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To Anne 



(ii) 

• • • God, in the beginning form 1 d Matter in solid, 

massy, hard, impenetrable, moveable particles • • • 

Newton, Opticks, 1717, Query 31. 



(iii) 

Abstract 

Hydrodynamic shape functions for modelling biological macromolecules 

in solution in terms of an ellipsoid of revolution model are reviewed. 

Several new, hitherto unpublished shape functions whose experimental 

determination does not require knowledge of the swollen molecular volume 

in solution, are given. The limitations and inadequacies of this model 

are explained. The viscosity increment v for a dilute dispersion of tri-

axial ellipsoids of semi-axes a> b> c, under dominant Brownian motion is 

derived and an explicit expression in terms of a, b and c is given. 

Knowledge of the viscosity increment alone is not sufficient to uniquely 

determine the axial ratios (a/b, b/c) because (i) in order to determine 

v, knowledge of the swollen volume in solution is required and (ii) a 

particular value for v has a line solution of possible values for (a/b, 

b/c). (i) is dealt with by combining v with the tri-axial frictional 

ratio function P to give the tri-axial R function and (ii) by combining 

graphically the R line solution with 0+ and o_ swelling independent line 

solutions. The experimental determination of o and o requires the 
+ -

resolution of a 2-term electric birefringence decay into its component 

relaxation times; current data analysis techniques are however not 

satisfactory for resolving close relaxation times (as for globular 

proteins) with the current experimental precision. It is however shown by 

exhaustive computer simulation that using a new A-constrained non-

linear least squares iterative analysis this is now possible. It is 

thus concluded that the general tri-axial ellipsoid as a model for the 

gross conformation of biological macromolecules in solution can now be 

employed. 
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P R E F A C E 



1. 

Preface 

There are two basic approaches for determining the gross 

conformation of a biological macromolecule in solution. One is to assume 

a structure (generally an array of spheres of varying sizes) and then 

calculate its hydrodynamic properties, for example the intrinsic 

viscosity, sedimentation coefficient, translational diffusion coefficient, 

and then see how much these predicted properties differ from the 

experimentally determined properties for the unknown structure. The 

model is then successively changed or 'refined' until the predicted 

properties converge to agree with the actual properties. This method has 

been developed by Bloomfield, Garcia de la Terre and eo-workers 

(Bloomfiald at al, 1967, Garcia de la Terre & Bloomfield, 1977a,b,c, 1978, 

Wilson & Bloomfield, 1979a,b, Garcia Bernal & Garcia de la Terre, 1980). 

There is however a serious drawback in that the final ~alculated structure 

may not be the only one which gives these properties. 

The alternative approach is to calculate the structure directly from 

the known hydrodynamic properties. Soma general model must of course be 

assumed, but although the models available from this approach are less 

precise (the most general before the commencement of this study being an 

ellipsoid with two equal axes) it does not suffer from the uniqueness 

problem. This approach was first developed by Stokes (1851, 1880) in 

terms of a simple spherical model calculated from the translational 

frictional property and the rotational frictional property and again for 

a spherical model by Einstein (1906- with a correction in 1911) from the 

viscosity property. Although the current state of theoretical, experimental 

and data analysis techniques allows use of the 1 2 equal axes• ellipsoid 

("ellipsoid of revolution"), it is clear from a simple perusal of 
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crystallographic models that for many biological structures this model 

is a very poor approximation to the true structure. 

The aim of this thesis is thus twofold: the first is to review all 

the current ellipsoid of revolution shape functions (in which some new, 

hitherto unpublished functions are given) and the second is to develop the 

current theoretical and data analysis techniques to show that with current 

experimental precision· the restriction of two equal axes on the ellipsoid 

model can now, in principle at least, be dispensed with to allow use of 

the more general "tri-axial ellipsoid" modal. 

I would like to take this opportunity to express my deepest 

gratitude to Dr. A.J. Rowe for his expert guidance and supervision during 

the course of this study. 

I would also like to thank the following people for their help and 

advice on.specific parts of this study: Dr. M.D. Dampier of the Mathematics 

Department for helping me derive the viscosity increment for tri-axial 

ellipsoids, Dr. K. Brodlie of the Computing Advisory Services for helping 

me with the programming, particularly in the early stages; Drs. J. Rallison 

• & J. Hinch from Cambridge for helpful discussions on suspension rheology; 

Professor B. Jennings and Drs. V. Morris and A. Foweracker of Brunel 

University, Dr. Houssier of Liege University and Dr. J. Jest of the Union 

Oil Company, California for discussions and communications on electric 

birefringence, Dr. R. Dale of the Patterson Laboratories on the limitations 

of fluorescence depolarization, and Mr. A. Pancholi of this laboratory for 

permission to use his viscosity data far hemoglabin. 

I am grateful to the Science Research Council for a Research 

Studentship and also Fisons Pharmaceuticals Limited for financial assistance 

during this study. 
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C H A P T E R 1 

The Mass, Size and Shape of Macromolecules in 

Solution: The Ellipsoid of Revolution Model 



4. 

1.1. Macromolecular Structure in Solution 

The concept of a unique structure for a biological macromolecule 

in solution and in crystallized form has only relatively recently been 

established beyond dispute. Prior to the work of Svedberg the view was 

commonly taken (Sorensen, 1930) that proteins and other macromolecules 

exist in solution not as unique structures but as dissociable complexes 

containing possibly several components, that the equilibrium state was 

dependent on circumstances (for example the composition of the solution} 

and any components precipitated are not necessarily to be identified with 

those occurring in solution. Researchers were consequently surprised at 

the ultracentrifuge results of Svedberg and his eo-workers (Svedberg & 

Pedersen, 1940) which strongly suggested the molecular homogeneity of 

many protein systems. Thus, in striking contrast to the polydispersity 

of many polymer systems (such as carbohydrates, rubber or polystyrene) 

it was deduced that carefully prepared protein solutions contain one, or 

at the most a few, different molecular species. This deduction was 

derived mainly from the observation that boundary spreading observed in 

the sedimentation of protein solutions could be identified with 

separately measured translational diffusion coefficients. Bresler and 

Talmud (1944) suggested however that a monodisperse protein really 

contains a distribution of molecular weights with a sharply defined 

maximum. This surmise is, on the other hand, strongly opposed by the 

immunological properties of proteins (Alexander & Johnson, 1949) 

together with the overwhelming evidence now available from protein 

crystallography (Kendrew et al, 1958, Perutz et al, 1960, Slake et al, 

1965, Feldman, 1976) which support the idea of discrete individual 

structures. 
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X-ray crystallography is by far the most accurate method for 

determining these structures. Unfortunately this technique is also the 

most laborious, requiring several researchers working for a period of 

months to determine the structure of a single globular protein. The 

calculated structures are also of the 'fossilized' form of the 

macromolecule which may not necessarily be the same in solution. There 

are many techniques available, such as nuclear magnetic resonance, 

electron spin resonance, fluorescence and other spectroscopic techniques 

which can give much detailed information about the dynamic properties of 

localized regions of macromolecules in solution (for example, the active 

sites of enzymes are being extensively studied). These techniques 

cannot however give information as to the overall macromolecular mass, 

size and shape. For this one needs to consider the hydrodynamic 

properties of solutions of the macromolecule (although scattering 

phenomena can also give useful information), which allows determination 

of the molecular weight, simple 'hydrodynamically equivalent' 

mathematical models for the structure and also the size (including the 

swelling due to solvent association) of the macromolecule. 

1.1.1. Mass 

The 'inertial mass' of a body can be defined as the quantity o~ 

matter in it, or as the ratio of the force applied to its acceleration 

(Newton's 2nd Law of Motion). For a macromolecule we conveniently 

express the mass by the 'Molecular Weight' (M ) which is defined as the 
r 

ratio of the mass of the macromolecule to that of one sixteenth of an 

oxygen o16 atom, and is expressed in grams. 

The mass of fluid displaced by a macromolecule in a solution will 
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equal the product of the volume displaced and the density of the solution 

(Mrv/NA)p
0

, where Mr is the molecular weight, NA Avogadro's number, P
0 

the 

solution density and v the partial specific volume of the macromolecule, 

i.e. the volume increase when unit mass (generally one gram) of solute is 

added to an infinite volume of the solvent at constant temperature and 

pressure 

V = [~~jT 
,p 

(1) 

The 'Archimedean mass' (i.e. the buoyant mass) of a macromolecule 

(Van Holds, 1971) in solution will equal the true mass minus the mass of 

the fluid displaced: 

M 
r (1 - v p ) -N o 
A 

(2) 

The molecular weight of a macromolecular solute can be measured from many 

methods, for example sedimentation velocity and translational diffusion, 

osmosis, light or x-ray scattering, or most precisely from a sequence 

analysis. A recent review of these methods is given by Rows (1978). 

The partial specific volume can be found either from a concentration 

determination followed by a densimetric analysis (Kratky et al, 1969, 

1973), or for a protein, from Traube's rule (Rowe, 1978). This rule may 

possibly also be applicable to nucleic acids (Pearce et al, 1975). 

1.1.2. ~ 

The size of a rigid macromolecule in solution will differ from that 

in the anhydrous state because of associated solvent. The hydrodynamic 

-or swollen specific volume v , will now comprise of the partial specific 
s 



volume, v, the bound solvent that adheres to the hydrophilic particle 

surface, and 'entrained' solvent which may be trapped in the various 

cavities and indentations in the macromolecule (Figure 1). The ratio 

v / v is known as the 'swelling' of the macromolecule and is equal 
s 

to unity if the macromolecule is anhydrous and compact in solution. 

The swollen specific volume can be simply related to the "effective" 

7. 

hydrodynamic volume V i.e. the swollen volume of a single macromolecule 
e 

in a homogeneous solution: 

V e 

-V M s r 
= ~---

NA 

1.1.3. Shape 

(3) 

Owing to the difficulties in developing theoretical relationships 

between the shape of a macromolecule and experimentally measurable 

parameters, only rather simple 'hydrodynamically equivalent' models are 

currently available, the boundaries of which can be described by a simple 

mathematical equation; these are (Figure 2) rods, discs and ellipsoids 

of revolution (Tanford, 1961). 

An ellipsoid of revolution is formed by rotating an ellipse either 

about the major axis (prolate ellipsoid) or about the minor axis (oblate 

ellipsoid) and thus has the necessary restriction that two of the three axes 

must be equal. In the limit of large axial ratio, a prolate ellipsoid 

(2 minor axes, 1 major) becomes a good approximation to a rod whilst an 

oblate ellipsoid (2 major axes, 1 minor) becomes a good approximation to 

a disc. Consequently, physical biochemists have tended to use the 

ellipsoid of revolution model to determine the hydrodynamically equivalent 

shape of a rigid macromolecule in solution. 

It should be made clear at this stage that many macromolecules cannot 

be modelled by any of these rigid structures as they have no preferred 
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structure in solution: these 'randomly coiled' macromolecules can only be 

represented by probability configurations. Many other macromolecules have 

a well defined rigid structure but cannot be reasonably modelled, judging 

from the x-ray models at least, by any ellipsoid. The L-shaped Transfer 

RNA molecule is an outstanding example (Kim, 1974). 

1.2. The Hydrodynamic Properties of a Macromolecular Solution 

The hydrodynamic properties of a macromolecular solution, which are 

used to determine these structures, can be conveniently divided into three 

broad classes: 

(i) The viscosity property, which concerns the effect of the dissolved 

macromolecule on the bulk motion of the fluid when a shear gradient is 

applied. 

(ii) The translational frictional property, which concerns the movement 

of the macromolecule through its solution when some form of external force 

is applied. This can be a centrifugal field in a sedimentation experiment 

or a concentration gradient (i.e. a gradient of chemical potential) in a 

translational diffusion experiment. 

(iii) The rotational frictional property, which concerns the disorienting 

effect on the macromolecule by the local Brownian motion of the surrounding 

solvent molecules. 

1.3. The Viscosity Property of a Macromolecular Solution 

The viscosity of a fluid is a measure of its resistance to flow and may 

* be simply defined for a simple shearing flow (Figure 3) in terms of the 

shearing stress a and the shear rate G: 

a = nG (4) 

*For the equations describing a more general flow see Batchelor (1967). 
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where n is known as the viscosity coefficient.· If n is a proportionality 

constant independent of the shear rate the fluid is said to be Newtonian. 

However, if the constituent molecules show preferred orientations, this 

will alter the retarding forces between adjacent fluid elements and hence 

the internal friction or viscosity coefficient. This non-Newtonian 

effect will occur in solutions containing highlyasymmetric or easily 

deformable molecules and at high shear rates (Batchelor, 1967); this forms 

the basis of flow birefringence experiments (see 1.5.3). For characterizing 

the.macromolecule in solution we can set the conditions (i.e. very low shear 

rates) so that the Newtonian condition prevails, whereas the chemical engineer 

would be more interested in the general flow properties. 

Using equation (4) we can simply relate the viscosity coefficient to 

the energy dissipation during flow. Writing a as a tangential force per unit 

area (F/A) and the shear rate as the velocity gradient ( (dx/dt)/~y ): 

F 1 dx 
A. = n ~Y dt 

~ultiplying both sides by G: 

F dx 
Mydt 

Since A~y is the volume of the element under consideration, then 

where <dW/dt> is the mean energy dissipated per unit volume. 

(5) 

The effect of dissolved or suspended macromolecules which are assumed 

to occupy a volume ~ of fluid, is to disturb the streamlines of the 

fluid motion and to reduce the volume of the fluid in which the same 

overall deformation takes place. Thus the internal friction, the viscosity 
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coefficient and hence the energy dissipated is increased. This increase 

can be represented by: 

<:~> 
inc 

2 
= G (n - n ) = 

0 (6) 

where n is the viscosity coefficient of the solution and n that of the 
0 

solvent. Rewriting: 

n = n (1 + vcp) 
0 

Here v is defined as the viscosity increment and is a function of the 

shape of the particle. Again, rewriting equation (7): 

1 = n = vcp sp 

(7) 

where n is the specific viscosity. This equation only applies to an sp 

infinitely dilute solution in which no solute-solute interactions occur. 

For finite concentrations: 

n = v cp + v 1 <P 2 + v 2 <P 3 +. • • • sp 

or, replacing <P by cv , where c is the concentration and v the swollen s s 

specific volume: 

+ • • • • •• 

where n d is the reduced specific viscosity. As the concentration re 

approaches zero, n d tends to a limiting value, known as the intrinsic re 

viscosity, [n] • This can therefore be found by extrapolating a plot of· 

n d versus concentration to infinite dilution, and, if the swollen re 

specific volume, v is known (section 1.1.2.), v can also be found: s 

(8) 



An approximate value for v can be estimated for 'globular' proteins by 

using the partial specific volume v and assuming that v~ vis ~1.4 

11. 

for globular proteins. A full review of the experimental techniques for 

determining the intrinsic viscosity, [n] is given by Yang (1961). 

Einstein (1906, 1911) was the first to determine an explicit value 

for v for a specific particle shape, i.e. a sphere, by solving the 

equations of motion for the flow using spherical harmonics. His 

assumptions were: 

(i) the particles are large enough compared to the solvent molecules 

so that the surrounding fluid can be regarded as a continuum and Euler's 

(Batchelor, 1967) equations concerning the change of flow through specific 

volume elements rather than the complicated Lagrange equations for 

particle motion can be used, 

(ii) the dimensions of the particles are however considered very much less 

than the spatial variations in the velocity flow field, 

(iii) the flow rates are small enough so that squared terms concerning the 

velocity (and hence normal stress effects) can be neglected and that the 

inertia or mass forces can be neglected. 

Using these assumptions and considering the increase in the average 

dissipation of energy per unit volume, he found that v = 2.5, and was 

independent of particle size. This result·has been confirmed experimentally 

for polystyrene latex spheres by Cheng & Schachman (1955). 

Jeffrey (1922) attempted to extend this theory to find v as a 

function of axial ratio for ellipsoids of revolution, using ellipsoidal 

harmonics to solve the equations for the fluid flow. Owing to the non­

isotropic nature of ellipsoids, the hydrodynamic torques on the ellipsoids 

were shown to have two effects: 



12. 

(a) the first effect tends to make the particle rotate on average with 

the local undisturbed angular velocity of the fluid, 

(b) the second effect tends to orient the minor axis parallel to the flow 

for prolate ellipsoids and perpindicular to the flow for oblate ellipsoids. 

As a result, the fluid is no longer isotropic and an energy dissipation 

analysis fails to give a unique value for the axial ratio for a given value 

of v (Brenner, 1972a). However, if the particles are sufficiently 

small the randomizing effect of the Brownian motion of the surrounding 

solvent molecules counteracts the orientational tendancy of the 

hydrodynamic torque (b) so that the particles are randomly oriented (Simha, 

1940) and rotate on average with the local angular velocity of the fluid. 

The solution is then statistically isotropic, allowing an energy 

dissipation analysis to be used to obtain an unambiguous solution for v 

in terms of the axial ratio for prolate and oblate ellipsoids of revolution. 

Simha (1940) was thus able to obtain a formula which has been shown to give 

good agreement with experiment (Mehl, Oncley & Simha, 1940): 

1 
2a " 

0 7 2 
---------- + ------ + -
1Sb

2a '13 ' 1Sb
2
a' 5 

0 0 0 

V = 
ab2 

(9) 

where a, b, b are the three semi-axes of the ellipsoid (b > a for oblate and 

b <a for prolate), and the a' etc. which depend on a and b are elliptic 
0 

integrals given by Jeffrey (1922) (Appendix I). This relation could be 

solved numerically for both cases and a table of values for v as a 

function of axial ratio was given by Meh~ Oncley & Simha (1940). 
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The function is plotted in Figure 4. In the limit of large axial ratio 

p (=b/a) 

V ... 
l/p2 + l/p2 

15 (R.n(2/p) -3/2) ~5 (~R.-n~(2~/p--:-)---l/~2) 
14 +-
15 

(prolate) 
( 10a) 

16 -1 
v - IS tan (p) (oblate) 

(10b) 

These formulae agree with the independent derivations of Kuhn & Kuhn 

(1945) and Kirkwood (1967). 

Simha apparently did not assume that the particles were on average 

rotating with the local angular velocity of the fluid but with zero 

angular velocity. This objection was raised by Saito (1951) who however 

obtained exactly the same result (equation 9) despite assuming particles 

on average rotating with the same local angular velocity of the fluid. 

He suggested that Simha "probably made some error in his calculation" 

without actually finding it. We will show in the next Chapter that Simha 

had apparently arrived at the correct result by making the wrong assumption 

and then missing out a whole series of terms in his calculation. 

1.4. The Translational Frictional Property of ~acromolecular Solutes 

The ease ~ith which a macromolecule moves through its solution under 

the influence of an applied external force field will depend on i~shape 

and size. The coefficient generally used to describe this ease is the 

frictional coefficient, f, defined as the ratio of the frictional force 

to the terminal velocity of the particle. Stokes (1851) using spherical 

. harmonics again and assumptions similar to Einstein's {section 1.3) 

derived the well-known relation between the frictional coefficient f and 



14. 

the radius R of a spherical particle: 

where n is the viscosity of the solvent. Perrin (1936) and independently 
0 

Herzog, Illig and Kudar (1934) extended Stokes equation to cover the case 

of general ellipsoidal particles: 

f r= 
0 (abc)lf

3 

2 

0 

( 12) 

where f is the corresponding coefficient for a sphere of the same volume: 
0 

(13) 

V is the molecular swollen volume, defined in section 1.1.2. The integral 
e 

in equation (12) is elliptic and could only be solved for the special case 

of ellipsoids of revolution. For prolate ellipsoids ( p = (b/a) <1): 

and for oblate ellipsoids ( p = (b/a) >1) 

(14b) 

and can easily be plotted as a function of axial ratio (Figure 5). The 

translational frictional ratio f/f can be measured experimentally either 
0 

from a translational diffusion experiment, where the driving force is a 

concentration gradient, or from ultracentrifugation, where the driving 

force is a centrifugal field. 



1.4.1. Translational Diffusion 

The translational diffusion coefficient, D, is related to the 

frictional coefficient, f, at a particular particle concentration, c, 

by the relation: 

aR.ny } + c -­ac 

15. 

(tS) 

(van Holds, 1971), where y is the 'activity coefficient', a measure of the 

concentration gradient. Extrapolating 0 to infinite dilution gives the 
c 

Einstein relation (Einstein 1905, Tanford, 1961): 

D _ kT 
- f 

{tb) 

·By assuming the concentration gradient to be in one direction only, and 

applying Fick's laws (Tanford, 1961) for a two-component system, a simple 

relation for finding 0 experimentally can be derived, in terms of the area 

under, A, and the maximum height of, H, a concentration gradient (dc/dx) 

versus distance (x) curve: 

4nD t 
c 

2 
Thus a plot of (A/H) versus time, t, in a 'free diffusion of a sharp 

boundary experiment' will give 0 from the gradient (Tanford, 1961, van 
c 

Holds, 1971). D can be extrapolated to infinite dilution after repeating 
c 

the procedure for several solute concentrations. Unfortunately, few labor-

atories have the apparatus required for an accurate determination of 0 using 

this method. A fast and accurate method for determining diffusion coeffic-

ients has been developed using quasi-elastic laser light scattering (Chu, 

1974, Cummins & Pike, 1973, Berne & Pecora, 1974b the fluctuations of solute 

particles from the equilibrium state are a function of the diffusion 
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coefficients and with adequate instrumentation for signal analysis can be 

time-resolved. 

From equation (16), the frictional ratio can be found from the 

translational diffusion coefficient using the relation 

f Do 
r=o 

0 
( 17) 

where 0 is the translational diffusion coefficient for a sphere of the 
0 

same volume and molecular weight: 

kT kT 
Do = f = 61r11 

0 0 

113 

( 3~rr J 
e 

(18) 

1.4.2. Sedimentation Velocity 

In a sedimentation velocity experiment, using an analytical 

ultracentrifuge (van Holds, 1971), the macromolecules quickly attain the 

terminal velocity, whence 

f dr 
dt 

where p is the solution density, r the distance from the centre of 
0 

rotation of the solution/solvent boundary, w the speed of rotation and 

~ (1 - v Q )/NA the'buoyant mass' defined in section 1.1.1. Rearranging: r o 

dr/dt = = s ~ c 

where s is the sedimentation coefficient at a particular solute 
c 

concentration. In a sedimentation velocity experiment the movement of 

( 19) 

the boundary between solution and solvent is monitored as a function of 

time using the property of change of refractive index with change in 
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concentration, hence optical techniques such as scanning Schlieren optics 

or ultra-violet absorption can be used (Lloyd, 1974). If we rearrange 

and integrate equation (19) we find that 

1 s = c WT 
~inr 

~t 

thus by plotting lager versus t and knowing the angular velocityw, se can 

be found from the gradient. The sedimentation coefficient s is a function 
c 

of solute concentration, thus is normally extrapolated to infinite dilution 

to give the sedimentation coefficient, s, which is characteristic of any 

macromolecular solute. From equation (19) it can be seen that the 

frictional ratio f/f will be given by 
0 

f r= 
0 

s 
0 

s 

where s is the sedimentation coefficient for a compact ·sphere of the same 
0 

molecular weight and volume. From equations (19) and (13): 

s 
0 

= = 

1~ 

b~rrJ 
e 

-and thus the frictional ratio can be found, provided s, Mr' v, p
0

, n
0 

and the swollen molecular volume, V are known: 
e 

f r= 
0 

1~ 

b~rrj 
e 

1.5. The Rotational Frictional Property of Macromolecular Solutes 

(2Da) 

(2Db) 

The ability of a macromolecule to rotate under the influence of the 

local Brownian motion of the neighbouring solvent molecules will depend on 

its size and shape. By analogy with the translational frictional 
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coefficient, we can define, for rotation about a specific particle axis, 

a rotational frictional coefficient, ~.,as the torque which must be 
1 

applied to cause the particle to rotate with unit angular velocity. For 

a general ellipsoidal particle there will be three rotational frictional 

coefficients corresponding to rotation about each of the three axes; for 

an ellipsoid of revolution there will be two, and for a spherical particle, 

one. Each rotational frictional coefficeint can be related to a 

rotational diffusion constant by analogy with the Einstein relation (1905) 

{equation 16): 

kT. e. = 
1 ~-

1 

(;tt) 

where a. is defined as the ratio of the mean squared angular displacement 
1 

of the axis to the time elapsed (Tanford, 1961). In a typical rotational 

frictional experiment an initial orientation of the macromolecule is 

produced by some external field. If, for example, the macromolecules in 

a solution are oriented with their "a" axis parallel to an orienting field 

and the field is suddenly removed, the macromolecules will then relax due 

to the Brownian motion and tend to assume a random configuration by 

rotating about the b and c axes. We therefore conveniently define a 

rotational relaxation time in terms of the rotational diffusion constants 

cab, ac about the b,c axes respectively) by 

(22a) 

There will be similar relations describing relaxation of the b and c axes: 

(22b,c) 
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By analogy with the translational frictional case, Stokes (1880) 

using spherical harmonic solutions of the equations of motion with 

the boundary condition that the fluid in contact with the particle rotates 

with the same angular velocity (i.e. the 'no-slip' condition) derived an 

equation linking the rotational frictional coefficient with its 

radius, R: 

(23) 

'· Edwardes (1893) extended this equation to the case of general ellipsoidal 

particles. After a correction for a numerical error (Perrin, 1934), 

these are: 

16nn 
0 

16nn 
0 

16nn 
0 

3 (24) 
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where again the a etc. are elliptic integrals defined by Jeffrey (1922) -
0 

see Appendix I. The expressions on the right hand side of equations (24) 

are functions not only of shape but of volume as well; the corresponding 

rotational frictional ratios however, are not. 

r,;c 
-= 
r,;o 

(25) 

where r,; (=8 1rn abc) &: 9 (=kT/r; ) are the corresponding coefficients 
0 0 0 0 

for spheres of the same volume, and can be found experimentally only 

if the swollen molecular volume, V is known: 
e 

r,; = 6n V e = kT/6n v 
o o e ) o o e ( 2 6a , b) 

The corresponding rotational relaxation time ratios are: 

ga 2 ..._ = 
1?0 

[:: + :: ] 

l?b 2 
-= 
t>o [ec ea ] -+-e e 

0 0 

QC 2 
-= 

[:: + ::] 

l?o 
(27a) 

where Q = 1/2 e • 
0 0 

(27b) 
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Unfortunately, as for the translational frictional coefficients, the 

elliptic integrals could only be solved analytically for the special case 

of ellipsoids of revolution of semi-axes a, b=c (Gans, 1928, Perrin, 1934). 

Although numerically equivalent, Gans uses the less manageable 

'eccentricity' (E = 1- b/a) rather than the axial ratio (p = b/a), hence 

the equations of Perrin are generally used: 

(28a) 

where 

1 , 

S = (1- p2)-:!2n{[l + (l-p2 l:!J/p} 

for a prolate ellipsoid (p<1), and 

for an oblate ellipsoid (p>1). 

The rotational diffusion ratio e./a (i=a,b) can be related to experimental 
~ 0 

parameters using equations (26b): 

a. 1 6n v 
1. o e\e. 
~ : I l. 

o kT 

(28b) 
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The corresponding rotational relaxation time ratios were also given by 

Perrin (1934) but contained an error of sign involving S. The correct 

result was given by Koenig (1975): 

f'a 
-= 

Qb 2 4(1 - p4) 
-Q

0 
= -[-:a_+_:_b)- = 3[p2S(1-2IJ2) + 1] 

(29a) 
0 0 

These may be related to experimental parameters by combining equations 

(26b, 27b): 

Qi kT 
-=· 
Q

0 
3n V o e 

(l . 
1 

All these functions ( r;;
1
. /z; = a ;a , Q. IQ ) are plotted as functions of 

0 0 0 l. 0 

(29b) 

axial ratio in Figure 6. It should also be pointed out that, like the 

translational functions the rotational diffusion coefficients and 

relaxation times are functions of concentration (Riddiford & Jennings, 

1967) and should be extrapolated to infinite dilution. The same is also 

true for the harmonic mean relaxation time, the birefringence decay 

constants and the fluorescence depolarisation relaxation times mentioned 

below. The various experimental methods for determining all these shape 

parameters will now be discussed. 

1.5.1. Dielectric Dispersion 

The capacity of a condenser filled with a solution of the macromolecule 

is measured as a function of the applied sinusoidal voltage across it 
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(Edsall, 1953). The 'dielectric increment' or increase in the dielectric 

constant, E, due to the presence of the solute is given by 

c c 
0 

~E = E - Eo=c- - C (30) 
V V 

where E is the dielectric constant of the solvent and C, C and C 
0 0 V 

are the capacities of respectively, the solution, solvent and vacuo. 

At sufficiently small frequencies, the dipolar macromolecules can keep 

pace with the alternating field, and the dielectric constant will remain 

at its 'static' value. At sufficiently high fields, the rotation of the 

macromolecule about a particular axis will no longer follow the field and 

its contribution, ~E~ to the dielectric constant is that of a non-polar 

substanc~ (Oncley, 1940); thus over a certain critical range 

characteristic of the size and shape of the macromolecule, the dielectric 

constant decreases as the frequency increases. The frequency corresponding 

to the mid-point of the dispersion curve is known as the 'critical 

frequency'. For a general particle with three rotational relaxation times 

pa' Qb' Qc' there will be three critical frequencies: 

v = 2ng 
a a V = 2nn c ·~c 

(31) 

for an ellipsoid of revolution there will be two (since Qb = pc) or one, 

either if the dipolar axis is parallel to the rotation axis of symmetry 

or for a spherical particle. Typical dielectric dispersion curves for 

ellipsoids of revolution of various axial ratios are shown in figure 7 

(from Oncley, 1940) 

Even in the most favourable case, e = 45°, resolution is poor for 

axial ratios less than 9 (Squire, 1978). Application of this method is 



also limited by the fact that, due to electrode polarization, only 

solutions of low ionic strength can be used, thus restricting the use 

to proteins of high solubility. 

1.5.2. Electric Birefringence 

Polarized light incident on a solution of macromolecules oriented by 

an elctric field will be split into perpendicular components because the 

refractive index will be different for directions parallel and 

perp~ndicular to the electric dipole moment (Benoit, 1951). The solution 

is then said to be birefringent and the amount of birefringence will 

depend on the nature and concentration of the macromolecules. 

The decay due to Brownian motion of the birefringence when the field 

is suddenly switched off is most interesting since this will be 

independent of the electric properties of the macromolecules (apart from 

the initial amplitude of the decay) but dependent on their size and 

asymmetry, assuming the solution to be homogeneous. The solution must 

be rendered homogeneous by, say, ultracentrifugation for removing larger 

impurities, followed by gel filtration for fine purification. The number 

of terms in the exponential decay will be dependent on the particle 

asymmetry, assuming that the particles are small enough so that the 

Rayleigh - Gans - Debye scattering theory applies ·(i.e. particle dimensions 

less than ~20). Ridgeway (1966, 1968) has shown that a general particle 

will have two relaxation times, 

-69 t 
+ 

+ A e 

~ , T or two decay constants, 9 (=1/6~ ), 
+ - + + 

-69 t - ) 

(32) 

where 6n is the birefringence, N is the number density of particles in 



suspension, n2 the refractive index of the solvent and A+ complicated 

expressions depending on the initial particle orientations and their 

dielectric and diffusion properties. Unfortunately, although Ridgeway 

provided relationships linking e+ with the size and shape of general 

tri-axial ellipsoids (see Chapters 3 and 4), only one relaxation time 
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has been resolved· from the experimental exponential decays for homogeneous 

solutions. Thus the method has been restricted to ellipsoids of revolution 

(A_= 0) for which Benoit (1951) had shown previously that, for an initial 

birefringence n , 
0 

(33) 

assuming the electric dipole axis coincides with the rotational axis of 

symmetry. For spherical particles there would be no birefringence. 

1.5.3. Flow Birefringence 

The aligning field can also be produced, if the macromolecules are 

highly asymmetric, by large flow velocity gradients in the annular space 

between two concentric cylinders, one rotary and one stationary {van Holds, 

1971, Squire, 1978). The orientation of the macromolecules will again be 

opposed by rotational Brownian motion, and for a constant shear rate, there 

will be an equilibrium distribution of orientation states. Results for 

early studies are discussed by Cerf and Scheraga {1952) and by Tanford 

(1961). This method has the advantage that the steady state birefringence 

can now be used to derive shape parameters, since this will be independent 

of the electric properties of the macromolecule. However, the method has the 

serious disadvantage in that relaxation experiments are virtually impossible, 
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and also the use is restricted to highly asymmetric molecules (Squire, 1978). 

1.5.4. Fluorescence Depolarization 

This method applies to those macromolecules that possess a fl~orescent 

group or a chromophore (Cantor & Tao, 1971). If an electron in a chromophore 

is excited to a higher energy state by the absorption of radiation, then 

instead of the energy being dissipated non-radiatively in the form of heat 

as it returns to the ground state, it loses only part of its energy as heat 

as it returns to the lowest vibrational level of the excited state, but then 

re-radiates the rest. This will necessarily be of lower energy (hence longer 

wavelength) than the incident radiation. This phenomenon is called 

fluorescence. 

If the macromolecule is irradiated with polarized light, and if, in the 

10-8 to 10-7 seconds it takes for the energy to be re-radiated the 

macromolecule has changed its orientation due to Brownian motion, there will 

be a net depolarization of the incident light. If the solution is 

continuously irradiated then a steady state depolarization will be reached 

depending on the ratio of the fluorescence decay time, t* to the harmonic 

mean of the three rotational relaxation times (equations 27), Th (Perrin, 

1934): 

[t -i) = [t-- i) 
0 

(34) 

P is the polarization (i.e. the ratio of the difference in intensities of 

light polarized parallel and perpindicular to the incident beam to their sum), 

P is the intrinsic polarization of the fluorescence (the polarization that 
0 

would be observed if no rotation had occurred) and Th is defined by 



1 
-= 

1 
3 

for general ellipsoids, or for ellipsoids of revolution (pb = gc): 

27. 

(35) 

The harmonic mean relaxation time ratio L~ La can thus be plotted as a 

function of axial ratio (Figure 8), where L is the corresponding 
0 

coefficient for a sphere of the same molecular weight and volume: 

L = 
0 

3 n V o e 
kT 

Thus L~ La can be related to experimental parameters by: 

-= 
L 

0 

(36a) 

(36b) 

Equation (34) is not particularly useful as it stands, since neither P 
0 

nor Lh are known. If Lh is approximated by Lh- La (i.e. = 3n
0
V/kT) then: 

(~ - ;j = (f-- tJ 
0 

(37) 

If measurements are then made in solutions of varying viscosity (for 

example by adding glycerol) and/or temperature, (1/P -1/3) can be 

plotted against T/n , 1/P can be found from the intercept and hence Th 
0 0 



from the gradient, assuming T* can be found independently. A major 

disadvantage of this method is that by adding glycerol or changing the 

temperature the swelling due to solvation may be altered: also an 

independent estimate for T* is required. 

A more accurate method in principle is nanosecond fluorescence 

depolarization decay (Cantor & Tao, 1971). Here the solution is 

irradiated with polarized light pulses of very short duration (-1ns). 

The anisotropy, A is measured by determining the intensity of emission 
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polarized parallel to (I 11 ) and perpindicular to (~) the incident pulse: 

! 11 - IJ. 
A=~--~ 

I11 + 2 I..L 

(38) 

For a rigid spherical macromolecule, the anisotropy decay is described 

by a single exponential term (Jablonski, 1961) 

A(t) 
-t/T 

= A e 0 

0 

(39} 

with T = n V lkT. For a rigid ellipsoid of revolution, ~emming (1961) 0 0 r¥. 

and Wahl (1966) have shown that the anisotropy is a sum of three 

exponential terms: 

where 

A(t) 

T 
1 

= 

-t/Tl 
= cx.le 

1 
6eb 

+ a. e 
2 

-t/T 
2 

1 
T3 = 

(40) 

( 41) 



The fluorescence decay time ratios are plotted in Figure 9 where L is 
0 
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the corresponding coefficient for a sphere of the same molecular weight 

and volume: 

Thus the fluorescence anisotropy decay time ratios can be related to 

experimental.parameters by 

kTL. 
= ___.1.. 

n V o e 
(j=1,2,3) 

The values of the component amplitudes a
1

, a2 , a3 and hence the 

(42) 

dominant relaxation time will depend on the angle between the transition 

moment of the chromophore to the rotation axis of symmetry of the ellipsoid 

of revolution. Unfortunately, resolution of a multi-term exponential decay 

into its components is notoriously difficult (Jest, 1978), even for 

relaxation times differing in orders of magnitude; this is coupled to the 

problem that the observed decay will be a convolution of the finite cut-off 

time of the incident pulse, the fluorescence decay and the anisotropy decay. 

There are also more serious problems: 

(i) since the fluorescence itself decays within about 10ns, only molecules 

with very short relaxation times can be investigated, 

(ii) most macromolecules do not contain a chromophoric group such as 

tryptophan; thus one must be introduced. This may significantly alter the 

true conformation of the molecule, 
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(iii) even if the macromolecule contains tryptophan, the decay is not 

perfectly exponential, due to interference between the side chain and 

the indole ring, 

(iv) rotation of the chromophore, or of a fragment of the macromolecule 

to which the chromophore is attached, with respect to the rest of the 

macromolecule may occur: ~unro et al (1979) have given evidence for 

internal rotation of the tryptophan residue in Staphylococcus aureus 

nuclease 8 (~ = 14,100) and Pseudomonas aeruginosa azurin (~ = 14,000). 
r r 

1.6. Scattering 

Absorption and hence fluorescence phenomena can only occur when the 

frequency of the exciting radiation is the same as or near to that of an 

allowed transition frequency of the molecule. However, at other wave-

lengths electro-optic interaction can still occur; the electric vector 

of the incident radiation polarizes the molecule by attracting the 

nuclear mass and repelling the electron clouds. The frequency of 

oscillation of the incident radiation is the same as that of the induced 

oscillating dipole; however, the waves emitted are by Huyghens principle 

spherical and hence the radiation is scattered in all directions. 

The scattering by a solution of macromolecules is most rigorously 

analysed by considering the local concentration fluctuations of the 

solution; however, if we consider the particle as small compared with the 

wavelength of the incident light and the solution to be so dilute so that 

each particle can be considered independently, relations can be derived 

between particle shape in terms of the 'radius of gyration' (Tanford, 

1961) and the scattering (van de Hulst, 1957). For small particles (<X/20) 

interference effects between radiation scattered by different parts of the 



macromolecule can be neglected, and the following relation between 

molecular weight, ~ and the scattering can be derived: 
r 

H'-
-= 

T 

1 
-+ 
M 

r 
2B.c 

where c is the particle concentration, H is the scattering constant 

( ,.., ,-4, I > ~A and the square of the refractive index increment, dn de , 

8 the second virial coefficient and T is a measure of the relative 
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scattering perpindicular to the incident beam (i.e. the fraction of light 

scattered (van Holds, 1971)). Hence if H'/-r is plotted versus 

concentration, the molecular weight can in principle be determined from 

the intercept. For large particles (d-A./20) destructive interference 

occurs between light scattered from different parts of the macromolecule. 

Light scattered in the forward direction cannot however be subject to 

destructive interference. Unfortunately this cannot be viewed directly, 

but if the scattering is studied over a range of angles it can be 

extrapolated to the forward direction. This involves extrapolating to 

zero-angle and to zero-concentration using the so-called Zimm plot 

(Zimm, 1948, Stacey, 1956, Tanford, 1961). The slope of the c=O line 

gives the radius of gyration of the particle, RG' i.e. the mean extension 

of mass from the centre of gravity. Fa.r a sphere of radius R, RG = f3/5
1

R, 

and for a large rod of length L, RG = L/ltt , thus light scattering can be 

used to obtain information about conformation in solution, where particular 

models for which R can be specified are applicable. Holtzer and Lowey 
0 

(1956) showed by this method that L = 1500 A if myosin could be reasonably 

modelled by a long rod. ~artin (1964) has shown that the radius of gyration 

can be related to the axial ratio of the equivalent ellipsoid of 

revolution provided that the swollen volume is known: 
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R2= 
G 

for a prolate ellipsoid and 

for an oblate ellipsoid. 

An explicit relation relating RG to axial ratio alone can be found by 

'reducing' it 

for a prolate ellipsoid and 

for an oblate ellipsoid. 

This is plotted in Figure 10. Experimental determination of (RG)red 

requires of course a knowledge of V • e 

The same analysis can be used for laser light scattering as this 

(43a) 

(43b) 

(44a) 

(44b) 

gives good time resolution for rapidly changing solutions (for example 

aggregation of macromolecules, randomly coiled macromolecules). However 

a major difficulty with all light scattering experiments is that all 
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solutions, glassware etc., must be dust free; removal, without damage to 

the biological solute, poses great difficulties. Due to diffraction 

effects it is also difficult to measure scattering angles less than 

about five degrees, thus a clear extrapolation to zero angle may not be 

possible. Another major difficulty is that, since the resolving power 

2 0 
depends on (RG/A) , the method fails for macromolecules below about 100 A 

(although M may still be found). Reducing the wavelength of the 
r 

incident radiation does not help (until down to the x-ray region) since 

below 200nm most biological materials absorb very strongly. A method of 

low angle x-ray scattering (LAXR) has also been developed (Beeman et al, 

1957). However, due to very strong diffraction and interference effects, 

the scattering is almost entirely confined-to a very narrow wavelength 

range. On the other hand, it is possible to collimate the x-ray beam much 

better than a light beam, thus measurements can be made to a low enough 

angle to a more reasonable extrapolation to zero angle. 

Deductions about the size and shape of macromolecules from_ scattering 

information is generally restricted however, since any simple interpretation 

of the radius of gyration must assume that the macromolecule is homogeneous 

.(uniform electron density). If, therefore, the particle contains fluid 

filled cavities or indentations or a monolayer of bound solvent, the 

dimensions of any assumed model calculated from the RG will be incorrect. 

This problem does not apply to the determination of the hydrodynamic shape 

parameters considered previously since these phenomena do not depend on 

interactions with or properties of the interior of the macromolecules. 

1.7. The Problem of Swelling due to Solvation 

In order to determine from experimental data the ellipsoid 



of revolution shape functions mentioned so far, a knowledge of the 

swelling due to solvation (i.e. V ) is required: 
e 

V = 
ill= [n]Mr 

- N V 
v A e 

s 

f - Mr (1 - vp o) 

f
0 

= NA 6rrn
0 

s 

e. r,; 6n v :e 
1 o o e .. 
9 =~=-- 11 

o 1 kT 

g. 
1 

-= 

T 
h 
-= 
T 

0 

kT 
3n v o e 

g. 
1 

kT T 
3n V h. 

o e 

(i = a,b). 

T. kT 
~=--T 
-r n V j 

(j=1,2,3) 
o o e 
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(8) 

(20b) 

(28b) 

(29b) 

(36b) 

(42b) 

(44) 

The first significant attempt at dealing with this problem was due 

to Oncley (1941) using a graphical analysis: If V is fixed then a single 
e 

value of the shape parameter being considered will correspond to a single 

value of the axial ratio. If, however, V is assumed to have a range of 
e 

possible values, then a single value of the shape parameter will have a 
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'line solution' of possible values of the axial ratio. This is shown in 

Figures 11a and 11b for the viscosity increment and translational 

frictional coefficient. However, if line solutions for two or more 

of the different shape parameters are compared, then in principle a 

unique value for the axial ratio and effective volume can be found from 

the intersection. On the other hand, in practice these curves could only 

be made to intersect by imposing large experimental errors on the data, 

and in one case - pepsin - the curves do not cross at all (Figure 12). 

Here Oncley uses as his abscissa the 'hydration factor' w, related to 

the effective volume, V by: 
e 

A different approach would be to eliminate V simultaneously by 
e 

combining any two of the shape parameters together. The effective volume 

can then also be found by back substitution into the equations. This 

naturally assumes, as does the Oncley approach, that the axial ratio and 

the swelling are the same for both types of experiment. Scheraga and 

~andelkern (1953) combined equations (8) and (20b) to produce a swelling-

independent function S (Figure 13): 

\) 
1/3 

f/f 
0 

(45a) 

or in terms of experimental parameters, from 

(45b) 
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where [n] is in ml/gm. Scheraga and Mandelkern also combined equation (8) 

with equations (28b) to produce swelling independent oa and ob functions 

(Figure 14), although in their original paper, only ob is given: 

(i=a,b) 

6n 8. [n]M o 1 r 
NA kT 

Scheraga (1961) later combined (20b) with (28b) to produce swelling 

(46) 

independent ~a' ~b functions (Figure 15) although again only ~b was given: 

NA (kT)l/3 Tlo ~ 311'2/3 D 

M c 1 - vp ) 8 •113 
r o 1 

213 

[:~) 

(47) 

(i=a,b) 

Squire et al (1968) combined equation (2Db) with (29b) to produce swelling 

independent ya and yb functions: 

(48) 

(i=a,b) 

Squire later (1970) combined (2Db) with (36b) to «j{Je.. o.. .swell(~ 

independent ~· function (Figure 16) 

(49) 

• 
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Plots of the Squire ya and yb parameters as functions of axial ratio are 

given in Figure 16. A similar swelling independent function can be 

obtained by combining the viscosity increment, equation (8) instead of 

equation (20b) with (36b) (see Appendix II and Herding, 1980a): 

(Figure 17). Also, by combining equation (8) instead of (20b) with 

equation (29b), swelling independent Ea' Eb functions are produced 

(Figure 18): 

(i=a' b) 

(50) 

~51) 

By combining (8) with the fluorescence anisotropy relaxation times (42b) 

three new functions, K
1

, K2 , K3 are produced (Figure 19): 

(j=1,2,3) (52) 

Alternatively, combining equation (20b) with equation (42b)(Figure 20): 
3 

~j = [~] 
,, 
> 

T fflr 3 (I -vpo) (j-:: l) ::t 1.l) 
0 ---~----------

Tj =i ib2.N/ kTn1.?:.s3 !"j 

As far as the author is aware, the A, E., K. and ~-functions are new 
~ J J 

(53) 

and have not been published before. These functions are tabulated for 

axial ratios between 1 and 10 (Table 1). 

~artin (1964) eliminated the requirement of knowledge of the swollen 

volume for scattering experiments by combining (44) simultaneously with 



either the translational frictional function (Figure 21): 

y -
RG n0 D 

kT 

RG n0 NA s 

M (I - vp ) r o 
[ 

4;§ -4'3] ~ 
Sp + 4p 

IS 

(prolate ellipsoid) 

(oblate ellipsoid) 

or the viscosity increment (Figure 22): 

75 
= rrNA 

(prolate ellipsoid) 

[ 
% -% ]~ I p + 2p . -4,3 

5 V 

(oblate ellipsoid) 

where p is the axial ratio defined in section 1.4. 

The molecular covolume has also been given as a function 

and swollen volume by Nichol et al (1977) for prolate and 

oblate ellipsoids 

{2 3 [1 + -1 J u = NAve +- sin ~ 
2 

e: (.I e:2)2 

[I 
+ I ... e:2 I + e: J· } 

2e: R.n r-:-e: 

38. 

of shape 

(54) 
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where the ellipticity E is related to the axial ratio by 

for prolate ellipsoids (b<a), and 

for oblate ellipsoids (b>a). By 'reducing' U we obtain a function U 
red 

in terms of shape alone: 

u 3 
( 1 + 

1 + -1 ] u = = 2 + sin E 
red NAve 2 

E(1 _ E2)2 

( 1 + 1 - e:2 
2E 

R.n 1 + e: J 
1 - E (55) 

The covolume U can be found from a sedimentation equilibrium experiment 

in terms of the activity coefficient, as outlined by Nichol et al (1977) 

although in order to determine U d' a knowledge of V is still required. re e 

Nichol et al (1977) however eliminated V by solving equation (55) 
e 

simultaneously with the translational frictional ratio (equation 20b) to 

produce the swelling independent ~·function (not to be confused with the 

Squire ~ function) 

u red 
~ = 1621T2 

(56) 

As seen from Figure 23, ~ has the advantage that no prior decision has 

to be made as to whether the macromolecule is better modelled either by 

a prolate or oblate ellipsoid. Unfortunately, for typical globular 

macromolecules (small axial ratios), the parameter is still very 
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sensitive to experimental error: this is clear from Nichol et al's 

results for ovalbumin, whose axial ratio they found to be 2.5:1 with 

a standard error of 3. This is largely due to the large number of 

terms on the right hand side of equation (56), several of them cubed. 

U d can of course be combined with any of the equations (8), (2Db), re 

(28b), (29b), (36b), (42b) to eliminate V • For example, if (55) is 
e 

combined with the viscosity increment (8), a new swelling independent 

function is produced (Figure 24) (Harding, 198Db): 

n.- u 
[n]M 

r 
(57) 

Values of the IT function for various axial ratios are given in Table 1. 

The results for hemoglobin are in excellent agreement with those found. 

from x-ray crystallography (see Appendix III). 

1.7.1. Hydrodynamic non-ideality: the R function 

The viscosity, translational frictional and rotational parameters 

considered so far are normally those extrapolated to zero concentration 

in order to negate the effect of the net volume excluded by the particles 

and solute-solute interaction. However, the nature of the concentration 

dependence oF these parameters, particularly the sedimentation coefficient· 

"s" and the reduced specific viscosity, ns~c, has now been shown by Rows 

(1_977) to give valuable information as to the conformation and swelling 

in solution and also an estimate of the "goodness of fit" of an ellipsoid 

for the macromolecule in solution. 

The variation of s and ns~c with concentration can be represented 
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by regression parameters k , and k : 
s n 

5 = 5(1 - k c) c 5 (58) 

n 
2E. = [ n] (1 + k c) . 

c n 
(59) 

where ks and kn are, respectively, the sedimentation and viscosity 

concentration regression coefficients. These approximate linear 

equations are valid only for dilute solutions. A universal equation has· 

been derived by R.owe (see Appendix IV) for all solute concentrations up 

to ~ , the critical packing fraction: 
p 

where 

5 c 
s 1 - gc 

kc. - zv c + 1 
5 

(60a) 

(60b) 
where k=k (sedimentation) or k=k (viscosity). This provides a more 

s n 

accurate method for extrapolating to infinite dilution to obtain [~J 

and "s", and also for finding k and k , from a given set of data, by 
s n 

minimising: 

{w. [5. - f(k ,v ,5,c. ,cp ) ] }2 
1 1 5 5 1 p 

(w. = weight) 
~ 

( 61) 

This procedure is unstable if k , v and s (or the corresponding viscosity 
s s 

parameters) are all taken to be independent variables. However, if we 

assume v = k /4 for globular proteins, or assume v from the ratio v / v s s s s 
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= k' lk' where k' and k' are the parameters found from the approximate n s' n s 

fit (equations 58 & 59), a stable fit may be found. 

Rows (1977) has shown that the swelling, v I v , can be found from: 
s 

-V k 
2 = n 
V k 

s 

Therefore 

-
V e 

M V r s = 
NA 

(62) 

M k = r n 
N • k 
A s 

-
V 

(63) 

The value of v I v and hence V thus found is independent of any assumed 
s e 

model for the protein. Sinee the determination of V by back substitution 
e 

into the equations given at the beginning of 1.7. after the axial ratio has 

been determined is dependent on the model chosen (i.e. an ellipsoid of 

revolution), an estimate for the "goodness of fit" of an ellipsoid of 

revolution is now available by comparing the model dependent V with model 
e 

independent V (or, equivalently, V or V I v). 
e s s 

This theory also provides a new shape function "R", which is 

independent of particle swelling: 

k 
s 

[n] 

(64) 

Wales & Van Holds (1954) had previously reported that the ratio ksl[n] 

was some unknown function of shape and equal to 1.6 for spherical 

particles; this agrees with that predicted by equation (44) (Figure 13). 

R varies rather rapidly with axial ratio for ellipsoids, even for low 

axial ratio, and this function provides a precise method for 

characterizing the axial ratio of relatively symmetrical particles. 
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Besides its greater sensitivity than the 8 function (or the ~ function), 

R has several other advantages: 

(1) unlike 8 computation of R does not require knowledge of the absolute 

solute concentration (Rowe, 1977) 

(2) less data is required to compute R and hence the error in the final 

function is minimized. As rotational parameters are generally very 

difficult to determine, as will be evident from the earlier parts of this 

chapter, the R function is also to be preferred over swelling independent 

functions involving these. The R function is also to be preferred over 

the scattering Y and a functions mainly because of the particle 

homogeneity problem mentioned in section 1.6. The 8 function can still 

however be useful, precisely because of its lack of variation for oblate 

ellipsoids, in deciding whether the macromolecule is better modelled by 

either a prolate or an oblate ellipsoid. Experimental valu~for ~and 

kgi[n] (:R) have been tabulated for a wide range of proteins by Creeth 

& Knight (1965). Values of 8 below the theoretical minimum of 2.112 x 106 

and above 1.6 for R may indicate that some proteins cannot be modelled by an 

equivalent ellipsoid of revolution. This has been suggested for Bovine 

serum albumin (BSA). A table of values of axial ratio calculated from 

the R function for recent data, together with a comparison of their 

'model dependent' estimates for v /V with their 'model independent' s 

estimates to determine the 'goodness of fit' of an ellipsoid of 

revolution, is given in Table 2. 

1.8. Comment 

Although a hydrodynamically equivalent ellipsoid of revolution 

model can now be fitted with much greater precision to many rigid 

macromolecules with the aid of the R function (and possibly the IT function) 
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the distinction still has to be made as to whether the macromolecule 

is better modelled either by a prelate or an oblate model. It is clear 

from a perusal of the crystallographic models of many globular proteins 

such as carboxypeptidase, myoglobin and ribonuclease (Table 3) that in 

many cases this is quite arbitrary and indeed in some cases is 

impossible 

It would be a significant step forward therefore if the restriction 

of two equal axes on the ellipsoid were removed to allow use of the more 

general tri-axial ellipsoid. However, either due to the lack of the 

theoretical relationships linking the axial dimensions of the ellipsoid 

with experimental parameters, or, even if they are available, due to the 

lack of the necessary experimental precision, numerical inversion 

procedures or data analysis techniques, this model has not, to date, been 

available. The aim of the rest of this thesis is to show that the general 

tri-axial ellipsofd can now be successfully employed to model biological 

macromolecules in solution. We will start by deriving the tri-axial 

viscosity increment equation. 
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Table 1. Values of A, e: ' ~' K1' ~' ~, ~, ~2' ~3 and IT for a 

prolate and oblate ellipsoids of revolution 

axial 1 2 3 4 5 6 7 8 9 10 ratio 

A 2.500 2.490 2.692 3.071 3.575 4.177 4.862 5.624 6.457 7.359 p 

A 2.500 2.356 2.187 2.070 1.989 1.931 1.887 1.854 1.827 1.805 
0 

e: 2.500 1.932 1.574 1.373 1.251 1.171 1.115 1.075 1.044 1.020 a,p 

e: 2.500 2.522 2.343 2.202 2.102 2.029 1.974 1.931 1.896 1.868 a,a 
e: 2.500 2.768 3.250 3.920 4.737 5.679 6.736 7.899 9.164 10.528 
b,p 

e: 2.500 2.273 2.110 2.003 1.932 1.882 1.844 1.815 1.792 1.774 b,o 

K 
1 ,p 2.500 1.932 1.574 1.373 1.251 1.171 1.115 1.075 1.044 1.020 

K 
1,o 2.500 2.522 2.343 2.202 2.102 2.029 1.974 1.931 1.896 1.868 

K 2,p 
2.500 2.211 2.133 2.222 2.413 2.674 2.989 3.349 3.751 4.189 

K 2.500 2.439 2.265 2.136 2.045 1.980 1.930 1.892 1.862 1.837 2,o 

K 
3,p 2.500 3.047 3.809 4.769 5.899 7.182 8.609 10.174 11.871 13.698 

K 
3,o 2.500 2.190 2.032 1.937 1.875 1.832 1.801 1.777 1.758 1.742 

~ 
1,p 1.000 0.756 o.588 0.487 0.421 0.374 0.340 0.313 0.292 0.275 

~1 ,o 1.000 1.000 0.920 0.860 0.818 0.787 0.763 0.745 0.731 0.719 

~ 2,p 1.000 0.865 0.797 0.788 0.811 0.854 0.911 0.976 1.051 1.129 

~ 2,o 
1.000 0.967 0.890 0.834 0.796 0.768 0.747 0.731 0.718 0.707 

~3,p 1.000 1.192 1.423 1.691 1.983 2.295 2.623 2.966 3.322 3.690 

~3,o 1.000 0.868 0.798 0.757 0.729 0.711 0.697 0.686 0.678 0.671 

IT 3.200 3.122 2.960 2.778 p 2.601 2.438 2.291 2.159 2.041 1.935 

IT 3.200 
0 

3.180 3.179 3.192 3.208 3.225 3.241 3.255 3.268 3.280 

subscript p: prolate ellipsoid 

o: oblate ellipsoid 



Table 2. Use of the R function to predict the conformation of various macromolecules in solution 
in terms of an ellipsoid of revolution model 

k k [n] 
model model 

Protein 8 n R axial deesndant independent Conclusion 
ml/gm ml/gm ml/gm ratio (v /V) (v /V) a a 

Apoferritin 1 8 12 5.16 1.55 1.45* t 2.6* t 1.5 spherical 

BSA2 s.s 7.7 2.75 2.0 - - 1.4 not a hydrodynamic 
ellipsoid ( cf a < 
2.1) 

fibrinogen 3 7 14 7.8 0.9 6.3t 1.1t 2.0 prolate ellipsoid 
~6;1. Agrees with 
electron microscopy 
{Hall & Slayter, 

1959) 

c-protein 4 11 15~4 12.6 0.87 26.0:6.65t * t 0.9.,2.12 1.4 oblate ellipsoid 
~25&1 

~lyosin 
5 85 92 234 0.38 30 t 4.3t 1.1 not hydrodynamic 

6 160.8 366 176 0.9 .19.5t 16t 2.3 ellipsoids of Synthetic A-filaments .a:-avolution 

Collagen eonicates 7 

(i) M = 352,000 308 880 1252 0.246 8ot 2.28t 2.85 prolate ~80& 1 
r 

64t 2.ast (ii) M = 330,000 291 756 1078 0.270 2.60 prolate ~65: 1 
r 

(iii) M = 273 1 000 241 564 639 0.377 :sot 6.12t 2.34 not hydrodynamic 
r 

1af 
ellipsoids of 

(iv) M = 227,000 193 428 400 0.483 9.13t 2.22 r revolution 

J. * Refa: 1&2 Rows & Pancholi (unpub.), 3 Rowe & Mihalyi (unpub.) ' prolate ellipsoid, oblate ellipsoid. 
4 Offer at al (1973), 5 Ernes (1977), Ernes & Rows (1978a), 6 Emea (1977), Emea & Rowe (1978b), -'> 

0\ 

7 from Nisihara & Ooty (1958) • 
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Table 3. Crystallographic dimensions of some globular proteins 

Protein Dimensions <R> Reference 

Carboxypeptidase 50 X 42 X 38 Lips comb (1971) 

. Myoglobin 43 X 35 X 23 Kendrew et al (1958) 

Cytochrome c 25 X 25 X 35 Dickeraon & Geiss (1969) 

Lysosyme 45 X 30 X 30 Bl'aJ<: e et al (1965) 

Ribonuclease 38 X 28 X 22 Kartha et al (1967) 

Pre - albumin 70 X 55 X 50 Slake et al (1978) 

Hemoglobin 64 X 55 X 50 Perutz et al (1960) 



:::::=:::=associated solvent 

a trapped or entrained 
W solvent 
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Figure 1. A macromolecule in solution is generally 

swollen due to solvent association 

Rod 

Q 
J 

Prolate ellipsoid 
of revolution 
(b<a) 

Figure 2. Mathematical models for macromolecules in solution 

Disc 

0 

stress a - velocity V -

---
stationary 

Oblate ellipsoid 
of revolution 
(b>a) 

length of arrows are proportional to 
the fluid velocity at that value of y 

Figure 3. Shearing of a Newtonian 

fluid between parallel 

plates (from Van Holde, 

1971) 
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Axial Ratio 

Figure 4. Plot of the viscosity increment as a function of axial ratio 

for ellipsoids of revolution 
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Axial Ratio 

Figure s. Plot of the translational frictional ratio (the "Perrin 

function") a~. a . function of axial ratio for ellipsoids 

of revolution 
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Axial Ratio 

Figure 5. Plot of the rotational diffusion coefficient ratios and 

rotational relaxation time ratios as a function of axial 

ratio for ellipsoids of revolution 



figure 7. Dielectric dispersion curves for prolate ellipsoids of 

revolution. Constant dipole angle ( 6= 45°) and varying 

axial ratio (a/b from 1 to 50). From Oncley (1940) 
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Prolate 

2 3 4 5 6 7 8 9 
Axial Ratio 

Figure 8. Plot of the harmonic mean rotational relaxation time ratio 

as a function of axial ratio for el1ipsoids of revolution 
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Figure 9. Plot of the fluorescence anisotropy relaxation time ratios as 

a function of axial ratio for ellipsoids of revolution 
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CRdred 

Axial Ratio 

Figure 10. Plot of the 'reduced' radius of gyration as a function of 

axial ratio for ellipsoids of revolution 

ss. 



Figure 11. (a) Values of axial ratio and hydration as a function of 

v (v I ·\j ) • Contour lines denote values of v('Vs/ v ) s 

(b) As above, but as a function of (f/f0 ).(vs/v) 1/ 3• 

Contour lines denote values of (f/f0 ).{vs/v)1/ 3 

(from Oncley, 1941) 
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figure 12. Asymmetry and hydration (i.e. solvent association) of 

certain protein molecules. (from Oncley, 1941) 
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Fioure 13. -6 Plot of the Scheraga & Mandelkern 8 (x 10 ) and Rowe R functions 

versus axial ratio for ellipsoids of revolution 
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Figure 14. Plot of 8a and ob as functions of axial ratio for ellipsoids 

of revolution 
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Figure 15. Plot of ~a and ~b as functions of axial ratio for ellipsoids 

of revolution 
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Figure 16. Plot of ya' yb and ~ as functions of axial ratio for ellipsoids 

of revolution 
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Figure 17. Plot of A as a function of axial ratio for ellipsoids 

of revolution 
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Figure 18. Plot of Ea and Eb as functions of axial ratio for ellipsoids 

of revolution 
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of revolution 
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Figure 21. Plot of Y as a function of axial ratio for ellipsoids of revolution 

(from Martin, 1964) 

5.6 

5.2 

4.8 

4.4 

4.0 

a 3.6 

3.2 

2.8 

2.4 

2.0 

1.6 
-3.0 -2.0 -1.0 0 1.0 2.0 3.0 

log (a/b) 
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C H A P T E R 2 

The Viscosity Increment for a Dilute, Newtonian 

Suspension of Tri-axial Ellipsoids 
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2.1. Hydrodynamic Forces and Brownian Motion 

Although the forces and torques exerted upon a suspended particle 

by a fluid are all ultimately of molecular origin, it is convenient to 

distinguish those that can be explained by continuum hydrodynamics from 

those, due to molecular fluctuations, that give rise to Brownian motion. 

If we first completely neglect the Brownian motion, it is clear that, 

once a steady state haa been attained, suspended particles free of any 

external imposed impressed forces or torques must move in such a way that 

the net hydrodynamic force and torque, TH acting upon them are zero, 

i.e. TH = D. 

Let us consider a steady simple shearing flow (section 1.3.), as in, 

for example, a simple capillary or Ubbelohde viscometer experiment 

(Yang, 1961). The motion of the fluid in the neighbourhood of any point 

can be decomposed into three components; a translational velocity which 

varies from point to point, an angular velocity which for this type of 

flow is the same for all points, and a pure straining motion which again 

is the same for all points. If now a single, neutrally bouyant, rigid 

ellipsoidal particle is introduced the flow will be disturbed, although 

at large distances from the ellipsoid the disturbance will tend to zero. 

We shall assume that the motion of the ellipsoid and of the fluid is such 

that the Reynold's number (Batchelor, 1967) is very small. Then it is 

possible on the basis of work by Oberbeck (1876) and Jeffrey (1922) to 

say what the hydrodynamic forces and torques acting upon the particle are. 

In particular it is known that the force will be zero when the translational 

velocity of the particle is the same as the translational velocity of the 

point in the undisturbed flow at which the point is suspended. The 

situation for angular velocity is more complicated since two factors come 



into play; one gives a torque if the angular velocity of the particle 

differs from the angular velocity defined by the undisturbed flow (or, 

equivalently, by the actual flow at infinity), whilst the other gives 
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a torque if the principal axes of the ellipsoid have a different 

orientation from the principal axes of the straining motion defined by 

the undisturbed flow. Taken together, these mean that the angular 

motion of the particle under zero hydrodynamic torque conditions is very 

complicated (Chwang, 1975) and a complete solution for it is not known. 

Turning to the Brownian motion which is in the nature of 

fluctuations the simplest question we can ask is what is the average 

velocity and the average angular velocity of the particle? By the 

average we mean in the first instance the time average, although in practice 

this will be assumed equal to the volume average taken over an ensemble over 

a very large number of particles suspended in unit volume (see Batchelor, 

1970 for a detailed discussion of various methods of averaging). Ignoring 

for the moment the hydrodynamic forces, we can answer the question by 

saying that on average the particle is at rest in the local frame of 

reference defined by the undisturbed flow. In other words it is on average 

moving with the translational velocity of the point in the undisturbed flow 

at which it is suspended and with the angular velocity defined by the 

undisturbed flow (Kuhn & Kuhn, 1945, Brinkman et al, 1949, Scheraga, 1955). 

When we come to consider the combined effect of the hydrodynamic forces 

and the Brownian motion no problem arises with the translational motion 

since both effects tend in the same direction - motion with the 

translational velocity of the flow. But for the angular motion the 

situation is less simple, the two effects do not have the same tendancy 

and we must consider a range of possibilities depending on the relative 

strengths of the two. This range is represented by the Peclet number 
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a= G/& (Brenner, 1972a) where G is the shear rate and 6 the mean 

rotational diffusion coefficient. We shall only be considering the case 

of overwhelming Brownian motion {a+O) in which the hydrodynamic effects 

are completely negligible compared with the Brownian motion effects. Thus 

we shall take it that on average the particles are rotating with the local 

angular velocity of the ambient flow; and we may additionally assume that 

the orientation of the particles will be random. T.1is last fact would not 

be so if hydrodynamic forces and torques were not negligible for they 

introduce systematic motions and hence preferred orientations. 

2.2. The Simha Model of Overwhelming Brownian Motion 

We consider a homogeneous dilute suspension of identical rigid 

ellipsoids randomly oriented in an incompressible Newtonian fluid in 

which they are neutrally buoyant. The ambient flow is taken to be a 

slow simple shearing flow, whilst the suspended particles are taken to 

be moving with the velocity and the angular velocity of the ambient flow 

appropriate to the point at which each is suspended. Near each particle 

this ambient flow is di~turbed but is still taken to be a slow (low 

Reynold 1 s number) flow so that we may apply the classical results of 

Jeffrey (1922). 

This model, which is taken to be appropriate for the case of over­

whelming Brownian motion derives from Simha (1940) although in his original 

work doubt is left about whether or not the particles are rotating with the 

local angular velocity of the fluid. An attempt to clear this difficulty 

is made below {seciion 2.6.). The key simplifying feature of the model 

introduced by Simha is that it eliminates the complicated statistical 

problem presented by the Brownian motion by substituting an assembly of 
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particles all moving with the average motion. This, together with the 

assumptions of diluteness and random orientation, allows us to compute 

the effect of the suspended particles by simply summing their individual 

effects. The isotropy of the particle distribution in the model means 

that non-Newtonian behaviour will not appear, and also allows us to use 

the energy dissipation method of computing the viscosity {Batchelor, 1970, 

Brenner, 1972b, p93). 

The simplifications of the model are achieved, however, at a price. 

Non-Newtonian and concentration dependent effects, which to the theoretical 

rheologist are of the greatest interest, have been deliberately discarded; 

and the model can say nothing about lesser degrees of Brownian motion. 

In effect we shall be calculating the first term of a series; nevertheless 

this is of great value to the molecular biologist who can deliberately 

arrange the conditions of a viscosity experiment so that the model is 

applicable: 

(i) Giesekus (1962) has shown that non-Newtonian normal stress effects are 

of 2nd order, and can thus be neglected for very low shear rates as in, for 

example, a capillary viscometer (Yang, 1961); 

(ii) Viscosity coefficients are normally extrapolated to 'infinite dilution' 

i.e. zero concentration-dependent effects, to give the 'intrinsic viscosity' 

(Van Holde, 1971), related to the viscosity increment by equation (8). 

2.3. The Viscosity Increment 

We let n be the viscosity measured in an experiment on a dilute 

suspension of particles in a fluid of viscosity n • 
0 

If ~ is the volume 

concentration - the total volume of the particles in unit volume of the 

suspension - then the viscosity increment v is defined, from 
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equation (7), by 

(65) 

where, when v is independent of ~ , the linear dependence of ~ n 
0 

upon ~ gives the empirical characteristic of a dilute suspension. 

From the theoretical point of view however, a dilute suspension is 

one in which there are no hydrodynamic interactions between the 

particles and thus one in which each particle independently contributes 

to the viscosity the same amount it would were it alone present. This 

contribution for a general ellipsoidal particle was first calculated by 

Jeffrey (1922) using the simple energy dissipation analysis for averaging 

over the particle ensemble (Batchelor, 1970) and it is a straightforward 

matter to extend his results to cover the case of ellipsoids rotating 

with the local angular velocity of the ambient flow as required by our 

model. 

2.4. The Flow Velocity and Pressure 

In order to calculate the additional dissipation of energy caused 

by introducing the particle into a given flow, we compare that given flow 

with the consequent disturbed flow within a suitable sphere, s, of radius 

R, centred on the particle position. We impose two requirements upon 5: 

first, that it is small compared with the scale of spatial variations in 

the given flow, and thus within it that flow is effectively given as 

a linear variation of velocity with position; secondly, that it is large 

compared with the size of the particle, and thus that the disturbed flow 

will not appreciably differ from the given flow by the time the surface 
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of S is reached. Naturally, these requirements can only be met when 

the particle is, as we have assumed, very much smaller than the scale 

of spatial variations in the velocity field of the given flow. 

For our purposes then, the disturbed flow may be taken to be the 

flow of an incompressible fluid in the region between the rotating 

ellipsoidal surface of the particle and the concentric spherical surface 

s. On the inner surface we impose the. usual no-slip boundary condition, 

whilst on S we require the velocity field to be equal to its value in 

the original flow. We give the velocity components of the two flows with 

respect to rectangular Cartesian axes fixed in the rotating particle so 

that its ellipsoidal surface will always be given by 

(66) 

The undisturbed flow is given, within s, by 

0 
U. = g .. X. 

1 1] J 

where gij are the components of the velocity gradient tensor which are 

by our assumptions, independent of position within s. In this equation 

and in subsequent equations, the indices range over the values 1,2,3 and 

the summation convention is used whereby when an index is repeated within 

a term a summation is indicated over the three values of that index. 

Using ellipsoidal harmonics, Jeffrey was able to give the flow 

velocity and pressure in the region of 5 for R large, but finite. He gives 

the result under the assumption that the angular velocity is such that no 

net hydrodynamic torque acts on it, i.e. hydrodynamic effects alone affect 

the motion of the particle. In order to consider the Brownian motion we 

follow Simha in dropping this restriction whence the flow near 5 is found, 



to leading order, to be 

0 u. = u. 
1 1 

75. 

(67) 

In this equation, ~=A .. x.x., whilst the A .. themselves are coefficients 
1J 1 J 1J 

independent of position but dependent on the g .. and the components, w • 
1J 1 

of the angular velocity of the particle; their explicit values are given 

by Jeffrey (see Table 4 for the relationship between his notation and ours). 

We consider the values of the A .. below. 
1J 

On the assumption that terms of second order in the velocity may be 

neglected and that the particle spins are of the same order as the fluid 

velocities, the dynamical equation for the fluid reduces to 

n v2 !!. = vp 
(68) 

from which the pressure, p, can be found. for the disturbed flow we find 

the pressure on 5 to be 

P = P _ son~ 
o Rs 

where p is a constant. 
0 

2.5. The Dissipation of Energy 

Assuming a steady state, we can compare the rates of dissipation 

(69) 

of energy within 5 in the two flows by comparing the corresponding rates 

for working of the viscous stresses on the surface 5. This rate of 

working·, dW/dt, is given by 

~~ = J 
s 

0 
u. cr .. n. dS 

1 1J J 
(70) 



where 

(
au. au. J 

a. . = - P ~- . + n _.1.. + __ 1 
1J 1J ax. ax. 

1 J 

are the compo.nents of the strass tensor, and 

X. 
n = ~ 

j R 

are the components of the unit normal to s. 

For the disturbed flow we find 

32 
+ -3 1r n A .. g .. 

1) 1) 

76. 

(71) 

(72) 

(73) 

where the ai. =!(g .. + g.i) are the components of the local distortion 
J ~J J 

in the undisturbed flow. On the other hand, the well-known formula of 

Stokes gives, for the undisturbed flow 

dW 8 3 
dt = -

3 
1rn a .. a .. R 

1) 'J 
(74) 

We thus obtain an expression for ~ , the extra dissipation. of anergy when 

the particle is present, namely 

If we split g .. into its symmetric and skew-symmetric parts, we have 
~J 

32 
~ = -3 1r n (A .. a. . + A .. ~ .. ) 

1J 1) 1) 1) 

(75) 

(76) 
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where ~-. = !(g1 .- g .. ). Jeffrey, as a consequence of the dynamical 
~J J J~ 

assumption mentioned above, was working with symmetrical A .. , and so 
~J 

naturally obtained only the first term in our expression for~; and 

it appears that Simha, although he removed the restriction on A, 

failed to find the second term. The consequence of this for his 

calculation will now be discussed. 

2.6. The Particle Rotation 

Simha takes the average angular velocity to be zero and on this 

basis calculates his well known formula for v (equation 9), a formula 

which has been shown to give good agreement with observations (Mehl, Oncley 

& Simha, 1940, Tanford, 1961). A few years later, Saito (1951) using the 

assumption that the particles should rotate on average with the local 

undisturbed rotation of the fluid obtained precisely the same result; he 

suggested that Simha "has committed some errors in calculation" but does 

not investigate the matter further. Using Jeffrey's notation (Table 4) 

we have: 

Aijaij = (Aa + Bb + C~) + (F + F')~ + (G + G)~ + (H + H')~ 

A .. ~ .. = (F' - F)~ + (G' - G)n + (H' - H)~ 
1] 1J 

whilst the values of, for example, F and F' are 

F = 
2 I 8

0 
~ - c a0 (~ - w1 ) 

2a' (b2 S + c 2y ) 
0 0 0 

(77) 

(78) 

(79) 
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F' (80) 

In Jeffrey's paper the a 1 etc. in the numerators of the above expressions 
0 

are misprinted as a etc. 
0 

We can thus deduce that 

2a" 
(ilo f2 + (b2 + c2)f2 + (b2 - c2) (~ - w~~ 

(F + F')~ = ---
0
-----------------------------------

2(b2S + c 2y ) 
0 0 

(81) 

(82) 

where we have utilised the various relations between a
0

, 

are given by Jeffrey. 

S etc. that 
0 

Now Simha apparently did not find the A .. ~ .. term and thus would 
1J 1J 

not have had terms like {F
1

- F ) in his calculation. We can see, 

however, that taking w1 = 0 as he apparently did, in the (F + F')! term 

gives the same final result as taking w1 = ~ in the sum of the {F + F')! 

I 
and the {F - F )~ terms. Since the same argument applies to the other 

terms we conclude that Simha's formula {equation 9) although incorrect for 

w • = 0 on account of the omission of the term A. . ~ .. , is, by a lucky 
1 1J 1J 

coincidence, actually correct if w 1 = ~ , w 2 = n , w 3 = c; • 

It is worth noting that if one does take w1 = 0 and includes the 

Aij ~ij term, one obtains for spherical particles v = 4, in contrast to 

Einsteins (1906, 1911) value of 2.5. The result v = 4 for w . = 0 agrees 
1 



with that previously found by Brenner (1970). In all that follows we 

take the assumption that w
1 

= ~ etc. i.e. that the particles are on 

average rotating with the local angular velocity of the fluid. 

2.7. The Calculation of v 

79. 

To complete our calculation we take, as before, the given flow to be 

locally a simple shearing flow with shear rate G. The principal axes of 

any particular particle will not in general coincide with the shear axes 

but, using the Euler angles to describe relative orientation of the 

two sets of axes, we can calculate the components gij relative to the 

particle axes in terms of G and the Euler angles a,~ and ~. Hence we 

can obtain ~ for that particle as a function of these variables; the 

details can be found at least for a special case in Jeffrey's paper (1922). 

Since Jeffrey's calculations show that the Aij are linear in the gij's, 

it follows that ~ will involve G2 as a factor and hence that the total 

2 dissipation will be of the form nG as originally asserted. 

To find the total dissipation in unit volume we average the effects 

of the N particles on the assumption that they are randomly oriented, 

obtaining 

27T 27T 1f 

E = 2N J ~ 4
1

7T J J~ce,~,~) sin a de d~ l d~ 
7T i ~ 

0 0 0 

(83) 

The integrations yield 

32 2 
~ = 3 1r n NG z 

(84) 



sa. 

where 

(a" 
" " " 

1 
a + s + y 

J 
z 0 0 0 

= 
30 " " " " " y + y a + a s 

0 0 0 0 0 0 

1 +-
40 

Thus v is determined from 

nvV~ = nvN j 1r abc62 = 32 7TnNG-2 z 
T 

as 

BZ 

Hence on substituting for Z we obtain 

" " " 4 ea + s + y ) 
0 0 0 

" " " " " " 15 (S y + y a + a S ) 
0 0 0 0 0 0 

where a,b,c are the semi-axes, and the elliptic integrals a etc. now 
0 

depend on a,b and c {Appendix I). 

(86) 

(87) 

(88) 
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The formula reduces to the Simha-Saito formula (equation 9) when 

b=c, and gives Einstein's value of 2.5 when a=b=c. It may be of 

interest to note that had we followed Simha in taking w. = 0 then Z 
~ 

would have contained the following term in addition to those given above, 

1 
24 

b2 + c2 c2 + a2 a2 + b2 
----- + ----- + ------
b28 + c2y c2y + a2~ a2~ + b28 

0 0 0 0 0 0 

It is the presence of this added term that gives the value of v = 4 

for spheres rather than the Einstein value v = 2. 5 which is obtained 

(89) 

when it is absent. The value of 2.5 has been confirmed experimentally 

for polystyrene latex spheres by Cheng & Schachman (1955). 

2.8. Discussion 

An equation similar to (88) was given by Batchelor (1970) on the 

assumption that the suspended particles, although randomly oriented, 

moved so that zero hydrodynamic torque acted upon them. His result was 

" " " 
1 

4 C~o + 8o + yo) 2 [ 1 
"" "" "" +5 + 15(8 y + y ~ + ~ 8) a

0
'(b2 + c2) 

0 0 0 0 0 0 

V = a be 

(90) 

when written in the same notation as we have used before. It does not 

seem likely that (90) would be applicable to the case of overwhelming 

Brownian motion since one would need to include the Brownian torgue 

T8 as well as the purely hydrodynamic torque, TH in satisfying the 
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condition of zero net torque, i.e. 

(91) 

Random orientation alone is not a sufficient characterisation of 

overwhelming Brownian motion since one also needs to describe correctly 

the distribution of the angular velocity. Both (88) and (90) are 

obtained by methods that avoid the full statistical treatment of the 

angular motion but as explained earlier we consider the simplified model 

underlying (88) to be the appropriate one for overwhelming Brownian motion. 

In effect, formula (88) generalises the Simha-Saito equation for 

ellipsoids of revolution, whilst (90) generalises formul~e of Jeffrey for 

ellipsoids of revolution. In general the two formulae give quite different 

results as can be seen from Figure 25 and· Table 5, both of which are for 

convenience restricted to the case of ellipsoids of revolution. Since (90) 

does not reduce to the classical Simha-Saito formula the classic 

experimental euidence on macromolecules which favours the latter (Mehl, ~ 

!!' 1940, Lauffer, 1942) strengthens the view that (90) is incorrect. More 

recent experimental evidence is given by Tanford {1961) who allows for 

particle swelling due to solvation and Table 6 extends his tables to 

include a comparison with the Jeffrey-Batchelor equation. The table 

compares the axial ratio inferred from translational diffusion experiments 

with that inferred from viscometric experiments on the basis first of the 

Simha-Saito equation and secondly of the Jeffrey-Batchelor equation. 

Tanford (1961) says "within the accuracy of the measurements, the 

description of globular proteins in aqueous solution provided by the 

(Simha-Saito) equation is identical with that provided by (translational) 
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diffusion". On the other hand we see that the Jeffrey-Batchelor equation 

gives values of the axial ratio that are consistently too high and 

outside the expected experimental error bounds. We conclude that (90) 

is not applicable to the cases of interest to the molecular biologist. 

As previously stated, we have avoided the full statistical treatment 

of the angular motion but have made the assumption of particles being on 

average at rest in the local referential frame in which they are 

suspended to be appropriate for the case of overwhelming Brownian motion. 

Although this has been rigorously proved only for axisymmetric particles 

(Brenner, 1972), we have made the assumption that it will be a good 

approximation for general tri-axial ellipsoids, at least for low axial 

ratios. 

Since the derivation of equation (BB) a general analysis using the 

full statistical treatment of the angular motion has been given by 

Rallison (197B). His results for the case of overwhelming Brownian motion 

show that to first-order in the shear rate the non-Newtonian stress effects 

vanish, which is consistent with our assumption of Newtonian behaviour for 

very low shear rates. He also gives an expression for v correct to first­

order in the shear rate, although not in the form of a simple formula like 

equation (BB), but by using numerical methods Rallison is able to give a 

plot of v for various axial ratios; the results are clearly very close to 

those obtained from equation (8B) - compare my Figure 26 with Rallison's 

Figure 7. However, an exact comparison (personal communication by 

J.M. Rallison) shows a very slight discrepancy between values from 

equation (BB) and Rallison's procedure, although no difference at levels 

likely to be experimentally significant for globular particles (i.e. 

a/b: 1.0- 3.0, b/c: 1.0- 3.0) is observed, and the discrepancy is not 
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apparent within four significant figures for a/b: 1.0 -+2.0, b/c: 

1.0 -+2.0. The values given in Table 7 are therefore definitive. 

It has been indicated to us (J.M. Rallison, H. Brenner, private 

communications of unpublished work) that our formula requires the 

addition of a very small term related to the deviation from our assumed 

condition of non-axisymmetric particles rotating on average with the 

local angular velocity of the fluid: 

2 

c2 - a2 J 
c2y + a2a I 

0 0 

[; a2 - b2 

1 a2ao + h2S 
0 

b2 - c2 
+ ~b..,.2~a--+-c,.y.2y- +-

o 0 

b2 + c2 
+ ""'"b .... z-a--+-c""z_y_ + 

0 0 

c2 + a2 J (BBb) 
c2y + a2a : 

0 0 

- Sabc 
[ a2 + b2 
a2ao + bZS 

0 

The numerical results show our approximation to be extremely accurate 

for 'globular' particles, as noted above, but for certain particles of 

higher asymmetry calculations suggest that deviations of up to 1% in v 

can arise. It is clear though that our formula provides a good 

approximation over the entire molecular range. Of particular interest 

is the fact that the discrepancy tends asymptotically to zero for 

ellipsoids whose axes are all substantially different in length (i.e. 

a» b » c - "tapes"). 
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Table 4. The relation between the notation used in this study 

and that used by Jeffrey (1922) 

(A .. ) = A 
1J 

H G'. 

H' B F 

G F' c 

(a .. ) = a h g 
1J "" "" "" 

h b f 

"" "" "" 
g f c 
"" "" 'V 

C5- ·) = 1] 
0 -r,; n 

r,; 0 -r,; 

-n ~ o 



Table 5 

v for an ellipsoid of revolution calculated from the Simha - Saito 

equation and the 8atchelor - Jeffrey equation 

Axial Ratio Prolate Plodel Oblate Model 

s-s 8 - J s - s 8 - J 

1.0 2.500 2.500 2.500 2.500 

2.0 2.908 2.583 2.854 2.610 

3.0 3.685 2.786 3.431 2.868 

4.0 4.663 3.077 4.059 3.198 

5.0 5.806 3.434 4.708 3.563 

6.0 7.099 3.844 5.367 3.947 

7.0 8.533 4.302 6.032 4.342 

8.o 10.103 4.804 6.700 4.744 

9.0 11.804 5.346 7.371 5.151 

10.0 13.634 5.928 8.043 5.562 

86. 
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Table 6 

Extension of Tanford's Tables ("Physical Chemistry of Macromolecules", 

1961, Wiley & Sons, p 359 and 395) to compare the axial ratios 

predicted by the Simha-Saito equation and the Batchelor-Jeffrey 

equation, using a 0.2 grams/gram solvation for four globular proteins. 

Prolate Oblate 

Diffusion s-s 8-J Diffusion s-s 8-J 

u a/ 
b 

a/ 
b 

a/ 
b 

a/ 
b 

a/ 
b 

a/ 
b 

Ribonuclease 3.6 2.1 2.9 5.5 2.2 3.4 5.3 

~-lactoglobulin 3.6 3.7 2.9 5.5 4.0 3.4 5.3 

Serum albumin 4.0 4.9 3.3 6.5 5.0 4.0 6.3 

Hemoglobin 3.8 2.1 3.1 6.0 2.2 3.6 5.8 



Table 7. Values of v as a function of {a/b, b/c) for a general tri-axial ellipsoid {a>b>c) 

"C 
(on the basis of equation 88} 

•ri 
Q) 0 

...., {I) 

aJ 0. 
r-4 •ri 
Or-4 

b/ I ~ r-4 
O.I.&.J 

~ I 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
--

Oblate Ellipsoid 1.0 I 2.5oo 2.507 2.524 2.550 2.583 2.620 2.661 2.706 2.753 2.803 2.854 

1.1 2.507 2.520 2.544 2.576 2.614 2.656 2.702 2. 751 2.803 2.857 2.913 

1.2 2.525 2.545 2.575 2.612 2.655 2.703 2.754 2.808 2.865 2.923 2.983 

1.3 2.553 2.579 2.615 2.658 2.706 2.579 2.815 2.874 2.935 2.998 3.063 

1.4 2.588 2.621 2.662 2.711 2.764 2.822 2.883 2.947 3.013 3.081 3.151 

1.5 2.630 2.668 2.716 2.770 2.829 2.892 2.958 3.027 3.098 3.171 3.245 

1.6 2.677 2.722 2.775 2.834 2.899 2.967 3.039 3.113 3.189 3.267 3.346 

1.7 2.729 2.779 2.839 2.904 2.974 3.047 3.124 3.204 3.285 3.368 3.453 

1.8 2.785 2.842 2.907 2.978 3.053 3.132 3.215 3.300 3.386 3.475 3.565 

1.9 2.844 2.908 2.978 3.055 3.137 3.222 3.310 3.400 3.492 3.586 3.681 

2.0 2.908 2.977 3.054 3.137 3.224 3.315 3.408 3.504 3.602 3.702 3.803 --
m 
m . 
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Figure 25. A comparison of the values of v as a function of axial ratio 

predicted by the Simha - Saito and Batchelor - Jeffrey eguations 

for ellipsoids of revolution 
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Figure 26. Plot of v as a function of a/b when b/c = 10.0 (a>b>c) determined 

from eguation (88). This plot agrees very closely with that from 

the numerical procedure of Rallison (Figure 7, 1978) 

N.B. Rallison has c>a >b 
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3.1 Solution of the Elliptic Integrals 

In order to determine the viscosity increment v that corresponds 

to a particular value of the axial ratios a/b, b/c, the elliptic 

integrals a
0 

etc. (Appendix I) must be solved. Analytic solutions 

are not possible but the integrals can be solved numerically with the 

aid of a high speed computer. The subroutine used for this was the 

United Kingdom NAG Mk. 6 routine DD1AGf which evaluates a definite 

integral of the form 

B 

I = J f(t)dt 

A 

where A=D, using an interval subdivision strategy developed by Oliver 

(1972) and based on Clenshaw-Curtis quadrature (1960). Since infinity 

cannot be used as the upper limit, a finite value of 8 must be specified. 

However, a satisfactory value for 8 can be determined by using 

successively higher values until the value of the integral converges to 

a limiting value; in this case a value for 8 of 10
6 was sufficient. Higher 

values are also suitable although evaluation of the integral takes longer. 

The number of interval subdivisions is also specifiable by the user; the 

maximum number of 50 was used. The routine also estimates the error on 

the integrals (D'Hara & Smith, 1968). If this error is greater than the 

maximum allowable error specifiable by the user the routine will stop and 

print an error message. The maximum allowed absolute error specified was 

-8 <-· d) 1.0 X 10 =~001~ • The subroutine for evaluating the elliptic 

integrals can easily be incorporated into a program for evaluating v for 

a given value of (a/b, b/c). This is given in Appendix V as Program 1. 
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3.2. Application to the Crystallographic Dimensions of Myoglobin; 

Numerical Inversion 

The result can be applied to crystallographic data available for 

myoglobin. Kendrew et al (1958) gave the dimensions of sperm whale 

0 
myoglobin to be 43 x 35 x 23 A (Table 3). This corresponds to a general 

0 
tri-axial ellipsoid of semi-axes a= 21.5, b = tl.S and c = 11.5 A, and 

axial ratios a/b = 1.23, b/c = 1.52. Using Program 1 (Appendix V) this 

corresponds to a viscosity increment of 2.729. The predicted intrinsic 

viscosity can then be found from equation (8): 

- - s ~] [n] = vv
5 

= vv v 

where (v /V) is the swelling ratio (section 1.7.1). By fitting data 
s 

(92) 

of reduced specific viscosity against concentration (Table 8, Figure 27) 

I have determined the intrinsic viscosity of myoglobin to be (3.25 ± .os) 

ml/gm, using a weighted least squares analysis (straight line fit). 

The concentrations were determined using a high precision auto density 

meter {Kratky et al, 1969, 1973) together with a v for myoglobin of .741 

ml/gm (Theorell, 1934): 

c. = 
1 (93) 

where p is the solvent density and P. the solute densities. Use of the 
0 ~ 

auto density meter, which is based on the time taken to perform a 

preset number of oscillations of a U-tube filled with the sample has 

the added advantage that, besides being very accurate, only small amounts 

of fluid are required ( -1 ml). The experimental arrangement used for 

the viscosity and densimetric work is illustrated in Figure 28. The 
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platinum resistance thermometer shown was used to monitor the sample 

temperatures to accuracies of .DOS degrees and was calibrated by myself. 

In order that the crystallographic dimensions gives this same value for 

[n], from equation (92), a swelling ratio (v /V) of 1.6 is required; 
s 

alternatively myoglobin is more asymmetric in solution. 

In order to determine the actual dimensions of the equivalent tri-

axial ellipsoid for myoglobin in solution {or any other macromolecule) 

from the experimental value for [n], the situation is more complicated 

however. Although equation (88) defines a unique value of v for a given 

value of (a/b, b/c), an analytic inversion of (88) to produce an explicit 

expression for (a/b, b/c) in terms of v is not available. The inversion 

must therefore be done numerically by tabulating, or better plotting v as 

a function of {a/b, b/c). The same subroutine mentioned in section 3.1. 

for evaluating the elliptic integrals may be incorporated. A 

perusal of Table 7 (produced from Program 2) reveals however that a given 

value of v does not correspond to a unique value of (a/b, b/c) but to a 

'line solution' of possible values of (a/b, b/c). This is clearly 

illustrated in the contour plot (Figure 29) produced from Program 3 using 

GHOST graphical facilities where vis incremented from 2.5 to 7.0 in steps 

of o.s. In order to determine a unique solution for (a/b, b/c) and hence 

the axial dimensions of a macromolecule in solution other hydrodynamic 

information must be used; we must therefore consider the translational and 

rotational frictional properties (section 1.2). 
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3.3. Other Tri-axial Line Solutions 

3.3.1. The Translational Frictional Ratio; the S and R Functions 

It was previously stated in section 1.4. that although Perrin (1936) 

had provided an explicit formula for the translational frictional ratio 

of a general tri-axial ellipsoid in terms of the axial ratios (a/b, b/c), 

the elliptic integral in equation (12) could only be solved analytically 

for the special case of ellipsoids of revolution {i.e. two equal axes). 

However, since the elliptical integral is similar to those for the tri-

axial viscosity increment, it too can now be solved numerically using for 

example the subroutine discussed in section 3.1o A higher value for the 

upper limit, 8 was required: 5 x 107• A table of values of the Perrin 

function f/f (:P) for values of a/b and b/c was thus obtained {Table 9). 
0 

Again, a perusal of the table reveals that a given value of P has a line 

solution of possible values of {a/b, b/c). However, in principle at 

least, by combining the line solution for P of a given macromolecule with 

the line solution for v, a unique solution for {a/b, b/c) can in principle 

be found from their intersection. This can be illustrated by assuming a 

particle of (a/b, b/c) = (1.5, 1.5), calculating the corresponding values 

for v and P using Program 1, and then plotting the line solutions using 

Program 4. Unfortunately Figure 30 reveals that the intersection for 

accuracies in v and P to four significant figures is very shallow, and 

allowing for ! 1% experimental error in each there is no intersection at 

all in the 'globular protein' range of the Figureo There is also the 

additional problem that in order to determine experimentally both v and 

P, knowledge is required of the swollen volume in solution. 
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However, now that v and P are available for tri-axial ellipsoids, 

then so should the 8 and R functions which do not require a knowledge 

of the swollen volume (equations 45 & 64). I have thus produced tables 

of these also (Tables 10 & 11); all four tri-axial functions so far 

mentioned viz v, P, a and R are plotted in Figure 31 allowing for ! 1% 

experimental error in each. There is still no reasonable intersection; 

the a function is, as expected, seen to be of little practical use as it 

is very sensitive to experimental error (the 8- 1% line is completely 

off the map area). Of the 4 functions however, the R function is the 

most useful since it is relatively insensitive to.experimental error and 

the experimental determination does not require a knowledge of the 

swollen volume (section 1.7.1.). In order to find a unique solution for 

(a/b, b/c) therefore, this should ideally be combined with a rotational 

frictional or relaxation tri-axial shape function which should satisfy 

the following criteria: 

(i) provides a suitable intersection with R 

(ii) is relatively insensitive to experimental error but sensitive to 

axial ratio 

(iii) is experimentally measurable to a high precision with currently 

available apparatus and data analytic techniques and 

(iv) does not require a knowledge of the swollen volume for its experimental 

determination. 

3.3.2. The Rotational Frictional, Diffusion and Relaxation Line Solutions 

For a tri-axial ellipsoid there will be three rotational frictional 

ratios ~i/~0 (i=a,b,c) corresponding to rotation about each of the three 

axes and hence three rotational diffusion ratios e.je • By analogy with 
~ 0 

the translational case in the previous section, although Perrin (1934) had 
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given explicit formula for the ~-/~ in terms of (a/b, b/c), - eqn. (25), 
~ 0 

the elliptic integrals could only be solved analytically for the 

case of ellipsoids of revolution. The integrals can now be solved 

numerically, again utilising the routine described in section 3.1 (Programs 

1,2 & 4). There is however no experimental technique for determining the 

rotational frictional or diffusion coefficients directly; rotational 

experiments determine rather relaxation time ratios. For example, the 

dielectric dispersion relaxation time ratios are related to the rotational 

frictional and diffusion ratios by equations (27). A plot of the 

rotational relaxation time ratio line solutions corresponding to (a/b, b/c) 

= (1.5, 1.5) is given together with the R function in Figure 32. 

Unfortunately, because of the difficulties raised in 1.5.1. resolution of 

the dielectric dispersion curve into the 3 relaxation times for a 

homogeneous solution of tri-axial ellipsoid particles is impossible in 

practice. 

Whereas for ellipsoids of revolution there are three fluorescence 

anisotropy decay times (equation 42), for general tri-axial ellipsoids, 

there will be five (Cantor & Tao, 1971, Small & Isenberg, 1977) related 

to the three rotational diffusion coefficients by: 

1 
3(8 + 81) 

1 
2 (38 - ll) 

1 -rs = ~~-~~ 2(38 + ~) 
(94) 

where 8= (81 + 82 + 83)/3 is the mean rotational diffusion coefficient, 

and ~ is defined by 



The fluorescence anisotropy relaxation time ratios T./ T can thus be 
J 0 

evaluated (equation 42, where j is now= 1,2,3,4,5); these have been 

tabulated by Small & Isenberg (1977) and are plotted in Figure 33, for 

(a/b, b/c) = (1.5, 1.5). Consideration of these functions however, at 

the moment at least, is purely academic; besides the problems cited in 

section 1.5.4., the necessary resolution of the decay curve into its 
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four corritJonent exponentials (since t' 5 - T 1) is impossible (Small & Isenberg, 

1977). Furthermore, since neither the fluorescence anisotropy decay time 

ratios nor the dielectric dispersion relaxation time ratios for tri-axial 

ellipsoids are of apparent use at the moment, the same must be true of 

their corresponding swelling independent functions, the explicit 

expressions in terms of axial ratio being obtainable from: 

z;o 
c. = - \) 

1 r; . 
1 

3 go 
(ff) y. = 

1 p. 
0 1 

T 

K. = \) 
J 

(..2_) 
T. 

J 

(-[a) l.l. = 
1 

E>o 
e:. = \) 

1 t>· 1 

3 

~. = (:) 
J 0 

113 

(~) 
r;o 

T 
0 

T. 
J 

(95, 96) 

(97, 98) 

(99, 100) 

where i=a,b,c and j=1,2,3,4,5. The relations for these functions in terms 

of experimental parameters have already been given in section 1.7. 

Evaluation of the harmonic mean rotational relaxation time ratio in 

terms of axial ratio for tri-axial ellipsoids we can similarly obtain from 



T 
0 

3 
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(101) 

(Programs 1, 2 & 4, figure 34). The corresponding swelling independent 

functions ~ and A determined by combining with the translational frictional 

ratio and the viscosity increment respectively we can now aldo obtain from 

1/J 

~ = [::J [~J 
{102) 

A = [::J ~ 
(103) 

(Programs 1,2 & 4, figure 34). Unfortunately, these functions are 

generally very sensitive to experimental error, as figure 35 illustrates; 

also the problems in determining the harmonic mean relaxation time raised 

in 1.5.4. still apply. 

3.3.3 Electric Birefringence Decay: the o and o functions +--
In section 1.5.2. we stated that Ridgeway (1966, 1968) has shown that 

the decay of electric birefringen~e for a homogeneous suspension of 

asymmetric macromolecules (e.g. tri-axial ellipsoids) would consist of 

two exponential terms: 

8n = N 
2n2 

-68 t 
+ A e - } 

(32) 
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where 6n is the birefringence, N the number density of particles in 

suspension and n
2 

the refractive index of the suspending medium. A+ 

and A are complicated functions depending on the initial orientation of 

the particles and their dielectric and diffusion properties. We may 

rewrite NA! / 2nt as A~, the 'pre-exponential factors'. Equation (32) 

then becomes: 

(104) 

a+ and a_ are related to the rotational diffusion constants ai (and hence 

the rotational frictional coefficients since ~i = kT/ai) by 

, 
e± = ~ I { ( 1 2 1 I e. e.} ~ e. ± 3 I ei) ~3 I 1 1 J i>j 

(105a) 

l Li 

, 
kT 1 

( 1 r! = 3 ± I--II-1
-~. i ~2 •• ~-~· 1 . 1> J 1 J 1 (105b) 

The dimensions of equation (105) are of:ener-gy/(volume x viscosity) we 

therefore 'reduce' it to a function of shape alone: 

a red n a be l [ 1 1 1] - (k~) v e+ = -- -+- -± 12 " " + " e - r; r; ~ 
a b c 

/2] -(oh+ 
, 

l ± [ ( +z + ~2 + 1 1 1 r (106) 
~~~" + ~"~" ~ . ~ r;ar;b a b c c c a 

where 

(107) 
c2y + a2a 

0 0 
a2a + b21r 

0 0 



The elliptic integrals a etc. are those defined by Jeffrey (1922) and 
0 

are given in Appendix I. 
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A plot of the ared and 
+ 

a~ed functions, together with the R function 

corresponding to the point (a/b, b/c) = (1.5, 1.5) allowing for! 1% 

experimental error is given in Figure 36. It is seen that the 

intersections are very reasonable (the R intersection is nearly 

orthogonal) and the functions are relatively sensitive to axial ratio. 

However, experimental determination of a~ed requires of course knowledge 

of the swollen molecular volume in solution (equation 106). This can be 

conveniently eliminated however in the standard way by combining (106) 

either with the viscosity increment (8) or the translational frictional 

ratio (20b). If for example (106) is combined with the viscosity increment 

(8), swelling independent o± functions are produced (Tables 12, 13, Figure 

37): 

(108) 

where [n] is expressed in ml/gm. Alternatively, red a+ can be combined 

with the translational frictional ratio (20b) to give swelling independent 

y+ functions (Programs 1,2,4, Figure 38): 

Y = 6ared 
± ± 

3 

(: j 
0 

3 - 3 
M (1- V p ) a+ r o -

- 27 N kT 7T2n 2s3 
A o 

(109) 

The o+ and Y+ functions are new. The o+ functions are preferred over the 

Y+. functions since they require fewer experimental measurements and do not 

involve squared or cubed terms; hence in principle can be measured more 



101. 

accurately. It is seen therefore that combination of the R-function 

with the o+ functions as a method for determining a unique solution for 

the axial ratios (and hence the axial dimensions, if V is known from e 

knfks - section 1.7.1) of a macromolecule in solution satisfies the 

criteria (i), (ii) and (iv) of section 3.3.1. In order for the method to 

satisfy criterion (iii) however, there still remains the problem of 

resolving the exponential decay term into its 2 component relaxation times 

( red or decay constants the same is true of course for thee+ and y+ 

functions). To date this has not been possible. We now show that with 

a new 'constrained' least squares algorithm using intersection with the 

R-curve as the constraint, this is now possible with corrently available 

experimental precision. 
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Table a. Values of reduced specific viscosity for various concentrations 

of sperm whale myoglobin (0.1M NaCl buffer, pH = 7.1) 

Concentration, c n rel n /c sp 
(mg/ml) (ml/gm) 

90.2 1.450 4.99 

66.1 1.298 4.51 

53.3 1.224 4.20 

50.2 1.215 4.29 

40.7 1.163 4.00 

34.4 1.138 4.02 

30.5 1.116 3.81 

29.6 1.115 3.89 

23.2 1.084 3.61 

15.5 1.055 3.57 

9.7 1.034 3.47 

8.1 1.028 3.50 



Table 9. Values of P as a function of (a/b, b/c) for a general tri-axial ellipsoid (a~b)c) 

"'0 ..... 
m o 

-1-l Cl) 
n:J a. 

r-t ..... 

¥ I e ;::: a.w 

/b 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

Oblate Ellipsoid 1.0 1.000 1.001 1.003 1.006 1.010 1.014 1.019 1.025 1.030 1.036 1.042 

1.1 1.001 1.002 1.005 1.009 1.014 1.019 1.024 1.030 1.036 1.042 1.049 

1.2 I 1.003 1.005 1.009 1.013 1.018 1.024 1.030 1.036 1.043 1.049 1.056 

1.3 1.006 1.009 1.013 1.018 1.024 1.030 1.037 1.043 1.050 1.057 1.064 

1.4 1.010 1.014 1.019 1.024 1.030 1.037 1.044 1.051 1.058 1.065 1.073 

1.5 1.015 1.019 1.024 1.031 1.037 1.044 1.051 1.059 1.066 1.074 1.082 

1.6 1.020 1.025 1.031 1.037 1.044 1.052 1.059 1.067 1.075 1.083 1.091 

1.7 1.026 1.031 1.037 1.044 1.052 1.060 1.068 1.076 1.084 1.092 1.101 . 
1.8 1.031 1.037 1.044 1.052 1.059 1.068 1.076 1.085 1.093 1.102 1.111 

1.9 1.038 1.044 1.051 1.059 1.067 1.076 1.085 1.093 1.102 1.111 1.120 

2.0 1.044 1.051 1.059 1.067 1.075 1.084 1.093 1.102 1.112 1.121 1.130 
~ 

0 
~ 

• 



Table 10. Values of ~ x 10-6 as a function of (a/b, b/c) for a general triaxial ellipsoid (a>b>c) 

'"0 ..... 
m a 
~ UJ 
m c. 

r-1 ..... 
Or-1 

~ 
I ~d 

/b 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

Oblate Ellipsoid 1.0 2.111 2.112 2.112 2.113 2.113 2.114 2.115 2.116 2.117 2.117 2.118 

1.1 2.112 2.112 2.113 2.113 2.114 2.115 2.116 2.117 2.118 2.118 2.119 

1.2 2.112 2.113 2.114 2.114 2.115 2.116 2.117 2.118 2.119 2.120 2.121 

1.3 2.113 2.114 2.115 2.116 2.117 2.118 2.119 2.120 2.121 2.122 2.123 

1.4 2.114 2.115 2.117 2.118 2.119 2.120 2.121 2.123 2.124 2.125 2.126 

1.5 2.116 2.117 2.119 2.120 2.121 2.123 2.124 2.125 2.127 2.128 2.129 

1.6 2.118 2.119 2.121 2.123 2.124 2.126 2.127 2.129 2.130 3.131 2.132 

1.7 2.120 2.122 2.123 2.125 2.127 2.129 2.130 2.132 2.133 2.135 2.136 

1.8 2.122 2.124 2.126 2.128 2.130 2.132 2.134 2.136 2.137 2.139 2.140 

1.9 2.124 2.127 2.129 2.131 2.134 2.136 2.138 2.139 2.141 2.143 2.144 

2.0 ,2.127 2.130 3.132 2.135 2.137 2.139 2.141 2.143 2.145 2.147 2.149 
~ 

0 
~ 
• 



Table 11. Values of R as a function of (a/b, b/c) for a general tri-axial ellipsoid (a>b>c) 

"0 
•r-f 

Q) 0 
-4-.J (I) 

CO a. 
r-i •ri 

~ 
Or-i 
f-lr-1 
a.w 

/b 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

Oblate Ellipsoid 1.0 1.600 1.598 1.592 1.583 1.573 1.561 1.548 1.535 1.521 1.507 1.494 

1.1 1.598 1.593 1.585 1.575 1.563 1.549 1.536 1.521 1.507 1.493 1.478 

1.2 1.592 1.585 1.575 1,.563 1,.549 1.535 1,.520 1.505 1.490 1.475 1.460 

1.3 1.582 1.573 1.561 1.548 1.533 1.518 1.502 1.486 1.471 1.455 1.440 

1.4 1.570 1.559 1.546 1.531 1.515 1.499 1.483 1.466 1.450 1.435 1.419 

1.5 1.556 1.543 1.529 1.513 1,.496 1.479 1.462 1.445 1.429 1.413 1.397 

1.6 1.540 1.526 1.511 1.494 1.476 1.459 1.441 1.424 1.407 1.391 1.375 

1.7 1.524 1.509 1.491 1.474 1.455 1.437 1.419 1.402 1.385 1.368 1.352 

1.8 1,.507 1.490 1.472 1,.453 1.434 1.416 1.398 1.380 1.362 1.346 1.330 

1.0 1.489" 1.471 1.452 1.433 1.413 1.394 1.376 1.358 1.340 1.324 1.307 

2.0 1.471 1.452 1.432 1.412 1.392 1.373 1.354 1.336 1.318 1.302 1.285 
~ 

0 
U1 
• 



Table 12. Values of 8 as a function of (a/b, b/c) for a general tri-axial ellipsoid {a>b>c} ----- + - ----

"C 
•r4 

Q) 0 
.f.) (I) 

ro a. 
r-i •r4 
Or-i 

~ 
I ~ r-i a.W 

/b I 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

Oblate Ellipsoid 1.0 I 2.5oo 2.541 2.568 2.582 2.588 2.586 2.579 2.568 2.555 2.539 2.522 

1.1 2.549 2.577 2.596 2.605 2.606 2.601 2.595 2.279 2.564 2.547 2.529 

1.2 2.599 2.624 2.641 2.648 2.648 2.642 2.632 2.619 2.604 2.587 2.570 

1.3 2.648 2.675 2.692 2.700 2.700 2.695 2.686 2.674 2.660 2.644 2.627 

1.4 2.699 2.729 2.748 2.757 2.759 2.756 2.748 2.737 2.724 2.710 2.694 

1.5 2.752 2.785 2.807 2.818 2.823 2.821 2.815 2.806 2.795 2.781 2.767 

1.6 2.806 2.844 2.868 2.883 2.890 2.891 2.887 2.880 2.870 2.858 2.845 

1.7 2.863 2.905 2.933 2.951 2.961 2.965 2.963 2.958 2.949 2.939 2.927 

1.8 2.922 2.968 3.001 3.023 3.036 3.042 3.042 3.039 3.033 3.024 3.014 

1. 9 2.983 3.035 3.071 3.097 3.113 3.122 3.125 3.124 3.120 3.113 3.104 

2.0 3.047 3.103 3.145 3.174 3.194 3.206 3.212 3.213 3.210 3.205 3.198 
~ 

0 
0\ 
• 



Table 13. Values of 8_ as a function of (a/b, b/c) for a general tri-axial ellipsoid {a>b>c) 

"0 
•ri 

m o 
....., 0) 

nJ a. 
r-1 •ri 
Or-1 

~ I 
J..t.-1 
a.w 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 /b 

Oblate Ellipsoid 1.0 2.500 2.454 2.413 2.377 2.344 2.314 2.286 2.259 2.235 2.212 2.190 

1.1 2.445 2.410 2.372 2.337 2.305 2.274 2.246 2.220 2.195 2.172 2.151 

1.2 2.387 2.350 2.313 2.277 2.245 2.214 2.185 2.159 2.134 2.111 2.089 

1.3 I 2.326 2.286 2.248 2.212 2.178 2.147 2.118 2.091 2.066 2.043 2.021 

1~4 2.264 2.222 2.183 2.146 2.112 2.081 2.051 2.024 1.999 1.976 1.954 

1.5 2.203 2.160 2.119 2.082 2.048 2.016 1.987 1.961 1.936 1.913 1.892 

1.6 2.144 2.100 2.059 2.021 1.987 1.956 1.927 1.901 1.877 1.854 1.834 

1.7 2.087 2.042 2.001 1.964 1.930 1.899 1.871 1.845 1.822 1.800 1.780 

1.8 2.033 1.987 1.946 1.910 1.876 1.846 1.819 1.794 1.771 1.750 1. 730 

1.9 1.981 1.936 1.895 1.859 1.826 1.797 1.770 1.746 1.724 1.703 1.685 

2.0 1.932 1.887 1.847 1.812 1.780 1. 751 1.725 1.702 1.680 1.661 1.643 
--' 
a 
-.J 
• 



Figure 27. Plot of reduced specific viscosity versus concentration for 

sperm whale myoglobin (0.1M NaC1
1

buffer. pH= 7.1) 

The straight line is that due to a weighted least squares fit 

~--to c [n] (1 + knc) where [n] = 3.25 ml/gm and kn = 5.9 ml/gm 

Th~ weight used was 1 (cone. < 40 mg/ml) concentration (mg/ml) 

1 -40 (cone. ~ .40 mg/ml) 
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Figure 28. Photograph of the apparatus used for determining solution 

densities and viscosities. Temperatures were kept constant 

to within ± 0.01° using a high precision Townson - Mercer 

constant temperature tank, with a pump attachment to supply 

the water bath in the precision density meter. These 

temperatures could be monitored to within ! 0.005° using 

the platinum resistance thermometer situated directly above 

the density meter. 
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Figure 29. Contour diagram showing curves of constant v as a function of 

the semi-axial ratios a/b, b/c on the basis of eguation (88) 
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Figure 30. Plots of constant v and P in the (a/b, b/c) plane corresponding 

to a/b = 1.5, b/c = 1.5 
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Figure 31. Plots of constant v, P, S and R, allowing for± 1% error in 

their measured values, in the a/b, b/c plane corresponding 

to a/b = 1.5, b/c = 1.5 
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Figure 32. Plots of constant R and the rotational relaxation time ratios 

in the a/b, b/c plane corr esponding to a/b = 1.5, b/c =· 1.5 
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Figure 33. Plots of constant fluorescence anisotropy relaxation time ratios 

in the a/b, b/c plane corresponding to a/b = 1.5, b/c = 1.5 
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Figure 34. Plots of constant R, ~ and A in the a/b, b/c plane corresponding 

to a/b = 1.5, b/c = 1.5 
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Figure 35. Plots of constant R, '¥ and A , allowing for :t 1% error in 

their measured values, in the a/b, b/c plane corresponding 

to a/b = 1.5, b/c = 1.5 
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Figure 36. Plots of constant R, e:ed and e:ed, allowing for~ 1% error in 

their measured values, in the a/b, b/c plane corresponding to 

a/b = 1.5, b/c = 1.5 
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Plots of constant R, o and o , allowing for ! 1% measured error 
+ -

in R and ! 2% measured error in o , in the a/b, b/c plane 
± 

corresponding to a/b = 1.5, b/c = 1.5 
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Plots of constant R, y and y , allowing for ± 1% measured error 
+ -

in R and ~ 2% measured error in y , in the a/b, b/c plane 
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corresponding to a/b = 1.5, b/c = 1.5 



C H A P T E R 4 

Determination of a Stable, Unigue Solution by Combining Results 

from Viscosity, Sedimentation and Electric Birefrinqence 
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4.1 Methods for Analyzing the Decay Curve 

Resolution of a 2-term exponential birefringence decay curve into 

its two component relaxation times or decay constants is notoriously 

difficult, even for components that differ by several orders of magnitude. 

The situation is especially difficult for globular macromolecules for 

which the decay constants will generally not differ by more than ~20% 

(see below). A recent review of the salient methods currently used for 

attempting to analyse multi-component exponential decay curves, emphasing 

these difficulties, has been given by Jest and O'Konski (1978). The three 

methods that are apparently the most useful are 

(1) Graphical Peeling Analysis (O'Konski and Haltner, 1956) 

(2) Non-Linear Least Squares Analysis (Wilde, 1964, Powell and Macdonald, 

1972, Gill and Murray, 1976) 

(3) Fourier Transform Solution of the Laplace Integral Equation (Gardner, 

Gardner, Laush & Meinke, 1958) 

4.1.1. Graphical Peeling Analysis 

In this method, the logarithm of the birefringence is plotted as a 

function of time. For a single term decay this should of course give a 

straight line. If the plot for a two-term decay can be extended to 

relatively long times with sufficient signal-to-noise ratio, and if the 

two terms are not too close, then the limiting slope will give an estimate 

for the longest relaxation time (or shortest decay constant). This 

limiting slope can be extrapolated back to zero time and then "subtracted" 

from the original signal; the slope of the resultant can then be 

determined and hence the shortest relaxation time found (Figure 39). As 

might be expected, this method, although rapid, is very approximate and 
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is of little use for resolving relaxation times of the same order of 

nagnitude. However it is still useful for indicating the orders of 

nagnitude of the decay constants which may be used as initial estimates 

:n non-linear least squares iterative procedures. 

4.1.2. Non-Linear Least Sguares Iterative Analysis 

In this method, the weighted sum of the squares of the residuals 

X~ is calculated between a set of experimental data points and the 

function to be fitted. If x. represents the value of the j 1 th 
J 

experimental point and ~.(X ) the corresponding computer point for a 
J m 

given estimate for the X, the number of independent variables, then we 

2 
define our 'goodness of fit' parameter,x , by 

n 
2 

X = L 
j=l (

X. _ ~. )

2 

J J 
a. 

J 

where cr. is the standard error in the j'th experimental point. The 
J 

best values of the X are such that axtaX = 0, for all the X • m m m 

{110) 

For the particular case of electric birefringence, cr. is approximately 
J 

constant for all the x. (although this is not generally true for photon 
J 

counting - e.g. fluorescence depolarization anisotropy - experiments) 

and the minimization condition becomes 

aF 
0 ax-= 

m 
(111) 

where 

n 

l: 
2 

F = {x. - ~.} 
j=l J J (111b) 
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In the case of a two-term birefringence decay, the minimization 

is said to be 'non-linear' in that the data are to be fitted to a 

function which is the sum of a product of terms consisting of an 

adjustable parameter (i.e. a pre-exponential factor) with another 

function of another adjustable parameter (i.e. a decay constant or 

relaxation time). In order to evaluate aF~X for a current estimate m 

for the parameters X , the solution either has to be linearized using m 

a Taylor expansion as outlined by Jest & O'Konski, or alternatively, a 

quadratic or quasi-Newtonian procedure can be employed (Gill & Murray, 

1976). In this latter case, the parameters X are iterated until the 
m 

minimum in F is found. Gill & Murray's algorithm is particularly 

attractive in that upper and lower limits for the variable can be 

specified and included as external constraints. A problem with the 

least squares technique.however is that the method is very sensitive to 

subsidiary minima in x2 (or F) leading to false 'best parameters', 

even for data of very high precision. The presence of these subsidiary 

minima can often be detected by repeating the analysis for a series of 

different initial guesses of the adjustable parameters. 

4.1.3. Fourier Transform Solution of the Laplace Integral Eguation 

The birefringence 6n(t) = S(t) is written as a Stieljes integral: 

-68.t 
~ n 

J n f exp(-At)dh(A) S(t) I 1 I I PAt = A.e - A.e = 
i 

1 
i 1 

0 

(112) 

where ~h( A ) is a step function, i = +,- and A = 68 .• 
1 
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The right hand side of equation (112) can be rewritten in the form 

of a Laplace Integral: 

00 

S(t) = J exp(-At)g(A)dA 

0 
(113) 

where g (A.) represents a sum of Dira..c. . ~~ delta functions. A plot of 

g(A.) versus A. will give a frequency spectrum with peaks; the centre 

of each peak corresponds to a specific decay constant, and the height 

of the peak is proportional to the value of the pre-exponential factor 

A.. We transform A.= e -y and t = ex. Then 
~ 

00 

S(ex) = J exp[-e(x-y)]g(e-y)e-ydy 

- C>O 

Multiplying by ex: 
00 

ex S(ex) = J exp[-e(x-y)]e(x-y)g(e-y)dy 

-o.o 

Taking the Fourier Transform of the left hand side of (115) 
00 

-oo 

Thus 

00 00 

( 114) 

(115) 

(116) 

F (Jl) = . ~ J ~ J exp [ -e (x-y)] e (x-y). g(e -y)dy l· exp [ill (s + y) ]ds 
-oo -oo 

(117) 
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with s = x - y. Rearranging 

00 00 

-oo -oo 
{118) 

Now, if we compare equation {113) with equation {114): 

{119) 

Thus if we obtain g{e-Y) as a function of ~using equation {119) 

this will be equivalent to a plot of g{A)/A as a function of A • 

The right hand side of equation (118) is the product of the Fourier 

Transform, G(~) of g(e-Y) and the Fourier Transform, K{~) of exp(-es). 

Therefore 

F(~) = ~ G(~) K(~) 
{120) 

i.e. 

G (~) 

{121) 

Taking the inverse Fourier Transform of G(~): 

00 

-oo 

(122) 

K(~) can be evaluated analytically in terms of the complex r function: 

(123) 
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The method therefore has four basic steps: 

(i) Evaluate the Fourier Transform of the data (equation 116) 

(ii) Divide by the complex r function (equation 123) 

(iii) g(e-y) as a function of y is found by using the inverse Fourier 

Transform 

(iv) A plot of g(A)/A is thus obtained as a function of A 

The advantage of this method is that an initial choice as to the 

number of exponential terms to be fitted is not required. 

4.1.4. Other methods of analysis, previously used for deconvoluting 

Fluorescence decay curves 

O'Connor, Ware and Andre (1979) have recently compared methods for 

deconvoluting both one and two term exponential fluorescence decay curves 

(sections 1.5.4, 3.3.2) -methods which could be equally applicable to 

corresponding birefringence decays. The methods chosen were 

(i) Non-Linear Least Squares 

(ii) Method of Moments 

(iii) Laplace Transforms 

{iv) Method of Modulating Functions, 

(v) Exponential series method 

(vi) Fourier Transforms 

They discovered that all six methods were satisfactory for analysing 

undistorted one - component data, but that the least squares method was 

most suitable when distortions are present. for resolving two closely 

spaced terms (9.5ns & 11.5ns) in a 2-term undistorted decay only the least 

squares method and the method of modulating functions proved satisfactory. 

They thus concluded that the non-linear least squares iterative method 
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was the technique of preference for the analysis of simple decay laws. 

4.2. Choosing the best algorithm: computer simulation 

Following the work of Jest & O'Konski (1978) and O'Connor, Ware & 

Andre (1979), the non-linear least squares iterative and possibly the 

Fourier Transform Solution of the Laplace Integral Equation methods 

seemed to be the best available methods for resolving a 2-term 

exponential birefringence decay. I attempted to test for myself these 

methods by assuming three proteins of known (tri-axial) dimensions and 

hence axial ratios (a/b, b/c), assuming a swelling ratio (v /V) = 1.3, 
s 

and v = .73 (typical for globular proteins). From these values the 

molecular weight, viscosity increment, R-function, o functions, intrinsic 
+ 

viscosity and hence decay constants 6+ could be predicted (Table 14). We 

then assume pre-exponential factors A', A', of, respectively, 0.07 and 0.05 
+ -

radians taken from a typical initial birefringence ~A'+ A') of 0.12 
+ -

radians (Krause & O'Konski, 1959) and hence the unperturbed decay curve 

for each simulated protein can be given. The actual individual values for 

A~ are not significant in the analyses, except when they differ by several 

orders of magnitude (see section 4.5). One then places simulated 

experimental error on each of 100 data points for the curves, using a 

computer normal pseudo-random number generator, and, first of all assuming 

no errors in the molecular weight or intrinsic viscosity, investigate how 

much error in the data points is tolerable, before each algorithm fails to 

give back the correct decay constants and hence axial ratios, within 

reasonable limits. The algorithms would then be tested for errors in the 

intrinsic viscosity and molecular weight. Figure 40 illustrates such a 

mock experimental decay curve with 0.1 degree standard error (about the 
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current available experimental precision - B. Jennings & V. Morris, 

private communication) on each of 1000 data points, for Protein 1 

[true (a/b, b/c) = (1.5, 1.5)]. In the analyses the pre-exponential 
1 

factors A+ are of course regarded as unknown variables. 

4.3 Non-Linear Least Sguares Iterative Method 

The quasi-Newtonian quadratic method for minimizing any function 

(i.e. in this case, the sum of the squares of the residuals F) given 

by Gill & Murray (1976) and incorporated in the UK NAG Mk.VI subroutine 

E04JAF was used. In this algorithm the user, besides supplying the 

subroutine for calculating the value of F at any point X, has to supply 

fixed upper and lower bounds on the independent variables x1, x2, 

•••••••• , X • This routine was incorporated in the FORTRAN IV program m 

given in Appendix IV, as Program 5. This program generated its own 

hypothetical decay curve with normal (Gaussian) pseudo-random error 

generated on each data point (using NAG routine GOSADF), the amount 

specifiable by the user. The program attempted to retrieve the decay 

constants, hence the o functions (from the user-specified molecular 
+ 

weight and intrinsic viscosity) and hence the axial ratios {a/b, b/c) 

of the general tri-axial ellipsoid. Owing to the problem of the presence 

of the danger of the routine falling into subsidiary minima as mentioned 

by Jost & O'Konski (1978) -see section 4.1.2. -it was necessary to 

repeat the method for a large number (30) of initial guesses. In fact 

the program was written to generate its own thirty different initial 

guesses by using "DO" loop between user specifiable initial guess limits. 

Unfortunately, even data as accurate as .001 degree standard error on 

each data point (about 2 orders of magnitude greater than the current 
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experimental precision) failed to give back the correct (a/b, b/c) 

within reasonable limits, and even data of machine accuracy (14 

significant figures} did not generate the exact value of (1.5, 1.5), 

as Figure 41 illustrates. 

4.4. Fourier Transform Solution Method of the Laplace Integral 

Eguation Method 

4.4.1. Cut-off Errors 

In order to use this method outlined in section 4.1.3., the 

integrals involved in taking the Fourier Transform of the data 

(equation 116) and in taking the inverse Fourier Transform (equation 122) 

have to be solved numerically. Unfortunately, the integrals extended 

from -oo to +oo·; with real data there exists a finite cut-off time, t 
0 

or equivalently x • Cut-off errors tend to increase the height of the 
0 

error ripples in the final results. For equation (116}, if we choose a 

cut-off too short for ~ there is a loss of resolution of the component 
0 

peaks. On the other hand, if we choose a cut-off in ~ too long then 
0 

the cut-off at x causes the amplitude of the error ripples to increase; 
0 

~ has to be varied therefore to obtain the optimum resolution for a 
0 

given data set. 

4.4.2. Numerical Integration 

Following Gardner et al (1958), each value of S(t) was multiplied 

by the current value of t to give exS(ex} (equation 115). Whereas t 

ranges from 0-+ oo, x ranges from - oo to+~, thus we can split the integral 

in equation (116) into symmetric and anti-symmetric parts: 



X 
0 

F(p) =~ J [s*(x) + s*(-x)]eipxdx 

0 

·Therefore 

'T" 
F(ll) =j-21T 

* * { [ S (x) + S ( -x)] cos ll x 

0 

+ i ( s* (x) - S* (-X)] sin ll X } dx 

129. 

(124) 

(125) 

giving real and imaginary parts for F(ll) 1 i.e., F & F • K(ll) can be 
c s 

similarly split into real & imaginary parts K & K • Equation (121) thus c s 

becomes: 

(F. +iF )(K - iK) 
1 s c s 

= K 2 + K 2 
c s 

and the ~nverse transform (122) becomes 

__ 2~ Jll o (F c + iF 5 ) (Kc + iK ) 
g (e -y) " K 2 + K 2 

5 (cosyu - isinyll) dll 
c s 

where ll and -~ are the cut-off values for ll• Since all odd values 
0 0 

vanish, 

F K + F K 
c c s s 
~=-=---~- eo SYJ.l + 

K + K. 
c s 

F K .~ F K 
s c c s 

K +. K 
c s 

si:nyp ~ dp 

{126) 

(127) 

(128) 
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The numerical integrations {125) and (128) are solved using the 

NAG routine D01GAF. The value of the complex r function needed for 

calculating K and K was deduced using a routine given by Lucas & Terril 
c s 

(1970). As with the non-linear least squares iterative method, the 

program {Appendix IV Program 6) generated its own synthetic data using 

NAG normal pseudo-random number routines G05ADF & G058BF. 

4.4.3. Results 

The program was firstly checked by applying it to the case first 

considered by Gardner et al for a single exponential decay, viz. 

S(t) = 100 e-o.o 2t 

assuming data of machine accuracy (i.e. no perturbation routine 

included). The retrieved A from Figure 42 is .021, in closa agreement 

with Gardner et als value. The data was taken at logarithmic intervals 

(corresponding to equal linear intervals in x). The algorithm was then 

applied to the two term exponential decay curve for Protein 2. However, 

even with data of machine accuracy and taken at logarithmic intervals 

in t {impossible to ~btain in practice for our particular case) the 

retrieved values for A. and hence the decay constants was poor and varied 
~ 

with the cut-off values for ~ as Figure 43 and Table 15 shows. When 
0 

normal pseudo-random error of .001 deg was applied to the data points, 

no resolution was possible for all values of ~ , as Figure 44 clearly 
0 

demonstrates. We thus conclude this method to be of little use for our 

case of interest. 
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4.5. A new R-Constrained Non-Linear Least Sguares Algorithm 

Owing to the inadequacy of the other treatments for resolving a 

two-term exponential birefringence decay into its component relaxation 

times (or decay constants), particularly for globular proteins {close 

decay constants), I have now developed a new R-constrained least squares 

algorithm. If the R-function line solution (3.3.1), which can be found 

from the ratio of the sedimentation regression coefficient k to the 
s 

intrinsic viscosity [n], is included in the least squares algorithm (4.3) 

as a constraint, then the problem is effectively reduced from one of four 

independent variables (a+, a_, A' A_') to one of three (a/b, A', A'). 
+' + -

The solution is constrained to lie on the R-curve, thus a given estimate 

for a/b will necessarily give a 'constrained' value for b/c; the computer 

program can then calculate the values for o and 0 corresponding to this 
+ -

estimate, hence the decay constants (using also the values for[n] , M -
r 

equation 107), the decay curve and finally the sum of the squares of the 

residuals (SSR) between the computer points and the experimental curve. 

By iterating along this R-curve for a/b and the two pre-exponential factors 

A', the best estimate for {a/b, b/c) can be found from the minimum value 
+ 

of the SSR. 

The constraint of the R-curve was included in the algorithm {Program 7 

of Appendix IV) for the three simulated proteins considered previously 

by use of the Leicester University Computer Library routine E01LF1, a 

listing of which is given towards the end of Program 7. The user specifies 

the coordinates of knots in the curve (see Figures 45, 46 & 47), or 

alternatively, the whole curve digitised, and the routine interpolates 

between these points using a cubic polynomial ('spline') fit {K. Brodlie, 
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private communication). In the main program, normal (Gaussian) random 

error of 0.1 degrees on each of the 100 linearly separated data points 

was supplied using the pseudo random number routines mentioned 

previously. The magnitude of this error corresponds to that expected 

from current experimental precision (B.R. Jennings, v. Morris, private 

communication). It was found in pilot runs that the danger of the 

algorithm falling into subsidiary minima, as present for the unconstrained 

case (section 4.3.) was no longer significant. The number of initial 

guesses was thus reduced from thirty to three to save on Computer time; 

the best estimates were generally the same for all three initial guesses 

(except those marked with an asterisk in Tables 16, 17 & 18). The values 

for (a/b, b/c) retrieved did however depend on the cut-off time specified 

for the decay curve. If there were no error in the data points then very 

long cut-off times would be desirable, since this region is dominated by 

the longest relaxation time (or shortest decay constant, 9_). However, 

the effect of a given absolute error is more pronounced the lower the 

birefringence signal. 

The optimum cut-off time, and hence the best value for (a/b, b/c) 

was found by repeating for eight different streams of normal random data, 

specified by the UK NAG Mk VI routine GOSBAf(O.N), where N represents the 

stream number of the random data; the optimum cut-off time for each decay 

curve was then determined by finding the best standard deviation of the 

a/b's from the eight streams for increments of Sns_in the cut-off times. 

The values for the corresponding best mean value for a/b (and hence b/c) 

together with the corresponding standard error for the eight streams of 

data could then be found (Tables 16a, 17a & 18a). 

This procedure was then repeated allowing for ±1% experimental error 
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in the R-curves (Tables 16b,c, 17b,c, 18b,c). If the points corresponding 

to < (a/b, b/c)> +oE are joined together for each of the R-curves, and 

then those of the <(a/b, b/c)> -oE' regions of allowed values for 

(a/b, b/c) could then be found (Figures 48, 49 & 50). The mean values 

agree very closely with the true values (Table 19). The algorithm was 

then tested for the effect of experimental errors in the intrinsic 

viscosity (± 1%) and molecular weight ( ~1.4%). These were found to be 

not significant (Table 20); indeed, the molecular weight can now be found 

precisely from the results of sequence analyses. Finally, the algorithm 

was tested for different initially assumed values for the pre-exponential 

factors A' and A' (Table 21). Again, these were found to have no 
+ -

significant effect on•the results; even for pre-exponential factors 

differing by two orders of magnitude, though the retrieved A~ was poor, 

the retrieved a/b was in close agreement with the other values. 

Once the value for the axial ratios (a/b, b/c) has been found for a 

particular protein, it can be combined with the swollen volume of the 

protein, if known, to determine the axial dimensions. In Table 22 a "model 

dependent" (section 1.7.1) estimate for V has been found for each of the 
e 

three simulated proteins we have considered by back substitution of the 

mean values of (a/b, b/c) determined from the analysis above into equation 

(8) for the viscosity increment, and again the agreement with the initially 

assumed values (Table 19) is excellent. If the model dependent values of 

V are then combined with the values for (a/b, b/c), the semi-axial e 
0 

dimensions a,b,c for the three proteins considered are found to be (A): 

Protein 1: 45.00, 29.98, 20.01 (45.0, 30.0, 20.0) 

Protein 2: 42.28, 25.59, 19.61 (42.5, 25.0, 20.0) 

Protein 3: 43.11, 33.58, 19.81 (42.5, 34.0, 20.0) 

again, in excellent agreement with the initially assumed (bracketed) values. 
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4.6. Some Practical Points 

In applying these equations and algorithms to real protein and other 

macromolecular solutions several important factors must be taken into 

consideration: 

(1) Two or more decay constants can also arise if the system is 

polydisperse. It is therefore essential that the solution be rendered 

monodisperse by, for example, gel filtration techniques. 

(2) It has now been well established that the single exponential decay 

constant previously resovable from the birefringence decay of monodisperse 

protein solutions shows a concentration dependence (Riddiford & Jennings, 

1967), and it was therefore necessary to determine its value at several 

concentrations and then extrapolate to infinite dilution. One must 

naturally assume therefore that the two decay constants for the decay of 

a monodisperse solution of asymmetric ellipsoids also show a concentration 

dependence, and hence must be extrapolated to infinite dilution. On the 

other hand, because of the constraint in our algorithm that they must 

correspond to o and o line solutions that intersect with the R-curve, the 
+ 

values for the decay constants are such that they are not the 'true' decay 

constants for each particular concentration but are closer to the infinite 

dilution values. Since the extrapolation procedure must therefore be 

empirical the best estimates for ~b at particular solute concentrations 

rather than these 'damped' decay constants may be extrapolated to infinite 

dilution; once the extrapolated value for a/b has been found the correspond-

ing value for b/c can thus also be found from the R-curve. 

(3) The requirement on the precision of the electric birefringence apparatus 

is not only in producing transient decays to a precision of 0.1 degree on 

each data point but also the availability of response times (i.e. the finite 

time it takes for the orienting electric pulse to be switched off) of about 
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an order of magnitude lass than that of the faster relaxation time 

Adequate response times are now available (Williams, Ham & Wright, 1976) 

however with apparatus that uses a laser light source, cable discharge 

generator and a memory oscilloscope, giving a response time of- Sns. 

(4) In the above analysis it has been shown that greater accuracies in 

obtaining the axial ratios can be obtained if the optimum cut-off time 

for the decay is found. In our simulations this was achieved by 

averaging over several streams of random data; this corresponds in practice 

to taking several decays of the same preparation. Different samples of 

the same preparation should be used because of the danger of denaturing 

the protein by continually pulsing through high electric fields (temp-

erature effects). 

(5) It has also been assumed that the R function can be measured to a 

precision of - ±1%. Since s values in an s versus concentration plot can c c 

be determined to within- Z.2%(Squire, 1978), the k value can presumably be 
s 

measured to within ±1% {as, from equation sa, it is approximately a 

function of (s /s) x concentration-1). The intrinsic viscosity [n] can 
c 

also be measured to within -±1%, the limiting factor here being the accuracy 

to which the flow times can be measured. The error in R will thus be of 

the order of 1% after taking into consideration that any systematic errors 

in measuring absolute solute concentrations will cancel in the ratio 

k /[n] (Rowe, 1977). s 

(6) finally, it should. be pointed out that because of polarisation effects 

on the electrodes and also the danger of denaturation due to heating effects 

mentioned in (4), solutions of low ionic strength (<0.01M) generally have 

to be used. This apparently prevents the investigation of less soluble 

materials. On the other hand, an interesting new method is being developed 
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at Brunel University by Professor B. Jennings and his eo-workers in 

which an ultrasonic field rather than an electric field is used to 

initially orient the macromolecules before the decay is observed. This 

"acoustic birefringence" (Ballinger & Jennings, 1979) method does not 

suffer from the problems of electrode polarisation and denaturation 

associated with ionic strengths >.01~ for the electric birefringence case, 

allowing the possibility for the investigation of less soluble materials. 
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Table 14. Assumed and derived characteristics of three hypothetical 

globular proteins 

Protein 

Characteristic 

a,b,c -V 

v ;;; 
s 

Characteristic 

a/b,b/c 
-V s 

swollen molecular 
volume 
V = 4nabc 

e '! 

1 

A 5 5 U M E D 

45~,3o~,2oR 

0.730 ml/gm 

1.3 

DERIVED 

1.50,1.50 

0.949 ml/gm 

2 

VALUES 

42.5~~25~,20~ 

0.730 ml/gm 

1.3 

VALUES 

1.70,1.25 

0.949ml/gm 

Anhydrous molecular 
volume 0.8699793x1o-19cm3 0.684706x1o-19cm3 

v <=<vi v > v ) s e 

Molecular weight 
Mr (=(NA/V) V ) 

V 

[n] (=NA V 
8 

-v/Mr ) 

R 

6
red 

6
red 

+ ' -

Decay constants* 
N kT 

e = A · · o 
± 6no [n]Mr ± 

Relaxat±on times 
-r =1/6e ± _+ 

71,744 

2.892 

2.75 ml/gm 

1.479 

0.163, 0.116 

2.821, 2'.016 

6 -1 5.8153835x10 sec, 
6 -1 4.1564612x10 sec 

2e,~6596ns, 

40.0982ns 

* T = 293K, n = 0.01 gm cm-1 sec-1 
0 

56,510 

2.870 

2.72 ml/gm 

1.482 

0.171, 0.115 

2.943, 1.982 

6 -1 7.7660465x10 sec, 
6 -1 5.2290121x10 sec 

21.4609ns, 

31.8734ns 

3 

42.5~,34~,2aR 

0.730 ml/gm 

1.3 

1.25,1.70 

0.949ml/gm 

-19 3 0.9312001x10 cm 

76,853 

2.840 

2.695 ml/gm 

1.496 

0.155, 0.125 

2.645, 2.125 

6 -1 5.1872430x10 sec 
6 -1 4.1674860x10 sec 

32.1301ns, 

39.9921ns 



Table 15. Retrieved decay constants for varying values of 

y1 

11.5 3.13 

11.6 3.00 

11.7 2.94 

12.0 3.14 

-y1 -y -6 -1 
x.2=e 2 

y2 X.1=e e x10 sec 
+ 

3.55 0.04372 0.02872 7.286 

3.50 0.04979 0.03020 8.292 

3.45 0.05287 0.03175 8.811 

3.72 0.04328 0.02423 7.214 

True value for 8 = 7.7660465 X 106 sec - 1 
+ 

True value for 8 = 5.2290121 X 106 sec - 1 
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llo 

-6 e x10 sec -1 

4.787 

5.033 

5.291 

4.039 
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Table 16. Determination of the optimum cut-off time for Protein 1. 

True (a/b, b/c) = (1.5, 1.5) 

(a} No assumed error in R 

Cut-off SOns 100ns 110ns 115ns 120ns 140ns 
time 

a/b a/b a/b a/b a/b a/b 

Stream 1 1.580 1.534 1.513 1.503 1.493 1.454 

* Stream 2 1.946 1.785 1.692 1.654 1.619 1.497 

Stream 3 1.591 1.512 1.483 1.468 1.452 1.392 

Stream 4 1.644 1.487 1.425 1.396 1.367 1.249 

Stream 5 1.623 1.480 1.426 1.401 1.377 1.287 

Stream 6 1.186 1.275 1.303 1.315 1.326 1.364 

Stream 7 1.573 1.645 1.678 1.694 1.710 1.772 

Stream 8 1.716 1.623 1.590 1.575 1.562 1.514 

Mean 1.6074 1.5426 1.5138 1.5008 1.4883 1.4411 

a (SO) 0.209696 0.148967 0.133899 0.132475 0.134402 0.163491 

a (SE) 0.07414 0.05267 0.04734 0.04684 0.04752 0.05780 

a(SD) = Standard Deviation- a(SE) = Standard Error 

* different answers for different initial guesses 

Optimum cut-off time = 115ns 

Best estimate for a/b = 1.501 {! .047) 

Corresponding estimate for b/c = 1.498 
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(b) +1% assumed measured error in R 

Cut-off 110ns 115ns 120ns 125ns 130ns 135ns 140ns 
time 

a/b a/b a/b a/b a/b a/b a/b 

Stream 1 1.546 1.534 1.523 1.511 1.500 1.489 1.478 

Stream 2 1.837 1.735 1.679 1.633 1.594 1.557 1.522 

Stream 3 1.510 1.492 1.474 1.457 1.440 1.423 1.406 

Stream 4 1.439 1.406 1.374 1.342 1.310 1.278 1.244 

Stream 5 1.442 1.414 1.387 1.361 1.337 1.312 1.289 

Stream 6 1.312 1.325 1.340 1.349 1.360 1.370 1.380 

Stream 7 1.816 1.871 1.847 1.840 1.878 1.893 1.909 

Stream 8 1.643 1.624 1.606 1.590 1.575 1.561 1.548 

Mean 1.5681 1.5501 1.5288 1.5104 1.4992 1.4854 1.4720 

a (SO) 0.185700 0.183700 0.174243 0.173033 0.186398 0.195406 0.206181 

a (SE) 0.06565 0.06495 0.06160 0.06118 0.06590 0.06909 0.07290 

Optimum cut-off time = 125ns 

Best estimate for a/b = 1.510 (! .061) 

Corresponding estimate for b/c = 1.400 
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(c) -1% assumed measured error in R 

Cut-off 110ns 115ns 120ns 
time 

a/b a/b a/b 

Stream 1 1.494 1.485 1.476 

Stream 2 1.644 1.616 1.588 

Stream 3 1.468 1.454 1.440 

Stream 4 1.419 1.392 1.366 

Stream 5 1.418 1.395 1.373 

Stream 6 1.300 1.311 1.321 

Stream 7 1.626 1.638 1.649 

Stream 8 1.561 1.549 1.537 

Mean 1.4913 1.4800 1.4688 

a (SO) 0.115922 0.114924 0.115761 

a (SE) 0.04098 0.0406:r 0.04093 

Optimum cut-off time = 115ns 

Best estimate for a/b = 1.480 (! .041) 

Corresponding estimate for b/c = 1.611 
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Table 17. Determination of the optimum cut-off time for protein 2, 

True (a/b, b/c) = (1,7, 1.25) 

(a) No assumed error in R 

Cut-off 85ns 90ns 95ns 100ns 105ns 110ns 120ns 
time 

a/b a/b a/b a/b a/b a/b a/b 

Stream 1 1.709 1,691 1.675 1.659 1.644 1.630 1.603 

st.ream 2 1.963 1,926 1.872 1.777 1.716 1.666 1,579 

Stream 3 1.670 1.645 1.622 1.600 1.578 1.558 1.520 

Stream 4 1.602 1,561 1.523 1.486 1.452 1.418 1.351 

Stream 5 1.600 1.566 1.534 1.505 1.478 1.453 1.408 

Stream 6 1.482 1.496 1.509 1.521 1.533 1.544 1,566 

Stream 7 1.924 1.924 1.923 1.923 1.923 1.923 1.922 

Stream 8 1.847 1.803 1.771 1.745 1.723 1.703 1.669 

Mean 1.7246 1.7015 1.6786 1.6520 1.6309 1.6119 1.5773 

a {SO) 0.170801 0,166408 0.161588 0.154362 0.155373 0.159776 0.173689 

a (SE) 0,06039 0.05883 0.05713 0.05458 0,05493 0,05649 0.06141 

Optimum cut-off time = 100ns 

Best estimate for a/b = 1.652 (!.ass) 

Corresponding estimate for b/c = 1.305 
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(b) +1% assumed measured error in R 

Cut-off 75ns SOns 85ns 90ns 95ns 100ns 105ns 
time 

a/b a/b a/b a/b a/b a/b a/b 

Stream 1 1.856 1.856 1.856 1.820 1.821 1.767 1.834 

Stream 2 1.856 1.856 1.856 1.856 1.856 1.856 1.856 

Stream 3 1.856 1.821 1.791 1.732 1.691 1.658 1.628 

Stream 4 1.843 1.728 1.555 1.599 1.551 1.508 1.467 

Stream 5 1.834 1.716 1.655 1.608 1.568 1.532 1.501 

Stream 6 1.471 1.492 1.511 1.528 1.544 1.560 1.575 

Stream 7 1.856 1.856 1.856 1.856 1.856 1.856 1.856 

Stream 8 1.856 1.856 1.856 1.856 1.856 1.856 1.856 

Mean 1.8035 1.7726 1.7545 1.7319 1.7179 1.6991 1.6841 

a (SO) 0.134604 0.127668 0.131819 0.135561 0.145962 0.153037 0.163378 

a (SE) 0.04759 0.04514 0.04661 0.04791 0.05161 0.05411 0.05776 

Optimum cut-off time = SOns 

Best estimate for a/b = 1. 773 ( ! .045) 

Corresponding estimate for b/c = 1.0875 
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(c) -1 % assumed measured error in R 

cut-off SOns 85ns 90ns 95ns 100ns 105ns 
time 

a/b a/b a/b a/b a/b a/b 

Stream 1 1.670 1.656 1.643 1.630 1.617 1.605 
J. 

Stream 2 1.936 1 1.861 1.799 1.749 1.705 1.665 

Stream 3 1.648 1.628 1.608 1.589 1.570 1.552 

Stream 4 1.614 1.576 1.541 1.507 1.475 1.444 

Stream 5 1.606 1.573 1.543 1.516 1.490 1.466 

Stream 6 1.452 1.466 1.478 1.489 1.499 1.509 

.L .L 
Stream 7 1.815 1.842 1.870 1.902 1.936 1 1.936' 

Stream 8 1.759 1.737 1.716 1.698 1.681 1.666 

Pie an 1.6875 1.6674 1.6498 1.6350 1.6216 1.6054 

(] (50) 0.147596 0.137488 0.136111 0.142556 0.153928 0.157728 

cr (SE) 0.05218 0.04861 0.04812 0.05040 0.05442 0.05577 

+Upper limit (~ b/c = 1.0) 

Optimum cut-off time = 90ns 

Best estimate for a/b = 1.650 (! .048) 

Corresponding estimate for b/c = 1.3905 
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Table 18. Determination of the optimum cut-off time for Protein 3. 

True (a/b, b/c) = (1.25, 1.7) 

{a) No assumed error in R 

Cut-off SOns 100ns 105ns 110ns 115ns 120ns 140ns 
time 

a/b a/b a/b a/b a/b a/b a/b 

Stream 1 1.367 1.315 1.303 1.291 1.278 1.266 1.215 

Stream 2 1.881 1.587 1.547 1.510 1.476 1.442 1.313 

Stream 3 1.388 1.301 1.281 1.263 1.240 1.219 1.119 

Stream 4 1.464 1.285 1.244 1.200 1.151 1.089 1.001 

Stream 5 1.448 1.278 1.239 1.200 1.157 1.108 1.000 

Stream 6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Stream 7 1.314 1.393 1.409 1.424 1.439 1.453 1.505 

Stream 8 1.514 1.421 1.402 1.385 1.370 1.354 1.297 

Mean 1.4220 1.3225 1.3031 1.2841 1.2639 1.2414 1.1813 

a (50) 0.243637 0.165850 0.160554 0.158626 0.161019 0.168224 0.184692 

a (SE) 0.08614 0.05864 0.05676 0.05608 0.05693 0.05948 0.06530 

Optimum cut-off time = 110ns 

Best estimate for a/b = 1.284 {! .056) 

Corresponding estimate for b/c = 1.695 
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(b) +1 % assumed measured error in R 

Cut-off 105ns 110ns 115ns 
time 

a/b a/b a/b 

Stream 1 1.319 1.306 1.293 

Stream 2 1.618 1.562 1.516 

Stream 3 1.294 1.272 1.249 

Stream 4 1.247 1.199 1.145 

Stream 5 1.245 1.202 1.155 

Stream 6 1.000 1.000 1.000 

Stream 7 1.444 1.462 1.481 

Stream 8 1.431 1.412 1.394 

Mean 1.3248 1.3019 1.2791 

cr {so) 0.181404 0.176485 0.178272 

cr (SE) 0.06414 0.06240 0.06303 

Optimum cut-off time = 110ns. 

Best estimate for a/b = 1 .302 (! .062) 

Corresponding estimate for ·b/c = 1.5395 
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(c) -1 % assumed measured error in R 

Cut-off 105ns 110ns 115ns 
time 

a/b a/b a/b 

Stream 1 1.294 1.283 1.271 

Stream 2 1.511 1.481 1.452 

Stream 3 1.275 1.257 1.238 

Stream 4 1.246 1.206 1.163 

Stream 5 1.240 1.204 1.165 

Stream 6 1.000 1.000 1.000 

Stream 7 1.387 1.400 1.413 

Stream 8 1.385 1.370 1.355 

JYlean 1.2923 1 .2751 1.2571 

a (SO) 0.149290 0.147794 0.149222 

cr(SE) 0.05278 0.05225 0.05276 

Optimum cut-off time = 110ns 

Best estimate for a/b = 1.275 (: .052) 

Corresponding estimate for b/c = 1.764 
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Table 19. Mean values for the retrieved axial ratios compared 

with the real values 

Retrieved Real 
( !., ~ ) ( .!, E. ) 

b c b c 

Protein 1 (1.501, 1.498) {1.50, 1.50) 

Protein 2 (1.652, 1.305) (1.70, 1.25) 

Protein 3 (1.284, 1.695) (1.25, 1.70) 



149. 

Table 20. Effect of experimental errors in the intrinsic viscosity 

and molecular weight 

(and hence the product [n]. M used in calculating the decay constants 
r 

- cf Table 14 and equation_108) 

Assumed error in [ n] = ! 1 % } 
n 11 n M = + 1.4r11 

r - JO 

total error- ~.7% (calculated 
from formula given in Paradine & Rivett 
( 1960)) 

Results are for Protein 1, cut-off time= 115ns, ± 0.1°'standard error 

on each of the 100 data points 

Stream no. 
of random 

data 

1 

2 

3 

4 

5 

6 

7 

8 

mean a/b 

0
50 

0
SE 

No error 
- 1.7% a/b 

1.493 1.503 

1.638 1.654 

1.455 1.468 

1.374 1.396 

1.383 1.401 

1.305 1.315 

1.695 1.694 

1.566 1.575 

1.4886 1.5008 

0.136305 0.132475 

0.04819 0.04684 

cr
50 

= standard deviation 

cr5E = standard error 

+ 1.7% 

1.520 

1.679 

1.487 

1.424 

1.425 

1.333 

1.704 

1.593 

1.5206 

0.130253 

0.04668 



Table 21. Effect of using different initially assumed values for 

the pre-exponential factors A'+ 

150. 

* Protein 1, Cut off time= 100 ns, 0.1 s.e. on each of the 100 data points 

Assumed Retrieved 

I ' a/b ' ' A A A A 
.+ + 

0.06 0.06 1.683 0.057 0.064 

0.07 o.os 1.674 0.065 0.055 

0.09 0.03 1.660 0.083 0.038 

0.11 0.01 1.664 0.099 0.021 

0.119 0.001 1.644 0.109 0.012 

*The data for this table were obtained after the UK NAG Mk VI routines 

had been updated to Mk VII; the new random number routines corresponding 

to GOSADf & G058Af in Mk VI are GOSCAF & GOSCBF 



Table 22. 

Protein 1 

Protein 2 

Protein 3 

Comparison of model dependent estimates for V with e 

the real values 

* 3 
Retrieved Model-dependent Real V {cm ) 
( .!, B. ) 3 e 

V (cm ) {cf Table 14) b c e 

(1.501, 1.498) 1.131 X 10-19 1.131 X 10-19 

(1.652, 1.305) 0.889 X 10-19 0.890 X 10-19 

(1.284, 1.695) 1.202 X 10-19 1:.211 X 10-19 

*calculated by determining the value of v corresponding to (~, %> 

and then back substituting into the equation v = [n] M /NAV , r e 

where [n] is in ml/gm 

151. 
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o 5 MIN - SAMPLE J!L 
s 50 MIN SAMPLE nL 

0.001------------------------~-----------
0 20 40 

TIME, JJ sec 

Figure 39. Birefringence decay (expressed in radians) in Helix Pomatia 

hemocyanin solutions. The triangles represent the difference 

between the tangential curve (long relaxation time) and the 

experimental points. (From Pytkowickz & O'Konski, 1959) 
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PROTEIN 1 

20 40 60 80 100 120 140 160 180 
TIME (NS) 

Figure 40. Synthetic two-term exponential electric birefringence decay curve 

assuming a standard error of: 0.1° on each data point. 

Relaxation times assumed: 28.66ns, 40.10ns 
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Figure 41. Plot of the R, o and o values obtained from the non-linear least 
+ -

sguares analysis assuming birefringence data of machine accuracy 
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J&o= 6.0 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 

Y- -lnA 

Figure 42. Freguency spectrum of A (~1/relaxation time) for a single 

exponential decay and ~ = 6.0, assuming decay data of machine 
0 

accuracy (14 fiaures). The position of the highest peak 

corresponds to a value of A of .021, in agreement with the 

initially assumed value of 0.02 



Figure 43 {I - VI) 

Effect of increasing ~ to determine best resolution of the frequency 
0 

spectrum corresponding to the decay for Protein 2, for 140 logarithmically 

increasing data points of machine accuracy {14 figures) 



e 

6 

~ = 6.0 
0 

-6 ~~~--~--~--~--~--~--~~~----~~~~~--~--~~ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 · 

8 

6 

-2 

-4 

-6 

11 
~ = 8.0 

0 

0.~ 0.5 1.~ 1.5 2.0 2.5 3.0 3.5 4~0 4.5 5.0 5.5 6.0 6.5 

156. 



157. 

8 Ill 
11

0 
= 11.5 

-4 

-6 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.~ 4.0 4.5 5.0 5.5 6.0 6.5 

IV 
8 

11
0 

= 11.6 

6 

-4 

-6 
J , J 0.5 1.J 1.5 2.Q 2 . 5 3. J 3.5 4.J 4.5 5.0 5.5 6 . Q 6.5 



158. 

6 
V 11

0 
= 11.7 

6 

-4 

-·6 ______ ..__..____...___.___. ....... _......,w,_........,_........,_ ....... _ ..... _ ..... _ ..... .......a 

0.0 0.5 1.0 1.5 2.0 2.5 .o .5 4.0 4.5 5.0 5.5 6.0 6.5 

VI llo 
:: 12.0 

8 

! 
: 

1 

6 

A (\ 
A A A A A 

2 

0 

-2 

V V V V V V 
-4 

V V 
V 

-6 
0.:) 0.5 1.0 1.5 2.0 2.5 3.0 3. 4.0 4.5 5.0 5.5 6.0 6.5 



Figur~ 44 (I - VI) 

As for Figure 43 but for data of .001° standard error on each of the 

140 logarithmically increasing data points 
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Figure 45. Knots in the R curves for specification in the R - constrained 

least squares analysis (Program 7) for Protein 1 
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Figure 46. As for Figure 45 but for Protein 2 
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Figure 47. As for Figure 45 but for Protein 3 
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True (a/b, b/c) = (1.5, 1.5) 
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Figure 48. The area marked by dots represents the allowed band of retrieved 

axial ratios determined using the new R - constrained least 

sguares algorithm for Protein 1. Simulated experimental error 

of ~ 0.1° standard error on each data point for the electric 

birefringence decay curve was assumed. 
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True (a/b, b/c) = (1.7, 1.25) 
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Figure 49. As for Figure 48 but for Protein 2 
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Figure 50. As for Figure 48 but for Protein 3 
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· C H A P T E R 5. 

Concluding Remarks 
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In this study an extensive review of all the possible shape 

functions available for modelling a biological macromolecule in 

solution in terms of an ellipsoid model with the restriction of two 

equal axes has been given, thus updating the classical reviews of 

Edsall (1953} and Tanford (1961}. It was concluded that the most 

suitable shape parameter (particularly for axial ratios less than 20:1) 

was the R parameter which can be determined from the ratio of the 

sedimentation regression coefficient, k to the intrinsic viscosity, [n] s 

A word of warning should perhaps be given out here in that the k value 
s 

found from fitting sedimentation coefficient versus concentration data 

either to the general equation (60) or to the approximate linear equation 

(58), is the value based on particle migration relative to the solvent, 

whereas the [n] values are normally measured to solution density (Tanford, 

1955). The value of k must therefore be corrected to solution density, 
s 

and this can be achieved simply by subtracting the value of the partial 

specific volume, v (Rows, 1977) since this latter can be equated to the 

reciprocal density of the solute, an assumption reasonably accurate for 

proteins and possibly for nucleic acids (Pearce et al, 1975). It is also 

now possible to estimate a value for k direct from a knowledge of the 
s 

sedimentation coefficient, the molecular weight and v (Appendix VI). 

Despite the availability of the R function for determining the 'equiv-

alent hydrodynamic ellipsoid of revolution' for a structure in solution to 

a reasonable precision (and also the IT function for prolate ellipsoids 

Appendix III), it was clear from a perusal of the crystallographic 

dimensions given in Table 3 and a comparison of model dependent with model 

independent estimates for v /V in Table 2, that for many macromolecules s 

the assumption of two equal axes on the ellipsoid model is a poor 
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approximation to the real structure in solution. This stimulated my 

attempts to develop the necessary theoretical and data analysis techniques 

so that the restriction of two equal axes could be dispensed with and the 

subsequent research has shown that the more general tri-axial ellipsoid 

can now, in principle at least, be successfully employed for modelling 

biological macromolecules in solution. 

The first step was to derive an explicit expression for the viscosity 

increment v for a dilute suspension of general tri-axial ellipsoids in 

overwhelming Brownian motion, based on a model first given by Simha (1940) 

and improved by Saito (1951) for ellipsoids of revolution. Although the 

assumption of the particles rotating on average with the same local angular 

velocity of the fluid has only been rigorously proved so far for ellipsoids 

of revolution (Brenner, 1972a), it was assumed that this would be a very 

close approximation for tri-axial ellipsoids, particularly f~r low axial 

ratios (<3.0, i.e. the globular particle range). After the derivation of 

equation (88) a numerical procedure (involving complicated numerical matrix 

inversions), but based on a full statistical analysis of the angular motion 

was made available by Rallison (1978). It was explained in section 2.8. how 

the difference in the results predicted by equation (88) and Rallisons 

approach was negligible (<.01%) for the globular particle range mentioned 

above, and for soma particles of higher asymmetry discrepancies of not more 

than 1% arose. Rallison has also given a numerical procedure for 

calculating the normal stress coefficients in terms of axial ratio; normal 

stress effects are however second order in the shear rate, thus in order 

to measure these coefficients it is necessary to use high shear rates. 

However, the assumption of overwhelming Brownian motion with respect to 

the shear rata ceases to be valid, and hence, unfortunately, the normal 

stress coefficients cannot be applied. 
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It was described how the problem of the line solution (i.e. how a 

given value for v does not uniquely fix a value for the axial ratios 

{a/b, b/c)) could be dealt with by combining it graphically with 

translational frictional or rotational relaxation line solutions. I 

was able to give the R function for tri-axial ellipsoids and also many 

other tri-axial functions whose experimental determination did not require 

a knowledge of the swollen molecular volume in solution. After a careful 

consideration of all these line solutions with regard to giving suitable 

intersections, experimental measurability, insensitivity to experimental 

error and sensitivity to axial ratio, it was decided that the best approach 

for determining a unique solution would be to combine the R line solution 

graphically with the o and o line solutions, the latter to be determined 
+ -

from the two electric birefringence decay constants and the intrinsic 

viscosity. 

Unfortunately, this still requires having to resolve the two decay 

constants or relaxation times from a two-term exponential birefringence 

decay for a homogeneous solution of asymmetric particles. This problem 

is notoriously difficult, as reported by Jest & O'Konski (1978) and 

0 1 Connor, Ware & Andre (1979), particularly for close relaxation times (as 

applies to globular proteins). The currently best available methods evident 

from these studies, viz. the non-linear least squares iterative method and 

possibly the fourier Transform solution of the Laplace Integral equation 

method of Gardner et al (1959) were tested by exhaustive computer 

simulation to see how much error on the data points each could tolerate 

before failing to resolve the decay constants within reasonable limits. The 

fouriar method failed, even for data of machine accuracy (14 figures). The 

non-linear least squares method was found to be unstable due to the problem 
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of subsidiary minima located in the iteration procedure, even for data 

of two orders of magnitude more precise than that currently available 

from the best instrumentation. 

The idea of applying the R function line solution as a constraint in 

the least squares analysis was then applied to the three simulated decays 

thus effectively reducing the problem from one of four independent variables 

(the two pre-exponential factors and the two decay constants) to one of 

three (two pre-exponential factors and one axial ratio, a/b). The algorithm 

was then shown to be very successful for synthetic data corresponding to 

that available from current experimental precision. The problem of the 

concentration dependence of the decay constants (or equivalently the 

relaxation times) was then mentioned, and the necessity for extrapolating 

the values for the axial ratios determined at various concentrations to 

infinite dilution. The need for extrapolating axial ratios is somewhat 

conceptually difficult to envisage at first sight, since one would more 

naturally extrapolate the decay constants and then calculate the axial 

ratios from them. In the algorithm however, I have included the R value 

as the constraint - the R function line solution of possible values of 

(a/b, b/c) is the value applicable at infinite dilution, thus the decay 

constants in the algorithm are constrained to lie on the 'infinite dilution' 

curve; hence'none of these values are the true values for the decay constants ............ 
at each particular solute concentration. Any ex~rapolation procedure is 

therefore empirical, whether it be for the decay constants or for the values 

of the axial ratio a/b. 

Investigation of the theoretical reasons for the concentration 

dependence of the decay constants provides however both an interesting and 

important field for further work. It has been described {section 1.7.1. & 
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Appendix IV) how several important results have arisen from consideration 

of the concentration dependence of the 'translational' (i.e. viscosity, 

sedimentation and diffusion) transport coefficients: for example, in 

producing the R function and making available an estimate of the swollen 

volume of a macromolecule in solution independent of any model assumed for 

the macromolecule. The analysis of the concentration dependence of the 

decay constants is however much more complicated: Rowe's (1977) theory for 

the translational coefficients was derived assuming only hydrodynamic 

(i.e. volume flux) concentration effects, viz. solutions of high ionic 

strength (>0.1M) and such that electric charge effects (solute-solute 

interactions) were not present. The situation is apparently the reverse 

when we come to consider the decay constants: since we are dealing with a 

rotary macromolecular property, there should be no solute volume flux 

effects on average giving rise to the hydrodynamic concentration effects 

considered by Rows. On the other hand, the current practical restriction 

of low ionic strengths for the electric birefringence probably results in 

some solute-solute electric charge effects; the double layer thickness 

of charge around a macromolecule in solution is inversely proportional to 

the square root of the ionic strength (Guoy, 1910, Chapman, 1913). for 

example, for a macromolecule suspended in a 0.1M NaCl buffer the thickness 

of the double layer is - 1nm, whereas in a 0.001M NaCl buffer, the thickness 

is as high as 10nm (Shaw, 1970). There is therefore a greater likelihood 

of interference between the relaxations of individual macromolecules, the 

degree of which one would expect to increase with concentration. 

In section 1.6. the techniques of light and low-angle x-ray scattering 

were discussed as an alternative to the hydrodynamic techniques, and stated 

how Martin (1964) had given formulae relating the radius of gyration to 
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axial ratio for ellipsoids of revolution. Mendelson and Hartt (1980) 

have applied results from low angle x-ray scattering in terms of a 

general triaxial ellipsoid model to the regulatory light chains of 

scallop myosin, and determined axial dimensions of 16nm x 4.16nm x 1.26nm. 

We also mentioned however that the major disadvantage of the scattering 

approach was that it is necessary to assume the macromolecule to be of 

uniform electron density; this can lead to errors of the order of 3%, 

notwithstanding other errors in measurement as the simple calculation 

given in Appendix VII for a hypothetical spherical macromolecule with a 

cavity (based on the electron microscopy and x-ray diffraction results 

for apoferritin - Harrison, 1959) shows. 

It is hoped however that the results of the research described here 

have now made it possible to determine the gross conformation of biological 

macromolecules in solution in terms of a general ellipsoid - independent of 

any assumptions concerning the internal homogeneity of the macromolecules 

by combining the results of viscosity, sedimentation and electric (or 

acoustic) birefringence. There are some macromolecules however that 

apparently will never be modelled by an ellipsoid, even tri-axial. 

Bovine serum albumin (BSA) is a typical example; McCammon et al (1975) 

have attempted to account for a value for B below the theoretical minimum 

of 2.112 x 106 (and above the theoretical maximum for R of 1.6- see Table 

2) by assuming its structure to be porous with respect to the solvent, but 

found the discrepancy was still far too large •. With the availabilty of 

the tri-axial ellipsoid model and a comparison/ with model independent 

estimates for the swollen molecular volume~. a classificat~on of proteins 

into those which do and those which do not behave as hydrodynamic tri-

axial ellipsoids in solution can now be made. 
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Appendix II Illustration of use of the A function (equation 50) by 

application to data available for the tryptic subfragments of fibrinogen 

It is apparent from figure 17 that, until the harmonic mean 

relaxation time Th can be measured to a precision greater than that 

currently available ( ... ! 3% at best, assuming no significant internal 

rotations of the chromophore or segmental rotations of parts of a 

macromolecule relative to other parts), use of A will generally be 

restricted to prolate ellipsoidal particles above an axial ratio of 

about three. 

Unfortunately, there is at present a lack of reliable steady state 

fluorescence depolarization data for macromolecules in this axial range. 

Use of the function may however be illustrated by application to data 

available for the tryptic fragment of bovine fibrinogen. By using a 

steady-state fluorescence - depolarization technique, Johnson & Mihalyi 

(1965) reported a harmonic mean relaxation time for fibrinogen of 195±5 ns, 

a value lower than the corresponding value for a sphere of the same volume 

(299 ns); the value for Th of the tryptic subfragment was 178 ns, strongly 

suggesting that the tryptic subfragments had rotational freedom within the 

fibrinogen molecule. Assuming there is still no further internal rotation 

within the subfragment itself, one can combine this result with viscosity 

and molecular-weight data obtained previously by Mihalyi & Godfrey (1963). 

Taking 1'1 as· 95,000~,ooo, [n] as (7.1S.±o.07) ml.g-1 and assuming a 
r 

± 5 ns standard error in Th' A is calculated to be 4.74±o.17 where the 

method for calculating the standard error in A is given by Paradine & 

Rivatt (1960). This corresponds from Figure 17 to a prolate ellipsoid of 

axial ratio 6.a.±o.3 consistent with the estimates of the axial ratio 
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derived from four other hydrodynamic parameters, three of which assume 

no particle swelling due to solvent association (Table 23). The 

results from electron microscopy studies suggest however that the 

subfragments are nearly spherical (Hall & Slayter, 1959); as Mihalyi & 

Godfrey (1963) have previously stated, this difference is probably too 

large to be explained by drying effects alone. At least part of this 

difference can, however, be possibly ascribed to an apparent discrepancy 

between the viscosity data of their Figure 4 with the sedimentation data 

of their equation 2; the latter suggests a sedimentation regression 

coefficient, k, of -3.6 (after correction to solution density; Rows, s 

1977), whereas the viscosity regression coefficient, k, is only- 2.5. 
n 

Rowe (1977) has shown that the ratio k /k is equal to the swelling ratio 
n s 

v /V, where v is the swollen specific volume in solution. Mihalyi & s s 

Godfrey's (1963) data apparently gives a value for the swelling of less 

than 1, indicating the particle to contract in solution, an unlikely 

event. Unfortunately, although the pH values of the solutions used for 

the sedimentation and harmonic mean relaxation time measurements are given 

and are near (6.5 and 7.1 respectively), that for the viscosity is not 

given, so this is a possible source of error. 

It is hoped that the availability of the new A function will 

encourage the production of more reliable data in order to resolve these 

difficulties, and also accelerate improvement in the methodology so that 

Th/T
0 

can be measured with much greater precision, enabling application 

of the A function to prolate ellipsoids of axial ratio less than three 

and also to oblate ellipsoids. 
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Table 23. Hydrodynamic parameters and axial ratios for the tryptic 

subfragments of fibrinogen 

Hydrodynamic Derived Axial Reference 
Parameter Ratio 

v* 7.8 Mihalyi &: Godfrey (1963) 

t I * fa 7.1 " 

e 9.3 If 

* 
Th/ TO s.o Johnson & Mihalyi (1965) 

A 6.8 This study 

* Assuming no particle swelling due to solvent association 
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Appendix III Illustration of use of the IT function {equation 57) 

by application to data for hemoglobin 

The IT function obtained in section 1.7. can be applied to molecular 

covolume and viscosity data available for hemoglobin. The molecular 

covolume, u, is related to the 2nd virial coefficient, B employed in 

osmometry 2 Baghurst et al (1975), using a molecular by U = 2BM • r 

weight of 64,500 found -· the value of the product BM to be 4.8 ml/gm. r 

Using instead thB exact value for the molecular weight found by sequence 

analysis to be 64,793, this product becomes 4.78 ml/gm; this gives the 

ratio U/M to be 9.56 ml/gm. From the plot of reduced specific viscosity 
r 

against concentration (Figure 51) an intrinsic viscosity of 2.99 ml/gm 

has been determined by a least squares fit to the new universal equation 

for transport coefficients at all solute concentrations (see section 1.7.1. 

and Appendix IV). The value of IT is calculated to be 3.20, corresponding 

to a spherical particle (Figure 24). This is consistent with the findings 

of x-ray crystallography (Perutz et al, 1960). The value of v for a 

spherical particle is the Einstein value of 2.5. By back substitution 

into equation (B) and using a value for M of 64,793 one obtains a value 
r 

for V of 1.286 x 10-19 cm3• This corresponds to a Stokes radius of a 
0 0 

31.3 A, in excellent agreement with the result of 32.3 A calculated.by 

Alpert & Banks (1976) from the diffusion coefficient determined by laser 
0 

correlation spectroscopy and agrees exactly with the result of 31.3 A 

calculated by Laurent & Killander (1964) from the diffusion coefficient 

determined by gel filtration, both groups assuming a hard sphere model. 

The Stokes radius can also be found directly from the molecular covolume 

and molecular weight assuming a hard sphere model: Baghurst et al (1975) 
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0 
determined a value of 31.3 A, again in exact agreement. The corresponding 

radius of the sphere calculated from the crystallographic dimensions of 
0 0 

64 x 55 x 50 A of Perutz et al (1960) is 28.0 A, indicating hemoglobin to 

be swollen in solution by approximately 40% (v/v). 

If one uses standard errors of ±.03 ( = 1%) and ! .096 ( = 1%) in 

U/M respectively, the calculated standard error {Paradine & Rivett, 1960) 
r 

in IT is ± .045. The maximum error corresponds to an axial ratio of 

1.8 for a prolate model but as high as 6.8 for an oblate model, indicating 

the difficulty in applying IT to macromolecules that are oblatoid. 



figure 51. 

Plot of reduced specific viscosity versus concentration for human oxy -

hemoglobin (0.1M KC1
1
buffer 2 pH = 6.0). 

The curve fitted is that due to a weighted least squares fit to the new 

universal equation frir the concentration dependence of transport coeffici~b 

(equation 60). The weighting factor used was (1/concentration). 

[n] = 2.99 m!/ gm, k = 7 .a m!/ gm. 
n 
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Appendix IV Viscous Flow and Sedimentation of Concentrated Dispersions 

of Particles (quoted from A.J. Rowe, mss. in preparation) 

The hydrodynamic properties of dispersions of particles in fluids 

are quite well described at very high particle dilution, both for simple 

models (spheres, ellipsoids, rods) and for more complex models which may 

be represented as assemblies of simple models and the appropriate 

interaction tensor~ computed. Restricting outselves to the case of small 

particles (Brownian motion dominant) suspended in liquids, the work of 

Stokes, Einstein, Perrin, Simha, Broersma and others (for simple models) 

and of Kirkwood, Bloomfield and others (for assemblies) enables a 

reasonably accurate description to be given of the sedimentation and 

viscous flow properties of such suspensions to be given at 'infinite 

dilution'. 

At real particle concentrations however, no theory has proved 

adequate, even for the simplest particle model - the sphere. The need 

for such a theory is evident in many fields: in my own field of 

Biochemistry it would be useful both for methodological purposes in 

characterising macromolecular properties and for the description of 

'in vivo' systems, which are generally rather concentrated dispersions 

of macromolecular particles. I have been concerned to derive such a 

theory, relating the properties of suspensions of particles at real 

concentration to their 'infinite dilution' behaviour. In a recent paper 

(Rowe, 1977) a first part of such a theory was described: the extension 

of this theory to cover the case of high concentrations is now described. 

The State of the Problem 

It has long been noted that the concentration dependence of 
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sedimentation and of reduced specific viscosity is finite even at high 

dilution, and remains nearly linear over moderate ranges of concentration: 

(sedimentation) s = s(1 - k c) c s 
. 'V s ( 1 + k c) - 1 

s 

(viscous flow) 
~ = (~) 

0 
• ( 1 + k c) 

c c e+ n 

A recently derived theory (Rows, 1977) shows that 

k = k = 2v < s 

-

-V s + --V 

for compact particles, where v is the partial specific volume of the 

particle and f/f , the frictional ratio, is a parameter computable for 
0 

simple models and for assemblies of sub-units. This theory is thus 

applicable to particles of ~ conformation. The values predicted for 

both spheres and other particles agree well with experimental evidence 

and with earlier theoretical predictions for spheres (Figure 52, Table 24). 

At higher concentrations two further effects must be considered: 

(i} mutually proximity of the particles affects the rate of energy 

dissipation at constant shear (the 'cloud effect' of Burgers). 

(ii) 

In general this poses a many-body problem which is not amenable 

to solution by classical techniques. 

the critical packing fraction (~ ) will be approached. 
p 

empirical equations due to Mooney (1951), Oougherty and 

Semi-

Kreiger (1972) and others describe the viscosity of suspensions 

of spheres in terms of ~ • p 

A New General Approach 

The theory applicable to high dilutions (Rows, 1977) was based on 

the supposition that only a 'frame-of-reference' effect need be considered 

in this case. Derived in terms of sedimentation, it is shown that the 
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latter must be unchanged with concentration in a frame of reference 

defined by the solvent in return flux (i.e. solvent ~ transported 

or convected with the particles). The equation above then follows from 

the relation between the defined frame of reference and the cell-fixed 

frame of reference in which measurements are normally made. 

To extend this approach to higher concentrations we re-define the 

problem by considering the system to consist of a large but finite 

number of volume elements, each element small in comparison to a 

particle. These volume elements can be classified as elements of 

disjoint sets V1 •••• V4, shown in a Venn diagram for two particles 

(Figure 53). 

Among interesting properties which may be noticed are that 

(i) Sets V1, V3 can be classified into sub-sets 

(ii) 

(iii) 

(iv) 

v1 - v1 , v31 - v3 , for n particles in the system 
1 n n 

v1 . n t11 . = ~ ; but v3i n v3 . I= ~ 
~ J J 

In Newtonian flow, the magnitude of the flow vector of the 

solvent at any point in the system is defined by the fraction 

of the volume elements in the vicinity of that point classified 

as in V2 U V3 in relation to those in V4 U V2 U V3 

v1 . n V2 I= ~ : more completely V2 is partitioned into the 
~ 

disjoint subsets V2a and V2b, where v1. n V2a = ~ 
~ 

v1 . n V2b I= ~ : and <P , the critical packing volume of the 
~ p 

particles, determines the relative number of elements in 

V2a and V2b { <P = 1 ; V2a = ~} • 
p 

On the assumptions that n is large, and that the elements in V3 are 

located randomly in V3 U V4, then a simple finite probability space 
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can be constructed, enabling us to calculate the number of elements in 

V1 •••• V4, and hence the quantity g c in 

s 
c 

s 
= = (1- gc} 

since V1 U V2 U V3 = g c. 

The result is given by 

gc - z 

1 - z 

= <fl = (kc - 2cv } s 

i 
1}(cfl 

where z = 2cv 
s 

1 2 . 
( c vs > ( 1 - Q > +; Q = ( 1 - et> >I cJ> 

c/>p p p 

which for almost all cases simplifies to 

gc = 

k c -
2cp - 1 p 

k c 2c'V + 1 s 

i + 1 
cfl } 

where k = k or k ; v = specific volume of the hydrodynamic particle. 
s n s 

This equation predicts rather accurately the high-shear viscosity 

of latex spheres over the entire concentration range (figures 54 - 58). 

It is applicable only to Newtonian flow, but is free of arbitrary or 

empirical constants. The treatment used has some affinity with the 

widely used approach involving transient doublets, triplets, etc. (i = 2 

in the above summation refers to 'doublet' interaction, etc.), but as no 

particle model is employed, the results should be general for all particles. 

The cl> term would often be difficult to estimate, but computer simulation p 

shows that an exact knowledge of cp is unimportant except at the highest 
p 

concentrations 
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Figures 54 - 58 demonstrate the success of the theory in predicting 

known properties of sedimentation and viscous flow at real concentrations. 
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Table 24. Various theoretical estimates and a practical estimate for 

~2 , the second coefficient in the expansion for nrel in 

terms of ~ (volume fraction} 

2 
nral = 1 + k1~ + k2~ + •••••••••••• 

Estimate for k
2 

7.5 

9.15 

7.5 

14.1 

12.6 

7.6 

10.0 

'about 10 1 

Author 

Vand (1948) 

Manley & Mason {modification of Vand) (1954) 

Kynch (1956) 

Gold (1937) 

Simha (modification of Gold) (1952) 

Batchelor & Green (1972) 

Rowe (1977) 

Cheng & Schachman data on PSL spheres (1955) 



Figure 52. 

Empirical data and the equation for transport-concentration dependence 

{Rowe 1977), at high solute dilution. The equation enables M (molecular 
r 

weight) values to be calculated from s and k only. The agreement found 
s 

between values for M computed thus and M values from the literature 
r r 

(various methods) is good evidence for the applicability of the equation 

to a wide range of systems. 

Solute M {s+k ) Standard. Symbol r s 
M (lit) error 

r 
Proteins, nucleic acids, 1.02 0.01 • viruses 

Cellulose derivatives 1.01 0.09 0 
in CUAM 

Cellulose derivatives 0.97 0.10 
in ACETONE 

Levans {aqueous) 0.99 0.04 D 

Poly(methylymacrylate) 1.05 o.oa • 
in ETHYL ACETATE 
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Figure 53. Venn diagram showing the volume elements for two particles 

in solution 

V1 - particle volume 

V2 particle eo-volume 

V3 solvent frictional forward flux 

V4 - solvent return volume flux 
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Figure 54. Relative viscosity of spheres as a function of volume fraction. 

-Predicted line, for k =· 4, v = 1, ~ = 0.64. Experimental 
n s P 

data points are also shown 
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Figure SS. For highly asymmetric particles the sedimentation coefficient 

falls very steeply with concentration, to reach a relatively 

constant 'plateau' value. Computed curves. 
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Figure 56. Viscosity/sedimentation coeffic~ents as a function of concentration 

fork (k ) = 1000, v = 1. The 1/s plot is linear, whilst the -s-n - s -- -

direct plot is markedly curved. Computed curves. 
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figure 57. Viscosity/sedimentation coefificients as a function of concentration 

!2£_ks(~n)~. Both plots are reasonably linear over this 

concentration range. Computed curves. 



figure SS. Hydrodynamic data for Bovine serum albumin fitted 

using the new general eguation for transport at 

all solute concentrations 





Appendix V 

Program 1: 

Program 2: 

Program 3: 
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FORTRAN IV computer programs 

Evaluates values of the various hydrodynamic shape functions 

for tri-axial ellipsoids for a user specifiable value of 

the axial ratios (a/b, b/c) 

Produces tables of these functions for axial ratios between 

1.0 and 2.0 in steps of 0.1 

Produces a contour map of v in the (a/b, b/c) plane for 

axial ratios between 1.0 and 3.0 

Program 4: . Produces plots of the various tri-axial functions in the 

(a/b, b/c) plane corresponding to the point (1.5, 1.5). 

Several plots allow for arbitrary errors in measurement 

Program 5: 

Program 6: 

Program 7: 

Non-linear least squares iterative method for resolving a 2-

term exponential birefringence decay. This program {and the 

following two) produces its own synthetic data 

Fourier Transform solution of the Laplace Integral Equation 

method 

A-constrained non-linear least squares iterative method 



Function Comeuter S~mbol 

a/b A/B 

b/c B/C 

'\) NU S I 

f /f ( ::P) F 
0 

r,a/r,o CA, CA/CD 

r,b/r,o CB, CB/CD 

r,cjr,o cc, ccjco 

Qa/Qo RHDA, RHDA/RHOO 

Qb/Qo RHOS, RHDB/RHOO 

Qc/Qo RHOC, RHOC/RHOO 

s BETA 

R R 

0 DELTAA, DELTA( A) a 

ob DEL TAB, DELTA(B) 

0 DELTAC, DELTA(C) c 

Ya GAI'II'IAA, GAI'II'IA(A) 

yb GAI'II'IAB, GAI'II'IA(B) 

Ye GAI'II'IAC, GAI'II'IA(C) 

l-la. I'IUA, I'IU(A) 

l-lb I'IUB, I'IU(B) 

l-lc I'IUC, I'IU(C) 

Th/TO TAU, TAU/TAUO 

'¥ PSI 

A LAI'IBDA 

8
red 

TPLS, THETA+, z + 

8red 
TI'INS, THETA-, u -



Function Comeuter S~mbol 

0 DPLS, DELTA+, V + 

0 DPINS, DELTA-, w 

y+ GPLS, GAP! PIA+ 

y GPINS, GAPIPIA-

Tl/TO T1 

T /T 
2 0 T2 

T /T 
3 0 T3 

T4/TO T4 

T /T 
5 0 TS 

e THPLUS + 

e THPINUS 



Program 1 195. 

c ·· v ~~········~·········~·····~~············~··············· C THIS PROGRAM GENE~ATES VALUES OF THE VARIOUS HYDRODYNAMIC 
C SHAPE FUNCTIONS FOR A USER SPECIFIABLE VALUE OF THE AXIAL 
C ~ATIOS A/B C=N1l ~ B/C C=N2) 
c ··~··~·········································~···~······· PROGRAM MAIN<INPUT,OUTPUT,TAPE2=INPUT,TAPE3=0UTPUT) 

COMMON/PARAM/A,C,NN 
EXTERNAL FUN 
DIMENSION ALPHA(10> 
REAL NU, M, O, P 
REAL MUA,HUB,MUC,PSI,N1,N2,RHOA,RHOB,RHOC 

C ENTER AS DATA AT THE FOOT OF THE PROGRAM CA/8, B/C) 
REAOC2,•>N1,N2 
NN=J 

C COHPUTE THE ELLIPTIC INTEGRALS 
0045 K=1,10 
A=N1 
B= 1. 0 
C=1.0/N2 
NN=NN+1 

C SET LIMITS FOR NUMERICAL INTEGRATION (THESE LIMITS 
C BELOW HAVE SEEN PREVIOUSLY TESTED FOR CONVERGENCE) 

AA=O.O 
BB=1000000 
IF(NN.EQ.10)88=500000000 
HAXDIV=50 
EPS=l.OE-08 
ACC=O.O 
IFAIL=O 

C CALL U.K. "NAG" LIBRARY ~OUTINE FOR NUME~ICAL EVALUATION 
C OF THE INTEGRALS "ALPHA" GIVEN IN THE SUBROUTINE BELOW 

CALL 001AGFC~A,BB,FUN,MAXDIV,EPS,ACC,ANS,ERR O R, N OFU N ,IFAILJ 
ALPHA(NN)=ANS 

45 CONTINUE 
8= 1. 0 

C NOW COMPUTE THE FUNCTION VALUES USING THE ST ORED INTEGRAL VALUES 
NU=(i.Q/(A•B•C))•((~.0/1 5 . 0 >•<<ALPHA(7)+ALPHA(8) 

+ +ALPHA(q) )/(ALPHA(8)•ALPHAC9)+ALPHAC9J•ALPHA 
+ (7l+ALPHAC7)•ALPHA(8)))+(1.015. 0)•(((ALPHA( 2) 
+ +ALPHAC3))/CALPHAt4>•<B~B•ALPHA(2)+C•C•ALPHA(3) 
+ )))+((ALPHA(3)+ALPHA(1)l/CALPHAC5)•(C•c•ALPHA(3) 
+ +A•A•ALPHAC1))))+((ALPHA(1)+ALPHA(2))/(ALPHAC6) 
+ •CA•A•ALPHAC1l+B•B•ALPHAC2>))) )) 

M=<B•B+C•C)/(8•B•ALPHA<2>+C•C•ALPHA(3)) 
O=CC 4 C+A4 A)/(C 4 C4 ALPHAC3)+A•A•ALPHAC1)) 
P=<A•A+B•Bl/CA•A•ALPHAC1>+B•B•ALPHAC2)) 
TPLS=tCA•B•C)/(12.0)}•(({(1.0/M)+(l. 0/0)+(1. U/P 

+ J)+(((1.0/M••2.0)+(1,0/0~•2.0)+(1.0!P••2, 0 ))­
+ ((1.0/CM•Q))+(1.0/(04 P))+(1. 0/CP•M 
+ )))}••0.5)) 
TMNS=CCA•B•Cl/(12.0ll•((((1.0/M)+C1.C/0)+(1, 0/P 

+ >>-(CC1.0IM••2.o>+(1.oto••z.o>+ct.oiP••z. o>>­
+ ( (1.0/CM•O)) +(1.0/(0•P) )+(1.0/CP•M 
+ ))))¥.f.Q,5)) 

DPLS=6.0•TPLS•NU 
DHNS=6 • O•T MNS•NU 
F=2.0/(((A•B•c>••(1.0/3. 0 ))•ALPHAC10)) 
R=2.0~C1.0+<F••3.Q))/ NU 
BETA=<1.0/1000000.0)•(((6,Q2~9••C1.0/3,QJ)•t10.0••(23.0/3.0 

+)))/((16200.a•3.1~1592654•3.141592654)••<1.013.0)))•(NU 
+••<1.0/3,0))/F 
CA=(2.0/(3,0•A•B•C))•M 
CB=C2.0/C3.0•A•B•ClJ•O 
CC=<2.0/C3.0•A•B•C>>•P 
RHOA=2.0/CC1.0/C8)+(1,0/CC>) 
RHOB=2.0/((1.0/CCJ+(1.0/CA>> 
RHOC=2.0/((1.0/CA)+(1.0/C8)) 
DELA=NU/CA 
DELB=NU/CB 
OELC=NU/CC 
TAU=3.0/(C1.0/CAl+C1.0/C3)+(1.0/CCl) 
PSI=F•C<i.O/TAU)••<l.0/3.0)) 
V= NU/TAU 
ZZ=<1.0/2.Q)•(F••3.0) 
GAMMAA=ZZ•Ct1.0/CBl+C1.0/CC>> 
GAMMAB=ZZ•CC1.0/CC>+<1.0/CAJ) 
GAMMAC=ZZ 4 CC1.0/CAl+(1.0/C8)) 
MUA=CCA••Ci.0/3.0))/F 
MUB=<CB••<l.D/3.0))/F 
MUC=tCC••Ci.0/3.0))/F 
GPLS=6.0•TPLS•CF••3.0) 



GMNS=6.Q•TMNS•<F••3.0) 
X1=0.5•C(1.0/RH08l+(1.0/RHOC)-(1.0/RHOAJl 
X2=0.S•C<1.0/RHOC)+(1.0/~HOA>-C1.0/RH08)) 
X3=0.5•CC1.0/RHOA1+(1.0/RHOBl-C1.0/RHOC)) 
X4=CX1+X2+X3l/3.0 

196. 

X 5 = ( C X 1 •• 2 • 0 ) + (X 2 • • 2. 0) + (X 3 •• 2 • 0) - (X 1 • X2) - ( X2 • X3) - ( X 3 • X 1) ) ••• o. 5 
T1=1.0/CX4+X1) 
T2=1.Q/(X4+X2) 
T3=1.0/(X4+X3) 
T4=3.0/((6.0•X4)-(2.o•X5)) 
T5=3.0/((6.0•X4)+(2.0•X5)) 
WRITE<3,97) 

9 7 FORMAT ( •• 
WRITEC3,98) 

.. ) 
98 FORMAT< •• ••) 

WRITEC3,99>A,1/C 
99 FORMAT( 5X," A/8 

WRITEC3,100lNU 
··F1.2,·· B/C 

100 

106 

101 

102 

103 

10i+ 

105 

107 

202 

108 

109 

110 

203 

111 

112 

113 

114 

115 

116 

204 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

FORMAT< 5X•" NU ",F10.5) 
WRITEC3,106)F 
FORMAT< SX," F ",F1Q.5) 
WRITE ( 3,10 1) TPLS 
FORMAT< 5X9• THETA+ ··.F15.5) 
WRITEC3,1021TMNS 
FORMAT( SX," THETA- ",F15.5) 
WRITEC3,103)0PLS 
FORMAT( SX," DELTA+ ",F15.5l 
WRITE(3,104)0MNS 
FORMAT< SX," DELTA- ",F15.5) 
WRIT£(3,105)~ 
FORMAT< 5X," R ",F15.5) 
WRITEC3,107l BETA 
FORMAT( sx,• BETA ",F15.5l 
WRITEC3,202) 
FORMAT ( sx,·•THE 3 ROTATIONAL FRICTIONAL ~ATIOs-:••) 
WRITEC3,108)CA 
FORMAT< 5x,•• CA ••,F15.5) 
WRITEC3,109lCB 
FORMAT( SX," CB ",F15.5) 
WRITEC3,110lCC 
FORMAT( sx,·· CC ••,F15.5) 
WRIT£(3,203) 
FORMAT( sx,a•THE 3 ROTATIONAL RELAXATION TIME RATIOs:••) 
WRITEC3,111)RHOA 
FORMAT( SX," RHOA ",F15.5) 
WRITE(3,112l~HOB 
FORMAT( 5X," RHOB ",F15.5) 
WRITEC3,113t~HOC 
FORMAT< SX," RHOC ",F15.5) 
WRITE ( 3, 114) OELA 
FORMAT( sx,a• DELTAA ",F15.5) 
WRITEC3,11510ELB 
FORMAT( 5X," OELTAB ",F15.5) 
WRITEC3,116JOELC 
FORMAT( sx,a• DELTAC ••,F15.5) 
WRITEC3,204) 
FORMAT ( 5X ,a•THE HARMONIC MEAN RELAXATION TIME RATio:••) 
WRITE(3,117>TAU 
FORMAT( sx,•• TAU ••,F15.5) 
WRITEC3,118)PSI 
FORMAT( SX," PSI ",F15.5) 
WRITEC3,119)V 
FORMAT< SX,.LAMBDA ",F15.5) 
WRITE(3,120)GAMMAA 
FORMAT( SX,"GAMMAA ",F15.5) 
WRITEC3,121lGAMHAB 
FORMAT( SX,"GAMMAB ",F15.5) 
WRITEC3,122JGAMMAC 
FORMAT( SX,"GAMMAC ",F15.5) 
WRITEC3,123)~UA 
FORMAT( 5X," MUA ",F15.5) 
WRITEC3,124)MUB 
FORMAT( 5X," MUB ",F15.5) 
WRITEC3,125)~UC 
FORMAT( SX," MUC ",F15.5) 
WRITEC3,126)SPLS 
FORMAT( 5X~"GAMMA+ ",F15.5) 
WRITEC3,12rlGMNS 
FORMAT( 5X, "GAMMA- ",F15.5) 
WRITE(3,201l 



197. 

201 FORMAT( 5X,"FLUORESCENCE ANISOTROPY RELAXATION TIME RATIOs:••> 
WRITE<3,130lT1 

130 FORMAT{ 5X, •• T1 u,F15e5) 
WRITE(3,131) T2 

131 FORMAT( 5X .. 
WRITE(3,132lT3 

T2 ••,F15.5l 

132 FORMAT ( 5X," T3 ••,F15.5) 
WRITE(3,133)T4 

133 FO~MAT ( 5X •• 
WRITE(3,13~)T5 

T4 ••,F15.5) 

134 FORMAT ( 5 X 9• T5 ••,F15.5) 
STOP 
END 

c 



198. 

Program 1 Results 

A/8 1.50 8/C 1.50 
NU 2.89170 

F 1.04410 
THETA+ .16261 
THETA- .11622 
DELTA+ 2.82127 
DELTA- 2.01645 

R 1.47887 
BETA 2·12334 

THE 3 ROTATIONAL FRICTIONAL RATios: 
CA .89762 
CB 1.39800 cc 1.47041 

THE 3 ROTATIONAL RELAXATION TIME RATIOS: 
RHOA 1.43329 
RHOS 1.11474 
RHOC 1.09327 
DELTAA 3.22152 
DELTAS 2.06846 
DELTAC 1.96660 

THE HARMONIC MEAN RELAXATION TIME RATIO: 
TAU 1.19548 
PSI .98378 

LAMBDA 2.41886 
GAMHAA .79414 
GAHMAB 1.02107 
GAHHAC 1.04112 

HUA .92389 
MUB 1.07092 
MUC 1.08910 

GAMMA+ 1.11051 
GAMMA- .79372 
FLUORESCENCE ANISOTROPY RELAXATION TIME RATIOS: 

T1 1.02536 
T2 1.28883 
T3 1.31877 
T4 1.43405 
TS 1.02497 



Program 2 

·······~··················~··············~·················~••+••••• THIS PROGRAM COMPUTES TABLES OF THE VISCOSITY INCREME~T NU, 
THE TRANSLATIONAL FRICTIJNAL RATIO (f/FQ), THE ROTATIONAL 
FRICTIONAL RATIOS< CA/CO, CB/CO, CC/CO ), THE ROTATIONAL 
RELAXATION TIME RATIOSCRnOA/RHOQ, RH08/~HOO, RHOC/RHOO>, THE 
HARMONIC HEAN RELAXATION TIME RATIO( TAU/TAUQ ), THE RIDGEWAY 
EL~CTRIC BIREFRINGENCE DeCAY CONSTANTS( THETA+, THETA-), AND 
THEIR CORRESPONDING SWELLING - INDEPENDENT FUNCTIONS: 
R, BETA, DELTAA, DELTAS, DELTAC, GAHMAA, GAMMAB, GAMMAC, 
MUA, MUB, MUG, PSI, DELTA+, DELTA-, GAMMA+ AND GAMMA-
AS FUNCTIONS OF THE AXIAL RATIOS A/8, 8/C, IN THE RANGE 1.0 TQ 
2.0 IN STEPS OF 0.1, FOR A GENERAL TRIAXIAL ELLIPSOID PARTICLE 
MODEL. { THE SUBSCRIPT ••o•• REFERS TO THE CORRESPONDING COEFFICIENT 
FOR A SPHERE OF EQUAL VOLUME ) 
·············~··················~········~·~························ 

PROGRAM MAINCINPUT,OUTPUT,TAPE2=INPUT,TAPE3=0UTPUT) 
COMMON/PARAM/A,C,NN 
EXTERNAL FUN 
DIMENSION ALPHAC10,11,11l,NUC11,11),f(11,11),R(11,11),H(1) 

+ , BET A C 11, 11 ) , CA ( 11, 11) , CB ( 11 , 11) , CC C 11, 11 l , M ( 11 , 11 ) , 0 C 11, 11 ) 
+ ,PC11,11) ,TPLS(11,11) ,TMNS (11,11) ,RHOAC11,11) ,RH08(11,11) 
+ ,RHOCC11,11l,TAUC11,11),PSIC11,11l,OELA(11,11),0ELBC11,11) 
+ ,DELC(11,11),GAMMAA(11,11),GAMMABC11,11),GAMMACC11,11»,MUA(11,11) 
+ ,HUBC11,11) 9 MUC(11,11l,OPLSC11,11l,OHNS(11,11),GPLS(11,11) 
+ ,GMNSC11,11) ,Y(11) ,Zl11) ,ZZl11,11> 

REAL NU,M,O,P,HUA,MUB,MUC,PSI 
COMPUTE THE ELLIPTIC INTE~RALS 
NN=O 
0045 K=1,10 
A= 0.9 
NN=NN+1 
004 0 I=1,11 
A=A+ 0.1 
C=1.01 0.9 
0030 N=1,11 
C=C/t1.0+0.1•Cl 
SET LIMITS FO R NUMERICAL INTEGRATION (THESE LIMITS 
BELOW HAVE BEEN PREVIOUSLY TESTED FOR CONVERGENCE) 
AA=O.O 
88=1000000 
IF<NN.EQ.10)88=500000000 
MAXOIV=50 
EPS=i.OE-08 
ACC=O.O 
IFAIL=O 
CALL U.K. "NAG" LIBRARY ROUTINE FOR NUMERICAL EVALUATION 
OF THE INTEGRALS ••ALPHA"• GIVEN IN THE SUBROUTINE BELOW 
CALL 001AGFCAA,BS,FUN,MAXDIV,EPS,ACC,ANS,ERROR,NOFUN,IF4IL> 
ALPHACNN,!,N)=ANS 

30 CONTINUE 
ftO CONTINUE 
45 CONTINUE 

8= 1. 0 
A=0.9 
0080 J=1,11 
A=A+0.1 
'f(J)=A 
C=i.0/0.9 
0070 N=1,11 
C=C/C1.0+0.1•Cl 
ZCN>=1/C 
NOW COMPUTE THE FUNCTION VALUES USING THE STORED INTEGRAL VALUES 
NU(J~N)=(1.0/(A•8~C)l•((4.0/15.0l•CCALPHAC7,J~N)+ALPHAl8,J,Nl 

+ +ALPHA(9 9 J,N))/(ALPHAC8,J,N)•ALPHAC9,J,Nl+ALPHAC9,J,N)~ALPHA 
+ ( 7, J, N) +A LP HA ( 7, J, N) • ALPHA ( 8, J, N) ) ) + ( 1. 0 I 5. 0) • ( ( (ALPHA { 2, J, N) 
+ +ALPHA(3,J,N))/{ALPHA(4,J,N)•(B•B•ALPHAt2,J,Nl+C•C•ALPHA(3,J,N) 
+ )))+((ALPHA(3,J,N)+ALPHA(1 9 J,N))/(ALPHA(5,J,N)•(C•C•ALPHA(3~J,N) 
+ +A•A•ALPHA(1,J,N))))+((ALPHA(1,J,N)+ALPHAC2,J,N))/(ALPHA(5,J,N) 
+ ~cA•A•ALPHAt1,J,N)+B•B•ALPHA(2,J, N ))) ))) 
F(J,N)=2.0/(((A•B•C»••t1.0/3.0))•ALPHAC1 0,J,N)) 
R<J,Nl=2.0•C1.0+CFCJ,N)••3.Q))/NUCJ,N) 
BET A ( J , N ) = ( 1 • 0 /1 0 0 C 0 0 0 • 0 ) ~ < ( ( 6 • J 2 4- g•"'" ( 1. 0 I 3. J 1 ) • ( 1 0 • 0 • • ( 2 3 • 0 I 3 • 0 

+ )))/((16200.0•J.141592654•3.141592654)•~(1.013.Q)))•(NU(J,N) 
+ ••(1.013.0))/F(J,N) 

M(J,N)=CB•B+C•C)/(B•B•ALPHAC2,J,N}+C•C•ALPHAC3,J,N)) 
Q(J,N>=CC•C•A•A)/(C•C~AL?HA(3,J,N)+A•A•ALPHAC1,J,N)) 
P(J,N)=(A•A+8•8)/(A•A•ALPHA(1,J,N)+S•B•ALPHA(2,J,N)) 
TPLS(J,N)=(<A•B•C)/(12. 0))•{(((1.0/M(J,N))+(1.0/0(J,N))+(1.0/P(J, 

+ N)))+(((1.0/M(J,Nt••2.0)+(1.0/0(J,N)••2.u)+(1.0/P{J,N)••z.O))-



c 
70 
60 

600 

60 

i3 
72 
71 

610 

61 

76 
75 
74 

620 

62 

83 
82 
81 

630 

63 

66 
85 
84 

640 

200. 

+ t(1.0/CHCJ,~)•O(J,N)))+(1.0/COCJ,N)•PCJ,N)))+(1.0/CPCJ 1 N}•MCJ, 
+ NJ>>>>••o.s>> 

T M NS ( J , N) = ( ( A • B • C ) I ( 12 • 0 ) ) • ( ( ( ( 1. 0 I M ( J, N) ) + ( 1. 0 I 0 C J , N ) ) + ( 1 • 0 I P ( J, 
+ N)))-(((1,0/M(J,N)••2.0J+(1.0/0(J,Nl••2.0)+(1.0/P(J,N)••2.0))-
+ C ( 1. 0 I (M ( J, N) •o ( J, N) ) J + C 1. 0 I ( 0 ( J t N) • P ( J t N ) ) ) + C 1. 0 I ( P ( J, N) • M ( J, 
+ NJ>)J>••o.s>) 

CACJ,N)=C2.01C3.0•A•B•C>>•MCJ,N) 
CBCJ,N>=<2.01(3,0•A•B•C))•O(J,N) 
CCCJ,N>=<2.0/C3.0•A•B•CJ>•PCJ,N) 
RHOACJ,NJ=2.0/((1.0/CBCJ,N))+(1.U/CCCJ,N))) 
RHOBCJ,Nl=2.0/((1,Q/CACJ,N))+(l,OICCCJ,N))) 
RHOC(J,N1=2.Q/((1.0/CACJ,N))+(1,D/CB<J,N))) 
DELACJ,Nl=NUCJ,N)/CACJ,N) 
DELBCJ,Nl=NUCJ,N)/C8CJ,N) 
DELC(J,NJ=NUCJ,N)ICCCJ,N) 
TAU ( J, N) = 3 • 0 I ( < 1. 0 I CA ( J, N) ) + ( 1 • 0/ C 8 ( J, N) ) + ( 1. 0 I CC t J, N) ) ) 
PSICJ,Nl=FCJ,N)•CC1.01TAUCJ 1 N>l••t1.0/3.0)) 
ZZCJ,N):(1,012.0)•(F(J,N)••j,Q) 
GAMMAA(J,N)=ZZCJ,N)•((1.G/C8(J,N))+(1.0/CCCJ,N))) 
GAMMA8(J,N)=ZZCJ,N)•((1. 0/CA(J,N)J+(1,0/CC(J,Nl)) 
GAMMACCJ,Nl=ZZCJ,N)•CC1. u/CACJ,N))+(1.0/C8CJ,N))) 
HUA(J,N>=CCA(J,N>••<1.0/3,Q))IF(J,N) 
MUB(J,N)=CCB<J,N)••ct.O/J.O))/F(J,N) 
MUCCJ,N)=lCC(J,N)••t!.0/3.0))/FCJ,N) 
OPLSCJ,N):6.0•TPLS(J,Nl•NU(J,N) 
OMNSCJ,Nl=6.0•TMNS(J,N)•NU(J,N) 
GPLS(J,N)=6.0•TPLSCJ,N)•(F(J,N)•~3.0) 
GMNSCJ,Nl=6.0•TMNS(J,N)•(F(J,N)••3.0) 
CONTINUE 
CONTINUE 
THE PROGRAM NOW WRITES OUT THE COMPUTED VALUES IN TABLE FORM 
WRITE(3,603) 
FORMAT C •• ••) 
PRINT(3,60> 
FORHAT< "1 AIB 8/C NU F/FO R BETA") 
0071 J=1,11 
0072 N=1,11 
WRITEC3,73)Y(J),Z(N),NUCJ,N),F(J,N),R(J,N),BETA(J,N) 
FORMAT( 2F7.1,4F8.3) 
CONTINUE 
CONTINUE 
WRITE L3,610) 
FORM AT ( •• ••) 
PRINTC3,61) 
FORMAT< "1 A/8 8/C CA/CO CB/CO CC/CO") 
0074 J=1,11 
0075 N:1,11 
WRITEC3,76)Y(J),ZCNl,CA(J,N),CB(J,N),CCCJ,N) 
FORMAT( 2F7.1,3F8.3) 
CONTINUE 
CONTINUE 
WRITEC3,620) 
FORMAT C .. ") 
PRINTC3,62) 
FORMAT( "1 A/8 8/C RHOA/RHOO RH08/RHOO RHOC/RHOO") 
0081 J-=1,11 

s~~fE~l!a!tv(J),Z(Nl,RHOA(J,N),RH08(J,N),RHOCCJ,NJ 
FORMAT( ~2F7.1~3f9.3) 
CONTINUE 
CONTINUE 
WRITEC3,630) 
FORMAT< •• .. , 
PRINTC3,63l 
FORMAT( .. 1 Al8 B/C DELTACA) DELTACB) DELTACCl") 
0084 J=1,11 
0085 N-=1,11 
WRITEC3,86)Y(J),Z(NJ,OELA(J,N),OELB(J,N>,DELCCJ,Nl 
FORMAT< 2F7.1,3F8.3) 
CONTINUE 
CONTINUE 
WRITEC3,640) 
FORMAT< •• ••> 
PRINTC3,64) 

64 FORMAT( "1 A/B 8/C GAMMACA> GAMMA(B) GAMMA(C)") 
0091 J=1,11 

S~ffE~3!9~tY(J),Z(N),GAMMAA(J,N),GAMMAB(J,N),GAMHAC(J,N) 
93 FORMAT( 2F7.1,3F8.3) 
92 CONTINUE 
91 CONTINUE 



c 
G 
c 

WRITEC3,650) 
650 FORMAT( .... , 

PRINT(3,65) 
65 FORMAT< "1 A/B B/C MU(A) MU(8) MU(C)") 

009Lt J-=1,11 
ooqs N=1,11 
WRITE(3,96)Y(J),Z(N),MUA<J,Nl,MU8(J,Nl,MUC(J,N) 

96 FORMAT( 2F7.1,3F8.3) 
95 CONTINUE 
94 CONTINUE 

~RIT£(3,660) 
660 FORMAT ( .. '') 

PRINTC3,66l 
66 FORMAT( ''1 A/8 8/C THETA+ THETA- TAU/TAUO PSI •• ) 

00101 J=1,11 
00102 N=1,11 
WRITE(3,103)Y(J),Z(N),TPLS(J,Nl,TMNS(J,N),TAUCJ,Nl,PSI(J,N) 

103 FORMAT( 2F7.1,4F8.3) 
102 CONTINUE 
101 CONTINUE 

WRITEC3,670) 
6 7 0 F 0 RH AT ( •• •• l 

P~INT<3,67l 
67 FORMAT< "1 A/8 8/C DELTA+ DELTA-.. ) 

. 0010 4 J::1' 11 
00105 N=1,11 
WRITE(3,106) Y(J) ,Z(N) ,OPLS(J,NJ ,OMNS(J,N) 

106 FORMAT( 2F7.1,2F3.3) 
10 5 CONTINUE 
1Dlt CONTINUE 

WRIT£(3,680) 
680 FORMAT ( •• .. , 

PRINT(3,68) 
68 FORMAT( "1 A/8 8/C GAMMA+ GAMMA-") 

00111 J=1,11 
00112 N=1,11 
WRITEC3,113lY(Jl,Z(N),GPLS(J,N),GMNS(J,N) 

113 FORMAT( 2F7.1,2F8.3) 
112 CONTINUE 
111 CONTINUE 

WRITE(3 9 690) 
690 FORMAT ( " '') 

00114 J=1,11 
00115 N=1,11 

115 CONTINUE 
114 CONTINUE 

STOP 
Ef'JAJ 

201. 



202. 
A/B 8/C NU F/FO R BETA 
1.0 1.0 2.500 1.000 1. 6 ao 2.112 
1.0 1.1 2.507 1.001 1.598 2.112 
1.0 1.2 2.524 1. 0 03 1.5«32 2.113 
t.o 1.3 2.550 1.006 1.583 2.113 
1.0 1.4 2.583 1 .• 010 1.572 2.114 
1. 0. 1.5 2.620 1.014 1.560 2.115 
1.0 1.6 2.661 1. 019 1.548 2.115 
1.0 1.7 2.706 1.025 1.534 2.11& 
1.0 1.8 2. 753 1.030 1. 521 2.117 
1.0 1.9 2.803 1. 036 1. 5 07 2.118 
1.0 z.o 2.854 1. 042 1. 493 2.118 
1.1 1.0 2.507 1. 001 1.598 2.112 
1.1 1.1 2.520 1.002 1. 593 2.112 
1.1 1.2 2.544 1.005 1.585 2.113 
1.1 1.3 2.576 1.009 1. 574 2.114 
1.1 1.4 2.&14 1.014 1.562 2.115 
1.1 1.5 2.656 1.019 1.549 2.115 
1.1 1.6 2e702 1.024- 1.535 2.116 
1.1 1.7 2.751 1.030 1.521 2.117 
1.1 1.8 2.803 1.036 1.507 2.118 
1.1 1.9 2.857 1.042 1.492 2.119 
1.1 2.0 2.913 1.049 1.478 2.120 
1.2 1.0 2.525 1. 003 1.591 2.113 
1.2 1.1 2.545 1.005 1.584 2.113 
1.2 1.2 2.575 1.009 1.574 2.1~4 
1.2 1.3 2.612 1.013 1. 562 2.115 
1.2 1.4 2.655 1.018 1.549 2.116 
1.2 1.5 2.703 1.024 1.535 2.117 
1.2 1.6 2.754 1.030 1.520 2.118 
1.2 1.7 2.808 1.036 1.505 2.119 
1.2 1.8 2.865 1. a 43 1.490 2.120 
1.2 1.9 2.923 1.049 1.475 2.120 
1.2 2.0 2.983 1.056 1.460 2.121 
1.3 1.0 2.553 1.006 1.582 2.114 
1.3 1.1 2.579 1.009 1. 573 2.114 
1.3 1.2 2.&15 1.013 1.561 2.115 
1.3 1.3 2.&58 1.018 1.547 2.116 
1.3 1.4 2.706 1.024 1. 533 2.118 
1.3 1.5 2.759 1.030 1. 518 2.119 
1.3 1.6 2.815 1.037 1.502 2.120 
1.3 1.7 2.8 74 1.043 1. 486 2.121 
1.3 1.8 2.935 1.050 1.4 71 2.122 
1.3 1.9 2.998 1.057 1.455 2.123 
1.3 2.0 3.063 1.0&4 1.440 2.124 
1.4 1.0 2.588 1.01Q 1.569 2.115 
1.4 1.1 2.&21 1.014 1.559 2.116 
1.4 1.2 2.&&2 1.019 1.545 2.117 
1.4 1.3 2.711 1. 024 1.531 2.118 
1.4 1.4 2.7&4 1. 0 30 1. 515 2.120 
l.lt 1.5 2.822 1.037 1.499 2.121 
1.4 1.6 2.883 1. 044 1.482 2.122 
1.4 1.7 2.947 1.051 1.46& 2.123 
1.lt 1.8 3.013 1.058 1.450 2.124 
1.4 1.9 3.081 1.065 1.434 2.125 
1.£t. 2.0 3.151 1.073 1.419 2.12& 
1.5 1.0 2.630 1.015 1.555 2.116 
1.5 1.1 2.668 1.019 1.543 2.118 
1.5 1.2 2.716 1.024 1.528 2.119 
1.5 1.3 2.770 1.031 1.512 2.121 
1.5 1.4 2.829 1.037 1.496 2.122 
1.5 1.5 2.892 1.044 1. 4 79 2.123 
1.5 1.6 2.958 1. 051 1.462 2.125 
1.5 1.7 3.027 1.059 1.445 2.126 
1.5 1.8 3.098 1.066 1.429 2.127 
1.5 1.9 3.171 1.074 1.413 2.128 
1.5 2.0 3.245 1. 0 82 1.397 2.129 
1.& 1.0 2.677 1.020 1. 540 2.118 
1.6 1.1 2.722 1. 025 1.526 2.120 
1.6 1.2 2.775 1.031 1.510 2.121 
1.6 1.3 2.834 1.037 1.493 2.123 
1.6 1.4 2.899 1.044 1.476 2.125 
1.& 1.5 2.967 1.052 1.458 2.126 
1.6 1.6 3.039 1.059 1.441 2.128 
1.6 1.7 3".113 1.067 1.423 2.129 
1.6 1.8 3.189 1.075 1.407 2.130 
1.6 1.9 3.2&7 1.083 1.390 2.132 
1.6 z.a 3.346 1.091. 1.374 2.133 
1.7 1.0 2.729 1.026 1.524 2.120 
1-.7 1.1 2.779 1.031 1.508 2.122 
1.7 1.2 2.839 1.037 1.491 2.124 

·-- 1.7 1a3 2.904- 1.044 1.473 2.126 
1.7 1.4 2.974 1.052 1.455 2.128 
1.7 1.S 3.047 1.060 1.437 2.129 
1.7 1·6 3.124 1.068 1.419 2.131 



203. 

1.7 1.7 3.204 1.076 1. 402 2.132 
1.7 1.8 3.265 1.084 1.38~ 2.134 
1.7 1.9 3.368 1. 092 1.368 2.135 
1.7 z.o 3.'+53 1.101 1.352 2.137 
1.8 1.0 2.785 1.031 1.506 2.123 
1.8 1.1 2.842 1. 037 1.'+90 2.125 
1.8 1.2 2.907 1. 044 1.472 2.127 
1.8 1.3 2.978 1.052 1.453 2.129 
1.8 1.4 3.053 1. 059 1.434 2.131 
1.8 1.5 3.132 1.068 1.415 2.133 
1.8 1.6 3.215 1.07& 1. 397 2.134 
1.8 1.7 3.300 1. 0 85 1.379 2.136 
1.8 1.8 3.386 1. 093 1.362 2.138 
1.8 1.9 3.'+75 1.102 1.345 2.139 
1.8 z.o 3.565 1.111 1.329 2.141 
1.9 1.0 2.844. 1.038 1.489 2.125 
1.9 1.1 2.908 1.044 1.471 2.127 
1.9 1·2 2.978 1.051 1.452 2.130 
1.9 1·3 3.055 1.059 1.432 2.132 
1.9 1.4 3.137 1.067 1.413 2.134 
1.9 1.5 3. 222 • 1.076 1. 3 9'+ 2.136 
1.9 1.6 3.310 1. 0 85 1.375 2.138 
1.9 1.7 3.400 1.093 1.357 2.140 
1.9 1·8 3.492 1.1il2 1.340 2.142 
1.9 1.9 3.586 1.111 1. 323 2.143 
1.9 2.0 3.681 1.120 1.307 2.145 z.o 1.0 2.908 1· 0 44 1. 4 70 2.128 z.o 1.1 2.977 1.051 1.451 2.130 z.o 1.2 3.054 1.059 1.432 2.133 
2.0 leJ 3.137 1.067 1. 412 2.135 
z.o 1.4 3.224 1.075 1. 392 2.138 
2.0 1.5 3.315 1.084 1. 372 z.t4a 
2.0 1.6 3.408 1. 093 1. 354 2.142 z.o 1.7 3.504. 1.102 1.335 2.11.t4 
2.0 1.8 3.602 1.112 1.318 2.14& 
2.0 1.9 3.702 1.121 1. 3 01 2.148 
2.0 2.0 3.803 1.130 1.285 2.149 



204. 

A/8 8/C CA/CO CB/CO CC/CO 
1.0 1.0 1.aoo 1.000 1. 0 00 
1.0 1.1 .986 .98& 1. 040 
1.0 1.2 .983 • 983 1. 0 81 
1.0 1.3 .988 .988 1.121 
1.0 1.4 .996 • 998 1.162 
1.0 1.5 1.013 1.013 1. 2 03 
1.0 1.6 1.032 1.032 1.244 
1.0 1.7 1.054 1.054 1. 286 
1.0 1.8 1.078 1.078 1. 327 
1.0 1.9 1.104- 1.104 1. 368 
1.0 z.o 1.132 1.132 1.410 
1.1 1.0 .96ft. 1. 025 1. 0 25 
1.1 1.1 .952 1. 020 1. a 67 
1.1 1.2 .950 1.02& 1.110 
1.1 1.3 .955 1.038 1.153 
1.1 1.4 .966 1.056 1.196 
1·1 1·5 .981 1. 0 78 1. 240 
1.1 1.6 1.000 1.103 1. 283 
1.1 1.7 1.021 1.132 1. 327 
1.1 1.8 1.045 1.162 1.370 
1.1 1.9 1.071 1.195 1.414 
1.1 2.0 1.099' 1.229 1.458 
1.2 1.0 .934 1. 0 58 1. 0 58 
1.2 1.1 .923 1.062 1.103 
1.2 1.2 .922 1.075 1.1 Lt-8 
1.2 1.3 .928 1. 095 1.194 
1.2 1.4- .939 1.120 1.240 
1·2 1·5 .955 1.150 1.286 
1.2 1.6 .973 1.182 1.332 
1.2 1.7 .995 1.217 1. 378 
1.2 1·8 1.019 1.254 1.425 
1.2 1.9 1. 0 44 1.293 1.471 
1.2 2.0 1.072 1.333 1.518 
1.3 1·0 .909 1.097 1. 097 
1.3 1.1 .899 1.110 1.145 
1.3 1.2 .899 1.131 1.194 
1.J 1.3 .905 1.159 1.243 
1.3 1.4 .917 1.191 1.292 
1.3 1e5 .933 1.227 1.341 
1.3 1.6 .951 1.266 1. 390 
1.3 1.7 .973 1.308 1.439 
1.3 1.8 .997 1.351 1.488 
1.3 1.9 1.022 1.397 1.538 
1.3 2.0 1. 049 1.443 1· 587 
1·"- 1·0 .887 1.1lt3 1.143 
1.4 1.1 .879 1.16Lt 1.19!t 
1.ft. 1.2 .879 1.193 1.2~6 
1.'t- 1.3 • 886 1.228 1. 298 
1.4 1.4 .898 1.267 1.350 
1.4 1.5 .914 1.310 1.402 
1.4 1.6 .933 1.356 1.455 
1.4 1.7 .954 1.404 1.507 
1.4 1.8 .978 1.454 1. 560 
1.4 1.9 1.003 1.506 1. 612 
1.4 z.o 1.030 1.559 1.665 
1.5 1.0 .869 1.193 1.193 
1.5 1.1 .862 1.222 1.248 
1.5 1.2 .862 1.259 1.304 
1.5 1.3 .870 1.301 1.359 
1.5 1.4 • 882 1. 348 1.415 
1.5 1.5 .898 1.398 1. 470 
1.5 1.& • 917 1.'+51 1. 52& 
1.5 1.7 .938 1.sa6 1. 582 
1.5 1·8 e961 1.563 1.638 
1.5 1.9 .987 1.621 1.&94 
1.5 2.0 1.013 1. 681 1.751 
1.6 1·0 .853 1.248 1. 248 
1.6 1.1 .846 1.285 1. 3 07 
1.& 1.2 .848 1. 330 1.366 
1.& 1·3 .ass 1.379 1.425 
1.& 1.4 • 868 1.433 1. '+ 85 
1.6 1.5 .884 1.490 1.544 
1.& 1·6 .903 1.550 1.604 
1.6 1.7 .924 1.612 1.663 
1.6 1.8 .947 1.676 1.723 
1.6 1.9 .972 1.741 1. 7 83 
1.6 z.o .999 1.807 1.843 
1.7 1.0 .839 1.307 1.307 
1.7 1.1 .833 1.352 1.370 
1.7 1.2 .835 1.40!t 1.433 
1.7 1.3 .8Lt3 1.461 1.496 
1.7 1.4 .855 1.523 1.559 
1.7 1.5 .871 1.587 1.623 
1.7 1.6 .890 1.654 1.686 



205 • 

1 .• 7 1.7 • 91~ 1.723 1.750 
1.7 1.8 .93 1.793 1.814 
1.7 1.9 .9&0 1.865 1.877 
1.7 z.a .986 1.939 1.941 
1.8 1.0 .827 1.370 1. 3 70 
1.8 1.1 .822 1.423 1.437 
1.8 1.2 .824 1. 483 1.504 
1.8 1.3 .632 1.547 1.S71 
1·8 1.4 .a4s 1.616 1.639 
1.·8 1.5 .861 1.687 1. 706 
1.8 1.6 .880 1.762 1.774 
i•8 1.7 .901 1.838 1. 842 
.8 1.8 .924 1. 915 1.91il 

1.6 1.9 .949 1.995 1.978 
1.8 2.0 .975 2.075 2. 046 
1.9 1.0 .816 1.436 1.436 
1.9 1.1 .811 1e497 1. 5 07 
1.9 1.2 .814 1. 564 1.579 
1.9 1.3 .azz 1.637 1.650 
1.9 1.4 .835 1· 713 1.722 
1.9 1.5 .851 1.792 1.794 
1.9 1.6 .870 1.873 1.866 
1.9 1.7 • 892 1.957 1.938 
1.9 1.8 .915 2.042 2. 011 
1.9 1.9 .939 2.128 2.083 
1.9 2.0 .965 2.216 2.155 
2.0 1.0 .807 1.505 1. 505 
2.0 1.1 .802 1.574 1. 581 
2.0 1.2 .8os 1.650 1.657 z.o 1.3 .814 1.730 1. 733 z.a 1.4 .826 1.813 1. 810 z.o 1.5 .843 1. q 00 1.886 
2.0 1.6 • 862 1.989 1.963 
2.0 1.7 .883 z.aao 2. 040 
2.0 1.8 .906 2.172 2.116 z.o 1.9 .931 2.266 2.193 z.o z.o .957 2.361 2.270 



206. 

A/8 8/G RHOA/RHOJ RH09/RHOO RHOC/RHOO 
1.0 1.0 1.000 1.000 1.000 
1.0 1.1 1. 013 1.013 .986 
1.0 1.2 1.030 1.030 • 983 
1.0 1.3 1.050 1.050 .988 
1.0 1.4 1.074 1.il74 • gqs 
1.0 1.5 1.100 1.100 1. 013 
1.0 1.6 1.128 1 • .128 1.032 
1.0 1.7 1.158 1.158 1.054 
1.0 1.8 1.189 1.189 1.078 
1.0 1.9 1. 222 1.222 1.104 
1.0 2.0 1.256 1.256 1.132 
1.1 1.0 1.025 .993 .993 
1.1 1·1 1. 043 1.006 .<385 
1.1 1.2 1.066 1.024 .qa6 
1.1 1.3 1.092 1.045 .995 
1.1 1.4 1.122 1.069 1.009 
1.1 1.5 1.153 1.095 1.027 
1.1 1.& 1.187 1.124 1. !J 49 
1.1 1.7 1.222 1.154 1.074 
1.1 1.8 1.258 1.186 1.101 
1.1 1.9 1.295 1.219 1.130 
1.1 z.o 1. 334 1.253 1.160 
1.2 1.0 1.058 .992 .992 
1.2 1.1 1. 0 82 1.005 .988 
1.2 1.2 1.111 1.023 .993 
1.2 1.3 1.143 1.044 1.005 
1.2 1.4 .1.177 1.0 69 1. 0 22 
1.2 1.5 1.214 1.096 1.043 
1.2 1.6 1.253 1.125 1.068 
1.2 1.7 1.293 1.156 1.095 
1.2 1.8 1.334 1.188 1.124 
1.2 1.9 1.376 1.222 1.155 
1.2 2.0 1.419 1.256 1.188 
1.3 1.0 1.097 .994 .994 
1.3 1.1 1.128 1.008 .994 
1.3 1.2 1.162 1.026 1ell02 
1.3 1.3 1.199 1.048 1. 017 
1.3 1.4 1.239 1.072 1.036 
1.3 1.5 1.281 1.100 1.060 
1.3 1.6 1.325 1.130 1. 0 86 
1.3 1.7 1. 370 1.161 1.116 
1.3 1.8 1.417 1.194 1.147 
1.3 1.9 1.464 1.228 1.180 
1.3 2.0 1.512 1.263 1.215 
1.4 1.0 1.143 .qqq .qqq 
1.4 1.1 1.179 1.013 1.002 
1.4 1.2 1.219 1.031 1.012 
1.ft 1.3 1.262 1.053 1. 0 29 
1.4 1.4 1.307 1.079 1.051 
1.4 1.5 .1.355 1.107 1.077 
1.4 1.6 1.404 1.137 1.105 
1.4 1.7 1.454 1.168 1.135 
1.4 1.8 1.505 1.202 1.169 
1.4 1.9 1.558 1.237 1. 20 4 
1.4 z.o 1. 611 1.272 1.24-0 
1.5 1.0 1.193 1.006 1.006 
1.5 1.1 1.235 1.020 1eJ11 
1.5 1.2 1. 281 1.038 1.024 
1.5 1.3 1. 330 1.061 1.043 
1.5 1.4 1. 381 1.086 1.066 
1.5 1.5 1.433 1.115 1. a 93 
1.5 1.6 1.488 1.145 1.123 
1.5 1.7 1.543 1.178 1.156 
1.5 1.8 1.600 1.212 1.1qo 
1.5 1.9 1.657 1.247 1.227 
1.5 2.0 1.715 1.283 1.264 
1.6 1.0 1. 248 1.014 1.014 
1.6 1.1 1.296 1.028 1.u21 
1.6 1.2 1.348 1.046 1.035 
1.6 1.3 1.402 1.069 1.056 
1.6 1.4 1.458 1.095 1. 0 81 
1.6 1.5 1.517 1.124 1.109 
1.6 1.6 1.576 1.155 1.141 
1.6 1.7 1.637 1.188 1.175 
1.6 1.8 1.699 1.223 1.210 
1.6 1.9 1.762 1.258 1. 248 
1.6 z.o 1.825 1.295 1.287 
1.7 1.0 1.307 1.022 1. 022 
1.7 1a1 1.361 1.U36 1.031 
1.7 1.2 1.418 1.055 1.347 
1.7 1.3 1.479 1.078 1.069 
1.7 1.4 1.541 1.105 1.095 
1.7 1.5 1a605 1.134 1.125 
1.7 1.6 1. 670 1.165 1.158 



207. 

1.7 1.7 1.736 1.199 1.192 
1.7 1.8 1. 803 1.234 1.229 
1.7 1.9 1.871 1.270 j.268 
1.7 z.o 1.940 1.308 l.e307 
1.8 1.0 1.370 1.032 1. 0 32 
1.8 1.1 1.430 1.045 1. 042 
1.8 1.2 1.493 1.0&5 1. 059 
1.8 1.3 1. 559 1.088 1. a 82 
1.8 1.4 1.&27 1.115 1.1 a 9 
1.8 1.5 1.&97 1.144 1.140 
1.8 1.6 1.7&8 1.176 1.173 
1.8 1.7 1.840 1.210 1. 209 
1.8 1.8 1.913 1.246 1.247 
1.8 1.9 1. 98& 1.283 1.286 
1.8 2.0 2.060 1.321 1.327 
1.9 1.0 1.436 1.041 1.041 
1.9 1.1 1.502 1.055 1.052 
1.9 1.2 1.572 1.074 1.l71 
1.9 1.3 1.644 1.098 1.095 
1.9 1.4 1.718 1.125 1.123 
1.9 1.5 1. 793 1.155 1.154 
1.q 1.6 1. a 70 1.187 1.188 
1.9 1.7 1.9lt8 1.221 1. 225 
1.9 1.8 2.025 1.257 1.263 
1.9 1.9 2.105 1.295 1.303 
1.9 2.0 2.185 1.334 1.3~5 
z.o 1.0 1.505 1.050 1.050 
z.o 1.1 1.577 1.064 1. 0 63 z.o 1.2 1.653 1.084 1. 082 
2.0 1.3 1.731 1.107 1.107 
2.0 1.4 1.812 1.135 1.135 
2.0 1.5 1.893 1.165 1.168 
z.o 1.6 1.976 1.198 1.203 
2.0 1.7 2.059 1.233 1.240 
2.0 1.8 2.14lt 1.269 1.279 
z.o 1·9 2.229 1.307 1.320 
2.0 2.0 2.314 1.346 1.362 



208. 
A/B 8/C OELTA{A) DELTA CB) DELTA CC) 
1.0 1.0 2.5no 2.500 2.500 
1.0 1.1 2.541 2.541 2. 410 
1.0 1.2 2.568 2.568 2.336 
1.0 1.3 2.582 2.582 2. 2 7'+ 
1.0 1.4 2.588 2. 588 2. 222 
1.0 1.5 2.586 2.586 2.178 
1.0 1.& 2.579 2.579 2.139 
1.0 1.7 2.568 2.568 2.105 
1.0 1.8 2.555 2.555 2. 0 75 
1.0 1.9 2.539 2.539 2. 0 lt6 
1.0 2.0 2.522 2.522 2.024 
1.1 1.0 2.601 2.446 2.'+46 
1.1 1.1 2.&48 2.470 2. 362 
1.1 1.2 2.679 2.481 2.292 
1.1 1.3 2.697 2.482 2. 234 
1.1 1.4 2.706 2.475 2.185 
1.1 1.5 2.707 2.4&4 2.143 
1.1 1.6 2.702 2.449 2.1no 
1.1 1.7 2. 6 9Lt 2.431 2.074 
1.1 1.8 2.682 2.412 2. 046 
1.1 1.9 2.667 2.392 z. a zo 
1.1 2.0 2.&51 2.371 1. 998 
1.2 leG 2.704 2.387 2.387 
1.2 1.1 2.757 2. 397 2. 3 a a 
1.2 1.2 2.793 2.395 2.242 
1.2 1.3 2.815 2.385 2.188 
1.2 1.4 2.827 2.370 2.141 
1.2 1.5 2.831 2.351 2.102 
1.2 1.6 2. 8 243 2.330 2.067 
1.2 1.7 2.822 2.308 2.037 
1.2 1.8 2.812 2.285 2.010 
1.2 1.9 2.799 2.261 1· 987 
1.2 2.0 2.784 2.238 1.966 
1.3 1.0 2.809 2.326 2.326 
1.3 1.1 2.868 2.323 2.251 
1.3 1.2 2.909 2.31.1 2.190 
1.3 1.3 2.936 2.293 2.139 
1.3 1.4 2.951 z. 272 2.095 
1.3 1.5 2.958 2.248 2.058 
1.3 1.6 2.959 z. 223 z. 0 25 
1.3 1.7 2.954 2.197 1.997 
1.3 1.8 2.945 2.172 1.972 
1.3 1.9 2.934 2.147 1. 950 
1.3 2.0 2.920 2.122 1.930 
1.'+ 1.0 2.916 2.264 2.264 
1.4 1.1 2.981 2.252 2.191t 
left. 1.2 3.028 2.232 2.136 
1.4 1.3 3.059 2.208 2.088 
1.4 1.4- 3.078 2.181 2.047 
1.4 1.5 3.088 2.154 2. 012 
1.4 1.6 3.091 2.126 1.982 
1.4 1.7 3.089 2. 0 qq 1. 955 
1.4 1.8 3.082 2. 0 72 1.932 
1.4 1.9 3.072 2.046 1.911 
1.4 2.0 3.060 2.021 1.892 
1.5 1.0 3.026 2. 203 2 .• 203 
1.5 1.1 3. 0 97 2.183 2.137 
1.5 1.2 3.149 2.157 z. a 83 
1.5 1.3 3.185 2.126 2.038 
1.5 1.4 3.208 2.096 2. 0 00 
1·5 1·5 3.222 2.0&8 1.967 
1.5 1.6 3.227 2.039 1.938 
1.5 1.7 3.227 2. 0 lG 1. 913 
1.5 1.8 3.222 1.983 1.891 
1.5 1.9 3.214 1.95& 1. 6 71 
1.5 2.0 3.204 1. 931 1.854 
le& 1·0 3.137 2.144 2.144 
1.& 1.1 3.215 z. 117 2. 0 82 
1.6 1.2 3.273 2.087 z. 0 31 
1.6 1·3 3.313 2.055 1. 989 
1.6 1.4 3.341 2.023 1. 953 
1.& 1.5 3.358 1.991 1.922 
1.& 1.6 3.3&6 1.960 1.895 
1.6 1.7 3.369 1.931 1. 8 71 
1.6 1.8 3.366 1.903 1. 851 
1.6 1.9 3.360 1.877 1. 8 32 
1.6 2.0 3.35.1 1.852 1.815 
1.7 1.0 3.251 2.087 2. 0 87 
1.7 1·1 3.336 z. 0 55 2.029 
1.7 1.2 3.399 2. 0 21 1. 981 
1.7 1.3 3.445 1. 987 1.941 
1.7 1.4 3.476 1.953 1.907 
1.7 1.5 3.497 le 920 1. 8 78 
1.7 1.6 3.509 1. 889 1. 853 



209. 

1.7 1.7 3.514 1.860 1.831 
1.7 1.8 3.513 '1. 832 1.811 
1.7 1.9 3.509 1.806 1.794 
1.7 z.o 3.501 1. 781 1.779 
1.8 1.0 3.3&6 2. 033 z. 0 33 
1.8 1·1 3.459 1.997 1. 978 
1.8 1.2 3.528 1.960 1. 933 
1.8 1.3 3.579 1.924 1. 895 
1·8 1.4 3.615 1.889 1. 863 
1.8 1.5 3.639 l..856 1.63& 
1.8 1.& 3.654 1.825 1.812 
i•8 1.7 3.662 1.796 1.792 

.8 1.8 3.664 1.768 1. 773 
1.8 1.9 3.6&1 1.742 1.757 
1.8 2.0 3.655 1.718 1. 7~3 
1.9 1.0 3.484 1.981 1.981 
1.9 1.1 3.584 1.942 1.929 
1.9 1.2 3.&60 1.904 1. 8 87 
1.9 1.3 3.716 1.867 1. 851 
1.9 1.4 3.757 1.831 1.821 
1.9 1.5 3.785 1.798 1.796 
1.9 1.6 3.803 1.767 1.773 
1.9 1.7 3.813 1.738 1. 7 Slt 
1.9 1.8 3.818 1.710 1.737 
1.9 1.9 3.817 1.685 1. 722 
1.9 2.0 3.813 1.662 1.708 
2.0 1.0 3.60~ 1.932 1.932 
2.0 1.1 3.712 1.891 1.883 z.o 1.2 3.794 1.851 1. 8tt3 
z.o 1.3 3.856 1. 814 1. 810 
2.0 1.4 3.901 1.778 1.781 
2.0 1.5 3.933 1.745 1.757 
2.0 1.6 3.955 1.714 1.73& 
2.0 1.7 3.968 1. 685 1.718 
2.0 1.8 3.975 1.658 1.702 
2.0 1.9 3.977 1.634 1. 685 
2.0 2.0 3.975 1.611 1 .• 675 



210. 
A/a B/C GAMMA(Al GAMHA(8) GAMMA(C) 
1.0 1.0 1.000 1. 000 1. 0 00 
1.0 1.1 .990 • 990 1. 016 
1.0 1.2 .980 .980 1. 0 26 
1.0 1.3 .970 .970 1.0 31 
1.0 1.4 .959 .959 1.032 
1.0 1.5 .9tt-9 .949 1. 0 31 
1.0 1.6 • 939 • 939 1. 027 
1.0 1.7 .929 .929 1. 0 21 
1.0 1.8 .919 • 919 1. 015 
1.0 1.9 .910 .910 1. 0 08 
1.0 2.0 .901 • 901 1.000 
1.1 1.0 .978 1 .• 009 1. 0 09 
1·1 1·1 .966 1.001 1.023 
1.1 1.2 .953 .993 1.030 
1.1 1.3 .9tt1 .96ft. le 0 33 
1·1 leLf. .gzq • 974 1. 0 32 
1.1 1.5 .917 .965 1.029 
1.1 1.6 .905 • 956 1.024 
1·1 1·7 .894 .947 1.017 
1.1 1.8 • 884 • 937 1. 010 
1.1 1.9 .874 .929 1. 0 02 
1·1 z.o .864 • 920 • 994 
1.2 1.0 .954 1.017 1. 017 
1.2 1.1 .93q 1.011 le 029 
1.2 1.2 .925 1.004 1.034 
1.2 1.3 .911 .996 1. 0 36 
1.2 1.4 .897 • 988 1.034 
1·2 1·5 .885 .980 1.029 
1.2 1.6 .872 .971 1. 023 
1.2 1.7 .861 .963 1.016 
1.2 1.8 .850 .954 1.008 
1.2 1.9 .840 • 946 1.000 
1.2 z.o .830 • 938 • 991 
1.3 1.0 .928 1.025 1. a 25 
1.3 1.1 .912 1.020 1.035 
1.3 1·2 .896 1.015 1. 0 39 
1.3 1.3 .881 1.008 1.039 
1.3 1.4 .867 1.001 1. 0 36 
1.3 1.5 • 853 • 994 1. 0 31 
1.3 1.6 .840 • 986 1. 0 25 
1.3 1.7 .829 .978 1. 018 
1.3 1.8 .817 • 97u 1.009 
1.3 1.9 .807 • 962 1.001 
1.3 z.o .797 .954 • 992 
1.4 1.0 .902 1. a 32 1. 0 32 
1.4 1.1 .884 1.029 1. 0 41 
1.4 1.2 .867 1.025 1.044 
1.4 1.3 .651 1. 0 20 1. 0 44 
1.4 1.4 .837 1.014 1.041 
1.4 1.5 .823 1.007 1. 0 35 
1.4 1.6 .810 1. ~-0 0 1. 0 29 
1.4 1.7 .798 • 93 1.021 
1.4 1.8 .787 .986 1. 013 
1.'+ 1.9 .717 .978 1· 0 05 
1.4 z.o .767 • 971 .996 
1.5 1.0 .876 1.039 1. 0 39 
1.5 1.1 .857 1.038 1. 047 
1.5 1.2 .839 1.036 1.050 
1.5 1e3 .823 1.032 1.050 
1.5 1.4 .808 1. 027 1. 046 
1.5 1.5 .794 1.021 1. 0 41 
1.5 1.6 .781 1.015 1.035 
1.5 1.7 .769 1.008 1. J 27 
1.5 1.8 .758 1.001 1.019 
1.5 1.9 .7ft.8 .994 1.011 
1.5 z.o .739 • 987 1. 0 02 
1.& 1.0 .850 1.047 1. 047 
1.6 1.1 .831 1.048 1. 055 
1.G 1.2 .813 1. 047 1. 058 
1.6 1.3 .796 1.044 1. 0 57 
1.6 1.4 .781 1. 0 ft.O 1.054 
1.6 1.5 .767 1.035 1. 0 48 
1.6 1.6 .754 1.029 1. 042 
1.6 1.7 .742 1.023 1. 0 35 
1.6 1.8 .731 1. 017 1.027 
1.6 1.9 • 721 1. 010 1. 019 
1.6 2.0 .712 1.003 1. 010 
1.7 1.0 .825 1. 055 1.055 
1.7 1·1 .805 1.058 1. 0 63 
1.7 1.2 .787 1.058 1. 066 
1.7 1.3 • 770 1.056 1. 065 
1.7 1.4 .755 1.053 1. 0 62 
1.7 1.5 .7lt1 1.049 1. 0 57 
1.7 1.6 .729 1.044 1. 0 51 



211. 

1.7 1.7 .717 1.038 1.04~ 
1.7 1.8 .706 1. 032 1.0 3& 
1.7 1.9 .&97 1.026 1. 0 29 
1.7 2.0 .688 1. 020 1. 0 20 
1.8 1.0 .801 1.064 1. 064 
1.8 1.1 .781 1.068 1.072 
1.8 1.2 .7&3 1.070 1.075 
1.8 1.3 .746 1.069 1. a 75 
1.8 1.4 .731 1.067 1. 0 72 
1.8 1.5 .717 1.06Lt. 1. 068 
1.8 1.& .705 1.059 1.062 
1.8 1.7 .&93 1.054 1.055 
1.8 1.3 .&83 1.049 1. 0 48 
1.8 1.9 .674 1.043 1. 040 
1.8 2.0 .665 1.037 1. 0 32 
1.9 1.0 .778 1.073 1.073 
1.9 1.1 .758 1.079 1. 0 81 
1.9 1.2 .739 1.082 1.085 
1.9 1.3 .723 1.082 1. a 65 
1.9 1.Lt. .708 1.081 1.083 
1.9 1.5 .695 1.079 1.079 
1.9 1.6 .682 1.075 1. 0 74 
1.9 1.7 .671 1. 070 1. 0 67 
1.9 1.8 .661 1.065 1. 060 
1.9 1.9 .&52 1.060 1. 0 53 
1.9 z.o .643 1.054 1. 0 45 z.o 1.0 .756 1.083 1. 0 63 z.o 1.1 .736 1.090 1. 092 z.o 1.2 .717 1.095 1. 0 96 
2.0 1.3 .701 1.096 1.097 z.o 1.4 .667 1.Qq6 1. 095 
2.0 1.5 .&73 1. 094 1.0 92 
2.0 1.6 .661 1.091 1. 0 67 
2.0 1.7 .651 1.087 1. 081 z.o 1.8 .641 1.083 1. 0 7~ 
2.0 1.9 .632 1.076 1. 0 67 z.o z.o .624 1.072 1. 0 60 



212. 
A/8 B/C MU (A» MU ( 8) MU(C) 
1.0 1.0 1.000 1.000 1.000 
1.0 1.1 .995 • 995 1.012 
1.0 1.2 • 991 • 991 1.023 
1.0 1.3 .990 .990 1. 0 33 
1. 0 . 1·4 .989 • 989 1. 0 41 
1.0 1.5 .990 • 99a 1. 0 48 
1.0 1.6 .991 • 991 1. a 55 
1.0 1.7 .993 • 993 1. 061 
1.0 1.8 .995 .995 1. a 67 
1.0 1.9 .998 • gqa 1.0 72 
1.0 2.0 1.000 1. 0 00 1.076 
1.1 1.0 • 987 1. 007 1.007 
1.1 1.1 .981 1.004 1. 019 
1.1 1·2 .978 1.003 1.030 
1.1 1.3 .976 1.003 1.039 
1.1 1.4 .975 1. OQS 1. 0 Lt.7 
1.1 1.5 .975 1. 007 1. 055 
1.1 1.6 .976 1.009 1.061 
1.1 1.7 .978 1. 012 1. 367 
1.1 1.8 .980 1. 015 1.072 
1.1 1.9 .982 1.018 1.077 
1.1 2.0 .984 1. 0 22 1. a a1 
1.2 1·0 .975 1.016 1.015 
1.2 1.1 .969 1.015 1.028 
1.2 1.2 .9&5· 1. a 15 1.038 
1.2 1.3 .963 1. 017 1. 0 '+7 
1.2 1.4 .962 1. 020 1. 055 
1.2 1.5 .962 1.023 1. 0 62 
1.2 1.6 .962 1.027 1. 068 
.1.2 1.7 .963 1.030 1.074 
1.2 1.8 .965 1.034 1.079 
1.2 1·9 .967 1. 038 1. 0 84 
~.2 2.0 .969 1. 0 42 1. 0 88 
1.3 1.0 .963 1.025 1. 0 25 
1.3 1·1 .956 1.026 1.037 
1.3 1.2 .952 1.028 1. 047 
1.3 1.3 .950 1.031 1.056 
1.3 1·4 .949 1. 035 1.063 
1.3 1.5 .948 1. 0 39. 1.070 
1.3 1.6 .949 1.044 1. 0 77 
1.3 1·7 .950 1. 0 46 1. a a2 
1.3 1.8 .951 1. a 53 1. 0 87 
1.3 1.9 .953 1.057 1.092 
1.3 z.o .955 1.062 1. 0 9& 
1.4 1.0 .951 1. 035 1. a 35 
1.4 1.1 • 945 1. 0 31 1. 0 4-6 
1.4- 1.2 .940 1.04:1. 1.356 
1.4 1.3 • 938 1.045 1. 065 
1.4 1.4 .936 1.050 1.073 
1.4 1.5 .936 1.055 1· 0 80 
1.4 1.& .936 1.a60 1. 0 86 
1.4 1.7 .937 1.066 1. 0 91 
1.4 1.8 .938 1.071 1. 0 95 
1.4 1.<3 .939 1· 076 1.101 
1.4 2.0 .941 1. 0 81 1.105 
1.5 1.0 .94tl 1.045 1. 045 
1.5 1.1 .934 1.049 1.056 
1.5 1.2 .929 1.054 1.066 
1.5 1·3 .926 1.059 1. 0 75 
1.5 1.4 .925 1. 065 1. 0 82 
1.5 1.5 .924 1.071 1.0 89 
1.5 1.6 .924 1.077 1. 095 
1.5 1.7 .924 1. 082 1.101 
1.5 1.8 .925 1.088 1.105 
1.5 1.9 .927 1.094 1.110 
1.5 z.a .928 1. 0 99 1.114 
1.6 1.0 .930 1.056 1.056 
1.6 1·1 .923 1. 061 1.067 
1.6 1.2 .918 1.067 1. 0 76 
1.& 1.3 .915 1. 073 1. a as 
1.6 1.4 .913 1.080 1.092 
1.6 1.5 .912 1.086 1.0'39 
1.6 1.6 .912 1. oqz 1.105 
1.& 1.7 .913 1. 099 1.110 
1.6 1.8 .913 1.105 1.115 
1.6 1.9 .915 1.111 1.119 
1.6 z.o .916 1.116 1.123 
1.7 1.0 .920 1. 066 1. 0 66 
1.7 1.1 .913 1. 073 1.077 
1.7 1.2 • 90 6 1. a ao 1.087 
1.7 1.3 .905 1.087 1. 095 
1.7 1.4 • 90 3 1.09'+ 1.103 
1.7 1e5 .901 1.101 1.109 
1.7 1.6 .901 1.108 1.115 



213. 

1.7 1.7 :~8! 1.11lt 1.120 
1.7 1.8 1.121 1.125 
1.7 1.9 .903 1.127 1.129 
1.7 2.Q .904 1.133 1.133 
1.8 1.0 .910 1. 0 77" 1.077 
1.8 1.1 .903 1· 064 1. 0 88 
1.8 1.2 .aqa 1.092 1.097 
1.8 1.3 .894 1.100 1.105 
1.8 1.4 .892 1.108 1.113 
1.8 1.5 .891 1.115 1.119 
1.8 1.6 .890 1.122 1.125 
1.8 1.7 .891 1e129 1.130 
1.8 1.8 .691 1.136 1.135 
1.8 1.9 • 892 1.1~2 1.139 
1.8 2.0 .893 1·149 1.143 
1.9 1.0 .901 1.087 1.087 
1.9 1.1 .893 1.096 1.096 
1·. 9 1.2 .888 1.104 1.108 
1.9 1.3 .885 1.113 1.116 
1.9 1.4 .882 1.121 1.123 
1.9 1.5 .881 1.129 1.129 
1.9 1.6 .880 1.137 1.135 
1.9 1.7 .880 1.144 1.140 
1.9 1.8 .881 1.151 1.145 
1.9 1.9 .881 1.157 1.149 
1.9 z.o .882 1 .• 164 1.153 
2.0 1.0 .892 1.098 1. 0 98 
2.0 1.1 .884 1.107 1.109 
2.0 1.2 .879 1.116 1.118 
z.o 1.3 .875 1.125 1.126 
2.0 1.4 .873 1.134 1.133 
2.0 1.5 .871 1.142 1. 1 LtO 
2.0 1.6 .870 1.150 1.1 LtS 
2.0 1.7 • 8 70 1.158 1.150 z.o 1.8 .870 1.165 1.155 
2.0 1.9 .871 1.172 1.159 z.o z.o .872 1.178 1.163 



214. 
A/8 B/C THETA+ THETA- TAU/TA!JO PSI 
1.0 1.0 .167 .167 1.000 1.000 
1.0 1.1 .169 .163 1.004 1.001) 
1.0 1.2 .170 .159 1. a 14 • 998 
1.0 1.J .169 .155 1. (] 29 .997 
1.0 1.Lt .167 .151 1.047 • 995 
1.0 1.5 .165 .147 1.069 .992 
1.0 1.6 .162 .143 1.09'+ • 989 
1.0 1.7 .158 .139 1.121 .986 
1.0 1.8 .155 .135 1.150 .983 
1.0 1.9 .151 .132 1.180 .980 
1.0 2.0 .147 .128 1. 211 .977 
1.1 1.0 .170 .163 1.004- l.OCJ 
1.1 1.1 .170 .159 1. 011 .999 
1.1 1.2 .170 .155 1.024 • 9'37 
1.1 1.3 .169 .151 1. 0 42 .995 
1.1 1.4 .166 .147 1. 0 6Lt • 993 
1.1 1.5 .163 .143 1. a 89 .990 
1.1 1.& .160 .139 1.117 .987 
1.1 1.7 .156 .134 1.147 .984 
1.1 1.8 .152 .131 1.178 .981 
1.1 1.9 .149 .127 1. 211 • 978 
1·1 z.a .145 .123 1. 245 .975 
1.2 1.0 .172 .158 1.il13 • 999 
1.2 1.1 .172 .154 1.023 .998 
1.2 1.2 .171 .150 1. 0 ltO • 996 
1.2 1.3 .169 .145 1. 061 .994 
1.2 1.4 .166 .141 1. 0 85 .991 
1.2 1.5 .163 .137 1.113 .988 
1.2 1.6 .159 .132 1.143 .985 
1.2 1.7 .155 .128 1.175 • 982 
1.2 1.8 .152 .124 1.209 .979 
1.2 1.9 .148 .120 1. 244 • 976 
1.2 2.a .144 .117 1.281 .972 
1.3 1.0 .173 .152 1.026 • 998 
1.3 1.1 .173 .148 1. 0 40 .996 
1.3 1.2 .172 .143 1.059 .9g4 
1.3 1.3 .1&9 .139 1.082 .992 
1.3 1.4 .166 .134 1.109 • 989 
1.3 1.5 .163 .130 1.139 • 986 
1.3 1.& ·159 .125 1.172 .983 
1.3 1.7 .155 .121 1.206 • 980 
1.3 1.8 .151 .117 1.242 .977 
1.3 1.9 ·1'+7 .114 1.279 .974 
1.3 2.0 .143 .110 1. 318 .971 
1.4 1.0 .174 .146 1. 0 43 .996 
1.4 1.1 .174 .141 1.059 .995 
1.4 1.2 .172 .137 1.080 • 993 
1.4 1.3 .170 .132 1.10& .991 
1.4 1·4 .166 .127 1.135 .988 
1.4 1.5 .163 .123 1.167 • 985 
1.4 1.6 .159 .119 1.201 • 982 
1.4 1.7 ·155 .114 1. 238 • 979 
1.4 1.8 .151 .111 1. 276 .976 
1.4 1.9 .1'+7 .107 1. 315 • 972 
1.4 2.a .143 .103 1.356 .969 
1.5 1.0 .174 .140 1. 061 .995 
1.5 1.1 .174 .135 1.079 • 994 
1.5 1.2 .172 .130 1.103 .992 
1.5 1.3 .170 .125 1.130 • 989 
1.5 1.4 .166 .121 1.161 • 987 
1.5 1.5 .163 .116 1.195 • 984 
1.5 1.& .159 .112 1. 232 .981 
1.5 1.7 .155 .108 1. 270 .978 
1.5 1.8 .150 .104 1. 310 .975 
1.5 1.9 .146 .101 1.351 .972 
1.5 2.0 .142 • 0 97 1. 393 • 969 
1.6 1.0 .175 .134 1.081 .9<34 
1.6 1.1 .174 .129 1.101 • 993 
1.6 1.2 .172 .124 1.12& • 991 
1.6 1.3 .170 .119 1.155 • 988 
1.6 1.4 .166 .114 1.189 .986 
1.6 1.5 .162 .110 1.224 .983 
1.& 1.6 .158 .106 1.262 • 980 
1.6 1.7 .15it .102 1.302 .977 
1.6 1.8 .150 • 0 98 1.344 • 974 
1.6 1.9 .146 • 095 1. 386 .971 
1.6 2.0 .142 • 0 91 1.430 • 969 
1.7 1.(} .175 .127 1.102 .993 
1.7 1·1 .174. • 122 1.124 • 992 
1.7 1.2 .172 .117 1.151 .990 
1.7 1.3 .169 .113 1.182 .988 
1.7 1.4 .166 .108 1. 216 .985 
1.7 1.5 .162 .104 1. 253 • 983 
1.7 1.&· .158 .100 1.2 93 • 980 



215. 

1.7 1.7 .154 • 096 1.334 .977 
1.7 1.8 .150 .092 1 .• 377 • 974 
1.7 1.9 .1ft5 .089 1.422 .972 
1.7 2.0 .141 • 0 86 1.467 • 969 
1.8 1.0 .175 .122 1.124 .992 
1.8 1.1 .17lt .117 1.147 • 991 
1.8 1.2 .172 .112 1.175 .990 
1.8 1.3 .169 .107 1.207 .988 
1.8 1.4 .166 .102 1.243 .985 
1.8 1.5 .152 • 098 1.282 .983 
1.8 1.6 .158 .094 1.323 .980 
1.8 1.7 .154 • 091 1.366 .978 
1.8 1.8 .149 • 0 87 1. 410 .975 
1.8 1.9 .145 .084 1.456 .972 
1.8 z.a .141 • 081 1.503 • 970 
1.9 1.0 .175 .116 1.14& .992 
1.9 1.1 .174 .111 1.170 • 991 
1.9 1.2 .172 .106 1.199 .989 
1.9 1.3 .169 .101 1. 233 .988 
1.9 1.4 .1&5 • 097 1.270 .986 
1.9 1.5 .162 • 093 1. 310 .983 
1.9 1.6 .157 .089 1. 352 .981 
1.9 1.7 .153 .086 1. 396 .978 
1.9 1.8 .149 • 0 82 1.442 • 976 
1.9 1.9 .145 • 0 79 1.489 .973 
1·9 z.a .141 • 076 1.538 • 971 
2.0 1.0 .175 .111 1.168 .991 
2.0 1.1 .174 .106 1.193 .991 z.o 1.2 .172 .101 1.22'+ .990 
2.0 1.3 .169 .096 1.258 .983 z.o 1.4 .165 • a 92 1. 296 • 986 
2.0 1.5 .161 • 0 88 1.337 .984 
2.0 1.6 .157 • a 84 1. 3 81 • 982 
2.0 1.7 .153 .081 1. 426 .979 
2.0 1.8 .149 • 078 1. 4 73 • 977 
2.0 1.9 .144 • 0 75 1. 522 .975 
2.0 z.a .140 .072 1.571 .972 



216. 

A/8 8/C DELTA+ DELTA-
1.0 1.0 2.5oa 2.500 
1.0 1.1 2.541 2.454 
1.0 1.2 2.5&8 2.~13 
1.0 1.3 2.5 82 2.377 
1.0 1.4 2.588 2. 344 
1.0 1.5 2.586 z. 3 14-
1.0 1.6 2.579 2.286 
1.0 1.7 2.568 2. 2s.q 
1.0 1.8 2.555 2.235 
1.0 1.9 2.539 2.212 
1.0 2.a 2.522 2.190 
1.1 1.0 2.549 2.446 
1.1 1.1 2.577 2.410 
1.1 1.2 2.596 2.372 
1.1 1.3 2.605 2.337 
1.1 1.4 2.606 2.305 
1.1 1.5 2.601 2. 274 
1.1 1.6 2.592 2.246 
1.1 1.7 2.579 2.220 
1.1 1.8 2.564 2.195 
1.1 1.9 2.547 2.172 
1.1 2.0 2.529 2.151 
1.2 1.0 2.599 2.387 
1.2 1.1 2.&24 2.350 
1.2 1.2 2.641 2. 313 
1.2 1.3 2.648 2.277 
1.2 1.4 2.648 2.245 
1.2 1.5 2.642 2. 214 
1.2 1.6 2.632 2.185 
1.2 1.7 2.619 2.159 
1.2 1.6 2.604 2.134 
1.2 1.9 2.587 2.111 
1.2 2.0 2.570 2.089 
1.3 1.0 2.648 2.326 
1.3 1.1 2.675 2.286 
1.3 1.2 2.692 2.248 
1.3 1.3 2.700 2.212 
1.3 1.4 2.700 2.178 
1.3 1.5 2.695 2.147 
1.3 1.6 2.686 2.118 
1.3 1.7 2.&74 2.091 
1.3 1.8 2.660 2. 066 
1.3 1.9 2.644 2. 043 
1.3 z.o 2.627 2.021 
1.4 1.0 2.699 2.264 
1.4 1.1 2.729 2.222 
1.4 1.2 2. 748 2.183 
1.4 1.3 2.757 2.1'+6 
1.4 1.4 2.759 2.112 
1.4 1.5 2.756 2.081 
1.4 1.6 2.748 2.051 
1.4 1.7 2.737 2.024 
1.4 1.8 2.724 1.999 
1.4 1.9 2.710 1.976 
1.4 2.0 2.694 1.954 
1.5 1.0 2.752 2. 203 
1.5 1.1 2.785 2.160 
1.5 1.2 2.807 2.119 
1.5 1.3 2.818 2.082 
1.5 1.4 2.823 2.048 
1.5 1.5 2.821 z. D 16 
1.5 1.6 2.815 1.987 
1.5 1.7 2.806 1.961 
1.5 1.8 2.795 1.936 
1.5 1.9 2.781 1.913 
1.5 2.0 2.767 1.892 
1.& 1.0 2.806 2.144 
1.6 1.1 2.844 2.100 
1.& 1.2 2.868 2.059 
1.6 1.3 2.883 2.021 
1.6 1.4 2.890 1.987 
1.6 1.5 2.891 1.956 
1.6 1.6 2.887 1.927 
1.6 1.7 2.880 1.901 
1.6 1.8 2.870 1.877 
1.6 1.C3 2.858 1.854 
1.6 2.0 2.845 1.834 
1.7 1.0 2.863 2.087 
1.7 1.1 2.905 2.042 
1.7 1.2 2.933 2.001 
1.7 1.3 2.951 1.964 
1.7 1.4 2.961 1.930 
1.7 1.5 2.965 1. 899 
1.7 1.6 2.963 1.871 



217. 

1.7 1.7 
1.7 1.8 

~.958 
.949 

1.845 
1. 822 

1.7 1.9 2.939 1. 800 
1.7 2.0 2.927 1.780 
1.8 1.0 2.922 2.033 
1.8 1.1 2.968 1.987 
1.8 1.2 3.001 1.946 
1.8 1.3 3.023 1. 910 
1·8 1.4 3.036 1.876 
1.8 1.5 - 3.042 1.846 
1.8 1.6 3.042 1.819 
t.8 1.7 3.039 1. 794 
1.8 1.8 3.033 1.771 
1.8 1.9 3.02'+ 1.750 
1.8 2.0 3.014 1.730 
1.9 1.0 2.983 1.981 
1.9 1.1 3.035 1.936 
1.9 1.2 3.071 1. 895 
1.9 1.3 3.097 1.859 
1.9 1.4 3.113 1.826 
1.9 1.5 3.122 1. 797 
1.9 1.6 3.125 1.770 
1.9 1.7 3.124 1.7lt6 
1.9 1.8 3.120 1.724 
1.9 1.9 3.113 1.703 
1.9 2.0 3.104 1.685 z.o 1.0 3.0lt7 1.932 
2.0 1.1 3.103 1.887 z.o 1.2 3.145 1.8'+7 
2.0 1.3 3.174 1.812 
2.0 1.4 3.194 1.780 z.o 1.5 3.206 1.751 z.o 1.6 3.212 1.725 z.o 1.7 3.213 1. 702 
2.0 1.8 3.210 1.680 
2.0 1.9 3.205 1.661 
2.0 2.0 3.198 1. 643 



218. 
A/8 8/C GAMMA+ GAMMA-
1.0 1.0 1.000 1.000 
1.0 1.1 1.016 • 981 
1.0 1.2 1.02& • 9&5 
1.0 1.3 1.031 • 949 
1.0 1.4- 1.032 .935 
1.0 1.5 1.031 • 922 
1.0 1.6 1.027 .910 
1.0 1.7 1.0 21 .898 
1.0 1.8 1.015 • 888 
1.0 1.9 1.008 .878 
1.0 2.0 1.000 • 868 
1.1 1.0 1.020 • 978 
1.1 1.1 1.030 .963 
1.1 1.2 1.037 .947 
1.1 1.3 1.039 • 932 
1.1 1.4 1.039 .918 
1.1 1.5 1.035 • 905 
1.1 1.6 1.030 • 893 
1.1 1.7 1.024 • 881 
1.1 1.6 1.017 .871 
1.1 1.9 1.009 • 861 
1.1 2.0 1.001 .851 
1.2 1.0 1.038 .954 
1.2 1.1 1.048 • 938 
1.2 1.2 1.053 .922 
1.2 1.3 1.055 .907 
1.2 1.4 1.053 • 893 
1.2 1.5 1.050 .aao 
1.2 1.& 1.044 .867 
1.2 1.7 1.038 • 855 
1.2 1.8 1.030 .844 
1.2 1.9 1.023 .834 
1.2 z.o 1.015 .825 
1.3 1.0 1.057 .928 
1.3 1.1 1.066 .911 
1.3 1.2 1.072 • 895 
1.3 1.3 1.073 .879 
1.3 1.4 1.072 .865 
1.3 1.5 1.068 • 851 
1.3 1.6 1.063 .838 
1.3 1.7 1.057 .826 
1.3 1.8 1.049 • 815 
1.3 1.9 1. 042 .a os 
1.3 2.0 1.034 .795 
1.4 1.0 1.075 • 902 
1.4 1.1 1.085 .884 
1.4 1.2 1.091 .867 
1.4 1.3 1.093 .851 
1.4 1.4 1.092 .836 
1.4 1.5 1.089 .822 
1.4 1.6 1.0 84 • 809 
1.4 1.7 1.078 .797 
1.'+ 1.8 1.071 .786 
1.4 1.9 1.064 .77& 
1.4 2.0 1.056 .766 
1.5 1.0 1.094 .876 
1.5 1.1 1.105 • 857 
1.5 1.2 1.111 .839 
1.5 1.3 1.114 .823 
1.5 1.4 1.113 .aoa 
1.5 1.5 1.111 .794 
1.5 1.6 1.106 .781 
1.5 1.7 1.101 .7&9 
1.5 1.8 1.094 • 758 
1.5 1.9 1.067 .74-8 
1.5 z.o 1. 0 80 .738 
1.6 1.0 1.113 .850 
1.& 1.1 1.125 .831 
1.& 1.2 1.132 • 812 
1.6 1.3 1.135 .796 
1.& 1.4 1.136 .781 
1.& 1.5 1.133 .7&7 
1.6 1.6 1.130 .754 
1.6 1.7 1.125 • 742 
1.& 1.8 1.11g .731 
1.6 1.9 1.112 .721 
1.5 z. a 1.105 .712 
1.7 1.0 1.132 .825 
1.7 1.1 1.145 .805 
1.7 1.2 1.154 .787 
1.7 1.3 1.158 .770 
1.7 1.4 1.159 • 755 
1.7 1.5 1.157 .741 
1.7 1.5 1.154 .729 



219. 

1.7 1.7 1.1'+9 • 717 
1.7 1.8 1.144 .706 
1.7 1.9 1.138 .697 
1.7 z.a 1.131 .&88 
1.8 1.0 1.151 • 801 
1.8 1.1 1.1&6 .781 
1.8 1.2 1.176 .762 
1.8 1.3 1.181 • 746 
1.8 1.4 1.182 .731 
·1· 8 1.5 1.182 .717 
1.8 1.6 1.179 .705 
1.8 1.7 1.175 .693 
1.8 1.8 1.170 .&83 
1.8 1.9 1.1&4 .&74 
1.8 2.0 1.158 • 665 
le9 1.0 1.172 .778 
1.9 1.1 1.188 • 758 
1.9 1.2 1.198 .739 
1.9 1.3 1.204 .723 
1.9 1.4 1.207 .708 
1.9 1.5 1.207 .&95 
1.9 1.6 1.205 .682 
1.9 1.7 1.201 .671 
1.9 1.8 1.197 .&61 
1·9 1.9 1.191 • &52 
1.9 z.a 1.185 .643 z.o 1.0 1.192 .75& z.o 1.1 1.210 .736 z.o 1.2 1.221 .717 z.o 1.3 1.229 .701 z.o 1.'+ 1.232 • 687 
2.0 1.5 1.233 • 673 z.a 1.6 1.231 .6&1 
2.0 1.7 1.229 .&51 z.o 1.8 1.224 .641 
2.0 1.9 1.219 • 632 z.o 2.0 1.214 .&24 



Program 3 

c 
c ····~·~··················~····~························· C THIS PROGRAM PRODUCES A CONTOUR MAP OF THE VISCOSITY 
C INCREMENT OVE~ THE AXIAL RANGE A/8, 8/C 1.0 TO 3,0, IN 
C STEPS OF 0,5 OF THE FUNCTION FROM NU=2.5 TO NU=7.0 
c ··············~······························~·········· c 

PRQGqAH MAINCINPUT,OUTPUT,TAPE2=INPUT,TAPE3=0UTPUT) 
COMMON/PARAMIA,C,NN 
EXTERNAL FUN 
DIMENSION ALPHA<10,21,211,NU(21,21),H(10) 
REAL NU 
NN=G 

C COMPUTE THE ELLIPTIC INTEGRALS 
0045 K=1,10 
A=0.9 
NN=NN+1 
0040 1=1,21 
A=A+0.1 
C=i.O/Q.q 
0030 N=1~21 
C=C/(1.0+0.1•C) 

C SET LIMITS FOR NUMERICAL INTEGRATION (THESE LIMITS 
C BELOW HAVE BEEN PREVIOUSLY TESTED FOR CONVERGENCE) 

AA=G.O 
BB=100JCOn 
IFlNN.EQ.10lBB=SuOOOOOOO 
MAXOIV=50 
EP'S=i.OE-08 
ACC=O.O 
IFAIL=O 

C CALL U.K. qN~G" LIBRARY ROUTINE FOR NUMERICAL EVALUATION 

220. 

C OF THE INTEGRALS MALPHA" GIVEN IN THE SU8ROUTINE BELO~ 
CALL 001AGFlAA,BB,FUN,MAXOIV,EPS,ACC,ANS,ERROR,NOFUN,IFAILJ 
ALPHA(NN,I,N)=ANS 

30 CONTINUE 
LtO CONTINUE 
45 CONTINUE 

8=1·0 
A=o.q 
008G J=1,21 
A=A+0.1 
C=l.0/0.9 
0070 N=1,21 
C=C/t1.0+0.1•C> 

C NOW COMPUTE THE FUNCTION VALUES USING THE STO~EO INTEGRAL VALUES 

c 

NU(J,Nl=C1.0/(A¥8•CJJ•((4.0/15.J)•((ALPHA(7,J,NJ+ALPHA(8,J,Nl 
+ +ALPHA(9,J,NJ)/(ALPHAC8,J,N)•ALPHAC9,J,N)+ALPHA(q,J~N)•ALPHA 

! !~t~H~~3!J~~t~~l~t~~:~~~~~~rlta~~!~t~RA~~~j;~~!~~~~~~~~~l~:~!N} 
+ ))J+(CALPHA(3,J,Nl+ALPHA(1,J,NJ)/(ALPHA(5,J,Nl•<C•C•ALPHA(3,J,N) 
+ +A•A•ALPHAC1,J,N)))J+((ALPHACl,J,N)+ALPHAC2,J,N))/(ALP~A(6,J,N) 
+ •tA•A•ALPHAt1,J,Nl+B•B•ALPHA(2,J,N)))))) 

70 CONTINUE 
80 CONTINUE 

C CALL CONTOUR PLOTTING ROUTINE c 
CALL PAPER(1) 
H(ll-=2.5 
HC2l=3.0 
HC3l=3.5 
HCI.t-)=4.0 
H(5l=4.5 
H U)) =5 • 0 
HC7)=5.5 
HC8J=6.0 
H(9)=6.5 
HC10)=7.0 
CALL MAP(1.U,3.0,1.0,3.0) 
CALL SCALES 
CALL BORDER 
CALL CONTRLCNU,1,21,21,1,21,2!,H,1,1G) 
CALL GRENO 
STOP 
END 



c 
c c 

221. 



Program 4 222. 



CCCJ,N)=C2.0/C3. 0•A•B•C))•P(J,N) 
RHOA(J,N)=2.0/((1.0/CB(J,N))+(1.0/CC(J,N))) 
RHOBCJ,Nl=2.0/(C1.0/CA(J,N))+(1,Q/CCCJ,N))) 
RHOCCJ,Nl=2.0/CC1.0/CACJ,N))+(1.0/CB<J,N))) 
OELA(J,NJ=NUCJ,Nl/CACJ,N) 
DELBCJ,Nl=NUCJ,Nl/C8(J,N) 
OELC(J,N>=NUCJ,N)/CCCJ,N) 

223. 

TAU ( J, N) = 3. 0 I ( ( 1. 0 I CA ( J, N) ) + ( 1. 01 C 8 ( J, N) ) + ( 1. 0 I CC ( J, N) ) ) 
PSI(J,N)=F (J,N)"' ( (1.0/TAUCJ,N) >""' [1.013.0)) 
VCJ,Nl=NUCJ,N)/TAUCJ,N) 
X1(J,NJ=0.5"'((1.0/RH08(J,N))+(1,0/RHOCCJ,N))-(1,Q/RHOA(J,N))) 
X2(J,Nl=O.S•CC1.0/RHOCCJ,N))+(1.0/RHOA{J,N))-(1.0/RH08(J,N))) 
X3(J,N)=0.5"'((1.0/RHOA(J,N))+(1.0/RHOB(J,N))-(1.0/RHOC(J,N))) 
X4CJ,N>=CX1CJ,N)+X2CJ,N)+X3CJ,N))/3.0 
X5(J,N):((X1(J,N)••z.O)+(X2(J,N)••2.0)+(X3(J,N)••2.0)•(X1CJ,N)•X2 

+ C J, N) ) - (X 2 C J, N) • X 3 ( J, N) ) - (X 3 ( J, N) • Xi ( J, N) ) ) • • 0 • 5 
T1CJ,Nl=1.0/(X4CJ,N)+X1(J,N)) 
T2CJ,Nl=1.0/(X~CJ,N)+X2CJ,N)) 
T3CJ,NJ=1.0/(X~CJ,N)+X3CJ,N)) 
T4(J,N>=3.0/CC6.G•X4(J,N))•(2,0•X5CJ,N))) 

li~~A~~J;N~~ff~o~~~~f¥(~~~!~r~S;~~:~c~t!~/CB<J,N>>+<1.0/CCCJ,N>>> 
GAMHA8(J,N)=(1.D/2,0)•(F(J,N)••3.Gl 4 ((1.0/CA(J,Nl)+(1.0/CC{J,N))) 
GAMMAC(J,Nl=l1.012.0) 4 (F(J,N)••3.0)"'((1.0/CA<J~N))+(1,Q/CB(J,N))) 
MUA(J,N)=(CACJ,Nl••ct.0/3.0))/FCJ,N) 
MUB(J,Nl=CCB(J,Nl"' 4 C1.0/3.0))/F(J,N) 
MUC(J,N>=CCCCJ,N>••<1.013.0)l/FCJ,N) 
OPLSCJ,Nl=6.0"'TPLS(J,N)"'NU(J,N) 
OHNS(J,N)=6.0•THNSCJ,Nl"'NUCJ,N) 
GPLS(J,N)=6.0"'TPLSCJ,N)•(FCJ,N)••3.0) 
GMNS(J,Nl=6.0•TMNSCJ,N)•(F(J,N)••3.0) 

70 CONTINUE 
60 CONTINUE 

CALL PAPERC1) 
CALL MAP<1.o,z.0,1.0,2.0) 
CALL SCALSIC0.1,0.1) 
CALL GPSTOPC21) 
CALL BORDER 
cALL csPAcEco.o,o.ooo1,o.o,o.ooo1, 

c 
C (!)PLOT OF VISCOSITY INCREMENT AND PERRIN TRANSLATIONAL 
C FRICTIONAL FUNCTION 
c 

c c 
C <IIJPLOT OF THE TRANSLATIONAL FUNCTIONS: THE VISCOSITY INCREMENT 
C THE PERRIN FUNCTION, THE BETA FUNCTION AND THE R FUNCTION, ALL 
C WITH +/-1/. ASSUMED EXPERIMENTAL ERROR 
c 

c 

CALL FRAME 
CALL BLKPEN 
CALL BORDER 
CALL CSPACEC0.0,1.0,0.0,1.0) 
CALL SCALSIC0.1,0.1) 
CALL csPACE<o.o,o.ooo1~o.o,o.ooo1> 
HC1)=2.92092 
CALL CONTRLCNU,1,21,21,1,21,21,H,1,1l 
H(1l=2.86308 
CALL CONTRLCNU,1,21t21,1,21,21,H,1,1l 
HC1l=2.1~+423 
CALL REOPEN 
CALL CONTRLC9ETA,1,21,21,1,21,21,H,1,1) 
H ( 1) = 2 .1 0 1 77 
CALL CONTRL<BETA,1,21,21,1,21,21,H,1,1) 
H(1)=1.05444 
CALL GRNPEN 
CALL CONTRLCF,1,21,21,1,21,21,H,1,1) 
H(1)=1.03356 
CALL CONTRLCF,1,21,21,1,21,21,H,1,1l 
HC1l=1.49379 
CALL BROKENC~,8,8,8l 
CALL CONTRLCR,1,21,21,1,21,21,H,1,1l 
H(1)=1.46421 
CALL CONTRLC~,1,21,21,1,21,21,H,1,1> 

C CIII)PLOT OF THE R FUNCTION AND ROTATIONAL RELAXATION 
C TIHE RATIOS 



c 

c 

CALL FRAME 
CALL FULL 
CALL BLKPEN 
CALL BORDER 
CALL CSPACEC0.0~1.0,0.0,1.0) 
CALL SCALSIC0.1,Q.1) 
CALL CSPACEC0.0,0.0001,0.0,0.0001) 
H(1)=1.479 
CALL CONTRL(R,1,21,21,1,21,21,H,1,1) 
HC1)=1.433 
CALL CONTRL(~HOA,1,21,21,1,21,21,H,1,1) 
H(1)=1.115 
CALL REOPEN 
CALL CONTRLC~HOB~1,21,21,1,21,21,H,1,1) 
H(1)=1.093 
CALL GRNPEN 
CALL CONTRL<~HOC,1,21,21t1t21,21~H,1,1) 

224. 

C <IV>PLOT OF THE R FUNCTION WITH +/- 1/. ASSUMED ERROR AND THE 
C ROTATIONAL RELAXATION TIME RATIOS WITH +1-21. ASSUMED ERROR 
c 
c 
C <IV)PLOT OF THE R FUNCTION, HARMONIC MEAN RELAXATION TIME 
C RATIO CTH/TOl THE PSI & LAMBDA FUNCTIONS 
c 

c 
c 
c 
c 

c c 
c 

CALL FRAME 
CALL BLKPEN 
CALL BORDER 
CALL CSPACEC0.0,1.0,0.0,1.0l 
CALL SCALSIC0.1,0.1) 
CALL CSPACEC0.0,0.0001,Q.0,0.0001) 
H(1)=1.479 
CALL CONTRL<R,1~21,21,1,21,21t h t1t1l 
H(1)=1.195 
CALL CONTRLCTAU,1,21,21,1,21,21,H,1,1) 
H C 1) = • 9 83 7 8 
CALL REOPEN 
CALL CONTRLCPSI,1,21,21,1,21,21,H,1,1) 
H(1)=2.4188& 
CALL GRNPEN 
CALL CONTRL<V,1,21t21,1,21,21,Ht1t1l 

CV)PLOT OF THE R FUNCTION (+/-1/.) , THE HARMONIC MEAN 
RELAXATION TIME RATIO (+/-1/.) AND TrlE PSI FUNCTION 
(+/- 2/.) & THE LAMBDA FUNCTION (+/- 2/.) 

CALL FRAME 
CALL BLKPEN 
CALL BORDER 
CALL CSPACEC0.0,1.0,0.0,1. 0 ) 
CALL SCALSI(Q.1, 0.1) 
CALL csPACE<o.o,o.ooo1,o.o,o.o oo1, 
HC1l=1.49379 
CALL CONTRLtR,1,21,21,1,21,21,H,1,1) 
H(l)-=1.46421 
CALL CONTRLCR,1,21,21,1,21,21tHt1t1) 
HC1>=1.20&95 
CALL CONTRL(TAU,1,21,21,1,21,2~,H,1,1) 
H(1)-=1.18305 
CALL CONTRLCTAU,1,21,21,1,21,21,H,1,1) 
H ( 1 ) = 1 • 0 0 3 45 5 & 
CALL REOPEN 
CALL CONTRLCPSI,1,21,21,~,21,21,H,1,1) 
H(1)=0.96410lt4 
CALL CONTRLCPSI,1,21,21t1t21,21,H,1,1) 
CALL GRNPEN 
H(1)=2.4672372 
CALL CONTRLCV,1,21,21,1,21,21,H,1,1J 
H(1)=2.3704828 
CALL CONTRLCV,1,21,21~1,21,21,H,1,1) 

CVI>PLOT OF R (+/-1/.l, OtLTA1 (+/-1%), DELTA2 (+/-1%) 
AND DELTA3 (+/-1/.) 
CALL FRAME 
CALL BLKPEN 
CALL BORDER 
CALL CSPACECQ.0,1.0,0.0,1.0) 
CALL SCALSI<0.1,Q.1) 
CALL csPACE<o.o,o.ooo1,o.o,o.ooo1) 
HC1)=1.49379 



CALL CONTRL<R,1,21,21t1t21,21,H,1,1) 
HC1)=1.46421 
CALL CONTRL<R,1,21,21,1,21,21,H,1,1) 
H(1)=3.2849 
CALL CONTRL<DELA,1,21,21,1,21,21,H,1,1l 
HC1l=3.1560802 
CALL CONTRLCOELA,1,21,21,1,21,21,H,1,1) 
H(1)=2.110 
CALL REOPEN 
CALL CONTRLCOELB,1,21,21,1,21,21,H,1,1) 
H(1)=2.072 
CALL CONTRLCDELB,1,21,21,1,21,21,H,1,1l 
H(1)=2.006 
CALL GRNPEN 
CALL CONTRLlDELC,1,21,21,1,21,21,H,1,1) 
H(1)=1.928 
CALL CONTRLCDELC,1,21,21,1,21t21tH,1,1) 

225. 

c 
c 
c 

CVIIlPLOT OF THE R, GAMMAA, GAMMAB AND GAHMAC FUNCTIONS 

CALL FRAME 
CALL BLKPEN 
CALL BORDER 
CALL CSPACEC0.0,1.0,0.0,1.0) 
CALL SCALSIC0.1,0.1) 
CALL csPACE<o.o,o.ooo1,o.o,o.o oo1> 
H(1)=1.lt79 
CALL CONTRLCR,1,21,21,1,21,21,H,1,1) 
H(1)=0.795 
CALL CONTRLCGAMMAA,1,21,21,1,21,21,H,1,1) 
H(1)=1.022 
CALL REOPEN 
CALL CONTRLCGAMMAB,1,21,21,1,2 1 ,21, H,1,1) 
H(1)=1.042 
CALL GRNPEN 
CALL CONTRLCGAMMAC,1,21,21,1,21,21, H,1,1) 

c 
C CVIIIlPLOT OF R (+/-1/.:), GAMMAA (+1-l'l.), GAHMA-8 (+/-1/.) 
C AND GAMMAC (+/-1/.) 
c 

CALL FRAME 
CALL BLKPEN 
CALL BORDER 
CALL CSPACEC0.0,1.0,0.0, 1 .J) 
CALL SCALSI< 0.1,Q.1) 
CALL csPACE<o.o,o.ooot,o.o,o. oo ot) 
H(i)-=1.49379 • 
CALL CONTRLCR,1,21,21,1,21t21,ht1t1l 
HC1l=1.46421 
CALL CONTRL<R,1,21,21,1t21,21tHt1t1l 
H(1)=.81498 I 

CALL CONTRL(GAMMAA,1,21,21,1,21,21,H,1,1l 
HC1l=.78302 
CALL CONTRLCGAMMAA,1,21,21,1,21,21,H,1,1) 
H ( 1 ) .:: 1 • 0 4 2 44 
CALL REOPEN 
CALL CONTRLCGAMMAB,1,21,21,1,21,21,H,1,1) 
HC1J=1.00156 
CALL CONTRLCGAMMAB,1,21,21,1,21,21,H,1,1) 
CALL GRNPEN 
H ( 1 ) .:: 1 • 0 6 2 84 
CALL CONTRLCGAMMAC,1,21,21,1,21,21,H,1,1l 
H(1)=1.02116 
CALL CONTRLCGAMMAC,1,21,21,1,21,21,H,1,1) 

c 
C CIX)PLOT OF THE R ,HUA, MUB AND MUG FUNCTIONS 
c 
c 

CALL FRAME 
CALL BLKPEN 
CALL BORDER 
CALL CSPACEC0.0,1.0,0.0,1.0) 
CALL SCALSIC0.1,0.1l 
CALL CSPACEC0.0,0.0001t0•0t0•0001) 
HC1>=1.47<3 
CALL CONTRLCR,1,21,21,1,21,21,H,1,1) 
H(1)=.924 
CALL CONTRLCMUA,1,21,21,1,21,21,H,1,1) 
CALL REOPEN 
H(1)=1.071 
CALL CONTRLCMU8~1,21,21,1,21,21,H,1,1) 



c 
c 

CALL GRNPEN 
Hf1)=1.089 
CALL CONTRL(MUC,1,21,21,1,21,21,H,1,1) 

C (X)PLOT OF R (+/-1/.), MUA (+/-1/.), MUB C+/-1/.) 
C AND MUC (+/-1/.) 
c 

c 
c 

CALL FRAME 
CALL BLKPEN 
CALL BORDER 
CALL CSPACEC0.0,1.0,0.0,1.0) 
CALL SCALSI<0.1,0.1) 
CALL CSPACE<0.0,0.0001,Q.O,O.OOD1) 
H(1)=1.49379 
CALL CONTRLCR,1,21,21t1t21,21,H,1,1) 
H(1)=1.46421 
CALL CONTRL<R,1~21,21,1,21,21,H,1,1> 
HC1)=.94248 
CALL CONTRLCMUA,1,21,21,1,21,21,H,1,1) 
H(1)=.90552 
CALL CONTRLCMUA,1,21,21t1t21,21,H,1,1) 
H(1)=1.90242 
CALL REOPEN 
CALL CONTRLC~UB,1,21,21t1t21,21,H,1,1) 
H(1)=1.04958 
CALL CONTRLCMUB,1,21,21,1,21,21,H,1,1) 
H ( 1) = 1.110 78 
CALL GRNPEN 
CALL CONTRLCMUC,1,21,21,1,21,21,H,1,1l 
HC1>=1.06722 
CALL CONTRL<MUC,1,21,21,1,21,21,H,1,1J 

C (X!)PLOT OF THE R, REOUC ~ D THETA+ AND REDUCE D 
C THETA - FUNCTIONS 
c 
c 

c c 

CALL FRAME 
CALL BLKPEN 
CALL BORDER 
CALL CSPACEC0.0,1.0,0.0, 1.0) 
CALL SCALSIC0.1,0.1) 
CALL CSPACE<o.o, o.ooo1,o.o,o. oo o1> 
HC1>=1.479 
CALL CONTRL<R,1,21,21,1,21,21,H,1,1) 
CALL REOPEN 
H(1)=.163 
CALL CONTRLCTPLS,1,21,21,1,21,21,H,1,1) 
CALL GRNPEN 
HC1>=.116 
CALL CONTRL(TMNS,1,21,21,1,21,21,H,1,1) 

C CXII>PLOT OF THE RC+/-1/.), REDUCED THETA+ (+/-1/.) 
C AND REDUCED THETA- (+/-1%) FUNCTIONS 

CALL FRAME 

c c 

CALL BLKPEN 
CALL BORDER 
CALL CSPAC£C0.0,1.0,0.0,1.0) 
CALL SCALSIC0.1,0.1) 
CALL csPACE<a.o,o.ooo1,o.o,o.ooo1l 
HC1)=1.49379 
CALL CONTRLCR,1,21,21,1,21,21,H,1,1l 
H(1)=1.46421 
CALL CONTRL(~,1,21,21,1,21,21,Ht1t1l 
CALL REOPEN 
H·C1)=.16463 
CALL CONTRL<TPLS,1,21,21,1,21,21,H,1,1) 
HC1l=.16137 
CALL CONTRLCTPLS,1,21,21,1,21,2~,H,1,1) 
CALL GRNPEN 
H(1)=.11716 
CALL CONTRL(TMNS,1,21,21,1,21,21,H,1,1) 
HC1l=.11484 
CALL CONTRL<TMNS,1,21,21,1,21,21,H,1,1) 

C <XIIIlPLOT OF THE R, DELTA+ AND DELTA- FUNCTIONS 
c 
c 

226. 



c 
c 
c c 
c 

c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

CALL FRAME 
CALL BLKP EN 
CALL BORDER 
CALL CSPACEC0.0,1.0,0.0~1.0) 
CALL SCALSIC0.1,0.1l 
CALL csPACEca.o,o.ooo1,u.o,o.ooo1> 
HC1)=1.~79 
CALL CONTRLCR,1,21,21,1,21,21,H,1,1> 

CALL REOPEN 
H(1)=2.821 
CALL CONTRLCOPLS,1,21,21,1,21,21~H,1,1) 

CALL GRNPEN 
HC1)=2.016 

CALL CONTRLCDMNS,1,21,21,1,21,21,H,1,1> 

227. 

CXIV>PLOT OF R C;/-1/.), DELTA+ C+/-2/.) AND DELTA- C+/-2/.) 

CALL FRAME 
CALL BLKPEN 
CALL BORO ER 
CALL CSPACEC0.0,1.0,0.0,1.0l 
CALL SCALSI<0.1,0.1) 
CALL CSPACEC0.0,0.0001,0.J,0.0001) 
HC1l=1.49379 
CALL CONTRLCR,1,21,21,1t21,21,H,1,1J 
H(1)=1.46lt-21 
CALL CONTRLCR,1,21,21,1,21,21,H,1,1) 

CALL REOPEN 
H C 1 > = 2 • 8 7 74 2 
CALL CONTRLCOPLS,1,21,21,1,21t21,H,1,1) 
H(1)=2.76458 
CALL CONTRLCDPLS,1,21,21,1,21,21,H,1,1) 

CALL GRNPEN 
H(1)=2.05632 
CALL CONTRLCDHNS,1,21,21,1,21,21,H,1,1) 
H(1)=1.97568 
CALL CONTRLCDMNS,1,21,21,1,21,21,Ht1t1) 

CXV)PLOT OF THE R, GAMMA+ AND GAMMA- FUNCTIONS 

CALL FRAME 
CALL BLKPEN 
CALL BORDER 
CALL CSPACECO.Q,1.0,Q.0,1.0> 
CALL SCALSIC0.1,0.1) 
CALL csPACEco.o,o.aool,n.o,o.ooo1> 
H(1)=1.479 
CALL CONTRLCR,1,21,21~1,21,21,H,1,1) 

CALL REOPEN 
H(1)=1.111 
CALL CONTRLCGPLS,1,21,21,1,21,21~H,1,1) 
CALL GRNPEN 
CALL CONTRLCGMNS,1,21,21,1,21,21,H,1,1) 

CXVIlPLOT OF RC+/-1/.), GAMMA+ C+/-21.> AND GAi"tMA- C+l-21.> 

CALL FRAME 
CALL BLKPEN 
CALL BORDER 
CALL CSPACECO.O,t.o,o.0,1.0) 
CALL SCALSICO.l,0.1> 
CALL csPACE<o.o,o.oao1,o.o,o.ooo1, 
Hf1)=1.49379 
CALL CONTRL(~,1,21,21,1,21,21,H,1,1) 
H<1>=1.46421 
CALL CONTRL(~,1,21,21,1,21,21tHt1t1) 
CALL REOPEN 
H ( 1) = 1.13 3 22 
CALL CONTRL<GPLS,1,21,21,1,21,21,H~1,1) 
H(1)=1.08878 
CALL CONTRLCGPLS,1,21,21,1,21,21,H,1,1) 
CALL GRNPEN 
H(1)=.80988 
CALL CONTRL<GMNS,1,21,21,1,21,21,Ht1t1) 
H(1)=.77812 



c 
c 

228. 

C <XVI!)PLOT OF THE 5 FLUORESCENCE ANISOTROPY RELAXATION TIME 
C RATIOS 
c 

c 
c c 

CALL FRAME 
CALL BLKPEN 
CALL BORDER 
CALL CSPACEC0.0,1.0,0.0,1.0l 
CALL SCALSI(Q.1,0.1) 
CALL CSPACE<0.0,0.0001,0.0,0.Q001l 
H(1)=1.02536 
CALL CONTRLCT1,1,21,21,1,21,21,H,1,1l 
H(1)=1.28883 
CALL REOPEN 
CALL CONTRL(T2,1,21,21,1,21,21,H,1,1) 
CALL GRNPEN 
H(1l=1 .. 31877 
CALL CONTRL(T3,1,21,21,1,21,21,H,1,1) 
CALL BROKENt4,8,8,8) 
HC1l=1.Lt3it05 
CALL CONTRL<T4,1,21,21,1,21,21,H,1,1) 
CALL BLKPEN 
HC1l=1.02497 
CALL CONTRL<TS,1,21,21,1,21,21,H,1,1) 
STOP 
END 



229. 

Program 5 

c 
C NON-LINEAR LEAST SQUARES METHOD USING AN ALGORITHM OF GILL AND 
C HU RRA V ( 1 9 7 Ed 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c c 
c 
c 
c 

GAMMA= BIREFRINGENC£ (RAOS), F = SUM OF SQUARES OF THE RESIDUALS 
OPLS = DELTA+, DMNS = DELTA-
X(!) = CURRENT INITIAL GUESS FOR THETA+ 
X(2) = " " " 
X(3) = •• •• A'+ 
Xt4) - " •• A'-
X1 = CURRENT ESTIMATE FOR THETA+ 
X2 = " " " " 
X3 = " " A'+ 
X4 = u " " A'-

•••••••••••••••••••••••••••••• 
LINEAR TIME INCREASE, 100PTS. 
.001 DEGREES S.E. 

RANDOM NUMBER RUN 50 

•••••••••••••••••••••••••••••••••••••••••••• 
PROTEIN 3 

•••••••••••••••••••••••••••••••••••••••••••• 
PROGRAM MAINCINPUT,OUTPUT,TAPE2=INPUT,TAPE3=0UTPUTl 
COMMON/PARAM/GAHMAC101),T(101) ,RC101) 
REAL BL(4) ,BU(4) ,XC4) ,F,W(54) 

~~~~G~~,~~o8~o~fF~~L,J,LIW,LW,N 
INTEGER !W(o) 
P=-1.0 
0021 1=1,101 
P=P+1.0 
R<I>=P 
T(l)=R<1>•t.OE-09 

21 CONTINUE 
WRIT£(3,32> 

32 FORMAT< " TIME<NS) GAMMA") 
C G05BBF REINIT1ALIZES THE STREAM OF THE RANDOM NUMBERS 

CALL G0588F 
C CALCULATE THE UNPERTURBED DECAY CURVE 

0050 1=1,101 
GAMMA(!)=0.07•EXPC-TCI)•6.0•5.187243E06)+ 

+0.05•EXP(-T(1)•6.0•4.167486E06) 
C NOW PERTURB EACH OF THE 160 DATA POINTS USING A NORMAL PSEUDO-RANDOM 
C NUMBER GENERATOR GOSAOF 

GAMMA(1)=GAMMA(I)t((0.1•t.74555E-04>•G05AOF(Y)) 
WRITE(3,33)R(Il,GAMMA(!) 

33 FORMAT( F10.5,F8.5) 
50 CONTINUE 

N=4 
IBOUND=O 
Q1=1.0 

C 00 THE MINIMIZATION FOR 30 INITIAL GUESSES TO ATTEMPT TO AVOID 
C SUBSIDIARY MINIMA 

0010 1=1,30 
C CALL RECTANGULAR PSEUDO RANDOM NUMBER ROUTINE G05AAF 

Z=G05AAF(X) 
X(1)=4.0+2.0"'Z 
X<2>=3.o+z.o•z 
xt3l=6.o+z.o•z 
X(4J=4.0+z.o•z 
8L(1J=4.0 
8L(2l=3.0 
8L(3)=6.0 
8L(4)=4.0 
BU(1)=6.C 
BU<2>=5.0 
8U(3l=8.0 
8U(4)=6.0 
LIW=6 
LW=54 
IFAIL=1 
CALL E04JAF(N,IBOUNO,BL,au,x,F,IW,LIW,W,LW,IFAIL> 
IF(IFAIL.NE.O)WRITE<3,10J)IFAIL 
IF<IFAIL.EQ.1>GOTO 20 

100 FORMAT<"ERROR EXIT TYPE",I3,"SEE ROUTINE MANUAL") 
WRITE(3,110)F 
WRIT£(3,1201 (X(J) ,J=1,4) 

110 FORHAT( "FUNCTION VALUE ON EXIT IS",F15.12) 



120 FORMAT( •• THETA+'.,F10.7,'• THETA-'.,F10.7, .. A ••,F7.4, 
+ •• A- ••,F7.4) 

IF(Qi.LE.F>GOTO 3Q 
Qi=F 
Q2=X(1) 
Q3=XC2) 
Q4=X(3) 
Q5=XC4t 

30 CONTINUE 
WRITE ( 3,13 0) 

130 FORMAT ( •• •• , 
WRITE C 3, 140> 

140 FORMAT ( •• .. , 
10 CONTINUE 

OPLS=0.50996303•Q2 
OMNS=0.50996303•Q3 
WRITE(3,141) 

141 FORHATC •• ••) 
WRITE C 3, 14 2) 

142 FORMAT( •• •• , 
WRITEC3,143) 

143 FORMAT ( " •• , 
WRITE( 3,145) 

145 FORMAT ( •• •• , 
WRITE(3,150lQ1 

150 FORMAT( .. BEST LEAST SQUARES VALUE = ",F15.12l 
WRITEC3,160)Q2 

160 FORMAT( " THETA+ = "9 F10.7l 
WRITEC3,170)Q3 

170 FORMAT( " THETA- = ",F10.7) 
WRITE(3,180)Q4 

180 FORMATC" A'+= ••,F7.4) 
WRITEC3,190)Q5 

190 FORMAT( n A•- = N,F7.4) 
WRITEC3,200)0PLS 

200 FORMAT( •• DELTA+ = '',F10.7) 
WRITEC3,210)0MNS 

210 FORMAT( .. DELTA- = M,F10.7) 
20 STOP 

END 

230. 

C SUBROUTINE FOR CALCULATING THE SUM OF SQUARES OF THE RESIOUALS FOR THE 
C CURRENT ESTIMATES OF THE ADJUSTABLE PARAMETERS 

SUBROUTINE FUNCT1(N,XC,FCl 
COMHON/PARAH/GAMMA(101>,TC101),R(101) 
EXTERNAL FUN 
REAL Q,FC 
INTEGER N 
REAL XC(N) 
REAL X1,X2,X3,X4 
Xi =XC ( 1) 
X2=XC(2) 
X3=XC ( 3) 
X4=XC ( 4) 
FC=o.o 
0075 !=1,101 
Q=CGAMMACI)-CO.Q1•X3•EXP(-6.0E06•Xl•TCI))+0.01•X4 

+ •ExP<-o.oEo6•xz•rcr)>>)••z.o 
FC=FC+Q 

75 CONTINUE 
RETURN 
END 



231. 

Program 6 

c 
C FOURIER TRANSFORM SOLUTION OF THE LAPLACE INTEGRAL EQUATION METHOD OF 
C GARONER, GARDNER, LAUSH AND MEINKE (1959) 
c 
c 
c 
c 
c 
c c 
c 
c 
c c 
c 
c c 
c 
c c 

S = BIREFRINGENCE CRAOSl, GM= INTEGRANO OF EQUATION , G = G<EXPC-Y)) 
T =TIME <SECl, ~=TIME (NS), EC ANDES ARE THE ERROR ESTIMATES IN FC 
AND FS RESPECTIVELY DUE TO THE NUMERICAL INTEGRATION IN EQN. 125 
AND ER IS THE ER~OR ESTIHATE DUE TO THE NUMERICAL INTEGRATION IN 
EQN. 128 

·····~·································· LOGARITHMIC TIME INCREASE, 140 DATA PTS. 
.001 DEGREES S.E. 

RANDOM NUMBER RUN 2 

••••••••••••••••••••••••••• 
PROTEIN 2 

••••••••••••••••••••••••••• 
PROGRAM HAINCINPUT,OUTPUT,TAPE2=INPUT,TAPE3=0UTPUT) 
EXTERNAL FUNXN 
REAL MMUC66l,KCC66l,KSC66J,FCC66),FSC6&>,GH(66l,MU 
REAL YYY,Gt690),Y(690),ECC66),ESC66) 
INTEGER N,I,IFAIL 
INTEGER L 
REAL XC141),S(141),RC141),TC141l,YCC141l,YSC141l 
COMPLEX Z,C,K,CGAMMA 
P=-7•1 
0021 !=1,141 
P=P+.l 
WRITEC3,500) 

500 FORMAT( •• "") 
X(!)=P 
TCI)=(l.OE-09>•EXPCXCI)) 
R(I)=T<I>•1.0E09 

21 CONTINUE 
WRITEC3,32) 

32 FORMAT< " TIME<NS> 
WRITE ( 3, 50 1) 

501 FORMAT ( " "") 
WRITEC3,502) 

X S ( Tl = SCEXP(-X))"") 

502 FORMAT( "•••••••••••••••••••••••••••••••••••") 
WRIT£(3,503) 

5tl3 FORMAT( •• "") 
C G05BBF REINITIALIZES ·THE STREAM OF THE RANDOM NUMBERS 

CALL GOSBBF 
0050 !=1,141 

C CALCULATE THE UNPERTURBED DECAY CURVE 
SCI)=Q.07•EXPC-TCil•4.6596278E07J+ 
+0.05~EXP(-T(I)•3.137407E 0 7) 

C NOW PERTURB EACH OF THE 140 DATA PTS USING A NORMAL PScUOO-~ANOOM 
C NUMBER GENERATOR 

SCI)=SCil+(C0.1~1.74555E-04l•GOSADFCYl) 
WRITE ( 3, 3 3) RC I) , X (I> , S C I> 

33 FORMAT( F10.5,F6.2,F8.5) 
50 CONTINUE 

0047 L=1,20 
WRITEC3,504) 

504 FORMAT ( •• ") 
'+7 CONTINUE 

C THE NEXT PART OF THE PROGRAM EVALUATES THE FOURIER TRANSFOR~ OF THE DATA 
HU=-.1 
WRITEC3,99) 

99 FORMAT ( •• 
WRITE( 3, 505) 

505 FORMAT( •• ••) 
WRITE ( 3, 50 6) 

MU KC 

506 FORMAT( "••••••~••••~••••••••••••••••••••••••••••••••••••••d) 
WRITEC3,507) 

507 FORMAT ( '" ••> 
0010 J=1,66 
MU=MU+.1 
MMU(J)=HU 
0051 I=1,141 
YCCI)=CEXP(X(I)))•SCI>•COSCMU•X(I)l 
YSCil=CEXPCXCilJ)•S(I)•SINCHU•X(!)) 
YCil=CMPLXCYCCI>,YS(!)) 

51 CONTINUE 
N=141 
IFAIL=1 



232. 

C CALL NUMERICAL INTEGRATION ROUTINE FROM THE UK NAG LIBRARY (HK 6) 
CALL 001GAF<X,YC,N,ANS,ER,IFAIL> 
FCCJ):((1.0/(2.0•3.141593)l••0.5>•ANS 
EC<Jl=CC1.0/C2.0~3.141593))••o.5>•£R 
CALL 001GAF(X,YS,N,ANS,EK,IFAILl 
FS(J):((1.0/C2.0•3.141593))~•o.5>•ANS 
ES(J)=CC1.0/(2.0~3.141593))••0.5>•ER 

C EVALUATE THE COMPLEX GAMMA FUNCTION FOR THE CURRENT VALUE OF MU USING 
C THE SUBROUTINE BELOW 

Z=CMPLXC1.0 1 MU) 
C=CGAMMA<Z> 

C DETERMINE THE EULER INTEGRAL OF THE COMPLEX GAMMA FUNCTION (EQN. 123 ) 
K=(C1.0/(2.0•3.141593))••o.5>•C 
KC(J)=REALCK) 
KSCJ>=AIMAG(K) 
C=CGAMMA<Z> 
WRITEC3,101)MU,K 

101 FORMAT( 7X,1F8.2,2E15.7) 
10 CONTINUE 

0049 L=1,20 
WRITEC3,509) 

509 FORMAT ( •• ••) 
49 CONTINUE 

WRITEC3,90) 
90 FORHAT( .. MU FC CERR) FS 

+ <ERR)") 
WRITE ( 3, 510) 

510 FORMAT ( .. ••) 
WRITEC3,511) 

511 FORMAT( "•••••~••~••••••••4•••••••••••••••••••••••••••~•~••• .................. , 
WRITEC3,512) 

512 FORMAT ( .... , 
0038 J=1,66 
WRITEC3,91)MMUCJ>,FC<J>~ECCJl,FSCJl,ES(J) 

91 FORMAT( 1X,1F8.2,4E14.7) 
38 CONTINUE 

0052 L=1,20 
WRIT£(3,513) 

513 FO~MAT { •• •• , 
52 CONTINUE 

WRITEC3,93) 
93 FORMAT< •• Y G(EXP(-Y)) ERROR"") 

WRITE C 3, 514) 
514 fORMAT ( •• ") 

WRITEC3,515) 
515 FORMAT C •• ••••••••~•~•~•••••••••••••••••~••••••••~•~•••••••••"> 

WRIT£(3,516) 
516 FORMAT ( .. ••) 

YYY=-.01 
0031 M=1,690 
YYY=YYY+-.01 
YCMl=YYY 
0029 J=1,66 

C DIVIDE THE FOURIER TRANSFORM OF THE DATA BY THE EULER INTEGRAL FOR THE 
C COMPLEX GAMMA FUNCTION 

GM ( J ) = ( ( ( ( FC ( J l • KC ( J) ) + ( F S { J) • KS ( J) l ) • COS ( Y Y Y • M MU ( J) ) ) I ( ( KC ( J) 
+ ... KC ( J) > 
++ ( KS ( J l • KS ( J t ) ) ) + ( { C ( F S ( J ) • KC ( J ) ) - ( F C ( J ) • K S ( J ) ) ) ._SIN ( Y Y Y • M MU ( J) > ) I 
+(CKC(Jl•KCCJll+CKSCJl"'KS(J) ))) 

2<3 CONTINUE 
NN=o6 

C NOW GCEXP(-Y)) AS A FUNCTION OF Y IS FOUND FROM THE INVERSE FOURIER 
C TRANSFORM USING THE SAME NUMERICAL INTEGRATION ROUTINE 

CALL D01GAFCMMU,GM,NN,ANS,ER,IFAIL) 
GCMl=C1.0/3.141593)•ANS 
ER=C1.013.141593)"'ER 
WRITEC3,290>YYY,GCM),ER 
IFCIFAIL>241,2&1,241 

2'+1 WRIT£(3,289) 
261 CONTINUE 
290 FORMATC/3X,F7.2,4X,1E15.7,4X,1E15.7) 
289 FORMAT(/28H LESS THAN 4 POINTS SUPPLIED> 

31 CONTINUE 
C HENCE A PLOT OF G<EXPC-Y)) AGAINST Y IS OBTAINED 

CALL PAPER(1) 
CALL MAPCO.Q,Q.O,Q.O,O.O> 
CALL CURVEO(Y,G,1,6qQ) 
CALL SCALES 
CALL BORDER 
CALL GRAPHFCFUNXN) 



c 

c 

CALL GRENO 
S·TOP 
END 

FUNCTION FUNXN(Xl 
FUNXN=O.O 
RETURN 
END 
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C SUBROUTINE FOR CALCULATING THE COMPLEX GAMMA FUNCTION C = CGAMHACZ) FOR 
C THE CURRENT VALUE OF MU. THIS SUBROUTINE IS THAT GIVEN BY LUCAS AND 

I C T E RRI l L ( 1 <3 7 0 ) 
COMPLEX FUNCTION CGAMHA<Zl 
COMPLEX z,zM,T,TT,SUH,TE~M,DEN,PI,A 
DIMENSION CC 12) 
LOGICAL REFLEX 

C SET lOUT FOR PROPER OUTPUT CHANNEL OF COMPUTER SYSTEM FOR 
C ERROR MESS AGES 

IOUT=3 
PI=C3.1415g3,0.0l 
X=REAL(Zl 
Y-=AIMAGtZ) 

C TOL = LIMIT OF PRECISION OF COMPUTER SYSTEM IN SINGLE PRECISION 
TOL=l.OE-07 

~ REFLEX:.TRUE. 
C Ot nERMINE WHETHER Z IS TOO CLOSE TO A POLE 
C CHECK WHET HER TOO CLOSE T 0 ORIGIN 

IF ( X • G E • T 0 L) G 0 T 0 2 0 
C FIND THE NEAREST POLE AND COMPUTE DISTANCE TO IT 

XOIST=X-INTCX-.5) 
ZM=CMPLXCXDIST,Y> 
IFCCABS(ZMl.GE.TOLJGOTO 10 

C IF Z IS TOO CLOSE TO A POLE, PRINT ERROR MESSAGE AND RETURN 
C WITH CGAMMA=C1.E7,0.F0) 

WRITE CIOUT,<300lZ 
CGAMMA=C1.E7,Q.EQ) 
RETURN 

C FOR REAL(Z) NEGATIVE EMPLOY THE REFLECTION FORMULA 
C GAMMA<Z>=PICSINPI•Z>•GAMMA(1-Z)) 
C AND COMPUTE GAHMAC1-Z). NOTE REFLEX IS A TAG TO INDICATE THAT 
C THIS RELATION MUST BE USED LATER. 

10 IF(X.GE.O.OlGOTO 20 
REFLEX=. FALSE. 
Z=ti.O,Q.OJ-Z 
X=1.0-X 
Y=-Y 

,CIF Z IS NOT TOO CLOSE TO A POLE, MAKE REALCZ)>10 AND A~GCZ)<PI/4 
I 20 M= 0 

~0 IFtX.GE.10.lGOTO 50 
X=X+1.0 
M=t1+1 
GOTO C.O 

50 IFCABS(Y) .LT.XlGOTO 60 
X=X+1.G 
M=M+1 
GOTO 50 

60 T=CMPLX(X 9 Y) 
TT=T•T 
OEN=T 



C COEFFICIENTS IN STIRLING•S APPROXIMATION FOR LN(GAMMA(T)) 
C<1>=1./12. 
Cl2)=-1./360. 
C ( 3 ) = 1. /12 GO • 
C(4l=-1,/168Q, 
CC5l=1,/1188. 
CCG>=-691./36060. 
C<7,=1.1156. 
CCS>=-3617,/122400. 
C(9)=43867,/244188. 
C<i0>=-174611./125400. 
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CC11>=77683,/5796. 
SUM=CT-(,5,0,Q))~CLOG(T)-T•CMPLX(,5~ALOG(2.•3.14159),Q.Q) 
J=1 

70 TERH=C<Jl/OEN 
C TEST REAL AND IM4GINARY PARTS OF LNCGAMMACZJ>SEPA~ATELY FOR 
C CONVERGENCE, IF Z IS REAL SKIP IMAGINARY PART OF CHECK. 

IF<ABSCREALCTERH)/REAL<SUM)l.GE.TOLlGOTO 80 
IFCY.EQ.O.O>GOTO 100 
IFCABSCAIMAG<TERMl/AIMAGCSUM)) .LT.TOL)GOTO 100 

6 0 SUM=SUH+TERH 
J=J+1 
OEN~DEN•TT 

C TEST FOR CONVERGENCE 
IFCJ.EQ.12lGOTO 90 
GOTO 70 

C STIRLINGS SERIES DID NOT CONVERGE. PRINT ERROR MESSAGE AND 
C PROCEDE 

90 WRITE<IOUT,q1Q)Z 
C RECURSION RELATION USED TO OBTAIN LN(GAMMA(Z)) 
C LNCGAMMACZ)J=LNCGAMMACZ+M)/(Z•<Z+i)•.~.•(Z+M-1))) 
C =LN(GAMMA(Z+M)-LNCZ>-LNCZ+i)· ••• -LN(Z+M-1) 

100 IFCH.EQ.O)GOTO 120 
00110 I=1,H 
A=CMPLX(!~1.-1.,Q,Q) 

110 SUM=SUM-CLOGCZ+A) 
C CHECK TO SEE IF REFLECTION FORMULA SHOULD BE USED 

120 IFtREFLEXlGOTO 130 
SUM=CLOG<PI/CSIN<PI•Zl)-SUM 
Z=<1.Q,Q,O)-Z 

130 CGAMHA=CEXP(SUM) 
RETURN 

900 FORMAT(1X,2F14.7,10X,49HARGUMENT OF GAMMA FUNCTION IS TOO CLOSE TO 
+ A POLE> 

910 FORHATl44H ERROR- STIRLING'S SERIES HAS NOT CONVERGED/14X,4H7 
+2£14.7) 

END 



Program 7 

c 
C R-CONSTRAINED NON-LINEAR LEAST SQUARES METHOD (HAROINGl 
c 
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C GAMMA= BI~EFRINGENCE CRADS), FC =SUM OF SQUARES OF THE RESIDUALS 
C X(1) = CURRENT INITIAL GUESS FOR A/8 
C )((2) = .. .. •• •• A+ 
C X(3) = •• •• .. A-
CON EXIT, X(1), XC2), X{3, CONTAIN THE BEST ESTIMATES FOR THESE PARAMETERS 
C XC(l) = A = CURRENT ESTIMATE FOR A/8 
C 0 = 1/C = VALUE OF 8/C COR~ESPONOING TO THIS ESTIMATE 
C S = •• .. VISCOSITY INCREMENT .. •• 
C V : •• • DELTA+ .. •• .. " 
C W = .. •• DELTA- •• •• " .. 
C THPLUS = • " THETA+ .. •• •• •• 
C THMNUS = •• THETA- .. •• 
C XCC2) = CURRENT ESTIMATE FOR A+ 
C X~C3) = •• •• .. A· 

1C AA1,AA2, •••• AA6 ARE THE A/8 COORDINATES FOR 6 PTS ON THE R-CURVE 
C A01,A02, •••• A06 " ... B/C .. " .. •• .. •• •• 
C THE VALUE FOR B/C CORRESPONDING TO THE CURQENT ESTIMATE FOR A/8 CAN THEN 
C BE FOUND USING A CUBIC POLYNOMIAL INTERPOLATION PROCEDURE BETWEEN THE 
C SIX GIVEN POINTS.THIS IS DONE USING A LIBRA~Y ROUTINE E01LF1 
c c .................. .. 
C PROTEIN 1 c ................. .. 
C LINEAR TIME INCREASE, 100PTS. 
C CUT OFF TIME: 100NS 
C STREAM OF RANDOM NUMBERS: 3 
C 0.1 DEG STANDARD ERROR ON EACH DATA PT. 
c 

PROGRAM MAINCINPUT,OUTPUT,TAPE2=INPUT,TAPE3=0UTPUT> 
COMMON/PARAM/GAMMA(101),T(101),A,C,O,NN,AA(6),A0(6) 
REAL RC101l 
REAL AA1,AA2,AA3,AA4,AA5,AA6,AD1,A02,A03,AD4,AD5,AD6 
REAL BL ( 3) , BU C 3 > , XC 3) , F, rH 3 9) 
INTEGER IBOUNO,IFAIL,J,LIW,LW,N 
INTEGER IWC5) 
REAL Q1,Q2,Q3,Q4 
WRIT£(3,37) 

37 FORMAT( • PRaTEIN 1, 0.1 OEG. STANDARD ERROR") 
HRIT£<3,38) 

38 FORMAT ( •• 
+ 100NS, 100PTS") 
WRITEC3,39) 

39 FORMAT ( •• 
+STREAM 3") 
P=-1.1 
0021 1=1,101 
P=P+1.1 
R l I> =P 
Tfil=RCil"1.0E-09 
Rli)=TCI>•1.0E09 

21 CONTINUE 
C G05BAFCO.X) SPECIFIES THE XTH STREAM OF THE RANDOM NUMBERS 

CALL GOSBAFC0,31 

C CALcB~~¥EI~~~~B~PERTURBED DECAY CURVE 
GAMMACI>=0.07•EXPC-TCil•&.0•5.815383E06)+ 
+0.05•EXPC-TCI)•6.0•4.156~612E06) 

C NOW PERTURB EACH OF THE 100 DATA POINTS USING A NORMAL PSEUDO RANOOH 
C NUMBER GENERATOR GOSADF 

GAMMACI>=GAMMACI)+((1.74555E-03)•GOSAOFCY)) 
50 CONTINUE 

C READ IN THE VALUES FOR THE LOWER LIMITS FOR THE INITIAL GUESSES OF THE 
C A/B, A+, A- CX100), THE LOWER AND UPPER LIMITS FOR THE COMPUTER ESTIMATES 
C THE COORDINATES OF THE A/8 VALUES AND THEN THE COORDINATES OF THE 8/C 
C FOR THE R-CURVE TO WHICH THESE ESTIMATES ARE CONSTRAINED 

READC2,•)XX1 7 XX2,XX3,BBL1,88L2,88L3,8BU1tBBU2,8BU3, 
+AA1,AA2,AA3,AA4,AA5,AA6,A01,A02,A03,A04,AD5,AD6 

AAC1l=AA1 
AAC2l=AA2 
AA(3)=AA3 
AAC4-)=AA4 
AA(5)=AA5 
AAC6)=AA6 
A0(1)=AD1 
A0(2)=AD2 
A0(3)=AD3 
AOC4)=AD4 
A0(5)=AD5 



A0{6):A06 
N=3 
IBOUND-=0 
Q1=1.0 
0010 1=1,3 
Z=GQSAAF(X) 
X(1J=XX1+0.2•Z 
xczJ=xxz+z.o•z 
XC3)::XX3+Z.o•z 
BL ( 1)-= BBL1 
BL(2l=BBL2 
BL ( 3) = BBL 3 
BU (.1):: BBU1 
BU(2)=BBU2 
BU(3)=8BU3 
LIW=S 
LW=39 
IFAIL=1 
CALL E04JAF(N,IBOUND,BL,BU,X,F,IW,LIW,W,LW,IFAILJ 
IF(IFAIL.NE.O)WRITE<3,100)IFAIL 
IFfiFAIL.EQ.1lGOTO 20 

100 FORMATC"ERROR EXIT TYPE-~I3,"SEE ROUTINE MANUAL") 
XC2l=XC2)•,01 
X(3)=XC3l".01 
WRITE<J,110)F 
WRITEC3,120) (X(1) 1 X(2),X(J)) 

110 FORMATC " FUNCTION VALUE ON EXIT IS",F15.12) 
120 FORHAT( M A/B= ",F8.5," A+=",F15.12, 

+'• A-=" F15.12) 
IFCQ1.LE.FJGOTO 30 
Qi=F 
Q2=X(1) 
a 3-= x c 2 > 
Q4=XC3) 

30 CONTINUE 
WRITE ( 3,13 O> 

130 FORMAT( •• ••) 
WRITE C3, 140) 

140 FORMAT( .. ••1 
10 CONTINUE 

WRITEC3,150)Q1 
150 FORMAT( " BEST LEAST SQUARES VALUE = ",F15.12) 

WRITE(3,160)Q2 
160 FORMAT( " A I B = ",F8.5) 

WRITEC3,170)Q3 
170 FORMATC " B I C = ",F8.5J 

WRITE C 3, 18 Ol Q.3 
180 FORMAT(" A+= " 1 F7.4) 

WRITEC3,190)Q4 
190 FORMAT( H A-= ",F7.4) 

20 STOP 
END 

236. 



c 
c 
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C SUBROUTINE FOR CALCULATING THE SUM OF THE SQUARES OF THE RESIOUALS FOR 
C CURRENT ESTIMATES OF A/8, A+ AND A-
C KB = BOLTZMANNS CONSTANT, NA = AVOGADROS NUMBER c 

SUBROUTINE FUNCT1(N,XC,FCl 
COMMON/PARAH/GAMMA(101),T(101),A,C,O,NN,AA(6),A0(6) 
EXTERNAL FUN 
REAL Q,FC 
INTEGER N 
DIMENSION ALPHA(9) 
REAL XC(N) 
REAL X2,X3 
REAL THPLUS,THMNUS~TEMP,ETA,M,O,P,KB,NA,MW 
NN=O 
A= XC ( 1) 
NM=6 
IEXIT=O 

C CALL LIBRARY ROUTINE FOR THE CUBIC POLYNOMIAL FIT TO THE R•CURVE POINTS 
C A LISTING OF THIS IS GIVEN BELOW 

CALL E01LF1CNM,AA,AO,A,O,IEXIT> 
C=i.0/0 
8=1.0 
D045 K=1,9 
AZ=o.a 
BZ=1000000 
NN=NN+1 
HAXDIV=50 
EPS=1.0E-08 
ACC=O.O 
IFAIL=O 
CALL 001AGFCAZ,BZ,FUN,MAXDIV,EPS,ACC,ANS,ERROR,NOFUN,IFAIL) 
ALPHA(NNl=ANS 

45 CONTINUE 
S=(1.01CA•B•C>>•CC4.0/15.0)•C<ALPHAC7)+ALPHAC8l 

+ +ALPHAC9})1(ALPHAC8)•ALPHAC9l+ALPHA(q)•ALPHA 
+ (7)+ALPHA(7) 4 ALPHA(8)))+(1,Q/5,0) 4 (((ALPHA(2} 
+ +ALPHA(3)}1(ALPHA(4) 4 (84 B•ALPHA(2)+C•C•ALPHA(3) 
+ )))+C<ALPHAC3l+ALPHAC1))/(ALPHAC5)•(C 4 C•ALPHA(3) 
+ +A•A•ALPHA(1))))+((ALPHA(1)+ALPHA(2))/(ALPHA(6) 
+ •(A•A•ALPHAC1l+B•B•ALPHAC2)))))) 

M=CB•B+C•C>I<B•B•ALPHAC2l+C•C•ALPHAC3l) 
O=CC•C+A•A)/(C•C•ALPHA(3)+A•A•ALPHA(1)l 
P=CA 4 A+84 B)/{A•A•ALPHA(1)+B•B•ALPHA(2)) 
Z = ( ( A • 8 • C > I ( 12. 0 ) ) • ( C ( C 1 , 0 I t1) + ( 1. 0 I 0) + ( 1 • 0 lP 

+ ))-tf<1.0IH••z.o>+C1.0to••z.o•+<1.0tP••z.o>>­
+ ( ( 1. 0 I (M • 0) ) + ( 1. 0 I ( 0 4 P) ) + ( 1. 0 I ( P • M 
+ >>)>••o.S>l 

U = ( (A • B• Cl I ( 12. 0) ) • < ( C ( 1. 0 I M) + ( 1. 0 /0) + ( 1, 0 lP 
+ ))+(((1.01M••2.0)+{1,0I0••2.0)+(1,01?••2.0))• 
+ ( ( 1. 0 I (M • 0) ) + ( 1. 0 I ( O• P) ) + ( 1, 0 I ( P • M 
+ ))))••0.5)) 

V=&. o•u•s 
w=6.o•z•s 

C ENTER INTRINSIC VISCOSITY 
ETA=2,746 

C ENTER TEMPERATURE 
TEMP=293.0 

C ENTER MOLECULAR WEIGHT 
MW=71744.0 
KB=1.38046E-16 
NA=6.0248E23 
THPLUS=lNA•KB4 100.0/6,Q)•(TEMP/(ETA•MW)) 4 V 
THMNUS=CNA•KB 4 100.0/6,Q)•CTEMPICETA4 MW)) 4 W 
X2=XCC2l 
X3=XCC3J 
FC=O.O 
0075 1=1,101 
Q=CGAMMA(l)-(Q.01•X2•EXPC-6.Q•THPLUS•TC!l)+0.01 4 X3•EXP 

+ t-6.0•THMNUS•Ttllll) 4 •2.0 
FC=FC+Q 

75 CONTINUE 
RETURN 
END 



C LEICESTER UNIVERSITY CGMPUTER LIBRARY SUBROUTINE FOR A CUBIC 
C POLYNOMIAL FIT TO A SET OF POINTS <K. BROOLIE> c 

SUBROUTINE E01LF1<N,AX,AY,X,Y,IEXITl 
DIMENSION AX(N),AY(N) 

C CHECK DATA POINTS ARE MONOTONICALLY INCREASINo 
IE XI T=1 
DO 5 1=2,N 
IFCAXCI).LE.AXCI-1l)RETURN 

5 CONTINUE 
C CHECK THAT X IS A VALID POINT 

lE XI T=2 
IFCCAXC1)-X)•CAXCNJ-XJ.GT.O)RETURN 

C LOCATE INTERVAL IN WHICH X LIES -
C AXCJ-i).LT.X.LE.AX(J) 

IE XIT=O 
Y=AY(1) 
IFCX.EQ.AXt1llRETURN 
00 1D I=2,N 
J= I 
IFCX.LE.AX(I))GOTO 20 

10 CONTINUE 
20 CONTINUE 

Y=AY(J) 
IFCX.EQ.AX(JJ)RETURN 

C ESTIMATE SLOPE AT AX(J-1) 
CALL E011A(N,AX,AY,J-1,G1) 

C ESTIMATE SLOPE AT AX(J) 
CALL E011AtN,AX,AY,J,G2) 

C CONSTRUCT INTERPOLATING CUBIC POLYNOMIAL IN INTERVAL 
0= AY (J-1) 
C=G1 
H=AXCJ)-AX(J-1) 
S=CAYCJ)-AYCJ-1))/H 
B=t3.0 4 S-2.0•Gi-G2)/H 
A=CG1+G2-2.0•S)/H/H 

C EVALUATE POLYNOMIAL AT POINT 
H= X·AX (J-1) 
Y=(CA•H+Bl•H+C>•H+D 
RE TURN 
END 
SUBROUTINE E011ACN,AX,AY,J,G) 
DIMENSION AXCNl,AYCNJ 

C CALCULATE SLOPES ON EITHER SIDE OF DATA POINT 
JM1=J-1 
JP 1= J+1 
IFCJ.NE.1)G0 TO 20 

C END-POINT IS DIFFERENT 
H1=AXC2l-AXC1) 
S1=2.0•(AYC2>-AYC1))/H1-CAY(3)•AYC2))/(AXC3)-AXC2)) 
GO TO 30 

20 CONTINUE 
H 1 =A X C J ) -A X ( J -1 ) 
S1=<AY(J)•AY(JM1))/H1 

30 CONTINUE 
IFCJ.NE.NlGO TO 40 

C END-POINT IS DIFFERENT 

238. 

H2=AXUf) -AX<N-1) 
S2=2.0•(AY(Nl-AY(N-1))/H2-(AY(N-1)-AY(N-2l)/(AX(N-1)-AX(N-2ll 
GO TO 50 

40 CONTINUE 
H 2 =A X (JP 11 -A X ( J) 
S2=CAY<JP1>-AY(Jl)/H2 

50 CONTINUE 
S12=S1•sz 

C IF DATA IS NOT MONOTONIC SET SLOPE TO ZERO 
IFCS12.GT.O.OlGO TO 10 
G= 0. 0 
RETURN 

10 CONTINUE 
C WHEN DATA IS MONOTONIC USE WEIGHTED AVERAGE OF NORMAL SLOPES 

T 1 =2 • 0 • H 1 + H 2 
T2=H1+2.o•H2 
T=(T1•S2+T2•S1)/(3.0•tH1+H2)) 
G= S12/T 
RETURN 
END 



Results: 

PROTEIN 1, 0.1 OEG. ABSOLUTE ERROR 

FUNCTION VALUE ON EXIT IS .000399962998 
A/B= 1.48309 A+= .070458728408 A-= .048831535604 

FUNCTION VALUE ON EXIT IS .000399962998 
A/B= 1.48309 A+= .070458845275 A-= .043831534073 

FUNCTION VALUE ON EXIT IS .00399962998 
A/B= 1.48309 A+= .070458881237 A-= .0~8831534081 

BEST LEAST SQUARES VALUE = 
A I B = 

A+ = 
A- = 

.000399962998 
1.48309 
.0707 
.0488 

239. 

110NS, 100PTS 
STREAM3 
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Appendix VI Use of M , v and s to determine k r s 

Ro~e (1977) has shown that 

This can be rearranged to give 

An estimate for v /v is required, thus this equation would normally s 

be used as a check for internal consistency between values for sedimentation 

and viscosity parameters, since v / v = k / k • 
s Tl s 
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Appendix VII Comparison of the radius of gyration for a sphere of 

uniform mass with that for a sphere of the same mass but with a spherical 

cavity 

The radius of gyration, RG of a sphere of uniform mass and radius 

R is given by: 

R I R J 4'1Tr
4 

dr J 4'111'
2 

dr 

0 0 

= (i) 

(Tanford, p 306, 1961). The radius of gyration of a spherical shell of 

uniform mass with radius R
2 

and with a centrally placed spherical cavity 

of radius R1 is given by: 

= (ii) 

The results of electron microscopy and x-ray diffraction (Harrison, 

1959, rarrant, 1954, Kuff & Dalton, 1957, Labaw & Wycoff, 1957) suggest 

that apoferritin consists of twenty four sub-units, each of molecular 

weight 20,000, arranged in the form of a spherical shell of. diameter 

109 ~. If we take the radius of the hollow to be 18.5 ~' and the outer 

radius of the shell to be 54.5 R, RG is calculated using form~la (ii) to 

be 43.0 R. The radius of gyration, had the same mass been concentrated 

into a uniform sphere of density identical to the shell would have been 

41.6 ~'using formula (i); i.e. a discrepancy of -3.4% 
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Abstract from the Ph.O. Thesis "Modolling Biological Macromolecules in 

Solution: The Gcnoral Tri-axinl Ellipsoid'' by S. E. Hardinq (1980) 

Hydrodynamic shape functions for modelling biological macromolecules 

in solutibn in terms of an ellipsoid of revolution model are reviewed. 

Several new, hitherto unpublished shape functions whose experimental 

determination does not require knowledge of the swollen molecular volume 

in solution, are given. The limitations and inadequacies of this model 

are explained. The viscosity increment v for a dilute dispersion of tri-

axial ellipsoids of semi-axes a> b> c, under dominant Brownian motion is 

derived and an explicit expression in terms of a, b and c is given. 

Knowledge of the viscosity increment alone is not sufficient to uniquely 

determine the axial ratios (a/b, b/c) because (i) in order to determine 

v, knowledge of the swollen volume in solution is required and (ii) a 

particular value for v has a line solution of possible values for (a/b, 

b/c). (i) is dealt with by combining v with the tri-axial frictional 

ratio function P to give the tri-axial R function and (ii) by combining 

graphically the R line solution with o+ and o_ swelling independent line 

solutions. The experimental determination of o and o requires the 
+ 

resolution of a 2-term electric birefringence decay into its component 

relaxation times; current data analysis techniques are however not 

satisfactory for resolving close relaxation times (as for globular 

proteins) with the current experimental precision. It is however shown by 

e~haustive computer simulation that using a new R-ccnstrained non-

linear least squares iterative analysis this is now possible. It is 

thus concluded that the general tri-axial ellipsoid as a model for the 

gross conformation of biological macromolecules in solution can now be 

employed. 


