AGB 

(Suzuki et al. 2013). This corresponds to a strong relationship of R2 = 0.76 and 0.64 

for HV- and HH-polarisations respectively and the sensitivity of HV-polarisation to 

the forest AGB up to 120.7 t/ha. Similarly, a positive relationship also exists in the 

HV-polarisation to tree density, height and DBH. Furthermore, in the northern forest 

of Maine, United States with hardwood-boreal transitional forest having varying 

levels of forest biomass, SAR data acquired by airborne AIRSAR and space-borne 

SIR-C/X-band were compared (Ranson and Sun 1997). The results from AIRSAR 

data were quite better in mapping different broad-leaved forest stands while 

coniferous stands with SIR-C/X-SAR. Both the SAR data showed a close agreement 

for biomass estimation where an average biomass densities of 9.7 kg/m2 and 9.0 

kg/m2 being predicted using AIRSAR and SIR-C respectively. 

 

In the northeast United States, Cartus et al. (2012) have estimated accurate AGB 

based on PALSAR backscatter against Forest Inventory and Analysis county 

statistics achieving higher correlation with HV polarisation at R2 = 0.86 and lower 

RMSE of 12.9 t/ha. This study was carried out exploiting the synergy of optical and 

SAR data to calibrate the semi-empirical model.  

 

In Rauste et al. (1994), AIRSAR and HUTSCAT data collected from the temperate 

conifer at Freiburg and Helsinki test sites in south-western Germany and Finland 

respectively were analysed for forest stock volume and biomass. They found the 
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highest correlation with P-band (HV-polarisation: R2 = 0.75) backscatter and forest 

volume/ AGB. On the other hand, a strong inverse relationship exists between pine 

biomass and X-band VV-polarisation in the Finnish test site. In the Flevoland forest 

region of Netherlands, the AIRSAR data with modelling have shown potential for 

growing stock volume estimation particularly at longer wavelengths (Israelsson et al. 

1994). This site is broad-leaved and mixed species with poplar, ash, oak, maple, 

willow and beech as the main species. Using AIRSAR data, L-and P-band exhibited 

a strong sensitivity to stand volume up to 100-200 m3/ha and >200 m3/ha 

respectively while insignificant with C-band data. At P-band, a strong scattering 

from the ground/trunk interactions from HH-polarisation channel while direct crown 

with ground-crown interaction from both VV- and HV-polarisation channels has 

been predicted using model simulations.  

 

In Baker et al. (1994), radar backscatter from P- and L-band in particular HV-and 

HH-polarisation channels have shown sensitivity to conifer growing stock volume 

and stand age at Thetford forest. This site is a managed productive forest with even-

aged stands dominated by Corsican pine having timber volumes up to 500 m3/ha 

(approximately 185 t/ha biomass). The highest correlation coefficient of R2 = 0.71 

and 0.65 for P-and L-band respectively (both HV- and HH-polarisation channels) 

were observed to stand volume.  

 

In Beaudoin et al. (1994) and Le Toan et al. (1992) the sensitivity of the AIRSAR 

and modelled backscatter on forest AGB in Landes forest in south-western France 

have been investigated. This site is a large homogenous conifer plantation stand 

dominated by maritime pine where they have reported the best sensitivity of AGB 

with the P-band having an estimated biomass error of around 20% than L- and C-

band. This result from Landes forest was compared with AIRSAR data from loblolly 

pine at Duke University Research Forest in North Carolina, United States (Dobson et 

al. 1992) and found similar results with forest AGB at L- and P-band. In the study by 

Rignot et al. (1995), the results from Landes and Duke sites were compared from 

boreal broad-leaved Bonanza Creek experimental forest in Alaska and tropical 

rainforest Manu National Park in Peru utilising the AIRSAR data and reported 14 to 

30% error rates of AGB estimation for these two sites. Finally, Imhoff (1995) have 

compared the coniferous forest of Landes and Duke against broad-leaved evergreen 
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of Hawaii utilising AIRSAR data and reported that the sensitivity of forest biomass 

at C-, L- and P-band were around 20 t/ha, 40 t/ha and 100 t/ha respectively. 

 

The study by Sandberg et al. (2011) have demonstrated better sensitivity of P-and L-

band backscatter acquired by the German Aerospace Centre’s (DLR) airborne 

Experimental-SAR (E-SAR) system against forest AGB achieving higher accuracy 

with least error. This site is a hemi-boreal forest with Norway spruce, Scots pine and 

Birch tree species in Remningstorp region of southern Sweden. In this study, field 

sample plot data and high density LiDAR data are being used to obtain reference 

biomass estimates at 0.5 ha stand level. For L-band, the RMSE were between 31 and 

46% and R2 between 0.4 and 0.6 for HV-polarisation channel. For P-band data, 

higher accuracy between 18-27% RMSE and R2 between 0.7 and 0.8 for HH- or HV-

polarisation channel was achieved. This finding was further investigated by Soja et 

al. (2013) who developed a new biomass retrieval model for P-band SAR focussing 

on varying moisture condition and topographic terrain variations in northern and 

southern Sweden. This particular study reported the sensitivity of P-band backscatter 

to forest AGB with much lower RMSE of 22-30% mean biomass using HV and 

HH/VV ratio backscatter. The sensitivity of model due to topographic variability 

using SAR data in both sites revealed inconclusive. The P-band SAR based biomass 

level up to 200 t/ha was predicted with good agreement against LiDAR based in 

fairly flat Remningstorp site while underestimation of biomass larger than 100 t/ha 

was found in strong undulating topography Krycklan, north of Sweden.  

 

In most of these studies, HV-polarisation backscatter have found stronger 

dependence on forest volume and biomass across different wavelength bands 

primarily due to the largest dynamic range and more level of pulse penetration. This 

is because scattering elements that change the polarisation of the incoming radar 

pulse through complex three-dimensional forest structure is easily detected. 

Although SAR data is often used as the best tool relating to AGB with some level of 

signal saturation point (Imhoff 1995, Rauste et al. 1994, Saatchi et al. 2011b, 

Sandberg et al. 2011, Ryan et al. 2012), the backscatter signal does not provide a 

direct measurement of forest volume or AGB (Woodhouse et al. 2012). This is 

because radar backscatter is sensitive to different properties of forest canopy 
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(structural, architecture) and moisture content in a forest ecosystem (Ulaby et al. 

1990, Woodhouse 2006b, Lucas et al. 2010, Saatchi et al. 2007).  

Model prediction and validation of forest AGB over large area using SAR 

backscatter would often requires large and independent field estimated biomass 

information. Moreover, identification of the saturation level to forest AGB at a 

particular wavelength is often difficult requiring repeated and numerous studies 

across different forest types. In fact, future research should focus on investigating the 

factors responsible for forest structure and backscatter to AGB relationship 

(Woodhouse et al. 2012, Brolly and Woodhouse 2013, Brolly et al. 2012). This 

includes the number stand density, level of branching in the canopy layer etc.  

 

Relative to the reported positive results for SAR backscatter and AGB relationships, 

little work appears to have been done on investigating the S-band backscatter 

properties of forest. A particular study conducted in the mature oil palm and rubber 

plantation using JERS-1, ERS-1 and Almaz-1 data have reported good relationship 

of palm and rubber biomass to L- and C-band backscatter while insignificant 

relationship against S-band backscatter (Rosenqvist 1996). The study site is selected 

over Kedah and Penang states of West Malaysia where continuous planting, growth 

and clear felling of both rubber and oil palm at 20 -25 year cycle is practised with 

different ages and clear-cuts. The author has used S-band data acquired at standard 

high incidence angle (~50°) and reported that high incidence is likely to be the main 

factor responsible for poor relationships with palm/ rubber AGB. 

 

Recently, few studies have analysed the S-band SAR data acquired during 2010 

Campaign in Britain focusing on classification of agricultural crops, forested areas 

and habitat mapping in Wales (Guida et al. 2012, van Beijma et al. 2014, Natale et al. 

2012) but, none of the studies have investigated the sensitivity of S-band backscatter 

to forest biophysical characteristics. This research have taken the opportunity to test 

the sensitivity of S-band backscatter to average tree DBH, canopy H and forest AGB 

at pixel to stand levels in the temperate mixed deciduous forest of the UK region.  
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2.8. Current knowledge gaps and research needs 

 

The following research gaps have been identified: 

 

1. The current knowledge of S-band SAR backscatter interactions with forest 

canopy structure is largely lacking in comparison to X-, C-, L- and P-band. 

2. Knowledge of S-band scattering from soil characteristics (moisture content 

and surface roughness) and forest canopy components based on modelling 

approach has not been fully investigated and reported. 

3. There is a lack of knowledge about the temporal S-band backscatter 

responses to varying levels of forest degradation. 

4. There is no consistent information about the S-band backscatter sensitivity 

to forest biophysical characteristics (tree DBH, canopy H and forest AGB) 

and point of saturation to the varying AGB levels.  

 

Through this thesis, an attempt has been made to address these knowledge gaps 

about S-band SAR backscatter sensitivity in forest ecosystem through data and 

modelling approach. This includes investigating the radiative nature of S-band 

backscatter to soil and forest canopy and its potential application to forest/ non-forest 

cover and change mapping and relating to biophysical characteristics over the mixed 

deciduous temperate forest of the UK region. 

 

2.9. Research Questions 

 

The research questions addressed for this study were: 

 

1. What is the relationship between soil moisture content and surface roughness 

and forest canopy (deciduous, conifers) with S-band backscatter across 

polarisations and incidence angles and in comparison to other SAR 

frequencies? 

2. What is the radiative behaviour of S-band backscatter in varying levels of 

forest degradation? 

3. How accurately can forest/ non-forest cover be classified using S-band 

backscatter at different spatial scales? 
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4. Can multi-temporal S-band backscatter be useful for detecting forest cover 

change? 

5. What is the relationship of S-band backscatter with forest biophysical 

characteristics in particular forest AGB and level of accuracy at varying 

scales? 

 

2.10. Research Objectives 

The objectives of this study were:  

 

1. To examine the contributions of different scattering mechanisms from soil 

moisture and surface roughness and forest canopies for different 

frequencies, polarisations and incidence angles based on MIMICS-I model. 

2. To investigate the S-band backscatter sensitivity to forest degradation using 

MIMICS-I simulations. 

3. To classify S-band backscatter data to produce forest/non-forest cover and 

change maps using MLC algorithm and test the accuracy of forest cover 

maps at varying spatial resolution. 

4. To derive average tree diameter, canopy height and forest AGB based on S-

band data from 2010 and 2014 acquisitions using field data at pixel and 

stand levels and cross-validation between observed against predicted levels 

of AGB at pixel level. 

 

2.11. Summary 

 

There is clear evidence that the atmospheric CO2 concentration is increasing due to 

human induced fossil fuel burning, cement production, land-use change particularly 

deforestation. However, the current and future responses of terrestrial ecosystem to 

changing atmospheric C and climate at different scales are a matter of current debate 

across disciplines. Generally, forest ecosystem acts both as a sink and source of CO2 

particularly at regional scales due to changing climate and land-use systems. From a 

regional to global perspective, satellite remote sensing provides a near real-time and 

consistent technique to monitor large-scale forest cover and changes due to high 



 

 52 
 

spatial, temporal and spectral/ backscatter sensitivity to forest biophysical 

characteristics.  

 

Since the last decades, numerous studies have highlighted the potential of SAR data 

to forest ecosystem due to its insensitivity to cloud cover and low illumination. 

Furthermore, backscatter at varying wavelengths is showing more sensitivity to 

forest biophysical characteristics due to more scattering with forest canopy 

components than spectral reflectance as a result of similar dimension (size and 

length) of the components (Rosenqvist et al. 2007). 

 

However, the SAR backscatter sensitivity varies across wavelengths, polarisations 

and incidence angles in different forest types ranging from single to multi-species 

and in low to high biomass density. Of the different SAR wavelengths, knowledge 

related to S-band backscatter sensitivity to forest cover and biophysical retrieval has 

been largely lacking. In order to explore the potential of S-band backscatter to 

forestry applications, understanding the basic scattering mechanism to forest canopy 

component is critically important and essential to relate the biophysical 

characteristics. The use of microwave canopy scattering model serves as a useful and 

robust tool to interpret this basic scattering at varying SAR wavelengths and canopy 

structure. This information can thus be used to interpret with imaging SAR 

backscatter to forest biophysical characteristics.   
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Chapter 3: Materials and methods 

 
3.1. Test sites  

The study sites of Savernake Forest and Wytham Woods were chosen based on the 

diverse land cover in the regions, being covered by the recent AirSAR Campaign 

with S-band SAR sensor and supported by ground data in particular forest inventory. 

Savernake forest was selected because of the mixed deciduous forest and non-forest 

cover types. The different species of deciduous, conifers and mixed with varying age 

and growing stock volume existed in forest. The non-forest comprised three classes, 

i.e., grassland, clear-felled and bare-ground.  

During the study period between 2010 and 2014, the forested area is managed with 

thinning operations while some of the sub-compartments have been completely 

removed through stand cutting. This stand removal took between December 2012 

and July 2013 in few sub-compartments and planted with norway spruce and oak 

seedlings. Presently, the area is composed of left-over dry leaves, branches and 

grasses with few dead stumps refer to as ‘Clear-felled' class. The second test site of 

Wytham Woods was selected because of mixture of ancient semi-natural woodland 

and existence of timber removal with plantation resulting to changing in the species 

composition.    

3.1.1. Savernake forest 

Savernake forest (51°23’13”N, 1°43’19”W) is located near Marlborough in southern 

England (Figure 3.1). The forest is one of the typical ancient woodlands in the 

country over 1000 years old. It is widely studied temperate forest in the country. The 

site is overall a flat topography having an average elevation of 107 m and 1 % slope 

with South-East aspect (Crutchley et al. 2009).  

 

The climatic parameters of the site have been recorded to be approximately 750 mm 

(annual precipitation) and 11.3 °C (average annual temperature). Geologically, the 

parent soil material is characterized by Jurassic Clay (Oxford) with Eutric vertisol 

type of soil, 4.7-6.2 soil pH. Although Savernake forest covers a total area of 19 km2 

but this research focuses an area of 7.49km2 (~749 hectares) covered by the SAR 
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data. Main deciduous species comprise ancient beech (Fagus sylvatica), birch 

(Betula pendula) and oak (Quercus spp.) with mixed species of yew, ash, common 

lime, crab apple, elm, field maple, hazel, horse chestnut, rowan, sallow, sweet 

chestnut and wild cherry. Dominant coniferous species consisted of scots pine (Pinus 

sylvestris), corsican pine (Pinus nigra), norway spruce (Picea abies) and western 

hemlock (Tsuga heterophylla). Presently, the forest reflects mixed stands of 

temperate deciduous and coniferous species with varying densities, height, growing 

stocks, and age classes. The forest is managed by the UK Forestry Commission (FC) 

for 999 years on leased with sub-compartment of 4 ha average size.  

 

Within the Savernake forest, areas with forest and grassland represent the major 

land cover. The main grass species found in Savernake are Lonicera periclymenum, 

Deschampsia cespitosa, Poa trivialis and Holcus mollis with different percentage of 

spatial coverage. A series of management operations have been undertaken in 

Savernake forest between December 2012 and July 2013. For example, two sub-

compartments of varying sizes ~ 3.45 ha and 5.2 ha have been completely clear-

felled followed by plantation with nearly 24000 douglas fir and 6000 oak seedlings. 

Otherwise, most of the sub-compartments were subject to thinning operations to 

ensure enhanced timber production and regeneration purpose.   

 

3.1.2. Wytham Woods 

Wytham Woods (51°47’N, 1°20’W) is situated in the west Oxfordshire in England. 

The site represents a mixture of ancient semi-natural woodland, UK National 

Vegetation Classification community W8 Fraxinus excelsior- Acer campestre- 

Mercurialis perennis woodland (Hall et al. 2004) covering approximately 340 ha. 

The airborne data covers around 248 ha (approximately 2.5 km2) (Figure 3.1). The 

site has been continuously covered by trees (Peterken and Game 1984) while 

recently managed by timber removal and plantation (e.g. beech, sycamore) where 

the species composition (ash and sycamore species) has been or likely to change 

over time (Morecroft et al. 2008). Since the last decades, it has become one of the 

most studied temperate deciduous woodland in the country related to ash die-back 

disease (Kirby et al. 2014), long-term monitoring plots for soil respiration (Fenn et 
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al. 2010b), aboveground productivity, respiration and leaf production (Butt et al. 

2009, Fenn et al. 2010a).  

 

Figure 3.1. 6 m pixel spacing S-band data acquired over Savernake (top) and 

Wytham (bottom) in 2014 (False colour composite: red: HH, green: VV, blue:  

RFDI) with sampled compartments (cyan polygon), training plots (red dot in both 

Savernake and Wytham) and validation plots (white with black dot) (Savernake). 

Image reproduced with copyright permission from the Airbus Defence and Space, 

UK. 

However, no major silvicultural operation has been carried out in the site over the 

last decades. The stands are of different ages and biomass levels with ash, birch, 

sycamore and oak as dominant deciduous species while the ground vegetation is 
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predominantly dogs’ mercury, nettle, bluebells and pendulous sedge. The 

aboveground forest canopy components particularly leaves and wood production has 

been observed to be the greatest contributor approximately 60% to productivity in 

Wytham site resulting to positive net carbon sink in comparison to respiration (Fenn 

et al. 2010a). 

The site is located on topography at an average altitude of 60-179 m. The soil is 

mostly a stagni-vertic cambisol, derived from clay, with areas of arenihaplic luvisols 

and calcaric cambisols. Since 1992, metrological data have been recorded on site as 

part of the UK Environmental Change Network (ECN) monitoring programme 

(Morecroft et al. 1998). For the period 1993-2012 mean annual temperature was 

10°C and mean annual precipitation was 726 mm (Butt et al. 2009, Environmental 

2014).  

3.2. SAR Data 

3.2.1. Airborne SAR Campaigns 

In Europe, there exist large national forest inventories which provide an opportunity 

to investigate the capabilities of different SAR sensors to forest canopy 

characteristics. A number of SAR airborne campaigns have been undertaken in 

Europe. This includes the MAESTRO-I campaign during August 1989 utilising 

AIRSAR sensor in four European test sites: Les Landes (France), Freiburg 

(Germany), Flevoland (The Netherlands) and Thetford (U.K.) focusing on SAR 

bands at P-, L- and C- band frequencies (Baker et al. 1994, Basili et al. 1994, 

Beaudoin et al. 1994, De Grandt et al. 1994, Dobson et al. 1992, Foody et al. 1994, 

Israelsson et al. 1994, Le Toan et al. 1992, Lemoine et al. 1994, Rauste et al. 1994).  

 

This also includes the European Multi-sensor Airborne Campaign (EMISAR) in 

1994/1995 (Attema and Wooding 1994); SAR and Hyperspectral Airborne 

Campaign (SHAC) in Thetford forest in 2000 (Balzter et al. 2001); BioSAR 2007, 

2008 and 2010 Campaigns in Sweden (Hajnsek et al. 2008, Hajnsek et al. 2009, 

Ulander et al. 2011). All the above mentioned airborne SAR campaigns have mostly 

utilised the SAR bands at P-, L-, C- and X- frequencies. However, airborne SAR 

campaign that focuses on S-band has not been conducted so far.  
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3.2.2. The UK AirSAR Campaign 

For the first time, extensive S-band SAR campaign have been conducted over the 

temperate region of UK known as the ‘AirSAR Campaign’ in 2010 and 2014. The 

Airborne SAR Demonstrator Facility ‘AirSAR’ is a collaborative project operated 

by Airbus Defence and Space (UK) with the Natural Environment Research Council 

(NERC) and the Satellite Applications Catapult (Airbus 2013a). Specifically, Airbus 

Defence and Space supported the established airborne SAR demonstrator installed 

on NERC research survey aircraft (Airbus 2013b). The provision of these SAR data 

to research and development is being supported by the Satellite Applications 

Catapult.  

 

The frequency bands are S-band (3.1-3.3 GHz) and X-band (9.5-9.7 GHz) with a 

swath width of 1.92 km and narrow to wide incidence angles between 16° to 43.3°. 

The Single-Look Complex (SLC) imagery is provided in 0.75 m pixel spacing with 

4.48 azimuth and 1 range looks (Airbus 2013a). SAR data as summarized in Table 

3.1 were collected in separate occasions where soil conditions were neither too dry 

nor wet due to clear weather condition. For forestry applications, AirSAR acquired 

S-band SAR data over the mixed forests of Savernake forest and Wytham Woods 

are used in this research. This campaign provides an opportunity to investigate the 

potential of S-band signal to forest environment (Airbus 2013b).  

 

Table 3.1. Summary of S-band AirSAR images used in this research. 

Sites Acquisition date Incidence angles (°) Polarisation Pixel size (m) 

Savernake 16 June 2010 22 – 39.9 Quad 0.75 

Wytham 23 June 2014 16 – 43.3 Quad 0.75 

Savernake 24 June 2014 16 – 42.5 Quad 0.75 
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3.2.3.  SAR data processing 

3.2.3.1. Single Look Complex data 

 

The level 1.1, Single Look Complex (SLC) S-band products of Savernake forest and 

Wytham Woods for 2010 and 2014 were procured and pre-processed. The digital 

number (DN) is the intensity of the complex pixel value.  

DN = √𝑄𝑄2 + 𝐼𝐼2                                       (3.1) 

 

where Q and I are the respective real and imaginary parts of the complex pixel 

value. Each pixel in the SLC imagery contained the amplitude and phase of the 

electromagnetic wave measured in the four polarimetric channels. Using the 

amplitude image, the radar intensity information has been calculated as the square of 

the amplitude for both real and imaginary parts. For the antenna pattern correction, 

different orders of polynomial fitting were performed where the 5th order 

polynomial algorithm provided the best fit.  

 

In SAR imagery, slant range is the actual measured range derived from the time 

delay of an echo. But, the transformation of this slant range information to 

discriminate features on the real world relates to the ground range as near-range and 

far-range (Woodhouse 2006a). This transformation was done by using information 

obtained from the imagery. For both 2010 and 2014 data, this corresponds to flight 

altitude (3.06 km from ground), slant-range (3.2 km from ground) and 0.75 m pixel 

spacing.  

3.2.3.2. Multi-looking 

In all types of coherence data including SAR imagery there is random interference 

(constructive and destructive) of the wavelets scattered by the target within one 

resolution pixel creating salt-and-pepper-like granulation called speckle 

(Woodhouse 2006a). The presence of speckle in SAR data reduces the visibility of 

the imagery hence decreasing the discrimination of the target. Thus, reducing the 

speckle would improve the discrimination of different classes more efficiently. This 

can be done with independent measurements during the measurement process itself, 

by splitting up the azimuth beam into many sub-beams. This technique is known to 

be “multi-look technique” by incoherently averaging the neighbouring pixels in the 
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imagery thereby reducing the speckle effect and improving the image 

interpretability (Woodhouse 2006a). However, the number of looks required to 

effectively tackle the problem of speckle in an imagery is not accurately define 

though a minimum of 9 looks are reported for considerable clearer separability of 

distributed targets such as forest canopies and agriculture areas (Woodhouse et al. 

2011).  

Conversion of SLC imagery into multi-look complex both in the azimuth and range 

directions at the cost of spatial resolution was performed using 5 number of range 

looks and 5 number of azimuth looks kernel window corresponding to 3.75 m pixel 

spacing on the ground. This was performed by using SAR Tools of the Next ESA 

SAR Toolbox (NEST DAT 4C-1.1) with independent looks criteria at 5 number of 

looks in both range and azimuth direction. 

3.2.3.3.  Speckle filtering 

Various adaptive filters have been widely used preserving the radiometric and 

textual information without the loss of information. These include Frost, Lee, Kuan, 

GammaMap, Mean, Median, Enhanced Frost, Enhanced Lee and Local Sigma 

filters. Both Frost and Lee filters are based on the multiplicative speckle model and 

local statistics to preserve edges and sharpness (Frost et al. 1982, Lee 1980). Kuan 

filter uses the multiplicative speckle model and local statistics similar to the Lee 

filter with a different weighting function for preserving edges (Zhenghou and Fung 

1994).  

The GammaMap filter works with the maximum a posteriori (MAP) similar to the 

Kuan filter which assumes a gamma distribution of speckle (Lopes et al. 1990). 

Both Mean and Median filters are the simplest despeckle filters where the central 

pixel of a window size is replaced by either average or median of the neighbouring 

pixels (Qiu et al. 2004). Both Enhanced Frost and Enhanced Lee filter uses local 

statistics which preserves edges and texture information based on the adaptation of 

the Frost and Lee filters respectively (Lopes et al. 1990). The local Sigma filter uses 

the local standard deviation to reduce speckle and preserve finer details including 

low contrast areas (Eliason and McEwen 1990).  
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The multi-look imagery was de-speckled using nine different filters as mentioned 

above at three different window sizes of 3 x 3, 5 x 5 and 7 x 7 kernels using ENVI 

4.4. To test the ideal speckle filter for this dataset, the mean and standard deviation 

(SD) of backscattered returns for all the polarisations are analysed. It was found that 

the Enhanced Frost filter performed best in terms of effectively reducing the speckle 

effect while maintaining the minimum variation of adjacent pixels in each 

homogenous class in all the moving windows (HH polarisation in Savernake site 

shown in Figure 3.2). Therefore, for further analysis, a 5 x 5 kernel for this dataset 

was used. 

 

Figure 3.2. Comparison of different adaptive filters at different kernels (2014 

acquired HH-polarisation in Savernake forest). 

 

3.2.3.4.  Geometric correction 

The geometric correction refers to the projection of the SAR imagery to ground 

range with the aid of a reference surface. The ground reference data is assumed to be 

having information related to true x, y and z coordinate system where every pixel 

can be ideally projected (Woodhouse 2006a). As the study area is having less 

topographic slope effect, geo-coding of the SAR imagery is done using an Ordnance 

Survey map as reference with 30 and 42 widely distributed Ground Control Points 

(GCP) for Savernake and Wytham Woods respectively with second- order 
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polynomial and nearest neighbour re-sampling technique at 3.75 m pixel spacing 

achieving RMSEof half a pixel.  

3.2.3.5. Backscatter sigma-nought (σ0) derivation 

SAR systems provide an advantage if they can provide well-calibrated 

measurements of backscattering that is radiometrically calibrated. Comparatively, it 

is easier to calibrate SAR imagery based on external target with known RCS 

characteristics. For example, a set of distributed targets or point target have been 

commonly used for calibration where corner reflectors are commonly employed for 

point target calibration (Dobson et al. 1986).  

For the absolute radiometric calibration of airborne demonstrator data, trihedral 

corner reflectors were placed in the near, centre and far locations of the swath with 

corresponding incidence angles at 22.11°, 30.38° and 39.96° at Baginton (Coventry 

airport) in 2010 and Staverton airfield in 2014 (Figure 3.3). Finally, the radar 

backscatter coefficient with sigma-nought (σ0) was calculated using the Equation 

(3.2) according to the Airbus Defence and Space technical report (Airbus 2013b): 

[σ0 = 10 log10(DN2) − Kcal]                       (3.2)  

where: σ0 = radar backscatter (dB), DN = pixel amplitude and Kcal = calibration 

constant. The calibration constants for Savernake forest are 71.5 dB for HH and 

VH, and 71.47 dB for VV and HV polarisations for the image acquired on 16 June 

2010, and 71.8 dB for HH, VH and 72.62 dB for VV and HV polarisations for the 

image acquired on 24 June 2014. The calibration constants for Wytham Woods are 

81.46 dB for HH and VH and 81.9 dB for VV and HV polarisations for the image 

acquired on 23 June 2014.  
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Figure 3.3. Calibration target location and orientation at Baginton (Coventry 

airport) in 2010 (top) and Twin Otter overflying calibration corner reflector near 

Staverton airfield in 2014 (below) (Source: Airbus (2013b)). Image reproduced with 

copyright permission from the Airbus Defence and Space, UK. 
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3.3. Field data 

3.3.1. Forestry Commission GIS 

 

For Savernake forest, the Forestry Commission Geographical Information System 

(FC GIS) database is a spatially comprehensive vector database of forest type, 

species, planting year, planting density and yield class for each forest stand. This 

database contains 215 sub-compartments for Savernake forest. The digital sub-

compartment data were projected to the United Kingdom projection of the SAR 

image data with OSGB 1936. Information on forest type and tree species are used to 

train the Maximum Likelihood Classification (MLC) algorithm. Additionally, the 

ancient tree database contains approximately 2640 point locations within the image 

area. Each point contains detailed attribute information including diameter at breast 

height (DBH), canopy height (H) and tree species having a maximum tree DBH of 

350 cm and canopy height of 35 m. This dataset is used to validate the accuracy of 

the produced F/NF classified maps (Figure 3.4). 

 
Figure 3.4. Forest types (A) and stand age (B) in Savernake forest (Source: Forestry 

Commission sub-compartment GIS database supported by Thomas Blythe). Image 

reproduced with copyright permission from the Forestry Commission, Bristol and 

Savernake. 
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3.3.2. Sample plot data for Savernake Forest and Wytham Woods 

Depending on the nature of the study, different plot designs of varying sizes and 

shapes are adopted for different forest types. For example, plots are generally either 

square, rectangle, circular or triangular and dimensionless (point sampling). In 

areas where the undergrowth is less dense, sample plots with circular in shape 

could be easily employed as having the smallest periphery in relation to area and 

consequently the lowest number of borderline trees however, it is sometimes 

difficult to decide which are the trees that are inside or outside the plot as the 

boundary is curved (Köhl et al. 2006).  

 

Figure 3.5. Example of a circular plot (top) with plot selection- at least 100 m distance 

from pathway (middle) and tree measurements (bottom) in Savernake Forest during 

March 2015. Image obtained by the author in March 2015.  
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In August 2012, a total of 38 sample plots each having a circular sample area of 20 

m diameter was surveyed covering both deciduous and coniferous forest types. 

Two plots were collected based on random sampling between young and mature 

stands giving a total of 19 sub-compartments.  

In each plot, individual tree data were collected that include: (i) trunk diameter for 

all trees with diameter at breast height ≥10 cm, (ii) canopy height measurements for 

subset of tallest trees and (iii) species identification of all trees for estimation of 

their wood density. These plots were sampled by Pedro Rodriguez- Veiga and 

Bernard Spies as part of their PhD research at the University of Leicester.  

Following the same field protocol, second field campaign was carried out during 

March 2015 after the second SAR campaign in June 2014. This relates to 32 sample 

plots with 16 sub-compartments covering the remaining compartments, being 

surveyed by 10 researchers: Heiko Balzter, Pedro Rodriguez- Veiga, James 

Wheeler, Valentin Louis, Marc Padilla-Parellada, Thomas Potter, Chloe Barnes and 

Ramesh Ningthoujam with Alexander Edwards-Smith and Jaime Polo Bermejo 

from Cranfield University (figure 3.5).    

For Wytham Woods, the Environmental Change Network database is a spaitially 

comprehensive database of tree species, tree diameter at breast height and canopy 

height on the basis of Sykes and Lane (1996) protocol covering over 10 m2 sample 

plots (Environmental 2014). The sample plots were collected during 2012 by the 

Centre for Ecology and Hydrology research team.  

3.4. Methodology 

Broadly, three methods have been used in this research. These methods are: First, 

MIMICS-I model (version 1.5) simulation for identifying radiative behaviour from 

soil components and forest canopy in X-, C-, S-, L- and P-band frequency with an 

additional simulation for forest degradation. This simulation was performed using 

Fortran Compiler on ALICE High Performance Computing Facility at the 

University of Leicester (details given in section 3.4.1). Secondly, pre-processing 

and classification of S-band SAR data (forest/ non-forest cover and change 

mapping) at different spatial resolutions were conducted using Environment for 

Visualizing Images (ENVI 4.4), Next ESA SAR Toolbox (NEST DAT 4C-1.1) and 



 

 66 
 

Environmental Systems Research Institute (ESRI)’s Arc GIS 10.1 tools (details 

given in sections 3.2.3 and 3.4.2). Thirdly, retrieval of forest biophysical 

characteristics particularly forest AGB using S-band backscatter at stand level and 

cross-validation of predicted AGB against field measured AGB in line to 

NovaSAR-S configurations were performed (details given in section 3.4.3).  

3.4.1. MIMICS-I simulation 

The availability of the FC GIS database and field data (2012 and 2015), Savernake 

forest has been selected as a potential test site for investigating the radiative nature 

of S-band radar backscatter to soil and forest canopy components by modelling and 

the method is given in Figure 3.6.  

 

 
Figure 3.6. Methodology flowchart for MIMICS-I modelling.  
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This modelling study uses the radiative transfer model MIMICS- I (Ulaby et al. 

1990) as a tool for investigating SAR backscatter predictions and dominant 

scattering from forest canopies. MIMICS-I model consider details of vegetation 

layer with several types of scatterers in the canopy. The input parameters for 

MIMICS-I can be divided into two major classes related to: 1) microwave 

characteristics (frequency, polarisation and incidence angle) and 2) physical 

descriptions of canopy (layers of leaves, needles, branches and trunk) as well as soil 

properties (soil moisture content and surface roughness). Specifically, the input 

parameters are defined in order related to configuration (general overall params for 

the simulation), sensor (operating frequencies and incidence angles), environmental 

conditions (temperature) and ground surface parameters (dielectric constant). This 

is followed by the structural characteristics of the canopy at two levels: (1) canopy 

level: tree height, crown depth, trunk height, canopy densities and (2) tree level: 

geometric distributions of the canopy components- type, size, density and 

orientation and moisture content of branch, leaf and needle (given in Appendix I).  

 

Forest biophysical parameters were assumed to have remained unchanged between 

the 2010 and 2014. Therefore, tree density, diameter at breast height, canopy height 

and branch size were assumed constant. A small number of model parameters need 

to be adjusted for the different imaging conditions of the two sets of radar 

observations in 2010 and 2014, namely soil moisture content and structure of the 

stands. The soil moisture information was derived from Wytham Woods test site, 

being collected by the Centre for Ecology and Hydrology in 23 June 2014. 

Different percentage of soil components for sand, silt and clay were derived from 1 

km soil data set of Batjes (2015). Ground measurements such as density of leaves, 

needles and branches including their spatial orientation are extremely difficult to 

obtain and were not available for this site. Therefore, an estimate or a reasonable 

value from the literature is assumed for such structural canopy parameters. All the 

estimated values are derived from the MIMICS-I model technical report (Ulaby et 

al. 1988b). A list of input parameters of MIMICS is given in Table 3.2. In this 

study, radar backscatter data are simulated for deciduous and conifer stands as 

function of radar frequency, polarisation and incidence angles. For inter-

comparison, the radar frequency range at 0.42 GHz (36 cm), 1.25 GHz (24 cm); 

3.10 GHz  (15 cm), 4.75 GHz (5.6 cm) and 10.00 GHz (2 cm) corresponding to P-, 
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L-, S-, C-, and X-band respectively with incidence angles between 15° - 45° is 

used. 

Table 3.2. Numerical values of input parameters for MIMICS-I model: bold = 

estimated; normal = measured.  

Parameter Deciduous 

(Birch) 

Coniferous 

(Norway spruce) 

Trunk layer 

Height (m) 8 8, 16 

Diameter (cm) 24 20.8 

Canopy density (m-2) 0.11 0.2 , 0.1 , 0.05 

Moisture (gravimetric) 0.5 0.6 

Crown layer 

Crown thickness (m) 1, 2, 3, ....10 11 

Leaf/ needle density (m-3) 100, …, 2000 5000,…,100000 

Leaf/ needle moisture (gravimetric) 0.8 0.8 

Leaf Area Index (single-sided) 5 11.9 

Branch density (Primary, Secondary, 3rd, 

4th) (m-3) 

4.1, 0.04, 0.45,  

0.37  

3.4 

Branch length (Primary, Secondary, 3rd, 

4th) (m) 

0.75, 1.15, 0.52,  

0.33  

2.0 

Branch diameter (Primary, Secondary, 

3rd, 4th) (cm) 

0.7, 1.6,  

0.9, 0.57  

2.0 

Branch Moisture 0.4 0.6 

Soil root mean square height (cm) 0.45, 1, 2, 3, 4, 5 0.45 

Soil Correlation length (cm) 18.75 18.75 

Soil moisture (volumetric) 0.15 – 0.5 0.15 – 0.5 

Soil Sand (%) 53 53 

Soil Silt (%) 28 28 

Soil Clay (%) 19 19 

Leaf/ needle/ branch orientation uniform uniform 

dielectric constant (trunk, branch) 0.4 0.6 

Dielectric constant (Leaf) 0.8 0.8 

 



 

 69 
 

Two radar parameters related to canopy transmissivity and backscatter are 

investigated. Radar canopy transmissivity is related to the power transmission 

coefficient for propagation from the forest component at a specified incidence angle 

while backscatter is the overall scattering returns (attenuation) from forest canopy 

in a pixel cell. The predicted sensitivity of backscatter to forest canopy is 

investigated in terms of both canopy transmissivity and backscatter (in decibel) for 

all frequencies while only S-band backscatter for soil properties. The predicted 

backscatter was regressed using the logarithmic model against soil moisture, 

surface roughness and backscatter across look angle and derived error (RMSE). In 

this, six different experiments based on MIMICS-I have been investigated. 

Model experiment 1:  

In this experiment, all the canopy parameters i.e., trunk, branches, leaf/ needle are 

either excluded or switch off during the simulation (given in Appendix II). It can be 

considered as radar backscatter interactions with bare-ground with varying degree 

of moisture content. The environment is considered to be have temperature of soil 

and standing water with 20°C as these parameters seemed to have negligible effect 

over the returned backscatter (earlier result run with 11.5°C). Ground system 

composed of different parameters related to underlying soil types such as sandy, 

silty and clay soil type with different proportion and salinity of standing water with 

2.5 ppt (parts per thousand) having soil volumetric moisture content of 0.1 to 0.5 

m3 water/m3 soil.  

Model experiment 2:  

For the experiment related to surface roughness of soil, all the parameters are 

similar to bare-ground system of soil moisture consisting of different proportions of 

soil types with sandy, silty and clay soil type with soil volumetric moisture content 

of 0.1 to 0.5 m3 water/m3 soil. The standard deviation of surface (rms) height of soil 

is set between 1 to 5 cm surface roughness having a Gaussian auto-correlated length 

of 15.00 cm (given in Appendix III). 
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Model experiment 3:  

The parameters for environment and ground variables are set similarly to the soil in 

this experiment. This case resembles to deciduous forest e.g. birch stand with crown 

layer consisting of both leaves and branches with standing trunk.  

Based on the tree architectural characteristics, majority of the deciduous trees have 

lateral branches as longest growth than the main terminal shoot with repetitive 

branch forking into a large spreading crown resulting to disappearance of the central 

stem (Figure 3.7). Additionally, diameter and length of the branches decreases with 

branching generation (e.g. young branches) resulting to more numerous (density) 

with increasing height (Zimmermann and Brown 1971).  

 

Figure 3.7. Tree architectural characteristics of deciduous (without leaves) (A) (Source: 
http://www.publicdomainpictures.net/view-

image.php?image=95625&picture=tree&large=1) and coniferous species (with needles) 
(B) (Source: http://www.cattogallery.co.uk/assets/galleries/274/annie-ovenden-larch-

tree.jpg). Image obtained by the author from webpages with source.  

Five sets of approaches have been simulated: one related to entirely leaf-dominated 

where the leaves are randomly oriented or distributed having 6.76 cm diameter and 

0.1 cm thickness. For a 2 meter crown thickness with 830 leaves per cubic meter 

and 8 meter trunk height is simulated in the model using physical optics. The second 

approach resembles the branch-dominated birch stand during senescence season 

having primary branch of 0.75 meter long with 0.7 cm diameter spreading a uniform 

orientation and specific probability density function (given in appendices IV, V and 

VI). Furthermore, an effect of different levels of branches (up to fourth) having 
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different diameter, length and number density was also simulated for L-, S-, C- and 

X-band.     

The radiative behaviour of different canopy components in varying moisture content 

was simulated in third approach while combination of both leaves and branches was 

simulated in fourth approach. The relationship between varying stand height (2 -18 

m) and backscatter responses was simulated in fifth approach. In this, the effects of 

leaves-branches at individual and combined and moisture effect as a function of 

wavelengths, polarisations and incidence angles to transmissivity and backscatter 

have been investigated.  

Model experiment 4:  

This experiment resembles analysis performed on a coniferous forest e.g. Norway 

spruce stand. Coniferous trees have the main terminal shoot outgrows the lateral 

branches giving a cone-shaped crowns with clearly defined bole (Figure 3.7). The 

branch characteristics follow a similar trend like deciduous species with low 

density, reduced length and diameter branches to height (Zimmermann and Brown 

1971).  

In this simulation, both the needles and branches are included in the crown layer 

(given in Appendix VII). The needles were assumed to be randomly distributed or 

oriented with at least 2 cm long and 0.1 cm in diameter. For an 11 meter crown layer 

with 16 meter trunk height and 85,000 needles per cubic meter corresponding to leaf 

area index (LAI of 11.9) and identical branches with deciduous species is simulated 

in the model based on physical optics. Moreover, 11 meter crown thickness with 8 

m trunk height was also simulated. The parameters for environment and ground 

variables are similar to previous simulations. In this, the effects of needles-branches 

as a function of wavelengths, polarisations and incidence angles to transmissivity 

and backscatter have been investigated. Additionally, varying needle densities 

ranging from 5000 to 100,000 needles per cubic meter area have been simulated.  

Additionally, an effect of different levels of branches (up to fourth) having different 

diameter, length and number density was also simulated for L-, S-, C- and X-band. 

Finally, simulated S-band backscatter from soil and forest canopies (deciduous and 
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conifer) are combined to investigate the different behaviour of backscatter across 

different land cover (forest and non-forest).   

Model experiment 5:  

Taking the case of a typical birch stand, from the radar perspective, the backscatter 

return is a function of radar wavelength, polarisation and incidence angles. 

Backscatter is also dependent on the structure and nature of the stand (young to 

mature, different management practices, varying stock volume and density etc). In 

general, at shorter wavelength X- and C- band, backscatter behaves volume 

scattering from upper canopy layer of leaves, twigs and small branches as maximum 

attenuation before reaching the ground surface. On the contrary, L- and P- band 

backscatter exhibited volume with strong double-bounce scattering from the canopy 

layer and ground/trunk interaction due to more penetrating level in the canopy.  

After the fire is occurred, the radar backscatter with either double-bounce or surface 

scattering or combined becomes important contributor because of more interaction 

with ground and lesser canopy components in almost all wavelengths (Kalogirou et 

al. 2014). However, this depends on the severity of fire and condition of forest 

properties under investigated. The dominating strong double-bounce scattering only 

persists provided piles of branches and stumps (remaining snags) lying on the 

ground still exist. Otherwise, the surface scattering becomes the major contributor to 

the return backscatter due to clear-up areas resembling scattering from bare-ground 

or forest floor without vegetation. 

The experiment related to reduce canopy components due to fire as a proxy of 

degradation involves seven different simulation. This resembles to birch stand 

having 2000 trees per hectare with crown layer comprising of leaves, branches and 

standing trunk (given in Appendix VIII). Firstly, forest canopy with 2 meter crown 

thickness having leaf density of 5000 leaves, 5.1 branches per cubic meter and 8 

meter trunk is simulated as ‘high density canopy’. Fire impacts were qualitatively 

assessed based on the degree of canopy damage. This canopy damage was assumed 

based on the field observation according to Kalogirou et al. (2014) and classified 

into three categories according to opening of canopy gaps.  
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The second simulation relates to ‘Low canopy damage’ with canopy layer having 

830 leaves, 4.1 branches and 8 meter trunk similar to Model experiment 3. Third 

and fourth simulation refers to leaf-dominated and branch-dominated when leaves 

and branches were consumed in repeated fire events as ‘moderate canopy damage’ 

resulting to large canopy gaps. The ‘severe canopy damage’ is quite similar to the 

standing trunk on the ground when all leaves and branches were consumed 

completely by fire. Finally, two scenarios focusing on bare ground having dry (low 

moisture) with smooth bare ground (low soil rms) and wet (50% moisture content) 

with rough surface ground (5cm rms) are simulated.  

Model experiment 6:  

A different approach is applied, instead of changing the forest canopy components 

(i.e., crown density and canopy gaps), MIMICS-I have been simulated as a function 

of number of trees in an area (stand density). Forest stand density is mainly 

governed by a combination of natural processes (natural thinning, competition) and 

external drivers such as logging of commercial value species. Selective logging 

creates homogenous canopy structure (Okuda et al. 2003) with large canopy gaps 

and increased light intensities (Osazuwa-Peters et al. 2015) and reduction in stem 

density and forest AGB (Blanc et al. 2009). They also create forest fragmentation 

(Asner et al. 2006) and are highly susceptible to fire (Cochrane 2003).  

The experiment related to stand density of birch involves varying tree density: 5000 

(very dense canopy), 2500 (dense canopy), 1250 (low density canopy), 625 (open 

canopy) and 300 (savannah type) having varying levels of stock volume/ biomass, 

that is reduced level of biomass from high density to low density trees. 

3.4.2. Airborne S-band derived forest/non-forest and change detection maps 

 

To investigate the potential of airborne S-band data for mapping forest and non-

forest cover and change detection, the mixed deciduous forest and different non-

forest classes (that is grassland, clear-felled and grassland) of Savernake provides an 

ideal set of environment. This also includes the recent stand removal in few sub-

compartments during the study period and the availability of FC GIS and ancient 

database supported by field data. The method related to investigating the capability 
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of S-band backscatter for mapping forest cover and change has been given in Figure 

3.8.   

 

Figure 3.8. Methodology flowchart for mapping forest/ non-forest and change 

detection. *MLC: maximum likelihood classification, RFDI: Radar Forest 

Degradation Index, FC- sub/ - anc: Forestry Commission sub-compartment/ ancient 

database.  

3.4.2.1. SAR data interpretation, land cover legend and classification 

Over Savernake forest, two S-band images were acquired on 16 June 2010 and 24 

June 2014 and have been utilized to map F/NF and monitor the forest change during 

these two periods. These two datasets were acquired with similar pixel spacing of 



 

 75 
 

0.75 m having varying incidence angles: narrow look angle in 2010 against wider 

observation in 2014 data (refer to Table 3.1). The two imageries were also geo-

registered by manually selecting ground control points (GCPs) over manmade 

targets such as road intersection, sub-compartment junction and houses etc. and 

wrapping one image to the other in ENVI 4.4. 

To perform forest cover change detection analysis, these datasets are radiometrically 

re-calibrated. S-band DN values acquired on 16 June 2010 was re-calibrated based 

on 2014 data using the basic statistics (minimum, maximum, mean DN values) of all 

polarisations from all land cover. The maximum DN values were 3398, 6601 and 

1530 in 16 June 2010 while 24356, 32658 and 5040 in 24 June 2014 for HH, VV 

and HV polarisations. Therefore, a correction factor of 7.16, 4.94 and 3.29 for HH, 

VV and HV polarisations were applied to 16 June 2010 to match the intensity of 24 

June 2014 data assumed to have made some corrections in the 2010 data. This is 

being verified by linear regression models based on 2640 known tree targets from 

the ancient tree database based on corrected 2010 and original 2014 data (Figure 

3.9).   
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Figure 3.9. S-band backscatter comparison for forest (2640 ancient tree points) 

class between re-scaled 2010 and 2014 SAR imageries. 
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Figure 3.10. Field photos for deciduous forest (A) and non-forest (B-clear-felled, C-bare-

ground and D-grassland) in Savernake site. Image obtained by the author in March 2015. 
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Two broad land cover classes based on ground truth and S-band backscatter 

behavior of different polarisations have been identified: Forest and Non-Forest 

(Figure 3.10 A, B, C and D). The non-forest comprised three classes, i.e., grassland, 

clear-felled and bare-ground. The definitions and interpretation guidelines used in 

this methodology are given in Table 3.3. 

Table 3.3. Definition of Forest and Non-forest classes. 

Class Definition 

Forest Land dominated by deciduous, conifer and mixed trees with canopy 

height ≥3 m, >20 years old and at least 50 tonnes/ha of aboveground 

biomass. 

Grassland Land dominated by non-woody annual vegetation less than 1 m in 

height. 

Clear-felled Open area previously occupied by forest due to stand-replacement 

disturbance. The area is composed of left-over dry leaves, branches 

and grasses with few dead stumps. This took place between December 

2012 and July 2013 in few sub-compartments and planted with 

norway spruce and oak seedlings. 

Bare-

ground 

Land surface without any vegetation. This class includes natural and 

artificial bare surfaces e.g. bare soil, roads and pathways between sub-

compartments in the forest. 

 

In the first classification approach, only forest and non-forest are defined as the 

main land cover classes (Figure 3.10). The ratio between the HH- and HV-

backscatter was calculated and utilised for classification. It is also known as the 

‘Radar Forest Degradation Index’ (RFDI) because HH backscatter is sensitive to 

both volume and double-bounce scattering while HV backscatter is mostly sensitive 

to volume scattering from forest canopies (Mitchard et al. 2012).  

In the second approach of classification, non-forest class has been classified further 

into three classes (grassland, clear -felled areas and bare -ground). The definitions 

and interpretation guidelines used in this methodology are given in Table 3.3. These 
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classes of non-forest and forest are defined based on the field sample plots and FC 

GIS data points and are used for training the classification algorithm.  

Different algorithms have been developed for land cover classification particularly 

related to forest cover types. Amongst the different algorithms, studies have shown 

that Maximum Likelihood Classification (MLC) algorithm have been considered 

superior to other classifier approaches (Mather et al. 1998). MLC algorithm works 

with class probability density functions assuming a multivariate normal distribution 

and often achieves better accurate results with SAR data than other classifiers 

(Alberga 2007, Kuplich et al. 2000, Morel et al. 2011). 

3.4.2.2. Spatial resolution simulation and change detection 

The changing information content of S-band radar backscatter was examined for 

different spatial resolutions by re-sampling from the original 0.75 m to different 

spatial resolutions and repeating the classification. The spatial aggregation is 

performed for each polarisation bands using nearest neighbour resampling with the 

aid of Ordnance Survey master map. The spatial scales of the forthcoming 

NovaSAR-S imaging modes of 6 m and 20 m are studied. For the assessment of 

classification accuracy, independent 20 non-forest and 21 forest points based on 

ancient tree database and aerial photo were incorporated along with the training 

plots resulting to 126 forest and 130 non-forest points to provide cross-validation. 

These sample points were collected at the boundaries of classes (forest to clear -

felled, forest to bare -ground, forest to grassland) where mixed pixels with different 

land cover exists and are often associated with high error (Foody 2002). Therefore, 

an attempt has been made to highlight the accuracies of forest cover and its change 

maps focusing on the mixed pixels in addition to the homogenous classes. A 

confusion matrix was computed and the Overall accuracy, User’s and Producer’s 

accuracies and Kappa coefficient (κ) were calculated. A cross-comparison with the 

ALOS PALSAR-based global forest cover map by the Japan Aerospace Exploration 

Agency (JAXA) at 25 m scales was also carried out 

(JapanAerospaceExplorationAgency 2014) .  



 

 80 
 

 

Figure 3.11. Aerial photo (top) and 6 m S-band SAR data acquired in 2010 

(middle) and 2014 (bottom) over Savernake forest as HH-, VV- backscatter and 

RFDI data in red, green and blue channel (Source: Airbus 2013a). Image 

reproduced with copyright permission from the Airbus Defence and Space, UK. 
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For forest cover change detection analysis, the classified F/NF maps derived from 

the 2010 and 2014 S-band acquisitions (Figure 3.11) were assessed for changes due 

to management operations (i.e., clear-felling and thinning) based on a post- 

classification technique. The Global Forest Watch (2000- 2014) product at 30 m 

based on multi-temporal Landsat data from the global forest change project (Hansen 

et al. 2014) was also utilized for cross-comparison (figure 8 d). Both PALSAR and 

Landsat-based products are intended to support the interpretation of the S-band 

derived maps as these products are generated at global and medium resolutions 

scale.  

 

3.4.3. S-band derived forest biophysical retrieval 

 

For relating forest structure and AGB to S-band backscatter, the mixed temperate 

forest of Savernake Forest and Wytham Woods were chosen for this objective. The 

occurrence of mixed species with varying levels of ages (10-262 years old), tree 

diameter at breast height, canopy height, maximum canopy cover and AGB ranges 

and the acquisition of SAR data during peak growing season offers an opportunity 

to explore the relationship between forest biophysical characteristics and S-band 

backscatter at different scales. The method related to the retrieval of forest 

biophysical parameters using S-band backscatter is given in Figure 3.12. For 

example, maximum wood structure production particularly in trunk and branches 

was found during closed canopy (June-September) in Wytham which coincides with 

the airborne SAR data on 23 June 2014. The statistical relationship of average tree 

diameter (DBH) and canopy height (H) against S-backscatter are performed at stand 

level resolutions utilising SAR data acquired on 23 and 24 June 2014 over Wytham 

Woods and Savernake Forest.  
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Figure 3.12. Methodology flowchart for forest biophysical retrieval * DBH: tree 

diameter at breast height, H: canopy height and σ0: backscatter sigma-nought. 

At the individual tree-level, the AGB was estimated using the allometric equations 

of Zianis et al. (2005) and Bunce (1968) which were specific to British tree species 

(including European genera) and tree size measurements as inputs for Savernake 

and Wytham respectively. The allometric equations for different species used in this 

analysis are given in Table 3.4. From the tree-level estimates of AGB, plot level of 

estimates of biomass was obtained by the summation of single tree AGB in each 

plot. Finally, the estimated AGB is measured in units of 1 metric tonnes per hectare 

(t/ha) for statistical comparison with S-band backscatter. 
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Table 3.4. Allometric equations used to estimate tree above-ground biomass. 

 

Species  Equations Unit Source 

(Scientific name)    

Scots pine (P.sylvestris) e(0.981+(2.289.(ln 3.14. D))) g (Zianis et 

al. 2005) Corsican pine (P. nigra) e(-1.457+(1.8647.(ln D))) kg 

Norway spruce (P. 

abies) 

(-43.13+2.25.D)+(0.452.D2)) kg 

Western hemlock (T. 

heterophylla) 

e(-1.457+(1.8647.(ln D))) kg 

Beech (F. sylvatica) (0.1143).D(2.503) kg 

Birch (B. pendula) (-2.4166+2.4227).e(D) kg 

Oak (Quercus spp.) e(−5.284602 + (2.4682 · (ln D))) kg (Bunce 

1968) Sycamore 

(A.pseudoplatanus) 

e(−5.644074 + (2.5189 · (ln D)) kg 

Ash (F. excelsior) e(−5.308133 + (2.4882 · (ln D))) kg 

 

Of the total 19 sub-compartments in Savernake, 2 sub-compartments were discarded 

in the analysis. First, 1 sub-compartment was located at the very edge of the SAR 

imagery (near to 15° incidence angle range) having erroneous values caused by the 

re-sampling method. The second sub-compartment was discarded due to large 

diameter trees ≥70 cm resulting to an AGB much larger than 700 t/ha. 

 

The backscatter response from forest stand is a combination of different sources, 

e.g. forest parameters, layover of tree canopy, speckle, geolocation errors and border 

effects including moisture content. Although, the impacts of these factors are 

difficult to quantify, studies have shown the role of spatial resolution as an 

important factor in understanding the spatial variability of forest structure and AGB 

(Saatchi et al. 2011b, Sandberg et al. 2011). In order to analyse statistical regression 

for biomass to SAR backscatter relationship, the very high-resolution S-band data 

were simulated (re-sampled) to stand size at 0.25 ha and 0.5 ha.  
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The fully polarimetric S-band backscatter were then regressed against plot-measured 

AGB at pixel and stand (0.25 ha and 0.5 ha) levels. This was done utilising SAR 

data acquired on 16 June 2010, 23 and 24 June 2014 in Wytham and Savernake 

sites. The forest stands with 17 (9 deciduous, 8 conifer) and 8 (deciduous) plots 

from Savernake and Wytham Woods were used to develop a regression model 

describing the relationship between AGB and S-band backscatter, referred to as 

training plots. Quantification of the S-band signal saturation level to field calculated 

AGB was also performed. Furthermore, using the best logarithmic model, prediction 

of AGB at 0.25 ha was performed. The second data set consisted of field 

measurements made during April 2015 in Savernake. These 16 forest stands (10 

deciduous, 6 conifers) were used to validate the developed biomass regression 

models, referred to as validation plots. This includes biomass error estimation based 

on RMSE calculated by comparing model prediction to field measured AGB using 

model training (25) and validation (16) plots.  

 

3.5. Summary 

In this chapter, the characteristics of the two test sites related to this research were 

addressed. A full description of the different data sets comprising of SAR data and 

field data surveyed in 2012 and 2015 is given. This also includes the different SAR-

processing techniques and methods for different objectives. Finally, data for 

MIMICS-I model and forest structure and biomass estimation were also covered. 
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Chapter 4: Soil and forest backscattering with S-band 

SAR using MIMICS-I simulation 

4.1. Introduction 

Several studies have reported capability of SAR data in mapping forest cover and 

biophysical parameters retrieval. However, the basic knowledge of scattering at 

microwave domain from canopy can only be realised using microwave canopy 

models to support and understand the embedded information in a SAR signal (i.e., 

backscatter). Therefore, this chapter explains the qualitative knowledge of the 

scattering mechanisms for S-band signal from forest canopy and soil in different 

experimental settings that is soil moisture, surface roughness and canopy 

components with varying moisture, leaves/ branch / tree densities and stand height.  

 

Many studies have shown the potential of SAR data in particular longer 

wavelengths for relating to forest biophysical characteristics across different forest 

types (Beaudoin et al. 1994, Dobson et al. 1992, Imhoff 1995, Rauste et al. 1994, 

Soja et al. 2013). Moreover, accurate identification of forest degradation/ clear-cut 

has been reported utilising longer SAR wavelength (Pantze et al. 2014, Ryan et al. 

2012). Because SAR backscatter contains information related to forest canopy 

structure and AGB and hence influencing the backscatter from the forest 

degradation e.g. fire (Ferrazzoli et al. 1997). This includes the dynamic backscatter 

changes due to fire-affected forested areas utilising multi-temporal SAR data 

particularly at C-band frequency (Siegert and Ruecker 2000, French et al. 1996). In 

all of these studies, the impacts of fire in forest appears to be mainly governed by 

the reduction in the canopy components and changes in soil moisture and exposure 

of surface using empirical and modelling (Kalogirou et al. 2014, Tanase et al. 2010).  

 

In Brazilian Amazon, MIMICS model simulations predicted that at L-band 

frequency, discrimination of primary forest against regeneration and soil (wet and 

dry) is possible by their stronger backscatter returns due to double bounce scattering 

from ground/trunk interaction from the canopy while opposite for C-band due to 

quick saturation level at low biomass and single bounce scattering from leaves and 

branches (Grover et al. 1999). Utilizing multi-temporal JERS-1 data has shown a 
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dynamic range of reduced -4 to -6 dB corresponding to either early stage of 

plantation while opposite for post fire or degradation in the southern Sumatra Island 

of Indonesia  (Takeuchi et al. 2000).  

 

Studies have shown that longer wavelengths are sensitive to variations in the 

moisture and surface roughness of soil (Shi et al. 1997) and vary as a function of 

incidence angle (Rahman et al. 2008). For example, SAR backscatter increases with 

increasing soil moisture ranging between 0 and 40% (Baghdadi et al. 2007) 

following a logarithmic function (Ulaby et al. 1986). With S-band, sensitivity of soil 

moisture to backscatter was found positive between observed and soil moisture 

retrieval at VV-polarisation channel for HJ-1C simulation (Du et al. 2010). At S-

band, it has been reported that the main scattering comes from the needles and 

branches of young fir conifer due to random scattering (Lopez-Sanchez et al. 2000). 

 

To account for studies related to forest cover, biomass, identify degradation or clear 

felled using S-band data, knowledge of the radiative nature of S-band scattering 

with forest canopy is essential. Microwave canopy backscatter model assists to 

understand the complex interaction of microwave backscatter with different 

components of the canopy as a function of wavelength, incidence angle and 

polarisations (Ulaby et al. 1990). The main objective of this chapter is to examine 

the contributions of different scattering mechanisms from soil moisture and surface 

roughness and forest canopies for different frequencies, polarisations and incidence 

angles based on MIMICS-I model. This also includes investigating the S-band 

backscatter sensitivity to forest degradation using MIMICS-I simulation. 

 

4.2. Methods 

 

This modelling study uses the radiative transfer model MIMICS- I (Ulaby et al. 

1990) as a tool for investigating SAR backscatter predictions and dominant scattering 

from forest ecosystem. The available FC GIS database and field data collected in 

2012 and 2015 provides Savernake forest to be prospective test site for investigating 

the radiative nature of SAR backscatter data particularly at S-band to soil and forest 

canopy components utilising the MIMICS-I model. Details are given in section 3.4.1.  
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4.3. Results and discussion 

 

4.3.1. Ground scattering as a function of soil moisture and surface roughness 

 

The simulation results for bare-ground as a function of moisture and surface 

roughness as described in section 3.4.1 with Model experiments 1 and 2 is described 

below: 

What is the relationship between soil moisture and S-band backscatter across 

polarisations and incidence angle range?  

 

This experiment was simulated on the basis of backscatter sensitivity to moisture 

content and surface roughness of soil. For S-band signal relationship to soil moisture, 

the simulated radar backscatter from bare-ground ranges between -20 to -60 dB for 

HH and VV polarisations across the incidence angle range. At medium incidence 

angle range, relationship of S-band backscattering with soil volumetric moisture 

content between 0.1 and 1 m3 water/m3 soil is 6.43 dB and a smaller change with 

6.03 dB is estimated for an increase in rms height of only 0.1 cm in both co-

polarisations. It can be observed that the backscatter increases with soil moisture at 

constant soil surface roughness along the incidence angle range (Figure 4.1).   

 

At average incidence angle ~30°, S-band backscatter shows a strong significant 

relationship with soil moisture content up to 40% moisture content (logarithmic 

model: r2 = 0.98, P<0.0001) for both HH- (RMSE 0.31) and VV- (RMSE 0.39) 

polarisations. This result supports the observation made by Baghdadi et al. (2007) 

where the backscatter sensitivity becomes constant beyond 40% soil moisture and 

then decreases with increasing soil moisture. The highest sensitivity of S-band 

backscatter to soil moisture was found at medium incidence angles (30-37°) like the 

C-band data (Rahman et al. 2008). Based on these results, there is a scope of 

estimating the soil moisture change based on multi-temporal S-band backscatter (Du 

et al. 2010). 
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Figure 4.1. S-band ground backscatter vs. soil volumetric moisture (m3 water/m3 soil) 

(top) and soil RMS height (cm) (bottom) for co-polarisation at 15°, 30°and 45° radar 

incidence range. 

What is the relationship between soil surface roughness and S-band backscatter 

across polarisations and incidence angle range?  

 

For soil roughness simulation, sensitivity of S-band backscatter ranges slightly 

higher between -10 to -60 dB across the incidence angle range. When the soil surface 

roughness (rms height) was increased from 1 to 5 cm as a function of different 

incidence angle range, a higher backscatter in all co-polarisations was observed. At 

near incidence angle range, the backscatter increases gradually up to 2 cm and then 

decreases, however the sensitivity of S-backscatter to soil roughness for medium 

incidence angle range persists up to 3 cm and then saturates thereafter. In the far 

incidence angle range, the sensitivity of backscatter increases little bit further than 

medium incidence angle range (Figure 4. 1).  
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At medium incidence angle range ~30°, S-band backscatter shows more significant 

relationship with soil surface roughness (logarithmic model: r2 = 0.95, P <0.0001) 

for both HH- (RMSE 3.55) and VV-(RMSE 3.56) polarisations. Similar strong 

relationship also exists between surface roughness and backscatter at high incidence 

angles. This result shows that S-band backscatter is sensitive to soil surface 

roughness at medium to high incidence angles similar to X-band (Aubert et al. 2011).  

4.3.2. Deciduous crown layer with leaves and branches 

 

The simulation results for deciduous forest canopy layer with leaves and branches as 

described in section 3.4.1 with Model experiment 3 is described below:  

What is the relationship between leaves and branch densities, leaf-dominated, 

branch-dominated, varying levels of moisture content and stand height in deciduous 

canopy layer across frequencies, polarisations and incidence angle range?  

 

Canopy Transmissivity 

 

Figure 4.2 shows the simulated canopy transmissivity for deciduous canopy related 

to leaf-dominated, branch dominated and combined effect of leaf density across the 

frequencies at 830 leaves and 3.4 branch density. The simulated canopy 

transmissivity for crown layer with leaves and branches deciduous canopy shows 

high transmissivity value in L-band than shorter (X- and C-band) and medium (S-

band) wavelengths. At shorter wavelength X-band, very low crown transmissivity of 

0.05 has been observed in leaf-dominated canopy. On the contrary, a fully foliated 

crown appears to be transparent at the L-band measurements reaching up to 0.7. The 

S-and C-band shows greater crown transmissivity values than X-band but lesser than 

L-band sensitivity (Figure 4.2 a, b). Thus, simulated crown transmissivity decreases 

with increasing incidence angles in all the frequencies and polarisations at 830 leaves 

density with corresponding single-sided leaf area index of 5.0.  

 

In the case of branch canopy without leaves, the simulated canopy transmissivity for 

co-polarisations for all frequencies are very close to 1 except for X-band (0.6) due to 

the lower volume density of branches (Figure 4.2 a, b). The canopy transmissivity 

also decreases along the incidence angle range and in increasing frequency for both 
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Figure 4.2. HH (a) and VV (b) polarisations crown transmissivity vs. scattering angle from 830 leaves per cubic meter and 4.1 branches per 

cubic meter, crown transmissivity vs. density of leaves at 30° scattering angle (c) and crown transmissivity vs. frequency for Birch for L-, S-, C- 

and X-bands (d). 



 

 91 
 

co-polarisation with maximum value at L-band. This appears that backscatter 

returns in winter will exhibit strong scattering from forest canopy particularly in L- 

and S-band with co-polarisations across the incidence angle range. However, the 

strong return would be from both direct ground and ground/trunk interactions due to 

leaf-off and easy penetration of radar pulse reaching the ground surface.    

The model suggests a decreasing trend in overall canopy transmissivity for all the 

frequencies and polarisations against the leaf density. This was expected, as the 

density of leaf increases, the radar pulse will be less efficient in penetrating through 

the closed crown canopy (Figure 4.2 c). Greater sensitivity of leaf density to crown 

transmissivity is particularly observed in shorter wavelengths (X- and C-band) with 

a rapid decline up to 700 leaves/ m density while a slow and further decline up to 

1200 leaves/m (S-band) and 2000 leaves/m (L-band) was observed. In general, 

Figure 4.2 d shows the crown transmissivity as a function of frequency, confirming 

that the simulated crown transmissivity decreases with increasing leaves and branch 

densities across incidence angle range and frequency in both co-polarisations from 1 

to nearly 0 in the case of leaf-dominated and 1 to 0.6 (branch-dominated) 

simulations. In L- and S-band, the transmissivity decreases to 0.3 at 2000 and 1200 

leaf density respectively, while similar values of transmissivity was achieved by C- 

and X-band at very low density ~700 leaves. 

 

Total Backscatter 

 

The simulated total canopy backscatter as a function of incidence angle range for all 

the frequencies (L-, S-, C- and X-band) have been highlighted in Figure 4.3. The 

characteristics of the HH and VV polarisations of crown layer with leaf and 

branches signify quite differently where scattering exists between -3 to -15 dB for 

HH polarisation while a weaker backscatter between-10 and -20 dB for VV 

polarisation across incidence angle range (45 to 15°). In leaf dominated simulation, 

strongest backscatter occur at S-band between -5 to -8 dB (HH polarisation) and -10 

to -15 dB (VV polarisation), while the minimum scattering arises from X-band 

between -8 to -13 dB (HH polarisation) and -15 to -18 dB (VV polarisation) with 

average scattering shared by both shorter wavelengths in the HH and VV 

polarisations respectively. In the case of cross-polarisations, the scattering is 



 

 92 
 

relatively weaker and ranges between -25 to -35 across the incidence angle range. In 

fact, they are similar to strong attenuation shared by longer L- band followed by S-

band in comparison to shorter wavelengths. 

 

 
Figure 4.3. Total co- and cross-polarisations canopy backscatter vs. scattering angle 

from 830 leaves and 4.1 branch density Birch for L-, S-, C- and X-band. 

 

In relation to branch canopy without leaves in winter season, simulated total canopy 

backscatter for both co- and cross-polarisations are different but the character of 

each does not change with the frequency. In the case of HH polarisation, total 

canopy backscatter for L-band is quite higher than both S- and C-band along the  
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Figure 4.4. Total co- and cross-polarisations canopy backscatter vs. scattering angle from 4.1 branch density Birch at different branch levels for 

L-, S-, C- and X-band. 



 

 94 
 

incidence angle range. However, both S- and C-band also exhibited a relatively 

higher total canopy backscatter in the far range direction. A higher total canopy 

backscatter is observed for both S- and C-band over L-band along the angle of 

incidence for VV polarisation. In relation to cross-polarisations, C- and X-band 

shows higher total canopy backscatter than longer L-band along the incidence angle 

range.  

With different branch levels, strongest backscatter is evident for all polarisations for 

all bands with maximum at longer wavelength L-band and S-band for fourth level of 

branches in comparison to either primary and combined with secondary branches 

(Figure 4.4). Both the density of branches and higher branch levels showed a 

significant backscatter from forest canopies.    

In general, the strong backscatter attenuation perceived by shorter to medium 

wavelength may be due to the multiple volume scattering from branches and twigs 

while ground/trunk interaction at longer L-band. Backscatter attenuation from 

branches shows a substantial effect on both co-and cross-polarisations 

characteristics but following similar pattern with the leaf-dominated canopy layer. 

Hence, SAR backscatter at L-band including S-band acquired during winter season 

will display a strong backscatter from primary branches, direct ground and 

ground/trunk interaction, possibly useful for forest structure retrieval. For example, 

better L-band backscatter prediction during winter season has been observed by 

Bosisio and Dechambre (2004), who investigated the radar backscatter sensitivity to 

seasonal variations in a 20 year old oak stand in Paris (France) using MIMICS.  

 

The simulated backscatter returns from the forest canopy (i.e., leaves, branches and 

trunk) is a function of dielectric constants of different canopy parts in terms of 

moisture content and physical temperature. At S-band, simulated backscatter signals 

from leaves decreases across the radar incidence range as a function of moisture 

content (dielectric) with lower sensitivity (logarithmic model: r2 = 0.7, 0.69 and 

0.57, P <0.0001) for HH- (RMSE 0.46), VV- (RMSE 0.47) and HV- (RMSE 0.92) 

polarisations at 0.5 volumetric moisture content (Figure 4.4). Whereas 

backscattering from trunk/branch increases across the radar incidence range. Similar 

pattern is also observed with total backscatter returns from the canopy.  
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With varying moisture content between 0.1 and 0.7 m3 water/m3 in different canopy 

parts, S-band backscatter shows a significant relationship with branch and trunk 

components (logarithmic model: r2 = 0.95, 0.98 and 0.78, P <0.0001) for HH- 

(RMSE 0.29), VV- (RMSE 0.49) and HV- (RMSE 3.25) polarisations at average 

incidence angle range of 30° (Figure 4.5). 

 

Figure 4.5. S-band backscatter vs. canopy parts at 0.5 volumetric moisture (m3 

water/m3 canopy) across incidence angles (top) and at varying volumetric moisture 

(m3 water/m3 canopy) at 30° radar range (bottom) where T- and B- represents trunk 

and branches respectively.     

The contribution of the individual interactions to the simulated total canopy 

backscatter across radar incidence angle range across different frequencies are 

investigated and shown in Figure 4.6. The simulated total backscatter for leaf-

branch canopy layer as a function of frequency for all polarisations behaved 

differently with some resemblance that of leaf- and branch- dominated in the case of 

co-polarisation while branch-dominated behaviour in the case of cross-polarisation.   
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Figure 4.6. Total co-and cross-polarisations canopy backscatter components vs. scattering angle from 830 leaves and 4.1 branch density Birch at 

primary branch level for L-, S-, C- and X-band. 
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For L-band, simulated total canopy backscatter originates from ground/trunk 

interactions in HH and VV polarisations with some contribution from total crown 

(Figure 4.6 A). These interactions are closely related to leaf-dominated simulation. 

In the case of branch-dominated canopy layer, the longer L- band also predicted 

total backscatter for co-polarisations from ground/trunk interaction due to absence 

of leaves and more penetration reaching the ground layer. In the cross-polarisations, 

the dominant scattering also arises from ground/trunk interaction with some volume 

scattering in the far incidence angle range. The reason for ground/trunk interaction 

as the dominant scattering mechanism to the total backscatter is due to longer 

wavelength in comparison to the size of the leaf. This demonstrates the ability of L-

band with 23 cm radar pulse for easy penetration in comparison to relative sizes of 

the leaves (Ulaby et al. 1990, Beaudoin et al. 1994, Liang et al. 2005).   

 

For S-band, simulated total backscatter for leaf-branch canopy originates from 

ground/trunk interaction in HH polarisation while a combination of both 

ground/trunk and volume scattering at VV polarisation. On the contrary, direct 

crown has fully taken over as the main dominating factor to the total backscatter for 

cross-polarisation (Figure 4.6 B). This could be due to the reduced transmittance as 

a function of increasing leaf and branch density with HV polarisation signal (Figure 

4.2 c).  The transition of double-bounce scattering from ground/trunk to volume 

scattering from the direct crown is more significant in the higher frequencies (C- 

and X-band) due to shorter wavelength in size and incapable to pass through the leaf 

and branch components.  In all the polarisations, backscatter from direct ground (a 

function of soil moisture and roughness) is lower across the incidence angle range 

than forest canopy backscatter.  

 

Additionally, the depth of crown and density of leaves/ branches played a significant 

role in the strength of the backscatter signal. This result shows that S-band 

backscatter can interact with different canopy components particularly with large 

branch, trunk and ground layer depending on the canopy structure. This modelling 

result supports the studies reported by Fransson et al. (1999) and Yatabe and Leckie 

(1995) who could differentiate clear-cut stands against forest using Almaz S-band 

data. Furthermore, the predicted S-band backscatter could also provide some 

information related to forest structure including biophysical parameters due to 
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ground/trunk interaction as dominant scattering but lesser than longer L-band and 

seeks further investigation.  

 

For the shorter wavelengths at C- and X-band, the simulated total backscatter arises 

from a combination of both ground/trunk and direct crown scatterings for co-

polarisations (Figure 4.6 C, D). This direct or total crown scattering primarily 

originates from the small branches and foliage leaves. As a result scattering from 

ground/trunk were attenuated largely by the top of the canopy. For X-band, the 

dominant scattering to the simulated backscatter level is first directly from crown 

particularly in near range followed by double bounce interactions via ground/trunk 

scattering beyond 35° incidence angle for HH polarisation. In contrast, VV 

polarisation showed volume scattering from direct crown canopy mechanism with 

little ground/trunk sensitivity due to shorter wavelength in relation to canopy 

components. The cross-polarisation displayed a strong total crown scattering in C- 

and X-band due to the combination of direct crown and crown-ground interactions. 

 

Generally, the direct crown interaction mechanism is more of a significant 

contributor to total backscatter at C- and X-band unlike the L- and S-band in all the 

polarisations across the radar incidence range. However, the ground/trunk 

interaction seems to be little contributor to overall backscatter particularly in case of 

co-polarisations while, negligible in the case of cross-polarisations for higher 

frequencies. Overall, it gives an impression that C- and X-band backscatter could 

only pick up the interaction from the crown canopy rather than other interactions 

possibly due to lower penetration level than L- and S-band. 

 

Figure 4.7 shows the simulated backscatter for all polarisations from longer 

wavelength at P-band through S-band to shorter wavelengths at X-band in different 

branch levels. With the fourth level of branches, strong backscatter is evident for all 

polarisations in comparison to primary branch level for all SAR frequencies (Figure 

4.6). At P- band, dominant scattering occurred through interaction between the 

trunks and large branches and the ground surface in all polarisations. With other 

SAR frequencies, major scattering is found through direct crown interaction for 

most polarisations in high density and fourth level of branches.    
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Figure 4.7. Total co- and cross-polarisations canopy backscatter components vs. scattering angle from 830 leaves and 4.1 branch density 

Birch at fourth branch levels for P-, L-, S-, C and X-band. 
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In relation to simulated total canopy backscatter as a function of frequency at 30° 

incidence angle range, co-polarisations showed an increasing trend from longer 

wavelength at P-/L-band to S-band and decreases to C-/X-band for small branch 

diameter (1 -3 cm) (Figure 4.8 A). Similar trend of total canopy backscatter with 

cross-polarisations is also evident across frequencies (Figure 4.8 C). However, in 

both co- and cross polarisations strong total canopy backscatter is evident at P-/L-

band and then decreases along the radar frequencies with larger size branch at 5 cm 

(Figure 4.8 A, C). Thus, longer wavelength at P-/ L-band radar backscatter shows 

strongest with thick branches in comparison to other wavelengths but weaker than 

S-band radar backscatter with smaller branches.   

 

Figure 4.8. Total canopy backscatter vs. SAR wavelengths from 4.1 branches per 

cubic meter, primary branch diameter (1 cm, 3 cm, 5 cm) (A, C) with 830 leaves per 

cubic meter (B, D) Birch stand at 30° scattering angle for co- and cross-polarisations. 

When the leaves were added to different branch density of varying sizes, co-

polarisations shows similar backscatter sensitivity at L-and S-band higher than 

longer wavelength at P-band and shorter wavelengths with small branch size. With 

thick branches size up to 5 cm, S-band shows strongest total canopy backscatter in 

comparison to both longer wavelength at P-/ L-band and shorter wavelengths at C- 
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and X-band (Figure 4.8 B). This trend is more evident with cross-polarisation 

between S-band and other wavelengths (figure 4.8 D). The main reason for a higher 

backscatter return at S-band than longer wavelength at P-/ L-band could be due to 

the sensitivity of the S-band signal within a range of diameter thickness of branches 

and differences in the moisture condition in branches and leaves when the model 

was simulated. This clearly shows the sensitivity of dielectric constant (i.e., 

moisture content) of canopy components in predicting the radar backscatter signal.  

Additionally, the structure of forest stand could be a potential attribute to the S-

band backscatter behaviour. For example, study in a 20 year old oak stand in Paris 

(France) utilising both MIMICS and Karam models have reported low backscatter 

with longer wavelength at L-band and shorter wavelength at C-band due to the lack 

of forest heterogeneity cover (Bosisio and Dechambre 2004). However, the 

sensitivity of S-band total canopy backscatter to the diameter of branch as outlined 

above need further investigation since the transition from Rayleigh to optical 

scattering depends on the physical size and shape of the scattering target, for 

instance diameter of the branch (Woodhouse 2006b).  

Figure 4.9 shows the total backscatter at 30° incidence angle range for stand canopy 

height across frequencies and polarisations. At L-band, dominant scattering 

originates from branches and stems. With the increasing canopy height, the 

backscatter comes more from ground/trunk interactions and less from direct layer 

scattering particularly at HH polarisation. However, this backscatter trend changes 

at VV polarisation from intermediate canopy height with scattering from the crown 

layer at cross-polarisation. At S-band, dominant backscatter comes from the 

ground/trunk interaction up to 5 m stand height (HH-polarisation) and high 

scattering comes from the crown layer with increasing stand height in all 

polarisations. This trend is clearly observed in higher frequencies at C- and X-band. 
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Figure 4.9. Total co- and cross-polarisations canopy backscatter components vs. canopy stand height (m) from 830 leaves and 4.1 branch 

density Birch for L-, S-, C- and X-band at 30° incidence angle.  
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4.3.3.  Coniferous crown layer with needles and branches 

 

The simulation results for coniferous forest canopy layer with needles and branches as 

described in section 3.4.1 with Model experiment 4 is described below: 

What is the relationship between needle density and needle-branch canopy layer 

across frequencies, polarisations and incidence angle range? 

Canopy Transmissivity 

 

The simulated canopy transmissivity for crown layer with needles and branches for 

Norway spruce is showing very small values in comparison to Birch stand. For 

example, longer wavelength L-band is showing more transmissvity value than shorter 

to medium wavelengths (Figure 4.10 a, b). Thus, crown transmissivity decreases with 

increasing incidence angle range in all the frequencies for both HH- and VV-

polarisations at 85,000 needle and 3.4 branch densities. Small values of crown 

tranmissivity are due to the high density of needles and branches used to model the 

canopy with 11 meter crown layer thickness.  

 

In relation to the effect of needle density, the simulated crown transmissivity 

drastically decreases with increasing needle density (5000 to 100,000) irrespective of 

frequency and polarisations (Figure 4.10 c). In general, the crown transmissivity as a 

function of frequency decreases in both HH and VV polarisations due to dense needles 

and tree architecture with multiple branches. Moreover, the radiometric length of the 

radar pulse across the frequencies makes it unsuitable for penetration within the forest 

canopy (Figure 4.10 d). 

 

Total backscatter 

 

The simulated total canopy backscatter across radar incidence range for all the 

frequencies (L-, S-, C- and X-band) have been highlighted in Figure 4.11 for co-and 

cross- polarisations. The characteristics of the co-polarisations for L-, C- and X-band 

are showing strong backscatter attenuation in comparison to S- band signal.     
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Figure 4.10. Horizontal (a) and Vertical (b) polarisation crown transmissivity vs. scattering angle from 85,000 needles and 3.4 

branches per cubic meter Norway spruce, needle density at 30° scattering angle (c) and versus frequency at 30° scattering angle for 

L-, S-, C- and X-band. 
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Figure 4.11. Total co-polarisation (top, middle) and cross-polarisation (bottom) canopy 

backscatter vs. scattering angle from 85,000 needles and 3.4 branch density Norway 

spruce for L-, S-, C- and X-band. 

 

On the contrary, the HV polarisation shows strong scattering with L- and S-band 

followed by X- and C-band along the radar incidence angle range. Overall, it seems 

that both needle and branch densities have a substantial effect on both co-and cross-

polarisations.  
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Figure 4.12. Total co-and cross-polarisations canopy backscatter components vs. scattering angle from needle-branch canopy layer 85,000 

needles and 3.4 branch density Norway spruce for L-, S-, C- and X-band.
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The contribution of the individual interactions to the total canopy backscatter as a 

function of radar incidence range and frequencies are shown in Figure 4.12. At L-

band, the simulated total backscatter for all polarisations is dominated by the direct 

crown backscatter component with some minor ground-crown and ground/trunk 

interaction across the incidence angle range. This is due to the low crown 

transmissivity as a direct relationship with a high needle and branches densities and 

11 meter crown thickness layer. In general, conifers are cone-shaped having steep 

vertical layer from top to bottom with increased needles and branch density at the 

bottom layer. The needle number density seems to be the main factor responsible for 

weak scattering from the sub-canopy layers and as a result of which the woody 

components (that is branches and trunk) are insignificant contributor to the total 

backscatter (Bosisio and Dechambre 2004).  

 

At S-band, the simulated total canopy backscatter for both co- and cross-

polarisations is dominated by the direct crown backscatter component across the 

incidence angle range. This is due to the lower volume scattering as the main 

scattering arises from the needles and branches of conifer canopy (Lopez-Sanchez et 

al. 2000). In this frequency unlike longer wavelength at L-band, all the polarisations 

resembles to leaf-branch deciduous species particularly in HH polarisation with 

some ground and crown in cross-polarisation.  

 

In comparison to longer wavelengths, both shorter wavelengths at C- and X-band 

also displayed the direct crown component to be the major contributor to the 

simulated total backscatter for both co- and cross-polarisations across the incidence 

angle range. In these frequencies, all the polarisations does not show any other 

components to be a contributing factor for the total backscatter signal due to shorter 

wavelength and a high needle density canopy layer (Beaudoin et al. 1994, Le Toan 

et al. 1992, Liang et al. 2005, Ulaby et al. 1990). Additionally, the weak relationship 

between SAR backscatter and conifer species canopies could also be due to 

homogeneity in forest structure (e.g. stand height) in comparison to complex 

deciduous stand (Bosisio and Dechambre 2004).    

 

Figure 4.13 shows the simulated total canopy backscatter decreases as a function of 

frequency irrespective of the polarisations for coniferous stands. The co-
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polarisations showed strongest total canopy backscatter from longer wavelength at 

L-band and then decrease along the frequencies for thinner to thick branches and 

needle density (Figure 4.13. A). Similar trend is also evident with cross-

polarisations as a function of varying branch thickness (Figure 4.13. B). For both the 

polarisations, simulated S-band total canopy backscatter shows strongest than longer 

wavelength at L-band and shorter wavelengths for medium size branch thickness of 

3 cm. This shows that the diameter of the branch cylinder in coniferous canopy 

reflects varying sensitivity at radar wavelengths and polarisations. The above results 

with strong total canopy backscatter sensitivity from both forest types at S-band 

frequency need further investigation as a function of physical size, density of 

branch, needles and their moisture conditions. 

 

Figure 4.13. Total canopy backscatter vs. frequency from 85,000 needles and 

3.4 branch density per cubic meter at varying branch sizes (1 cm, 3 cm, 5 cm) 

for co- (A) and cross-polarisations (B) Norway spruce at 30° scattering angle. 

 
4.3.4.  S-band backscatter responses from soil against forest canopy 

 

What is the relationship of soil and forest canopy (deciduous and conifers) to the S-

band backscatter signal? 

 

In this experiment, forest canopies simulations with MIMICS-I suggest strong S-

band radar total backscatter returns particularly in deciduous stands and slightly 

weaker scattering from coniferous canopies (Figure 4.14). Total backscatter at HH 

polarisation is high due to ground/trunk interactions from the deciduous canopy, 

higher than for a coniferous canopy. This trend is also evident for VV polarisation. 

In all the polarisations, backscatter from bare-ground (a function of soil moisture 
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and surface roughness) is lower across the incidence angle range than forest canopy 

backscatter. The simulation suggests that S-band backscatter can differentiate forest 

and non-forest due to the loss of the double-bounce scattering scattering from 

ground/trunk interaction when the canopy is removed. In comparison to the model 

predictions, the observed S-band radar backscatter coefficients from the airborne 

data reveals similar trends but with lower sensitivity for both forest types and soil 

properties. The radiative scattering mechanisms at S-band simulated by MIMICS-I 

show a similar behaviour like the longer wavelength at L-band for forested areas 

(Grover et al. 1999).  

 

Figure 4.14. Simulated forest canopy (deciduous, conifers) and soil total backscatter 

relationship as a function of radar incidence range at S-band (modelled against SAR 

data).  

 

4.3.5.  Reduced canopy components 

 

The simulation results for deciduous forest canopy degradation as a function of 

reduced canopy components as described in section 3.4.1 with Model experiment 5 

is described below: 

What is the radiative behaviour of S-band backscatter to reduced canopy 

component? 

 

The simulation results related to forest degradation at L- and S-band backscatter as 

reported in this study represent the radiative behaviour of L- and S-band as a 

function of canopy structure and stand density based on the field data and existing 

literature on forest fire and logging to radar backscatter. However, the disturbance 

related to forest fire does not exist in the study sites.  
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Microwave scattering for birch stands with changing canopy characteristics are 

simulated taking forest fire as the external driver. The simulation resembles birch 

deciduous stand at low 0.012 tree density, 16.18 m canopy height, 38 cm DBH and 

342.43 t/ha AGB with leaf-branch and trunk component prior to fire outbreak. In the 

post fire scenario, different scenarios related to secondary branches-leaf with trunk, 

primary branches-leaf with trunk and only trunk were simulated as a function of 

repeated fire occurrence in the same stand. Basically, the upper canopy of the tree 

contains foliage component primarily leaves, twigs and small branches. The high 

density of leaves and their relative high moisture content in comparison to other 

woody parts may therefore allow lower level of radar signal penetration in shorter 

SAR wavelength. Thus, removal of canopy components such as leaves and branches 

by fire could affect the backscatter from the canopy as a function of radar 

wavelength and polarisations (Ferrazzoli et al. 1997). 

In Figure 4.15 (A) simulated backscatter signal from VV polarisation in the longer 

wavelength at L-band displayed a strong scattering in all the cases and particularly 

in open canopy due to repeated fire outbreak in the leaf- and branch-dominated. 

This is due to more penetration level of L-band allowing stronger scattering 

mechanism similar to large branches, stem or forest floor (Le Toan et al. 1992). On 

the contrary, a weaker and reduced scattering has been observed in the cross-

polarisation from high density canopy through leaf- and branch-dominated cases.  

A reduced backscatter returns have also been observed from the trunk only due to 

open canopy and more single scattering from direct ground and ground/trunk 

interaction. Further weaker but greater backscatter variability has been observed 

from forest floor in both polarisations. This is commonly observed in burn forest 

sites due to increased soil exposure through burning of canopy components, making 

soil drier and comparatively smoother (Kalogirou et al. 2014). On the other hand, 

strong backscatter return was evident from the rough soil with wet condition 

particularly in co-polarisation due to sensitivity to both high moisture content and 

surface roughness. Similar trend has been related to the temporal backscatter 

variability with JERS-1 data acquired in post fire (Takeuchi et al. 2000).  

In the S-band frequency, co-polarisation (i.e., VV) also displayed a strong 

backscatter signal in the high canopy with fourth branches density and decreases in 
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varying levels of reduced canopy structure due to repeated fire occurrence (Figure 

4.15 B). In the case of cross-polarisation, greater variability of backscatter dynamic 

range can be more prominently evident in comparison to co-polarisation with 

around 10 dB difference. For example, maximum backscatter variability could be 

evident from the standing trunk only without canopy foliage due to ground/trunk 

interaction similar to leaf-off winter condition. Therefore, removal of canopy 

components such as leaves and branches over time affects the backscatter from the 

canopy in a decreasing order particularly in S-band frequency.  

 

Figure 4.15. Simulated backscatter for forest degradation as a function of canopy 

structure for deciduous stand at 0.012 tree density, 16.18 m canopy height, 38 cm 

DBH and 342.43 t/ha AGB for L- (A) and S-band (B) for VV- and HV- 

polarisations (15° -45° incidence angles) where 4 B: fourth branches, SEC B: 

secondary branches, PRI B: primary branch, L: leaf, T: trunk, SD: smooth dry soil 

and RW: rough surface wet soil. 

A weaker and reduced backscatter was also observed in the S-band frequency from 

the soil layer particularly in smooth and dry moisture condition while strong 

backscatter arises from the rough surface with high moisture condition in the co-

polarisation. This result seems to be consistent with backscatter using C-band data 

in Mediterranean region where higher soil moisture content increases backscatter 
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(Tanase et al. 2010). Finally, sensitivity of the overall total canopy backscatter from 

reduced canopy components caused by fires would depend on the condition of the 

canopy component (leaves, branches) including moisture content and underlying 

soil conditions (Tanase et al. 2010, Ferrazzoli et al. 1997, Kalogirou et al. 2014) due 

to the transition of radar backscatter from volume (canopy) to single (bare soil) 

scattering. 

4.3.6.  Reduced tree density 
 

The simulation results for deciduous forest canopy layer with leaves and branches as 

described in section 3.4.1 with Model experiment 6 is described below: 

What is the radiative nature of S-band backscatter to varying tree number density? 

Degraded forest can also be related to a reduction in number of tree desnity in an 

area due to selective logging for a particular species of high commercial value. The 

simulation resembles degradation of mixed deciduous stands with selective logging 

as an external driver. This can be related to more opening of canopy gap due to 

canopy damage and fragmentation (Asner et al. 2006) due to long-term impacts of 

logging and are more prone to fire (Cochrane 2003). For instance, a closed canopy 

stand displayed strong backscatter at L- and S-band due to large number of trees. 

This strong backscatter can be due to the relative scattering mechanisms from 

ground/trunk interactions from the forest canopy. In this scenario, reductions in the 

strength and dynamic range of the backscatter have been observed across the radar 

incidence range in low tree density. This means, a weaker radar return has been 

observed from either bare-ground with low-vegetated or low tree density (e.g. 

savannah ecosystem) or combination of both due to forest canopy gaps.  

With the decreasing number of tree density, a reduced simulated total canopy 

backscatter has been observed in L-band in almost all the polarisations particularly 

at medium incidence angle (Figure 4.16. A). Co-polarisations show a reduced 

backscatter from high number of tree density to low tree density but this reduction 

in backscatter is not prominent on average. This may be due to less attenuation from 

the upper canopy layer, providing more energy penetration and expectation of more 

scattering returns from available large tree trunks in low density. Possibly a strong 

ground scattering through low density canopy could be the basic reason for such a 
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scattering nature. A weaker backscatter has been observed in the cross-polarisations 

particularly in HV with some level of backscatter dynamic range of 5 -6dB. The 

cross-polarisation showed maximum backscatter range relative to co-polarisations. 

That is, the dynamic backscatter ranges between 6 dB, 3 dB and 2 dB for HV, VV 

and HH polarisations respectively. 

 

Figure 4.16. Simulated backscatter for forest degradation as a function of tree 

density with varying canopy height, DBH and AGB for L- (A) and S-band (B) (15° 

-45° incidence angles). 

 
At S-band frequency, the overall strength of the simulated total canopy backscatter 

signal decreases due to low tree canopy cover in terms of area (Figure 4.16. B). In 

particular, a gradual decrease in S-band signal from high number of tree density 

(0.06 m2) up to open canopy has been evident due to ground/trunk interaction. 
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Beyond a number density of 0.05 m2, a drastic reduction in the total canopy 

backscatter from S-band signal has been observed possibly due to more single 

scattering from soil and lesser volume scattering from fewer trees in the stand.  

As a function of tree number density, relatively low variability in backscatter is 

found for S-band in comparison to longer wavelength at L-band in all polarisations. 

Similarly, a dynamic backscatter range between 6 dB, 4 dB and 3 dB for HV, VV 

and HH polarisations for S-band frequency has been observed.  

Reduced backscatter variability is also observed in low tree density due to loss of 

volume scattering with more open area and less scattering from existing tree stands. 

If the soil components as highlighted in the reduced canopy characteristics were 

incorporated, there is a possibility that a strong backscatter from both soil conditions 

(smooth-dry and rough-wet) will inevitably overcome the backscatter return from 

the forest canopy. This shows that the high tree density increases the backscatter 

return due to more volume scattering (multiple) with canopy components and 

ground/trunk interactions while a mixture of weak and single scattering from soil 

properties and lesser volume scattering from lower number of tree density across 

frequencies and polarisation. This can also be related to the saturation of radar 

backscatter to the stand number density rather than the canopy opacity. Hence, the 

relationship of forest biophysical variable and radar backscatter depends on the 

trends in the stand –level structure where number density is a significant parameter 

for allometric models and provides useful information in the radiative behaviour of 

radar backscatter (Woodhouse 2006b).    

4.4. Summary 

 

The radiative transfer MIMICS-I has been applied to the modelling of backscatter 

signal from both deciduous and coniferous canopies including bare-ground for all 

the SAR frequencies.  

The modelling experiments revealed six main results:   

1. Simulated S-band backscatter shows a significant sensitivity to both soil 

moisture content (up to 40%) and soil surface roughness particularly at 

medium incidence range.  
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2. Simulated S-band backscatter was found to be more sensitive to forest canopy 

cover than shorter wavelengths at C- and X-band due to ground/trunk 

interactions being dominant in deciduous species. 

3. There was sensitivity of S-band backscatter to the crown layer component. 

For both forest types studied, the presence of leaves and needles provided 

strong backscatter particularly in co-polarisations with radar incidence range. 

For deciduous type, simulated backscatter from branches also show a 

substantial effect when simulated in winter condition. The sensitivity of the 

simulated S-band backscatter to branch and trunk components with varying 

moisture content, polarisations and incidence range.  

4. The MIMICS-I model also confirmed that longer wavelength at P-/ L- and S-

band shows higher backscatter returns from forest canopies than shorter 

wavelengths at C- and X-band as stated by Ulaby et al. (1990). 

5. At S-band, dominant scattering comes from the ground/trunk interaction up to 

5 m stand height (HH polarisation) followed by the crown layer with 

increasing stand height.  

6. A low S-band backscatter return has been predicted as a function of temporal 

backscatter changes due to reduced canopy characteristics (structure) and low 

tree number density. 

At this stage from the modelling perspective, the simulated S-band canopy 

backscatter is sensitive to forest structure particularly in co-polarisations and this 

simulation result needs further investigation using field data. Though, study 

conducted by Woodhouse (2006b) using  the radiative transfer cylinder model 

incorporated with a macroecological model reported the backscatter-biomass 

relationship possibly due to single-scattering layer between Rayleigh to Optical 

scattering. In all the simulations particularly related to deciduous species, there is 

some scope to relate with forest structure due to the ground/trunk interaction as the 

dominant scattering. In conclusion, S-band SAR data have been found to be 

sensitive to soil properties (that is soil moisture and surface roughness) and forest 

canopy structure. This reported radiative nature of S-band backscatter sensitivity to 

soil and forest canopy will be useful in studies related to mapping forest cover and 

retrieval of forest structure including aboveground biomass.   
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Chapter 5: Forest/non-forest and change mapping using 

airborne S-band SAR backscatter 

5.1.  Introduction 

 

The radiative transfer MIMICS-I model simulations presented in chapter 4 provides 

a thorough understanding of the basic scattering mechanisms associated in forest 

canopy as a function of microwave radiative transfer and underlying forest 

characteristics. The dominant double-bounce scattering at S-band from forest 

canopy particularly with deciduous species reveals potential for mapping forest/ 

non-forest cover. Therefore, in this chapter, an effort was made to examine the 

suitability of S-band backscatter in classification of forest against non-forest and 

derive forest cover changes utilizing Maximum Likelihood algorithm at different 

spatial resolutions simulated to NovaSAR-S configurations. 

 

Globally, forest play a pivotal role in biophysical interactions and biogeochemical 

exchanges (Foley et al. 1994) and constitute one of the dynamic component of the 

global carbon cycle (Ciais et al. 1997) in the form of forest AGB (Groombridge and 

Jenkins 2002). Hence, timely and accurate forest cover monitoring algorithm and 

data products are essential for monitoring and management of forest (Hansen et al. 

2008). SAR sensors with different band-widths (X-, C- and L-bands) have emerged 

as a complementary tool for accurate mapping of forest/ non-forest (F/NF) and 

forest cover change due to their cloud penetration, weather independent and 

sensitivity to forest structure (Schlund et al. 2014, Thiel et al. 2006, Shimada et al. 

2014). In particular, Shimada et al. (2014) have generated global F/NF cover maps 

(2007 -2010) at 25 m scale based on HV backscatter PALSAR data reporting around 

85% overall accuracy. They used region-specific threshold values of HV backscatter 

as forest and non-forest and found a stable temporal backscatter during this period in 

both HH and HV polarisations at global scale. 

Few studies have investigated S-band backscatter responses to soil, agricultural 

crops and forest species. For example, sensitivity of soil moisture to S-band 

backscatter was found positive between observed and soil moisture retrieval at VV-

polarisation channel for HJ-1C simulation (Du et al. 2010). Moreover, volume 
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scattering in maize plant was observed with S-band backscatter due to uniform 

distribution over the whole plant (Lopez-Sanchez et al. 2006). Using MIMICS 

simulation, S-band backscatter shows sensitivity to the temporal dynamics of the 

structure of wheat crop (Sun et al. 2012). In the young fir, S-band backscatter arises 

from the needles and branches due to random scattering (Lopez-Sanchez et al. 

2000). The capability of S-band backscatter to map agricultural crop canopy (Guida 

et al. 2012) and forested areas (Natale et al. 2012) using integration of H/α and 

Pauli’s decomposition techniques and salt marsh habitat mapping using Random 

Forest algorithm (van Beijma et al. 2014) have also been explored.  

Studies led by Yatabe and Leckie (1995) and Fransson et al. (1999) have 

demonstrated the mapping of correctly classified clear- felled and forested areas 

using S-band Almaz-1 in boreal forest of Canada and Sweden respectively. 

However, there have been no consistent studies on the S-band SAR backscatter in 

mapping F/NF and forest cover changes in the temperate forested areas including 

the UK region. Therefore, the main objective of this chapter is to classify S-band 

backscatter data to produce forest/non-forest cover and change maps using MLC 

algorithm at varying spatial resolution and test the accuracy utilising PALSAR-

based (25 m spatial) and Landsat-based (30 m spatial) products respectively. 

5.2. Methods 

To investigate the potential of airborne S-band data for mapping forest and non-

forest cover and change detection, the mixed deciduous forest and different non-

forest classes (that is grassland, clear-felled and grassland) of Savernake is selected 

(Figure 5.1). During the study period, management operations involving stand 

removal in few sub-compartments have also been carried out in Savernake. The 

availability of FC GIS, ancient database and field visits in 2012 and 2015 supports 

this study. The pre-processing of S-band SAR data and methodology are given in 

sections 3.2.3 and 3.4.2 respectively.  

Prior to classification, the different scattering behaviour from forest and non-forest 

stands at S-band backscatter was examined for all channels. From the backscatter 

histogram of forest and non-forest classes, bimodal shape distribution has been 

observed in all the polarisations. It further shows that the distribution with 

backscatter at HH and VV polarisations always exceeding than at HV 
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polarisation.This observation was confirmed by analysing the scattering behaviour 

of S-band for all polarisations between F and NF classes based on training sample 

points of FC sub-compartment (figure 5.1). 

 

Figure 5.1. Field, FC GIS, ancient tree plot locations for 126 forest and 130 non-

forest (training and validation plots) overlaid on 2014 acquired S-band FCC at 6 m 

(a) and 20 m (b) pixel resolutions for Savernake forest. Image reproduced with 

copyright permission from the Airbus Defence and Space, UK and Forestry 

Commission. 

Figure 5.2 shows box-plots illustrating the scattering returns of fully-polarisation at 

S-band in 105 forest and 105 non-forest plots including different non-forest classes 

with the training plot locations depicted in figure 5.1. 
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Figure 5.2. Box-plots of scattering returns of S-band SAR backscatter in 105 (F- Forest) and105 (NF- Non-forest) sample plots (a) and 

different non-forest types with 50 (CF- Cleared-felled), 45 (BG- Bare-ground) and 10 (G- Grassland) sample plots (b). The central box in 

each box plot shows the inter-quartile range and median; whiskers indicate the 10th and 90th percentiles. 
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Stronger backscatter returns arises from forested areas in comparison to non-forest 

class. Both HH- and HV-polarisation provides the ideal channel for delineating the 

F and NF. It is due to these differences in returns from forest canopies against 

grassland and bare-ground, enabling for mapping forest cover where a mixture of 

different classes exists. Thus, the VV- returns recorded the highest backscatter in 

both forest and non-forest classes than other polarisations.  

5.3. Results and Discussion 

 

5.3.1. Mapping F/NF 

Using the S-band backscatter information from HH- and VV- polarisations and the 

RFDI in the MLC algorithm, mapping of F/NF classes over Savernake forest was 

performed at the NovaSAR-S 6 m and 20 m resolutions (Figure 5.3).  

 

Figure 5.3. F/NF cover map of Savernake using S-band polarimetry and 

maximum likelihood algorithm at 6 m (a) and 20 m (b) resolutions. 
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For 6 m resolution, forest class is the dominant category in the Savernake with an 

area covering 648 ha. This dominant category corresponds to 86% in comparison to 

88.26% based on the FC sub-compartment database. At the spatial resolution of the 

20 m resolution, an over-estimation of forest class was observed, resulting in an 

estimated 696 ha of forest (Table 5.1).  

Table 5.1. Area distribution of F/NF cover for Savernake forest.  
 

Class 6 m area (ha) 20 m area (ha) 
Forest 648.1 696.5 

Non-forest 94.05 48.0 
Total (ha) 742.15 744.5 

 
 
The ability to delineate forest against non-forest class at S-band frequency is due to 

strong double-bounce scattering as a function of ground/trunk interaction 

dominantly from forest canopy than the surrounding areas without woody 

vegetation. Similar good result with S-band sensitivity to forested areas have been 

found in the Baginton site of Southern England using entropy H/ mean angle α and 

Pauli’s polarimetric decompositions (Natale et al. 2012). This strong scattering 

arises dominantly from deciduous forest species primarily due to the complex 

structural behavior in comparison to the conifers species. For coniferous species, a 

lower volume scattering (possibly random scattering) has been observed at S-band 

frequency due to high needles and branch densities (Lopez-Sanchez et al. 2000) 

(refer to Chapter 4 result predicted by MIMICS-I modelling). In the classified map 

at 20 m resolution, the non-forested areas has been misclassified to forest class 

possibly due to the inability to capture the finer details of varying surface roughness 

of the different non-forested classes at coarser spatial scale.  

5.3.2. Detailed land cover classification 

The different backscatter responses in the various non-forest land cover types in the 

study site provides an opportunity to investigate the sensitivity of S-band 

backscatter to different non-forested surface types (Figure 5.4 and Table 5.2). At 6 

m resolution, grassland occupied around 50 ha area. In general, grass leaves have  
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erect inclination without woody stem but showing minimal leaf clumping with 

intermediate soil brightness. The lower backscatter returns from grasses at S-band 

could be due to weaker radar backscatter returns as a result of the specular 

phenomenon (smooth surface) of the grasses in comparison to roughness of the 

complex forest structure (Guida et al. 2012, Sun et al. 2012).  

 
Figure 5.4. Forest and different non-forest cover map of Savernake using S-band 

polarimetry and maximum likelihood algorithm at 6 m (a) and 20 m (b) resolutions. 

Bare-ground and clear-felled areas occupy 29 ha and 13 ha of the classified map at 

6 m resolution. The distinctive backscatter signatures of bare-ground and clear-

felled areas at 6 m resolution is likely due to the sensitivity of S-band backscatter to 
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surface roughness within these areas. On the basis of the observation data, both 

bare-ground and clear-felled areas show similar scattering mechanism (Figure 5.2). 

Clear-felled areas are often covered with dead leaves and grasses, giving the area a 

very rough surface after logged operations. The areas in the study site were planted 

with norway spruce and oak seedlings, further increasing the surface roughness. In 

contrast, bare-ground has no vegetation cover and appears as a relatively smooth 

surface to the radar.  

Similarly, the 20 m resolution classification also reported little grassland (23 ha) 

and bare-ground (20 ha). In this classification map, the clear-felled area have been 

misclassified as bare-ground, possibly due to the different classes shared as mixed 

pixels at 20 m resolution which the algorithm could not reasonably mapped. This is 

a possible reason for the misclassification of non-forested areas as forest whereas 

the finer details related to bare-ground and clear-felled were captured by 6 m 

resolution. Another reason could be due to the different moisture content of grasses, 

clear-felled and forest classes where S-band backscatter is also sensitive to moisture 

content of the soil layer and forest canopies (Du et al. 2010). Closer observation of 

the classified maps reveals that S-band SAR differentiates forested areas with high 

backscatter very accurately.  

Table 5.2. Area distribution of different non-forest classes for Savernake forest. 
 

Class 6 m area (ha) 20 m area (ha) 
Forest 648.1 696.5 

Clear-felled 13.37 20.36 
Grassland 50.33 23.04 

Bare-ground 29.88 0 
Unclassified 0.47 2.25 

Total (ha) 742.15 
 
 

5.3.3.  Accuracy assessment 

 

The overall accuracy of the F/NF at 6 m resolution classified map turned out to be 

70% and Kappa coefficient (κ ) 0.4 when compared with forest plot locations, 

ancient tree database and aerial photo. Users’ accuracies exceeded 70% for non-

forest but was lower for forest (65%) while the producers’ accuracy for forest and 

non-forest achieved higher accuracy around 71% and 68% respectively (Table 5.3). 
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In relation to 20 m resolution, 20 m resolution derived F/NF classified maps 

produces a lower 63.67% overall accuracy and Kappa coefficient (κ ) 0.27 (Table 

5.4). A reduced accuracy in both Users’ and Producers’ has been observed in 

comparison to 6 m results.  

 

The overall accuracy of the forest against different non-forest classes at both spatial 

resolutions revealed lower overall accuracy level than F/NF classified maps. For 

example, an overall accuracy of 52.34% and Kappa coefficient (κ ) 0.31 for 6 m 

while 36.72% overall accuracy and Kappa coefficient (κ ) 0.07 for 20 m (Tables 5.5 

and 5.6). However, relatively higher individual class accuracy level has been 

observed for all the non-forest classes at 6 m resolution particularly for clear-felled 

and grassland (producer’s accuracy level for clear-felled around 71%).   

 

Closer observation between the F/NF maps classified at 6 m and 20 m for 

Savernake site revealed that the individual class accuracy for both the classes 

achieved lower accuracy level in 20 m than 6 m accuracy. This result can also be 

extended to the classified maps produced with different non-forest classes at 6 m 

resolution. As a result, the overall accuracy for 20 m in classified map shows lower 

accuracy level than 6 m derived maps. This confirms that spatial resolution has 

some influence on S-band backscatter particularly in non-forested areas with lower 

accuracy level in produced maps. The maximum likelihood algorithm could 

classify F/NF and different non-forest classes achieving around 70% and 52.34% 

overall accuracy respectively with S-band backscatter at finer resolution 6 m.  
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Table 5.3. Confusion matrix for forest/ non-forest cover classified map at 6 m resolution for Savernake forest against forest plot locations and 

ancient tree database. Overall accuracy = 69.9%, Kappa coefficient (κ) = 0.4. 

 
 Predicted class   

Actual class F NF Total User’s Accuracy (%) 
F 82 44 126 65.08 

NF 33 97 130 74.62 
Total 115 141 256  

Producer’s Accuracy (%) 71.30 68.79   
*F- Forest, NF- Non-forest 

 
Table 5.4. Confusion matrix for forest/ non-forest cover classified map at 20 m resolution for Savernake forest against forest plot locations 

and ancient tree database. Overall accuracy = 63.67%, Kappa coefficient (κ) = 0.27. 

 
 Predicted class   

Actual class F NF Total User’s Accuracy (%) 
F 73 53 126 57.94 

NF 40 90 130 69.23 
Total 113 143 256  

Producer’s Accuracy (%) 64.60 62.94   
*F- Forest, NF- Non-forest 
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Table 5.5. Confusion matrix for forest/ clear-felled/grassland/bare-ground cover classified map at 6 m resolution for Savernake forest against 

forest plot locations and ancient tree database. Overall accuracy = 52.34%, Kappa coefficient (κ) = 0.31. 

 
 Predicted class   

Actual class F CF G BG Total User’s Accuracy (%) 
F 82 7 33 4 126 65.08 

CF 16 28 6 0 50 56.00 
G 9 1 22 3 35 62.86 

BG 8 3 32 2 45 4.44 
Total 115 39 93 9 256  

Producer’s Accuracy (%) 71.30 71.79 23.66 22.22   
*F- Forest, CF- Clear-felled, G- Grassland, BG-Bare-ground 

 
Table 5.6. Confusion matrix for forest/ clear-felled/grassland/bare-ground cover classified map at 20 m resolution for Savernake forest 

against forest plot locations and ancient tree database. Overall accuracy = 36.72%, Kappa coefficient (κ) = 0.07. 

 
 Predicted class   

Actual class F CF G BG Total User’s Accuracy (%) 
F 73 47 0 6 126 57.94 

CF 6 13 25 6 50 26.00 
G 5 12 5 13 35 14.29 

BG 29 12 1 3 45 6.67 
Total 113 84 31 28 256  

Producer’s Accuracy (%) 64.60 15.48 16.13 10.71   
*F- Forest, CF- Clear-felled, G- Grassland, BG-Bare-ground 

 



 

 127 
 

At the pixel level, S-band backscatter can reproduce forest cover maps in line with 

other SAR frequencies focusing on F/NF classification (Schlund et al. 2014, Shimada 

et al. 2014). This is validated using the global forest cover product of PALSAR at 25 

m, though S-band derived maps are having lower accuracy level. There is a fair 

agreement between S-band derived F/NF maps and PALSAR product (Figure 5.5).  

 

Figure 5.5. F/NF cover map of Savernake produced by L-band PALSAR for 2009 (A) 

and 2010 (B) at 25 m pixel resolution (Source: (JapanAerospaceExplorationAgency 

2014)). Image reproduced with copyright permission from the Japan Aersopace 

Exploration Agency. 
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However, PALSAR forest cover map of 2009 has missed out a portion of non-forest 

(i.e., grassland) while the majority of the forested area is correctly mapped. This may 

be due to the coarse resolution size of 25 m PALSAR data which has missed out in 

comparison to the airborne datasets. Comparatively, the PALSAR based 2010 data 

reproduced a combination of both forest and grassland (non-forest) almost similar 

with S-band derived 20 m map. This shows that S-band data, similar to L-band data, 

has a robust capacity to map forest and different non-forest classes as shown above, 

which may be due to the radiative nature of the S-band backscatter and higher spatial 

resolution of airborne data.  

 

The present findings also support previous results of Guida et al. (2012); Natale et al. 

(2012) and van Beijma et al. (2014). However, S-band backscatter could not 

differentiate the different forest types most likely due to the overall complex 

combination of weak to strong volume scattering from canopy components shared by 

different forest types in contrary to the observations of van Beijma et al. (2014). 

Moreover, the standard MCL algorithm could not differentiate the existing different 

forest types and need further investigation using advanced classification algorithm 

such as Random forest.  

 

5.3.4.  Forest cover change analysis 

 

The F/NF cover map derived using S-band backscatter acquired during 2014 reveals 

that area with forest stands have been correctly classified by MLC algorithm with 

70% accuracy level at higher resolution. This is due to strong S-band backscatter 

returns from forest canopy primarily originated from ground/trunk interactions and 

relatively homogenous areas. Although temporal forest cover changes between 2010 

and 2014 have been observed based on S-band backscatter derived forest cover maps. 

The greater confident of this major change within Savernake forest have been 

observed particularly with the clear-felled areas in two sub-compartments (3.45 ha 

and 5.2 ha) where the forest stand have been completely removed. This has been 

confirmed using field observation in 2015 and the FC database. Thus, the clear-felled 

areas are correctly classified as changed in F/NF map of the year 2014 which was 
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previously classified as forest in the year 2010. Figure 5.6 (C) depicts change map 

showing areas undergoing changes from forest to non-forest (red colour) between 

2010 and 2014 at 6 m resolution.  

 

Figure 5.6. Change detection map showing areas undergoing changes from forest to 

non-forest (red) from 2010 to 2014 at 6 m resolution. 

The second evidence comes from the percent tree cover (2000 to 2013) and forest loss 

(2013-2014) data using multi-temporal Landsat data at 30 m spatial resolution (see 
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figure 5.7), confirming the forest change between 2010 and 2014. According to 

Landsat-derived forest loss data, the areas of the two clear-cut sub-compartments are 

around 2.3 ha and 4.9 ha. Hence, multi-temporal S-band backscatter has identified 

changes in forest cover ideally at sub-hectare area and at finer resolution. However, 

due to imperfect calibration between imageries, varying incidence angles and 

sensitivity of S-band backscatter to different forest canopy structures (e.g. thinning) in 

different acquisition dates, the areas that have changed from forest to non-forest 

classes are somewhat different particularly along the class boundaries, where the 

pixels have mixed land cover types (Table 5.7). 

 

Figure 5.7. Percent tree cover (2000) (A) and forest loss (2013-2014) (B) at 30 m 

Landsat data from Hansen et al. (2014). Image reproduced with copyright permission 

from the Global Forest Change, University of Maryland.  
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Table 5.7. Area distribution of F/NF cover for Savernake forest between 2010 and 

2014 at 6 m resolution. 

Class 6 m area 2010 (%) 6 m area 2014 (%) 
Forest 88 80 

Non-forest 12 20 
Total (ha) 100 

 

A small portion of non-forest in 2010 (Figure 5.6 B) shows a transition to forest in 

2014. This could be a false detection or a plantation that has grown sufficiently to 

change the radiometric signature at S-band. Previous studies conducted by Yatabe and 

Leckie (1995) and Fransson et al. (1999) have highlighted the good capability of S-

band in mapping of clear-felled and forested areas in boreal forest of Canada and 

Sweden. Based on the result from the temperate forest site at Savernake forest 

presented here, the S-band SAR backscatter at all polarisations has proved suitable for 

monitoring forest cover change at an accuracy level of 70% similar to that achievable 

from L-band SAR data between 85 and 90% (Thiel et al. 2006). This study suggests 

that the S-band sensor to be carried in NovaSAR-S and NISAR satellites could be 

useful for operational forest cover change detection, e.g. clear-felled as a function of 

time and in regions with persistent cloud cover such as the tropics (Lynch et al. 2013, 

Natale et al. 2012) and in boreal winter with low sun angles (Yatabe and Leckie 1995, 

Fransson et al. 1999).    

5.4. Summary 

 

High resolution S-band radar data in the context of the AirSAR campaign in Britain 

was utilised for assessing the mapping of forest/non-forest, different non-forest types 

and forest cover changes. This study was conducted in a temperate mixed forest of 

Savernake forest in England where different species of deciduous and coniferous 

grow. The mapping was conducted in two scenarios: one related to forest/non-forest 

and second with different non-forest types (grassland, cleared-felled and bare-ground) 

that are found in the study area. Using the Maximum likelihood classification 

algorithm with HH- and VV- polarisation and the Radar Forest Degradation Index 
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(RFDI) forest/non-forest and different non-forest types are mapped at 6 m and 20 m 

resolutions corresponding to StripMap and ScanSAR resolution modes of NovaSAR-

S.  

 

This part of the evaluation has underpinned four main conclusions related to forest 

cover and change mapping from S-band SAR data. These conclusions are: 

1. S-band backscatter data could differentiate forest and non-forest classes using 

HH-, VV- backscatter and RFDI data in MLC algorithm. 

2. The most accurate F/NF cover map with 70% overall accuracy (Kappa 

coefficient of κ = 0.41) was derived using 6 m spatial resolution with MLC 

algorithm.  

3. S-band backscatter could also mapped different non-forest classes (52 % 

overall accuracy and Kappa coefficient, κ = 0.31) particularly recently clear-

felled areas at sub-hectare level (71 % producer’s accuracy) due to strong 

against weak scattering from forest canopy and soil respectively. 

4. Multi-temporal S-band backscatter could detect changes in forest cover 

particularly clear-felled ideally at sub-hectare area (3 -5 ha) and reliable 

accuracy due to the loss of the double-bounce scattering from ground/trunk 

interaction when the canopy is removed. 
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Chapter 6: Airborne S-band SAR backscatter relationships 

to forest biophysical characteristics  
 

6.1. Introduction 
 

As the previous chapters have shown the potential of simulated S-band backscatter 

with more penetrating level than shorter wavelength SAR band (Chapter 4) and 

resulting to mapping F/NF classification with 70% overall accuracy level and Kappa 

coefficient of κ = 0.41 (Chapter 5). This chapter deals with the regression tests 

between S-band backscatter and forest biophysical parameters particularly 

aboveground biomass (AGB) and level of saturation point based on regression model 

at stand level from the future NovaSAR-S and NISAR perspectives. 

 

A major global carbon sink has been found in forest ecosystems particularly in old-

growth forests as AGB (Luyssaert et al. 2008). Forest AGB is estimated with sample 

plot measurements from forest inventories e.g. in the tropics (Chave et al. 2015, 

Chave et al. 2005) and in Europe (Nabuurs et al. 1997, Liski et al. 2006). This 

approach of biomass measurement has been regarded as highly accurate; however, it 

involves some uncertainty primarily due to the use of allometric models to derive the 

forest AGB rather than direct measurements. Additionally, tree level AGB estimates 

involve errors when upscaled to plot or landscape scale (Chen et al. 2015). In the 

absence of large-scale inventory plots, most efforts for quantifying the distribution of 

biomass have focused on interpolation techniques at landscape or continental scale 

(Malhi et al. 2006). Due to the nature of the sampling with low temporal repeat 

frequency and a small number of inventory plots, the use of Earth Observation (EO) 

data acquired by satellite sensors are often being combined with field measurements 

(Liu et al. 2015, Saatchi et al. 2011a, Baccini et al. 2012).  

 

For example, EO-based estimations have been shown to be similar to predictions 

derived from field estimates when averaging at large scales e.g. stand, landscape or 

even continental scale (Saatchi et al. 2015). However, differences between biomass 

estimates are being reported particularly in regions with few sampling sites (Mitchard 
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et al. 2014). Ground measured forest AGB can be related to SAR backscatter 

(Woodhouse et al. 2012) for biomass prediction at plot to stand levels which also 

involves uncertainty due to complex forest structure and indirect biomass 

measurements (Clark and Kellner 2012). Recently, allometric models derived using 

diameter and height information usually yields less biased estimates of forest AGB 

(Chave et al. 2015). 

 

Longer SAR wavelengths at L- and P-band are sensitive to forest AGB due to deeper 

penetration and more scattering from canopy components, e.g. in boreal (Sandberg et 

al. 2011), temperate (Beaudoin et al. 1994, Le Toan et al. 1992) and in tropical forest 

(Saatchi et al. 2011b). However, the range of SAR sensitivity to forest biomass also 

depends on the radar incidence angle and forest canopy structure (homogeneity to 

complex density) that control the radar signal penetration into the canopy. Amongst 

the different radar wavelengths, studies focusing on S-band data for structure and 

biomass characterisation are scarcely investigated due to lack of long-term data. 

Almaz-1 S-band backscatter has been reported as having a very narrow dynamic range 

and similar average backscatter values in all the vegetation types (Rosenqvist 1996) 

including palm and rubber plantations. Furthermore, Rosenqvist (1996) questioned the 

effect of high incidence angle (~50°) to be the main factor responsible for this 

insignificant result in the Malaysian test site against the studies by Olsson et al. (1991) 

and Brown et al. (1992).  

 

The sensitivity of S-band backscatter to forest structure and biophysical parameters in 

the temperate forest environment has not been investigated. For the first time, this 

chapter have made an attempt to assess the sensitivity of S-band backscatter with 

forest biophysical parameters in the mixed temperate forest of Savernake forest and 

Wytham Woods. Therefore, the main objective of this chapter is to derive average tree 

diameter (DBH), canopy height (H) and AGB based on S-band data from 2010 and 

2014 acquisitions using field data at stand level and cross-validation between 

observed against predicted levels of AGB. 
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6.2. Methods  

 

To investigate the relationship between S-band backscatter and forest structure and 

biophysical parameters, the mixed deciduous forest of Savernake and Wytham Woods 

were chosen (refer Figures 3.1 and 6.1) based on mixed species with varying levels of 

stand ages, tree average DBH, canopy height and AGB ranges. Details of S-band SAR 

data processing, field data, AGB estimation and methodology are given in sections 

3.2.3, 3.3 and 3.4.3.  

 
Figure 6.1. 6 m resolution S-band data over Savernake in 2014 (FCC: red: HH, green: 

VV, blue: RFDI) with sampled compartments (cyan polygon) and 17 training plots 

(red dot) in 2012 and 16 validation plots (white with black dot) in 2015. Image 

reproduced with copyright permission from the Airbus Defence and Space, UK and 

Forestry Commission. 

 

6.3. Results and Discussion 

 

6.3.1.  Field data 

According to the field plot information surveyed in Savernake forest in 2012, the 

smallest and largest sub-compartment corresponds to ~0.36 ha and ~10.31 ha 

respectively with an average size of ~3.5 ha. In comparison to the sub-compartment, 

the field plots are relatively small size at ~0.01 ha and ~0.03 ha for Wytham and 

Savernake sites respectively. The average tree DBH and canopy height related to field 
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measured plots for Savernake are 20.35 cm and 17.0 m respectively. Wytham Woods 

yielded average tree DBH and canopy H around 24.47 cm and 15.0 m respectively.  

Based on a total of 17 plots obtained in 2012, Savernake forest yielded a minimum, 

average and maximum AGB of ~31.4 t/ha, 223.8 t/ha and 410 t/ha respectively. On 

the other hand, a minimum, average and maximum AGB of ~52.1 t/ha, 208.59 t/ha 

and 520.1 t/ha were recorded based on 8 sample plots from Wytham site. When the 

biomass information for both sites was combined, an average AGB value of 218.9 t/ha 

was observed. The second data set for Savernake forest related to 16 sub-

compartments, yielded a minimum, average and maximum AGB of ~32.9 t/ha, 228.7 

t/ha and 469.3 t/ha respectively.   

 

 
Figure 6.2. Histogram distribution of the training plots measured AGB below 600 t/ha 

used to estimate (25 plots) the backscatter-AGB relationship.  

 

Figure 6.2 shows total number of plots (n = 25) with varying levels of biomass (31.4-

520.1 t/ha) used to relate plot measured AGB against S-band backscatter for both the 

sites. The SAR data acquired in both June 2010 and 2014 for Savernake and 2014 for 

Wytham sites at stand levels were analysed. Table 6.1 shows the plot derived average 

tree DBH, canopy height and forest AGB values and their corresponding backscatter 

retrieved from 2014 S-band data across polarisations and spatial resolutions at 0.25 ha 

stand level.  
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Table 6.1. Summary of field measured forest variables and S-band backscatter for 2010 and 2014 at 0.25 ha scale.  

Biomass Average height  Average DBH  Stem  Basal  area   2010     2014   

T ha-1 m cm stems 0.25 ha-1 m2 0.25 ha-1 HH σ0 dB VV σ0 dB HV σ0 dB HH σ0 dB VV σ0 dB HV σ0 dB 
31.41 9.20 17.73 7 1.53 -12.79 -13.87 -23.86 -13.41 -14.07 -18.34 
52.12 5.91 12.58 6 1.92 -18.06 -20.52 -27.32 -16.52 -19.25 -25.57 
81.85 10.89 12.68 20 3.23 -10.83 -13.29 -21.83 -13.55 -14.00 -19.16 
85.09 6.17 7.19 89 3.24 -13.14 -13.83 -22.70 -15.18 -15.26 -20.39 
104.20 13.00 16.08 5 3.26 -17.59 -19.64 -27.99 -15.53 -18.64 -25.15 
113.96 15.30 18.34 5 3.65 -12.18 -15.43 -21.31 -12.53 -15.90 -16.52 
122.92 14.95 26.85 8 4.38 -11.20 -13.55 -21.85 -14.11 -14.83 -19.26 
152.40 16.92 18.78 6 4.80 -13.32 -15.31 -20.40 -11.94 -14.12 -19.90 
157.04 13.33 19.06 19 6.49 -12.68 -11.94 -17.15 -11.90 -10.34 -15.82 
168.87 13.89 15.95 9 5.42 -12.70 -16.27 -22.39 -12.52 -16.50 -21.86 
169.97 19.24 28.55 18 9.56 -10.96 -11.99 -22.00 -13.67 -12.66 -17.19 
200.77 10.01 8.33 15 0.07 -12.49 -14.78 -22.97 -13.40 -14.00 -17.96 
204.77 21.90 36.10 7 5.85 -12.97 -13.38 -22.19 -11.58 -12.17 -16.39 
210.51 15.32 26.98 13 6.56 -11.54 -13.51 -22.97 -14.33 -14.74 -19.97 
239.17 20.22 29.35 17 12.16 -11.18 -12.50 -22.04 -11.09 -12.11 -16.10 
242.09 15.34 18.67 47 13.02 -9.03 -9.66 -20.32 -11.44 -10.50 -15.64 
255.43 13.11 18.46 9 7.70 -11.20 -15.68 -20.11 -9.58 -14.51 -18.88 
264.24 23.52 33.51 10 7.44 -10.09 -12.11 -20.76 -10.27 -11.14 -15.36 
284.44 23.65 32.70 12 8.20 -9.42 -11.36 -21.33 -10.57 -11.05 -15.16 
301.64 22.38 22.96 8 9.12 -9.89 -14.71 -19.25 -9.89 -14.60 -19.21 
342.43 16.18 38.01 5 8.83 -12.35 -14.68 -23.81 -13.26 -13.94 -18.83 
356.36 27.04 42.71 12 14.14 -11.39 -12.64 -21.74 -11.26 -12.09 -16.36 
401.67 10.47 12.32 22 2.19 -10.14 -12.85 -21.48 -11.68 -12.56 -16.95 
410.07 14.88 23.05 14 5.25 -9.86 -11.47 -21.35 -10.15 -11.42 -16.26 
520.13 21.88 23.95 8 13.55 -10.43 -12.67 -19.43 -10.63 -12.92 -19.35 
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Figure 6.3. Biomass values for the field plots against basal area (A), average canopy 

height (B), Stem number density (C) and average tree diameter (D). 

 

Table 6.2. Statistical relationships between field calculated aboveground biomass 

to basal area, average canopy height, stem number density and average tree diameter. 

Biomass (t/ ha) Basal area Average canopy height Stem density Average DBH 
R2 0.34 0.3 0.01 0.18 

RMSE 100.82 103.94 123.38 112.64 
P value ** ** ns * 

n 25 
P-value significance level: **<0.005, **<0.05, ns- no significant.  

 

The calculated aboveground biomass values were significantly related to basal area 

and average canopy height in comparison to stem number density and average DBH 

of the plots (figure 6.3 and Table 6.2). The relationships of biomass to basal area and 

average canopy height was giving an r2 = 0.34 and r2 = 0.3 (p<0.005) (linear model). 

However, a weaker correlation between biomass and the average DBH for each plot 



 

 139 
 

when a linear model was fitted (r2 = 0.18, p<0.05). The poor distribution of stem 

densities also compromises the poor correlation with forest biomass.     

6.3.2. S-band backscatter sensitivity to forest structure 

 

Different logarithmic relationships were found between S-band backscatter and basal 

area, average canopy height, stand density and average diameter at breast height 

(Figure 6.4, 6.5, 6.6 and 6.7). For basal area, weaker logarithmic relationship was 

found with S-band sigma0 backscatter at 0.25 ha for both years with highest with HH 

polarisation (Table 6.3). There was a significant response to average canopy height in 

HH polarisation for both years (R2 = 0.28 for 2010, p<0.05 and R2 = 0.45 for 2014, 

p<0.0005) (Table 6.4). This sensitivity appeared to occur quite early in both years up 

to about 9 -10 meter height as the saturation level. A weaker relationship was found 

with stem density in all the polarisations except VV polarisation for 2010 data (VV: 

R2 = 0.3 for 2010, p<0.1) (Table 6.5). Similarly, a weaker and insignificant 

relationship was found between average DBH for the plot and all polarisations (Table 

6.6).    

 

Figure 6.4. Basal area relationship with S-band backscatter (σ0) at 0.25 ha for 2010 (A) 

and 2014 (B). 
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Table 6.3. Statistical relationships between S-band backscattering (σ0) to basal 
area. 

 2010 2014 
 HH VV HV HH VV HV 

R2 0.12 0.12 0.13 0.17 0.11 0.05 
RMSE 2.07 2.3 2.15 1.71 2.20 2.72 
P value ns  ns  ns  *  ns  ns 

n 25 
P-value significance level: *<0.05, ns- no significant. 

 

 
 

Figure 6.5. Average canopy height relationship with S-band backscatter (σ0) at 0.25 ha 

for 2010 (A) and 2014 (B).  

Table 6.4. Statistical relationships between S-band backscatter (σ0) to average canopy 

height.  

 2010 2014 
 HH VV HV HH VV HV 

R2 0.28 0.21 0.21 0.45 0.29 0.28 
RMSE 1.87 2.18 2.05 1.40 1.96 2.36 
P value * * * *** ** ** 

n 25 
P-value significance level: ***<0.0005, **<0.005, *<0.05, ns- no significant.  



 

 141 
 

 
Figure 6.6. Stand number density relationship with S-band backscatter (σ0) at 0.25 ha for 

2010 (A) and 2014 (B).  

Table 6.5. Statistical relationships between S-band backscattering (σ0) to stand 

number density. 

 2010 2014 
 HH VV HV HH VV HV 

R2 0.13 0.3 0.07 0.03 0.16 0.09 
RMSE 2.19 2.34 2.3 1.86 2.3 2.78 
P value ns * ns ns  ns  ns 

n 25 
P-value significance level: *<0.1, ns- no significant.  
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Figure 6.7. Average tree diameter relationship with S-band backscatter (σ0) at 0.25 ha 

for 2010 (A) and 2014 (B). 

Table 6.6. Statistical relationships between S-band backscattering (σ0) to average tree 

diameter. 

 2010 2014 
 HH VV HV HH VV HV 

R2 0.11 0.13 0.04 0.2 0.2 0.19 
RMSE 2.07 2.29 2.26 1.7 2.09 2.53 
P value ns ns ns * * * 

n 25 
P-value significance level: *<0.05, ns- no significant. 

      

 

At this stage, the sensitivity of radar S-band backscatter to average tree DBH and 

canopy height revealed varying weak to strong relationships in different polarisations 

and the reasons in this study are unclear, and further studies are needed to fully 
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understand the behaviour for S-band backscatter responses to diameter and height. 

One possibility could be through the phase information using interferometric mode of 

S-band frequency. At this level of analysis it seems that derivation of forest AGB 

focusing on those allometric equations related to both tree DBH and canopy height H 

will show some positive relationship with S-backscatter. Generally, biomass is 

estimated using DBH as the main variable in allometric models. Recently, Chave et 

al. (2015) have reported the importance of stand height information in the allometric 

models deriving yields with less biased estimates of forest AGB. Finally, the positive 

relationship between average canopy height H and stand density against S-band 

backscatter may be due to reduction in speckle noise at the plot level, confirming the 

influence of scale of field estimated DBH and H at plot level to backscatter 

relationship. 

 

6.3.3.  S-band backscatter sensitivity to forest aboveground biomass 

 

The relationship of S-band polarimetry from 16 June 2010; 23 and 24 June 2014 are 

plotted against plot AGB (Figure 6.8). Both co- and cross- polarised backscatter is 

highly dependent on AGB and show better sensitivity to forest biomass at stand level 

for both years in both sites. For both forest sites, lower dynamic range of backscatter 

(around 8 dB) was observed in both 2014, whereas a slightly higher dynamic 

backscatter range (around 10 dB) for all polarisations was observed for 2010 data. S-

band backscatter increases with biomass up to some levels around 100 t/ha in all 

polarisations, after which no further sensitivity is observed. This trend is easily 

evident in 2014 data in comparison to 2010 data. For instance, HH polarised 

backscatter acquired in 2014 produces the highest sensitivity to AGB with R2 = 0.5 

(1.34 RMSE, p-value <0.0001) while R2 = 0.37 (1.75 RMSE, p-value <0.005) in 2010 

for both forest sites (Table 6.7).  
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Figure 6.8. Above-ground biomass relationship with S-band backscatter (σ0) for 2010 

(A) and 2014 (B). 

Table 6.7. Results from the regression models relating S-band backscatter (σ0) acquired 

in 2010- 2014 to plot biomass from combined sites. 

 

 Slope R2 RMSE Relative Slope Confidence Interval 
    Error Lower 95% Upper95% 

16 June 2010, 23 June 2014 
HH 1.97 0.37 1.75 (0.0012) ** 2.8 -28.0 -16.41 
VV 1.70 0.22 2.17 (0.0172) * 3.47 -29.96 -15.58 
HV 1.67 0.24 2.01 (0.012) * 3.23 -37.31 -23.97 

23 and 24 June 2014 
HH 1.95 0.5 1.34 (0.0001) *** 2.15 -27.03 -18.12 
VV 1.87 0.3 1.94 (0.0044) ** 3.11 -29.97 -17.06 
HV 1.92 0.22 2.46 (0.0175) * 3.95 -36.67 -20.32 

P-value significance level: ***<0.0001, **<0.005, *<0.05, ns- no significant.  
 

VV polarised backscatter acquired in 2014 show medium sensitivity to AGB with R2 

= 0.3 (1.94 RMSE, p-value <0.005) while R2 = 0.22 (2.17 RMSE, p-value <0.05) in 
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2010 data for the study sites. Finally, the 2014 acquired HV polarised backscatter 

produces the lowest sensitivity to AGB with R2 = 0.22 (2.46 RMSE, p-value <0.05) 

while R2 = 0.24 (2.01 RMSE, p-value <0.05) in 2010 data. 

In comparison to the forest properties e.g. average tree DBH, canopy height, the S-

band radar backscatter provides a consistent sensitivity over forest AGB at 0.25 ha 

resolution. Hence, at the stand level analysis with 25 m resolution, S-band backscatter 

data with forest AGB proved to be a positive relationship particularly in co-polarised 

backscatter. This relationship between S-band backscatter and biomass could be due 

to averaging a larger number of pixels with reduced speckle noise. Studies in tropical 

rainforest of La Selva (Costa Rica) have observed plot sizes at least with 0.25 ha to be 

sufficient to achieve normal distribution of basal area and biomass over forest 

landscape (Clark and Clark 2000, Saatchi et al. 2011b). However, for this study the 

accuracy of the spatial averages of backscatter to biomass relationship is reduced if 

the area size is beyond 0.25 ha. This reduced relationship when up scaled up to 0.5 ha 

stand plot size maybe due to lack of field data greater than 0.25 ha or no longer 

sufficient enough to derive the underlying forest biophysical information against the 

average backscatter returns.  

6.3.4.  Estimation of forest aboveground biomass using S-band backscatter 
 

The logarithmic model was used for relating plot AGB to S-band backscatter co-
efficient as   
 

σ° (dB) = Constant + Slope*ln (AGB) (t/ha)   (6.1) 
 

For further analysis, the AGB was predicted based S-band radar backscatter acquired 

on 16 June 2010 and 23 and 24 June 2014 at 0.25 ha resolution for both sites as input.  

For both forest sites, the predicted AGB based on 2010 data ranges from 18.75 to 

978.67 t/ha, 4.34 to 1038.98 t/ha and 23.34 to 796.71 t/ha for HH, VV and HV 

polarisations respectively. Additionally, AGB was predicted ranging between 22.19 to 

772.88 t/ha, 10 to 761.48 t/ha and 5.67 to 914.7 t/ha for HH, VV and HV polarisations 

respectively for the 2014 data (Figure 6.9). For Savernake forest, the S-band has 

identified aboveground biomass with the majority of biomass up to 300 t/ha (Figure 

6.9 for HH-backscatter). This is more evident in 2010- derived than 2014 -derived 

based biomass predictions. 
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Figure 6.9. Predicted AGB maps using S-band HH backscatter at 0.25 ha scale for 

Savernake forest in 2010 (A) and 2014 (B) using field biomass estimates. 

Biomass prediction for 2014 data are having biomass >300 t/ha and reaching up to 

550 t/ha particularly in conifer stands. This may be possible as the conifers in these 

sub-compartments are having age between 20 and 75 years old stands with high 

biomass content. However, there are distinct differences in some areas between the 

maps and field estimates. Areas with grassland have been identified as forest biomass 

below 100 t/ha particularly in 2010 map maybe due to the mixed backscatter in this 
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areas. Comparing both the biomass maps and field data, it seems that predicted 

biomass for 2010 data is under-estimated for high biomass stands particularly conifer 

compartments while over-estimated for low biomass stands in the case of 2014 data. 

Both these errors (over- and under-estimations) are primarily confined in those areas 

where field data is largely lacking and therefore, the actual biomass has not been 

properly captured by the S-band radar derived model.       

 

Both the maps revealed a general agreement for the sites with biomass ≤150 t/ha 

which S-band backscatter seems to be sensitive while large differences in AGB 

predictions between 2010 and 2014 may be due to imperfect radiometric calibration, 

varying incidence angles between the SAR imageries and field data acquired in 2012 

and 2015 resulting to differing biomass allometric models for both SAR data. This 

needs to be investigated further for assessing the temporal biomass change in the 

study site during four year timescale. 

6.3.5.  Accuracy of S-band backscatter-biomass regression 

 

The relationship between AGB recorded by field observations and those predicted by 

the linear regression model is shown in Figures 6.10, 6.11 and 6.12 for 0.25 ha 

resolution in different polarisations for both years over Savernake site. It can be 

observed that the relationships are good for low biomass level stands, but most of the 

stands having high biomass are either under- (HH-polarised) or over-estimated (VV- 

and HV-polarised).  

For the model training plots, forest AGB predicted at 25 m resolution for 2014 was 

better than 2010 predictions. For instance, HH-polarisation produced RMSE of 90.63 

t/ha while HV-polarisation produced a larger error of 114 t/ha. On the other hand, 

forest AGB predictions for 2010 produces relatively larger RMSE variations between 

99.39 to 119.03 t/ha in all polarisations (Table 6.8). The stands with biomass above 

200 t/ha are consistently under-estimated.  

 

For the validation plots in Savernake forest, the errors were larger. Forest AGB 

predictions were found better for all polarisations with 2014 data than 2010 data. For 

instance, VV-polarisation displayed RMSE of 97.91 and 107.8 t/ha with highest 
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correlation R2 = 0.47 and 0.35, respectively. HH-polarisation produced RMSE of 

108.4 and 114.23 t/ha with correlation R2 = 0.35 and 0.27 respectively. Similarly, 

larger error ranges varied between 97.91 to 129.91 t/ha was predicted by the model 

for all polarisations with varying weak to good relationships (Table 6.8). Comparing 

all polarisations, it is seen that S-band co-polarised backscatter is better suited for 

biomass estimation than the cross-polarisation backscatter. For Savernake site, 

summary of observed and predicted values of AGB (t/ha) based on independent 

validation stands (16 stands) from 2010 and 2014 at 0.25 ha are given in appendices 

IX and X. 

 

Table 6.8. Results of biomass regression models using S-band backscatter (σ0) in 

Savernake and Wytham at 0.25 ha resolution. R2 is the coefficient of correlation and 

RMSEc is the root mean square error calculated using cross-validation of the training 

plots (25 stands) for 2010 and 2014. RMSEv is the error when applying the regression 

model to the validation plots (16 stands). 

 R2 RMSEc(t/ha) R2 RMSEv(t/ha) 
16 June 2010 and 23 June 2014     

HH 0.31 99.39 ns 0.27 114.23* 
VV 0.06 115.63 ns 0.47 97.91** 
HV 0.01 119.03* 0.28 113.67* 

23 June and 24 June 2014     
HH 0.42 90.63** 0.35 108.4* 
VV 0.1 113.28 ns 0.35 107.8** 
HV 0.08 114.46 ns 0.06 129.91ns 

P-value significance level: **<0.001, *<0.05, ns- no significant. 

 

6.3.6. Uncertainty analysis 

There are two major sources of uncertainty in this study: uncertainties in field data 

including allometric equations and biomass estimation using S-band radar signal. 

The uncertainty in field data measurement and AGB estimation from tree diameter 

measurements are considered very accurate in comparison to height measurements. 

Measurements of tree height using hypsometer in 2012 and digital laser rangefinder in 

2015 suggested that our methods could also introduce some error. Since the species 



 

 149 
 

Figure 6.10. Results of biomass estimation using S-band backscatter (σ0) based on training stands (25 stands-black square) 

and validation stands (16 stands- red circle) for HH-polarisation at 0.25 ha for 2010 (A) and 2014 (B). Locations of training 

and validation stands for Savernake are shown in Figure 6.1. 
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Figure 6.11. Results of biomass estimation using S-band backscatter (σ0) based on training stands (25 stands-black square) and 

validation stands (16 stands- red circle) for VV-polarisation at 0.25 ha for 2010 (A) and 2014 (B). Locations of training and 

validation stands for Savernake are shown in Figure 6.1. 
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Figure 6.12. Results of biomass estimation using S-band backscatter (σ0) based on training stands (25 stands-black square) and 

validation stands (16 stands- red circle) for HV-polarisation at 0.25 ha for 2010 (A) and 2014 (B). Locations of training and 

validation stands for Savernake are shown in Figure 6.1.
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diversity in both study sites revealed few number, mis-identifications are likely to be 

relatively few, and given the similarities of wood density within a genus, unlikely to 

have a major effect on the biomass estimation (Chave et al. 2009, Chave et al. 2015). 

Generally, biomass is estimated using DBH as the main variable in allometric models 

(Chave et al. 2005). Recently, Chave et al. (2015) have reported the importance of 

stand height information in the allometric models deriving yields with less biased 

estimates of forest AGB. Other sources of errors in estimating the forest stand 

biomass could be related to spatial variability in forest structure and lack of sampling 

of small trees with DBH<10 cm. This can potentially introduce bias hence 

influencing the accurate field biomass estimates. However, this study has used the 

allometric equations of Bunce (1968) and Zianis et al. (2005) which were specific to 

British tree species rather than direct field estimation through tree harvesting and can 

potentially introduce errors (Chen et al. 2015, Clark and Kellner 2012). Lastly, 

biomass retrieval using S-band radar backscatter can also incur uncertainty due to the 

limited number of field sampled plots particularly in low stand density and tree with 

DBH<10 cm. 

 

A wide consensus related to increasing backscatter for low biomass values and 

subsequently insensitivity at higher biomass values has been reported for different 

radar wavelengths particularly at low-frequencies (Woodhouse et al. 2012). For 

instance, in the hemi-boreal coniferous forest of Remningstorp region in southern 

Sweden, airborne P-band acquired at 28-50° incidence angle have achieved an 

accuracy of 18-27% error for HH- or HV-polarisation channel at 0.5 ha stand level 

(Sandberg et al. 2011). Similarly, Le Toan et al. (1992) and Beaudoin et al. (1994) 

have reported the best sensitivity of AGB with the P-band HV-polarisation having an 

estimated biomass error of around 20% than L- and C-band at 45° incidence angle in 

temperate pine plantation stand of Landes forest (France). In the tropical forest of 

Costa Rica, P- and L-band with incidence angles ranging from 20 to 60° in HV-

polarisation backscatter showed strong sensitivity with accuracy level of 22.6 t/ha 

and 23.8 t/ha for AGB <300 t/ha and AGB <150t/ha respectively (Saatchi et al. 

2011b). Using AIRSAR data, the sensitivity of forest biomass at C-, L- and P-band 

were around 20 t/ha, 40 t/ha and 100 t/ha respectively in coniferous forest of Landes 

and Duke and broadleaved evergreen of Hawaii (Imhoff 1995).  
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Positive relationships between S-band backscatter particularly HH- and HV-

polarisation with average canopy height and stand density have been observed, 

which need further investigation. At stand level, S-band backscatter signal tends to 

increase with increasing biomass in both co- and cross-polarisations. For this study, 

S-band backscatter saturation point could be identified quite below less than 100 t/ha. 

 

This study also utilizes SAR data acquired at 16-44° look angle which falls within 

the range of 38-44° reported by Brown et al. (1992) particularly at the near to mid-

range direction and highlighted some relationship with biomass. However, the 

discouraging results with S-band backscatter to biomass reported by Olsson et al. 

(1991) and Rosenqvist (1996) used data acquired at very high incidence angles of 

around 53° and 50° respectively. Hence, the potential sensitivity of S-band 

backscatter to forest biophysical characteristics can be confirmed as positive result 

similar to Brown et al. (1992) to an extent where sensor look angle could play a 

significant  role in detecting stand characteristics acquired at low to medium 

incidence angles.  

6.4. Summary 

For this study, four results related to S-band backscatter with forest biophysical 

characteristics are identified: 

1. S-band backscatter shows weaker sensitivity to basal area, average tree 

diameter and stand density while good relationships with average canopy 

height (R2 = 0.28 for 2010, p<0.05 and R2 = 0.45 for 2014, p<0.0005) with co-

polarisation at 25 m resolution.   

2. Forest AGB shows sensitivity with S-band backscatter up to 100 t/ha 

particularly at HH (R2 between 0.37 and 0.5) and VV- (R2 between 0.22 and 

0.3) polarisation at 25 m resolution.   

3. The relationship of S-band backscatter with forest stands up to 300 t/ha 

biomass has shown least error between 90.63 and 99.39 t/ha.  

4. S-band backscatter could possibly retrieve AGB in low biomass forests with 

least error in temperate forest having mixed deciduous species particularly at 

low to medium incidence angles. 
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Chapter 7: Synthesis and Conclusions 

7.1. Introduction 

Globally, terrestrial vegetation particularly forests are of interest to a wide section of 

the scientific community, environmentalist and policy makers due to their 

importance for socio-economic development and their pivotal role in biophysical 

interactions and biochemical exchanges in the global carbon cycle (Bojinski et al. 

2014, Foley et al. 2005). Therefore, information related to forest cover extent, 

degradation, re-growth and carbon stocks is warranted on the operational basis 

(UNFCCC 2008). Towards this goal, satellite remote sensing has been a prime tool 

to obtain a robust and consistent data in a timely manner because of their large 

spatial coverage and frequent revisits (Townshend et al. 1991). Additionally, a 

system with independent weather capability is highly preferable due to persistent 

cloud cover and cost constraints over the large-scale forest (Cihlar 2000, DeFries et 

al. 2007). In this respect, SAR system serves to be a useful and complementary data 

(Lefsky and Cohen 2003, Simard et al. 2000). This thesis examines the overall 

potential of radar data with S-band frequency in forestry applications over the mixed 

deciduous temperate forest of the UK.  

For the first time, an approach for mapping forest cover and relating to forest 

biophysical parameters with S-band backscatter in the temperate forest of the UK 

based on SAR data and model predictions has been systematically investigated. This 

includes the application of MIMICS-I model to understand the radiative nature of S-

band signal through setting up different experiments from soil and forest canopy of 

different types (deciduous and conifers) and inter-comparison among different SAR 

wavebands.  

 

Utilising the theoretical knowledge of S-band backscatter from physical modelling, 

mapping of forest/ non-forest cover and change detection using Maximum 

Likelihood Classification algorithm from airborne high-resolution S-band data was 

examined. This research found that S-band backscatter could be used for classifying 

forest and non-forest in varying accuracies up to 70% overall accuracy as the best 

possible map. The S-band backscatter was also found to be useful in detecting the 

clear-felled areas inside the forest being studied, which could be useful for 
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monitoring forest cover change in tropics with persistent cloud cover and higher 

latitudes having low-solar illumination. Finally, this study has demonstrated that S-

band backscatter is also sensitive to forest AGB within a limited range, in particular 

forest stand with AGB below 100 t/ha possibly at low to medium incidence angles. 

This result is applicable for mixed broadleaf species of the temperate forest and 

need further cross-validation across temperate forest with similar forest types. The 

results and findings related to the four main objectives of this research work are 

summarized in this chapter. 

 

7.2. To examine the contributions of different scattering mechanisms from soil 

moisture and surface roughness and forest canopies for S-band frequency 

across polarisations and incidence angles based on MIMICS-I model. 

 

SAR backscatter interaction from forest has shown some relationships with forest 

biophysical characteristics such as species, crown cover, density, diameter, height 

and AGB to an extent. Several studies have used the SAR frequencies from X- to P-

band with few exceptions at S-band. However, these relationships involve large 

uncertainty. Knowledge of S-band radar backscatter to forest and agricultural crop 

canopies (Guida et al. 2012, Natale et al. 2012) and AGB retrieval (Rosenqvist 

1996) is very limited. For conifer species, the main scattering at S-band radar 

frequency comes from the needles and longer and thinner branches (Lopez-Sanchez 

et al. 2000) due to the homogenous structure of the canopy and random scattering. 

Moreover, sensitivity of soil moisture to S-band backscatter was found positive 

between observed and soil moisture retrieval at VV-polarisation for HJ-1C 

simulation (Du et al. 2010). 

 

To account for forest biophysical retrieval and identify degradation or clear felled 

using S-band radar backscatter, knowledge of basic scattering associated with forest 

canopy is essential. From modelling approach, MIMICS-I model experiments in this 

research work suggest that the simulated S-band backscatter is very sensitive to 

forest structure and canopy components. In this study, different experiments have 

investigated S-band radar signal sensitivities to moisture content and surface 

roughness of soil and from deciduous and conifer canopy structure (Chapter 4).  
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Using MIMICS-I model, simulated S-band backscatter shows a significant 

sensitivity to both moisture content (up to 40%) and surface roughness (up to 3 cm) 

of bare-ground (soil) particularly in mid-to high- incidence angles. Additionally, 

simulated S-band backscatter was found to be more sensitive than shorter 

wavelengths at X- and C-band to forest canopies particularly deciduous species due 

to ground/trunk interaction as dominant mechanism at HH-polarisation. There was 

sensitivity of simulated S-band backscatter to the crown component, densities of 

leaf, needles and branches resulting to lower canopy transmissivity across radar 

incidence range.  

Simulated S-band backscatter in leaf-off season has shown strong backscatter 

returns due to a mixture of volume scattering from ground/trunk interaction and 

single scattering from soil characteristics. Additionally, modelled S-band 

backscatter seems to have limited utility for stand height relationship due to the 

volume scattering from canopy components (leaves, branches) rather than the length 

of the stem/ canopy height. The model also confirmed that longer wavelength at L-

band including S-band shows higher backscatter returns from forest canopy in 

comparison to shorter wavelengths (C- and X-band) as stated by Ulaby et al. (1990). 

This result clearly demonstrates that microwave canopy model is a robust tool and 

has broadened the knowledge on identifying the dominant scattering mechanism in a 

particular frequency and effects of slant-range direction from the forest canopy.      

7.3. To investigate the S-band backscatter sensitivity to forest degradation 

(reduced canopy component and tree density) using MIMICS-I simulation. 

 

Since SAR backscatter contains information related to forest canopy structure and 

hence influencing the backscatter from the forest degradation e.g. fire (Ferrazzoli et 

al. 1997). Identification of forest degradation or clear-cut has been reported utilising 

SAR data at L-band wavelength (Pantze et al. 2014, Ryan et al. 2012). Multi-

temporal JERS-1 data has shown a dynamic range of reduced -4 to -6 dB in early 

plantation stage while opposite for post fire or degradation in the southern Sumatra 

Island of Indonesia  (Takeuchi et al. 2000). Additionally, MIMICS model 

simulations predicted that at L-band frequency, discrimination of primary forest 

against regeneration and soil is possible due to strong double-bounce scattering from 
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ground/trunk interaction than shorter wavelengths C-band dominated by single 

scattering from leaves and branches (Grover et al. 1999).  

 

Forest degradation caused by fire impacts have also reported the dynamic 

backscatter changes due to fire-affected forested areas utilising multi-temporal SAR 

data, for example C-band data (Siegert and Ruecker 2000, French et al. 1996). 

Impacts of fire in forest appears to be mainly governed by the reduction in the 

canopy components and changes in soil moisture and exposure of surface using 

empirical and modelling (Kalogirou et al. 2014, Tanase et al. 2010). 

 

The potential use of remote sensing in forest disturbances specifically related to 

degradation of forest is quite challenging due to its inability to record small gaps 

and complex process of degradation. Therefore, an effort was made to undertake 

model experiments of fire-impacted reduced canopy components and selectively 

logged induced reduced stand density as a proxy to forest degradation from the 

existing literature knowledge.  

 

MIMICS-I simulation suggest that at S-band, VV-polarisation channel displayed a 

strong backscatter returns in the high canopy density and reduced backscatter 

returns in varying levels of reduced canopy structure due to repeated fire 

occurrence. On the contrary, greater variability of backscatter dynamic range can be 

more prominently evident with cross-polarisation channel around 10 dB difference. 

This is evident from the standing trunk only without canopy components due to 

ground/trunk interaction similar to leaf-off winter season. Therefore, removal of 

canopy components that is leaves and branches over time affects the backscatter 

from the canopy in a decreasing order particularly in S-band wavelength. Similar 

weak and reduced backscatter trend is also observed in the S-band from the soil 

component particularly in smooth and dry moisture condition while strong 

backscatter arises from the rough surface with high moisture condition in the co-

polarisation channel. The effect of soil moisture content to stronger backscatter is 

also seen with C-band data in the Mediterranean region (Tanase et al. 2010).  

 

Reduced tree density due to selective logging has shown a weaker backscatter 

returns at S-band due to low canopy density in terms of area particularly in HV-
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polarisation channel. The minimum backscatter variability is also observed in low 

density canopy due to more open area and less scattering from existing tree stands. 

If the soil components as discussed above were incorporated, there is a possibility 

that a strong backscatter from both soil conditions (smooth-dry and rough-wet) will 

inevitably overcome the backscatter return from the forest canopy. Finally, 

sensitivity of the overall backscatter returns from reduced canopy components due 

to fire and low density would result to the state of the canopy condition (moisture 

content) and underlying soil moisture and roughness (Tanase et al. 2010, Ferrazzoli 

et al. 1997, Kalogirou et al. 2014).  

 

7.4. To classify S-band backscatter data to produce forest/non-forest cover and 

change maps using MLC algorithm and test the accuracy of forest cover 

maps at varying spatial resolution. 

 

Several studies utilising different SAR bands highlighted the capability of mapping 

F/NF cover types (De Grandt et al. 1994). For instance, longer wavelength has been 

addressed for F/NF classification more accurately due to their strong sensitivity to 

structural and volumetric scattering from canopy in comparison to non-forested 

areas (Schlund et al. 2014, Thiel et al. 2006, Shimada et al. 2014). 

 

Few studies have investigated the sensitivity of S-band radar data to agriculture crop 

canopies and forested areas. Airborne S-band backscatter data has shown sensitivity 

to crop and forested canopies based on the H/α and Pauli’s decomposition 

techniques due to strong volume scattering from canopy components than non-

vegetated areas (Guida et al. 2012, Natale et al. 2012). Studies have revealed the 

capability of mapping clear- felled and forested areas using multi-temporal S-band 

radar data from space-borne Almaz-1 in boreal forest of Canada and Sweden 

(Yatabe and Leckie 1995, Fransson et al. 1999). However, weak scattering at S-band 

radar frequency is observed for conifer species due to the longer and thinner 

branches with needles having homogenous stand structure (Lopez-Sanchez et al. 

2000).   

The present study provides an effort in investigating the S-band radar data in 

mapping F/NF cover over the temperate mixed forest of Savernake forest. First, S-
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band backscatter could discriminate forest against non-forest class achieving around 

70% overall accuracy (Kappa coefficient, κ = 0.4) at 6 m while reduced 63% overall 

accuracy (Kappa coefficient, κ = 0.27) at 20.25 m spatial spacing using HH-, VV- 

backscatter and RFDI data with MLC algorithm. This result supports the capability 

of mapping forest cover using S-band radar data due to strong scattering from forest 

canopy like other SAR wavelengths (Schlund et al. 2014, Thiel et al. 2006, Shimada 

et al. 2014) but at low accuracy level.   

Secondly, S-band radar data could also differentiate different non-forest classes (that 

is grassland, clear-felled and bare-ground) with 52% overall accuracy (Kappa 

coefficient, κ = 0.31) particularly recently clear-felled areas at sub-hectare level (71 

% producer’s accuracy) due to the loss of volume scattering when the forest 

canopies are removed. This result support the studies conducted by Guida et al. 

(2012) and Natale et al. (2012) based on polarimetric decomposition on agriculture 

crop and forest canopies. However, this study also demonstrate that S-band radar 

data could not appropriately differentiate the different forest types due to mixed 

scattering (random scattering and volume scattering) from coniferous to deciduous 

stands.   

Thirdly, multi-temporal S-band radar backscatter could also detect changes in forest 

cover particularly clear-felled areas ideally at sub-hectare level with reliable 

accuracy (71 % producer’s accuracy) due to varying sensitivity to forest canopy and 

soil properties and further supports the result presented by Fransson et al. (1999) 

and Yatabe and Leckie (1995) from the boreal forest sites. In conclusion, high 

spatial and temporal resolution S-band SAR data comprise useful information 

suitable for operational forest cover and change detection e.g. clear-felled (Lynch et 

al. 2013, Fransson et al. 1999, Natale et al. 2012) particularly in the tropics and in 

higher northern latitudes where persistent cloud cover and low illumination are 

major problems. 
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7.5. To derive average tree diameter, canopy height and forest AGB based on S-

band data from 2010 and 2014 acquisitions using field data at pixel and stand 

levels and cross-validation between observed against predicted levels of AGB at 

pixel level.  

 

Longer SAR wavelengths at L- and P-band are sensitive to forest AGB due to deeper 

penetration and more scattering from canopy components, e.g. in boreal (Sandberg et 

al. 2011), temperate (Beaudoin et al. 1994, Le Toan et al. 1992) and tropical forest 

(Saatchi et al. 2011b). However, the range of sensitivity also depends on the radar 

incidence angle and forest canopy structure (young to mature, mono-species to 

complex density) that control the radar signal penetration into the canopy. Studies 

focusing on S-band backscatter to biophysical characteristics are scarcely 

investigated due to lack of historical data.  

Earlier investigations focusing on S-band backscatter reported discouraging results 

with Almaz-1 to palm and rubber tree biomass due to very narrow dynamic ranges 

and similar average backscatter values for all the vegetation classes in the Kedah and 

Penang states of Malaysia (Rosenqvist 1996). It also seems that the varying sensor 

look angle as the most likely reason for weak sensitivity of S-band backscatter to 

forest biophysical characteristics (Brown et al. 1992, Olsson et al. 1991, Rosenqvist 

1996). 

The present study primarily focusing on the mixed deciduous temperate forest of 

Savernake forest and Wytham Woods revealed strong relationships between S-band 

backscatter against average canopy height in HH polarisation (R2 = 0.28 for 2010, 

p<0.05 and R2 = 0.45 for 2014, p<0.0005) at 25 m pixel spacing. A weaker 

logarithmic relationship was found with S-band backscatter at 0.25 ha for both years 

against basal area and stem density. Average DBH has a weaker and insignificant 

relationship with S-band backscatter for all polarisations.    

In comparison to the forest properties e.g. average tree DBH, canopy height, the S-

band radar backscatter provides a consistent sensitivity over forest AGB at 0.25 ha 

resolution. S-band backscatter increases with biomass up to some levels around 100 

t/ha in all polarisations, after which no further sensitivity is observed. For instance, 

HH polarised backscatter acquired in 2014 produces the highest sensitivity to AGB 
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with R2 = 0.5 (1.34 RMSE, p-value <0.0001) while R2 = 0.37 (1.75 RMSE, p-value 

<0.005) in 2010 for both forest sites. VV polarised backscatter acquired in 2014 

shows medium sensitivity to AGB with R2 = 0.3 (1.94 RMSE, p-value <0.005) while 

R2 = 0.22 (2.17 RMSE, p-value <0.05) in 2010 data for the study sites. Finally, the 

2014 acquired HV polarised backscatter produces the lowest sensitivity to AGB with 

R2 = 0.22 (2.46 RMSE, p-value <0.05) while R2 = 0.24 (2.01 RMSE, p-value <0.05) 

in 2010 data. Hence, at the stand level analysis with 25 m pixel spacing, S-band 

backscatter data with forest AGB proved to be a positive relationship particularly in 

co-polarised backscatter. 

In contrary to insignificant result with HH-polarisation S-band backscatter to palm 

and rubber tree biomass in Malaysia (Rosenqvist 1996), S-band backscatter could 

retrieve forest AGB in temperate forest dominated by mixed deciduous species 

acquired at low to medium incidence angles and further support the result presented 

by Brown et al. (1992) from boreal forest site. In conclusion, S-band backscatter 

could possibly retrieve AGB in low biomass forests with least error in temperate 

mixed deciduous forest particularly at low to medium incidence angles. 

The main objectives of this thesis were to investigate the potential capability of least-

studied S-band backscatter in relation to forest cover and forest biophysical retrieval 

in support to NovaSAR-S mission from the UK. The major findings of this research 

are as follows: 

 

1. Total canopy scattering dominate the radar backscatter at S-band frequency with 

ground/trunk interactions as primary in co-polarisation channel with deciduous 

forest type. S-band backscatter is also sensitive to moisture content and surface 

roughness of the soil. The simulations suggest that delineation of forest cover 

and changes using S-band backscatter is possible due to sensitivity in forest 

canopies.  

2. S-band SAR data could also discriminate the forest cover changes related to 

degradation. A low S-band backscatter has been predicted for degradation of 

forest due to reduced canopy structure and stand density. Using S-band derived 

forest change maps in combination with locally estimated allometric biomass 

could significantly improve the estimates of carbon emissions and fluxes 

particularly in priority areas such as degraded and regenerating forests.  
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3. Over large-scale mapping of forest cover, S-band SAR would provide a 

consistent result achieving around 70% overall accuracy level preferably at finer 

spatial resolution and detailed non-forest classes than L-band data. There is also 

an indication that multi-temporal S-band backscatter could detect changes in 

forest cover particularly clear-felled at sub-hectare level. This can be applicable 

for regional to global scale mapping of non-forest classes (grassland, clear-

felled, plantation, bare-ground) and change particularly in tropics and temperate 

region where cloud cover and low-illumination respectively are major problems. 

4. This research confirmed that S-band backscatter is sensitive to forest biophysical 

parameters particularly canopy height and forest AGB in varying sensitivities. A 

consistent and increasing sensitivity is observed for forest AGB up to 100 t/ha 

biomass forest stands with least error between 90.63 and 99.39 t/ha. The 

sensitivity of S-band backscatter to forest biophysical parameters shows that the 

regression model can be used to represent the relation between field measured 

forest AGB and S-band backscatter as indicated by statistical tests. However, 

this result is only applicable for temperate forest dominated by mixed deciduous 

species and need further investigation in similar forests across UK and in 

temperate forest.  

 

7.6. Airborne demonstrator to space-borne NovaSAR perspectives 

 

NovaSAR-S satellite is a complex payload with multi-mode having fully-

polarimetry capabilities which can acquire data in both sun-synchronous and near 

equatorial orbits, the unique state-of-the-art covering pan-tropics and higher 

latitudes. This will carry S-band SAR sensor having phase array antenna consisting 

of 18 phase centres across track to collect data over 580 km using four operational 

modes under varying incidence angles, polarisations, spatial and temporal 

resolutions. Based on the results obtained from analysing Airborne demonstrator S-

band data, four SAR characteristics (that is incidence angle, polarisation, spatial 

and temporal resolutions) for NovaSAR in forest studies have been addressed:   
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Incidence angle  

 

Airborne experiments have been conducted utilising S-band SAR data acquired at 

incidence angles from 16 to 50°, and most indicate that the preferred incidence angle 

is in the average range of 30° (Guida et al. 2012, Natale et al. 2012). The minimum 

incidence angle is found to be 16°. However, the effect of incidence angles to S-band 

backscatter in forest and soil is not thoroughly studied and addressed. Study based on 

radiative transfer first order MIMICS-model have highlighted significant sensitivity 

to both soil moisture (up to 40%) and surface roughness of bare-ground (soil) 

particularly in mid-to high- incidence angles at S-band frequency (e.g. (Ulaby et al. 

1990)). Additionally, S-band backscatter was found to be more sensitive to forest 

canopy particularly deciduous species at HH-polarisation across 15 -45° incidence 

range while in the intermediate range at VV-polarisation channel.  

 

Utilising the space-borne Alamz-1, Brown et al. (1992) have utilised S-band data 

acquired in the range of 38-44° and reported some relationship with forest biomass. 

On the contrary, S-band backscatter data acquired at very high incidence angles of 

around 53° and 50° have shown limited utility to biomass retrieval Olsson et al. 

(1991) and Rosenqvist (1996). Hence, the utility of S-band backscatter to forest 

biophysical characteristics could be possible by acquiring NovaSAR data at low to 

medium incidence angles. This relates to the planned incidence angles ranging 

between 16-32° as prescribed by the NovaSAR at finer StripMap to ScanSAR Wide 

and can be useful for mapping forest cover and biophysical retrieval in these 

incidence range.    

 

Polarisation 

 

Study utilising the high-resolution airborne data have found strong sensitivity in all 

polarisation from forest canopy in comparison to non-forest classes. This is 

particularly associated with VV-polarisation channel. The Chinese HJ-1C radar 

sensor having VV-polarisation channel have also demonstrated similar sensitivity to 

both soil and forest characteristics. Using the HH-, VV- backscatter and RFDI data 

have produced forest/non-forest classification achieving accuracy level of 70% 

overall accuracy and Kappa coefficient (κ) of 0.4 at 6 m pixel spacing while a lower 
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63% overall accuracy (Kappa coefficient, κ = 0.27) at 20 m pixel spacing with MLC 

algorithm.  

 

The present study primarily focusing on the mixed deciduous temperate forest of 

Savernake Forest and Wytham Woods revealed some sensitivity with S-band 

backscatter to forest AGB particularly at HH-(R2 between 0.37 and 0.5) and VV- (R2 

between 0.22 and 0.3) polarisation at 25 m pixel spacing. When the predicted 

biomass was cross-validated against reference biomass up to 500 t/ha, least error 

between 90.63 and 99.39 t/ha has been achieved with HH-polarisation. In conclusion, 

the multiple polarisations from NovaSAR could produce forest cover maps at 

reasonable accuracy level and possibly could relate to forest biomass below 100 t/ha 

with least error.  

Spatial resolution 

The varying spatial resolutions, for example StripMap mode with 6 m pixel spacing 

have produced forest/non-forest cover map achieving 70% overall accuracy and 

Kappa coefficient (κ = 0.4) while lower 63% overall accuracy (Kappa coefficient, κ 

= 0.27) at the ScanSAR mode of 20 m pixel spacing using HH-, VV- backscatter and 

RFDI data with MLC algorithm. Due to the radiative nature of S-band backscatter, 

forest cover mapping reproduced reasonable accuracy level in line with PALSAR-

based forest/non-forest map at pixel level. 

Finer-spatial resolution StripMap data with 6 m pixel spacing could also be useful for 

detecting logged areas (e.g. clear-felled) at sub-hectare level due to canopy gaps and 

sensitivity of S-band backscatter to forest canopies and underlying soil properties. S-

band backscatter in the mixed deciduous temperate forest of Savernake Forest and 

Wytham Woods revealed some relationship with forest AGB particularly with HH-

polarisation at 25 m pixel spacing.  

Temporal re-visits 

Multi-temporal S-band backscatter could also detect changes in forest cover 

particularly clear-felled areas ideally at sub-hectare level and reliable accuracy due to 

its sensitivity to forest canopy components. Similar result with Almaz-1 data in 

detecting clear-felled from forest has also been found in the boreal forest of Sweden 
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(Fransson et al. 1999). This means that the high-temporal resolution of 1 (equatorial) 

to 4 days (sun-synchronous) at 6 m pixel spacing of StripMap mode in constellation 

could provide the necessary data for monitoring forest change in regions where 

deforestation and selective logging are active.  

For instance, large-scale palm plantations in Borneo by clearing primary forest and 

selective logging operations in the Brazilian rainforest are some of the potential area 

of research with S-band data. To monitor dynamic changes associated with forest 

ecosystem, successful implementation programme requires updated information on 

land use changes across space and time. In other words, a continuous monitoring 

system is urgently required where NovaSAR could potentially be a prime candidate 

due to its sensitivity to forest/ vegetation canopy structure and ability to provide the 

continuous data throughout the year due to cloud penetration.    

In conclusion, high spatial and temporal resolutions of NovaSAR sensor could 

provide valuable data suitable for operational forest monitoring e.g. clear-felled 

(Lynch et al. 2013, Fransson et al. 1999, Natale et al. 2012), forest degradation and 

large-scale deforestation in northern latitudes and tropics where low illumination and 

persistent cloud cover are major problems (Bird et al. 2013). 

 

7.7. Limitations  

Some of the assumptions in this study were:  

 

1. MIMICS-I model only deals with monostatic (backscatter) radar systems and is 

not applicable to bistatic radar cross-section of forest canopies. Moreover, this 

model work with a single even-aged or mono-species and not appropriate to 

forest stands of mixed species composition and structure with multiple layers of 

canopies.  

2. S-band backscatter acquired during dry season has highlighted suitability in 

forest cover mapping and backscatter-biomass relationships. The potential 

sensitivity of S-band backscatter to forest AGB in varying environmental 

conditions (such as soil moisture, changes in understory vegetation) during leaf-

off season is largely lacking.  
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3. Due to varying incidence range and imperfect radiometric calibration of 

airborne S-band data, mapping of forest cover and forest change detection 

utilising MLC algorithm seems to be inadequate resulting to lower accuracy 

level.  

4. Forest AGB estimation using stem diameter-biomass allometry is potentially 

associated with significant uncertainties even using site-specific model. Main 

sources of errors in estimating the forest stand biomass could be related to 

spatial variability in forest structure and lack of sampling of small trees with 

DBH<10 cm. This can potentially introduce bias hence influencing the accurate 

field biomass estimates. However, this study has used the allometric equations 

of Bunce (1968) and Zianis et al. (2005) which were specific to British tree 

species and European genera rather than direct field estimation through tree 

harvesting.  

5. The lack of information related to horizontal variability of forest structure is 

clearly evident in the models.   

6. The varying field plot sizes between 20 x 20 m2 and 10 x 10 m2 in Savernake 

forest and Wytham Woods respectively and existence of big trees within the 

plots (large aboveground biomass level) is also a limiting factor in this research.   

 

7.8. Future work and recommendations 

Some of the future work and recommendations include:  

1. An important work is validating S-band backscatter derived from MIMICS-I 

model against SAR data from forest canopy. Due to the limited utility of 

MIMICS-I model with single even-aged or mono-species, the ‘Multi-MIMICS’ 

is recommended in future to test its advantages in Savernake forest. This 

includes simulation of different dimensions of trunk and branch and number 

tree density at S-band frequency using multi-MIMICS model.  

2. Future investigations can also focus on improving the regression models 

utilising S-band radar backscatter for AGB estimation across large 

heterogeneous forest types and multiple spatial scales using S-band from the 

Chinese HJ-1C satellite and forthcoming NovaSAR-S and NISAR missions. 

This also includes the performance of mapping forest AGB from S-band SAR 
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data at the cost of spatial variability to identify the best suitable resolution with 

optimum accuracy level.  

3. Information on S-band radar signal point of saturation and canopy components 

contribution to total backscatter can be carried out utilising Multi-MIMICS 

model parameterised with detailed field data particularly canopy components 

and moisture condition during the SAR data acquisition whether airborne or 

space-borne.  

4. Lidar data could also be used to retrieve forest parameters such as tree height, 

crown diameter, stem diameter, basal area and tree density over Savernake 

forest and Wytham Woods. This could also include estimating forest structure 

and aboveground biomass by using field data in combination with stem volume 

and biomass expansion factor.       
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Appendices 

Appendix I:  

C********************************************************************* 
C234567890123456789012345678901234567890123456789012345678901234567890
12 
C************************************************************* 
C*************     MIMICS Version 1.5a MODEL              *************** 
C********************************************************************* 
C*************           Master Program                  *************** 
C********************************************************************* 
C 
      PROGRAM MIMICS_version_1_5asave 
C 
C********************************************************************* 
C------------------- Development begun 10-5-88 ------------------------- 
C--------------------  revised 10-5-88  -------------------------------- 
 
C********************************************************************* 
C   DECLARE THE PARAMETERS IN THE 'PARAMETERS.INCLUDE' FILE. 
C---------------------------- 
C%include 'parameters.include' 
include 'parameters.include' 
C---------------------------- 
C********************************************************************* 
C--------------------------------------------------------------------- 
C--------------------- VARIABLE DECLARATIONS ------------------------- 
C--------------------------------------------------------------------- 
C********************************************************************* 
C 
        LOGICAL COMPUTE, WRITE_HEADER 
C 
        COMPLEX EPSILONR(N_EPS),EPSILONRC(N_EPS) 
C 
        COMMON /C_DIELECTRIC/ EPSILONR,EPSILONRC 
C 
        REAL FREQ_HERTZ, WAVELENGTH, k0, THETA, CTHETA, STHETA 
C 
        COMMON /RADAR_FREQ/ FREQ_HERTZ, WAVELENGTH, k0 
        COMMON /RADAR_ANGLE/ THETA, CTHETA, STHETA 
C 
C********************************************************************* 
C   DECLARATIONS FROM SUBROUTINE INITIALIZE 
C********************************************************************* 
C 
        INTEGER LOOP_NUM(N_VARIABLES), LOOP_COUNT(N_VARIABLES) 
        LOGICAL OPEN, STEP_VARIABLE(N_VARIABLES) 
        LOGICAL STEP_THIS_TIME(N_VARIABLES) 
        LOGICAL CALL_SUB(N_CALLS,N_SUB_CALLS) 
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C 
        LOGICAL LOG_CROWN 
C 
        COMMON /I_COUNT/ LOOP_NUM, LOOP_COUNT 
        COMMON /L_FLAGS/ STEP_VARIABLE, STEP_THIS_TIME, CALL_SUB, 
OPEN 
C 
C********************************************************************* 
C   DECLARATIONS FROM SUBROUTINE READ_INPUT 
C********************************************************************* 
C 
C-------- DECLARATIONS FROM SUBROUTINE READ_CONFIGURE ---------------
- 
C 
        LOGICAL LOG_CONSTITUENT(N_CONSTITUENTS) 
        LOGICAL LOG_EPS_TABLE(N_CONSTITUENTS) 
        LOGICAL LOG_DRY_DENSITY(N_CONSTITUENTS)  
        LOGICAL LOG_PDF_TYPE(N_CONSTITUENTS,N_CONST_VARY) 
        LOGICAL LOG_HIST(N_CONSTITUENTS) 
C 
        COMMON /L_CONFIGURE/ LOG_CONSTITUENT, LOG_EPS_TABLE, 
&                       LOG_DRY_DENSITY, LOG_PDF_TYPE, LOG_HIST 
C 
C-------- DECLARATIONS FROM SUBROUTINE READ_SENSOR ------------------- 
C 
        INTEGER FREQ_NUMBER, THETA_NUMBER 
        REAL FREQ_DELTA, FREQ_VECT(I_VECT_LEN), FREQ_GHZ 
        REAL THETA_DELTA, THETA_VECT(I_VECT_LEN), THETA_DEGREES 
        LOGICAL LOG_FREQ_TABLE, LOG_THETA_TABLE 
C 
        COMMON /R_SENSOR/ THETA_DEGREES, FREQ_GHZ 
COMMON /R_SENSOR_DELTA/ THETA_DELTA, FREQ_DELTA 
COMMON /I_SENSOR/ THETA_NUMBER, FREQ_NUMBER 
        COMMON /R_SENSOR_VECT/ THETA_VECT, FREQ_VECT 
        COMMON /L_SENSOR/ LOG_FREQ_TABLE,LOG_THETA_TABLE 
C 
C-------- DECLARATIONS FROM SUBROUTINE READ_ENVIRONMENT ----------
---- 
C 
        INTEGER T_SOIL_NUMBER, T_WATER_NUMBER, T_VEG_NUMBER 
        REAL T_SOIL_DELTA, T_SOIL_VECT(I_VECT_LEN), T_SOIL 
        REAL T_WATER_DELTA, T_WATER_VECT(I_VECT_LEN), T_WATER 
        REAL T_VEG_VECT(I_VECT_LEN) 
        REAL T_VEG_DELTA, T_VEG 
        LOGICAL LOG_ENVIRONMENT(N_ENVIRONMENT) 
C 
        COMMON /R_ENVIRON/ T_SOIL, T_WATER, T_VEG 
COMMON /R_ENVIRON_DELTA/ 
T_SOIL_DELTA,T_WATER_DELTA,T_VEG_DELTA 



 

 170 
 

COMMON /I_ENVIRON/ T_SOIL_NUMBER, T_WATER_NUMBER, 
T_VEG_NUMBER 
        COMMON /R_ENVIRON_VECT/ T_SOIL_VECT, T_WATER_VECT, 
T_VEG_VECT 
        COMMON /L_ENVIRON/ LOG_ENVIRONMENT 
C 
C-------- DECLARATIONS FROM SUBROUTINE READ_GROUND ------------------- 
C 
        INTEGER MV_SOIL_NUMBER, RMS_SOIL_NUMBER, LS_SOIL_NUMBER 
        INTEGER SAND_NUMBER, CLAY_NUMBER, SALT_NUMBER 
REAL MV_SOIL_DELTA, RMS_SOIL_DELTA, LS_SOIL_DELTA 
        REAL SAND_DELTA, CLAY_DELTA, SALT_DELTA 
REAL MV_SOIL_VECT(I_VECT_LEN), RMS_SOIL_VECT(I_VECT_LEN) 
        REAL LS_SOIL_VECT (I_VECT_LEN) 
        REAL SAND_VECT(I_VECT_LEN), CLAY_VECT(I_VECT_LEN) 
        REAL SALT_VECT(I_VECT_LEN) 
        REAL MV_SOIL, SAND, CLAY, RMS_SOIL, LS_SOIL 
        REAL SALT 
        LOGICAL 
SOIL_SURFACE,WATER_SURFACE,SNOW_SURFACE,ICE_SURFACE 
        LOGICAL 
LOG_MV_SOIL,LOG_ROUGH_SOIL(2),LOG_SOIL_TEXT,LOG_SALT 
C 
        COMMON /R_SURFACE/ RMS_SOIL, LS_SOIL 
        COMMON /R_SOIL/ MV_SOIL, SAND, CLAY 
        COMMON /R_WATER/ SALT 
C 
        COMMON /R_SURFACE_DELTA/ RMS_SOIL_DELTA, LS_SOIL_DELTA 
COMMON /R_SOIL_DELTA/ MV_SOIL_DELTA, SAND_DELTA, CLAY_DELTA 
COMMON /R_WATER_DELTA/ SALT_DELTA 
C 
        COMMON /I_SURFACE/ RMS_SOIL_NUMBER, LS_SOIL_NUMBER 
        COMMON /I_SOIL/ MV_SOIL_NUMBER, SAND_NUMBER, 
CLAY_NUMBER 
        COMMON /I_WATER/ SALT_NUMBER 
C 
        COMMON /R_SURFACE_VECT/ RMS_SOIL_VECT, LS_SOIL_VECT 
        COMMON /R_SOIL_VECT/ MV_SOIL_VECT,SAND_VECT,CLAY_VECT 
        COMMON /R_WATER_VECT/ SALT_VECT 
C 
        COMMON /L_SURFACE/ LOG_ROUGH_SOIL 
        COMMON /L_SOIL/ LOG_MV_SOIL, LOG_SOIL_TEXT 
        COMMON /L_WATER/ LOG_SALT 
C 
        COMMON /L_SURFACE_TYPE/ SOIL_SURFACE,WATER_SURFACE, 
&                          SNOW_SURFACE,ICE_SURFACE 
C 
C-------- DECLARATIONS FROM SUBROUTINE READ_TRUNK -------------------- 
C 
        INTEGER MG_TRUNK_NUM, RHO_TRUNK_NUM, DENSITY_NUM    
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        INTEGER CROWN_HGHT_NUM, TRUNK_DIAM_NUM, 
TRUNK_HGHT_NUM 
REAL MG_TRUNK_DELTA, RHO_TRUNK_DELTA, DENSITY_DELTA 
REAL CROWN_HGHT_DELTA, TRUNK_DIAM_DELTA, 
TRUNK_HGHT_DELTA 
        REAL MG_TRUNK_VECT(I_VECT_LEN), 
RHO_TRUNK_VECT(I_VECT_LEN) 
        REAL DENSITY_VECT(I_VECT_LEN) 
        REAL CROWN_HGHT_VECT(I_VECT_LEN), 
TRUNK_DIAM_VECT(I_VECT_LEN) 
        REAL TRUNK_HGHT_VECT(I_VECT_LEN) 
        REAL MG_TRUNK, RHO_TRUNK, DENSITY, CROWN_HGHT 
        REAL TRUNK_DIAM,TRUNK_HGHT 
        LOGICAL LOG_MG_TRUNK, LOG_RHO_TRUNK, LOG_DENSITY 
        LOGICAL LOG_CROWN_HGHT, LOG_TRUNK_DIAM, 
LOG_TRUNK_HGHT 
C 
        COMMON /R_TRUNK/ MG_TRUNK, RHO_TRUNK, TRUNK_DIAM 
COMMON /R_TRUNK_DELTA/ MG_TRUNK_DELTA, RHO_TRUNK_DELTA,  
&                         TRUNK_DIAM_DELTA 
        COMMON /I_TRUNK/ MG_TRUNK_NUM, RHO_TRUNK_NUM, 
TRUNK_DIAM_NUM 
        COMMON /R_TRUNK_VECT/MG_TRUNK_VECT, RHO_TRUNK_VECT, 
&                         TRUNK_DIAM_VECT 
        COMMON /L_TRUNK/ 
LOG_MG_TRUNK,LOG_RHO_TRUNK,LOG_TRUNK_DIAM 
C 
        COMMON /R_CANOPY/ DENSITY, CROWN_HGHT, TRUNK_HGHT 
        COMMON /R_CANOPY_DELTA/ DENSITY_DELTA, 
CROWN_HGHT_DELTA, 
&                          TRUNK_HGHT_DELTA 
        COMMON /I_CANOPY/ DENSITY_NUM, CROWN_HGHT_NUM, 
TRUNK_HGHT_NUM 
        COMMON /R_CANOPY_VECT/DENSITY_VECT, CROWN_HGHT_VECT, 
&                        TRUNK_HGHT_VECT 
        COMMON /L_CANOPY/ LOG_DENSITY, LOG_CROWN_HGHT, 
LOG_TRUNK_HGHT 
C 
C-------- DECLARATIONS FROM SUBROUTINE READ_LEAF --------------------- 
C 
        INTEGER MG_LEAF_NUM, RHO_LEAF_NUM, LEAF_DENS_NUM    
        INTEGER LEAF_DIAM_NUM, LEAF_TAU_NUM 
        REAL MG_LEAF_DELTA, RHO_LEAF_DELTA, LEAF_DENS_DELTA 
        REAL LEAF_DIAM_DELTA, LEAF_TAU_DELTA 
        REAL MG_LEAF_VECT(I_VECT_LEN), RHO_LEAF_VECT(I_VECT_LEN) 
        REAL LEAF_DENS_VECT(I_VECT_LEN) 
        REAL LEAF_DIAM_VECT(I_VECT_LEN),LEAF_TAU_VECT(I_VECT_LEN) 
        REAL MG_LEAF, RHO_LEAF, LEAF_DENS, LEAF_DIAM,LEAF_TAU 
        LOGICAL LOG_MG_LEAF, LOG_RHO_LEAF, LOG_LEAF_DENS 
        LOGICAL LOG_LEAF_DIAM, LOG_LEAF_TAU 
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C 
        COMMON /R_LEAF/ 
MG_LEAF,RHO_LEAF,LEAF_DENS,LEAF_DIAM,LEAF_TAU 
COMMON /R_LEAF_DELTA/ MG_LEAF_DELTA, RHO_LEAF_DELTA,  
&LEAF_DENS_DELTA, LEAF_DIAM_DELTA, LEAF_TAU_DELTA 
COMMON /I_LEAF/ MG_LEAF_NUM, RHO_LEAF_NUM, LEAF_DENS_NUM, 
&                  LEAF_DIAM_NUM, LEAF_TAU_NUM 
        COMMON /R_LEAF_VECT/MG_LEAF_VECT, RHO_LEAF_VECT, 
&              LEAF_DENS_VECT,LEAF_DIAM_VECT, LEAF_TAU_VECT 
        COMMON /L_LEAF/ LOG_MG_LEAF, LOG_RHO_LEAF, 
&              LOG_LEAF_DENS, LOG_LEAF_DIAM, LOG_LEAF_TAU 
C 
C-------- DECLARATIONS FROM SUBROUTINE READ_NEEDLE ------------------- 
C 
        INTEGER MG_NDL_NUM, RHO_NDL_NUM, NDL_DENS_NUM    
        INTEGER NDL_DIAM_NUM, NDL_LNG_NUM 
REAL MG_NDL_DELTA, RHO_NDL_DELTA, NDL_DENS_DELTA 
REAL NDL_DIAM_DELTA, NDL_LNG_DELTA 
        REAL MG_NDL_VECT(I_VECT_LEN), RHO_NDL_VECT(I_VECT_LEN) 
        REAL NDL_DENS_VECT(I_VECT_LEN) 
        REAL NDL_DIAM_VECT(I_VECT_LEN), NDL_LNG_VECT(I_VECT_LEN) 
        REAL MG_NDL, RHO_NDL, NDL_DENS, NDL_DIAM,NDL_LNG 
        LOGICAL LOG_MG_NDL, LOG_RHO_NDL, LOG_NDL_DENS 
        LOGICAL LOG_NDL_DIAM, LOG_NDL_LNG 
C 
        COMMON /R_NDL/ MG_NDL, RHO_NDL, NDL_DENS, NDL_DIAM, 
NDL_LNG 
COMMON /R_NDL_DELTA/ 
MG_NDL_DELTA,RHO_NDL_DELTA,NDL_DENS_DELTA, 
&NDL_DIAM_DELTA, NDL_LNG_DELTA 
COMMON /I_NDL/ MG_NDL_NUM, RHO_NDL_NUM, NDL_DENS_NUM, 
&                  NDL_DIAM_NUM, NDL_LNG_NUM 
        COMMON /R_NDL_VECT/MG_NDL_VECT, 
RHO_NDL_VECT,NDL_DENS_VECT, 
&                      NDL_DIAM_VECT, NDL_LNG_VECT 
        COMMON /L_NDL/ LOG_MG_NDL, LOG_RHO_NDL, LOG_NDL_DENS, 
&                      LOG_NDL_DIAM, LOG_NDL_LNG 
C 
C-------- DECLARATIONS FROM SUBROUTINE READ_PRIMARY_BRANCH ----
------- 
C 
        INTEGER MG_BR1_NUM, RHO_BR1_NUM, BR1_DENS_NUM    
        INTEGER BR1_DIAM_NUM, BR1_LNG_NUM 
REAL MG_BR1_DELTA, RHO_BR1_DELTA, BR1_DENS_DELTA 
        REAL BR1_DIAM_DELTA, BR1_LNG_DELTA 
REAL MG_BR1_VECT(I_VECT_LEN), RHO_BR1_VECT(I_VECT_LEN) 
        REAL BR1_DENS_VECT(I_VECT_LEN) 
        REAL BR1_DIAM_VECT(I_VECT_LEN), BR1_LNG_VECT(I_VECT_LEN) 
        REAL MG_BR1, RHO_BR1, BR1_DENS, BR1_DIAM, BR1_LNG 
        LOGICAL LOG_MG_BR1, LOG_RHO_BR1, LOG_BR1_DENS 
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        LOGICAL LOG_BR1_DIAM, LOG_BR1_LNG 
C 
        COMMON /R_BR1/ MG_BR1, RHO_BR1, BR1_DENS, BR1_DIAM, BR1_LNG 
COMMON /R_BR1_DELTA/ 
MG_BR1_DELTA,RHO_BR1_DELTA,BR1_DENS_DELTA, 
&BR1_DIAM_DELTA, BR1_LNG_DELTA 
COMMON /I_BR1/ MG_BR1_NUM, RHO_BR1_NUM, BR1_DENS_NUM, 
&                  BR1_DIAM_NUM, BR1_LNG_NUM 
        COMMON /R_BR1_VECT/MG_BR1_VECT, RHO_BR1_VECT, 
BR1_DENS_VECT, 
&                      BR1_DIAM_VECT, BR1_LNG_VECT 
        COMMON /L_BR1/ LOG_MG_BR1, LOG_RHO_BR1, LOG_BR1_DENS, 
&                      LOG_BR1_DIAM, LOG_BR1_LNG 
C 
C-------- DECLARATIONS FROM SUBROUTINE READ_NESTING ------------------ 
C 
        INTEGER PARAM_NUM(N_VARIABLES), INEST(N_VARIABLES) 
        COMMON /I_NEST/ PARAM_NUM, INEST 
C 
        REAL GRND_REFLECT_MAT(4,4), GRND_BACK_MAT(4,4) 
        COMMON /R_GROUND_MATS/ GRND_REFLECT_MAT, 
GRND_BACK_MAT 
C 
C-------- DECLARATIONS FROM SUBROUTINE TRUNK_LAYER ------------------- 
C 
        REAL EXP_KAPPA_T_p(4,4), EXP_KAPPA_T_m (4,4) 
        COMMON /TRUNK_EXT/ EXP_KAPPA_T_p, EXP_KAPPA_T_m 
 
        REAL TRUNK_PHASE_MAT_p(4,4,2), TRUNK_PHASE_MAT_m(4,4,2) 
        COMMON /TRUNK_PHASE/ TRUNK_PHASE_MAT_p, 
TRUNK_PHASE_MAT_m 
 
C--------------------------------------------------------------------- 
C DECLARE THE CONSTANTS IN THE 'CONSTANTS.INCLUDE' FILE. 
C---------------------------- 
c%include 'constants.include' 
include 'constants.include' 
C---------------------------- 
C 
C********************************************************************* 
C********************************************************************* 
C******************  MAIN DRIVER ROUTINE   
********************************************************************** 
C********************************************************************* 
C 
C-- Read input data, initalize fixed constants, set output files flag -- 
C 
CC        print *,'calling read_input' 
        CALL READ_INPUT 
CC        print *,'calling init' 
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        CALL INITIALIZE(COMPUTE) 
i = 0 
c 
        DO WHILE(COMPUTE) 
i=i+1 
c 
c-----------   set constants based on input parmeters ---------------- 
c                these constants vary as a function of input parameters 
c                i.e. wavelength and theta(radians) 
C----  also check for looping which varies input parameters  --------- 
c 
CC            print *,'calling start_loop' 
            CALL START_LOOP(WRITE_HEADER,COMPUTE,LOG_CROWN) 
 
CC            DO i=1,N_CALLS    
CC               DO j=1,N_SUB_CALLS 
CC                  print *,'call_sub(',i,',',j,')= ',call_sub(i,j) 
CC               ENDDO 
CC            ENDDO 
 
 
c 
c----------  compute dielectric constants  --------------------------- 
c 
IF(CALL_SUB(1,1)) THEN 
CC              print *,'calling dielecric' 
              CALL DIELECTRIC(EPSILONR,EPSILONRC) 
            ENDIF 
C 
c--------- compute ground specular reflectivity matrix and ----------------------         
backscattering phase matrix             ---------- 
c 
IF(CALL_SUB(2,1))  THEN 
CC                 print *,'calling ground layer' 
                 CALL GROUND_LAYER 
            ENDIF 
C 
C  The numbers below are sigvv and sighh. 
C 
        PRINT*,' ' 
        PRINT*,'I = ',I 
c 
c----------  compute trunk layer phase and extinction matrices  ------ 
c 
IF(CALL_SUB(3,1)) THEN 
CC               print *,'calling trunk layer' 
               CALL TRUNK_LAYER(LOG_CONSTITUENT(1)) 
            ENDIF 
c 
c--------- compute crown layer phase and extinction matrices  -------- 
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c 
IF(CALL_SUB(4,1)) THEN 
print *,'calling crown_layer' 
                CALL CROWN_LAYER(LOG_CROWN) 
            ENDIF 
 
c 
c------------ compute stokes matrix of the canopy -------------------- 
c 
print *,'calling solve_canopy' 
              CALL SOLVE_CANOPY(LOG_CONSTITUENT(1),LOG_CROWN) 
C 
C----------- FORMAT DATA FOR DESIRED OUTPUT TYPE --------------------- 
C 
CC            print *,'calling format_output' 
            CALL FORMAT_OUTPUT 
C 
C-----------         and output results          --------------------- 
C 
CC            print *,'calling write_data' 
            CALL WRITE_DATA(WRITE_HEADER) 
c 
        ENDDO 
c 
c--------   clean up and close files  -------------------------------- 
c 
CC       print *,'calling finish' 
       CALL FINISH 
c 
c--------------------------------------------------------------------- 
c 
        STOP 
        END 
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Appendix II: Sensitivity to soil moisture 

**** Forest Canopy Backscatter Model Output File -- Like-polarisation Sigma0 Values  

**** Forest Canopy Backscatter Model Output File -- Cross-polarisation Sigma0 
Values  

Trunks = F, Primary Branches = F, Secondary Branches = F, 3rd Branches = F, 4th 
Branches = F, 5th Branches = F, 6th Branches = F, Leaves = F, Needles = F 

SOIL_SURFACE = T, WATER_SURFACE = F, SNOW_SURFACE = F, 
ICE_SURFACE = F 
Dielectric Lookup Tables: Trunk = F, Primary Branch = F, Secondary Branch = F, 3rd 
Branch = F, 4th Branch = F, 5th Branch = F, 6th Branch = F, Leaf = F, Needle = F, 
Ground = F 
 
CONSTITUENT ORIENTATION AND SIZE DISTRIBUTIONS: 
 
Nesting Data: 
 
Variable Number =    1   3 
 
Nesting Order =    1   2 
 
Number of Loops =    7 10 
 
Family Number     1 
 
RADAR Look Angle = 15.0 – 45.0 Degrees, Radar Frequency = 3.10GHz (15 cm). 

Canopy Density = 0.0 Trees per square meter, Crown Height = 0.0 meters, Trunk 
Height = 0.0 meters, Vegetation Temperature = 20.0 degrees C. 
 
Soil Volumetric Moisture = 0.1 – 1.0 (water weight/volume weight), Soil RMS 
Roughness = 1.0 cm, Soil Correlation Length = 15.0 cm, Soil % Sand = 10.0 cm, Soil % 
Clay = 60.0 cm, Soil Temperature = 20.0 degrees C, Model Type = Physical Optics. 
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Appendix III: Sensitivity to soil surface roughness 

**** Forest Canopy Backscatter Model Output File -- Like-polarisation Sigma0 Values  

**** Forest Canopy Backscatter Model Output File -- Cross-polarisation Sigma0 
Values  

Trunks = F, Primary Branches = F, Secondary Branches = F, 3rd Branches = F, 4th 
Branches = F, 5th Branches = F, 6th Branches = F, Leaves = F, Needles = F 

SOIL_SURFACE = T, WATER_SURFACE = F, SNOW_SURFACE = F, 
ICE_SURFACE = F 
Dielectric Lookup Tables: Trunk = F, Primary Branch = F, Secondary Branch = F, 3rd 
Branch = F, 4th Branch = F, 5th Branch = F, 6th Branch = F, Leaf = F, Needle = F, 
Ground = F 
 
CONSTITUENT ORIENTATION AND SIZE DISTRIBUTIONS: 
 
Nesting Data: 
 
Variable Number =    1   3 
 
Nesting Order =    1   2 
 
Number of Loops =    7 10 
 
Family Number     1 
 
RADAR Look Angle = 15.0 – 45.0 Degrees, Radar Frequency = 3.10GHz (15 cm). 

Canopy Density = 0.0 Trees per square meter, Crown Height = 0.0 meters, Trunk 
Height = 0.0 meters, Vegetation Temperature = 20.0 degrees C. 
 
Soil Volumetric Moisture = 0.0(water weight/volume weight), Soil RMS Roughness 
=0.1 – 5.0 cm, Soil Correlation Length = 15.0 cm, Soil % Sand = 10.0 cm, Soil % Clay 
= 60.0 cm, Soil Temperature = 20.0 degrees C, Model Type = Physical Optics. 
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Appendix IV: Leaf-dominated deciduous canopy 

**** Forest Canopy Backscatter Model Output File -- Transmissivity Values **** 

**** Forest Canopy Backscatter Model Output File -- Like-polarisation Sigma0 Values  

**** Forest Canopy Backscatter Model Output File -- Cross-polarisation Sigma0 
Values  

Trunks = T, Primary Branches = F, Secondary Branches = F, 3rd Branches = F, 4th 
Branches = F, 5th Branches = F, 6th Branches = F, Leaves = T, Needles = F 

SOIL_SURFACE = T, WATER_SURFACE = F, SNOW_SURFACE = F, 
ICE_SURFACE = F 

Dielectric Lookup Tables: Trunk = T, Primary Branch = F, Secondary Branch = F, 3rd 
Branch = F, 4th Branch = F, 5th Branch = F, 6th Branch = F, Leaf = T, Needle = F, 
Ground = T 

CONSTITUENT ORIENTATION AND SIZE DISTRIBUTIONS: 

Trunk Orient PDF = 2, Form = (1/0.85903)*COS(THETA_c)**8     Size PDF = 1, 
Form = HISTOGRAM DATA                 

Leaf Orient PDF = 1, Form = 0.5*SIN(Theta_d) - Uniform      Size PDF = 0, Form = 
DEFAULT VALUES                 

Prim Br Orient PDF = 14, Form = (1.23)*SIN(THETA_c+30)**20 Size PDF = 0, Form 
= DEFAULT VALUES         

Nesting Data: 

Variable Number =    1 

Nesting Order =    1 

Number of Loops =    7 

Family Number     1 

RADAR Look Angle = 15.0 – 45.0 Degrees, Radar Frequency = 1.25GHz (24 cm); 
3.10GHz (15 cm), 4.75GHz (5.6 cm) and 10.00 GHz (2 cm). 

Canopy Density = 0.11 Trees per square meter, Crown Height = 2.0 meters, Trunk 
Height = 8.0 meters, Vegetation Temperature = 20.0 degrees C. 

Surface Dielectric = 5.680 -j 1.130, Soil RMS Roughness = 0.4 cm, Soil Correlation 
Length = 18.75 cm, Model Type = Physical Optics                

Trunk Gravimetric Moisture = 0.5, Trunk Dry Density = 0.408, Trunk Diameter = 24.0 
cm 
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Leaf Gravimetric Moisture = 0.8, Leaf Dry Density = 0.005 cm, Leaf Density = 
830leaves per cubic meter, Leaf Diameter = 6.18 cm, Leaf Thickness = 0.1cm.  
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Appendix V: Branch-dominated deciduous canopy 

**** Forest Canopy Backscatter Model Output File -- Transmissivity Values **** 

**** Forest Canopy Backscatter Model Output File -- Like-polarisation Sigma0 Values  

**** Forest Canopy Backscatter Model Output File -- Cross-polarisation Sigma0 
Values  

Trunks = T, Primary Branches = T, Secondary Branches = F, 3rd Branches = F, 4th 
Branches = F, 5th Branches = F, 6th Branches = F, Leaves = F, Needles = F 

SOIL_SURFACE = T, WATER_SURFACE = F, SNOW_SURFACE = F, 
ICE_SURFACE = F 

Dielectric Lookup Tables: Trunk = T, Primary Branch = T, Secondary Branch = F, 3rd 
Branch = F, 4th Branch = F, 5th Branch = F, 6th Branch = F, Leaf = F, Needle = F, 
Ground = T 

CONSTITUENT ORIENTATION AND SIZE DISTRIBUTIONS: 

Trunk Orient PDF = 2, Form = (1/0.85903)*COS(THETA_c)**8     Size PDF = 1, 
Form = HISTOGRAM DATA                 

Leaf Orient PDF = 1, Form = 0.5*SIN(Theta_d) –UniformSize PDF = 0, Form = 
DEFAULT VALUES                 

Prim Br Orient PDF = 14, Form = (1.23)*SIN(THETA_c+30)**20      Size PDF = 0, 
Form = DEFAULT VALUES         

Nesting Data: 

Variable Number =    1 

Nesting Order =    1 

Number of Loops =    7 

Family Number     1 

RADAR Look Angle = 15.0 – 45.0 Degrees, Radar Frequency = 1.25GHz (24 cm); 
3.10GHz (15 cm), 4.75GHz (5.6 cm) and 10.00 GHz (2 cm). 

Canopy Density = 0.11 Trees per square meter, Crown Height = 2.0 meters, Trunk 
Height = 8.0 meters, Vegetation Temperature = 20.0 degrees C. 

Surface Dielectric = 5.680 -j 1.130, Soil RMS Roughness = 0.4 cm, Soil Correlation 
Length = 18.75 cm, Model Type = Physical Optics                

Trunk Gravimetric Moisture = 0.5, Trunk Dry Density = 0.408 cm, Trunk Diameter = 
24.0 cm 
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Branch Gravimetric Moisture = 0.4, Branch Dry Density = 0.1, Branch Density =   4.1 
branches per cubic meter, Branch Diameter = 0.7 cm, Branch Length =0.75 meters. 
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Appendix VI: Leaf-branch deciduous canopy 

**** Forest Canopy Backscatter Model Output File -- Transmissivity Values **** 

**** Forest Canopy Backscatter Model Output File -- Like-polarisation Sigma0 Values  

**** Forest Canopy Backscatter Model Output File -- Cross-polarisation Sigma0 
Values  

Trunks = T, Primary Branches = T, Secondary Branches = F, 3rd Branches = F, 4th 
Branches = F, 5th Branches = F, 6th Branches = F, Leaves = T, Needles = F 

SOIL_SURFACE = T, WATER_SURFACE = F, SNOW_SURFACE = F, 
ICE_SURFACE = F 

Dielectric Lookup Tables: Trunk = T, Primary Branch = T, Secondary Branch = F, 3rd 
Branch = F, 4th Branch = F, 5th Branch = F, 6th Branch = F, Leaf = T, Needle = F, 
Ground = T 

CONSTITUENT ORIENTATION AND SIZE DISTRIBUTIONS: 

Trunk Orient PDF = 2, Form = (1/0.85903)*COS(THETA_c)**8     Size PDF = 1, 
Form = HISTOGRAM DATA                 

Leaf Orient PDF = 1, Form = 0.5*SIN(Theta_d) - Uniform      Size PDF = 0, Form = 
DEFAULT VALUES                 

Prim Br Orient PDF = 14, Form = (1.23)*SIN(THETA_c+30)**20      Size PDF = 0, 
Form = DEFAULT VALUES         

Nesting Data: 

Variable Number =    1 

Nesting Order =    1 

Number of Loops =    7 

Family Number     1 

RADAR Look Angle = 15.0 – 45.0 Degrees, Radar Frequency = 1.25GHz (24 cm); 
3.10GHz (15 cm), 4.75GHz (5.6 cm) and 10.00 GHz (2 cm). 

Canopy Density = 0.11 Trees per square meter, Crown Height = 2.0 meters, Trunk 
Height = 8.0 meters, Vegetation Temperature = 20.0 degrees C. 

Surface Dielectric = 5.680 -j 1.130, Soil RMS Roughness = 0.4 cm, Soil Correlation 
Length = 18.75 cm, Model Type = Physical Optics                

Trunk Gravimetric Moisture = 0.5, Trunk Dry Density = 0.408 cm, Trunk Diameter = 
24.0 cm 
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Leaf Gravimetric Moisture = 0.8, Leaf Dry Density = 0.005, Leaf Density = 830leaves 
per cubic meter, Leaf Diameter = 6.18 cm, Leaf Thickness = 0.1 cm 

Branch Gravimetric Moisture = 0.4, Branch Dry Density = 0.1, Branch Density =4.1 
branches per cubic meter, Branch Diameter = 0.7 cm, Branch Length = 0.75 meters. 
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Appendix VII: Needle-branch coniferous canopy  

**** Forest Canopy Backscatter Model Output File -- Transmissivity Values **** 

**** Forest Canopy Backscatter Model Output File -- Like-polarisation Sigma0 Values  

**** Forest Canopy Backscatter Model Output File -- Cross-polarisation Sigma0 
Values  

Trunks = T, Primary Branches = T, Secondary Branches = F, 3rd Branches = F, 4th 
Branches = F, 5th Branches = F, 6th Branches = F, Leaves = F, Needles = T 
 
SOIL_SURFACE = T, WATER_SURFACE = F, SNOW_SURFACE = F, 
ICE_SURFACE = F 
 
Dielectric Lookup Tables: Trunk = F, Primary Branch = F, Secondary Branch = F, 3rd 
Branch = F, 4th Branch = F, 5th Branch = F, 6th Branch = F, Leaf = F, Needle = T, 
Ground = F 
 
CONSTITUENT ORIENTATION AND SIZE DISTRIBUTIONS: 
 
Trunk Orient PDF = 2, Form = (1/0.85903)*COS(THETA_c)**8     Size PDF =  1, 
Form = HISTOGRAM DATA                 
 
Needle Orient PDF = 1, Form = 0.5*SIN(Theta_n) - Uniform      Size PDF =  0, Form = 
DEFAULT VALUES                 
 
Prim Br Orient PDF = 14, Form = (1.23)*SIN(THETA_c+30)**20      Size PDF =  0, 
Form = DEFAULT VALUES                 
 
Nesting Data: 
Variable Number =    1    
Nesting Order =    1    
Number of Loops =    7   
Family Number     1 
 
RADAR Look Angle = 15.0 – 45.0 Degrees, Radar Frequency = 1.25GHz (24 cm); 
3.10GHz (15 cm), 4.75GHz (5.6 cm) and 10.00 GHz (2 cm). 
 
Canopy Density = 0.1 Trees per square meter, Crown Height = 11.0 meters, Trunk 
Height = 8.0 meters, Vegetation Temperature = 20.0 degrees C. 
 
Soil Volumetric Moisture = 0.1, Soil RMS Roughness = 0.45 cm, Soil Correlation 
Length = 15.0 cm, Soil % Sand = 20.0 cm, Soil % Clay = 10.0 cm, Soil Temperature = 
20.0 degrees C., Model Type = Physical Optics 
 
Trunk Gravimetric Moisture = 0.6, Trunk Dry Density = 0.408 cm, Trunk Diameter = 
20.8 cm 
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Needle Gravimetric Moisture = 0.8, Needle Dry Density = 0.377, Needle Density = 
0.8500E+05 needles per cubic meter, Needle Diameter = 0.1 cm, Needle Length = 2.0 
cm 
Branch Gravimetric Moisture = 0.6, Branch Dry Density = 0.1, Branch Density =3.4 
branches per cubic meter, Branch Diameter = 2.0 cm, Branch Length =2.0meters.  
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Appendix VIII: Reduced canopy components 

**** Forest Canopy Backscatter Model Output File -- Like-polarisation Sigma0 Values 
 
Trunks = T, Primary Branches = T, Secondary Branches = F, 3rd Branches = F, 4th 
Branches = F, 5th Branches = F, 6th Branches = F, Leaves = T, Needles = F 
SOIL_SURFACE = T, WATER_SURFACE = F, SNOW_SURFACE = F, 
ICE_SURFACE = F 
Dielectric Lookup Tables: Trunk = F, Primary Branch = F, Secondary Branch = F, 3rd 
Branch = F, 4th Branch = F, 5th Branch = F, 6th Branch = F, Leaf = F, Needle = F, 
Ground = F 
CONSTITUENT ORIENTATION AND SIZE DISTRIBUTIONS: 
Trunk Orient PDF = 2, Form = (1/0.85903)*COS(THETA_c)**8     Size PDF =  1, 
Form = HISTOGRAM DATA                 
Leaf Orient PDF = 1, Form = 0.5*SIN(Theta_d) - Uniform      Size PDF =  0, Form = 
DEFAULT VALUES                 
Prim Br Orient PDF = 14, Form = (1.23)*SIN(THETA_c+30)**20      Size PDF =  0, 
Form = DEFAULT VALUES 
Nesting Data: 
Variable Number =    1 
Nesting Order =    1 
Number of Loops =    7 
Family Number     1 
 
RADAR Look Angle = 15.0 – 45.0 Degrees, Radar Frequency = 1.25GHz (24 cm); 
3.10GHz (15 cm), 4.75GHz (5.6 cm) and 10.00 GHz (2 cm). 
Canopy Density = 0.2 Trees per square meter, Crown Height = 2.0 meters, Trunk 
Height = 8.0 meters, Vegetation Temperature = 20.0 degrees C. 
Soil Volumetric Moisture = 0.15, Soil RMS Roughness = 0.45 cm, Soil Correlation 
Length = 15.0 cm, Soil % Sand = 10.0 cm, Soil % Clay = 60.0 cm, Soil Temperature = 
20.0 degrees C., Model Type = Physical Optics 
Trunk Gravimetric Moisture = 0.5, Trunk Dry Density = 0.408 cm, Trunk Diameter = 
24.0 cm 
Leaf Gravimetric Moisture = 0.8, Leaf Dry Density = 0.005 cm, Leaf Density = 5000 
leaves per cubic meter, Leaf Diameter = 6.18 cm, Leaf Thickness = 0.1 cm 
Branch Gravimetric Moisture = 0.4, Branch Dry Density = 0.1 cm, Branch Density = 
5.1 branches per cubic meter, Branch Diameter = 0.7 cm, Branch Length =0.75 meters.  
 
Canopy Density = 0.11 Trees per square meter, Crown Height = 2.0 meters, Trunk 
Height = 8.0 meters, Vegetation Temperature = 20.0 degrees C. 
Soil Volumetric Moisture = 0.15, Soil RMS Roughness = 0.45 cm, Soil Correlation 
Length = 15.0 cm, Soil % Sand = 10.0 cm, Soil % Clay = 60.0 cm, Soil Temperature = 
20.0 degrees C., Model Type = Physical Optics                
Trunk Gravimetric Moisture = 0.5, Trunk Dry Density = 0.408 cm, Trunk Diameter = 
24.0 cm 
Leaf Gravimetric Moisture = 0.8, Leaf Dry Density = 0.005 cm, Leaf Density = 
830leaves per cubic meter, Leaf Diameter = 6.18 cm, Leaf Thickness = 0.1 cm 
Branch Gravimetric Moisture = 0.4, Branch Dry Density = 0.1 cm, Branch Density =4.1 
branches per cubic meter, Branch Diameter = 0.7 cm, Branch Length = 0.75 meters 
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Appendix IX. Summary of observed and predicted values of AGB (t/ha) for 

combined sites based on training stands (25 stands) and validation stands (16 stands) 

from 2010 0.25 ha stand level. 

Observed AGB Training Predicted AGB Observed AGB Validation Predicted AGB 

 HH VV HV  HH VV HV 

T ha-1 T ha-1 T ha-1 T ha-1 T ha-1 T ha-1 T ha-1 T ha-1 

31.41 102.96 258.72 192.56 32.99 110.50 76.20 23.34 

52.12 8.43 2.85 1.37 54.88 234.16 134.52 100.47 

81.85 159.20 315.84 253.31 102.59 319.38 585.98 476.54 

85.09 79.52 233.36 184.61 107.69 158.52 127.33 83.28 

104.20 18.75 4.34 1.84 122.23 77.23 84.13 39.49 

113.96 211.17 28.63 796.71 123.29 171.99 132.97 120.80 

122.92 163.11 318.02 306.25 175.45 158.93 323.97 116.99 

152.40 339.98 97.42 74.02 203.60 316.83 572.06 499.77 

157.04 256.31 687.13 774.62 205.05 104.11 247.27 341.39 

168.87 212.88 18.95 18.66 225.95 423.93 287.62 107.09 

169.97 148.05 470.69 414.35 306.15 450.18 954.30 297.78 

200.77 100.50 301.0 285.46 360.04 449.30 1038.98 572.80 

204.77 150.46 451.66 466.94 361.61 216.07 705.29 207.91 

210.51 114.35 311.53 249.77 382.74 309.67 520.00 205.11 

239.17 196.38 518.28 480.26 426.33 125.45 356.32 222.09 

242.09 236.44 868.18 682.54 469.39 545.95 721.68 620.91 

255.43 2283.93 74.49 151.62     

264.24 187.09 477.21 466.94     

284.44 207.79 570.67 529.93     

301.64 1778.37 70.02 120.23     

342.43 115.28 253.44 185.91     

356.36 151.68 433.40 402.86     

401.67 296.39 628.36 572.54     

410.07 275.62 650.34 614.24     

520.13 978.67 222.39 108.96     
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Appendix X. Summary of observed and predicted values of AGB (t/ha) for 

combined sites based on training stands (25 stands) and validation stands (16 stands) 

from 2014 0.25 ha stand level. 

Observed AGB Training Predicted AGB Observed AGB Validation Predicted AGB 

 HH VV HV  HH VV HV 

T ha-1 T ha-1 T ha-1 T ha-1 T ha-1 T ha-1 T ha-1 T ha-1 

31.41 108.93 152.61 194.71 32.99 55.79 123.69 183.22 

52.12 22.19 9.68 4.56 54.88 79.90 110.40 166.28 

81.85 101.40 158.41 127.20 102.59 76.74 93.47 185.28 

85.09 44.04 81.01 67.17 107.69 192.07 250.77 304.00 

104.20 36.82 13.40 5.67 122.23 76.35 109.79 157.62 

113.96 170.87 57.62 500.88 123.29 73.75 126.58 125.92 

122.92 76.14 101.84 120.77 175.45 124.08 406.88 286.91 

152.40 231.08 148.61 86.62 203.60 167.13 158.49 234.16 

157.04 235.86 1111.14 720.39 205.05 219.23 256.51 365.24 

168.87 171.75 41.87 31.31 225.95 112.54 276.82 197.73 

169.97 95.36 323.23 353.73 306.15 146.94 312.55 210.05 

200.77 109.49 158.41 237.17 360.04 174.76 287.31 298.93 

204.77 277.81 419.54 535.86 361.61 92.38 348.11 209.27 

210.51 68.03 106.84 83.53 382.74 209.08 239.55 293.39 

239.17 356.96 433.15 622.92 426.33 247.83 494.39 196.84 

242.09 298.44 1020.44 790.95 469.39 233.12 329.14 217.08 

255.43 772.88 120.75 147.10     

264.24 543.01 725.86 914.70     

284.44 465.75 761.48 1014.79     

301.64 659.53 115.1 123.94     

342.43 117.62 163.55 150.97     

356.36 327.22 437.79 544.27     

401.67 263.95 340.90 400.67     

410.07 577.39 625.36 573.27     

520.13 451.67 281.46 115.25     
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