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The stability of the flow due to a rotating disk is considered for non-Newtonian fluids, specifically shear-
thinning fluids that satisfy the power-law (Ostwald-de Waele) relationship. In this case the basic flow is
not an exact solution of the Navier-Stokes equations, however, in the limit of large Reynolds number the
flow inside the three-dimensional boundary layer can be determined via a similarity solution. An asymp-

totic analysis is presented in the limit of large Reynolds number. It is shown that the stationary spiral
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instabilities observed experimentally in the Newtonian case can be described for shear-thinning fluids
by a linear stability analysis. Predictions for the wavenumber and wave angle of the disturbances suggest
that shear-thinning fluids may have a stabilising effect on the flow.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The stability of the boundary layer on a rotating disk due to the
flow of a Newtonian fluid is a classical problem that has attracted a
great deal of attention from numerous authors over many decades.
The first theoretical investigation of this problem was performed
by von Karman [1]. The steady flow induced by the rotation of an
infinite plane with uniform angular velocity is an exact solution
of the Navier-Stokes equations. The flow is characterised by the
lack of a radial pressure gradient near to the disk to balance the
centrifugal forces, so the fluid spirals outwards. The disk acts as a
centrifugal fan, the fluid emanating from the disk being replaced
by an axial flow directed back towards the surface of the disk.

Batchelor [2] showed that this type of flow is in fact just a lim-
iting case of a whole number of flows with similarity solutions in
which both the infinite plane and the fluid at infinity rotate with
differing angular velocities. The corresponding limiting case when
the infinite plane is stationary and the fluid at infinity rotates at a
constant angular velocity was first described by Bodewadt [3].

The stability of the von Karman flow was first investigated by
Gregory et al. [4]. They observed spiral modes of instability in
the form of co-rotating vortices, measuring the angle between
the normal to the radius vector and the tangent to the vortices to
be ¢ ~ 13°. Gregory et al. [4] showed that these experimental
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observations were in excellent agreement with their own predic-
tions obtained from a linear stability analysis. Hall [5] extended
this work taking into account the viscous effects, showing that
an additional stationary short-wavelength mode exists which has
its structure fixed by a balance between viscous and Coriolis forces.

There have been several numerical studies of the stability of the
von Karman boundary layer. Examples include that of Malik [6],
Lingwood [7]. Both studies used a parallel-flow approximation
for the basic flow. Malik [6] considered convective instability and
presented results for stationary vortices, finding that for a large
Reynolds number ¢ ~ 13° for inviscid neutrally stable modes. Ling-
wood [7] extended these results by considering Ekman and Bode-
wadt flows. She also investigated the absolute instability of these
flows, showing that the von Kairman boundary layer is locally abso-
lutely unstable for Reynolds number above a critical value. Subse-
quently, Davies and Carpenter [8] considered the global behaviour
of the absolute instability of the rotating-disk boundary layer. By
direct numerical simulations of the linearised governing equations
they were able to show that the local absolute instability does not
produce a linear global instability. Suggesting that, instead, con-
vective-type behaviour dominates, even within the region of local
absolute instability.

Considerably less attention has been given to the problem of the
boundary layer flow due to a rotating disk when considering a non-
Newtonian fluid. Mitschka [9] extended the von Karman solution
to fluids that adhere to the power-law relationship. In this case
the basic flow is not an exact solution of the Navier-Stokes
equations and a boundary layer approximation is required. Both
Mitschka and Ulbrecht [10], Andersson et al. [11] present
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numerical solutions for the basic flow for shear-thickening and
shear-thinning fluids. However, both sets of authors overlooked
the importance of matching this boundary-layer flow with the
outer flow. Denier and Hewitt [12] addressed this problem and
presented corrected similarity solutions of the boundary-layer
equations. This involved a comprehensive knowledge of the
far-field behaviour. Their analysis revealed different situations for
shear-thinning and shear-thickening fluids. For shear-thickening
fluids the boundary-layer solution is complicated by a region of
zero viscosity away from the boundary. For the more common
shear-thinning fluids, beyond a critical level of shear-thinning,
the basic flow solution grows in the far field, so it cannot be
matched to an external flow. For more details of these cases the
reader is referred to Denier and Hewitt [12].

Thus, in the current paper we restrict our attention to moderate
levels of shear-thinning, where the boundary-layer solution may be
matched to an outer flow (although this will not be in similarity form).
In this case we can use a boundary-layer similarity solution to give an
analytic description of the stability of the three-dimensional flow for
large Reynolds numbers. This only requires knowledge of the
boundary layer since this is where the vortices are confined.

Specifically, we look to extend the previous works concerning
convective instability of Newtonian flows to include the additional
viscous effects of a power-law fluid. The current study will follow
the approach of Hall [5] to investigate the so called stationary
“inviscid instabilities” with vortices occurring at the location of
an inflection point of the effective velocity profile.

2. Formulation

Consider the flow of a steady incompressible non-Newtonian
fluid due to a rotating disk located at z = 0. The disk rotates about
the z-axis with angular velocity Q. Working in a reference frame
that rotates with the disk, the dimensionless continuity and Na-
vier-Stokes equations are expressed as

V.u=0, (1)

u-Vu+2[(2xu)—rﬂ:—Vp—i-%Vﬂ. (2)
Here u = (u, v,w) are the velocity components in cylindrical polar
coordinates (r,6,z) where r and z have been made dimensionless
with respect to some reference length I and (#,0,2) are the corre-
sponding unit vectors in the respective coordinate directions. The
velocities and pressure have been non-dimensionalised by QI and
p52212 respectively, the fluid density is p and p is the fluid pressure.
The stress tensor 7 for incompressible non-Newtonian fluids is gi-
ven by the generalised Newtonian model

T=py with p=up), 3)

where § = Vu+ (Vu)" is the rate of strain tensor and u(7) is the
non-Newtonian viscosity. The magnitude of the rate of strain tensor
is

SN
7= LT )

The governing relationship for p(y) when considering a power-
law fluid is

(i) =me@)"", (5)
where m is known as the consistency coefficient and n the power-law
index, with n>1, n< 1 corresponding to shear-thickening and
shear-thinning fluids, respectively. The modified non-Newtonian
Reynolds number is defined as Re = pQ* " /m.

In the Newtonian case an exact solution of the Navier-Stokes
equations exists, as was first determined by von Karman [1]. Due

to the relative complexity of the modified stress tensor no such
solution exists when considering the flow of a power-law fluid.
However, in the limit of large Reynolds number progress can be
made as the leading order boundary-layer equations admit a sim-
ilarity solution analogous to the exact solution obtained in the
Newtonian problem.

As noted by Denier and Hewitt [12] the boundary-layer equa-
tions at lowest order are

10 Owp -

? E(TUB) + E = 0, (Ga)
Oug oug (vg+1)° 1 0 Oug

b W, T Reaz\Moaz )’ (6D)
dvp Ovg Ul o 1 0 OUg

Up 5 T Wa g, + +2uB_R_e&<'uBE>’ (60)

where

(n-1)2
o oug 2 ovp 2
Hy = [<az> + (5) : (6d)
To solve for the basic flow inside the boundary layer Mitschka
[9] introduced a similarity solution of the form
ug = [ri(n), ro(n), r" D/ DRe T D), (7)
where the similarity variable # is given by
n= r(-n/(n+1) pol/(n+1) 5. (8)
The dimensionless functions i,  and w are determined, after
substitution of (7) into (6a)-(6¢) and (6d) by
2 =M w0 (9a)
i1l -
n )

- (v+1)7>+ <w+%na>a’—[(u + 2

o (D)2

) ﬂ’}/ =0, (9b)

(n-1/2_,"

20(0+1) + <w+%na) @+ )"y =0, (90)

where the primes denote differentiation with respect to #. The
appropriate boundary conditions are

i=p=w=0 at n=0,
u—0, v—-1 as 15— cc.

(10a)
(10b)

Denier and Hewitt [ 12] have shown that bounded solutions to 9a,
9b and 9c subject to (10a) and (10b) exist only in the shear-thinning
case for n > 1. In the shear-thickening case they have shown that
solutions become non-differentiable at some critical location 7,
and although it transpires that this singularity can be regularised
entirely within the context of the power-law model, we will not
consider such flows here. Thus in this study we will consider flows
with power-law index in the range 1 < n < 1. They have also shown
that for 1 <n <1 to ensure the correct algebraic decay in the
numerical solutions one must apply the Robin condition

_n
nn-—1)

at some suitably large value of # = 17, >> 1. In the Newtonian case
this relationship becomes singular, this is due to the fact that when
n=1 the functions # and 7 decay exponentially. Cochran [13]
showed that in this case

W, v) = W) as 1§ — o, (11)

U, 7)) =wy(u,v) as n§— oo, (12)

where w,, = -2 [;° udn.

Numerical solutions of 9a, 9b and 9c subject to (10a) and (10b)
are presented in Table 1 and Fig. 1. These results were obtained
using a fourth-order Runge-Kutta quadrature routine twinned
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with a Newton iteration scheme to determine the values of the un-
knowns #'(0) = ilp and 7/(0) = . As is to be expected our results
are in complete agreement with Denier and Hewitt [12], however,
here we also present values for iy and 7, for each value of n. For
the case when n = 1 our results are in agreement with those pre-
sented by Healey [14].

3. The inviscid stability problem

The governing Eqgs. (1) and (2) in component form are

10

F@(m) ;%4‘5 0, (13a)

ou vou ou (v+r  ap 1[d [ du\

ortron Ve~ orTReloz\Maz) T
(13b)

v vov _Ov uv _lop 170 [ ov\ K6 _

“5*?%”%*7*2“*‘?%*@{a?(“&)+f“}’
(13¢)

Table 1

Numerical values of the basic flow parameters forn =1, 0.9, 0.8, 0.7, 0.6. Forn =1
the value of 17, represents the dimensionless distance away from the disk at which
the solutions have sufficiently converged to their respective limiting values, as in this
case the asymptotic boundary condition (12) has no specific dependence on 7.

n Up —U "o -W(,.)

1 0.5102 0.6159 20 0.8845

0.9 0.5069 0.6243 55 0.9698

0.8 0.5039 0.6362 100 1.0957

0.7 0.5017 0.6532 175 1.3051

0.6 0.5005 0.6778 645 1.7329
0.2

n

ow vow ow  dp 1
”§+?W+W§*_5+E($Z)’ (13d)
where
(n-1)/2
ou\>  [(ov\?
. [(82) A (2) 12, (13¢)

Here the additional viscous terms ¢, %y, <, and %, have been
omitted as these terms will not appear in the upcoming analysis.
The form of these additional terms is given in Appendix A.

We now perturb the basic flow solutions by writing u = ug + U.
Substitution into (13a)-(13d) and (13e) and neglecting the nonlin-
ear terms gives the linear disturbance equations

10 19V oW

ror™W e =0 19

_ou  _ou _oU o _ _
oY oY (n-1)/(n+1) pp—1/(n+1) 7, Y~ - _
ruar+vae+r Re waz+ruar+uu 2(v+1)V
O _ O gt O (y0U 00
+rWaZ_ ar T Re a\Fay e ) (15)

oV _oV _ 9V v _ _
GV 59V 1)/ g1/ 5, IV ov
ru8r+080+r Re waz+rUar+uV+2(y+1)U

ov 1P | .1, 49 (- 9V -0v
W= vt R e \Far T hez) (1)
_owW  _ oW
i 7 (n-1)/(n+1) pp—1/(n+1)
s Re
_ oW wn-1) ow ow)  oP
X{W5+”[m+ﬂ 5}*‘&7 a7

where P is the non-dimensional pressure perturbation and

0.4t :

-0.6 1

n=0.6

03

—0.6

o (n)

-09F

—1.2F

Fig. 1. Plots of i, » and w versus n forn=1, 0.9, 0.8, 0.7, 0.6. The 5-axis has been truncated at # = 10. The value of 1 employed for each calculation is given in Table 1.
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[ G

_ onou oo ov\[rom\? [(om\2|" "
“Z“”(azaz*azaz)[(az) *(az)} -

Following Hall [5], we consider disturbances to the basic flow pro-
portional to

E=exp L% (/roc(r, e)dr + 9[?(8))} , (20)

where ¢ = Re”"/B"D] Hence, we have that U = u(r, z)E and similarly
for V, W and P. We note the inclusion of the ¢ term as we expect
from Gregory et al. [4] that these modes will have wavelengths
scaled on the boundary layer thickness. Here o0 = op + €7 + ... and
B=Po+eh+
respectively.

The inviscid zone occupies the entirety of the boundary layer.
The boundary layer thickness is given by 5 = Re'/™7, hence, the
inviscid zone has thickness O(&?). Here the velocities and pressure
expand as

. are the wavenumbers in the # and 0 directions,

u=1uo(n)+eu(n)+..., (21a)
v=1vo(n)+evi(n)+ ..., (21b)
w=wo(n)+ewi () +..., (21c¢)
P =po(1) +&p: () + (21d)

The expansions are then substituted into (14)-(17) along with
(18) and (19), with the following forms for the differential
operators for the disturbance terms

9 _n-n) o (i . 9 _
or— (n+1)8n+<a3>(a0+w]+’“)’ 00~

Equating terms of order &3, we obtain

<;3>(/30+€/31 )

ittty + /))07/0+r(1—n)/(n+1)W6 -0,

(22a)
ity + r/ ™ Dwil’ + iogpy = 0, (22b)
iy + r¥/ Dy + 920 lﬁopo =0, (22¢)
itiwg + r-m/ g = O, (22d)

where the primes denote differentiation with respect to # and
Ul = oplir + B, 2. Manipulation of the above gives the Rayleigh equa-
tion for wp, namely

U(wy — kgwp) — U'wp = 0, (23)

where k2 = r2-D/() (o2 4 2 /r2) s the effective wavenumber and
u is the effective two-dimensional velocity profile. We are
interested in the stationary modes so following Hall [5] we choose
Jo = oot/ By such that

u=u"=0 at n=1, (24)

ensuring that (23) is not singular at # = #. Rayleigh’s equation is
then solved subject to

=0 at =0 and wy—0 as 75— oo. (25)

The eigenvalue problem for x, was solved using central differ-
ences for a range of values of n. The results are presented in Table 2
and have been plotted in Fig. 2. Here the solution for wy has been
normalised with wy =1 at # = 0. Since we have that

tan (5 —4) =% (26)

Table 2

Numerical values for o, 7, Ko and ¢, forn=1, 0.9, 0.8, 0.7, 0.6.
n 0 7 Ko ¢o (°)
1 4.256 1.458 1.162 13.22
0.9 4.086 1.455 1.149 13.75
0.8 3.926 1.445 1.143 14.29
0.7 3.782 1.423 1.144 14.81
0.6 3.663 1.388 1.157 15.27

wo (1)

Fig. 2. The inviscid motion eigenfunction wy(y) forn =1, 0.9, 0.8, 0.7, 0.6.

the leading order approximations to the wave angle, ¢,, for each
value of n can also be calculated. Again the results are presented
in Table 2.

The corrections to the effective wavenumber and wave angle ¢
of the disturbance may be determined by considering the next
order solutions in the inviscid layer. It is found that w; satisfies

B(W) — k2wy) — 'wy = 200D/ (d - ﬁo[fl) .

Ao

The second term on the right-hand side of (27) causes w; to
have a logarithmic singularity at 77 = #, where u = 0. This can be re-
moved by introducing a critical layer at # = #. The solution for w;
for n > 1 is then

ndg

-2 2(n-1)/(n+1) ( ﬁOﬂl)
wiq r OlpOly + Wo(1) ; Wé(C)

W/ (0)i(0) - 1(0)i (0)
/ a>[ = }da (28)

where 7 > 7). For n < 7 the path of integration is deformed above
the singularity in the complex plane since /(%) < 0. Gajjar [15] pre-
sents a linear critical layer analysis in the Newtonian case, showing
that for flows such as this with #/(77) < 0 the path of integration
must be deformed above the singularity in order to match the flow
in the inviscid layer.

The solutions in the inviscid layer do not satisfy the
boundary conditions at # =0, so we require a wall layer of
thickness O(&*). Let us define the wall layer coordinate ¢ by
& =r(-w/m+D)Re#B+Dl7  then the basic flow component ii
expands as

U=nio+...=&Up+ ...,

with similar expansions for 7 and w. Inside the wall layer the
disturbance velocities and pressure are given by
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Table 3

Numerical values of the integrals I, and I, for n =1, 0.9, 0.8, 0.7, 0.6.
n I I,
1 0.0911 0.0592 + 0.0299i
0.9 0.0848 0.0619 + 0.0291i
0.8 0.0774 0.0653 + 0.0281i
0.7 0.0689 0.0671 + 0.0270i
0.6 0.0594 0.0691 + 0.0255i

Table 4

First order corrections to the effective wavenumber and wave
angle forn=1, 0.9, 0.8, 0.7, 0.6.

n —K1 1
1 9.14 17.43
0.9 10.18 17.66
0.8 11.58 17.97
0.7 13.16 18.20
0.6 15.34 18.59
u=Uo(&) +eUr(&) +..., (29a)
v=Vo(&) +eVi(&) +..., (29b)
=eWo(¢) +¢ Wl(é) o (29¢)
= &Po(&) +&°P1(&) + (29d)

Despite the appearance of additional viscous terms in the lead-
ing order governing equations for a power-law fluid, analytic solu-
tions are obtainable. The leading order solutions are given in terms
of the Airy function Ai(y¢), where y= (iﬂo/nﬂo)”3 with

i = dollor + BT and fip = [ + 22" "/, For large ¢ we find that
(s o Wo(0)AT'(0)

Wo = wh(0)¢ + “romae (30)
This provides the matching condition for w;, namely

1 VY Jo Ai(s)ds

Thus, from (28) we obtain the linear eigenrelation

(wy0]Ar ) Bob: m oofy
WZZrZ( D/( 1<(x(x +7> (m]ﬂ?))rlz

(32)
Here
h= [ wio)do.
0
X2 [H(O)0(0) — u(0)u’ (0)

L =B A Wo(e){ 2(0) }d@,

2

16 |

Rea

0]

10* 10° 109 107

Our calculations for I; and I, are presented in Table 3. Using the
well known values for Ai'(0) and [;° Ai(s)ds, we are able to solve
the eigenrelation (32) giving

<a0a +ﬁo/]) P2n=1/m1) — g p=2/BO e

LR PR
ﬁO ﬁo

where k; and /; are constants that are determined during the solu-
tion process. Numerical values for x; and 4, are presented in Table 4
for a range of values of n. Our results, in the Newtonian case, are in
good agreement with those of Gajjar [15].

By introducing the modified Reynolds number,
Re, = r¥/(m+DRe!/™D "based on the boundary layer thickness and
the local azimuthal velocity of the disk we are able to formulate
expressions for the local wavenumber and wave angle that have
no explicit dependence on the radial variable r. Since we have that

(33a)

(33b)

1 1 ﬂz 2 1 1 ﬁoﬁl
]{A:rm*)/(”*) a2+r2:;(j0+r(”*)/(”+) 0lg0ly +_ K_+7
0

n oo
tan(i—qs))vo—kr(ﬂ—;—;—?)s—s—...,

where k, is the local wavenumber, (33a) and (33b) give
ks = Ko+ K1Rey ' ? + ...

T Lo
tan (jf‘/)) = o+ mRey? + ...

(34a)
(34b)

Plots of k, and ¢ for Re >> 1, as functions of Re, are presented in
Fig. 3. In Fig. 3(a) and (b) the flow is unstable in the region below,
and above, the curves, respectively. Thus, as n decreases the neu-
tral values of the effective wavenumber of the disturbances de-
crease while the values of the wave angle increases.

4. Conclusion

We have shown that the inviscid stability analysis used to de-
scribe the upper-branch stationary neutral modes of the von
Karman flow (for Re >> 1) can be extended to incorporate the rhe-
ology of a power-law fluid. The prediction for the angle of the spiral
vortices resulting from the instability for the case when n =1
agrees well with existing numerical and experimental results.
The results from Fig. 3 show that at the same value of the modified
Reynolds number the local neutral wavenumber will decrease with
decreasing n and that the wave angle will increase with decreasing
n. This suggests that shear-thinning fluids may have a stabilising
effect on the inviscid flow as fewer spiral vortices with a greater

20

18 1

14

12 F ' 1

10 — .
104 10° 106 107

RCA

Fig. 3. Plots of the asymptotic neutral wavenumber k, and wave angle ¢ predictions for n = 1,0.9,0.8,0.7 and 0.6 using two terms of the asymptotic results.
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wave angle are predicted as n decreases from 1. However, the sta-
bilising or destabilising effect of the fluid index n in terms of the
critical Reynolds number can only be determined by numerical
solution of the full governing stability equations. In addition, the
absolute instability must be considered to determine the effect
on the global instability of such non-Newtonian flows. These inves-
tigations are outside the scope of the current study.

Besides the above directions, there are other areas for future
work on this problem. The possibility of lower-branch stationary
modes could be studied asymptotically, as in Hall [5] for the New-
tonian flow problem. The results presented here could be repro-
duced for shear-thickening fluids since the asymptotic analysis
holds for all n > 0, although as mentioned in Section 2 due care
and attention needs to be given to the basic solutions in this case.
Of particular interest would be numerical solutions of the govern-
ing stability equations to compare the asymptotic results (34). A
numerical study will determine the effect of a shear-thinning fluid
on the critical Reynolds number for the onset of linear instability.
Our analysis predicts that co-rotating spiral vortices will occur
for large enough Reynolds numbers.

The experimental studies of Nasr-El-Din et al. [16] into the ef-
fect of gelled acids on the erosion of calcite marble rotating disks
may be relevant here. The gelled acids used were shear-thinning
fluids with measured fluid index 0.55 < n < 0.70. For sufficiently
large rotation rates spiral patterns of erosion were observed on
the disk, which reduced as n decreased. Of interest would be exper-
iments at larger Reynolds number with which to compare our the-
oretical analysis.
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Appendix A. Additional viscous terms

The additional viscous terms omitted from the analysis in Sec-
tion 3 are presented here, for completeness.

"Tr ar) 1 a0 ar\r) " r a0
()2
oz\" or r2 \ 90 ’

g —lg r32(2)+r% +z£ 1@+E +3 Ha_W
“rar\M o) | [ traa|M\rae )| Taz\rae )

(A2)

| &
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k% —13 r %+87W +12 @+187W +22 aiw
oMoz ar )| Trae Mz T T e az\Maz)
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