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Summary

The subject of fluid flows over axisymmetric bodies has increased in recent

times, as they can be used to model flows over a swept wing, spinning pro-

jectiles and aeroengines amongst other things. A better mathematical under-

standing of the transition from laminar to turbulent flow within the boundary

layer could lead to an improvement in the design of such applications.

We consider a compressible fluid flow over a rotating cone, defined by half–

angle ψ. The mean flow boundary–layer equations are derived and we conduct

a high Reynolds number asymptotic linear stability analysis. The flow is sus-

ceptible to instabilities caused by inviscid crossflow modes (type I ) and modes

caused by a viscous–Coriolis balance force (type II ). Both are considered, along

with the effects of changes in the cone half–angle, the magnitude of the local

Mach number and the temperature at the cone wall. A surface suction along

the cone wall is also analysed.
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Chapter 1

Introduction

This thesis presents a study of the stability of compressible boundary-layer

flows over rotating cones, defined by half-angle ψ. The boundary-layer flow

driven by a rotating disk is a special case of the rotating-cone flow when

ψ = 90o, and that particular geometry has received a huge amount of attention

in the literature. Interest in the rotating-disk flow started with the combined

theoretical and experimental work by Gregory, Stuart & Walker (1955). Their

experimental study showed that a laminar flow was maintained within the

small region around the centre of the rotation, with spiral vortices appearing

at an increased radial distance. The spiral vortices were observed to be co-

rotating and stationary with respect to the disk surface. As the radial position

was increased yet further, transition to turbulent flow was observed.

1



INTRODUCTION 2

Figure 1.1: Experimental visualisation of the flow over a disk with radius

200mm rotating at 1500 revolutions per minute. Taken by Kohama (1984a).

This is highlighted in Figure 1.1, a flow visualisation taken from experi-

mental work by Kohama (1984a). The cause of the spiral vortices within the

boundary layer was confirmed to be the presence of an inviscid cross-flow in-

stability, which is also the dominant convective instability mechanism found

for a flow over a swept wing. This connection to the swept-wing flow has
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since motivated the huge interest in the rotating disk, not least because of its

relatively simple geometry.

Before Gregory, Stuart & Walker (1955), the very first study of the rotating-

disk flow was due to Kármán (1921), who obtained the equations that governed

steady boundary-layer flow. von Kármán’s approach was to solve the Navier–

Stokes equations in the appropriate geometry (which are partial differential

equations) by using a similarity solution that scaled out the radial dependence,

which led to ordinary differential equations which are much easier to solve.

The resulting theoretical flow profiles were later verified by Cochran (1934).

The aforementioned study by Gregory, Stuart & Walker (1955) followed some

years later and was the first to consider the stability of steady boundary-layer

flow, however the theoretical component of their study relied on von Kármán’s

earlier results.

We now present a short summary of the literature relevant to this thesis

that includes a summary of developments of the knowledge of the rotating-disk

flow and that over related three-dimensional bodies, including the rotating

cone. The summary is necessarily short and focussed, and a fuller review of

the early work is given by Reed & Saric (1989).

In their stability analysis, Gregory, Stuart & Walker (1955) neglected vis-

cous terms, yielding results for what have become known as the inviscid type
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Figure 1.2: A numerical study into the neutral stability curves for an incom-

pressible flow over a rotating disk, showing the upper branch type I modes and

the lower branch type II modes. Taken from Malik (1986).

I modes, shown by the upper branch of Figure 1.2. Some years later, a fuller

numerical investigation of the linear stability of the rotating-disk flow was

presented by Malik (1986), which was closely followed by a linear asymp-

totic analysis by Hall (1986). Both approaches demonstrated the existence of

an additional instability mode, the type II mode shown by the lower branch

of Figure 1.2, and good agreement was found between the asymptotic and

numerical neutral curves in the high Reynolds-number limit. Hall formally

demonstrated that the type II mode was viscous in origin and was caused
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Figure 1.3: Space–time diagrams for disturbances defined as (a) convectively

unstable and (b) absolutely unstable. Taken from Lingwood (1996)

by a balance between viscous and Coriolis forces. Type II modes could not,

therefore, be described by an inviscid theory. The asymptotic study showed

that the type II mode has a triple deck structure and Hall’s study was later

extended to consider the non-linear development of the stationary modes by

MacKerrell (1987). MacKerrell found that including non–linear terms led to a

more unstable flow compared to the linear analysis, suggesting that non–linear

effects were destabilising.

In addition to type I and II modes, which are example of convective insta-

bilities and can be associated with the experimentally observed spiral vortices,

Lingwood (1995) was the first to show that the flow over a rotating disk was
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locally absolutely unstable. A space–time diagram of the evolution of absolute

and convective instabilities are shown in Figure 1.3. Lingwood noticed the close

match between her predicted critical Reynolds number for the onset of absolute

instability and the reported critical Reynolds numbers for the onset of turbu-

lence from various experimental studies over the prior years, for examples see

Malik, Wilkinson & Orszag (1981), Kobayashi, Kohama & Takamadate (1980).

More specifically, experimentally observed values for transition were found to

have an average critical Reynolds number of 513, and Lingwood’s prediction

for the onset of absolute instability differed by less than 3% of this value. This

led to the suggestion that absolute instability may be closely associated with

the onset of turbulent flow.

Following this discovery, Lingwood (1996) obtained experimental results

for the stability of a rotating-disk flow, considering both unexcited and excited

flows. In the case of an unexcited flow, where no artificial disturbance is made

to the flow, the stationary waves grew as the Reynolds number is increased,

leading to transitional behaviour between R = 502 and R = 514 and fully

turbulent by R ≈ 600. However, before R = 502 there is no prior sign of

any features of transition. This region coincides with the region of theoretical

absolute instability and added weight to the original assertion that absolute

instability is related to the onset of turbulence.
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A few years later, Davies & Carpenter (2003) performed direct numerical

simulations solving the linearized Navier–Stokes equations directly on a disk of

infinite extent. When they made the same homogeneous flow approximation as

in Lingwood’s theoretical analysis (i.e. the parallel-flow approximation), they

recovered her results in full, with absolute instability clearly present at high

Reynolds number. However, when the spatial inhomogeneity of the boundary

layer was included there was no evidence that absolute instability gives rise to

an unstable global oscillator in the long-time response that would be required

to give the onset of transition within a purely linear theory. Indeed their study

suggested that convective behaviour eventually dominates at all the Reynolds

numbers investigated, even for strongly absolutely unstable regions. Thereby

suggesting that absolute instability was not involved in the transition process

through linear effects. This result is entirely consistent with Itoh (2001a,b)

who had raised the point that the spatial modulation of the dispersion rela-

tion, from which instability types are determined, may yield significant effects

on the spatial and temporal development of instability waves. Hence, because

a parallel-flow approximation causes the dispersion relation to have no depen-

dence on any spatial coordinate, it cannot be justified.

Following this, Pier (2003) demonstrated that a nonlinear approach is re-

quired to explain the self-sustained behaviour of the rotating-disk flow that



INTRODUCTION 8

leads to turbulence. Using the result of Huerre & Monkewitz (1990) that the

presence of local absolute instability does not necessarily give rise to linear

global instability, Pier suggested that the flow has a primary nonlinear global

mode that is fixed by the onset of the local absolute instability which has a

secondary absolute instability that triggers the transition to turbulence. Some

experimental evidence for a secondary instability exists (Kohama (1984a) and

Imayama, Alfredsson & Lingwood (2012)), but the behaviour of the secondary

instability and also its relation to the primary absolute instability are not fully

understood as yet.

In an attempt to explain Lingwood’s original experimental observations in

the light of the subsequent theoretical developments, Healey (2010) presents

a theory, based on the Ginzburg–Landau equation, that suggests that there

can be a linear global instability when there is local instability at the edge of

the disk. The finite size of experimental disks is of course a crucial difference

between experimental and theoretical studies prior to Healey’s work, and edge

effects were a new addition to the arguments in the literature. The very recent

experimental study of Imayama, Alfredsson & Lingwood (2013) finds that edge

effects may indeed lead to linear global instability as a first step in the onset of

transition. Discussions in the literature continue as to the actual mechanism

by which transition to turbulence occurs in the boundary–layer flow over a
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rotating disk.

The discovery of absolute instability and the associated interest in the rotating-

disk flow within the literature has led to a renewed interest in the instability

mechanisms found within boundary-layer flows over other axisymmetric, rotat-

ing bodies, such as cones. This flow is the subject of this thesis. Aside from the

theoretical interest in the abstract flow, very similar flows exist in engineering

applications, for example over the nose of a rotating missile or over rotating

aeroengine components. Hence, even though the interest in the rotating disk

was initiated by its relationship to the swept-wing flow, the results of studies

of rotating-cone flows have a more immediate application.

Early experimental work for the rotating cone in an otherwise still fluid was

carried out by Kappesser, Greif & Cornet (1973); Kreith, Ellis & Giesing (1962)

and Tein & Campbell (1963). These experiments were limited to measuring

the critical Reynolds number for the onset of turbulent flow and very little

was known about the mechanisms causing the transition. However, during

the 1980s, progress was made towards an understanding of the instabilities at

work. In particular, spiral vortices were found to be present in the transitional

region of the boundary layer (see Kobayashi, Kohama & Kurosawa (1983);

Kobayashi & Izumi (1983); Kohama (1984b)), similar to those observed in the
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rotating-disk flow. This breakthrough was found using a high speed strobe

light flow visualisation technique which showed the spiral vortices emanating

from the surface of the cone. The spiral vortices are stationary with respect

to the cone, regardless of the cone’s rate of rotation Ω∗.

In contrast to the observations on rotating disks, where counter-rotating

vortices are always seen, the structure of the spiral vortices over a cone was

seen to depend on the half-angle, ψ, of the cone. In the experimental study

by Kobayashi & Izumi (1983), the spiral vortices on cones with slender half-

angles are shown to take the form of pairs of counter-rotating vortices, similar

to Görtler vortices that are known to arise from centrifugal forces present

in the flow field found by Hussain, Stephen & Garrett (2012). However, as

the half-angle increases through ψ = 30◦, the spiral vortices appear to take

the form of co-rotating cross-flow vortices, as seen on the rotating disk. As

mentioned above, the co-rotating vortices on the rotating disk appear because

of an underlying cross-flow instability, and are caused by the inflectional nature

of the flow. Hence the observed centrifugal instability for cones with sufficiently

small half angle, along with the cross-flow instability for broader cones, show

that there is a distinct variation in the dominant instability mechanism for

slender cones, which is not seen on broad cones or on a disk (where ψ = 90◦).

(This is further discussed by Garrett, Hussain & Stephen (2009), who have
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Figure 1.4: A comparison for the required wave angle for the onset of the type

I instability for experimental, asymptotic (φ) and numerical studies (ε). Taken

from Garrett, Hussain & Stephen (2009)

recently identified an alternative Görtler-type mode and continue to work on

its properties.)

With regards theoretical studies of instabilities within the rotating-cone

boundary-layer flows, Garrett (2002) considers the problem in still fluid and

uses a numerical approach. A parallel-flow approximation is used in a study
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similar to Lingwood (1995) work and also includes both viscous and streamline-

curvature effects.The resulting dispersion relation for the rotating-cone flow is

then formed and both the convective and absolute instabilities of the problem

were investigated at each half-angle. Garrett found that when expressing the

transition points found experimentally by Kobayashi & Izumi (1983) in terms

of the local Reynolds number, his results for transition were roughly the same

for all cones with half-angle ψ ≥ 40◦. This suggests that it may well be possible

that the instability mechanism for transition to turbulent flow is the presence

of absolute instability for cones with ψ ≥ 40◦. However, for ψ ≤ 40◦ the local

Reynolds number at the experimental transition point reduces in magnitude

sharply as the half-angle decreases, as shown in Figure 1.4. This suggests

that for smaller half angles absolute instability is suppressed and some other

transition mechanism must be forcing the turbulent flow.

Recently Hussain (2009) extended Hall’s work and presented a linear asymp-

totic analysis of the type I and type II modes of instability within the boundary-

layer flow over the family of rotating cones in otherwise still fluid, as well as

the rotating disk and cone within an oncoming axial flow. As would be ex-

pected, his results were in good agreement with those of Hall (1986) in the limit

ψ = 90o. For both numerical and asymptotic results it is seen that an increase

in the cone half–angle ψ has a stabilising effect on both the type I and type
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II modes of instability, as the predicted value of the critical Reynolds number

required to cause the onset of turbulence is increased. As with the numerical

results found by Garrett (2002), the asymptotic results are only in agreement

with the experimental results for a cone half–angle ψ ≥ 40◦, and a different

analysis is needed below this value. Because of this the study presented here

will focus on broad cones.

Lingwood (1997) and Lingwood & Garrett (2011) both study the effects

of adding a uniform surface suction in the normal direction along the surface

of a rotating body. They suggest that suction could be used as a stabilising

mechanism by delaying the inset of turbulence, which is in agreement with

previous experimental work by Gregory & Walker (1960). In this work we

shall also consider a surface suction for the compressible flow, and compare

how significant any changes in the flow are compared to the previous results

for the incompressible case.

For further studies into the incompressible boundary–layer flow over a ro-

tating cone see Garrett & Peake (2007), Garrett, Hussain & Stephen (2009),

Garrett (2010), Garrett, Hussain & Stephen (2010), Hussain, Stephen & Gar-

rett (2012).

The majority of research into boundary-layer stability for incompressible flows
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started by finding a basic velocity profile, usually some variation on the well

known von Kármán basic steady flow; see Kármán (1921). However, when

considering a compressible flow case, the basic flow is much more complex to

evaluate. The main cause of this is, as discussed by Stewartson (1964) amongst

others, the introduction of several parameters. These include the Prandtl

number, which is related to temperature, and the second coefficient of viscosity,

also known as the volume viscosity. These do not appear as constants, as they

do in the incompressible case. This complication has naturally led to more

investigation, and hence greater advances and understanding, of incompressible

flows. However, suitable progress relevant to this current study has been made.

Around the same time as Lingwood’s studies of absolute instability for an

incompressible flow over a rotating disk, Cole (1995) was conducting a study of

three-dimensional compressible boundary-layers, where he also concluded that

the flow over a rotating disk is absolutely unstable. He numerically solved

the three-dimensional inviscid compressible Rayleigh equation, finding branch

points leading to absolute instability at scaled Mach numbers 0,1 and 2. The

case of a suitably small Mach number, usually approximately Ma ≤ 0.3, re-

lates to an essentially incompressible flow. Hence for the branch point found

with scaled zero Mach number, Cole’s results should have compared favourably

to the findings by Lingwood. However there were obvious discrepancies be-
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tween the two sets of results, with the wave angles corresponding to absolutely

unstable flow differing.

Although briefly considered by, amongst others, Solan, Olek & Toren (1983),

it was not until the early 1990s that interest in instabilities of compressible

flows increased, but the vast majority was focused on mixing layers and shear

flows. The first study into the possible absolute and convective stability of a

compressible flow over a rotating disk was by Turkyilmazoglu, Cole & Gajjar

(2000). The aim was to find the mathematical reasoning behind the differing

results of Lingwood and Cole by considering the compressible flow case. In

addition, they sought to investigate the effects that compressibility has on the

absolute instability of the three-dimensional flow over a rotating disk. It was

found that the restrictions assumed by Lingwood, that the disturbances would

only grow in the radial direction, could not be justified for a three-dimensional

flow. Cole’s analysis was found to be valid as at a fixed location the distur-

bances may grow locally in any direction, not just radially. However, absolute

instability was present in both problem formulations. It was also shown that

in general compressibility has a stabilizing effect on the flow, and wall heating

is found to be destabilizing (with wall cooling having the opposite effect).

Following theoretical work by Hall (1986) and MacKerrell (1987) into the

stabilities of a three-dimensional incompressible flow over a rotating disk, Sed-
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dougui (1990) conducted a non-linear study into the effects of compressibility

on the stationary modes of instability. It was found that compressibility can

have a substantial effect on the stationary viscous modes, as for sufficiently

large Mach numbers they cannot exist. However, when the stationary modes

do exist, the results show that they are similar in form to those found by

MacKerrell for the incompressible case, with any differences being dependent

on the wall temperature and not the compressibility itself.

Turkyilmazoglu has been at the forefront of recent research into the station-

ary and non-stationary modes of instability found for a compressible flow over

a rotating disk. A study into the non-stationary viscous lower branch modes

(see Turkyilmazoglu (2005)) were similar with the findings by Seddougui, in

that he proved that the compressible neutral modes only exist for limited Mach

number, and that there exists a critical frequency value for which no solutions

are found. Again a triple deck asymptotic structure was studied, rather than

using a parallel–flow approximation, and concluded that the linear modes are

stabilized by high wall cooling and destabilized for wall insulation and heat

transfer cases as the local Mach number grows.

However, in a later study (see Turkyilmazoglu (2007)), it was found that

the reverse effect was observed for the evolution of the non-linear modes. By

considering finite amplitudes the non-stationary modes which have negative
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Figure 1.5: Experimental visualisation of the flow over a cone with half angle

ψ = 15o rotating at 670 revolutions per minute. Taken by Kobayashi, Kohama

& Kurosawa (1983).

frequencies are similar to those found by Seddougui for the stationary modes.

But differences were found for the positive frequency waves, especially when

considering wall cooling, where it is shown that non-linearity is destabilizing

for all modes.

The motivation for this thesis is to extend previous work by Hall (1986), Sed-

dougui (1990) and Hussain (2009), to consider the effect of compressibility on
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a rotating cone flow for half angle ψ. This configuration has industrial ap-

plications, such as spinning projectiles and aeroengines. Understanding the

instability mechanisms of the rotating–cone flow will enable us to find ways of

controlling the laminar–turbulent transition within the boundary layer. This

would lead to performance improvements in the aforementioned applications.

For example, for spinning projectiles, being able to control turbulence within

the boundary layer would have a positive effect on control and accurate tar-

geting. In aeroengines it would help fuel efficiency by reducing drag. We

will consider how changes in the cone’s wall temperature effects the stability

characteristics, as well as changes in the local Mach number. A surface suction

along the cone wall will also be considered by introducing a non-zero boundary

condition in the normal direction.

We begin by formulating the mean flow equations, commonly known as the

Kármán equations. Here we will consider the effects of wall temperature, local

Mach number and surface suction on the basic flow profiles. Theoretically,

we would expect changes in these parameters to effect the basic flow profiles

in a similar way to the instability modes, hence it is important to know how

these alter the flow. The linear disturbance equations are then formulated,

from which we identify the upper branch inviscid modes. These are referred

to as the type I modes, where the instabilities captured are those away from
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the cone wall. We study the change in behaviour as the half angle ψ is varied,

as well as the effect of a surface suction. The viscous type II modes are

then considered, which captures the instabilities near to the cone wall. In the

literature the type I modes are said to be caused by a crossflow instability,

and the type II modes cause by a streamline curvature instability. We will

discuss the results in relation to the previous studies into compressible and

incompressible boundary–layer flows over rotating bodies.



Chapter 2

Laminar flow equations

We shall consider a cone placed in an otherwise still compressible fluid, which

rotates about its axis of symmetry with angular velocity Ω∗ (where superscript

* denotes dimensional quantities). The fluid flow is driven by the rotation of

the cone, and we shall take into account the effects of streamline curvature and

Coriolis forces. The angle between the cone’s surface and its axis of symmetry

is defined as the cone half-angle ψ.

The geometry is shown in Figure 2.1 and is formulated using Cartesian

coordinates (X∗, Y ∗, Z∗) with the origin placed at the tip of the cone. This

is then transformed to the orthogonal curvilinear coordinates (x∗, θ, z∗) which

respectively represent a streamwise coordinate, an azimuthal coordinate and

20
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Figure 2.1: Geometrical setup for the rotating cone (taken from Garrett

(2002)).

a surface-normal coordinate. The coordinate transformation is given by

X∗ = x∗ cosψ − z∗ sinψ, (2.1)

Y ∗ = (x∗ sinψ + z∗ cosψ) sin θ, (2.2)

Z∗ = (x∗ sinψ + z∗ cosψ) cos θ; (2.3)

with the scale factors of the orthogonal curvilinear coordinates (x∗, θ, z∗) being

given by hx = hz = 1 and hθ = h∗ = x∗ sinψ + z∗ cosψ, where r∗0 = x∗ sinψ

defines the local surface radius of the cone.

This formulation is consistent with both Garrett (2002) and Hussain (2009),
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who consider the incompressible case of the rotating–cone boundary–layer flow.

This study of the compressible case is a generalisation of work done by Turky-

ilmazoglu (2004) for the particular case of a rotating disk (ψ = 90o).

2.1 The governing equations

As with the incompressible case we use a continuity equation and the Navier–

Stokes equations. As we are considering a compressible fluid these equations

alone are not sufficient, due to the fluid having a non–constant density. Hence

we also require a state equation and an energy equation. The equations are

applied in a reference frame rotating with angular velocity Ω∗ about the X∗-

axis, and are given by

∂ρ∗

∂t
+∇ · (ρ∗u) = 0, (2.4)

Du

Dt
+ 2Ω× u + (Ω×Ω)× r =

1

ρ∗
(∇ (λ∗∇ · u)−∇p∗ (2.5)

+∇

(
µ∗

3∑
j=1

eij

)
,

γM2
∞p = ρT, (2.6)

ρ∗
Dh

Dt
=
Dp∗

Dt
+∇ · (k∗∇T ∗) + µ∗(2e2

11 + 2e2
22 + 2e2

33 (2.7)

+e2
12 + e2

13 + e2
23) + λ∗(∇ · u)2,
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where the Coriolis forcing term 2Ω×u appears due to the rotating frame. Note

that this is in contrast to Garrett (2002) formulation, who uses a stationary

frame and so does not have the Coriolis term.

The vector u = (u∗, v∗, w∗) denotes the velocity flow field and r = (x∗, 0, z∗)

gives the position vector. The parameters given in Equations (2.4)-(2.7) are

defined as: ρ∗ the density; p∗ the pressure; λ∗ the second coefficient of viscosity

related to the bulk viscosity; µ∗ the dynamical viscosity; M∞ the free stream

Mach number; T ∗ the temperature; and h the enthalpy (where h is distinct

from the previously defined scale factors). The heat capacity ratio γ is the ratio

of the heat capacity at constant pressure cp to the heat capacity at constant

volume cv. The parameter k is that associated with the Prandtl number σ,

where kσ = cpµ. The components of the strain tensor eij are given by,

e11 =
∂u∗

∂x∗
,

e12 = e21 =
1

2

(
∂v∗

∂x∗
+

1

h∗
∂u∗

∂θ
− v∗ sinψ

h∗

)
,

e13 = e31 =
1

2

(
∂w∗

∂x∗
+
∂u∗

∂z∗

)
,

e22 =
1

h∗
∂v∗

∂θ
+
w∗ cosψ

h∗
+
u∗ sinψ

h∗
,

e23 = e32 =
1

2

(
∂v∗

∂z∗
+

1

h∗
∂w∗

∂θ
− v∗ cosψ

h∗

)
,

e33 =
∂w∗

∂z∗
.
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The coordinate transform (2.1)-(2.3) applied to the governing Equations (2.4)-

(2.7) leads to the following full governing equations for the flow in orthogonal

curvilinear coordinates,

∂ρ∗

∂t∗
+ u∗

∂ρ∗

∂x∗
+ w∗

∂ρ∗

∂z∗
+ ρ∗

(∂u∗
∂x∗

+
∂w∗

∂z∗

)
+

1

h∗

(
v∗
∂ρ∗

∂θ
+ ρ∗

∂v∗

∂θ

+ ρ∗(u∗ sinψ + w∗ cosψ)
)

= 0, (2.8)

ρ∗
(∂u∗
∂t∗

+ u∗
∂u∗

∂x∗
+
v∗

h∗
∂u∗

∂θ
+ w∗

∂u∗

∂z∗
− v∗2 sinψ

h∗
− 2Ω∗v∗ sinψ

− Ω∗2h∗ sinψ
)

= −∂p
∗

∂x∗
+ λ∗

(∂2u∗

∂x∗2
+

∂2w∗

∂x∗∂z∗
+

1

h∗

( ∂2v∗

∂x∗∂θ

+ sinψ
∂u∗

∂x∗
+ cosψ

∂w∗

∂x∗

)
− sinψ

h∗2

(∂v∗
∂θ

+ u∗ sinψ + w∗ cosψ
))

+
∂

∂x∗

(
2µ∗

∂u∗

∂x∗

)
+

1

h∗
∂

∂θ

(
µ∗
(∂v∗
∂x∗

+
1

h∗
∂u∗

∂θ
− v∗ sinψ

h∗

))
+

∂

∂z∗

(
µ∗
(∂w∗
∂x∗

+
∂u∗

∂z∗

))
, (2.9)
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ρ∗
(∂v∗
∂t∗

+ u∗
∂v∗

∂x∗
+
v∗

h∗
∂v∗

∂θ
+ w∗

∂v∗

∂z∗
+
v∗

h∗
(u∗ sinψ + w∗ cosψ)

+ 2Ω∗(u∗ sinψ + w∗ cosψ)
)

= − 1

h∗
∂p∗

∂θ
+
λ∗

h∗

( ∂2u∗

∂x∗∂θ
+

∂2w∗

∂θ∂z∗

+
1

h∗

(∂2v∗

∂θ2
+ sinψ

∂u∗

∂θ
+ cosψ

∂w∗

∂θ

)
+

∂

∂x∗

(
µ∗
(∂v∗
∂x∗

+
1

h∗
∂u∗

∂θ
− v∗ sinψ

h∗

))
+

1

h∗
∂

∂θ

(
2µ∗
( 1

h∗
∂v∗

∂θ
+
w∗ cosψ

h∗
+
u∗ sinψ

h∗

))
+

∂

∂z∗

(
µ∗
(∂v∗
∂z∗

+
1

h∗
∂w∗

∂θ
− v∗ cosψ

h∗

))
, (2.10)

ρ∗
(∂w∗
∂t∗

+ u∗
∂w∗

∂x∗
+
v∗

h∗
∂w∗

∂θ
+ w∗

∂w∗

∂z∗
− v∗2 cosψ

h∗
− 2Ω∗v∗ cosψ

− Ω∗2h∗ cosψ
)

= −∂p
∗

∂z∗
+ λ∗

( ∂2u∗

∂x∗∂z∗
+
∂2w∗

∂z∗2
+

1

h∗

( ∂2v∗

∂θ∂z∗

+ sinψ
∂u∗

∂z∗
+ cosψ

∂w∗

∂z∗

)
− cosψ

h∗2

(∂v∗
∂θ

+ u∗ sinψ + w∗ cosψ
))

+
∂

∂x∗

(
µ∗
(∂w∗
∂x∗

+
∂u∗

∂z∗

))
+

1

h∗
∂

∂θ

(
µ∗
(∂v∗
∂z∗

+
1

h∗
∂w∗

∂θ
− v∗ cosψ

h∗

))
+

∂

∂z∗

(
2µ∗

∂w∗

∂z∗

)
, (2.11)

γM2
∞p
∗ = ρ∗T ∗, (2.12)
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ρ∗cp

(∂T ∗
∂t∗

+ u∗
∂T ∗

∂x∗
+
v∗

h∗
∂T ∗

∂θ
+ w∗

∂T ∗

∂z∗

)
=
∂p∗

∂t∗
+ u∗

∂p∗

∂x∗
+
v∗

h∗
∂p∗

∂θ

+ w∗
∂p∗

∂z∗
+

1

h∗

( ∂

∂x∗

(
h∗k∗

∂T ∗

∂x∗

)
+

∂

∂θ

(
k∗
∂T ∗

∂θ

)
+

∂

∂z∗

(
h∗k∗

∂T ∗

∂z∗

))
+ µ∗

(
2
(∂u∗
∂x∗

)2

+ 2
( 1

h∗
∂v∗

∂θ
+
w∗ cosψ

h∗
+
u∗ sinψ

h∗

)2

+ 2
(∂w∗
∂z∗

)2

+
(∂v∗
∂x∗

+
1

h∗
∂u∗

∂θ
− v∗ sinψ

h∗

)2

+
(∂w∗
∂x∗

+
∂u∗

∂z∗

)2

+
(∂v∗
∂z∗

+
1

h∗
∂w∗

∂θ
− v∗ cosψ

h∗

)2)
+ λ∗

( 1

h∗

( ∂

∂x∗
(h∗u∗) +

∂v∗

∂θ
+

∂

∂z∗
(h∗w∗)

)2)
. (2.13)

The first stage of this study is to solve the steady form of the above equations

with appropriate boundary conditions to obtain the steady, laminar flow pro-

files for each half-angle ψ. These are no slip on the cone wall, the streamwise

velocity component tending to zero and a Coriolis balance enforce both condi-

tions at the edge of the cone boundary layer. Mathematically, these are given

by

u∗ = 0, v∗ = 0, w∗ = 0, T ∗ = T ∗w on z∗ = 0,

u∗ → 0, v∗ → −x∗Ω∗ sinψ, T ∗ → T∞ as z∗ →∞. (2.14)

where T ∗w is the dimensional temperature at the cone’s wall. Note that an

isothermal boundary condition for the wall temperature has been chosen. In

Seddougui (1990) on a compressible flow over a rotating disk, she also considers
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an adiabatic condition where ∂T
∂z

= 0 at z = 0. However, as we are looking

to consider the effects of a change in wall temperature, we have chosen the

isothermal condition. We will return to the form of these boundary conditions

in the presence of surface mass flux in Section 2.4.

Equations (2.8)-(2.13) are then non-dimensionalised. The characteristic length

along the cone surface, l∗, is used to scale any length quantities. The surface

normal coordinate is further scaled using the modified boundary layer thick-

ness. Hence we arrive at scaled spatial variables

x∗ = l∗x, z∗ = l∗R−
1
2η, (2.15)

where R is the Reynolds number given by

R =
ρ∗l∗2Ω∗ sinψ

µ∗
. (2.16)

The velocity quantities are then scaled by

u∗ = (u∗, v∗, w∗) = l∗Ω∗ sinψ(u(x, η), v(x, η), R−
1
2w(η)), (2.17)

and the pressure is scaled using

p∗ = ρ∗Ω∗2l∗2 sin2 ψp(x, η). (2.18)

The length scale allows us to define the free–stream Mach number by

M∞ =
Ωl

(γRgasT∞)
1
2
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where Rgas is the gas constant with Rgas = cp − cv. This free stream value is

used to scaled the Mach number. Likewise, all other variables are scaled using

their free stream values. Again, this method is consistent with Turkyilmazoglu

(2004) in the particular case of ψ = 90o.

To obtain the governing steady axisymmetric mean flow equations, we neglect

any dependence on time and the azimuthal coordinate θ and apply our scalings

to Equations (2.8)-(2.13). We then expand in terms of R and dismiss terms

of O(R−
1
2 ) due to the assumption of large Reynolds number. Physically this

limits the analysis to high rotation rates and/or large characteristic length

scales relative to the boundary layer thickness and is entirely appropriate.

This leads to the reduced system of equations

u
∂ρ

∂x
+ w

∂ρ

∂η
+ ρ
(∂u
∂x

+
∂w

∂η

)
+
ρu

x
= 0, (2.19)

ρ
(
u
∂u

∂x
+ w

∂u

∂η
− v2

x
− 2v − x

)
= −∂p

∂x
+

∂

∂η

(
µ
∂u

∂η

)
, (2.20)

ρ
(
u
∂v

∂x
+ w

∂v

∂η
+
uv

x
+ 2u

)
=

∂

∂η

(
µ
∂v

∂η

)
, (2.21)

cotψ
(v2

x
+ 2v + x

)
=
∂p

∂η
, (2.22)

γM2
∞p = ρT, (2.23)

ρ
(
u
∂T

∂x
+ w

∂T

∂η

)
= M2

∞(γ − 1)
(
u
∂p

∂x
+ w

∂p

∂η
+ µ
((∂u

∂η

)2

(2.24)

+
(∂v
∂η

)2))
+

∂

∂η

(
k
∂T

∂η

)
.
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subject to the following boundary conditions

u = 0, v = 0, w = 0, on η = 0,

u→ 0, v → −x sinψ as η →∞. (2.25)

ρ, T, µ→ 1, p→ 1

γM2
∞

as η →∞.

2.2 Solution of the governing equations

To proceed in reducing the equations to a von Kármán type similarity solution

we make further assumptions. We let the fluid satisfy Chapman’s viscosity

law, that is µ = CT for some constant C which is found experimentally.

This is then used to remove the density terms from the equations using a

Dorotonitsyn-Howarth transformation, shown by Stewartson (1964) and given

by

y = C−
1
2

∫ η

0

ρdη. (2.26)

We note that in previous work, notably Seddougui (1990), the constant C

remains in the analysis throughout. However, when results are presented no

value is given for C and it is assumed that the value C = 1 is used. This

is justified in the conclusions section of this thesis, and hence we set C = 1

throughout the analysis presented here.
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The velocity and pressure quantities are then further scaled using

(u, v, w, p) = (xU(y), xV (y),W (y), (γM2
∞)−1) (2.27)

We introduce a stream function satisfying Equation (2.4), and given by

U =
dΨ

dy
= Ψ

′
(y), (2.28)

W = −C1/2T
(

2Ψ + xΨ
′ ∂y

∂x

)
. (2.29)

Applying this to Equations (2.19)-(2.24) leads to the generalised set of von

Kármán equations for the compressible flow over a rotating cone, given by

Ψ
′′′

= Ψ
′2 − 2ΨΨ

′′ − (V + 1)2, (2.30)

V
′′

= 2(V + 1)Ψ
′ − 2ΨV, (2.31)

∂2T

∂y2
+ 2σΨ

∂T

∂y
− xσΨ

′ ∂T

∂x
+ (γ − 1)σx2M2

∞(Ψ
′′2 + V 2) = 0, (2.32)

subject to the boundary conditions

Ψ(0) = Ψ
′
(0) = Ψ(∞) = V (0) = V (∞) + 1 = T (∞)− 1 = 0. (2.33)

Note that a prime indicates a spatial derivative with respect to y, the trans-

formed normal variable. We consider solving the coupled ordinary differen-

tial equations (2.30)-(2.31) together with the boundary conditions (2.33). An

implicit fourth-order Runge-Kutta integration method is used to solve the
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Figure 2.2: Solution of Ψ(--), U(-), −V (..)

ODEs. Figure 2.2 shows the solution for the stream function and the stream-

wise and negative azimuthal components of the steady laminar flow velocity

in the boundary layer of a rotating cone. This is in agreement with the in-

compressible flow case (Lingwood (1997); Hussain (2009)) due to the removal

of the density terms via the Dorotonitsyn-Howarth transformation. However,

we will recover the effects of compressibility in §2.3.

In addition to the usual velocity von Kármán equations (2.30)-(2.31), we also

have an energy equation (2.32). This contains the extra parameters we must

consider due to the effects of compressibility. To proceed further we rewrite
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this partial differential equation (PDE) as two ordinary differential equations

(ODEs) via the temperature relation originally used by Riley (1964), but used

throughout the literature, given by

T = 1− γ − 1

2
M2

xf(y) + (Tw − 1)q(y). (2.34)

Here f is a viscous dissipation quantity, q defines a heat conduction term and

Mx is the local Mach number defined by Mx = x sinψM∞. Then (2.32) is

expressed as

f
′′

+ 2σΨf
′ − 2σΨ

′
f =

2σ(Ψ
′′2 + V

′2)

sin2 ψ
(2.35)

q
′′

+ 2σΨq
′
= 0 (2.36)

We note that Equation (2.36) can be solved analytically, with the solution

q(y) =

∫∞
y
e−2σ

∫ y
0 ψdydy∫∞

0
e−2σ

∫ y
0 ψdydy

(2.37)

The boundary conditions for these ODEs are now considered. The free flow

uniform temperature from the boundary equations given in Equation (2.33),

along with the heat transfer at the wall, leads to the boundary conditions

f(0) = f(∞) = q(0)− 1 = q(∞) = 0. (2.38)

Using the numerical solutions shown in Figure 2.2 we next solve the ODEs

(2.35)-(2.36) subject to the boundary conditions (2.33) and (2.38). We assume
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the compressible fluid to be air, which leads to the choice of σ = 0.7 and

γ = 1.4.

Figure 2.3 shows the temperature distributions for several cases of constant

local Mach number with varying wall temperature, which shows agreement

with Turkyilmazoglu, Cole & Gajjar (2000) for Mx = 1. The effect of the

quadratic local Mach number in (2.34) is clear. For Mx = 1 the temperature

distributions all tend to 1 fairly linearly, whereas in the extreme case given

where Mx = 8, all profiles grow to a maximum before settling back to 1.

Figure 2.4 shows the temperature distributions for several cases of constant

wall temperature with varying local Mach number. Again, it is the local Mach

number which is the more dominant parameter. The change in wall tempera-

ture merely causes a shift upwards in temperature as expected from Equation

(2.34). However, a change in Mx causes a large change in the profiles. For

example, near the wall a substantial difference in the temperature can be seen

for say Mx = 2 and Mx = 10.

It is important to note that these laminar flow temperature profiles will play

an important role during the stability analysis in later chapters. A change in

value of the wall temperature or local Mach number will be seen to effect the

stability characteristics of the flow.
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Figure 2.3: Varying wall temperature, increasing vertically from Tw = 0− 2 in

0.4 increments, for constant local Mach numbers Mx.
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Figure 2.4: Varying local Mach number, increasing vertically from Mx = 0−10

in increments of 2, for constant wall temperatures Tw.
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Figure 2.5: Numerical solution for (a) f(-), f ′(--) and (b) q(-), q′(--).
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2.3 Physical interpretation

To recover the dimensionless spatial quantity z from which we originally started,

we invert the transformation (2.26) used to eliminate the density terms and

make use of the temperature relation given by Equation (2.34).

By defining R = sinψR90, where R90 is the Reynolds number in the disk

case and set to unity without loss of generality, we obtain

z = (sinψ)−1/2
(
y − γ − 1

2
M2

x

∫ y

0

fdy + (Tw − 1)

∫ y

0

qdy
)
.

This reintroduces several physical parameters that were originally scaled out,

namely wall temperature, cone half-angle and local Mach number, and facili-

tates a study of the physical effects of compressibility.

Figure 2.7 shows the effect of a change in local Mach number on the laminar

flow profiles for Tw = 1. Similarly, Figure 2.8 shows the change brought by a

change in the wall temperature for Mx = 1. It is shown that compressibility

has a stretching effect on the flow profiles due to the quadratic local Mach

number term, with the wall temperature controlling the magnitude of the heat

conduction integral term. The maximum streamwise velocity component U

is seen to be delayed by an increase in either the local Mach number or wall

temperature, and the azimuthal component V also sees a delay in tending to

1 due to an increase in either value.
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Figure 2.6: Solution of U(-), V (--) and W (.-), for ψ = 90o.

A low wall temperature produces similar results to the laminar flow profiles

found in Figure 2.6, whereas for an increased wall temperature the W profile is

seen to differ, which may suggest wall heating to have a destabilising effect on

the flow. This is consistent with previous investigations Turkyilmazoglu, Cole

& Gajjar (2000) and will be considered further during the stability analysis.
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Figure 2.7: Physical laminar flow profiles U(-), V (--), W (..) for ψ = 40o

(uppermost) – 90o , Tw = 1 with (a) Mx = 0.5 and (b) Mx = 6.
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Figure 2.8: Physical laminar flow profiles U(-), V (--), W (..) for ψ = 40o

(uppermost) – 90o , Mx = 1 with (a) Tw = 0.5 and (b) Tw = 3.
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2.4 The effect of mass flux on the laminar flow

solution

Introducing a mass flux through the cone surface causes a change in the bound-

ary conditions (2.14). We introduce a suction parameter ā which replaces the

zero boundary condition on the surface in the surface normal coordinate di-

rection. This leads to the revised velocity boundary conditions of

u = 0, v = 0, w =
ā

sinψ
, on η = 0,

u→ 0, v → −x sinψ as η →∞. (2.39)

and modifies the von Kármán boundary conditions 2.33 as follows

Ψ(0)− a

sinψ
= Ψ

′
(0) = Ψ(∞) = V (0) = V (∞) + 1 = T (∞)− 1 = 0, (2.40)

where a is the modified suction parameter a = −ā
2C1/2Tw

, and is defined for

−1 6 a 6 1.

Figure 2.9 shows the plots for a uniform suction along the surface of the

cone, for various value of half–angle ψ and suction parameter a, with fixed wall

temperature Tw = 0.5 and C set to unity. The ψ-dependence arises through

the normal velocity boundary condition (2.40), and is necessary to ensure a

particular value of a represents the same physical surface mass flux across all ψ.

Whilst the half angle is shown to have an effect on the wall normal component
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W , the given physical velocity components U and V are relatively insensitive

to this change. Suction is seen to narrow the boundary layer, as would be

expected, and also reducing the magnitude of crossflow velocity. Both of these

are expected to have a stabilising effect, as we shall study in later chapters.
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Figure 2.9: Varying suction parameter from a = 0.2 to a = 1 (uppermost) in

increments of 0.2, for cone half angles ψ, where U(-), V (--) and W (.-).



Chapter 3

Inviscid type I modes

3.1 Linear perturbation equations

To begin the stability analysis we impose an infinitesimally small perturbation

field on the governing equations (2.8)-(2.13). Hence the dimensional quantities

become

u→ u∗ + û, (3.1)

p∗ → p∗ + p̂, (3.2)

ρ∗ → ρ∗ + ρ̂, (3.3)

T ∗ → T ∗ + T̂ , (3.4)

44
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where û, p̂, ρ̂, T̂ are dimensional perturbation quantities. We non–dimensionalise

using

û = l∗Ω sinψ(ũ, ṽ, w̃), (3.5)

p̂ = ρ∗Ω∗2l∗2 sin2 ψp̃, (3.6)

ρ̂ = ρ∞ρ̃, (3.7)

T̂ = T∞T̃ , (3.8)

where ũ, ṽ, w̃, p̃, ρ̃, T̃ are the relevant non–dimensional perturbation quantities.

We expand (2.8)-(2.13) and linearise with respect to the perturbation terms,

leading to the full linear perturbation equations

(
xu

∂

∂x
+
xv

h

∂

∂θ
+R−

1
2w

∂

∂z
+ u+R−

1
2
∂w

∂z
+
xu sinψ

h
(3.9)

+
R−

1
2w cosψ

h

)
ρ̃+

(∂ũ
∂x

+
1

h

∂ṽ

∂θ

)
ρ+

(∂ρ
∂x

+
ρ sinψ

h

)
ũ

+
(∂ρ
∂z

+ ρ
∂

∂z
+
ρ cosψ

h

)
w̃ = 0,

ρ
{(
xu

∂

∂x
+
xv

h

∂

∂θ
+R−

1
2w

∂

∂z
+ u
)
ũ− 2

(v sinψ

h
+ 1
)
ṽ + xw̃

∂u

∂z

}
(3.10)

+ρ̃
(
xu2 +R−

1
2xw

∂u

∂z
− x2v2 sinψ

h
− 2xv − h

sinψ

)
= −∂p̃

∂x

+
1

R

{
2
∂

∂x

(
T
∂ũ

∂x
+ T̃ u

)
+

1

h

∂

∂θ

(
T
(∂ṽ
∂x

+
1

h

∂ũ

∂θ
− ṽ sinψ

h

)
+T̃
(
v − xv sinψ

h

))
+

∂

∂z

(
T
(∂w̃
∂x

+
∂ũ

∂z

)
+ T̃ x

∂u

∂z

)}
,
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ρ
{(
xu

∂

∂x
+
xv

h

∂

∂θ
+R−

1
2w

∂

∂z
+
xu sinψ

h
+
R−

1
2w cosψ

h

)
ṽ (3.11)

+
(
w̃x

∂

∂z
+
ũx sinψ

h
+
w̃x cosψ

h
+ ũ
)
v + 2(ũ+ w̃ cotψ)

}
+ρ̃
{(
R−

1
2xw

∂

∂z
+ xu+

x2u sinψ

h
+
R−

1
2w cosψ

h

)
v

+2(xu+R−
1
2w cotψ)

}
=
−1

h

∂p̃

∂θ
+

1

R

{ ∂

∂x

(
T
(∂ṽ
∂x

+
1

h

∂ũ

∂θ
− ṽ sinψ

h

)
+T̃
(
v − xv sinψ

h

))
+

2

h2

∂

∂θ

(
T
(∂ṽ
∂θ

+ ũ sinψ + w̃ cosψ
)

+T̃
(
xu sinψ +R−

1
2w cosψ

))
+

∂

∂z

(
T
(∂ṽ
∂z

+
1

h

∂w̃

∂θ
− ṽ cosψ

h

)
+T̃
(
x
∂v

∂z
− xv cosψ

h

))}
,

ρ
{(
xu

∂

∂x
+
xv

h

∂

∂θ
+R−

1
2w

∂

∂z
+R−

1
2
∂w

∂z

)
w̃ (3.12)

−2
(xv cosψ

h
+ cotψ

)
ṽ
}

+ ρ̃
(
R−1w

∂w

∂z
− x2v2 cosψ

h
− 2xv cotψ

−h cotψ

sinψ

)
= −∂p̃

∂z
+

1

R

{ ∂

∂x

(
T
(∂w̃
∂x

+
∂ũ

∂z

)
+ T̃ x

∂u

∂z

)
+

1

h

∂

∂θ

(
T
(∂ṽ
∂z

+
1

h

∂w̃

∂θ
− ṽ cosψ

h

)
+ T̃

(
x
∂v

∂z
− xv cosψ

h

))
+2

∂

∂z

(
T
∂w̃

∂z
+R−

1
2 T̃
∂w

∂z

)}
,

γM2
∞p̃ = ρ̃T + ρT̃ , (3.13)
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ρ

M2
∞(γ − 1)

(
ux
∂T̃

∂x
+ ũ

∂T

∂x
+
xv

h

∂T̃

∂θ
+R−

1
2w

∂T̃

∂z
+ w̃

∂T

∂z

)
(3.14)

+
ρ̃

M2
∞(γ − 1)

(
xu
∂T

∂x
+R−

1
2w

∂T

∂z

)
= xu

∂p̃

∂x
+ ũ

∂p

∂x
+
xv

h

∂p̃

∂θ

+R−
1
2w

∂p̃

∂z
+ w̃

∂p

∂z
+

1

hσRM2
∞(γ − 1)

{ ∂

∂x

(
h
∂T̃

∂x

)
+
∂2T̃

∂θ2

+
∂

∂z

(
h
∂T̃

∂z

)}
+
µ

R

{
2u
∂ũ

∂x
+

2

h2

(
(xu sinψ +R−

1
2w cosψ)

∂ṽ

∂θ

+(xu sinψ +R−
1
2w cosψ)ũ sinψ + (xu sinψ +R−

1
2w cosψ)w̃ cosψ)

+2w
∂w̃

∂z
+ 2R−

1
2
∂w

∂z

∂w̃

∂z
+
(
v − xv sinψ

h

)∂ṽ
∂x

+
(v
h
− xv sinψ

h2

)∂ũ
∂θ

+
(xv sin2 ψ

h
− v sinψ

h

)
ṽ + x

∂u

∂z

∂ũ

∂z
+ x

∂u

∂z

∂w̃

∂x
+
(
v + x

∂v

∂z

−xv cosψ

h

)∂ṽ
∂z

+
(v
h

+
x

h

∂v

∂z
− xv cosψ

h2

)∂w̃
∂θ

+
(xv cos2 ψ

h

−x cosψ

h

∂v

∂z
− v cosψ

h

)
ṽ
}

+
λ

Rh

{
xuũ sin2 ψ + 2huũ sinψ

+xu sinψ
∂ũ

∂x
+ xu sinψ

∂ṽ

∂θ
+ xuw̃ sinψ cosψ +R−

1
2wũ sinψ cosψ

+R−
1
2hũ sinψ

∂w

∂z
+ xuh sinψ

∂w̃

∂z
+ hu

∂ũ

∂x
+ hu

∂ṽ

∂θ
+ uhw̃ cosψ

+uh2∂w̃

∂z
+R−

1
2w cosψ

∂ũ

∂x
+R−

1
2h
∂w

∂z

∂ũ

∂x
+R−

1
2w cosψ

∂ṽ

∂θ

+R−
1
2h
∂w

∂z

∂ṽ

∂θ
+R−

1
2ww̃ cos2 ψ +R−

1
2hw̃ cosψ

∂w

∂z

+R−
1
2wh cosψ

∂w̃

∂z
+R−

1
2h2∂w

∂z

∂w̃

∂z

}
.

Note that as well as forming the basis of the following section, these pertur-

bation equations will also be used in the viscous analysis in Chapter 4.
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3.2 Type I perturbation functions

To begin the inviscid type I mode analysis we consider the previous incom-

pressible analysis by Hall (1986) for the rotating disk and Hussain (2009) for

the rotating cone, along with the compressible rotating disk flow analysis by

Turkyilmazoglu, Cole & Gajjar (2000). We seek a normal–mode solution and

scale the inviscid mode wavelengths, α and β in the x and θ directions respec-

tively, by the boundary layer–thickness which is O(R−
1
2 ).

We choose to define a small parameter ε = R−
1
6 following the aforemen-

tioned previous work, which is entirely appropriate as for an arbitrary Reynolds

number domain R ∈ (104, 107), ε ∈ (0.068, 0.215) and ε → 0 as R → ∞. We

let the perturbation velocity functions depend on the wall normal coordinate

z only. Then the perturbations are given by

ũ = u(z)exp
( i
ε3

{∫ x

α(x, ε)dx+ β(ε)θ
})
, (3.15)

with similar expressions for all other perturbations ṽ, w̃, p̃, ρ̃, T̃ . The stream-

wise and azimuthal wavenumbers are expanded as

α = α0 + εα1 + ..., (3.16)

β = β0 + εβ1 + .... (3.17)

Following Hall (1986) we restrict ourselves to neutral disturbances and find α

and β such that the flow is neutrally stable at position x, hence α, β ∈ R. Then
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from the experimental study by Gregory, Stuart & Walker (1955), Hall (1986)

states that there is an inviscid layer of thickness O(ε3). However to satisfy

the no slip condition on the cone’s wall, there must exist a viscous layer. By

balancing convection and diffusion terms in the perturbation equations the

viscous layer is found to be O(ε4), and will be considered in §3.4.

In the inviscid layer we expand the perturbation functions as

u = u0(η) + εu1(η) + ..., (3.18)

v = v0(η) + εv1(η) + ..., (3.19)

w = w0(η) + εw1(η) + ..., (3.20)

p = p0(η) + εp1(η) + ..., (3.21)

ρ = ρ0(η) + ερ1(η) + ..., (3.22)

T = T0(η) + εT1(η) + ..., (3.23)

where η = zε−3. Here ∂
∂x
, ∂
∂θ

and ∂
∂z

are effectively transformed to

∂

∂x
7→ ∂

∂x
+

i

ε3
{α0 + εα1 + ...}, (3.24)

∂

∂θ
7→ i

ε3
{β0 + εβ1 + ...}, (3.25)

∂

∂z
7→ 1

ε3
∂

∂η
. (3.26)
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3.3 Leading order eigenmodes

Substituting the expansions (3.15)–(3.23) into the perturbation equations (3.9)–

(3.14) and equating terms of O(ε−3) leads to the leading–order eigenmodes

given by

iρ0U + iρ
(
u0α0 +

v0β0

x sinψ

)
+ w0

∂ρ

∂η
+ ρw′0 = 0, (3.27)

iρu0U + ρxw0u
′ = −iα0p0, (3.28)

iρv0U + ρxw0v
′ = − iβ0p0

x sinψ
, (3.29)

iρw0U = −p′0, (3.30)

ρ

M2
∞(γ − 1)

(
iT0U + w0

∂T

∂η

)
= ip0U + w0

∂p

∂η
, (3.31)

where U = α0xu+ β0v
sinψ

.

The quantities u0, v0, p0 and T0 can be eliminated from the above equations

and we find an equation in w0 given by

ρUw′′0 + (2ρ′U − ρU
′
)w′0 + (ρ′′U − ρU

′′
− ρUγ2

0)w0 = 0 (3.32)

The quantity γ2
0 = α2

0 +
β2
0

x2 sin2 ψ
is interpreted as the effective wave number

and U as the effective velocity profile, as previously discussed by Hall (1986)

for the rotating disk case. Then Equation (3.32) is the compressible Rayleigh

equation which dictates the leading-order stability of the flow.
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Figure 3.1: The effective velocity U(−) and it’s second derivative U
′′
(−−) for

ψ = 40o(uppermost at z = 10)−90o, where Tw = Mx = 1
2
.

We proceed by solving the eigenvalue problem (3.32) subject to the bound-

ary conditions at the cone wall and in the free–stream given by

w0 = 0 at z = 0,∞, (3.33)

where there exists a singularity at that point due to the effective velocity having

a root in the domain. We use a numerical method of central finite differences

with z = z̄ such that U = U
′′

= 0 at this point, known as the location of

the critical layer. This condition requires the effective velocity profile U to
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Figure 3.2: Diagram showing the direction of wave numbers and the effective

velocity, taken from Garrett, Hussain & Stephen (2009).

have a root and inflexion point at z = z̄. To interpret the results physically

we consider the spiral vortices that wrap around the cone at an angle to the

cone meridian. As shown in Figure 3.2 the normal to these spiral vortices is

in the direction of the effective velocity and is at an angle φ to the streamwise

position vector, which defines our waveangle φ. The wavenumbers for neutrally

stable modes are given by γ0.

Figures 3.3-3.5 show the profile of w0 for given values of Tw and Mx, with

varying ψ. The profile shape is consistent with that of the incompressible case

(Hussain (2009)), with a larger value for the velocity peak. This is physically

plausible because a non–constant density would suggest that any disturbance
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would grow to be greater than in an incompressible fluid before being sup-

pressed. In Figure 3.6 the effect of an active suction parameter is shown.

Including a non-zero value for a is seen to have a relatively large effect on the

w0 profile, however an increase in a is then seen to cause little change.

As the suction is turned on the leading–order wall normal perturbation

quantity w0 quickly reduces in magnitude, almost immediately eliminating the

effect of the perturbation. This suggests that suction along the cone wall can

be used as a stabilising mechanism, which is consistent with previous findings

by Gregory & Walker (1960), Lingwood (1997).

Figure 3.7 presents the leading–order wavenumber and waveangle predic-

tions for the inviscid neutrally stable modes, under several different parameter

combinations. The wavenumbers are consistent with the incompressible case

in that as the half angle grows the wavenumber grows. For the waveangles,

as the half angle increases the spiral vortices deviate further from the stream-

wise direction, which is in agreement with the incompressible case (Garrett,

Hussain & Stephen (2009)), due to an increased rotational shear force on the

vortex spirals as the gradient of the cone’s surface grows as ψ increases.
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Figure 3.3: w0 for ψ = 40o(uppermost)− 90o where Tw = 1
2
,Mx = 1
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Figure 3.4: w0 for ψ = 40o(uppermost)− 90o where Tw = 1
2
,Mx = 1
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Figure 3.5: w0 for ψ = 40o(uppermost)− 90o where Tw = 1,Mx = 1
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Figure 3.6: w0 for ψ = 60o,Tw = 1
2
,Mx = 1 with suction parameter a =

0(uppermost), 0.1, 0.2.
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3.4 Wall layer solution

We now consider the leading–order inviscid mode solution for the wall layer,

which is present to preserve the no slip boundary condition on the cone’s

surface. The surface–normal coordinate now takes the form ξ = ε−4z, where

ξ is related to the original surface–normal coordinate by η = εξ. On the cone

wall, the basic flow quantities satisfy the no–slip condition, with derivatives

linear in ξ such that

u = εu′(0)ξ, (3.34)

v = εv′(0)ξ, (3.35)

w = εw′(0)ξ. (3.36)

We expand the perturbation quantities within the wall layer as

ū = U0(ξ) + εU1(ξ) + .., (3.37)

v̄ = V0(ξ) + εV1(ξ) + .., (3.38)

w̄ = εW0(ξ) + ε2W1(ξ) + .., (3.39)

p̄ = εP0(ξ) + ε2P1(ξ) + .., (3.40)

ρ̄ = %0(ξ) + ε%1(ξ) + .., (3.41)

T̄ = T0(ξ) + εT1(ξ) + ... (3.42)
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We substitute these expansions into the perturbation equations (3.9)-(3.14)

and equate terms of O(ε−3) for the continuity equation, terms of O(ε−2) for

the streamwise velocity, azimuthal velocity and energy equations, and O(ε−1)

for the surface-normal velocity equation. This leads to

ρ
(
iα0U0 +

iβ0V0

x sinψ
+W ′

0

)
+W0

∂ρ

∂ξ
= 0, (3.43)

ρ
(
ixu′(0)ξα0U0 +

iv′(0)ξβ0U0

sinψ
+ xu′(0)W0

)
(3.44)

= −iα0P0 + U ′0
∂T

∂ξ
+ TU ′′0 ,

ρ
(
ixu′(0)ξα0V0 +

iv′(0)ξβ0V0

sinψ
+ xv′(0)W0

)
(3.45)

= − iP0β0

x sinψ
+ V ′0

∂T

∂ξ
+ TV ′′0 ,

ρ
(
ixu′(0)ξα0W0 +

ixv′(0)ξβ0W0

x sinψ

)
= −P ′2 + 2W ′

0

∂T

∂ξ
+ 2TW ′′

0 , (3.46)

ρ

M2
∞(γ − 1)

(
iu′(0)ξxα0T0 +

iv′(0)ξβ0T0

sinψ
+W1

∂T

∂ξ

)
= W1

∂p

∂ξ
+ (3.47)

1

x sinψσM2
∞(γ − 1)

(
cosψT ′2 + x sinψT ′′0

)
+ xµ

(∂u
∂ξ
U ′0 +

∂v

∂ξ
V ′0

)
.

Considering d
dξ

(α0 × (3.45)) + d
dξ

( β0
x sinψ

× (3.46)), and eliminating W0 by using

(3.43), we obtain

(
T
(
α0U0 +

β0V0

x sinψ

)′)′′
(3.48)

− iξ
(
α0xu

′(0) +
β0v

′(0)

sinψ

)( 1

T

(
α0U0 +

β0V0

x sinψ

))′
= 0.
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We will now move onto the next–order problem in the inviscid zone and will

discuss the application of this equation in relation to the next–order equations.

3.5 First order eigenmodes

We next consider the first–order relations in the inviscid zone. We follow the

method of §3.3 and expand the perturbation equations (3.9)-(3.14) to O(ε−2)

to find

ixu(ρ0α1 + ρ1α0) +
iv

sinψ
(ρ0β1 + ρ1β0) + iρ(u0α1 + u1α0) (3.49)

+
iρ

x sinψ
(v0β1 + v1β0) + w1ρ

′ + ρw′1 = 0,

iρxu(α1u0 + α0u1) +
iρv

sinψ
(β1u0 + β0u1) + ρxw1u

′ (3.50)

= −i(α0p1 + α1p0),

iρxu(α1v0 + α0v1) +
iρv

sinψ
(β1v0 + β0v1) + ρw1xv

′ (3.51)

=
−i

x sinψ
(β0p1 + β1p0),

iρxu(α1w0 + α0w1) +
iρv

sinψ
(β1w0 + β0w1) = −p′1, (3.52)

ρ

M2
∞(Γ− 1)

(
iux(α1T0 + α0T1) +

iv

sinψ
(β0T1 + β1T0) + w1

∂T

∂η

)
(3.53)

= ixu(α1p0 + α0p1) +
iv

sinψ
(β0p1 + β1p0) + w1

∂p

∂η
.

These are the equivalent equations to (3.27)-(3.31) for the disturbance quan-
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tities (u1, v1, w1, p1, ρ1, T1), where we find the introduction of inhomogenous

cross–terms related to the leading–order quantities (u0, v0, w0, p0, ρ0, T0). The

quantities u1, v1, p1 and T1 are eliminated as in the leading order case. We use

the leading–order continuity equation (3.27) to eliminate u0, and the leading–

order azimuthal velocity equation (3.29) to eliminate v0. This leads to the

governing equation for the first–order eigenfunction given by

ρUw′′1 + (2ρ′U − ρU
′
)w′1 + (ρ′′U − ρU

′′
− ρUγ2

0)w1 (3.54)

=
(
β1 −

α1β0

α0

) ρv′

sinψ
w′0 +

(
ρ
(
α1xu+

β1v

sinψ

)
γ2

0

+ρU
(
α0α1 +

β0β1

x2 sin2 ψ

)
+
(
β1 −

α1β0

α0

)( ρv′′

sinψ
− ρ′′v

sinψ
+

ρβ0U

x2 sin2 ψ

))
w0.

From considering the incompressible flow case studied by Hussain (2009), the

next step is to asymptotically match the leading order eigensolution in the

viscous wall layer (3.48) to the first–order solution in the inviscid zone (3.54).

However, this method cannot be followed for the compressible flow case. Hus-

sain (2009) uses the substitution

φ =
(
α0U0 + β0V0/r

)′
, (3.55)
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and let τ = γξ, where

γ =
(
i(α0rU

′(0) + β0V
′(0))

) 1
3
. (3.56)

This transforms the incompressible flow version of equation (3.48) into the

ordinary differential equation

φττ − τφ = 0. (3.57)

This has an analytic solution given by an Airy function which is then matched

to the incompressible flow version of Equation (3.54). Due to the complica-

tion of the added temperature distribution terms in Equation (3.48), such a

substitution is not possible. As no adequate alternative has been found, the

problem is left open and the equations are included for completeness.

There is a gap in the literature on this problem for theoretical studies into

compressible flows over rotating boundary layers. It is suggested that this

problem is revisited in a later study to find a way of extending the method for

the incompressible case such that a solution can be found when taking into

account the added terms found in the compressible analysis.



Chapter 4

Viscous Type II Modes

In this chapter we consider a triple deck structure to study the stability of

the stationary viscous modes, following the method used for the compressible

rotating disk case by Seddougui (1990). Rather than the previous condition

for the inviscid modes, where we required U = U
′′

= 0 at the location of the

critical layer, the condition used for the viscous stationary modes is that at

leading order the effective wall shear is given by αu′x sinψ + βv′ = 0. This

will be discussed in more detail as we progress.

We base the analysis around the small parameter

ε = R−
1
16 , (4.1)

which as in §3 is entirely suitable as we are considering a high Reynolds–

62
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Figure 4.1: Diagram of the triple–deck structure.

number flow and ε → 0 as R → ∞. Then the upper, main and lower decks

are of thickness O(ε4), O(ε8) and O(ε9) respectively. The triple deck structure

follows that found by Smith (1979) for the Blasius flow, and is shown in Figure

4.1. The triple deck structure is used to remove a singularity caused by flow

separation. The separation occurs when the part of the boundary layer closest

to the cone wall reverses in flow direction, caused by an adverse pressure

gradient. The fluid then becomes detached from the cone wall, leading to the

spiral vortices seen experimentally. The upper deck is inviscid and irrotational

and creates a pressure gradient which drives the flow in the lower deck. The
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main deck is also inviscid with no pressure change across the layer. All viscous

effects are contained in the lower deck, which has to satisfy the no slip condition

on the surface of the cone.

We seek a stationary normal modes solution for the axial flow perturbation

given by

ũ = u(Z)exp
( i
ε4

{∫ x

α(x, ε)dx+ β(ε)θ
})

(4.2)

with similar expressions for the other perturbations ṽ, w̃, p̃, ρ̃, T̃ . The stream-

wise and azimuthal wavenumbers are expanded as

α = α0 + ε2α1 + ε3α2 + ..., (4.3)

β = β0 + ε2β1 + ε3β2 + ..., (4.4)

where the O(ε) terms are zero. As with the inviscid modes, we require α, β ∈ R

such that the flow is neutrally stable at position x.
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4.1 Upper deck solutions

We let z = ε4Z so that Z is O(1) in the upper deck. We expand the perturba-

tions in the form

ū = ε3uU0 (Z) + ε4uU1 (Z) + ..., (4.5)

v̄ = ε3vU0 (Z) + ε4vU1 (Z) + ..., (4.6)

w̄ = ε3wU0 (Z) + ε4wU1 (Z) + ..., (4.7)

p̄ = ε3pU0 (Z) + ε4pU1 (Z) + ..., (4.8)

ρ̄ = ε3ρU0 (Z) + ε4ρU1 (Z) + ..., (4.9)

T̄ = ε3TU0 (Z) + ε4TU1 (Z) + .... (4.10)

Substituting these into the perturbation equations (3.9)-(3.14) and equating

terms of O(ε−1) gives the leading–order equations

ixuα0ρ
U
0 +

ivβ0ρ
U
0

sinψ
+ iρα0u

U
0 +

iρβ0v
U
0

x sinψ
+
dρ

dZ
wU0 + ρ

dwU0
dZ

= 0, (4.11)

iρxuα0u
U
0 +

iρvβ0u
U
0

sinψ
+ ρxu′wU0 = −iα0p

U
0 , (4.12)

iρxuα0v
U
0 +

iρvβ0v
U
0

sinψ
+ ρxv′wU0 = − iβ0p

U
0

x sinψ
, (4.13)

iρxuα0w
U
0 +

iρvβ0w
U
0

sinψ
= −dp

U
0

dZ
, (4.14)

ρ

M2
∞(γ − 1)

(
iuxα0T

U
0 +

ivβ0T
U
0

sinψ
+
dT

dZ
wU0

)
− dp

dZ
wU0 (4.15)

= ixuα0p
U
0 +

iβ0vp
U
0

sinψ
.
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In the upper deck, the basic–flow quantities take the free stream values from

(2.33), given by u = 0, v = −1, ρ = 1, T = 1 and p is constant. This leads to

the modified equations

−iβ0ρ
U
0

sinψ
+ iα0u

U
0 +

iβ0v
U
0

x sinψ
+
dwU0
dZ

= 0, (4.16)

β0u
U
0

sinψ
= α0p

U
0 , (4.17)

vU0 =
pU0
x
, (4.18)

iβ0w
U
0

sinψ
=
dpU0
dZ

, (4.19)

TU0
M2
∞(γ − 1)

= pU0 . (4.20)

Reducing these equations into a single equation in pU0 leads to

d2pU0
dZ2

− Γ2pU0 = 0, (4.21)

where the leading order wavenumber is defined by

Γ2 = α2
0 +

β2
0

x2 sin2 ψ
(1−M2

x). (4.22)
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Rejecting solutions which grow as z →∞ leaves us with the solutions

uU0 =
α0 sinψC

β0

e−ΓZ , (4.23)

vU0 =
C

x
e−ΓZ , (4.24)

wU0 =
i sinψΓC

β0

e−ΓZ , (4.25)

pU0 = Ce−ΓZ , (4.26)

ρU0 = M2
∞ sin2 ψCe−ΓZ , (4.27)

TU0 = (γ − 1)M2
∞Ce

−ΓZ , (4.28)

where C =constant.

For three–dimensional stationary modes to exist the following relation must

hold,

α2
0 +

β2
0

x2 sin2 ψ
(1−M2

x) > 0. (4.29)

Hence for 0 6Mx < 1, there will exist three–dimensional modes for all real α0

and β0. However, forMx > 1, solutions still exist as long as the condition (4.29)

holds. As stated by Hall (1986), in order for three–dimensional stationary

modes to exist, the effective wall shear must be equal to zero at leading order.

Hence we require

α0
∂U

∂z
+

β0

x sinψ

∂V

∂z
= 0 at z = 0, (4.30)
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where U and V are the basic flow quantities given in (2.27).

We find the streamline and azimuthal velocity gradients by finding the

value of the solution to Equations (2.30)–(2.31) at z = 0, and have the values

∂U(0)

∂z
= 0.51023,

∂V (0)

∂z
= −0.61592, (4.31)

leading to

α0x sinψ

β0

= 1.2071. (4.32)

Hence by rearranging (4.29) we find that the three–dimensional stationary

modes exist for

0 6Mx < 1.5674. (4.33)

We note that as the local Mach number Mx depends on the half–angle ψ, a

change in ψ will effect the upper limit of Mx for solutions to exist. To show

this change we define M90 = xM∞, the local Mach number for the rotating

disk case, which leads to Mx = sinψM90. We set M90 = 1.5674, which is the

upper limit for ψ = 90, and vary the half angle. The change is shown in Table

4.1.
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ψ 40 50 60 70 80 90

Mmax
x 1.0075 1.2007 1.3574 1.4729 1.5436 1.5674

Table 4.1: The effect of a change in ψ on the maximum local Mach number

Mmax
x allowed for stationary three-dimensional modes of instability to exist.

4.2 Main deck solutions

In the main deck, we scale the wall normal and pressure perturbations in the

same way as before. We scale all other perturbations by the difference in the

order of ε between the upper and main decks, so in effect we multiply the upper

deck expansions by ε−4 to obtain the main deck expansions. This means we

use

ū = ε−1uM0 (ζ) + uM1 (ζ) + ..., (4.34)

v̄ = ε−1vM0 (ζ) + vM1 (ζ) + ..., (4.35)

w̄ = ε3wM0 (ζ) + ε4wM1 (ζ) + ..., (4.36)

p̄ = ε3pM0 (ζ) + ε4pM1 (ζ) + ..., (4.37)

ρ̄ = ε−1ρM0 (ζ) + ρM1 (ζ) + ..., (4.38)

T̄ = ε−1TM0 (ζ) + TM1 (ζ) + .... (4.39)

Substituting these expansions into the perturbation equations (3.9)-(3.14) leads
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to the main deck equations at O(ε−5) given by

ixuα0ρ
M
0 +

ivβ0ρ
M
0

sinψ
+ iρα0u

M
0 +

iρβ0v
M
0

x sinψ
+
dρ

dζ
wM0 + ρ

dwM0
dζ

= 0, (4.40)

ixuα0u
M
0 +

ivβ0u
M
0

sinψ
+ xu′wM0 = 0, (4.41)

ixuα0v
M
0 +

ivβ0v
M
0

sinψ
+ xv′wM0 = 0, (4.42)

dpM0
dζ

= 0, (4.43)

ρ

M2
∞(γ − 1)

(
ixuα0T

M
0 +

ivβ0T
M
0

sinψ
+
dT

dζ
wM0

)
= 0. (4.44)

Prandtl matching between the upper and main decks implies that

lim
ζ→∞

pM0 (ζ) = lim
Z→0

pU0 (Z) = C (4.45)

From (4.43) pM0 (ζ) =constant, hence pM0 (ζ) = C. Eliminating uM0 and vM0 from

the continuity equation (4.40) and integrating the resulting equation leads to

the main deck equations given by

uM0 =
sin2 ψΓCxu′

β2
0

, (4.46)

vM0 =
sin2 ψΓCxv′

β2
0

, (4.47)

wM0 = −i sin2 ψΓC

β2
0

(
α0xu+

β0v

sinψ

)
, (4.48)

pM0 = C, (4.49)

ρM0 =
sin2 ψΓC

β2
0

dρ

dζ
, (4.50)

TM0 =
M2
∞(γ − 1) sin2 ψΓC

β2
0

dT

dζ
, (4.51)
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after matching with the previous upper deck equations. Here the wall normal

velocity wM0 satisfies the usual no slip condition at ζ = 0, whereas uM0 and

vM0 do not. This is because of the condition of zero wall shear at leading

order given in (4.30), and we are required to choose α0 and β0 to satisfy this

condition.

4.3 Lower deck solutions

We now let z = ε9ξ, such that ξ = O(1) in the lower deck. For small ζ we

expand the basic flow components u, v, ρ and T , which in terms of ξ are given

by

u = εu0ξ + ε2u1ξ
2 + ε3u2ξ

3 + ..., (4.52)

v = εv0ξ + ε2v1ξ
2 + ε3u2ξ

3 + ..., (4.53)

ρ = ρw + ερ0ξ + ε2ρ1ξ
2 + ..., (4.54)

T = Tw + εT0ξ + ε2T1ξ
2 + ..., (4.55)

where ρw and Tw are the density and the temperature at the cone’s wall re-

spectively. The basic flow terms are now given by

uj−1 =
1

j!

∂ju

∂zj

∣∣∣
ζ=0

(4.56)
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with similar expressions for vj−1, ρj−1 and Tj−1. The lower deck perturbation

fields are given by

ū =
uL−1(ξ)

ε
+ uL0 (ξ) + εuL1 (ξ) + ..., (4.57)

v̄ =
vL−1(ξ)

ε
+ vL0 (ξ) + εvL1 (ξ) + ..., (4.58)

w̄ = ε3wL0 (ξ) + ε4wL1 (ξ) + ..., (4.59)

p̄ = ε3pL0 (ξ) + ε4pL1 (ξ) + ..., (4.60)

ρ̄ =
ρL−1(ξ)

ε
+ ρL0 (ξ) + ερL1 (ξ) + ..., (4.61)

T̄ =
TL−1(ξ)

ε
+ TL0 (ξ) + εTL1 (ξ) + ..., (4.62)

Upon matching with the leading order terms from the main deck solutions,

and substituting in the basic flow expansions, this leads to the lower deck

perturbation terms (in term of ξ) given by
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ū =
sin2 ψxΓC

εβ2
0

(u0 + 2εu1ξ + ..) +
uL−1

ε
+ uL0 + εuL1 + ..., (4.63)

v̄ =
sin2 ψxΓC

εβ2
0

(v0 + 2εv1ξ + ..) +
vL−1

ε
+ vL0 + εvL1 + ..., (4.64)

w̄ =− i sin2 ψΓCε5

β2
0

{(
α0u1x+

β0v1

sinψ

)
ξ2 + ε

(
α0xu2 +

β0v2

sinψ

)
ξ3 + ...

}
(4.65)

+ ε6wL0 + ε7wL1 + ...,

p̄ =ε3pL0 + ε4pL1 + ..., (4.66)

ρ̄ =
sin2 ψΓC

εβ2
0

(ρ0 + 2ερ1ξ + ..) +
ρL−1

ε
+ ρL0 + ερL1 + ..., (4.67)

T̄ =
M2
∞(γ − 1) sin2 ψΓC

εβ2
0

(T0 + 2εT1ξ + ..) +
TL−1

ε
+ TL0 + εTL1 + ... (4.68)

Substituting these relations into the perturbations equations yields the lower

deck governing equations. We first concentrate on the continuity equation,

where equating terms at O(ε−5) yields

(
xuα0 +

β0v

sinψ

)
ρL−1 + ρ

(
α0u

L
−1 +

β0v
L
−1

x sinψ

)
= 0, (4.69)

and at O(ε−4) we find

(
xuα0 +

β0v

sinψ

)
ρL0 + ρ

(
α0u

L
0 +

β0v
L
0

x sinψ

)
= 0, (4.70)

We next consider the streamwise perturbation equation. Equating terms of

O(ε−3) leads to the governing ordinary differential equation for uL−1(ξ), given
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by

d2uL−1

dξ2
− iρ

(
α0xu1 +

β0v1

sinψ

)
ξ2uL−1 = 0 (4.71)

The boundary conditions for this ordinary differential equation are given by

the no slip condition and the zero wall normal perturbation at O(ε−1). Hence

uL−1 = −sin2 ψxΓCu0

β2
0

for ξ = 0, (4.72)

uL−1 → 0 as ξ →∞. (4.73)

Taking equation (4.71) and using the substitution

ν =
√

2∆
1
4 ξ, (4.74)

where

∆ =
i

Tw

(
α0xu1 +

β0v1

sinψ

)
. (4.75)

This leads to the parabolic cylinder ordinary differential equation for uL−1,

d2uL−1

dν2
− ρ2

4
uL−1 = 0, (4.76)

subject to the boundary conditions

uL−1 = −sin2 ψxΓCu0

β2
0

for ν = 0, (4.77)

uL−1 → 0 as ν →∞. (4.78)
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Solving this ordinary differential equation subject to these boundary condi-

tions, and taking only solutions which decay as ν → ∞, leads to the solution

for uL−1 given by

uL−1(ξ) = −sin2 ψxΓCu0

β2
0

U(0,
√

2∆
1
4 ξ)

U(0, 0)
(4.79)

where U(0,
√

2∆
1
4 ξ) is a parabolic cylinder function, values for which are given

in Abramowitz & Stegun (1964).

We find the solution for vL−1 by considering the condition (4.30) and is given

by

vL−1(ξ) =
α0 sin3 ψx2ΓCu0

β3
0

U(0,
√

2∆
1
4 ξ)

U(0, 0)
. (4.80)

Then using the energy and state equations we find

TL−1(ξ) = −sin2 ψΓCT0

β2
0

U(0,
√

2σ
1
4 ∆

1
4 ξ)

U(0, 0)
(4.81)

ρL−1(ξ) = −sin2 ψΓCρ0

β2
0

U(0,
√

2σ
1
4 ∆

1
4 ξ)

U(0, 0)
(4.82)

4.4 First order lower-deck solutions

Our next aim is to find the next order values uL0 (ξ) and vL0 (ξ). To do this we

must first solve for wL1 (ξ), which requires looking at the next order approxi-

mation to the perturbation equations. Considering the continuity equation at
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O(ε−3) yields

iα0u
L
1 +

iβ0v
L
1

x sinψ
+
dwL0
dξ

= −i sin2 ψxΓC

β2
0

(
α1u0 +

β1v0

x sinψ

)
(4.83)

−i
(
α1u

L
−1 +

β1v
L
−1

x sinψ

)
−
ixα0u1ξ

2ρL−1

ρw
,

and the surface-normal perturbation equation at O(ε−6) yields

dp0

dξ
= 0. (4.84)

Matching with the main deck pressure solution leads to

pL0 (ξ) = C. (4.85)
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The streamwise perturbation expansion at O(ε−1) leads to

ρw

{
i
(
xα1u1ξ

2 + xα2u0ξ +
β1v1ξ

2

sinψ
+
β2v0ξ

sinψ

)(sin2 ψΓCxu0

β2
0

+ uL−1

)
(4.86)

+i
(
xα0u2ξ

3 + xα1u0ξ +
β0v2ξ

3

sinψ
+
β1v0ξ

sinψ

)(2 sin2 ψΓCxξu1

β2
0

+ uL0

)
+iξ2

(
xα0u1 +

β0v1

sinψ

)
uL1 − 2

(sin2 ψxΓCv0

β2
0

+ vL−1

)
−3i sin2 ψΓCxu2ξ

4

β2
0

(
α0u1x+

β0v1

sinψ

)
−2i sin2 ψΓCxu1ξ

4

β2
0

(
α0xu2 +

β0v2

sinψ

)
+ 2xu1ξw

L
0

}
+ρ0ξ

{
i
(
xα0u2ξ

3 + xα1u0ξ +
β0v2ξ

3

sinψ
+
β1v0ξ

sinψ

)(sin2 ψΓCxu0

β2
0

+ uL−1

)
+i
(
xα0u1ξ

2 +
β0v1ξ

2

sinψ

)(2 sin2 ψΓCxξu1

β2
0

+ uL0

)
+i
(
xα0u0ξ +

β0v0ξ

sinψ

)
uL1 −

2i sin2 ψΓCxu1ξ
3

β2
0

(
α0u1x+

β0v1

sinψ

)
−i sin2 ψΓCxu0ξ

3

β2
0

(
α0xu2 +

β0v2

sinψ

)
+ xu0w

L
0 −

sin2 ψΓCx

ξβ2
0

}
+ρ1ξ

2
{
i
(
xα0u1ξ

2 +
β0v1ξ

2

sinψ

)(sin2 ψΓCxu0

β2
0

+ uL−1

)
+i
(
xα0u0ξ +

β0v0ξ

sinψ

)(2 sin2 ψΓCxξu1

β2
0

+ uL0

)
−i sin2 ψΓCxu0ξ

2

β2
0

(
α0u1x+

β0v1

sinψ

)}
− xρL−1 = −iα0p

L
0 + Tw

d2uL1
dξ2

.
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Then considering the azimuthal perturbation expansion at O(ε−1) leads to

ρw

{
i
(
xα1u1ξ

2 + xα2u0ξ +
β1v1ξ

2

sinψ
+
β2v0ξ

sinψ

)(sin2 ψΓCxv0

β2
0

+ vL−1

)
(4.87)

+i
(
xα0u2ξ

3 + xα1u0ξ +
β0v2ξ

3

sinψ
+
β1v0ξ

sinψ

)(2 sin2 ψΓCxξv1

β2
0

+ vL0

)
+iξ2

(
xα0u1 +

β0v1

sinψ

)
vL1 + 2

(sin2 ψxΓCu0

β2
0

+ uL−1

)
−3i sin2 ψΓCxv2ξ

4

β2
0

(
α0u1x+

β0v1

sinψ

)
−2i sin2 ψΓCxv1ξ

4

β2
0

(
α0xu2 +

β0v2

sinψ

)
+ 2xv1ξw

L
0

}
+ρ0ξ

{
i
(
xα0u2ξ

3 + xα1u0ξ +
β0v2ξ

3

sinψ
+
β1v0ξ

sinψ

)(sin2 ψΓCxv0

β2
0

+ vL−1

)
+i
(
xα0u1ξ

2 +
β0v1ξ

2

sinψ

)(2 sin2 ψΓCxξv1

β2
0

+ vL0

)
+i
(
xα0u0ξ +

β0v0ξ

sinψ

)
vL1 −

2i sin2 ψΓCxv1ξ
3

β2
0

(
α0u1x+

β0v1

sinψ

)
−i sin2 ψΓCxv0ξ

3

β2
0

(
α0xu2 +

β0v2

sinψ

)
+ xv0w

L
0

}
+ρ1ξ

2
{
i
(
xα0u1ξ

2 +
β0v1ξ

2

sinψ

)(sin2 ψΓCxv0

β2
0

+ vL−1

)
+i
(
xα0u0ξ +

β0v0ξ

sinψ

)(2 sin2 ψΓCxξv1

β2
0

+ vL0

)
−i sin2 ψΓCxv0ξ

2

β2
0

(
α0u1x+

β0v1

sinψ

)}
= − iβ0

x sinψ
pL0 + Tw

d2vL1
dξ2

.

Following Hussain (2009) we simplify these equations using the operation

iα0(4.86)+ iβ0
x sinψ

(4.87). Then using the relations in (4.56) we can expand the
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streamwise and azimuthal laminar flow equations (2.30)-(2.31) to find

u1 =
U ′′(0)

2!
= −1

2
, (4.88)

v1 =
V ′′(0)

2!
= 0. (4.89)

Differentiating (2.30)-(2.31) then leads to

u2 =
U ′′′(0)

3!
= −2V ′(0)

3!
= −v0

3
, (4.90)

v2 =
V ′′′(0)

3!
=

2U ′(0)

3!
=
u0

3
. (4.91)

We eliminate uL1 and vL1 from the resulting equation using Equation (4.83),

and simplify using Equations (4.69) and (4.71) leads to an ordinary differential

equation in wL0 , with solution

wL0 = −i
(
α1xu0 +

β1v0

sinψ

)Γ sin2 ψCξ

β2
0

+ k1ξ
2 (4.92)

+∆−
3
4

{
γ2

0CF1(s) +
2iγ2

0Γx sin3 ψCu0

β3
0TwU(0, 0)

F2(s)− 3iα0Γx sin2 ψCρ0

β2
0U(0, 0)

F3(s)

+
i(1− σ)α0Γx sin2 ψCρ0

2β2
0U(0, 0)

F4(s)
}
,

where s = ∆
1
4 ξ and k1 =constant.
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The independent solutions F1(s),F2(s),F3(s) and F4(s) satisfy the following

F ′′′1 − s2F ′1 + 2sF1 = 1, (4.93)

F ′′′2 − s2F ′2 + 2sF2 = U(0,
√

2σ
1
4 s), (4.94)

F ′′′3 − s2F ′3 + 2sF3 =
d

ds

(
sU(0,

√
2σ

1
4 s)
)
, (4.95)

F ′′′4 − s2F ′4 + 2sF4 = s4U(0,
√

2σ
1
4 s), (4.96)

satisfying the boundary conditions

Fi(0) = Fi(∞) = 0 for i = 1, 2, 3, 4. (4.97)

Considering the continuity equation (4.83) at ξ = 0 finds

iα0u
L
1 (0) +

iβ0v
L
1 (0)

x sinψ
+
dwL0 (0)

dξ
(4.98)

=
i sin2 ψxΓC

β2
0

(
α1u0 +

β1v0

x sinψ

)
− i
(
α1u

L
−1(0) +

β1v
L
−1(0)

x sinψ

)
,

Hence differentiating (4.92) and satisfying the boundary conditions at ξ = 0

yields

γ2
0F
′
1(0) +

2iγ2
0Γx sin3 ψu0

β3
0TwU(0, 0)

F ′2(0)− 3iα0Γx sin2 ψρ0

β2
0U(0, 0)

F ′3(0) (4.99)

+
i(1− σ)α0Γx sin2 ψρ0

2β2
0U(0, 0)

F ′4(0)

=
(1 + i)Γ sin2 ψ(α0x)

1
2

2β2
0Tw

(
α1u0 +

β1v0

x sinψ

)
.
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Taking the real and imaginary parts of this equation leads to

γ2
0F
′
1(0) =

Γ sin2 ψ(α0x)
1
2

2β2
0Tw

(
α1u0 +

β1v0

x sinψ

)
(4.100)

2γ2
0Γx sin3 ψu0

β3
0TwU(0, 0)

F ′2(0)− 3α0Γx sin2 ψρ0

β2
0U(0, 0)

F ′3(0) (4.101)

+
(1− σ)α0Γx sin2 ψρ0

2β2
0U(0, 0)

F ′4(0) =
Γ sin2 ψ(α0x)

1
2

2β2
0Tw

(
α1u0 +

β1v0

x sinψ

)
.

Then substituting (4.100) into (4.101) we find the eigenrelation

γ2
0F
′
1(0)− 2γ2

0Γx sin3 ψu0

β3
0TwU(0, 0)

F ′2(0) +
3α0Γx sin2 ψρ0

β2
0U(0, 0)

F ′3(0) (4.102)

−(1− σ)α0Γx sin2 ψρ0

2β2
0U(0, 0)

F ′4(0) = 0.

We now aim to find the values of F ′1(0),F ′2(0),F ′3(0) and F ′4(0), and to do this

we follow the method of Hall (1986) (but outlined fully by Hussain (2009)) by

transforming Equations (4.93)-(4.96) such that they can be solved in terms of

the parabolic cylinder equations.

For F1 we begin by letting G = F1

s2
, which upon substitution into (4.93)

leads to

s2G′′′ + 6sG′′ + (6− s4)G′ = 1. (4.103)

This can be reduced to a second order differential equation via H = G′, given

by

s2H ′′ + 6sH ′ + (6− s4)H = 1. (4.104)
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Making the change of variable K = s3H, along with u =
√

2s, leads to the

parabolic cylinder equation given by

K ′′(u)− u2

4
K(u) =

u

2
√

2
. (4.105)

We let K(u) = R(u)U(0, u) to obtain

R′′U + 2R′U ′ =
u

2
√

2
. (4.106)

Solving for R′ using the method of integrating factors leads to

R′ =
1

2
√

2

∫ u
∞ θU(0, θ)dθ

U(0, u)2
. (4.107)

Rewriting this equation back in terms of F1 we find

uF ′1(u)− 2F1(u) = R(u)U(0, u). (4.108)

Setting u = 0 and using the boundary condition (4.97) (noting that s = 0 ⇒

u = 0) gives the condition R(0) = 0. Differentiating (4.108) and a change of

variable from u back to s leads to

F ′1(0) =

∫∞
0
θU(0, θ)dθ

2U(0, 0)
. (4.109)

A similar method is used to find F ′2(0), F ′3(0) and F ′4(0), taking into account

the changes in the right–side side of (4.94)-(4.96). To estimate each respective

F ′i (0) we follow Hussain (2009) by using a Simpson’s rule method from θ = 0 to
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Figure 4.2: The graph of U(0, θ), showing the decay over the region of inte-

gration from θ = 0 to θ = 5.

θ = 5 with a fixed step size of 0.1, noting that the parabolic cylinder function

U(0, θ) decays exponentially (as shown in Figure 4.2). Using this method we
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find that

F ′1(0) = 0.5984, (4.110)

F ′2(0) = 0.2779, (4.111)

F ′3(0) = 0.0192, (4.112)

F ′4(0) = 1.6972. (4.113)

We note here that the value found for F ′1(0) is in agreement with Hussain

(2009), and differs from that found by Hall (1986) and Seddougui (1990). As

discussed by Hussain (2009), this is possibly be due to the choice of integration

method.

Using (4.30), we can rewrite Equation (4.102) in terms of the leading order

wavenumber to find

γ0 = (F ′1(0))−
1
2

(
1 +

v2
0

u2
0

−M2
x

) 1
4
( 2u0F

′
2(0)

T 2
wxU(0, 0)

(
1 +

v2
0

u2
0

)
(4.114)

+
3v0ρ0F

′
3(0)

u0xU(0, 0)
− (1− σ)v0ρ0F

′
4(0)

2u0xU(0, 0)

) 1
2
.

From the equation of state we have the relation ρ0 = − T0
T 2
w

, so we proceed by

differentiating the temperature relation (2.34) leads to

T0 = −γ − 1

2
M2

xf
′(0) + (Tw − 1)q′(0) (4.115)

where f ′(0) = −0.4562 and q′(0) = −0.3241 are found numerically. These

values are different to those found by Seddougui (1990), where a slightly dif-
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ferent temperature relation was used, as well as being computed with σ = 0.72

instead of σ = 0.7 used here.

Substituting all known values into Equation (4.114) leads to the following

simplified equation for the leading order wavenumber

γ0 =
1.293x−

1
2

Tw
(2.457−M2

x)
1
4 (0.573 + 0.310T0)

1
2 (4.116)

where

T0 = 0.091M2
x − 0.3241(Tw − 1) (4.117)

Following the same method we rewrite the real part of the eigenrelation (4.100)

to find the waveangle estimates given by

sinψ
(α1

β0

− α0β1

β2
0

)
=

2γ
3
2T 2

wF
′
1(0)

|u0v0|
1
2x

1
2

(
1 +

v2
0

u2
0

−M2
x

)− 1
2
(

1 +
v2

0

u2
0

) 1
4
. (4.118)

Substituting all known values into Equation (4.118) leads to the following

simplified equation for the waveangle estimates

sinψ
(α1

β0

− α0β1

β2
0

)
=

2.669γ
3
2
0 T

2
w

x
1
2 (2.457−M2

x)
1
2

. (4.119)

As discussed by Hussain (2009), it is not possible to find α1 and β1 indepen-

dently in this analysis. Instead we concentrate on the combination of α1 and

β1 found in Equation (4.118) in terms of the waveangle φ between the stream-

wise position and normal to the spiral vortices as discussed in §3.3. This leads



VISCOUS TYPE II MODES 86

to

tan
(π

2
− φ
)

=
αx

β
=

(α0 + ε2α1 + ...)x

(β0 + ε2β1 + ...)
, (4.120)

=
α0x

β0

+ ε2
(α1

β0

− α0β1

β2
0

)
x,

=
1.207

sinψ
+ ε2

(α1

β0

− α0β1

β2
0

)
x.

The expanded wavenumber is scaled on the viscous mode wavelength, given

by

ε4γ = ε4γ0 + ... (4.121)

ε4γ =
ε41.293x−

1
2

Tw
(2.457−M2

x)
1
4 (0.573 + 0.310T0)

1
2 (4.122)

Following Hussain (2009), we define the Reynolds number based on the boundary–

layer thickness δ∗, given by

Rδ∗ = R
1
2x(sinψ)

1
2 . (4.123)

Then the local wavenumber is given by

γδ∗ =
1.293R

− 1
2

δ∗ (sinψ)
1
4

Tw
(2.457−M2

x)
1
4 (0.573 + 0.310T0)

1
2 , (4.124)

and the local mode waveangle is given as

tan
(π

2
− φ
)

=
1.207

sinψ
+

3.924R
− 1

4
δ∗ T

1
2 (0.573 + 0.310T0)

3
4

(sinψ)
7
8 (2.457−M2

x)
1
8

. (4.125)
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Figure 4.3: The effective wavenumber γ0x
1
2 for fixed Tw = 0.4, 0.8, 1.0, 1.2, 1.6.

The solution for the incompressible case is also given (−−).

4.5 Wavenumber and waveangle predictions

Figure 4.3 shows γ0x
1
2 as a function of Mx for Tw = 0.4, 0.8, 1.0, 1.2, 1.6, along

with half angle ψ = 90o. We see that the effective wavenumber of the flow

decreases as the local Mach number grows, and the results are in agreement

with those found by Seddougui (1990) for the compressible flow over a rotating

disk. The appearance of the wall temperature, local Mach number and cone

half–angle terms allow us to fully consider the effects of both compressibility,
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Figure 4.4: The correction to the wave angle for fixed Tw = 0.4, 0.8, 1.0, 1.2, 1.6.

The solution for the incompressible case is also given (−−).

and varying the broadness of the cone, on the stability characteristics of the

flow. We see that for Tw = 1 the effective wavenumber is in good agreement

with the incompressible case for low Mx. For Tw > 1 we find that the value of

γ0x
1
2 is less than that found by Hall (1986) and Hussain (2009), which means

that the wavelength of the modes is longer than in the incompressible case.

The opposite is true for Tw < 1, suggesting wall cooling to be a stabilising

feature, which is in agreement with Seddougui (1990).
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Figure 4.5: The correction to the wave angle for Tw = 1, with ψ = 40o − 90o

in 10o increments.

Figure 4.4 shows (α1

β0
− α0β1

β2
0

)x
5
4 , the wave angle correction, as a function of

Mx for Tw = 0.4, 0.8, 1.0, 1.2, 1.6, along with the incompressible result, where

the half angle is ψ = 90o. Note that again for Tw = 1 and low Mx the

compressible case is in good agreement with the incompressible case. These

results form part of Equation (4.120) to allow us to consider the orientation

of the stationary vortices, given by the angle φ. The effect of a change in the

cone half–angle on the wave angle correction is shown in Figure 4.5 for Tw = 1
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and ψ = 40o − 90o in increments of 10o.

Figures 4.6-4.8 show the asymptotic wavenumber prediction, using a log–log

scale, and the waveangle prediction using a semi–log scale. In Figure 4.6 we

have fixed Tw = Mx = 1 and the results show the effect of a varying half angle

from ψ = 40o − 90o in increments of 10o. In Figure 4.7 we show the effect

of a change in wall temperature for Tw = 0.4, 0.8, 1.2, 1.6, where ψ = 60o and

Mx = 1. Then in Figure 4.8 we fix ψ = 60o and Tw = 1 to show the effect of a

change in local Mach number for Mx = 0.3, 0.6, 0.9, 1.2. Note that from Table

4.1 the maximum local Mach number for stationary three–dimensional modes

to exist is Mx = 1.3574, hence the values of Mx in Figure 4.8 are valid for the

choice of ψ.

Each of these figures shows how a change in one parameter affects the stability

of the flow, and in the wavenumber plots the areas of stable and unstable

flow are labelled. It is shown that increasing the cone half–angle can be used

as a stabilising mechanism, although it does not cause a great change in the

magnitude of the effective wavenumber. Decreasing the local Mach number

is seen to have a similar consequence. The biggest effect on the value of the

wavenumber is seen when varying the wall temperature. The results suggest

that wall cooling can be used as an effective stabilising mechanism, which is
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consistent with previous findings by Seddougui (1990).

These asymptotic wavenumber and waveangle plots are comparable to the

lower branch of the neutral stability curves for stationary modes found by

Garrett, Hussain & Stephen (2009). In their study they consider the pertur-

bation equations using numerical methods, then compare the results to the

asymptotic results in a high Reynolds number limit (similar to the analysis

here). Due to the complexity of the compressible perturbation equations com-

pared to the incompressible equations, no such numerical study has yet been

undertaken. However, for any numerical study of the compressible perturba-

tion equations, we would expect the results presented here to be in agreement

in the same high Reynolds number limit.
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Figure 4.7: Asymptotic wavenumber and waveangle predictions for the viscous
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Chapter 5

Conclusions

This thesis consists of a full stability analysis of the compressible boundary–

layer flow over a rotating cone, with half–angle ψ > 40o. The full governing

Navier–Stokes equations have been non–dimensionalised. A Dorotonitsyn–

Howarth transformation is used to remove the density quantities, which allows

us to obtain the steady basic flow equations within the boundary layer, via the

introduction of a stream function which satisfies the continuity equation. The

solution to these equations show the laminar flow profiles in the streamwise,

azimuthal and normal directions. From the energy equation we also find ODEs

in terms of a viscous dissipation quantity and a heat conduction quantity. The

solution of these allow us to find the temperature distribution of the flow for

specific wall temperatures and local Mach numbers. We introduce a suction

95
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along the cone wall, which is achieved by changing the boundary condition in

the normal direction.

We then add a small perturbation field onto the mean flow field and linearise

with respect to the perturbation quantities. Hall (1986), Seddougui (1990) and

Hussain (2009) have all used the same small expansion parameters, based on

the Reynolds number, and here we follow the same method. For a small

parameter ε = R−
1
6 we investigate the inviscidly dominated neutrally stable

modes, which we call the inviscid type I modes following the previous literature.

The modes appear away from the cone wall and were found using a critical

layer analysis similar to that used by Hall (1986), and subsequently Hussain

(2009).

Here we note that for the compressible case we have additional terms not

found in the incompressible analysis, and naturally this adds complexity not

found in the incompressible case. Due to this, the estimates for the wavenum-

ber and waveangles associated with the spiral vortices are only found at leading

order, as no satisfactory method has been found to consider the modes at first

order. There is a gap in the literature for compressible flows which suggests

that an alternative to the method used in the incompressible case is needed

but has not yet been found, and this is left as an open problem.

Using a small expansion parameter ε = R−
1
16 we investigate the wall domi-
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nated neutrally stable modes, caused by a viscous–Coriolis force balance, which

we label as the viscous type II modes. We proceed by considering a triple–

deck analysis similar to that used by Seddougui (1990). This leads to both the

leading order and first order estimates for the wavenumber and the waveangles

related to the spiral vortices for the type II modes. We then present the lower

branch asymptotic neutral curves, as described by Garrett, Hussain & Stephen

(2009). We consider the effects of a change in the cone half–angle ψ, as well

as how varying the wall temperature or local Mach number changes the flow

characteristics.

In §5.1 we compare the results to previous findings, and describe the effect

that both the cone half–angle and compressibility have on the flow. Due to

there being very limited experimental work on compressible boundary–layer

flows over axisymmetric bodies most comparisons will be made with theoretical

work. However, it may occasionally be beneficial to consider the experimen-

tal work for incompressible flows, and these comparisons will be made where

appropriate. In §5.2 we will consider possible routes for further research into

compressible boundary–layer flows over a rotating cone.
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5.1 Current work

To find the basic flow profiles we non–dimensionalise the full Navier–Stokes

equations and make a series of self–consistent assumptions. Through the

choices made we find that the laminar flow profiles match those found for

the incompressible flow, which have been verified in a number of studies (for

examples see Lingwood (1995), Hussain (2009)). However they are still suit-

able to be used during the stability analysis, as the perturbation equations

are formed from the full Navier–Stokes equations and hence do not contain

the same assumptions. We also find that through our choice of scalings, the

cone half–angle ψ is scaled out of the equations as was also found by Hussain

(2009). Therefore the velocity profiles are effectively those found in the case

of an incompressible boundary–layer flow over a rotating disk, however they

are still valid for our range of cone half–angles.

Temperature distributions are calculated upon solving the basic flow equa-

tions and are in agreement with those found by Turkyilmazoglu, Cole &

Gajjar (2000). Physical flow profiles are then presented by reversing the

Dorotonitsyn–Howarth transformation. The effects of changing the cone half–

angle, wall temperature and local Mach number are all considered, where we

would expect to see the same changes caused by varying these parameters
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follow through to effect the stability characteristics in a similar way. From

these profiles there is little change when varying the cone half–angle, an ob-

servation which justifies using the laminar flow rotating–disk profiles for the

laminar flow rotating–cone due to the cone half–angle being scaled out of the

equations. If we then assume that the greater the magnitude of the flow in the

normal direction, the more susceptible the flow is to becoming turbulent, then

the plots would suggest increasing either the wall temperature or local Mach

number to be destabilising. When considering a surface suction it is difficult

from the laminar profiles to make any conclusions, and will be reconsidered

during the type I analysis.

For the type I modes we can compare our results to those found by Hall

(1986) and Hussain (2009) for the incompressible case over a rotating disk and

rotating cone respectively. There is currently no full asymptotic analysis into

the type I modes for the compressible flow over a rotating disk and this is

attributed to the difficulties we have faced. As mentioned by Hussain (2009),

the fact that the cone half–angle is scaled out of the laminar flow equations

is an advantage to the critical–layer analysis here. The analysis requires the

effective velocity and second derivative to be zero at the same point, which is

defined as the location of the critical layer. Because there is no dependency on

ψ for the laminar flow equations the same is true for the location of the critical
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layer, hence it only needs to be calculated for one set of values as opposed to

for each cone half–angle.

Our results for the leading–order eigenmode solution in the normal direc-

tion w0 are in good agreement with the incompressible results found by Hall

(1986) and Hussain (2009) in terms of the shape of the profile. We find that

the peak magnitude of the mode is greater than that of an incompressible flow,

and this is plausible as we would expect the effects of compressibility to cause

a greater magnitude in flow components as a result of a disturbance. Again

from these results it is difficult to make any assumptions with regard to the

role of the cone half–angle, however during the type II analysis we shall make

some conclusions. Whereas an increase in the local Mach number is seen to

have little effect here, a change in the wall temperature causes a noticable

increase in the peak magnitude of w0.

The effect of the suction parameter becomes clearer when considering the

type I modes. The leading order eigenmode is almost completely dampened by

the introduction of a surface suction. This is expected due to previous exper-

imental work by Gregory & Walker (1960) and theoretical work by Lingwood

(1997) and Lingwood & Garrett (2011), suggesting a surface suction could be

used as a stability mechanism. Without being able to produce the first order

correction terms we cannot consider the upper branch of the neutral stability
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curve for the compressible case as seen in Garrett, Hussain & Stephen (2009)

for the incompressible case.

Before discussing the neutrally stable lower branch modes we note two

points of discussion from the analysis. First is the differing value of F 1
1 (0) be-

tween Hall (1986), Seddougui (1990) and the values found by Hussain (2009)

and the study here. We find that F 1
1 (0) = 0.5984, whereas Seddougui (1990)

finds F 1
1 (0) = 0.5991 which will slightly change the wavenumber and wavean-

gle predictions found. The other point is the value of C used from the

Dorotonitsyn-Howarth transformation. We set C = 1 all the way through

the analysis. Seddougui (1990) does not state a value for C and it remains

in her analysis. However, when computing our results we find ours match the

incompressible results when setting Tw = 1 and Mx = 0, and it is assumed

that Seddougui (1990) also sets C = 1 when finding her results.

A key result from our type II analysis is that the three–dimensional sta-

tionary modes do not exist for all local Mach numbers. We take care to ensure

the local Mach numbers used are valid for the configuration of parameters

used. Our results are consistent with those found by Seddougui (1990) for the

compressible boundary–layer flow over a rotating disk, and we are able to see

the effects of the cone half–angle. As the cone half–angle is increased we see

the region of stability grow which implies that increasing the half angle can be
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used as a stability mechanism. This is in agreement with Hussain (2009) for

the incompressible case.

We note that we have been concerned with the case of air flow, and hence

have set σ = 0.7 and γ = 1.4 throughout the analysis. Most gases have values

of σ ≈ 0.16− 0.8 and γ ≈ 1− 1.7, however changes in these parameters would

not cause a great change in the given results. Hence similar qualitative results

are expected for all reasonable combinations of σ and γ.

5.2 Future work

When considering the previous literature there are several obvious options to

extend the work presented here. In this section we shall describe these pertur-

bations in relation to the previous work and how it will help the understanding

of the observed laminar to turbulent transition.

An immediate extension of the type II analysis found here would be to

consider the nonlinear terms in the lower deck of the triple–deck analysis.

Seddougui (1990) found that for the compressible boundary–layer flow over a

rotating disk, the nonlinear effects are destabilising. However the magnitude

of the nonlinear effects is found to be dependent upon the wall temperature

of the disk. For Tw > 1 they were seen to be of less importance than those
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found by MacKerrell (1987) for the incompressible case. However, for Tw <

1 the nonlinear effects are found to be stronger than in the incompressible

case. Whilst we would expect to be in agreement with Seddougui (1990) by

expanding our analysis, we would also be able to consider the effect of the cone

half–angle on the influence of these nonlinear effects.

A key area for the incompressible boundary–layer flows over rotating cones

is the numerical analysis of the perturbation equations. Garrett (2002) derives

the incompressible perturbation equations and then uses a set of transformed

variables to rewrite the equations as a set of six first–order ordinary differen-

tial equations. This was an extension of Lingwood (1995) who used the same

method for the case of a rotating disk. Garrett (2002) then solves this sixth–

order system numerically and computes the neutral stability curves, including

both the inviscid upper branch and the viscous lower branch. As with the

asymptotic results found by Hussain (2009), the numerical results are in good

agreement with Kobayashi & Izumi (1983) for broad half–angles, however as

the half–angle is reduced the numerical results begin to deviate from the exper-

imental results. The numerical results are important as they would verify the

asymptotic results found here. However, there is no current numerical analysis

of the compressible perturbation equations for these types of flows. This is due

to the added complexity of the non–constant density terms which arise due to
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the compressibility, and because of this there is no suitable transformation to

reduce the equations to a solvable system of ordinary differential equations.

Hence an alternative method must be found, and is a possible extension of this

work.

As mentioned above, for the incompressible case the analysis presented

here leads to results which differ from the experimental findings for smaller

half–angles. Hence we expect the same for the compressible case. Kobayashi

& Izumi (1983) found experimentally that the nature of the observed spiral

vortices is dependent upon the cone half–angle. For ψ > 30o they find the fa-

miliar co–rotating crossflow vortices, which approach those found for a rotating

disk as ψ → 90o, as verified by Garrett, Hussain & Stephen (2009). However,

for ψ < 30o. counter–rotating Görtler vortices are found. This is due to the

nature of the instability changing from a crossflow instability to a centrifugal

instability. A recent study by Hussain, Stephen & Garrett (2012) describes the

analysis needed to capture this centrifugal instability, and deriving a similar

compressible analysis would be a natural follow on from the work presented

here.

The final suggestion for expanding this work is introducing an oncoming

axial flow towards the rotating cone in the streamwise direction. This has been

considered for the incompressible boundary–layer flow over a rotating cone
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by Garrett (2002) and Hussain (2009) for numerical and asymptotic analyses

respectively. For all values of the cone half–angle increasing the strength of

the oncoming axial flow is seen to have a stabilising influence. Therefore this

area could be of great interest when considering the practical applications.
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