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Abstract

In this thesis we will address four problems concerned with algorithmic
issues that arise from communication and sensor networks.

The problem of scheduling wireless transmissions under SINR constraints
has received much attention for unicast (one to one) transmissions. We con-
sider the scheduling problem for multicast requests of one sender to many
receivers, and present a logarithmic approximation algorithm and an online
lower bound for arbitrary power assignments.

We study the problem of maximising the lifetime of a sensor network
for fault-tolerant target coverage in a setting with composite events, where
a composite event is the simultaneous occurrence of one or more atomic
events. We are the first to study this variation of the problem from a the-
oretical perspective, where each event must be covered twice and there are
several event types, and we present a (6 + ε)-approximation algorithm for
the problem.

The online strongly connected dominating set problem concerns the con-
struction of a dominating set that is strongly connected at all times, and for
every vertex not in the dominating set, there exists an edge to some vertex
in the dominating set, and an edge from a vertex in the dominating set. We
present a lower bound for deterministic online algorithms and present an
algorithm that achieves competitive ratio matching the lower bound.

The monotone barrier resilience problem is to determine how many sen-
sors must be removed from a sensor network, such that a monotone path
can exist between two points that does not intersect any sensor. We present
a polynomial time algorithm that can determine the monotone barrier re-
silience for sensor networks of convex pseudo-disks of equal width.
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Chapter 1

Introduction

The recurring theme throughout this work is the theoretical analysis of algo-

rithms for communication and sensor networks. Although the work within

the individual chapters is to a certain degree disjoint, all the work presented

here could be considered under the umbrella research theme of the theo-

retical analysis of approximation and exact algorithms, designed for solving

issues that arise in sensor networks, and wireless ad-hoc communication

networks.

A natural modelling of communication networks, in particular wireless

ad-hoc networks is to consider the nodes forming the network to be rep-

resented by vertices of a graph, and then a natural analogy of the links

between communicating nodes, is to represent links as edges in the graph.

This observation is the motivation for our interest in real life problems aris-

ing in wireless communication and sensor networks, that can be modelled

by algorithmic problems in graphs, of which we consider the theoretical

analysis.
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We consider in this work communication networks. A communication

network is a collection of nodes, that wish to transmit data to each other.

Such transmissions are accomplished via communication links. A commu-

nication link may be of various physical forms, e.g., wired links, fibre optic

links, wireless transmissions. It may also be that such a network is comprised

of a variety of the aforementioned media types. The interested reader can

refer to [LGW04] for an overview of communication networks. Throughout

this thesis we will consider wireless ad-hoc networks.

A wireless ad-hoc network is extremely versatile in its nature, as it is not

dependent on a pre-existing infrastructure. There are however drawbacks

in such networks. A common necessity of wireless ad-hoc networks is to

specify a routing mechanism for the network. Such routing can be achieved

by a variety of means, either by centralised governance, where all nodes in

the network adhere to a specified routing organisation, or by a distributed

organisation where the nodes act somewhat independently of each other.

Throughout this thesis, we will be discussing routing problems of a cen-

tralised nature. For a more comprehensive description of routing problems,

the reader can refer to [AKK04].

Additionally, one often considers ad-hoc networks that consist of mobile

nodes that utilise a battery as a power source, and as such the nodes have

limited power available. Hence, efficient routing is of paramount importance.

Transmitting wireless signals will deplete power at the sending node, and

consequently one wishes to avoid unnecessary transmissions with the aim

of preserving energy available for the node for future transmissions. Using

power unnecessarily could impair the efficiency of the network, and as such
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the organisation of how packets are routed through the network, is of great

concern in practice. Routing can also be more of a problematic issue in

wireless networks utilising batteries as a power source, as due to a limited

amount of power available to the nodes, the transmission radius of the nodes

is limited. This leads to an increased need for routing in such networks as

most transmissions will require the use of intermediate nodes to transmit

the packet over a greater distance. Routing through multiple intermediate

nodes is commonly referred to as multi-hop routing [AY05].

There are a variety of algorithmic issues related to the routing of packets

in wireless networks, two of which we discuss in this work, namely scheduling

wireless transmissions such that they do not interfere with each other, and

forming a routing backbone for transmissions (in Chapters 3 and 5 respec-

tively). One can specify such a routing backbone of the network that selects

a group of nodes forming the network, that are specified as nodes that will

be utilised in routing packets through the network to the destination node.

We discuss the concept in greater detail in Chapter 5.

A sensor network is a collection of nodes (predominantly such networks

will be comprised of wireless nodes) that are deployed to detect events.

There is an inherent need for fault tolerance in sensor networks. Deployed

sensors may not be able to detect events that they are supposed to monitor

due to several factors. Such sensor networks are often comprised of small,

battery powered nodes and as such a sensor could fail due to a lack of

power. Such a lack of power could occur due to the battery being completely

discharged so the sensor cannot function, or due to reduced power available

due to battery depletion leading to a reduced sensing radius, and as a result
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an event that should have been monitored might not detected. Additionally,

failure in sensor networks may occur due to other factors such as physical

damage to the nodes in the network, which could be common in networks

deployed in military settings, or environmental interference preventing the

sensing or communication of a node due to extreme weather phenomena.

For examples of such settings where failure to detect an event that the

network is supposed to monitor is unacceptable, one can consider settings

where a sensor network is deployed to detect intruders in a building or other

secure area, or alternatively environmental warning systems where sensor

networks are deployed to detect potential extreme weather events and warn

nearby inhabited areas. We refer the reader to the survey paper of Callaway

[CJ03] for more information regarding sensor networks.

A common approach to provide fault tolerance within a sensor network

is to introduce redundancy. One possible example of an approach in this

area would be to duplicate each sensor, i.e., for every sensor deployed in the

network, deploy a second sensor in close proximity to its duplicate, such that

if one of the sensors fails, the other may remain active and is able to detect

and report the occurrence of an event. We will address different notions of

fault tolerance in sensor networks in Chapters 4 and 6.

Outline of this Thesis

The remainder of this thesis is organised as follows:

Chapter 2. In the second chapter fundamental concepts related to the

results presented in this thesis are introduced. Within this chapter we also
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present an introduction of terminology that is used continuously throughout

the duration of the thesis.

Chapter 3. In the third chapter the first study is presented, namely the

problem of scheduling wireless transmissions under Signal-to-Interference-

plus-Noise Ratio (SINR) constraints. While previous work has considered

the unicast case, where each transmission has one sender and one receiver,

we consider the setting of multicast requests where each transmission has

one sender and a set of receivers. A set of multicast transmissions can be

scheduled in the same round if the SINR at all receivers is above a certain

threshold. The goal is to minimise the number of rounds. Building on the

relationship between SINR scheduling and unit disks colouring established

by Halldórsson [Hal09], we present an O(log Γ)-approximation algorithm

for multicast scheduling in the SINR model, where Γ is the ratio of the

longest to the shortest link length, considering only the longest link of each

multicast request. The algorithm uses uniform power assignment and can be

implemented online. We also compare the model of atomic multicasts, where

all receivers of a multicast must receive the transmission in the same round,

to the model of splittable multicasts, where a multicast sender can transmit

in several rounds, each time serving a subset of its receivers. Furthermore, we

consider the throughput maximisation problem where one has to schedule

the maximum number of requests when restricted to a single round and

obtain an O(log Γ)-competitive randomised online algorithm, and finally we

show that every deterministic online algorithm, even for unicast links and

using arbitrary power assignments, has competitive ratio Ω(log Γ).
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Chapter 4. In the fourth chapter, we study the problem of maximising

the lifetime of a sensor network for fault-tolerant target coverage in a setting

with composite events. Here, a composite event is the simultaneous occur-

rence of a combination of atomic events, such as the detection of smoke and

high temperature. We are given sensor nodes that have an initial battery

level and can monitor certain event types, and a set of points at which com-

posite events need to be detected. The points and sensor nodes are located

in the Euclidean plane, and all nodes have the same sensing radius. The

goal is to compute a longest activity schedule with the property that at any

point in time, each event point is monitored by at least two active sensor

nodes. We present a (6 + ε)-approximation algorithm for this problem by

devising an approximation algorithm with the same ratio for the dual prob-

lem of minimising the weight of a fault-tolerant sensor cover. The algorithm

generalises previous approximation algorithms for geometric set cover with

weighted unit disks and is obtained by enumerating properties of the optimal

solution that guide a dynamic programming approach.

Chapter 5. We proceed in the fifth chapter, and present work which is

concerned with online algorithms. We study the online problem of comput-

ing an in-out dominating set that is strongly connected (every vertex in the

in-out dominating set has a path to every other vertex in the in-out domi-

nating set), where an in-out dominating set has the property that for every

vertex not in the in-out dominating set, there exists an edge to some vertex

in the in-out dominating set, and an edge from some vertex in the in-out

dominating set. This problem is analogous to the network routing problem
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of specifying a routing backbone for a communication network. We first

present a lower bound for the problem stating that no deterministic online

algorithm can attain a competitive ratio less than n/4 + 1/4, where n is the

number of vertices in the graph. We then complement this lower bound, by

presenting an online algorithm that attains the competitive ratio n/4 + 1/4

for the problem.

Chapter 6. In the penultimate chapter of this work we return our focus

to offline algorithms for sensor networks. Consider two points in the plane.

If one does not wish to allow anyone to travel between them undetected,

then one can deploy a sensor network which forms a barrier between the

two points. A path is said to be detected by a sensor in the network if the

path intersects the sensor region. A sensor network for which all possible

paths between two points are detected is said to attain barrier coverage.

However, there have been numerous works which note that if one sensor

fails, there may exist a path which is not detected. As such, this prompts

the study of robustness of such sensor networks attaining barrier coverage.

Two such measures of robustness are considered namely the thickness of a

barrier, where the aim is to calculate the minimum number of times any

path from the start point to the target point intersects the sensors in the

network, and the resilience of the barrier, where the aim is to calculate the

minimum number of sensors that must be removed from the network, such

that a path exists between the two points that does not intersect any sensor.

Previous work has shown the problem of calculating the barrier resilience

of a network to be NP-hard for non-symmetrical sensor regions, which has
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prompted other works to consider approximation algorithms. We study the

barrier resilience problem when restricted to monotone paths (monotone

barrier resilience), and show that we can calculate the monotone barrier

resilience of a sensor network in polynomial time, for networks with sensor

regions of convex shape and equal width.

Chapter 7. In the seventh and final chapter we will conclude this thesis.

We will give a brief overview and summary of the main results and contri-

butions presented in the aforementioned chapters in this thesis. We will also

recapitulate some of the open questions and directions for future research

related to the work presented in this thesis.

Chapter 3 is based on publication [EG10] and is joint work with Thomas

Erlebach. Chapter 4 is based on publications [EGK11a, EGK11b] and is

joint work with Thomas Erlebach and Frank Kammer. Chapter 5 is based

on joint work with Thomas Erlebach and Chapter 6 is based on joint work

with Thomas Erlebach and Torsten Tholey.
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Chapter 2

Preliminaries

Although the reader is likely to be familiar with some of the concepts dis-

cussed in this chapter we nevertheless include brief introductions and sum-

maries of some fundamental aspects of complexity theory and graph theory.

2.1 Complexity Theory

The vast area of complexity theory is one we cannot hope to begin to sum-

marise within the scope of this thesis. Indeed, it is one of the most fun-

damental research areas within computer science, and thus has attracted

much attention from researchers. As such, there are a plethora of interest-

ing results one could discuss. Therefore, in this section we will only present

a brief introduction and summation of some of the most pertinent areas of

complexity theory relevant to the work presented in this thesis. However, we

do assume the reader has some familiarity, and a grasp of the basic concepts

of set theory.
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We first discuss decision problems and then subsequently will proceed to

discuss some of the most fundamental complexity classes. A decision problem

is a problem for which an algorithm for any given instance of the problem

must determine and output a solution of either ‘yes’ or ‘no’. An instance

for which the solution is yes is denoted as a yes-instance, and similarly

an instance for which the solution is no is denoted as a no-instance. One

of the most famous decision problems is the halting problem, that is the

problem of taking as input an algorithm and an input to that algorithm, and

determining whether or not the algorithm ‘halts’ (i.e., terminates) at some

stage, i.e., determine whether or not the algorithm will run for an infinite

amount of time. An algorithm for the halting problem should therefore

output ‘yes’ if the algorithm does terminate, or conversely output ‘no’ if the

algorithm does not terminate. The halting problem was shown to have no

solution by Church [Chu36] and Turing [Tur36] independently.

One is interested in making algorithms efficient in terms of computa-

tion time, and in some application settings such efficient algorithms may

be essential. For example, consider an air traffic control system that must

dynamically re-direct aircraft safely to avoid mid-air collisions. In such a

scenario an algorithm which is inefficient would be unacceptable as it could

endanger lives. One class of measures of the efficiency of an algorithm are

the computational resources that are required by the algorithm during the

run time of the algorithm.

An important factor when determining the computational resources used

by an algorithm is the size of an input to an algorithm. For an algorithm

designed to sort a list of numbers in ascending order, the size of the input
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would be the length of the list of numbers. Typically n will denote the

input size to an algorithm. Two types of computational resources are usually

considered when analysing algorithms: The time complexity of the algorithm

which is the number of steps than an algorithm requires before terminating,

and the space complexity of an algorithm, which is the amount of memory

utilised by an algorithm during execution. We first discuss time complexity.

An algorithm is said to run in polynomial time if given an input of size

n to some problem, the algorithm terminates after at most O(nc) steps,

where c is some constant value, i.e., the algorithm terminates after at most

a polynomial number of steps. Similarly, if an algorithm has running time

O(cf(n)) where c is a constant and f(n) is some polynomial function of n,

then the algorithm terminates in exponential time (assuming the algorithm

does indeed terminate).

A problem P is said to lie in the complexity class P, if there exists a

deterministic algorithm that solves P , and the algorithm terminates within

polynomial time. P is also referred to as DTIME(nO(1)) in the literature.

A problem P is in the complexity class ‘non-deterministic polynomial

time’ (NP), if a solution for P can be verified to be correct in polynomial

time. For example, for the problem of sorting a list of integers into ascending

order one can easily check in polynomial time if the resulting list is indeed

in ascending order. It is clear that the set of problems that can be solved

in polynomial time is a subset of the set of problems whose solution can be

verified in polynomial time, i.e., P ⊆ NP. Note that an equivalent definition

of the complexity class NP is that it is constituted by all the problems that

can be solved non-deterministically in polynomial time.
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We can also determine the relationships between computational prob-

lems. One form of relationship is to note that problems can be reduced to

other problems. A problem P ′ reduces to a problem P if for any instance

of P ′, there exists a mapping to an instance of P , such that the instance

of P ′ is a yes-instance if and only if the instance of P is a yes-instance. It

also follows from this definition that it must be the case that the instance

of P ′ is a no-instance if and only if the instance of P is a no-instance. If

such a reduction can be performed in at most polynomial time then it is a

polynomial reduction.

A decision problem P is NP-hard if every other decision problem P ′ ∈

NP can be polynomially reduced to P .

A problem P is NP-complete, if P is in NP and there exists a polyno-

mial reduction from every other problem P ′ ∈ NP to P . The first problem

shown to be NP-complete was the Boolean Satisfiability problem by Cook

in 1971 [Coo71]. In 1972, Karp [Kar72] built on this work and showed 21

NP-complete problems. Many of the problems shown were fundamental

problems in Computer Science (such as the set cover problem), which pro-

vides motivation for the study of the complexity of combinatorial problems.

If one problem P is known to be NP-complete then there exists a poly-

nomial reduction from every other NP problem to P . As a result of this, if

one could show a polynomial time algorithm for P , then as any instance of

another problem in NP can be polynomially transformed into an instance

of P , there would exist a polynomial time algorithm for all problems in NP.

Consequently all problems in NP would also belong to P, and this would

show that P = NP.
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As a final remark on the subject, it is widely conjectured that P 6= NP.

We proceed under the assumption that P 6= NP throughout the course of

this thesis.

Although we do not explicitly analyse the space complexity of the algo-

rithms presented in this thesis, we do provide a brief overview. The space

complexity of an algorithm is the measure of the maximum amount of mem-

ory (space) that an algorithm will use during its runtime execution. If for a

problem P , an algorithm for P uses at most a polynomial amount of space

(with regard to the input size) to solve P then P is in the complexity class

PSPACE.

For more information regarding complexity theory we refer the reader to

[GJ79].

2.2 Offline Algorithms

An offline optimisation problem is a problem where one must find the best

possible solution, amongst all feasible solutions. An optimisation problem

is defined by the set of instances I to the problem, a function that will for

a given instance i ∈ I of the problem, map i to a set of feasible solutions,

an objective function that will map each pair of an instance and a feasible

solution to the non-negative cost of that solution, and an aim of the problem

that is usually to maximise or minimise the value of the objective function

(we discuss this in more detail in subsection 2.2.1). An offline algorithm will

have complete knowledge of the instance with which to make its decisions

(in contrast to online algorithms that are discussed later). We remark that
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for every optimisation problem, there is a corresponding decision problem.

The consequence of this is that every optimisation problem is at least as

hard as its corresponding decision problem.

If a problem is NP-complete then we assume that it cannot be solved in

polynomial time (following from the assumption P 6= NP). One approach

to obtaining solutions to such problems is to have an efficient algorithm

that does not guarantee the best possible (i.e., optimal) solution, but rather

outputs an approximate solution that is not optimal, but rather is close

to the optimal. Such algorithms that return approximate solutions are ap-

proximation algorithms. It is usually implicit that approximation algorithms

terminate in polynomial time as the motivation for their use is that they run

efficiently (i.e., have a small execution time) and approximate the solution.

2.2.1 Approximation Algorithms

For the analysis of approximation algorithms it is common that worst case

analysis is employed. One compares the value of the output that the algo-

rithm achieves for the worst possible instance in terms of the ratio of value

of the solution output by the algorithm and the value of an optimal solution

for the same instance. This provides a rigorous analysis as one then has the

property that for any possible instance given to the algorithm, the algorithm

will output a solution with cost at most (assuming a minimisation problem)

a certain factor worse than an optimal solution for that instance, yielding

a provable performance guarantee of the algorithm. Indeed we utilise worst

case analysis throughout this thesis to yield performance guarantees for our

algorithms.
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As we briefly mentioned in this section the aim of an algorithm is usu-

ally to either minimise or maximise the value of the objective function. A

minimisation problem is an optimisation problem where one wishes to min-

imise the value of the objective function. An algorithm for a minimisation

problem obtains approximation ratio ρ if for any feasible instance i of the

problem it outputs a solution with value at most a factor of ρ larger than

an optimal solution:

alg(i) ≤ ρ · opt(i)

where alg(i) denotes the objective function value of the algorithm, for the

instance i, and similarly opt(i) denotes the objective function value of an

optimal solution, for the instance i. It is common in the literature to refer

to the value of the objective function for a minimisation problem as the cost

of the solution.

Similarly, a maximisation problem is an optimisation problem where the

aim is to maximise the value of the objective function. An algorithm for

a maximisation problem obtains approximation ratio ρ if for any feasible

instance i of the problem, the algorithm outputs a solution with value at

most a factor of ρ smaller than an optimal:

alg(i) ≥ opt(i)/ρ

Analogous to minimisation problems, it is common in the literature for

the objective function for a maximisation problem to be referred to as the

profit of the solution.
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One can also consider randomised algorithms for a minimisation prob-

lem where the expected cost of the algorithm (denoted by E[alg(i)] for the

instance i) is analysed over all possible instances. Formally, a randomised

algorithm has expected approximation ratio ρ if its expected outcome for

any instance i is at most a factor of ρ larger than the cost of an optimal

algorithm for the same instance:

E[alg(i)] ≤ ρ · opt(i)

Similarly, for a maximisation problem, a randomised algorithm has ex-

pected approximation ratio ρ if for any instance i of a maximisation problem

its expected outcome is at least a factor of ρ smaller than the profit of an

optimal algorithm for the same instance:

E[alg(i)] ≥ opt(i)/ρ

A constant-factor approximation algorithm is an algorithm that has ap-

proximation ratio c, for some positive constant c ∈ R. If for a problem P

there exists an algorithm that is a polynomial-time constant-factor approx-

imation algorithm, P belongs to the complexity class APX which is the

set of all problems, for which there exists a polynomial-time constant-factor

approximation algorithm.

A polynomial-time approximation scheme (PTAS) is a set of approxima-

tion algorithms that are given as input an instance of the problem, and a

constant ε > 1, and that output a solution with approximation ratio 1 + ε,

and terminate in O(nf(1/ε)) time, where f(1/ε) is some function depending
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on 1/ε. Similarly, a fully polynomial-time approximation scheme (FPTAS)

is a set of approximation algorithms that attain approximation ratio 1 + ε,

and have running time O(nc · (1/ε)c) where c is some constant value.

An exact algorithm for an optimisation problem P is an algorithm that

can determine an optimal solution for P , i.e., has approximation ratio 1. Al-

ternate but equivalent terminology that appears commonly in the literature

is that the algorithm solves the problem P .

A standard reference for the a reader interested in approximation algo-

rithms is [Vaz04].

2.3 Online Algorithms

In many application settings one does not have complete information of a

problem instance. For example, real time systems (such as stock trading

algorithms) do not have knowledge of future inputs (price changes). In such

a setting an algorithm must make decisions while being aware of only the

input that has been received thus far, without knowledge of what future

input it will receive (if any). A problem where the instance is revealed to

an algorithm piece-by-piece and the algorithm must dynamically act when

presented with a portion of the input, is an online problem.

In contrast to offline problems where the instance is represented as a

set, and the algorithm is aware of the entire set before its execution, for an

online problem, an online algorithm will receive an instance as an ordered

set (sequence) and the algorithm only becomes aware of the input as each

element of the sequence is presented to the algorithm piecewise. Addition-
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ally, in most online settings (including all the online problems discussed in

this thesis) the online algorithm will also not know the length of the input

sequence.

Competitive analysis is a recognised and commonly used approach for

the analysis of online algorithms, introduced by Sleator and Tarjan [ST85]

for the analysis of paging algorithms. One can can determine the quality (or

competitiveness) of a solution produced by an online algorithm, with respect

to an optimal solution, that could be constructed by an omnipotent optimal

offline algorithm, that has the input in its entirety with which to inform its

decisions, in contrast to the online algorithm that has only information about

the current request and previous requests with which to make decisions.

A deterministic online algorithm alg is ρ-competitive (or has competitive

ratio ρ) if for every instance i of a minimisation problem, the quality of the

solution produced by alg is within a factor of ρ of an optimal offline algorithm

(opt), with some additive constant c. Formally we have the following:

alg(i) ≤ ρ · opt(i) + c

where alg(i), opt(i) denote the cost of the online algorithm and offline algo-

rithm respectively, for the instance i. Similarly, for an online maximisation

problem, an online algorithm has competitive ratio ρ if for any instance i,

it produces an output of

alg(i) ≥ opt(i)/ρ− c

Additionally, analogous to offline algorithms a randomised online algo-
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rithm alg has expected competitive ratio ρ if for any instance i of a minimi-

sation problem, it satisfies:

E[alg(i)] ≤ ρ · opt(i) + c

where E[alg(i)] denotes the expected output of the randomised online algo-

rithm alg for an instance i. Similarly, for any instance i of a maximisation

problem if the randomised online algorithm satisfies:

E[alg(i)] ≥ opt(i)/ρ− c

then the randomised online algorithm attains expected competitive ratio ρ.

For all four of the above definitions of competitive ratio, if c is less than

or equal to 0, then the online algorithm alg is strictly ρ-competitive.

We remark for the reader a subtle point that although the concepts of

competitive analysis and approximation ratio are similar, the definition of

an online algorithm does not specify that it must terminate in polynomial

time. Consequently one cannot directly compare the performance of an

online algorithm with an offline algorithm. Within, the scope of this thesis

the online algorithms presented do indeed terminate in polynomial time.

Obviously, in practice one is always interested in efficient algorithms.

The interested reader can refer to [BEY98] for an in depth introduction

and overview of online algorithms.
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2.4 Graph Theory

All the problems presented in this work are graph problems motivated by

real life issues arising in communication and sensor networks. As such, graph

theory is a predominant theme throughout our work. To alleviate congestion

and avoid repetition in the following chapters we will now present concepts,

notation and terminology that are not particular to any one chapter, but

are relevant in numerous sections of this thesis.

Throughout the following, we will assume some rudimentary knowledge

of set theory and its fundamental operators. A graph G is defined to be a

pair, constituted by a set of vertices V , and a set of edges E, i.e., G = (V,E).

V is the set of n = |V | vertices in the graph. The notion of adjacency with

regard to vertices in a graph is represented by the set E of edges. There

are various different concepts of adjacency in graphs, two of which we will

discuss in this section as they are both prevalent in our work. A graph can

be viewed differently if one considers sets of symmetric edges, or asymmetric

edges.

2.4.1 Undirected Graph

A graph G = (V,E) where the set of edges E is symmetric, i.e., all pairs of

edges in E are symmetric, is said to be an undirected graph. A set of symmet-

ric edges, is formed by pairs {u, v} of vertices u, v ∈ V , where {u, v} = {v, u}.

For an edge {u, v}, the vertices u and v are adjacent to each other. Addi-

tionally, for an edge {u, v}, u and v are endpoints of the edge. Vertices that

are adjacent can be referred to as neighbours, and the number of neighbours
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a vertex v has is the degree of that vertex. The degree of a graph G, is the

maximum of the degree of all vertices v ∈ V .

A path within a graph is a sequence of vertices (v1, . . . , vk), such that

there exists an edge between a vertex and the immediately following vertex in

the sequence, i.e., there exists an edge {vi, vi+1} for all vertices v1, . . . , vk−1.

A graph G′ = (V ′, E′) is a subgraph of a graph G = (V,E) if all vertices

in G′ appear in G, i.e., V ′ ⊆ V , and all edges in G′ are in G, i.e., E′ ⊆ E.

A subgraph G′ of G with vertex set V ′ ⊆ V is connected if for every pair

of vertices u, v ∈ V ′, there exists a path from u to v in G′. A graph G is

connected, if for every pair of vertices u, v ∈ V , there exists a path from

u to v in G. Additionally, if for a graph G, for every vertex v ∈ V , there

exists an edge {v, u} for all u ∈ V \ {v}, then G is a clique. Note that in the

literature a clique is also known as a complete graph.

2.4.2 Directed Graph

A directed graph is formed by a set of asymmetric edges, i.e., all pairs in

E are asymmetric. A set of asymmetric edges, is formed by pairs (u, v) of

vertices u, v ∈ V , where the pair (u, v) 6= (v, u).

Note that in an undirected graph the notion of adjacency is unambiguous,

i.e., for an edge u, v ∈ E, u and v are neighbours, however, in a directed

graph for an edge (u, v) this concept is not clear. In a directed graph the

vertices adjacent to a vertex v may not be equal to the vertices adjacent

from a vertex v. For an edge (u, v), let u be adjacent to v, and v adjacent

from u. The number of vertices adjacent to a vertex v is the in-degree of v,

and similarly the number of vertices adjacent from v is the out-degree of v.
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A directed path is a sequence of vertices (v1, . . . , vk), such that there exists

the directed edges (vi, vi+1) for all vertices v1, . . . , vk−1.

A subgraph G′ of G with vertex set V ′ ⊆ V is strongly connected, if for

every vertex v ∈ V ′, there exists a directed path from v to every other vertex

v′ ∈ V ′ \ {v} in G′. Similarly, a directed graph is strongly connected if the

subgraph of all vertices V and all edges E is strongly connected.

2.4.3 Graph Problems

Graph colouring is a fundamental graph optimisation problem. There are

two main classes of colouring problems for graphs. Firstly, the aim of vertex

colouring is to assign to each vertex a colour, such that adjacent vertices

do not have the same colour assignment. The second main variant of graph

colouring is the edge colouring problem. For edge colouring the aim is to

assign colours to all edges of the graph, such that for all vertices, no vertex

is an endpoint of two different edges that have the same colour assignment.

For both problems, edge and vertex colouring, the objective function is

to minimise the colours used for the assignment. The optimal (minimum)

number of colours needed to colour the vertices of a graph G is known as the

chromatic number ofG. Similarly, the optimal (minimum) number of colours

needed to colour the edges of a graph is known as the chromatic index. The

decision version of the problem of computing the chromatic number of a

graph was shown to be NP-complete as one of Karp’s 21 problems [Kar72].

An independent set (equivalently known as a stable set) is a subset of

vertices such that for every pair of vertices in the independent set, the pair

of vertices are not adjacent, i.e., at most one endpoint of every edge in the
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graph appears in the independent set. An independent set is a maximal

independent set if it is not a proper subset of another independent set of

the graph. Another equivalent definition of a maximal independent set is

to consider the subset of vertices not in the independent set. If every one

of these vertices has an edge to a vertex in the independent set, then the

independent set is maximal. The maximum independent set problem is to

find an independent set of maximum size, amongst all independent sets.

The decision version of the maximum independent set problem is also NP-

complete [GJ79].

The node weighted Steiner tree problem is defined as the following: Given

as input is an undirected graph G = (V,E), where each vertex v ∈ V

is associated with a non-negative integer weight, and a subset of vertices

T ⊆ V referred to as terminals. A Steiner tree for T in G is a subset of

vertices V ′ ⊆ V such that T ⊆ V ′ and V ′ induces a connected subgraph.

The objective of the problem is to specify a Steiner tree such that the sum

of the weights of the vertices in the Steiner tree is minimised amongst all

possible Steiner trees for T in G. We will refer to the node weighted Steiner

tree problem in Chapter 4.

For a more comprehensive overview of graph theory we refer the reader

to [Die05] or [Wes01].

2.5 Linear Programming

In Chapter 4 we utilise linear programming (equivalently known as linear

optimisation) as a subroutine of our approach. The aim of a linear program
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(LP) is to maximise or minimise a linear objective function cT · x, where c

is an n-dimensional column vector of constants, and x is an n-dimensional

column vector or variables, and cT denotes the transpose of the vector c.

The variables must satisfy the constraints of the program, which take the

form of linear inequalities Ax ≤ b, where A is an m× n matrix, and b is an

m-dimensional vector, and constraints that prevent non-negative variables

x ≥ 0.

A feasible solution is a solution for which all constraints of the linear

program are satisfied. If such a solution maximises or minimises the value

of the objective function over all possible solutions, then the solution is

optimal. If the number of constraints is polynomial in the input size, a

linear program can be solved in polynomial time [Sch98]. However, if the

number of the constraints of a linear program is exponential, the linear

program can be solved in polynomial time under the condition that there

exists a separation oracle that can determine in polynomial time if any of

the linear constraints are violated.

Integer linear programming (ILP) can be viewed as a constrained version

of linear programming. An integer linear program is a linear program with

the additional constraint that every variable must be an integer. Contrary

to linear programs, integer linear programs cannot be solved in polynomial

time unless P = NP. We do however note than an often used technique

for optimisation problems is to formulate the problem as an integer linear

program. One can then relax the integer constraints of the ILP, and obtain a

resulting linear program. This linear program can then be solved optimally

in polynomial time (under the condition that the number of constraints
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is polynomial), yielding a fractional solution. It then remains to perform

rounding to obtain an integral solution from the optimal fractional solution.

For more information on the topic on linear and integer linear program-

ming the reader, we refer the reader to [Sch98].

2.6 Geometry

In Chapter 3 concerned with scheduling wireless transmissions under SINR

constraints, Chapter 4 on target coverage and Chapter 6 on barrier resilience,

we consider problems embedded in a plane. We note for the reader that in

all three studies, we only consider the two-dimensional Euclidean plane and

as such, do not discuss preliminaries for spaces of greater dimension.

Let the two-dimensional Euclidean plane be represented by the set R2.

Each element p ∈ R2 represents an individual point in the plane. Each point

p = (xp, yp) is identified as a pair of co-ordinates, where xp represents the

x-coordinate of p, and similarly let yp be the y-coordinate of p. We denote

the Euclidean distance between two points p and p′ in the plane by δ(p, p′).

2.6.1 Unit Disk Graphs

A natural class of graphs with which to model wireless networks is that

of unit disk graphs. Unit disk graphs feature prominently in our work (in

Chapters 3 and 4) and we introduce them here.

Consider a set of disks, all of the same radius, placed in the two-dimensional

Euclidean plane. Two disks d and d′ intersect if and only if there exists a

point of intersection between the boundaries of d and d′ (i.e., there exists a
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point p that appears on both the boundary of d and d′). In the resulting unit

disk graph G = (V,E), for every disk d ∈ D, there exists a corresponding

vertex v ∈ V , and there is an edge (v, v′) ∈ E between two vertices v and

v′, if their corresponding disks d and d′ intersect.
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Chapter 3

Scheduling With Interference

In this chapter we consider the problem of scheduling multicast (one sender

to many receivers) wireless transmissions under Signal-to-Interference-plus-

Noise Ratio (SINR) constraints.

An important aspect of a wireless transmission schedule is the power

that is assigned to the nodes for their transmission. The simplest approach

is to utilise a uniform power assignment, where all nodes are assigned the

same transmission power. Uniform power assignments may be favoured in

practice due to their simpler implementation. Additionally, uniform power

assignments must be used in homogeneous networks, where power control

functionality is not available due to hardware constraints. Other power

assignments that have been considered in previous literature are oblivious

power assignments, where the power assigned to the sender of a transmission,

is a function of the distance to the receiver, and arbitrary power assignment

where the power assigned to a sender can be set arbitrarily without restric-

tion (for example, depending on the interference caused by the simultaneous
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transmissions by other senders).

In this work we consider the SINR which is the ratio of the reception

strength at the intended receiver (calculated by the power of a transmission,

divided by the length between the sender and receiver of a link to a path

loss exponent) to the reception strength of transmissions from other senders

transmitting concurrently, plus ambient noise. SINR constraints stipulate

that all intended receivers have SINR ratio above a pre-determined thresh-

old. We define this formally later in Section 3.3.1.

The majority of work on transmission scheduling under SINR constraints,

especially that preceding our work, has considered unicast transmissions,

i.e., the case where each transmission has a single sender, and a single re-

ceiver. However, a fundamental property of wireless transmissions is that

a single transmission can be received by several nodes that are within the

transmission range of the sender. Furthermore, there are many scenarios

where nodes forming the network may want to transmit the same message

to a set of other nodes, e.g., in the exchange of routing information between

neighbours in a virtual topology maintained on top of the physical network,

or in the flooding of information across the network. Therefore, in this

work we consider the wireless transmission scheduling problem for multicast

transmissions.

Our aim is to investigate how existing methods developed for the unicast

setting can be adapted to the multicast setting. We consider algorithms that

use uniform power assignment. Although the lack of power control has been

shown to be sub-optimal when compared with a schedule utilising power con-

trol by a factor logarithmic in the maximum power used [ALP09, Hal09],
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we argue that the study of uniform power schedules is indeed meaning-

ful. The predominant reason for this is that solutions based on uniform

power are simpler for implementation, both from the perspective of hard-

ware and software. Thus, such methods are more likely to be adopted and

utilised by practitioners. Similar justifications also appear in the literature

[ALP09, Hal09]. Furthermore, to achieve stronger results, we measure the

approximation ratio of our algorithms in comparison with optimal solutions

with arbitrary power assignments.

We consider the scheduling and throughput maximisation of multicast

transmission requests. For the scheduling problem one has to assign all the

links into rounds, such that the SINR ratio at all receivers is above the

desired threshold. For the throughput maximisation problem one has to

chose a maximum subset of links for a single round, such that the SINR

ratio at all receivers is above the desired threshold.

For both the scheduling and throughput problems, the unicast case was

proven NP-complete by Goussevskaia et al. [GOW07] for uniform power.

As the unicast case is a special case of the multicast case, the multicast

variant is also NP-complete for both scheduling and throughput, under uni-

form power assignment. Furthermore, Andrews and Dinitz [AD09] show that

even with arbitrary power assignment, the throughput problem is NP-hard.

These results provide motivation for studying approximation algorithms for

these problems.
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3.1 Related Work

A starting point for the theoretical analysis of the capacity of wireless net-

works was the seminal work by Gupta and Kumar [GK00], who studied the

throughput problem in a setting when the nodes are distributed uniformly

at random. There then followed an extensive study of offline scheduling and

throughput problems in the SINR model with respect to arbitrary networks,

with particular focus on worst-case analysis and approximation algorithms,

including but not limited to [Mos07, MW06, AD09, FKV09, HW09, Hal09,

GHWW09, ALP09].

The uniform power assignment has also attracted attention motivated

by its practical applications, in addition to its theoretical interest. In the

case where the optimal algorithm is also restricted to uniform power, al-

gorithms achieving constant competitive ratio have been shown in [HW09,

GHWW09].

The difference between uniform and non-uniform power assignments was

initially investigated by Moscibroda and Wattenhofer [MW06].

Halldórsson [Hal09] studies the wireless scheduling problem in compari-

son with an optimal solution that is permitted arbitrary power assignment.

He shows that the scheduling problem can be related to the colouring of unit

disk graphs. In the case of links with similar lengths, it is shown that one

can bound the loss in the approximation ratio to a constant factor. This

leads to simple online algorithms utilising uniform power assignment that

achieve competitive ratio O(1) for similar link lengths and O(log Γ) for the

general case where Γ is defined to be the ratio between the maximum and
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the minimum link lengths. Additionally, in this paper a lower bound on any

algorithm using oblivious power assignment is presented. Specifically, no

algorithm under oblivious power assignment can achieve a better approxi-

mation ratio than Ω(log log Γ) in the worst case. Furthermore, these results

hold for the throughput problem.

For the throughput maximisation problem in fading metrics, where the

optimal algorithm is allowed arbitrary power assignment, the first constant

factor approximation algorithm was presented by Kesselheim [Kes11]. The

same algorithm can be applied to general metrics with approximation ratio

O(log n).

Broadcast transmissions can be seen as an extreme case of multicast

transmissions, in which one sender must transmit to all other nodes in the

network, and have been studied in [RS09, GMW08].

Furthermore, the online variant of the throughput problem has also re-

ceived attention by Fanghänel et al. [FGHV10]. They assume that requests

can have duration in the interval [1, T ] and consider the problem in Euclidean

space of constant dimension d. They show that no deterministic algorithm,

utilising an oblivious power assignment, can achieve competitive ratio better

than Ω(T · Γd/2). Furthermore, they present an O(T · Γ(d/2)+ε)-competitive

deterministic online algorithm, and a randomisedO(log Γ·log T )-competitive

online algorithm. They also consider a generalisation of the problem, where

requests have to be assigned to one of k channels.

Work has also been conducted on other problems related to the SINR

model of interference. In addition to the challenges of power assignment and

scheduling of transmissions, the cross layer latency minimisation problem
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proposed by Chafekar et al. [CKM+07], also requires an algorithm to decide

routing paths. Work under SINR constraints has also been performed for

topology control by Gao et al. [GHN08] and Moscibroda et al. [MWZ06],

and in sensor networks by Moscibroda [Mos07].

3.2 Contributions

We consider the scheduling problem for multicast requests under SINR con-

straints, assuming that the nodes are points in the two-dimensional Eu-

clidean plane and the received signal strength is proportional to the power

of the transmitted signal, divided by the distance between the sender and

the intended receiver to the power of α, where α is the path loss exponent

and assumed to be strictly greater than 2. In practice, it is typically assumed

that α is between 2 and 6).

We consider multicast requests to be atomic, which is to say that in

a given multicast group, all receivers must successfully receive the trans-

mission in the same round. Building on Halldórsson’s [Hal09] results for

the unicast case, we present an O(log Γ)-approximation algorithm for the

multicast scheduling under SINR constraints. In the multicast case, Γ de-

notes the ratio of the longest to the shortest link length, considering only

the longest link of each multicast request. We remark that Γ can be much

smaller than the ratio of the longest to the shortest link length, amongst

all unicast requests that are part of a multicast request. As our algorithm

is based on partitioning the requests into length classes, and application of

unit disk graph colouring to schedule each length class, it can also be used
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as a simple online algorithm.

Additionally, we discuss the relationship between schedules for such

atomic multicasts, and schedules for splittable multicasts, where the sender

of a multicast can transmit in several rounds, serving a subset of its receivers

in each round.

As with previous work, we show that our approach is also applicable

to the case of throughput maximisation. Moreover, we present a lower

bound showing that every deterministic online algorithm has competitive ra-

tio Ω(log Γ), even for the unicast variant of the problem. This complements

previous lower bound constructions, where the algorithm was restricted to

oblivious power assignments.

3.3 Preliminaries

Consider the two-dimensional Euclidean plane within which all senders and

receivers are represented with points. We denote the Euclidean distance

between any two such points p, q as δ(p, q). For an undirected graph G =

(V,E), ∆(G) denotes the maximum degree of any vertex in V . It is well

known that any graph G can be coloured with ∆(G) + 1 colours utilising a

greedy colouring algorithm.

A graph G = (V,E) is a unit disk graph (for disks with radius r) if each

vertex v ∈ V can be associated with a disk of radius r centred at point pv

in the plane such that two vertices u, v ∈ V are adjacent if and only if the

two corresponding disks intersect (or equivalently if the distance between pu

and pv is at most 2r). We state the following well known property of unit
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disks graphs which we utilise later in the analysis:

Lemma 3.1. If a unit disk graph with disks of radius r has maximum degree

k ≥ 1, increasing the radius of all disks from r to cr for some c > 1 increases

the maximum degree of the graph to at most O(kc2).

Proof. Consider a set of disks embedded in the plane of radius r, with a

corresponding disk graph of maximum degree k. If one increases the radius

of each disk to cr then we observe the following. Consider a single disk d.

All neighbours of d must have centre within distance 2 · cr to intersect d.

Consider a grid overlaying d consisting of squares with side length r. The

disk d can be covered by (4 ·cr)2/r2 = 16c2 such squares. Note that for each

r × r square, it must be that case that at most k + 1 disks have centre in

that square, or it would violate the condition that the unit disk graph for

disks of radius r has maximum degree k. As such, the maximum degree of

the unit disk graph when the radius of each disk is increased to cr is at most

(k + 1) · 16c2 and the claim follows.

3.3.1 Unicast Requests

In the following subsections we present notation for unicast and multicast

requests and proceed to formally define the problems we are studying. As

we extend previous work, in particular [Hal09], we strive to keep similar

notation where possible for clarity.

A unicast request is a transmission request `v from a single sender sv to

a single sender rv. As is common practice in related literature, we also refer

to requests as links.
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We override notation where the context is unambiguous and denote the

length of a link `v by `v = δ(sv, rv). Additionally for brevity of notation

we also use δuv to refer to the distance δ(su, rv) between the sender su of

a link `u and the receiver rv of another link `v. A set L of links is nearly

equilength if the lengths of all links in L are within a factor of 2 of each

other. Specifically when discussing nearly equilength links there exists some

value D such that the lengths of all links lie in the interval [D, 2D].

For a set L of nearly equilength unicast links with lengths in [D, 2D],

analogous to [Hal09], G′q(L) denotes the unit disk graph formed by disks

with radius qD/2 and with unicast receivers as the centres of the disks.

For a set L of unicast links, Γ denotes the ratio of the maximum link

length to the minimum link length, specifically Γ = maxv `v/minu `u.

Let the power assigned to a sender sv be Pv. We assume however

throughout this work that all senders utilise uniform power and that there

is no upper bound on the power that can be assigned.

To model the degradation of a transmission over the distance from the

sender, let α represent the path loss exponent and we adopt the common

assumption made in previous literature that 2 < α (e.g. [GHWW09]). The

received signal strength of a transmission on link `v from sv to rv is Pv/`αv .

The model of interference we use is the SINR model, interchangeably

referred to as the physical model. Let Sv be the set of senders that are

transmitting concurrently with a sender sv and let N represent the ambient

background noise in the network. A unicast transmission `u from su to ru can

be received if the following constraint (referred to as the SINR constraint)

is satisfied:
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Pu/`αu
N +

∑
sv∈Su\{su}

Pv/δαvu
> β (3.1)

β ≥ 1 denotes the minimum SINR required for successful reception of a

transmission. As is common in work preceding this study we assume that

the background ambient noise N = 0. This assumption can be justified by

the observation that the effect of the noise can be made arbitrarily small by

scaling up the power assigned to all senders. Moreover, one can assume that

β = 1, as via Lemma 3.9 any desired constant β > 1 can be achieved while

losing only a constant factor in the approximation ratio.

3.3.2 Multicast Requests

A multicast request or multicast group is a set of unicast links with a common

sender. A multicast group mv is represented as a pair (sv, Rv) where sv is

the sender and Rv = {rv1 , rv2 , . . . , rvk} is a set of k ≥ 1 receivers. Intuitively

a multicast request mv asks for a single transmission by the sender sv that

is successfully received by all receivers in Rv simultaneously. For 1 ≤ i ≤ k

we use `vi to refer to the link with sender sv and receiver rvi . Again, we

override notation and also denote by `vi the length of that link. Without

loss of generality, we assume that the receiver with index 1 is a receiver that

is furthest from the sender of mv, i.e., `v1 = max1≤i≤k `vi . The distance

between the sender of the multicast group mu and a given receiver rvi in

multicast group mv is denoted by δuvi = δ(su, rvi).

For a set M of multicast groups, Γ denotes the ratio of the maximum link
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length to the minimum link length amongst all longest links of the multicast

groups in M , i.e., Γ = maxv `v1/minu `u1 .

Analogous to the unicast setting we also define multicast groups as being

nearly equilength if the lengths of the longest link in each group are within

a factor of 2 of each other, i.e., there exists a D such that `v1 ∈ [D, 2D] for

all mv ∈M .

A multicast transmission from su to Ru is received successfully if in-

equality (3.1) holds for all rui ∈ Ru.

A schedule for a set M of multicast links is a partitioning of M into

subsets, referred to as rounds or slots. For each round we require that all

transmissions are received successfully by all intended receivers.

Following from Halldórsson [Hal09] the affectance on a receiver rv of a

unicast link `v is defined to be the ratio of the interference received from

concurrent transmissions by other senders to the received signal strength at

rv from sv. Specifically, the affectance aL(`v) on a unicast link `v from a set

of links L is:

aL(`v) =
∑

`u∈L\{`v}

Pu/δ
α
uv

Pv/`αv

In the multicast context the affectance on a receiver rvi in a multicast

group mv is the ratio of the interference received from concurrent transmis-

sions by other senders to the received signal strength at rvi from sv. Note

that a receiver rvi successfully receives a transmission from sv if and only if

the affectance of concurrent transmissions on rvi is at most 1/β.

For p ≥ 1 a p-signal schedule is one for which the affectance of any
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multicast request is at most 1/p, i.e., the SINR at every receiver is at least

p. Additionally a p-signal slot (interchangeably referred to as a p-signal set)

refers to one round of a p-signal schedule.

3.3.3 Problem Definitions

Work presented in this chapter is concerned with the two following opti-

misation problems. The multicast scheduling problem which we denote by

M-Scheduling, is to compute, for a given set M of multicast requests, and

a given p ≥ 1, a p-signal schedule with a minimum number of rounds. The

multicast throughput problem, denoted by M-Throughput, is to compute,

for a given set M of multicast requests, a largest subset of M that forms a

p-signal slot. The corresponding problems where the input consists only of

unicast requests are denoted by Scheduling and Throughput respectively.

In the online versions of these problems introduced above, the requests

are presented to the algorithm one by one, and the algorithm must process

each request without knowledge of future requests. In the scheduling prob-

lems, this means that the algorithm must assign a round and a power to the

request, and in the throughput problem, the algorithm must accept or reject

the request, and in the case that a request is accepted, the algorithm must

additionally assign a power to the sender. In both problems, decisions of the

algorithm are irrevocable, and the solution must be feasible at all times. In

the online variant, we compare the quality of the solution produced by an

algorithm with the quality of an optimal offline solution for the same input.

Even though our algorithms utilise uniform power assignment, we com-

pare their solutions with an optimal solution that can use arbitrary power
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assignments which strengthens our approximation results. For a given set

L of unicast or multicast requests, we denote by optp(L) the optimal solu-

tion. For convenience where it does not cause ambiguity, when discussing

the scheduling problem, we overload notation and also use optp(L) to refer

to the length of the optimal schedule. In the case that p = 1, we also write

opt as shorthand for optp.

It is assumed that the multicast requests are atomic, i.e., the sender of

a multicast transmission can only send the signal once and all its receivers

must successfully receive the transmission in the same round. However,

one can also consider the variant of the scheduling problem with splittable

multicast requests. In this variant, the sender of a multicast request can

transmit in several rounds, and each of its receivers must successfully re-

ceive the transmission in at least one of these rounds. It is clear that the

optimal splittable schedule length cannot be longer than the optimal atomic

schedule.

3.4 Algorithm for Multicast Scheduling

In this section we will present an O(log Γ)-approximation algorithm for

the problem of scheduling multicast requests under SINR constraints (M-

Scheduling). We follow the approach of Halldórsson [Hal09] and show that

a constant-factor approximation for nearly equilength multicast groups can

be achieved by a greedy colouring of a suitably defined unit disk graph. The

difficulty we are presented with is that a set of nearly equilength multicast

groups may contain unicast links that are much shorter than the longest
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links of the multicast groups, and hence it does not suffice to argue about

nearly equilength unicast links. We will proceed by first recapitulating some

results shown by Halldórrson [Hal09] that we require.

As introduced in [Hal09] as a measure of separation between a pair of

links in relation to their length, two unicast links `u, `v are said to be q-

independent for some constant q if and only if they satisfy the following

constraint:

δuv · δvu ≥ q2 · `v`u (3.2)

A set L of links is said to be q-independent if any pairs of links in the

set is q-independent. For a given set L of unicast requests, the link graph

Gq(L) is a graph with a vertex for each request in L, and an edge between

two vertices if the corresponding requests are not q-independent.

Allow us to recall that G′q(L) denotes the unit disk graph of a link set L

with a disk of radius qD/2 centred at each receiver rv of a link `v ∈ L.

It was established by Halldórsson [Hal09] that for a set of nearly equi-

length unicast links L there exists a close relationship between link graphs

Gq(L) and unit disk graphs G′q(L).

Lemma 3.2. [Hal09] For any q ≥ 1 and a set L of nearly equilength unicast

links G′q(L) ⊆ Gq+1(L) and Gq(L) ⊆ G′2(q+1)(L).

It was shown that unicast links which belong to the same qα-signal slot

are q-independent, and as such a weaker version of the converse of this

statement is established with the following result:
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Lemma 3.3. [Hal09] A z-independent set S of nearly equilength unicast

links under uniform power assignment S is an Ω(zα)-signal set.

If the link set is nearly equilength then the following lower bound on opt

applies:

Lemma 3.4. [Hal09] Given a set L of nearly equilength unicast links and

a constant q, opt(L) = Ω(∆(Gq(L))).

Combining the above results shows the existence of a constant approx-

imation ratio for a set L of nearly equilength unicast links. Haldórsson

observes that one can greedily colour either Gq(L) or G′q′(L), for suitable

constants q, q′. This yields the following theorem:

Theorem 3.5. [Hal09] Let p ≥ 1 be an arbitrary constant. There exists

q = q(p) ≥ 1 such that for any set L of nearly equilength unicast links,

any colouring of G′q(L) with O(∆(G′q(L))) colours yields a p-signal schedule

with uniform power that is within a constant factor of the optimal p-signal

schedule for L.

Proof. Following from Lemma 3.3, for every p there is exists z, such that any

z-independent set of nearly equilength links is a p-signal set (with uniform

power). Let q = 2(z + 1). By Lemma 3.2, Gz(L) ⊆ G′q(L), and hence

any independent set in G′q(L) is z-independent and therefore a p-signal slot.

Thus, any colouring of G′q(L) constitutes a p-signal schedule. By Lemma

3.4, the optimal 1-signal schedule for L has length Ω(∆(Gq+1(L))). As the

optimal p-signal schedule is at least as long as the optimal 1-signal schedule,

the optimal p-signal schedule for L has length Ω(∆(Gq+1(L))) and thus, by

Lemma 3.2, length Ω(∆(G′q(L))).
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Consider the following algorithm, denoted by alg, for scheduling a set of

nearly equilength multicast groups. We create a unit disk graph H that has

one disk for every multicast group, with centre at the receiver of the longest

link in that multicast group. The radius of all disks is (q/2 + 4)D, where q

is suitably chosen in accordance with Theorem 3.5. Then a greedy colouring

of that unit disk graph is returned as the schedule, i.e., each multicast group

is assigned to be scheduled in the round given by the colour assigned to the

corresponding disk. The algorithm concludes by assigning uniform power to

all senders.

Algorithm 1: Algorithm (alg) for nearly equilength multicast requests

Data: Input: A set M of nearly equilength multicast requests

Let q = q(p) in accordance with Theorem 3.5.;
Construct the unit disk graph H, where each disk has radius
(q/2 + 4)D centred at the receivers rv1 of all mv ∈M .;
Compute a greedy colouring of H, with O(∆(H)) colours.;
Return the colouring of H as a p-signal schedule SM with uniform
power assignment.;

For a set M of multicast groups, let LM be the set of unicast links

obtained by taking the longest link `v1 from every multicast group mv ∈M .

Lemma 3.6. Let M be a set of nearly equilength multicast groups. For any

constant p ≥ 1, any greedy colouring of the unit disk graph H constructed

by the algorithm gives a p-signal schedule for M whose length is at most a

constant factor longer than the optimal p-signal schedule for LM .

Proof. Let D be an integer, such that the length of the longest link in

each multicast group lies in the interval [D, 2D]. The algorithm chooses q =
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q(p) ≥ 1 in accordance with Theorem 3.5. Hence, we have that any colouring

of G′q(LM ) assigning O(∆(G′q(LM ))) colours yields a p-signal schedule with

uniform power for LM , that is within a constant factor of optp(LM ).

The unit disk graph H constructed by the algorithm is the unit disk

graph obtained from G′q(LM ) by increasing the radius of the disks from

qD/2 to (q/2 + 4)D. As q ≥ 1, this will increase the radius of the disks by

at most a factor of 9. Following from Lemma 3.1 the maximum degree of

H is within a constant factor of the maximum degree of G′q(LM ). Hence,

a greedy colouring of H with O(∆(H)) colours uses only O(∆(G′q(LM )))

colours. Note that any greedy colouring of H is also a colouring of G′q(LM )

withO(∆(G′q(LM ))) colours and thus, by Theorem 3.5, constitutes a p-signal

schedule SLM
for LM , that is a constant factor approximation of optp(LM ).

Observe that for any multicast group mv, the disks in H with centre

rv1 contains the disks with radius qD/2 centred at any receiver rvj of the

multicast group mv, as the distance between the two receivers of the same

multicast group, is at most 4D by the triangle inequality. This follows from

the fact that each unicast link in mv has length at most 2D.

We continue by claiming that a greedy colouring of H yields a p-signal

schedule SM for M with uniform power, that is within a constant factor of

optp(LM ). Since the maximum degree of H is within a constant factor of

G′q(LM ), the number of colours in any greedy colouring of H is a constant

factor approximation of optp(LM ).

It remains to show that the schedule SM derived from any greedy colour-

ing of H constitutes a p-signal schedule. Consider an arbitrary link `vi of

a multicast group mv. Let U be the set of all multicast groups mu 6= mv
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that are scheduled in the same round as mv in SM . If i = 1, i.e., if lvi is

the longest link of mv, we can argue with the following observations. The

received signal strength from sv at rv1 and the total strength of interfering

signals received at rv1 are the same in SM and in SLM
, so the affectance at

rv1 is at most 1/p in SM .

If i 6= 1 the argumentation becomes more involved. Let s′v be an arbitrary

point in the plane that has distance 2D from rvi , and let `′v be the unicast

link with sender s′v and receiver rvi . Consider the unit disks of radius qD/2

centred at rvi , and at all ru1 for mu ∈ U . Observe that these unit disks

are the disks that constitute G′q(L
′), where L′ is the set of unicast links

containing the link `′v and the links `u1 for all mu ∈ U . Furthermore, these

unit disks are disjoint since they are contained in the respective disks of

radius (q/2 + 4)D that have been assigned the same colour in H.

By Theorem 3.5, the links in L′ constitute a p-signal set SL′ . In the

round in which mv is scheduled in SM , the received signal strength from s′v

at rvi in SL′ , and the total strength of interfering signals received at rvi is

the same in SM and in SL′ . Therefore, the affectance at rvi is at most 1/p

in SM .

As any p-signal schedule for M is also a p-signal schedule for LM , it is

clear that optp(LM ) ≤ optp(M). Thus, we obtain the following corollary.

Corollary 3.7. For nearly equilength multicast groups and any constant

p ≥ 1, the algorithm alg attains a constant-factor approximation ratio for

M-Scheduling.

We can now consider arbitrary sets M of multicast requests using the
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standard approach of partitioning the requests into a logarithmic number

of length classes. Assume without loss of generality that the lengths of the

longest links of all multicast groups mv ∈ M , lie in the interval [1, Γ].

Partition the set M of multicast groups into dlog Γe classes Mi, where Mi

consists of all multicast groups whose corresponding longest link has a length

that lies in the interval [2i, 2i+1). Apply alg to each class Mi separately and

obtain a schedule for M by concatenating the schedules for all such classes

of multicast groups Mi. As the schedule for each class Mi is a constant

factor approximation of optp(Mi) and therefore also of optp(M), we obtain

a p-schedule that is an O(log Γ)-approximation of optp(M).

Theorem 3.8. For every constant p ≥ 1, there exists an O(log Γ)-approximation

algorithm for the problem of computing a shortest p-signal schedule for a

given set of multicast requests.

It follows that because partitioning into length classes and the greedy

colouring of the corresponding unit disk graphs for each length class can

be performed online, the same approach yields an O(log Γ)-competitive on-

line algorithm for multicast scheduling. Furthermore, as pointed out by

Halldórsson [Hal09], approaches based on colouring of unit disk graphs are

amenable to distributed implementation.

3.5 Signal Strengthening

It is also interesting to relate the length of the optimal p-signal schedule

to the optimal 1-signal schedule. The following result from [HW09] shows

45



that in the unicast case, a larger SINR for all receivers can be achieved at a

constant-factor loss in the schedule length.

Lemma 3.9. [HW09] There is a polynomial time algorithm that takes a p-

signal schedule for a set of unicast links and refines it to a p′-signal schedule

for some p′ > p, increasing the length of the schedule by a factor of at most

d2p′/pe2.

Extending this lemma to the multicast setting does not seem straight-

forward, however we are able to establish an analogous result at least for

nearly equilength multicast links.

Lemma 3.10. If there exists a p-signal schedule for a set of nearly equilength

multicast groups M with length k, then there also exists a p′-signal schedule

for M for any constant p′ > p of length O(k). Furthermore, such a schedule

can be computed within polynomial time.

Proof. Let A be a p-signal schedule for a set M of multicast groups. Let

LM be the set of unicast links obtained by taking the longest link `v1 from

every multicast group mv in M .

We note that A can also be viewed as a p-signal schedule for LM . As

LM is a set of unicast links, we can transform A into a p′-signal schedule

A′ for LM by Lemma 3.9, such that the length of the schedule increases by

only a constant factor. As the optimal p′-signal schedule for LM cannot be

longer than A′, we have that the length of the optimal p′-signal schedule for

LM , optp′(LM ), is within a constant factor of the length of A.

Consider the p′-signal schedule SM computed for M by alg in polynomial

time. Following from Lemma 3.6, the length of SM is within a constant factor
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of optp′(LM ), and therefore also within a constant factor of the length of A.

Thus, SM is a p′-signal schedule for M , that is within a constant factor of

the length of A.

For an optimal 1-signal schedule for M , from application of Lemma 3.10

we obtain the following corollary:

Corollary 3.11. Given a set of nearly equilength multicast groups M and

a constant p ≥ 1, optp(M) is at most a constant factor longer than opt(M).

Intuitively the above corollary shows that if one requires a stronger SINR

in a schedule, this can be achieved with a loss of only a constant factor in

the schedule length for nearly equilength multicast groups.

3.6 Splittable versus Atomic Multicast

We proceed in this section to discuss the relationship between splittable and

atomic multicast requests. For ease of presentation we consider only 1-signal

schedules. For a given set M of multicast requests, denote by optS(M), the

length of an optimal 1-signal schedule that is allowed to split a multicast re-

quest. As before, opt(M) denotes the length of an optimal 1-signal schedule

with atomic multicast requests.

As every atomic schedule is also a splittable schedule, it is clear that

optS(M) ≤ opt(M) for any set M of multicast requests. Furthermore we

establish the following lemmas.

Lemma 3.12. Given a set M of nearly equilength multicast groups, opt(M) =

O(optS(M)).

47



Proof. Recall that LM is the set of unicast links obtained by taking the

longest link `v1 from every multicast group mv ∈ M . We have opt(LM ) ≤

optS(M) since even a splittable schedule must schedule the longest link of

each multicast group in some round. Moreover, by Lemma 3.6 there is an

atomic 1-signal schedule for M that is within a constant factor of opt(LM ).

Lemma 3.13. For any set M of multicast groups, opt(M) = O(log Γ) ·

optS(M).

Proof. Consider the partitioning of M into O(log Γ) length classes Mi, such

that each length class is nearly equilength. The maximum of opt(LMi) over

all i is a lower bound of optS(M). Furthermore, the algorithm presented in

Section 3.4 computes an atomic schedule for M that is within a constant

factor of the sum of values opt(LMi) over all i.

3.7 Throughput Maximisation

3.7.1 Algorithms

In this section, we discuss how the approach described in Section 3.4 can be

adapted to the problem M-Throughput. For the following we consider only

atomic multicast groups, i.e., requests/groups for which all receivers within

the group must receive the transmission in the same round. For a given

set M of nearly equilength multicast groups one can construct the unit disk

graph H as in alg, and then compute a maximal independent set I in H,

via standard techniques (for example using a greedy algorithm). The set
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I forms a 1-signal set. It is known ([MBHI+95]) that in unit disk graphs,

the size of any maximal independent set is within a factor of 5 of that of a

maximum independent set.

Let I∗ ⊆ M be a 1-signal set of largest size. By Lemma 3.6, the unit

disks in H corresponding to the multicast groups in I∗ can be coloured

with a constant number of colours. Hence, I∗ contains a set of multicast

groups that corresponds to an independent set in H of size Ω(|I∗|). The

set I computed by alg then also has size Ω(|I∗|) and therefore constitutes a

constant-factor approximation of the largest 1-signal schedule.

For general sets of multicast requests, we can partition the multicast

requests into O(log Γ) length classes, compute a 1-signal set for each length

class as described above, and output the largest of these 1-signal sets. This

gives an O(log Γ)-approximation for M-Throughput. The same approach can

be used to obtain a randomised O(log Γ)-competitive online algorithm. We

note that the randomisation is only needed to select one of the length classes

at the beginning of the algorithm.

3.7.2 Online Lower Bound

We now present a lower bound showing that no deterministic online algo-

rithm for the throughput problem can achieve competitive ratio better than

O(log Γ) even in the case of unicast requests. We make use of the following

property stated by Avin et al. [ALP09].

Lemma 3.14. [ALP09] Two senders s1 and s2 cannot transmit simul-

taneously if their respective receiver is closer to the other sender, i.e., if
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δ(s1, r1) > δ(s1, r2) and δ(s2, r2) > δ(s2, r1).

Utilising Lemma 3.14 we provide a construction bounding the perfor-

mance of any arbitrary deterministic algorithm against an adversary that

uses arbitrary power assignment, for the online variant of Throughput.

Theorem 3.15. The competitive ratio of any deterministic online algo-

rithm, even when permitted arbitrary power assignment, is Ω(log Γ) for

Throughput.

Proof. Consider the following construction. Let n be an arbitrary positive

integer and let Γ = 2bn for a sufficiently large constant b > 1. All senders

and receivers are located on the x-axis, so we identify a node solely with its

x-coordinate.

Let A be an arbitrary deterministic deterministic online algorithm. The

adversary first presents a request `0 with sender s0 = 2bn and receiver

r0 = 0. The algorithm must accept `0 as otherwise the competitive ratio is

unbounded if no further requests are presented. Next, the adversary presents

requests `1, . . . , `n where for each 1 ≤ i ≤ n the sender and receiver of `i are

si = −bi and ri = bi respectively.

By Lemma 3.14, the algorithm cannot accept any of the requests `1, . . . , `n

as none of them can transmit at the same time as `0. It remains to show

that an optimal solution can reject `0 and accept all other requests.

Let `1, . . . , `n transmit simultaneously using the square root power as-

signment, i.e., assign power
√
bi to si for all 1 ≤ i ≤ n. The strength of the

signal received at ri from si is:
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√
bi

(2bi)α
=
b(0.5−α)i

2α

The total interference received at ri is:

∑
j<i

√
bj

(bj + bi)α
+
∑
j>i

√
bj

(bj + bi)α
(3.3)

We can bound the first sum in (3.3) as follows:

∑
j<i

√
bj

(bj + bi)α
≤

∑
j<i

√
bj

(bi)α
≤

√
bi

(
√
b− 1) · (bi)α

=
b(0.5−α)i

√
b− 1

The second sum in (3.3) can be bounded as follows:

∑
j>i

√
bj

(bj + bi)α
≤

∑
j>i

√
bj

(bj)α
=

∑
j>i

b(0.5−α)j ≤ 2 · b(0.5−α)(i+1)

where the last inequality holds for a sufficiently large b. The SINR at ri is

greater than:

b(0.5−α)i · 2−α

b(0.5−α)i · ( 1√
b−1

+ 2 · b0.5−α)
=

2−α

1√
b−1

+ 2 · b0.5−α

For a sufficiently large constant (b that is chosen depending on α), the

SINR is larger than 1 (or any other desired constant SINR threshold).

We remark that the lower bound of Theorem 3.15 will still apply, even

if one allows an algorithm to retrospectively change the power assigned to

previously accepted requests, upon acceptance of a new request.
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3.8 Conclusion

In this chapter we have made contributions to both wireless scheduling and

throughput problems in the context of multicast requests in the SINR model.

Building upon the relationship between SINR scheduling and the colouring

of unit disk graphs, which was established in earlier work by Halldórsson

[Hal09], we have presented O(log Γ)-competitive algorithms for both set-

tings.

We have shown that the approach of reducing SINR scheduling problems

for nearly equilength links to unit disk graph colouring extends to multicast

requests as well, provided that the longest links in the multicast groups are

nearly equilength.

We also have shown a Ω(log Γ) lower bound on the competitive ratio

of any deterministic online algorithm for the throughput problem, even in

the case of unicast links and arbitrary power assignments, and additionally

have discussed the relationship between scheduling with atomic multicast

requests, and splittable multicast requests.

It would be interesting to know whether signal strengthening can be

applied for arbitrary multicast requests, while losing only a constant factor

in the approximation ratio. We know for arbitrary unicast requests this

is possible (Lemma 3.9), however, for multicast requests it has only been

proved for the case where the links are nearly equilength (Lemma 3.10).

Additionally, it would also be interesting to know whether one can reduce

the factor of O(log Γ) which bounds the difference in the length of a schedule

between atomic and splittable schedules, presented in Lemma 3.13.

52



In recent work, Kesselheim [Kes11] has shown the existence of a constant

approximation algorithm for the throughput problem for unicast links. The

overriding open problem related to SINR is to obtain a constant factor

approximation algorithm for the scheduling problem for unicast links. An

interesting open problem related to our extension to the multicast setting

would be to see if the results yielding a constant approximation algorithm

for the unicast throughput problem, can be generalised to the multicast case.
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Chapter 4

Target Coverage

In this chapter we consider the problem of maximising the lifetime of a

network for fault-tolerant target coverage of composite events, with several

event types.

Consider a sensor network whose task is to detect the occurrence of

events at a given set of event points. This is also known as the target

coverage problem. Since the nodes in a sensor network often have a limited

battery supply that cannot be replenished, it is important to address the

problem of maximising the lifetime of the network, i.e., the length of time

during which the network can carry out its monitoring task successfully.

The lifetime of the network can be prolonged by calculating an activity

schedule in which only a subset of the sensor nodes is active at any point in

time and the remaining sensors are in a sleep mode that saves energy. The

active nodes must be sufficient for performing the required monitoring task.

Following [VBL07, MYC09], we consider the setting where the events to be

detected are composite events, i.e., events comprising several simultaneous
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atomic events at the same location detected by different sensor types, and

the sensor coverage is required to be fault-tolerant, i.e., the failure of any

one sensor does not affect the sensing task.

An atomic event is a physical change in the environment such as tem-

perature rising above a pre-defined threshold, and a composite event is a

combination of several atomic events, all occurring concurrently at the same

location. As an example motivating the study of composite events, one can

consider the scenario described by Vu et al. [VBL07] where fire is detected

by the composite event of temperature being above a given threshold and

in addition the density of smoke being above a pre-defined value.

The settings described in [VBL07, MYC09] also require that each event

is covered by k sensors as a fault tolerant mechanism. One may wish to

cover each event by k sensors, such that if up to k − 1 sensors fail, there

will still be at least one active sensor that can detect and report the event.

Obviously, the higher the value of k, the more robust the network will be

against failing sensor nodes. In this work, we mainly consider the case of

k = 2. This case is of interest in many application settings, because higher

levels of fault tolerance are often considered to consume too many resources.

Moreover, handling larger values of k is more complicated.

We assume that the sensor nodes and the event points are located in the

two-dimensional Euclidean plane, and that all sensor nodes have uniform

sensing radius. Each sensor node can monitor a certain set of event types,

and the composite event to be detected at each event point is a combination

of atomic events, corresponding to different event types. We remark that

the presence of multiple event types adds a non-geometric, combinatorial
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aspect to the problem.

A common approach to the lifetime maximisation is to formulate the

problem as a linear program and obtain an approximate solution by approx-

imating the dual problem of computing a sensor cover of minimum weight

(see Section 4.6 for details). We follow the same approach and hence mainly

consider the dual problem of minimising the weight of a fault-tolerant sensor

cover. We model the latter problem as a weighted multi-T -cover with unit

disks, where T is the set of event types.

We remark that in the case of atomic events, where all such events are

of the same event type (i.e., |T | = 1), and no fault-tolerance requirements

are imposed (i.e., k = 1), the minimum weight sensor cover problem is

a standard geometric set cover problem with unit disks, where the aim is

to cover a given set of points, using disks of minimum total weight. This

standard problem is well understood and is known to be NP-hard, even

in the unweighted case [CCJ90], motivating the study of approximation

algorithms. In the weighted case of geometric set cover with unit disks, the

best known approximation ratio is 4 + ε [EM09, ZWX+11].

Our setting poses the additional challenges of having to cover every point

twice (turning the problem into a multi-cover problem), while avoiding the

loss of a factor of two in the approximation ratio. Additionally, we must deal

with different event types and consequently composite events. Addressing

these challenges requires us to refine the techniques that have been developed

for the standard geometric set cover problem with unit disks.
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4.1 Related Work

Sensor cover problems have been studied in several variants, including target

coverage problems where a discrete set of points that need to be monitored

is specified in the input, and region coverage problem where the area to be

monitored is specified as a (typically convex) region in the plane. We refer

the interested reader to the survey by Thai et al. [TWDJ08] for an overview.

Some of the work on the lifetime maximisation variant (where the nodes

in the network will have limited battery power) of sensor cover problems has

focussed on models where the sets of sensors that are active at different times

must be disjoint [CD05]. However, it was observed in [BCSZ04, BCSZ05,

CTLW05] that the use of non-disjoint sensor covers can yield a significantly

extended lifetime of the network.

Berman et al. [BCSZ04, BCSZ05] show that the region coverage problem

can be reduced to the target coverage problem and present an algorithm at-

taining logarithmic competitive ratio. They also show that a minimum cost

sensor cover algorithm with approximation ratio ρ implies an approximation

algorithm with ratio ρ(1 + ε) for the lifetime maximisation problem using

the Garg-Könemann algorithm [GK98a].

Dhawan et al. [DVZ+06] study a target coverage problem where the

sensor nodes can adjust their sensing range, and the aim is to maximise the

network lifetime. They propose a greedy algorithm for the minimum cost

sensor cover problem that yields a logarithmic competitive ratio. Zhao and

Gurusamy [ZG08] study the target coverage problem with the additional re-

quirement that the sensors that are active at any time are connected. They
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obtain an algorithm with logarithmic competitive ratio and also present

a performance evaluation based on simulation experiments. Sanders and

Schieferdecker [SS10] show that the target coverage problem for sensors rep-

resented by unit disks with the objective of lifetime maximisation is NP-

hard. They further provide a (1+ε)-approximation algorithm using resource

augmentation, i.e., their algorithm needs to increase the sensing range of ev-

ery sensor node by a factor of 1 + δ, for some fixed δ > 0.

Much of the previous work on target coverage problems has not con-

sidered fault-tolerance requirements, composite events or different sensor

types. Vu et al. [VBL07] and Marta et al. [MYC09] consider fault-tolerant

sensor cover problems with composite events. They present centralised and

distributed heuristics and evaluate them in simulations. Contrary to their

setting, in this work we aim at designing approximation algorithms with

provable performance guarantees for fault-tolerant sensor cover problems

with composite events.

A special case of the minimum cost sensor cover problem is the weighted

geometric set cover problem with unit disks. Given as input a set of points in

the plane, and a set of weighted unit disks, the aim is to compute a cheapest

set of disks that covers all points. This problem has received considerable

attention as it includes the weighted dominating set problem for unit disk

graphs, which is relevant for routing backbone construction in wireless net-

works. This relationship also shows that the problem is NP-hard as the

minimum dominating set problem for unit disks is known to be NP-hard

[CCJ90].

The first constant factor approximation for weighted set cover with unit
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disks was a 72-approximation by Ambühl et al. [AEMN06]. The plane

is partitioned into squares of constant size, and the algorithm computes a

2-approximation for each square separately and outputs the union of the

solutions for all squares. As a subroutine, they show that the problem can

be solved optimally in polynomial time by dynamic programming if the

points to be covered are located in a (horizontal or vertical) strip of the

plane, and all disks have centre outside of that strip. This inaugural con-

stant approximation result was then improved to a (6 + ε)-approximation

by Huang et al. [HGZW09] by considering blocks of the plane, consisting

of a bounded number of squares, and applying a geometric shifting strategy

[HM85]. They compute separate solutions for each horizontal and vertical

strip of squares inside a block. They also introduce a sandglass technique

by which an algorithm ‘guesses’ properties of the optimal solution. This

allows the algorithm to decide which of the points in a square should be

covered by disks with centre above or below the square the point appears

in, and which points are covered by disks with centre to the left or right

of the square. This approach employed by Huang et al. [HGZW09] was

further amended by Dai and Yu [DY09], yielding a (5 + ε)-approximation.

The improvement is obtained by calculating solutions over pairs of strips of

squares simultaneously, combined with techniques from [HGZW09]. A fur-

ther improvement to a (4+ε)-approximation was then attained by Erlebach

and Mihalák [EM09] and, independently by Zou et al. [ZWX+11]. The

main idea in [EM09] is to compute solutions for K adjacent strips of squares

simultaneously using a ‘split sweepline’ technique that ensures that disks

that cover points in different strips are met by the corresponding sweepline
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pieces at the same time.

All the aforementioned results in the previous paragraph apply to weighted

geometric set cover with unit disks, and consequently also to the minimum-

weight dominating set problem in unit disk graphs. For this latter problem,

the variant where the dominating set has the constraint that it must be con-

nected, is also of interest, i.e., the minimum-weight connected dominating

set problem. The approach followed by several authors in previous work

[AEMN06, DY09, EM09, HGZW09, ZWX+11] is to first compute a dom-

inating set of minimum cost, and then to apply an algorithm solving the

node-weighted Steiner tree problem, in order to connect the dominating set.

The node-weighted Steiner tree problem admits a 2.5 · α-approximation al-

gorithm in unit disk graphs [ES09, ZLGW09], where α is the approximation

ratio of the best known approximation algorithm for edge-weighted Steiner

trees, which is used as a subroutine.

In 2010 a result by Byrka et al. [BGRS10] showed that for node-weighted

Steiner trees in unit disk graphs we have α < 1.39, and thus an approxi-

mation algorithm with ratio less than 3.475 for node weighted Steiner trees

in unit disk graphs. In combination with the best known approximation

algorithm for minimum-weight dominating sets, which to the extent of our

knowledge is from Erlebach and Mihalák [EM09], and independently Zou et

al. [ZWX+11], who show a (4 + ε)-approximation algorithm, this yields a

7.475-approximation algorithm for minimum-weight connected dominating

sets in unit disk graphs.

The unweighed set multi-cover problem has been studied in geomet-

ric settings by Chekuri et al. [CCHP09]. They present an O(log opt)-
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approximation algorithm for set systems of bounded VC dimension where

opt is the size of an optimal cover, and constant factor approximation al-

gorithms for covering points by half spaces in three dimensions or covering

points with pseudo-disks (disks that intersect each other in at most two

points) in the Euclidean plane. Their results only apply to the unweighed

variant.

4.1.1 Contributions

We model the fault-tolerant target coverage problem with composite events

as a generalised geometric multi-cover problem with unit disks and present

a (6 + ε)-approximation algorithm. This approximation ratio holds for both

the minimum cost sensor cover variant of the problem and the lifetime max-

imisation variant.

On a high level, we solve the minimum cost sensor cover problem by

providing a 6-approximation algorithm for the case where all event points are

located in a square of the plane of bounded size, and employing a geometric

shifting strategy [HM85, HGZW09]. To obtain this 6-approximation of a

solution for a block, we ‘guess’ a number of properties of an optimal solution

by enumeration, and then apply dynamic programming along horizontal and

vertical strips of smaller squares. As a result of this enumeration procedure,

we need only handle the case where disks with centre outside a strip are

used to cover points inside the strip, which makes a dynamic programming

approach feasible.

Our algorithm requires significant adaptations compared with previous

work. Due to the multi-cover aspect a more involved ‘guessing’ step is re-
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quired, and the algorithm must be able to handle different event types. Using

our approximation algorithm for minimum cost sensor cover as a subroutine

in the Garg-Könemann algorithm [GK98a], we obtain the same approxi-

mation ratio 6 + ε for the lifetime maximisation problem. Furthermore,

provided that the communication radius is at least twice the sensing ra-

dius, we can use the known approximation algorithm for the node-weighted

Steiner tree problem in unit disks graphs, and achieve approximation ratio

9.475 for the problem variants where the set of active sensors is required to

form a connected communication network.

The remainder of the chapter is structured as follows. In Section 4.2, we

formally introduce and define the problems we study and briefly describe the

aspects of our approach that are reasonably standard, e.g., partitioning the

plane into squares of bounded size, and then applying a geometric shifting

strategy. In Section 4.3, we present a high-level description of our algorithm

for approximating the minimum cost fault-tolerant sensor cover problem

with composite events, for a block containing a set number of squares in the

plane. In Sections 4.4 and 4.5 we then continue by discussing the details

of two key components of our algorithm, namely the enumeration proce-

dure that ’guesses’ certain properties of a fixed optimal solution and the

dynamic programming approach that, based on these guessed properties,

will solve subproblems of the block, namely a horizontal or vertical strip

of squares in the block, to optimality. In Section 4.6, we describe how the

Garg-Könemann algorithm [GK98a] can be applied in our setting, using a

ρ-approximation algorithm for the minimum cost sensor cover problem as

a subroutine, to yield a ρ(1 + ε)-approximation algorithm for the lifetime
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maximisation variant of the problem. We show that this general approach,

which has already been employed in previous work, can be adapted to gen-

eralise to our setting as well. In Section 4.7 we show how our results can be

adapted to the problem variants where sensor covers are required to form

a connected communication graph. Finally, we conclude in Section 4.8 by

providing a summary of the presented material and indicate some directions

for future work that could be of interest.

4.2 Preliminaries

In this section, we introduce basic notation, formally define the problems

considered in this chapter, and describe the partitioning of the plane that is

used by our algorithms.

Consider the two-dimensional Euclidean plane. The x-coordinate and y-

coordinate of a point p is denoted by xp and yp, respectively. The Euclidean

distance between two points p and q is denoted by δ(p, q). If d is a disk, we

also use d to refer to the centre of the disk, such that we can write δ(d, p)

to denote the Euclidean distance between the centre of a disk d and a point

p in the plane. Note that, against conventional notation, δ(d, p) does not

denote the minimum distance between p and any point in d, but rather the

Euclidean distance between the centre of d and a specific point p. We say

that a point p is in a disk d of radius r if δ(d, p) ≤ r. Additionally, we say

that p is on a disk d if it lies on the boundary of the disk, i.e., δ(d, p) = r.
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4.2.1 Problem Definitions

An instance of the weighted (geometric) set cover problem with unit disks is

given by a set P of points in the two-dimensional Euclidean plane and a set

D of weighted unit disks. All disks have uniform radius r, and without loss

of generality we assume r = 2 throughout this chapter. We note that this

choice of r = 2 is consistent with previous work, e.g., [EM09], where the

dominating set problem for unit disks of radius 1 was transformed into an

equivalent geometric set cover problem, where all disks have radius 2. The

weight of a disk d ∈ D is non-negative and denoted by w(d) or wd. The

total weight of a set D′ ⊆ D of disks is denoted by w(D′) =
∑

d∈D′ w(d).

The goal of the weighted set cover problem with unit disks is to select a set

of disks of minimum total weight such that every point p is in at least one

of the selected disks.

In the context of the target coverage problem, the disks in D correspond

to sensor nodes (with r representing the sensing radius) and the points in

P correspond to targets (event points) that need to be monitored.

To model fault-tolerance requirements, we consider the following exten-

sion of the set cover problem. Every target p ∈ P specifies a positive integer

kp as its coverage requirement, and a set D′ ⊆ D of disks is a feasible multi-

cover if every p ∈ P is in at least kp distinct disks of D′. The goal of

the weighted multi-cover problem with unit disks is to compute a feasible

multi-cover D′ of minimum total weight.

Furthermore, to model different event types, we assume that there is a

(small) set T of different event types (e.g., smoke, temperature, etc.) and
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every sensor d ∈ D has sensing components for a subset Td ⊆ T of event

types. Moreover, each target p ∈ P needs to be monitored with respect to a

subset Tp ⊆ T of event types, corresponding to the occurrence of a composite

event comprised of atomic events for each type in Tp. A set D′ ⊆ D of disks

is a feasible multi-T -cover if, for each p in P and each t ∈ Tp, p is in at least

kp distinct disks d′ in D′ with t ∈ Td′ , i.e., if

∀p ∈ P : ∀t ∈ Tp : |{d′ ∈ D′ : δ(d′, p) ≤ r, t ∈ Td′}| ≥ kp (4.1)

To simplify matters, we reduce composite events to equivalent atomic

events as follows. We replace every point p, that needs to be monitored

with respect to a set |Tp| of event types, by |Tp| copies of p. Every copy

of p has the requirement to be monitored with respect to a distinct t ∈ Tp,

and with the same coverage requirement kp. For every new copy p′ of p,

we denote by tp′ its associated event type. We note that a set D′ of disks

is a feasible multi-T -cover of the original points with composite monitoring

requirements if and only if it is a feasible multi-T -cover of the modified

points with only atomic monitoring requirements.

Therefore, without loss of generality, we can now assume that it is re-

quired that every point p ∈ P is monitored only with respect to one event

type tp. We remark that after this procedure, P may contain points with

identical coordinates. We now have that a disk d ∈ D covers a point p ∈ P ,

if p is in d, and tp ∈ Td . A set D′ ⊆ D of disks meets the coverage re-

quirements of a point p ∈ P , if p is covered by at least kp distinct disks in
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D′.

We now formally define the weighted multi-cover problem under consid-

eration:

Definition 4.1. For a set T of event types, the weighted multi-T -cover

problem with unit disks is denoted by WMCUD-T. We are given a set D of

disks of radius r = 2, each disk d ∈ D associated with a non-negative weight

wd and a set Td of event types, and a multi-set P of points, each point

p ∈ P associated with one event type tp ∈ T and a coverage requirement kp.

A subset D′ ⊆ D is a feasible multi-T -cover if:

∀p ∈ P : |{d′ ∈ D′ : δ(d′, p) ≤ r, tp ∈ Td′}| ≥ kp (4.2)

The objective is to compute a feasible multi-T -cover of minimum total

weight. The restriction of WMCUD-T to the case where kp ≤ 2, for all

p ∈ P is denoted by W2CUD-T.

Furthermore, we remark that the assumption that the cardinality of

the set of event types T is small, i.e., bounded above by a fixed constant

value, is natural in this application setting. If the set of event types T is

allowed to be of arbitrarily large size, then even covering a single target

would be analogous to solving a general set cover problem and cannot be

approximated to a constant factor unless P = NP, [AMS06, Fei98].

We also note that the running time of our algorithm is exponential in

|T |, but polynomial in general as |T | is bounded above by a fixed constant.

Finally, let us define the lifetime maximisation variant of the problem.
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Definition 4.2. We are given points and disks as in an instance of WMCUD-

T, but additionally each disk d ∈ D specifies an initial battery level bd, ex-

pressed in suitable units such that bd is the total duration during which d can

be active before its battery runs out. A schedule is a set of pairs (Di, xi)

where Di ⊆ D is a feasible multi-T -cover and xi ≥ 0 is the number of units

for which the sensors in Di are active. A schedule is feasible if for each disk

d ∈ D, the sum of all xi values of all pairs (Di, xi), where d ∈ Di does not

exceed bd. The lifetime of a schedule is the sum of all the xi values of all

its associated pairs (Di, xi). The goal is to compute a feasible schedule of

maximum lifetime. We refer to this problem as the maximum lifetime multi-

T -cover problem with unit disks (MLMCUD-T), and the restricted version

where kp ≤ 2, for all p ∈ P , as ML2CUD-T.

4.2.2 Plane Partition

As in previous work (e.g., [HGZW09]), our algorithms employ a partition of

the plane. Consider an infinite grid that partitions the plane into squares,

each with side length 1.4 (we remark that any number sufficiently close to,

but strictly less than
√

2 would suffice). Consider an arbitrary such square

S. Note that any disk of radius 2 with centre in S contains the entire square.

We can assume without loss of generality that no point, or disk centre lies

exactly on the boundary between two adjacent squares.

The neighbouring infinite regions of a square S are referenced as in Figure

4.1, where um is ‘upper middle’, cl represents ‘centre left’ and lr stands for

‘lower right’. The other regions surrounding the square Sij shown in Figure

4.1 are referenced analogously.
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Figure 4.1: Square Sij and neighbouring regions.

Furthermore, let upper be the union of the regions ul, um, ur, and

similarly, let lower be the union of the regions ll, lm and lr, let left be

the union of the regions ul, cl and ll, and finally let right be the union

of the regions ur, cr and lr.

For an integer constant K ≥ 0 (which determines the ε term in the

final approximation ratio (see Theorem 4.11), consider a partition of the

plane into blocks so that each block B consists of K × K squares S. For

convenience of presentation, we index the squares in a block from the square

S0, 0 in the top left corner, through to the square SK−1, K−1 in the bottom

right corner. We remark for clarity that the indices of a square Sij are local

with regard to the block B containing the square. The first index i refers to

the row of the block the square appears in, and the second index j to the
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column of the block, in which Sij is located within the block B. Let Pij be

the set of points that lie in the square Sij .

If we have a ρ-approximation for W2CUD-T instances whose points all

lie in one block, we can obtain a ρ(1 + O(1/K))-approximation for gen-

eral instances of W2CUD-T using a standard geometric shifting strategy

[HGZW09]. A sketch of this approach is as follows. The algorithm calcu-

lates a ρ-approximate solution for each block and amalgamates these solu-

tions for individual blocks into a solution for the entire plane. Each block is

then shifted up and right by four squares, and a new solution is calculated

for this new set of blocks. This process is repeated for K/4 iterations. The

best of the K/4 solutions, i.e., the one of minimum cost, is then output as

the overall solution.

The analysis of this approach is based on the observation that a disk can

cover points in different blocks for only two of the K/4 shifted cases, because

each disk overlaps at most four horizontal or vertical strips of squares. For

any given optimal solution opt, there is a shifted problem for which the total

weight of disks in opt that overlap block boundaries is at most 8 ·w(opt)/K,

and thus the union of ρ-approximate solutions in the blocks is within a factor

of ρ(1 +O(1/K)) of the total weight of the optimal solution. The details of

this process are fairly standard and can be found for a similar setting, e.g.,

in [HGZW09]. Thus, the key to obtaining a good approximation algorithm

for W2CUD-T is to achieve a good approximation ratio for instances where

the points are located in one block.
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4.3 A (6 + ε)-Approximation Algorithm

In this section, we present a 6-approximation algorithm for W2CUD-T in

a block. At the end of the section we conclude that there exists a (6 + ε)-

approximation algorithm for general instances of W2CUD-T.

Let an instance of W2CUD-T in a K ×K block B of squares be given

by a set of points PB (each point p ∈ PB is associated with an event type tp,

and a coverage requirement kp ≤ 2) and a set D of disks. Our approach to

solve this instance of W2CUD-T consists of two stages. In the first stage,

using enumeration we ‘guess’ properties of a fixed optimal solution, denoted

by optB. We remark that both here and in the following, in any reference

to ‘the optimal solution’, we refer to that particular fixed optimal solution.

In the second stage, we approximate the best solution with these properties

via the use of dynamic programming.

As motivation for our approach to guessing properties of an optimal

solution, observe that an optimal solution may contain an arbitrarily large

number of disks with centre in the same square. As an example, consider

two horizontally adjacent squares S1 and S2. Assume that there is a single

event type and no fault-tolerant requirement (i.e., we must cover each point

(target) with only one disk). Place n targets on a vertical line l1 in the

square S1. Place the centre of n disks on a vertical line l2 in the square S2,

in such a way that the distance between l1 and l2 is 2. Furthermore, for

each target tp, place a disk on l2 whose centre has the same y-coordinate as

tp. It follows that each of the n disks covers exactly one of the n targets,

and consequently the only solution that covers all n targets as required,
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consists of all n disks. This shows that an approach that enumerates all

disks that are in the optimal solution and have centre in a specific square

is not feasible. We overcome this obstacle by enumerating guesses only for

certain properties of the optimal solution.

The enumeration stage produces a polynomial number of guesses of the

properties of optB. Each such guess π specifies a set of disks Dπ that are

contained in optB, which may reduce the coverage requirements of some

points in PB accordingly. For example, the coverage requirement of a point

p, with kp = 2 that is contained in one disk d ∈ Dπ with tp ∈ Td is reduced

to k′p = 1. Furthermore, each point p whose remaining coverage requirement

k′p is not zero is classified according to the regions ul, um, . . . (with respect

to the square in which p is contained) where the centres of k′p disks in the

optimal solution that cover p lie.

Definition 4.3. For a point p the symbol m specifies that p must be covered

by a disk with centre in upper∪lower, the symbol l that the point must be

covered by a disk with centre in um ∪ lm, the symbol ⇔ that the point must

be covered by a disk with centre in left∪right, and the symbol ↔ that the

point must be covered by a disk with centre in cl∪cr. Here, all regions are

specified with respect to the square in which the point lies. If a point p has

remaining coverage requirement k′p = 1, the classified coverage requirement

πp can be {⇔} or {m}. If a point has remaining coverage requirement k′p = 2,

the classified coverage requirement πp can be {⇔, ⇔}, {m, m}, {⇔, l},

or {↔, m}.

Definition 4.4. A set D′ of disks meets the classified coverage requirement
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πp = {⇔,⇔} of a point p, if the point p is covered by two distinct disks

d1, d2 ∈ D′ with centre in left∪right. A set D′ of disks meets the classified

coverage requirement πp = {⇔, l} of a point p, if the point p is covered by

one disk d1 ∈ D′ with centre in left ∪ right and by one disk d2 ∈ D′ with

centre in um ∪ lm. For the other possible classified coverage requirements,

the conditions are analogous.

A ‘guess’ consists of the set of disks Dπ, and the classified coverage

requirements πp.

Definition 4.5. A guess π is consistent with the optimal solution optB if

Dπ ⊆ optB, and optB \ Dπ meets the specified coverage requirement πp of

every point p.

The important property of the enumeration stage of our algorithm is

stated in the following lemma, whose proof is deferred to Section 4.4.

Lemma 4.6. There exists a polynomial time algorithm that enumerates a

set of guesses, such that at least one of the guesses is consistent with optB.

We remark that if a point p is covered in optB by one or two disks

whose centres lie in the square in which p lies, then our enumeration stage

will ensure that the required disks covering p are contained in Dπ for the

guess π that is consistent with the optimal solution. Therefore, it suffices

to consider the case that the remaining coverage requirement of each point

p needs to be satisfied by disks with centres outside the square in which p

lies.

For every guess π, the aim is to find a solution that is consistent with π
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and has small weight. The solution of minimum weight, amongst the feasible

solutions for all guesses, is output as the solution.

Lemma 4.7. There exists a polynomial time algorithm that takes as input

a guess π, and either outputs a solution that is consistent with π, or asserts

that no solution consistent with π exists. If the guess π is consistent with

the optimal solution optB, the solution output by the algorithm has weight

at most 6 · w(optB).

Before providing a proof of Lemma 4.7 we first require some additional

definitions. On a high level, the algorithm of Lemma 4.7 is obtained by

applying dynamic programming to each horizontal and each vertical strip of

squares contained in the block B. As such, we define two sub-problems.

Definition 4.8. (Horizontal Strip Problem) Consider a horizontal strip H

of squares within a block, that consists of K squares Sij for a fixed i, and

0 ≤ j ≤ K − 1. We are given as input a set PH of points in the strip, and a

set DH̄ of disks with centre above or below the strip (i.e., all the disks with

centres in the union of the regions upper ∪ lower for all squares Sij in

the strip H). Each disk d ∈ DH̄ is associated with a weight w(d) and a set

Td of event types. Each point p ∈ PH has an associated event type tp, and

a classified coverage requirement πp that can be {m}, {l} or {m, m}. A set

D′ ⊆ DH̄ is a feasible solution if it meets the classified coverage requirements

of all points in PH . The objective function of the horizontal strip problem

is to compute a feasible solution of minimum weight.

The vertical strip problem is defined analogously. In Section 4.5 we prove

the following result.
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Lemma 4.9. There exists a polynomial-time algorithm that computes a

minimum-weight solution to any (horizontal or vertical) strip problem (or

asserts that no feasible solution exists).

Using this lemma, we are now in a position to prove Lemma 4.7.

Proof. (of Lemma 4.7)

Let π be an arbitrary guess. One can check whether π admits a feasible

solution, because it suffices to check whether the set of all disks D meets

the classified coverage requirements of all points in PB. Therefore, we can

assume in the following that there exists a solution, that is consistent with

π.

The algorithm solves a vertical strip problem for each of the K vertical

strips ofK squares contained in the block B, and similarly solves a horizontal

strip problem for each of the K horizontal strips of K squares contained

within block B. The inputs to the 2K strip problems are constructed as

follows. For each horizontal strip H, the set of disks in the input to the

horizontal strip problem for H consists of all disks from D \Dπ with centre

outside H. Similarly, for every vertical strip of squares V in the block B,

the set of disks to the vertical strip problem for V consists of all disks from

D \Dπ with centre outside V .

The points that form the input of a (horizontal or vertical) strip problem

are determined as follows. Consider a point p ∈ PB that lies in some square

Sij , that belongs to a horizontal strip Hp, and a vertical strip Vp. If is it the

case that πp = {⇔}, then p is added with classified coverage requirement

{⇔} to the vertical strip problem for Vp. Similarly, if πp = {m} then p
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is added with classified coverage requirement {m} to the horizontal strip

problem for Hp.

In the case that πp = {m, m}, then p is added with the classified coverage

requirement {m, m} to the horizontal strip problem for Hp. If π = {⇔, ⇔},

then p is added with the classified coverage requirement {⇔, ⇔} to the

horizontal strip problem for Vp.

Additionally, if πp = {⇔, l}, then p is added with classified coverage

requirement {⇔} to the vertical strip problem for Vp, and with classified

coverage requirement {l} to the horizontal strip problem for Hp. Finally, if

πp = {↔, m}, then p is added with classified coverage requirement {↔} to

the vertical strip problem for Vp, and with classified coverage requirement

{m} to the horizontal strip problem for Hp.

The algorithm of Lemma 4.9 is applied to each of the 2K strip problems.

If one of the strip problems does not admit a feasible solution, the algorithm

outputs that the given guess π does not admit a feasible solution. If all 2K

strip problems admit feasible solutions, then the union of the 2K solutions,

together with the set of disks Dπ that has been determined to be in the

solution by the guess, is then output as the solution. One can observe the

algorithm outputs a feasible solution if one exists for the given guess π, and

otherwise asserts correctly that no feasible solution exists.

Now consider a guess π, that is consistent with optB. Let optB(H) be

the subset of optB \Dπ consisting of disks that are in upper∪ lower for a

horizontal strip H, and overlap H. Similarly, let optB(V ) be the subset of

optB \Dπ consisting of disks that are in left∪right for a horizontal strip

V , and overlap V .
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Observe that optB(V ) and optB(H) form feasible solutions to the strip

problems for the strips V and H, respectively. Hence, the solutions A(V )

and A(H) calculated by the algorithm from Lemma 4.9, for the strips V and

H respectively, have costs at most w(optB(V )) and w(optB(H)). The cost

of the solution output by the algorithm is therefore at most

algB = w(Dπ) +
∑
H

w(A(H)) +
∑
V

w(A(V ))

≤ w(Dπ) +
∑
H

w(optB(H)) +
∑
V

w(optB(V ))

≤ 6 · w(optB)

The last inequality follows as each disk d in optB \Dπ is in optB(H) for

at most three horizontal strips, and in optB(V ) for at most three vertical

strips. For vertical strips, this is because a disk of diameter 4 intersects at

most four (consecutive) vertical strips of width 1.4, and in one of them the

disk has centre inside the strip, and therefore cannot be in left ∪ right.

For horizontal strips the reasoning is analogous. Hence, the weight of each

disk in optB \Dπ is counted at most 6 times on the left-hand side of the last

inequality, and the weight of each disk in Dπ ⊆ optB only once.

By combining Lemmas 4.6 and 4.7, we obtain the following lemma.

Lemma 4.10. There is a 6-approximation algorithm for instances of W2CUD-

T where all points lie in a K ×K block.

As discussed in Section 4.2.2, a 6-approximation for W2CUD-T in a
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block implies a (6 + ε)-approximation algorithm for general instances of

W2CUD-T. Thus, Lemma 4.10 implies the following result.

Theorem 4.11. For every fixed ε > 0, there is a (6 + ε)-approximation

algorithm for the problem W2CUD-T.

4.4 Guessing Properties of the Optimal Solution

by Enumeration

In this section we prove Lemma 4.6. Recall that optB denotes an arbitrary

fixed optimal solution to the given instance of W2CUD-T in a block B.

We present the enumeration technique using the notion of ‘guessing’. When

we write that the algorithm ‘guesses’ a property of optB, this means that

the algorithm enumerates all possibilities for that property in such a way

that one of the possibilities is guaranteed to be the desired property of the

optimal solution. The enumeration is done separately for each of the K2

squares Sij . Let m denote the number of disks that overlap Sij . Let the left

and right boundary of Sij lie on the line x = x1 and x = x2, respectively, and

the bottom and top boundary on the line y = y1 and y = y2, respectively.

See Figure 4.1 for an illustration.

4.4.1 Disks with Centre in Sij

First, for every event type tl ∈ T , we guess whether optB contains 0, 1 or

2 disks with centre in Sij that monitor event type tl. Furthermore, in the

second and third case we also guess one or two such disks, respectively. Note

that a disk with centre in Sij must contain the whole square Sij , as the disk
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has radius r = 2 and the square has side length less that
√

2. Furthermore,

two disks with centre in Sij that cover event type tl are sufficient to meet

the coverage requirements of all points p ∈ Pij with tp = tl. Hence, for these

points, it is not necessary to guess more than two disks. All the disks that

are guessed in this way form the set Dπ, and the coverage requirements of

all points that are covered by disks in Dπ are reduced accordingly. In the

following, we use kp to denote the remaining coverage requirement of a point

p.

4.4.2 Overview of Square Partition

Next, we aim at guessing a partition of the square Sij into areas such that

for points in the same area, we know whether or not they are covered twice

by upper∪ lower (here and in the following, all regions are specified with

respect to the square Sij), twice by left∪right, or once by upper∪lower

(possibly restricted to um∪lm) and once by left∪right (possibly restricted

to cl∪cr). In other words, we want to guess the classified coverage require-

ments of all points. We guess a separate such square partition for each event

type tl ∈ T . For each tl ∈ T , the steps involved in guessing the partition

are as follows. First, we determine areas called 2-watching tl sandglasses

(the terminology is motivated be a similar sandglass concept in [HGZW09])

for the four regions um, lm, cl and cr. For each of these areas, we can

require that points are covered only by upper∪ lower (classified coverage

requirement {m} if kp = 1 or {m, m} if kp = 2) or only by left ∪ right

(classified coverage requirement {⇔} if kp = 1 or {⇔, ⇔} if kp = 2).

Secondly, we consider 1-watching envelopes, i.e., envelopes of the disks in
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optB with centre in one of the regions um, lm, cl and cr, and guess the

four points where adjacent envelopes intersect. Based on the locations of

these intersection points, we can segment the square into smaller areas and

deduce for each of the smaller areas whether the points located in the area

are to be watched from upper ∪ lower, or from left ∪ right (or from

both). The details of the partition of the square into areas for one specific

event type tl are presented in the following subsections.

4.4.3 2-Watching Sandglasses

We define the 2-watching tl sandglass for the region lm. The sandglasses

for the regions um, cr and cl are defined similarly by rotation.

Let P ′ij be the set of points in Pij that have event type tl, i.e., the set

of all points p in the square Sij , where tp = tl. Consider the set P 2
lm ⊆ P ′ij

of all points in P ′ij that are covered by two distinct disks, with centre in lm

in optB, but that are not covered by any disk from optB that does not have

centre in lm. For each p ∈ P 2
lm, consider a line lp through p with slope 1 and

let p′ be the point where lp intersects the line y = y1. Let pl be the point in

P 2
lm for which p′ is leftmost. Similarly, let l′p be the line through p with slope

−1 and let p′′ be the intersection point of l′p and y = y1. Let pr denote the

point in P 2
lm for which p′′ is rightmost. The 2-watching tl sandglass for lm is

now defined as the area that is obtained as the intersection of the halfplane

below lpl , the halfplane below l′pr , and the square Sij . The reader can refer

to Figure 4.2 for an illustration (we remark for the reader that in order to

better illustrate the concepts described, the figures presented in this chapter

are not to scale). Note that this sandglass is uniquely determined by pl and
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Figure 4.2: 2-watching sandglasses.

pr and there are O(|P ′ij |2) possibilities for guessing pl and pr.

We show that the coverage requirements of any point of P ′ij located in the

2-watching tl sandglass for lm are met by disks from upper∪lower. Define

the lower-shadow of a point p to be the region that is the intersection of the

half-plane below the line with slope −1 through p, the half-plane below the

line with slope 1 through p, and the square Sij . The left-shadow, up-shadow,

and right-shadow of a point are defined analogously. We state the following

lemma due to Huang et al. [HGZW09].

Lemma 4.12. [HGZW09] If a point p ∈ P ′ij is covered by a disk d from

lm, then any point in the lower-shadow of p, is also covered by the same

disk from lm.

The lemma directly implies the following corollary.

Corollary 4.13. If a point p ∈ P ′ij is covered by two disks d1, d2 from lm,

then any point in the lower-shadow of p is also covered by the same two disks
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d1, d2 from lm.

We also require the following lemma, which we prove by application of

Lemma 4.12.

Lemma 4.14. The coverage requirement for any point p ∈ P ′ij that lies

inside the 2-watching tl sandglass for lm is met by disks in optB from

upper ∪ lower.

Proof. Consider the points pl and pr defining the 2-watching tl sandglass

for lm. For points in the lower-shadow of pl or in the lower-shadow of pr,

the lemma follows from Corollary 4.13. Let p be a point that lies in the

2-watching tl sandglass for lm, but not in the shadows of pl or pr. Assume

that p is covered by a disk d with centre in cl or cr by optB. Then, by

Lemma 4.12 applied to the left-shadow or right-shadow of p, respectively,

we find that pl or pr is also covered by d, a contradiction to the choice of pl

and pr.

It follows that the coverage requirements of all points in the 2-watching

tl sandglasses for lm and for um are satisfied by disks in optB from the

regions upper ∪ lower, and the coverage requirements of all points in the

2-watching tl sandglasses for cl and cr are satisfied by disks in optB from

left∪right. Hence, all the points from P ′ij that lie in 2-watching tl sand-

glasses can be classified accordingly (classified coverage requirements {⇔},

{⇔, ⇔}, {m}, or {m, m}). These points are ignored for the classifications

of points described in the following subsections, i.e., their classification is

not changed if they are contained in one of the areas under consideration

there.
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4.4.4 1-Watching Envelopes

It remains to describe the case with points from P ′ij that do not lie in any

of the 2-watching tl sandglasses. For each of the four regions um, lm, cl

and cr, we define a 1-watching tl envelope as follows (see Figure 4.3 for an

illustration). Note that we have separate envelopes for each tl ∈ T .

Figure 4.3: 1-watching envelopes for lm and um.

Definition 4.15. Consider a square Sij, and let R be one of the regions um,

lm, cl and cr with respect to Sij. The 1-watching tl envelope for region

R is the intersection of the square Sij and the boundary of the union of the

disks in optB that monitor event type tl and have centre in the region R. The

respective boundary of the square (i.e., the top boundary for the 1-watching

tl envelope for um, the right boundary for the 1-watching tl envelope for cr,

etc.) is used to fill in parts of the envelope where no disk from the respective

region intersects the square.
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4.4.5 Intersection Points of 1-Envelopes

We call the 1-watching envelopes of cl and um adjacent and similarly those

of um and cr, etc. Allow us to define intersection points of adjacent 1-

watching envelopes and describe how they are used to partition the remain-

der of the square Sij into areas such that we can specify for the points in

each area, whether they are covered by optB using disks in upper∪lower,

or disks in left ∪ right.

Lemma 4.16. Each pair of adjacent 1-watching tl envelopes intersects in

exactly one point.

Proof. By the dimension of the square Sij and the radius of the disks, it

follows that the direction of any tangent to the 1-watching tl envelope for um

or lm is in the open interval (−π/4, π/4), and the direction of any tangent

to the 1-watching tl envelope for cl or cr is in the open interval (π/4, 3π/4).

Therefore, it is impossible that two adjacent 1-watching tl envelopes have

more than one intersection point. As each envelope is a curve connecting

points on opposite sides of the square, it follows that two adjacent envelopes

always intersect.

Hence there are four, not necessarily distinct, intersection points between

adjacent 1-watching tl envelopes. Note that each of these intersection points

is uniquely specified by the two disks whose boundaries intersect at that

point. Hence, it suffices to guess eight disks in order the determine the four

intersection points in a fixed optimal solution.

Let the intersection point of the 1-watching tl envelopes for cl and um be
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denoted by iumcl . Similarly, let iumcr be the intersection point of the 1-watching

tl envelopes for um and cr, ilmcl the intersection point of the 1-watching tl

envelopes for lm and cl, and ilmcr the intersection point of the 1-watching tl

envelopes for lm and cr.

4.4.6 Areas in a Square

Assume that iumcl is to the left of iumcr (i.e., has smaller x-coordinate), iumcr is

above ilmcr (i.e., has larger y-coordinate), ilmcr is to the right of ilmcl , and ilmcl

is below iumcl . We call this the standard configuration, and we will describe

alternative configurations in subsequent sections.

�
�
�
�

i3

i4

i2

i1

Figure 4.4: Standard configuration of intersection points.

For the standard configuration define i1 to be iumcl , let i2 be iumcr , let i3

be ilmcr and let i4 be ilmcl , as illustrated in Figure 4.4. Note that when we

discuss alternative configurations of intersection points in later section, the

correspondence of i1, . . . , i4 to intersection points will vary. For an arbitrary
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intersection point is, where 1 ≤ s ≤ 4, let ls and l′s be the two lines through is

with slope 1 and −1 respectively. These lines allow us to define the following

areas, for which we can make further deductions regarding the disks covering

points in these areas.

�
�
�
�

Figure 4.5: middle region.

As shown in Figure 4.5, define middle to be the area that is the intersec-

tion of the halfplanes below l1 and l′2 and the halfplanes above l3 and l′4. As

illustrated in Figure 4.6, let middle-l be the area that is the intersection of

the halfplanes below l1 and l′1, and the halfplanes above l4 and l′4. Similarly,

let middle-r be the area that is the intersection of the halfplanes below l2

and l′2 and the halfplanes above l3 and l′3.

We now make the claim that the coverage requirements of all points in

the areas middle-l and middle-r are met in optB by disks with centre in

left ∪ right. Without loss of generality, we state the arguments only for

points within the area middle-l as identical arguments apply for middle-r.
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Figure 4.6: middle-l and middle-r regions.

Observe that the area middle-l lies entirely below the 1-watching tl enve-

lope for um. This follows as middle is contained within the 90 degree cone

below i1 that lies between l1 and l′1, while the 1-watching tl envelope for

um lies in the union of the halfplanes above l1, and above l′1. Similarly,

middle-l lies entirely above the 1-watching tl envelope for lm. Therefore,

it is not possible that a point in middle-l is covered by a disk with centre

in um or lm in optB. As such, the coverage requirements of all points in

middle-l are indeed met in optB by disks from left∪right. Thus, we can

classify the points from P ′ij that lie in middle-l and middle-r accordingly

(i.e., such a point p is assigned classified coverage requirement {⇔} if kp = 1

and {⇔, ⇔}, in the case that kp = 2).

The areas middle-u and middle-d are defined analogously to middle-l

and middle-r, with middle-u enclosed by the lines l1, l
′
1, l2 and l′2, and

similarly the area middle-d is enclosed by the lines l3, l
′
3, l4 and l′4. This

86



�
�
�

�
�
�

Figure 4.7: middle-u and middle-m and middle-d regions.

is illustrated in Figure 4.7. Furthermore, the region obtained by removing

middle-l, middle-u, middle-r and middle-d from middle (that may be

empty) is denoted by middle-m. By analogous arguments to those given

above for the case of middle-l, the coverage requirements of points in areas

middle-u and middle-d are met in optB by disks from upper ∪ lower.

Hence, the points in these areas can be classified accordingly (i.e., such a

point p is assigned classified coverage requirement {m} if kp = 1, and {m, m}

if kp = 2).

Finally, the area middle-m lies outside all four 1-watching tl envelopes,

and so the points in that area can only be covered in optB by disks from

regions ul, ur, ll and lr. These regions are in upper ∪ lower and in

left∪right, so we can (arbitrarily giving preference to the former) classify

these points as points that have to be covered by disks in upper ∪ lower

(i.e., such a point p is assigned classified coverage requirement {m} if kp = 1,
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Figure 4.8: south area of Sij .

and {m, m} if kp = 2).

We refer to the part of Sij that is not in middle as the peripheral part

of Sij . Consider the peripheral area south shown in Figure 4.8. This is the

area that is the lower-shadow of i3, and the lower-shadow of i4. Recall that

points in south that are also in a 2-watching tl sandglass have already been

classified and are not considered further. For any remaining point p located

in south we know that p is covered by a disk from lm (as south lies below

the 1-watching tl envelope for lm). Furthermore, if p has to be covered by

a second disk, we know that p is covered by at least one disk whose centre

is not in lm because otherwise p would lie in the 2-watching tl sandglass

for lm and would have been classified already. That second disk covering p

cannot have centre in um, because south lies entirely below the 1-watching

tl envelope for um.

Hence if kp = 1, we specify that p must be covered by upper ∪ lower,
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i.e., p has classified coverage requirement {m}, and in the case kp = 2, we

specify that p must be covered once by left∪right and once by lm∪um,

i.e., has classified coverage requirement {⇔, l}.

�
�
�
�

Figure 4.9: west area of Sij .

The areas west (illustrated in Figure 4.9), north and east are defined

and handled analogously. As each point in P ′ij is contained in one of the

areas defined above, all these points are classified, i.e., for every point p, we

have determined and assigned a classified coverage requirement πp.

4.4.7 Areas in a Square - Other Configurations

Recall that iumcl is the intersection point between the 1-watching tl envelopes

for um and cl, and ilmcl , ilmcr and iumcr are defined analogously. In the previous

subsection, we assumed the standard configuration as shown in Figure 4.4,

i.e., iumcl is to the left of iumcr , iumcr is above ilmcr , iumcl is above ilmcl , and ilmcl is to

the left of ilmcr . In the following, we discuss how to handle all other possible
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configurations.

We note that the definition of 2-watching tl sandglasses does not depend

on the configuration of intersection points, so 2-watching sandglasses are

handled as before. The definition of the peripheral areas is adapted as

follows. The area south is the union of the lower-shadow of the lower of

the two points iumcl and ilmcl and the lower-shadow of the lower of the two

points iumcr and ilmcr . The area west is the union of the left-shadow of the

point that is further left among the two points iumcl and iumcr and the left-

shadow of the point that is further left among the two points ilmcl and ilmcr .

The definitions of east and north are analogous.

We observe that each of the four peripheral areas can be handled in the

same way as in the standard configuration. For example, it is still the case

that every point in south is covered by a disk with centre in lm, and if the

point is required to be covered by a second disk, there exists a disk covering

it with centre in left ∪ right.

Let us introduce some additional terminology. We say that the 1-watching

tl envelopes for cl and cr are opposite, and similarly the envelopes for um

and lm are opposite. Furthermore, we say that the 1-watching tl envelopes

for cl and cr overlap if iumcl is to the right of iumcr and ilmcl is to the right of

ilmcr .

Similarly, we say that the 1-watching tl envelopes for cl and cr cross

if only one of the two relations is reversed compared to the standard con-

figuration. For the 1-watching tl envelopes for um and lm, the notions of

overlapping and crossing are defined analogously by considering the relations

iumcl and ilmcl and between iumcr and ilmcr . Additionally, let in the following areas
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middle, middle-l, etc. be defined in the terms of the respective choices for

i1, i2, i3 and i4 in the same way as the standard configuration in Figure 4.4.

A Pair of Opposite Envelopes Overlap

The first alternative configuration that we consider is the case where at least

one pair of opposite envelopes overlap. Without loss of generality, assume

that the 1-watching tl envelopes for um and lm overlap.

Note that the case where the 1-watching tl envelopes for cl and cr

overlap is symmetric. It is the case that ilmcl is above iumcl , and ilmcr is above

iumcr . In each of the following cases, the choice of i1, i2, i3 and i4 will ensure

that the areas middle-m middle-l and middle-r are enclosed within the

1-watching tl envelopes for both um and lm i.e., the coverage requirement

for points in these areas can be classified as {m} or {m, m}.

�
�
�
�

i3

i2

i4

i1

Figure 4.10: The um and lm envelopes overlap.
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Case 1: The other pair of envelopes are standard. In this case the

envelope for cl and the envelope for cr are standard, i.e., they neither

cross nor overlap. This case is illustrated in Figure 4.10. Let i1 denote ilmcl

i2 denote ilmcr , i3 denote iumcr and let i4 denote iumcl . The areas middle-u and

middle-d are always outside the 1-watching tl envelopes for cl and cr, and

therefore, as is the case in the standard configuration, the points in these

areas can be classified by the coverage requirement {m} or {m, m}.

�
�
�
�

i2

i3

i1

i4

Figure 4.11: The um and lm envelopes overlap, and cl and cr envelopes
overlap.

Case 2: The other pair of envelopes also overlap. As illustrated in

Figure 4.11, we have that the 1-watching envelopes for cl and cr overlap,

and the 1-watching tl envelopes for um and lm also overlap. In this case

let i1 denote ilmcr , i2 denote ilmcl , i3 denote iumcl and let i4 denote iumcr . The

points within the areas middle-u and middle-d are covered twice by disks

in left ∪ right as those areas are enclosed within the 1-watching tl en-
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velopes for both cl and cr. These points can be classified by the coverage

requirement {⇔} or {⇔, ⇔}.

�
�
�
�

i4 i3

i2i1

Figure 4.12: The um and lm envelopes overlap, and cr and cl envelopes
cross.

Case 3: The other pair of envelopes cross. Without loss of generality,

assume that iumcl is to the right of iumcr and ilmcl is to the left of ilmcr , as illustrated

in Figure 4.12. Let i1 denote ilmcl , i2 denote ilmcr , i3 denote iumcl and let i4

denote iumcr . The points in middle-u can be handled as in case 1 where the

other pair of envelopes are standard, and the points in middle-d as in case

2 where the other pair of envelopes also overlap. Note that in this case it

must be that the areas middle-u and middle-d are disjoint.
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Figure 4.13: cl envelope crosses cr envelope.

One Pair of Opposite Envelopes Cross, The Other Pair of En-

velopes are Standard

Without loss of generality, assume that the 1-watching tl envelopes for cl

and cr cross, and that iumcl is to the left of iumcr and ilmcl is to the right of ilmcr as

illustrated in Figure 4.13. Note that the other cases will be symmetric. Let

i1 denote iumcl , i2 denote iumcr , i3 denote ilmcl and finally let i4 denote ilmcr . As

in the standard configuration the areas middle-l, middle-r and middle-m

are outside the 1-watching tl envelopes for um and lm, i.e., we can classify

the coverage requirements for the points in these areas as {⇔} or {⇔, ⇔}.

For a similar reason, the coverage requirements for the points in middle-

u can be classified as {m} or {m, m}. The area middle-d is within the

1-watching envelopes for both cl and cr, so the coverage requirements for

points in middle-d can be classified as {⇔} or {⇔, ⇔}.
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Both Pairs of Opposite Envelopes Cross

The only configuration that has not been considered is the case where both

pairs of opposite envelopes cross. One such configuration would have iumcl

strictly to the left of iumcr , ilmcl strictly to the right of ilmcr , iumcl strictly above

ilmcl , and iumcr strictly below ilmcr . We remark that one can assume strict

relationships since in the case where two points coincide, we are free to

arbitrarily choose the relation and thus arrive at a previously considered

configuration, where it is not the case that both pairs of envelopes cross.

To show that the aforementioned configuration cannot occur, consider

the line l of slope −1 through iumcl . Since iumcl is above ilmcl and both points lie

on the cl envelope, we get that ilmcl is strictly below the line l. Since, iumcl is

on the line l and iumcr is to the right of iumcl and also lies on the um envelope,

we get that iumcr is above l. Since iumcr is below ilmcr and both points are on the

cr envelope, it follows that ilmcr is above l. Since, ilmcl is to the right of ilmcr

and both points are on the lm envelope, we obtain that ilmcl is strictly above

the line l. This is a contradiction to the conclusion that ilmcl is strictly below

l that we derived above. Hence, this configuration is not possible. The other

configurations where both envelopes cross can be excluded similarly.

4.4.8 Complexity of Enumeration

For each of the K2 squares Sij in a block B, and for each event type tl ∈ T ,

we enumerate at most two disks with centre in Sij (these form the set Dπ

of disks that are determined to be in the solution by the guessing stage),

eight points defining the 2-watching sandglasses, and four intersection points
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(each identified by two disks) of the 1-watching envelopes. Hence, if there

are m disks and n points in total, there are O((m2n8m8)|T |) = (m+n)O(|T |)

choices per square. Thus, in total there are (m+ n)O(K2·|T |) choices for the

whole block B. Since K and |T | are constants, this is a polynomial number

of choices. This concludes the proof of Lemma 4.6.

4.5 Dynamic Programming Algorithm

In this section we prove Lemma 4.9 by providing a dynamic programming

algorithm for the (horizontal and vertical) strip problems. Vertical strip

problems can be solved analogously as horizontal strip problems, via rotation

of the plane by 90 degrees. As such, we only describe the algorithm with

respect to the horizontal strip problems in this section.

4.5.1 Input to the Dynamic Program

Let an instance of the horizontal strip problem for strip H be given as

described in Definition 4.8. We let nH denote the number of points in PH .

For convenience of presentation, we extend the strip H by two empty squares

on the left side, and an additional two empty squares immediately to the

right of H. This is for technical reasons, specifically such that now every

disk in DH̄ that covers some point in PH has its corresponding centre in the

region um or in the region lm, with respect to some square S in the strip

H.

We note for the reader that we do not consider instances for which a

feasible solution does not exist. Such an instance could easily be detected
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by an algorithm and as such, is superfluous to our analysis. In the following

we only consider the case that there exists a feasible solution, i.e, a set of

disks D′ ⊆ DH̄ that meets the classified coverage requirements of all points

in PH . The goal is now to compute a feasible solution of minimum weight

for the given instance of the horizontal strip problem.

Let the points in PH = {p1, . . . , pnH} be ordered by non-decreasing x-

coordinates, i.e., for every 1 ≤ i ≤ nH we have xpi−1 ≤ xpi . If two points

have the same x-coordinate then we order them arbitrarily.

4.5.2 Outer and Inner Envelopes

For a given square S forming part of a strip H, let um(S) denote the region

um with respect to S. Similarly, lm(S) denotes the region lm with respect

to S. Let T ′ ∈ P(T ) \ {∅} be an arbitrary non-empty combination of event

types in T .

We now continue by defining outer and inner envelopes formed by those

disks forming part of a solution, that have centres in um(S) or lm(S), and

monitor event types in T ′. The purpose of these envelopes is to represent

the disks lying in a particular region that cover some point from PH , in the

sense that any point in PH that is covered once or twice by disks in that

region, is also covered at least that same number of times by disks that

are part of the two envelopes of that region. Our dynamic programming

algorithm then has the objective of computing envelopes corresponding to

a solution of minimum cost.

Definition 4.17. (Outer T ′ envelope for UM(S)) Let S be a square in
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the horizontal strip H, let T ′ ∈ P(T ) \ {∅}, and let D be a set of disks. The

set of disks d ∈ D that have centre in um(S) and satisfy Td = T ′ is denoted

by DT ′

um(S). The outer T ′ envelope for um(S) (for the set of disks D) is the

intersection of the boundary of the union of all disks in DT ′

um(S) with the

strip H.

If at some x-coordinate there is no disks from DT ′

um(S) that overlaps H,

we let the upper boundary of H form a part of the envelope. A disk is said

to be on the envelope if the boundary of the disk forms part of the envelope

that consists of more than a single point. The set of disks on the envelope

is denoted by D̄T ′

um(S).

We also require inner envelopes, which we define as follows.

Definition 4.18. (Inner T ′ envelope for UM(S)) The inner T ′ envelope

for um(S), for a set of disks D, is defined to be the outer T ′ envelope for

um(S) for the set of disks D \ D̄T ′

um(S). The set of disks on the inner T ′

envelope for um(S) is denoted by D̄T ′

I(um(S)).

The outer and inner T ′ envelopes for um(S) in some fixed optimal solu-

tion are denoted by optT
′

um(S) and optT
′

I(um(S)) respectively.

The outer and inner T ′ envelopes for lm(S), for a set of disks D, are

defined and denoted analogously, namely by considering disks with centre in

lm(S) instead of um(S), and substituting um(S) by lm(S) in the notation.

For a given set D of disks, these definitions give us four different en-

velopes for each square S, and for each set T ′ of event types. We view

the set of disks on each of these envelopes as ordered by non-decreasing

x-coordinates of the centres of the disks. Note that we can assume without
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loss of generality that no two disks on an envelope have the same centre.

Note that each disk from D is on at most one envelope. Furthermore, if

we trace an envelope from left to right, the disks of the envelope appear on

the envelope in the order of increasing x-coordinates of their centres, and

each disk appears on an envelope at most once, following from the fact that

all disks have the same radius.

4.5.3 Dynamic Programming Table

We have a table Wpi for every point pi ∈ PH . Let S be the square in

which pi lies. Let S− and S+ be the adjacent squares to the left and right

of S, respectively. Let S−− be the square adjacent immediately to the

left of S−, and let S++ be the square adjacent to the right of S+. Let

S(pi) = {S−−, S−, S, S+, S++}. Note that all disks from DH̄ that overlap

S must be in um(U) or lm(U) for some square U in S(pi). This follows as

the disks have radius 2, and the squares have side length 1.4.

For every T ′ ∈ P(T )\{∅} we have the following indexes for the table Wpi :

For the outer T ′ envelope for each of the ten regions in the set of regions

{um(U), lm(U) : U ∈ S(pi)}, we have a set of up to three disks that are

candidates for the disk d that is on the outer T ′ envelope for that region

at position x = xpi , for the disk just before d on that envelope and for the

disk just after d on that envelope. For the inner T ′ envelope of each of the

ten regions, we have one disk that is a candidate for being the disk on that

envelope at position x = xpi . Hence, an entry of the table Wpi is indexed

by 40 · (2|T | − 1) disks (three disks for each of the ten outer envelopes, and

one disk for each of the ten inner envelopes, for each choice of T ′). For ease
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of presentation, we write the indexes for the table Wpi as two sets of disks

DU and DL, where DU contains all the disks from the inner and outer T ′

envelopes for any T ′ and regions um(U) for U ∈ S(pi), and DL contains all

the disks from inner and outer T ′ envelopes for any T ′ and regions lm(U)

for U ∈ S(pi).

Consider the case that the indexes for the table Wpi for each T ′ are

chosen as the disks that actually form the envelopes under consideration in

an optimal solution to the horizontal strip problem, i.e., the indexes contain

the corresponding disks on the envelopes optT
′

um(S), opt
T ′

I(um(S)), opt
T ′

um(S+) etc.

We observe that if the classified coverage requirement of pi is met by the

optimal solution, then it is also met by the disks constituting the indexes

for the table. To illustrate this, assume that pi is covered in the optimal

solution by two disks d∗1 and d∗2 from um(S). If Td∗1 = Td∗2 , then for T ′ = Td∗1

we must have that pi is covered once by the disk d1 that forms the outer T ′

envelope for um(S) at x = xpi , and a second time by the disk before or after

d1 on the same envelope, or by the disk on the inner T ′ envelope for um(S)

at x = xpi . In the other cases, the reasoning is similar.

Furthermore, we note that the disks DU ∪DL specified as indexes for a

table entry Wpi(DU , DL) completely separate the solution to the right of

the line x = xpi from the solution to the left of that line. In other words,

if D′ and D′′ are different solutions for which the disks DU ∪ DL are the

disks on the 20 envelopes relevant to pi for all T ′ ⊆ T , then the left part of

D′ (disks of D′ that appear before DU ∪DL on their respective envelopes)

can be combined with DU ∪DL and the right part of D′′ (disks of D′′ that

appear after DU ∪DL on their respective envelopes) to form a new feasible
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solution. Furthermore, a disk d cannot simultaneously be in the left part of

D′ or D′′ and in the right part of D′ or D′′. This follows as d appears either

before or after a disk in DU ∪DL on its respective envelope.

The value of an entry of table Wpi is set to infinity if the disks index-

ing the table entry do not meet the classified coverage requirement for pi,

and otherwise the minimum cost of a set of disks that includes all disks

indexing the table entry of Wpi and that also meets the classified coverage

requirements of all points preceding pi in PH . Once all tables Wpi have been

computed, the set of disks corresponding to the minimum value of any entry

of table Wp for the last point p = pnH is output as the solution.

4.5.4 Computing the Table Entries

Let the table entry for the leftmost point p1 ∈ PH be initialised as follows.

For every possible choice of disk indexes DU and DL, the corresponding

table entry Wp1(DU , DL) is set to w(DU ) + w(DL) if DU ∪ DL meets the

coverage requirement of point p1, and ∞ otherwise. For subsequent points

pi ∈ PH \ {p1}, the value of a table entry Wpi(DU , DL) such that DU ∪DL

meets the coverage requirement of pi is calculated as the minimum cost that

can be obtained via the following method. Take the sum of the cost of the

disks covering all points upto pi−1 from the table entry Wpi−1(D′U , D
′
L) for

some D′U and D′L, and add the cost of all disks that are in DU ∪ DL, but

not in D′U ∪D′L. For every pi ∈ PH \ {p1}, we calculate the table entry for

each combination of disks on the envelope as follows:
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Wpi(DU , DL) =



∞, if DU ∪DL does not meet the coverage

requirement for pi

min
D
′
U ,D

′
L
{Wpi−1(D

′
U , D

′
L) + w(DU −D

′
U )

+w(DL −D
′
L)}, otherwise

(4.3)

Consider the last point pnH ∈ PH . The minimum value in the table

WpnH
is the cost of the minimum weight solution that covers point pnH and

all other points that preceded it in the ordered set pH . If we keep as a

record for each Wpi(DU , DL) the choice of disks D′U and D′L that attained

the minimum value of equation (4.3), standard traceback techniques for

dynamic programming can then be used to obtain a set of disks that forms

a feasible solution and has cost equal to that table entry.

Lemma 4.19. The dynamic programming computes an optimal solution to

the horizontal strip problem.

Proof. Assume thatWpnH
= v is the minimum value in tableWpnH

, and that

this value is not ∞. It follows that the set of disks output by the algorithm

has weight v, as the weight of every disk added to the solution is accounted

for in (4.3). Furthermore, the solution is feasible, as the corresponding entry

in each table Wpi is not∞, and therefore the classified coverage requirement

of each point pi must be satisfied.

It remains to show that, if the optimal solution to the strip problem has

weight v∗, then the algorithm outputs a solution of weight at most v∗. For

a point pi ∈ PH , let S(pi) be defined as in Section 4.5.3 and let optU (pi) be
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the disks corresponding to indexes of the table Wpi (i.e., three disks from

each outer envelope and one disks from each inner envelope) that are on the

outer and inner T ′ envelopes for um(U) for U ∈ S(pi) for the fixed optimal

solution. Let optL(pi) be defined analogously based on the disks on the outer

and inner T ′ envelopes for lm(U), for U ∈ S(pi) for the optimal solution.

Let v∗(pi) be the cost of all disks in the optimal solution that are not to the

right of the disks in optU (pi) ∪ optL(pi) on their respective envelopes.

We claim that the following inequality holds for all pi ∈ PH .

Wpi(optU (pi), optL(pi)) ≤ v∗(pi) (4.4)

We prove our claim by induction on pi. For p1 we have that

Wpi(optU (p1), optL(p1)) = w(optU (p1) ∪ optL(p1)) = v∗(p1) (4.5)

This proves the claim for the base case of i = 1. For i > 1, following

from (4.3) that

Wpi(optU (pi), optL(pi)) ≤ Wpi−1(optU (pi−1), optL(pi−1))

+ w(optU (pi) \ optU (pi−1))

+ w(optL(pi) \ optL(pi−1))

By induction, we know that Wpi−1(optU (pi−1), optL(pi−1)) ≤ v∗(pi−1).
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Furthermore, the weight v∗(pi) − v∗(pi−1) includes all disks that are in

optU (pi)∪optL(pi) but not in the part of the optimal solution corresponding

to v∗(pi−1). One can be observe that this includes all of the disks contained

in optU (pi)\optU (pi−1) and in optL(pi)\optL(pi−1). This follows as the disks

in optU (pi)\optU (pi−1), and the disks in optL(pi)\optL(pi−1) appear on their

respective envelopes to the right of the disks in optU (pi−1)∪ optL(pi−1) and

thus are not contained in the part of the optimal solution corresponding to

v∗(pi−1). Hence it follows that

v∗(pi)− v∗(pi−1) ≥ w(optU (pi) \ optU (pi−1))

+ w(optL(pi) \ optL(pi−1)

and the claim is established. It follows that

WpnH
(optU (pnH ), optL(pnH )) ≤ v∗

and the algorithm outputs a feasible solution of cost at most v∗. We note

that the cost must actually be equal to v∗ as the algorithm outputs a feasible

solution and v∗ is the optimal cost.

As we assume that the size of T is bounded by a constant, it follows that

the number of disks required to index a table entry is bounded by a constant

as well. The tables Wpi are of polynomial size, and the computation of each

table entry can be carried out in polynomial time. Thus, the overall running

time is polynomial, and by Lemma 4.19 the algorithm outputs an optimal
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solution to the horizontal strip problem. This completes the proof of Lemma

4.9.

4.6 Lifetime Maximisation

In this section we describe a known general method [BCSZ04, BCSZ05,

GK98a] for approximating the maximum lifetime problem by using an ap-

proximation algorithm for the minimum weight sensor cover problem, and

its application to our setting. A linear program Π of the form

{max cTx | Ax ≤ b, x ≥ 0} (4.6)

where A, b and c are non-negative, is known as a packing problem. The

linear program may be given implicitly and the number of variables xj may

be exponential. For a given vector w, the problem of finding a column j of

A such that
∑
i

Ai,jwi/cj is minimised is called the problem of computing a

column of minimum length with respect to Π. It is known [BCSZ04] that, if

a packing problem Π′, admits a ρ-approximation algorithm for the problem

of computing a column of minimum length with respect to Π′ for any given

vector w, then the algorithm by Garg-Könemann [GK98a] can be used to

compute an (1 + ε)ρ-approximate solution to Π′.

The natural linear programming formulation of the problem of maximis-

ing the lifetime of a sensor network is as follows:
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max
∑
D′∈D

xD′ (4.7)

s.t.
∑

{D′∈D : d∈D′}

xD′ ≤ bd, ∀d ∈ D (4.8)

xD′ ≥ 0, ∀D′ ∈ D (4.9)

Here, D is the set of sensor nodes constituting the network, and bd is

the initial battery level of a sensor node d ∈ D, specified in such a way that

the battery level is sufficient for d to be active for bd units of time. The

set D contains all possible sensor covers, i.e., all subsets of D that satisfy

the required sensor coverage constraint. The variable xD′ represents the

length of the part of the schedule during which the nodes of the sensor cover

D′ ∈ D are active. The objective (4.7) is to maximise the total length of

the schedule. The constraints (4.8) specify that a node d can take part in

sensor covers for a total amount of time that is bounded by bd.

The linear program described above (4.7) - (4.9) does not have polyno-

mial size, as the number of variables xD′ can be exponential. However, it is

a packing problem, and the algorithm by Garg and Könemann [GK98a] can

be applied. The problem of computing a column of minimum length is the

problem of computing a set D′ ∈ D of minimum cost, where the cost of a

node d ∈ D is given by some weight wd.

Theorem 4.20. Let D be a set of valid sensor covers. If there exists a

ρ-approximation algorithm for the problem of computing a set D′ ∈ D of

minimum cost, for any given node weights wd, then for every fixed ε > 0,
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there exists a ρ(1+ε)-approximation algorithm for the lifetime maximisation

problem.

We remark that Theorem 4.20 applies to a wide variety of lifetime max-

imisation problems, because the specification of a set D of valid sensor covers

can be arbitrary. For example, if a graph class admits a ρ-approximation

algorithm for the weighted connected dominating set problem, then that

graph class admits a (ρ+ ε)-approximation algorithm for the lifetime max-

imisation problem, where at any point of time the active nodes must form

a connected dominating set.

The combination of Theorem 4.11 and Theorem 4.20 implies the follow-

ing corollary.

Corollary 4.21. For every fixed ε > 0, there is a (6 + ε)-approximation

algorithm for the problem ML2CUD-T.

4.7 Connected Sensor Cover

In the previous sections of this chapter, we have discussed only the condition

that the set of selected sensors meet the coverage requirement of each point

in the set of points P . In many applications, such as settings described in

[MYC09, VBL07], it is additionally required that the selected sensors form

a connected network. For these settings, it is assumed that each sensor

node constituting the network, is equipped with a wireless transmitter, that

allows it to send messages to any other node in the network, that is located

within a certain communication radius rc from it. We remark that this

corresponds to a communication graph, where the set of sensor nodes are

107



represented by disks each of radius rc/2, and two nodes are adjacent under

the condition that their disks intersect. It is a natural expectation that the

communication radius rc > r, where r is the sensing radius of each sensor

node constituting the sensor network. Under the assumption that rc ≥ 2r,

i.e., the communication range of a sensor node is at least twice its associated

sensing radius, we can extend the algorithms we have presented for W2CUD-

T and ML2CUD-T in this chapter, to their corresponding problem variants

with connectivity constraints.

For W2CUD-T with a connectivity requirement, we first compute a

(6 + ε)-approximate solution D′ to the problem without the additional con-

nectivity requirement, by using the algorithm from Theorem 4.11. Then,

viewing the given disks as disks of radius rc/2, we solve the minimum node-

weighted Steiner tree problem for the disks in D′ as terminals, using the al-

gorithm with approximation ratio strictly bounded from above by 3.475 for

node weighted Steiner trees in unit disk graphs [BGRS10, ES09, ZLGW09].

Let S be the set of Steiner nodes output by the algorithm. The set

D′ ∪ S is then output as a solution to W2CUD-T with the additional con-

nectivity requirement. Let optc be an optimal solution to W2CUD-T with

the additional connectivity requirement. Observe that optc is a (superset

of a) feasible solution to the Steiner tree problem considered above: optc is

connected and contains disks covering every point in P . Every disk in D′

covers a point in P , and hence the centre of any disk in D′ is within dis-

tance r + r ≤ rc of the centre of some disk in optc. Consequently, optc ∪D′

is connected.

This shows that the Steiner tree approximation algorithm produces a
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set S of cost less than 3.475 times the cost of optc. As the cost of D′ is

within a factor of (6 + ε) of the optimal solution to W2CUD-T without

connectivity requirement, and thus is within the same factor of the cost of

optc, the overall approximation ratio is bounded by 9.475, for a sufficiently

small choice of ε.

Theorem 4.22. For the variants of W2CUD-T and ML2CUD-T where the

active disks in the solution need to be connected, and rc ≥ 2r, there exists a

9.475-approximation algorithm.

4.8 Conclusion

In this chapter we have presented a (6 + ε)-approximation algorithm for the

target coverage problem with composite events, and observing fault tolerant

requirements, both for the lifetime maximisation variant and for the problem

of covering all event points by sensors of minimum total cost. Our approach

is based on ‘guessing properties’ of the optimal solution via enumeration

techniques, and then using these deduced properties to guide a dynamic

programming algorithm.

This is a generalisation of the approach employed by Huang at al. [HGZW09]

to obtain a (6+ε)-approximation for the weighted set cover with unit disks.

For the latter problem subsequent work has improved the approximation

ratio yielding a (5 + ε)-approximation algorithm [DY09], and then a further

improvement was obtained in the form of a (4 + ε)-approximation algo-

rithm [EM09, ZWX+11]. The main observation resulting in these improve-

ments is that the dynamic programming solution can be applied on several
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strips simultaneously. One possible direction for future work would be to

see whether these improvements can also be adapted to the fault-tolerant

target coverage problem with composite events.

Another question of interest is whether our approach can be adapted to

arbitrary coverage requirements kp ≥ 2 for all p ∈ P . Repeated application

of our (6 + ε)-approximation algorithm would incur an extra factor of k/2

in the approximation ratio, where k = maxp kp, which is not desirable. In

particular, an algorithm that yields an approximation ratio independent of

k would be of interest.

For W2CUD-T and also for the special case of weighted geometric set

cover with unit disks, it is an interesting open question whether a polynomial-

time approximation scheme (PTAS) can be obtained. As far as we can as-

certain, no hardness-of-approximation results are known for these problems.
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Chapter 5

Online Dominating Set

In this chapter we consider the online problem of constructing a strongly

connected in-out dominating set, where an in-out dominating set is a subset

of vertices such that every vertex not in the in-out dominating set has an

edge to some vertex in the in-out dominating set, and an edge from some

vertex in the in-out dominating set.

A dominating set in an undirected graph is a subset of vertices, such

that every vertex is either in the dominating set or adjacent to some vertex

in the dominating set. Finding such a dominating set of minimum size,

amongst all possible dominating sets, is known as the minimum dominating

set (MDS ) problem. If one requires that the dominating set is connected,

i.e., the subgraph induced by the dominating set is connected, the problem

is known as the minimum connected dominating set (MCDS ) problem.

In directed graphs it is not guaranteed that every pair of distinct vertices

will be bidirectionally adjacent, i.e., there might not exist a directed edge

from the first vertex of the pair to the second, and a directed edge from
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the second vertex in the pair to the first. Therefore, in directed graphs an

analogous problem to the MCDS problem is to require that the dominating

set be strongly connected, i.e., the subgraph induced by the dominating set

is strongly connected. We consider an in-out dominating set where for every

vertex not in the in-out dominating set, there exists a directed edge from

a vertex in the in-out dominating set, and a directed edge to some vertex

in the in-out dominating set. To find a minimum strongly connected in-out

connected dominating set, amongst all possible strongly connected in-out

dominating sets, is the minimum strongly connected in-out dominating set

(MSCIODS ) problem.

The study of dominating sets is of interest in practical situations, es-

pecially pertaining to routing transmissions in wireless ad-hoc networks.

A common issue in wireless ad-hoc networks is to specify a routing back-

bone of the network, that is utilised to facilitate efficient routing of packets

through the network. A routing backbone is formed of a subset of nodes

in the network, where every node in the network is either part of the rout-

ing backbone, or has a neighbour (a node that can be sent a packet with a

single-hop transmission) in the routing backbone. Nodes forming the rout-

ing backbone are tasked with acting as intermediate nodes in a multi-hop

transmission forwarding packets to their destination. It therefore must be

that every node in the routing backbone has a path to every other node in

the routing backbone, or the network may be disconnected and some packets

will have no route to their destination. Additionally, nodes must be able to

receive transmissions from the routing backbone. It can be observed that

the problem of specifying such a routing backbone of minimum size, is to
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solve the minimum connected in-out dominating set problem.

In practice, the need to solve this problem online would arise when an

ad-hoc network is deployed node by node sequentially. The nodes already

deployed would need to form a routing backbone and then as each additional

node is deployed, the network must ensure that either the node is adjacent

to the routing backbone, possibly by adapting the routing backbone to in-

corporate additional nodes. Therefore, we consider the online variant of the

strongly connected in-out dominating set problem, where the set of vertices

is presented one by one and the online algorithm is tasked with maintaining

a strongly connected in-out dominating set, with the aim of minimising the

size of the in-out dominating set.

The decision problem concerning the existence of a dominating set of car-

dinality less than ρ in a graph is known to be NP-complete, and indeed it is

one of the classical problems shown to be NP-complete by Garey and John-

son [GJ79]. The connected dominating set problem is also NP-complete

[GJ79]. As every instance in undirected graphs can be transformed into an

instance in directed graphs (for every undirected edge (v, v′) between two

vertices in the undirected graph, one creates two directed edges in the di-

rected graph (v, v′), (v′, v)), it follows that MSCIODS is also NP-complete.

5.1 Related Work

The problem of constructing a minimum connected dominating set (MCDS )

in an offline setting has been well studied. A greedy (ln ∆+3)-approximation

algorithm was presented by Guha and Khuller [GK98b] which was then
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improved to a (ln ∆ + 2)-approximation by Ruan et al. [RDJ+04], where

∆ denotes the maximum degree of any vertex in the graph. Guha and

Khuller [GK98b] further showed that there does not exist a polynomial time

algorithm with approximation ratio c · H(∆) unless P 6= NP, where H is

the harmonic function and 0 < c < 1.

MSCIODS has been studied before in the offline setting. Thai et al. pre-

sented several approximation algorithms for MSCIODS [DTL+06, TWL+07,

TTD08]. These results were then improved by Li et al. [LDW+09] who pre-

sented the first logarithmic approximation, achieving approximation ratio

(3H(n− 1)− 1), where H is the harmonic function. The authors also note

that to achieve an approximation ratio strictly less than 2 lnn + O(1) one

cannot hope to improve their approach, and new ideas would be needed.

More pertinent work to the online setting also exists. The online domi-

nating set problem was first studied by King and Tzeng [KT97], who have

shown that no online algorithm can have competitive ratio less than n − 1

for the online minimum dominating set (Online-MDS ) problem. They also

present a simple online algorithm that achieves competitive ratio n− 1.

More relevant to our work is that of Eidenbenz [Eid02] who considers the

online variant of the MCDS problem (Online-MCDS ), which in combination

with the work of Li et al. [LDW+09] on MSCIODS provided the inspira-

tion for our setting. Eidenbenz [Eid02] studies various different graphs and

settings. He considers tree graphs, unit disk graphs and graphs of bounded

degree (i.e., every vertex has degree at most ρ). Aside from providing algo-

rithms for these problems, complementary lower bound constructions show

that the general lower bound of n − 1 on the competitive ratio for general
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graphs also holds for bipartite graphs, planar graphs, disk graphs and trees

of bounded width. Eidenbenz also shows that no online algorithm can have

competitive ratio less than n− 2 for Online-MCDS.

We also remark that Eidenbenz [Eid02] studies a variant that allows the

online algorithm to handle vertices being removed form the graph in some

round, as determined by the adversary. We also initially considered a variant

where the online algorithm can delete vertices from its in-out dominating

set for a cost, however for our setting this model is not applicable. It can

be shown that an algorithm for the online version of MSCIODS (Online-

MSCIODS ) cannot gain anything by removing vertices from its in-out dom-

inating set. This follows as any vertex that can be covered by a strongly

connected in-out dominating set can be accepted into the in-out dominating

set without needing to revoke any vertices from its in-out dominating set

(Lemma 5.3).

To the best of our knowledge, we are the first to consider the problem of

specifying a strongly connected in-out dominating set in an online setting.

5.1.1 Contributions

In this work we present a lower bound construction showing that no deter-

ministic online algorithm can achieve competitive ratio n/4 + 1/4 for the

online variant (Online-MSCIODS ) of the MSCIODS problem. We state

and show several observations regarding the problem, and then proceed to

complement the lower bound result by showing an online algorithm that

achieves competitive ratio n/4 + 1/4, which is the best possible competitive

ratio of any online algorithm for the problem.
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The remainder of the chapter is structured as follows: In Section 5.2 we

present a formal definition of the problem, introduce notation, and provide

some preliminary observations. In Section 5.3 we present a lower bound

construction which holds for all online deterministic algorithms. We then

proceed in Section 5.4 to complement this lower bound with the analysis of

an algorithm which attains competitive ratio matching the aforementioned

lower bound. We then conclude this work in Section 5.5 by summarising the

results presented and stating open problems which could be of interest.

5.2 Preliminaries

We first formally define the problem. Consider the following to be the

Minimum Strongly Connected In-Out Dominating Set (MSCIODS ) problem.

Given as input is a directed graph G = (V,E) containing a set V of n = |V |

vertices, and a set of edges E, where an individual edge (u, v) ∈ E is a

directed edge from u to v, where u, v ∈ V . We say that u is adjacent to v and

v is adjacent from u. We also say that two vertices u, v are bidirectionally

adjacent if there exist edges (u, v), (v, u) ∈ E.

An in-out dominating set D ⊆ V satisfies the property that for every

v ∈ V \D there exist edges (v, d), (d′, v) ∈ E, where d, d′ ∈ D. We do not

require that d 6= d′. For an in-out dominating set D and a vertex v (or

a set of vertices V ′), we say that D covers v (or V ′), or alternately but

equivalently v is covered by D. Additionally, we say that a vertex d ∈ D

covers a vertex v ∈ V (or equivalently v is covered by d) if d and v are

bidirectionally adjacent. For technical reasons, every vertex v ∈ V covers
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itself if it is a member of the in-out dominating set D.

A solution consisting of a subset of vertices D ⊆ V for MSCIODS, is

said to be feasible if two constraints are satisfied. Firstly that D is an in-out

dominating set of V . Secondly, it is required that the in-out dominating set

D is strongly connected. The objective function is to minimise |D| amongst

all feasible in-out dominating sets.

In this work we consider the online variant of MSCIODS, which we refer

to as Online-MSCIODS. The set of vertices V now forms an ordered set

(v1, . . . , vn), and the vertices are presented one by one to the online algo-

rithm. After presentation of a vertex vi ∈ V , the online algorithm must

decide whether or not to accept vertices from the subset {v1, . . . , vi} into its

in-out dominating set D. We note that although the algorithm can at any

stage accept vertices previously presented, it cannot remove vertices from

its in-out dominating set once they have been accepted into it. It must be

that the in-out dominating set covers all vertices {vj : 1 ≤ j ≤ i}. The

final cost to the algorithm is the cardinality of its in-out dominating set

|D| after presentation of the last vertex vn. The solution quality with com-

parison to an optimal algorithm (which has knowledge of the entire set of

vertices with which to make its decision) is obtained via competitive anal-

ysis, namely the ratio of the final cost of the online algorithm to the cost

of the optimal offline algorithm. We constrain the optimal offline algorithm

such that it must specify an in-out dominating set D, such that for all i

where 1 ≤ i ≤ n, D ∩ {v1, . . . , vi} induces a strongly connected subgraph

that covers the vertices v1, . . . , vi. One can show that without this con-

straint, any online algorithm will have competitive ratio n− 2. This follows
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from a construction presented by Eidenbenz [Eid02] which we sketch here

for the reader:

Consider the following construction: The graph consists of a set of ver-

tices {v1, . . . , vn}, and a set of edges {(vi, vi+1), (vi+1, vi) : 1 ≤ i < n} ∪

{(vi, vn), (vn, vi) : 1 ≤ i < n}. The online algorithm must accept v1 oth-

erwise v1 is not covered. As each vertex vi is presented, where 1 < i < n,

to specify a feasible in-out dominating set the online algorithm must accept

vi−1 to cover vi. The optimal offline algorithm will accept only vn which is

strongly connected and covers all vertices. The online algorithm will have

final cost n− 2 and the optimal offline algorithm will have cost 1.

For the remainder of the chapter we refer to the online algorithm as alg

and the optimal offline algorithm as opt.

5.2.1 Observations

We initiate the study of this problem by first presenting some observations

concerning the properties of any arbitrary algorithm for Online-MSCIODS,

which we will utilise later in the analysis of our algorithm. At this stage

we will also note an assumption that we adhere to throughout this work

without loss of generality. We will assume that a feasible solution always

exists for all of the instances presented to the algorithm, i.e., we do not

consider inputs for which it is impossible for any algorithm to specify an

in-out dominating set. If such an instance were presented, an algorithm

could detect that a solution does not exist, and subsequently output such

a finding. As an optimal algorithm would also not be able to present a

solution for such an instance, the analysis of such a situation is superfluous
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to our work.

Lemma 5.1. Any algorithm for Online-MSCIODS must accept the first

presented vertex v1.

Proof. For the convenience of the reader we recapitulate one of the properties

of an in-out dominating set. It must be that every vertex vi ∈ V is either

in the in-out dominating set, or has an edge to some vertex in the in-out

dominating set, and an edge from some vertex in the in-out dominating set.

As the in-out dominating set is initially (before presentation of v1) empty,

it is not possible that v1 has an edge to or from any vertex in the in-out

dominating set. Therefore, the only feasible solution is to accept v1 into the

in-out dominating set in order for v1 to cover itself.

We observe that as opt must accept the first presented vertex, if opt

accepts no further vertices it must be that this first presented vertex covers

all other presented vertices, and therefore any online algorithm also need

only accept this first presented vertex, and can attain competitive ratio 1.

This yields the following Corollary:

Corollary 5.2. If opt has cost one, an online algorithm for Online-MSCIODS

need accept only the first presented vertex, and can achieve competitive ratio

1.

We can also deduce the following useful property for an algorithm solving

Online-MSCIODS.

Lemma 5.3. Any vertex vi that is covered by a strongly connected in-out

dominating set D ⊆ V , can be accepted into D with cost one.
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Proof. If vi ∈ D the claim follows immediately. If vi /∈ D then we show that

if vi is accepted into the in-out dominating set D, D will remain strongly

connected. For D to feasibly cover vi it must be that there exist edges (d, vi),

(vi, d
′) for some d, d′ ∈ D. Recall that possibly d = d′.

Firstly, consider the edge (d, vi). As D is strongly connected, there

exists a path from every vertex d′′ ∈ D \ {d} to d, and as there also exists

the edge (d, vi) it follows that there exists a path from every d′′ ∈ D \ {d}

to vi.

We have an analogous situation when we consider the edge (vi, d
′). As

D is strongly connected there exists a path from d′ to every other vertex

in the in-out dominating set d′′ ∈ D \ {d′}, and due to the existence of the

edge (vi, d
′), there exists a path from vi to every d′′ ∈ D \ {d′}.

As vi has a path to and from every vertex d ∈ D in the in-out dominating

set, it follows that vi can be accepted into the in-out dominating set without

the acceptance of any other vertices (accruing cost one), and the in-out

dominating set will remain strongly connected.

All vertices must be covered by an in-out dominating set when they

are presented, and from Lemma 5.3, an algorithm can accept any vertex

covered by a strongly connected in-out dominating set. We therefore obtain

the following Corollary:

Corollary 5.4. An algorithm for Online-MSCIODS can accept all n vertices

in V , and provide a solution which is strongly connected, and covers all

vertices in V .
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5.3 Lower Bound

In this section we will present a lower bound on the competitive ratio of any

deterministic online algorithm for Online-MSCIODS.

Lemma 5.5. For Online-MSCIODS no deterministic online algorithm can

achieve competitive ratio less than n/4 + 1/4 if n is odd, or less than n/4 if

n is even, where n is the number of vertices in the graph.

Proof. We present two different constructions. Note that the figures pre-

sented in this section (Figures 5.1 and 5.2) are for illustrative purposes and

for sake of presentation do not include all edges. Firstly, we consider the

case where the number of vertices presented is odd.

Case - n is Odd: Consider the following construction: The first vertex

v1 is presented and following from Lemma 5.1 both the deterministic online

algorithm alg, and the optimal offline algorithm opt must accept this. An

additional set of vertices are presented namely {v2, . . . , vj}, where j = n/2+

1/2, and all vertices in this set are bidirectionally adjacent to v1. Note that

all vertices vi ∈ {v2, . . . , vj} will be covered by v1, and as such the in-out

dominating set {v1} will suffice as a feasible solution.

The algorithm is now presented with a further vertex v̄2 which is bidirec-

tionally adjacent to all vertices {v2, . . . , vj}. As v̄2 is not covered by v1, alg

must now accept some vertex vi ∈ {v2, . . . , vj} into its in-out dominating

set to cover it. Assume without loss of generality that alg accepts v2 to

cover v̄2. A further vertex v̄3 is presented which is bidirectionally adjacent

to all vertices vi ∈ {v3, . . . , vj}. As v̄3 is not covered by alg’s in-out domi-
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v1

v3 v4 v5
v6 vjv2

v̄3 v̄4 v̄5 v̄6 v̄jv̄2

. . .

. . .

Figure 5.1: n is odd lower bound construction.

nating set, the algorithm must choose a vertex vi ∈ {v3, . . . , vj} to cover v̄3.

Without loss of generality assume this to be v3.

We continue this trend for all v̄i ∈ {v̄4, . . . , v̄j} where v̄i is bidirection-

ally adjacent to all vertices in {vi, . . . , vj}, and we assume without loss of

generality that alg accepts vi to add to its in-out dominating set, in order

to cover v̄i.

After presentation of v̄j , alg will have the in-out dominating set {v1, . . . vj}

and subsequently will have cost n/2 − 1/2 + 1 = n/2 + 1/2. The optimal

offline algorithm will have the in-out dominating set {v1, vj} which covers

all vertices, and will accrue cost 2. Consequently in the case that the to-

tal number of vertices presented is odd, an arbitrary deterministic online

algorithm cannot have competitive ratio less than n/4 + 1/4.
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Case - n is Even: We now consider the alternate case where the total

number of vertices presented is even. As with the case where n is odd,

the first vertex v1 is presented and following from Lemma 5.1 both the

deterministic online algorithm alg, and the optimal offline algorithm opt

must accept this into their respective in-out dominating sets. An additional

set of vertices is presented, namely {v2, . . . , vj , vl}, where j = n/2, and all

vertices in this set are bidirectionally adjacent to v1.

v1

v3 v4 v5
v6 vjv2

v̄3 v̄4 v̄5 v̄6 v̄jv̄2

vl. . .

. . .

Figure 5.2: n is even lower bound construction.

Similar to the construction for the case of odd n, the remaining vertices

{v̄2, . . . , v̄j} are presented one by one. The vertex v̄2 is adjacent to all

vertices vi ∈ {v2, . . . , vj , vl} and we assume without loss of generality that

the online algorithm chooses v2 to accept into its in-out dominating set in

order to cover v̄2. The optimal offline algorithm will choose either vj or vl to

accept into its in-out dominating set, and the correctness of this solution for

the optimal algorithm will become apparent in the following discussion. For

each remaining vertex v̄i ∈ {v̄3, . . . , v̄j}, v̄i is bidirectionally adjacent to all
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vertices {vi, . . . , vj , vl} and we assume without loss of generality that upon

presentation of v̄i, the online algorithm accepts vi into its in-out dominating

set to cover v̄i. After the final vertex is presented the online algorithm will

have the in-out dominating set {v1, v2, . . . , vj} with cost n/2 and the optimal

offline algorithm will have in-out dominating set {v1, vj}, or equivalently the

in-out dominating set {v1, vl} with cost 2. As such for this construction an

arbitrary deterministic online algorithm will have competitive ratio n/4.

After the analysis of both constructions, we can conclude that for the

Online-MSCIODS problem, no deterministic online algorithm can achieve

competitive ratio less than n/4 + 1/4 if n is odd, or n/4 if n is even.

5.4 Online Algorithm

Now that we have concluded that no deterministic online algorithm can

achieve competitive ratio less than n/4 + 1/4, the aim is to show an algo-

rithm that attains competitive ratio as close to n/4 + 1/4 as possible. We

state explicitly for the reader that as a consequence of Lemma 5.5, one need

only consider the analysis of an algorithm for Online-MSCIODS with regard

to the cases where the optimal offline algorithm accrues cost two or three.

If opt has cost greater than, or equal to four then as a consequence follow-

ing from Corollary 5.4 the online algorithm can accept all n vertices and

achieve competitive ratio n/4. Alternately, if the optimal offline algorithm

has cost one then as a consequence of Corollary 5.2, an online algorithm

need also accept only the first presented vertex and attain the same cost
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as an optimal offline algorithm. We therefore present our algorithm under

such assumptions.

Before presenting observations upon which our algorithm is based, we

will discuss a partitioning of the set of vertices V into subsets. With the

exception of v1, all vertices, i.e., all vi ∈ V \ {v1}, upon their presentation

will be classified into at most one of the following three subsets, under the

assumption that the optimal solution has cost less than four. S1 is the set

of all vertices vi ∈ V \ {v1} that when presented, can be covered by an

in-out dominating set {v1}. S2 is the set of all vertices vi ∈ V \ ({v1} ∪ S1)

that upon their presentation can be covered by the set {v1} ∪ S1 of vertices

that have been previously presented. Finally S3 is the set of all vertices

vi ∈ V \ ({v1} ∪ S1 ∪ S2), that when presented can be covered by the set

of vertices {v1} ∪ S1 ∪ S2. Note that with the exception of v1, every vertex

upon its presentation is either classified into S1, S2 or S3. Therefore, V =

{v1} ∪ S1 ∪ S2 ∪ S3.

We remark explicitly for the reader that vertices are classified upon their

presentation, and do not get reclassified after presentation of further vertices.

With regard to the optimal solution, if opt has final cost two, we refer to

the second vertex that the optimal offline algorithm accepts as o2. Similarly,

in the case where opt has final cost three, we refer to the second and third

vertex that the optimal offline algorithm accepts, as o2 and o3 respectively.

Lemma 5.6. o2 ∈ S1

Proof. opt has accepted the first presented vertex v1 following from Lemma

5.1. As o2 is accepted by opt, the only way that the subgraph induced by
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{v1, o2} can be strongly connected is if there exists an edge from o2 to v1,

and an edge from v1 to o2. Consequently, from the definition of S1 the claim

follows.

From Lemma 5.6 we know that o2 ∈ S1. If opt has final cost two, then as

the optimal offline algorithm can cover all vertices with a strongly connected

in-out dominating set formed as a subset of S1 ∪ {v1}, we can obtain the

following Corollary of Lemma 5.6:

Corollary 5.7. If opt has final cost two, an algorithm need only accept

vertices from S1 ∪ {v1}.

We obtain similar properties if the optimal algorithm has final cost three.

Lemma 5.8. If opt has final cost three, either o3 ∈ S1, or o3 ∈ S2.

Proof. Upon presentation of o3, and its consequent acceptance by opt, in

order to maintain a strongly connected in-out dominating set the subgraph

induced by the set {v1, o2, o3} must conform to one of the three following

configurations: either o3 is bidirectionally adjacent to v1, and consequently

o3 ∈ S1, o3 is bidirectionally adjacent to o2 (recall from Lemma 5.6, o2 ∈ S1),

and consequently o3 ∈ S2, or alternately o3 has an edge to (respectively

from) v1 (resp. o2) and an edge from (resp. to) o2 (resp. v1), and conse-

quently o3 ∈ S2. As these three aforementioned cases are the only possible

cases, the claim follows.

Analogous to the case where opt has final cost two, we know from Lemma

5.8 that if o3 is not in S1, then it must be the case that o3 ∈ S2. As such we
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can deduce that the optimal solution is contained within the set of vertices

{v1} ∪ S1 ∪ S2 and consequently any algorithm can form a feasible solution

with that set, yielding the following Corollary:

Corollary 5.9. If opt has final cost three, an algorithm for Online-MSCIODS

need only accept vertices from S1 ∪ S2 ∪ {v1}.

For the remainder of this work, let vk denote the first vertex that cannot

be covered feasibly by an optimal in-out dominating set with cardinality

less than three. Such a vertex can be determined by an online algorithm

as follows. Upon presentation of a vertex vi, the algorithm will determine

if there exists some vj ∈ {v1, . . . , vi} ∩ S1, such that {v1, vj} is a strongly

connected in-out dominating set for all subgraphs induced by the sets of

vertices {v1, . . . , vl}, where v1 ≤ vl ≤ vi. If there exists {v1, vj} that covers

all vertices already presented then vk > vi, otherwise vk = vi. Once vk

has been determined the value of k is fixed and for the remaining vertices

yet to be presented, the aforementioned test for vk is not performed. Note

that such pairs are the only feasible coverings of a vertex with an in-out

dominating set of two vertices, as from Lemma 5.1, v1 must be accepted

and the second vertex in the in-out dominating set must be in S1, or such

a solution would not be strongly connected. If such a pair does not exist

then it must be that vk cannot be covered with less than three vertices. The

reader should note that if the optimal solution consists of two vertices then

vk will not exist.

Lemma 5.10. The third vertex the optimal algorithm accepts (o3) is pre-

sented before vk.
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Proof. As vk is defined to be the first vertex that can only be covered by

an in-out dominating set with cardinality greater than two, there exists an

optimal solution {v1, o2} that covers vk with cardinality two. Assume the

negation of the claim, specifically that the vertex vk is presented before the

third vertex in the optimal solution o3. As vk is defined to be the first vertex

which can only be covered with an in-out dominating set of at least size three,

and the optimal solution has only cardinality two, a feasible solution would

not exist in this scenario.

It remains to show that it cannot be the case that o3 is vk. As vk is

defined to be the first vertex that cannot be covered with an in-out domi-

nating set of size less than three, it must be that {v1, o2} cannot cover o3. If

this was the case then the optimal algorithm would not be able to accept o3

and provide a strongly connected in-out dominating set, which would make

the optimal algorithm infeasible and the claim follows.

From this result we can derive a key observation that we use in the

analysis, namely that the algorithm need only accept vertices presented

before vk, and this will provide a feasible solution.

Lemma 5.11. Any algorithm for Online-MSCIODS needs only accept ver-

tices from the subset {vi : i < k} ⊆ V to provide a feasible solution.

Proof. The claim follows almost directly from Lemma 5.10. As the optimal

solution contains at most three vertices, namely {v1, o2, o3}, and o3 is pre-

sented before vk by Lemma 5.10, consequently it must be that a feasible

solution exists in the subset of vertices {vi : i < k} ⊆ V .
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For ease of presentation we now introduce the following notation, let

X = {vi : vi ∈ S1, i < k}, Y = {vi : i ∈ S2, i < k} and finally let

Z = {vi : vi ∈ S1 ∪ S2 ∪ S3, i ≥ k}. Namely, X is the set of vertices in

S1, presented before vk, Y is the set of vertices in S2, presented before vk,

and S3 is the set of vertices in S1, S2 and S3, that are presented after vk,

together with vk. We note that the algorithm will know whether a presented

vertex vi should be classified into X, Y or Z, as it can deduce a vertex to

be vk, and if vk has not been previously presented, and vi is not vk, then it

knows that k is presented after the current vertex. Additionally, note that

(X,Y, Z) is a partition of V \ {v1}.

Recall that for the following algorithm, we will assume that the optimal

solution has cost either two or three. This follows as from Corollary 5.2 if

the optimal solution has cost one, the algorithm will be optimal, and if the

optimal solution has cost greater than three, the algorithm can accept all n

vertices and achieve competitive ratio n/4. Consider Algorithm 2 to be the

definition of the online algorithm for Online-MSCIODS, we also refer to the

algorithm as alg.

We now show that the algorithm alg specified is correct, i.e., upon pre-

sentation of a vertex vi, all vertices vj ∈ (v1, . . . , vi) will be covered by the

algorithm’s in-out dominating set, and the in-out dominating set will be

strongly connected.

Lemma 5.12. The online algorithm alg specifies a correct solution.

Proof. We first consider the case where the algorithm is presented with an

instance where the optimal algorithm has a solution of final cost at most
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Algorithm 2: Online Algorithm (alg) for Online-MSCIODS.

Solution set D = ∅
foreach presented vertex vi ∈ V do

if vi is covered by D then
Do not accept any vertices

else if vi = v1 then
Accept v1 into the in-out dominating set D

else
Classify vi into X, Y or Z
if vi ∈ X then

Do not accept any vertices

else if vi ∈ Y then
if D ∪ {vj} covers vi, for some vj ∈ X \D then

Accept vj into the in-out dominating set D

else if D ∪ {vj , vl} covers vi, for some vj , vl ∈ X \D then
Accept vj , vl into the in-out dominating set D

else if vi ∈ Z then
if D ∪ {vj} covers vi, for some vj ∈ X \D then

Accept vj into the in-out dominating set D

else if D ∪ {vj} covers vi, for some vj ∈ Y \D then
Accept vj into the in-out dominating set D

else if D ∪ {vj , vl} covers vi, for some vj , vl ∈ X \D then
Accept vj , vl into the in-out dominating set D

else if D ∪ {vj , vl} covers vi, for some vj ∈ X \D,
vl ∈ Y \D then

Accept vj , vl into the in-out dominating set D

else
Accept all vertices in V
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three. By the definition of the set S1, it must be that all vertices in S1 are

covered by v1, and as such will be covered by the current in-out dominating

set, which must contain v1 as it must be that the algorithm accepts the first

vertex following from Lemma 5.1.

From the definition of the set Y , and Lemma 5.11, all vertices in Y can

be covered by {v1} ∪X, it therefore follows that the algorithm will always

be correct to accept only vertices from X to cover it. Additionally, for each

vertex to be covered there needs to be at least one vertex in the in-out

dominating set with an edge to that vertex, and at least one vertex in the

in-out dominating set with an edge from that vertex. Therefore, it suffices

to accept at most two vertices from X to cover a presented vertex vi ∈ Y .

For vertices presented in Z we can deduce the following. In the case

that opt has final cost three, we note from Lemma 5.11 that it is always

feasible to accept vertices vj ∈ {vj : j < k}. Therefore, any vertex in S1,

S2 or S3 can be covered by accepting at most two vertices from X ∪ Y . In

the case where the presented vertex vi ∈ Z ∩ S1, vi will be covered by {v1}

and the algorithm will accept nothing. In the case that the presented vertex

vi ∈ Z ∩ S2, then it will suffice to accept either at most two vertices from

X to cover it, or accept at most one vertex from X and accept at most one

vertex from Y . This follows as the optimal solution either has (in addition

to v1) two vertices (o2, o3) in X or one vertex (o2) in X, and one vertex (o3)

in Y . In the case that vi ∈ Z ∩S3 it will suffice to accept at most one vertex

from X, and at most one vertex from Y to cover it.

Note that as each vertex is accepted into a strongly connected in-out

dominating set, the in-out dominating set will remain strongly connected
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following from Lemma 5.3.

In the case that the optimal algorithm has final cost greater than three,

the algorithm will be presented with some vertices that cannot be covered

by an in-out dominating set with size at most three. In this case, if such a

vertex vi is presented that cannot be covered by vertices from X ∪Y ∪{v1},

then the algorithm will accept all vertices vj ∈ V . From Corollary 5.4 this

will produce a correct solution.

Lemma 5.13. If opt has final cost two, alg has competitive ratio at most

n/4 + 1/4.

Proof. We first recall from Lemma 5.6 that opt has the solution set {v1, o2},

and from Corollary 5.7 it follows that alg needs only accept vertices from

{v1} ∪ S1. Recall that v1 will cover all vertices vi ∈ S1 by definition of S1.

If |S2| ≤ n/2− 1/2 then for each single presented vertex v̄j ∈ S2, alg needs

accept at most one vertex vj ∈ S1 to cover v̄j . In the case |S2| > n/2− 1/2

then alg could in the worst case accept all vertices in S1, and have cost

bounded from above by (n − 1)/2. As it is evident that in both cases alg

accepts at most n/2− 1/2 vertices from S1, and additionally accepts v1, alg

has a final cost of at most n/2 + 1/2. The optimal algorithm has final cost

two, and hence alg has competitive ratio n/4 + 1/4 for Online-MSCIODS

in the case where the optimal algorithm has a final cost of two.

Lemma 5.14. If opt has final cost three, alg has competitive ratio at most

n/4 + 1/12.

Proof. We consider two cases to show the claim. Firstly, we assume that
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k ≤ 3n/4. Recall from the statement of the algorithm that at no point

does the algorithm accept any vertices {vi : vi ≥ vk}. We also know as a

consequence of Lemma 5.11 that the optimal solution is contained entirely

in the set of vertices {vi : i < k}. Therefore, the entire set of vertices that

the algorithm will consider accepting is contained in those vertices presented

before vk, and as such the number of vertices accepted by the algorithm, and

consequently the final cost of the algorithm is bounded above by 3n/4. As

opt has final cost three, the competitive ratio of the online algorithm will be

3n/12 = n/4.

We now proceed to consider the alternate and more interesting case

that k > 3n/4. For ease of presentation allow us to recapitulate notation.

Let X = {vi : vi ∈ S1, i < k}, Y = {vi : i ∈ S2, i < k} and

Z = {vi : vi ∈ S1 ∪ S2 ∪ S3, i ≥ k}. Let x = |X| denote the cardinality of

the set of vertices in S1, that are presented before vk, let y = |Y | denote the

cardinality of the set of vertices in S2, that are presented before vk and let

z = |Z| denote the cardinality of the set of vertices in S1, S2 or S3, presented

after vk.

From Lemma 5.8 either o3 ∈ X or o3 ∈ Y . Consider the case o3 ∈ X.

As both optimal vertices are in X, it must be that any vertex presented can

be covered by {v1} ∪ X or the optimal algorithm would be incorrect. As

such, any vertex presented in Y ∪ Z can be covered by accepting at most

two vertices in X. Consider the case y+ z ≤ n/3− 1/3. As for every vertex

presented in Y ∪ Z, the online algorithm will accept at most two vertices

from X, the algorithm will accept at most 2n/3 − 2/3 vertices. Similarly,

in the alternate case of y + z > n/3 − 1/3 the algorithm will accept less
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than 2n/3 − 2/3 vertices from X. Thus, as the algorithm accepts v1 and

at most 2n/3 − 2/3 vertices from X, in total the algorithm will have final

cost bounded by 2n/3 + 1/3. As opt has final cost three, in this case the

competitive ratio of the online algorithm would be 2n/9 + 1/9.

We now consider the alternate case where o3 ∈ Y . We derive two dif-

ferent bounds on the total number of the vertices the algorithm will accept.

Let acc denote the number of vertices the algorithm accepts in total, i.e.,

the final cost of the algorithm. We first can deduce that:

acc ≤ y + 2z + 1 (5.1)

This bound (inequality (5.1)) follows mostly from the correctness of the

algorithm (Lemma 5.12). The algorithm will accept v1 with cost one. For

vertices presented in X no vertex need be accepted at it will already be

covered by v1. We can observe that as o3 ∈ Y , the optimal algorithm has

at most one vertex in X. Therefore, there exists at least one vertex in X

that in conjunction with v1, covers all vertices in Y . Therefore, for every

vertex presented in Y , the algorithm will accept at most one vertex from

X to cover the presented vertex. We also can observe that for every vertex

presented in Z, the algorithm will accept at most two vertices into its in-out

dominating set to cover it (either one vertex from X or Y , two vertices from

X, or one vertex from X and one vertex from Y ). In total the algorithm

will accept at most y + 2z + 1 vertices.

In a similar fashion we now present a second bound on acc:
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acc ≤ x+ z + 1 (5.2)

Analogous to the first bound (inequality (5.1)) on the total cost of the

algorithm, this inequality (inequality (5.2)) follows mostly from the proof of

feasibility of the specified algorithm (Lemma 5.12). We can observe that in

any case, the algorithm could accept all x vertices in X in order to cover

all vertices vi ∈ Y , following from the feasibility of the algorithm which

states that any vertex vi ∈ Y can be covered by the set of vertices {v1}∪X.

Additionally, if all vertices in X have been accepted then it follows from

Lemma 5.12 that to cover any vertex presented in vi ∈ Z, it will suffice to

accept at most one vertex in Y to cover it, i.e., for all vertices vi presented

in Z, alg will need to accept at most z vertices from Y to cover vi.

Utilising the two aforementioned bounds on the total number of vertices

accepted by the algorithm (acc), we are now in a position to determine the

competitive ratio of the algorithm. Recall that k > 3n/4, and consequently

z < n/4. If we assume y+z > n/2−1/2, and consequently that x < n/2−1/2

we derive the following:

acc ≤ x+ z + 1

≤ n/2− 1/2 + n/4− 1/4 + 1

= 3n/4 + 1/4

In this case, as the optimal algorithm has total cost three, the competi-

135



tive ratio of the online algorithm will be 3n/12 + 1/12 = n/4 + 1/12.

In the remaining case, namely that y + z ≤ n/2 − 1/2, we deduce from

the inequality (5.1) the following:

acc ≤ y + 2z + 1

= (y + z) + z + 1

≤ n/2− 1/2 + n/4− 1/4 + 1

= 3n/4 + 1/4

Similar to the previous case where y + z > n/2 + 1/2, as the optimal

algorithm has final cost three the competitive ratio of the online algorithm

will be n/4 + 1/12.

As in all cases, the online algorithm has competitive ratio bounded by

n/4 + 1/12 the claim follows.

Following from the previous discussion if the optimal algorithm has final

cost one then the online algorithm is optimal, and if the optimal algorithm

has cost at least four then the algorithm can accept all vertices and achieve

the best possible competitive ratio, within a small additive constant. There-

fore, by Lemmas 5.13 and 5.14 we get the following theorem:

Theorem 5.15. The deterministic online algorithm (alg) has competitive

ratio n/4 + 1/4 for Online-MSCIODS.
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5.5 Conclusion

In this chapter we have presented and studied the problem of determining

a strongly connected in-out dominating set of minimum size, in an online

setting. We have presented a lower bound of the problem, showing that no

deterministic algorithm can achieve competitive ratio less that n/4 in the

case where n is even, and no less than n/4 + 1/4 in the case where n is odd.

We have then complemented this result with an algorithm that achieves

competitive ratio n/4 + 1/4.

An interesting open problem would be to study a slight variation of

Online-MSCIODS that we have presented in this chapter. One could con-

sider the online problem of constructing a strongly connected dominating

set of minimum size where every vertex not in the dominating set has an

edge into the dominating set.

In the offline setting it would also be interesting to try to present an

approximation algorithm achieving approximation ratio less than 2 · lnn for

the problem of constructing a minimum strongly connected in-out dominat-

ing set. This would improve the 2 · lnn approximation algorithm presented

by Li et al. [LDW+09]. Another direction for research would be to consider

the offline problem of constructing a minimum strongly connected dominat-

ing set where every vertex not in the dominating set has an edge into the

dominating set.
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Chapter 6

Barrier Resilience

In this chapter we consider the problem of determining the barrier resilience

of a sensor network consisting of sensors, whose sensor regions are convex

shapes of equal width, with respect to paths that do not decrease in the

x-coordinate (monotone paths).

In the realm of sensor networks, barrier coverage is a fundamental con-

cept. Typically, one will have a setting where there is a starting point and a

target point and one wishes to place sensors such that all possible paths from

the starting point to the target point can be monitored. In sensor networks

there will be a set of sensors between the two points, and a sensor region for

each sensor that represents the area that the sensor covers. The objective of

barrier coverage is to guarantee that when one considers all possible paths

between the two points, at least one sensor intersection occurs, i.e., any path

from the start point to the target point, will intersect at least one sensor

region.

One can quickly realise that barrier coverage has many practical appli-
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cations. For one example, consider the setting of a room with one door

and on the opposite side of the room lies a valuable piece of artwork. One

potential security precaution would be to lay a series of sensors between the

door and the artwork, such that a potential thief would be detected entering

the room and trying to obtain the artwork. Barrier coverage in this setting

would dictate that any path from the door to the artwork must incur the

thief being detected by at least one sensor.

With a sensor network that provides barrier coverage, no possible unde-

tected path exists between the start point and the target point. However,

one can observe that in the case where a single sensor fails, a path could exist

such that it is undetected by any sensor in the network. In critical settings,

such a scenario would be unacceptable. As such, the notion of robustness in

a sensor network becomes of interest. The question changes from the binary

notion of ‘is a sensor network secure?’, i.e., does the network provide barrier

coverage, to ‘how secure is the sensor network?’. One can attain a greater

level of robustness by incorporating redundancy into the sensor network.

Specifically, one could require that all possible paths between the start and

target points, intersect at least k sensors. One can note that the choice of k

would vary on the level of robustness required, offset against an acceptable

level of redundancy in the sensor network.

The interested reader can refer to the Ph.D thesis of Kumar [Kum06]

for a more general survey of the area of barriers in sensor network. Mindful

of the aforementioned notion of robustness in sensor networks, for the re-

mainder of this work we will concern ourselves specifically with two notions

of barrier coverage that measure robustness.
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We adopt the definitions of barrier thickness and barrier resilience from

Bereg and Kirkpatrick [BK09]. Firstly, one is concerned with the number

of sensor regions that are intersected, by any path from the start point

to the destination point. More specifically, one is interested in the barrier

thickness of the sensor network, defined to be the minimum number of such

sensor region intersections, over all possible paths from the start region to

the destination region. One is also interested in the number of sensors that

must be removed such that a path exists between the start point and the

destination point, that does not intersect any sensor regions. Specifically

barrier resilience is defined to be the minimum number of sensors that must

be removed, in order that such a path exists between the start region and

the destination region, such that no sensors are intersected. The main dif-

ference between the two concepts is that the barrier resilience only counts

the first time a path intersects a sensor, in contrast to the barrier thickness

that counts each time a path enters a sensor region. Note that the notions

of barrier thickness and barrier resilience are related, namely that the thick-

ness of the barrier is at least the resilience of the barrier. In particular, if

an optimal path that induces the minimum number of sensor region inter-

sections enters each sensor at most once, then the resilience of the barrier is

equal to the thickness.

We will consider these concepts of barrier thickness and barrier resilience

in a setting where one considers only monotone paths through the network.

The study of montone paths is motivated by settings where a path through

a sensor network can only travel in one direction along an axis, such as a

scenario involving a vertical descent.
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6.1 Related Work

There are many different notions of sensor coverage. One can consider the

survey papers presented by Meguerdichian et al. [MKPS01] and Cardei and

Wu [CW04], or alternatively refer to the Ph.D thesis of Kumar [Kum06] for

an overview of this vast area. We focus on settings where a sensor network

provides barrier coverage where one must ensure that all paths between the

start point and the target point intersect at least one sensor.

Several approaches of ensuring that a sensor network providing barrier

coverage is robust have been proposed. Meguerdichian et al. [MKPS01]

consider maximal breach paths, where one considers paths that maximise

the distance to the closest sensor. A similar approach was proposed by

Meguerdichian et al. [MKQP01] who consider the minimum exposure to

sensors in the network. They also complement their result with experimental

results.

Kumar et al. [KLA05, KLA07] continue this line of research and intro-

duce the measure of k-barrier coverage in belt regions. An open belt region

is defined to be a closed rectangular subset (a strip) of the plane, where a

path travels from a point on the lower boundary of the strip, to a point

on the upper boundary of the strip. If every path through the sensor net-

work intersects at least k distinct sensors, then the sensor network attains

k-barrier coverage. They show that for open belt regions, and sensor net-

works formed of unit disks, the problem of determining if a sensor network

attains k-barrier coverage can be reduced to the problem of determining

whether or not a graph has k-node disjoint paths between two vertices.
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Bereg and Kirkpatrick [BK09] are the first to extend the theoretical anal-

ysis of previous works on barrier resilience from open belts, e.g. [KLA07], to

arbitrary (two-dimensional) regions. In particular, Bereg and Kirkpatrick

[BK09] provide more specific inspiration for our work. They introduce the

concepts of barrier thickness and barrier resilience. We consider variants of

barrier thickness and resilience in our work, specifically thickness and re-

silience with respect to monotone paths. Similar to the work of Bereg and

Kirkpatrick [BK09], we also consider the problem of calculating the barrier

resilience of a network, however, Bereg and Kirkpatrick consider approxima-

tion algorithms for a case where the set of sensor regions are unit disks. In

contrast we consider exact polynomial time algorithms, when one considers

only monotone paths from the start point to the target point, for sensor

regions that are convex shapes of uniform width.

Bereg and Kirkpatrick [BK09] show that one can approximate the re-

silience of a barrier by relating the thickness of the barrier to the resilience

of the barrier formed by a sensor network. Specifically, they show that

when one considers sensors whose coverage regions are closed unit disks, an

optimal path will enter each sensor at most three times. It follows from

this result that the thickness of the barrier is at most three times the re-

silience of the barrier, when considering unit disks. From this, they outline

a method for calculating the thickness of the barrier in polynomial time,

and consequently obtain a 3-approximation algorithm for calculating the

barrier resilience of a sensor network formed of unit disks. Additionally,

when one requires the restriction that the start point and the target point

are separated to a certain degree in the plane, they show a 2-approximation
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algorithm. Furthermore, they sketch an additional result that tightens the

approximation ratio from 2 to 5/3.

Tseng and Kirkpatrick [TK11] consider the hardness of calculating the

barrier resilience of sensor networks. They show that calculating the barrier

resilience of a sensor network formed of unit line segments when considering

general paths is NP-hard. They then further extend this result and show

that the problem remains NP-hard for sensor networks formed of sensors

whose coverage regions form non-symmetrical sensor regions in the plane.

6.2 Contributions

In a similar fashion to Bereg and Kirkpatrick [BK09] we will show that

via the use a of dual graph representing the arrangement of the sensor re-

gions forming the network, one can calculate the barrier resilience of a sen-

sor network. We will introduce the concept of monotone barrier resilience,

that considers the barrier resilience of a sensor network with respect to any

monotone path between two points. In contrast to [BK09] who study sen-

sor regions of unit disks, we consider more general sensor regions, namely

sensor regions of equal width that are convex shapes, and show that if one

restricts the set of potential paths to paths that are monotone, there exists

a polynomial time algorithm that can solve the problem of determining the

monotone barrier resilience of such a sensor network.
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6.3 Preliminaries

Throughout this work we consider the two-dimensional Euclidean plane. For

a point p in the plane, let xp denote the x-coordinate of p and similarly let

yp denote the y-coordinate of p.

A path π is defined as a continuous function fπ : X → R2, where X =

[0, 1]. Each path has an initial point f(0) = x, and a terminal point f(1) = y.

The initial and terminal points are known as the endpoints of a path. When

discussing paths, we equivalently refer to the path from x to y. The interior

π′ of a path π, is defined as f : X → R2, where X is the interval (0, 1).

Let a subpath π′ of π be f : X → R2 where X is the interval [a, b] and

0 ≤ a < b ≤ 1. A path π is monotone if for every j > i, where f(i) = p and

f(j) = p̄, xp ≤ xp̄.

Consider a set of sensor regions D where every sensor region d ∈ D is

a bounded open convex set of the plane, where a set is convex if for any

pair of points in the set, all points of the straight line between the pair of

points are in the set. A boundary point of a set is a point that appears in

the closure of the set but not in the interior of the set [Eng89]. Let the

set of boundary points of a sensor region form the boundary of a sensor

region. A set of sensor regions D in the plane is a set of pseudo-disks if, for

every pair of sensor regions (d, d′), where d, d′ ∈ D, there exist at most two

points that appear on the boundaries of both d and d′. We are motivated

to study pseudo-disks as they are a generalisation of unit disks, that have

been studied before for the barrier resilience problem.

Two sensor regions d, d′ ∈ D intersect if there exists some point p that
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appears on the boundary of both d and d′. Similarly, a path π intersects a

sensor region d ∈ D if there exists some point p that appears in d and is a

point of π.

Let ld denote the left-most point constituting the boundary of a sensor

region d, in terms of x-coordinate. Note that ld may not be uniquely defined

in which case ld refers to an arbitrary left most point, unless we specify

otherwise. Similarly, let rd denote the right-most point constituting the

boundary of a sensor region d. The width of a sensor region d is the x-

distance between the left-most and right-most points, i.e., xrd − xld .

Lemma 6.1. Each sensor region has a left-most point.

Proof. Firstly, we state the following three well known properties of topo-

logical spaces:

• For some S ⊆ Rn, S is a compact set iff S is bounded and closed.

[Sut75]

• The continuous image of a compact set is compact. [Sut75]

• The continuous image of a connected set is connected. [Sut75]

The interval [0, 1] is bounded and closed, and consequently is compact.

Consider a function fπ : [0, 1] → R2 representing a path in the Euclidean

plane. Let the image of f be denoted by P , i.e., let P be the set of points

on the path π. As [0, 1] is compact, the image of f is also compact.

Now consider a function g : R2 → R which maps points in the plane to

their x-coordinates. Let g(P ) be denoted by P ′, i.e., for every point p ∈ P ,
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xp ∈ P ′ is the x-coordinate of p. As P is compact, g(P ) is also compact,

and thus P ′ is bounded and closed. Furthermore, as the single interval [0, 1]

is connected, it must be from the definition of the function f that P is

also connected and thus, as the continuous image of a connected set is also

connected, P ′ is also connected. As P ′ is connected, bounded, and closed it

follows that the P ′ contains an x-coordinate of minimal value amongst all

x-coordinates in P ′, and this represents the left-most point of the path π.

Consider a path π′ to be the closed path that traces the boundary of a

sensor region d. It will follow that the left-most point of d will exist as the

left-most point of π′ exists.

Note that following from Lemma 6.1 the right-most point of a sensor

region d can be determined by symmetrical arguments.

In this work it is useful to refer to certain parts of the boundary of a

sensor region. We define a boundary segment of some sensor region d ∈ D

to be the following: Consider a closed path πb that traces the boundary of a

sensor region. Let a boundary segment between two points p and p′ on the

boundary of d, be the set of points that appear on the subpath between p, p′

of the path πb. Throughout this work we will refer numerous times to a spe-

cific classification of the boundary into two particular boundary segments,

namely the upper-boundary segment and the lower-boundary segment, as the

extremal boundary segments. Consider a sensor region d, and specifically its

left most and right most points, ld and rd respectively.

The upper-boundary segment of a sensor region is defined as the set of

points formed by the union of the left-most and right-most points, together
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with the points on the boundary segment contained clockwise from the left-

most to the right-most points of the sensor region. Similarly, the lower-

boundary segment of a sensor region is defined as the set of points formed

by the union of the left-most and right-most points, together with the points

on the boundary segment contained anti-clockwise from the left-most to

the right-most points of the sensor region. We illustrate the two extremal

boundary segments of a square in Figure 6.1.

Figure 6.1: The upper-boundary segment (left), and lower-boundary seg-
ment (right) of a square.

Observe that the left-most points (and right-most points) of d will appear

on both the upper-boundary segment and the lower-boundary segment. We

say that a point p on the boundary of a sensor region is strictly on the

upper-boundary segment if p is disjoint from the lower-boundary segment.

The definition of a point being strictly on the lower-boundary segment is

analogous.

Let a point p be above a sensor region d if p has greater y-coordinate

than some point p′ strictly on the upper-boundary segment of d, such that

p′ has the same x-coordinate as p, i.e, xp = xp′ . Analogously, we say a point
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p is below a sensor region d if p has a smaller y-coordinate than some point

p′ strictly on the lower-boundary segment of d, such that xp = xp′ .

6.3.1 Problem Definitions

A natural modelling of a sensor network forming a barrier is to consider each

sensor and the region within which it can detect events, to be represented

by a corresponding sensor region in the plane. Similarly, one considers all

possible paths an intruder could take as the set of paths that can exist in the

plane from a start point s to a target point t. A sensor region intersection

is a point p, that appears on both the boundary of a sensor region d, and

appears in the path π. Note that a path entering a sensor region at a point of

the boundary and leaving the sensor region at another point of intersection

will incur two intersection points. A path π intersects a sensor region if

there exists at least one sensor region intersection. Throughout this work,

we will assume that the start point s and the target point t are disjoint from

all sensor regions.

In the literature [BK09] two related problems are studied that we take

interest in. Firstly the thickness of the barrier which is defined as follows:

Definition 6.2. (Barrier Thickness) The minimum number of sensor

region intersections over all possible paths from the start point s, to the

target point t.

We mainly consider the following problem that although related to bar-

rier thickness, is more pertinent to our setting.

Definition 6.3. (Barrier Resilience) The minimum number of sensors
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regions that once removed allows the existence of a path from the start point

s, to the target point t, without intersecting any sensor region.

We consider throughout our work, only monotone paths. As such, we

define analogous concepts to those described above, that apply to the setting

where the set of paths considered, is restricted to monotone paths.

Definition 6.4. (Monotone Barrier Thickness) The minimum number

of sensor region intersections over all possible monotone paths from the start

point s, to the target point t.

Definition 6.5. (Monotone Barrier Resilience) The minimum number

of sensor regions that once removed allows the existence of a monotone path

from the start point s, to the target point t, without intersecting any sensor

region.

An instance of the monotone barrier resilience problem contains as input

a set of sensor regions D, and two points s, t where s is the start point and t

is the target point, placed in the two-dimensional Euclidean plane. The aim

of the problem is to determine the monotone barrier resilience of the sensor

network. The main result of this work is to show the following theorem:

Theorem 6.6. There exists an algorithm that, given an instance of the

monotone barrier resilience problem for an arrangement of sensor regions

that are of equal width and form a set of pseudo disks, will determine the

monotone barrier resilience of the sensor network in polynomial time.
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6.4 Monotone Barrier Resilience Algorithm

In order to show the existence of the algorithm in Theorem 6.6, we will follow

the broad approach of Bereg and Kirkpatrick [BK09] and take inspiration

from their 3-approximation algorithm for a similar problem, where they

consider paths of arbitrary direction and a set of sensor regions restricted

to unit disks.

One can construct a dual graph representing the sensor network in the

following manner. Consider an arrangement of sensor regions D in the

Euclidean plane. For each point of intersection between the boundaries

of the sensor regions introduce a vertical line in the arrangement at the

x-coordinate of each intersection point. Similarly, for every sensor region

d ∈ D introduce a vertical line in the arrangement at the x-coordinate of

the left-most point of d and a vertical line at the x-coordinate of the right-

most point of d. The vertical lines are required to segment faces of the

arrangement such that in the resulting dual graph one can adhere to the

constraint that paths are monotone.

For each face of the arrangement of the sensor network, one creates a

corresponding vertex in the dual-graph. Additionally, for every pair of ad-

jacent faces there is a weighted edge in the dual graph between the vertices,

corresponding to the pair of adjacent faces in the graph. For the following

set of edges, consider only edges that correspond to a transition from a face

f to a face f ′ where the faces f and f ′ have either equal x-range, or the

x-range of the face f ′ is greater than the x-range of the face f . We illus-

trate an example of a basic arrangement with the corresponding dual graph
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overlaid in Figure 6.2. For the sake of presentation we only include a small

subset of the edges in the dual graph.
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Figure 6.2: An example of a basic arrangement with s and t and the corre-
sponding dual graph overlaid.

Edges that correspond to entering a sensor region are assigned weight

one, and edges that leave a sensor region are assigned weight zero. We add

additional vertices for the faces containing the start point s and the terminal

point t. All edges to the face containing t from adjacent faces have weight

zero, and all edges from the face containing s to adjacent faces have either

weight one if they enter a sensor region, or weight zero otherwise. A path

from s to t of weight k represents k sensor regions being entered by that

path. A path of minimum weight through the arrangement corresponds to

the minimum number of sensor regions that any monotone path through the
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network must intersect.

One can find a shortest path from s to t in this dual graph in polynomial

time, using standard shortest path algorithms. Specifically, this will indicate

the monotone barrier thickness of the sensor network.

Theorem 6.7. There exists an algorithm that, given an instance of the

monotone barrier thickness problem for an arrangement of sensor regions

that are of equal width and form a set of pseudo disks, will determine the

monotone barrier thickness of the sensor network in polynomial time.

Recall our earlier remark, that should it be the case that an optimal path

(that induces the minimum number of possible sensor region intersections)

intersects each sensor at most once, then it follows that the monotone barrier

resilience is equal to the monotone barrier thickness, and as such one would

be able to calculate the monotone barrier resilience of a sensor network in

polynomial time using the above method. Note that the complexity of con-

structing this dual graph is the complexity of constructing the arrangement,

which can be computed in O(n2) [AGR00], where n is the number of curve

segments in the arrangement, plus the complexity of computing the shortest

path, both of which are polynomial in the input size of the problem. We

will adopt this approach in our work.

For the remainder of this section we will consider a fixed optimal solution

for an instance of the monotone barrier resilience problem, and let D∗ ⊆ D

denote the set of sensor regions that are not removed in the set of objects

that corresponds to an optimal solution. We refer to such sensor regions D∗

that are not removed by an optimal solution as obstacles.
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We will show the following theorem regarding the maximum number of

times a monotone path intersects a sensor region:

Theorem 6.8. When considering an arrangement of sensor regions D of

uniform width that are pseudo disks, a shortest monotone path π that does

not intersect any obstacles in D∗, will intersect the boundary of any sensor

region d ∈ D \D∗ at most twice.

Once this claim is established, we can observe that a shortest monotone

path between s and t that avoids the obstacles D∗, will enter each sensor

region in the network at most once, and as such the monotone thickness of

the network will be equal to the monotone resilience of the barrier. From

the discussion in the previous section Theorem 6.6 will follow. To show the

result, we first require some preliminary observations before continuing and

discussing the aforementioned Theorem 6.8.

Lemma 6.9. Consider two points p and p′ on the boundary of a sensor

region d. If p and p′ appear on distinct extremal boundary segments of d

then there does not exist a monotone path from p to p′, whose interior does

not intersect d.

Proof. We first note that as p and p′ appear on distinct extremal boundary

segments, it must be that neither p nor p′ are a left-most point, or a right-

most point of the sensor region d. This follows from the observation that

the left-most point and the right-most point of a sensor region appear on

both extremal boundary segments (i.e., the upper-boundary segment and

the lower-boundary segment). Therefore, without loss of generality, assume
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that p appears strictly on the upper-boundary segment, and that p′ appears

strictly on the lower-boundary segment.

Assume the negation of the statement of the lemma. Specifically, assume

that there does exist some monotone path π between p and p′, where no point

constituting the interior of π intersects d. We consider the two such paths

that could exist between p and p′, as illustrated in Figure 6.3.

p

p
′

p
′

p

Figure 6.3: Two possible paths between p and p′ that do not intersect the
sensor region d.

The path π could have a monotone subpath over the upper-boundary

segment of d originating at p. When π reaches the right most point of d, it

must be that π has a subpath decreasing in the x-axis from some point to

the right of the right most point of d to p′. Such a subpath would violate

the monotonicity constraint.

In the alternate case, we know that p is not a left most point of d and

therefore if some subpath of π is under the lower-boundary segment to reach

p′, it must be the case that some point forming the path π is to the left of

the left-most point of d and consequently to the left of p. Such a path π

would violate the constraint that π is monotone. As in both cases, there

cannot exist a monotone path from p to p′ that does not intersect d, the
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claim follows.

As we know two points must be on the same extremal boundary segment

of a sensor region d for there to exist a monotone path between them (that

does not intersect d), we proceed to make observations regarding instances

where this extremal boundary segment of d is intersected by another sensor

region d′.

Lemma 6.10. Consider the boundary segment of a sensor region d con-

tained between the intersection points induced by the intersection of another

sensor region d′. That boundary segment is contained entirely within the

sensor region d′, i.e., there exists no point on that boundary segment of d,

that is outside d′.

Proof. Denote the two intersection points as i1 and i2 (assume i1 appears

clockwise on the boundary from i2) and trace the boundary segment from

i1 to i2. If any part of the boundary segment was outside of d′, it would

follow that along this trace, there exists some intersection point i3 where

the boundary segment of d would intersect the boundary of d′. From the

definition of the set of sensor regions being a set of pseudo-disks, a third

intersection point cannot exist and the claim follows.

Following from Lemma 6.10 we can obtain the following Corollary:

Corollary 6.11. Consider a sensor region d with two points p and p′ on the

lower-boundary (upper-boundary) segment. Assume that a sensor region d′

intersects the lower-boundary (upper-boundary) segment of d, with intersec-

tion points i1, i2. If either p or p′ appear on the boundary segment contained
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i1 i2

d

d
′

Figure 6.4: An illustration of Lemma 6.10.

anti-clockwise (clockwise) between i1 and i2 then they appear inside the sen-

sor region d′ and there cannot exist a monotone path from p to p′, whose

interior does not intersect d or d′.

In the following we will show results for a restricted input, namely a

constraint on the arrangement of sensor regions D given as input. We will

require that all sensor regions have width r, i.e., for all d ∈ D, xrd −xld = r

and also focus on only shortest monotone paths that do not intersect any

obstacles in D∗. We now proceed to restate and show the proof of Theorem

6.8.

Theorem 6.8. When considering an arrangement of sensor regions D of

uniform width that are pseudo disks, a shortest monotone path π that does

not intersect any obstacles in D∗, will intersect the boundary of any sensor

region d ∈ D \D∗ at most twice.

Proof. Consider any sensor region d ∈ D \ D∗. We define p1 as the inter-

section point where π first intersects the boundary of d, let p2 be the point
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where π intersects the boundary of d for a second time and let p3 denote

the third point where the path π intersects the boundary of d. Intuitively,

p1 represents the path entering the sensor region d, p2 represents the path

leaving the sensor region d and p3 would represent the path entering the

sensor region d for a second time. We will show such a point p3 cannot

exist, and consequently a shortest monotone path can only enter a sensor

region once.

It follows from Lemma 6.9 that p2 and p3 must both appear on the

lower-boundary segment (or both appear on the upper-boundary segment),

or it will be the case that a monotone path that does not intersect d cannot

exist from p2 to p3. We will assume without loss of generality throughout

this proof that p2 and p3 both appear on the lower-boundary segment. In

the case that p2 and p3 both lie on the upper-boundary segment analogous

arguments apply.

Consider a fourth point p4 on the boundary of d where the path π in-

tersects the boundary of the sensor region d a fourth time. Intuitively, this

would represent the path π leaving the sensor region d a second time. Note

that as we consider only the shortest monotone path that does not intersect

any obstacles in D∗, it must be that there does not exist a shorter monotone

path from p2 (the point where π leaves d for the first time) to p3 (the point

where π enters d a second time), otherwise it would contradict the fact that

π is a shortest monotone path (see Figure 6.5 for an illustration). We note

for the reader that all figures in this proof of this theorem are for illustrative

purposes. We assume that additional obstacles in D∗ exist that prevent

a path inside the sensor region d from p1 to p4 that doesn’t intersect any
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sensor region, but such obstacles are excluded from the figures for sake of

presentation.

p1

p2 p3

p4

Figure 6.5: One path (dotted) from p2 to p3 outside of d, and a shorter path
from p2 to p3 inside d.

Furthermore, we can deduce that there must be some sensor region

d′ ∈ D∗ intersecting the lower boundary of d between p2 and p3. Assume

the negation that there does not exist such a sensor region d′. Consider a

monotone path from a point on the boundary of d just to the left of p2 to a

point on the boundary just to the right of p3 contained entirely inside the

sensor region d, that traces the boundary segment contained anti-clockwise

from p2 to p3 (such a trace is arbitrarily close to the boundary but not in-

tersecting it). Note that all points on the path would be inside d. This path

from p2 to p3 inside d would be shorter than a path that leaves the sensor

region at p2, and re-enters the sensor region at p3, and consequently would

contradict the definition of π being the shortest monotone path.

It must also be the case that the two intersection points i1, i2 between

d and d′ are on the boundary segment contained anticlockwise from p2 to

p3. If only one of the two intersection points is on the boundary segment
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contained anticlockwise between p2 and p3, then either p2 or p3 must be on

the boundary segment contained anticlockwise between i1 and i2 (assuming

without loss of generality that i2 appears anticlockwise on the boundary of

d from i1), following from Corollary 6.11.

We now proceed by considering two different cases. We first consider the

case (illustrated in Figure 6.6) where the left-most point of the sensor region

d′ has x-coordinate greater than the left-most point of d, i.e., xld′ > xld .

p1

p2

p3

d

d′

i1

i2

Figure 6.6: A path from p1 to p3 around d′.

It must be the case that the right most point of d′ is disjoint from d,

as the left-most point of d′ is to the right of the left-most point of d, and

all sensor regions have uniform width. It must also be that p3 is above

d′. Suppose otherwise, specifically that p3 is under d′. There would exist
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some segment of the lower-boundary of d′ that is above p3. It follows from

Lemma 6.10 that the boundary segment of d′ contained clockwise between i1

to i2 must be entirely inside d or it would induce more than two intersection

points, violating that the set of sensor regions D is a set of pseudo-disks.

This segment of d′ cannot contain the right-most point of d, as we know the

right-most point of d′ is disjoint from d.

We note that the monotone path between p2 and p3 cannot solely be

over d′ as such a path would intersect d to the left of i1. As p3 is defined as

the third point where the path π intersects the boundary of d , and we know

i1 appears clockwise from p3 on the boundary, this cannot be the case. We

therefore know that the path π must contain some subpath under d′ (as π

does not intersect the obstacles d′ ∈ D∗). The subpath under d′ must have

a point p′, to the right of the right-most point of d′. There must also exist

another subpath from this point p′ to the right of the right-most point, to

p3. As it is the case that the right-most point of d′, must be to the right

of the right-most point of d, and as all sensor regions have the same width,

this subpath from a point p′ to the right of the right-most point of d′ to p3

would not be monotone, and as such it would violate the constraint that the

path π is monotone.

We now discuss the alternate case (illustrated in Figure 6.7) where the

left-most point of d′ has x-coordinate equal to or less than the left most

point of d, i.e., lxd′ ≤ lxd .

It must be that the left-most point of d′ is disjoint from d in the case that

the left-most point of d′ is to the left of d, as all sensor regions have equal

width. In the case that the left-most point of d has the same x-coordinate as
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p1

p2 p3

d

d′

i1
i2

Figure 6.7: A path from p1 to p3 around d′, where lxd′ ≤ lxd .

the left-most point of d′, then either the left-most and right-most points of

d′ are disjoint from d, or more than two intersection points are introduced

and the set of sensor regions no longer forms a set of pseudo-disks. For

analogous reasons to the previous case, it must also be that p2 is above d′.

If this were not the case there would be some boundary segment of d′ above

p2, contained clockwise between the intersection points i1 and i2, and from

Lemma 6.10 is entirely within d. The left-most point of d′ cannot be on this

boundary segment as we know that the left most point of d′ is disjoint from

d.

For analogous reasons to the previous case, a monotone path between p2

and p3 cannot only consist of subpaths over d′. Therefore there must be a
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subpath of π that is under d′. To have a subpath under d′, it must be that

the path π, has a point p′ to the left of the left-most point of d′. As p2 is to

the right of the left most point of d′, such a subpath from p2 to the point p′

that is to the left of the left-most point of d′ would not be monotone, and

consequently would violate the constraint that π is monotone.

As in both cases the existence of a monotone path between p2 and p3 is

not possible, the claim follows.

Following immediately from Theorem 6.8, we will obtain the following

Corollary helping to relate the thickness and resilience of a barrier in our

setting.

Corollary 6.12. Given a set D of convex pseudo-disks all of equal width, a

shortest monotone path from the starting point s to the target point t, that

does not intersect any obstacles D∗, will enter each sensor region d ∈ D at

most once.

From Corollary 6.12 and the discussion at the beginning of this section,

we can apply a shortest path algorithm to the dual-graph to calculate the

thickness of the barrier, and as we know the resilience of the network is

equal to the thickness of the network, Theorem 6.6 follows, i.e, there exists

a polynomial-time algorithm for computing the monotone barrier resilience

of a sensor network consisting of sensor regions of equal width, that are a

set of pseudo disks.
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6.5 Conclusion

We have shown the existence of a polynomial time algorithm that can deter-

mine the monotone barrier resilience of a sensor network, whose sensor re-

gions are of a convex shape, equal width and form a set of pseudo disks. This

is in contrast to the problem of determining the barrier resilience which is

known to be NP-hard for general paths, when considering non-symmetrical

sensor regions [TK11]. With respect to the problem of determining the

monotone barrier resilience of a sensor network, a problem of interest would

be to ascertain the complexity of sensor regions of equal width that are con-

cave. Additionally, if the restriction of requiring that the arrangement of

sensor regions forms a set of pseudo disks was relaxed, the complexity of the

monotone barrier resilience problem would be open. Furthermore, our proof

holds only for the case that all the sensor regions are of equal width. As such,

a natural progression of this work would be to determine the complexity of

the problem were one to consider sensor regions of arbitrary width.

Regarding the problem of determining the barrier resilience of a sensor

network for general paths, as far as we are aware, the complexity of com-

puting barrier resilience is still open for sensor regions of unit disks. As unit

disks are a natural representation of sensors with omnidirectional antennae,

it would be of interest to show either the problem to be NP-hard, or to show

an exact polynomial time algorithm that determines the barrier resilience of

such a network.

163



Chapter 7

Conclusion

We have studied four algorithmic problems, that are motivated by real life

issues arising from wireless communication and sensor networks. We have

provided and analysed approximation algorithms, online algorithms and ex-

act algorithms.

In Chapter 3 we considered the problem of scheduling multicast links,

such that all transmissions are correctly received with respect to interfer-

ence in the network. We also considered the difference between atomic

multicast transmissions, and splittable mutlicast transmissions where the

atomic condition is relaxed and it is only required that every receiver in

the set of receivers, correctly receives the transmission in some round. We

have shown that existing work for the unicast case can be generalised to

the multicast case, and yields an O(log Γ)-approximation algorithm for the

scheduling problem. In addition, we have shown that a schedule containing

atomic multicast transmissions is at most O(log Γ) longer than a schedule

that allows splittable multicast requests. It would be interesting to know
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whether this factor can be reduced. The overriding open question with re-

gard to assigning powers and scheduling transmission links is to provide a

constant-factor approximation algorithm for the scheduling problem of uni-

cast links. It would also be interesting to know if the approach used to

show a constant factor approximation algorithm for the throughput prob-

lem in the unicast-case [Kes11], can be generalised to the case of multicast

transmission requests.

In Chapter 4 we studied a generalisation of the problem of covering tar-

gets with unit disks, where each target must be covered once and there is

only one event type to be monitored. Specifically, we considered the prob-

lem of covering targets with at least two disks, and with t-event types. We

presented a (6 + ε)-approximation algorithm for the problem that matches

the approximation ratio of a previously presented algorithm for the problem

with one event type and covering each point only once. Additional algo-

rithms have been presented for the problem that introduce techniques that

improve the approximation ratio (to (5 + ε) [DY09] and (4 + ε) [EM09]). It

would be of interest to know if these improved results for the single cover,

single event type problem extend to the case of covering each point twice in

a setting with multiple event types.

In Chapter 5 we considered the strongly connected online in out dom-

inating problem. We have provided a lower bound that shows that no de-

terministic algorithm can achieve competitive ratio less than n/4 + 1/4. We

then stated an online algorithm that attains competitive ratio n/4 + 1/4,

which complements the aforementioned lower bound. A natural continua-

tion of this work would be to study randomised online algorithms for the
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same problem. A further potential direction for research would be to study

the offline problem of determining a strongly connected dominating set of

minimum size, where every vertex not in the dominating set has a directed

edge from a vertex in the dominating set (or a directed edge to a vertex

in the dominating set). One could investigate if techniques presented by Li

et al. [LDW+09] can be adapted to this setting, where the problem is to

specify a strongly connected in-out dominating set of minimum size.

For the final problem presented in Chapter 6 of this thesis we studied the

problem of determining the monotone barrier resilience of a sensor network.

We have shown that one can determine the monotone barrier resilience of

a sensor network in polynomial time, for instances formed by a set of con-

vex pseudo disks, all of equal width. It would be of interest to know the

complexity of monotone barrier resilience in different settings, possibly with

concave objects, or convex objects of arbitrary width. With regard to the

problem of determining the barrier resilience of sensor networks for general

paths, the complexity of sensors networks consisting of unit disks would be

of interest.
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