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A bstract

On Indecom posable M odules over C lu ster-tilted  
A lgebras o f T yp e A

M ark Jam es Parsons

Gabriel’s Theorem describes the dimension vectors of the finitely generated inde­
composable modules over the path algebra of a simply-laced Dynkin quiver. It 
shows that they can be obtained from the expressions for the positive roots of the 
corresponding root system in terms of the simple roots. Here, we present a method 
for finding the dimension vectors of the finitely generated indecomposable modules 
over a cluster-tilted algebra of Dynkin type A.

It is known that the quiver of a cluster-tilted algebra of Dynkin type A  is given by 
an exchange matrix of the corresponding cluster algebra. We define a companion 
basis for such a quiver to be a Z-basis of roots of the integral root lattice of the 
corresponding root system whose associated m atrix of inner products is a positive 
quasi-Cartan companion of the corresponding exchange matrix.

Our main result establishes tha t the dimension vectors of the finitely generated in­
decomposable modules over a cluster-tilted algebra of Dynkin type A  arise from 
expressions for the positive roots of the corresponding root system in terms of a 
companion basis (for the quiver of that algebra). This can be regarded as a gener­
alisation of part of Gabriel’s Theorem in the Dynkin type A  case. The proof uses 
the fact that the quivers of the cluster-tilted algebras of Dynkin type A  have a 
particularly nice description in terms of triangulations of regular polygons.

In addition, we give an explicit combinatorial procedure for constructing a compan­
ion basis for the quiver of any cluster-tilted algebra of Dynkin type A.
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Introduction

Cluster algebras were introduced by Fomin and Zelevinsky [FZ1] in an attem pt 

to better understand the dual canonical basis of the quantised enveloping algebra 

of a finite dimensional semisimple Lie algebra. In [MRZ], a link between cluster 

algebras and representations of quivers was established. This subsequently led to 

the introduction of cluster categories in [BMRRT], which were intended to give a 

categorical model of cluster algebras. (Note tha t independently of [BMRRT], a 

geometric definition of cluster categories of Dynkin type A  was given in [CCS1].) A 

key development in the study of cluster categories was the creation of a generalised 

version of APR-tilting theory (refer to [APR]), called cluster-tilting theory. In this 

theory, a key role is played by the cluster-tilted algebras, as introduced in [BMR1]. 

These cluster-tilted algebras are the main object of study of this thesis.

An important goal of representation theory is to understand the finitely generated 

modules over an algebra. For this, it is in fact enough to understand the finitely 

generated indecomposable modules. One possible way of starting to understand the 

finitely generated indecomposable modules is to describe their dimension vectors.

Consider the path algebra of a simply-laced Dynkin quiver. In this case, Gabriel’s 

Theorem [Gab] describes the dimension vectors of the finitely generated indecompos­

able modules. Gabriel’s Theorem states that there is a one-to-one correspondence
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between the finitely generated indecomposable modules and the positive roots of 

the corresponding root system of simply-laced Dynkin type. Moreover, it says that 

the dimension vector of an indecomposable module is the vector whose components 

are the coefficients appearing in the expression for the corresponding positive root 

as an integral linear combination of simple roots.

The aim of this thesis is to work towards giving a description of the dimension vec­

tors of the finitely generated indecomposable modules over a cluster-tilted algebra of 

simply-laced Dynkin type. The cluster-tilted algebras of simply-laced Dynkin type 

are in fact closely related to the path  algebras of simply-laced Dynkin quivers, as 

they arise from the cluster categories associated to these algebras. Given this link, 

it might be expected th a t the dimension vectors of the finitely generated indecom­

posable modules over a cluster-tilted algebra of simply-laced Dynkin type can also 

be described in terms of the positive roots of the corresponding root system. The 

main result of this thesis establishes tha t this is indeed the case for cluster-tilted 

algebras of Dynkin type A, providing a generalisation of part of Gabriel’s Theorem 

in this case.

In [BMR2], an im portant link between cluster-tilted algebras and cluster algebras 

was established. Each cluster algebra is associated with an equivalence class of skew- 

symmetrizable integer matrices. These matrices are called the exchange matrices 

of that cluster algebra. In particular, the exchange matrices of a cluster algebra of 

simply-laced Dynkin type are skew-symmetric, and can therefore be represented as 

quivers. It was shown in [BMR2] (and independently in [CCS2]) tha t the quivers 

of the cluster-tilted algebras of a given simply-laced Dynkin type are precisely the 

quivers of the exchange matrices of the cluster algebra of tha t type.
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In addressing the problem of recognising the cluster algebras of finite type, the paper 

[BGZ] considered a class of matrices closely related to the Cartan matrices, called 

the positive quasi-Cartan matrices. Given a cluster-tilted algebra of simply-laced 

Dynkin type, it follows from the main result of [BGZ] th a t the exchange matrix 

associated to its quiver must have a positive quasi-Cartan companion. (That is, 

there exists some positive quasi-Cartan m atrix for which the absolute values of 

the off-diagonal entries match the absolute values of the off-diagonal entries of the 

exchange matrix.) Moreover, it follows from the classification of the positive quasi- 

Cartan matrices, that this positive quasi-Cartan companion arises as the m atrix of 

inner products associated to some Z-basis of roots of the integral root lattice of the 

corresponding root system of simply-laced Dynkin type.

Prom above, given a cluster-tilted algebra of Dynkin type A, there is an exchange 

matrix of the corresponding cluster algebra associated to its quiver. Also, there is a 

Z-basis of roots of the integral root lattice of the corresponding root system whose 

associated matrix of inner products is a positive quasi-Cartan companion of this 

exchange matrix. The main result of this thesis shows tha t the dimension vectors of 

the finitely generated indecomposable modules over the given cluster-tilted algebra 

can be obtained from the coefficients of the expressions for the positive roots in 

terms of any such Z-basis.

There now follows an outline of this thesis.

In Chapter 1, the required background material on cluster algebras is presented. 

This includes the definition of a cluster algebra, an outline of the classification of 

the cluster algebras of finite type (as given in [FZ2]), and the main results of [BGZ] 

on recognising cluster algebras of finite type. The latter of these uses the concept of
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positive quasi-Cartan matrices. Also, a simple but motivational corollary of a result 

classifying the positive quasi-Cartan matrices is established.

Following [BMRRT], a brief introduction to cluster categories of simply-laced Dynkin 

type is given in Chapter 2. In particular, this includes a description of some aspects 

of the relationship between such a cluster category and the corresponding cluster 

algebra. Also, cluster-tilted algebras are defined, and it is noted that the quiver 

of any cluster-tilted algebra of simply-laced Dynkin type is given by an exchange 

matrix of the corresponding cluster algebra.

Chapter 3 focusses on the study of those Z-bases of the integral root lattice of a root 

system of simply-laced Dynkin type, consisting of roots, whose associated matrix 

of inner products is a positive quasi-Cartan companion of an exchange matrix of 

the corresponding cluster algebra. These sets are termed companion bases and are 

associated with the quivers of the cluster-tilted algebras of simply-laced Dynkin 

type. Given a cluster-tilted algebra of simply-laced Dynkin type, a method for 

finding a companion basis for its quiver is outlined. Also, a complete description 

of all of the companion bases for tha t quiver in terms of an arbitrary initial such 

companion basis is given.

The main result of this thesis, which gives a description of the dimension vectors 

of the finitely generated indecomposable modules over a cluster-tilted algebra of 

Dynkin type A, is established in Chapter 4. The proof relies on the structure of 

the quivers of the cluster-tilted algebras of Dynkin type A. These are examined 

by making use of a known description of these quivers in terms of triangulations of 

regular polygons. It is conjectured tha t the main result generalises to the Dynkin 

type D and E  cases, and some possible strategies for proving this conjecture are 

briefly discussed.
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In Chapter 5, a method is presented for explicitly constructing a companion basis 

for the quiver of any given cluster-tilted algebra of Dynkin type A. The key to 

this is the introduction of a procedure for labelling the vertices of such quivers. By 

studying these explicitly constructed companion bases, a more explicit alternative 

proof of the main result is then presented.

Finally, in Chapter 6, detailed consideration is given to one of the results of Chap­

ter 3. This leads to an interesting consequence of the main result being established.
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Chapter 1

C luster A lgebras

Cluster algebras were introduced by Fomin and Zelevinsky [FZ1] in 2001. A cluster 

algebra is a subring of the field of rational functions in n  indeterminates, generated 

by cluster variables. These cluster variables are obtained via a process of mutation, 

starting from some “initial seed” .

Cluster algebras having only finitely many cluster variables are called cluster alge­

bras of finite type. One of the early key results in the development of the theory of 

cluster algebras was the classification of the cluster algebras of finite type, given in 

[FZ2].

We start this chapter by giving the definition of a cluster algebra and the classifi­

cation of the cluster algebras of finite type. After briefly introducing root systems, 

we then describe some aspects of the relationship between a cluster algebra of finite 

type and its corresponding root system. We also present the main results of Barot, 

Geiss and Zelevinsky [BGZ] on recognising cluster algebras of finite type. In these 

results, an im portant role is played by the so-called positive quasi-Cartan matrices. 

In the concluding part of this chapter, we establish a simple consequence of the 

classification of the positive quasi-Cartan matrices which is im portant in motivating 

our subsequent work.
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1.1 W h at is a C lu ster  A lgebra?

In this section, following [FZ2], we give the definition of a cluster algebra and outline 

the classification of the cluster algebras of finite type.

Firstly, we need a preliminary definition.

D E FIN IT IO N  1.1.1 A square integer matrix B  is said to be skew-symmetrizable 

(resp. symmetrizable) i f  there is some diagonal matrix D with positive integer diag­

onal entries such that D B  is skew-symmetric (resp. symmetric).

We can now give the definition of a cluster algebra.

Let n E N and let F =  Q (u \ , . . .  ,u n) be the field of rational functions in n inde- 

terminates. Let x =  { x \ , . . .  , x n} C F be a transcendence basis for F over Q, and 

let B  =  (bxy)x,y£X be an n x n  skew-symmetrizable integer m atrix with rows and 

columns indexed by the entries of x.

We call the pair (x, B) a seed in F, and we obtain more seeds from this “initial seed” 

via a mutation process.

Let z £ x. We obtain a new transcendence basis x' =  (x \  {2:}) U {2/} for F over Q, 

where z' is obtained using the exchange relation

Similarly, we obtain a skew-symmetrizable m atrix (refer to [FZ1, Proposition 4.5]) 

B' from B  with entries given by

X b x z  _|_ jQ  x

x £ x , b x z >0  x£x, bx z <0

it x  =  z or y =  z 
^  otherwise.
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The row and column labelled z  in B  are relabelled z' in B ' . The pair (x ',j3 ') then 

form a seed which we call the m utation of (x, B ) in the direction z. It can easily be 

checked that by m utation of (x;, B')  in the direction z ' , we recover the seed (x, B).

By iterated mutations of the initial seed (x, B)  in all directions, we obtain a set of 

seeds S. The transcendence bases appearing in these seeds are called clusters, and 

their elements are called cluster variables. The matrices appearing in these seeds 

are called exchange matrices. The set of all cluster variables is the union of all of 

the transcendence bases appearing in seeds in S , and is denoted by x-

We then define the cluster algebra A  = *4(x, B ) to be the Z-subalgebra (subring) of 

F generated by x-

N ote: In the general definition of cluster algebras given in [FZ1] and [FZ2], certain

coefficients appear in the exchange relations. In the definition we have given above, 

all of these coefficients have been set equal to one. This is the case of greatest interest 

to us, since this is the case tha t has been studied most extensively in connection 

with representation theory.

Two cluster algebras A! and A " , contained in fields of rational functions F  and F" 

respectively, are said to be isomorphic (as cluster algebras) if there is a Z-algebra 

isomorphism i: F' -> F" taking some seed (y, C) of A! to a seed (^(y), C) of A " . (We 

note that the terminology “strongly isomorphic” is used in [FZ2].)

Up to isomorphism of cluster algebras, *4(x, B)  does not depend on the choice of 

transcendence basis x  for F, and so we can denote this cluster algebra by A (B ).  In 

fact, we can go further than this. It is clear tha t the mutation of skew-symmetrizable



matrices outlined above gives rise to an equivalence relation on the set o f n x n  skew- 

symmetrizable integer matrices. Up to isomorphism of cluster algebras, the cluster 

algebra A (B )  only depends on the mutation equivalence class of B.

We have the following definition from [FZ2].

D E F IN IT IO N  1.1.2 A cluster algebra is said to be of finite type if  it has only 

finitely many cluster variables.

The cluster algebras of finite type were classified in [FZ2]. Before stating the clas­

sification result, we first need to introduce some terminology.

D E F IN IT IO N  1.1.3 An n x n integer matrix A  =  (a^) is called a generalised 

Cartan matrix if

(i) an — 2 for all 1 < i < n,

(ii) aij < 0 for all i j ,

(Hi) aij =  0 aji = 0 for all i A j-

I f  in addition to these properties, all principal minors of A  are positive, then we call 

A a Cartan matrix of finite type.

The Cart an-Killing classification of the Cartan matrices of finite type is a well known 

result, see [Kac, Chapter 4] for example. Indeed, the Cartan matrices of finite type 

can be encoded by Dynkin diagrams. If A = (a{j) is a Cartan m atrix of finite type, 

then the associated Dynkin diagram has vertices indexed by the rows and columns of 

A. Distinct vertices i and j  are joined by aijaji edges, and these edges are equipped

with an arrow pointing from i towards j  if \a,ij\ < The Dynkin diagrams of

the Cartan matrices of finite type are listed in [Kac, Section 4.8].
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D E FIN IT IO N  1.1.4 Let B  = (bij) be an n  x n integer matrix. Then the Cartan 

counterpart of B  is defined to be the matrix A (B ) =  (aij) given by an =  2 for all 

1 < i < n, and aij =  — \b{j\ otherwise.

N ote: It is clear tha t the Cartan counterpart of a skew-symmetrizable matrix

must be a symmetrizable matrix.

We can now give the classification result of the cluster algebras of finite type. The 

result was originally given in [FZ2], but we give the version as stated in [BGZ].

TH EO REM  1.1.5 Let T  be a mutation equivalence class of skew-symmetrizable 

matrices. Then the following are equivalent:

(i) The cluster algebra associated to T  is of finite type.

(ii) There is some matrix B  £ T  such that the Cartan counterpart of B  is a Cartan 

matrix of finite type.

(Hi) For every matrix B  — (bij) £ T , \bijbji\ < 3 for all i ^  j .

Furthermore, the Cartan-Killing type of the Cartan matrix in (ii) is uniquely deter­

mined by the equivalence class T  (and is referred to as being the type of the cluster 

algebra associated to T ).

Since the Cartan matrices of finite type can be represented by Dynkin diagrams, we 

can consider this result as giving as giving a classification of the cluster algebras of 

finite type by Dynkin diagrams.

If B  =  (bij) is an n x n  skew-symmetric integer matrix, then we can associate to B  

a quiver T(B)  with vertices corresponding to the rows and columns of B , and bij 

arrows from the vertex i to the vertex j  whenever bij > 0.
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It is easy to show that m utation in any direction of a skew-symmetric matrix results 

in a skew-symmetric matrix, and hence the mutation equivalence class of B  must 

consist entirely of skew-symmetric matrices. Therefore, we can associate a quiver 

to each matrix belonging to the mutation equivalence class of B.

In view of Theorem 1.1.5, we see that the cluster algebras of Dynkin types A, D  and 

E  are those associated with equivalence classes of skew-symmetric matrices which 

contain a matrix whose associated quiver is a Dynkin quiver of the same type.

R E M A R K  1.1.6 Suppose C = (Cij) is a matrix appearing in a seed of a cluster 

algebra of (simply-laced) Dynkin type A, D or E. Then, we have that C is a skew- 

symmetric integer matrix, and also, from Theorem 1.1.5, we see that C must satisfy 

\cijcji\ < 3 for all i j . It follows that the entries of C must all belong to the set 

{0, ± 1}.

1.2 R oot S ystem s

We saw in the previous section tha t the cluster algebras of finite type are associated 

with the Cartan matrices of finite type. Also associated with the Cartan matrices 

of finite type are root systems. This suggests tha t there may be some kind of 

relationship between the cluster algebras of finite type and the corresponding root 

systems. We will start to consider this relationship in the next section, after first 

giving a brief introduction to root systems in this section. (For standard terminology 

and results regarding root systems, refer to [Huml], for example.)

Also in this section, we introduce the compatibility degree (of Fomin and Zelevin­

sky, see [FZ3]) which assigns a non-negative integer to each given pair of “almost
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positive” roots. This is a useful tool for describing the clusters of a cluster algebra 

of finite type.

Let V  be a Euclidean space. That is, let V  be a finite dimensional real vector space 

together with a positive definite symmetric bilinear form ( , ).

Given any non-zero vector a  G V, we can define an orthogonal linear transformation 

sa '- y  V  (called a reflection of V)  by setting

* a 2(& q )s QP =  P -  -( r «(a, a)

for all P  G V. It is clear tha t sa takes a  to —a, and fixes pointwise the orthogonal 

complement to a. Notice also that sa = sca for all non-zero c G K.

We now introduce the definition of a root system in V.

D E FIN IT IO N  1.2.1 We call a subset $  C V  a root system in V  if  it satisfies:

(i) $  is finite, spans V  and does not contain 0.

(ii) s Q$  =  $  for all a  G <3?.

(Hi) Ma fl $  =  {a, —a} for all a  G $ .

(iv)  Z  f or 0,11 a ’P  G $ •

Let $  be a root system in V.

The Weyl group of $  is defined to be the subgroup of G L (V ) generated by

the reflections sa for a  G $ . (Recall tha t GL(V)  consists of all invertible linear 

transformations of V .)

We call d im E  the rank of the root system $.
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D E FIN IT IO N  1.2.2 A subset II C $  is called a simple system of 4> if:

(i) II is a vector space basis o f V  over M.

(ii) Each a  G $  can be written (uniquely) as an integral linear combination of U 

with either all coefficients being non-negative, or all coefficients being non-positive.

i f  n C $  is a simple system of<&, we call the elements of II simple roots.

Note from [Huml, p.48-49] that every root system has a simple system.

Let II be a simple system of $  and suppose (3 G 4». So, we can write (3 — )Caen caa 

with ca G Z for all a  G II. If cQ > 0 for all a  G II, then we call (3 a positive root, 

and if ca < 0 for all a  G II, then we call (3 a negative root. We denote the set of 

positive roots in 4> (relative to II) by 4>+ , and we denote the set of negative roots 

in 4? by It is clear tha t 4>_ =  — 4>+ .

Also, we define the set of almost positive roots (relative to II) to be 4>>-i =  U

(-n).

For each a  G 4>, set a v =  Then, 4>v =  {av : a  G $} is also a root system in V

(called the dual root system), and IIV =  { av : a  G 11} is a simple system of 4?v .

We now define what it means for two root systems to be isomorphic.

D E FIN IT IO N  1.2.3 Let 4> and 4>; be root systems in the Euclidean spaces V  

and V' respectively. We say that 4» is isomorphic to i f  there is a vector space 

isomorphism (f>:V —> V' sending $  onto such that = 2(£(a)'<j>(a)) f or a^

a, (3 G 4>.

Now, every root system has an associated C artan matrix which determines tha t root 

system up to isomorphism, and the classification of the root systems turns out to
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be identical to the classification of the Cartan matrices of finite type (see [Huml, 

Chapter 11]). In particular, every root system has a well defined Dynkin type.

We will later be mostly focussing on root systems of simply-laced Dynkin type. 

We always choose these in such a way that the squared length of each root is 2. 

In particular, this implies tha t each root is its own dual. Also, we then have the 

following well known and useful result.

L E M M A  1.2.4 Suppose that the root system $  C V  is of simply-laced Dynkin 

type. / /  q, /3 G $  are non-proportional roots, then (et,/3) £ {0, ±1}.

We conclude this section by introducing the compatibility degree of Fomin and 

Zelevinsky (see [FZ3]).

Let A  =  (dij) be an n x n  Cartan matrix of finite type. Recall that the Coxeter 

graph of A  has vertices corresponding to the rows and columns of A, and an edge 

joining two distinct vertices i and j  whenever aij ^  0 (or equivalently, whenever 

dji 0). (Note that we omit the edge labels as we have no need for them here.) 

Denote the set of vertices of the Coxeter graph of A  by I.

Suppose further tha t A  is indecomposable and let $  be the (irreducible) root system 

associated to A. Let II =  { a i , . . .  , a n} be a simple system of and let 4>>_i be 

the corresponding set of almost positive roots. The compatibility degree, which we 

define below, assigns a non-negative integer to each pair of almost positive roots.

Since A  is an indecomposable Cartan m atrix of finite type, the Coxeter graph of A  

is a tree (this follows from the classification of the Cartan matrices of finite type by 

Dynkin diagrams [Kac, Chapter 4]). Therefore, we can write I  as a disjoint union
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I  — I + U I -  where /+ , / -  C / ,  and the full subgraphs of the Coxeter graph of A  on 

each of h  and I -  are totally disconnected.

For each 1 < i < n, let s; =  sQi and let r+ and r_ be the permutations of $> _ i

defined by

{ a  if a — —a i, i  G

(riiG /+ 5i) (a ) otherwise,

and

{ a  if a  =  —oti, i G J+ ,

(riiG/_ si) (a ) otherwise.

For each 1 < i < n  and each almost positive root a , using [a: a*] to denote the

coefficient of ai in the expansion of a  in terms of the simple roots, we define

(—a j ||a )  =  max{[a: ai], 0}.

The definition of ( || ) is then extended to all pairs of almost positive roots by 

specifying that it is r+- and r_-invariant. We note tha t due to [FZ2, Theorem 

3.1], we can obtain a negative simple root from any given almost positive root by 

iteratively applying r+ and r_ .

We say that two almost positive roots a  and (3 are compatible if (a||/3) =  0.

N ote: From [FZ3, Proposition 3.3] we have tha t if the Dynkin diagram corre­

sponding to the Cartan m atrix A  is simply-laced, then the compatibility degree 

function is symmetric.
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1.3 C orresp ond en ce B etw een  C luster V ariables and A l­
m ost P o sitiv e  R o o ts

The main purpose of this section is to start to consider the relationship between 

the cluster algebras of finite type and their associated root systems. In particular, 

we will state an important result from [FZ2] which says tha t there is a one-to-one 

correspondence between the set of cluster variables of a cluster algebra of finite type, 

and the set of almost positive roots of the associated root system.

Let B  be an n x n skew-symmetrizable matrix, and suppose tha t A  =  *4(x, B) is 

a cluster algebra of finite type. Also, suppose tha t T  is the m utation equivalence 

class of B.

Then, by Theorem 1.1.5, there is some skew-symmetrizable matrix B' G T  such 

that the Cartan counterpart A  — A (B ' ) is a Cartan m atrix of finite type.

Now, from [FZ2, Theorem 1.6] we have tha t there must be some skew-symmetrizable 

matrix Bo = (bij) G T  such tha t A(Bo) =  A  and 6^-6^ > 0 for all 1 < i , j , k  < n.

Since B q is mutation equivalent to B, there must be some seed which contains B q. 

Let (xo,I?o) be such a seed where xo =  { x \ , . . .  , x n} is a transcendence basis for

¥  =  Q (u i, . . . ,  un) over Q. We then have tha t A  = >4.(xo, Bo) =  ^4(x, B).

Let $  be the root system associated to A  and let II =  { a i , . . .  , a n} be a simple

system of <3>. We then have the following result from [FZ2, Theorem 1.9].

T H E O R E M  1.3.1 There is a unique bijection a  i-» a-[a] between the almost pos­

itive roots in $  and the cluster variables in A, such that for any a  G 3>>-i, the 

cluster variable x[a] is expressed in terms o /xq  =  { sq ,. . . ,  x n} as



where Pa is an integer polynomial with non-zero constant term, and a  =  Y17=i aia i- 

Under this bijection, x[—Oj] =  X{ for each i, 1 < i < n.

We end this section by noting from [FZ2] tha t maximal pairwise compatible subsets 

of $> _i correspond to clusters in A.

1.4 R ecogn ising  C lu ster  A lgebras o f F in ite  T yp e

Given a skew-symmetrizable m atrix B , the classification theorem for the cluster 

algebras of finite type provides two conditions for checking whether or not the cluster 

algebra A  = A(B )  is of finite type. The paper [BGZ] highlights that both of these 

conditions can be difficult to check in general. The focus of tha t paper is to solve 

this problem by giving a method for determining whether or not the cluster algebra 

A (B )  is of finite type, based solely on consideration of the m atrix B  itself.

In this section, we will state the main result of [BGZ], and also two further results 

from [BGZ] which highlight the usefulness of the main result.

Note: An alternative method for recognising cluster algebras of finite type was

given in [Sev].

In order to state the main result of [BGZ], we need to introduce some terminology.

D E FIN IT IO N  1.4.1 A symmetrizable matrix A  =  (aij) is said to be quasi-Cartan 

i f  au — 2 for all i.

D E FIN IT IO N  1.4.2 A quasi-Cartan matrix A  is said to be positive i f  the sym­

metrized matrix D A is positive definite.
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So, we see that a quasi-Cartan m atrix A  is positive if and only if the principal minors 

of A  are all positive.

The following definition provides a quasi-Cartan analogue of Cartan counterparts.

D E F IN IT IO N  1.4.3 Let B  be a skew-symmetrizable matrix. A quasi-Cartan com­

panion of B  is a quasi-Cartan matrix A  such that \aij\ = \bij\ for all i ^  j .

It is clear that opposite entries have opposite signs in skew-symmetrizable matrices. 

(Note also that opposite entries have the same sign in symmetrizable matrices.) 

Therefore, given any skew-symmetrizable m atrix B  = {bij), we can associate a 

quiver T{B) to B  as follows. The vertices of T{B) correspond to the rows and 

columns of B, and there is an arrow from the vertex i to the vertex j  whenever 

b^ > 0 .

D E F IN IT IO N  1.4.4 We define a chordless cycle in T(B) to be a (not necessarily 

oriented) cycle in T{B) such that the full subquiver on its vertices is also a cycle in

f  ( B ) .

We can now state the main result from [BGZ] on recognising cluster algebras of 

finite type ([BGZ, Theorem 1.2]).

T H E O R E M  1.4.5 Let B  be a skew-symmetrizable matrix. Then, the cluster alge­

bra associated to (the mutation equivalence class of) B  is of finite type i f  and only

if

(i) every chordless cycle in T(B) is cyclically oriented, and

(ii) B  has a positive quasi-Cartan companion.
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It is clear that condition (i) is easy to check for a given skew-symmetrizable m atrix B , 

however, condition (ii) could be harder to check as B  could have many quasi-Cartan 

companions. In fact, if B  has N  non-zero above diagonal entries, then there are 2N 

different quasi-Cartan companions. The results of the following two propositions 

([BGZ, Proposition 1.4] and [BGZ, Proposition 1.5] respectively) demonstrate the 

power of the above theorem. Indeed, it turns out that the positivity of only one 

(carefully chosen) quasi-Cartan companion of B  has to be checked.

P R O P O S IT IO N  1.4.6 Let B  be skew-symmetrizable, and let A = (aij) be a quasi- 

Cartan companion of B. For A  to be positive, it must satisfy:

For all chordless cycles Z  in Y ( B ), n ( aij) < 0 . ( A)

Now, when choosing a quasi-Cartan companion A  for B , for each bij ^  0 with i ^  j,  

we must either choose aij,aji > 0 or aij,aji < 0. This can be considered as making 

a sign choice for each arrow in T(R). By Proposition 1.4.6, in order to have any 

chance of getting a positive quasi-Cartan companion, these signs must be chosen 

such that each chordless cycle has an odd number of arrows assigned positive sign.

The following proposition tells us tha t if all chordless cycles in T(B)  are cyclically 

oriented, then such a choice of quasi-Cartan companion exists. Furthermore, only 

the positivity of this companion needs to be checked to determine whether or not 

A(B )  is of finite type. (This is because performing simultaneous sign changes in the 

rows and columns of a m atrix does not affect the positivity of tha t matrix.)

P R O P O S IT IO N  1.4.7 Let B  be a skew-symmetrizable matrix. I f  every chordless 

cycle inV (B ) is cyclically oriented, then B  has a quasi-Cartan companion satisfying 

( A) ,  unique up to simultaneous sign changes in rows and columns.
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1.5 A  M otiva tion a l R esu lt

In this section we prove a corollary of a result appearing in [BGZ]. The result of 

this corollary will tu rn  out to be a key motivating factor for our later research.

We start by introducing a standard notion of equivalence for quasi-Cartan matrices.

D E F IN IT IO N  1.5.1 Let A  and A' be two quasi-Cartan matrices. I f  there is some 

diagonal matrix D with positive integer diagonal entries such that C = D A  and 

C' = DA' are symmetric, and there is some integer matrix E  with determinant ±1 

such that C' = E t CE, then we say that A  and A 1 are equivalent.

It is clear that if A  is a positive quasi-Cartan m atrix and A' is a quasi-Cartan matrix 

equivalent to A , then A' is also a positive quasi-Cartan matrix. A result classifying 

the equivalence classes of positive quasi-Cartan matrices by Cartan-Killing types is 

given in [BGZ, Proposition 2.9]. We now state this result.

Let A = (aij) be an n x n quasi-Cartan matrix. For each i, 1 < i < n, define an 

automorphism S{ of the lattice Zn by setting Si(ej) — ej — a^-ef where ( e i , . . . ,  en} is 

the standard basis in Zn . Let W (A )  C G Ln(Z) be the group generated by s \ , . . . ,  sn.

P R O P O S IT IO N  1.5.2 The following conditions on a quasi-Cartan matrix A  are 

equivalent:

(i) A  is positive.

(ii) The group W (A) is finite.

(Hi) There is a root system $  and a linearly independent subset {f3\ , . . .  ,j3n} C $  

such that , ( 3 j )  for all 1 < i , j  < n.

(iv) A is equivalent to a Cartan matrix A 0 of finite type.
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Under these conditons, i f  4>o Q & is the smallest root subsystem of $  that contains 

the set {f3i,. . . ,  fin} in (Hi), then the Cartan-Killing type of 4?o is the same as the 

Cartan-Killing type of the matrix A 0 in (iv), and it characterises A up to equivalence. 

Furthermore, W (A) is naturally identified with the Weyl group of &o-

We now give further consideration to the positive quasi-Cartan companions of those 

skew-symmetrizable matrices which give rise to cluster algebras of finite type.

Let B  be a skew-symmetrizable matrix and suppose tha t the cluster algebra A (B )  

is of finite type. Then, by Theorem 1.4.5, all chordless cycles in T(B)  are cyclically 

oriented and B  has a positive quasi-Cartan companion A. By Proposition 1.4.7, 

we see that all positive quasi-Cartan companions for B  can be obtained from A  by 

performing simultaneous sign changes in rows and columns. So, it is straightforward 

to see that all positive quasi-Cartan companions for B  are equivalent.

If B' is mutation equivalent to B,  then A{B ')  is also of finite type. (In fact, A(B )  

and A(B ')  are isomorphic cluster algebras.) So, all chordless cycles in T (B 1) must 

be cyclically oriented and B' must have a positive quasi-Cartan companion. Then, 

applying [BGZ, Corollary 3.3], we see tha t there is a positive quasi-Cartan compan­

ion of B' which is equivalent to A, and hence all positive quasi-Cartan companions 

of J5' are equivalent to A.

In particular, by Theorem 1.1.5, there must be some skew-symmetrizable m atrix Bo, 

mutation equivalent to B, with Cartan counterpart A q =  A(Bo) a Cartan matrix of 

finite type. It is clear that Ao is a positive quasi-Cartan companion of Bo . Therefore, 

we see that A q is equivalent to A.

Now, let $  be a root system of the same Cartan-Killing type as Ao (which is the 

Cartan-Killing type of A ( B )) in some Euclidean space V  with positive definite 

symmetric bilinear form ( , ).
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We have the following corollary of Proposition 1.5.2.

C O R O L L A R Y  1.5.3 Let A  =  (a^) be a positive quasi-Cartan companion of B. 

Then, there is a subset {(3\ , . . . ,  (3n} C $  which is a X-basis for Z$ such that aij =  

(0 i,P j)  for all 1 < i, j  < n.

P r o o f  By Proposition 1.5.2, we have that there is a root system (in some 

Euclidean space V' with positive definite symmetric bilinear form ( , )') and a 

linearly independent subset {/3i,. . .  , /3n} Q &  such tha t aij — ,(3j)' for all 1 <

i , j  < n. Furthermore, if $q C is the smallest root subsystem of tha t contains 

{/3i,. . .  ,/3n}, then the Cart an-Killing type of the same as the Cartan-Killing 

type of Ao, and hence d>'0 and $  are isomorphic root systems.

It remains to be seen tha t {(5\, . . . , /3 n} is a Z-basis for Z$q. The argument is 

standard, but we include it for the convenience of the reader.

Let W$i be the Weyl group of and suppose tha t W  is the subgroup of 

generated by s ^ , . . .  , s 0n. Let $  =  W{{31 , . . .  ,/3n} C

We will show that $  =  $q and tha t {(3\ , . . .  ,/3n} is a Z-basis for Z$. In order to 

show the former, it is sufficient to check tha t $  is a root system in spanR{/3i, . . . ,  /3n}. 

(Because, if $  C is a root system, then i t ’s clearly the smallest root subsystem 

of <F' containing {/3i,. . .  ,(3n}.)

Firstly, we check that $  is a root system in spanR{/3i,. . .  ,/3n}-

(i) Since $  C we see that <F is finite and does not contain 0. Also, it is clear that 

<1 spans spanR{/3i,. . . ,  0n}.

(ii) Let a, (3 G $. We must show tha t sa (/3) G $.
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Write a — wfii and (3 — v(3j for some w ,v  G W  and 1 < i , j  < n. Then, using 

[Huml, Lemma 9.2], we have sa ((3) — sw^(vl3j) = ws/3iw~1(vPj) G <f>. (Note that 

this implies sa$  =  $  since sa acts injectively on $.)

(iii) Suppose a  G <f>. Then, a  =  wfii for some w G W  and 1 < i < n. So, 

—a  =  wsp^fli) G $ . Combining this with the fact that $  C we see that 

Ma fl $  =  {a, —a} for all a  G 4k

(iv) Let a,/3 G $. Then, ^ ^  since a,/3 G <L/.

Therefore, $  is a root system in spanR{/3i,. . . ,  /3n}.

We will now check that {/3i, . . . ,  (3n} is a Z-basis for Z$.

We already have that {/3i,. . .  ,/3n} is a linearly independent set. So, to show that 

{/3i, . . . ,  /3n} is a Z-basis for Z$, we must show tha t every element of is an integral 

linear combination of {/3i, . . .  , /3n}. (It then follows immediately tha t every element 

of Z$ is an integral linear combination of {(3\ , . . . ,  /3n}.)

Note that for any 1 < i , j  < n, we have s& (ft) =  f t  -  fy  f t  £ Z { f t , . . .  ,/3„},

since i t i f e Z'

Now, elements of $  are of the form S/3ifcS/3ifc i • * • S/3i x {(3j )  with A: G N and 1 < 

j, i i , . . .  , zjt < n. We will show tha t (/3j) G Z{/3i, . . . ,  /3n} by induction on

k.

In the initial case when k = 1, we have from above tha t sp1 {(3j) G Z{/?i, . . . ,  /3n}. 

Suppose that sp. • • • (/3j) G Z{/3i, . . .  , /3n}. Then we can write

s j3ifc_1 ’ ‘ ' ■s/3j1 (/ ĵ) = a \(3\ 4" • • • + Q'-nfin,
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with a,i £ Z for all 1 < i < n.

But then,

sfck 1 ' ' '  s&i ( A ’) )  =  s&k +  • • • +  aM

=  f l l 5 / 3 ifc (A  ) +  • • • +  anS/3ik ( Ai) •

Therefore, since (A),  • • •, s^ik ( A)  £ Z { A , . . . ,  A } , we see that (A ) £

Z{A> • • • , A}-

Therefore, we have tha t $  is a root system in spanR{A> • • • 5 A }  and tha t {A , • • •, A }  

is a Z-basis for Z4>.

Thus $  — and the result follows since is isomorphic to $. ■
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Chapter 2

C luster C ategories and  
C lu ster-tilted  A lgebras

In this chapter, we present the background material tha t we require on cluster 

categories and cluster-tilted algebras. We start by giving the definition of a clus­

ter category of simply-laced Dynkin type, and explaining tha t the (isomorphism 

classes of the) indecomposable objects in such a category are in one-to-one corre­

spondence with the cluster variables of the corresponding cluster algebra. We also 

give the definition of cluster-tilting objects in cluster categories, and the definition 

of cluster-tilted algebras, which are associated to these. We explain tha t the one- 

to-one correspondence between the indecomposable objects in a cluster category of 

simply-laced Dynkin type and the cluster variables of the corresponding cluster al­

gebra induces a one-to-one correspondence between basic cluster-tilting objects and 

clusters (and hence seeds). Finally, we discuss how for any given basic cluster-tilting 

object in a cluster category of simply-laced Dynkin type, the quiver of the associated 

cluster-tilted algebra is the quiver of the m atrix appearing in the seed corresponding 

to that basic cluster-tilting object.
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2.1 C luster C ategories o f S im p ly-laced  D yn k in  T yp e

In this section, following [BMRRT], we give a brief introduction to cluster categories 

of simply-laced Dynkin type. We start by defining cluster categories of simply-laced 

Dynkin type and stating what the indecomposable objects are in these categories. 

Also, we explain that there is a one-to-one correspondence between the set of inde­

composable objects in a cluster category of simply-laced Dynkin type and the set 

of almost positive roots of the associated root system. It then follows that there is 

a one-to-one correspondence between the set of indecomposable objects in such a 

cluster category and the set of cluster variables of the corresponding cluster algebra. 

Further links between cluster categories and the corresponding cluster algebras will 

be considered in subsequent sections of this chapter.

N ote: Refer to [ARS] for general results in representation theory, and [Hap] for

results on derived categories of finite dimensional algebras.

Let k be an algebraically closed field and let Q be a simply-laced quiver of Dynkin 

type with underlying graph A. Let V  = V b(kQ —mod) be the bounded derived 

category of the category of finitely generated left kQ -modules with shift functor [1 ]. 

Also, let r  be the AR-translation in V , and define F  — r _ 1 [l]. (Note tha t F  is an 

autoequivalence of V, since both [1] and r  are autoequivalences of V.)

The cluster category C =  C(kQ) is then defined to be the factor category

n T>b(kQ —mod)
=  F

whose objects are the objects of V, and where morphisms are given by

Honic (X ,y )  =  0 H o m c (X ,F iy )
ie z
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for objects X , Y  in C.

N ote: It is easy to show th a t for any object X  of P, we have X  is isomorphic to

F X  in C.

From [BMRRT, Proposition 1.2], we have tha t the category C is a Krull-Schmidt 

category. Also, it is shown in [Kel] tha t C is a triangulated category, with the shift 

in C induced by the shift in V. We will use [1 ] also to denote the shift functor in C. 

Note that [1 ] is an autoequivalence of C.

For each finitely generated indecomposable left /cQ-module M , recall that the stalk 

complex

 >0 — > M  — > 0 — ►

with M  appearing in degree zero is an indecomposable object in V. By identifying M  

with this stalk complex, we can consider M  as an indecomposable object in V. Let Z  

be the set consisting of these indecomposable objects in T> and the indecomposable 

objects in V  of the form P[l] for P  a finitely generated indecomposable projective 

left kQ-module.

It is noted in [BMRRT, Section 1 ] tha t Z  contains exactly one representative from 

each P-orbit on the set of isomorphism classes of indecomposable objects in V. 

Furthermore, considering the elements of Z  as objects in C, we have from [BMRRT, 

Proposition 1.6] that the elements of Z  are, up to isomorphism, the indecomposable 

objects in C.

Let $  be the root system of Dynkin type A. Suppose tha t II =  { a i , . . .  , a n} C  $  

is a simple system of $ , and tha t d>+ , $ >_ i  are respectively the corresponding sets 

of positive and almost positive roots.
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It is clear that Gabriel’s Theorem (see [Gab] and [BGP]) induces a one-to-one cor­

respondence between Z  and the set of almost positive roots $>_i :  Let X  G Z .  If 

X  is (corresponds to) an indecomposable kQ-module, then define 7 q (X )  to be the 

positive root corresponding to X  as given by Gabriel’s Theorem. If X  is of the form 

P i [  1 ] where P i  is the indecomposable projective kQ -module corresponding to the 

vertex i of Q, then define 7 q (X )  to be — a;.

It immediately follows that the map 7 q : Z  —> $>_i  induces a one-to-one correspon­

dence between the set of isomorphism classes of indecomposable objects in C and

$ > _ i .

Let A  be the cluster algebra of Dynkin type A.

Recall that Theorem 1.3.1 gave a one-to-one correspondence between the set of 

cluster variables of A  and $>_i .  Combining this with the above correspondence 

provides us with a one-to-one correspondence between the set of isomorphism classes 

of indecomposable objects in C and the set of cluster variables in A.

2.2 C lu ster-tiltin g  O b jects  and C lu ster-tilted  A lgebras

In this section, again following [BMRRT], we define cluster-tilting sets and cluster- 

tilting objects in cluster categories. Also, we introduce cluster-tilted algebras (as 

defined in [BMR1]).

Let k be an algebraically closed field, let Q be a simply-laced quiver of Dynkin type, 

with underlying graph A, and let



be the corresponding cluster category.

Firstly, we need a preliminary definition.

D E F IN IT IO N  2.2.1 For E equal to either V  or C, and for objects U ,V  in E, we 

define Ext\(U ,V )  to be H ornet/, V[l]).

It is clear that if X  and Y  are objects in C, then

Ext£(X , Y)  =  0 E x t k ( X , F iy ) .
ie z

Also, we note from [BMRRT, Proposition 1.7] that Ext^ is symmetric in C. That 

is, for all X , Y  £ C we have Ext^(X , Y )  =  DExtj^Y, A”), where D is the duality 

D = Hom*.( , k).

We can now define cluster-tilting sets and cluster-tilting objects in C.

D E F IN IT IO N  2 .2 . 2  A set T  of non-isomorphic indecomposable objects in C is 

called a cluster-tilting set z /E x t^ A , Y )  =  0 for all A, Y € T , and it is a maximal 

such set.

An object T  in C is called a cluster-tilting object i f  Ext^(T, T) — 0 and T  has a 

maximal number of non-isomorphic indecomposable direct summands.

A cluster-tilting object is said to be basic if all of its direct summands are non­

isomorphic. From the above definition, it is therefore clear tha t an object in C is a 

basic cluster-tilting object if and only if it is the direct sum of all objects in some 

cluster-tilting set. Note (from [BMRRT, Theorem 3.3]) tha t all cluster-tilting sets 

in C are finite. In fact, the number of objects in any cluster-tilting set is equal to 

the number of simple kQ-modules (i.e. the number of vertices of Q).
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D E FIN IT IO N  2.2.3 Let T  be a cluster-tilting object in C. We call the algebra

Endc(T)op a cluster-tilted algebra (of Dynkin type A ) .

2.3 B asic C lu ster-tiltin g  O b jects  C orrespond  to  C lus­
ters

The main focus of this section is a result from [BMRRT] which demonstrates another 

important link between cluster categories of simply-laced Dynkin type and cluster 

algebras.

Recall from Section 2.1, tha t the indecomposable objects in a cluster category of 

simply-laced Dynkin type are in one-to-one correspondence with the cluster variables 

of the associated cluster algebra. The result from [BMRRT] we state here shows 

that under this correspondence, the basic cluster-tilting objects in such a cluster 

category correspond to the clusters of the associated cluster algebra.

W ith the use of a result from [FZ2], we also make some further remarks on the link 

between cluster categories of simply-laced Dynkin type and cluster algebras.

Let k be an algebraically closed field, let Q be an alternating quiver of Dynkin type,

with underlying graph A, and let

n V b(kQ —mod)
“  F

be the corresponding cluster category. Let A  be the cluster algebra of Dynkin 

type A. Suppose $  is the root system of Dynkin type A, with simple system 

II =  { a i , . . . ,  a n} C  <L and corresponding set of almost positive roots $>_i .

Let I  be the set of vertices of A. Since A is a tree, we can write I  as a disjoint union 

I  =  I + U where each of the subsets /+ , /_  C  I  is totally disconnected. We then
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have the compatibility degree ( || ) on pairs of almost positive roots, as defined in 

Section 1.2.

We saw in Section 2 .1  tha t there is a one-to-one correspondence between the set of 

isomorphism classes of indecomposable objects in C and the set of almost positive 

roots $ > - i .  If a  is an almost positive root, denote the (isomorphism class of the) 

indecomposable object in C corresponding to a  by M a.

We have the following im portant result from [BMRRT, Corollary 4.3].

T H E O R E M  2.3.1 Let a, f3 G 4>>-i. Then, (a||/3) =  dim E x tlc {Ma,Mp).

Suppose T  is a basic cluster-tilting object in C. Then, each of the direct summands 

of T  corresponds to an almost positive root, which in turn  corresponds to a cluster 

variable in A. Theorem 2.3.1 shows tha t the set of almost positive roots corre­

sponding to the set of direct summands of T  is a maximal compatible set. That 

T  corresponds to a cluster of the cluster algebra A  then follows from the fact that 

maximal compatible subsets of almost positive roots correspond to clusters (refer to 

[FZ2]).

Theorem 2.3.1 therefore establishes tha t there is a one-to-one correspondence be­

tween the set of basic cluster-tilting objects in C and the set of clusters of the cluster 

algebra A  (see [BMRRT, Theorem 4.5]).

From [FZ2, Theorem 1.12], we have the following.

T H E O R E M  2.3.2 Every seed (x, B) in A  is uniquely determined by its cluster x. 

For any cluster x  and any x  G x, there is a unique cluster x ' with x  n x ' =  x \  { m } .
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N ote: Theorem 2.3.2 is known to hold for all cluster algebras of finite type.

As an immediate consequence of this result, we see tha t there is a one-to-one corre­

spondence between the set of basic cluster-tilting objects in C and the set of seeds 

of A.

D E F IN IT IO N  2.3.3 I f  T  © X  is a basic cluster-tilting object in C and X  is an 

indecomposable object in C, then we call T  an almost complete basic cluster-tilting 

object in C, and we call X  a complement o fT .

As a consequence of Theorem 2.3.2, we see tha t if T  is an almost complete basic 

cluster-tilting object in C, then there are (up to isomorphism) exactly two ways to 

complete T  to a basic cluster-tilting object in C. That is, up to isomorphism, there 

are exactly two complements M, M* of T  such tha t M  2= M*. (For a representation 

theoretic proof of this fact, refer to [BMRRT, Theorem 5.1].)

2.4 T h e Q uivers o f  C lu ster -tilted  A lgeb ras

We have now seen tha t for any basic cluster-tilting object T  in a cluster category, 

there is a corresponding seed in the associated cluster algebra. We conclude this 

chapter by considering the main result of [BMR2] which shows tha t the quiver of 

the cluster-tilted algebra associated to T  is the same as the quiver associated to the 

seed corresponding to T. (Note tha t this result was also independently obtained in 

[CCS2 , Theorem 3.1].)

Let k be an algebraically closed field, let Q (with n vertices) be an alternating quiver 

of Dynkin type, with underlying graph A, and let

T>b{kQ—mod)
=  F
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be the corresponding cluster category.

Let T  be a basic cluster-tilting object in C, let A be the cluster-tilted algebra A =

Endc(T)op, and suppose tha t Qa is the quiver of A. Prom [BMR2, Proposition 3.2], 

we have that Q \  has no loops and no oriented cycles of length two. Therefore, we 

can associate an n x n skew-symmetric integer matrix X a =  (x^)  to Qa, with rows

j  in Qa, we set x ^  to be the number of arrows from i to j  in Qa - If there are no 

arrows between i and j ,  we set X{j =  0. Otherwise, we set Xij =  —Xji.

Clearly there is a one-to-one correspondence between the set of quivers with n 

vertices, no loops and no oriented cycles of length two, and the set of n x n  skew- 

symmetric integer matrices with rows and columns indexed by the vertices of these 

quivers.

Prom [BMR2, Theorem 1.3] we have the following im portant result.

T H E O R E M  2.4.1 Let T  be an almost complete basic cluster-tilting object in C 

with complements M  and M * . Let A, A7 be the cluster-tilted algebras A =  Endc(T©  

M )op, A' =  Endc(T © M *)op and suppose that their quivers are Qa and Q\> re­

spectively. Fix an ordering on the vertices of Qa and suppose that the vertex of Qa 

corresponding to M  is I. Then, Qa and Qa> , or equivalently the matrices X \  = (%ij) 

and X a1 =  ore related by the formulas

Let A  be the cluster algebra of Dynkin type A with initial seed ({aq, .. • , x n}, B q) 

such that the quiver associated to Bo is Q.

We then have the following corollary of Theorem 2.4.1.

and columns indexed by the vertices of Qa - If there is at least one arrow from i to

i f  i =  I or j  = I 
otherwise.
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C O R O L L A R Y  2.4.2 Let T  be a basic cluster-tilting object in C and suppose that 

the seed of the cluster algebra A  corresponding to T  is (y ,B ) .  I f  X a is the matrix 

associated to the quiver Q \ of the cluster-tilted algebra A =  Endc(T)op, then X \  — B  

(identifying indecomposable objects in C with the corresponding cluster variables in 

A). Hence, Qa is the same as the quiver associated to the skew-symmetric matrix 

B.

P r o o f  From [BMR2, Section 6 ].

In view of Theorem 2.4.1, we just need to show that there is some basic cluster-tilting 

object To in C such tha t the quiver of the cluster-tilted algebra Ao =  Endc (To)op is 

the same as the quiver of the seed corresponding to To. (The result then follows by 

induction using Theorem 2.4.1.)

For each i £ {1, . . .  , n}, let Pi be the indecomposable projective /cQ"module corre­

sponding to the vertex i of Q.

Consider the cluster-tilted algebra Ao =  Endc(To)op where To is the cluster-tilting 

object To =  Pi [1] © . . .  © Pn[l]- Since [1 ] is an autoequivalence of C and since kQ = 

Pi ©. . .  ®Pn: we have tha t Ao =  Endc(/cQ)op. Therefore, Aq =  End^g(A:Q)op =  kQ , 

and hence the quiver of Ao is Q.

Under the correspondence between indecomposable objects in C and cluster vari­

ables in A , recall th a t for each i, the cluster variable corresponding to Pi[l] is X{. 

Therefore, the seed corresponding to To is ( { x i , . . . ,  x n}, B q). This completes the 

proof since the quiver of B q is also Q. ■

Let T  be a basic cluster-tilting object in C and suppose tha t the seed of the cluster 

algebra A  corresponding to T  is (y, B). From Corollary 2.4.2, we have that the
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quiver associated to B  is the same as the quiver of the cluster-tilted algebra A = 

Endc(T)op. But also, from Corollary 1.5.3, we have that if A = (aij) is a positive 

quasi-Cartan companion of B  and $  is the root system associated to A,  then there 

is a subset { / 3 i , . . . ,  /3n }  C  which is a Z-basis for Z$ such tha t a i j  =  , ( 3 j )  for

all 1 < i , j  < n.

This establishes a link between any given cluster-tilted algebra and the Z-bases 

(consisting of roots) of the root lattice of the associated root system that give rise 

to positive quasi-Cartan companions of the exchange m atrix from the corresponding 

seed of the associated cluster algebra.

Our research in subsequent chapters will focus on further examination of this link.
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Chapter 3

C om panion B ases

The main focus of this chapter is the study of a particular collection of Z-bases 

of the integral root lattice of a root system of simply-laced Dynkin type. To be 

precise, we study those Z-bases of roots whose associated m atrix of inner products 

is a positive quasi-Cartan companion of an exchange m atrix of the corresponding 

cluster algebra. The definition of these Z-bases, which we call companion bases, is 

motivated by Corollary 1.5.3.

In view of Corollary 2.4.2, companion bases are associated with the quivers of the 

cluster-tilted algebras of simply-laced Dynkin type. Moreover, the elements of a 

companion basis for the quiver of a given cluster-tilted algebra of simply-laced 

Dynkin type are naturally indexed by the vertices of tha t quiver.

We start this chapter by giving the definition of a companion basis for the quiver of 

a given cluster-tilted algebra of simply-laced Dynkin type. Our initial aim is then to 

find a method which allows us, given a cluster-tilted algebra of simply-laced Dynkin 

type, to construct a companion basis for its quiver. The latter part of this chapter 

is devoted to examining the relationship between different companion bases for the
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same quiver, with the main result here giving a complete (theoretical) description 

of all of the companion bases for any given quiver.

Throughout this chapter, we keep the following set-up.

Let k be an algebraically closed field, let Q (with n vertices) be an alternating quiver 

of simply-laced Dynkin type, with underlying graph A, and let

T>b(kQ — mod)
=  F

be the corresponding cluster category.

Let A be the cluster-tilted algebra (of simply-laced Dynkin type) given by A =  

Endc(T)op, where T  is a basic cluster-tilting object in C. Let A  be the cluster 

algebra of Dynkin type A, and suppose that (x, B)  is the seed in A  corresponding 

to the basic cluster-tilting object T. We then have by Corollary 2.4.2 tha t F =  F(B) 

is the quiver of A. Write F = (To, I'd), where To is the set of vertices of T, and F\ 

is the set of arrows of T.

Let 4> C V  be the root system of Dynkin type A where V  is a Euclidean space with 

positive definite symmetric bilinear form ( , ), and let II =  { a i , . . . ,  a n} be a simple 

system of $.

3.1 C om panion  B a ses and C om p an ion  B asis M u ta tio n

We start by giving the definition of a companion basis for F. Then, after introducing 

a standard quiver m utation procedure, we obtain the main result of this section. This 

result establishes a companion basis m utation procedure that, given a companion 

basis for T, produces a companion basis for any m utation of I \
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In the following section, we explain how iterated companion basis m utation gives 

a method for finding a companion basis for the quiver of any given cluster-tilted 

algebra of simply-laced Dynkin type.

The companion basis mutation procedure we introduce here also has some other 

interesting consequences, as we will see when we give it further consideration in 

Chapter 6 .

D E F IN IT IO N  3.1.1 We call a subset {'Jx'-X G To} C $  a companion basis for 

T =  T(B) if  it satisfies the following properties:

(i) {'jx-x £ To} is a X-basis for X<&.

(ii) The matrix A  =  (axy) given by axy =  (7 ^ ,7 y) for all x , y  G Tq is a positive

quasi- Cartan companion of B .

In this case, we will also often refer to G To} as a companion basis for T

giving rise to the positive quasi-Cartan companion A  of B.

We note that the elements of any candidate companion basis for T are indexed by 

the vertices of T. But also, the vertices of T correspond to the rows and columns of 

the matrix H, and hence to the elements (cluster variables) of the cluster x. So, we 

can consider the elements of any candidate companion basis for T as being indexed 

by the cluster variables of x. We note tha t it therefore makes sense to ask whether 

or not the matrix of inner products defined by any given candidate companion basis

for T is a positive quasi-Cartan companion of B.

We can slightly simplify Definition 3.1.1 as a consequence of the following simple 

result.

L E M M A  3.1.2 I f  { z \ , . . .  , zn} C  V  is a basis for V , then the matrix C = (C{j) 

given by Cij — (Zi,Zj) for all 1 < i, j  < n is positive definite.
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P r o o f  The result follows since the symmetric bilinear form ( , ) is positive 

definite. ■

We have the following corollary.

C O R O L L A R Y  3.1.3 I f  {7 1 , . . . ,  7 n} C  $  is a Z-basis for Z<&, then the matrix 

A = (aij) given by aij = (7 i , 7 j) for all 1 < i , j  < n is a positive quasi-Cartan 

matrix.

P r o o f  It is clear that {7 1 , . . . ,  7 n} must be a basis for V  since V  =  spanK{7 i , . . . ,  7 n} 

and dim^Y =  n. (Note tha t $  C  spanR{7 i , . . . ,  7 n} and so V  = spanR$  C  

spanK{7 i , . . . ,  7 n} C  V .) We can therefore apply Lemma 3.1.2 to deduce that A  

must be positive definite. Also, we see that A  must be symmetric with an =  2  for 

all 1 < i < n. ■

We can thus modify the definition of a companion basis for T by replacing condition 

(ii) above with:

(ii) 7 The matrix A  =  { a Xy )  given by axy =  ( 7 3 , 7 y) for all x , y  € To is a companion 

of B. That is, \axy\ — \bxy\ for all x ^  y, x , y  € To-

Corollary 1.5.3 gives the existence of a companion basis for T. Moreover, it tells us 

that for any positive quasi-Cartan companion A! of B , there is a companion basis 

for T giving rise to A 1. We will now start working towards obtaining a method for 

constructing a companion basis for the quiver of any given cluster-tilted algebra 

of simply-laced Dynkin type. In preparation for introducing our companion basis 

mutation procedure, we must first outline the process of quiver mutation.

Let k be a vertex of T. The vertex k corresponds to a row and column of 5 ,  and 

hence to a cluster variable x/, G x. M utating the seed (x, B)  in the direction x *., we
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obtain a new seed (x7, B'). We then call V  = r (B1) the quiver obtained from T by 

mutating at the vertex k.

Suppose T' is the basic cluster-tilting object in C corresponding to the seed (x7, B'). 

Then, we have that T7 is the quiver of the cluster-tilted algebra A7 =  Endc(T/)op.

N ote: I t’s a trivial observation tha t if we mutate T7 at the vertex k, we recover T.

We now give an explicit description (refer to [FZ2, Section 8 ]) of the quiver T7 

obtained from T by m utating at the vertex k, relying solely on the quiver T itself.

Recall (from Remark 1.1.6) tha t all matrices appearing in seeds of cluster algebras 

of Dynkin types A , D and E  are skew-symmetric integer matrices whose entries 

belong to the set {0, ±1}. (This means that between any pair of vertices in the 

quiver of a cluster-tilted algebra of simply-laced Dynkin type there is at most one 

arrow, and there are no loops on any vertex.) Making use of this information, the 

following can be obtained via the m atrix m utation formula which appears in the 

definition of a cluster algebra:

Suppose T7 is the quiver obtained from T by m utating at the vertex k. We may 

identify the vertices of T7 with those of T. Then, the arrows appearing in T7 are the 

same as those appearing in T, except in the following cases:

(i) All arrows incident with k in T are replaced in T7 by the corresponding reversed 

arrows.

(ii) Suppose x  and y are vertices such tha t there is an arrow from x  to k in T and 

an arrow from k to y in T. Then,
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(a) there is an arrow from x to y in T' if x  and y are not joined by an arrow

in r,

(b) x and y are not joined by an arrow in T7 if there is an arrow from y to

x in r.

The following result introduces the concept of companion basis mutation which gives 

us a way of obtaining companion bases for T7 (and hence companion bases for any 

quiver that can be obtained from T by performing a sequence of quiver mutations) 

from companion bases for T. Apart from helping us with our initial aim, this concept 

will also play an im portant role in the proof of our main result of Chapter 6 .

T H E O R E M  3.1.4 Let {7 ^: x  £ To} C be a companion basis for T. Then,

(i) the set { 7 'X\x  £ r 70} C  $  given by

' — /  s7fc(7 z) there is an arrow from x to k in T,
\  7 X otherwise

is a companion basis for  T7;

(ii) the set { 7 " :  x £ Tq} C  given by

// _  /  s7 fc(7 x) i f  there is an arrow from k to x in T,
\  7 x  otherwise

is a companion basis for T'.

We refer to {,y/x:x  £ Tq} as the companion basis for T' obtained from  £ To}

by mutating inwardly at k, and we refer to {̂ f'x .x  £ Tq} as the companion basis for 

V  obtained from {'Jx'-X £ Tq} by mutating outwardly at k.
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P r o o f  We only need prove (i); the proof of (ii) is similar.

We have tha t {7 ^: x E  T o }  C  <f> is a Z-basis for Z4>, and the matrix A — (axy) given 

by axy = (7 a;, 7 y) for all x , y  € Tq is a positive quasi-Cartan companion of B. We

given by a'xy =  ( 7 ^ , 7 ^ )  for all x, y E T q is a companion of B ' .

We start by checking tha t {7^.: x  E  T q } is a Z-basis for Z$.

Let 2: E  Z4>. Since {73.: x E  T q }  is a Z-basis for Z$, we can write z  =  E z e r 0 a xlx  

with ax E Z for all x E  IV

Let x be a vertex of T. If there is an arrow from x to k in T, we have 7 ,̂ =  slk (7 x) = 

l x  -  { l x , l k ) l k -  Otherwise, we have 7 i  =  7 *-

Therefore, we have

for x E  T q .

To establish the Z-linear independence of the set { 7 ^ : x  E Tq}, we note tha t if 

E xer'Q c * i x  -  0  w i t h  c* E  Z for all x E  Tq, then Y x ^ k  c*7®+(cfc ~ Y x ^ k  c x { l x , l k ) )  I k  =  

0. Therefore, we must have cx =  0 for all x E  Tq, due to the Z-linear independence 

of the set {73,: x E  T q} .

must show that {7 .̂: x E Tq} C  $  is a Z-basis for Z4>, and the matrix A' =  (a'xy)

thus showing tha t we can write z as an integral linear combination of the roots 7 ,̂
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In order to check that A' is a companion of B it is sufficient to check tha t (7 ,̂ 7 ')  =  

±1 whenever the vertices i and j  are joined by an arrow in IT7, and (7 ^,7 j) = 0 

otherwise. (We note tha t all entries of B'  belong to the set {0, ±1}, and moreover, 

that i and j  are joined by an arrow in V  if and only if bL =  ± 1 .)

Let x be a vertex in T, x  /  k.

If x and k are not joined by an arrow in T, then they are not joined by an arrow in 

r .  Also, we have 7  ̂ =  7 *, and i x =  7 x, and so (7 ^ ,7 ^) =  ( lk , lx )  =  0.

If there is an arrow from to £ in T, then there is an arrow from x  to k in T7. Also,

we have 7 J. =  7 * and i x =  7 *, and so (7 ^ ,7 ^) =  ( lk , lx )  = ± 1 -

If there is an arrow from x  to k in T, then there is an arrow from k to x  in T'. Also,

we have 7 J. =  7 *. and i x =  s7fc(7 ^), and so, (7 ^ ,7 ^) =  ( 7 k , s 7k( 7x) )  =  (s~fk (7 fc)> l x )  =

- { l k , l x )  € {±1}.

Let y be another vertex in T, y 7  ̂ k , x.

If there is no arrow from x to k in T, and no arrow from y to k in T, we see that 

7 .̂ =  7 a, and 7 'y =  7 y, and so (/ylx ,'Yy) — (7z,7y)- Note also tha t the full subquiver 

of r  on the vertices x  and y must be the same as the full subquiver of T' on the 

vertices x  and y.

Therefore, from now on, we will assume (without loss of generality) tha t x  is fixed 

such that there is an arrow from x to k in T.

We want to compute (7 ^ ,7 ^) and show tha t it is equal to ±1 if and only if x  and y 

are joined by an arrow in T7, and equal to 0  if and only if x  and y are not joined by 

an arrow in T7.
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Case 1: We will start by considering the case where x  and y are joined by an arrow 

in T. By assumption, we have (7 ^ ,7 y) =  ±1.

There are two possibilities.

Case 1.1: Suppose k and y are not joined by an arrow in T. Then, the arrow joining 

x and y in T also appears in T'.

r  r
x ----------------- k x  -<---------------- k

y  y

We have i k =  7 *, i x =  s7 fc(yx) = j x -  (7x,7k)lk, and j'y = j y. So, 

y )  =  (57fc(7x),7y) =  (7*,7y) “  ( i x ,  7fc)(7fc, 7y)

— { i x i l y )

since (7 fc,7 y) =  0 - 

Hence, (7 ^ ,7 ^) =  ±1.

Case 1 .2 : Suppose A: and y are joined by an arrow in T. Then, there is a triangle 

in T on the vertices /c, x , y. This triangle must be cyclically oriented (since it is a 

chordless cycle in T). Therefore, since the arrow joining k and x has head /c, the 

arrow joining k and y must have head ?/, and the arrow joining x  and y must have 

head x. It follows tha t x and y are not joined by an arrow in T7.

r  n
x  ^ k x ^---------------- k

y  y
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We have 7  ̂ =  7 *, i x =  s7fc(7 *) and i y =  7 y. So, (7 i,7y) =  ( l x ,  7 y )  “  (7 *, 7ft) (7*, 7y)-

Now, since .A is a positive quasi-Cartan companion of B, it follows from Proposi­

tion 1.4.6 that an odd number of ( j x ,7y), (lx,7k)  and (7 k, 7y) are positive. We thus 

have the following possibilities:

Therefore, we see tha t we must have (7 ^ ,7 ^) =  0.

Case 2: We will now consider the case where x and y are not joined by an arrow in 

T. By assumption, we have (7x ,7y) =  0.

There are three possibilities.

Case 2.1: Suppose k and y are not joined by an arrow in P  Then, x  and y are not 

joined by an arrow in P .

(7x,7y) (7 *, 7ft) (7fc,7y) (7 i,7 i) 
1 - 1 - 1 0  

- 1 1 - 1 0  

- 1 - 1 1  0 
1 1 1 0

r p

x k X k

y y

We have 7 J. =  7 *., i x =  5 ^ ( 7 *) and 7y = 7 y  So,

(n'x ,l'y) =  (7x,7y) ~ (7x,7k)(7k,7y)

0

since {7x,7y) =  0  and (7 fc,7 y) =  0 .
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Case 2.2: Suppose that there is an arrow from y to k in T. Again, we see that x 

and y are not joined by an arrow in V .

r  r
X  >- k  k

y y

We have j'k =  7 *, i x =  s7fc(7 x) and i y =  s7fc(7 y). So, (7 ^ ,7 ^) =  (s7 fc(7*), «7 fc(7y)) =

(7 ®, 7 y) = 0 .

Case 2.3: Finally, we suppose tha t there is an arrow from k to y in T. In this 

case, we see that k , x , y  are the vertices of a cyclically oriented triangle in F'. In 

particular, we have tha t x  and y are joined by an arrow (from x to y) in T'.

T V

x  >- k x--*---------------- k

y  y

We have 7 J. =  7fc, i x =  slk ( j x) and 7  ̂ =  7 y  So,

{ i x i l ' y )  =  (7x,7y) -  (7x,7fc)(7fc,7y)

=  ~ { lx , l k ) ( lk , l y )  € {±1} 

since (7 * ,7 y) =  0  and (7 3 , 7 *.), (7 fc,7 y) £ {±!}-

This completes the proof tha t {"yx:x  G Tq} is a companion basis for T'.

3.2 A  C om p an ion  B asis C o n stru ctio n  P ro ced u re

We can now complete our initial aim by showing how we can construct a companion 

basis for T. The key step here is to exhibit a companion basis for a quiver (of a
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cluster-tilted algebra of simply-laced Dynkin type) from which we can obtain T by 

applying a sequence of quiver mutations. We may then apply the companion basis 

mutation procedure introduced in Theorem 3.1.4 to yield the desired result.

Due to the classification of the cluster algebras of finite type (Theorem 1.1.5), we 

have that there is some seed (xo, B q) in A  such that the Cartan counterpart A (B q) 

is a Cartan matrix of type A. In particular, the quiver T(Bo) must be an orientation 

of A.

By Theorems 2.3.1 and 2.3.2, the seed (xo, Bo) corresponds to a basic cluster-tilting 

object To in C. Let Ao =  Endc(To)op be the associated cluster-tilted algebra. It 

follows from Corollary 2.4.2 tha t T0 =  T(Bo) is the quiver of Ao-

Recall that II =  { a i , . . . ,  a n} is a simple system of 4?. We therefore have by definition 

that { a i , . .. , a n} is a Z-basis for Z4>. So, it follows from Corollary 3.1.3 that the 

matrix A  =  ifiij) given by aij =  (aj, a.j) for all 1 < < n  is a positive quasi-Cartan

matrix. Moreover, we see tha t A  must be a companion of B q (up to simultaneous 

reordering of the rows and columns of A, that is, up to reordering of at i , . . .  , a n) 

and therefore, we have tha t II is a companion basis for T0.

N ote: To see tha t A is a companion of Bo (up to simultaneous reordering of rows

and columns) we firstly note tha t all entries of B q must belong to the set {0 , ± 1 }. 

Secondly, we note tha t all of the off-diagonal entries of A must also belong to the 

set {0 , ± 1 }, since inner products of pairs of non-proportional roots always belong to 

this set in root systems of Dynkin types A, D  and E  (refer to Lemma 1.2.4).

We now have, at least in theory, a method for finding a companion basis for I \  

Since B  and Bo are both matrices appearing in seeds in A, then they are mutation
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equivalent. In particular, we must be able to obtain T from T0 by applying a sequence 

of quiver mutations. So, by applying the corresponding sequence of companion 

basis mutations to the companion basis II for T0 (with iterated applications of 

Theorem 3.1.4(i)), it follows tha t we obtain a companion basis for T.

Of course, in practice, this method of finding a companion basis for T could be 

difficult to apply, as it requires us to find a sequence of quiver mutations that takes 

us from r °  to T. However, at the very least, we have given another proof of the 

existence of a companion basis for the quiver of any given cluster-tilted algebra of 

simply-laced Dynkin type.

3.3 Sign C han ges in C om panion  B ases

Having now seen a method enabling us to construct a companion basis for T, our 

main focus throughout the remainder of this chapter will be on attem pting to give 

a complete description of all of the companion bases for T. We will do this by 

examining the relationship between arbitrary companion bases for T.

We start, in this section, by showing tha t the companion bases for T giving rise 

to a chosen positive quasi-Cartan companion of B  differ from those giving rise to 

a distinct chosen positive quasi-Cartan companion of B  only by the signs of their 

elements. In the next section, we will then consequently only need to consider the 

relationship between the companion bases for T which give rise to some fixed positive 

quasi-Cartan companion of B.

Let {7 X: x 6  To} C $  be a companion basis for T. It is natural to ask if we can use 

this companion basis to help us to find further companion bases for T. Here, we
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show that from this companion basis we can exhibit, for any positive quasi-Cartan 

companion of B, a companion basis for T giving rise to tha t positive quasi-Cartan 

companion of B.

Let A  =  (axy) be the m atrix given by axy =  (7 3 , 7 y) for all x , y  G IV  We have tha t A 

is a positive quasi-Cartan companion of B. Let A  be another positive quasi-Cartan 

companion of B.

Since A  =  A (B )  is a cluster algebra of finite type, we see tha t A  is the unique 

positive quasi-Cartan companion of B  up to simultaneous sign changes in rows and 

columns (due to the results of Section 1.4). That is, by applying simultaneous sign 

changes in the rows and columns of A , we can obtain all positive quasi-Cartan 

companions of B. Note also, that all matrices obtained in this way are positive 

quasi-Cartan companions of B.

In particular, A  can be obtained from A  by applying simultaneous sign changes in 

some collection I  of rows and columns of A.

Suppose that A  =  (axy) is the matrix obtained by simultaneously changing signs in 

row and column k of the m atrix A  for some k. Also, suppose tha t { 7 x: x G To} Z 4? 

is obtained by setting j x =  7 X for x  ^  k, and % = —7 We then have the following 

simple result.

L E M M A  3.3.1 { j x : x  G To} is a companion basis for T giving rise to the positive 

quasi-Cartan companion A  of B.

P ro o f Since {%: x  G To} is clearly a Z-basis for Z4>, we need only check that 

(7 ®>7 y) =  axy for all x , y  € Tq.
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If X, y k , then ('7 x ,7 y) — ( ' )  — &zy — hXy

For y ±  k, we have {%,%)  =  (~7fc,7y) =  ~ aA:y =  dfcy, and similarly, {%,%)  =  ayk. 

Also, (7 fc,7 fc) =  dfcfc =  2. ■

As an immediate consequence of Lemma 3.3.1, we have the following. 

C O R O L L A R Y  3.3.2 The subset {*/x:x  € Tq} C $  given by

is a companion basis for T giving rise to A.

This result tells us tha t in order to give a complete description of all of the companion 

bases for T, we now only need describe those that give rise to some fixed positive 

quasi-Cartan companion of B. (This is because an arbitrary companion basis for T 

differs from one giving rise to the fixed positive quasi-Cartan companion of J3, only 

by the signs of its elements.)

3.4 A  D escr ip tion  o f all C om panion  B a ses for T

We now focus our attention on the companion bases for T tha t give rise to some fixed 

positive quasi-Cartan companion A  of B. We start by fixing an arbitrary companion 

basis for T giving rise to A, and then proceed to show tha t we can obtain all other 

such companion bases for T from this initial companion basis. This enables us to 

give a complete description of all of the companion bases for T, in terms of the given 

initial companion basis.

Let { j x: r  G To} C $  be a companion basis for T and suppose tha t A = (axy) is the 

positive quasi-Cartan companion of B  given by axy — (7 ^ ,7 ^) for all x, y € Tq.

I x  i f  / ,

- 7 ® if  x e l
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Firstly, we show tha t we can use the companion basis {'yx'.x G To} to find more 

companion bases for T tha t give rise to A.

Let W§ be the Weyl group of 4>. We then have the following simple result.

L E M M A  3.4.1 For any w G W§, both {w^x\x  G To} Q and { —w^x:x  G To} Q 

4* are companion bases for  T giving rise to the positive quasi-Cartan companion A  

of B.

P r o o f  Let w G W$. Then, w is an orthogonal linear transformation of V  which 

permutes the set of roots <L. From this, we can deduce tha t { w y x: x G T q }  C 4> 

must be a companion basis for T giving rise to A. It then follows immediately that 

{ —W'yx'.x G To} C  $  is also a companion basis for T giving rise to A. M

The result of Lemma 3.4.1 leads us to ask whether or not we can describe all of the 

companion bases for T tha t give rise to A  in terms of the “initial” companion basis 

{lx'-x  G T q}. The following well known result will provide the key in helping us to 

answer this question.

P R O P O S IT IO N  3.4.2 Suppose p: V  —> V  is an orthogonal linear transformation 

which permutes the set of roots $ . Then, there is some w G such that ^11 =  icll.

P r o o f  Since ip permutes the set of roots 4>, it is easy to see tha t pH  is a vector 

space basis for V. If a  G 4>, we can write a = w^ h  either Ci > 0 for all

1 < i < n, or C{ < 0 for all 1 < i < n. But then, since p a  — ci iP(a i)i and

again using the fact tha t p  permutes the set of roots 4>, we see that each a  G $  is a 

linear combination of <̂ II with all coefficients being non-negative, or all coefficients 

being non-positive. Therefore, <̂ II is a simple system.
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Now, from [Hum2, Theorem 1.4] we have that any two simple systems of 4> are 

conjugate under W$. Therefore, since ipYl is a simple system, we see that there is 

some w G W$ such tha t (pH = wTL. ■

Let {<5̂ : x G To} C $  be another companion basis for Y giving rise to A. We aim to 

describe this companion basis in terms of the companion basis {/yx: x G Tq}.

Define a map T: V  —> V  by specifying T(j x) = Sx for all x  G Tq, and extending 

linearly. By definition, we have that T  is an invertible linear transformation. So, 

in order to be able to apply Proposition 3.4.2 to T, we must show that T  is an 

orthogonal transformation which permutes the set of roots 4?.

Checking the orthogonality of T  is a simple task.

LEM M A 3.4.3 The map T: V  —> V  is an orthogonal transformation.

P r o o f  The result follows as an easy consequence of the fact that (7®, 7y) =  (<5X, 5y) 

for all x, j /GFq- ®

The following result provides the main step towards establishing tha t T  permutes 

the set of roots 4>. The proof we present is an analogue of the first two parts of the 

proof of [Hum2, Theorem 1.5]. Before stating this result, we first give a preliminary 

definition.

D E FIN IT IO N  3.4.4 Let a  G 4>. Since { ' jx’. x  G To} Q $  is a companion basis, 

we can write a uniquely in the form a  =  X ^ e r 0 cx l x  with cx G Z  for all x  G T q .  

We then define X^xe r 0 \Cx\ ^0 ^e height of a  with respect to the companion basis 

{ j x : x  G T q } .
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P R O P O S IT IO N  3.4.5 Let be the Weyl group of 4> and suppose that W ' is 

the subgroup o fW $ generated by the reflections s 7x for x  € T q . Then, for any a  E $ 

there exists w E  W ' and x  E  To such that a  = w^x .

P r o o f  Let a  E and consider the non-empty subset W 'a  C  $.

Let 6 be an element of W 'a  of minimal height with respect to the companion basis 

{ l x ‘- x E To}. We claim tha t 6 =  ± 7 y for some y E IV

Since {'yx:x  E To} C $  is a companion basis, we can write 5 =  with

cx E  Tj for all 1  E  To. We have 0 < W — Sxero Cx (fii'Jx), and therefore, there 

must be some y such tha t cy(S, 7 y) > 0 .

If 6 =  ± 7 y, then we are done. Suppose that this is not the case and consider the 

root

Now, we have cy(5,7 y) > 0. So, there are two possibilities:

(i) cy > 0 and (6 , j y) > 0,

(ii) cy < 0 and (6 , j y) < 0.

In case (i), using Lemma 1.2.4, we see tha t cy — (5,7 y) = cy — 1 < cy, and moreover, 

that | cy -  (<5,7y)| < | cy |.

In case (ii), using Lemma 1.2.4, we see tha t \cy — (^,7 y)| — |cy +  1| < |cy|.

=  5 ~ ( ^ l y ) l y

xCzTq

+  (cy -  (£,7 y))7 y € W 'a.
x^y
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Therefore, in either case we see that the height of s7j/(£) with respect to the com­

panion basis {7 X: x  G To} is less than the height of <5 with respect to the companion 

basis G Tq}. This is a contradiction.

So, we must have that <5 =  ± 7 y.

In particular, there is some w G W '  such that either wa  =  7 y or wa — —7 y. In the 

former case, we write a = w '^y by taking w' =  w~l G W', and in the latter case, 

we write a  =  w'^y by taking w' - (s7yit>)- 1  =  w~l sly G W '. ■

As an immediate consequence of the above, we have the following corollary.

COROLLARY 3.4.6 I f  a  G 4>, then we can write a in the fo rm a  =  s7xi • • • s7 xt(7 y) 

with x i , . . .  , 2 7 , 2/ G r 0.

N ote: Let W '  be as given in Proposition 3.4.5. The third part of the proof of

[Hum2, Theorem 1.5] establishes tha t W '  —

Recall that we had defined an orthogonal linear transformation T: V  —> V  by ex­

tending linearly the map sending 7 X to Sx for all x  G Tq. We were hoping to show 

that this map permutes the set of roots $ . We will be able to do this by combining 

the result of the following lemma with tha t of Corollary 3.4.6.

LEM M A 3.4.7 / / 7  is a root, then T s 1 = s ^ ^ T .

P r o o f  The result follows from the fact tha t T  is an orthogonal linear transforma­

tion. ■

P R O P O SIT IO N  3.4.8 T  permutes the set of roots $ .
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P r o o f  Let a  be a root. From Corollary 3.4.6, we see tha t we can write a  in the 

form a  =  s7  • • • s7xt (7 y) with 2 7 , . . . ,  2 7 , y E IV  But then, (repeatedly) applying 

Lemma 3.4.7, we see that

T a  — • • • ■5j’(7 i j (T (7 y)) =  ssxi • • ■ ssxt {Sy).

In particular, T a  is a root since V ,  • ■ • > &Xt, are ro° ts-

The result then follows since T  is invertible. ■

By applying Proposition 3.4.2 to T, we are now able to prove the following result 

which gives useful insight into the relationship between the companion bases {73 ,: x E 

r 0} and {Sx: x  E  r 0}.

LEM M A 3.4.9 There is some w E  and some orthogonal linear transformation 

o\ V  —> V  which permutes II such that Sx = wa^x for all x E  To-

P r o o f  By Proposition 3.4.2, we have that there is some w E  such that T il =

wll.

Define a =  w~1T: V  —>• V.  It is immediate that o is an orthogonal linear transforma­

tion. Moreover, since T il =  i t;II, we see tha t it;-1 T n  = II, and so w~l T  permutes the 

set of simple roots II. The proof is completed by noting that wa{^x) — T (7 ^) =  5X 

for all x E  To- ■

N ote: Given Proposition 3.4.8, the fact that Lemma 3.4.9 holds is essentially

contained in [Sam, p .87].

We will now see tha t the converse of Lemma 3.4.9 also holds.
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L E M M A  3.4.10 Let w G W$ and let p be an orthogonal linear transformation of 

V  that permutes II. Then, the subset {wpyx:x G Tq} C $  is a companion basis for 

r  giving rise to A.

P r o o f  We start by checking that {wp^x\x  € To} Q $.

Given any root a, we have from [Hum2, Theorem 1.5 & Corollary 1.5] that a  can 

be written in the form a — saii • • • sait (a j) for some ctq, . . . ,  ait ,a j  G II, with t G N 

and 1 < i \ , . . . ,  i t , j  < n.

Since p is an orthogonal linear transformation, it is easily seen that

P a  ~  s p( a i 1) ‘ '  ‘ s p ( ai t ) ( p { Ctj ) ) i

and therefore, since p permutes II, we deduce that pa G 4>. Consequently, we see 

that {w p jx : x  G To} C $  and that p permutes the set of roots $.

Since w and p are both orthogonal linear transformations, it is clear that 

(wp'fx, wpjy) = (7 a; , 7 y) =  axy for all x ,y  G To- Therefore, it just remains to 

be checked tha t {wp'jx'- x  G To} is a Z-basis for

Let z G We want to write z  as an integral linear combination of the roots w p jx 

for x G T0.

Since w ~ 1 G W$ is an orthogonal linear transformation of V  tha t permutes 4>, we see 

that w~l z  G Furthermore, it is clear that p is invertible (since p permutes II), 

and that the inverse map p~l \V  —> V  is also an orthogonal linear transformation 

of V  that permutes II, and moreover, permutes $ . (Note tha t if u ,v  G V , then 

(p~l u, p~l v) =  (pp~xu , pp~1v) — (u , v), using the orthogonality of p.) We thus have 

that p~1w~1z G Z4>.
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Therefore, since {'fx : x  G To} is a Z-basis for Z$, we can write p 1w 1z  =  X E er0 a^ x 

with f l j G Z  for all x  G T q .  In particular, we have

z — wp(p 1w 1z)

=  w p  I 2 _] a x l x

=  V ,  axwp'yx

as required.

In order to check the Z-linear independence of {wp/yx:x G To}, we suppose that 

X Eer0 axwPlx =  0 with ax G Z for all x G To- The result then follows from the 

Z-linear independence of {7 *: x G T0} since p~l w~l S^ero  axwPlx =  E i e r 0 aa:7a: =  

0. ■

We have now established the following result.

T H E O R E M  3.4.11 The companion bases for T that give rise to A  are precisely 

the sets of the form {w a^x\x  G To} C  where w G and o is an orthogonal 

linear transformation of V  that permutes II.

In view of Section 3.3, we also have the following corollary.

C O R O L L A R Y  3.4.12 The companion bases for T are precisely the sets of the 

form {exWa'jxi x  G T q} C  <f> where w G a is an orthogonal linear transformation 

o fV  that permutes II, and sx G {±1} for all x  G IV

We note that a complete description of the orthogonal linear transformations of 

V  that permute II is well known (and easily obtained) in each of the simply-laced 

Dynkin cases. (Refer to [Bou, Chapter VI Section 4], for example.) In each case,
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these may be interpreted as the graph automorphisms of the corresponding Dynkin 

diagram.

We have now given a complete description of all of the companion bases for T in 

terms of the (arbitrary) initial companion basis {^X'.x € Tq}.

N ote: In principle, this establishes a method of constructing all of the companion

bases for T. Recall that in Section 3.2 we outlined a procedure for constructing an 

initial companion basis for T. Therefore, using Corollary 3.4.12 (together with a 

description of the orthogonal linear transformations of V  tha t permute II), we may 

then construct all of the other companion bases for T from this initial companion 

basis.

3.5 A  R efined  D escr ip tio n  o f C om panion  B ases in T yp e
A

For this section, we restrict our attention to only the Dynkin type A n case. We 

show that in this case, we can refine the result of Theorem 3.4.11.

Let {'jx-x 6  To} C $  be a companion basis for T. Also, suppose that A  =  (axy) is 

the positive quasi-Cartan companion of B  given by axy — (7 ^ , 7 y) for all x ,y  <G To-

From Theorem 3.4.11, we have tha t the companion bases for T giving rise to A  

are precisely the sets of the form { w a jx:x  € To} Q 4? where w G and a is an 

orthogonal linear transformation of V  permuting II. (Note tha t since $  is the root 

system of Dynkin type A n, then W$ =  <Sn+i, the symmetric group o n n + 1  letters.) 

By considering the possible choices for <r, we can refine this description.
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Suppose the simple system II =  { a i , . . . ,  a n} of $  is chosen such tha t (ai, c*i+i) =  — 1 

for all 1 < i < n -  1 , and (a*, aj) = 0 for all 1 < i < j  < n  otherwise.

For n > 2, it is then easily established that there are just two orthogonal linear 

transformations of V  tha t permute II. These are the identity map on V  and the 

map a: V  —» V  given by setting cr(aj) =  a n+i f o r  all 1 < i < n  and extending 

linearly. (Note that in the Dynkin type A\  case, the identity map on V  is the only 

orthogonal linear transformation of V  that permutes II.)

Using this information, we obtain the following result.

T H E O R E M  3.5.1 The companion bases for V giving rise to A  are precisely the 

sets of the form ± {w yx: z € To} with w G W$.

P r o o f  We start by noting tha t all sets of the form ±.{w)x: x G To} are companion 

bases for T giving rise to A  by Lemma 3.4.1. We therefore just need to prove that 

all of the companion bases for T giving rise to A  are of the stated form.

In the n =  1 case, this is clear.

Suppose n > 2 and let {5x:x  G To} C $  be a companion basis for T giving rise to 

A. We have that 6X =  w g ^ x for all r  G To, for some w G W$ and some orthogonal 

linear transformation cr: V  —> V  permuting II.

We saw above tha t there are only two possible choices for a. One possibility is that 

a is the identity map on V , in which case it follows immediately that Sx = w^x 

for all x  G To- The other case to consider is where a is the map given by setting 

cr(ai) = a n+i- i  for all 1 < i < n, and extending linearly. In this case, we will show 

that there is some v G such that Sx =  — v j x for all a: G To-
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Now, if wo is the longest element in W$, then it is well known (and not hard 

to show) that wo(cti) = — a n+i_; for all 1 < i < n. Therefore, WQcr(cti) =  — a*

for all 1 < i < n. So, wocr is minus the identity map on V. But, there is a

unique element v G W$> such tha t w = vwq. For this choice of v we see that 

Sx = wa'jx =  vw0(jyx =  - v ^ x for all x  G r 0.

This completes the proof. ■

Since there are (n +  1 )! elements in VF$, we see that there can be at most 2 (n +  1 )! 

companion bases for T giving rise to A. For n > 2, we will now check that there are 

exactly 2 (n +  1 )! such sets.

P R O P O S IT IO N  3.5.2 For n  > 2, there are precisely 2 (n +  1)! companion bases 

for T giving rise to A.

P r o o f  Firstly, suppose w ,v  G W$ and w j x — v^x for all x  G T o-  Then, v~ 1w ^x = 

7 a, for all x  G T q . If q  G $ ,  then we can write a  in the form a = X ^ x e r 0 cxlx

where cx G Z  for all x  G T o -  Therefore, we have v~1wct — v~ l w X ^ x e r 0 cxlx —

J2xer0 cx(v ~lw 7x) =  YLxevQcxlx  =  ot. So, v~ l w G W$ sends no positive roots to 

negative roots, and hence we must have v~ l w — 1. Thus, v =  w. (This also shows 

that if w, v G and —w ^x =  —v j x for all x  G T o ,  then w =  v .)

Finally, suppose w,v  G and w j x = —v j x for all x  G To- Then, v~ 1w j x =  —7 X 

for all x G T o . Therefore, for every a  G $  we see tha t v _1wa  =  —a. So, v~ l w G W$> 

sends every positive root to a negative root, and hence v~xw = wo, the longest 

element in W$. But wo(cti) — ~ &n+i-i f°r all 1 < 2 < n, whereas v~ l w{cti) =  — on 

for all 1 < i < n. This is a contradicition. Therefore, we see tha t there are no 

elements w,v  G such tha t w j x = — v^x for all x G To- ■
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Note: In the n  =  1 case, it is clear tha t there are only two companion bases for T

(the quiver consisting of only one vertex and no arrows) giving rise to A  (the l x l  

matrix whose sole entry is 2).
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Chapter 4

D im ension  V ectors via  
C om panion B ases

In this chapter, we start to consider the significance of companion bases. In partic­

ular, we establish the main result of this thesis. This result can be regarded as a 

generalisation, in the Dynkin type A  case, of part of Gabriel’s Theorem. Suppose 

we are given a cluster-tilted algebra of Dynkin type A, and suppose further that we 

are given a companion basis for the quiver of this cluster-tilted algebra. By express­

ing the positive roots of the corresponding root system in terms of this companion 

basis, and taking the absolute values of the coefficients appearing in these expres­

sions, we associate a vector to each positive root. Our main result establishes that 

the vectors obtained in this way are the dimension vectors of the finitely generated 

indecomposable modules over the given cluster-tilted algebra.

We start this chapter by seeing how Gabriel’s Theorem motivates the introduction 

of these vectors associated to the positive roots. The first step in the proof of the 

main result is then to describe these vectors. We do this by studying the structure 

of the quiver of the given cluster-tilted algebra, and showing that the positive roots 

can be associated with certain “unoriented paths” in this quiver. Our attention then
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turns to the finitely generated indecomposable modules over the given cluster-tilted 

algebra. We show tha t these are associated with the same unoriented paths, which 

then enables us to deduce tha t their dimension vectors are the same as the vectors 

associated to the positive roots.

We conclude this chapter by conjecturing tha t analogues of the main result hold in 

the Dynkin type D and E  cases, and discussing some possible strategies for proving 

this conjecture.

4.1 M otiva tion  and  M ain  R esu lt

Here, we look at the motivation for, and give a statement of, our main result.

Let k be an algebraically closed field, let Q (with n  vertices) be an alternating quiver

of simply-laced Dynkin type, with underlying graph A, and let

T>b(kQ — mod)
=  F

be the corresponding cluster category. Suppose A  is the cluster algebra of Dynkin 

type A. Also, suppose tha t 4? C V  is the root system of Dynkin type A, where V  is 

a Euclidean space with positive definite symmetric bilinear form ( , ). Finally, let 

n  =  { a i , . . . ,  a n} be a simple system of 4>.

Due to the classification of the cluster algebras of finite type (Theorem 1.1.5), we 

have that there is some seed (xo, B q) in A  such tha t the Cartan counterpart A (B q) 

is a Cartan m atrix of type A.

By Theorems 2.3.1 and 2.3.2, the seed (xo, B q) corresponds to a basic cluster-tilting 

object To in C. Let Ao =  Endc(To)op be the associated cluster-tilted algebra. It 

follows from Corollary 2.4.2 tha t T0 =  T(Bo) is the quiver of Ao-
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Since the Cartan counterpart A{B q) is a Cartan matrix of type A, we have that the 

quiver T0 must be an orientation of A. In particular, the graph underlying T0 is a 

tree. It therefore follows from [BMR3, Theorem 4.2] that Aq =  kT° , and hence Ao 

is (isomorphic to) a path algebra of finite representation type.

Now, applying Gabriel’s Theorem to Ao will help us to deduce a little more infor­

mation about the companion basis II for T0. (We saw in Section 3.2 that II is a 

companion basis for T0.)

Recall that Gabriel’s Theorem [Gab] may be stated as follows.

T H E O R E M  4.1.1 Let Q be a connected quiver and let K  be a field. Then, K Q  

has finite representation type i f  and only i f  the underlying graph of Q is a Dynkin 

diagram of one of the following types: A n (n > \) ,  Dn (n~> E q, E j or Eg.

In this case, if  $  is the root system of the corresponding Dynkin diagram with sim­

ple system II =  { d i , . . . ,  a n} and corresponding positive system then there is a 

bijective correspondence between the set of isoclasses of the finitely generated inde­

composable KQ-modules and the set of positive roots 4>+ .

Under this correspondence, i f  M  is a finitely generated indecomposable KQ-module, 

and the dimension vector of M  is (d\ , . . .  ,dn), then the positive root corresponding 

to M  is a = d \a \  -f . . .  T dna n .

Since II is a simple system of $ , we can write each positive root a £ uniquely 

as an integral linear combination of a i , . . .  , a n. Moreover, all of the coefficients in 

these expressions must be non-negative. In particular, we can associate a vector to 

each a  G 4?+ , where the components of this vector are the coefficients appearing in 

the expression for a  in terms of a \ , . . .  , a n. Gabriel’s Theorem then tells us that
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the vectors obtained in this way are the dimension vectors of the finitely generated 

indecomposable Ao-modules.

Let A be the cluster-tilted algebra of simply-laced Dynkin type given by A =  

Endc(T)op where T  is a basic cluster-tilting object in C. Suppose tha t (x, B)  is 

the seed corresponding to T  in the cluster algebra A , so that T = T(B)  is the quiver 

of A. Write T =  (Fo,Fi), where Tq is the set of vertices of T, and Ti is the set of 

arrows of T. Let =  {^x: x  G To} C $  be a companion basis for V. Then, ’F is 

a Z-basis for Z<F. So, we can write each root in <F uniquely as an integral linear 

combination of the elements of the companion basis 'F. This enables us to assign a 

vector to each root, as follows.

D E F IN IT IO N  4.1.2 Let a  £ $  and suppose that a  =  X Xer0 cxlx with cx £ Z for 

all x G To. We define d% to be the vector = (|cx|)xer 0-

Note that for every a  € <F, the vector associated to a  is the same as the vector 

d̂ _a associated to —a. For this reason, we will usually restrict our attention to the 

vectors d^ for a  £ 4>+ .

Gabriel’s Theorem tells us th a t the vectors df^ for a  £ <F+ are the dimension vectors 

of the finitely generated indecomposable Ao-modules. Motivated by this fact, we 

introduce the following definition.

D E F IN IT IO N  4.1.3 We call 'F a strong companion basis for  T if  the vectors d% 

for a  £ <F+ are the dimension vectors of the finitely generated indecomposable A- 

modules.

Having already seen how to find all of the companion bases for T, it is natural to 

ask whether or not we can decide which of these companion bases are strong.
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We will start by considering the Dynkin type A n case, with n G N fixed but arbitrary. 

We then have that Q is an alternating quiver whose underlying graph is the Dynkin 

diagram of type A n , th a t the cluster algebra A  is of Dynkin type A n, and that 

the root system $  is of Dynkin type A n. The main result we will establish is the 

following im portant result.

T H E O R E M  4.1.4 Let A =  Endc(T)op be a cluster-tilted algebra of Dynkin type 

A n, where T  is a basic cluster-tilting object in C. Suppose that (x, B) is the seed 

corresponding to T  in the cluster algebra A, so that T =  T(B)  is the quiver of A. 

Then, all companion bases for  T are strong. That is, i f  C  $  is a companion basis 

for T, then the vectors for a  € are precisely the dimension vectors of the 

finitely generated indecomposable A-modules.

Giving a proof of this result will be our main aim of the following four sections, 

throughout which we will keep the current set-up.

We will later conjecture tha t the equivalent result holds in each of the Dynkin type 

Dn {n > 4), E q, E j and Es cases, and discuss what progress we can make towards 

proving this conjecture.

4.2 Q uivers o f  C lu ster -tilted  A lgebras o f  D yn k in  T y p e
A

The aim of this section and the next is to develop our understanding of the structure 

of the quivers of the cluster-tilted algebras of Dynkin type A n. We do this by making 

use of a known alternative description of these quivers.

We start this section by considering the triangulations of a regular (n+3)-gon. Using 

a result from [FZ3], we will see tha t these triangulations correspond to the seeds of
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the cluster algebra of Dynkin type A n, and hence to the basic cluster-tilting objects 

in C. Also, we have a natural way of associating quivers to these triangulations 

(from [CCS1]).

We will see that for any given triangulation of a regular (n +  3)-gon, the quiver 

associated to this triangulation is the quiver of the associated cluster-tilted algebra, 

therefore establishing tha t the quivers associated to the triangulations of a regular 

(n +  3)-gon are precisely the quivers of the cluster-tilted algebras of Dynkin type 

An-

In the next section, we then start to examine some of the basic properties of the 

quivers associated to the triangulations of a regular (n +  3)-gon.

Let Pn + 3  be a regular (n +  3)-gon. We have that |3>>-i| =  \n { n +  l) +  n =  ^n(n +  3) 

which is equal to the number of diagonals of Pn+3 •

Following [FZ3], let the vertices of Pn + 3  be P \ ,P 2, . . . ,P n+3, labelled in the anti­

clockwise direction, and identify the almost positive roots with the diagonals of Pn + 3  

as follows. (Recall tha t II =  {qi, . . . ,  a n} is a simple system of $.)

For 1 < i < Z1y i, identify — a.'ii-x £ $ > - i  with the diagonal joining Pi and Pn+3 -;, 

and for 1 < i < identify — ct2i G $ > - 1  with the diagonal joining Pi+i and Pn+%-i. 

Finally, for each 1 < i < j  < n, identify the positive root a ; +  ai+ i + . . .  P aj  with 

the unique diagonal tha t crosses precisely the diagonals — c^, — cq+i , . . . ,  — o t j .  (Note 

that two diagonals are said to cross if they are distinct and have a common interior 

point.)

We then have the following result from [FZ3, Proposition 3.14].
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P R O P O S IT IO N  4.2.1 Let a , (3 e  $>_i .  Then,

( 11 a\ _  /  1 diagonals a  and (3 cross,
[ 0  otherwise.

So, compatible sets are collections of mutually non-crossing diagonals. Therefore, 

there is a one-to-one correspondence between the set of clusters (or equivalently, 

seeds) of A  and the set of triangulations o / P n + 3 by non-crossing diagonals.

Let T be a triangulation of Pn+3. Then, we can associate a connected quiver Q j  

to T as in [CCS1, Section 3.2]. Take the vertices of Q j  to be the midpoints of the 

diagonals in T. Let i and j  be vertices in Q j  lying on diagonals di and dj respectively. 

Then, there is an arrow from i to j  in Q j  if di and dj bound a common triangle 

(from the triangulation), and the angle of minimal rotation about the common point 

of di and dj taking the line through di to the line through dj is in the anticlockwise 

direction.

Suppose that (x, B ) is the seed of A  corresponding to the triangulation T of Pn + 3  

as given by Proposition 4.2.1 above. It follows immediately from [FZ2, Proposition 

12.5] that Q j  is the quiver associated to B  (taking the vertices of Q j  to be indexed 

by the corresponding cluster variables in A).

Now, we have tha t the seed (x, B ) corresponds to some basic cluster-tilting object 

T  in C. In view of Corollary 2.4.2, we then have tha t Q j  is the quiver of the 

cluster-tilted algebra A =  Endc(T )op.

Therefore, the quivers associated to the triangulations of Pn + 3  are precisely the 

quivers of the cluster-tilted algebras associated to the basic cluster-tilting objects in

C.
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4.3 T h e S tru ctu re  o f Q uivers A sso c ia ted  to  T riangula­
tion s

In this section, we start to examine the structure of the quivers associated to the 

triangulations of a regular (n +  3)-gon. In particular, we introduce the concept of 

shortest unoriented paths in these quivers. Shortest unoriented paths will play a 

key role in the proof of Theorem 4.1.4.

Keeping the triangulation T of Pn+3 from the previous section, recall that Q j  denotes 

the quiver associated to T.

Since Q j  is the quiver of a cluster-tilted algebra, we will now consider its structure 

more closely. Firstly however, we note tha t all of the triangles in the triangulation 

T are of the following three types:

(I) Triangles tha t consist of one diagonal and two boundary edges of Pn+3-

(II) Triangles that consist of two diagonals and one boundary edge of Pn+3-

(III) Triangles that consist of three diagonals of Pn+3-

Note: Since n > 1, at least one side of any given triangle in T must be a diagonal

Of Pn+3 •

By the definition of Q j , we have tha t a triangle in T of type (I) gives rise to a vertex 

in Q j, a triangle in T of type (II) gives rise to an arrow between two vertices in Q j,  

and a triangle in T of type (III) gives rise to an oriented 3-cycle in Qj.

Let x  be a vertex in Q j,  and let dx be the corresponding diagonal of Pn+3 in T. 

Then, dx must bound precisely two triangles in T. If dx bounds two triangles of
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type (I), then we must have n  =  1, and x  is the only vertex of Q j.  If dx bounds a 

triangle of type (I) and a triangle of type (II), then x has valency one. If dx bounds 

a triangle of type (I) and a triangle of type (HI), then x  lies on a 3-cycle in Q j  and 

has valency two. If dx bounds two triangles of type (II), then x has valency two. 

If dx bounds a triangle of type (II) and a triangle of type (HI), then a; is a vertex 

at which an arrow meets a 3-cycle, and x  has valency three. Finally, if dx bounds 

two triangles of type (III), then x is a vertex at which two 3-cycles meet, and x  has 

valency four. This covers all possible cases for the vertex x.

Suppose d is a diagonal in T, joining the vertices Pa and P& of IPn+3 . The diagonal 

d divides the polygon Pn + 3  into two parts, P^J_3 and P^+3. We can consider P^ + 3  

and IP̂ + 3  as two polygons which have been “glued together” along their shared 

boundary edge d. So, if 1C 3 and have I and m  sides respectively, then

I T Tn — (n T 3) -(- 2 =  7i T 5.

N ote: For a triangulation X  of a polygon P, we will write diag(X) to denote the

subset of the set of diagonals of P that appear (i.e. form the boundaries of the 

triangles) in X .

The triangulation T of Pn + 3  induces triangulations and of P^ + 3 and P^ + 3  

respectively. Each element of diag(T) \  {d} appears in precisely one of diag(Td+) or 

diag(Td ). We have tha t d diag(T i+) ,diag(Td ), since d is a boundary edge of 

both and K~+3-

It is clear tha t no diagonal in Td+ can bound the same triangle (in T) as any diagonal 

in .A s  an immediate consequence of this, we see that there can be no cycles in 

the underlying (unoriented) graph of Q j  containing vertices corresponding to the 

elements of diag(Td+) and vertices corresponding to the elements of diag(Td ). This 

proves the following.
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L E M M A  4.3.1 In the underlying graph o f Qj ,  the only cycles are 3-cycles arising 

from triangles in T of type (III).

As a result of Lemma 4.3.1, we see tha t two 3-cycles in Q j  cannot meet in an arrow.

N ote: The above description of the possibilities at a vertex in Q j  and Lemma 4.3.1

were shown independently in [BV].

Recall that Q j  is the quiver of the cluster-tilted algebra A =  Endc(T)op where T  

is the basic cluster-tilting object in C corresponding to (the seed corresponding to) 

the triangulation T.

Let I j  be the ideal of the path  algebra k Q j  generated by the set of all paths in Q j  

consisting of two consecutive arrows in any given 3-cycle. It is clear that I j  is an 

admissible ideal of k Q j , and we have the following.

P R O P O S IT IO N  4.3.2 The cluster-tilted algebra A is isomorphic to

P r o o f  The result follows immediately from [BMR3, Theorem 4.2] due to the result 

of Lemma 4.3.1. ■

Closely related to the paths in a quiver are the unoriented paths in that quiver. 

These are defined as follows.

D E F IN IT IO N  4.3.3 Let Q' be a quiver and suppose that i and j  are vertices of 

Q'. We define an unoriented path in Q' from i to j  to be a sequence of consecutive 

arrows of Q' leading from i to j ,  where the orientations of the arrows are ignored. 

Trivial paths on the vertices of Q' are also considered to be unoriented paths in Q '.

We define the length of an unoriented path in Q' from i to j  to be the number of 

arrows appearing in that path (including multiplicities). An unoriented path in Q'
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from i to j  of minimal length will be called a shortest unoriented path in Q' from i 

to j .

We have the following.

L E M M A  4.3.4 Let i and j  be vertices of Q j.  Then, there is a unique shortest 

unoriented path in Q j  from i to j .

P r o o f  Firstly, note tha t the existence of an unoriented path in Q j  from i to j  is 

a trivial consequence of the fact tha t Q j  is connected.

Suppose by way of contradiction tha t p and q are distinct shortest unoriented paths 

in Q j  from i to j . Moving along p starting from i and heading towards j , suppose 

that the vertices of p are i = p \,P 2 , • • • ,Pr — j- Likewise, suppose that the vertices 

of q are i =  qi,q2, . • • ,qr =  j-

Let k £ N be the smallest index such tha t pk 7  ̂ qu- We know tha t such a k exists since 

p and q are distinct. Now, we have tha t pr — qr{= j )• So, let s, t E N \ {1, . . .  , k — 1} 

be the smallest indices such tha t ps =  qt. Then, there is an unoriented cycle in 

Q j  on the vertices Pk-i,Pk,Pk+u ■ • • ,Pa-i,Ps =  Qt,qt-1 , • • • , qk+i, QkiPk-i- But, we 

have already seen tha t the only (unoriented) cycles in Q j  are 3-cycles. So, this cycle 

must be a 3-cycle.

This contradicts p and q both being shortest unoriented paths in Q j  from i to j .

Therefore, there is a unique shortest unoriented path in Q j  from i to j .  ■

Let i and j  be vertices of Q j.  From Lemma 4.3.4 we have that there is a unique 

shortest unoriented path  in Q j  from i to j .  But also, we have that there is a unique
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shortest unoriented path in Q j  from j  to i. Moreover, it is clear that this must be 

the reverse of the shortest unoriented path from i to j .

Throughout the remainder of this chapter, we will identify the shortest unoriented 

paths in the quiver of a cluster-tilted algebra of Dynkin type A  with their reverse 

paths. So, the shortest unoriented paths in such a quiver can be thought of as 

corresponding to (unordered) pairs of vertices.

4.4  D escr ip tio n  o f  V ectors A sso c ia ted  to  th e  P o sitiv e  
R o o ts

We briefly recall our current set-up. We have that A =  Endc(T)op is a cluster-tilted 

algebra of Dynkin type A n, with T  a basic cluster-tilting object in C. The seed of A  

corresponding to T  is (x, B), meaning tha t T =  T(B) is the quiver of A. But also, 

the seed (x, B)  corresponds to the triangulation T of Pn+35 and we have that T is 

the same as the quiver Q j  associated to this triangulation.

Let 'L =  {'yx:x  G To} C $  be a companion basis for T, where To denotes the set 

of vertices of T. We have already seen tha t we can associate a vector d^ to each 

root a  £ $. Recall that, for a given root a , this is the vector whose components are 

the absolute values of the coefficients of the 7 x’s in the (unique) expression for a  in 

terms of the roots yx for a: G To-

Our aim is to show tha t the vectors d% for a  G are the dimension vectors of the 

finitely generated indecomposable A-modules.

Our strategy for achieving this aim will be as follows. Firstly, we will establish a 

bijection between the set of shortest unoriented paths in T and the set of positive
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roots 4>+ . Using this bijection, we will be able to give a complete description of 

the vectors d^ for a  G 4>+ . Secondly, we will note that (the isomorphism classes 

of) the finitely generated indecomposable A-modules are also in bijection with the 

shortest unoriented paths in T. This will then establish a bijection between the set 

of positive roots and the set of (isomorphism classes of the) finitely generated 

indecomposable A-modules. The final step will then be to show tha t for any given 

positive root a , the vector d% is the dimension vector of the finitely generated 

indecomposable A-module corresponding to a.

We are going to need some way of associating shortest unoriented paths in T to 

(positive) roots. The following definition provides this.

D E F IN IT IO N  4.4.1 Let a  G 4». We can write a  uniquely in the form a = 

E ^ r o  c x l x  with cx G Z  for all x  G IV  Let I  = { x  G Tq: cx 7̂  0} .  I f  the elements of 

I  are precisely the vertices of a shortest unoriented path p in Y, then we say that a  

has support p.

Straight away, we see tha t no root can have two distinct shortest unoriented paths 

as support.

L E M M A  4.4.2 Let a  be a root. Then, a  has at most one shortest unoriented path 

as support.

P r o o f  This is immediate due to the fact tha t ^  is a Z-basis for Z4>. ■

Given any shortest unoriented path  in T, we will now show that we can exhibit a 

positive root which has tha t shortest unoriented path as support.
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We can deal with the trivial shortest unoriented paths immediately. Suppose that p

is the trivial shortest unoriented path on the vertex z g Tq. Then, 7 Z is a root with 

support p. Therefore, either 7 Z or —7 Z is a positive root with support p.

We must now consider the non-trivial shortest unoriented paths in T.

Let p be a non-trivial shortest unoriented path in T, and suppose that the vertices 

of p, taken in consecutive order from one end of p to the other, are xo ,x \ , . . .  , 0 7  

(t > 1). Supposing tha t 0 < j  < i < t, we see tha t Xi is joined by an arrow in T 

to Xj if and only if j  = i — 1. (This follows immediately from the fact tha t p is a 

shortest unoriented path  in T.)

Now, 'J' =  { j x:x e T0} C  $  is a companion basis for T. Therefore, supposing that 

0 < j  < i < t, we then have tha t (73- , 7 3 -) =  ±1 if and only if j  =  i — 1, and 

[ixi . lxj )  =  0  otherwise.

The key result enabling us to find a positive root with support p is the following. 

P R O P O S IT IO N  4.4.3 I f l < r < t ,  then

P r o o f  We proceed by induction on r.

In the initial case when r  =  1, we have s^Xi (7x0) =  7z0 — (7xn7z0) 7^n so result 

holds in this case.

For our induction hypothesis, we suppose tha t r > 2 and
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Now, S7a.r (s7lr_i • • • S7li (jxo)) — s 7xr_! ’ ' ' 57x! (7xo) ^7xr? S7xr_! ' ' ' S7x1 (7x0 7xr -

We have,

^7xr 5 s 7xr-1 ' ” ' 57x1 (7xo)^ — ^ 7 x r? 7xo +  y  y( ~ ^ )  ( l l ( 7 x p 7 x l. i ) ^ 7 x ^

r—1 /  k  \

=  (7xr?7xo)"h y  (̂~1) ( (7xp7xj_i) J (7xr ?7xfc)-
fc=l \ l = 1

Therefore, since (7xr ,7x0) ~  0 and since {iXri l xk) 7̂  0 only for k =  r  — 1, we see 

that

^7xr ) 57xr _! ' ‘ ' 57x1 (7x0)^ =  (~~ 1) ^  (7x/ 1 7 x /_ i ) ^  (7xr 5 7xr_l )

r

=  ( - i )r _ i n ( ^ ’7xJ_1) •
Z=1

It therefore follows tha t
r—l /  k  \

s l x r s 7 x r _ x s 7x1 (7x0) — 7xo +  ~̂"̂ (~~1) I JJ  (7x/? 7xj_i) j 7xfc
k = 1 \Z=1 /

-  ( - 1 ) r _ 1  ( n  ( 7 x p 7 x J_ 1) j  7 x r

— 7 x 0 +  f l J  ( 7 x n 7 x /_ 1) N] 7 x fc
k= 1 \z=i /

as required. ■

By taking r  =  t in Proposition 4.4.3, we have that

s7xt ' ■ ■ 57x! (7xo) =  7xo +  5 ^ (  —-*•) [ U  (7xp 7xj_i) J 7xfc-
)t= l  \Z=1 /

We claim that the root slxt • • • slxi (/yXo) has support p. Indeed, we have already 

noted that ('yXl, /yXl_1) =  ±1 for all 1 < I < t. So, for each k, 1 < k < t, we have 

that { - l ) h nf=i (7x/ ,7xz_1) = ±1- Therefore, s7xt • • • s7xi {yyXQ) is of the form

s 7 x t  '  '  ' 57x1 (7xo ) “  7xo ^  7xi i  ‘ ‘ i  7xt >
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showing that slxt • • • s7xi (7x0) has support p.

We have thus exhibited a positive root with support p, for if slxt ■ • • s7xi (7x0) is not 

a positive root, then — s7xt • • • s7xi (7X0) is a positive root with support p.

We have now shown tha t for any given shortest unoriented path p in T, there is 

some positive root a  which has support p. Moreover, we have shown that we can 

choose a  such that all of the coefficients in the unique expression for a  in terms of 'L 

belong to the set {0, ±1}- (Note tha t whether p is a trivial or a non-trivial shortest 

unoriented path in T, the positive root with support p obtained as above satisfies 

this property.) In particular, the vector d% has a one in each position corresponding 

to a vertex of T lying on p, and zeros everywhere else.

We will now see tha t the positive root with support p that we have exhibited is in fact 

the unique positive root with support p. In view of the fact tha t any positive root 

has at most one shortest unoriented path in T as support (refer to Lemma 4.4.2), we 

are able to show this by establishing tha t the number of distinct shortest unoriented 

paths in T is equal to the number of positive roots in $.

To this end, observe firstly tha t the number of (distinct) non-trivial shortest un­

oriented paths in T is given by ^ 2  )  ’ s*nce ^^ere is a unique shortest unoriented 

path in T associated to each pair of distinct vertices of T. Also, there are n  trivial 

shortest unoriented paths in T, one associated to each vertex. Therefore, the total 

number of shortest unoriented paths in T is

{ n \  n\ 1 , _ 1
(  2 J +  ”  =  2 ! ( ^ ) !  +  n =  2n(™ “  X) + " =  2n(n +  1}’

which is equal to the number of positive roots in $.

We have now established the following result.
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P R O P O S IT IO N  4 .4 .4  There is a bijective correspondence between the set of short­

est unoriented paths in T and the set of positive roots with each shortest un­

oriented path in T corresponding to the unique positive root which has that shortest 

unoriented path as support.

As a consequence of this result, we see that we have now given a complete description 

of the vectors d^ for a  G 4>+ .

Let q  be a positive root. Then, there is some shortest unoriented path p in T such 

that a  has support p. The vector d^ has a one in each position corresponding to a 

vertex of T lying on p, and zeros everywhere else. In this way, the vectors associated 

to the positive roots correspond precisely to the shortest unoriented paths in T.

4.5 C o m p letio n  o f  th e  P r o o f  o f T h eorem  4 .1 .4

Recall that we are trying to show tha t the vectors d^ for all positive roots a  are the 

same as the dimension vectors of the finitely generated indecomposable A-modules.

In the previous section, we were able to completely describe the vectors d^ for 

a  G by associating a positive root to each shortest unoriented path in T. Here, 

we will see how we can associate a finitely generated indecomposable A-module to 

each shortest unoriented path  in T, and we will complete the proof of the desired 

result.

Firstly, we recall from Proposition 4.3.2 tha t we have an isomorphism of /c-algebras 

A =■ where I  is the admissible ideal of kT  generated by the set of all paths

in T consisting of two consecutive arrows in any given triangle (3-cycle). It is 

then a standard result tha t the category A-mod of finitely generated A-modules is
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equivalent to the category repfc(T,7) of finite dimensional representations of T over 

k which satisfy the relations in I.

In order to associate finitely generated indecomposable A-modules to the shortest 

unoriented paths in T, we start by considering a method of associating a represen­

tation Rp of r  over k to each shortest unoriented path p in I \

Let p be a shortest unoriented path in I \  To each vertex of T lying on p we associate 

the vector space k , and to each vertex of T not lying on p we associate the zero space. 

Also, to each arrow of T lying on p we associate the identity map on k , and to each 

arrow of T not lying on p we associate the zero map. In this way, we obtain a 

representation Rp of T over k.

It is easy to see tha t R p is an indecomposable representation of T over k. Also, 

because p is a shortest unoriented path in T, we have tha t p never passes through 

two consecutive arrows in any given triangle in T. In particular, Rp never has 

two consecutive identity maps in any given triangle, and therefore, Rp satisfies the 

relations in I.

So, the above gives us a way of assigning a different indecomposable representation 

in repfc( r , / ) ,  and hence a different finitely generated indecomposable A-module, to 

each different shortest unoriented path  in I \

We now complete the proof of Theorem 4.1.4 with the following proposition.

P R O P O S IT IO N  4.5.1 The vectors for a  G 4?+ are the dimension vectors of 

the finitely generated indecomposable A-modules. That is, 4/ is a strong companion 

basis for I \
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P ro o f Firstly, we note th a t since A is cluster-tilted from an algebra with simply- 

laced quiver of Dynkin type, then as a consequence of [BMR1, Theorem A], we 

have tha t the number of (isomorphism classes of) finitely generated indecomposable 

A-modules is equal to |4>+ |. Therefore, the described method of assigning finitely 

generated indecomposable A-modules to shortest unoriented paths in T provides 

us with a bijective correspondence between the set of all (isomorphism classes of) 

finitely generated indecomposable A-modules and the set of all shortest unoriented 

paths in T.

We now complete the proof by showing tha t for each positive root a , the dimen­

sion vector of the finitely generated indecomposable A-module corresponding to the 

shortest unoriented path  in T corresponding to a  is equal to d

Let a  be a positive root, and let p be the shortest unoriented path in T corresponding 

to a. (So, a  has support p.) Then by construction, we have that the dimension 

vector of the finitely generated indecomposable A-module corresponding to p has 

a one in every position corresponding to a vertex of T lying on p, and a zero in 

every position corresponding to a vertex of T not lying on p. So, we see that the 

dimension vector of the finitely generated indecomposable A-module corresponding 

to p is equal to d^. ■

EX A M PL E  4.5.2 Let T be the following quiver.

3

Using Section 4.2, it is easily checked tha t T arises from a triangulation of a regular 

7-gon, and therefore T is the quiver of a cluster-tilted algebra A of Dynkin type A 4 .
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In fact, A = where I  is the admissible ideal of kV given by I  = (cb, dc, bd) (refer 

to Proposition 4.3.2).

Let 4? be the root system of Dynkin type A 4 , and suppose tha t II =  {a i, 0*2 , <2 3 , 0 :4 } C 

4? is a simple system of 4>.

Firstly, we will show tha t the set 4> =  {71,72)73,74} Q 4> given by 71 =  —0:1, 

72 =  — 0:2 — 0:3, 73 =  as, 74 =  (*4 is a companion basis for T.

That 4/ is a Z-basis for Z4> is clear.

Let B  =  (bij) be the skew-symmetric integer m atrix associated to the quiver T. 

(Recall that the rows and columns of B  are indexed by the vertices of T.) Then,

B

(  0  1 0  0  \  
- 1 0  1 - 1  

0 - 1 0 1  

V 0  1 - 1 0 /

We must check tha t the m atrix A — {aij) given by aij = (7 i , 7 j) for 1 < i , j  < 4 is 

a positive quasi-Cartan companion of B.

We have / 2 - 1  0 0 \ 
- 1 2 - 1 1  

0 - 1 2 - 1  

\  0 1 - 1 2 /

Since \aij\ = \b{j\ for all i ^  j ,  it follows from Corollary 3.1.3 that A is a positive 

quasi-Cartan companion of B.

We will now check tha t the vectors associated to the positive roots with respect to 

4/ are the dimension vectors of the finitely generated indecomposable A-modules.
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Firstly, we find the vectors associated to the positive roots with respect to

«i =  - 7 1  <  =  (1 , 0 , 0 , 0 )
«2 =  -72 -  73 <  =  (0, 1, 1, 0)
as =  73 < - ( 0 , 0 , 1 , 0 )
«4 = 74 <  = (0 , 0 , 0 , 1)
Qi +  o;2 =  - 7 1  -  72 -  73 < + a 2 =  ( M , 1, 0 )
a 2 +  a 3 =  - 7 2  < +Q3 =  (0 , 1 , 0 , 0 )
a 3 +  a 4 =  73 +  74 < + a 4 =  (°, °> h 1)
a i +  a 2 +  q 3 =  - 7 i  -  72 < + Q2 +Q3  =  (1 , 1 , 0 , 0 )
a 2 +  a 3 +  a 4 =  - 7 2  +  74 < + a 3+ a 4 =  ( 0 , 1 ,  0 , 1 )

a i  +  a 2 +  a 3 +  a 4 =  —71 — 72 +  74 < + Q2+Q3+ a4 =  ( 1 , 1 , 0 , 1 )

The indecomposable representations of T that satisfy the relations in I  are as follows:

0  0

Therefore, we see tha t the vectors for a  G $ + are the dimension vectors of the 

finitely generated indecomposable A-modules.
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4.6 A  C on jectu red  G en era lisa tion

W ith the proof of Theorem 4.1.4 now completed, we conjecture here that the result 

of this theorem holds for all cluster-tilted algebras of simply-laced Dynkin type. The 

main result of this section shows tha t the problem of proving this conjecture can be 

reduced to that of proving an equivalent but simpler one. We conclude the section 

by commenting on some possible strategies for solving this reduced problem.

We need to return to a more general set-up.

Let k be an algebraically closed field, let Q (with n  vertices) be an alternating quiver 

of simply-laced Dynkin type, with underlying graph A, and let

n V b(kQ  — mod)
F

be the corresponding cluster category. Suppose tha t A  is the cluster algebra of 

Dynkin type A. Also, suppose tha t C  V  is the root system of Dynkin type A, 

where V  is a Euclidean space with positive definite symmetric bilinear form ( , ). 

Finally, let II =  {qi, . . .  , a n} be a simple system of $.

Motivated by the result of Theorem 4.1.4, we make the following conjecture.

C O N JE C T U R E  4.6.1 Let A =  Endc(T)op be a cluster-tilted algebra of simply- 

laced Dynkin type, where T  is a basic cluster-tilting object in C. Suppose (x, B) is 

the seed corresponding to T  in the cluster algebra A , so that T =  r(JB) is the quiver 

of A. Then, all companion bases for  T are strong. That is, i f ^ C Q i s a  companion 

basis for T, then the vectors d^ for a  G are precisely the dimension vectors of 

the finitely generated indecomposable A-modules.
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The main focus of this section will be to see what progress we can make towards 

proving Conjecture 4.6.1.

Let A, T, (x, B) and T be as in the statement of Conjecture 4.6.1. Given a companion 

basis for T, we have seen tha t we can associate a vector to each positive root. We 

will start by showing tha t the collection of vectors associated to the set of positive 

roots is the same, regardless of the chosen companion basis for T. This then shows 

that if one companion basis for T is strong, then all of the companion bases for T are 

strong, thereby reducing the problem of proving Conjecture 4.6.1 to the problem of 

showing tha t we can find a strong companion basis for T. We will then proceed by 

considering some possible strategies to try to solve this reduced problem.

P R O P O SIT IO N  4.6.2 Let V =  {<yx:x G T0} C  $  and 0  =  {5x:x G Tq) C  $  be 

two companion bases for  T. Then, {d^\ a  G 4>+} =  {d®: a  G 4?+ }. In particular, the 

set of vectors associated to the set of positive roots, with respect to a given companion 

basis for T, does not depend on the chosen companion basis.

P ro o f Suppose tha t 4/ gives rise to the positive quasi-Cartan companion A  of B , 

and suppose that 0  gives rise to the positive quasi-Cartan companion A' of B. (So, 

A  =  ( a Xy )  and A I  =  {a'xy) are respectively given by axy =  (7x,7y) and a 'x y  —  (£c><$y) 

for all x, y G IV )

By applying sign changes to the elements of 0 , we may obtain a companion basis 

for T giving rise to A  (refer to Section 3.3).

Let 0  — G To} C $  be a companion basis for T giving rise to A , where

ex G {±1} for all r  G To.

We start by showing th a t {d®: a  G 4>+ } =  {d®: a  G 4?+ }.
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Let a  G 4>+ . Then, we can write a  uniquely in the form a  =  X)xer0 Cx^x cx G Z 

for all x G T0. Since ex G {±1} for all x G To, we have tha t a  =  X^xeTo £xcx^x, and

SO Oi 5 3 x E T o  £ x £ x  (^-x^x ) •

Therefore,

~  (k zczl)xEr0

=  (|£x| lcx|)xEr0

— (I^x DxETo 

=  <£.

This shows that {d®: a  G 4>+ } =  {d§: a  G 4>+ }.

We may therefore complete the proof by checking tha t { d ^ :a  G 4>+ } = {d®:a G 

$+}.

Let T  be the (invertible) orthogonal linear transformation of V  defined by speci­

fying T (7 X) =  exSx for all x  G To, and extending linearly. We have already seen 

that T  must permute the set of roots $  (refer to Section 3.4 and in particular, 

Proposition 3.4.8).

Let a  G 4>. Then, we can write a  uniquely in the form a  =  X^xer0 cxlx  with cx G Z  

for all x G T0. We have T a  =  S x e r 0 C*T (7®) =  S x e r 0 cz(ex^x), and thus d^ =  d fQ. 

Because T  permutes the set of roots 4>, it therefore follows that

{ d * : a e $ }  =  { d f : a e $ } .  (4.1)

Also, we have — a  =  X X e T o (  —c x ) l x  and so d^ =  d^Q. Since =  — ( 4>+ ), this 

shows tha t { d ^ :a  G 4>+ } =  { d ^ : a  G 4> ~ } .  Therefore, {d ^ :a  G 4>} =  {d ^ :a  G 4>+ }. 

Similarly, we may see th a t {d®: a  G 4?} =  {d®: a  G $ +}.
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It then follows from (4.1) tha t { d ^ : a  G 4>+ } =  { d ®: a  G 4>+ }.

This completes the proof. ■

It follows immediately tha t in order to prove Conjecture 4.6.1, it is enough to prove 

the following.

C O N JE C T U R E  4.6.3 Let A =  Endc(T)op be a cluster-tilted algebra of simply- 

laced Dynkin type, where T  is a basic cluster-tilting object in C. Suppose (x, B) 

is the seed corresponding to T  in the cluster algebra A , so that T =  T(B) is the 

quiver of A. Then, there exists a strong companion basis for  T. That is, there is 

some companion basis ^  C  $  such that the vectors d^  for a  G are precisely the 

dimension vectors of the finitely generated indecomposable A-modules.

We conclude this section by mentioning two possible strategies for proving Conjec­

ture 4.6.3.

One possibility would be to try  to make use of the companion basis m utation pro­

cedure introduced in Chapter 3 (Theorem 3.1.4 in particular), to construct a strong 

companion basis for T.

Recall tha t there must be some seed (xo, Bo) of A  such that the Cartan counterpart 

A (B q) is a Cartan m atrix of type A. Let Tq be the corresponding basic cluster- 

tilting object in C. Then, the cluster-tilted algebra Aq =  Endc(To)°p has quiver 

r °  =  T(R0) which is an orientation of A. Moreover, recall that the simple system 

II =  { a i , . . . ,  a n} is a strong companion basis for T° (for some indexing of the simple 

roots by the vertices of T°).
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By applying companion basis mutations to II, we are able to obtain a companion 

basis for I \  Therefore, if we can show tha t companion basis m utation preserves 

strongness, then it will follow tha t we can find a strong companion basis for I \

So, we may prove Conjecture 4.6.3, and hence also Conjecture 4.6.1, by proving that 

companion basis m utation preserves strongness.

As an alternative approach to proving Conjecture 4.6.3, we could try  to give a 

procedure for explicitly constucting a strong companion basis for I \  In Chapter 5, 

we will see that we can do this in the case where A is a cluster-tilted algebra of 

Dynkin type A, by making use of the description of the quivers of the cluster-tilted 

algebras of Dynkin type A  given in Sections 4.2 and 4.3. As a consequence, this will 

in fact provide us with an alternative proof of Theorem 4.1.4.
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Chapter 5

A M ore E xp lic it A pproach

In this chapter, we again focus our attention on the Dynkin type A  case. However, 

here we place particular emphasis on more explicit considerations than those of the 

previous chapter. In particular, we obtain an alternative (more explicit) proof of 

our main result, Theorem 4.1.4.

In Section 3.2, we presented a method for finding a companion basis for the quiver 

of any given cluster-tilted algebra of simply-laced Dynkin type. A weakness of this 

method is the following. In order to find a companion basis for the quiver of a 

given cluster-tilted algebra, we have to find a sequence of quiver mutations taking 

us from that quiver to another quiver for which we already have a companion basis 

(for example, a Dynkin quiver). Here, we show how to explicitly construct a strong 

companion basis for the quiver of any given cluster-tilted algebra of Dynkin type 

A. Of key importance is a procedure we introduce for labelling the vertices of any 

such quiver. Detailed consideration of these labelled quivers will reveal a number of 

useful properties, enabling us to give a simple method for constructing an explicit 

companion basis for each such quiver. The advantage of the method that we present



here is tha t the desired companion bases may simply be read off from the labelled 

quivers.

We prove directly tha t these constructed explicit companion bases are strong. That 

this provides us with an alternative proof of Theorem 4.1.4 then follows from Propo­

sition 4.6.2.

Throughout this chapter, we keep the following set-up.

Let k be an algebraically closed field and let Q be an alternating quiver whose 

underlying graph is a Dynkin diagram of type A n, n £ N. Let

V b(kQ  — mod)
“  F

be the corresponding cluster category. Suppose A  is the cluster algebra of Dynkin 

type A n. Also, suppose th a t $  C k  is the root system of Dynkin type A n, where 

V  is a Euclidean space with positive definite symmetric bilinear form ( , ). Finally, 

let II =  {cni,. . .  , a n} be a simple system of 4>.

5.1 P re lim in a ries  for th e  L abelling  P roced u re

Recall that the quivers of the cluster-tilted algebras of Dynkin type A n are precisely 

the quivers associated to the triangulations of a regular (n+3)-gon. We have already 

seen that these quivers are connected and made up of linear sections (i.e. subquivers 

whose underlying graphs are Dynkin diagrams of type A) and cyclically oriented 

triangles. Vertices have valency four if and only if they lie at a point where two 

triangles meet, valency three if and only if they lie at a point where a linear section 

meets a triangle, valency one if and only if they lie at the end of a linear section
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(not meeting a triangle), and valency two otherwise. Also, the only cycles in these 

quivers are cyclically oriented triangles.

In this section, we continue the study of these quivers. In particular, we cover the 

preliminary results and introduce the terminology required in preparation for intro­

ducing our procedure for labelling the vertices of such quivers in the next section.

Let Pn + 3  be a regular (n +  3)-gon. Let the vertices of Pn + 3  be P i , . . . ,  Pn+3 , la­

belled in the anticlockwise direction, and suppose that the almost positive roots are 

identified with the diagonals of Pn+3 , as in Section 4.2.

Let T be a triangulation of Pn+3 and suppose tha t d t  diag(T). Suppose also that d 

joins the vertices Pa and P 5 of Pn+3 . We saw in Section 4.3 tha t d divides Pn + 3  into 

two polygons 1 ^ + 3  and with respective triangulations TP^ and TP* induced

from the triangulation T of Pn+3 . We noted also that d ^ diag(TP*+), diag(TP* ), 

and tha t no diagonal in Td+ bounds the same triangle (in T) as any diagonal in 

TP* . Therefore, if QTd+ and Q jd- are the quivers corresponding respectively to 

the triangulations Td+ and TP* of P^ + 3 and IP̂ _̂ 3, then we see that QTd+ and 

QJd- together form the full subquiver of Q j  on all vertices of Q j  except the vertex 

corresponding to d G diag(T).

For e G { + , —}, let P^ + 3  be the convex polygon obtained from P^ + 3  by adding an 

extra vertex x de and two extra boundary edges, one from Pa to x d£, and the other 

from x d£ to P&, so th a t d becomes an interior diagonal of P^+3 . (Note that if P^ + 3 

and K +3 have I and m  sides respectively, then < 3  and Pf+3 have I +  1 and m  +  1 

sides respectively.) By construction, we see tha t there are triangulations TP*+ and 

TP* of P^ 3  and P^ + 3  respectively, defined by diag(TP*+) — diag(TP*+) U {d} and 

diag(TP* ) =  diag(TP* ) U {d}.
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Let Q jd+ and Q jd-  be the quivers corresponding to these triangulations of IP̂ + 3  

and IPf+3- Both of these quivers have a vertex corresponding to d G diag(T). It is 

then clear tha t the connected quiver obtained from Q jd+ and Q^d- by identifying 

these two vertices is Q j.

We now introduce a definition, and make use of the above observations in the proof 

of the lemma which follows it.

D E F IN IT IO N  5.1.1 Suppose that x, y and z are the three vertices of a triangle 

(3-cycle) in Q j. We define the section of Q j above x to be the full subquiver of Q j 

on all vertices that can be reached on unoriented paths starting at x which do not 

pass through y or z.

N ote: W ith x , y and z as in Definition 5.1.1 above, it is a simple observation that

the section of Q j above x, the section of Q j  above y, and the section of Q j above 

2: are pairwise disjoint.

L E M M A  5.1.2 Let x, y and z be the three vertices of a triangle in Q j. Then, the 

section of Q j above x  arises as the quiver associated to a triangulation of a regular 

m-gon Pm for some m  > 4.

P r o o f  Suppose tha t dx € diag(T) is the diagonal of Pn+ 3  corresponding to the 

vertex x. Associated to the diagonal dx , there are polygons ^ + 3  and ^ '+ 3  with 

triangulations and respectively. Furthermore, it is clear from above that 

the section of Q j  above x  is given by either Q jd+ or Q jd- • The result follows. ■

In the following two definitions, we introduce some useful terminology distinguishing 

certain vertices in Q j.
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D E F IN IT IO N  5.1.3 We call any vertex of Q j belonging to a cyclically oriented 

triangle a triangle vertex.

D E F IN IT IO N  5.1.4 A vertex of Q j is said to be an end vertex i f  it has valency 

zero, valency one, or is a triangle vertex of valency two.

So, the end vertices of Q j  are precisely those vertices corresponding to diagonals in 

T which bound a triangle in T of type (I). (Refer to Section 4.3 for a description of 

the types of triangles tha t may appear in any given triangulation of Pn+3 -)

Now, it is well known (and easy to show using a counting argument) that any 

triangulation of a regular polygon with at least four sides must contain at least two 

triangles of type (I). Also, no diagonal in a triangulation of a regular polygon with at 

least five sides can bound two triangles of type (I). Therefore, any quiver associated 

to a triangulation of a regular polygon with at least five sides must have at least 

two end vertices. Note th a t any triangulation of a regular 4-gon must consist of a 

single diagonal bounding two triangles of type (I), and so the associated quiver must 

consist of a solitary end vertex (of valency zero).

We conclude this section by introducing some terminology concerning shortest un­

oriented paths in Q j.

Let i and j  be vertices in Q j  and consider the (unique) shortest unoriented path p 

in Q j from i to j .  It is clear th a t p does not pass through two consecutive arrows of 

any given triangle in Q j , and tha t none of the arrows appearing in p appear more 

than once. (Likewise, none of the vertices appearing in p appear more than once.)

Starting from i and moving along p towards j , we may pass through a number of 

triangle vertices. We make the following definitions.
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D E F IN IT IO N  5.1.5 For any triangle with two vertices appearing in p, we call 

the first vertex of that triangle appearing in p (when moving from i towards j )  a left 

triangle vertex relative to p. We call the second vertex of that triangle appearing 

in p a right triangle vertex relative to p, and we call the vertex of that triangle not 

appearing in p a top triangle vertex relative to p.

D E F IN IT IO N  5.1.6 Suppose x, y and z are the three vertices of some triangle in 

Q j, and suppose further that x , y and z are respectively left, right and top triangle 

vertices relative to p. Then we call y the right triangle vertex corresponding to x 

relative to p, and we call z the top triangle vertex corresponding to x relative to p.

It is worth noting tha t since two triangles can meet in a vertex in Q j , then it is 

possible for a vertex to be a right triangle vertex relative to p with respect to one 

triangle, and a left triangle vertex relative to p with respect to another triangle.

5.2 T h e L ab ellin g  P ro ced u re

Throughout the remainder of this chapter, we take A to be the cluster-tilted algebra 

of Dynkin type A n given by A =  Endc(T)op, where T  is a basic cluster-tilting 

object in C. We suppose also tha t (x, B ) is the seed of A  corresponding to T, so 

that T =  T (B) is the quiver of A. (We note tha t T is the quiver Q j associated to 

some triangulation T of a regular (n +  3 )-gon Pn+3-)

Our aim is to construct explicitly a strong companion basis for T. We will proceed 

as follows. Firstly, we will outline a procedure for labelling the vertices of the quiver 

T. After examining some properties of the labelled quiver T, we will then introduce 

a candidate companion basis for T. The proof tha t this candidate companion basis
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is indeed a companion basis for Y will rely on these properties. Again making use 

of the properties of the labelled quiver T, we will be able to complete our aim by 

proving (independently of the proof of Theorem 4.1.4) tha t the companion basis for 

T that we have constructed is strong.

We will now outline a procedure for labelling the vertices of Y using the labels 

l , . . . , n .

In the previous section, we saw tha t for n  > 2, T must have at least two distinct 

end vertices.

Consider Y together with a choice of an ordered pair of end vertices, distinct if 

possible. We will now outline a procedure for labelling the vertices of T, given this 

initial choice of end vertices, by induction on the number n of vertices of Y.

If r  has a single vertex (i.e. if n — 1), then we label tha t vertex 1, and the labelling 

is complete.

Fix k > 2  and suppose th a t in the cases where n < k, we have labelled the vertices 

of all possible choices for T, for any given initial choice of an ordered pair of end 

vertices in Y (distinct if possible).

Suppose now tha t n = k and tha t we have chosen an ordered pair of distinct end 

vertices in T. Label the first vertex of this ordered pair 1, and consider the shortest 

unoriented path  p in Y from 1 to the other chosen end vertex. Starting from 1, move 

along p, labelling subsequent vertices consecutively 2 , 3 , 4 , . . . ,  up to and including 

the first left triangle vertex % relative to p. (Note that 1 could be a left triangle 

vertex relative to p. Note also th a t there may be no left triangle vertices relative to 

p, in which case, the labelling procedure ends here.)
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Denote the section of T above the top triangle vertex corresponding to i relative 

to p by T7. As a consequence of Lemma 5.1.2, it follows tha t F' is the quiver of a 

cluster-tilted algebra of Dynkin type A. Suppose that there are a vertices in F'. We 

have tha t the top triangle vertex corresponding to i relative to p is an end vertex 

in T7. We then obtain an ordered pair of end vertices in T7 by choosing another end 

vertex in T7, distinct if possible (i.e. if a > 1 ), and setting this chosen end vertex to 

be the first vertex in the ordering.

By induction, we have a labelling of the vertices of T7 using the labels 1 up to a, 

given this choice of an ordered pair of end vertices in T7. Add i to each of the 

vertex labels in this labelling for T7, and then assign the labels thus obtained to the 

corresponding vertices in I \

Label the right triangle vertex corresponding to i relative to p with i +  a +  1 . 

Then, from i +  a +  1, continue along p labelling subsequent vertices consecutively 

i +  a +  2,z +  a +  3 , . . . ,  and proceed as above for each subsequent left triangle vertex 

relative to p. The second of our initially chosen end vertices of F will be the last 

vertex to be labelled, and will be labelled n.

Suppose the vertex labelled j  is a left triangle vertex relative to some path p consid­

ered in the labelling procedure, and tha t there are b vertices in the section of T above 

the top triangle vertex corresponding to j  relative to p. Then, due to the inductive 

nature of the labelling procedure, we see tha t the top triangle vertex corresponding 

to j  relative to p will be labelled j  +  b. Also, by construction, the right triangle 

vertex corresponding to j  relative to p will be labelled j  +  b +  1 .

N o te : To label (the vertices of) F according to the above procedure, we initially

choose two end vertices (distinct if n > 2) in F. But we also make a further choice
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of an end vertex for each left triangle vertex relative to some path considered in the 

labelling procedure. Because of these choices, there are potentially many different 

labellings of T that can be obtained using the outlined procedure. This is not 

a problem however, as all of the labellings of T tha t may be obtained using the 

outlined procedure share the im portant properties tha t we will need to enable us to 

explicitly construct a strong companion basis for T. The focus of the next section 

will be on studying these properties.

The labelling of T tha t we obtain using the above procedure may seem a little 

unnatural. However, it is a labelling that can be obtained by constructing T from 

the Dynkin quiver of type A n (oriented and labelled as shown)

1 <—  2 <—  3 <—  • • • <—  n — 1 <—  n 

by applying quiver mutations.

We conclude this section by giving a detailed example showing the labelling proce­

dure in action.

E X A M P L E  5.2.1 Let ft be the following quiver.



It is easily checked th a t ft arises from a triangulation of a regular 14-gon, and is 

therefore the quiver of a cluster-tilted algebra of Dynkin type A \\. (Note that we 

don’t need to worry about relations, as they play no role in the labelling procedure.)

We will use the prescribed labelling procedure to obtain a labelling of (the vertices 

of) ft.

The first step is to choose an ordered pair (a, b) of end vertices in ft (as shown above). 

We label the first vertex in this pair 1 , and then consider the shortest unoriented 

path p in ft from 1 to the other chosen end vertex. Starting from 1 and moving 

along p, labelling subsequent vertices in increments of one, we have that 2  is the 

first left triangle vertex relative to p.

I

I

I
C T

A
1 — ^ 2  ^ b

P

We must now consider the section ft' of ft above the top triangle vertex c corre­

sponding to 2  relative to p.



(Note tha t ST arises from a triangulation of a regular 1 0 -gon.)

Since c is an end vertex in ST, by choosing another end vertex d in S7', we obtain 

an ordered pair (d, c) of end vertices. We now start to label the vertices of ST, 

proceeding in the same manner as above. We label the first vertex of our ordered 

pair 1 , and consider the shortest unoriented path p ' in ST from 1 to the other chosen 

end vertex. Starting from 1 and moving along p', labelling subsequent vertices in 

increments of one, we have tha t 3 is the first left triangle vertex relative to p '.

ST

We must now consider the section ST' of ST above the top triangle vertex e corre­

sponding to 3 relative to p ' .

Q"
•  ■<—  •e

By following the labelling procedure, we obtain the following labelling of the vertices 

of Q".

ST'
2 - < —  1

Having now completed the labelling of ST', we add 3 to each of the labels of the 

vertices of ST', and assign the labels thus obtained to the corresponding vertices in
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We label the right triangle vertex corresponding to 3 relative to p' with the la­

bel 6 . Then, starting from 6 , we proceed along p' labelling subsequent vertices in 

increments of one. This gives us the following labelling of the vertices of ft'.

Q1 1

1
2

I
3

6
1
7

We now add 2  to each of the labels of the vertices of f2', and assign the labels thus 

obtained to the corresponding vertices in Q.



Finally, by labelling the right triangle vertex corresponding to 2 relative to p with 

the label 1 0 , and then proceeding (from 1 0 ) along p, we complete the labelling of Q.

n  3
i
4

\

8

I
9

/  \
1 — 2  ^— 1 0 — > - 1 1

5.3 P ro p er tie s  o f  th e  L abelled  Q uiver

For the purposes of this section, we suppose tha t the vertices of the quiver T have 

been labelled according to the labelling procedure outlined above. In fact, through­

out the remainder of this chapter, whenever we refer to the quiver of any cluster- 

tilted algebra of Dynkin type A, we will automatically suppose tha t its vertices have 

been labelled according to the outlined labelling procedure. Also, by a minor abuse 

of notation, we will usually refer to the vertices of tha t quiver by their labels, whilst 

still regarding the labels as numerical values.

The main focus of this section is on examining some of the properties of the labelled 

quiver T. In particular, we prove two results regarding the vertex labels of the 

shortest unoriented paths in T (from vertices labelled i to vertices labelled j ,  with 

i < j): which in fact classify these shortest unoriented paths into two distinct types. 

These results will subsequently be very useful. They will help us firstly to find an 

explicit companion basis for T, and then moreover, to give a direct proof that this 

companion basis for T must be strong.

100



During the procedure for labelling the vertices of T, a number of shortest unoriented 

paths in T are considered. In fact, these shortest unoriented paths determine the 

given labelling of the vertices of T. We therefore call them the labelling paths for 

the given labelling of (the vertices of) T.

We will now describe these labelling paths for the given labelling of T.

Recall tha t the first step in the labelling procedure is to consider a shortest unori­

ented path joining two initially chosen end vertices of T. In the labelled quiver T, 

this is the shortest unoriented path  from 1 to n. We call this labelling path the 

O-labelling path  for T.

Due to the inductive nature of the labelling procedure, it is a simple m atter to 

describe the other labelling paths for the given labelling of T. We will call these 

other labelling paths m-labelling paths, where for a given labelling path, m  € N  

depends on how “close” th a t labelling path  is to the O-labelling path for T. For 

m G  N ,  we define m-labelling paths by using (m — l)-labelling paths. (We are able 

to do this, given tha t we have already introduced the O-labelling path for T.)

Let m G  N  and suppose th a t i is a left triangle vertex relative to an (m — l)-labelling 

path p for r .  Suppose also th a t there are a vertices in the section of T above the top 

triangle vertex corresponding to i relative to p. Due to the inductive nature of the 

labelling procedure, we then have tha t the shortest unoriented path in T from i +  1 

to i +  a is a labelling pa th  for T. We call this labelling path an m-labelling path for 

T. Note tha t the vertex labelled i -f a is the top triangle vertex corresponding to i 

relative to p, and the vertex labelled i +  1 is another end vertex in the section of T 

above this top triangle vertex.
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It is clear tha t every vertex of T lies on exactly one labelling path. Furthermore, for 

any given triangle in T, it is easily seen tha t there is a unique labelling path which 

passes through exactly two vertices of tha t triangle.

Fix an arbitrary triangle in T and let p be the labelling path which passes through 

two vertices of tha t triangle. Relative to p, we may consider the vertices of the given 

triangle as a left, a right and a top triangle vertex.

Suppose tha t the left triangle vertex relative to p is labelled j  and that there are b 

vertices in the section of T above the top triangle vertex corresponding to j  relative 

to p. The top and right triangle vertices corresponding to j  relative to p must then 

be labelled j  + b and j  +  6 +  1 respectively. In particular, the label of the left triangle 

vertex relative to p is lower than the label of the top triangle vertex relative to p, 

which in tu rn  is lower than  the label of the right triangle vertex relative to p.

Since this holds for every triangle in T, we make the following definition, in which 

reference to specific labelling paths for T is dropped.

D E F IN IT IO N  5.3.1 I f  the vertices of a triangle in the labelled quiver T have labels 

i , j ,  k with i < j  < k, then we call i a left triangle vertex in  T, j  a top triangle vertex 

in r ,  and k a right triangle vertex in  T.

Furthermore, we call j  the top triangle vertex in T corresponding to i, and we call 

k the right triangle vertex in  T corresponding to i.

In the situation where two triangles meet in a vertex, we see that that vertex can 

be both a right triangle vertex in T and either a left or a top triangle vertex in T.

The following consequence of Definition 5.3.1 is immediate.
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C O R O L L A R Y  5.3.2 A given vertex of T is a left (resp. top, right) triangle vertex 

in r  if  and only i f  it is a left (resp. top, right) triangle vertex relative to some labelling 

path for the given labelling of T.

We make the following definitions.

D E F IN IT IO N  5.3.3 We call the shortest unoriented path in T from  1 to n the 

trunk of T.

D E F IN IT IO N  5.3 .4  Suppose that i is a left triangle vertex in T and suppose that 

there are a vertices in the section o fT  above the top triangle vertex in T correspond­

ing to i. Then, that top triangle vertex is labelled i +  a, and we call the shortest 

unoriented path in T from  i + l to i + a a branch of T.  (In the case where a — 1, 

we call the branch a trivial branch of T. )

Also, we call the triangle on vertices i,i-\- a,i-\- a+  1 the base triangle of the branch.

N ote: We have th a t the trunk of T is the O-labelling path for T. Also, the branches

of T are the m-labelling paths for T, for m  > 1.

We now take a closer look at some of the properties of the labelled quiver T, starting 

with the following remark.

R E M A R K  5.3.5 We note that no vertex o fT  can be both a top triangle vertex in 

r  and a left triangle vertex in  I \  Indeed, given any top triangle vertex in T, we see 

(by construction) that there is a branch o fT  starting at some end vertex o fT  and 

ending at that top triangle vertex i n T . By definition, the given top triangle vertex 

in T cannot be a left triangle vertex relative to this branch. However, the given top 

triangle vertex in T lies on no other labelling path for T.
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Consider the shortest unoriented path  in T from 1 to n (i.e. the trunk of T). By 

construction, as we move along this path from 1 towards n, the labels of subsequent 

vertices strictly increase. In fact, if k lies on this path and is not a left triangle 

vertex in T, then the vertex following k is k +  1 . Whereas, if k lies on this path and 

is a left triangle vertex in T, then the vertex following k is k +  a -f 1 where a is the 

number of vertices in the section of T above the top triangle vertex corresponding 

to k.

Due to the inductive nature of the labelling procedure, we have that each of the 

branches of T satisfies properties analogous to these.

Making use of these properties, we obtain the following useful result.

P R O P O S IT IO N  5.3.6 Let i be a vertex in T and consider the shortest unoriented 

path p in V from i to n. As we move along this path from i towards n, the labels of 

subsequent vertices strictly increase. I f  j  lies on p and is not a left triangle vertex 

in r ,  then the vertex following j  is j  +  1 . Also, i f  j  lies on p and is a left triangle 

vertex in T, then the vertex following j  is j  +  a +  1 , where a is the number of vertices 

in the section o fT  above the top triangle vertex corresponding to j .

P r o o f  We proceed by (reverse) induction on the vertex labels.

As an initial case, we see th a t the result is clear for the shortest unoriented path in 

r  from n to n.

For our induction hypothesis, we assume tha t the result holds for all vertices I with 

n > I > i.

From the comments made prior to stating this proposition, we see that if i lies on 

the shortest unoriented path  in T from 1 to n, then the result holds.
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So, suppose tha t i lies on a branch. Suppose tha t the left triangle vertex of the base 

triangle of this branch is m, and suppose tha t there are c vertices in the section of T 

above the top triangle vertex in T corresponding to m. Then, i lies on the shortest 

unoriented path in T from m  +  1 to m  +  c, and the vertices of the base triangle of 

this branch are m, m  -f c and m  +  c +  1 .

Again due to the comments made prior to stating this proposition, we see that as 

we travel along the shortest unoriented path in T from i to m  +  c, the labels of 

subsequent vertices strictly increase. Also, if j '  lies on this path and is not a left 

triangle vertex in T, then the vertex following j 1 is j '  +  1. And if j '  lies on this 

path and is a left triangle vertex in T, then the vertex following j 1 is j 1 + a' + 1 , 

where a' is the number of vertices in the section of T above the top triangle vertex 

corresponding to j '.

Also, by the induction hypothesis, we have that the shortest unoriented path in T 

from m  +  c +  1 to n  satisfies the required result.

It therefore follows th a t the unoriented path  p1 in T constructed by combining the 

shortest unoriented path  in T from i to m  +  c, the shortest unoriented path (of 

length one) in T between m  +  c and m  +  c +  1 , and the shortest unoriented path 

in T between m  +  c +  1 and n, has the desired properties (since the vertex labelled 

m  +  c cannot be a left triangle vertex in T). So, all tha t remains to be checked is 

that p1 is the shortest unoriented path  in T from i to n  (i.e. tha t p' = p).

It is clear tha t p' is an unoriented path  in V from i to n. Suppose x (m < x < m  + c) 

is the vertex preceeding m  +  c in p', and suppose y (y > m  + c + 1 ) is the vertex 

following m  +  c +  1 in p '. It is enough to check tha t x, m  +  c and m  +  c +  1 are not
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the three vertices of a triangle in T, and tha t m +  c, ra +  c + 1  and y are not the 

three vertices of a triangle in T (whenever such vertices x and y exist).

In both cases this is clear, since m, m  +  c and m  +  c +  1 are the three vertices of 

the base triangle for the branch containing z, and no two triangles in Y can share 

an arrow.

Therefore, p' is the shortest unoriented path in T from z to n, and so the result 

holds. ■

It is clear that we have the following corollary of Proposition 5.3.6.

C O R O L L A R Y  5.3 .7  Let i be a vertex in  T and consider the shortest unoriented 

path p in Y from i to n. I f  j  lies on p and is a left triangle vertex in T, then the 

vertex following j  (on p) is the corresponding right triangle vertex in T.

We now tu rn  our attention to shortest unoriented paths in Y from vertices i to j  

with i < h  and with the aid of Proposition 5.3.6, we obtain another useful result.

P R O P O S IT IO N  5.3 .8  Let i and j  be vertices in Y, i < j ,  and suppose p is the 

shortest unoriented path in Y from  i to j . Then, there can be at most one instance of 

a left triangle vertex in Y lying on p being followed by the corresponding top triangle 

vertex in Y.

P r o o f  By Corollary 5.3.7, no left triangle vertex in T lying on the shortest unori­

ented path in Y from i to n  can be followed (on tha t path) by the corresponding top 

triangle vertex in Y. So, if j  lies on the shortest unoriented path in Y from i to n, 

then no left triangle vertex in Y lying on p is followed (on p) by the corresponding 

top triangle vertex in Y.
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Suppose j  does not lie on the shortest unoriented path in T from i to n. Since j  > i, 

there must be some left triangle vertex k in T, lying on the shortest unoriented path 

in r  from i to n, such th a t j  lies in the section of T above the top triangle vertex in 

r  corresponding to k.

Note that k lies on the shortest unoriented path in T from i to n, so no left triangle 

vertex in T lying on the shortest unoriented path in T from i to k can be followed 

by the corresponding top triangle vertex in I \

Suppose there are a vertices in the section of T above the top triangle vertex cor­

responding to k. Then the top triangle vertex in T corresponding to k is labelled 

k +  a, and the right triangle vertex in T corresponding to k is labelled k +  a +  1 .

We get an unoriented path  in T from j  to n  by combining the shortest unoriented 

path in T from j  to k +  a, the shortest unoriented path (of length one) in T from 

fc +  a to f c  +  a + l ,  and the shortest unoriented path in T from k +  a +  1 to n. It 

is easily checked tha t this path  is in fact the shortest unoriented path in T from j  

to n. Therefore, by the result of Proposition 5.3.6, we have tha t as we travel along 

the shortest unoriented path  in T from j  to k +  a, the labels of subsequent vertices 

strictly increase.

So, as we travel along the shortest unoriented path in T from k +  a to j ,  the labels 

of subsequent vertices will strictly decrease. As an immediate consequence of this 

we see tha t no left triangle vertex in T lying on the shortest unoriented path in T 

from k +  a to j  can be followed by the corresponding top triangle vertex in T.

Now, the shortest unoriented path  in T from i to j  is the path obtained by combining 

the shortest unoriented path  in T from i to fc, the shortest unoriented path (of length
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one) in T from k to k +  a, and the shortest unoriented path in T from k +  a to j . 

So, if j  doesn’t lie on the shortest unoriented path in T from i to n, then exactly 

one left triangle vertex in T lying on p is followed by the corresponding top triangle 

vertex in I \

Therefore, we see th a t there can be at most one instance of a left triangle vertex in 

T lying on p being followed by the corresponding top triangle vertex in T. ■

R E M A R K  5.3.9 Suppose i and j  are vertices in T with i < j .  From the proofs of 

Propositions 5.3.6 and 5.3.8, we see that the label of every vertex lying on the shortest 

unoriented path p in T from i to j  must be greater than or equal to i. Moreover, 

if  some left triangle vertex k in T lying on p is followed by the corresponding top 

triangle vertex, labelled k + a, where a is the number of vertices in the section of T 

above that top triangle vertex, then the label of every vertex lying on p must also be 

less than or equal to k + a. On top of this, the vertex k + a must lie on the shortest 

unoriented path in T from j  to n, and so no left triangle vertex in T lying on the 

shortest unoriented path in T from j  to k +  a can be followed by the corresponding 

top triangle vertex.

5.4 A n  E x p lic it  C om p an ion  B asis for V

Recall tha t we want to construct explicitly a strong companion basis for (the labelled 

quiver) T. We will firstly specify a positive quasi-Cartan companion of B,  and 

then introduce a candidate companion basis for T, defined using the labelling of 

the vertices of I \  In order to prove tha t this candidate companion basis is indeed a 

companion basis for T, we sta rt by showing tha t it gives rise to the specified positive
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quasi-Cartan companion of B,  before showing that it is a Z-basis for Z4>. The proof 

that the constructed companion basis is strong will be given in the next section.

Constructing a positive quasi-Cartan companion of B  is a simple task.

D E F IN IT IO N  5.4.1 Let Ap =  {o-ij) be the matrix whose entries are given as 

follows: Suppose i and j  are vertices o fT ,  i A j .

(i) I f  i and j  are joined by an arrow in T, i is a left triangle vertex in T and j  is 

the corresponding right triangle vertex in T, we set aij =  aji = 1 .

(ii) Otherwise, i f  i and j  are joined by an arrow in T, we set aij =  aji = —1 .

(Hi) I f  i and j  are not joined by an arrow in T, we set aij =  aji =  0.

(iv) For all vertices k in T, we set a =  2.

LEM M A 5.4.2 The matrix Ap introduced in Definition 5-4-1 is a positive quasi- 

Cartan companion of B.

P r o o f  By construction, we have tha t Ap is a quasi-Cartan companion of B. 

Hence, it just remains to establish the positivity of Ap.

Treating the m atrix Ap as an assignment of signs to the arrows of T (in the natural 

way), we see tha t each triangle in T has exactly one (an odd number) arrow assigned 

positive sign. Therefore, since B  is a m atrix appearing in a seed of the cluster algebra 

A  of (finite) Dynkin type An, we see by Theorem 1.4.5 and Propositions 1.4.6 and

1.4.7 tha t the m atrix Ap must be positive. ■

We now introduce a candidate companion basis {(3\,. . .  , (3n} C $  for T. (Recall that 

n  =  { a i , . . . ,  a n} is a simple system of 4?.)
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D E F IN IT IO N  5.4.3 For each vertex i in the quiver T, let mi be the number of 

left triangle vertices appearing in the shortest unoriented path in T from i to n. I f  i 

is not a left triangle vertex in T, then set j3i =  (—l) miai. I f i  is a left triangle vertex 

in r ,  then set Pi = (—l ) mi(aj +  . . .  +  oti+a), where a is the number of vertices in the 

section o fT  above the top triangle vertex corresponding to i.

Notice tha t for each i, Pi is a root, since it is plus or minus a sum of consecutive 

simple roots.

The following simple lemma will help us to prove that our candidate companion 

basis for T gives rise to the m atrix yip. In other words, tha t (Pi,Pj) =  aij for all 

1 < i, j  < n.

LEM M A  5.4.4 Let i ^  n be a vertex in T.

(i) I f  i is not a left triangle vertex in T, then Pi is positive (resp. negative) if  and

only if  Pi+\ is positive (resp. negative).

(ii) I f i  is a left triangle vertex in T, and there are a vertices in the section of V 

above the corresponding top triangle vertex, then Pi is positive (resp. negative) if 

and only i f  Pi+a and Pi+a+\ are negative (resp. positive).

P ro o f (i) Suppose i is not a left triangle vertex in T. By Proposition 5.3.6 we 

see that i is followed (immediately) by i +  1 on the shortest unoriented path in T 

from i to n. As an immediate consequence of this we see tha t Pi is positive (resp. 

negative) if and only if Pi+i is positive (resp. negative).

(ii) On the other hand, suppose th a t i is a left triangle vertex in T, and that there

are a vertices in the section of T above the top triangle vertex corresponding to i. 

Then, the top and right triangle vertices in T corresponding to i will be labelled i +  a

110



and i + a + 1 respectively. Again by Proposition 5.3.6, we see tha t i is followed by 

i +  a + 1 on the shortest unoriented path  in T from i to n, and tha t i +  a is followed 

by i +  a +  1 on the shortest unoriented path in T from i + a to n  (noting that i +  a 

cannot be a left triangle vertex in T). Therefore, we see that Pi is positive (resp. 

negative) if and only if (3i+a and Pi+ a + 1  are negative (resp. positive). ■

P R O P O S IT IO N  5.4.5 With Ap =  {aij) and {{3i , . . . , / 3 n} as given in Defini­

tions 5 . 4 - 1  and 5 - 4 - 3  respectively, we have a i j  — (/3 i , ( 3 j ) for all 1 <  i , j  <  n.

P r o o f  Suppose i is a left triangle vertex in T. Suppose also that there are a > 1 

vertices in the section of T above the top triangle vertex in T corresponding to 

i. Then, the said top triangle vertex will be labelled i + a and we must have

(3i =  ± (a f +  on-|_a).

If j  i +  a is a vertex in the section of T above i + a (i.e. if i + 1 < j  < i + a), then 

by construction we see th a t (3j — ± ( a j  +  . . .  +  a r ), where r < i + a. Therefore, since 

(c*i +  . . .  +  cti+a, a j +  . . .  +  a r ) =  0, we see tha t ((3i,(3j) =  0 — aij in this case.

By Lemma 5.4.4, we see th a t if (3i is a positive (resp. negative) root, then {3i+a and 

A'+a-f l are negative (resp. positive) roots.

The top triangle vertex i + a cannot be a left triangle vertex in T (by Remark 5.3.5), 

and so f3i+a =  ± a ;+a. Therefore, since (ai + . . .  +  ai+ a, — a;+a) =  —1, we see that

{Pit Pi+a) =  1 =  £h,z+a-

Also, Pi+a+ 1  — ± ( a J+a+i +  • • • +  Cti+a+1+C), for some c > 0, with c =  0 i f i  +  a +  l 

is not a left triangle vertex in T. Therefore, since (a; +  . . .  +  a ;+a, —a{+a_)_i — . . .  — 

Ch+a+i+c) =  1 , we see th a t ( # , Pi+a+\) =  1 =  aiyi+a+1-
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For j  > i + a + 1, it is clear th a t we have ($ , flj) = 0 =  aij.

In the a = 1 case, we have tha t i is a left triangle vertex in T, and that the 

corresponding top and right triangle vertices are labelled 2 + 1  and i +  2  respectively. 

Furthermore, we have $  =  ± (a ; +  a i+1), (3i+\ — +<++] and (3i+2 =  +  ( < + + 2  +

. . .  +  cti+2+c), for some c > 0 , with c =  0  if i +  2  is not a left triangle vertex in T. 

Therefore, 1 ) =  - 1  =  a i ) i + 1 and (/3 ;,$+2) =  1 =  <+)i+2. Also, for j  > i +  2 it

is clear tha t (j3i,/3j) =  0  =  aij.

So, if i is a left triangle vertex in T, we have shown that { ( 5 = a^  for all j  > i.

Now suppose i is not a left triangle vertex in T. So, (3i = +<+. Then, /% + 1 =  

± (a j+i +  . . .  +  o;f_|_i_|_c) , for some c > 0 , with c =  0  if i +  1 is not a left triangle 

vertex in Y. Also, /%+\ must have the same sign as (3i by Lemma 5.4.4. Therefore, 

(/3i,/3*+i) =  — 1 =  a*ti+ 1 . For j  > i + 2, it is clear that ((3i,(3j) =  0 =  a^.

Therefore, for every vertex i , we have shown tha t (/3i,(3j) — aij for all j  > i. 

Furthermore, since aij — aji for all i and j ,  and (/3i,f3j) =  (/3j,fii) for all i and j ,  we 

have ((3i,/3j) = aij for all i ^  j .

Finally, since ( A ,# )  =  2 — an for all 1 < i < n, we see tha t a^ = ((3i,(3j) for all 

1 < i , j  < n. B

W ith the following result, we establish tha t the candidate companion basis 

{/3i,. . .  ,/3n} C $  is indeed a companion basis for Y.

P R O P O S IT IO N  5.4 .6  The set {/3i,. . .  ,/3n} C 4> as obtained from Definition 5.4-3 

is a 7,-basis for 7<&.
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P r o o f  It is clear from the construction tha t {/3i,. . . ,  j3n} is a linearly independent 

set. (Note th a t for each 2 , fa is of the form (3i =  ± (a ; +  . . .  +  a ;+c), with c > 0. 

Therefore, we see tha t the n x n  m atrix whose (2 ,j)-en try  is defined to be the 

coefficient of aj  in fli is upper triangular.)

In order to complete the proof, it is enough to show that each simple root ai G II 

can be written as an integral linear combination of {(3\ , . . . ,  /3n}. This being the 

case, it then follows immediately th a t the Z-span of {/3i,. . .  ,/3n} must contain Z$. 

Furthermore, since {/3i, . . .  , (3n} C  $ , the Z-span of {/3i,. . . ,  (3n} must in fact be 

equal to Z<f>.

If i is not a left triangle vertex in T, then fii = +ai and so oti =

Suppose now tha t i is a left triangle vertex in T. If there are a > 1 vertices in the 

section of T above the top triangle vertex corresponding to 2 , then /3; = ± (af +  . . .  +  

c î+a)? and so oc{ — +/3i . . .  oli-(-q.

Now, consider the shortest unoriented path in Y from i +  1 to i + a (the top triangle 

vertex in Y corresponding to i ). Starting from i + 1 and moving towards i + a , 

suppose tha t the vertices appearing in this path are respectively 12, it (so 

i\ = % + 1 and i t — i + a).

Consider 2*., 1 < k < t. If i *. is not a left triangle vertex in T, then (3{k =  ±o:;fc, 

and ik+i =  2*. +  1 . If ik is a left triangle vertex in T, then by construction, (3ik =  

T ĉ ifc+i +  .. • +  a^fc+1_ i). Also, (3{t =  +a.iJra.

Therefore, we see th a t (3^ + . . .  + =  S j S + i  cj a j wit;h cj = ±1 for all j .  Moreover,

we can write oti+\ +  . . .  +  oti+a =  )Cj=i bjPij with bj = + 1  for all j .
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Therefore, ai = — ]C j_i ^jPij where i i , . . . , 2* are the vertices of the shortest

unoriented path  in T from i +  1 to i +  a.

This completes the proof. ■

We have now proved th a t the following result holds.

CO R O LLA RY  5.4.7 The set {/3i,. . .  ,/3n} Q $  as obtained from, Definition 5-4-3 

is a companion basis for  T.

E X A M P L E  5.4.8 Here, we construct a companion basis for the labelled quiver 

considered in Example 5.2.1.

n  3
I
4
1

8

I
9

/  \
1 —^ 2 ^— 1 0 — 1 1

As noted previously, the quiver Q arises from a triangulation of a regular 14-gon 

and is therefore the quiver of a cluster-tilted algebra of Dynkin type A \\.  So, by 

applying Corollary 5.4.7, we are able to obtain a companion basis for H.

Take $  to be the root system of Dynkin type A n, with simple system n  

=  { a i , . . . ,  a n } .

We start by noting th a t 2  and 5 are the only left triangle vertices in fh
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Consider the vertex labelled 1 . We have tha t 1 is not a left triangle vertex in 

and tha t 2  is the only left triangle vertex in Q lying on the shortest unoriented path 

from 1 to 11. Therefore, we set 0i =  —ax.

Now consider the vertex labelled 2. This vertex is a left triangle vertex in D, and 

is the only left triangle vertex in Ft lying on the shortest unoriented path from 2  to

11. We have th a t the top triangle vertex in Ft corresponding to 2  is 9. Therefore, as 

there are seven vertices in the section of Ft above 9, we set 0 2  = — (<^2 +  • • • +  Q 9 ) .

Continuing in this way, we also obtain 03 =  — Q 3 ,  04 =  — 0 : 4 ,  05 =  — ( 0 : 5  +  ag +  a 7), 

06 = 07 =  a 7, 08 =  <̂8 ? 09 =  <2 9 , 0io =  ^io and 0 n  =  a n .

We have tha t {0 i , . . .  , 0 n }  C $  is a companion basis for Ft.

(We note tha t a routine check establishes tha t the constructed companion basis for 

fl does indeed give rise to the m atrix A q tha t we obtain from Definition 5.4.1.)

5.5 T h e C o n stru c ted  C om p an ion  B asis for T is Strong: 
A  D irec t P r o o f

Theorem 4.1.4 tells us th a t all companion bases for T must be strong. In particular, 

the (explicit) companion basis T  =  { 0 i , . . .  ,0 n} Q 4? for T tha t we constructed in 

the previous section must be strong.

Recall tha t in Section 4.4 we established, for each companion basis for T, a bijective 

correspondence between the set of shortest unoriented paths in F (identifying each 

shortest unoriented path  with its reverse) and the set of positive roots, depending 

on that companion basis. This was in fact one of the key steps in the proof of 

Theorem 4.1.4.
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In this section, we construct this bijective correspondence explicitly for the com­

panion basis T. Furthermore, we do this independently of the general construction 

given in Section 4.4. This then enables us to give a direct proof of the fact that 

T is a strong companion basis for T. We conclude this section by noting that as 

a consequence of Proposition 4.6.2, we therefore obtain an alternative proof of our 

main result, Theorem 4.1.4.

Rather than identifying shortest unoriented paths in T with their corresponding 

reverse paths, as in Section 4.4, we will here just consider shortest unoriented paths 

in r  from vertices i to j  with i < j .  For this reason, we make the following definition.

D E F IN IT IO N  5.5.1 Let i and j  be vertices in V with i < j .  Then, we call the 

shortest unoriented path in T from i to j  a positive shortest unoriented path in T 

(or an su+ -path in T for short). We denote the set of all su+-paths in T by su+ (T).

In order to construct the desired bijective correspondence between the set of su+- 

paths in T and the set of positive roots, it is enough to show tha t for each su+-path 

p in r ,  we can find explicitly a positive root with support p. This is because the 

number of (distinct) su+-paths in T is equal to the number of positive roots, and no 

positive root can have two different su+-paths as support (refer to Section 4.4).

Now, Proposition 5.3.8 tells us th a t for any su+-path p in T, there can be at most one 

instance of a left triangle vertex in V lying on p being followed by the corresponding 

top triangle vertex in T. So, there are essentially two types of su+-paths in T. 

Those for which every left triangle vertex in T is followed by the corresponding right 

triangle vertex in T, and those where exactly one left triangle vertex in T is followed 

by the corresponding top triangle vertex in T.

In the following proposition, we examine the relationship between the positive roots 

and the first of these types of su+-paths in T.
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P R O P O S IT IO N  5.5.2 Let i and j  be vertices in T with i < j .  Let p be the 

shortest unoriented path in T from i to j .  Suppose that whenever p passes through 

a left triangle vertex in T, it does not then proceed through the corresponding top 

triangle vertex in T. Then:

(i) I f  j  is not a left triangle vertex in T, then the positive root a ; +  a;+i + . . .  +  otj 

has support p.

(ii) I f  j  is a left triangle vertex in T and there are a vertices in the section o fT  above 

the top triangle vertex in T corresponding to j ,  then the positive root cti -f \ -f 

. . .  +  a j +  . . .  +  OLj+a has support p.

P r o o f  We start by noting th a t the vertex j  must lie on the shortest unoriented 

path in T from i to n. (Because otherwise, the proof of Proposition 5.3.8 shows that 

some left triangle vertex in T lying on p must be followed (on p) by the corresponding 

top triangle vertex in T.)

Starting from i and moving towards j ,  suppose tha t the vertices in the shortest 

unoriented path  from i to  j  are respectively • • • ,it- (So, i\ =  i and it = j.)

Fix k, 1 < k < t. If ik is not a left triangle vertex in T, then (3ik = and

'I'k+l — ik ~I- !•

If ik is a left triangle vertex in T, then (3ik = ±(c*ifc +  . . .  +  a ;fc+m), where m  is 

the number of vertices in the section of T above the top triangle vertex correspond­

ing to ik. By assumption, p must proceed through the right triangle vertex in T 

corresponding to i k . But this vertex must be labelled ik + m  + 1 , and so we have 

h + 1  = ik + m + l .

In case (i), we have th a t j  is not a left triangle vertex in T, and hence =  ± a ;t . 

It is then clear th a t we can write at +  cti+\ +  . . .  +  otj in the form c\/3i1 +  . . .  +  ctfiit 

with a  = ±1 for all i. Therefore, we see th a t a* +  a i+i +  . . .  +  ctj has support p.
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In case (ii), we have th a t j  is a left triangle vertex in T, and fiit =  ± (a ^  +  .. . +  Qjt+a). 

So, in a similar manner, we see tha t the positive root a; +  + . . .  +  ay - f . . .  +  otj+a

has support p. ■

Now we complete the picture by examining the relationship between the positive 

roots and the su+-paths in Y th a t weren’t covered by the above proposition.

P R O P O S IT IO N  5.5.3 Let i and j  be vertices in T with i < 3, and let p be the 

shortest unoriented path in F from i to j .  Suppose that at some point, p travels 

through a left triangle vertex in Y and then proceeds through the corresponding top 

triangle vertex in T. Then, the positive root ct{ +  . . .  +  &j-i has support p.

P ro o f Starting from i and moving towards j , suppose that the vertices in the 

shortest unoriented path  in T from i to j  are respectively 2 1 , 2 2 ,  • • • , i t ■ (So, 21 = 2 

and i t = j.)

We have from Proposition 5.3.8 th a t only on one occasion can p travel through a 

left triangle vertex in Y and then proceed through the corresponding top triangle 

vertex in T.

Suppose £ is a left triangle vertex in Y lying on p , suppose tha t there are a vertices 

in the section of Y above the top triangle vertex corresponding to x, and suppose 

ik = x and 2^ + 1  =  x  -j- a for some k , where 1 < k < t. (Note tha t x  must lie on the 

shortest unoriented pa th  in Y from 2 to n.)

Whenever the shortest unoriented path  in Y from i to x passes through a left triangle 

vertex in Y , then it does not proceed through the corresponding top triangle vertex 

in T. Therefore, from the proof of Proposition 5.5.2, we see that we can write the
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positive root c*; +  . . .+ a x +  . . .+o:x+a in the form a^ -E . .+ a x +  . . .+ a x+a =  E?=i cl&i 

with ci = ± 1  for all /.

Whenever the shortest unoriented path in T from j  to x  +  a travels through a left 

triangle vertex in T, then it must proceed through the corresponding right triangle 

vertex in T (see the last part of Remark 5.3.9). Therefore, again using the proof of 

Proposition 5.5.2, we see th a t we can write the positive root a j  +  . . .  +  ocx+a hi the 

form Qj +  . . .  +  a x+a =  Y?i=k+ 1  cl&i w it^ Q =  ± 1  for all I.

Therefore, <** +  . . .  +  otj-i = E ?= i clfri ~  Y ,U k + 1  Q/3fj with ci — ± 1  for all /, and so 

we see th a t the positive root oti +  . . .  +  ctj-\ has support p. ■

In view of the paragraph following Definition 5.5.1, we have now constructed an 

explicit bijective correspondence (for the companion basis T  for T) between the set 

of su+-paths in T and the set of positive roots. Under this correspondence, a given 

su+-path p in T corresponds to the unique positive root th a t has support p.

We now give an example.

E X A M P L E  5.5 .4  Again, we consider the labelled quiver Q introduced in Exam-



Suppose $  is the root system of Dynkin type A \\  and tha t II =  { a i , . . .  , a n } C $  

is a simple system of $ .

In Example 5.4.8, we constructed a companion basis {/3i,. . .  ,/3n} C  4> for H, given 

by 01 =  —Ot 1 , 02  =  —(o£2 +  • • • +  ag), 02, =  -Ck3 , 04 == -<*4 , 05 =  “ (0:5 +  C*6 +  OC7) 

and 0 i =  a* for all 6  <  i <  1 1 .

Here, we consider two su+-paths in ft. For each of these, we find the positive root 

which has tha t su+-path  as support.

Let pi be the shortest unoriented path  in Q from 4 to 10. We see that every left 

triangle vertex in Q lying on pi is followed by the corresponding right triangle vertex 

in Q (since 5 is followed by 8 ). Therefore, since 10 is not a left triangle vertex in 12, 

we have from part (i) of Proposition 5.5.2 tha t the positive root Q4 +  • • ■ +  aio has 

support pi. Indeed, by expressing <24 -f • • • +  a?io in terms of the given companion 

basis for 12, we obtain <24 +  • • • +  cnio =  —0 a — /3s +  /?s +  /3g +  /^io-

Let P2 be the shortest unoriented path  in Q, from 1 to 5. We see tha t the left triangle 

vertex 2 lies on P2 and is followed by 9, the corresponding top triangle vertex in fh 

Hence, by Proposition 5.5.3, we have tha t the positive root a\ +  0:2 +  <23 +  0:4 

has support P 2 .  We conclude this example by noting tha t a i  +  <22 +  (*3 +  0 : 4  =  

—0 i — 02 + 05 — 08  — 09, thus confirming this.

Using the established bijective correspondence (for the companion basis T for T) 

between the set of su+-paths in T and the set of positive roots, we may now describe 

the vectors for a  G 4>+ . This will then enable us to complete a direct proof of 

the fact tha t T is a strong companion basis for T.

Let a  be a positive root and suppose th a t p is the su+-path in T which corresponds 

to q. Then, a  has support p. The following lemma tells us tha t the vector has a
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one in each position corresponding to a vertex of T lying on p, and zeros everywhere 

else.

L E M M A  5.5.5 Let a  be a positive root and suppose that a  = ci0i- Then, 

Ci G { 0 ,  ± 1 }  for all 1 < i < n.

P r o o f  The result follows immediately from the proofs of Propositions 5.5.2 and 

5.5.3. ■

C O R O L L A R Y  5.5 .6  The companion basis T  =  {/3i,. . .  ,/3n} C  $  for T is strong.

P r o o f  Having now completed the description of the vectors for a  G 4>+ , the 

fact tha t T is a strong companion basis for T follows by proceeding exactly as in 

Section 4.5. ■

We have now seen th a t we can construct explicitly a strong companion basis for the 

quiver of any given cluster-tilted algebra of Dynkin type A. Therefore, by Proposi­

tion 4.6.2, we have provided an alternative proof of our main result, Theorem 4.1.4.
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Chapter 6

C om panion  B asis M u tation  and  
D im en sion  V ectors

In the final chapter of this thesis, we return to considering the procedure of com­

panion basis m utation (introduced in Theorem 3.1.4). We start by giving an outline 

of the contents of this chapter.

Suppose tha t A is a cluster-tilted algebra of simply-laced Dynkin type, and that T 

is the quiver of A. By Proposition 4.6.2, the set of vectors associated to the positive 

roots of the corresponding root system is the same with respect to any companion 

basis for T. We may therefore consider this set of vectors as the set of vectors 

associated to the positive roots with respect to I \

Suppose tha t by applying a single quiver m utation to T, we obtain the quiver T', 

and let A' be the cluster-tilted algebra associated to F1.

Via inward companion basis m utation, we will see tha t each companion basis for F 

induces a map from the set of vectors associated to the positive roots with respect to 

T, to the set of vectors associated to the positive roots with respect to T'. Moreover, 

we will show tha t this map does not depend on the choice of companion basis for F.
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In the Dynkin type A  case, we will give an explicit description of this map. Finally, 

in this case, as a consequence of our main result (Theorem 4.1.4), we will then 

deduce tha t given the dimension vectors of the finitely generated indecomposable 

A-modules, we can immediately write down the dimension vectors of the finitely 

generated indecomposable A'-modules.

Our set-up for this chapter is as follows.

Let k be an algebraically closed field, let Q (with n  vertices) be an alternating quiver 

of simply-laced Dynkin type, with underlying graph A, and let

n T>h{kQ — mod)
=  F

be the corresponding cluster category. Suppose tha t A  is the cluster algebra of 

Dynkin type A. Also, suppose th a t $  C V is the root system of Dynkin type A, 

where V  is a Euclidean space with positive definite symmetric bilinear form ( , ), 

and let II =  {o;i, . . .  , a n} be a simple system of 4>.

Let A =  E ndc(T )op be a cluster-tilted algebra, where T  is some basic cluster-tilting 

object in C. Suppose th a t (x, B ) is the seed of A  which corresponds to T, so that 

T =  r ( 5 )  is the quiver of A. Write T =  ( r o , r i ) ,  where To is the set of vertices of 

T, and r i  is the set of arrows of T.

Finally, let =  {'yx : x  G To} C $  be a companion basis for T, and suppose that 

A = (axy) is the positive quasi-Cartan companion of B  given by axy =  ('yx ,'Yy) for 

all x, y G To-

Note: Although we only consider inward companion basis m utation in this chap­

ter, we note tha t analogues of the results established here may be obtained similarly 

with regard to outward companion basis mutation.

123



6.1 M ap s In d u ced  b y  M u ta tio n

In this section, we study a collection of maps associated to the companion bases 

for r, induced by companion basis mutation. In order to enable us to define these 

maps, we start by showing th a t the set {d ^ :a  £ 4>+ } has |$ + | distinct elements. 

That is, each vector uniquely determines the positive root a.

P R O P O S IT IO N  6.1.1 |{d^:o! £ 3>+ }| =  |$ + |- That is, the vector is different 

for each positive root a.

P r o o f  Let a, (3 £ 4>+ and suppose d% = d^.  We will show that a — (3.

Suppose a = ^2xeTo axj x and (3 = ^ xer Q ^xlx  with ax ,bx £ Z for all x £ r 0. Since 

da ~  dpi we have \ax \ =  \bx \ for all x  £ Tq.

Let I  — {x:bx = ax} and J  =  {x:bx ax} (i.e. J  =  {x:ax 7  ̂ 0 and bx — — ax}). 

Define 7  =  J f xGl axj x £ Z<L and S =  a*7 x €

Then, a  =  7  +  and (3 =  7  — S.

Since a, (3 £ 4>, we have

2  =  (a, a )  =  ( 7  +  S, 7  +  6 ) = (7 , 7 ) +  2 (7 , (5) +  (<5,6 )

and

2  =  (j3, (3) =  ( 7  -  <5,7  -  <5) =  (7 , 7 ) -  2 (7 , <5) +  (S, (5).

It therefore follows th a t we must have (7 , 7 ) +  =  2.

Now, for any 0 /  2: £ Z4>, it is clear th a t we must have (z ,z)  £ N. (Note that 

( , ) is positive definite, and (z ,z )  is clearly an integer.) But also, we cannot have 

(z,z) = 1 (refer to [CS]). Therefore, there are two cases to consider.
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Case 1: Suppose ( 7 , 7 ) =  2  and ($, $) =  0. In this case, we must have that 8 =  0 

and hence a  =  (3.

Case 2 : Suppose ( 7 , 7 )  =  0 and (8 , 8 ) =  2 . In this case, we must have that 7  =  0  

and hence a  =  —(3. But this contradicts the fact tha t a  and (3 are both positive 

roots.

Therefore, case 2 cannot arise, and so we must have a  =  (3 as required. ■

By Proposition 4.6.2, the set of vectors associated to the positive roots is the same 

with respect to any companion basis for T. For notational convenience, we will call 

this set D(T). In particular, we have D(T) = {d ^ :a  G <P+ }.

Let k be a vertex in T and suppose th a t T' is the quiver obtained from T by applying 

quiver m utation at the vertex k. The vertex k corresponds to a row and column of 

B  and hence to a cluster variable x *. € x. We have tha t T' =  r(B'), where (x', J3') 

is the seed of A  obtained from (x, B)  by m utating in the direction x^. The seed 

(x.',B') corresponds to some basic cluster-tilting object T' in C, and so T' is the 

quiver of the cluster-tilted algebra A' =  Endc(T /)op.

Denote the set of vertices of T' by Tq, and let ’P' =  {7 .̂: x  G Tq} C $  be the compan­

ion basis for T' obtained from 'P by m utating inwardly at k (refer to Theorem 3.1.4).

In view of Proposition 6.1.1, associated to the companion basis *P for T, we have 

the following bijective map

r) —> D{r’)

4  — s. d*'.
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Likewise, we have such a bijective map associated to each companion basis for I \  

We will show tha t these bijective maps are all the same.

That they all have the same domain, and all have the same codomain, is immediate. 

Let 0  =  {vx '.x £ To} C $  be another companion basis for T, and suppose that

Recall that by applying sign changes to the elements of 0 , we can obtain a com­

panion basis T =  {8x\x  G To} Q $  for T giving rise to A  (refer to Corollary 3.3.2). 

(Note tha t Sx = ± v x for all x  G Tq.) Let T ' =  {8 'x :x  G T q} C  $  be the companion

L E M M A  6.1.2 Fix z  G To and let Fl =  { £ e ' £  G T o} Q be the companion basis 

for r  given by

£ = I  ~ Vx if x = z >
\  vx otherwise.

Then: (i) The companion basis Ft' =  {£,'x '.x G r '0} C  $  for  T; obtained from Ft by 

mutating inwardly at k is given by

0 ' =  { ^ : a :  G T q } C  $  is the companion basis for T' obtained from 0  by mutating 

inwardly at k.

We will show tha t the maps (f>fn and are equal.

basis for T7 obtained from T by m utating inwardly at k.

It follows as a consequence of the following result tha t =  </>®.

-v'x i f x  = z ,
vx otherwise.

(ii) <j>9 = (f)g
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P r o o f  (i) There are three cases to consider.

Case 1 : Suppose z ^  k and there is no arrow in T from 2: to k. In this case, we have 

i'z =  iz = ~ v z -  - v ’z, and =  u'x for all x ^  z.

Case 2 : Suppose there is an arrow in T from z  to k. (Note tha t we must then have 

z  ^  k .) In this case, we have £z =  Sffc(£z) =  Svk(—Vz) — —sUk{vz) — —v'z , and 

=  U'x f°r X ^  z.

Case 3: Suppose z  =  k. In this case, we have £z = — uz since ^  — ~ v 'k-

Also, if x ^  z  and there is no arrow in T from x  to fc, then £x = £x — vx =  v'x , and 

if there is an arrow in T from x  to k , then £x — S£k(£x) — S - Uk(vx) =  sVk{yx) = v'x .

Thus, in each case we see th a t £x =  v'x for all r e / z ,  and £z =  —v'z .

(ii) Let a £ 3>+ and write a = X X er0 axvx with ax £ Z for all x £ To- Then, we 

have a = X Xer0 ^xix where bx — ax for all x  7  ̂ 2:, and bz =  — az . Furthermore, if 

a = Xxer[j cxv 'x with cx G Z for all a: € Tq, then a  =  XXerj, dx£,'x where dx — cx for 

all x  /  2:, and dz =  — cz . In particular, d® =  d^ and d® =  d^ for all a  £ <L+ .

It follows immediately th a t the maps and ^  are equal. ■

The following is an obvious consequence of Lemma 6.1.2.

C O R O L L A R Y  6.1 .3  (j)g -

W ith the following result, we now prove tha t all of the bijective maps associated to 

the companion bases for T are the same.

P R O P O S IT IO N  6 .1 .4  =  <j>fn .
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P r o o f  From Corollary 6.1.3 we have tha t =  0 ? . So, we will prove the desired 

result by showing th a t =  0 ? .

Since 4/ =  {7 x:x  G Tq} and T =  {5x:x  G Tq} are both companion bases for T 

giving rise to A, we have from Theorem 3.4.11 tha t there is some orthogonal linear 

transformation a: V  —* V  (which permutes the set of simple roots II) and some 

w G (the Weyl group of 4>) such tha t 6X =  wa^yx for all x  G To-

Let a  G 4?+ and write a  =  X}xe r 0 ax7 x with ax G Z for all x G To- Since w and a 

both permute the set of roots $  (refer to the proof of Lemma 3.4.10), we see that

w aa  G 4>. In particular, either w a a  G ‘L-1- or —w aa  G 4>+. Suppose without loss of

generality tha t w aa  G 4>+ .

We have w aa  =  E xer 0 ax ^ l x  -  ]CxGr 0 and therefore dt  =  ( =  ^ -w a ) '

By Proposition 6.1.1, w a a  must be the unique element of 4>+ having this property. 

So, it only remains to check th a t d^' =  d^aot.

We start by showing th a t w a ^ x — 5X for all x G Tq.

There are two cases to consider.

Case 1: Suppose th a t there is no arrow in T from x to L  Then, wa^'x =  w a^x =

Sx = S’x .

Case 2: Suppose th a t there is an arrow in T from x  to k. Then,

wa~/'x =  w a (sJk(/yx)) = wa{^x — (7x,7fc)7fc)
=  wa ' jx  -  ( 7X, 7 k ) w a  yk

— dx {'Jxi 7/e)
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— Sx — (6x ,6k)

~  sSk (^x)

=

Finally, we see tha t if a  — X ^er^ cxl'x with cx e Z  for all x e  Tq, then waa  =  

E x g r0 c*w a7'x =  E x e r t  c*5 i- Therefore, d*' =  (=  ' E ' ^ J  and hence <j>fu =

</£•

This completes the proof. ■

We have now seen tha t the map (f)fn: D(F) —> D(F') does not depend on the com­

panion basis \F for T. T hat is, if we replace \F with any other companion basis for

T, then we still get the same map. We will therefore call this map </>[".

6.2 Tow ards an  E x p lic it  D escr ip tio n  o f </>{

We now aim to describe the map </>J :̂.D(r) —> D(F') explicitly. That is, to find 

a rule tha t enables us to directly compute the image of any given vector in D(F) 

under . We start by showing tha t whenever 0?  ̂ (equivalently </>̂ ) is applied to a 

vector in D(F), then the resultant vector differs from the initial vector in at most 

one component.

Let a  € and write a — XXero axlx  with ax G Z for all x  G To- Using this 

expression for a  in term s of 'F, we can obtain an expression for a  in terms of 'F/.

Suppose x  is a vertex of F. If there is no arrow in T from x to k , then Yx = j x. On the 

other hand, if there is an arrow in F from x  to k, then j x = slk (7 ^) =  7 X — (7 a;, 7 k) Ik,
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and hence = 7 J. +  (7a:,7fc) 7* (since 7 J. =  7 *). Therefore, we have

=  ^  ^  Q'x'yx "I-  ^  ^ Q'x'yx
x - » k  x —>k

=  X  a x l ' x  +  XI a x +  (7x, 7*) I k )
x-?+k x —>k

=  X  a®7* +  Q'k'Yk +  X  aa: (7:r’ 7fc) 7*
x^k x-^k

Notice in particular th a t and d^' differ in at most one component, the k- 

component. Therefore, in order to describe the map (f>fn, we should aim to express 

the ^-component of d solely in term s of the components of d^. T hat is, we want 

to express |a*. +  J2x->k ax (7x>7fc)l solely in term s of the integers \ax \ for x  G To-

The following lemma will subsequently enable us to do this in the Dynkin type A n 

case.

L E M M A  6 .2 . 1  |-|afc| +  J2x^ k  W l  ~ \ak +  12x-+k ax(lx ,  7fc)l is an even integer.

P r o o f  We will show tha t

®k T  ^   ̂ ^ a :(7x i7A :) j =  l^fcl ®/c "h ^   ̂ ( |® x | ^a:(7a:? 7 /e ) )
x-^k / x-^k

is even. The result then follows.

Firstly, since a& G Z, we have tha t — |a*.| — is even.

Let x  be a vertex in T, and suppose tha t there is an arrow in T from x to k. Since 

T  is a companion basis for T, we must have (7 ^ ,7 k) — ±1- Thus, |ax | — CLx { lx , lk )  — 

\a x\  T ax • Now, since ax G Z, |ax | — ax and |ax | +  ax are both  even, and hence 

\a>x\ ~ nx (7 a:j 7/e) is even.

Therefore, - \ a k \ -  ak +  J2x->k (la*l ~  ax { lx ,7fc)) is even. ■

130



6.3  A  D esc r ip tio n  o f  (j)fn in  D y n k in  T y p e  An

In this section we restrict our attention to only the Dynkin type A n case. (That is, 

we suppose th a t A is a Dynkin diagram of type A n.) In this case, we are able to 

give an explicit description of the map (f)fn: D(T) —> D (T'), by using Lemma 6.2.1. 

We finish by highlighting a consequence of this description due to Theorem 4.1.4.

P R O P O S IT IO N  6.3.1 Let a  G 4>+ and suppose that a  = XE<=r0 axlx  w ithax G Z  

for all r  G T q . We then have

O'k T  ^   ̂ (Te ) T/c)
x-^k

Î A: | T  ^   ̂ |
x —>k

P r o o f  We have th a t all of the components of both d^ and d^' must belong to the 

set {0,1} (refer to  Section 4.4). Therefore, | |  G {0,1} for all vertices x  in T, and 

\ a k  +  T / x ^ k a x ( ' l x , l k ) \  € {0 , 1}.

Since |ax | G {0,1} for all vertices x  in T, and due to the bijective correspondence 

between the set of positive roots and the set of shortest unoriented paths in T 

established in Section 4.4, a simple case-by-case analysis establishes tha t — |a^| +

\ax\ z  {°) ±!}-

We have now shown th a t \ak +  J2x->k ax{lx, 7 fc)U_ la fcl +  la*|| £ {0,1}- It

therefore follows from Lemma 6.2.1 tha t

&k T  ̂  ̂Q'X^AIxi'Yk)
x—̂k

l̂ fcl +  I®3
x-^k

as required.

We have proved the following.
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C O R O L L A R Y  6.3 .2  Let a  G 4>+ and suppose that = (dx)xer0• Then, is 

given by

/    J dz i f  z ^  k,
V Q ) z  ~  \  \ - d k +  T ,x^ k dx \ i f  z  = k.

By Theorem 4.1.4, we have th a t the dimension vectors of the finitely generated 

indecomposable A-modules are precisely the elements of the set D(T). Likewise, the 

dimension vectors of the finitely generated indecomposable A'-modules are precisely 

the elements of the set D(T'). We have therefore established the following.

C O R O L L A R Y  6 .3 .3  Given the dimension vectors of the finitely generated in­

decomposable A-modules, we can simply write down the dimension vectors of the 

finitely generated indecomposable A'-modules.
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