UNSTEADY FLUID FLOW AROUND CERTAIN BLUFF BODIES

by

Sisira J Polpitivye

This thesis is submitted to the University of
Leicester as a partial fulfilment of
the degree of Doctor of Philosophy

July 1986.



UMI Number: U001373

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U001373
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346






It is shown in this thesis that fluid dynamic
forces S on unsteadily moving bluff bodies depend on the
history of motion as much as on the velocity and
acceleration of motion. An empirical relationship between
the motion of the body and the resulting force is obtained
by analysing the effect of the history of motion on the
fluid dynamic_force at any instant.

The fluid dynamic force, velocity and acceleration
are obtained as functions of +time, by oscillating test
models 1in water while they are being towed at constant
speed. The test models used are: ' :

1. a two-dimensional circular cylinder,
2. a rectangular block with square frontal area and

fineness ratio of 3:1,

3. a cruciform parachute canopy with arm ratio of 4:1,

and

4. a ring-slot parachute canopy.
The functions by which the history of flow affects the
future forces, are evaluated by using the Convolution
Integral. The results show that the effects due to history
of both velocity and acceleration are by -no means
hegligible, that 1is the velocity and the acceleration at a
specific time prior +to any instant is so domineering that
the fluid dynamic force can approximately be expressed as
being delayed by this period of time. This “time-delay’, or
time lag (as opposed to phase-lag) in the part of the
measured force 1is found to be independent of the frequency
of excitation. 1In the light of this evidence, a prediction
model is suggested for estimating unsteady fluid forces.
The data required for the application of this prediction
model are obtained experimentally.

Chapter One of this thesis gives a brief
explanation of +the historical background of unsteady fluid
dynamics. The effects of acceleration on the fluid dynamic
force, 1in both ideal and real fluids, are discussed in
Chapter Two. Explained in Chapter Three are the techniques
used for building the force prediction model, and data
acguisition. The experimental procedure is explained in
Chapter ©Four. Chapter Five gives the empirical form of the
prediction model, and some data that are used in association
with this model.
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The main objectives of the research programme
leading to the production of this thesis are:

1. To consider a relationship for forces on bluff bodies
moving unsteadily through real fluids,

2. To develop a model form of the relationship, based on
experimental results for a limited number of test
models, and to discuss the advantages of and the
limitations on the applications of this model,

3. To provide experimental data for modelling forces on
bluff bodies moving unsteadily through real fluids,
with dynamics of parachutes being the main field of
application, and

4. To discuss the nature of future experiments that
should be conducted for widening the scope of

application of the empirical relationship.
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NOMENCLATURE

Characteristic area of the submerged body.

Radius of circle or cylinder.

Coefficients of the Fourier
Series(i=0,1,2,....; j=1,2,....).

Acceleration number (ﬁL/Uz)

Coefficient of history-dependent force (of
eq. 1.5).

Inertia coefficient (The coefficient of
acceleration-dependent force component of
the fluid moving past a stationary body.)

Coefficient of velocity-dependent force
component in the lateral (normal) direction:
force in the lateral direction
non-dimensionalised by the group 0.5pAU|U|,
where U is the total velocity of the body.

Coefficient of velocity-dependent force
component (the velocity-dependent force
non-dimensionalised by the group 0.5pAU|U]J).

Coefficient of velocity-dependent force

component, 1in the axial direction: force in
the axial direction non-dimensionalised by
the group O0.5pAU|U|, where U is the total

ve.ocity of the body.

Coefficient of the total fluid dynamic force

(the total force non-dimensionalised by the

group O.5pAU|U]|)



F(t)

G(t)

I(t)

Diameter of cylinder.

Inside diameter

Outside diameter

Young’s Modulus.

Froude number.

Total fluid dynamic force on a submerged‘body.

Rigidity Modulus.

Impulse Reségnse Function (IRF).

Acceleration of gravity.

Depth (distance from the surface of the ship
tank to the centre of the test model).

Second moment of area.

An input function (of time).

Polar moment of area.

Added mass coefficient (The coefficient of
acceleration-dependent force component on a
submerged body moving through a fluid which
is stationary at infinity.); stiffness of
the test sting.

Added mass coefficient in the ith

th

direction

due to acceleration in the j direction.

Keulegen-Carpenter number (UmT/D).

Characteristic 1length of the submerged body;
length of test sting.

Mass of body.
Mass per unit length (of rod).
Normal unit vector to surface S; Vortex

shedding frequency.

Reynolds number based on the relative velocity



I(z)

VI

between the submerged body and the
surrounding fluid.
Corner radius of a square cylinder.

Surface vector.

Strouhal number.

Time.

Period of oscillation.

Total kinetic energy of the fluid in the flow
field.

Velocity.

Maximum velocity in sinusoidal motion.

Velocity as a function of time.

Acceleration (dU/dt).

Peak value of the oscillatory combonent of
lateral velocity.

Peak value of +the oscillation component of
axial velocity.

Velocity of translation of the towing

carriage.

Complex potential function.

Complex variable, z = x+iy.

Co-ordinates of the core of the kth vortex
(Zk=xk+iyk).

Complex conjugate of the function f(z).

Angle of attack.

Added mass tensor (i=1,2,..,6; 3j=1,2,..,6).

Velocity potential function; phase angle.



VII

Dynamic viscosity of fluid.

Density of fluid.

Circulation of fluid.

Standard deviation.

A time constant; the dummy variable in the
convolution integral.

Kinematic viscosity of fluid.

Reference volume; Volume of fluid displaced by
the submerged body.

Crank angle of oscillation test rig

frequency.

Phase angle.
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CHAPTER ONE

SURVEY OF LITERATURE RELATING TO FLUID DYNAMIC
FORCES ON BODIES DUE TO UNSTEADY MOTION



Submerged bodies in unsteady flow pose an
interesting as well as a challenging problem to the fluid
dynamicist. Demahd for theoretical knowledge, and for data
for application are -in¢reasing, for both analytical and
practical reasons. Common examples of applications are: the
dynamics of parachutes, airships, submarines and ships.
Further applications include design of offshore structures
and high-sided vehicles where engineers are required to
evaluate the maximum possible fluid dynamic forces under
severe loading conditions and loading frequencies.

The total fluid dynamic force acting on a submerged
body is given by the vectorial sum of the pressure
distribution and the skin friction over the entire surface.
Such forces, for incompressible, infinite fluids, depend on
a number of parameters:

1. the geometric shape of the body and its attitude of
motion;

2. the nature of motion of the body and that of the
surrounding fluid: whether linear, angular or
oscillatory;

3. the magnitudes of the velocity and the acceleration
of the body and those of the surrounding fluid;
and

4., the Reynolds number of the flow.
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Effects of free stream disturbances, fluid surfaces and
other nearby boundaries may also occur under special
circumstances. It 1s required for analytical and design
purposes to estimate these forces using either theoretical
or experimental model expressions.

The fluid dynamic force on a particular shape of
body with a certain attitude of motion 1is commonly
considered tobconsist of two components:

1. velocity-dependent force:

This force component is a function of the relative

velocity between the body and the surrounding

fluid. It is common to relate this force, in
non-dimensional forms, to. the Reynolds number of
flow.

2. acceleration-dependent force:

This component of the total force is a function of

the acceleration of the body and that of the free

stream. The kinetic energy of the fluid which is
otherwise undisturbed is increased by the presence
of a submerged body. This increase of kinetic
energy due to the submerged body continuously
changes if the motion of the body is unsteady. In
such state the acceleration-dependent force 1is
associated with the rate of change of energy

imparted by +the body +to the surrounding fluid.

These forces are normally related to
non-dimensional form of acceleration and
oscillation. They'may also depend on the Reynolds

number of flow.
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If the fluid at infinity is not at rest, the acceleration of
the free stream produces a pressure gradient[1a] analogous
to the force of buoyancy due to the acceleration of gravity.
In the case of an accelerated free stream the presence of
this buoyancy force, enhances the acceleration-dependent
force. Correspondingly it reduces this force for a
decelerating free-stream.

If the fluid dynamic force is considered to consist
of two components as stated above, it is logical to model
both velocity-dependent and acceleration-dependent
components of this force by suitable coefficients introduced
in each term. It then remains +to determine these
coefficients either theoretically of experimentally for
various shapes of bodies so that for unsteady motion by
using these determinations the total force on these bodies
can be predicted at any instant 1in time. Experimental
methods of determining these coefficients normally include
measuring total forces on submerged bodies by imparting
known modes of motion.

Since for any particular direction of motion there
are two empirical coefficients involved they can be
determined from experimental results only if either one or
both of them are assumed to be constants. These
coefficients can then be used under similar circumstances to
predict the fluid dynamic forces. The reliability of the
numerical values obtained for these coefficients depends on
their «consistency 1in correlation with various independent
parameters, such as Reynolds number or non-dimensional
acceleration (acceleration number) or the effect of flow

history.
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The parameters influencing the fluid dynamic force
due to unsteady motion are discussed 1in +the first two
chapters of the thesis. 1In Chapter Five the coefficients
involved in the prediction models are correlated with these

parameters.



1.1 INTRODUCTION

Under steady conditions, incompressible fluid
dynamic forces on submerged bodies are developed because of
circulation of fluid in the vicinity of the body. 1In
potential flow fields these forces can be derived
analytically but in 1real fluid motion +the analytical
approach fails because the exact circulation of the
surrounding fluid is not known. This circulation arises,
partly as a result of dissipation due to the boundary layer
and flow separation, and partly due to the asymmetry of the
flow field as illustrated by the flow around aerofoils. The
analytical methods of deriving forces on submerged bodies
where there 1is flow separation are known to be complicated
and inaccurate. Therefore, the forces are normally
determined by experimental methods. The experimentally
measured forces are suitably non-dimensionalised by the
group 0-5DU2A, where U is the relative velocity between the
body and the free stream and A the characteristic area, to
obtain a coefficient Cn' For most geometric shapes
correlations between CH in steady flow and Reynolds number
have successfully been achieved 1in the past. Numerous

examples can be found in reference [13].
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The mechanics of accelerated flow past solid bodies
have been studied by many authors although success in
extending the analysis beyond potential flow theory has been
somewhat limited. Consequently, the demand of data for
practical applications is yet to be fulfilled.

The unsteady forces depend on acceleration, as much
as on velocity of motion. The total force F(t) can be

expressed by a function f, such that[12]

F(t) = f(o,L,u,U,0) (1.1)

For arbitrary modes of motion the parameters on the right

hand side of equation (1.1) at any instant in time are

independent of each other. Hence dimensional analysis
permits:
F(t) oUL UL
— = £ (—, —) (1.2)
0.5p0U0 po v vl

However, unlike steady motion, there are numerous
different ways of 1imparting acceleration to a body. e.g.
purely accelerated motion, motion started from rest and
oscillatory motion with or without mean velocity. The flow
field produced by each mode of motion is often different
from others, even at instants when the velocity and
acceleration from one mode of motion are identical to those
of another. Thus, +the fluid dynamic forces for these
conditions can differ from each other substantially.

Therefore, compared with steady flow, the number of
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parameters involved 1s substantially more +than those
equations (1.1) and (1.2) show, and the analyses become
relatively harder. Assumptions and approximations made, in
order to simplify the analysis and correlate data, vary from
ohe researcher to another.

This substantial increase in complexity is mainly
due to the forces that are acceleration-dependent. Although
the existence of the accgleration~dependent forces has been
known for more than a century, experimental data available

are hardly adequate for predicting such forces.

1.1.1 Acceleration-Dependent Force and The Concept of Added
Mass

A solid body 1in motion in a fluid also sets the
surrounding fluid in motion. Acceleration-dependent forces
arise because o0f either the increasing or the decreasing
velocity of the body. This 1in turn either increases or
decreases the rates at which both the kinetic energy and the
momentum are imparted to the surrounding fluid. The rates
at which the Kkinetic energy and the momentum of the fluid
increase, demand additional work and forces to be applied to
the moving body.

The effect of acceleration-dependent force on a
submerged body 1s significant (a) at velocities where the
magnitude of the acceleration-dependent force is comparable
with the velocity-dependent force and (b) when the mass of
the submerged body 1s similar in magnitude to that of the
displaced fluid, thus the inertia of the body is comparable

with that of the fluid around it.
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1.1.1.1 Acceleration-Dependent Forces in Potential Flow

By integrating over the entire flow field the
kinetic energy of the fluid disturbed by a moving submerged
body, Lamb[25] showed that, in a potential flow field, the
rate of change of kinetic energy of the disturbed fluid is a
finite quantity proportional to that of the body itself.
Thus, the whole effect of the presence of the fluid can be
effectively ieplaced by a mass proportional to that of
either the displaced fluid or a reference volume of fluid,
the proportionality constant being a function 6f the
geometric shape of +the body and its attitude of motion.
This 1increased mass 1is commonly known as the “added mass’
and is equal to keV where ¢ is the density of the fluid,
¥ a reference volume which usually is the volume of fluid
displaced by the body and k the coefficient of
acceleration-dependent force or the coefficient of added
mass. For some bodies, e.g. parachute canopies, the volume
of fluid which they displace is not readily determinable and
it 1is for this reason that an arbitrary reference volume is
defined. Since k, 1in potential flow, depends on the
geometric shape of the body and its attitude of motion only,
the concept of added mass becomes a useful method of
avoiding the complicated process of deriving the fluid
dynamic force by analysing the pressure distribution around
the body.

An analogous term, “drift mass’® which is equal to
the added mass was introduced by Darwin[10] who analysed the
mass of +the fluid displaced by a moving solid object

(fig.1.1).
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For fluids accelerating over bodies rather than
bodies accelerating in fluids which are otherwise at rest,
the acceleration-dependent force is further increased by a
force equal to o¥U due to the pressure gradient in the free
stream. The coefficient of acceleration-dependent force
thus becomes, C, = k + 1.0. Details of more general forms
of motion in which both the body as well as the surtounding
fluid have accelerations, can be found in page 24 of the
paper by Hogben[14].

The complex potential function in an ideal fluid
can be established analytically because the potential flow
field around a certain body is unique. 1In the case where a
body is moving in an otherwise undisturbed fluid, it depends
only on the shape and attitude of the body and the
instantaneous velocity of the body relative to the
surrounding fluid. The velocity at any point in the fluid,
for unit relative velocity of the body, 1is invariant.
Therefore, the Xinetic energy of the surrounding fluid is
always proportional to that of the body. 1i.e. the added
masses 1in potential flow are unique and they can be derived
analytically. For defined reference axes they depend only
on the body shape and its direction of motion: linear ox
angular.

Given 1in table 1.1 are values of coefficients of
added mass in potential flow for some common geometric

shapes[16,33].
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1.1.1 ccele ion- ndent Forces i eal Fluids

Forces on moving bodies in potential flow fields
can conveniently be calculated analytically because the
corresponding complex potential functions can be determined.
The flow fields associated with real fluids, however, are
different from those of ideal fluids because of the boundary
layer developed around the immersed body and the resulting
flow separation. Therefore, for bluff bodies for example,
the added masses based on potential flow analysis often have
little or no practical relevance. Where analytical methods
of determining added masses fail, recourse is ﬁade to
experimental methods. Consequently, in order to estimate
the fluid dynamic forces due to unsteady motion fluid
dynamicists and engineers are required to depend on

published experimental data.
1. XPERIMENTAL RESULTS FO STEADY ow (0) DIES

Because of their viscous properties real fluids
behave differently from ideal fluids. Thus the real fluid
flow around submerged bodies are often very different from
those in potential flow. Nevertheless, there are specific
circumstances. under which similarities <can be observed

between flows of real and ideal fluids around bodies.

1.2.1 Similarities Between Real Fluids and Potential Flow

Past experimental results have shown that 1in
certain modes of motion, the added mass for a real fluid can

be very similar 1in magnitude to that for an ideal fluid.
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Keulegan and Carpenter[22] conducted experiments by
measuring forces on stationary cylinders due to waves. At
low amplitudes of oscillation the experimental coefficient
of acceleration-dependent force was found to be very close
to the potential flow value. Sarpkaya’'s[36] experimental
results for unseparated flow around cylinders have shown
that the total fluid dynamic force consists, almost
entirely, of the acceleration-dependent force only. Such
resemblances between theoretical and experimental values
will occur under certain circumstances:

1. Around stream-lined bodies real flow 1is not
dissimilar to that in potential flow. Therefore,
the fluid dynamic forces for such bodies are close
to those in ideal fluid.

2. In low amplitude oscillatory motion of either the
submerged body or the surrounding fluid the
amplitude of oscillation may not be sufficiently
large for flow separation fo occur. The flow
field, therefore} remains similar to that in
potential flbw, and

3. During early stages of motion started from rest,
sufficient time will not have elapsed for flow
separation to occur.

For such cases since real flow fields around bodies without
sharp edges are similar +to those of potential flow,
experimental values of fluid dynamic forces are very similar

to the theoretical ones.
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1.2.2 Eloﬁ Around Bluff Bodies

However, if the actual flow field is very different
from potential flow, the experimental results discussed
above have 1little practical relevance. This is often the
case for flow around bluff bodies. By nature, bluff bodies
differ from stream-lined bodies, because over a large region
of the body surface there is flow separation, making the
flow field substantially different from those in potential
flow. Therefore, any analysis of the fluid dynamic forces
must be based on appropriate experimental data. Thus,
experimental data are required in order that forces on bluff

bodies may be estimated, for practical applications.

1. LATIONSHIP FO AD QT

In the present text it'will be considered that the
fluid dynamic forces on submerged bodies occur due to two
reasons: (a) the effect of circulation in the flow field
around the body. As von Karman and Sears[21] have shown the
corresponding force is given by the rate of change of total
momentum associated with the circulation, and (b) the effect
due to added mass. The former is normally associated with
the relative velocity between +the submerged body and the
surrounding fluid. The latter is effective when there is
acceleration of either the body or the fluid. Therefore, by
considering the fluid dynamic force to be of two components,
one that is velocity-dependent and the other that is
acceleration-dependent, it can be expressed using a formula

of the type given by Morison’s wave equation[28] as
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F(t)

CH 0.5pA U|U| + keVvV dU/dt (1.3)

where, lu] is the modulus of the velocity. The
non-dimensional parameters CR and k are the coefficient of
velocity-dependent component and the coefficignt of
acceleration-dependent component of +the total force. 1In
real fluids these coe{ficients must be determined from
experimental results. The data are then applied for

estimating forces on submerged bodies at various stages of

their unsteady motion.

1.4 ELATIVE MPORTANC E XIMUM FLUID DYNAMIC FORCE

1E STANTANEO C

The nature of the data required for predicting
forces in unsteady motion depends very much on the
applications of such data. In designing offshore
structures, for example, the emphasis 1is on the maximum
forces, and the frequencies of loading. For ships
submarines, airships and parachutes instantaneous forces
rather than the maxima are relevant, because the dynamics of
'such bodies continuously depend on the external forces at
any instant in time. Thirdly, in analysing the stability of
a high-sided vehicle, subjected to lateral gusts, one is
interested not only on the maximum values of the forces, but
the period over which such forces are sustained.

An investigation was conducted by the author at the
early stages of the present research programme, to estimate

fluid dynamic forces on transportation vehicles, and to
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analyse the relative magnitude of the acceleration-dependent
force component. The investigation included deriving the
fluid dynamic forces on high-sided road vehicles, due to
lateral gusts. The gust velocity was idealized by a sine
function for convenient calculation procedures. Figure 1.2
shows the variation of the fluid dynamic force due to the
lateral gust, based on average values of experimentally
determined fgrce coefficients. The immediate significance
of the graph 1is that although the acceleration-dependent
force 1is relatively high, being about 23% of the maximum
value of the force for low velocities, it has very little
effect on the maximum force of the gust (about 6%). The
main reason 1is that the maximum value of the fluid dynamic
force is dominated by the velocity of flow. At points where
the velocity is maximum, the acceleration 1is zero.
Therefore, the effect of the acceleration-dependent
component can be ignored when analysing the fluid dynamic
forces on high-sided vehicles, without seriously affecting
their stability.

Although forces on either ships or submarines due
to sea waves have characteristics similar to those of gusts,
the overall effect is somewhat different. The peak values
of forces do have a bearing on the stability and structural
loading on these vessels. Forces during stages other than
the peak force have continuous effects on their motion, both
in direction and magnitude. Furthermore, the frequencies of
loading may lock-in with the natural frequencies of

vibration or vortex shedding, and therefore, require
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attention. This argument applies, not only to ships, but to
airships and parachutes.

In general, wherever external forces continuously
affect the motion, both velocity and acceleration-dependent
force components are significant. Thus, data for predicting
forces due to unsteady flow are used in two fundamentally
different applications:

1. to estimate the maximum fluid dynamic forces and the
natural frequencies. (e.qg. gusts loading on

high-sided vehicles; wave loading on offshore

structures). The objective 1is to analyse the
structural stability under various loading
conditions;

2. to predict dynamic behaviour and to evaluate dynamic
stability of airships, parachutes, ships and
submarines and to ahalyse the continuous effects of
forces arising from the movements due to
manoeuvring and external disturbances.

Therefore, the nature of data published by various authors
tend to be different from one to another, because of the
different 1interests +they pursue in terms of applications.
For example, 1in purely translational motion instantaneous
acceleration number has been considered as a suitable
independent parameter to which the force coefficients can be
related[17]. Oon the other hand Keulegan and Carpenter[22]
related coefficients of forces produced by waves on
cylindrical components, to the ratio of “amplitude of wave

motion/diameter of cylinder”. The applications of these
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published data can be limited to the circumstances under

which the experimental results have been acquired.
.5 (0) NTAL DAT OR CE COEFFICIE

Equation (1.3) has been used in many forms in order
to analyse forces on the bodies submerged in real fluids in
time dependent motion. Experimental methods used for
deriving non-dimensional force coefficients date back to
early parts of +this century. Outlined briefly in the
following sections of this chgpter are certain developments
in wunsteady fluid dynamics, leading up to the present study

of research.
1 valuatin Force cC fici S m Xperimental

An expression such as Morison’s equation (eqg.1.3)
used to represent forces 1in unsteady motion includes two
unknowns : Cn and k. i.e. experimental values of F(t), U and
du/dt lead to simultaneous equations. Unless predetermined
values are substituted for either CH or k, these equations
can be solved to evaluate these coefficients only if either
one or botﬁ are assumed to be constants (with respect to
time). Therefore, any experimental method by which the
coefficients 1in equation (1.3) are evaluated, must be
accompanied by suitable assumptions in order to simplify the

process of evaluating these coefficients.
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1.5.2 Ouasi-steady Assumption

A guasi-steady expression 1is defined by a model
such as Morison’s equation, in which the coefficient of
velocity-dependernit force CH is assumed to possess a value
equal to that in steady flow. This assumption substantially
simplifies the process of deriving the coefficients of
acceleration-dependent force, because steady flow data for
most geometric shapes of bodies are readily available from
publications such as that of Hoerner[13]. Consequently, the
only unknown in egquation (1.3) is calculated by measuring
forces on submerged bodies, due to known velocities and
accelerations involved in the unsteady motion.

Using steady flow values of CH for spheres moving
through water, Frazer and Simmons[12] obtained coefficients
of acceleration-dependent force that varied from 0.87 (for
low velocities) to 3.4, (for high velocities), compared with
0.5 for potential flow. Iversen and Balent[17], using
circular plates moving perpendicular to their planes,
obtained <coefficients which were much higher than their
theoretical values. | Furthermore, as can be seen in figure
1.3 the uncertainty of these coefficieﬁts for 1low
acceleration numbers (An) was considerable. Experimental
values obtained by Relf and Jones[32] were 87% higher than
corresponding theoretical values for spheres, and up to 40%
higher for streamlined airship models. Using a torsional
pendulum immersed in various 1liquids Yu[44] obtained the
added mass of circular discs and short cylinders. The

experimental values of added mass for circular discs were
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found to be 28% higher than the corresponding potential flow
values.,

These higher values of acceleration-dependent
force, obtained by different experiments show that the added
masses 1involved 1in real fluids, derived using quasi-steady
assumption, are generally greater than those in an ideal
flow. This additional added mass may occur as a result of
the attached boundary layer and the downstream wake due to
flow separation, thus increasing the mass of fluid
“attached’” to the body.

This quasi-steady mathematical model has was used
for evaluating acceleration-dependent force coefficients of
fully inflated parachutes[43,42,8]. The steady values of
velocity-dependent force coefficients for various angles of
attack were evaluated by towing model parachutes in fluids,
at constant speeds. Typical data for added mass
coefficients for parachute canopy models are shown in figure

1.4.

.5.3 verage Force Coefficients in Oscillator low

An alternative method of determining the
coefficients in equation (1.3) is to assume that for a given
type of motion both CH and k are constants.

Studies of wave forces on offshore structures led
Keulegan and Carpenter[22] to calculate average force
coefficients in oscillatory flow. They investigated the
case 1in which the velocity and the acceleration of fluid in
the region where the body is submerged are considered to be

sinusoidal. Thus the acceleration of flow always leads the
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velocity by 90 degrees,. The velocity-dependent and the
acceleration-dependent components of the total force were
separated by Fourier Transformation and the coefficients of
the Fourier series were used to derive the average values of
force coefficients.

Having found no correlation between the ngnolds
number of flow and the force coefficients, Keulegan and
Carpenter 1introduced the periodic parameter which relates
the amplitﬁde of oscillation induced by waves to the
characteristic length of the submerged body. This
non-dimensional parameter, UmT/D is now commonly known as
the Keulegan-Carpenter number (Um; maximum velocity of the
cycle; T: period of sinusoidal oscillation; D:
characteristic 1length.) Figures 1.5a and 1.5b show some
typical values of force coefficients given by Keulegan and
Carpenter. The correlation between the Keulegan-Carpenter
number and the force coefficients was also confirmed by
later researchers. A comprehensive review of average force
coefficients obtained by different authors can be found in
reference [15]. It is now popular to present, mainly for
design applications ‘in offshore structures, experimental
data showing force coefficients correlated with
Keulegan-Carpenter number. Since these data were determined
using simple harmonic motion their application may well be
limited.

Bearman et al[2]-conducted experiments using square
cylinders with different corner radii. The sinusoidal
motion was imparted using a U-tube filled with water. The

force coefficients of velocity-dependent force and
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acceleration-dependent force were correlated with
Keulegan-Carpenter number. They concluded that the effect
0of the corner radius r, for square cylinders of width D is
such that the minimum value of the coefficient of
velocity~-dependent force occurs when the ratio r/D is about
0.3. By contrast, in steady flow the coefficient of fluid
dynamic force 1is a minimum when r/D is equal to 0.5 - i.e.

for circular cylinder[13].

1.5.4 Application of Potential Flow Coefficients
Assuminhg that the coefficient of

acceleration-dependent force 1is equal to that in potential
flow and wusing Morison’s equation (eqg. 1.3), Maull and
Milliner[26] estimated the instantaneous values of
velocity-dependent forces on circular cylinders 'in
oscillatory flow. The coefficients of velocity-dependent
force were calculated using experimentally obtained forces
in equation (1.3). They used water oscillating in a U-tube
as their working medium. The oscillatory forces were based
on purely sinusoidal flow, with no mean velocity. One
significant phenomenon seen 1in their results is that the
maximum value of velocity-dependent force occurs not when
the velocity in the c¢cycle 1is maximum but at a time just
after this maximum velocity. Maull and Milliner extended
their studies by relating the velocity-dependent component
of the force +to the movements of the vortices shed by the
cylinder. Considering a control volume, around which the

total circulation of fluid 1is zero, they derived a
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relationship between the circulation around the c¢ylinder and
its fluid dynamic force. Using this relationship they
argued that 1t 1s possible for the velocity-dependent
in-line force +to reach its maximum at an instant after the
maximum velocity of the c¢yclic motion. Furthermore, the
experimental results showed that the coefficients of
velocity-dependent force at points near the extreme ends of
the cyclic motion can have nhegative values.

Sarpkaya and Garrison[35,37] modelled the forces on
a circular cylinder due +to flow started impulsively from
rest to a constant speed. Using the rate of change of
momentum of the vortices in the flow field and considering
three stages of flow development - start of separation;
shedding of symmetric vortices; and shedding of asymmetric
vortices - they were able to model force coefficients that
agreed with the experimental results (see fig.1.6).

Von Karman and Sears[21] analysed 1lift forces on
aerofoils in non-uniform flow by analysing the circulation
around the body and that around the trailing vortices. They
represented the total 1ift force by three components:

1. a component due to the added mass,
2. a guasi-steady 1lift force analogous to the steady
flow 1lift force and
3. a component that depends explicitly on the vorticity
distribution in the wake.
Effects on the fluid dynamic force due to the vortices in

the flow field are discussed in Chapter Two of this thesis.
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1.5.5 Application of Experimentally Obtained Data

As discussed 1in the previous section, numerous
methods have been used to obtain the force coefficients in
unsteady motion. A summary of published data based on
experimental methods, 1s given in Table 1.2. There are
discrepancies among data for certain coefficients obtained
by different authors. Whether these results are reliable
for engineering applications 1is open to question, because of
these discrepancies. Undoubtedly, more experimental work is
required to build a bank of ‘consistent’ data, so that
unsteady fluid dynamic forces under a variety of conditions
can be modelled with confidence. Furthermore, experimental
methods are important because fluid dynamicists should
understand better the physics involved in unsteady flow of

real fluids.

1.6 EFFECT OF FLOW HISTORY

The model relationship given by equation (1.3) on
which the experiments mentioned in Section 1.5, were based,
has two essential features:

1. It implies that the fluid dynamic force at any
instant in time consists of two components: (a) a
velocity-dependent force, and (b) an
acceleration-dependent force.

2. The instantaneous fluid dynamic force depends only on
the values of velocity and of acceleration at that

instant.
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The way in which the motion is imparted does not appear in
equation (1.3). It fails to recognise that real fluids
possess a ‘memory  effect, due to their viscous properties,
that would have some influence at subsequent instants. i.e.
the velocity and acceleration at previous stages of motion
are known to affect the fluid dynamic force at later stages.
Vortices 1in the wake, for example, which have certain
influence on the <circulation around the submerged bodies
have been shed at previous instants. Since the fluid
dynamic force on the body strongly depends on the
circulation around 1it, the history of motion should be
included 1in any form of expression designed to model these
forces. By doing so the physics of unsteady flow 1is more

appropriately represented.

1.6.1 Flow History Effects in Stokes Flow

Theoretical analysis of the effects due to history
of motion on fluid dynamic force was méde as early as 1851,
by Stokes[40], and later by Basset[1] and by Lorxd
Rayleigh[31]. The énalysis was valid only for Stokes flow
(i.e. very low Reynolds number flow), where the flow is
laminar. The flow field in laminar flow can be solved using
the Navier-Stokes equation. The fluid dynamic forces can be
derived analytically by neglecting the convective terms.
The total force on a sphere as expressed by Lord
Rayleigh[31] consists of the following components.
1. The velocity-dependent component, ahalogous to that

in steady flow, which is a function of the relative
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velocity between the body and the fluid, (hence the
Reynolds number of flow).
2. The acceleration-dependent force which consists of

two components:
(a) the force due to the motion of the fluid
surrounding the body, which would be the same when
the fluid is inviscid, and
(b) the force due to the history effect of flow
which would vanish either when +the fluid is
inviscid or when there had been no acceleration for
a long period of time.

Rayleigh[31] expressed the total force on a sphere of

diameter D, in very low Reynolds number flow as:

18v 1 du
F(t) = o¥{ — U + - —
D? 2 dt
9 t U(t)
+ — J(v/7m) [ ———— drt} (1.4)
D -0 J(t-T)

where U(t) 1s the free-stream velocity and 1t is a dummy
variable.

Equation (1.4) has since been used by Brush et
al[7], oOrdar and Hamilton[29] and Karanfilian and Kotas[20]
in the modified form given in equation (1.5) in which the
velocity-dependent component was replaced by a term which is

proportional to the free stream dynamic pressure.
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F(t) . = C, 1/20aUlU| + C,o¥U

t U(t)

+ ¢ 1% J(mue)

dt (1.5)
- f(t-T)

where, Cn'cn and CH are the respective coefficients of
velocity, acceleration and history dependent components of
the total force. This modification was included so that the
expression could be uséd for moderate and high Reynolds
number.

The Reynolds nhumber range, for spheres, 1in
experiments of Brush et al[7] was 1.0 to 540. After
claiming satisfactory correlations between the experimental
results and the model form given by equation (1.5) Brush et
al emphasized the need for more studies in unsteady flow.
In simple harmonic motion of spheres, Odar and Hamilton[29]
used steady flow coefficients of velocity-dependent force to
derive the coefficient of acceleration-dependent component,
for instants during the c¢ycle when the history effect is
expected to be Zero. The coefficient of the
history-dependent force component was then evaluated using
these values of CR and k. The maximum Reynolds number for
these experiments was 62. Using simple harmonic motion for
spheres, Karanfillian and Kotas[20] obtained experimental
results for Reynolds numbers in the range 100 to 10,000.
They used published data of steady flow force coefficients,
to evaluate the coefficients of history-dependent force by
considering instants at which the acceleration dependent

force 1is zero. They concluded that the average values of
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the coefficients of acceleration-dependent force and history
effects were similar to their theoretical values of 0.5 and
1.5 respectively.
The author is unaware of any industrial
applications of either these results or the model

relationship given by equation (1.5).

1.6.2 Eunctiénal Analysis Applied in Unsteady Motion
Applying linear theory in ship dynamics, Bishop et
al.[4,5,6] related the motion, as a function of time, to the
fluid dynamic force on scaled ship models. The velocity of
the ship model was expressed as a series of impulses. The
total force on the ship was modelled by adding the “effect
of each impulse of motion’. If the force due to a unit
impulse of velocity is given by G(t), the total force due
to the velocity U(t), and its history was expressed, using

the convolution integral, as

F(t) = ItG(t-T) U(t) drt (1.6)
where, function G(t), known as the Impulse Response Function
(IRF) was determined from experimental results. This
function accounts for the whole time history of U(t). The
analysis was simplified by assuming slow motion derivatives,
thus ignoring the effects of higher order derivatives of the
velocity of the ship models. .

Strictly speaking equation (1.6) is applicable only

for linear systems where the total force due to a certailn
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function of motion 1is made up of the vectorial sum of the
elemental forces due to the elemental velocities that make
up the function of motion. 1i.e. 1f the force due to the
motion X (t) is Y (t) and that due to X, (t) is Y, (t), then
the force due to X1(t)+X2(t) must be equal to Y1(t)+Y2(t).
Using experimental results, Bishop et al[5] concluded that
this method was capable of very accurate specification of
forces, even though linear theory was applied to a practical
problem which normally requires non-linear representation.

Cummins[9] made a theoretical analysis of the use
of the Impulse Response Function in ship dynamics and
derived the equations representing the response of a ship
hull. The author is unaware of any comparisons made between

the Cummins’ mathematical model and experimental results.

1.7 COMMENTS ON PUBLISHED DATA

Despite the large amount of experimental work
carried out up to now on unsteady motion in fluids, the
results available are deficient 1in certain aspects. The
shapes of bodies for which data are available are limited.
There are serious conflicts and uncertainties regarding the
reliability of ppblished data. Engineering applications of
these published data are made 1inconvenient because of
certain discrepancies in the results obtained by different
methods. The only possible exception applies to the force
coefficients obtained by Keulegan ahnd Carpenter[22]. Their
data, nevertheless, have strictly limited applications: only

for sinusoidal oscillatory flow with zero mean velocity.
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Fundamental questions regarding the variations in the flow
coefficients and the effects of flow history remain yet

unanswered.
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Figure 1.1 Drift mass of a circular cylinder
with radius a.

The broken lines show the initial and final
positions of the fluid particles moved by the
circular cylinder. The drift mass is given by the
fluid enclosed by the two broken lines[10].
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disc moving through water parpendicular to its
plane[17].
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Figure 1.5a & 1.5b Graphs of velocity-dependent
force coefficient Cp: and acceleration-dependent
force coefficient Cu versus the periodic
parameter UnT/D for circular cylinders in
sinusoidally oscillating flow[22]. (These data
have been revised by later researchers.)
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Figure 1.6 Coefficient of velocity-dependent

force on a circular cylinder due to flow

impulsively started from rest to a constant

velocity U[37]. .

experimental

——e---e--—-e—- model based on the <circulation
around the cylinder derived using
the movements of the surrounding
vortices.
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CHAPTER TMO

THEORIES IN UNSTEADY FLOW
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2.1 INTRODUCTION

The phenomenon o©of added mass 1s widely used in
relating the acceleration of submerged bodies and the
resulting fluid dynamic force, because in unsteady motion it
avoids the much more complicated process of deriving the
pressure distribution around the submerged body. A
submerged body in motion imparts velocity to the particles
of fluid around 1it. In a potential flow field these
particle velocities, per unit velocity of the body, depend
only on the shape of the body and the co-ordinates of the
considered locations with respect to the body.

The added mass of a body in a potential flow field,
can be derived by analysing the rate of change of either the
momentum or the kinetic energy of the surrounding fluid.
The disadvantage in the momentum method is that the integral
of momentum of +the fluid around +the body diverges with
increasing distance from the body([3], often leading to
indeterminate functions. Therefore, the added mass is
usually evaluated by the kinetic energy method.

A brief description of the procedure involved in
determining the added mass in potential flow is included in

this chapter. Certain parameters that strongly influence
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the unsteady force on the bodies in real fluids are also

discussed.

2.2 ADDED MASS TENSOR

A solid body moving +through an infinite fluid
continuously imparts energy to the surrounding medium. If
the fluid possess a velocity potential ¢, its kinetic energy

in general canh be given as:

T = lo [ ¢(3¢/0n)ds (2.1)

where n is the outward normal to the surface S. Since there
are six degrees of freedom of motion: threé for the linear
directions and three for the angular directions, the
velocity potential function of the' flow field ¢ can be
described by the vectorial sum of the components for each

direction as:

= U1¢ + U ¢. + ... + U_¢ (2.2)

th direction

Ui represents the component of velocity in the i
of motion, and ¢i the corresponding velocity potential for
unit velocity. The added mass tensor uij, is defined such

that +the total kinetic energy of the surrounding fluid is

given by:

T = 0.5« U U,
ij i3]



Lo¥]
0

where, i=1,2,...,6 and j=1,2,...,6.

Substitution of equation (2.2) in equation (2.1)[38], gives

2T 0¢.

- = o = ofe ——gds (2.3)
U.u on

The c¢oefficients of the added mass tensor k  are obtained
1]
by dividing the added mass tensor o . by the mass of a
ij
reference volume ¥, of fluid, which conventionally is the

volume displaced by the submerged body.

kij = Gij/QV (2.4)

wWith i=1,2,...,6 and 3j=1,2,...,6, there are 36
possible components of +the added mass tensor: 9 for
translation, 9 for rotation and 18 result from the
interaction between directions. Since O, = e and
therefore k . = k. ., the number of components reduces to 6

ij ji

for translation, 6 for rotation and 9 for interaction, the
total being 21.

These coefficients kij, for ideal fluids, are
independent of time as well as the magnitudes of velocities
and accelerations in the linear and angular directions. 1In
the case of fluids of which the boundaries are at infinity

they depend only on the geometric shape of +the body

inclusive of its attitude.
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2.3 APPLICATIONS AND LIMITATIONS OF APPLYING POTENTIAL_FLOW

VALUES OF ADDED SS_TO AL _FLUIDS

Added mass coefficients for ideal fluids kij,
given by equation (2.4), generally differ from those in real
fluids because they do not consider the real fluid phenomena
of boundary layer and flow separation. Therefore, as
discussed in Section 1.2 of +the previous chapter,
application of these coefficients to real fluids has strict
limitations. Generally, real fluid flow fields around bluff
bodies are not at all similar to ideal flow fields, because
of flow separation and the formation of a wake downstream of
the body. The equations associated with such flow fields
cannot be accurately derived by analytical methods.
Therefore, it 1is not possible to make a theoretical approach
for evaluating the real fluid added masses.

If, however, a set of equations based on either
experimental or theoretical considerations could be written
to represent a real fluid flow field such that the velocity
at any point in such a flow field could be calculated using
these equations, then the added masses and the fluid dynamic
forces could be derived analytically. Certain parameters
that could be considered in writing equations to represent a
real fluid flow field are discussed in the following
section. The difficulties encountered, in formulating such
equations for accurate representation of the dynamics of

real fluids, also are discussed.
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.4 ODELIL ATED FLOW OUND A CIRCULAR CYLINDER

As an example a circular cylinder submerged in an
infinite fluid, the free stream of which is undisturbed, can
be considered for this purpose.

At some distance away, and upstream, the effect of
a submerged body on the surrounding fluid is negligible. 1In
this 1region a 1real fluid would behave as if 1t were
inviscid. In a real fluid a region of vorticity is formed
in the boundary layer and downstream of the body. These
~vortices would ‘create’ a set of image vortices which are
equal in strength but opposite in direction, thus
representing the effect of the presence of the body. The
co-ordinates of the image vortices, as shown in figure 2.1,
depend on the curvature of the body surface. . The
circulation around and the férce on the body due to each
vortex ‘in the flow field can be <calculated from the
circulation and the location of each vortex and the linear
velocity of 1its core, such that each image vortex would
satisfy the conditions on the surface of +the body.
Therefore, separated flow over a circular cylinder can be
approximately modelled by superimposing a family of
vortices, representing the boundary layer and the wake, 1in
an otherwise inviscid flow field, as shown in figure 2.2.
A circular cylinder is considered as an example because the
complex potential function of the flow around it can be
derived with relative ease using the Circle Theorem given by
Milne-Thomson[27]. Once the complex potential function has

been derived the principle of the analysis used for deriving
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the forces on the cylinder can be applied to other shapes of
bodies also.

Now, 1n an 1incompressible and infinite fluid the
force on a stationary submerged body due to the free stream
velocity U(t), can be considered as two components:

1. In a potential flow field the fluid dynamic force on

a submerged body due to the free stream

acceleration igﬂequal to C”Qv(du/dt) where cH, for

a circular cylinder, is equal to 2.0.

2. The <circulation of fluid around a submerged bedy at
“any instant in time produces a force equal to the
rate of change of momentum due to this circulation.

The momentum of circulation of a pair of vortices

is given by the product of +the density of the

fluid, the «circulation around each vortex and the
linear distance between the pair. Thus the
instantaneous c¢irculation, hence the fluid dynamic
force on the submerged body can be evaluated if the
location and the circulation of each vortex in the
flow field are Kknown.

In such an analysis the fluid 1is treated as inviscid. The

boundary layer and the downstream wake is considered as a

group of vortices for which potential flow theory can be

applied.
2.4.1 Complex Potential Function of Flow Around a Circular
Cvlinder

Let the complex potential function of a

two-dimensional flow field be f(z) where 2z = x + 1iy.
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Using the Circle Theorem given by Milne Thomson[27], this
flow function can be modified +to accommodate a circular
cylinder, the centre of which 1s at the origin of the

z-plane of the two dimensional flow field:

a?l

w(z) = f(z) + f(—) (2.5)
z

where f(z) is +the complex conjugate of the function f(z).
For example, the complex potential function of circular

cylinder in a uniform stream of velocity U is

w = -U (z + az/z )
2.4.2 Comple otential Function of Vortices in_the Flow
Field

The complex potential for a vortex of circulation T

at the origin of the z-plane is given by:

W = i(r/2w)lnz

k th

The potential function of the vortex with its centre at

the point Z, therefore, is:

wk = i(Fk/Zn)ln(z—zk)

where 2z = + ]
k X 1y,

Using equation (2.5) 1t can be shown that the
presence of a circular cylinder at the origin as shown in

figure 2.3, leads to:

Mo = i(r/2mlnz-z) - i(F /2v) 1n(a’/z - %)

and ln(aZ/z—Ek) = ln(z—az/ik) - lnz + 1n(—£k)
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Physically this represents two vortices one being
at z=0. This could be removed still giving a solution to
the problem. Of these two expressions we choose that which
models the physical situation under investigation. The
difference is between vortices being generated by the
cylinder”and vortices already existing and being convected
past the cylinder. This latter situation requires the
presence of the vortex at the centre whereas in the former

case it would be removed. Thus the velocity potential

function for a flow field with m vorftices is given by

2
a .
m
w(z) = U(z + —) + i(1/2w) ¥ T 1In(z-z )
A k=1 k k
i : a?
- i(1/2w) © T 1n(z-—)
_ k=1 k z
k (2.6)
3 he orces n he linde ue -0 low Field
Described by the Complex Function w(z)
Using Blasius” theorem as generalized by

Milne-Thomson[27] the 1lift(L) and drag(D) forces on a

submerged body due to a flow field w(z) are given by

D -iL ite/2) ¢ (dw/dz)? az

- ip (3/08t) 6 w az (2.7)

The fluid dynamic force on the submerged body can
be ‘derived using equation (2.7) 1if the complex potential

function of the flow field around that body is known.
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Examples of such applications can be found in published
literature[27,37]. However, the algebra involved in such
analysis 1s rather 1lengthy and complex. Besides, the
solutions of such methods are often inaccurate because
insufficient data are available to represent the vortices in
real fluids adequately.

In the present text, the author wishes to avoid
this lengthy algebraic procedure by considering the momentum
of vortices 1in the flow field, as suggested by von Karman
and Sears[21]. In this method, as described earlier in this
chapter, +the momentum Qf a pair of vortices is expressed by
the product of the density of fluid, the circulation of each
vortex and the linear distance between them. The force
applied on the submerged body is thus given by the rate of
change of this momentum of vortices.

By considering a two dimensional vortex of strength

Fk at point z and 1its image, to satisfy the boundary
condition at the surface of the cylinder, at point az/zk ohe

can write the momentum of the vortex as,
Momentum = ’— r 2,z
- ! Qk(zk _a/zk)
{

Writing the force on the submerged body as given by
the rate of change of momentum, and bearing in mind the
presence of the pressure gradient due to the free stream

acceleration, one gets,
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m
- L i r - i
z o] k(uk 1vk)

D - 1L

+ 2mpa® (au/at)
2

m a ar
- ip r (Zk—'—‘) —x ®
k=1 z ot
k
m 0 az
+ ip [ Fk _(—) (2.8)
k=1 ot zk

The velocity (un,vn) of the core of the nth vortex is given

by[37]:

a i m rk
-u + iv = -U+U— + — I
n n z 27 k=1 z -Z
n
i m Fk
+ — I —~ (2.9)

2w k=1 z - a2/z

n k

The mathematical model given by equations (2.8) and
(2.9) can effectively be used to evaluate the fluid dynamic
force only 1if the co-ordinates of the vortices, their
velocities, c¢irculation and rates of either dgrowth or
diffusion are known. Neither a theoretical nor a practical
method is known to the author for obtaining these details.
Until such data are available this analytical approach is
limited to merely a discussion of what the actual physics

might be, in the light of the given parameters.

2.4.4 Forces Due _to _an Isolated Vortex

The effect of the circulation of fluid in the

vicinity of the submerged <cylinder, on the fluid dynamic
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force applied on it, can be discussed with relatively less
complexity by considering the effect of an isolated vortex.
Assuming circulation to be constant with time, and leaving
the effects due to the movements of the image vortek and the
force due to the acceleration of the free stream, the fluid
dynamic force 1in equation (2.8) due to the‘ kth vortex

(fig. 2.2) can be written as

D = I r v (2'10)

In the case of vortex produced by the flow
separation over the cylinder surface, the drag force on the
cylinder would be positive if the vortex moves away from the
X-axis. Conversely, 1f the vortex moves towards the x-axis
this would produce a negative drag on the cylinder.

Using potential flow éheory it can be shown that,
due to accelerated flow, the pressure at any point on the
submerged cylinder 1is given by 2ag(dU/dt)CosB. It can be
seen therefore, that at the “rear stagnation point” (on the
surface at 8=w) the pressure is decreased (the magnitude may
be somewhat different for real fluids) for accelerated flow,
and increased for decelerated flow. The vortices behind the
cylinder can thus expected to be forced either towards or

away from the x-axis due +to this additicnal pressure

gradient normal to the free stream acceleration.

2.5 SUMMARY: Accelerated Motion in Read Fluids
In unsteady fluid dynamics the flow fields

associated with separated flow change from one state to
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another depending on the variations 1in the free stream
velocity and acceleration. Therefore, the coefficients of
velocity-dependent component and acceleration-dependent
component of the total force continuously change with the
shape of the flow field.

In separated flow, the vortices 1in the wake
downstream of the body move towards the axis of symmetry of
the main stream when the acceleration is positive.
Therefore, the width ofwthe wake is reduced. Furthermore,
the effect of accceleration in the free stream is to shift
the point of separation downstream, thus increasing the
region of attached flow and thus reducing the width of the
wake. In negative acceleration the reverse occurs.

Since the velocity-dependent force in the direction
of the free stream 1is substantially dependent on the
characteristics of the downstream wake, the effect free
stream acceleration on the fluid dynamic force can be summed

up as in Table 2.1.

for acceleration for deceleration
width of the wake decreases increases
velocity-dependent | lower than the higher than the
force coefficient steady flow value steady flow value

Table 2.1 The effect of free stream acceleration
on the flow field and the velocity-dependent force.
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Given these characteristics, when the
velocity-dependent component of the total force in
accelerated fluids is compared with the force in steady flow
for corresponding velocities the former shows the
characteristic of “trying +to catch up with® the latter.
i.e. when there 1is acceleration 1in the free stream the
continuously increasing velocity-dependent component of the
force on thé submerged body at any instant, is always less
than the force 1in steady flow for the corresponding
velocity. Similarly, if the flow 1is deceleratéd, the
continuously decreasing velocity-dependent force is always
greater than the corresponding force in steady flow. This
specific characteristic of the velocity-dependent force is
present because the wake downstream of the body becomes
narrower when the acceleration is positive, and wider when
the acceleration is negative.

If, for example, the unsteady motion of the body is
such +that the mean velocity of the body is always greater
than the fluctuations in the velocity, then the flow field
will be such that the vortices generated due to flow
separation always lie downstream of the body. 1In such a
case the behaviour of the flow field can be described by the
properties given in Table 2.1. Therefore, in an experiment
where there is no “flow reversal’, the measured force would
show the characteristic of continuous “lagging” behind the
quasi-steady model. This behaviour would occur because of
the movements of the vortices, which have been shed at
previous instants and the widening and the narrowing of the

downstream wake. It also shows that the velocities and
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LHAPTER THREE

DEVELOPMENT OF A MODEL RELATIONSHIP FOR
PREDICTING FORCES ON BLUFF BODIES IN UNSTEADY MOTION
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DEVELOPMENT OF A MODEL RELATIONSHIP FOR

PREDICTING FORCES ON BLUFF BODIES IN UNSTEAQY‘MOTION

3.1 INTRODUCTION

In a potential flow field with boundaries at
infinity, the circulétion around and the added mass of a
submerged body are dependent only on the shape and the
orientation of the body, and the instantaneous values of the
relative velocity between the body and the free stream.
When the motion of either the body or the surrounding fluid
is not steady the «circulation around the body changes
instantaneously with any changes in the relative velocity.
Therefore, +the fluid dynamic forces on a body in potential
flow are dependent only on the instantaneous velocities and
accelerations inclusive of the shape and attitude of the
body.

In real fluids, however, the fluid dynamic forces
can successfully be evaluated using instantaneous velocities
only when the flow is steady. Unlike potential flow, due to
their viscous properties real fluids do not respond
instantaneously to any changes 1in velocity of either the
body or the surrounding fluid. Furthermore, if there is
flow separation, the circulation around the downstrean
vortices that have been shed at previous instants has a

strong influence on the fluid dynamic force on the body.
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The point of separation can vary with the unsteadiness of
the fluid, thus resulting in a continuously varying
downstream wake characteristics. Therefore, when the motion
of either +the submerged body or the surrounding real fluid
is uns£eady, not only the instantaneous velocity and
acceleration but also their history affect the unsteady
force. Thus, -data associated with an expression similar to
Morison’s equation which considers instantaneous velocities
and accelerations only, can have limitations in applications
because the way in which motion 1is imparted is not
represented.

For the analysis in the following sections of this
chapter, 1is is considered that the fiuid dynamic force on a
submerged body 1s a function of the entire history of the
motion of the body: 1i.e. both the wvelocity and the
acceleration. The rates at which the effects of history of
motion either 1rises or decays with time 15 given by the
characteristics of the “Impulse Response Function’® which is

derived using experimental results.
3.2 TIMPULSE RESPONSE FUNCTION (IRF) OF FLUID DYNAMIC FORCE

The fluid dynamic forces on submerged bodies in
steady flow are normally non-dimensionalised by the group
O.SQAU2 where U 1s the relative velocity between the body
and the free stream. If the motioq is unsteady the group
o¥du/dt is used to. non-dimensionalise the
acceleration-dependent component of the total force. Since,

in real fluids, the history of both the velocity as well as
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the acceleration can affect the fluid dynamic force, it can
be considered that the total unsteady force in a particular
direction at any instant consists of two components:

1. a velocity-dependent force component, which 1is

dependent on the term 0.5pAU|U| and its history,

2. an acceleration-dependent force component, which is a
function of accelerations and the history of both
the body as well as the surrounding fluid.
The +time function of 0.5gAU|U| and that of p¥dU/dt can be
described by two series of impulses as shown in figure C.1.
By introducing the Impulse Response Function G1(t), as the
elemental time function of force due to a unit impulse of
0.5pAU}U|, the total velocity-dependent force at any instant
can be written as the sum of the elemental force component
due to each impulse in the series. This procedure is
adopted assuming a linear relationship between the velocity
and the acceleration and the corresponding fluid dynamic
force on the body. Whether such methods can be used
effectively to write a relationship for forces in real
fluids will be discussed in Chapter Five of this thesis.

The convolution integral 1is thus used to express

the velocity-dependent force at any instant t as:

t .
J 172 o A U(T)|U(T)] G1(t—r) drt
where 1 1s a dummy variable. The effect of the entire

history of velocity 1is given by the shape of the function

G1(t). This expression 1is valid, whether ox not the
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velocity at previous stages of flow carry any weight.
Similarly, the acceleration-dependent force can be

written as:

t ]

I eV U(x) Gz(t—r) dr
The Impulse Response Functions G1(t) and Gz(t) are to be
determined from experimental results. The total fluid

dynamic force at any instant in time t is given by the sum

of the two component forces.

F(t)

I
e

1/2 ¢ A U(t)|U(T)] G, (t-t1) dr

+ J ev U(x) G, (t-7) dr (3.1)

3.2.1 Properties of the Convolution Integral

The initial values of the velocity and acceleration
involved in the motion are given by those at the lower limit
of the convolution integral. The way in which the integral
is constructed 1is a mathematical reflection of two general
properties of- a physical realizable system. Firstly,
“future® values of velocities and accelerations cannot
effect ‘earlier’ values o©of the fluid dynamic force.
Secondly, instantaneous response in the part of F(t) is
ruled out[23].

If the history effects are negligible (i.e. the two

components of the fluid dynamic force on the submerged body
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are dependent on the instantaneous velocity and

instantaneous acceleration respectively) then for a given
function of velocity and acceleration G1(t) and Gz(t) can
approximately be‘'given by impulse functions, leading to the

more familiar Morison’s equation given by equation (1.3).

3.2.2 Derxrivation of Impulse Response Function
If the motion were purely sinusoidal, then the
acceleration-dependent force 1in equation (1.3) would lead
the velocity-dependent force by 90°. 1In such a cases the
two component forces of equation (3.1) could be analysed
separately by obtaining the Fourier Transformation of the
total force. If the mode of motion is arbitrary, the
methods used to derive the velocity-dependent component and
the acceleration-dependent component of the total force, can
be much more complicated. Thus, the following procedure is
suggested for deriving the Impulse Response Function (IRF)
relating the force to the velocity and the acceleration.
| The relationship given by equation (3.1) 1is
modified such that: 4
1. The velocity-dependent component and the
acceleration-dependent component of the total force
are combined so that a common Impulse Response
Function can be used to relate the unsteady motion
to the unsteady force.
2. Suitable coefficients are introduced in the two
components of force to indicate the weight carried
by the velocity and the acceleration. The starting

values of theée coefficients are based on the
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steady flow coefficients of the velocity-dependent
force (CH) and the potential flow coefficient of

the acceleration-dependent force (k).

Thus, the model form of the fluid dynamic force given by

equation (3.1) is re-written as:

F(t) = J A CR 1/2 ¢ A U(T)|U(T)]
+ k o¥ U(1) )} G(t-t) dr (3.2)

Equation (3.2) can also be written using notations often

used in published literature[23] as:

F(t) = (C, 1/2 eAU(£)|U(L)| + keVO(t)} * G(t)

(3.2a)

The coefficients CR and k and the Impulse Response Function
G(t) given 1in equation (3.2) and (3.2a) are derived using
the procedure outlined below.

The time series of F(t) and the terms inside the
“{}° brackets on the right hand side of the equation (3.2a)
are obtained from experimental results. The evaluation
procedure for the function G(t) is carried out by converting
the time domain functions into frequency domain ones.

The experimcental results, as described in the next
chapter, were obtained by oscillating test models while they
were being towed ﬁnder water at a constant speed. All the

experimental variables (e.g. the fluid dynamic force, the
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velocity of the test model, its acceleration, etc.) were of
a periodic nature. These data can conveniently be expressed
as harmonics of the fundamental frequency of oscillation, by

transforming into Fourier series[24], such that:

C, 1/2 e A UR)|U(E)] + k o V U(t)

= A + f An cos(nwt+¢n) (3.3a)
and, the measured force:

E(t) = B + [ Bn cos(nwt+?n) (3.3b)

where w is the fundamental frequency of the periodic motion.
The amplitude of each harmonic indicates the magnitude of
the force due to the corresponding frequency of excitation.
Now consider the oscillating bluff body to be a
system, the input to which is the effect of the velocity and
the acceleration, given on the left hand side of equation
(3.3a). The corresponding output of the system is the fluid
dynamic force given on the left hand side of equation
(3.3b). 1If the system is considered to be linear, then each
term in the input series will result in an output at the
same frequency. In such a case the input and the output
Fourier series can be related by considering one frequency
at a time. Therefore, the modulus of the Impulse Response

Function at each frequency as given by Raven[30] is:

|G(inw) | = Bn/A (3.4a)
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and the argument is given by

[G(inw) = Y -4 (3.4b)

‘The modulus (or the amplitude) of the Impulse
Response Function at a frequency of nw is given by An/Bn,
and fhe argument (oxr the phase angle) by (Wn-¢n). From the
graphs of modulus and argument plotted against the frequency
of excitation an empirical relationship for the Impulse
Response Function is obtained.

The Impulse Response Function thus obtained is used
to relate the fluid dynamic force to the velocity and the
acceleration of the test models. The‘uncertainty imposed by
the linearity concept will be discussed in Chapter Five.

The empirical form of the IRF is then iteratively
used to re-estimate the values of coefficients Cn and k, in

order to obtain a better correlation with the experimental

results. These new values of CR and k, and the
corresponding IRF, are then used to re-write the
relationship given by equation (3.2). This iterative

procedure is then repeated until the best fit is achieved on
experimental results. The best fit is considered to be
reached when the difference between the measured force and
the reconstructed force has reached its minimum value. A
flow chart illustrating this data analysis procedure is

given in Appendix A.
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3.3 CONCLUSIONS

The experimental values of the coefficients CH and
k and the Impulse Response Function G(t) derived from the
method outlined in the previous section are used to write a
relationship between the fluid dynamic force and the history
of the velocity and the acceleration. Chapter Five of this
thesis includes a discussion on the model thus derived, and

the coefficients CH and k based on experimental results.



CHAPTER HIAR

APPARATUS AND EXPERIMENTAL PROCEDURE
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APPARATUS AND EXPERTMENTAL PROCEDURE

In an experimental programme the required time
dependent motion was obtained by towing bluff body test
models along the ship-tank shown in figure 4.1. Before the
beginning of each test the towing speed of the carriage was
pre-set to a desired value. Test models were oscillated
either along the towing motion axis or at other known angles
to this axis. The velﬁcities and the accelerations were
calculated based on the speed of the towing carriage and the

frequency of oscillation of the test rig.

4.1 SHIP TANK

The ship tank in the Southamptdn College of Higher
Education is 61m long, 3.7m wide and 1.8m deep. The towing
carriage which runs on rails on either side along the length
of the tank can be operated at speeds of up to five metres
per second. Towing speeds up to 0.82 metres per second were
used during the present experimental investigation. A
“trigger switch® attached to one of the wheels of the
carriage generates an electrical signal for every revolution
of the wheel. The translation speed of the trolley is
determined by the diameter of the wheel and the frequency of

these electrical signals.



64

4.2 OSCILLATION TEST RIG

The models are oscillated using a piston-connecting
rod mechanism, shown in figure 4.2, which is run by a
variable speed drive. Technical specifications of the drive
are given in Table 4.1.

The principle involved in the oscillations test rig
is analogous to the piston-connecting rod assembly of a
reciprocating engine. A reciprocating block which is guided
by two rails is made to oscillate in a manner similar to
that of a piston of the reciprocating engine. The rig could
be run at speeds from 10.23 rpm to 32.21 rpm. The
reciprocating block has an overall amplitude of oscillation
of 379 mm.

The test model is attached to the lower end of a
test sting, the wupper end of wﬁich is firmly fixed to the
reciprocating block as shown in figures 4.3 and 4.4. The
test rig assembly is firmly hung from the underside of the
towing carriage. The test models can be oscillated at any
angle to the towing-carriage-motion-axis (ship tank axis)
simply by rotating the test rig by the appropriate angle. A
360° potentiometer, attached to the driving shaft via a 1:1
gear assembly, gives the position of the crank at any
instant in time. A constant d.c. potential difference of
5.0 volts is supplied to the potentiometer. The output of
the potentiometer 1is pre-set to read zero when the crank
angle 8 equals zero. During the experiments this output is
given by 5.0 sin(8) volts. The velocity and acceleration of
the model are calculated using the formulae given in

Appendix A.
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4.3 TEST STING

The sting-test model assembly is shown in figure
4.4, Any force applied on the test model creates a bending
moment on the test sting. This causes a change 1in
resistance of strain gauges, which are firmly stuck on the
surface of the sting comprising a strain gauge bridge. The
input voltage to each of the three strain gauge bridges
shown in figure 4.5, i; 2.0 volts d.c. Before the tests
each bridge is balanced for zero output. The output signals
from +the bridges are amplified via a set of strain gauge
d.c. amplifiers (model CIL-SGA 1100) and recorded in
analogue form on a chart and in digital form on a magnetic
floppy disc. The sting has been tested for no interaction
between strain gauge bridges[42], i.e. the strain gauge set
for the axial direction for example, responds to forces in
the axial direction only. The test sting is calibrated
using static loads, before and after the tests. Its natural
frequencies in various directions, both in air and in water,

with and without models attached to its end are also

determined.

4.4 EXPERIMENTAL RESULTS

The experimental results are recorded in analogue
form for immediate reference and in digital form for later
analysis. The readings obtained are:

1. interrupts from the “trigger switch® attached to the

wheel of the towing carriage;
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2. potentiometer output, indicating the position of the
crank of the oscillation rig;

3. amplified signals from the strain bridges (see figure
3.5, strain gauge assemblies) due to

- force on the test model in the lateral (normal)
direction, given by bridge 1 2 3 4

- force 1in the axial direction, given by bridge

1'2:3’4'
- moment on the test model about the axis normal to
the axial and lateral directions, given by bridge

1"2"3"4" .

4.4.1 Analogque Recording

The analogue form of the data were recorded using a
W+W Recorder (model 360,420) multichannel chart-recorder.
Figures 4.6a and 4.6b show two typical records obtained from

the tests.

4.4.2 Digital Recording

The analogue form of the strain gauge output due to
the fluid dynamic forces and moments, and from potentiometer
were converted into digital form via an analogue/digital
converter. The results were recorded on floppy discs using
a RML 3802 computer, at user specified rates of data (up to
one thousand sets of reading per second.) These data were
later transferred to magnetic tapes for rapid and
comprehensive analysis using the Leicester University main

computers CDC-CYBER 73, VMS/VAX 11/785 and VMS/VAX 8600.
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4.5 TEST MODELS

The details of the test models used during the

experiments are given below.

4.5.1 Circular Cylinder

The circular cylinder used for experiments is made
from timber and is painted with sealant to avoid penetration
by water. It is 114mm in diameter and 1000mm in length.
Two end plates are fitted to the cylinder to obviate
three-dimensional effects. So that the cylinder is
neutrally buoyant in water an iron rod is inserted through
its centre-line.

The characteristic 1length of the cylinder is its
diameter and its projected area 1is considered as the
characteristic area. The characteristic volume is the
volume of fluid which 1is displaced by ﬁhe submerged

cylinder. The mass of the test model in air is 10.775kg.

4.5.2 Rectangular Block

A neutrally-buoyant rectangular block is of size
457mm X 153mm x 152.5mm. Its characteristic length and area
are 0.457mm and 0.0699 m°  respectively, and its
characteristic volume 1is the volume of the fluid which it

displaces. The mass of the test model in air is 9.15kg.

4.5.3 Cruciform Parachute Canopy

The non-porous parachute canopy shown in figure 4.7
is made from nylon. Its arm ratio (L1/L2) = 4.0 where

L1 = 0.48m (see figure 4.7a).
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A 9mm mild steel rod, one end of which is attached
to the end of the parachute canopy rigging lines runs
through a hole at the apex of the canopy. The other end of
the rod is threaded for mounting at the end of the sting.

The characteristic 1length of the cruciform canopy

model 1is the diameter of a hemispherical shell with a

surface area equivalent to that of the canopy fabric. The
projected area of such a hemispherical shell is taken as the
characteristic area of the test model and the characteristic
volume is given by its included volume. The length of each

of the sixteen rigging lines is 0.285 m.

i.e.

Area of the fabric = 0.101 m?
Characteristic length = 0.253 m
Characteristic area = 0.05 m?
Characteristic volume = 4.26x10°°
Mass of test model in air = 0.35 kg

4.5.4 Ring-Slot Parachute Canopy

Figure 4.8 shows the model in its fully developed
position. Disrégarding the slots, the surface area of the
fabric is 0.163 m®, The charateristic length, area and
volume of thé ring-slot canopy are given by the diameter,
the projected area and the included volume, respectively of
a hemispherical shell, the surface area of which 1is
equivalent to +that of the canopy fabric. There are eight
rigging lines, each 0.275 m long.

i.e.

Characteristic length = 0.32 m



69
0.0817 m?

Characteristic area

Characteristic volume 8.75x1073 3

0.34 Kg

I

Mass of test model in air
4.6 EXPERIMENTAL PROCEDURE

The experiments were conducted for both steady

motion and 6scillatory motion.

4.6.1 Steady Motion Tests

The forces for steady motion were measured by
towing the models along +the 1length of the ship tank at
constant speed. In the case of the circular cylinder the
experiments were conducted by towing the cylinder with its
axis normal +to the direction of towing. The steady flow
data for the rectangular block was obtained by towing it
with its 153 x 152.5 mm’ side facing the forward direction.
In the case of parachute models, they were towed at
different angles of attack for each test, so that steady
flow data as functibns of the angle of attack can be

obtained.

4.6.2 Oscillatory Modes of Motion

These modes were obtained by oscillating the test
models, while they were being translated at constant speed.
For measuring forces on the cylinder in oscillation, its
axis was maintained normal to its motion. The direction of
motion was considered to be irrelevant because of the

axi-symmetry of the model. In the case of the rectangular
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block and the parachute models, however, the angle of
attack, and hence the force coefficients, are very dependent
on the mode of motion. Thus, it was necessary to obtain
data for wvarious angles of attack. As shown in figure 4.9
the modes of motion were divided into two categories:

1. lateral oscillations and

2. in-line oscillations.

4.6.2.1 Lateral Oscillation of Model

While a model was being translated along the ship
tank at constant speed, with its axis of symmetry along the
towing motion axis, it was oscillated in the lateral
direction. i.e. 1in the case of the rectangular block and
the parachute canopy models, at 90° to the axis of symmetry
of the model. This experiment simulates either a lateral
gust on a steadily—@oving high—sided vehicle, or the lateral
oscillation of a descending parachute, the vertical speed of
which remains substantially constant. For this mode of
motion the acceleration in the axial direction of the model
is 2zero. Nevertheless, the force in the axial direction is
not expected to be constant because of the variations in the
angle of attack. The oscillatory lateral force, on the
other hand, is dependent on the constantly changing

velocity, acceleration and angle of attack.

4.6.2.2 In-line Oscillation of Model

As shown in figure 4.9 the test model was towed
along the 1length of the ship tank at constant speed, while

it was oscillated in the same direction as the linear
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translation of the towing carriage. This experiment
simulates either a head-on gust on a high-sided vehicle or
the axial oscillation of a parachute on which forces in the
axial direction are due to the time dependent velocity as
well as the time dependent acceleration. The motion of the
rectangular block was such that the square side (153mm X
152.5mm) always faced the oncomimg flow at right angles to
the surface. Therefore the motion was always in the axial
direction. The speeds of towing, as well as the speeds of
oscillations, used 1in the experiments, were such that the
displacement of the test model at any time during the cycle
is 1in the same direction as that of the towing carriage.
This procedure was adopted in order to avoid any negative
axial force on the parachute canopy which in releasing the
tension of the 1rigging lines, would cause no force to be
imparted by them to the test sting. Magnitudes of
oscillatory velocities up to the speed of the towing
carriage speed were used.

The tests were repeated by setting the test model
to small angles of attack, which are maintained constant for
each test. By this means, velocity-dependent forces and
acceleration-dependent forces at constant angles of attack
can be analysed for both normal and axial directions. 1In
the case of parachutes the maximum angle of attack for which
these experiments are conducted ﬁas restricted to the angle

at which the fabric canopy would collapse.
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4.7 REYNOLDS NUMBER OF FLOW

The range of Reynolds number for the cyclic motion,
based on the Characteristic 1length of each test model is

given in Table 4.2.

4.8 REDUCED VELOCITY AND PERIODIC PARAMETER

The range of reduced velocity UT/nL and the.range
of non-dimensional periodic parameters UN/nL and U /nL,
based on the fundamental frequency of oscillation n, are
given in tables 4.3 and 4.4. UT is the towing carriage
velocity and UN and U0 are the maximum velocity of the

oscillatory cdmponent of the total velocity for lateral

oscillation and in-line oscillation respectively.



Drive: "Kopp® variable speed
drive, by Allspeeds
Limited.
input: constant speed, three
phase motor;
0.25 kWw; 1350 rpm.
output: from 10.23 to 32.21
rpm.
Crank length: 189.5 mm
connecting
rod length: 285.0 mm
Table 4.1 Technical specifications of the

variable speed drive
rig.

of the oscillation test
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Test model ' Reynolds number
circular cylinder: 1.0x10* - 7 _.0x10*
[
[
' ings1ot parachute: | 40010 - 20016

Table 4.2 Range of Reynolds number.
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TESTMODEL U
T/nL UN/nL
Rectangular
Block 5.4-9.5 ~ 3.2
____________________________ S
Cruciform
Parachute 6.1-8.4 = 5.8
Ring-slot
Parachute 5.5-6.8 = 4.6
Table 4.3 Reduced velocity and periopdic

parameter for lateral oscillations.
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TESTMODEL UT /nL UO /nL
Circular

Cylinder ~ 19 =~ 13
Rectangular

Block 5 - 10.5 x 3.2
Cruciform

Parachute = 7.7 = 5.8
Ring-slot

Parachute = 6.2 ~ 4.6

Table 4.4 Reduced velocity and periopdic

parameter for in-line oscillations.



Figure 4.1 The ship-tank of the Southampton
College of Higher Education



Figure 4.2 The 'piston-connecting
mechanism that is used to oscillate
models, at pre-set frequencies.

the



Rails

Ball bearings

Strain Gauges

Test sting

Connecting rod

Figure 4.3 The reciprocating block of the
oscillation rig, run on two rails. The upper
end of the test sting is firmly attached to the
reciprocating block, by a single nut.
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TK_"A'E}EQL\ Reciprocating block

{——— Strain gauges

- %

31.7 mm
28.4% mm

Qutside diameter
Inside diameter

€
K
(=]
Outside diameter = 25.4 mm
Inside diameter = 22.1 mm.
I
y |-
H '
L 0.25m J
| d -1
Test model
Figure 4.4 Assembly of test sting and test

model.

80



81

T=2poul
3s93 9Y3} Uuo IJuUSWOW  SSIEDTPUT .h.E.Zul 3IOS

UOT3ID2ITP
TeTxe uT 20103 S23EeDTPUT ,p.€.2.1 39S

: UOT3ID3ITP
Tewxou uT 32103 S93eOTPUT & € ¢ | 39S

-*8 0Z1L ST °bneb urteIlS Yoes JO ID2UEBISTSaI BYlL
‘398 39bneb uteals yYoes I0J JFTNDITO /6PTIq BYIF
pue sabnebH utexlzs ayjz Jo suoT3eEO01] Gy 2INnbTI

TeubTs
——eee ) ndIn0 o

P AOC
= oabejToA
Atddns

®v\l/

N
o~
&N

L = =r—r=r=]
Lo o===
—-—
- -
| ey |

.

m bewemaem ==
-~
T

-

™
3 -




'.-"Potentiometer -

Force in

f direction

Moment Force in

normal
direction

Figure 4.6a Chart recorder output for cruciform parachute model, with
oscillations in-line with axial translation at costant angle of attack
of 10°



otentiometer

Force in

i, axial
direction

Moment
Force in

normal
direction

Oxn

Figure 4.6b Chart recorder output for Ring-Slot parachute model in
lateral oscillation, superimposed on uniform translation in axial
direction.



Figure 4.7 cruciform parachute, with arm

ratio of 4:1.



4

Figure 4.7a Geometric shape of
parachute.

L1 = 480mm; L, = 120mm.

a

cruciform

85



Figure 4.8 Ring-Slot parachute.
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CHAPTER FIVE

ANALYTICAL PROCEDURE AND DISCUSSION OF RESULTS
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In this chapter the discussions are divided into
three sub-chapters:
(A) Analytical Procedure:
The procedure involved in deriving a relationship
between the unsteady motion of a submerged body and
the fluid dynamic force applied on it was discussed
in Chapter Three. In this sub-chapter, which
includes Sections 5.2 to 5.7 the author discusses
this procedure in detail using experimental data.
The process by which the Impulse Response Function
of equation (3.2) 1is derived and used in a
relationship for unsteady fluid dynamic force, is
given 1in Sections 5.2.1 and 5.3. Also discussed
are the significance of this relationship in its
application, advantages, disadvantages and
limitations of wusing this relationship to model
unsteady fluid dynamic forces. Furthermore, the
sub-chapter includes details of the methods used to
calculate the coefficients required for the
relationship.
(B) Discussion of Results:

In Section 5.8, included in this sub-chapter, the
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author discusses the characteristics of the
empirical coefficients associated with the
relationship designed for modelling unsteady fluid
dynamic forces.

(C) Comparison Between Modelled Data and Experimental
Data:
In this sub-chapter, the relationship for modelling
unsteady fluid dynamic forces is compared with
certain relationships published by other
researchers. It also includes a comparison between
results modelled using the derived relationship and
the experimental results.
A summary of the discussions is included in Section

5.12, at the end of the chapter.
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ORY D

DYNAMIC FORCES

In Chapter 2, it was discussed how the actual
velocity-dependent force component would continuously “lag’
behind its quasi-steady prediction (force reproduced using
steady flow force coefficients 1in eq. 1.3), whether the
acceleration 1is positive or negative. A typical set of
velocity-dependent forces reproduced using steady flow data
of C, are shown in figures 5.1, 5.2, 5.3 and 5.4. Also
shown in these figures are the acceleration-dependent forces
reproduced using potential flow values of added mass. Where
potential flow added mass coefficients are not available,
e.g. 1in the case of parachute canopies, for the purpose of
illustration, comparable numerical values in place of these
coefficients, are used. For comparison, the experimental
values of total force also are plotted on the same figures.

It is evident from these figures that the
velocity-dependent component 1s a substantial part of the
fluid dynamic force. Since the actual velocity-dependent
force can ’traili behind the predicted value based on steady
flow Cﬁ> and instantaneous velocities, as discussed in
Chapter Two, this lagging characteristic is expected to be
vicible in the measured force, compared with the
quasi-steady model. These comparisons are made in figures

5.5, 5.6, 5.7 and 5.8 in which the measured force and the
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force predicted by a quasi-steady prediction model are
plotted against time.
Figure 5.5: Forces on a long circular cylinder which is
oscillated in the direction of 1its linear
translation along the length of the ship tank;
Figure 5.6: Forces on the rectangular block described in
Section 4.5.2 when oscillated along the axis of its
linear uniform translation, with its 457mm x 153 mm
side facing the front;
Figure 5.7: Lateral forces on the cruciform parachute
model which is towed along the water tank in its
axial direction at uniform speed. The oscillations
are superimposed in the lateral (normal) direction;
Figure 5.8: Lateral forces on the ring-slot parachute
model which 1is towed along the water tank in its
axial direction at uniform speed. The oscillations
are superimposed in the lateral (normal) direction.
The term quasi-steady . prediction is used to represent the
theoretical force in these figures because steady flow data
and the instantaneous velocity are used to derive the
velocity-dependent component of the force. The
acceleration-dependent forces in these figures are based on
the potentiél flow values of added mass and instantaneous
values of acceleration. Thus, for the process of deriving a
relationship for the unsteady fluid dynamic force, described
in Chapter Three, the first approximation to the unsteady
force 1is given by the quasi-steady force shown in these
figures.

Furthermore, shown in dotted 1lines in the same

figures are the forces modelled wusing published data
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available to the author. The model used for this purpose

has the form given by equation (1.3).

Dynamic Force
As illustrated by equation (3.2) in Chapter Three,
measured fluid dynamic force can be related to the entire
history of motion, using the convolution integral and the
Impulse Response Function.
Using standard notation associated with the
convolution integral, it can be written in the form given in

equation (3.2a) as

F(t) = {C_ 1/2 oAU(£)IU(£)] + Kk o¥U(t))} * G(t)

(3.2a)

in which F(t) in the measured force as shown in figures 5.5,
5.6, 5.7 and 5.8. The theoretically predicted force, shown
in these figures by solid line which is used as the first
approximation, is given by the terms inside “{}° brackets.
Thus the initial shape of the Impulse Response Function G(t)
effectively represeﬁts the functional relationship between

the two sets of data plotted in each of these figures.

NS CTIO N

PREDICTION MODEL FOR UNSTEADY MOTION

The procedure involved in the derivation of the

Impulse Response Function for each test model was given in
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Chapter Tﬁree. The first approximation of the prediction
model 1is written using steady flow coefficients of the
velocity-dependent force( and the potential flow values of
the acceleration-dependent force. Steady flow coefficients
of velocity-dependent force are obtained from experiments in
which test models are towed at uniform speeds, at various
attitudes. The approximate values of potential flow
coefficients are based on data given in Table 1.1. The
numerical values of these coefficients are irrelevant
because coefficients for real fluids are re-calculated
during the process of iteration described in Appendix A.
However, realistic initial values minimise the need for a
large number of iterative re-calculations.

The empirical form of the Impulse Response Function
(IRF) 1is obtained from the modulus (amplitude) and the
argument (phase angle) calculatéd using equation (3.4), for
corresponding frequency of excitation.

After having found a crude first approximation to
the modulus and the argument of the IRF it was possible to
re-estimate the coefficient of the velocity-dependent and
the acceleration-dependent force components. The proceddre
adopted for this purpose is explained in Section 5.4.1. The
new values of coefficients were then re-used to re-estimate
the modulus and the argument of the IRF. After three or
four iterations the author could arrive at the properties of
IRF as shown in figures 5.9, 5.10, 5.11 and 5.12.

The modulus and the argument of the IRF versus the
frequency of excifation are shown in these figures, for the

four types of test models.
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Figure 5.9: circular cylinder,
Figure 5.10: rectangular block,
Figure 5.11: cruciform parachute and
Figure 5.12: ring-slot parachute.

All four graphs in these figures show that for both
“d.c." component and first harmonic component of the IRF the
modulus remain approximately equal to one. The argument,
however, having being equgl to zero for the "d.c." component
possesses a negative value for the first harmonic frequency.

The fact that the modulus of IRF is approximately
equal to one implies that the values of coefficients of
velocity-dependent and acceleration-dependent forces
corresponding to this IRF could be used, with instantaneous
velocity and acceleration, to derive the magnitude of the
unsteady fluid dynamic force. Nevertheless, the negative
value of the argument of the IRF implies that there is a lag
in the part of the actual force, compared to the force
derived using instantaneous velocity and acceleration.
Since the argument of the IRF is zero at zero frequency, and
negative Afor non-zero frequency, the phase lag appear to be
frequency dependent.

At this stage it was becoming apparent that the
characteristics of the IRF cannot clearly be defined using
the fundamental frequencies of oscillations without data
over a wider range of frequencies. However, the range of
frequencies over which experiments could be conducted was
limited by the lowest frequency of oscillation of the test
rig, and the frequencies at which the test models would

yield to produce reliable results, due to vibration,
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parachute collapsing etc. Thus it was decided to consider
the higher harmonics of the IRF using equations (3.4a) and
(3.4b). It can be seen in figures 5.13, 5.14, 5.15 and 5.16
that the moduli of the IRF for the second, and sometimes
even the third harmonic frequency, is approximately equal to
that for the "d.c." component and the fundamental frequency.
The . arguments, however, are decreased for the higher
harmonic freéuencies. Since the lower frequencies dominate
the fluid dynamic force as shown in Table 5.1, the
characteristics of the IRF are decided predominantly by data
at lower frequencies.

Thus, it can be considered that the modulus of the
IRF 1is approximately equal to one and that the argument is
proportional +to the frequency. These character;stics are

summed up in Table 5.2.

Argument
Test model Modulus f|----------- bt
(approx) | deg/rad/sec|sec(approx)

Circular

cylinder 1.0 -12 -0.22
Rectangular

block 1.0 -13 -0.23
Cruciform

parachute 1.0 -20 -0.35
Ring-slot

parachute 1.0 -17 -0.29

Table 5.2 Modulus and argument of the Impulse
Response Function.



96

Such characteristics can be expressed by a “delayed

impulse function” as[11],

IRF = G(t) 1.0 ~iwt

d(t-x)

where -1 refers to the negative gradient of the graph of

argument versus frequency.

Now, by substituting in equation (3.2) one gets,

F(t)

t
1) CH 1/2 @AU|JU| d(t-1) dx

t
+ [ k o¥U &6(t-t) drx
Thus it is more appropriate to consider this “lag”
as a time-lag rather than a phase-lag because unlike the
argument of the IRF, the gradient of the argument versus
frequency appears to be approximately constant.

Hence the magnitude of the fluid dynamic force can

be written in the conventional form as
C, 1/20AUIU| + k VU
The time-lag can be incorporated into this expression as:

F(t)

C, 1/2 oA U(t-1)IU(t-T)| + koVU(t-1)

(5.1)
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where, =< is estimated from the graphs of argument of the
Impulse Response Function versus frequency of excitation.
In other words, the fluid dynamic force at any instant in
time can be expressed by a relationship similar to Morison’s
equation in which the force coefficients are constants, and
by assuming that the effect of the velocity and the
acceleration is delayed by a period of time t. All the test
models used during the experiments are bluff bodies, and the
characteristic time-delay is found to be a common
phenomenon. Nevertheless, the magnitude of this time-delay

appear to depend on the_shape of the submerged body.

5.3.1 Dependence of 1 _on the Fredquency

From the figures 5.9, 65,10, 5.11 and 5.12 it
appears that the range of frequencies over which experiments
were conducted is inadequate to establish the dependence of
T on the frequency of oscillation of the body.
Nevertheless, by considering harmonic frequencies as shown
in figures 5.13, 5.14, 5.15 and 5.16, it is evident that the
argument for the "d.c." component of the total force, as
expected, 1is zero. As the frequency increases, so does the
magnitude of the argument also. In the absence of an
accurate funétional relationship, for the purpose of current
investigation it is assumed that the argument in figures
5.13, 5.14, 5.15 and 5.16 is proportional to the frequency
of each harmonic component. Since the gradient of a linear
relationship between the argument and the frequency (w) is
given by wt, the time-lag T itself can be regarded as

independent of the frequency.



98
is ation- ent c
In the procedure adopted in this thesis the author
considered a common Impulse Response Function to govern the
effects of both the velocity and acceleration. This
procedure was adopted, instead of employing independent
IRF's in each component of force, so that equations (3.2) to
(3.4) would not include more unknowns than the maximum
permissible for obtaining their solutions. Nevertheless, it
is hard to justify that the history effect (which determines
the shape of the IRF) on the velocity-dependent component is
identical to that on the acceleration-dependent component.
Thus, the author at this point strongly recommends
that further experimental investigation should be carried
out with emphasis paid on the behaviour of the two

components of the force separately.
3 imitatio i licati icti del

The application of the prediction model given by
equation (5.1) for defiving unsteady fluid dynamic forces on
submerged bodies is limited mainly by two constraints: (a)
the nature of the motion of the submerged body. e.gq.
linear, oscillatory or other arbitrary modes, and (b) the

frequencies of oscillations imparted on the submerged body.

1 imitati odes ti
The empirical relationship between the fluid
dynamic force and the velocities and the accelerations of

the submerged body, éiven by equation (5.1), is obtained
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from experimental results for which oscillations are
superimposed at various attitudes, on linear translation of
the body. Thus the application of this relationship is
limited to such cases. A further restriction of the model
given by equation (5.1) arises from the fact that the modes
of motion of test models during the experiments were such
that the mean velocities of the test models were non-zero.
The mean velocities were sufficiently large that at no time
the test models were moving back into their own wakes.

Several examples of the applications of the
prediction model are:

1. Estimating forces on cylindrical sections of offshore
structures that are towed at uniform speeds. The
unsteady forces arise due to the sea waves
superimposed on the towing motion.

2. Analysing forces on hiéh—sided vehicles which are
driven at uniform speed. The unsteady forces are
due to superimposed “lateral’ and "head-on’ gusts.

3. Analysing forces on parachute canopy systems. Fully
deployed descending parachutes oscillate both in
the vertical direction as well as in the lateral
direction. The descending speed of the parachute
depends on the vertical fluid dynamic force applied
on the canopy. The stability of the canopy system,
and its frequencies and amplitudes of oscillation
depend on the lateral (normal) fluid dynamic force.

It is not yet known whether this model can be applied for

non-periodic unsteady fluid dynamics.



100
5.3.3.2 Limitations due to Frequencies of Oscillations

As can be seen in figures 5.13, 5.14, 5.15 and
5.16 the Impulse Response Function of the analysed systems,

behaves as a “delayed impulse’ for frequencies only up to 3

rad/sec. Both moduli and arguments of the IRF at higher
frequencies appear to be quite arbitrary. The model given
by equation (5.1) is based on the linear relationship for
the frequencies in the range O to 3 rad/sec, thereby
discarding the effects of high frequency components of the
fluid dynamic force. Thus, the application of the
prediction model is restricted to motions of either
unsteadily moving bodies or unsteadily moving fluids
involving frequencies 1less than 3 rad/sec. As shown in
Table D.1 the components of the fluid dynamic forces, as
predicted by equation (5.1), at frequencies 1less than
3 rad/sec. normally amounts to more than 90% of the total
force. Thus the fluid dynamic forces p;edicted by this
model can possess an error margin of about ten per cent.
Also shown in Table D.1 are the percentages of the
components of the measured force which have frequencies
above 3 rad/sec.

It should be noted that forces at frequencies
higher than 3 rad/sec are more likely to be due to vortex
shedding, natural frequencies of vibrations, system noise,
etc. (See Appendix B for an analysis of the natural

frequencies of vibration and the vortex shedding
frequencies.) Therefore, discarding higher harmonic signals

becomes an effective method of filtering the experimental

results because this method isolates high frequency signals,
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without distorting the £fluid dynamic force near the more
dominating lower frequencies.

The prediction model given by equation (5.1),
therefore, is applicable for frequencies below 3 rad/sec.
only. As a direct result the model does not predict
oscillatory force components due to vortex shedding which
normally occur at higher frequencies. The lowest vortex
shedding frequency of about 0.5 Hz was observed for the
circular cylindexr. The order of magnitude of forces due to
vortex shedding are analysed in Section 5.10 of this

chapter.

5.3.4 Validity of Linear Theory Used to Derive the Impulse

Response Function

The derivation of the model given by equation (5.1)
is based on the assumption that linear theory can be used to
establish the 1relationship for the unsteady fluid dynamic
force (see Section 3.2.1 of Chapter Three). As discussed in
Section 5.3.3, the Impulse Response Function derived using
this assumption was reliable only for low frequencies of
excitation. Thus the model 1is applicable only for slow
unsteady motion where the effects of high frequencies are

insignificant.

5.4 ACQUISITION OF COEFFICIENTS OF FORCE COMPONENTS, AND
BUILDING_THE PREDICTION MODEL

The procedure involved in deriving the coefficients

R and k and the Impulse Response Function was outlined in
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Chapter Three. It is conceivable at this stage that the IRF
can be expressed by a delayed-impulse provided that the
harmonics o©of motion for frequencies above 3 rad/sec have
negligible effects on the fluid dynamic force. Since the
“delayed-unit-impulse” can be given by a single variable T,
provided that the attitude of the submerged body is
unchanged, the model given by egquation (5.1) can effectively
be used with only three experimentally determined
parameters. They are:
1. the coefficient of velocity-dependent component of
the total force -- CH
2. the coefficient of acceleration-dependent component
of the total force -- k
3. the +time constant involved in the Impulse Response
Function -- .
The first approximation of <t 1is obtained using
steady flow data of C_  and values of k that are based on

A

potential flow, for bodies with similar geometries.

5.4.1 Evaluation of Coefficients of Velocity-Dependent

Force and Acceleration-Dependent Force

Both sides of the equation (5.1) are divided by

1/20AU(t-1)|U(t-1)|, and it is re-written as

F(t) oVU(t-1)

= c, *tk

1/20AU(t-1)|U(t-1) | 1/2pAU(t-1) |U(t-1) |

(5.1a)
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Using the first approximation of 1, the graph of

F(t) oVU (t-1)
Vs
1/2AU0(t-1) |U(t-1)| 1/2AU(t~-1) |U(t-1) |
is plotted. These parameters are chosen so that, in a

straight 1line relationship, the intercept on the vertical
axis and the gradient of the graph give the coefficient of
the velocity-dependent force and +the coefficient of the
acceleration-dependent force respectively.

The graphs plotted using 1=0, shown by the figures
5.17a, 5.18a, 5.19a and 5.20a, do not represent
relationships +that can be interpreted by straight lines.
These results have been obtained from unsteady movements of
test models at uniform attitude - i.e. constant angle of
attack. This 1is clearly evident in the figures 5.19a and
5.20a, which are drawn using test results of parachute
models. Corresponding graphs using the calculated values of
T, are shown in figures 5.17b, 5.18b, 5.19b and 5.20b. The
straight 1line relationship in these graphs indicate that in

a prediction model similar to equation (5.1) the force

coefficients Cn and k can be regarded as constants, whereas,
in a relationship similar to Morison’s equation, the force
coefficients are functions of further independent
parameters.

Although success has been claimed by numerous

authors[15] 1in correlating experimental results and results
modelled using expressions such as equation (1.3) with two

constant cocefficients (CR & k), the introduction of a third
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parameter 1T, which represents the history of motion,

appeared to have improved this correlation.

5.5 USEFUL CHARACTERISTICS OF THE PREDICTION MODEL

INCLUDING “TIME-DELAY’

The fact that the entire history of motion of the
test models can be represented by a “time-delay’ leads to a
prediction model that has several advantages over other
methods.

Around a body moving unsteadily in a real fluid the
flow field continuously changes from one instant to another.
Thus, 1in an expression similar to equation (1.3) the
coefficients of the two force components should be regarded
as variables since both coefficients depend very much on the
shape of the flow field. Expressing these coefficients as
functions of further independent parameters brings further
complications into the analyses. If both CH and k are
variables the number of possible values of these
coefficients that could satisfy a certain set of data can be
as much as infinity. The difficulty of evaluating the force
coefficients is overcome if either one or both coefficients
are constants. The model given by equation (5.1) is rather
useful because the experimentally determined parameters in

it, namely C_, k and v, are found to be independent of the

accelerations imparted on the body. 1i.e. these parameters

could be determined from a limited number of experiments.
In order to avoid the requirement to define the

force coefficients as - functions of further independent
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parameters .many researchers use quasi-steady expressions
(see Section 1.5.2) in which the steady flow data are used
to identify the component of the total force which is
dependent on the velocity. Hence the remainder of the force
is assumed to be acceleration-dependent. In doing so one
almost certainly assumes that, either a part of the total
fluid dynamic force that is velocity-dependent to be
acceleration-dependent, or vice versa. Although it is
possible to reach a numerical answer by adopting this method

the derived coefficients of acceleration-dependent force can

possess very unrealistic values: either too high or too
low, or even negative!. Frazer and Simmons[12] provide
evidence for such results. Furthermore, Yavuz[42],

Jorgensen[18] and Cockrell et al[8] obtained very high
coefficients of acceleration-dependent force for 1low
acceleration numbers. This inconvenient situation arises
because the component of the total fluid dynamic force that
is velocity-dependent and that which is
acceleration-dependent, are not identified properly.
Keulegan and Carpenter[22] successfully separated
the two components of the total fluid dynamic force using

Fourier series by assuming the coefficients of two component

forces to be constants. This process was made possible
because in their experiments the motion was purely
sinusoidal. In such case the acceleration always leads the

velocity by 90°. This method cannot be used to analyse the
two components of the total force if the motion is
non-sinusoidal. The author was able to overcome this

difficulty during the present investigation by using the
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‘time-delay’ in equation (5.1), which arises from the effect
of the history of motion. The straight-line relationship
obtained in figﬁres 5.17 to 5.20 imply that the coefficients
of the velocity-dependent force and those of the
acceleration-dependent force are independent of time.
Despite the scattered results, figures 5.21 to 5.28 support

the fact that the coefficients C
A and k are independent of

acceleration number, and thus of time. An important
significance of the model given by equation (5.1) is that
the coefficients in this model reflect the forces due to the
entire history of both velocity and acceleration of motion
rather than those due to the instantaneous velocity and the
instantaneous accelgration.

Once the coefficients Cn and k are known to be
constants (with respect to time) they can be derived, as
explained in Section 5.4.1, from the graphs in figures 5.17
to 5.20 of which the gradients are equal to the values of k
and the intercepts on the vertical axes are equal to the
coefficients of CR. This procedure effectively separates
the two components of the total force that are dependent on
velocity and on the acceleration. Thus, it gives the fluid
dynamicist the opportunity to study the two components of
the force separately. Furtﬁermore, it enables him to draw a

direct comparison between the forces in steady flow and in

potential flow, and the respective components of the
unsteady real fluid force. These comparisons are

illustrated in Tables 5.3 and 5.4.
Decades of experimental research have shown that

real fluid dynamic forces on submerged bodies are dependent
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not only on the instantaneous velocity and acceleration bui
their history also. Although models similar to that, given
by equation (1.5) include a term expressing the history of
motion, little success has been achieved in accumulating

relevant data because the dependence on acceleration of the
coefficients involved in each force component has not been

established. Equation (5.1) has the advantage because the
entire hist ory of mention also has been tal'.cui into a-rcoiint
during the analysis. The data for ~ P and i thus
calculated found to have negligi.ble depend' 'nee on the

accelera tion number.

5.5.1 Significance of Timr- Tnd'.:wr-nd'.-nt For ce Coef fici ent.r:
Applj. cation of either equation (1.3) of its

d'O'iva Iions fund omen tal 1y implies that the

accélération-dependent force is given by the rate of change

of moment urn of 11lie fluid sur rouiuding a c-ubmergcd bc,dy,
inclusive of the pressure gradicnt due to the free stream
acceleration. Tn the case wlierx<:- the free stream is at rest,

the momentum of the fluid is given by kpVU (t) where U(l.) is

tl'ie velocity of Lhe submerged body. Thus, the rate of
llarjge of mcmenlllm, an<l himnce the acce leratiori-dependent
force, is given as

Acceleration-dependent force d/dt (kgVvu)

- kgVvV du/dt t gVU dk/dt
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If k is not- indepiMidc'tii of time, then equation (1.3) wr.iild

include a further term involving the rate of change of Ilu'
added mass. Thus, methods wused by numerous authors [e.g.
8,12,17,13,13] ill whic']; the accel eratiun-dependent for<re

coefficient (k) is defined as a function of the acceleration

number, (hence a function of time) fundamentally misuse the

underlying interpretation of equation (1.3) in whicli k

should be reg rdid as independent of time

NeverlLheless, it hard to conceive that in a
constant ly changing flow field, the coefficients of two
component- forces would remain independent of time.

Thus, tlie au tlior cons idei s tha I it 1is significantly

important ttHat 1I'- mr,difred form of equation (1.3), gi.ven i-y

equal.ion (5.1) giv*:-s rise to c:ouffici c-nts and k which are

effectively i:idepeui.h'nt of time, 1lienee overcoming 1llle above

mn tionod dIfficul 1y .

5.5.2 Use of i to Rectify the Delay in Measured Force

Tt can be rgued whether it is necessary to use a
further function (IRF), or a further paramet or (c), in
addition to equation (1.3) in its form, to represent the
unsl cady fluid dynamic force. For example, the phase-lag of.
tlic measured forci. seen in figures 5.1 to 5.8 can be
rectified to a cer tai'n exten t by sel ect.ing suitable relative
magnitudes of andk . By doing so one may be able to make

the maximum of the. modelled force, coincide with the maximum

of t.lie measured force, even forT—0. But nevertheless, it

may not be possible to obtain an overall fit to the

experimental results thi:. way . Figures 5.17 to 5.2.0 show
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that in this method, the use of constant coefficients cannot
be Jjustified, if the attitude of the body remains the same.
The introduction of the parameter 1 has improved the overall
fit to the experimental results while maintaining constant
values of C

R and k.
The process of optimising CR

and k, with =0, shown
in Appendix E, indicates that the extent to which the forces
modelled using equation (1.3) can be matched with the
experimental forces is limited. The forces modelled by

equation (1.3) where =0, are compared in Appendix E, with

those modelled using equation (5.1) where t#0.
5.6 REYNOLDS NUMBER AND ACCELERATION NUMBER EFFECTS

From steady flow experimental results using similar
parachute test models and methods Yavuz[42] and
Jorgensen[ 18] reported that the effect of the Reynolds
number in the respective region is insignificant. Steady
flow data given by Hoerner[13] suggest that the range of
Reynolds number used for the circular cylinder and the
rectangular block has negligible effects on the force
coefficients. Keulegan and Carpenter[22] noted the
non-existence. of Reynolds number dependence on their
unsteady force coefficients. Thus the author regards'that

the Reynolds number effects on the forces coefficients in
the present investigation are insignificant. Furthermore,

figures 5.13 to 5.20 show that the coefficients C
R and k

derived by the method outlined by this thesis are

independent of the acceleration number.
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5.7 NON-DIMENSIONAL FORM OF <

In order that the model given by equation (5.1) may
be applied to bodies of different scales the experimental
data for Tt should be expressed in a non-dimensional form.
Because of the 1lack of data for test models of different
sizes studies on scaling effects are regarded as an extended
part of the present research programme. However, the
possibilities indicated below are available for future
consideration.

Considering the independent parameters in
incompressible and infinite unsteady fluid flow, namely the
geometry and the attitude of the submerged body, ¢, L, v and
U(t) in a dimensional analysis it can be shown that the
group U(t)t/L is a possible non-dimensional form of 1. The
reference velocity U(t) for this purpose can be either the
mean velocity of the body or the maximum velocity of the
oscillatory component of the unsteady motion. The
dependence of (Ur/L) on parameters such as Reynolds number
should be determined experimentally.

The author is unaware of any other research

programme in which similar techniques have been adopted.
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2.8 COEFFICIENTS OF FORCE COMPONENTS

Having found negligible dependence on the
acceleration number, the force coefficients for each test
model are expressed as functions of its attitude of motion
(i.e. the angle of attack) in figures 5.29 to 5.39. These
coefficients are to be used on a prediction model given in

the form of equation (5.1).

5.8. 1 ffici E locity- 3 :

In Sections 5.8.1.1, 5.8.1.2, 5.8.1.3 and 5.8.1.4
the coefficients of velocity-dependent force derived from
unsteady flow experiments for each test model are compared
with the appropriate steady fiow results. The unsteady
force coefficients are derived from tests in which the
oscillations are superimposed on the steady motion either in
the same direction (in-line oscillations) or in the lateral
(normal) direction. Experiments with in-line oscillations
are conducted for varied angles of attack by setting the
test model to the required angle before the beginning of
each test. Some of these coefficients are compared in Table

5.3 with steady flow data published by other researchers.

5.8.1.1 . ] ~y1lind
The coefficients of .velocity-dependent and
acceleration—dependént components of the total fluid dynamic

force on the circular cylinder are derived from the graph in
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figure 5.9b. The coefficient of velocity-dependent force
(C.) given by the intercept on the vertical- axis is.
approximately equal to 1.25, This value of Cn is very
similar to the steady flow force coefficient for
corresponding Reynolds number range, given by Hoerner[13]
(see table 65.3). It should be noted that the unsteady
forces on the «cylinder were obtained from experiments in
which the oscillations are superimposed in-line with the
linear translation of the cylinder normal to its axis.
Since the displacement of the cylinder is always in the same
direction, the flow field around the cylinder would have
developed to an extent for which it is not unlike that from
the flow field in steady motion. Thus the coefficients of
CB in such unsteady flow are approximately equal to that in
steady flow. The experimental results of Verley and Moe[41]
which were obtained by superimposing sinusoidal motion and
steady motion agree well (Cn~1.2 from reference [41]) with
those in the present study. The coefficients of
velocity-dependent force obtained by Keulegan and
Carpenter[22], however, were more than 2.0. The author
considers that this disagreement is mainly due to the fact
that in the experiments of Keulegan and Carpenter the mean

velocity of the fluid was zero.

5.8.1.2 Rectanqular Block

Figures 5.29 and 5.30 illustrate the coefficients
of the velocity-dependent force on the rectangular block
against its attitude of motion. The forces in the lateral

(normal) direction were measured by oscillating the test
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model in the lateral direction while it was being towed in
the axial direction at constant speed. The coefficient of
velocity-dependent lateral force shown in figure 5.29 is
almost proportional to the angle of attack.

The coefficients of velocity-dependent force in the
axial direction, for the same experiments are shown in
figure 5.30.: The unsteady force coefficient in the axial
direction remains substantially constant for small and
moderate angles of attack. It gradually falls for q)20°.
Also given in the figure 5.30 are the coefficients of
velocity-dependent force for the same direction when in-line
oscillations are superimposed on the linear translation.
The force coefficients for in-line ostillations, are similar
in magnitude ‘to those in steady flow. (see also Table 5.3)
This similarity can be expected because for in-line
oscillations the test model always moves in the same
direction. Thus there is very little variation in the flow
field around the body. Lateral oscillations superimposed on
uniform axial translation, however, increase the axial force

by about 30 per cent.

5.8.1.3 Cruciform Parachute

The coefficients of velocity-dependent force
components, for the lateral (normal) direction and for the
axial direction are illustrated in figures 5.31 and 5.32.
The force coefficients in the lateral direction for unsteady
flow are as much as 100% greater thaﬁ those in steady flow.
Yavuz[43,42] and Jorgenson[19,18] reported values of CN in

steady flow that are about 20 per cent less than the
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unsteady flow coefficients given in figure 5.31,. The
magnitude of the coefficient CN given in figure 5.31 is
positive for all positive values of a. The gradient of Cﬁ
Vs. a graph also is positive for all a.

Figure 5.32 shows the variation of the coefficient
of velocity-dependent force in the axial direction on the
descending cruciform parachute. The steady flow results
shown here agree well with those given by Yavuz([43,42] and
Jorgenson[19, 18]. In-line oscillations on the vertical
descent does not appear to have a significant effect on the
velocity-dependent force. Lateral oscillations on the
canopy during its vertical descent however, increase the
force in the axial direction by about 25 per cent.

The coefficients for unsteady flow are compared
with the steady and unsteady flow values obtained by other

researchers in Table 5.3.

5.8.1.4 Ring-Slot Parachute

The coefficients of velocity-dependent force
components in the normal and axial directions of the ring
slot parachute are shown in figures 5.33 and 5.34. Steady
flow test results show that the forces in the lateral
direction for small angles of attack are almost zero.
In-line oscillations superimposed on descent at small angles
of attack appear to have very little effect on the magnitude
on the force either in the lateral direction or in the axial
direction. Superimposed lateral oscillations however,
substantially increase the velocity-dependent force in both

the lateral and the axial directions. This increase in the
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axial force is found to be as much as 40 per cent. The
magnitude of the velocity-dependent force in the lateral’
direction is positive for positive angles of attack, and
vice versa. The gradient of CN Vs. a graph is positive for

all «.

5.8.1.5 Remarks on Velocity-Dependent Force

From unsteady flow experimental results it 1is
apparent that the changes in the coefficient of the
velocity-dependent force due to the oscillations of the test
model are not appreciable if the motion persists in the same
direction. In such case the flow field would not change
substantially to cause a significant change in the force
coefficient. By contrast, any fluctuations in the lateral
direction generally increases the velocity-dependent force
in the direction of the towing motion, even though the
velocity in this direction is uniform. This implies for
example, that a lateral gust on a high-sided vehicle moving
at constant speed increases the drag on it even though the
head-on velocity of air is constant. Furthermore, lateral
oscillations of a'fully inflated parachute increase its drag
even when its axial speed of descent is constant. i.e. the
lowest value o0f velocity-dependent component of force on a
parachute is achieved when the descent is vertical and
uniform.

It is evident from these results that any lateral
oscillations imparted on a steadily moving submerged body
substantially increases the fluid dynamic force on it.

However, effects of in-line oscillations on the coefficients
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of velocity-dependent force are not so significant. These
characteristics are not surprising considering that lateral
oscillations give rise to wider wakes than in-line
oscillations. Wider wakes are associated with higher values
of fluid drag, hence the increase in the fluid dynamic force
is to be expected.

The data obtained from unsteady experimental
results raise considerable doubts in the design criteria
adopted for industrial purposes. In parachute design it is
customary to use steady flow results to estimate their
effective drag forces. This procedure underestimates the
capacity of parachutes by as much as 30 - 40 per cent.
Although this ‘error” falls on the “safer’ side as far as
the drag forces on the parachutes are concerned, it
substantially misinterprets the dynamic characteristics of
the parachute canopy systems. Furthermore, the author
wonders whether the design engineers take into consideration
that lateral gusts on high sided road vehicles increase the
force of resistance in the forward motion.

Since laterai oscillations superimposed on linear
translation increase the force along the axis of linear
translation, it is necessary to establish this dependence
using appropriate parameters. Considering that the force in
the direction of 1linear translation Fr(t)’ depends on the
steady velocity in the axial direction as well as the
frequency and amplitude of the lateral oscillations, one can

write:

FT (t) f(Q'U,L,UT,UN,T) (5-2)
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where,

UT - the uniform translational velocity,

UN - the amplitude of oscillatory velocity in the
lateral direction,
T - the period of oscillations and

L - the characteristic length of the body.
From dimensional analysis one gets

F, (£)/0.50AU° = £(Re, U, /U_) (5.3)
Where U is the total velocity of the body.

Since UN/UI = tan(umax)

CT = f(Re, qmax) (5.4)
The effect of X ax is observed by relating CT to its steady
flow value for which o ax is zero.

Disregarding the effects of Re on the coefficients
of the velocity-dependent forces[ 18], the increase in CT is
related to % ax in figure 5.44. It should be noted that the
experiments in the present investigation were not designed
for the purpose of establishing this relationship. Thus the
range of A nax available for which CT can be correlated is
limited. Figure 5.40 show that the coefficient of
velocity-dependent force increases steadily with the maximum

angle of attack imparted by the lateral oscillations. More

experimental data are required in order to obtain an
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empirical relationship between the increase in CT and % x -
ax

5.8.2 ffici £ 2 )  on-I lent F

Due to the boundary layer, and the consequent wake
associated with separated flow, it is generally regarded
that the acceleration-dependent forces in real fluids are
greater than those in potential flow. This fact is
supported by the experimental results obtained within the
course of the present research. The experimental values of
4 k are compared in Table 5.4 with those obtained by other
researchers. Certain potential flow values also are

included in this table for comparison.

5.8.2.1 . ] 1ind

The coefficient of the acceleration-dependent force
on the «circular cylinder, in the direction normal to axis,
is derived from the graph(b) of figure 5.17. The
coefficient given by the gradient of this graph is
approximately 2.4, compared to the potential flow value of
1.0. The coefficient of acceleration-dependent force in
this case is 140 per cent in excess of its potential value.
For values of the “amplitude/diameter’ ratio similar to that
in present study, Keulegan and Carpenter[22] obtained
coefficients of acceleration-dependent force which were
ﬂegative. These values are vastly different from those in
the present investigation because in the experiments of
Keulegan and Carpenter the mean velocity of the unsteady
flow 1is zero. Coefficients of Acceleration-dependent force
obtained by Verley and Moe[41] were approximately equal to

0.6.
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5.8.2.2 Rectangqular Block

Experimental results shown in figure 5.35, for the
three-dimensional rectangular block with fineness ratio of
3:1 indicate a coefficient of acceleration-dependent force
(kaa) of about 1.9 for its axial direction. (Compare this
value with a two-dimensional rectangular section with
fineness ratio of 2:1 having a potential flow coefficient of
acceleration-dependent force of 0.61 -~ see Table 1.1.
Therefore, the rectangular block used for the present
experiments 1is expected to possess a force coefficient less
than 0.61.) Experimental results in figure 5.35 show that
the coefficient of acceleration-dependent force (k11) for
the lateral direction is about 2.4. (Compare with a
two—dimensionai square section which has a potential flow
value of 1.19 - see table 1.1) 1i.e. for both lateral and
axial directions the acceleration-dependent force is well in
excess of their potential flow values.

Figure 5.35 shows that k11 slightly increases with
a. Sufficient data are not available to observe the

variation of k33 with a.

5.8.2.3 cCruciform Parachute

Figures 5.36 and 5.37 show the coefficients of
acceleration-dependent force for lateral (normal) direction
and axial direction respectively. The coefficient for the

lateral direction k11, shown in figure 5.36 increases with

the angle of attack (a), and has a minimum value of about

0.7 at «=0°.
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The coefficient of the acceleration-dependent force
in the axial direction, k33 is plotted against the angle of
attack in figure 5.37. This coefficient has a maximum of
about 4.0 at u=0°, and decreases gradually with increasing
Q.

The values of kaai obtained by Yavuz[42] and
Jorgensen[ 18] are shown in Table 5.4 for comparison. They,
however, used a quasi-steady model (see Section 1.5.2) to
derive the acceleration-dependent component of the total
force. Thus the force coefficients were found to be
dependent on the acceleration number. The potential values
of k33 for a hemispherical shell, the shape of which is
comparable with that of a parachute, is also given in Table
5.4. The experimental values from the present investigation
and those of Yavuz show that in real fluids the
acceleration-dependent forces on bluff bodies are much

higher than the potential flow values known to the author.

5.8.2.4 Ring-Slot Parachute

The coefficient of acceleration-dependent force in
the 1lateral (normal) directién, k11 given in figure 5.38
shows a gradual variation with the angle of attack. A
minimum value of about 0.6 occurs at «=0°. The coefficient
for the axial direction, kaa' shown in figure 5.39, is
approximately equal to 3.0. It remains substantially

constant for the given range of angle of attack.

As seen in Table 5.4, the experimental values of

k33 are greater than potential flow values of bodies with

comparable geometric shapes.
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2.8.2.5 Remarks on Acceleration-Dependent Force

The correlations between the coefficients of the
acceleration-dependent force and the angle of attack a, (or
the attitude of motion) for each test model was established
using results of repeated tests. The coefficients of
acceleration-dependent lateral force which were derived for
angles of attack up to 40° were found to be independent of
acceleration number, but dependent on the angle of attack.

In the case of parachutes the coefficients for the
axial direction (kaa) have been derived only for low angles
of atéack because for in-line oscillations the canopies
collapsed earlier than for lateral oscillations.

The experimental results show that the
acceleration-dependent forces in a real fluid are
substantially greater than those in potential flow. The
experimental results of the present investigation dispute
those of Yavuz because the coefficients of
acceleration-dependent force did not reach their potential
flow values for large acceleration numbers. The nature in
which the test models were moved during the experiments was
such that at no time the body was moving into its own wake.
Thus the flow fields around the test models can be regarded
to have déveloped to such an extent that - the
acceleration-dependent force coefficients cannot be expected

to be equal to those in potential flow.



The model given by equation (5.1) can be applied to
estimate unsteady fluid dynamic forces on bluff bodies only
if the components of the total force at frequencies above
3 rad/sec. are negligible. However, the data analysed
during the present investigation were influenced to a

certain extent by force components at high frequencies.

Force

The motion imparted on the test models were such
that when the unsteady fluid dynamic forces on these bodies
are ahnalysed using equation (5.1), the components of forces
that have frequencies above 3 rad/sec. are found to be
between 4% and 14% of the total force.- Given in Table D.1
are the effects of these high frequency components on
equation (5.1), for different modes of motion. Also given
in Table D.1 are the components of the measured force at
frequencies above 3 rad/sec. These high frequency
components occur due to oscillations imposed by vortex
shedding, natural ﬁrequencies of vibration and ‘noise’
associated with the apparatus used. It can be seen in Table
D.1 that the components of the measured force at frequencies
above 3 rad/sec. are between 3% and 40% higher than those
predicted by equation (5.1). In the case of oscillations at

small angles of attack the forces in the lateral direction
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are small and the “noise’ 1level compared to the lateral

force is relatively high.

from the Measured Foxces

Whether equation (5.1) can be effectively used to
model forces on submerged bodies in unsteady motion is
verified by reproducing the unsteady forces using above
equation and comparing them with the measured forces. The
deviation of the modelled force from the measured force, for
each test model, is given in Table D.1.

The deviation of the modelled force on the cylinder
is about 17% of the measured force. For the rectangular
block it varies from 11% to 13% depending on the nature of
motion imparted on the body. Higher levels of deviation,
which ranged from 14% ¢to 24%‘ can be observed for the
parachute models.

The application of equation (5.1) to model forces
on the parachute canopies has been relatively less effective
because of the relatively high 1level of high frequency
oscillatory components in the lateral force at low angles of
attack. For other modes of motion the deviation of the
force modelled by equation (5.1) is of the order of the
percentage of the forces at frequencies above 3 rad/sec.
Thus the method specified in Sections 5.3 and 5.4, by which
the model given by equation (5.1) is derived can be regarded
as effective only in the range of frequencies less than

3 rad/sec.
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For the circular cylinder and the rectangular
block, the deviations of the modelled force are of the same
order as the experimental uncertainty given in Table D.2.
For the parachute models, the deviations of the forces
modelled by equation (5.1) are more than the experimental
uncertainty shown in Table D.2

Examples of forces reproduced using equation (5.1)
are shown in figures §:4O to 5.43. These forces are
compared in these figures with their corresponding
experimental values.

The deviation of the forces modelled by
equation (5.1), and those modelled using other methods are
shown in Table 5.6. ' The other methods considered are:

1. Using steady flow data and instantaneous velocities
to calculate the fluid dynamic force, ignoring the
the effects of the acceleration-dependent force;

2. Using published data available to the author, either
from steady flow tests or from unsteady tests, in
equation (1.3).

Forces reproduced using these two methods also
appear 1in figures 5.5 to 5.8. A comparison can be drawn
between these figures and figures 5.40 to 5.43, which have
been produced using equation (5.1). The improvements made

by equation (5.1) can be observed in Table 5.6.

$.10 LATERAL OSCILLATORY FORCES DUE TO VORTEX SHEDDING

No attempt has been made during the present

investigation to analyse lateral oscillatory forces on
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symmetrical submerged bodies, that occur due to vortex
shedding. As shown in Table D.1 these lateral forces on
two-dimensional bodies can be as much as 50% of the in-line
force. In steady flow, as shown in figure 5.45a, these
force are regular and to a certain extent predictable (see
Appendix B for vortex shedding from circular cylinders). 1In
unsteady motion however, the lateral oscillatory forces are
very irregular, both in +their magnitudes and their
frequencies (see figure 5.45b).

For three-dimensional bodies the 1lateral force
components at zero angle of attack are relatively small. As
shown in Figures 5.46, 5.47 and 5.48 these forces are not as
regular as for two-dimensional bodies. This irregularity
appears to increase when the motion of the submerged body is
unsteady. The frequencies at which these oscillatory
components occur can be as low as 0.6Hz and they are much
less than the natural frequencies of vibration for each test
model given in Table 5.5. Such oscillatory forces are
likely to be due to vortex shedding. The author is unaware
of any procedure by which vortex shedding by
three-dimensional bodies can be analysed. However, since
these oscillatory forces occur at or above 3 rad/sec, they
are not included in the process of deriving coefficients for

the application of equation (5.1).

5.11 BLOCKAGE EFFECT AND FREE-SURFACE EFFECTS

The data given 1in Section D.5 and Table D.3 of

Appendix D show that the maximum blockage effect is of the



126
order of about one per cent. Using analogous formulae given
for spheres by Robertson[33] it can be shown that the
maximum effect on the unsteady forces coefficients due to
nearby solid boundaries of the ship tank is less than one
per cent.

Studying the surface effects on submerged spheres,
Srokosz[39] showed that for a/h = 1/3 the maximum effect of
the free surface waves on the added mass was less than five
per cent. Since the analogous L/2h for present experiments
are much 1less than 1/3 (see Table D.3) the surface effects

are ignored.

2.12 SUMMARY

The fluid dynamic force in unsteady flow is often
incorrectly represented in terms of the instantaneous
velocities and accelerations of the submerged body and the
surrounding fluid: incorrect because for real fluids the
history of motion plays an important role. This method can
successfully be applied only if the component of the total
force that is dependent on acceleration, can effectively be
separated from the velocity-dependent component. Adopting
steady flow data' in order to extract the forces that are
acceleration-dependent leads to answers that are
acceleration number dependent. The coefficients of
acceleration-dependent force thus calculated can have very
unrealistic numerical values especially for low acceleration
numbers. Thus the unsteady forces calculated using these

very high coefficients of acceleration-dependent force and
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very low acceleration numbers can lead to large ranges of
uncertainty.

By considering that the unsteady fluid dynamic
force 1is dependent not only on the instantaneous velocity
and the acceleration, but their respective history also, the
author has derived the coefficients of the two force
components which are virtually independent of the
acceleration number. Using experimental results obtained by
oscillating test models it was possible to show that the
effect of the history of motion was such that the velocity
and acceleration at a certain time 1 prior to the instant is
more dominating than those at other times that the total
force can be regarded as being “delayed’ by this period of
time.

By using this characteristic in an empirical model
in the form given by equation (5.1), it is possible to
separate the components of the total fluid dynamic force
that are dependent on the velocity and acceleration. This
enables the fluid dynamicist to study the effect of velocity
and acceleration separately.

Examples of forces forces reproduced using equation
(5.1) compared with experimental values are shown in figures
5.40 to 5.43. These figures, inclusive of figures 5;5 to
5.9, and Table 5.6 give a fair indication to improvements
made by equation (5.1) in modelling unsteady fluid dynamic
forces on submerged bluff bodies.

Although it was possible to derive the “time-delay’
associated with each test model sufficient data is not

available to non-dimensionalise these values. Using
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Buckingham’s w theorem it can be shown that the group (Ur/L)
is a possible non-dimensional form of t where, L is the
characteristic 1length of the body and U the reference

velocity.
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\
Test Steady Unsteady Published
model flow flow data
C
N & Cr 94 & CT
Circular (steady)
cylinder x 1.2 = 1.25% =~ 1.2[13]
(unsteady)
= 1.2[41]
Rectangular
block ~ 0.35 0.33-0.48 ~ 0.34[13]
Cr(a=0deg)
Cruciform
parachute
qq(u=10deg) = 0.32 ~ 0.32 ~0.28[42]
0.2-0.32[18]
CT(a=0deg) = 1.15 1.15-1.5 =1.0[42]
1.0-1.24[18]
Ring-slot
parachute
C (a=10deg) =~ 0.05% x 0.2
CT(u=0deg) = 1.0 1.1-1.5

Table 5.3 Coefficients of velocity-dependent force
for steady motion and unsteady motion.



Test Experi- Published Potential
model mental data flow
Circular ~ 2.4 ~ 0.6[41] 1.0
Rectangular
block
k11(u=0deg) x 2.4 (for 2-D)
' 1.19({38]
e E Rl S A AU
Cruciform
parachute
k,,(a=0deg)| = 0.53
(Hemispher.
k33(u=0deg) ~ 4.3 3-4[42] shell)
2-3[18] 2.1[16]
Ring-slot
parachute
k, . (a=0deg) ~ 0.52
11 .
Hemispher.
kaa(u=0deg) =~ 3.0 shell)
2.1[16]

Table 5.4

Coefficients of acceleration-dependent

force in real fluids and in potential flow.
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Estimation (Hz)
Test model (disregarding Measured (Hz)
natural frequencies)

Circular

cylinder x 3 = 2.5
Rectangular

block ~ 3.2 =~ 3
Cruciform

parachute =~ 4.2 = 3
_____________ 0 S S
Ring-slot

parachute = 3.5 = 3
Table 5.5 Lowest natural frequencies of vibration

compared with

estimations based

values of added mass.

on experimental
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RECOMMENDATIONS FOR FUTURE DIES

AND CONCLUSIONS

6.1 RECOMMENDATIONS FOR FUTURE EXPERIMENTAL WORK

(1) The author is unaware of any other experimental
research programme by which unsteady fluid dynamic force on
a submerged body has been related to the velocity and the
acceleration of the body, in the form given by equation
(5.1). It 1is recommended that independent investigations
should be conducted in order to understand more about the
phenomenon of time-delay (1) associated with the unsteady

fluid dynamic forces.

(2) Further experiments are also required for
non-dimensionalising . Parameters the author considers
relevant are discussed in Section 5.7 of Chapter Five. The
first stage of such experiments should include test models
of the same shape but of different sizes. Fluids with
different densities and different viscosities are
recommended for further investigations. Such experiments

could be used to understand the effect on the model given by

equation (5.1) due to scaling of submerged bodies.

(3) The empirical model form given by the equation
(5.1) has been derived exclusively from experiments in which

the test models are oscillated in either lateral or in-line
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directions while they are being translated at uniform speed.
These experiments were designed béaring in mind that a
primary applications of the results would be in dynamics of
fully inflated descending parachutes. It is suggested that
the studies should be conducted for other modes of motion
also (e.g. non-periodic unsteady flow), to investigate the
possibilities of extending the application of the model. An
immediate areé of 1interest 1is studying the effects of
angular velocities and angular accelerations of bluff bodies

on their added moments of inertia.

(4) Experimental results show that the fluid dynamic
force on a steadily moving submerged body is substantially
increased when lateral oscillations are superimposed on this
motion. The correlation between the increase in the
coefficient of velocity-dependent axial force and the

maximum angle of attack (o imposed by lateral

max’
oscillations, shown in figure 5.44, could be improved by
further éxperiments. In these experiments variations of
both the frequency and the amplitude of the oscillations

shoculd be included. The 1level of uncertainty shown in

figure 5.32 could be reduced by repeating these experiments.
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6.2 CONCLUSIONS

(1) Existing empirical relationships in which unsteady
fluid dynamic forces on submerged bodies are related to
instantaneous velocity ana instantaneous acceleration, are
considered as inadequate. Such inadequacies occur due two
reasons:

(a) At the stage of analysing these forces the
components of the total force that are dependent on
the velocity and the acceleration are inadequately
defined. Thus, certain components of the total
force that are velocity-dependent can be often
erroneously considered as acceleration-dependent,
or vice versa.

(b) The history of the motion of real fluids is known to
play an important role in the magnitude and the
direction of the fluid dynamic force.

During the present investigation the author has
related the fluid dynamic forces on submerged bodies to the
entire history of their periodic motion, to obtain the

empirical relationship

F(t)

CR 0.5 pAU(t-71)|U(t-71)]

+ Xk oVU(t-T)

where the “time-delay’ t is a time constant which is found

to be independent of the frequency of oscillation. The

coefficients of forces in this model, CH and k are found to
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be constants, i.e. independent of the acceleration number
(6L/U2), if the attitude of the body remains unchanged.
Since they are also considered to be independent of Reynolds
number in the given range (Section 5.6), the variations in
these coefficients can be regarded as due to the variations
in the attitude of motion (or, the angle of attack.)
Experimentally derived values of these coefficients for
various shapes of bodies are given in Tables 5.3 and 5.4 and
in figures 5.29 to 5.39. These data together with
equation (5.1) represent an effective model for deriving

unsteady fluid dynamic forces on bluff bodies.

(2) As shown in Tables 5.3 and 5.4, data for the
coefficient of velocity-dependent force (CR) and the
coefficient of acceleration-dependent force (k) show that

(a) The magnitude of Cn for unsteady flow is not unlike
that in steady flow provided that the motion of the
submerged body persists in the same direction all
the time. Lateral oscillations however increase
this force coefficient because the width of the
wake downstream of the body is made larger by the
lateral movements.

(b) When  the flow around bluff bodies is fully
developed, the experimental values of k can reach
values as much as 2.5 times 1larger than the
corresponding potential flow values. These

additional components of the coefficient of

acceleration-dependent force are due to the mass of
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the fluid involved in the boundary layer and in the

wake downstream of the body.

(3) In the relationship given above which was obtained
by relating the fluid dynamic force on submerged bodies to
the entire history of the velocity and of the acceleration,
coefficients of force components that are dependent on the
velocity and on the acceleration remain substantially
constant. The method decsribed in Section 5.4 can be used
to identify the two components of the +total force

separately, thus evaluating the coefficients of these

component forces, namely CR and k, made very effective.

(4) The values of CR calculated from the experimental

results show that the fluid dynamic force in any particular
direction increases substantially when lateral oscillations
are superimposed on linear translations. The increase in
the coefficient of the velocity-dependent force in the
direction of linear translation is related in figure 5.44 to
the maximum angle of attack (amax) imposed by the lateral
oscillations. From the limited number of data points given
in figure 5.44 it can be seen that the increase in the
coefficient of the velocity-dependent force is greater for

larger values of «
g max"

(5) It is required to established the non-dimensional
form of v so that the model given by egquation (5.1) could be
used for bodies scaled up to full size. Such work has

already been recommended by the author for future
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investigatibns. The group Ur/L is suggested (see Section
5.7 of Chapter Five) as a suitable non-dimensicnal form of
T, where U 1is a reference velocity. However, firm
conclusions with respect to such non-dimensional term cannot

be made without further experimental investigation.
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APPENDIX A
ANALYSIS OF DATA
For each test conducted, a data file 1is

established. Each file contains five channels of data:

1. interruption signals from the switch located on the
wheel of the towing carriage,

2. potentiometer output, indicating the position of the
crank of the oscillation rig,

3. output from the strain gauge set, for forces in the
lateral (normal) direction,

4. output from the strain gauge set, for forces in the
axial direction, and

5. output from the strain gauge set for the moment on
the test model about the axis perpendicular to the

normal and axial directions.

Before any coefficients of forces are calculated,
these data are checked for ‘unwanted” signals (noise).
After obtaining a “smooth” set of data, the net fluid
dynamic force 1is calculated by substracting the drag force
on the test sting, and the inertia forces due to moving
solid parts. The step-by-step procedure of deriving the
force coefficients and the prediction model, for parachute

models, 1is as follows. '(Certain steps of this procedure is
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by-passed when calculating the force coefficients for

cylinder, because of its axisymmetry.)
A.1 VELOCITY AND ACCELERATION OF TEST MODEL

The position of the crank of the oscillation test
rig 6, its angular velocity, and angular acceleration are
obtained by scanning the output voltage from the

potentiometer attached to the crank shaft.

The position of the model, its velocity and acceleration,

with respect to the towing carriage are given by,

(1 + r) - /(12 —rzsinze) - rcosé

X =
r sin2e
X = wr{0.5 3 + sinbd}
(1€ - rzsinze)
’ r cos2e r? sinzze
X = wr{ 4 + 1/4
/(12 - r?sins) (12 - r?sin?s)/?

+ cosb}
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X 1is vectorially added to the towing carriage speed to
obtain the velocity of the model with respect to the earth.
A typical set of time history of motion of the test

models appears in figure A.1.

A.2 DATA SMOOTHING

Raw data from experiments contain scatter due to
“electronic noise’ of ‘amplifiers, vibration of solid
components, etc. Therefore, the results are numerically
smoothed before analysing. The smoothing process is carried
out in three stages:

1. Scan each channel of data 1looking for isolated
“spikes”. This is done by comparing each reading
with values before and after that. The spikes are
identified by “unusually large’ variation between
consecutive readings. The overall effect due to
removal of these spikes is negligible because the
time interval between two consecutive readings is 5
ms.

2. Each reading 1is compared with the average of eleven
readings (five before and five after the concerned
reading.) If the difference between the original

reading and the average value is greater than two

per cent of the full scale deflexion of the A/D
converter, the former is replaced by the latter.

3. Each channel of reading is then smoothed by
calculating the local average.
The strain gauge output voltage are then converted to to

Newtons for forces and to Newton-metres for moment using
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calibration formulae obtained by applying static loads on

the sting.

A.3 NET FLUID DYNAMIC FORCE ON THE TEST MODELS

It should be noted that the output given by
chanqels 3 and 4 represent the following components:
1. fluid aynamic force on the test model due to its
velocity and acceleration,
2. fluid dynamic force on the submerged parts 6f the
test sting, and
3. inertia forces due to the mass of the sting and the
mass of the test model.
4. noise due to vibrations etc.
The fluid dynamic force on the test sting is derived from
the data obtained by towing the sting without any test model
attached to its end, along the length of the ship tank. The
inertia forces of +the test sting and the test model are
obtained using Newton’s second law motion. The net fluid
dynamic force, therefore, 1is equal to the total force
indicated by the strain gauge output less the fluid dynamic
force on the test sting and the inertia force of the test

sting and the test model.

A.4 FIRST APPROXIMATION OF QUASI-STEADY MODEL

Having calculated the velocjity and acceleration of
the test model, and their directions, the first

approximation of the quasi-steady model is written by using
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the steady flow value of the velocity-dependent force
coefficient and the potential flow value of the acceleration
dependent force coefficient, in equation (1.3). The Fourier
series of the quasi-steady model and that of the
experimental results are used to obtain the moduli and the
arguments of Impulse Response Function associated with the
convolution integral. The “time-delay” in the IRF is used
to re-estimate the force coefficients.

The process 1is repeated until the values of force
coefficients and Impulse Response Function for the best fit
on experimental results are obtained. The flow chart

illustrating the process of analysing data is given below.



START

Scan channel 1 and
obtain the speed of

the towing carriage

Scan channel 2 and obtain the
frequency of oscillation of the
test rig. The potentiametcr
output recorded in this channel
gives the position of the crank
angle, which is then used to
calculate the velocity and
acceleration of the model.

Check each number in channels
3,4 & 5 individually by
comparing with numbers before
and after that. Remove from
the data file any noise' given
as spikes.

Smooth data channels 3,4 & 5 by
calculating local average

values.

Convert raw data into forces (N)
or moments (No) ,
correspondingly, using
calibration formulae.

Calculate velocity and
acceleration of the test model,
in the normal and axial
directions, and its angle of
attack

Substract, from the recorded
force, the drag force on the
test sting, and the force due
to inertia of moving solid
parts

[Calculate the terms on the

Ileft-hand-side of eg.3.3a using
[available values of
coefficients

!Obtain Fourier =''“ies of the
factual force and the Fourier
[series of the terms in eq. 3.3a
k 3.3b

Calculate the modulus
and the phase angle
cf the IRF using.

® cos(nwt+Y )
G( inui) =
A cos(nwt+* )

Read first
approximations of the
force coefficients.



Plot modulus and phase angle of
IRF, against the frequency of

excitation.

Derive the wvalue of
time-delay ) from
these graphs’ (given
by the gradient of
phase v. freq, plot)

Re-write the
empirical
relationship for the
force.

Plot, for each test

1/2pAU(t-T)1U(t-T)

versus

/2pAU(t-1) 10 (t-T)

From these graphs
obtain crN, ¢, k I

k as functions i
Calculate C v. a
from ~“lateral

oscillations tests.

re-calculate k

functions of a L’

Use latest data tor
k & k to

Write the empirical
relationship for the
force in unsteady

motion.

Does the prediction
model agree with the
.actual force?

good correlation

no

yes

Do you want to improve the
value of T?

poor correlation
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-

It can clearly be seen from figures 5.1, 5.2, 5.3

and 5.4 that the strain gauge output signals represent not
only the fluid dynamic forces and moments, but vibrations
due to natural frequencies, vortex shedding, electronic

noise etc.

B.1 NATURAL FREOUENCIES OF VIBRATION

An approximate analysis of the vibrations in the

linear and angular directions are included in this section.

With a model of mass M at the end of the sting, the

natural frequency of vibration in air is given by

k

(M1+M) + 0.23m

where, k = the stiffness of the test-sting-rod (3EI/L3 =
13.15%x10° N/m)

E = Young’'s modulus (200x10s N/mz)
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I = second moment of area of sting cross

section(u(d:-d';}/u = 1.76x10"% m*)

L = length of the test sting
m = mass per unit length of sting (1.22 kg/m run)
"M, = mass of the extension piece for supporting the

model (see figure 4.4)

Therefore,
13.15x10°
w = _— rad/sec.
0.523 + M
e.g. for a circular cylinder with mass of 10.775 kg the
natural frequency in air:
w = 34.12 rad/sec. = 5.43 Hz.

Figure 5.9b gives an added mass coefficient of 2.4
(therefore, 25.9 kg.) Neglecting damping effects the

natural frequency in water is given by

i
w

w = 18.8 rad/sec. Hz.
The lowest frequency of vibration in water for each test
model using average coefficients of acceleration-dependent
force (from figures 5.27 to 5.31) are:

Rectangular block: = 3.2 Hz.

Cruciform parachute: = 4.2 Hz.

Ring-slot parachute: = 3.5 Hz.
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3. 1.2 . 1 Vil S

The moment of inertia of the cylinder

0.1043 M

1.124 kg r* (in air)

2

Torsional inertia of M1 0.0202 kg m

Angular stiffness of sting

GJ/L

2.92x10° Nm/rad

where, G is the rigidity modulus(77x10° N/mz) of sting and J

the polar second moment of area (n{d‘-d:)/32 = 3.527x10 8
0

m*)

k

0.0202 + 0.1043 M

where M = 10.775 kg.

The natural frequency of torsional vibration in air is 8.04

Hz and that in water (with added mass = 25.9 kg) is 4.4 Hz.

B.2 VORTEX SHEDDING FREQUENCY

e.g. Cylinder in laminar (steady) flow:
Strouhal No. = nD/U = 0.2
where, n is the vortex shedding frequency, D the diameter of
the cylinder and U the free-stream velocity.
Therefore, n = 1.80 (for D=0.114m)
For an average speed of 0.35 m/sec. the vortex shedding

frequency is 0.6 per second.
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The analysis outline above give only approximate
frequencies because the damping effects have not been taken
into account. The actual frequencies of vibration are

expected to be slightly less than these values.
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C.1 CONVOLUTION INTEGRAL

An arbitrary input (e.g. the velocity function of a
flow field) of a system, given by I(t), can approximately be
expressed by a series of impulse functions as I1(t), Iz(t),

I_(t),..... having impulse widths At1, At Ata, .....

2 ?
respectively (Fig. C.1). Using the convolution integral the
response R(t) at any instant t, due to this input (e.gq.
force on a submerged body due to the velocity function) can

be written as

R(t) = R1(t) + Rz(t) + Ra(t) + ... (C.1)
where,
t
R1(t) = J G(t-t) I1(t) dt
-t
1
ot
Rz(t) = § G(t-v) IZ(T) drx etc.

are the responses due to each impulse 11(t), I_(t),.....
respectively. The function G(t) 1is the Impulse Response

Function of the systemn.



c2
In' the convolution integral method, the initial
values of the problem are taken into account by the limits
of the integration; i.e. I(t) = 0 for t <« t1 etc. In the
case of I(t) sustained over long period of time, t + -e,
The integral also implies that “future’ values of
I(t) cannot affect ‘earlier” values of R(t). It also
reflects that for a physically realizable system, the

instantaneous effects of the output R(t) are ruled out.



At,

Figure C.1
by a series

2 3 VR
A "2 At3 At;,
An arbitrary function
of impulses.

I(t)

described

time
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APPENDIX D

YSES NC

D.1 FOURIER SERIES PRESENTATION OF DATA

As described in Chapter 3, the Impulse Response
Function (IRF) of a bluff body, moving unsteadily in a
fluid, 1is evaluated by transforming the time series of the
effects due to the motion, and the time series of the
measured force due to this motion inéo two Fourier series.
The IRF is derived by considering the harmonic frequencies,
of both motion and fluid dynamic force, one at a time. It
is realised from the figures 5.5, 5.6, 5,7 and 5.8 that the
IRF can be expressed as a delayed impulse only for
frequencies up to about 3 rad/sec. For higher frequencies
the behaviour of the IRF is quite arbitrary. Therefore, the
prediction model, given by equation (5.1) is representative
only for low frequencies. Thus equation (5.1) can
effectively be applied to predict unsteady fluid dynamic
forces only if the components of the total force due to high
frequencies are negligible.

Given 1in Table D.1 are the percentages of high
frequency components in the total , fluid dynamic force

derived using equation (5.1).
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D.2 STRENGTH OF SIGNAL CARRIED BY VORTEX SHEDDING, NATURAL

FREQUENCY VIBRATIONS ETC.

The vortex shedding frequencies, as discussed in
Appendix B, are of the order of about 0.6 Hz. (about 3.5
rad/sec) The natural frequencies of vibration have effects
beginning from about 3 Hz. The individual effects cannot be
separately because the forces due to natural vibrations can
occur at their harmonic frequencies as well. Any form of
recorded force with frequencies above 3 rad/sec is regarded
as due to vortex shedding, or natural frequencies of
vibration, or system noise. They are separated from what is
considered as the main fluid dynamic force, using Fourier
series, simply by discarding the higher order terms. The
magnitude of these high frequency forces, as percentages of

the total measured forces, are given in Table D.1.
D.3 UNCERTAINTY OF EXPERIMENTAL METHODS

The experimental uncertainty during the present
investigation is 1regarded as due to two reasons: (a) the
‘noise’ associated with the apparatus and (b) uncertainty

due to inconsistency in the repeated measurements.

D.3.1 Noise Level of the Equipmemts

The average noise level produced by the equipment
used for amplifying and recording data is estimated by the
variation of the recorded readings for a given steady input

signal.
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noise

signal i=1

th reading,

Where X‘ is the i
X is the average of X, and
F.S.D. is the full scale deflexion.

The average ‘noise/signal” ratio, as a percéntage

of the full scale deflexion 1is found to be 0.63%. The

maximum value of the noise/signal ratio recorded was 0.8%.

D.3.2 Experimental Uncertainty

The experimental uncertainty is derived by
considering the measurements repeated ﬁnder the same
conditions. The uncertainty is expressed as on_1/i where
°,-q @and X are the sample standard deviation and the mean
value of n number of reBeated readings. The sample standard

deviation associated with of each test model is given in

Table D.2.

D.4 DEVIATION OF THE PREDICTION MODEL

Once the prediction model is established in the
form given b§ equation (5.1), the experimentally meaénred
forces are compared with the forces reproduced by equation
(5.1), so that the success of the application of this model
can be assessed. The reliability to which the model can be
applied is given by the deviation of the modelled force from
the experimentally measured force (as a percentage of
measured force). This “error” is defined in the form of the

sum of the deviation per unit force as:
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o

Deviation = X, (£) - X/ (0)1 /7 T 1% (£)]

1 1=1

™S

where,

n is the number of experimental reading considered,

Xi(t) is the actual fluid dynamic force on the test
model, and

X;(t) is the force estimated by the prediction

model (eq. 5.1)

The deviations of the forces modelled for each body are

given in Table D.1.

D.5 BLOCKAGE EFFECTS

The blockage effect on each test model, is defined
as the ratio of cross sectional area of the test model to

that of the ship tank. These ratios are given in Table D.3.

.D.6 FREE SURFACE EFFECTS

The submerged Froude number {U//(gh)} the test

model is approximately equal to 0.13, where U is the average
speed of the test model, g the acceleration of gravity and h

the distance from the free surface to the model. The ratio
of L1L/2h where L is the characteristic length of each test

model, is given in Table D.3.
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Test model

Sample Standard deviation

Arithmetical mean

Circular Cylinder 0.18

Rectangular Block 0.1

Cruciform Parachute 0.10

Ring-slot Parachute 0.05
Table D.2 Experimental uncertainty of

measurements.
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Test Model Blockage L/2h
Circular

Cylinder 0.017 0.08
Rectangular ' N

Block 0.004 0.1
Cruciform

Parachute 0.008 0.17
Ring-slot

Parachute 0.012 0.22
Table D.3 Blockage and distance from free

surface.

* Using the height of the test model as L.
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APPENDIX E

OPTIMISING FORCE COEFFICIENTS WITH t=0

E.1 INTRODUCTION

In periodic motion, the acceleration of the body
always leads the velocity. Thus, if 1large values of
accleration-dependent forces are derived to satisfy the
characteristics of the measured forces, shown in figures
5.40 to 5.43, this inevitably 1leads to a phase-lead, or
time-lead 1in the modelled force, hence requiring a term
similar to =1 as a compensating parameter. Conversely, if
the relative magnitude of the acceleration-dependent force
is low, the value of 1 becomes smaller. The
velocity-dependent force under these circumstances may
require adjustment to obtain the necessary magnitude of the
total force. Thus by applying suitable values of (Cn/k) one
may be able to make 1 equal to zero, and optimise only the
values of CR and k. Although this method would produce a
less satisfactory fit to the experimental results, it has

the advantage of dealing with equation (1.3) which includes

only two experimentally determined parameters.
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E.2 OPTIMISING WITH ONLY TWO FORCE COEFFICIENTS

The effect due to lowering the
acceleration-dependent force is achieved by suitably
deviding the coefficients of acceleration-dependent force
(k) given in figures 5.35 to 5.39 by a constant p, where
p=2,4,8 & ». This method would show the effect on the fluid
dynamic force for a range of values of k. For p=« the
acceleration-dependent force is zero, thus the fluid dynamic
force is modelled based on a single coefficient as
CR 1/2pA U|U]|. The velocityjdependent force coefficients
shown in figures 5.29 to 5.34 are suitably increased during
this process to allow for the reduction in the
acceleration-dependent force. Hence, the unsteady fluid
dynamic forces are modelled using equation (1.3) by varying
the ratio of (Cn/k) in order to obtain the best fit to the
experimental results. The deviation of the forces thus
modelled, for p = 2,4,8 and « are shown in Table E.1.
Examples of forces produced using these optimised values of
Cn and k are shown in figures E.1 to E.4.

The agréement between the measured force and the
force modelled using equation (1.3) can be improved by
suitably adjﬁsting the magnitudes of Cn and k. - The
deviation of the modelled force from the measured force
appears to increase for high values as well as very low
values of the acceleration-dependent forces.

It can be seen 1in Table E.1 that the agreement
between the measured forces and the forces modelled using

equation (1.3) with optimised CR and k is less satisfactory
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than the agreement obtained by introducing the time delay
term T. This may well be due to the fact that the measured
force has a noticeable second order harmonic behaviour near
the mean value,'as can be seen clearly in figures 5.42 and
5.43. These characteristics represent high values of
acceleration-dependent forces which consequently lead to a
time-lead in the part of the modelled force. Hence a better
fit to the experimental results can be achieved by using the
term v which represents the time-delay of the measured force
relative to the modelled force.

It can also be seen in Table E.1 that the
improvements made by egquation (5.1) in modelling unsteady
forces for in-line oscillation is rather small because the
velocity-dependent forces 1in these cases are much larger
than the acceleration-dependent forces. Hence the effect of
the acceleration-dependent force on the total fluid dynamic
force is very 1low. Nevertheless, for lateral oscillation
the unsteady forces modelled by equation (5.1) appear to be

much better than those modelled by equation (1.3).
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E.1 Forces on circular cylinder modelled

by equation (1.3).

»

Figure 5.

40

experimental
equation (1.3)

» » kY

Forces on the circuler cylinder in in-line oecilletion.

experimental
equation (5.1)
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E.2

by equation
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Figura 5.

41

() for pil.o

r

Tim# lioci

101 for p*0.0

Forces
(1.3).

on rectangular block modelled

experimental
equation (1.3)

Forces on the rectangular block in in-line oscillation.

experimental

equation (5.1)
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Figure

E.3

c
g

T1M TIteCl
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b fxrp#0

Forces on cruciform parachute

modelled by equation (1.3)

Figure

5.

42

experimental
equation (1.3)

Forces on the cruciform parachute in lateral oscillation.

experimental
equation (5.1)
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Figure E.4 Forces on rirtg-slot parachute
modelled by equation (1.3).
experimental
equation (1.3)
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Figure 5.43 Forces on the rlng-slot parachute in lateral oscillation.

experimental
equation (5.1)
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UNSTEADY FLUID FLOW AROUND CERTAIN BLUFF BODIES
by 5.J. Polpitiye

It 1is shown in this +thesis that fluid dynamic
forces on unsteadily moving bluff bodies depend on the
history of motion as much as on the velocity and
acceleration of motion. An empirical relationship between
the motion of the body and the resulting force is obtained
by analysing the effect of the history of motion on the
fluid dynamic force at any instant.

The fluid dynamic force, velocity and acceleration
are obtained as functions of +time, by oscillating test
models in water while they are being towed at constant
speed. The test models used are: .

1. a two-dimensional circular cylinder,
2. a rectangular block with sguare frontal area and

fineness ratio of 3:1,

3. a cruciform parachute canopy with arm ratio of 4:1,

and :

4. a ring-slot parachute canopy. L P :
The functions by which the history of flow affects the
future forces, are evaluated by using +the Convolution
Integral. The results show that the effects due to history
of both velocity and acceleration are by no means
negligible, -that 1is the wvelocity and the acceleration at a
specific time prior to any instant is so domineering that
the fluid dynamic force can approximately be expressed as
being delayed by this period of time. This “time-delay’, or
time lag (as opposed to phase-lag) 1in the part of the
measured force is found to be independent of the frequency
of excitation. In the light of this evidence, a prediction
model 1is suggested for estimating unsteady fluid forces.
The data required for the application of this prediction
model are obtained experimentally.

Chapter One of this thesis gives a Dbrief
explanation of +the historical background of unsteady fluid
dynamics. The effects of acceleration on the fluid dynamic
force, 1in both ideal and real fluids, are discussed in
Chapter Two. Explained in Chapter Three are the techniques
used for building the force prediction model, and data
acquisition. The experimental procedure is explained in
Chapter Four. Chapter Five gives the empirical form of the
prediction model, and some data that are used in association
with this model.
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