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(i1)

'. « . God, in the beginning form'd Matter in solid,

massy, hard, impenetrable, moveable particles . ., '

Newton, Opticks, 1717, Query 31.



(iii)

Abstract
Hydrodynamic shape functions for modelling biological macromolecules
in solution in terms of an elliﬁsoid of revolution model ars reviewed.
Several new, hitherto unpublished shape functions whose experimental
determination does not require knowledge of the swollen molscular volums
in solution, are given. The limitations and inadequacies of this model
arse explained. The viscosity increment v for a dilute dispersion of tri-
axial ellipsoids of semi-axes a> b> ¢, under dominant Brownian motion is
derived and an explicit expression in terms of a, b and c is given.
Knowledge of the viscosity increment alone is not sufficient to uniquely
determine the axial ratios (a/b, b/c) becauss (i) in order to determine
v, knowledge of the swollen volume in solution is required and (ii) a
particular value for v has a line solution of possible values for (a/b,
Q/c). (i) is dealt with by combining v with the tri-axial frictional
ratio function P to give the tri-axial R function and (ii) by combining
graphically the R line solution with 8, and §_ swelling independent line
solutions. The experimental detsrmination of 6+ and §_ requires the
resolution of a 2-term electric birefringence decay into its component
relaxation times; current data analysis techniques are however ﬁot
satisfactory for resolving close relaxation times (as for globular
proteins) with the current experimental precision. It is howsver shown by
exhaustive computer simulation that using a new R-constrained non-
linear least squares iterative analysis this is now possible. It is
thus concluded that the general tri-axial sllipsoid as a model for the
gross conformation of biological macromolecules in solution can now be

employed.
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Preface

Thers are two basic approaches for determining the gross
conformation of a biological macromoleculs in solution. One is to assume
a structure (generally an array of spheres of varying sizes) and then
calculate its hydrodynamic propsrties, for example the intrinsic
viscosity, sedimentation coefficient, translational diffusion coefficient,
and then sese how much these predicted properties differ from the
experimentally determined propertiss for the unknown structure. The
model is then successively changed or 'refined! until the predicted
propertiess converge to agree with the actual properties. This method has
been developed by Bloomfield, Garcia de la Torrs and co-workers
(Bloomfield et al, 1967, Garcia de la Torre & Bloomfield, 1977a,b,c, 1978,
Wilson & Bloomfield, 197%a,b, Garcia Bernal & Garcia de la Torre, 1980).
There is however a serious drawback in that the final calculated structure
may not be the only one which gives these properties.

The alternative approach is to calculats the structure directly from
the known hydrodynamic properties. Some general model must of course be
assumed, but although the models available from this approach are less
precise (the most general befors the commencement of this study being an
ellipsoid with two equal axes) it does not suffer from the uniqueness
problem. This approach waé first developed by Stokes (1851, 1880) in
tarms‘of a simple spherical model calculated from the translational
frictional property and the rotational frictional property and again for
a spherical model by Einstein (1906 - with a correction in 1911) from the
viscosity property. Although the current state of theorstical, experimental
and data analysis techniques allows use of the '2 equal axes' ellipsoid

("ellipsoid of revolution"), it is clear from a simple perusal of
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crystallographic mocdels that for many biological structures this model
is a very poor approximation to the true structure.

The aim of this thesis is thus twofold: the first is to review all
the current ellipsoid of revolution shape functions (in which some new,
hitherto unpublished functions ars given) and the second is to develop the
current theoretical and data analysis techniques to show that with current
experimental precision the restriction of two equal axes on the ellipsoid
model can now, in principle at least, be dispensed with to allow use of
the more general "tri-axial ellipsoid" model.

I would like to take this opportunity to express my deepest
gratitude to Or. A.J. Rowe for his expert guidance and supervision during
the course of this study.

I would also like to thank the following peopls for their help and
advice on,specific parts of this study: Dr. M.D. Dampier of the Mathematics
Department for helping me derive the viscosity increment for tri-axial
ellipsoids, Dr. K. Brodlie of the Computing Advisory Services for helping
me with the programming, particularly in the early stages; Drs. J. Rallison
& J. Hinch from Cambridge for helpful discussions on suspension rheoloby;
Professor B. Jennings and Drs, V. Morris and A. Foweracker of Brunel
University, Dr. Houssier of Liege University and Dr. J. Jost of the Union
0il Company, California for discussions and communications on electric
birefringence, Or. R. Dale of the Patterson Laboratoriss on the limitations
of fluorescencs depolarization, and Mr. A. Pancholi of this laboratory for
permission to Qse his viscosity data for hemoglobin.

I am grateful to the Science Research Council for a Research
Studentship and also Fisons Pharmaceuticals Limited for financial assistance

during this study.
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I would like to thank my friends and colleagues in this Department
for making my stay hers an enjoyable one, and finally my Mother for her

great patience whilst typing this manuscript.



CHAPTER 1

The Mass, Size and Shape of Macromolecules in

Solution: The Ellipsoid of Revolution Model



1.1. Macromolecular Structure in Solution

The concept of a unique structure for a biological macromolscule
in solution and in crystallized form has only relatively recently been
established beyond dispute. Prior to the work of Svedberg the view was
commonly taken (Sorensen, 1930) that proteins and other macromolecules
exist in solution not as unique structures but as dissociable complexes
containing possibly several components, that the equilibrium state was
dependent on circumstances (for example the composition of the solution)
and any components precipitated are not necessarily to bs identified with
those occurring in solution. Researchers were consequently surprised at
the ultracentrifuge results of Svedberg and his co-workers (Svedberg &
Pedersen, 1940) which strongly suggested the molecular homogeneity of
many protein systems. Thus, in striking contrast to the polydispsrsity
of many polymer systems (such as carbohydrates, rubber or polystyrene)
it was deduced that carefully prepared protein solutions contain one, or
at the most a few, different molecular spscies. This deduction was
derived mainly from the observation that boundary spreading observed in
the sedimentation of protein solutions could be identified with
separately measured translational diffusion coefficients. Bresler and
Talmud (1944) suggested however that a monodisperse protein really
contains a distribution of molecular weights with a sharply defined
maximum. This surmise is, on the other hand, strongly opposed by the
immunological propsrties of proteins (Alexander & Johnson, 1949)
together with the overwhslming evidence now available from protein
crystallography (Kendrew et al, 1958, Perutz st al, 1960, Blake st al,
1965, Feldman, 1976) which support the idea of discrets individual

structures.



X-ray crystallography is by far the most accurate method for
determining these structures. Unfortunately this technique is also the
most laborious, requiring several researchers working for a period of
months to determine the structure of a single globular protein. The
calculated structures are also of the 'fossilized' form of the
macromoleculs which may not necessarily be thse same in solution. There
are many techniques available, such as nuclear magnetic resonancs,
electron spin resonance, fluorescence and other spectroscopic techniques
which can give much detailed information about the dynamic properties of
localized regions of macromolecules in solution (for example, the active
sites of enzymes are being extensively studied). These techniques
cannot however give information as to the overall macromolecular mass,
size and shape. Ffor this one nesds to consider the hydrodynamic
properties of solutions of the macromolecule (although scattering
phenomena can also give useful information), which allows determination
of the molecular weight, simple 'hydrodynamically equivalent'
mathematical models for the structure and alsoc the size (including the

swelling due to solvent association) of the macromoleculs.

1.1.1. Mass

The 'inertial mass' of a body can be defined as the guantity of
matter in it, or as the ratio of the force applied to its acceleration
(Newton's 2nd Law of Motion). For a macromoleculs we conveniently
express the mass by the 'Molecular Weight' (Nr) which is defined as the
ratio of the mass of the macromolecule to that of one sixteenth of an
oxygen 016 atom, and is expressed in grams.

The mass of fluid displaced by a macromolecule in a solution will



equal the product of the volume displaced and the density of the solution
(MrG/NA)po, where M_ is the molecular weight, N, Avogadro's number, °_ the
solution density and v the partial specific volume of the macromolsculs,
i.s. the volumé increass when unit mass (generally one gram) of solute is
added to an infinite volume of the solvent at constant temperature and

pressure

<

[%]T’P (1)

The 'Archimedean mass' (i.e. ths buoyant mass) of a macromolecule

(Van Holde, 1971) in solution will equal the true mass minus the mass of
the fluid displaced:

Mr Mr - Mr -

(2)

The molecular weight of a macromolecular solute can be measured from many
methods, for example sedimentation velocity and translational diffusion,
osmosis, light or x-ray scattering, or most precisely from a sequence
analysis. A recent revisw of these methods is given by Rowe (1978).
The partial specific volume can be found eithsr from a concentration
determination followed by a densimstric analysis (Kratky et al, 1969,
1973), or for a protein, from Traubse's rule (Rows, 1978). This rule may

possibly alsoc be applicable to nucleic acids (Pearce et al, 1975).

1.1.2. Size
The size of a rigid macromolecule in solution will differ from that
in the anhydrous state because of associated solvent. The hydradynamic

or swollen specific volume Gs’ will now comprise of the partial specific



volume, v, the bound solvent that adheres to the hydrophilic particle
surface, and 'entrained' solvent which may be trapped in the various
cavities and indentations in the macromolecule (Figure 1). The ratio
Gs/ v is known as the 'swelling' of the macromolecule and is equal

to unity if the macromolecule is anhydrous and compact in solution.

The swollen specific volume can be simply related to the "effective"
hydrodynamic volume VB i.s. the swollen volume of a single macromolecule

in a homogeneous solution:

v M

(3)
1.1.3. Shaps

Owing to the aifficulties in developing theoretical relationships
between the shape of a macromolecule and experimentally measurabls
parameters, only rather simple 'hydrodynamically equivalent' models ars
currently available, the boundaries of which can be described by a simpls
mathematical equation; these ars (Figure 2) rods, discs and ellipsoids
of revolution (Tanford, 1961).

An sllipsoid of revolution is formed by rotating an ellipse either
about the major axis (prolate ellipsoid) or about the minor axis (oblats
ellipsoid) and thus has the necessary restriction that two of the three axses
must be equal. In the limit of large axial ratio, a prolate ellipsoid
(2 minor axes, 1 major) becomes a good approximation to a rod whilst an
oblate ellipsoid (2 major axes, 1 minor) becomes a good approximation to
a disc. Consequently, physical biochemists have tended to use the
ellipsoid of revolution model to detsrmine the hydrodynamically squivalent
shapse of a rigid macromolecule in solution.

It should be made clear at this stage that many macromolecules cannot

be modelled by any of these rigid structures as they have no prefsrred
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structure in solution: these 'randomly coiled' macromolecules can only be
represented by probability configurations. Many other macromolecules have
a well defined rigid structure but cannot be reasonably modelled, judging
from the x-ray models at least, by any ellipsoid. The L-shaped Transfer

RNA molecule is an outstanding example (Kim, 1974).

1.2. The Hydrodynamic Propertiss of a Macromolecular Sclution

The hydrodynamic properties of a macromolecular solution, which are
used to determine these structures, can be convenisntly divided into thres
broad classes:

(i) The viscosity property, which concerns the effect of the dissolved
macromoleculs on the bulk motion of the fluid when a shear gradient is
applied.

(ii) The translational frictional property, which concerns the movement

of the macromolecule through its solution when some form of external force
is applied. This can be a centrifugal field in a sedimentation expsriment
or a concsntration gradient (i.e. a gradient of chemical potential) in a
translational diffusion experiment.

(iii) The rotational frictional property, which concerns the disorienting
effect on the macromolecule by the local Brownian motion of the surrounding

solvent molscules.

1.3. The Viscosity Property of a Macromolscular Solution

The viscosity of a fluid is a measurs of its resistance to flow and may
¥*
be simply defined for a simple shearing flow (Figurs 3) in terms of the

shearing stress 0 and the shear rate G:

g =nG (4)

* For the equations describing a more general flow see Batchelor (1967).
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where n is known as the viscosity coefficient.” Ifn is a proportionality
constant independent of the shear rate the fluid is said to be Newtonian.
However, if the constituent molecules show preferred orientations, this
will alter the retarding forces betwsen adjacent fluid elements and hence
the internal friction or viscosity coefficient. This non-Newtonian
effect will occur in solutions containing highlyoasymmetric or seasily
deformabls molecules and at high shear rates (Batchelor, 1967); this forms
the basis of flow birefringence experiments (see 1.5.3). For characterizing
the macromolecule in solution we can set the conditions (i.e. very low shear
rates) so that the Newtonian condition prevails, whereas the chemical engineer
would be more interested in the general flow properties.

Using equation (4) we can simply relate the viscosity coefficient to
the energy dissipation during flow. Writing ¢ as a tangential forcs per unit
area (F/A) and the shear rate as the velocity gradient ( (dx/dt)/Ay ):

1

>|im
&l&

Multiplying both sides by G:

F dx

- 2
Ahydt " G

Since AAy is the volume of the slement under consideration, then
,%¥::> - sz
(5)
where <dw/dt> is thp mean energy dissipated per unit volume.
The effect of dissolved or suspended macromolecules which are assumed
to occupy a volume ¢ of fluid, is to disturb the streamlines of the
fluid motion and to reduce the volume of the fluid in which the same

overall deformation takes place. Thus the internal friction, the viscosity
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coefficient and hence the energy dissipated is increased. This increase

can be represented by:

dw _ A2 o2
> =6 Mm-n)=6 n vo

inc

(6)

where n is the viscosity coefficient of the solution and ng, that of the

solvent. Rewriting:

n=n (1+vé) (7)
Here v is defined as the viscosity increment and is a function of the

shape of the particle. Again, rewriting equation (7):

n = =
. 1= nsp = vé
where nsp is the specific viscosity. This squation only appliss to an

infinitely dilute sclution in which no solute-solute interactions occur.

For finite concentrations:

- 2 3
= + + *oiee cee
nsp vd + vié vod

or, replacing ¢ by ch,whera c is the concentration and US the swollen

specific volume:

n
=—SR= v+ 72 + V ;3.2
nred c \)Vs \)lvs C 2vs C + ) .« o0
where ]}ed is the reduced specific viscosity. As the concentration

approaches zero, N tends to a limiting value, known as the intrinsic

red

viscosity, [n] . This can thersfore be found by extrapolating a plot of-

n versus concentration to infinite dilution, and, if the swollen

red

specific volume, GS is known (section 1.1.2.), v can also be found:

N R
- VN, (8)
S
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An approximate value for V can be estimated for 'globular' proteins by
using the partial specific volume v and assuming that US/ v is ~1.4

for globular proteins. A full review of the experimental techniques for
determining the intrinsic viscaosity, [n] is given by Yang (1961).

Einstein (1906, 1911) was the first to determine an explicit value
for v for a specific particle shape, i.e. a sphere, by solving the
equations of motion for the flow using spherical harmonics. His
assumptions were:

(i) the particles are largs snough compared to the solvent molecules

so that the surrounding fluid can be regarded as a continuum and Euler's
(Batchelor, 1967) equations concerning the change of flow through specific
volume elements rather than the complicated Lagrange equations for

particle motion can be used,

(ii) the dimensions of the particles are however considered very much less
than the spatial variations in the velocity flow field,

(iii) the flow rates are small enough so that squared terms concerning the
velocity (and hence normal stress effects) can be neglected and that the
inertia or mass forces can be nsglected.

Using these assumptions and considering the increase in the averags
dissipation of energy per unit volume, he found that v = 2.5, and was
independent of particle size. This result has been confirmed experimentally
for polystyrene latex spheres by Cheng & Schachman (1955).

Jeffrey (1922) attempted to extend this theory to find v as a
function of axial ratio for sllipsoids of revelution, using ellipsoidal
harmonics to solve the equations for the fluid flow. Owing to the non-
isotropic nature of ellipsoids, the hydrodynamic torques on the ellipsoids

were shown to have two effects:
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(a) the first effect tends to make the particle rotate on average with

the local undisturbed angular velocity of the fluid,

(b) the second effect tends to orient the minor axis parallel to the flouw
for prolate ellipsoids and perpindicular to the flow for oblate ellipsoids.
As a result, the fluid is no longer isotropic and an ensrgy dissipation
analysis fails to give a unique value for the axial ratio for a given value
of v (Brenner, 1972a). However, if the particles are sufficiently

small the randomizing effect of the Brownian motion of the surrounding
solvent molecules counteracts the orientational tendancy of the
hydrodynamic torque (b) so that the particles are randomly oriented (Simha,
1940) and rotate on average with the local angular velocity of the fluid.
The solution is then statistically isotropic, allowing an energy
dissipation anélysis to be used to obtain an unambiguous salution for V

in terms of the axial ratio for prolate and oblate ellipsoids of revolution.
Simha (1940) was thus able to obtain a formula which has been shouwn to give

good agreement with experiment (Mehl, Oncley & Simha, 1940):

. 20.0" ; ) 30'(32 + b2) + 230"
v = + + =
5

ab® | 15p%4 13 ' 15b%
o] 0 [o]

8, '[2a°b%8" + (a® + b)B "]

(9)
where a,b,b are the three semi-axss of the ellipsoid (b>a for oblate and
b<a for prolate), and the aé gtc. which depend on a and b are elliptic
integrals given by Jeffrey (1922) (Appendix I). This relation could be
solved numerically for both cases and a table of values.for v as a

function of axial ratio was given by Mehl, Oncley & Simha (1940).
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~ The function is plotted in Figure 4. 1In the limit of large axial ratio

P (=b/a)

1/p2 1/p2 14
Y BOne/p-372)  Stm/p)-1/n) * 15 (Prolate) (10a)
v o~ %g-tan'l(p] (oblate)
(10b)

These formulae agree with the independent derivations of Kuhn & Kuhn
(1945) and Kirkwood (1967).

Simha apparently did not assume that the particles were on averagse
rotating with the local angular velocity of the fluid but with zero
angular velocity. This objection was raised by Saito (1951) who however
obtained exactly the same result (equation 9) despite assuming particles
on average rotating with the same local angular velocity of the fluid.
He suggested that Simha "probably made some error in his calculation”
without actually finding it. We will show in the next Chapter that Simha
had apparently arrived at the correct result by making the wrong assumption

and then missing out a whole series of terms in his calculation.

1.4. The Translational Frictional Property of Macromolscular Solutes

The ease with which a macromolecule moves through its solution under
the influence of an applied extesrnal force fisld will depend on its shape
and size. The coefficient generally used to describe this ease is the
frictional coefficient, f, defined as the ratio of the frictional force
to the terminal velocity of the particle. Stokes (1851) using spherical
“harmonics again and assumptions similar to Einstsein's (section 1.3)

derived the well-known relation between the frictional coefficient f and
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the radius R of a spherical particle:

where ﬂo is the viscosity of the solvent. Perrin (1936) and independently
Herzog, Illig and Kudar (1934) extended Stokes equation to cover the case

of general sllipsoidal particles:

£, i
fo (abcfﬁ da ; ,
[@% ) (%+A) (c*+N)]® (12)
)
where fo is the corresponding coefficient for a sphere of the same volume:
3V "

Y3 _ e

fO = 61rno(abc) = 61\"'[]0 [.Z—‘ﬂ']

(13)
\le is>the molecular swollen volume, defined in section 1.1.2. The integral
in squation (12) is elliptic and could only be solved for the speciél case

of ellipsoids of revolution. For prolate ellipsoids ( p = (b/a)<1):

2
£ _ 1-p7) 1
fo p%tan'1 (@2 -1)2 (14a)
and for oblate sllipsoids ( p = (b/a) >1)
2

£ _ p -1 1

£ pzhtan"1 @2-1)2
(14b)

and can easily bs plotted as a function of axial ratio (Figure 5). The
translational frictional ratio ﬂ/fo can be measured experimentally either
from a translational diffusion experiment, where the driving force is a
concentration gradient, or from ultracentrifugation, where the driving

force is a centrifugal field.



15.

1.4.1. Translational Diffusion

The translational diffusion coefficient, D, is related to the
frictional coefficient, f, at a particular particle concentration, c,

by the relation:

_ kT azny}
Dc'f{1+° 3¢ (5)

(van Holde, 1971), where Y is the 'activity coefficient', a measurs of the
concentration gradiesnt. Extrapolating Dc to infinite dilution gives ths

Einstein relation (Einstein 1905, Tanford, 1961):

Ne)

‘By assuming the concentration gradient to be in one direction only, and
applying Fick's laws (Tanford, 1961) for a two-component system, a simple
relation for finding D experimentally can be derived, in terms of the area
under, A, and the maximum height of, H, a concentration gradient (dc/dx)

versus distance (x) curve:

Thus a plot of (A/H)2 versus time, t, in a 'free diffusion of a sharp
boundary experiment' will give DC from the gradient (Tanford, 1961, van
Holde, 1971). Dc can be extrapolatsed to infinite dilution after repeating
the procedure for several solute concentratiocns. Unfortunately, few labor-
atories have the apparatus'required for an accurate determination of D using
this msthod. A fast and accurate method for determining diffusion coeffic-
ients has been developed using quasi-slastic laser light scattering (Chu,
1974, Cummins & Pike, 1973, Berne & Pecora, 1974b the fluctuations of solutse

particles from the equilibrium state are a function of the diffusion
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coefficients and with adequate instrumentation for signal analysis can be
time-resolved.
From equation (16), the frictional ratio can be found from the

translational diffusion coefficient using the relation

i-l_)g
f ° D
(o]

(17)
where D0 is the translational diffusion coefficient for a sphere of the

same volume and molecular weight:

B

D = kT _ kT 4
3Ve

(18)

1.4.2. Sedimentation Velocity

In a sedimentation velocity experiment, using an analytical
ultracentrifuge (van Holde, 1971), the macromoleculss quickly attain the

terminal velocity, whencse

M

L (1-73 2 - g 4
NA (1 v po)m T f it

where N is the solution density, r the distance from the centrs of
rotation of the solution/éolvent boundary, w the speed of rotation and

Nr(1 - G‘%)/NA the'buoyant mass' defined in section 1.1.1. Rearranging:

M. - Vo) o dr/de _
N, £ w’r ¢

(19)
where S, is the sedimentation coefficisnt at a particular soluts
concentration. In a sedimentation velocity expsriment the movement of
the boundary betwesn solution and solvent is monitored as a function of

time using the property of change of refractive index with changse in
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concentration, hence optical techniques such as scanning Schlisren optics
or ultra-violst absorption can be used (Lloyd, 1974). If we rearrange

and integrate squation (19) we find that

s = 1 Afnr
(o wZ At

thus by plotting logar versus t and knowing the angular velocityuw, s, can
be found from the gradient. The sedimentation coefficient S is a function
of solute concentration, thus is normally extrapolated to infinite dilution
to give the sedimentation coefficient, s, which is characteristic of any
macromolecular solute. From esquation (19) it can be seen that the

frictional ratio f/?o will be given by

S
o
S

£
F =
o

whsre sy is the sedimentation coefficient for a compact 'sphere of the same

molecular weight and volume. From equations (19) and (13):
- - 14
_ M1 -v po) _ M - Vpo) [4n}

o N, fo - N, 61rno 3VeJ (20a)

S

and thus the frictional ratio can be found, provided s, Nr, Vy p

o’ Mo
and the swollen molecular volume, \Ie are known:
o 1A
£ _ M a-v po){ [4n}
fO NA 61!’n S ‘ 3Ve
(20b)

1.5. The Rotational Frictional Property of Macromolscular Solutes

The ability of a macromolecule to rotate under the influence of the
local Brownian motion of the neighbouring solvent molecules will depend on

its size and shaps. By analogy with the translational frictional
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coefficient, we can define, for rotation about a specific particle axis,

a rotational frictional coefficient, Ci, as the torque which must be
applied to causs the particle to rotate with unit angular vslocity. For

a general ellipsoidal particle there will be thrse rotational frictional
coefficients corresponding to rotation about sach of the three axes; for
an sllipsoid of revolution there will be two, and for a spherical particle,
one. Each rotational frictional cosfficsint can be related to a

rotational diffusion constant by analogy with the Einstein relation (1905)

(equation 16):
B, = = (21)

whers ei is defined as the ratio of the mean squared angular displacement
of the axis to the time elapsed (Tanford, 1961). In a typical rotational
frictional experiment an initial orientation of the macromolecule is
produced by some external field. If, for example, the macromolecules in

a solution are oriented with their "a" axis parallel to an orienting field
and the field is suddenly removed, the macromolecules will then relax due
to the Brownian motion and tend to assume a random configuration by
rotating about the b and c axes. We therefore conveniently define a

rotational relaxation time in terms of the rotational diffusifon constants.

(eb, ec about the b,c axes respectively) by

(22a)

There will be similar relations describing relaxation of the b and c axes:

(22b,c)
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By analogy with the translational frictional case, Stokes (1880)
using spherical harmonic solutions of the equations of motion with

the boundary condition that the fluid in contact with the particle rotates
with the same angular velocity (i.e. the 'no-slip' condition) derived an
equation linking the rotational frictional coefficient with its |

radius, R:
- 3
4 8nno R

(23)
Edwardes (1893) extended this equation to the case of general ellipsoidai
particles. After a correction for a numerical error (Perrin, 1934),

these ars:

. 16mn, b2 + c?
= Z Z
a 3 b Bo + ey,
L= 16mn c2 + a?
= 7 7
b 3 c Yo + a @,
_ 16mn aZ + b?
e 3 c?y_ + a‘a

0 o (24)
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where again the @ etc. are elliptic integrals defined by Jeffrey (1922) -
see Appendix I. The expressions on the right hand side of equations (24)
are functions not only of shape but of volume as well; the corresponding

rotational frictional ratios however, are not.

2 % 2 b? + c2
> - 3 - Z Z
co ea 3abc b Bo+cyo
C_b_eo_ 2 c2 + a2
-3 - Z Z
%o eb 3abc cy°+aa°
Fe_fo 2 _a?.
T~ ©6_ 3abc a‘a_ + b4B
o c o o}

(25)
where & (=8 mn oabc) & 8 (=kT/C0) are the corresponding coefficients
for spheres of the same volume, an;:l can be found experimentally only

if the swollen molecular volume, \Ie is known:

Z =6n V 8 = kT/6r'a0 Ve

[o] o € ) (o] (zsa,b)
The corresponding rotational relaxation time ratios are:
la___2
% [, %]
8 8
) o
g—.b - 2
% [P, ’a
8 ]
Q_C 3 2
% [Pa,
5 © (27a)
- 0 o -

where 90 =1/2 eo. ' (27b)



21.

Unfortunatsely, as for the translational frictional coefficients, the
elliptic integrals could only be solved analytically for the special case
of ellipsoids of revolution of semi-axses a, b=c (Gans, 1928, Perrin, 1934).
Although numerically equivalent, Gans uses the less manageabls
'eccentricity' (e = 1 - b/a) rather than the axial ratio (p = b/a), hence
the equations of Perrin are generally used:

C 9 2
a__o0_2Q-p)
T, 8, 3 W5)

1-p

= en = e

(28a)

whers

Ss=(Q1 - p2)'5zn{[1 + (l-pZI%]/P}

for a prolate ellipsoid (p<1), and
-1 -1 1
S=(p? - 1)7% tan™ [(p2 - 1)?]

for an oblate ellipseoid (p>1).

The rotational diffusion ratio ei/e0 (i=a,b) can be related to expsrimental

parameters using equations (26b):

0. !
6n0 Veie.

1—
a5 " 1
eo kT

(28b)



22.

The corresponding rotational relaxation time ratios were also given by
Perrin (1934) but contained an error of sign involving S. The correct

result was given by Koenig (1975):

&2 % 20 -pM
7]

e, O 3p7[S(2-p%) - 1]

o [ea eb] T 3[p%S(1-2p?%) + 1]

°p 2 4(1 - p*)
)

—_— —

) 0
o] o

(29a)

Thess may be related to experimental parameters by combining equations

(26b, 27b):

o, 3nV, ‘i (29b)

All these functions (Ci/CO =0./8,, 91/90) are plotted as functions of
axial ratio in Figure 6. It should also be pointed out that, liks the
translational functions the rotational diffusion coefficients and
relaxation times ars functions of concentration (Riddiford & Jennings,
1967) and should be extrapolated to infinite dilution. The same is also
true for the harﬁonic mean relaxation time, the birefringence decay
constants and the fluoreseencs depolarisation relaxation times mentioned
below. The various experimental methods for determining all these shape

parameters will now be discussed.

1.5.1. Dielectric Dispersiaon

The capacity of a condenser filled with a solution of the macromolecule

is measured as a function of the applied sinusoidal voltage across it
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(Edsall, 1953). The 'dielectric increment' or increase in the dielsctric

constant, €, due to the presence of the solute is given by

(@]

Ae = € - € =ji-- =2

oC T, (30)
whers € is the dielectric constant of the solvent and C, C-D and CV
are the capacities of respectively, the solution, solvent and vacuo.
At sufficiently small frequencises, the dipolar macromolscules can keep
pace with the alternating field, and the dielsctric constant will remain
at its 'static' value. At sufficiently high fields, the rotation of the
macromoleculs about a particular axis will no longer follow the fisld and
its contribution, Ae_ to the dielectric constant is that of a non-polar
substancd (Oncley, 1940); thus over a certain critical range
characteristic of the size and shapes of the macromolecule, the dislectric
constant decreases as the frequency increases. The frequency corresponding
to the mid-point of the dispersion curve is known as the 'critical
frequency'. For a general particle with three rotational relaxation times

0,0 pb, 0o’ there will be three critical frequencies:

v, = 2nga 5oV = ZWQb 3oV, T ZWQC

(31)

For an ellipsoid of revolution there will be two (since = QC) ar ons,

®h
either if the dipolar axis is parallel to the rotation axis of symmstry
or for a spherical particle. Typical dielectric dispersion curves for

8llipsoids of revolution of various axial ratios are shown in Figure 7

(from Oncley, 1940)

Even in the most favourabls case, 8 = 450, resolution is poor for

axial ratios less than 9 (Squirs, 1978). Application of this method is
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also limited by the fact that, due to electrods polarization, only
solutions of low ionic strength can be used, thus restricting the use

to proteins of high solubility.

1.5.2. Electric Birefringence

Polarized light incident on a solution of macromolecules oriented by
an elctric field will be split into perpendicular components because the
refractive index will be different for directions parallel and
perpendicular to the electric dipole moment (Benoit, 1951). The solution
is then said to be birsfringsnt and the amount of birefringence will
depend on the nature and concentration of the macromolecules.

The decay due to Brownian motion of the birefringencs when the fisld
is suddenly switched off is most interesting since this will be
independent of the electric propertiss of the macromolecules (apart from
the initial amplitude of the decay) but dependent on their size and
asymmetry, assuming the solution to be homogeneous. The solution must
be rendered homogeneocus by, say, ultracentrifugation for removing larger
impurities, followed by gel filtration for fine purification. The number
of terms in the exponential decay will be dependent on the particle
asymmetry, assuming that the particles are small enough so that the
Rayleigh - Gans - Debye scattering theory applies (i.e. particle dimensions
less than »/20). Ridgeway (1966, 1968) has shown that a general particle

will have two relaxation times, T, T_or two decay constants, 6 (=1/6T+),

6 (=1/6 1'_):

(32)

where &n is the birefringence, N is the number density of particles in
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suspension, n, the refractive index of the solvent and A, complicated

2
expressions depending on the initial particle orientations and their
dielectric and diffusion properties. Unfortunately, although Ridgeway
provided relationships linking 6, with the size and shape of general
tri-axial ellipsoids (see Chapters 3 and 4), only one relaxation time

has been resclved from the experimental exponential decays for homogensous
solutions. Thus the method has been restricted to sllipsoids of revolution

(A_ = 0) for which Benoit (1951) had shown previously that, for an initial

birefringence ngs

(33)
assuming the electric dipole axis coincides with the rotational axis of

symmetry. For spherical particles therse would be no birsfringence.

1.5.3. Flow Birefringence

The aligning field can also be produced, if the macromolecules ars
highly asymmetric, by large flow velocity gradients in the annular space
between two concentric cylinders, one rotary and one stationary (van Holde,
1971, Squirs, 1978). The orientation of the macromolecules will again be
opposed by rotational Brownian motion, and for a constant shear rate, there
will be an equilibrium distribution of orientation states. Results for
sarly studies are discussed by Cerf and Scheraga (1952) and by Tanford
(1961). . This method has the advantage that the steady state birefringence
can now be used to derive shape parameters, since this will be independent
of the electric properties of the macromolecule. However, the method has the

serious disadvantage in that relaxation experiments are virtually impossible,
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and also the use is restricted to highly asymmetric molecules (Squire, 1978).

1.5.4. Fluorescence Depolarization

This method applies to those macromolecules that possess a fluorescent
group or a chromephore (Cantor & Tao, 1971). If an electron in a chromophore
is excited to a higher energy state by the absorption of radiation, then
instead of the snergy being dissipated non-radiatively in the form of heat
as it returns to the ground state, it loses only part of its energy as heat
as it returns to the lowest vibrational 1lsvel of the excited state, but then
re-radiates the rest. This will necessarily be of lower energy (hence longer
wavelength) than the incident radiation. This phenomenon is called
fluorescence.

If the macromolecule is irradiated with polarized light, and if, in the
10-8 to 10-7 seconds it takes for the energy to be re-radiated the
macromolecule has changed its orientation due to Brownian motion, there will
be a nast depolarization of the incident light. If the solution is
continuously irradiated then a steady state dspolarization will be reached
depending on the ratio of the fluorescence decay time, t* to the harmonic
mean of the three rotational relaxation times (equations 27), Th (Perrin,

1934):

SRR~

P is the polarization (i.e. the ratioc of the differsnce in intensitiss of

(34)

light polarized parallel and perpindicular to the incident beam to their sum),
Po is the intrinsic polarization of the fluorescence (the polarization that

would be observed if no rotation had occurred) and T, is defined by

h
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(35)

Tha harmonic mean relaxation time ratio Th/ T, can thus be plotted as a
function of axial ratio (Figure 8), whers T, is the corresponding

coefficient for a sphere of the same molecular weight and volume:

(36a)
Thus Th/ T, can be related to exparimental parameters by:
, zh.= kTTh
T, 3noVe
(36b)

Equation (34) is not particularly useful as it stands, since neither PD

nor Th are known. If T, is approximated by Th~Tg (i.e. = SnDVe/kT) then:

b9 b

(37)

If measurements are then made in solutions of varying viscosity (for
example by adding glycerol) and/or temperature, (1/P -1/3) can be

plotted against T/no, 1/P0 can be found from the intercept and hence T
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from the gradient, assuming T* can be found independently. A major
disadvantage of this method is that by adding glycerol or changing the
temperature the swelling due to solvation may be altered: alsc an
independent estimate for t* is required.

A more accurate method in principle is nanosecond fluorsscence
depolarization decay (Cantor & Tao, 1971). Here the solution is
irradiated with polarized light pulses of very short duration (~1ns).
The anisotropy, A is measured by determining the intensity of emission

polarized parallel to (I,) and perpindicular to (I;) the incident pulse:

Sy o+ 2L ’

(38)
For a rigid spherical macromolecule, the anisotropy decay is described

by a single exponential term (Jablonski, 1961)

-t/'ro
A(t) = Aoe
(39)
with © = n Ue/kT. For a rigid ellipsoid of revolution, Memming (1961)
and Wahl (1966) have shown that the anisotropy is a sum of three

exponential terms:

—t/'r1 -t/'r2 -t/t,
A(t) = ae *ae + age
(40)
where
_ _j;_ _ 1 _ 1
1%, * T27%5 +% > T3 T 25+ 40

b b a b a (41)
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The fluorsscence decay time ratios are plotted in Figure 9 whsere To is
the corresponding coefficient for a sphere of the same molecular weight

and volums:

nv 4mn_ab?
;=0 _ 0
0 kT 3kT

Thus the fluorescence anisotropy decay time ratios can be related to

experimental parameters by

T: kTt.
=) j .
To = v, (3=1,2,3)

(42)

The values of the component amplitudes a1, Uy O and hsence the

dominant relaxation time will depend on the angle betwseen the transition
moment of the chromophore to the rotation axis of symmetry of the sllipsoid
of revolution. Unfortunately, resolution of a multi-term exponential decay
into its components is notoriously difficult (Jost, 1978), even for
relaxation times differing in orders of magnitude; this is coupled to the
problem that the observed decay will be a convolution of the finite cut-off
time of the incident pulse, the fluorescence decay and the anisotropy decay.
There are also more serious problems:

(i) since the fluorescence itsself decays within about 10ns, only molecules
with very short relaxation times can be investigated,

(ii) most macromolecules do not contain a chromophoric group such as

tryptophan; thus one must be introducsd. This may significantly alter the

true conformation of the molecule,
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(iii) even if the macromolecule contains tryptophan, the decay is not
perfectly exponential, due to interferencs between the side chain and
the indole ring,

(iv) rotation of the chromophore, or of a fragment of the macromolecule
to which the chromophore is attached, with respect to the rest of the
macromolecule may occur: Munro et al (1979) have given evidence for

internal rotation of the tryptophan residue in Staphylococcus aursus

nucleasses B (Nr = 14,100) and Pseudomonas aeruginosa azurin (l"lr = 14,000).

1.6. Scattering

Absorption and hence fluorescence phenomena can only occur when the
frequency of the exciting radiation is the same as or near to that of an
allowed transition frequency of the molecule. However, at other wave-
lengths electro-optic interaction can still occur; the selectric vector
of the incident radiation polarizes the moleculs by attracting the
nuclear mass and repslling the elsctron clouds. The frequency of
oscillation of the incident radiation is the same as that of the induced
oscillating dipole; however, the waves emitted are by Huyghens principle
spherical and hence the radiation is scattered in all directions.

The scattering by a solution of macromoleculaes is most rigorously
analysed by considering the local concentration fluctuations of the
solution; howsver, if we consider the particle as small compared with the
wavelength of the incident light and the solution to be so dilute so that
each particle can be considered independently, relations can be derived
between particle shape in terms of the 'radius of gyration' (Tanford,
1961) and the scattering (van de Hulst, 1957). For small particles (<)\/20)

interference effects between radiation scattered by different parts of the
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macromolecule can be neglected, and the following relation between

molecular weight, Mr and the scattering can be derived:

He

- = @ + 2B.c

where c is the particle concentration, H is the scattering constant

( alfa, and the square of the refractive index increment, dn/dc),

B the second virial coefficient and T is a measurs of the relative
scattering perpindicular to the incident beam (i.e. the fraction of light
scattered (van Holde, 1971)). Hence if Hc/T is plotted versus
concentration, the molecular weight can in principle be determined from

the intercept. For large particles (d-)/20) destructive interference
occurs between light scattered from different parts of the macromoleculs.
Light scattered in the forward direction cannot however be subject to
destructive interferencs. Unfortunately this cannot be viewed directly,
but if the scattering is stu&ied over a rangs of angles it can be
extrapolated to the forward direction. This involves extrapolating to
zero-angle and to zero-concentration using the so-called Zimm plot

(Zimm, 1948, Stacey, 1956, Tanford, 1961). The slope of the c=0 line
gives the radius of gyration of the particle, RG’ i.e. the mean extansion
of mass from the centre of gravity. Far a sphere of radius R, RG = /?;@?R,
and for a large rod of length L, RG = L/VTE , thus light scattering can be
used to obtain information about conformation in solution, where particular
models for which R can be specified are applicable. Holtzer and Lowey
(1956) showed by this method that L = 1500 R if myosin could be reasonably
modelled by a long rod. Martin (1964) has shown that the radius of gyration
can be ielated to the axial ratio of the equivalent ellipsoid of

revolution provided that the swollen volume is known:
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(43a)
for a prolate ellipsoid and
o [3V (b -2
R e p + 2p
G 4n 5
(43b)

for an oblate ellipsoid.

An explicit relation relating R. to axial ratio alone can be found by

G

'reducing' it

% 4 2
V3 -3
(RG) - :ELK R. = 5p "+ 4p
red 3Ve. G 15
(44a)
for a prolate ellipsoid and
Y3 4 3
A -8
Ry . [4_] R = {P_.__ZL]
red SVe G 5
(44b)

for an oblats ellipsoid.
This is plotted in Figure 10.. Experimental determination of (RG)red
requires of course a knowledge of Ve'

The same analysis can be used for lasser light scattering as this
gives good time resolution for rapidly changing solutions (for example

aggregation of macromolecules, randomly coiled macromolecules). However

a major difficulty with all light scattering experiments is that all
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solutions, glassware stc., must be dust free; removal, without damage to
the biological solute, poses great difficulties. Due to diffraction
effects it is also difficult to measure scattering angles less than

about five degrees, thus a clear extrapolation to zero angle may not be
possible. Another major difficulty is that, since the resolving power
depends on (RG/A)Z, the method fails for macromolecules below about 100 g
(although mr may still be found). Reducing the wavelength of the
incident radiation doss not help (until down to the x-ray region) since
below 200nm most bioclogical materials absorb very strongly. A msthod of
low angle x-ray scattering (LAXR) has also been developed (Beeman et al,
1957). However, due to very strong diffraction and interference effects,
the scattering is almost entirely confined to a very narrow wavelength
range. 0On the other hand, it is possible to collimate the x-ray bsam much
better than a light beam, thus measurements can be made to a low enough
angle to a mors reasonable extrapolation to zero angle.

Deductions about the size and shape of macromolecules from scattering
information is generally restricted howsver, since any simple interpretation
of the radius of gyration must assume that the macromoleculs is homogeneous
(uniform electron density). If, therefore, the particle contains fluid
filled cavities or indentations or a monolayer of bound solvent, the
dimensions of aﬁy assumed model calculated from the RG will be incorrect.
This problem does not apply to the determination of the hydrodynamic shape
parameters considered previously since these phenomena do not depend on

intsractions with or properties of the interior of the macromolecules.

1.7. The Problem of Swelling due to Solvation

In order to determine from experimental data the ellipsoid
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of revolution shape functions mentioned so far, a knowledge of the

swelling due to solvation (i.e. Ve) is required:

v m [n]Mr
v No Ve (8)

fo NA61rno s 3VeJ (20b)
8; Ly 60V,
ST a1
o % kT (28b)
03 KT
—_= . i = a,b).
0, 3ngv, e; ) (29b)
Th kT
T - n Vv Th
) o'e (36b)
T, KT
Tery Ty G=L2,3)
) oe (42b)
13
(R.) _ | 4
6" red = 3Ve RG (44)

The first significant attempt at dealing with this problem was duse
to Oncley (1941) using a graphical analysis: If Ve is fixad then a singls
valus of the shape parameter being considsred will correspond to a single
value of the axial ratio. If, howevsr, \I8 is assumed to have a range of

possible values, then a single value of the shape parameter will have a
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'line solution' of possible values of the axial ratio. This is shown in
Figures 11a and 11b for the viscosity increment and translational
frictional coefficient. However, if line solutions for two or mors

of the different shape parameters are compared, then in principle a
unique value for the axial ratio and effective volume can be found from
the intersection. On the other hand, in practice these curves could only
be made to intersect by imposing large experimental errors on the data,
and in one case - pepsin - the curves do not cross at all (Figure 12).
Here Oncley uses as his abscissa the 'hydration factor' w, related to

the effective volume, "e by:

- - NA ve -
w = po(vS -v) = % W -V

A different approach would be to eliminate \le simultaneously by
combining any two of the shape parameters together. The effective volums
can then also be found by back substitution into the equations. This
naturally assumes, as does the Oncley approach, that the axial ratio and
the swelling ars the same for both types of experiment. Scheraga and
Mandelkern (1953) combined equations (8) and (20b) to produce a swelling-

independent function B (Figure 13):

“13
NA \)V3

f/fo

B:
(162007273

(45a)

or in terms of experimental paramsters, from

1
;- N, sln] /3“0

) Mr%%(l - \‘rpo)lool"3

(45b)
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where [n] is in ml/gm. Scheraga and Mandelkern also combined equation (8)

with equations (28b) to produce swelling independent §, and §  functions

(Figure 14), although in their original paper, only 5b is given:

§. = Eg-v = Ei—v z EESEEEEEfE
i Ci Bo NA kT

(46)

(i=a’b)

Scheraga (1961) later combined (20b) with (28b) to produce swelling

independent u_, 1, functions (Figure 15) although again only u, was given:

] 3 23 23
e T
. =T . = —
LB 6B "y 1) e WT
1 r [o] 1

(47)

(i=a’b)

Squire et al (1968) combined equation (20b) with (29b) to produce swelling

independent Yy and Yy functions:

(48)

(i=ayb)

Squire later (1970) combined (20b) with (36b) to give « swelling

independent ¥ function (Figure 16)

’ To Y3 £} 41r1'10]/3 Mr(l - Gpo) 1 1A
B H = B

(49)
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Plots of the Squire Yé and Yb parameters as functions of axial ratio are
given in Figure 16. A similar swelling indspendent function can be
obtained by combining the viscosity increment, equation (8) instead of

equation (20b) with (36b) (see Appendix II and Harding, 1980a):

[To] . 3n [nIM,

A= |2 ve 2T
" NA kT T
(s0)
(Figure 17). Also, by combining equation (8) instead of (20b) with
equation (29b), swelling independent €2 €, functions are produced
(Figurs 18):
€ =V 9_0 = Sno[n]Mr
i e NA kT o5
¢51)

(i=a, b)
By combining (8) with the fluorescence anisotropy relaxation times (42b)

are produced (Figure 19):

three new functions, Kys Kps Ko
) Ig._ no[n]Mr .
Kj =V 7. N, kT t. (J=1,293) (52)
j A j

Alternatively, combining equation (20b) with squation (42b)(Figure 20):
3 - 82 v
. (f] T, mr3(|~vpo) (J‘:lj;l/])
N - 2 .
j £ T 62N, RTa™)’s* T (53)
As far as the author is aware, the A, €9 Kj and Ej functions are new

and have not been published before. These functions are tabulated for
axial ratios between 1 and 10 (Table 1).
Martin (1964) eliminated the requirement of knowledge of the swollen

volume for scattering experiments by combining (44) simultaneously with
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either the translational frictional function (Figurs 21):

;
s 2382
Y = Rs o D = Rg Mo Np S 1 5 [Sp + 4p-
- kT ~ - T 6emr f 15
M.(1 - vp )

(prolate ellipsoid)

P__*+<p

£ (Y5, , %
]

1l o
= 6n f
(oblate ellipsoid)

or the viscosity increment (Figure 22):

1

3
___Rg 75 (5p”® 4 4p~B 1
S R 7R 15 L
[n] ™M A v

(prolate ellipsoid)

]

(oblate ellipsoid)

where p is the axial ratio defined in section 1.4.
The melecular covolume has also been given as a function of shape
and swollen volume by Nichol et al (1977) for prolate and

oblate ellipsoids

(54)
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where the ellipticity ¢ is related to the axial ratio by

for prolate ellipsoids (b<a), and

2
e = 1-a'_

H

for oblate ellipsoids (b>a). By 'reducing' U we obtain a function Ured

in terms of shaps alone:

U 3 1+ sin”’
Vred "N v = 2°*3% [1 *"‘”““‘EJ
A e e(l - €2)?
1 - g2 1l +¢ |
[1 YT Mr—e J (55)

The covolume U can he found from a sedimentation equilibrium experiment
in terms of the activity coefficient, as outlined by Nichol st al (1977)
although in order tﬁ determine Ured’ a knowledge of VB is still required.
Nichol et al (1977) however eliminated V, by solving equation (55)
simultaneocusly with the translational frictional ratio (equation 20b) to
produce the swelling independent ¢ function (not to be confused with the

Squire Y function)

3y 2 3

U £ 3 Un NA S
red Ll% 3 3

) N
162n2 (£ Mo (- ve )

w:

(56)
As seen from Figurs 23, ¥ has the advantage that no prior decision has
to be made as to whether the macromolecule is bstter modelled either by
a prolate or oblate ellipsoid. Unfortunately, for typical globular

macromolecules (small axial ratios), the papameter is still very
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sensitive to experimental error: this is clear from Nichol gt al's
results for ovalbumin, whose axial ratio they found to be 2.5:1 with
a standard error of 3. This is largely due to the large number of
terms on the right hand side of equation (56), several of them cubed.

U ,q can of course be combined with any of the equations (8), (20b),
(28b), (29b), (36b), (42b) to eliminate V,. For example, if (55) is

combined with the viscosity increment (8), a new swelling independent

function is produced (Figure 24) (Harding, 1980b):

red _ U
v [n]Mr

(57)
Values of the II function for various axial ratios are given in Table 1.
The results for hemoglobin are in excellent agreement with those found.

from x-ray crystallography (see Appendix III).

1.7.1. Hydrodynamic non-ideality: the R function

The viscosity, translational frictional and rotational parameters
considered so far are normally those extrapolated to zero concentration
in order to negate the effect of the net volume excluded by the particles
and solute-solute interaction. However, the nature of the concentration
dependencs of these parameters, particularly the sedimentation coefficient-
"s" and the reduced specific viscosity, ns c, has now been shown by Rows
(1977) to give valuable information as to the conformation and swelling
in solution and also an estimate of the "goodness of fit" of an ellipsoid
for the macromolecule in solution.

The variation of s and nsp/c with concentration can be represented
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by regression paramsters ks’ and kn:

S¢ = s(1 - ksc)

(58)
Nsp _ 59
—L=[n] @+ ko). (59)

whers kS and kn are, respectively, the sedimentation and viscosity
concentration regression coefficients. These approximate linear
equations are valid only for dilute solutions. A universal squation has
been derived by Rowe (see Appendix IW.) for all solute concentrations up

to ¢p, the critical packing fraction:

s £, n
S Fon_/ecloee
sp
(60a)
whers
ke - (20 - 1)(cv_/9.)°
gc = P s 'p
k9-2VSC+1
(60b)

where k=k_ (sedimentation) or k=kn (viscosity). This provides a more
accurate method for extrapolating to infinite dilution to obtain Eq:]
and "s", and also for finding ks and kn , from a given set of data, by

minimisings
_ - 12
{wi[si f(ks,vsgs:ci:¢p) ]}

(wi = weight) (61)
This procsdure is unstable if ks, VS and s (or the corresponding viscosity
parameters) ars all taken to bs indspendent variables. However, if we

assume VS = ks/4 for globular proteins, or assumse Us from the ratio US/ v
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= k;l/ké, where k;] and k; are the parameters found from the approximate
fit (equations 58 & 59), a stable fit may be found.

Rowe (1977) has shown that the swelling, Us/ vV , can be found from:

v k
S -_1
Y k
S
(62)
Therefore
M \75 M krl _
vV = T =, =,V
e Ny Ny kg
(63)

The value of Us/ v and hence V_ thus found is independent of any assumed
model for the protein. Sinee the determination of \l9 by back substitution
into the equations given at the beginning of 1.7. after the axial ratio has
been determined is dependent on the model chosen (i.e. an ellipsoid of
revolution), an estimate for the "goodness of fit" of an ellipsoid of
revolution is now available by comparing the model dsependent Ve with model
independent V_ (or, squivalently, Us or Us/ v).

This theory also provides a new shape function "R", which is

independent of particle swelling:

3

™

=
n
<N

3\
1 + [fi
o]

—
3
—

(64)
Wales & Van Holde (1954) had previously reported that the ratio kS/[n]
was some unknown function of shape and equal to 1.6 for spherical
particles; this agrees with that predicted by equation (44) (Figure 13).
R varies rather rapidly with axial ratio for ellipsoids, sven for low
axial ratio, and this function provides a precise method for

characterizing the axial ratio of relatively symmstrical particlss.
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Easides its greater sensitivity than the B function.(or the ¥ function),
R has several other advantages:

(1) unlike g computation of R does not require knowledge of the absolute
solute concentration (Rowe, 1977)

(2) less data is required to compute R and hencs the error in the final
function is minimized. As rotational parameters are generally very
difficult to determine, as will be svident from the earlisr parts of this
chapter, the R function is also to be preferred over swelling independent
functions involving thess. The R function is also to be preferred over
the scattering Y and o functions mainly because of the particle
homogeneity problem mentioned in section 1.6. The B function can still
however be useful, precisely because of its lack of variation for oblate
8llipsoids, in deciding whether the macromolscule is better modelled by
either a prolate or an oblate ellipsoid. Experimental values for 8 and
ks/[n] (2R) have been tabulated for a wide range of proteins by Creeth

& Knight (1965). Values of 8 below the theorstical minimum of 2.112 x 106
and above 1.6 for R may indicate that some proteins cannot be modelled by an
equivalent ellipsoid of revolution. This has been suggested for Bovine
serum albumin (BSA). A table of values of axial ratio calculatsed from
the R function for recent data, together with a comparison of their
'model dependent! estimates for GS/V with their 'model independent!
estimates to determine the 'goodness of fit' of an sllipsoid of

revolution, is given in Table 2.

1.8. Comment
Although a hydrodynamically squivalent ellipsoid of revolution
model can now be fitted with much greater precision to many rigid

macromolecules with the aid of the R function (and possibly the I function)
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the distinction still has to be made as to whether the macromoleculs
is better modelled either by a prolate or an oblate model. It is clear
from a psrusal of the crystallographic models of many globular proteins
such as carboxypeptidase, myoglobin and ribonuclease (Tabls 3) that in
many cases this is quite arbitrary and indeed in some cases is
impossible

It would be a significant step forward therefore if the restriction
of two equal axes on the ellipsoid were removed to allow use of the more
gensral tri-axial ellipsoid. However, either dus to the lack of the
theoretical relationships linking the éxial dimensions of the ellipsoid
with experimental parameters, or, sven if they are available, due to the
-lack of the necessary experimental precision, numerical inversion
procedurss or data analysis techniques, this model has not, to date, been
available., The aim of the rest of this thesis is to show that the gensral
tri-axial ellipsofd can now be successfully employed to model biological
macromolecules in solution. We will start by deriving the tri-axial

viscosity increment equation.



Table 1. Values of A, €0 1 Kq9 Koy Kgy Bgy Eo9 E4 and T for

prolate and oblate sllipsoids of rsvolution

45,

sl 2 3 4 5 6 7 8 9 10
Ap 2.500 2.490 2.692 3.071 3.575 4.177 4.862 5.624 6.457 7.359
Ao 2.500 2.356 2,187 2.070 1.989 1.931 1.887 1.854 1,827 1.805
ea,p 2,500 1,932 1.574 1.373 1.251 1.1717 1.115 1.075 1.044 1.020
Ea,a 2,500 2.522 2,343 2.202 2,102 2.029 1.974 1.931 1.896 1.868
Eb;p 2.500 2,768 3.250 3.920 4.737 5.679 6.736 7.899 9.164 10.528
eb,o 2,500 2.273 2.110 2.003 1.932 1.882 1.844 1,815 1.792 1.774
K1,p 2,500 1,932 1,574 1.373 1.251 1.171 1.115 1.075 1.044 1.020
K1,o 2,500 2.522 2.343 2.202 2.102 2.029 1.974. 1.931 1.896 1.868
kz’p 2.500 2.211 2,133 2,222 2,413 2,674 2.989 3.349 3,751 4.189
K2,0 2.500 2.439 2.265 2.136 2,045 1.980 1.930 1.892 1.862 1.837
Ks’g 2.500 3.047 3.809 4.769 5.899 7.182 8.609 10.174 11.871 13.698
KS’O 2.500 2,190 2.032 1.937 1,875 1.832 1,801 1.777 1.758 1,742
51’p 1.000 0.756 0.588 0.487 0.421 0,374 0.340 0,313 0,292 0.275
g1,0 1.000 1.000 0.920 0.860 0.818 0.787 0.763 0.745 0.731 0,719
Ez’p 1.000 0.865 0.797 0.788 0.811 0.854 0.911 0.976 1.051 1.129
Ez,o 1,000 0.967 0.890 0.834 0.796 0,768 0.747 0.731 0.718 0.707
Es;p 1.000 1.192 1,423 1,691 1.983 2.295 2,623 2.966 3.322 3.690
53’0 1.000 0.868 0.798 0,757 0.729 0.711 0,697 0.686 0.678 0.671
Hp 3.200 3,122 2,960 2.778 2,601 2,438 2,291 2,159 2,041 1.935
Ty 3,200 3.180 3.179 3.192 3,208 3.225 3.241 3.255 3.268 3.280
subscript p: prolats ellipsoid

o: oblate ellipsoid



Table 2.

Use of the R function to predict the conformation of various macromolecules in solution

in terms of an ellipsoid of revolution model

K K model model
Protein 8 n [nl R axial dependent independent Conclusion
ml/gm  ml/gm ml/gm ratio (VS/V) (VS/G)
1 * 4 * 4
Apoferritin 8 12 5.16 1,55 1.45 2.6 1.5 spherical
BSA2 5.5 7.7 2,75 2,0 —_— — . not a hydradynamic
: ellipsoid (cf B<
2.1)

Fibrinogen3 7 14 7.8 0.9 6.3+ 1.1* 2,0 prolate ellipsoid
~631. Agrees with
electron microscopy
(Hall & Slayter,

1959)
4 . * + * + .

C-protein 1" 15.4 12,6 0.,87 26.0,6.65' 0,9,2,12 1.4 oblate ellipsoid

' : ~ 2531
Myosin® 85 92 234 0,38 ot - 4,3t 1.1 not hydrodynamic
6 ' + ellipsoids of

Synthetic A-filaments  160.,8 366 176 0.9 19,5 16 2,3
cevolution

Collagsn eonicateo7

(1) Nr = 352,000 308 880 1252 0.246 . BD* 2.28* 2,85 prolate ~8031

(11) Nr = 330,000 291 756 1078 0,270 _64* 2.85* 2,60 prolate ~65:1

(1i1) m_ = 273,000 241 564 639 0,377 3ot 6.12% 2.34 not hydrodynamic

r Tt t ellipsoids of

(iv) m_ = 227,000 193 428 400 0,483 18 9.13 2,22 revolution

1
' prolate ellipsoid,

x _
oblate ellipsoid. Refs: 142 Rowe & Pancholi (unpub.), 3 Rowe & Mihalyi (unpub.,)

4 Dffer et al (1973), 5 Emes (1977), Emes & Rowe (1978a), 6 Emes (1977), Emes & Rowe (1978b),

7 from Nisihara & Doty (1958)

14
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Table 3. Crystallographic dimensions of some globular proteins

Protein Dimensions (R) Reference
Carboxypeptidase 50 x 42 x 38 Lipscomb (1971)

. Myoglobin 43 x 35 x 23 Kendrew gt al (1958)
Cytochrome c 25 x 25 x 35 Dickerson & Geiss (1969)
Lysosyme 45 x 30 x 30 Blake st al (1965)
Ribonuclease 38 x 28 x 22 Kartha et _al (1967)

Pre = albumin 70 x 55 x 50 Blake gt al (1978)
Hemoglobin 64 x 55 x 50 Perutz et al (1960)
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Figure 1. A macromolecule in solution is generally

swollen due to solvent association

Rod
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Figure 2. Mathematical models for macromolecules in solution
Oblate ellipsoid
_ b of revolution
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stress 0 — velocity V —
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'”ll" 1
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length of arrows are proportional to
the fluid velocity at that value of y

Figure 3. Shearing of a Newtonian

fluid between parallel

plates (from Van Holde,
1971)
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Axial Ratio

Figurs 4. Plot of the viscosity increment as a function of axial ratio

for ellipsoids of revolution
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Fig' ure S, Plot of the translational frictional ratio (the "Perrin

function") as: a function of axial ratio for sllipsoids

of revolution
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Fiqure 6., Plot of the rotational diffusion coefficient ratios and

rotational relaxation time ratiocs as a function of axial

ratio for ellipsoids of revolution




Figure 7. Dielectric dispersion curves for prolate ellipsoids of

revolution. Constant dipole angle ( 6= 450) and varying

axial ratio (a/b from 1 to 50). From Oncley (1940)
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Figure 8. Plot of the harmonic mean rotational relaxation time ratio

as a function of axial ratio for ellipsoids of revolution
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Figure 9, Plot of the fluorescence anisotropy relaxation time ratios as

a function of axial ratio for ellipsoids of revolution
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Figure 10. Plot of the 'reduced' radius of qyration as a function of

axial ratio for ellipscids of revolution



Figure 11, (a) Values of axial ratio and hydration as a function of

‘)(US/V) . Contour lines denote values of v(Vg/ V)

. (b) As above, but as a function of (f‘/f’D).(VS/'G)"/S.

Contour lines denote values of (f‘/t"‘D).(VS/TI')1/3

(from Oncley, 1941)
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Figure 12, Asymmetry and hydration (i,e, solvent association) of

certain protein molecules. (from Oncley, 1941)
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Fiqure 13. Plot of the Scheraga & Mandelkern 8 (x 10-5 and Rowe R functions

versus axial ratio for ellipsoids of reveolution
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Figure 22., Plot of a as a function of axial ratio for ellipsoids of revolution




O

1 JUoE 1 1

1 2 3 4 5 6 7 8 9
Axial Ratio

b
-
=

44

Fiqure 23, Plot of ¢ as a function of axial ratio for ellipsoids

of revolution




68.

Prolate

Axial Ratio

Figure 24. Plot of II as a function of axial ratio for ellipsoids

of revolution




CHAPTER 2

The Viscosity Increment for a Dilute, Newtonian

Suspension of Tri—axial Ellipsoids
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2+1. Hydrodynamic Forces and Brownian Motion

Although the forces and torques exerted upon a suspended particle
by a fluid ars all ultimately of molecular origin, it is convenient to
distinguish those that can be explained by continuum hydrodynamics from
thoss, due to molecular fluctuations, that give rise to Brownian motian.
If we first completely neglect the Brownian motion, it is clear that,
once a steady state has been attained, suspended particles free of any
external imposed impressed forces or torques must move in such a way that
the net hydrodynamic force and torque, TH acting upon them are zero,
i.s. TH = 0. |

Let us consider a steady simple shearing flow (section 1.3.), as in,
for sxample, a simple capillary or Ubbelohde viscometer experiment
(Yang, 1961). The motion of the fluid in the neighbourhood of any point
can be decomposed into three components; a translational velocity which
varies from point to point, an angular velocity which for this type of
flow is the same for all points, and a pure straining motion which again
is the same for all points. If now a single, neutrally bouyant, rigid
ellipsoidal particle is introduced the flow will be disturbed, although
at large distances from the ellipsoid the disturbance will tend to zero.
We shall assume that the motion of the ellipsoid and of the fluid is such
that the Reynold's number (Batchelor, 1967) is very small. Then it is
possible on the basis of work by Oberbeck (1876) and Jeffrey (1922) to
say what the hydrodynamic forces and torques acting upon the particle ars.
In particular it is known that the force will be zero when the translational
velocity of the particls is the same as the translational velocity of the
point in the undisturbed flow at which the point is suspended. The

situation for angular velocity is more complicatsd since two factors come
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into play; one gives a torque if the angular velocity of the particle

differs from the angular velocity defined by the undisturbed flow (or,

equivalently, by the actual flow at infinity), whilst the other gives

a torque if the principal axes of the sllipsoid have a different

orientation from the principal axss of the straining motion defined by

the undisturbed flow. Taken together, these mean that the angular

motion of the particle under zero hydrodynamic torque conditions is very

complicated (Chwang, 1975) and a complete solution for it is not known.
Turning to the Brownian motion which is in the nature of

fluctuations the simplest question ws can ask is what is the average

velocity and the average angular velocity of the partic;e? By the

average we mean in the first instance the time averags, although in practice

this will be assumed equal to the volume average taken over an ensemble over

a very large number of particles suspended in unit volume (see Batchelor,

1970 éor a detailed discussion of various methods of averaging). Ignoringv

for the moment the hydrodynamic forces, we can answer the question by

saying that on average the particle is at rest in ths local frame of

refarence defined by the undisturbed flow. In other words it is on averags

moving with the translational velocity of the point in the undisturbed flow

at which it is suspended and with the angular velocity defined by thse

undisturbed flow (Kuhn & Kuhn, 1945, Brinkman et al, 1949, Scheraga, 1955).,
When we come to consider the combined effect of the hydrodynamic forces

and the Brownian motion no problem arises with the translational motion

since both effects tend in the same direction - motion with the

translational velocity of the flow. But for the anéular motion the

situation is less simple, the two effects do not have the samé tendancy

and we must consider a range of possibilities depending on the relative

strengths of the two. This range is represented by the Peclet number
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o= Q/& (Brenner, 1972a) where G is the shear rate and 6 the mean
rotational diffusion coefficient. We shall only be considering the case
of overwhelming Brownian motion (a+0) in which the hydrodynamic effects
are completely negligible compared with the Brownian motion effects. Thus
we shall taks it that on average the particles are rotating with the local
angular velocity of the ambient flow; and we may additionally assume that
the orientation of the particles will be random. Tais last fact would not
be so if hydrodynamic forces and torques wers not negligible for they

introduce systematic metions and hence preferred orientations.

2,2, The Simha Model of Overwhelming Brownian Motion

We consider a homogensous dilute suspension of identical rigid

ellipsoids randomly oriented in an incompressible Newtonian fluid in
which they ars neutrally buoyant. The ambient flow is taken to be a
slow simpls shearing flow, whilst the suspended particles are taken to
be moving with the velocity and the angular velocity of the ambient flow
appropriate to the point at which each is suspended. Near sach particle
this ambient flow is digturbed but is still taken to be a slow (low
Reynold's number) flow so that we may apply the classical results of
Jeffrey (1922).

This model, which is taken to be appropriats for the case of over=-
whelming Brownian motion derives from Simha (1940) although in his original
work doubt is left about whether or not the particles are rotating with the
local angular velocity of the fluid. An attempt to clear this difficulty
is made below (section 2.6.). The key simplifying feature of the modsl
introduced by Simha is that it slimipates the compliqatad stgtistical

problem presented by the Brownian motion by substituting an assembly of
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particles all moving with the average motion. This, together with the
assumptions of diluteness and random orientation, allows us to compute
the effect of the suspended particles by simply summing their individual
effects. The isotropy of the particle distribution in the modsl means
that non-Newtonian behaviour will not appear, and also allows us to use
the energy dissipation method of computing the viscosity (Batchelor, 1970,
Brenner, 1972b, p93).

The simplifications of the model are achisved, however, at a prics.
Non-Newtonian and concentration depsndent sffects, which to the theorstical
rheologist are of the greatest interest, have been deliberately discarded;
and the model can say nothing about lesser degrees of Brownian motion.

In effect we shall be calculating the first term of a seriss; nevertheless
this is of great value to the molecular biologist who can deliberately
arrange the conditions of a viscosity experiment so that the model is
applicable:

(i) Giesekus (1962) has shown that non-Newtonian normal stress effects are
of 2nd order, and can thus be neglected for very low shear rates as in, for
example, a capillary viscometer (Yang, 1961);

(ii) Viscosity coefficients are normally extrapolated to 'infinite dilution'!
i.e. zero concentration-dependent sffects, to give the 'intrinsic viscosity'

(van Holde, 1971), relatsd to the viscosity increment by equation (8).

2.3. The Viscosity Increment

We let n be the viscosity measured in an experiment on a diluts
suspension of particles in a fluid of viscosity no' If ¢ is the volume
concentration - the total volume of the particles in unit volume of the

suspension - then the viscosity increment v is dsfined, from
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equation (7), by

:1'3

=1+ vé
(65)

whers, when V is independent of ¢, the linear despendsnce of q/ n0

upon ¢ gives the empirical charactseristic of a di;ute suspension.

From the theoretical point of view however, a dilute suspension is

one in which thers are no hydrodynamic interactions bstwsen the
particles and thus one in which each particle independently contributes
to the viscosity the same amount it would were it alone pressnt. This
contribution for a general ellipsoidal particle was first calculated by
Jeffrey (1922) using the simple energy dissipation analysis for averaging
over the particle ensemble (Batchelor, 1970) and it is a straightforward
matter to extend his results to cover the case of ellipsocids rotating
with the local angular velocity of the ambient flow as required by our -

model.

2.4, The Flow Velocity and Pressure

In order to calculate the additional dissipation of energy caused

by introducing thes particles into a given flow, we compars that given flow
with the consequent disturbed flow within a suitables sphere, S, of radius
R, centred on the particle position. UWe impose two requirsments upon S:

first, that it is small compared with the scale of spatial variations in

the given flow, and thus within it that flow is effectively given as

a linear variation of velocity with positionj secondly, that it is large

compared with the size of the particle, and thus that the disturbed flow

will not appreciably differ from the given flow by the time the surface
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of S is reached. Naturally, theses requirements can only be met when
the particls is, as we have assumed, very much smaller than the scale
of spatial variations in the velocity field of the given flow.

For our purposes then, the disturbed flow may be taken to be the
flow of an incompressible fluid in the region between the rotating
sllipsoidal surface of the particle and the concentric spherical surface
S. On the inner surface we impose the usual no-slip boundary condition,
whilst on S we require the velocity fisld to be esqual to its value in
the original flow. We give the velocity components of the two flows with
respect to rectangular Cartesian axes fixed in the rotating particle so

that its ellipsoidal surface will always be given by

m’\{ ><N
+
e
+
(e] 4 NN
1
—

(66)

The undisturbed flow is given, within S, by

u; = gij xj

whers gij are the components of the velocity gradient tensor which are
by our assumptions, independent of position within S. In this equation
and in subsequent equations, the indices range over the values 1,2,3 and
the summation convention is used whereby when an index is repsated within
a term a summation is indicated over the three values of that indsx.

Using ellipsoidal harmonics, Jeffrey was able to give the flow
velocity and pressure in the region of S for R large, but finite. He gives
the result undsr the assumption that the angular velocity is such that no

net hydrodynamic torque acts on it, i.s. hydrodynamic effects alone affect

the motion of the particle. In order to consider the Brownian motion we

follow Simha in dropping this restriction whence the flow near S5 is found,
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to leading order, to be

2
= 0 - 4ex. [J__L]+ﬂ [_I__z_]
1 1 9X. 3 5

i R

~

(67)

In this equation, ¢ = Aijxixj’ whilst the Aij themselves are coefficients
independent of position but dependsnt on the gij and the components,mi
of the angular velocity of the particle; their explicit values are given
by Jeffrey (see Table 4 for the relationship betwesen his notation and ours).
We consider the values of the Aij below.

On the assumption that terms of sscond order in the velocity may be
neglected and that the particle spins are of the same order as the fluid

velocitiss, the dynamical squation for the fluid reduces to

nv2u = vp

(68)
from which the pressure, p, can be found. For the disturbed flow we find

the pressure on S to bse

_S50n¢

P=D
RS> (69)

(o]

where Po is a constant.

2.,5. The Dissipation of Energy

Assuming a steady state, we can compare the rates of dissipation
of energy within S in the two flows by comparing the corrssponding rates
for working of the viscous stresses on the surface S. This rate of

working, dW/dt, is given by

- o
It J uy 95 T3 ds (70)
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whers

du ou.

0., =-p 3. +n |—=Ls+—1

1] 1] 9X. 3X.
1 J (71)

fi
nj =X
(72)
are the components of the unit normal to S.
For the disturbed flow we find
aw_ 8 3, 32
t -3 "™23;35R T A e
(73)

where the a5 = é(gij + g%i) are the components of the local distortion
in the undisturbed flow. On the other hand, the wsll-known formula of

Stokes gives, for the undisturbed flow

&

= % m™a..a,.R
1] ¥
(74)
We thus obtain an expression for A , the extra dissipation of energy when

the particle is present, namely

32
A = — .
3 TrnAiJgij 5)

If we split gij into its symmetric and skew-symmetric parts, we have

(76)
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whers gij = %(gij - gji)’ Jeffrey, as a consequence of the dynamical
assumption mentioned above, was working with symmetrical Aij’ and so
naturally obtained only the first term in our expression for A; and

it appears that Simha, although he removed the restriction on A,
failed to find the second term. Ths consequsnce of this for his

calculation will now be discussed.

2.6. The Particle Rotation

Simha takes the average angular velocity to be zero and on this
basis calculatss his well known formula for v (equation 9), a formula
which has been shown to give good agresment with observations (Mehl, Oncley
& Simha, 1940, Tanford, 1961). A few ysars later, Saito (1951) using the
assumption that the particles should rotate on average with the local
undisturbed rotation of the fluid obtained precisely the same result; he
suggested that Simha "has committed some errors in calculation" but does

not investigate the matter further. Using Jeffrey's notation (Table 4)

we have:
Aijaij = (Ag + Bb + Cc) + (F + F)f + (G + G)g + (H + H')h
| (77)
Aijgij= (F' - F)¢ + (G' - G)n + (H' -~ H)Z
(78)

whilst the valuess of, for examples, F and F' are

2 9

' 2 2
20} (b%8_ + c?v)

(79)
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(80)

In Jeffrey's paper the ab' etc. in the numerators of the above sxpressions
ars misprinted as oy etc.

We can thus deduce that

zaﬂ
— £2+ (0% + 2)E2 + (b2 - c2)(E -w)f
(F+ F)f = =2
2(b%8 ) + c2v,)
(81)
. (b2 - c2)fE + (b2 + ) (€ - w,)E
(F-F)gs= -
2(b%8 + c2y)
(82)

where we have utilised the various relations between agr Bg etc. that
are given by Jeffrey.

Now Simha apparently did not find the Aij Eij term and thus would
not have had terms like (F' - F ) in his calculation. Ue can ses,

however, that taking w, = 0 as he apparently did, in the (F + F’)ﬁ_term

1
gives the same fipal result as taking Wy = £ in the sum of the (F + F’)ﬁ
and the (F’- F )y terms. Since the same argument applies to the other
terms we conclude that Simha's formula (equation 9) although incorresct for
wy = 0 on account of the omission of the term Aij Eij’ is, by a lucky
coincidencs, actually correct if wy = €y Wy =Ny g =L

It is worth noting that if one does taks w, = 0 and includes the

1

Aij gij term, one obtains for spherical particles v = 4, in contrast to

Einsteins (1906, 1911) valus of 2.5. The resultv = 4 fcrtni = 0 agress
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with that previously found by Brenner (1970). 1In all that follows we

take the assumption that w, = £ stc. i.e. that the particles are on

1

average rotating with the local angular velocity of the fluid.

2.7. The Calculation of v

To complete our calculation we take, as befors, the given flow to be
locally a simple shearing flow with shear rate G. The principal axes of
any particular particle will not in gensral coincide with the shear axes
but, using the Euler angles to describe relative orisentation of the
two sets of axes, we can calculate the components gij relative to the
particle axes in terms of G and the Euler angles 6, ¢ and V. Hence we
can obtain A for that particle as a function of these variablesj ths
details can be found at least for a special case in Jeffrey's paper (1922).
Since Jeffrey's calculations show that the Aij are linear in the gij's,
it follows that A will involve G2 as a factor and hence that the total
dissipation will be of ths form nG2 as originally asserted.

To find the total dissipation in unit volume we average the effects

of the N particles on the assumption that they are randomly oriented,

obtaining
2m 2T T
=X L A(B in6d
= > P (6,6,¥) sin6de d¢ ¢ dy
Q 00

(83)

The integrations yield

Z=% mn NG Z

(84)
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where

"
. o1 o+ Bo + Yo
30 B" Yll . Yl all a" 1"
o o o o o
+ X Bo ¥ Yo + Yo * 0‘o + 0to * Bo
40 0.' 23 2 o2 2 o2 2
Y B o _
o(b o te o) o(C Yo ta o) Yo(a 0‘o + b Bo)
(85)
Thus v is determined from
nwa? = n\)N% Tabdd? = %— mnNG2 Z
(86)
as
v = SZ_
abc
(87)
Hence on substituting for Z we obtain
4 " 8" "
o
- 1 { ( 0 * 0 * Yo) + 1 [ Bo * Yo .
abc " " " on " on 5 ' 2 2
15(80Y0-+Y0a0 * aoBo) Lao(b Bo te Yo)
Yo t % . 8o * Bo } }
1ra2 2 ) 2
Bo(c2y, *+ a%a)) vl (a%a  + b28 ) (8)

wherse a,b,c are the semi-axes, and the elliptic integrals e stc. now

depend on a,b and c (Appendix I).
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The formula reduces to the Simha-Saito formula (equation 9) when
b=c, and gives Einstein's value of 2.5 when a=b=c. It may be of
interest to note that had we followed Simha in taking w; = 0 then Z

would have contained the following term in addition to those given above,

1 b2 + ¢2 c2 + a2 a2 + b2

24 ¥ *
2g 4 c2 2y 4+ a2 2 2
b<8 Yo Y, a‘o a @ + b Bo

o}

(¢}

(89)
It is the presence of this added term that gives the value of v = 4
for spherss rather than the Einstein value v = 2.5 which is obtained
when it is absent. The value of 2.5 has besn confirmed sxperimentally

for polystyrene latex spheres by Cheng & Schachman (1955).

2.8, Discussion
An equation similar to (88) was given by Batchelor (1970) on the
assumption that the suspended particles, although randomly oriented,

moved so that zero hydrodynamic torque acted upon them. His result was

1" 17 13}
1 4(mo * Bo * Yo)

2 1
v = + —_————————
abc "o 1" n " n 5 [ Y 2 2
15(80\(0 yge, t aOBo) a (b% + c)

1 . 1
B (c2 + a?) y'(a? + b2
o (o} ) (90)

when written in the same notation as we have used before. It does naot
seem likely that (90) would be applicable to the case of overwhelming
Brownian motion since one would need to include the Brownian torquse

TB as well as the purely hydrodynamic torque, TH in satisfying the
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condition of zero net torqus, i.s.

(91)
Random orientation alone is not a sufficient characterisation of
overwhelming Brownian motion since one also needs to describe correctly
the distribution of the angular velocity. Both (88) and (90) ars

obtained by methods that avoid the full statistical treatment of the
angular motion but as explained earlier we consider the simplifisd model
underlying (88) to be the appropriate one for overwhelming Brownian motion.
In effect, formula (88) generalises the Simha-Saito equation for
ellipsoids of revolution, whilst (90) gensralises formulis of Jeffrey for
ellipsoids of revolution. In general the two formulae give quite different
results as can be ssen from Figure 25 and Table 5, both of which are for
convenience restricted to the case of ellipsoids of revolution. Since (90)
does not reduce to the classical Simha-Saito formula the classic
experimental svidence on macromolecules which favours the latter (Mehl, et
al, 1940, Lauffer, 1942) strengthens the view that (90) is incorrect. More
recent experimental svidence is given by Tanford (1961) who allows for
particle swelling due to solvation and Table 6 extends his tables to
include a comparison with the Jeffrey-Batchelor equation. The tabls
compares the axial ratio inferred from translational diffusion experiments
with that inferred from viscometric experiments on the basis first of the
Simha-Saito equation and secondly of the Jeffrsy-Batchelor equation.
Tanford (1961) says "within the accuracy of the measurements, the
description of globular proteins in aqueous solution provided by the

(Simha-Saito) equation is identical with that provided by (translational)
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diffusion", On the other hané we see that the Jeffrey-Batchelor equation
gives values of the axial ratic that are consistently too high and
outside the expected experimental error bounds. We conclude that (90)

is not applicable to the cases of interest to the molecular biologist.

As previously stated, we have avoided the full statistical treatment
of the angular motion but have made the assumption of particles being on
average at rest in the local referential frame in which they are
suspended to be appropriate for the case of overwhelming Brownian motion.
Although this has been rigorously praoved only for axisymmetric particles
(Brenner, 1972), we have made the assumption that it will be a good
approximation for general tri-axial ellipsoids, at least for low axial
ratios.

Since the derivation of equation (88) a general analysis using the
full statistical treatment of the angular motion has been given by
Rallison (1978). His results for the case of overwhelming Brownian motion
show that to first—order in the shear rate the non-Newtonian stress effects
vanish, which is consistent with our assumption of Newtonian behaviour for
very low shear rates. He also gives an expression for v correct to first-
order in the shear rate, although not in the form of a simple formula like
equation (88), but by using numerical methods Rallison is able to give a
plot of v for various axial ratios; the results are clearly very close to
those obtained from equation (88) = compare my Figure 26 with Rallison's
Figure 7. However, an exact comparison (personal communication by
J.M. Rallison) shows a very slight discrepancy between values from
equation (88) and Rallison's procedure, although no difference at lsvels
likely to be experimentally significant for globular particles (i.e.

a/b: 1.0 - 3.0, b/c: 1.0 - 3.,0) is observed, and the discrepancy is not
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apparent within four significant figures for a/bs 1.0 — 2.0, b/c:
1.0 =+ 2,0, The values given in Table 7 are therefore definitivse.

It has been indicated to us (J.M. Rallison, H. Brenner, private
communications of unpublished work) that our formula requires the
addition of a very small term related to the deviation from our assﬁmed
condition of non-axisymmetric particles rotating on average with the

local angular velocity of the fluid:

2
[ 3.2 _ bz . b - C2_ . C2 - a2 ]
7 Vi HZ Z YA <
! aZa ~+ b78  bZB+ cZy iy + a‘al _
Sabc a2 + b2 b2 + ¢2 c2 + a2 (88b)
aZq + b28 Y cly * c2y + a‘a -
0 o 0 o ° 0

The numerical results show our approximation to be extremely accurats
for 'globular' particles, as noted above, but for certain particles of
higher asymmetry calculations suggest that deviations of up to 1% in v
can arise, It is clear though that our formula provides a good
approximation over the entire molecular range. Of particular interest
is the fact that the discrepancy tends asymptotically to zero for
ellipsoids whose axes are all substantially different in length (i.e.

a>»b>c - "tapes").



Table 4.

The relation between the notation used in this study

and that used by Jeffrey (1922)

(Aij) = A H G'
H' B F
G F! C s
a..) = a h
( lJ) n n '%
h b f
o a ~
g f c )
~ n A
(glj) = 0 -c n
4 0 -C

-n € 0

85.



Table 5

v for an ellipsoid of revolution calculated from the Simha = Saito

equation and the Batchelor - Jeffrey equation

Axial Ratio

1.0
2.0

3.0

5.0
6.0
7.0
8.0
9.0

10.0

Prolate Model

2,500
2,908
J3.685
4,663
5,806
7.099
8,533
10.103
11,804

13.634

2,500
2,583
2,786
3,077
3,434
3.844
4,302
4,804
5,346

5.928

Oblate Model

2,500
2.854
3,431
4,089
4,708
5,367
6,032
6.700
7.371

8,043

2.500
2.610
2,868
3,198
3563
3.947
4,342
4,744
5.151

5.562

86.



Table 6

87.

Extension of Tanford's Tables ("Physical Chemistry of Macromolecules",

1961, Wiley & Sons, p 359 and 395) to compare the axial ratios

predicted by the Simha=Saito equation and the Batchelor=Jeffrey

equation, using a 0.2 grams/gram solvation for four globular proteins.

Prolate

P s ]

Diffusion S=5

a a

v A
Ribonuclease 3.6 2.1 2.9
B=lactoglobulin 3.6 3.7 2.9
Serum albumin 4,0 4,9 Je3

Hemoglobin 3.8 2,1 3.1

B-J

5.5
5.5
6.5

6.0

Oblate

Diffusion S=S

a/b

2.2
4,0
5.0

2,2

a/b

J.4
3.4
4.0

3.6

B=J

5.3

5.3

6.3

5.8



Table 7. Values of v as a function of (a/b, b/c) for a general tri-axial ellipsoid (a>bdc)

Prolate
Ellipsoid

-
.
o

1.1

1.2

1.3

(on the basis of equation 88)

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Oblate Ellipsoid

1.1
1.2
1.3
1.4
1.5
1.6

1.7

1.9

2.0

2,500
2,507
2,525
2,553
2.588
2,630
2,677
2.729
2.785
2.844

2,908

2,507
2,520
2,545
2,579
2,621
2,668
2,722
2,779
2,842
2,908

2.977

2,524
2,544
2,575
2.615
2,662
2,716
2,775
2f839
2,907
2,978

3,054

2,550
2,576
2.612
2,658
2.711
2,770
2,834
2.904
2,978
3,055

3,137

2.583
2,614
2.655
2,706
2,764
2.829
2,899
2.974

3.053

3,137

3.224

2.620
2,656
2,703
2,579
2,822
2,892
2,967
3,047

3.132

3,222

3.315

2.661
2,702
2,754
2,815
2,883
2,958
3.039
3,124

3.215

3.310

3.408

2.706

2.751

2,808

2,874

2,947

3.027

3.113

3.204

3.300

3.400

3.504

2,753
2,803
2.865
2,835
3,013
3,098
3.189
3,285
3.386
3.492

3,602

2,803
2,857
2.923
2,998
3,081
3f171
3,267
37368
3.475
37586

3.702

2,854
2.913
2.983
3.063
3.151
34245
3.346
37453

3.565

3.681

3,803

‘88
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Fiqure 25, A comparison of the values of v as a function of axial ratio

predicted by the Simha - Saito and Batchelor - Jeffrey equations

for ellipsoids of revolution
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Figure 26. Plot of v as a function of a/b when b/c = 10.0 (a>b>c) determined

from equation (88). This plot agrees very closely with that from

the numerical procedure of Rallison (Figure 7, 1978)

N.B., Rallison has c>a>b



CHAPTER 3

Numerical Inversion Procedures:

The Problem of the Line Solution
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3.1 Solution of the Elliptic Integrals

In order to determine the viscosity increment v that corresponds
to a particular value of the axial ratios a/b, b/c, the slliptic
integrals o etc. (Appendix I) must be solved. Analytic solutions
are not possible but the integrals can be solved numerically with the
aid of a high speed computer. The subroutine used for this was the
United Kingdom NAG Mk. 6 routine DO1AGF which evaluates a definite

integral of the form

B
I-= f f(t)dt

A
where A=0, using an interval subdivision strategy developed by 0Oliver
(1972) and based on Clenshaw-Curtis quadrature (1960). Since infinity
cannot be used as the upper limit, a finite value of B must be spsecified.
However, a satisfactory value for B can be determined by using
successively higher values until the value of the integral converges to
a limiting valuej in this case a value for B of 106 was sufficient. Higher
values are also suitable although evaluation of the intsgral takes longer.
The number of interval subdivisions is also specifiable by the user; the
maximum number of S0 was used. The routine also estimates the error on
the integrals (0'Hara & Smith, 1958). If this error is greater than the
maximum allowable error specifiable by the user the routine will stop and
print an error message. The maximum allowed absclute error specified was
1.0 x 1078 (=.001%). The subroutine for evaluating the elliptic
integrals can easily be incorporated into a program for evaluating v for

a given value of (a/b, b/c). This is given in Appendix V as Program 1.
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302, Application to the Crystallographic Dimensions of Myoglobinj;

Numerical Inversion

The result can be applied to crystallographic data available for
myoglobin. Kendrew gt al (1958) gave the dimensions of sperm whals
myoglobin to be 43 x 35 x 23 R (Table 3)., This corresponds to a general
tri-axial ellipsoid of semi-axes a = 21,5, b = 1¥.5 and ¢ = 11,5 g, and
axial ratios a/b = 1.23, b/c = 1.52, Using Program 1 (Appendix V) this
corresponds to a viscosity increment of 2,729. The predicted intrinsic

viscosity can then be found from equation (8):

[n] = vv_ =

(92)
where (VS/V) is the swelling ratio (section 1.7.1)., By fitting data
of reduced specific viscosity against concentration (Table 8, Figure 27)
I have determined the intrinsic viscosity of myoglobin to be (3.25 x .05)
ml/gm, using a weighted least squares analysis (straight line fit).
The concentrations were determined using a high precision auto density
meter (Kratky st al, 1969, 1973) together with a v for myoglobin of .741

ml/gm (Theorell, 1934):

c. = -————pi _ po
1. (93)
[0}

where ° is the solvent density and pi the solute densities., Use of the
auto density meter, which is based on the time taken to perform a

preset number of oscillations of a U~tube filled with the sample has

the added advantage that, besides being very accurate, only small amounts
of fluid ars required ( ~1 ml), The experimental arrangement used for

the viscosity and densimetric work is illustrated in Figure 28, The
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platinum resistance thermometer shown was used to monitor the sample
temperatures to accuracies of ,005 degress and was calibrated by myself.
In order that the crystallographic dimensions gives this same value for
[n], from equation (92), a swelling ratio (US/T}) of 1.6 is required;
alternatively myoglobin is more asymmetric in solution.

In order to determine the actual dimensions of the equivalent tri-
axial ellipsoid for myoglobin in solution (or any other macromolecule)
from the experimental value for [n], the situation is more complicated
howesver. Although equation (88) defines a unigue value of v for a given
value of (a/b, b/c), an analytic inversion of (88) to produce an explicit
expression for (a/b, b/c) in terms of Vv is not available. The inversion
must therefore be done numerically by tabulating, or better plotting v as
a function of (a/b, b/c). The same subroutine mentioned in section 3.1.
for. evaluating the elliptic integrals may be incorporated., A
perusal of Table 7 (produced from Program 2) reveals however that a given
value of V does not correspond to a unique value of (a/b, b/c) but to a
'line solution' of possible values of (a/b, b/c). This is clearly
illustrated in the contour plot (Figure 29) produced from Program 3 using
GHOST graphical facilities where V is incremented from 2,5 to 7.0 in steps
of 0,5. In order to determine a unique solution for (a/b, b/c) and hence
the axial dimensions of a macromolecule in solution other hydrodynamic
information must be usedj; we must therefore consider the translational and

rotational frictional properties (section 1.2).
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3.3, Other Tri-axial Line Solutions

3.3.1« The Translational Fricfional Ratio; the B and R Functions

It was previously stated in section 1.4. that although Perrin (1936)
had provided an explicit formula for the translational frictional ratio
of a general tri-axial ellipsoid in terms of the axial ratios (a/b, b/c),
the elliptic integral in equation (12) could only be solved analytically
for the special case of ellipsoids of revolution (i.s. two equal axes).
However, since the elliptical integral‘is similar to those for the tri-
axial viscosity increment, it too can now be solved numerically using for
sxample the subroutine discussed in section 3.1. A higher value for the
upper limit, B was required: 5 x 107. A tabls of values of the Perrin
function ﬁ/fo (=P) for values of a/b and b/c was thus obtained (Table 9).
Again, a perusal of the table resveals that a given value of P has a line
solution of possible values of (a/b, b/b). However, in principle at
least, by combining the line solution for P of a given macromoleculs with
the line solution for v, a unique solution for (a/b, b/c) can in principle
be found from their intersection. This can be illustrated by assuming a
particle of (a/b, b/c) = (1.5, 1.5), calculating the corresponding values
for v and P using Program 1, and then plotting the line solutions using
Program 4. Unfortunately Figure 30 reveals that the intersection for
accuracies in y and P to four significant figures is very shallow, and
allowing for + 1% experimental error in each thers is no intersection at
all in ths 'globular protsin' range of the Figure. There is also the
additional problem that in order to determine experimentally both Vv and

P, knowledge is required of the swollen volume in solution.
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However,.now that v and P are available for tri-axial ellipsoids,
then so should the g and R functions which do not require a knowiedge
of the swollen volume (equations 45 & 64). I have thus produced tables
of these also (Tables 10 & 11); all four tri-axial functions so far
mentioned viz v, P, 8 and R are plotted in Figure 31 allowing for * 1%
experimental error in sach. There is still no reasonable intersectionj;
the B function is, as expscted, seen to be of little practical use as it
is very sensitive to experimental error (the 8- 1% line is completely
off the map area). Of the 4 functions howsver, the R function is the
most useful since it is relatively insensitive to .experimental error and
the experimental determination does not require a knowlsdge of the
swollen volume (section 1.7.1.). In order to find a unique solution for
(a/b, b/b) therefore, this should ideally be combined with a rotational
frictional or relaxation tri-axial shape function which should satisfy
the following criteria:
(i) provides a suitable intersection with R
(ii) is relatively insensitive to experimental error but sensitive to
axial ratio
(iii) is experimentally measurable to a high precision with currently
available apparatus and data analytic techniqqes and
(iv) does not require a knowledge of the swollen volume for its sxperimental

determination.

3.3.2. The Rotational Frictional, Diffusion and Relaxation Line Solutions

For a tri-axial ellipsoid there will be three rotational frictional
ratios Qr/co (i=a,b,c) corresponding to rotation about sach of the three
axses and hence three rotational diffusion ratios ef/eo’ By analogy with

the translationél case in the previous section, although Perrin (1934) had
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given explicit Pormula for the ci/to in terme of (a/b, b/c), - eqn: (25),
the elliptic integrals could only be solved apalytically for the
case of ellipsoids of revolution. The integrals can now be sclved
numerically, again utilising the routine described in section 3.1 (Programs
142 & 4). Thers is however no experimental technique for determining the
rotational frictional or diffusion coefficients directly; rotational
axperiments determine rather relaxation time ratios. For example, the
dielectric dispersion relaxation time ratios ars related to the rotational
frictional and diffusion ratios by equations (27). A plot of the
rotational relaxation time ratio iina solutions corresponding to (a/b, b/c)
= (1.5, 1.5) is given together with the R function in Figurs 32.
Unfortunataiy, because of the difficulties raised in 1.5.1. resoclution of
the dielectric dispersion curve into the 3 relaxation times for a
homogeneous solution of tri-axial ellipsoid particles is impossible in
practics.

Whereas for ellipsoids of revolution there are three fluorescencs
anisotropy decay times (equation 42), for general tri-axial ellipsocids,
there will be five (Cantor & Tao, 1971, Small & Isenberg, 1977) related

to the threes rotational diffusion cosfficients by:

N S D S - 1
"1 360y °* 273w ey ° TI@E ey

- - 1 (94)
T = 7036 - ) > T5 T 7038 + &)

where §= (e1 + 6, + 63)/3 is the mean rotational diffusion coefficient,
and A is defined by

2 2 2

A= (61 + 62 + 63 - 6162 - 6263 - 6361)

NI
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The fluorescence anisotropy reslaxation time ratios Tj/ Tb can thus be
evaluated (equation 42, where j is now = 1,2,3,4,5); these have been
tabulated by Small & Isenberg (1977) and are plotted in Figure 33, for
(a/by b/c) = (1.5, 1.5). Consideration of these functions however, at
the moment at least, is purely academic; besides the problems cited in
section 1.5.4., the necessary resolution of the decay curve into its

four component exponentials (since T ~T1) is impossible (Small & Isenberg,

5
1977). Furthermore, since neither the fluorescence anisotropy decay time
ratios nor the dielectric dispersion relaxation time ratios for tri-axial
ellipsoids are of apparent use at the moment, the same must be trus of

their corresponding swelling independent functions, the explicit

axpressions in terms of axial ratio being obtainable from:

z, P s
Gi =V ’ My 7 (f } Q;Q
1 (o]
(95, 96)
3
_ (£ Qo - o
‘i (fo) €3 ’ 1Y e
(97, 98)
T 3 T
f
Kj =V (T—o') > ;J = ('f_) ;9"
J ) j (99, 100)

where i=a,b,c and j=1,2,3,4,5. The relations for these functions in terms
of experimental paramseters have already been given in section 1.7.
Evaluation of the harmonic mean rotational relaxation time ratio in

terms of axial ratio for tri-axial ellipsoids we can similarly obtain from



o8.

cT—h= 3
"o [g_o_,,g_oﬁg]
Qa Qb Ec

(101)
(Programs 1, 2 & 4, Figure 34), The corresponding swelling independent
functions ¥ and A determined by combining with the translational frictional

ratio and the viscosity increment respectively we can now also obtain from

T lb
-6 @
(102)
A= E%ﬂ v
(103)

(Programs 1,2 & 4, Figure 34). Unfortunately, these functions are
generally very sensitive to experimental error, as Figure 35 illustrates;
also the problems in determining the harmonic mean relaxation time raised

in 1,5.4. still apply.

3.,3,3 Electric Birefringence Decay: the 6+ and 8§ Functions

In section 1,5.2. we stated that Ridgeway (1966, 1968) has shown that
the decay of electric birefringence for a homogeneous suspension of
asymmetric macromolecules (s.g. tri-axial ellipsoids) would consist of

two exponential termss:

(32)
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where An is the birefringence, N the number density of particles in
suspension and n, the refractive index of the suspending medium. A+
and A_ are complicated functions depending on the initial orientation of
the particles and their dielectric and diffusion properties. We may
rewrite NAf / 2n, as Al, the 'pre-exponential factors'. Equation (32)
then becomss:

1604t

1 -66 t
An = A+ _e -

+ A

(104)

e+ and 9_ ars related to the rotational diffusion constants ei (and hence

the rotational frictional coefficients since ;i = kT/ei) by

1 2 ;
=300 = {(51ey —%fﬁj eiej} (1052)
_ %z EE S S §$
3 iz, ~ i 2~ 2. C.C.
1ey [ T i>j %1% ] (105b)

The dimensions of equation (105) are of{energy/(volume x viscosity) uwe

therefors 'reduce' it to a function of shape alone:
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The elliptic integrals o etc. are those defined by Jeffrey (1922) and

are given in Appendix I.

ered
+

corresponding to the point (a/b, b/c) = (1.5, 1.5) allowing for * 1%

A plot of the and

Gfed functions, together with the R function

experimental error is given in Figure 36. It is seen that the
intersections are very reascnable (the eied - R intersection is nearly
orthogonal) and the functions are relatively sensitive to axial ratio.
Howsver, experimental determination of e;ed requires of course knowlsdge
of the swollen molecular volume in solution (equation 106). This can be
conveniently sliminated however in the standard way by combining (106)
either with the viscosity increment (8) or the translational frictional
ratio (20b). If for example (106) is combined with the viscosity increment

(8), swelling independent &, functions ars produced (Tables 12, 13, Figure

37):

n o
5 =607y = & [ o t][n] M_

(108)

where [n] is expressed in ml/bm. Alternatively, eied can be combined

with the translational frictional ratio (20b) to give swelling independent
v, functions (Programs 1,2,4, Figure 38):

3 —_ 3
v = coTed (f)a _M (1-ve,) 6,
- F = 2 23
+ + fo 27NAkT1r ngs

(109)
The 6, and vy4 functions are new. The §_ functions are preferred over the

Y, functions since they rsquirs fewer experimental measurements and do not

involve squared or cubed tsrms; hence in principles can be measured more
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accurately. It is seen thersfore that combination of the R-function
with the 8+ functions as a method for determining a unique solution for
the axial ;atios (and hence the axial dimensions, if Ve is known from
kn/ks - section 1.7.1) of a macromolecule in solution satisfies the
criteria (i), (ii) and (iv) of section 3.3.1. In order for the method to

satisfy criterion (iii) however, there still remains the problem of

resolving the exponential decay term into its 2 component relaxation times

red
+

or decay constants (the same is true of course for the o and v,
functions). To date this has not been possible. We now show that with
a new 'constrained' least squares algorithm using intersection with ths

R-curve as the constraint, this is now possible with currently available

experimental precision.
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Table 8., Values of reduced specific viscosity for various concentrations

of sperm whale myoglobin (0.1M NaCl buffer, pH = 7.1)

Concentration, c el nsp/c

(mg/m1) (m1/gm)
90.2 1.450 4,99
66.1 1,298 44,51
53,3 1.224 4,20
50.2 16215 4,29
40,7 1.163 4,00
34.4 1.138 4,02
30.5 1.116 3.81
29,6 1.115 3.89
23.2 1.084 J3.61
15.5 1.055 3057
9,7 1.034 3.47
8.1 ' 1.028 3.50




Table 9., Values of P as a function of (a/b, b/c) for a general tri-axial ellipsoid (a>b>c)

b

/

Prolate
Ellipsoid

-
[
o

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Oblate Ellipsoid

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2.0

1.000
1.001
1,003
1.006
1.010
1.015
1.020
1,026
1.031
1.038

1.044

17001
1.002
1,005
1.009
1.014
1.019
1.025
1.031
1,037
1.044

1.051

1.003
1.005
1.009
1.013
1.019
1.024
1.031
1.037
1.044
1.051

1.059

1.006
1.009
1,013
1.018
1.024
1.031
1.037
1.044
1.052
1.059

1.067

1.010
1.014
1.018
1.024
1.030
1.037
1.044
1.052_
1,059
1.067

1,075

1.014
1.019
1.024
1.030
1,037
1.044
1.052
1.060
1.068
1.076

1.084

1.019
1.024
1.030
1,037
1.044
1.051
1.059
1.068
1.076
1.085

1.093

17025
1.030
1.036
1,043
1.051
1.059
1.067
1.076
1.085
1.093

1,102

1.030
1.036
1.043
1.050
19058
1.066
1.075
1.084
1.093
1.102

1.112

1,036
1.042
1.049
1.057
1.065
1.074
1.083
1.092
1.102
1.111

1.121

1.042
1.049
1.056
1.064
1.073
1.082
1.091
1.101
1.111
1.120

1.130

*gol



Table 10. Values of f x 107% as a function of (a/b, b/c) for a general triaxial ellipsoid (a>b>c)

b/C

a/b

Prolate
Ellipsoid .

1.0

1.1

1.2

1.3

1.5

1.6

1.7

1.8

1.9

2.0

Oblate Ellipsoid

1.0
1f1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2.0

2.111
2,112
2.112
2,113
2.114
2,116
2.118
2,120
2,122
2.124

2,127

2.112
2.112
2,113
2.114
2.115
2,117
2,119
2,122
2,124
2.127

2.130

2.112
2.113
2,114
2.115
2,117
2.119
2.121
2,123
2,126
2,129

3.132

2,113
2,113
2,114
2,116
2.118
2.120
2,123
2.125
2.128
2,131

2.135

2,113
2,114
2,115
2,117
2.119
2.121
2.124
2,127
2,130
2.134

2.137

2.114
2,115
2.116
2.118
2,120
2,123
2,126
2,129
2,132
2,136

2,139

2.115
2.116
2,117
2,119
2.121
2,124
2.127
2,130
2.134
2,138

2,141

2,116
2.117
2f118
2,120
2,123
2.125
2.129
2,132
2,136
2,139

2.143

2,117
2f118
2.119
2.121
2.124
2,127
2.130
2.133
2,137
2.141

2,145

2,117
2?118
2.120
2,122
2,125
2,128
3.131
2,135
2,139
2,143

2.147

2.118

2.119

2.121

2,123

2.126

2,129

2,132

2,136

2.140

2.144

2.149

‘volL



Table 11. Values of R as a function of (a/b, b/c) for a general tri-axial ellipsoid (a)bd>c)

%
a/b

- Prolate
Ellipsoid

.
o

Te1

1.2

1.3

1.4

165

1.6

1.7

1.8

1.9

2.0

Oblate Ellipsoid

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.0

2.0

1.600
1.598
1.592
1.582
1.570
1.556
1.540
1.524

1.507

1.489

1.47

1.598
1.593
1.585
1.573
1.559
1.543
1.526
1,509
1.490
1.471

1.452

1.592
1,585
1.575
1.561
1.546
1.529
1.511
1.491
1.472
1.452

1.432

1.583
1.575
1.563
1.548
1.531
1.513
1.494
1,474
1.453
1.433

1.412

1.573
1.563
1.549
1.533
1.515
1,496
1.476
1.455
1.434
1.413

1.392

1,561
1.549
1.535
1.518
1.499
1.479
1.459
1.437
1.416
1,394

1,373

1.548
1.536
1.520
1,502
1.483
1,462
1,441
1.419
1,398
1.376

1.354

1.535
1.521
1.505
1.486
1,466
1.445
1.424
1.402
1.380
1.358

1.336

1.521
1.507
1.490
17471
1,450
1.429
1.407
1.385
1.362
1.340

1.318

1.507
1f493
1.475
1.455
17435
1.413
1.391
1,368
1.346
1.324

1.302

1.494
1.478
1.460
1.440
1.419
1.397
1.375
1.352
1.330
1.307

1.285

*sol



Table 12. Values of 5+ as a function of (a/b, b/c) for a general tri-axial ellipsoid (a’b>c)

b/

a/h

Prolate
Ellipsoid

-
.
o

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Oblate Ellipsoid

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2.0

2,500
2,549
2,599
2,648
2,699
2,752
2f806
2.863

2,922

2,983

3.047

2.541
2,577
2,624
2,675
2,729
2,785
2.844
2,905
2,968
3.035

3.103

2,568
2,596
2.641
2,692
2.748
2,807
2.868
2,933
3.001
3.071

34145

2,582
2,605
2.648
2,700
2,757
2,818
2,883
2,951
3.023
3,097

3.174

2,588
2,606
2.648
2.700
2,759
2,823
2,890
2,961
3,036
3,113

3,194

2,586
2,601
2,642
2,695
2,756
2,821
2.891
2,965
3,042
3,122

3,206

2,579
2,595
2,632
2,686
2,748
2,815
2,887
2,963
3.042
3.125

3.212

2,568
2,279
2,619
2,674
2.737
2,806
2.880
2,958
3,039
3.124

3,213

2,555
2.564
2,604
2,660
2,724
2,795
2,870
2,949
3f033
3.120

3.210

2,539
2,547
2.587
2f644
2.710
2.781
2,858
2,939
3.024
3,113

3,205

2,522
2,529
2,570
2.627
2.694
2,767
2,845
2,927
3.014
3.104

3.198

‘901



Table 13. Values of §_ as a function of (a/b, b/c) for a general tri-axial ellipsoid (ayb)c)

a/b

- Prolate
Ellipsoid

3
o

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Oblate Ellipsoid

2,500
2,445
2,387
2,326
2,264
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Figure 27, Plot of reduced specific viscosity versus concentration for

sperm whale myoglobin (0.1M NaCl,buffer. pH = 7.1)

The straight line is that due to a weighted least squares fit

"s
to _éP_ = [n] (1 + knc) where [n] =3.25 ml/gm and kn=5.9 ml/gm

1
concentration (mg/ml)

The weight used was (conc. < 40 mg/ml)

T (conc. .40 mg/ml)
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Figure 28.

Photograph of the apparatus used for determining solution
densities and viscosities. Temperatures were kept constant
to within * 0.01° using a high precision Townson - Mercer
constant temperature tank, with a pump attachment to supply
the water bath in the precision density meter. These
temperatures could be monitored to within * 0.005° using
the platinum resistance thermometer situated directly above

the density meter.
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Figure 29. Contour diagram showing curves of constant V as a function of

the semi-axial ratios a/b, b/c on the basis of equation (88)




Figure 30. Plots of constant vV and P in the (a/b, b/c) plane corresponding

to a/b = 1‘5L b/l: = 1.5
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Figure 31. Plots of constant v, P, 8 and R, allowing for * 1% error in

their measured values, in the a/b, b/c plane corresponding

to a/b = 1,5, b/c = 1.5
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Figure 32. Plots of constant R and the rotational relaxation tims ratios

in the a/b, b/c plane ccrresponding to a/b = 1.5, b/c = 1.5
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Figure 33, Plots of constant fluorescence anisotropy relaxation time ratios

in the a/b, b/c plane corresponding to a/b = 1,5, b/c = 1.5
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Figure 34, Plots of constant R, ¥ and A in the a/b, b/c plane corresponding

to a/b = 1,5, b/c = 1.5
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Figure 35. Plots of constant R, ¥ and A, allowing for ¥ 1% error in

their measured values, in the a/b, b/c plane corresponding

tora/br=i1%5; b/fe ='1.5
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Figure 36. Plots of constant R, eie and 9°° , allowing for t 1% error in

their measured values, in the a/b, b/c plane corresponding to

a/b = 1.;, blc =1.5
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Figure 37. Plots of constant R, ﬁ_and §_, allowing for 4 1% measured error

in R and ¥ 2% measured error in 8,y in the a/b, b/c plane

corresponding to a/b = 1.5, b/c = 1.5
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Plots of constant R, Ta and y_, allowing for * 1% measured error

in R and ¥ 2% measured error in A in the a/b, b/c plane

corresponding to a/b = 1,5, b/c = 1,5




CHAPTER 4

Determination of a Stable, Unigque Solution by Combining Results

from Viscosity, Sedimentation and Electric Birefringence
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4,1 Methods for Analyzing the Decay Curve

Resolution of a 2-term exponential birefringence decay curve into
its two component relaxation times or decay constants is notoriously
difficult, even for components that differ by several orders of magnitude.
The situation is especially difficult for globular macromolecules for
which the decay constants will generally not differ by more than ~ 20%
(see below). A recent review of the salient methods currently used for
attempting to analyse multi-component exponential decay curves, emphasing
these difficulties, has been given by Jost and 0'Konski (1978). The three
methodé that are apparently the most useful are
(1) Graphical Peeling Analysis (0'Konski and Haltner, 1956)
(2) Non-Linear Least Squares Apalysis (Wilde, 1964, Powell and Macdonald,
1972, Gill and Murray, 1976)
(3) Fourier Transform Solution of the Laplace Integral Equation (Gardner,

Gardner, Laush & Meinke, 1958)

4,1,1., Graphical Peeling Analysis

In this method, the logarithm of the birefringence is plotted as a
function of time. For a single term decay this should of course give a
straight line. If the plot for a two-term decay can be extended to
relatively long times with sufficient signal-to-noise ratio, and if the
two terms are not too close, then the limiting slope will give an estimate
for the longest relaxation time (or shortest decay constant). This
limiting slope can be extrapolated back to zero time and then "subtracted"”
from the original signal; the slope of the resultant can then be
detsrmined and hence the shortest relaxation time found (Figure 39). As

might be expected, this method, although rapid, is very approximate and
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is of little use for resolving relaxation times of the same order of
nagnitude., However it is still useful for indicating the orders of
nagnitude of the decay constants which may be used as initial estimates

in non-linear least squares iterative procedures.

4,1.2., Non-Linear Least Squares Iterative Analysis

In this method, the weighted sum of the squares of the residuals
X?is calculated between a set of experimental data points and the
function to be fitted. If xj répresents the value of the j'th
experimental point and gj(xm) the corresponding computer point for a
given estimate for the X, the number of independent variables, then we

define our 'goodness of fit! parameter,x2 s by

2

(110)
where cﬁ is the standard error in ths j'th experimental point. The
best values of the Xm are such that 8x%%xm =0, for all the Xm'
For the particular case of electric birefringence, éj is approximately
constant for all the xj (although this is not generally true for photon
counting - s.g. fluorescence depolarization anisotropy - experiments)

and the minimization condition becomes

(111)

where

n
F= ) {x, -¢.} (111b)
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In the case of a two-term birefringence decay, the minimization
is said to be '"non-linear' in that the data are to be fitted to a
function which is the sum of a product of terms consisting of an
adjustable parameter (i.s. a pre-exponential factor) with another
function of another adjustable parameter (i.e. a decay constant or
relaxation time). In order to evaluate BF/BXm for a current estimate
for the parameters Xm, the solution either has to be linearized using
a Taylor expansion as outlined by Jost & 0'Konski, or alternatively, a
guadratic or quasi-Newtonian procedure can be employed (Gill & Murray,
1976). 1In this latter case, the parameters Xm are iterated until the
minimum in F is found. Gill & Murray's algorithm is particularly
attractive in that upper and lower limits for the variablse can be
specified and included as external constraints. A problem with the
least squares technique however is that the method is very sensitive to
subsidiary minima in Xz(or F) leading to false 'best parameters',
gven for data of very high precision. The presence of these subsidiary
minima can often be detected by repeating the analysis for a series of

different initial guesses of the adjustable parameters.

4,1.3., Fourisr Transform Solution of the Laplace Inteqral Equation

The birefringence An{t) = S(t) is written as a Stieljes integral:

n -seit n ) oAt ®
S(t) = Z Aie = Z Aie = J exp(-At)dh(})
i

.

1
o

(112)

where .h( A ) is a step function, i = +,~ and A = 66, .
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The right hand side of equation (112) can be rewritten in the form

of a Laplace Integral:

S(t) = j exp(-At)g(A)da
° (113)
where g()) represents a sum of Dirac .— delta functions. A plot of
g(}A) versus A will give a fregquency spectrum with peaks; the centre
of each peak corresponds to a specific decay constant, and the height
of the peak is proportional to the value of the pre-exponsntial factor

y

Aje We transform A=8"Y and t = eX. Then

[+ -]

s(e™) = J expl-e X geyeVay

- 00
(114)
Multiplying by e
e* s = J exp[-e(x-Y)]e(x-Y)g(e-y)dy
)
(115)
Taking the Fourier Transform of the lseft hand side of (115)
F(u) = 1 J e S(ex)eiuxdx
(1186)
Thus
1 - - -
F(u) = — J j I exp[-e(x Y)]e(X Y).g(e y)dy .exp[iu(s + y)]lds
Vor U 00

(117)
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with s = x = y. Rearranging

o o

1 - .
Flu) = /5= J g(e ) expEuy)dy. [ exp (-e*) e exp (ius)ds
- - (118)
Now, if we compare equation (113) with equation (114):
gle Ndy = ggél dx
(119)

Thus if we obtain g(e™”) as a function of y, using equation (119)
this will be equivalent to a plot of g()\)/A as a function of A .

The right hand side of equation (118) is the product of the Fourier

Transform, G(u) of g(e-y) and the Fourier Transform, K(u) of exp(-e®).
Thersforse
F(u) = v2r G(u) K(n)
(120)
i.e.
- /1 E()
(121)
Taking the inverse Fourier Transform of G(u):
- 1 [ F -
ge”) = & [ EOd o i,
(122)

K(u) can be svaluated analytically in terms of the complex I' function:

K@) = /3= TQ + i)

(123)
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The method therefore has four basic steps:
(i) Evaluate the Fourier Transform of the data (equation 116)
(ii) Divide by the complex I' function (equation 123)
(iii) g(e-y) as a function of y is found by using the inverse Fourier
Transform
(iv) A plot of g(A)/r is thus obtained as a function of A
The advantage of this method is that an initial choice as to ths

number of exponential terms to be fitted is not required.,

4,1.4, 0Other methods of analysis, previously used for deconvoluting

Fluorescence decay curves

0'Connor, Ware and Andre (1979) have recently compared methods for
deconvoluting both one and two term exponential fluorescence decay curves
(sections 1.5.4, 3.3.2) = methods which could be equally applicable to
corresponding birefringence decays., The methods chosen were
(i) Non-Linear Least Squares
(ii) Method of Moments
(iii) Laplace Transforms
(iv) Method of Modulating Functions,
(v) Exponential series method
(vi) Fourier Transforms
They discovered that all six methods were satisfactory for analysing
undistorted one - component data, but that the least squares method was
most suitable when distortions are present., For resolving two closely
spaced terms (9.5ns & 11.5ns) in a 2-term undistorted decay only the least
squares method and the method of meodulating functions proved satisfactory.

They thus concluded that the non-linear least sgquares iterative method
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was the technigue of preference for the analysis of simple decay laus.

4,2, Choosing the best alqorithm: computer simulation

Following the work of Jost & O'Konski (1978) and 0'Connor, Ware &
Andre (1979), the non-linear least squares iterative and possibly the
Fourier Transform Solution of the Laplace Integral Equation methods
seemed to be the best available methods for resolving a 2-=-term
exponential birefringence decay, 1 attempted to test for myself these
methods by assuming three proteins of known (tri-axial) dimensions and
hence axial ratios (a/b, b/c), assuming a swelling ratio (US/V) = 1.3,
and v = ,73 (typical for globular proteins). From these values the
molecular weight, viscosity increment, R-function, 5+ functions, intrinsic
viscosity and hence decay constants e+ could be pred;cted (Table 14). Ue
then assume pre-exponential factors AZ’ Al, of, respectively, 0,07 and 0,05
radians taken from a typical initial birefringence GEAi + A') of 0.12
radians (Krause & 0'Konski, 1959) anq hence the unperturbed decay curve
for each simulated protein can be given. The actual individual values for
Al are not significant in the analyses, except when they differ by several
o;aers of magnitude (see section 4.5). 0One then places simulated
experimental error on each of 100 data points for the curves, using a
computer normal pseudo-random number generator, and, first of all assuming
no errors in the molecular weight or intrinsic viscosity, investigate houw
much error in the data points is tolerable, befors each algorithm fails to
give back the correct decay constants and hence axial ratios, within
reascnable limits. The algorithms would then be tested for errors in the

intrinsic viscosity and molecular weight. Figure 40 illustrates such a

mock experimental decay curve with 0.1 degree standard error (about the
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current available experimental precision - B. Jennings & V. Morris,
private communication) on each of 1000 data points, for Protein 1
[true (a/b, b/c) = (1.5, 1.5)]. 1In the analyses the pre-exponential
factors A; are of course regarded as unknown variables.

4,3 Non-Linear Least Squares Iterative Method

The guasi-Newtonian guadratic method for minimizing any function
(i.e. in this case, the sum of the squares of the residuals F) given
by Gill & Murray (1976) and incorporated in the UK NAG Mk.VI subroutine
EO4JAF was used. In this algerithm the user, besides supplying the
subroutine for calculating the value of F at any point X, has to supply
fixed upper and lower bounds on the independent variables X1, X2,
cesccscny Xm. This routine was incorporated in the FORTRAN IV program
given in Appendix 1V, as Program 5. This program generated its ouwn
hypothetical decay curve with normal (Gaussian) pseudo-random error
generated on each data point (using NAG routine GOSADF), the amount
specifiable by the user. The program attempted to retrisesve the decay
constants, hence the 6+ functions (from the user-specified molecular
weight and intrinsic v;scosity) and hence the axial ratios (a/b, b/c)
of the general tri-axial ellipsoid. Owing to the problem of the presence
of the danger of the routine falling into subsidiary minima as mentioned
by Jost & O'Konski (1978) - see section 4.1.2. - it was necessary to
repeat the method for a large number (30) of initial guesses. In fact
the program was written to generate its own thirty different initial
guesses by using "DO" loop between user specifiable initial guess limits.

Unfortunately, even data as accurate as ,001 degree standard error on

each data point (about 2 orders of magnitude greater than the current
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experimental precision) failed to give back the correct (a/b, b/c)
within reasonable limits, and even data of machine accuracy (14
significant figures) did not gensrate the exact value of (1.5, 1.5),

as Figure 41 illustrates.

4.4, Fourier Transform Solution Method of the Laplace Integral

Equation Method

4,4,1, Cut—-off Errors

In order to use this method outlined in section 4.1.3., the
integrals invclved in taking the Fourier Transform of the data
(equation 116) and in taking the inverse Fourier Transform (equation 122)
have to be solved numerically., Unfortunately, the integrals extended
from -« to +« 3 with real data there exists a finite cut-off timé, to
or equivalently X, Cut-off errors tend to increase the height of the
error ripples in the final results. For equation (116), if we choose a
cut-off too short for H, there is a loss of resolution of the component
peaks. 0On the other hand, if we choose a cut-off in Ho too long then
the cut-off at x, causes the amplitude of the error ripples to increase;
M has to be varied therefore to obtain the optimum resolution for a

given data set,

4,4,2, Numerical Integration

Following Gardner et al (1958), each value of S(t) was multiplied
by the current value of t to give e 5(e*) (equation 115). Uhereas t
ranges from 0-+«, X ranges from =« to +w, thus we can split the integral

in equation (116) into symmetric and anti-symmetric parts:



X
[¢]

F () =/%J [S'0) + 8 (-x)]e™¥ax

(o]

‘Therefore

X
-0

i * *
F(uw) =//§%' J {[s (x) + S (-x)]cosux

(o]

+ i[ST(x) - S*(-x)]sinux }dx
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(124)

(125)

giving real and imaginary parts for F(u), i.e., Fo & Fgo K{u) can be

similarly split into real & imaginary parts KC & KS. Equation (121) thus

becomes:

/1 Pc + 1Fs ) (Fi + iFS)(KC - 1KS)
G(u) = T g =

K + 1K K<+ K*
C S Cc S

and the inverse transform (122) becomes

v 1 %o (F, + iF ) (K, + iK)) N
gle ’) = 5= { Kél+ K; (cosyu - isinyu)du

—uo

where My and -m are the cut=off values for ne Since all odd values

vanish,

i 1 (o FK. *+ FXK_ CFK_~F K
g(ey)=§; J %‘K—TK—COSW*'
¢’ s

X w k. S (dm
Cc S

o)

(126)

(127)

(128)
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The numerical integrations (125) and (128) are solved using the
NAG routine DO1GAF. The value of the complex I' function needed for
calculating Kc and Ks was deduced using a routine given by Lucas & Terril
(1970). As with the non-linear least squares iterative method, the
program (Appendix IV Program 6) generated its own synthetic data using

NAG normal pseudo-random number routines GOSADF & GOSBBF.

4,4,3. Results
The program was firstly checked by applying it to the case first

considered by Gardner et al for a single exponential decay, viz.

S(t) = 100 e 002t

assuming data of machine accuracy (i.e. no perturbation routins
included). The retrieved ) from Figure 42 is .021, in close agreement
with Gardner et als value. The data was taken at logarithmic intervals
(corresponding to equal linear intervals in x). The algorithm was then
applied to the two term sxponential decay curve for Protein 2, However,
even with data of machine accuracy and taken at logarithmic intervals

in t (impossible to obtain in practice for our particular case) the
retrieved values for Ai and hence the decay constants was poor and varied
with the cut-off values for u, as Figure 43 and Table 15 shows. UWhen
normal pseudo-random error of ,001 deg was applied to the data points,
no resolution was possible for all values of Hys as Figure 44 clearly
demonstrates. We thus conclude this method to be of little use for our

case of interest.
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4,5, A new R-Constrained Non—-Linear Least Squares Algorithm

Owing to the inadequacy of the other treatments for resolving a
two-term exponential birefringence decay into its component relaxation
times (or decay constants), particularly for gleobular proteins (close
decay constants), I have now developed a new R-constrained least squares
algorithm. If the R=function line solution (3.3.1), which can be found
from the ratio of the sedimentation regression coefficient kS to the
intrinsic viscosity [n], is included in the least squares algorithm (4.3)
as a constraint, then the problem is effectively reduced from one of four
independent variables (Q+, 8 s Al, A') to one of three (a/b, Al, At).

The solution is constrained to lie on the R-curve, thus a given estimate
for a/b will necessarily give a 'constrained' value for b/c; the computer
program can then calculaﬁe the values for 5+ and S_ corresponding to this
estimate, hence the decay constants (using also the values for([n] , Nr -
equation 107), the decay curve and finally the sum of the squares of the
residuals (SSR) between the computer points and the experimental curve.

By iterating along this R-curve for a/b and the two pre-exponential factors
AL, the best estimate for (a/b, b/c) can be found from the minimum value

o; the SSR.

The constraint of the R-curve was included in the algorithm (Program 7
of Appendix IV) for the three simulated proteins considered previously
by use of the Leicester University Computer Library routine EO1LF1, a
listing of which is given towards the end of Program 7. The user specifies
the coordinates of knots in the curve (see Figures 45, 46 & 47), or '
alternatively, the whole curve digitised, and the routine interpolates

between these points using a cubic polynemial ('spline') fit (K. Brodlie,
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private communication). In the main program, normal (Gaussian) random
error of 0.1 degrees on each of the 100 linearly separated data points
was supplied using the pseudo random number routines mentioned
previously. The magnitude of this error corresponds to that expected
from current experimental precision (B.R. Jennings, V. Morris, private
communication). It was found in pilot runs that the danger of the
algorithm falling into subsidiary minima, as present for the unconstrained
case (section 4.3.) was no longer significant. The number of initial
guesses was thus reduced from thirty to three to save on Computer timej
the best estimates were generally the same for all three initial guesses
(except those marked with an asterisk in Tables 16, 17 & 18). The values
for (a/by b/c) retrieved did however depend on the cut—off time specified
for the decay curve. If thers were no error in the data points then very
long cut-off times would be desirable, since this region is dominated by
the longest relaxation time (or shortest decay constant, 9_). However,
the effect of a given absolute error is more pronounced the lower the
birefringence signal,

The optimum cut-off time, and hence the best value for (a/b, b/c)
was found by repeating for eight different streams of normal random data,
specified by the UK NAG Mk VI routine GOSBAF(0.N), where N represents the
stream number of the random data; the optimum cut-off time for each decay
curve was then determined by finding the best standard deviation of the
a/b's from the eight streams for increments of 5ns in the cut-off times.,
The values for the corresponding best mean value for a/b (and hence b/c)
together with the corresponding standard error for the eight streams of
data could then be found (Tables 16a, 17a & 18a).

This procedure was then repeated allowing for ¥1% experimental error
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in the R-curves (Tables 16b,c, 17b,c, 18b,c). If the points corresponding
to <(a/b, b/c)> +o. are joined together for each of the R-curves, and

then those of the <(a/b, b/c)> =0pcs regions of allowed values for

(a/b, b/c) could then be found (Figures 48, 49 & 50). The mean values
agree very closely with the true values (Table 19). The algorithm uwas
then tested for the effect of experimental errors in the intrinsic
viscosity (* 1%) and molecular weight ( ¥1.4%). These were found to be
not significant (Table 20); indeed, the molecular weight can now be found
precisely from the results of sequence analyses., Finally, the algorithm
was tested for different initially assumed values for the pre-exponential
factors Al and Al (Table 21), Again, these were found to have no
significant effect on+the results; even for pre-exponential factors
differing by two orders of magnitude, though the retrieved R! was poor,
the retrieved a/b was in close agreement with the other values.

Once the value for the axial ratios (a/b, b/c) has been found for a
particular protein, it can be combined with the swollen volume of the
protein, if known, to determine the axial dimensions. In Table 22 a "model
dependent" (section 1.7.1) estimate for Ue has been found for each of the
three simulated proteins we have considered by back substitution of the
mean values of (a/b, b/c) determined from the analysis above into equation
(8) Por the viscosity incrément, and again the agreement with the initially
assumed values (Table 19) is excellent. If the model dependent values of
V, are then combined with the values for (a/b, b/c), the semi-axial
dimensions a,b,c for the three proteins considered are found to be (R):

Protein 1: 45,00, 29,98, 20,01 (45.0, 30.0, 20.0)

Protein 2: 42,28, 25.59, 19.61 (42.5, 25.0, 20.0)

Protein 3: 43.11, 33.58, 19.81 (42,5, 34.0, 20.0)

again, in excellent agreement with the initially assumed (bracketed) values.
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4.6+ Some Practical Points

In applying these egquations and algorithms to real protein and other
macromolecular solutions several important factors must be taken into
consideration:
(1) Two or more decay constants can also arise if the system is
polydisperse. It is therefore essential that the solution be rendered
monodisperse by, for example, gsl filtration techniques.
(2) 1t has now bsen well established that the single exponential decay
constant previously resovable from the birefringence decay of monodisperss
protein solutions shows a concentration dependence (Riddiford & Jennings,
1967), and it was therefore necessary to determine its value at several
concentrations and then extrapolate to infinite dilution. 0Ons must
naturally assume therefore that the two decay constants for the decay of
a monodisperse solution of asymmetric ellipsoids also show a concentration
dependence, and hence must be extrapolated to infinite dilution. On the
other hand, because of the constraint in our algorithm that they must
carrespond to 5+ and 6_1ine solutions that intersect with the R=curve, the
values for the dscay constants are such that they are not the 'true'! decay
constants for sach particular concentration but are closer to the infinite
dilution values. Since the extrapolation procsdure must thersfors be
empirical the bsst estimates for a/b at particular solute concentrations
rather than these 'damped' decay constants may be extrapolated to infinite
dilution; once the extrapolated value for a/b has been found the correspond-
ing value for b/c can thus also be found from the R-curvs.
(3) The requirement on the precision of the slectric birefringence apparatus
is not only in producing transient decays to a precision of 0.1 degres on
sach data point but also the availability of response times (i.e. the finite

time it takes for the orienting electric pulse to be switched off) of about
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an order of magnituds less than that of the faster relaxation time

Adequate response times ars now available (Williams, Ham & Wright, 1976)
howsver with apparatus that uses a laser light source, cable discharge
generator and a memory oscilloscope, giving a response time of ~ 5ns.

(4) In the above analysis it has been shown that greater accuracies in
obtaining the axial ratios can be obtained if the optimum cut—off time

for the decay is found. 1In our simulations this was achieved by

averaging over several streams of random data; this corresponds in practice
to taking several decays of the same preparation. Different samples of

the same preparation should bs used bscause of the danger of denaturing

the protein by continually pulsing through high slectric fields (temp—
erature effects).

(5) It has also been assumed that the R function can be measured to a
precision of ~ ¥1%., Since s, valuss in an s_ versus concentration plot can
be determined to within~ *.2%(Squire, 1978), ths ks value can presumably be
measured to within i1% (as, from equation 58, it is approximately a
function of (sc/s) X concentration-1). The intrinsic viscosity [n] can
also be measured to within ~*1%, the limiting factor here being the accuracy
to which the flow times can be measured. The srror in R will thus be of
the order of 1% after taking into consideration that any systematic errors
in measuring absolute solute concentrations will cancel in the ratio

ks/[n] (Rowe, 1977).

(6) Finally, it should be pointed out that because of polarisation effects
on the electrodes and also the danger of denaturation due to heating effects
mentioned in (4), solutions of low ionic strength (<0.01M) generally have
to bs used. This apparently prevents the investigation of less scluble

materials. On the other hand, an interesting new method is being developed
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at Brunel University by Professor B. Jennings and his co-workers in

which an ultrasonic field rather than an electric field is used to
initially orient the macromolecules before the decay is observed. This
"acoustic birefringence" (Ballinger & Jennings, 1979) method does not
suffer from the problems of electrode polarisation and denaturation
associated with ionic strengths >.01M for the electric birefringence case,

allowing the possibility for the investigation of less socluble materials.
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Table 14. Assumed and derived characteristics of three hypothetical

globular proteins

Protein 1 2 3

ASSUMED VALUES

Characteristic
a,b,c 458, 308, 20 42.58.- 258,208 42.58,348,20R
v 0.730 ml/gm 0.730 ml/gm 0.730 ml/gm
US/V 1.3 1.3 1.3
DERIVED VALUES
Characteristic
a/b,b/c 1.50,1.50 1.70,1.25 1.,25,1.70
Vs 0.949 ml/gm 0.949m1/gm 0.949m1/gm
swollen molecular '
volume 1.1309732x10"2em®  0.89011784x10" Zom®  1.2105602x10™ ' e
V_=4mwabe
¢ 3
Anhydrous molecular )
volumg - 0.86997'_:}3x10"19t:m3 0.684706x10-19cm3 0.9312001x10-1gcm3
v (=(v/v,) V)
Molecular weight
M (=(N,/5) V) 71,744 56,510 76,853
v 2.892 2.870 2.840
[n] (=NAvev/mr) 2.75 ml/gm 2,72 ml/gm 2.695ml/gm
R 1,479 1,482 1.496
eied , ef_ed 0.163, 0.116 0.171, 0.115 0.155, 0.125
2,821, 2.016 2,943, 1.982 2.645, 2.125
- * °
Decay constants 5.8153835x10%sec; | 7.7660465x10%sec!  5.1872430x10%sec™
0, = =7 S 4.1564612x10%ec™  5.2200121x10%ec™!  4.1674860x10%sec™"
[n] r - . . . i
Relaxation times 28,6596ns, 21.4609ns, 32,1301ns,
"+ =1/ 8o, 40.0982ns 31.8734ns 39.9921ns

* T = 293K, n, = 0.01 gm em™ ! sec:"1
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Table 15, Retrieved decay constants for varying values of Hg

. Y. -y - - - -
Y4 Yo A1=e 1 A2=e 2 G;x10 6sec 1 6_x10 6sec 1
11,5 3.13 | 3.55 0.04372 | 0.02872 7.286 4,787
11.6 3.00 3.50 0.04979 0.03020 B8.292 5.033
1.7 2,94 | 3,45 0.05287 | 0.03175 8,811 5,291
12.0 3.14 | 3,72 0.04328 | 0.,02423 7.214 4,039
True value for 9+ = 7.7660465 x 106 sec -1

True value for ©_ = 5.2290121 x 10° sec !



Table 16.
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Determination of the optimum cut—off time for Protein 1.

True (a/b, b/c) = (1.5, 1.5)

(a) No_assumed error in R

Cut—off 80ns 100ns 110ns 115ns 120ns 140ns
time
a/b a/b a/b a/b a/b a/b

Stream 1.580 1.534 1.513 1.503 1.493 1.454
Stream 1.946* 1.785 1.692 1.654 1.619 1.497
Stream 1.591 1.512 1.483 1.468 1.452 1.392
Stream 1.644 1.487 1.425 1.396 1.367 1.249
Stream 1.623 1.480 1.426 1.401 1.377 1.287
Stream 1.186 1.275 1.303 1.315 1.326 1,364
Stream 1,573 1.645 1.678 1.694 1.710 1.772
Stream 1,716 1.623 1.590 1.575 1.562 1.514
Mean 1.6074 1.5426 1.5138 1.5008 1.4883 1.4411
o (sD) 0.209696 0.,148967 0.133899 0,132475 0.134402 0.163491
o (SE) 0.07414 0,05267 0.04734 0.04684 0,04752 0.05780

0(SD) = Standard Deviation ; 0(SE) = Standard Error

*
different answers for different initial guesses

Optimum cut—off time

= 115ns

Best estimate for a/b = 1,501 (}.047)

Corresponding estimate for b/c = 1.498
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(b) +1% assumed measured error in R

Cut—off 118ns 115ns 120ns 125ns 130ns 135ns 140ns
time

a/b a/b a/b a/b a/b a/b a/b
Stream 1 1.546 1.534 1.523 1.511 1.500 1.489 1.478
Stream 2 1,837 1.735 1.679 1,633 1.594 1.557 1.522
Stream 3 1,510 1.492 1.474 1,457 1.440 1.423 1.406
Stream 4 1,439 1.406 1.374 1.342 1,310 1.278 1.244
Stream 5 1,442 1.414 1.387 1,361 1337 1.312 1.289
Stream 6 1.312 1.325 1.340 1.349 1.360 1.370 1.380
Stream 7 1,816 1.87 1.847 1.840 1.878 1.893 1.909
Stream 8 1,643 1.624 1.606 1.590 1.575 1.561 1.548

Mean 1.5681 1.5301 1.5288 1.5104 1.4992 1.4854 1.4720
o (SD) 0.185700 0.183700 0.,174243 0,173033 0.186398 0.195406 0.206181

o (SE) 0.06565 0,06495 0.06160 0.06118 0.06590 0.06909 0.07290

Optimum cut=off time = 125ns
Best estimate for a/b = 1.510 (*.061)

Corresponding estimate for b/c = 1,400
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(¢) -1% assumed measured error in R

Cut—off 110ns 115ns 120ns
time

a/b a/b a/b
Stream 1 1,494 1.485 1.476
Stream 2 1,644 1.616 1.588
Stream 3  1.468 1.454 1.440
Stream 4  1.419 1.392 1,366
Stream 5 1.418 1.395 1.373
Stream 6 1.300 1.311 1.321
Strsam 7  1.626 1.638 1.649
Stream 8 1,561 1,549 1,537
Mean 1.,4913 1.4800 1.4688
o (SD) 0.115922 0.,114924 0.115761
o (SE) 0.04098 0.04063° 0.04093

Optimum cut=off time = 115ns
Best estimate for a/b = 1.480 (1 .041)

Corresponding estimate for b/c = 1.611



Table 17.

True (a/b, b/c) = (1.7, 1.25)

(a) No assumed error in R

142,

Determination of the optimum cut—off time for Protein 2,

Cut=aff 85ns 90ns 95ns 100ns 105ns 110ns 120ns
time

a/b a/b a/b a/b a/b a/b a/b
Stream 1 1.709 1.691 1.675 1.659 1.644 1.630 1.603
Stream 2 1.963 1.926 1.872 1.777 1.716 1.666 1.579
Stream 3 1.670 1.645 1.622 1.600 1.578 1.558 1.520
Stream 4 1,602 1,561 1,523 1.486 1.452 1.418 1.351
Stream 5 1,600 1.566 1.534 1.505 1.478 1.453 1.408
Stream 6 1,482 1.496 1.509 " 1.521 1.533 1.544 1.566
Stream 7 1.924 1.924 1923 1.923 1.923 1.923 1.922
Stream 8  1.847 1.803 1.771 1.745 1,723 1.703 1.669
Mean 1.7246 1.7015 1.6786 1.6520 1.6309 1.,6119 1.5773
o (sD) 0.170801 0.166408 0.161588 0.154362 0.155373 0.159776 0.173689
o (SE) 0.06039 0,05883 0.,05713 0.,05458 0.05483 0,05649 0.06141
Optimum cut—off time = 100ns

Best estimate for a/b = 1.652 (% .055)

Corresponding estimats for b/c = 1.305
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(b) +1% assumed measured error in R

Cut=off 75ns 80ns  85ns 90ns 95ns 100ns 105Sns
time
a/b a/b a/b a/b a/b a/b a/b

Stream 1 1.856 1.856 1.856 1.820 1.821 1.767 1.834
Stream 2 1.856 1.856 1.856 1.856 1.856 1.856 1.856
Stream 3  1.856 1.821 1.791 1.732 1.691 1.658 1.628
Stream 4 1.843 1.728 1.555 1.599 1.551 1.508 1.467
Stream S5 1.834 1.716 1.655 1.608 1.568 1,532 1.501
Stream 6 1.471 1.492 1,511 1.528 1.544 1.560 1.575
Stream 7 1.856 1.856 1.856 1.856 1.856 1.856 1.856
Stream 8 1.856 1.856 1.856 1.856 1.856 1.856 1.856
Mean 1.8035 1.7726 1.7545 1.7319 1.7179 1.6991 1.6841
o (sD) 0.134604 0,127668 0.131819 0.135561 0,145962 0.153037 0.163378
o (SE) 0.04759 0.04514 0.04661 0.,04791 0.05161 0.05411 0.05776

Optimum cut=off time = 80ns
Best estimate for a/b = 1.773 (X .045)

Corresponding estimate for b/c = 1.,0875



(c) =1% assumed measured error in R
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Cut=off 80ns 85ns 90ns 95ns 100ns 105ns
tims

a/b a/b a/b a/b a/b a/b
Stream 1.670 1.656 1.643 1.630 1.617 1,605
Stream 1.936+ 1.861 1,799 1.749 1.705 1.665
Stream 1.648 1.628 1.608 1.589 1.570 1.552
Stream 1.614 1.576 1.541 1.507 1.475 1.444
Stream 1.606 1.573 1.543 1.516 1.490 1.466
Stream 1,452 1.466 1.478 1.489 1.499 1.508
Stream 1.815 1.842 1.870 1.902 1.936+ 1.936+
Stream 1,759 1.737 1.716 1.698 1.681 1.666
Mean 1.6875 1.6674 1.6498 1.6350 1.6216 1.6054
o (sD) 0.147596 0.137488 0,136111 0.,142556 0.,153928 0.157728
o (SE) 0.05218 0.04861 0.04812 0.,05040 0,05442 0,05577
t Upper limit (= b/c = 1.0)
Optimum cut=off time = 90ns

Best estimate for a/b = 1.650 (% .048)

Corresponding estimate for b/c

1.3905
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Table 18. Determination of the optimum cut—off time for Protein 3.

True (a/b, b/c) = (1.25, 1.7

(a) No_assumed error in R

Cut—off 80ns 100ns 105ns 110ns 115ns 120ns 140ns
time

a/b a/b a/b a/b a/b a/b a/b
Stream 1 1.367 1,315 1.303 1.291 1.278 1.266 1.215
Stream 2  1.881 1.587 1.547 1.510 1.476 1.442 1.313
Stream 3 1.388 1.301 1.281 1.263 1.240 1.219 1.119
Stream 4 1,464 1.285 1.244 1.200 1.151 1.089 1.001
Stream 5 1,448 1.278 1.239 1.200 1.157 1.108 1.000
Stream 6 1,000 1.000 1.000 1.000 1,000 1.000 1.000
Stream 7 1.314 1.393 1,409 1.424 1.439 1.453 1.505
Stream 8 1.514 1.421 1.402 1.385 1.370 1.354 1.297
Mean 1.4220 1.3225 1.3031 1.2841 1.2639 1.2414 1.1813
o (SD) 0.243637 0.165850 0.160554 0.158626 0.161019 0,168224 0.184692
o (SE) 0.08614 0.,05864 0,05676 0.05608 0.05693 0.05948 0,06530

Optimum cut=off time = 110ns
Best estimate for a/b = 1.284 (X .056)

Corresponding estimate for b/c = 1.695
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(b) +1% assumed measured error in R

Cut-off 105ns 110ns 115ns
time
a/b a/b a/b

Stream 1 1.319 1,306 1.293
Stream 2 1.618 1.562 1.516
Stream 3  1.294 1.272 1.249
Stream 4  1.247 1.199 1,145
Stream 5  1.245 1.202 1.155
Stream 6 1.000 1.000 1.000
Stream 7 1.444 1.462 1.481
Stream B 1,431 1.412 1,394
Mean 1.3248 1.3019 1.2791
o (sD) 0.181404 0.,176485 0.178272
o (SE) 0.06414 0,06240 0.06303

Optimum cut-off time = 110ns
Best estimate for a/b = 1,302 (Z .062)

Corresponding estimate for b/c = 1.5395



(c) =1 % _assumed measured error in R

Cut-off 105ns 110ns 115ns
time
a/b a/b a/b

Stream 1.294 1.283 1.27
Stream 1.511 1.481 1.452
Stream 1.275 1.257 1,238
Stream 1.246 1.206 1.163
Stream 1.240 1.204 1.165
Stream 1.000 1.000 1.000
Stream 1.387 1.400 1.413
Stream 1.385 1.370 1.355
Mean 102923 1.2751 1.2571
o (sD) 0.149290 0,147794 0.149222
o (SE) 0.05278 0,05225 0.05276

Optimum cut=off time = 110ns
Best estimate for a/b = 1.275 (}.052)

Corresponding estimate for b/c = 1.764

147.



Table 19, Mean values for the retrieved axial ratios compared

with the real values

Retrieved

b
(2 2)

Real

a b
(g 8)

Protein 1
Protein 2

Protein 3

(1,501, 1,498)
(1.652, 1.305)

(1.284, 1.695)

{1.50, 1.50)
(1.70, 1.25)

(1.25, 1.70)

148.
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Table 20. Effect of experimental errors in the intrinsic viscosity

and molecular weight

(and hence the product [n]. M, used in calculating the decay constants

- cf Table 14 and equation 108)

Assumed srror in [n]

2] L] n n

b 4 } total error ~ ¥1.7 % (calculated
r

+1,4% from formula given in Paradine & Rivett
- (1960))

Results are for Protein 1, cut-off time = 115ns, % 0.1°% standard error

on each 6? the 100 data points

Stream no.

of random - 1.7% Noa;;ror + 1.7%
data
1 1.493 1.503 1.520
2 1.638 1.654 1.679
3 14455 1.468 1.487
4 1374 1.396 1.424
5 1.383 1.401 1.425
6 1.305 1.315 1,333
7 1.695 1.694 1.704
8 1.566 1.575 1.593
mean a/b 1.4886 1.5008 1.5206
OSD 0.136305 0.132475 0.130253
OSE 0.04819 0.04684 0.04668

OéD = standard deviation

Q
]

SE standard srror
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Table 21. Effect of using different initially assumed values for

the pre-exponential factors A'+

*
Protein 1, Cut off time = 100 ns, 0.1 s.e., on each of the 100 data points

Assumed Retrieved
t t 1 ]
A.+ A _ a/b A + A _
0.06 0.06 1.683 0.057 0.064
0.07 6.05 1.674 0.065 0.055
0.09 0.03 1.660 0.083 0.038
0.1 6.0 1.664 0.099 0.021
0.119 0.001 1.644 0.109 0.012

*The data for this table were obtained after the UK NAG Mk VI routines
had been updatéd to Mk VII; the new random number routines corresponding

to GOSADF & GOSBAF in Mk VI are GOSCAF & GOSCBF



Table 22. Comparison of model dependent estimates for Ue with

the real values

*
Retrieved Model-dependent Real V_ (cmz)
a b 3

(-b-, = ) v, (em”) (cf Table 14)
. ‘ -19 -19

Protein 1 (1.501, 1.498) 1.131 x 10 1,131 x 10
Protein 2 (1.652, 1.305) 0.889 x 10~ 12 0.890 x 10~ 12
Protein 3 (1.284, 1.695) 1,202 x 1012 1,211 x 107°

¥calculated by determining the value of v corresponding to GE L

b? ¢

and then back substituting into the equation v = [n]Mr/NAve,

where [n] is in ml/gm

151.



1625

© 5 MIN SAMPLE I¥
@ 50 MIN SAMPLE I¥

0.0l

T=11.5 pusec

0.00I

0 20 40
TIME, u sec

Ficure 39. Birefringence decay (expressed in radians) in Helix Pomatia

hemocyanin solutions. The triangles represent the difference

between the tangential curve (long relaxation time) and the

experimental points. (From Pytkowickz & 0'Konski, 1959)
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Figqure 40, Synthetic two-term exponential electric birefringence decay curve

assuming a standard error of : 0.10 on each data point.

Relaxation times assumed: 28.,66ns, 40.10ns
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Figure 41, Plot of the R, 6+ and §_ values obtained from the non-linear least

squares analysis assuming birefrinagence data of machine accuracy
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Frequency spectrum of ) (21/relaxation time) for a single

exponential decay and Lo T 6.0, assuming decay data of machine

accuracy (14 figures).

The position of the highest peak

corresponds to a value of ) of .021, in agreement with the

initially assumed value of 0,02



Figure 43 (I - VI)

Effect of increasing My to determine best resolution of the fregquency
spectrum corresponding to the decay for Protein 2, for 140 logarithmically

increasing data points of machine accuracy (14 figures)
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Figur. 44 (I - VI)

As for Figure 43 but for data of .001° standard error on each of the

140 logarithmically increasing data points
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o

Figure 45. Knots in the R curves for specification in the R - constrained

least squares analysis (Program 7) for Protein 1
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Figure 46. As for Figure 45 but for Protein 2
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Figure 47. As for Fiqure 45 but for Protein 3
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True (a/b, b/c) = (1.5, 1.5)

Fiqure 48.

2.0 a2

The area marked by dots represents the allowed band of retrieved

axial ratios determined using the new R - constrained least

squares algorithm for Protein 1. Simulated experimental error

of 0.10 standard error on each data point for the electric

birefringence decay curve was assumed.
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True (a/b, 6/c) = (1.7, 1.25)

Fiqure 49, As for Fiqure 48 but for Protein 2
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True (a/b, b/c) = (1.25, 1.7)
2.2 &

.

Figure 50. As for Figure 48 but for Protein 3




-CHAPTER 5

Concluding Remarks
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In this study an extensive review of all the possible shape
functions available for modelling a biclogical macromolecule in
solution in terms of an ellipsoid model with the restriction of tuo
equal axes has been given, thus updating the classical reviews of
Edsall (1953) and Tanford (1961). It was concluded that the most
suitable shape parameter (particularly for axial ratios less than 203:1)
was the R parameter which can be determined from the ratio of the
sedimentation regrassion'coefficient, kS to the intrinsic viscosity, [n]
A word of warning should perhaps be given out here in that the kS value
found from fitting sedimentation coefficient versus cbncsntration data
either to the general equation (60) or to the approximate linear equation
(58), is the value based on particle migration relative to the solvent,
whereas the [n] values are normally measured to solution density (Tanford,
1955), The value of kS must therefore be corrected to solution density,
and this can be achisved simply by subtracting the value of the partial
specific volume, v (Rowe, 1977) since this latter can be equated to the
reciprocal density of the solute, an assumption reasonably accurate for
proteins and possibly for nucleic acids (Pearce gt _al, 1975). It is also
now possible to estimate a value for ks direct from a knowledge of the
sedimentation coefficient, the molecular weight and v (Appendix VI).
Despite the availability of the R function for determining the ‘equiv-
alent hydrodynamic ellipsoid of revolution' for a structure in solution to
a reasonable precision (and alsc the 1 function for prolats sllipsoids -
Appendix III), it was clear from a pesrusal of the crystallographic
dimensions given in Table 3 and a comparison of model dependent with model
independent sstimates for VS/V in Table 2, that for many macromolscules

the assumption of two equal axes on the ellipsoid model is a poor
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approximation to the real structurs in solution. This stimulated my
attempts to develop the necessary theoretical and data analysis techniques
so that the restriction of two equal axes could be dispensed with and the
subsequent research has shown that the more general tri-axial ellipsocid
can now, in principle at least, be successfully employed for modelling
biological macromolecules in solutione.

The first step was to derive an explicit expression for the viscosity
increment v for a dilute suspension of general trieaxial ellipsoids in
overwhelming Brownian motion, based on a model first given by Simha (1940)
~and improved by Saito (1951) for ellipsoids of revolution. Although the
assumption of the particlses rotating on average with the same local angular
velocity of the fluid has only been rigorously proved so far for sllipsoids
of revolution (Brenner, 1972a), it was assumed that this would be a very
close appfoximation for tri-axial ellipsoids, particularly for low axial
ratios (<3.0, i.e. the globular particle range). After the derivation of
equation (88) a numerical procedure (involving complicated numerical matrix
inverginns), but based_on a full statistical analysis of the angular motion
was made available by Rallison (1978). It was explained in section 2.8. houw
the difference in the results predicted by equation (88) and Rallisons
approach was negligible (<.01%) for the globular particle range mentioned
above, and for some particles of higher asymmetry discrepancies of not more
than 1% aross. Rallison has also given a numerical procedurse for
calculating the normal stress coefficients in terms of axial ratioj normal
stress effects are howsver second order in the shear rate, thus in order
to measurse these coefficients it is necessary to use high shear rates.
However, the assumption of overwhelming Brownian motion with respect to
the shear rate ceases to be valid, and hence, unfortunately, the normal

stress coefficients cannot be applied.
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It was described how the problem of the line solution (i.e. houw a
given value for v does not uniquely fix a value for the axial ratios
(a/b, b/c)) could be dealt with by combining it graphically with
translational frictional or rotational relaxation line solutions. I
was able to give the R function for tri-axial ellipsoids and also many
other trieaxial functions whose experimental determination did not requirs
a knowledge of the swollen molecular volume in solution. After a careful
consideration of all these line solutions with regard to giving suitable
intersections, experimental measurability, insensitivity to experimental
error and sensitivity to axial ratio, it was decided that the best approach
for determining a unigue solution would be to combine the R line solution
graphically with the 5+ and §_ line solutions, the latter to be determined
from the two elsctric birefringence decay constants and the intrinsic
viscosity. |

Unfortunately, this still requires having to resolve the two decay
constants or relaxation times from a two~tsrm exponential birefringence
decay for a homogeneocus solution of asymmetric particles. This problem
is notoriously difficult, as reported by Jost & O'Konski (1978) and
0'Connor, Ware & Andre (1979), particularly for close relaxation times (as
applies to globular proteins). The currently best available methods evident
from thess studies, viz, the non-linear least squares iterative method and
possibly the Fourier Transform solution of the Laplace Integral equation
method of Gardner st al (1959) were tested by exhaustive computer
simulation to see how much error on the data points each could tolerate
before failing to resolve the decay constants within reasonable limits. The
Fourier method failed, even for data of machine accuracy (14 figures). The

non=linear least squares method was found to be unstable due to the problem
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of subsidiary minima located in the iteration procedure, even for data
of two orders of magnitude more precise than that currently available
from the best instrumentation.

The idea of applying the R function line solution as a constraint in
the least squares analysis was then applied to the three simulated decays
thus effectively reducing the problem from one of four independent variables
(the two pre-exponential factors and the two decay constants) to one of
three (two pre-exponential factors and one axial ratio, a/b). The algorithm
was then shown to be very successful for synthetic data corresponding to
that available from current experimental precision. The problem of the
concentration dependence of the decay constants (or equivalently the
relaxation times) was then mentioned, and the necessity for extrapolating
the values for the axial ratios determined at various concentrations to
infinite diluticn. The need for extrapolating axial ratios is somewhat
conceptually difficult to envisage at first sight, since one would more
naturally extrapolate the decay constants and then calculate the axial
ratios from them. In the algorithm howsver, I have included the R valus
as the constraint = the R function line solution of possible values of

(a/b, b/c) is the value applicable at infinite dilution, thus the decay

constants in the algorithm are constrained to lie on the 'infinite dilution'
curve; hence none of these values are the true values for the decay constants
at each particular solute concentration. Any extrapolation procedure is
therefors empirical, whether it be for the decay constants or for the values
of the axial ratio a/b.

Investigation of the theoreticel reasons for the concentration
dependence of the decay constants provides however both an interssting and

important field for further work. It has been described (section 1.7.1. &
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Appendix IV) how several important results have arisen from consideration
of the concentration dependence of the 'translational! (i.e. viscosity,
sedimentation and diffusion) transport coefficients: for example, in
producing the R function and making available an sstimats of the swollen
volume of a macromolecule in solution independent of any model assumed for
the macromoleculs. The analysis of the concentration dependence of the
decay constants is howsver much more complicated: Rowe's (1977) theory for
the translational coefficients was derived assuming only hydrodynamic
(i.e. volume flux) concentration effects, viz. solutions of high ionic
strength (>0.1M) and such that electric charge effects (solute-solute
interactions) wers not present. The situation is apparently the reverss
when we come to coﬁsider the decay constants: since we are dealing with a
rotary macromolscular property, there should be no solute volume flux
effects on average giving rise to the hydrodynamic concentration effects
considered by Rowe. On the other hand, the current practical restriction
of low ionic strengths for the electric birefringence probably results in
some solute-solute slectric charge effects; the double layer thickness
of charge around a macromolecule in solution is inversely proportional to
the square root of the ionic strength (Guoy, 1910, Chapman, 1913). For
example, for a macromoleculs suspended in a 0.,1M NaCl buffer the thickness
of the double layer is ~ 1nm, whereas in a 0,001 NaCl buffer, the.thickness
is as high as 10nm (Shaw, 1970). There is thersfore a grsater likelihood
of interfersence between the relaxations of individual macromoleculss, the
degree of which one would sxpect to increase with concentration.

In section 1.6. the techniques of light and lowe~angle x=ray scattering
were discussed as an alternative to the hydrodynamic techniques, and stated

how Martin (1964) had given formulae relating the radius of gyration to
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axial ratio for ellipsoids of revolution. Mendelson and Hartt (1980)
have applied results from low angle x-ray scattering in terms of a
general triaxial ellipsoid model to the regulatory light chains of
scallop myosin, and determined axial dimensions of 16nm X 4.,16nm x 1.26nm.
We also mentioned howsver that the major disadvantage of the scattering
approach was that it is necessary to assume the macromolscule to be of
uniform electron density; this can lead to errors of the order of 3%,
notwithstanding other errors in measurement as the simple calculation
given in Appendix VII for a hypothetical spherical macromolecule with a
cavity (based on the electron microscopy and x-ray diffraction results
for apoferritin - Harrison, 1959) shouws.

It is hoped however that the results of the research described here
have now made it possible to determine the gross conformation of biological
macromolecules in solution in terms of a general ellipsoid = independent of
any assumptions concerning the internal homogeneity of the macromoclecules =
by combining the results of viscosity, sedimentation and electric (or
acoustic) birefringence. There ars some macromoleculss however that
apparently will never be modelled by an ellipsoid, even tri-axial,

Bovine serum albumin (BSA) is a typical example; McCammon et al (1975)
have attempted to account for a value for B below the theorstical minimum
of 2,112 x 108 (and above the theorstical maximum for R of 1.6 — see Table
2) by assuming its structure to be porous with respect to the solvent, but
found the discrepancy was still far too large. - With the availabilty aof
the tri-axial ;l;ipsoid model and a comparison/with model independent
estimates for the swollen molecular volume, a classification of proteins
into those which do and those which do not behave as hydrodynamic trie

axial ellipsoids in solution can now be made.
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Appendix I £Elliptic Integrals used in this study
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Appendix II Illustration of use of the A function (equation 50) by

application to data availablse for the tryptic subfragments of fibrinogen

It is apparent from Figure 17 that, until the harmonic msan
relaxation time T, can be measured to a precision greater than that
currently available (~ X3¢ at best, assuming no gsignificant internal
rotations of the chromophore or segmental rotations of parts of a
macromolecule relative to other parts), use of A will generally be
restricted to prolate ellipsoidal particlss above an axial ratio of
about three,. |

Unfortunately, there is at present a lack of reliable steady state
fluorescence depolarization data for macromoleculss in this axial rangs.
Use of the function may however be illustrated by application to data
available for the tryptic fragment of bovine fibrinogen. By using a
steady-stats fluorescence - dspolarization technique, Johnson & Mihalyi
(1965) reported a harmonic mean relaxation time for fibrinogen of 195%S ns,
a value lowser than the corresponding value for a sphere of the same volume
(299 ns); the value for T of the tryptic subfragment was 178 ns, strongly
suggesting that the tryptic subfragments had rotational freedom within the
fibrinogen molecule. Assuming there is still no further internal rotation
within the subfragment itself, one can combine this result with viscosity
and molecular-weight data obtained previcusly by Mihalyi & Godfrey (1963).

Taking M as 95,000#2,000, [n] as (7.18%0.07) ml.g-1 and assuming a

* S5 ns standard error in T A is calculated to bs 4.7410.17 where the

h’
method for calculating the standard srror in A is given by Paradine &
Rivett (1960). This corresponds from Figure 17 to a prolate ellipsoid of

axial ratio 6.830.3 consistent with the estimates of the axial ratio
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derived from four other hydrodynamic parameters, three of which assume

no particle swelling due to solvent association (Table 23). The

results from electron microscopy studies suggest however that the
subfragments are nearly spherical (Hall & Slayter, 1959); as Mihalyi &
Godfrey (1963) have previously stated, this difference is probably too
large to be explained by drying effects alone. At least part of this
difference can, however, be possibly ascribéd to an apparent discrepancy
between the viscosity data of their Figure 4 with the sedimentation data
of their equation 2; the latter suggests a sedimentation regression
coefficient, ks’ of ~ 3.6 (after correction to solution density; Rouwe,
1977), whereas the viscosity regression coefficient, kn, is only ~ 2,5.
Rowe (1977) has shown that the ratio kn/ks is equal to the swelling ratio
US/V, where US is the swollen specific volume in solution. Mihalyi &
Godfrey's (1963) data apparently gives a valus for the swelling of less
than 1, indicating the particle to contract in solution, an unlikely
event. Unfortunately, although the pH values of the solutions used for
the ssdimentation and harmonic mean relaxation time measursments ars given
and are near (6.5 and 7.1 respectively), that for the viscosity is not
given, so this is a possible source of error.

It is hoped that the availability of ths new A function will
encourage the production of more reliable data in order to resolve these
difficulties, and also accelerate improvement in the methodology so that
Th/’to can be measured with much greater precision, enabling application
of the A function to prolate ellipsoids of axial ratio less than three

and also to oblate ellipsoids.
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Table 23. Hydrodynamic parameters and axial ratios for the tryptic

subfragments of fibrinogen

Hydrodynamic Derived Axial Reference
Parameter - Ratio
v¥ 7.8 Mihalyi & Godfrey (1963)
*
"
£/ fo Tl
B 9.3 "
*
AR \ .
H 0 5.0 Johnson & Mihalyi (1965)
A 6.8 This study

Assuming no particle swelling due to solvent association
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Appendix III Illustration of use of the I function equation 57

by application to data for hemoglobin

The I function obtained in section 1.7. can be applisd to molecular
covolume and viscosity data available for hemoglobin. The molecular
covolume, U, is related to the 2nd virial coefficient, B employed in
osmometry by U = ZBer. Baghurst st al (1975), using a molecular
weight of 64,500 found -~ : - the value of the product Bl‘lr to be 4.8 ml/bm.
Using instead th& exact value for the molescular weight found by sequence
analysis to be 64,793, this product bscomes 4.78 ml/ém; this gives the
ratio U/l'lr to be 9.56 ml/gm. From the plot of reduced specific viscosity
against concentration (Figure 51) an intrinsic viscosity of 2.99 ml/gm
has been determined by a least squarss fit to the nsw universal equation
for transport coefficients at all solute concentrations (see section 1.7.1.
and Appendix IV). The value of I is calculated to be 3.20, corresponding
to a spherical particle (Figure 24). This is consistent with the findings
of x-ray crystallography (Perutz et al, 1960). The value of v for a
spherical particle is the Einstein value of 2.5. By back substitution
into equation (8) and using a value for Mr of 64,793 one obtains a value
for \I6 of 1.286 x 10'19 cm3. This corresponds to a Stokes radius of
3143 R, in excellent agrsement with thse result of 32.3 R calculated by
Alpert & Banks (1976) from the diffusion coefficient dstsrmined by lasser
correlation spectroscopy and agrses sxactly with the result of 31.3 R
calculated by Laurent & Killander (1964) from the diffusion coefficient
determined by gel filtration, both groups assuming a hard sphere model.
The Stokss radius can also be found directly from the molscular covolume

and molecular weight assuming a hard sphere model: Baghurst st al (1975)
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determined a valus of 31.3 g, again in exact agresment. The corresponding
radius of the sphere calculated from the crystallographic dimensions of
64 x 55 x 50 A of Perutz st _al (1960) is 28.0 ?\, indicating hemoglobin to
be swollen in solution by approximately 40% (v/V).

If one usses standard errors of +.03 (= 1%) and * .096 (= 1%) in
U/I'lr respectively, the calculated standard error (Paradine & Rivett, 1960)
in T is + .045. The maximum error corresponds to an axial ratio of
1.8 for a prolats model but as high as 6.8 for an oblate model, indicating

the difficulty in applying II to macromolecules that are oblatoid.



Figure 51.

Plot of reduced specific viscosity versus concentration for human exy =

hemoglobin (0,1M KCl buffer. pH = 6.0).

The curve fitted is that due to a weighted least squares fit to the neuw
universal equation ﬁdr‘the concentration dependence of transport coefficients
(equation 60)., The weighting factor used was (1/concentration).

[n] = 2,99 m1/gm, k, = 7.8 ml/gm.
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Appendix IV Viscous Flow and Sedimentation of Concentrated Dispersions

of Particles (quoted from A.J. Rowe, mss. in preparation)

The hydrodynamic properties of dispersions of particles in fluids
are quite well described at very high particle dilution, both for simple
models (spheres, ellipsoids, rods) and for more complex models which may
be represented as assemblies of simple models and the appropriate
interaction tensors computed. Restricting outselves to the case of small
particles (Brownian motion dominant) suspended in liquids, the work of
Stokes, Einstein, Perrin, Simha, Broersma and others (for simple models)
and of Kirkwood, Bloomfield and others (for assemblies) enables a
reasonably accurate description to be givenvnf the sedimentation and
viscous flow properties of such suspensions to be given at ‘infinite
dilutiont.

At real particle concentrations however, no theory has proved
adequate, even for the simplest particle model - the sphere. The need
for such a theory is evident in many fields: in my own field of
Biochemistry it would be useful both for methodological purposes in
characterising macromolecular properties and for the description of
'in vivo'! systems, which are generally rather concentrated dispersions
of macromolecular particles. 1 have been concerned to derive such a
theory, relating the properties of suspensions of particles at real
concentration to their 'infinite dilution' behaviour. In a recent paper
(Rowe, 1977) a first part of such a theory was described: the extension
of this theory to cover the case of high concentrations is now described.

The State of the Problem

It has long been noted that the concentration dependence of
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sedimentation and of reduced specific viscesity is finite sven at high

dilution, and remains nearly linear over moderate ranges of concentration:

(sedimentation) s, s(1 - ksc) -~ os(1 + ksc)'1

(viscous flouw) Ng

c c

= nSE
( ) o0 . (1 + kT]C)
A recently derived theory (Rows, 1977) shows that

k =k8=2\7(

+ (/0)%)

<3 <i
(1]

for compaqt particles, whers v is the partial specific volume of the
particle and f/?o, the frictional ratio, is a parametsr computable for
simple models and for assembliss of sub-units. This theory is thus
applicable to particles of any conformation. The valuss predicted for
both spheres and other pérticles agree well with experimental evidence
and with earlier theoretical predictions for spheres (Figure 52, Table 24).
At higher concsntrations two further effects must be considered:
(1) mutually proximity of the particles affects the rate of snesrgy
dissipation at constant shear (the 'cloud effect! of Burgers).
In general this poses a many-body problem which is not amenable
to solution by classical techniquss.
(ii) the critical packing fraction (¢p) will be approached. Semi-
empirical equations dus to Mooney (1951), Dougherty and
Kreiger (1972) and others describe the viscosity of suspensions
of spheres in terms of ¢p.

A New General Approach

The theory applicable to high dilutions (Rowe, 1977) was based on
the supposition that gnly a !'frame-of-reference' effect need be considered

in this case. Derived in terms of sedimentation, it is shown that the
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latter must be unchanged with concentration in a frame of reference

defined by the solvent in return flux (i.e. solvent not transported

or convected with the particles). The equation above then follows from
the relation bstween the defined frame of refersnce and the cell-fixed
frame of refsrence in which measurements are normally made.

To extend this approach to higher concentrations we re-define the
problem by considering the system to consist of a large but finite
number of volume eslements, each element small in comparison to a
particle. Thess volume elements can be classified as slements of
disjoint sets V1....VY4, shown in a Venn diagram for two particles
(Figure 53).

Among intsresting properties which may be noticed ars that

(i) Sets V1, V3 can be classified into sub-sets

vl, - v1n, v3, - v3n, for n particles in the system

1 1
(i1) v, N ;= ¢ 5 but v3, N v3j £ 0

i

(iii) In Newtonian flow, the magnitude of the flow vector of the
solvent at any point in the system is defined by the fraction
of the volume elements in the vicinity of that point classified
as in V2 U V3 in relation to those in V4 U V2 U V3

(1v) v, N V2 # ©: more completsly V2 is partitioned into the
dis joint subsets V2a and V2b, where v1i(\ V2a = 9 ;
v1, N V2b #£¢: and ¢p, the critical packing volume of the
particlss, determines the relative number of elements in
V2a and V2b {¢p = 1; V2a = ¢}.
On the assumptions that n is large, and that the elements in V3 are

located randomly in V3 U V4, then a simple finite probability space
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can be constructed, enabling us to calculate the number of elements in

Vl.eoeV4, and hence the quantity gc in

% o= %/t = (1 - gc)
S T]spc;t:->l]
since VI U V2U V3 = gc,
The result is given by
i=w
i i+
9¢c = 2 = ¢ = (kc-ZCVS) - E(i-1)(d> -® )
i=2

e mors o X (o V2 (a2 0Y e 0 < (1
where z = 2cv_ - . (cvs) (1 Q)+, Q= ¢p)/¢p

which for almost all cases simplifies to
2¢ =1 - 2
kc = Ez ( e v, )
gc = ¢P

ke = 2cv_ + 1
S

whers k = ks or kn H VS = gpecific volume of the hydrodynamic particle.

This equation predicts rather accuratsly the high=shear viscosity
of latex spheres over the entire concentration range (Figures 54 - 58).
It is applicable only to Newtonian flow, but is free of arbitrary or
empirical constants. The treatment usea has some affinity with the
widely used approach involving transient doublets, triplets, etc. (i = 2
in the above summation refers to 'doublet! interaction, etc.), but as no
particle model is employed, the results should be general for all particles.
The ¢b term would often be difficult to estimate, but computer simulation
shows that an exact knowledge of ¢p is unimportant except at the highest

concentrations
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Figures 54 - 58 demonstrate the success of the theory in predicting

known properties of sedimentation and viscous flow at real concentrations.
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Table 24, Various theoretical estimates and a practical sstimate for

kz, the second coefficient in the expansion for Mol in

terms of ¢ (volume fraction)

2
nrel — 1 + k1¢ + k2¢ + LR K BN B BN B BN B NN N N )
Estimate for k2 Author
7.5 Vand (1948)
9,15 Manley & Mason (modification of Vand) (1954)
7.5 Kynch (1956)
14,1 Gold (1937)
12,6 Simha (modification of Gold) (1952)
7.6 Batchelor & Green (1972)
10.0 Rowe (1977)

'about 10! Cheng & Schachman data on PSL spheres (1955)



Figure 52,

Empirical data and the equation for transport-concentration dependence

(Rowe 1977), at high solute dilution. The equation enables Mr(molecular

weight) values to be calculated from s and ks only., The agreement found

between values for Mr computed thus and Mr values from the literaturs

(various methods) is good evidence for the applicability of the equation

to a wide range of systems.

Solute Mm_(s+k_)

by s
mr21it)

Proteins, nucleic acids, 1.02

viruses

Cellulose derivatives 1.01

in CUAM

Cellulose derivatives 0,97

in ACETONE

Levans (agueous) 0,99

Poly(methylymacrylate) 1,05

in ETHYL ACETATE

Standard. Symbol
error
0.01 )
0.09 O
0.10 A
0.04 O
0.08 A
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Figure 53. Venn diagram showing the volume slements for two particles

in soluticon

V1 = particle volume
V2 = particle coevolume
V3 = solvent frictional forward flux

V4 =« solvent return volume flux



'1OCJ‘F-D

80

189.

v Thomas

et e

. O Woods & Krieger

Data for PSL spheres

60
-
Qrel
40 |
20 1
0 i 1 l
0 o2 o4 05 o8
volume fraction
Fiqure 54, Relative viscosity of spheres as a function of volume fraction.

Predicted line, for kn = 4, VS =1, ¢p = 0.64, Experimental

data points are also shown



190.

1
k = 100
\ S
8
k_ = 500
o6
k = 1000
S
& ¢, = 2000
.8 0
ks = 5000
k 10000

02" S
S ! | 1 |

0] o002
concentration (g/ml)

Figure 55. Ffor highly asymmetric particles the sedimentation coefficient

falls very steeply with concentration, to reach a relatively

constant 'plateau! value. Computed curves.
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Figure 56. Viscosity/sedimentation coefficients as a function of concentration

for ks(kn) = 1000, US = 1. The 1/s plot is linear, whilst the

direct plot is markedly curved. Computed curves.
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Figure 57. Viscosity/sedimentation coefficients as a function of concentration

for ks(hn) = 6., Both plots are reasonably linear over this

concentration range. Computed curves.



Fiqure 58, Hydrodynamic data for Bovine serum albumin fitted

using the new general eguation for transport at

all solute concentrations
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FORTRAN IV computer programs

Program

Program

Program

Program

Program

Program

Program

Evaluates values of the various hydrodynamic shape functions
for trie~axial ellipsoids for a user specifiable value of

the axial ratios (a/b, b/c)

Produces tables of these functions for axial ratios between

1,0 and 2.0 in steps of 0.1

Produces a contour map of v in the (a/b, b/c) plane for

axial ratios between 1.0 and 3.0

Produces plots of the various tri-axial functions in the
(a/b, b/c) plane corresponding to the point (1.5, 1.5).

Several plots allow for arbitrary errors in measurement
Non~linear least squares iterative method for resolving a 2=
term exponential birefringence decay. This program (and the

following two) produces its own synthetic data

Fourier Transform sclution of the Laplace Intsgral Equation

method

R=constrained non-linear least squares iterative method



Function

Computer Symbol

A/B
B/C
NU, S
£
CA, CA/CO
cs, ce/co
cc, cc/co
RHOA, RHOA/RHOD
RHOB, RHOB/RHOO
RHOC, RHOC/RHOO
BETA
R
DELTAA, DELTA(A)
DELTAB, DELTA(B)
DELTAC, DELTA(C)
GAMMAA, GAMMA(A)
GAMMAB, GAMMA(B)
GAMMAC, GAMMA(C)
MuA, MU(A)
mus, mu(B)
muc, mu(c)
TAU, TAU/TAUD
PSI
LAMBDA
TPLS, THETA+, Z

TMNS, THETA-, U



Function Computer Symbol

5, DPLS, DELTA+, V
§_ DMNS, DELTA-, W
Y, GPLS, GAMMA+
Y GMNS, GAMMA-

Tl/ro T1

12/10 T2

T3/To T3

WA T4

/T, T5
o, THPLUS

6 THMNUS
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FORMAT( 5X,"“FLUORESCENCE ANISOTROPY RELAXATION TIME RATIOS:™)

WRITE(3,130)T1

FORMAT( 5X+* = T1  *,F15.5)

WRITE(3,131)T2

FORMAT( 5X9" _ T2  ",F15.5)

WRITE(3,132)T3

FORMAT( 5X,™ T3  *“,F15.5)

WRITE(3,133)Th

FORMAT( 5X,™ T4  “,F15.5)

WRITE(3,134)T5

FORMAT( 5X+™ TS5  *“,F15.5)

STOP

END
UNCTION FUN(X)
JPARAM/A 4C 9NN
0920'309“0150’609731801909100)’NN
((A®A+X) *¥1,5% (B¥B+X) *¥( ,5% (C*C+X) **[,5)
((A®A+X) *%(,5% (B*B+X) **¥1,5% (C*C+X) *¥0,5)

((A*A+X)**(,5% (B¥B+X) #%( 5% (C*C+X) **1,5)
(CA®A+X) 2%, 5* (BEB+X) *¥1, 6% (GXC+X) **1.5)
((A¥A+X)*%] 5% (B¥B+X) **( ,5% (C*C+X) *¥1,5)
(CARA+X)*%L ., G (B¥DR+X) ¥F 1.5 (LPC2X) *% . 5)
((A®A+X) *¥*¥ [, 5% (B¥B+X) **¥1,5% (C*C+X)**1,5)
ﬁ((A*A+X)‘*1.5‘(B*B+X)‘*D.S‘(C‘C+X)*‘1.5)
/((A®A+X) *%1 5% (B¥B+X) ¥¥1 ,5% (C¥C+X) ¥¥(,5)
&U/(((A*A*X)'(B’B+X)*(C‘C+X))‘*0.5)
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CALL CONTRL(GMNS149214214919219219Hy1,y1)

(XVIT)PLOT OF THE 5 FLUORESCENCE ANISOTROPY RELAXATION TIME

RATIOS

CALL FRAME

CALL BLKPEN

CALL BORDER

GACL CSPAGE(0e0s140+040+140)

CALL SCALSI(0s14,041)

CALL CSPACE(0+0904000190.0500.3001)

H(1)=1.025 36

CALL CONTRL(T1,1521+24+1+21+21sHs141)

H(1)=1.28883

CALL REDPEN

CALL CONTRL(T29192192291+21521 Ho1s1)

CALL GRNPEN

H(1)=1.31877

CALL CONTRUL(T3 0292192191921 921 yHoly1)

CALL BROKEN(4,85858)

H(1)=1.43405

CALL CONTRL(T441921+2191+21,21He1,1)

CALL BLKPEN

H(1)=1.02497

CALL CONTRUTT5:+1,28,2151+24421Hs11)

STOP

END

REAL FUNCTION FUN(X)

COMMON/PARAM /4Gy NN

GOTO(10520+30+4095046047 70,80190,190)
10 FUN=1/(laRAsxisri sR(3R84k0 *40.5 (es i) seg.5)
20 gg¥zéﬁ((A’A+x)¥*a.5*(a*e+X)**1.5*(C¥c+x)**o.5)
30 FUNS1/ ((A%A+X) $¥0.5%(8%B4+X) ¥80.5% (C¥C4+X) *%1.5)
40 PUNS1/ ((A®A+X)¥*0.5% (B*3+X) *¥1.5% (C¥C4X) **1.5)
50 EUNS1/ ((AXA+X)*¥1.5% (B¥84X) $%0.5% (CFC+X) #¥1.5)
B0 FUN=1/ ((AA+X)**1,5%(8%8+X) $¥1.5% (C*C+X) *50.5)
70 FUNSX/ ((A®AX) *¥0.5% (BRB4X) F¥1.5% (CFC+X) **1.5)
8O FUN=X/ ((A®A+X)¥*1,5% (3%B4X) *¥0.5% (C¥C+X) *¥1.5)
90 FUNSX/ ((A*A+X) *¥1.5% (B34+X) ¥*1.5% (GFCHX) #*3.5)
100 FUN=1.0/ (((A®A+X) *(B*3+X) *(C*C+X) ) *%0.5)
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c
G
C SUBROUTINE FOR CALCULATING THE ELLIPTIC INTEGRALS USED FOR DETZRMINING
8 THE S VALUE FROM THE CURRENT GUESS FOR A/B
REAL FUNCTION FUN(Y)
gO?HgNIPARAM/GAMHA(iDi),T(101),A 1»C9Ds NNy AA(B) 4 AD(B)
GOTO(10920,30,40,50+60,73+80,99),
10 Eg#aéﬁﬂl((A*A+Y)**l.5‘(B‘B¢Y)"0 5*(C‘C+Y)“0.5)
20 Eg?;éﬁﬂl((A‘A+Y)‘*ﬂ S*(DTB+Y)I¥R1.5%L0*CrY) *%0, 5)
30 Eg?géﬁﬂ/((A*A*Y)**B.S‘(B*B#Y)“G.S*(C‘C+Y)"1.5)
40 Eg?;éﬁﬂ/((A‘A+Y)"0.5‘(B*B+Y)“1.5*(C‘C*Y)‘*1.5)
50 ;g?a%ﬁﬂl((A*A+Y)‘*1.5’(B‘B+Y)**0.5‘(C'C+Y)’*1.5)
60 EE?;&QUI((A‘A*Y)“i.S‘(B*B+Y)‘*1-5*(C‘C+Y)“D.5)
70 ;g?;gﬁ((A‘A+Y)*‘8.5'(B‘B+Y)’*1.5'(C‘C+Y)"1.5)
80 gg?a;l((A‘A+Y)“1 s 91RO YrI*RL 57 (CPLPY) "% 1.,5)
90 FUN=Y/ ((A¥A+Y)**¥1 5% (B¥B+Y) *¥1 5% (C*C+Y) *¥(,5)

Results:

PROTEIN 1, 0.1 DEG. ABSOLUTE ERROR
110NS, 100PTS
STREAM3
FUNCTION VALUE ON EXIT 55

399962998
A/B= « 48309 A+= .07 08 A==

[o - ==}
S0

0
5872 2048831535604

FUNCTION VALUE ON EXIT_IS ,000399962998
A/B= 1,48309 A+= .(704588 845275 A== 048831534073

FUNCTION VALUE ON EXIT_IS .00399962998
A/B= 1.,48309 A+= ,070458881237 A-= 048831534081
BEST LEAST SQUARES VALUE 399962998

A/ B 09

A+
A=
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Appendix VI  Use of Nr, Vv and s to detasrmine ks

———

Rowsa (1977) has shoun that

3/2 - =\ |¥2
M o= N Gﬂnos Jv ks __\:s
(1=v po) 4t 2v v

This can be rearranged to give
3

An sstimate for '\73/ V is required, thus this equation would normally
be used as a check for internal consistency between values for sedimentation |

and viscosity parameters, since Vs/ vV = kn/ kg o
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Appendix VII  Comparison of the radius of gyration for a sphere of

uniform mass with that for a sphere of the same mass but with a spherical

cavity

The radius of gyration, R. of a sphers of uniform mass and radius

G
R is given by:
R R
2 4 3
RG = Janr dr Jdﬂr dr = SR (i)
) )
(Tanford, p 306, 1961). The radius of gyration of a spherical shell of

uniform mass with radius Rz and with a centrally placed spherical cavity

of radius R1 is given by:

RZ R2 Rs - RS
Rg = Jdﬂr dr JMI‘ dr = 5 R3 - g3 (i1)
Rj Ry ) 2 1

The results of electron microscopy and x-ray diffraction (Harrison,
1959, Farrant, 1954, Kuff & Dalton, 1957, Labaw & Wycoff, 1957) suggest
that apoferritin consists of twenty four sub-units, each of molecular
weight 20,000, arranged in the form of a spherical shell of diameter
109 8. 1If we take the radius of the hollow to be 18.5 R, and the outer

radius of the shell to be 54.5 R, R. is calculated using formula (ii) to

G
be 43.0 . The radius of gyration, had the same mass been concentrated
into a uniform sphere of density identical to the shell would have been

41,6 R, using formula (i); i.e. a discrepancy of ~ 3.4%
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fbstract from the Ph.D. Thesis "Modelling Biological Macromolecules in

Solution: The General Tri-axial Ellipsoid" by S. E. Harding (1980)

Hydrodynamic shape functions for modelling biological ﬁacromolecules

in solution in terms of an ellipsoid of revelution model are reviewed.
Several new, hitherto ﬁnpublished shape functions whose experimental
determination does not require knowledge of the swollen molecular volums
iﬁ solution, are given. The limitations and inadequacies of this model
are explained. The viscosity increment v for a dilute dispersion of tri-
axial ellipsoids of semi-axes a> b> c, under dominant Brownian motion is
"derived and an explicit expression in terms of a, b and ¢ is given.
knomledge of the viscosity.increment alone is.not sufficieﬁt to uniquely
" determine the axial ratios (a/b, b/c) because (i) in order to determins
Vy kgﬁuledge of the swollen volume in solution is required and (ii) a
particular value for v has a line solution of possible values for (a/b,
b/c). (i) is dealt with by combining v with the tri-axial frictional
ratio function P to give the tri-axial R function and (ii) by combining
graphically the R line solution with 5+ and §_ swelling independent line
solutions. .The experimental determination of 5+ and §_ requires the
resolution of a 2-term electric birefringence decay into its component
relaxation times; current data analysis technigues are however not
satiéfactory for resolving close relaxation times (as for globular
proteins) Qith the current experimental precision. It is howsver shoun by
e*ﬁaustive computer sim;lation that using a‘new R-ccnstrained non-
linear least squares iterative analysis this is now possible. It is
thus concluded that the general tri-axial ellipsoid as a model fqr the
oross conformation of‘biological macromolecules in solution can now be

employed.



