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Abstract

On Indecomposable Modules over Cluster-tilted
Algebras of Type A

Mark James Parsons

Gabriel’s Theorem describes the dimension vectors of the finitely generated inde-
composable modules over the path algebra of a simply-laced Dynkin quiver. It
shows that they can be obtained from the expressions for the positive roots of the
corresponding root system in terms of the simple roots. Here, we present a method
for finding the dimension vectors of the finitely generated indecomposable modules
over a cluster-tilted algebra of Dynkin type A.

It is known that the quiver of a cluster-tilted algebra of Dynkin type A is given by
an exchange matrix of the corresponding cluster algebra. We define a companion
basis for such a quiver to be a Z-basis of roots of the integral root lattice of the
corresponding root system whose associated matrix of inner products is a positive
quasi-Cartan companion of the corresponding exchange matrix.

Our main result establishes that the dimension vectors of the finitely generated in-
decomposable modules over a cluster-tilted algebra of Dynkin type A arise from
expressions for the positive roots of the corresponding root system in terms of a
companion basis (for the quiver of that algebra). This can be regarded as a gener-
alisation of part of Gabriel’s Theorem in the Dynkin type A case. The proof uses
the fact that the quivers of the cluster-tilted algebras of Dynkin type A have a
particularly nice description in terms of triangulations of regular polygons.

In addition, we give an explicit combinatorial procedure for constructing a compan-
ion basis for the quiver of any cluster-tilted algebra of Dynkin type A.
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Introduction

Cluster algebras were introduced by Fomin and Zelevinsky [FZ1] in an attempt
to better understand the dual canonical basis of the quantised enveloping algebra
of a finite dimensional semisimple Lie algebra. In [MRZ], a link between cluster
algebras and representations of quivers was established. This subsequently led to
the introduction of cluster categories in [BMRRT], which were intended to give a
categorical model of cluster algebras. (Note that independently of [BMRRT], a
geometric definition of cluster categories of Dynkin type A was given in [CCS1].) A
key development in the study of cluster categories was the creation of a generalised
version of APR-tilting theory (refer to [APR]), called cluster-tilting theory. In this
theory, a key role is played by the cluster-tilted algebras, as introduced in [BMR1].

These cluster-tilted algebras are the main object of study of this thesis.

An important goal of representation theory is to understand the finitely generated
modules over an algebra. For this, it is in fact enough to understand the finitely
generated indecomposable modules. One possible way of starting to understand the

finitely generated indecomposable modules is to describe their dimension vectors.

Consider the path algebra of a simply-laced Dynkin quiver. In this case, Gabriel’s
Theorem [Gab] describes the dimension vectors of the finitely generated indecompos-

able modules. Gabriel’s Theorem states that there is a one-to-one correspondence



between the finitely generated indecomposable modules and the positive roots of
the corresponding root system of simply-laced Dynkin type. Moreover, it says that
the dimension vector of an indecomposable module is the vector whose components
are the coefficients appearing in the expression for the corresponding positive root

as an integral linear combination of simple roots.

The aim of this thesis is to work towards giving a description of the dimension vec-
tors of the finitely generated indecomposable modules over a cluster-tilted algebra of
simply-laced Dynkin type. The cluster-tilted algebras of simply-laced Dynkin type
are in fact closely related to the path algebras of simply-laced Dynkin quivers, as
they arise from the cluster categories associated to these algebras. Given this link,
it might be expected that the dimension vectors of the finitely generated indecom-
posable modules over a cluster-tilted algebra of simply-laced Dynkin type can also
be described in terms of the positive roots of the corresponding root system. The
main result of this thesis establishes that this is indeed the case for cluster-tilted
algebras of Dynkin type A, providing a generalisation of part of Gabriel’s Theorem

in this case.

In [BMR2], an important link between cluster-tilted algebras and cluster algebras
was established. Each cluster algebra is associated with an equivalence class of skew-
symmetrizable integer matrices. These matrices are called the exchange matrices
of that cluster algebra. In particular, the exchange matrices of a cluster algebra of
simply-laced Dynkin type are skew-symmetric, and can therefore be represented as
quivers. It was shown in [BMR2] (and independently in [CCS2]) that the quivers
of the cluster-tilted algebras of a given simply-laced Dynkin type are precisely the

quivers of the exchange matrices of the cluster algebra of that type.



In addressing the problem of recognising the cluster algebras of finite type, the paper
[BGZ] considered a class of matrices closely related to the Cartan matrices, called
the positive quasi-Cartan matrices. Given a cluster-tilted algebra of simply-laced
Dynkin type, it follows from the main result of [BGZ| that the exchange matrix
associated to its quiver must have a positive quasi-Cartan companion. (That is,
there exists some positive quasi-Cartan matrix for which the absolute values of
the off-diagonal entries match the absolute values of the off-diagonal entries of the
exchange matrix.) Moreover, it follows from the classification of the positive quasi-
Cartan matrices, that this positive quasi-Cartan companion arises as the matrix of
inner products associated to some Z-basis of roots of the integral root lattice of the

corresponding root system of simply-laced Dynkin type.

From above, given a cluster-tilted algebra of Dynkin type A, there is an exchange
matrix of the corresponding cluster algebra associated to its quiver. Also, there is a
Z-basis of roots of the integral root lattice of the corresponding root system whose
associated matrix of inner products is a positive quasi-Cartan companion of this
exchange matrix. The main result of this thesis shows that the dimension vectors of
the finitely generated indecomposable modules over the given cluster-tilted algebra
can be obtained from the coefficients of the expressions for the positive roots in

terms of any such Z-basis.

There now follows an outline of this thesis.

In Chapter 1, the required background material on cluster algebras is presented.
This includes the definition of a cluster algebra, an outline of the classification of
the cluster algebras of finite type (as given in [FZ2]), and the main results of [BGZ]

on recognising cluster algebras of finite type. The latter of these uses the concept of



positive quasi-Cartan matrices. Also, a simple but motivational corollary of a result

classifying the positive quasi-Cartan matrices is established.

Following [BMRRTY, a brief introduction to cluster categories of simply-laced Dynkin
type is given in Chapter 2. In particular, this includes a description of some aspects
of the relationship between such a cluster category and the corresponding cluster
algebra. Also, cluster-tilted algebras are defined, and it is noted that the quiver
of any cluster-tilted algebra of simply-laced Dynkin type is given by an exchange

matrix of the corresponding cluster algebra.

Chapter 3 focusses on the study of those Z-bases of the integral root lattice of a root
system of simply-laced Dynkin type, consisting of roots, whose associated matrix
of inner products is a positive quasi-Cartan companion of an exchange matrix of
the corresponding cluster algebra. These sets are termed companion bases and are
associated with the quivers of the cluster-tilted algebras of simply-laced Dynkin
type. Given a cluster-tilted algebra of simply-laced Dynkin type, a method for
finding a companion basis for its quiver is outlined. Also, a complete description
of all of the companion bases for that quiver in terms of an arbitrary initial such

companion basis is given.

The main result of this thesis, which gives a description of the dimension vectors
of the finitely generated indecomposable modules over a cluster-tilted algebra of
Dynkin type A, is established in Chapter 4. The proof relies on the structure of
the quivers of the cluster-tilted algebras of Dynkin type A. These are examined
by making use of a known description of these quivers in terms of triangulations of
regular polygons. It is conjectured that the main result generalises to the Dynkin
type D and E cases, and some possible strategies for proving this conjecture are

briefly discussed.



In Chapter 5, a method is presented for explicitly constructing a companion basis
for the quiver of any given cluster-tilted algebra of Dynkin type A. The key to
this is the introduction of a procedure for labelling the vertices of such quivers. By
studying these explicitly constructed companion bases, a more explicit alternative

proof of the main result is then presented.

Finally, in Chapter 6, detailed consideration is given to one of the results of Chap-

ter 3. This leads to an interesting consequence of the main result being established.



Chapter 1

Cluster Algebras

Cluster algebras were introduced by Fomin and Zelevinsky [FZ1] in 2001. A cluster
algebra is a subring of the field of rational functions in n indeterminates, generated
by cluster variables. These cluster variables are obtained via a process of mutation,

starting from some “initial seed”.

Cluster algebras having only finitely many cluster variables are called cluster alge-
bras of finite type. One of the early key results in the development of the theory of
cluster algebras was the classification of the cluster algebras of finite type, given in

[FZ2].

We start this chapter by giving the definition of a cluster algebra and the classifi-
cation of the cluster algebras of finite type. After briefly introducing root systems,
we then describe some aspects of the relationship between a cluster algebra of finite
type and its corresponding root system. We also present the main results of Barot,
Geiss and Zelevinsky [BGZ] on recognising cluster algebras of finite type. In these
results, an important role is played by the so-called positive quasi-Cartan matrices.
In the concluding part of this chapter, we establish a simple consequence of the
classification of the positive quasi-Cartan matrices which is important in motivating

our subsequent work.



1.1 What is a Cluster Algebra?

In this section, following [FZ2], we give the definition of a cluster algebra and outline

the classification of the cluster algebras of finite type.
Firstly, we need a preliminary definition.

DEFINITION 1.1.1 A square integer matriz B is said to be skew-symmetrizable
(resp. symmetrizable) if there is some diagonal matriz D with positive integer diag-

onal entries such that DB is skew-symmetric (resp. symmetric).
We can now give the definition of a cluster algebra.

Let n € N and let F = Q(u1,...,u,) be the field of rational functions in n inde-
terminates. Let x = {z1,...,z,} C F be a transcendence basis for F over @, and
let B = (bgy)z,yex be an n x n skew-symmetrizable integer matrix with rows and

columns indexed by the entries of x.

We call the pair (x, B) a seed in F, and we obtain more seeds from this “initial seed”

via a mutation process.

Let z € x. We obtain a new transcendence basis x' = (x \ {z}) U {2’} for I over Q,
where 2z’ is obtained using the exchange relation
22" = H g 4 H z b
TEX, by, >0 zEX, by, <0
Similarly, we obtain a skew-symmetrizable matrix (refer to [FZ1, Proposition 4.5])

B’ from B with entries given by

¥ bzy ifz=zory=z,
= baz|bry+bzalb .
Y bey + [b22|bs ; szl Gtherwise.



The row and column labelled z in B are relabelled 2’ in B’. The pair (x/, B') then
form a seed which we call the mutation of (x, B) in the direction 2. It can easily be

checked that by mutation of (x’, B') in the direction 2/, we recover the seed (x, B).

By iterated mutations of the initial seed (x, B) in all directions, we obtain a set of
seeds 8. The transcendence bases appearing in these seeds are called clusters, and
their elements are called cluster variables. The matrices appearing in these seeds
are called exchange matrices. The set of all cluster variables is the union of all of

the transcendence bases appearing in seeds in S, and is denoted by x.

We then define the cluster algebra A4 = A(x, B) to be the Z-subalgebra (subring) of

F generated by x.

Note: In the general definition of cluster algebras given in [FZ1] and [FZ2], certain
coefficients appear in the exchange relations. In the definition we have given above,
all of these coeflicients have been set equal to one. This is the case of greatest interest
to us, since this is the case that has been studied most extensively in connection

with representation theory.

Two cluster algebras A’ and A", contained in fields of rational functions F' and F’
respectively, are said to be isomorphic (as cluster algebras) if there is a Z-algebra
isomorphism ¢: ' — F” taking some seed (y, C) of A’ to a seed (i(y),C) of A". (We

note that the terminology “strongly isomorphic” is used in [FZ2].)

Up to isomorphism of cluster algebras, .A(x, B) does not depend on the choice of
transcendence basis x for [F, and so we can denote this cluster algebra by A(B). In

fact, we can go further than this. It is clear that the mutation of skew-symmetrizable



matrices outlined above gives rise to an equivalence relation on the set of n x n skew-
symmetrizable integer matrices. Up to isomorphism of cluster algebras, the cluster

algebra A(B) only depends on the mutation equivalence class of B.

We have the following definition from [FZ2].

DEFINITION 1.1.2 A cluster algebra is said to be of finite type if it has only

finitely many cluster variables.

The cluster algebras of finite type were classified in [FZ2]. Before stating the clas-

sification result, we first need to introduce some terminology.

DEFINITION 1.1.3 An n X n integer matriz A = (a;;) is called a generalised
Cartan matriz if

(i) aii =2 for all1 <i<mn,

(1) a;; <0 for all i # j,

(’L’LZ) a;; = 0& aj; = 0 for all ¢ 7'5 J.

If in addition to these properties, all principal minors of A are positive, then we call

A a Cartan matriz of finite type.

The Cartan-Killing classification of the Cartan matrices of finite type is a well known
result, see [Kac, Chapter 4] for example. Indeed, the Cartan matrices of finite type
can be encoded by Dynkin diagrams. If A = (a;;) is a Cartan matrix of finite type,
then the associated Dynkin diagram has vertices indexed by the rows and columns of
A. Distinct vertices ¢ and j are joined by a;;a;; edges, and these edges are equipped
with an arrow pointing from ¢ towards j if |a;;| < |aj|. The Dynkin diagrams of

the Cartan matrices of finite type are listed in [Kac, Section 4.8].



DEFINITION 1.1.4 Let B = (b;;) be an n x n integer matriz. Then the Cartan
counterpart of B is defined to be the matriz A(B) = (ai;) given by a; = 2 for all

1 <i<n, and a;; = —|b;j| otherwise.

Note: It is clear that the Cartan counterpart of a skew-symmetrizable matrix

must be a symmetrizable matrix.

We can now give the classification result of the cluster algebras of finite type. The

result was originally given in [FZ2], but we give the version as stated in [BGZ].

THEOREM 1.1.5 Let F be a mutation equivalence class of skew-symmetrizable
matrices. Then the following are equivalent:

(i) The cluster algebra associated to F is of finite type.

(11) There is some matriz B € F such that the Cartan counterpart of B is a Cartan
matriz of finite type.

(iit) For every matriz B = (bij) € F, |bijbji| < 3 for all i # j.

Furthermore, the Cartan-Killing type of the Cartan matriz in (ii) is uniquely deter-
mined by the equivalence class F (and is referred to as being the type of the cluster

algebra associated to F).

Since the Cartan matrices of finite type can be represented by Dynkin diagrams, we
can consider this result as giving as giving a classification of the cluster algebras of

finite type by Dynkin diagrams.

If B = (b;;) is an n x n skew-symmetric integer matrix, then we can associate to B
a quiver I'(B) with vertices corresponding to the rows and columns of B, and b;;

arrows from the vertex ¢ to the vertex j whenever b;; > 0.

10



It is easy to show that mutation in any direction of a skew-symmetric matrix results
in a skew-symmetric matrix, and hence the mutation equivalence class of B must
consist entirely of skew-symmetric matrices. Therefore, we can associate a quiver

to each matrix belonging to the mutation equivalence class of B.

In view of Theorem 1.1.5, we see that the cluster algebras of Dynkin types A, D and
E are those associated with equivalence classes of skew-symmetric matrices which

contain a matrix whose associated quiver is a Dynkin quiver of the same type.

REMARK 1.1.6 Suppose C = (c;;) is a matriz appearing in a seed of a cluster
algebra of (simply-laced) Dynkin type A, D or E. Then, we have that C is a skew-
symmetric integer matriz, and also, from Theorem 1.1.5, we see that C must satisfy
lcijeji| <3 for all © # j. It follows that the entries of C must all belong to the set

{0, +1}.

1.2 Root Systems

We saw in the previous section that the cluster algebras of finite type are associated
with the Cartan matrices of finite type. Also associated with the Cartan matrices
of finite type are root systems. This suggests that there may be some kind of
relationship between the cluster algebras of finite type and the corresponding root
systems. We will start to consider this relationship in the next section, after first
giving a brief introduction to root systems in this section. (For standard terminology

and results regarding root systems, refer to [Huml], for example.)

Also in this section, we introduce the compatibility degree (of Fomin and Zelevin-

sky, see [FZ3]) which assigns a non-negative integer to each given pair of “almost

11



positive” roots. This is a useful tool for describing the clusters of a cluster algebra

of finite type.

Let V be a Euclidean space. That is, let V be a finite dimensional real vector space

together with a positive definite symmetric bilinear form (, ).

Given any non-zero vector a € V, we can define an orthogonal linear transformation

Sq: V — V (called a reflection of V') by setting

2(,0)

(a, @)

saB3=p-

for all 8 € V. It is clear that s, takes a to —a, and fixes pointwise the orthogonal

complement to a. Notice also that s, = s.4 for all non-zero ¢ € R.
We now introduce the definition of a root system in V.

DEFINITION 1.2.1 We call a subset ® C V' a root system in V if it satisfies:
(i) ® is finite, spans V and does not contain 0.

(ii) $q® =@ for all o € .

(i1i)) RaN® = {a,—a} for all a € P.

(iv) E(Kf_g)l €Z for all o, B € ®.
Let @ be a root system in V.

The Weyl group Wg of ® is defined to be the subgroup of GL(V) generated by
the reflections s, for @ € ®. (Recall that GL(V) consists of all invertible linear

transformations of V.)

We call dim V' the rank of the root system &.

12



DEFINITION 1.2.2 A subset I C ® is called a simple system of @ if:
(i) 11 is a vector space basis of V over R.
(ii) Each a € ® can be written (uniquely) as an integral linear combination of II

with either all coefficients being non-negative, or all coefficients being non-positive.
IfI1 C @ is a simple system of ®, we call the elements of I simple roots.
Note from [Huml, p.48-49] that every root system has a simple system.

Let II be a simple system of & and suppose 3 € ®. So, we can write § = Zaen Cax
with ¢ € Z for all @ € TI. If ¢, > 0 for all a € II, then we call 3 a positive root,
and if ¢, < 0 for all a € II, then we call 8 a negative root. We denote the set of
positive roots in @ (relative to IT) by ®*, and we denote the set of negative roots

in ® by . It is clear that = = —&™.

Also, we define the set of almost positive roots (relative to II) to be ®>_; = T U

(~1I).

2a
a,o

For each a € ®, set oV = (o~ Then, ®V = {a":a € ¥} is also a root system in V

(called the dual root system), and IIV = {aV:a € I} is a simple system of ®V.
We now define what it means for two root systems to be isomorphic.

DEFINITION 1.2.3 Let ® and ®' be root systems in the Euclidean spaces V
and V' respectively. We say that ® is isomorphic to ® if there is a vector space

isomorphism ¢:V — V' sending ® onto ®' such that 2(?’5)) = Q(Eg’((aﬁ))ﬁ(aa)))) for all

a,fB € d.

Now, every root system has an associated Cartan matrix which determines that root

system up to isomorphism, and the classification of the root systems turns out to

13



be identical to the classification of the Cartan matrices of finite type (see [Huml,

Chapter 11]). In particular, every root system has a well defined Dynkin type.

We will later be mostly focussing on root systems of simply-laced Dynkin type.
We always choose these in such a way that the squared length of each root is 2.
In particular, this implies that each root is its own dual. Also, we then have the

following well known and useful result.

LEMMA 1.2.4 Suppose that the root system ® C V is of simply-laced Dynkin

type. If a, 3 € ® are non-proportional roots, then (a, ) € {0,+1}.

We conclude this section by introducing the compatibility degree of Fomin and

Zelevinsky (see [FZ3]).

Let A = (aij) be an n x n Cartan matrix of finite type. Recall that the Coxeter
graph of A has vertices corresponding to the rows and columns of A, and an edge
joining two distinct vertices 7 and j whenever a;; # 0 (or equivalently, whenever
aj; # 0). (Note that we omit the edge labels as we have no need for them here.)

Denote the set of vertices of the Coxeter graph of A by I.

Suppose further that A is indecomposable and let ® be the (irreducible) root system
associated to A. Let II = {e,...,an} be a simple system of ® and let &>_; be
the corresponding set of almost positive roots. The compatibility degree, which we

define below, assigns a non-negative integer to each pair of almost positive roots.

Since A is an indecomposable Cartan matrix of finite type, the Coxeter graph of A
is a tree (this follows from the classification of the Cartan matrices of finite type by

Dynkin diagrams [Kac, Chapter 4]). Therefore, we can write I as a disjoint union

14



I=1I,UI_ where I;,I_ C I, and the full subgraphs of the Coxeter graph of A on

each of I, and I_ are totally disconnected.

For each 1 < i < m, let s; = 84, and let 7, and 7_ be the permutations of ®>_;

defined by
ifa=—ai€l,

(@) = { ?Hieu Si) (a) otherwise,

and

Qa if @ =—aqy,i € 1,
7-(a) = (Hiel_ si) (a) otherwise.

For each 1 < i < n and each almost positive root «, using [o: ;] to denote the

coefficient of ¢; in the expansion of « in terms of the simple roots, we define
(—a;||e) = max{[a: o], 0}.

The definition of ( || ) is then extended to all pairs of almost positive roots by

specifying that it is 74- and 7_-invariant. We note that due to [FZ2, Theorem

3.1], we can obtain a negative simple root from any given almost positive root by

iteratively applying 7. and 7_.
We say that two almost positive roots o and 3 are compatible if («||3) = 0.

Note: From [FZ3, Proposition 3.3] we have that if the Dynkin diagram corre-
sponding to the Cartan matrix A is simply-laced, then the compatibility degree

function is symmetric.

15



1.3 Correspondence Between Cluster Variables and Al-
most Positive Roots

The main purpose of this section is to start to consider the relationship between
the cluster algebras of finite type and their associated root systems. In particular,
we will state an important result from [FZ2] which says that there is a one-to-one
correspondence between the set of cluster variables of a cluster algebra of finite type,

and the set of almost positive roots of the associated root system.

Let B be an n x n skew-symmetrizable matrix, and suppose that 4 = A(x, B) is
a cluster algebra of finite type. Also, suppose that F is the mutation equivalence

class of B.

Then, by Theorem 1.1.5, there is some skew-symmetrizable matrix B’ € F such

that the Cartan counterpart A = A(B’) is a Cartan matrix of finite type.

Now, from [FZ2, Theorem 1.6] we have that there must be some skew-symmetrizable

matrix By = (b;;) € F such that A(Bp) = A and b;;b;, > 0 for all 1 < 4,45,k < n.

Since By is mutation equivalent to B, there must be some seed which contains By.
Let (xg,Bp) be such a seed where xg = {z1,...,Z,} is a transcendence basis for

F=Q(u1,...,u,) over Q. We then have that A = A(xq, By) = A(x, B).

Let ® be the root system associated to A and let II = {a1,...,@,} be a simple

system of ®. We then have the following result from [FZ2, Theorem 1.9].

THEOREM 1.3.1 There is a unique bijection a — x[a] between the almost pos-

itive roots in @ and the cluster variables in A, such that for any o € ®>_1, the

cluster variable z[a] is expressed in terms of xo = {z1,...,z,} as
P,(xg)
sla] = X0
i=1%;

16



where Py is an integer polynomial with non-zero constant term, and a =Y ;- | a; .

Under this bijection, z[—«;] = x; for eachi, 1 <i < n.

We end this section by noting from [FZ2] that maximal pairwise compatible subsets

of ®»_1 correspond to clusters in A.

1.4 Recognising Cluster Algebras of Finite Type

Given a skew-symmetrizable matrix B, the classification theorem for the cluster
algebras of finite type provides two conditions for checking whether or not the cluster
algebra A = A(B) is of finite type. The paper [BGZ] highlights that both of these
conditions can be difficult to check in general. The focus of that paper is to solve
this problem by giving a method for determining whether or not the cluster algebra

A(B) is of finite type, based solely on consideration of the matrix B itself.

In this section, we will state the main result of [BGZ], and also two further results

from [BGZ] which highlight the usefulness of the main result.

Note: An alternative method for recognising cluster algebras of finite type was

given in [Sev].
In order to state the main result of [BGZ], we need to introduce some terminology.

DEFINITION 1.4.1 A symmetrizable matriz A = (ai;) is said to be quasi-Cartan

if a;; = 2 for all 1.

DEFINITION 1.4.2 A quasi-Cartan matriz A is said to be positive if the sym-

metrized matriz DA is positive definite.
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So, we see that a quasi-Cartan matrix A is positive if and only if the principal minors

of A are all positive.
The following definition provides a quasi-Cartan analogue of Cartan counterparts.

DEFINITION 1.4.3 Let B be a skew-symmetrizable matriz. A quasi-Cartan com-

panion of B is a quasi-Cartan matriz A such that |a;j| = |bj| for all i # j.

It is clear that opposite entries have opposite signs in skew-symmetrizable matrices.
(Note also that opposite entries have the same sign in symmetrizable matrices.)
Therefore, given any skew-symmetrizable matrix B = (b;;), we can associate a
quiver T'(B) to B as follows. The vertices of I'(B) correspond to the rows and
columns of B, and there is an arrow from the vertex ¢ to the vertex j whenever

bij > 0.

DEFINITION 1.4.4 We define a chordless cycle in f(B) to be a (not necessarily
oriented) cycle in f(B) such that the full subquiver on its vertices is also a cycle in

I(B).

We can now state the main result from [BGZ] on recognising cluster algebras of

finite type ([BGZ, Theorem 1.2]).

THEOREM 1.4.5 Let B be a skew-symmetrizable matriz. Then, the cluster alge-
bra associated to (the mutation equivalence class of) B is of finite type if and only
if

(i) every chordless cycle in f(B) 18 cyclically oriented, and

(ii) B has a positive quasi-Cartan companion.
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It is clear that condition (i) is easy to check for a given skew-symmetrizable matrix B,
however, condition (ii) could be harder to check as B could have many quasi-Cartan
companions. In fact, if B has N non-zero above diagonal entries, then there are 2V
different quasi-Cartan companions. The results of the following two propositions
([BGZ, Proposition 1.4] and [BGZ, Proposition 1.5] respectively) demonstrate the
power of the above theorem. Indeed, it turns out that the positivity of only one

(carefully chosen) quasi-Cartan companion of B has to be checked.

PROPOSITION 1.4.6 Let B be skew-symmetrizable, and let A = (a;;) be a quasi-
Cartan companion of B. For A to be positive, it must satisfy:
For all chordless cycles Z in T'(B), H (—aij) < 0. (A)
{5}z
Now, when choosing a quasi-Cartan companion A for B, for each b;; # 0 with ¢ # j,
we must either choose a;;,a;; > 0 or a;;,a;; < 0. This can be considered as making
a sign choice for each arrow in f(B) By Proposition 1.4.6, in order to have any

chance of getting a positive quasi-Cartan companion, these signs must be chosen

such that each chordless cycle has an odd number of arrows assigned positive sign.

The following proposition tells us that if all chordless cycles in I'(B) are cyclically
oriented, then such a choice of quasi-Cartan companion exists. Furthermore, only
the positivity of this companion needs to be checked to determine whether or not
A(B) is of finite type. (This is because performing simultaneous sign changes in the

rows and columns of a matrix does not affect the positivity of that matrix.)

PROPOSITION 1.4.7 Let B be a skew-symmetrizable matriz. If every chordless
cycle in f(B) 1s cyclically oriented, then B has a quasi-Cartan companion satisfying

(A), unique up to simultaneous sign changes in rows and columns.
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1.5 A Motivational Result

In this section we prove a corollary of a result appearing in [BGZ]. The result of

this corollary will turn out to be a key motivating factor for our later research.

We start by introducing a standard notion of equivalence for quasi-Cartan matrices.

DEFINITION 1.5.1 Let A and A’ be two quasi-Cartan matrices. If there is some
diagonal matriz D with positive integer diagonal entries such that C = DA and
C' = DA are symmetric, and there is some integer matriz E with determinant +1

such that C' = ETCE, then we say that A and A’ are equivalent.

It is clear that if A is a positive quasi-Cartan matrix and A’ is a quasi-Cartan matrix
equivalent to A, then A’ is also a positive quasi-Cartan matrix. A result classifying
the equivalence classes of positive quasi-Cartan matrices by Cartan-Killing types is

given in [BGZ, Proposition 2.9]. We now state this result.

Let A = (a;;) be an n x n quasi-Cartan matrix. For each ¢, 1 < 4 < n, define an
automorphism s; of the lattice Z" by setting s;(e;) = e; — a;je; where {e1,...,en} is

the standard basis in Z". Let W(A) C GL,(Z) be the group generated by s1, ..., s,.

PROPOSITION 1.5.2 The following conditions on a quasi-Cartan matriz A are
equivalent:

(1) A is positive.

(it) The group W (A) is finite.

(iii) There is a root system ® and a linearly independent subset {Bi,...,8,} C @
such that a;; = (8, 8;) for all 1 <i,j < n.

(iv) A is equivalent to a Cartan matriz A® of finite type.
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Under these conditons, if &g C & is the smallest root subsystem of ® that contains
the set {(1,...,0Bn} in (iit), then the Cartan-Killing type of ®¢ is the same as the
Cartan-Killing type of the matriz A® in (iv), and it characterises A up to equivalence.

Furthermore, W (A) is naturally identified with the Weyl group of ®¢.

We now give further consideration to the positive quasi-Cartan companions of those

skew-symmetrizable matrices which give rise to cluster algebras of finite type.

Let B be a skew-symmetrizable matrix and suppose that the cluster algebra A(B)
is of finite type. Then, by Theorem 1.4.5, all chordless cycles in f(B) are cyclically
oriented and B has a positive quasi-Cartan companion A. By Proposition 1.4.7,
we see that all positive quasi-Cartan companions for B can be obtained from A by
performing simultaneous sign changes in rows and columns. So, it is straightforward

to see that all positive quasi-Cartan companions for B are equivalent.

If B’ is mutation equivalent to B, then A{B’) is also of finite type. (In fact, A(B)
and A(B') are isomorphic cluster algebras.) So, all chordless cycles in I'(B') must
be cyclically oriented and B’ must have a positive quasi-Cartan companion. Then,
applying [BGZ, Corollary 3.3], we see that there is a positive quasi-Cartan compan-
ion of B’ which is equivalent to A4, and hence all positive quasi-Cartan companions

of B’ are equivalent to A.

In particular, by Theorem 1.1.5, there must be some skew-symmetrizable matrix By,
mutation equivalent to B, with Cartan counterpart 4g = A(Bp) a Cartan matrix of
finite type. It is clear that Ag is a positive quasi-Cartan companion of By. Therefore,

we see that Ag is equivalent to A.

Now, let ® be a root system of the same Cartan-Killing type as Ay (which is the
Cartan-Killing type of A(B)) in some Euclidean space V' with positive definite

symmetric bilinear form (, ).
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We have the following corollary of Proposition 1.5.2.

COROLLARY 1.5.3 Let A = (a;;) be a positive quasi-Cartan companion of B.
Then, there is a subset {f1,...,0Bn} C @ which is a Z-basis for Z® such that a;; =

(BY,B;) for all 1 < i,j < n.

Proof By Proposition 1.5.2, we have that there is a root system &' (in some
Euclidean space V' with positive definite symmetric bilinear form ( , )') and a
linearly independent subset {31,...,3,} C @' such that a;; = (8),8;) for all 1 <
i,j < n. Furthermore, if &) C &' is the smallest root subsystem of &' that contains
{B1,...,0Bn}, then the Cartan-Killing type of ® is the same as the Cartan-Killing

type of Ag, and hence ®{, and ® are isomorphic root systems.

It remains to be seen that {fi,...,08n} is a Z-basis for Z®;. The argument is

standard, but we include it for the convenience of the reader.

Let Wg be the Weyl group of ', and suppose that W is the subgroup of W

generated by sg,,...,s5,. Let & = W{B1,...,8,} C &'

We will show that & = ®; and that {f,...,5,} is a Z-basis for 7Z&. In order to
show the former, it is sufficient to check that & is a root system in spang{fi,...,0n}

(Because, if $ C & is a root system, then it’s clearly the smallest root subsystem

of ® containing {31, ...,08n}.)
Firstly, we check that & is a root system in spang{fB1,...,0n}-

(i) Since ® C @', we see that & is finite and does not contain 0. Also, it is clear that

& spans spang{01,...,0n}-

(ii) Let o, 8 € ®. We must show that s4(8) € ®.
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Write a = wg; and 8 = vg; for some w,v € W and 1 < 7,5 < n. Then, using

[Huml, Lemma 9.2], we have s4(8) = swg, (v8;) = wsg,w™ ' (vG;) € ®. (Note that

this implies so® = & since s, acts injectively on &.)

(iii) Suppose a@ € ®. Then, @ = wg; for some w € W and 1 < i < n. So,
—a = wsp,(B;) € ® Combining this with the fact that & C &', we see that

RaN® = {a,—a} for all a € &.

(iv) Let a, € ®. Then, %}%‘% € Z since o, 3 € 9.
Therefore, & is a root system in spang{Bi,...,0n}-

We will now check that {8i,...,8,} is a Z-basis for Z&.

We already have that {£1,...,08,} is a linearly independent set. So, to show that
{Bi1,...,Bn} is a Z-basis for Z®, we must show that every element of & is an integral
linear combination of {31, ...,8,}. (It then follows immediately that every element

of Z® is an integral linear combination of {B1y.--,08n})

Note that for any 1 < 4,j < n, we have sg,(8;) = 5 — %ﬂi € Z{B1,..-,Bn},

38,8
since Tz € Z.

Now, elements of & are of the form 58, 5B, _, 58, (B;) with k € N and 1 <
Jyi1, .. ik < n. We will show that sg, - sg, (85) € Z{B1,...,Bn} by induction on

k.
In the initial case when k = 1, we have from above that sg, (8;) € Z{81,..., 8.}

Suppose that SBi, " SBy (B;) € Z{B1,...,Bn}. Then we can write

S8y, 58, (Bj) = @11 + ... + anfn
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witha; € Zforall1 <1i < n.
But then,
sg;, (36, _, "+ 86, (B5)) = sp, (a1B1+ ...+ anBh)

= a18g, (,@1) + ...+ ansﬁik (ﬂn)

Therefore, since sg, (B1), ..., 3p, (Bn) € Z{f1,...,Bn}, weseethat sg, ---sg, (Bj) €
Z{ﬂl) s 9671}

Therefore, we have that & is a root system in spang{Bi,...,0,} and that {31,...,06n}

is a Z-basis for Z®.

Thus & = &), and the result follows since @}, is isomorphic to ®. [ |
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Chapter 2

Cluster Categories and
Cluster-tilted Algebras

In this chapter, we present the background material that we require on cluster
categories and cluster-tilted algebras. We start by giving the definition of a clus-
ter category of simply-laced Dynkin type, and explaining that the (isomorphism
classes of the) indecomposable objects in such a category are in one-to-one corre-
spondence with the cluster variables of the corresponding cluster algebra. We also
give the definition of cluster-tilting objects in cluster categories, and the definition
of cluster-tilted algebras, which are associated to these. We explain that the one-
to-one correspondence between the indecomposable objects in a cluster category of
simply-laced Dynkin type and the cluster variables of the corresponding cluster al-
gebra induces a one-to-one correspondence between basic cluster-tilting objects and
clusters (and hence seeds). Finally, we discuss how for any given basic cluster-tilting
object in a cluster category of simply-laced Dynkin tvpe, the quiver of the associated
cluster-tilted algebra is the quiver of the matrix appearing in the seed corresponding

to that basic cluster-tilting object.
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2.1 Cluster Categories of Simply-laced Dynkin Type

In this section, following [BMRRT], we give a brief introduction to cluster categories
of simply-laced Dynkin type. We start by defining cluster categories of simply-laced
Dynkin type and stating what the indecomposable objects are in these categories.
Also, we explain that there is a one-to-one correspondence between the set of inde-
composable objects in a cluster category of simply-laced Dynkin type and the set
of almost positive roots of the associated root system. It then follows that there is
a one-to-one correspondence between the set of indecomposable objects in such a
cluster category and the set of cluster variables of the corresponding cluster algebra.
Further links between cluster categories and the corresponding cluster algebras will

be considered in subsequent sections of this chapter.

Note: Refer to [ARS] for general results in representation theory, and [Hap] for

results on derived categories of finite dimensional algebras.

Let k£ be an algebraically closed field and let @ be a simply-laced quiver of Dynkin
type with underlying graph A. Let D = Db(kQ—mod) be the bounded derived
category of the category of finitely generated left kQ-modules with shift functor [1].
Also, let 7 be the AR-translation in D, and define F = 77![1]. (Note that F is an

autoequivalence of D, since both [1] and 7 are autoequivalences of D.)

The cluster category C = C(kQ) is then defined to be the factor category

Db(kQ—mod)

C = i

whose objects are the objects of D, and where morphisms are given by

Home(X,Y) = €D Homp (X, F'Y)
1€EZ
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for objects X,Y in C.

Note: It is easy to show that for any object X of D, we have X is isomorphic to

FX in C.

From [BMRRT, Proposition 1.2], we have that the category C is a Krull-Schmidt
category. Also, it is shown in [Kel] that C is a triangulated category, with the shift
in C induced by the shift in D. We will use [1] also to denote the shift functor in C.

Note that [1] is an autoequivalence of C.

For each finitely generated indecomposable left k@Q-module M, recall that the stalk
complex

e — 00— M —0— -

with M appearing in degree zero is an indecomposable object in D. By identifying M
with this stalk complex, we can consider M as an indecomposable object in D. Let Z
be the set consisting of these indecomposable objects in D and the indecomposable
objects in D of the form P[1] for P a finitely generated indecomposable projective

left kQ-module.

It is noted in [BMRRT, Section 1] that Z contains exactly one representative from
each F-orbit on the set of isomorphism classes of indecomposable objects in D.
Furthermore, considering the elements of Z as objects in C, we have from [BMRRT,
Proposition 1.6] that the elements of Z are, up to isomorphism, the indecomposable

objects in C.

Let ® be the root system of Dynkin type A. Suppose that II = {a1,...,a,} C &
is a simple system of ®, and that ®*, ®>_; are respectively the corresponding sets

of positive and almost positive roots.
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It is clear that Gabriel’s Theorem (see [Gab] and [BGP]) induces a one-to-one cor-
respondence between Z and the set of almost positive roots ®>_;: Let X € Z. If
X is (corresponds to) an indecomposable kQ-module, then define v (X) to be the
positive root corresponding to X as given by Gabriel’s Theorem. If X is of the form
P;[1] where P; is the indecomposable projective k@-module corresponding to the

vertex i of @, then define yo(X) to be —ay.

It immediately follows that the map vg: Z — ®>_; induces a one-to-one correspon-
dence between the set of isomorphism classes of indecomposable objects in C and

I _q.

Let A be the cluster algebra of Dynkin type A.

Recall that Theorem 1.3.1 gave a one-to-one correspondence between the set of
cluster variables of A and ®>_;. Combining this with the above correspondence
provides us with a one-to-one correspondence between the set of isomorphism classes

of indecomposable objects in C and the set of cluster variables in .A.

2.2 Cluster-tilting Objects and Cluster-tilted Algebras

In this section, again following [BMRRT)], we define cluster-tilting sets and cluster-

tilting objects in cluster categories. Also, we introduce cluster-tilted algebras (as

defined in [BMRI1]).

Let k be an algebraically closed field, let Q be a simply-laced quiver of Dynkin type,

with underlying graph A, and let

_ Db(kQ—mod)
C= —
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be the corresponding cluster category.
Firstly, we need a preliminary definition.

DEFINITION 2.2.1 For £ equal to either D or C, and for objects U,V in &, we

define Ext}(U, V) to be Homg (U, V[1]).

It is clear that if X and Y are objects in C, then

Ext(X,Y) = @ Extp(X, F'Y).
iEZ
Also, we note from [BMRRT, Proposition 1.7] that Extlc is symmetric in C. That
is, for all X,Y € C we have Ext}(X,Y) = DExt;(Y,X), where D is the duality

D = Homy( , k).
We can now define cluster-tilting sets and cluster-tilting objects in C.

DEFINITION 2.2.2 A set T of non-isomorphic indecomposable objects in C is
called a cluster-tilting set if Exts(X,Y) = 0 for all X,Y € T, and it is a mazimal

such set.

An object T in C is called a cluster-tilting object if Ext:(T,T) = 0 and T has a

mazimal number of non-isomorphic indecomposable direct summands.

A cluster-tilting object is said to be basic if all of its direct summands are non-
isomorphic. From the above definition, it is therefore clear that an object in C is a
basic cluster-tilting object if and only if it is the direct sum of all objects in some
cluster-tilting set. Note (from [BMRRT, Theorem 3.3]) that all cluster-tilting sets
in C are finite. In fact, the number of objects in any cluster-tilting set is equal to

the number of simple kQ-modules (i.e. the number of vertices of Q).
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DEFINITION 2.2.3 Let T be a cluster-tilting object in C. We call the algebra

Endc(T) a cluster-tilted algebra (of Dynkin type A ).

2.3 Basic Cluster-tilting Objects Correspond to Clus-
ters

The main focus of this section is a result from [BMRRT] which demonstrates another
important link between cluster categories of simply-laced Dynkin type and cluster

algebras.

Recall from Section 2.1, that the indecomposable objects in a cluster category of
simply-laced Dynkin type are in one-to-one correspondence with the cluster variables
of the associated cluster algebra. The result from [BMRRT] we state here shows
that under this correspondence, the basic cluster-tilting objects in such a cluster

category correspond to the clusters of the associated cluster algebra.

With the use of a result from [FZ2], we also make some further remarks on the link

between cluster categories of simply-laced Dynkin type and cluster algebras.

Let k be an algebraically closed field, let @ be an alternating quiver of Dynkin type,

with underlying graph A, and let

c Db(kQ—mod)
F

be the corresponding cluster category. Let A be the cluster algebra of Dynkin
type A. Suppose ® is the root system of Dynkin type A, with simple system

II={o,...,a,} C ® and corresponding set of almost positive roots ®>_1.

Let I be the set of vertices of A. Since A is a tree, we can write I as a disjoint union

I =1, 111, where each of the subsets I;,I_ C I is totally disconnected. We then
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have the compatibility degree ( || ) on pairs of almost positive roots, as defined in

Section 1.2.

We saw in Section 2.1 that there is a one-to-one correspondence between the set of
isomorphism classes of indecomposable objects in C and the set of almost positive
roots ®>_1. If a is an almost positive root, denote the (isomorphism class of the)

indecomposable object in C corresponding to a by M,,.
We have the following important result from [BMRRT, Corollary 4.3].
THEOREM 2.3.1 Let a,8 € ®>_1. Then, (a|8) = dim Ext}(Ma, Mp).

Suppose T is a basic cluster-tilting object in C. Then, each of the direct summands
of T corresponds to an almost positive root, which in turn corresponds tc a cluster
variable in A. Theorem 2.3.1 shows that the set of almost positive roots corre-
sponding to the set of direct summands of T is a maximal compatible set. That
T corresponds to a cluster of the cluster algebra A then follows from the fact that

maximal compatible subsets of almost positive roots correspond to clusters (refer to

[FZ2)).

Theorem 2.3.1 therefore establishes that there is a one-to-one correspondence be-
tween the set of basic cluster-tilting objects in C and the set of clusters of the cluster

algebra A (see BMRRT, Theorem 4.5]).
From [FZ2, Theorem 1.12], we have the following.

THEOREM 2.3.2 Every seed (x, B) in A is uniquely determined by its cluster x.

For any cluster x and any z € x, there is a unique cluster x' with xNx' = x\ {z}.
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Note: Theorem 2.3.2 is known to hold for all cluster algebras of finite type.

As an immediate consequence of this result, we see that there is a one-to-one corre-
spondence between the set of basic cluster-tilting objects in C and the set of seeds

of A.

DEFINITION 2.3.3 If T ® X is a basic cluster-tilting object in C and X is an
indecomposable object in C, then we call T an almost complete basic cluster-tilting

object in C, and we call X a complement of T.

As a consequence of Theorem 2.3.2, we see that if T is an almost complete basic
cluster-tilting object in C, then there are (up to isomorphism) exactly two ways to
complete T to a basic cluster-tilting object in C. That is, up to isomorphism, there
are exactly two complements M, M* of T such that M % M*. (For a representation

theoretic proof of this fact, refer to [BMRRT, Theorem 5.1].)

2.4 The Quivers of Cluster-tilted Algebras

We have now seen that for any basic cluster-tilting object T in a cluster category,
there is a corresponding seed in the associated cluster algebra. We conclude this
chapter by considering the main result of [BMR2] which shows that the quiver of
the cluster-tilted algebra associated to T' is the same as the quiver associated to the
seed corresponding to 7. (Note that this result was also independently obtained in

[CCS2, Theorem 3.1].)

Let k be an algebraically closed field, let Q (with n vertices) be an alternating quiver

of Dynkin type, with underlying graph A, and let

_ Db(kQ—-mod)

¢ F
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be the corresponding cluster category.

Let T be a basic cluster-tilting object in C, let A be the cluster-tilted algebra A =
End¢(T)°P, and suppose that Q4 is the quiver of A. From [BMR2, Proposition 3.2],
we have that Q4 has no loops and no oriented cycles of length two. Therefore, we
can associate an n x n skew-symmetric integer matrix X = (z;;) to Qa, with rows
and columns indexed by the vertices of Q5. If there is at least one arrow from 7 to
J in Qa, we set x;; to be the number of arrows from i to j in Q4. If there are no

arrows between i and j, we set z;; = 0. Otherwise, we set z;; = —zj;.

Clearly there is a one-to-one correspondence between the set of quivers with n
vertices, no loops and no oriented cycles of length two, and the set of n x n skew-
symmetric integer matrices with rows and columns indexed by the vertices of these

quivers.
From [BMR2, Theorem 1.3] we have the following important result.

THEOREM 2.4.1 Let T be an almost complete basic cluster-tilting object in C
with complements M and M*. Let A, A’ be the cluster-tilted algebras A = End¢(T @
M)°P A" = Ende(T © M*)°P and suppose that their quivers are Qa and Qyr Te-
spectively. Fix an ordering on the vertices of Qa and suppose that the vertex of Q4
corresponding to M isl. Then, Qa and Qy, or equivalently the matrices Xx = ()

and Xpr = (z{;), are related by the formulas

o - —Zy; ifi=1orj=I,
e Ti; + lruleytealzyl 5 eyl oiherwise.

Let A be the cluster algebra of Dynkin type A with initial seed ({z1,...,2zs}, Bo)

such that the quiver associated to By is Q.

We then have the following corollary of Theorem 2.4.1.
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COROLLARY 2.4.2 Let T be a basic cluster-tilting object in C and suppose that
the seed of the cluster algebra A corresponding to T is (y,B). If X5 is the matriz
associated to the quiver Q4 of the cluster-tilted algebra A = End¢(T)°P, then Xy = B
(identifying indecomposable objects in C with the corresponding cluster variables in

A). Hence, Qp is the same as the quiver associated to the skew-symmetric matriz

B.

Proof From [BMR2, Section 6).

In view of Theorem 2.4.1, we just need to show that there is some basic cluster-tilting
object Tp in C such that the quiver of the cluster-tilted algebra Ag = End¢(Tp)P is
the same as the quiver of the seed corresponding to Tp. (The result then follows by

induction using Theorem 2.4.1.)

For each ¢ € {1,...,n}, let P; be the indecomposable projective kQ-module corre-

sponding to the vertex 7 of Q.

Consider the cluster-tilted algebra Ag = End¢(7p)°P where Ty is the cluster-tilting
object Tp = P1[1] & ... ® P,[1]. Since [1] is an autoequivalence of C and since kQ =
P @...® P,, we have that Ag = End¢(kQ)°P. Therefore, Ag = Endg(kQ)°P = kQ,

and hence the quiver of Ag is Q.

Under the correspondence between indecomposable objects in C and cluster vari-
ables in A, recall that for each ¢, the cluster variable corresponding to B;{1] is z;.
Therefore, the seed corresponding to Ty is ({z1,...,Zn}, Bo). This completes the

proof since the quiver of By is also Q. |

Let T be a basic cluster-tilting object in C and suppose that the seed of the cluster

algebra A corresponding to T is (y,B). From Corollary 2.4.2, we have that the



quiver associated to B is the same as the quiver of the cluster-tilted algebra A =
End¢(T)°P. But also, from Corollary 1.5.3, we have that if A = (a;;) is a positive
quasi-Cartan companion of B and & is the root system associated to .4, then there
is a subset {f1,...,08,} C & which is a Z-basis for Z& such that a;; = (3}, ;) for

all 1 <4, <n.

This establishes a link between any given cluster-tilted algebra and the Z-bases
(consisting of roots) of the root lattice of the associated root system that give rise
to positive quasi-Cartan companions of the exchange matrix from the corresponding

seed of the associated cluster algebra.

Our research in subsequent chapters will focus on further examination of this link.
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Chapter 3

Companion Bases

The main focus of this chapter is the study of a particular collection of Z-bases
of the integral root lattice of a root system of simply-laced Dynkin type. To be
precise, we study those Z-bases of roots whose associated matrix of inner products
is a positive quasi-Cartan companion of an exchange matrix of the corresponding
cluster algebra. The definition of these Z-bases, which we call companion bases, is

motivated by Corollary 1.5.3.

In view of Corollary 2.4.2, companion bases are associated with the quivers of the
cluster-tilted algebras of simply-laced Dynkin type. Moreover, the elements of a
companion basis for the quiver of a given cluster-tilted algebra of simply-laced

Dynkin type are naturally indexed by the vertices of that quiver.

We start this chapter by giving the definition of a companion basis for the quiver of
a given cluster-tilted algebra of simply-laced Dynkin type. Our initial aim is then to
find a method which allows us, given a cluster-tilted algebra of simply-laced Dynkin
type, to construct a companion basis for its quiver. The latter part of this chapter

is devoted to examining the relationship between different companion bases for the

36



same quiver, with the main result here giving a complete (theoretical) description

of all of the companion bases for any given quiver.
Throughout this chapter, we keep the following set-up.

Let k be an algebraically closed field, let Q (with n vertices) be an alternating quiver

of simply-laced Dynkin type, with underlying graph A, and let

_ Db(kQ — mod)
C= ——

be the corresponding cluster category.

Let A be the cluster-tilted algebra (of simply-laced Dynkin type) given by A =
End¢(T)°P, where T is a basic cluster-tilting object in C. Let A be the cluster
algebra of Dynkin type A, and suppose that (x, B) is the seed in A corresponding
to the basic cluster-tilting object T. We then have by Corollary 2.4.2 that I' = I'( B)
is the quiver of A. Write I' = (I'g,I';), where I'g is the set of vertices of I, and Ty

is the set of arrows of I

Let & C V be the root system of Dynkin type A where V is a Euclidean space with
positive definite symmetric bilinear form ( , ), and let IT = {ay,...,a,} be a simple

system of ®.

3.1 Companion Bases and Companion Basis Mutation

We start by giving the definition of a companion basis for I". Then, after introducing
a standard quiver mutation procedure, we obtain the main result of this section. This
result establishes a companion basis mutation procedure that, given a companion

basis for I', produces a companion basis for any mutation of T
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In the following section, we explain how iterated companion basis mutation gives
a method for finding a companion basis for the quiver of any given cluster-tilted

algebra of simply-laced Dynkin type.

The companion basis mutation procedure we introduce here also has some other
interesting consequences, as we will see when we give it further consideration in

Chapter 6.

DEFINITION 3.1.1 We call a subset {y;:z € T'v} C ® a companion basis for
T = T'(B) if it satisfies the following properties:

(i) {Vz:x € Ty} is a Z-basis for Z®.

(i) The matric A = (agzy) given by azy = (Va,7vy) for all z,y € Ty is a positive

quasi-Cartan companion of B.

In this case, we will also often refer to {v;:xz € To} as a companion basis for T’

giving Tise to the positive quasi-Cartan companion A of B.

We note that the elements of any candidate companion basis for I" are indexed by
the vertices of I". But also, the vertices of " correspond to the rows and columns of
the matrix B, and hence to the elements (cluster variables) of the cluster x. So, we
can consider the elements of any candidate companion basis for I as being indexed
by the cluster variables of x. We note that it therefore makes sense to ask whether
or not the matrix of inner products defined by any given candidate companion basis

for T is a positive quasi-Cartan companion of B.

We can slightly simplify Definition 3.1.1 as a consequence of the following simple

result.

LEMMA 3.1.2 If {z1,...,2,} C V is a basis for V, then the matriz C = (c;;)

given by c;; = (24, 25) for all 1 < 14,7 < n is positive definite.
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Proof The result follows since the symmetric bilinear form ( , ) is positive

definite. |
We have the following corollary.

COROLLARY 3.1.3 If {m1,...,m} C ® is a Z-basis for Z®, then the matrix
A = (a;5) given by a;; = (vi,7;) for all 1 < 4,5 < n is a positive quasi-Cartan

matriz.

Proof Itisclearthat {v,...,v,} must be abasis for V since V = spang{y1,...,}
and dimgV = n. (Note that & C spang{vi,...,Vn} and so V = spang® C
spang{y1,...,Yn} € V.) We can therefore apply Lemma 3.1.2 to deduce that A
must be positive definite. Also, we see that A must be symmetric with a;; = 2 for

all1 <7< n. ||

We can thus modify the definition of a companion basis for I" by replacing condition

(ii) above with:

(ii)’ The matrix A = (asy) given by azy = (Vz,7y) for all ,y € I'g is a companion

of B. That is, |azy| = |bgy| for all z # y, z,y € Ty.

Corollary 1.5.3 gives the existence of a companion basis for I". Moreover, it tells us
that for any positive quasi-Cartan companion A’ of B, there is a companion basis
for " giving rise to A’. We will now start working towards obtaining a method for
constructing a companion basis for the quiver of any given cluster-tilted algebra
of simply-laced Dynkin type. In preparation for introducing our companion basis

mutation procedure, we must first outline the process of quiver mutation.

Let £ be a vertex of I'. The vertex k corresponds to a row and column of B, and

hence to a cluster variable z; € x. Mutating the seed (x, B) in the direction zj, we
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obtain a new seed (x', B'). We then call I = I'(B’) the quiver obtained from I' by

mutating at the vertex k.

Suppose T" is the basic cluster-tilting object in C corresponding to the seed (x', B).

Then, we have that IV is the quiver of the cluster-tilted algebra A’ = End¢(T")°P.

Note: It’s a trivial observation that if we mutate IV at the vertex k, we recover T

We now give an explicit description (refer to [FZ2, Section 8]) of the quiver I"

obtained from I'" by mutating at the vertex k, relying solely on the quiver I' itself.

Recall (from Remark 1.1.6) that all matrices appearing in seeds of cluster algebras
of Dynkin types A, D and E are skew-symmetric integer matrices whose entries
belong to the set {0,+1}. (This means that between any pair of vertices in the
quiver of a cluster-tilted algebra of simply-laced Dynkin type there is at most one
arrow, and there are no loops on any vertex.) Making use of this information, the
following can be obtained via the matrix mutation formula which appears in the

definition of a cluster algebra:

Suppose I" is the quiver obtained from I' by mutating at the vertex k. We may
identify the vertices of I with those of I'. Then, the arrows appearing in I are the

same as those appearing in I", except in the following cases:

(i) All arrows incident with k in ' are replaced in I by the corresponding reversed

arrows.

(i) Suppose z and y are vertices such that there is an arrow from z to k in ' and

an arrow from k to y in I". Then,
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(a) there is an arrow from z to y in IV if z and y are not joined by an arrow

in T,

(b) z and y are not joined by an arrow in I if there is an arrow from y to

z in T

The following result introduces the concept of companion basis mutation which gives
us a way of obtaining companion bases for I'' (and hence companion bases for any
quiver that can be obtained from I' by performing a sequence of quiver mutations)
from companion bases for I'. Apart from helping us with our initial aim, this concept

will also play an important role in the proof of our main result of Chapter 6.
THEOREM 3.1.4 Let {y,:z € Ty} C ® be a companion basis for I'. Then,

(i) the set {y,:z € Ty} C @ given by

i | sy (y2) if there is an arrow from x to k in T,
Yo = o otherwise

is a companion basis for I';

(ii) the set {v,:z € Ty} C @ given by

v | Sy.(vz) if there is an arrow from k to x in T,
z Yz otherwise

is a companion basis for T".

We refer to {~,:x € T')} as the companion basis for I obtained from {vz:z € Ty}
by mutating inwardly at k, and we refer to {v):x € Ty} as the companion basis for

I obtained from {v,:z € Ty} by mutating outwardly at k.
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Proof We only need prove (i); the proof of (ii) is similar.

We have that {v,:z € Ty} C @ is a Z-basis for Z®, and the matrix A = (azy) given
by azy = (V2,vy) for all z,y € T is a positive quasi-Cartan companion of B. We
must show that {y,:z € [y} C @ is a Z-basis for Z®, and the matrix A’ = (a;,)

given by ay, = (7;,7,) for all z,y € T is a companion of B'.
We start by checking that {y,:z € I'y} is a Z-basis for Z®.

Let z € Z&. Since {y;:x € T} is a Z-basis for Z&, we can write 2 = ) 07z

with a, € Z for all z € T'g.

Let « be a vertex of T'. If there is an arrow from z to k in T, we have v, = 54, (7z) =

Yz — (Vz, Yk )Yk- Otherwise, we have v, = ;.

Therefore, we have

z = Zaaﬂ’z = Zaw7x+zaz7r

z€lg z-»k z—k
= Z aa:'Y;: + Z am(')’;: + (’Ymv’Yk)")’;c)
x-»k z—k
= D@t Y @+ Y a(ve )%
-0k z—k z—k
= Zam%lp + (ak + Z am(’Ya:aVk)) 'Y;c’
z#k z—k

thus showing that we can write z as an integral linear combination of the roots v,

for z € Ty,

To establish the Z-linear independence of the set {y,:z € I'y}, we note that if
errg czYe = O with ¢, € Zforallz € I'g, then 3°_ . cavot(ck — Dp sk Co(Vas 1)) Ve =
0. Therefore, we must have ¢, = 0 for all z € I'{;, due to the Z-linear independence

of the set {v,:z € I'o}.
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In order to check that A’ is a companion of B’, it is sufficient to check that (v},7}) =
+1 whenever the vertices 4 and j are joined by an arrow in I', and (7;,7;) = 0
otherwise. (We note that all entries of B’ belong to the set {0,+1}, and moreover,

that 4 and j are joined by an arrow in I' if and only if b}; = £1.)
Let z be a vertex in I', = # k.

If z and k are not joined by an arrow in I', then they are not joined by an arrow in

I'. Also, we have v}, = v and v, = vz, and s0 (Y}, ;) = (1, ¥z) = 0.

If there is an arrow from k to z in I, then there is an arrow from z to k in . Also,

we have 7, = 7 and 5 = 7z, and 50 (Y4, 75) = (76 %) = £1.

If there is an arrow from z to k in I, then there is an arrow from k to z in I'. Also,

we have v}, =y and v, = s+, (72), and 50, (V,V2) = (VsS4 (Vz)) = (7o (W), ¥2) =

_('Yka’y:t) € {il}
Let y be another vertex in I, y # k, z.

If there is no arrow from z to & in I', and no arrow from y to k in I', we see that
Yz = Yz and 7y, = vy, and 80 (7;,7y) = (7z,7y). Note also that the full subquiver
of T on the vertices z and y must be the same as the full subquiver of I on the

vertices  and y.

Therefore, from now on, we will assume (without loss of generality) that z is fixed

such that there is an arrow from z to k in I

We want to compute (7,,7,) and show that it is equal to +1 if and only if z and y
are joined by an arrow in I/, and equal to 0 if and only if  and y are not joined by

an arrow in I,
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Case 1: We will start by considering the case where x and y are joined by an arrow

in I'. By assumption, we have (vz,7y) = £1.

There are two possibilities.

Case 1.1: Suppose k and y are not joined by an arrow in I'. Then, the arrow joining

z and y in T also appears in IV.

r r’
Yy Y

We have v}, = Yk, ¥z = 84 (V2) = Y2 — (Y2, W) Vk» and 7y, = . So,

VoY) = (5 (2), ) = () = (0 M) (e W)

= (Y2 1)
since (yk,7vy) = 0.

Hence, (v;,7y) = =1.

Case 1.2: Suppose k and y are joined by an arrow in I'. Then, there is a triangle
in T" on the vertices k,z,y. This triangle must be cyclically oriented (since it is a
chordless cycle in I'). Therefore, since the arrow joining k and z has head k, the
arrow joining k£ and y must have head y, and the arrow joining z and y must have

head z. It follows that z and y are not joined by an arrow in I".

T r’
Y Y
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We have v;, = Yk, 7 = Sy, (Y2) and v, = vy So, (72 1) = (V2 Vo) = (Yz» V) (Vs 1) -

Now, since A is a positive quasi-Cartan companion of B, it follows from Proposi-
tion 1.4.6 that an odd number of (7, vy), (72, 7%) and (7k,vy) are positive. We thus

have the following possibilities:

(e 1) (o) (1) (Yo )
1 -1 ~1 0
~1 1 -1 0
~1 ~1 1 0
1 1 1 0

Therefore, we see that we must have (v;,7,) = 0.

Case 2: We will now consider the case where z and y are not joined by an arrow in

I'. By assumption, we have (y.,7,) = 0.
There are three possibilities.

Case 2.1: Suppose k and y are not joined by an arrow in I'. Then, ¢ and y are not

joined by an arrow in I".

r r
T——k r<—Fk
Y Y

We have v}, = vk, 7, = 8+, (72) and 7, = 7. So,

(VoY) = (oY) = (0 ) (Vs W)

= 0

since (7z,7vy) = 0 and (yk,7y) = 0.

45



Case 2.2: Suppose that there is an arrow from y to k in I'. Again, we see that z

and y are not joined by an arrow in I".

r r
r—-%k r<~————k%k
Yy )

We have 7, = Vi, Y = 8y, (72) and vy, = 84, (V). S0, (V20 7y) = (59 (Va)s Sy (W) =

(725 'Yy) = 0

Case 2.3: Finally, we suppose that there is an arrow from k to y in I". In this
case, we see that k,z,y are the vertices of a cyclically oriented triangle in I'. In

particular, we have that = and y are joined by an arrow (from z to y) in I".

r I
r———————>L $<——k
Yy Y

We have v;, = Yk, 7y = S+, (72) and v, = 7. So,

Ve vy) = (Yo 1) = (v 1) (Vs 1)

= _(IYEa’Yk)(’Yka'Yy) € {:tl}

since ("}’m,’}’y) =0 and (’ha’)’k)a (7]6)’7}/) € {:t]'}

This completes the proof that {y,:z € Ty} is a companion basis for I". |

3.2 A Companion Basis Construction Procedure

We can now complete our initial aim by showing how we can construct a companion

basis for I'. The key step here is to exhibit a companion basis for a quiver (of a
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cluster-tilted algebra of simply-laced Dynkin type) from which we can obtain ' by
applying a sequence of quiver mutations. We may then apply the companion basis

mutation procedure introduced in Theorem 3.1.4 to yield the desired result.

Due to the classification of the cluster algebras of finite type (Theorem 1.1.5), we
have that there is some seed (xg, Bg) in A such that the Cartan counterpart A(Bg)

is a Cartan matrix of type A. In particular, the quiver I'(Bp) must be an orientation

of A.

By Theorems 2.3.1 and 2.3.2, the seed (xg, By) corresponds to a basic cluster-tilting
object Ty in C. Let Ag = End¢(Tp)°P be the associated cluster-tilted algebra. It

follows from Corollary 2.4.2 that 'Y = T'(By) is the quiver of Ag.

Recall that IT = {a, ..., an} is a simple system of . We therefore have by definition
that {ai,...,a,} is a Z-basis for Z®. So, it follows from Corollary 3.1.3 that the
matrix A = (@) given by a;; = (au, ;) for all 1 <4, j < nis a positive quasi-Cartan
matrix. Moreover, we see that A must be a companion of By (up to simultaneous
reordering of the rows and columns of Z, that is, up to reordering of aj,...,a,)

and therefore, we have that IT is a companion basis for I'0.

Note: To see that Aisa companion of By (up to simultaneous reordering of rows
and columns) we firstly note that all entries of By must belong to the set {0,+1}.
Secondly, we note that all of the off-diagonal entries of A must also belong to the
set {0,+1}, since inner products of pairs of non-proportional roots always belong to

this set in root systems of Dynkin types A, D and E (refer to Lemma 1.2.4).

We now have, at least in theory, a method for finding a companion basis for T

Since B and By are both matrices appearing in seeds in 4, then they are mutation
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equivalent. In particular, we must be able to obtain I" from I' by applying a sequence
of quiver mutations. So, by applying the corresponding sequence of companion
basis mutations to the companion basis II for I'" (with iterated applications of

Theorem 3.1.4(i)), it follows that we obtain a companion basis for T'.

Of course, in practice, this method of finding a companion basis for I' could be
difficult to apply, as it requires us to find a sequence of quiver mutations that takes
us from I'% to I'. However, at the very least, we have given another proof of the
existence of a companion basis for the quiver of any given cluster-tilted algebra of

simply-laced Dynkin type.

3.3 Sign Changes in Companion Bases

Having now seen a method enabling us to construct a companion basis for I'; our
main focus throughout the remainder of this chapter will be on attempting to give
a complete description of all of the companion bases for ' We will do this by

examining the relationship between arbitrary companion bases for I'.

We start, in this section, by showing that the companion bases for T' giving rise
to a chosen positive quasi-Cartan companion of B differ from those giving rise to
a distinct chosen positive quasi-Cartan companion of B only by the signs of their
elements. In the next section, we will then consequently only need to consider the
relationship between the companion bases for I which give rise to some fixed positive

quasi-Cartan companion of B.

Let {v;:z € T9} € ® be a companion basis for T". It is natural to ask if we can use

this companion basis to help us to find further companion bases for I". Here, we
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show that from this companion basis we can exhibit, for any positive quasi-Cartan
companion of B, a companion basis for I' giving rise to that positive quasi-Cartan

companion of B.

Let A = (ayy) be the matrix given by azy = (7z,7y) forall z,y € I'y. We have that A
is a positive quasi-Cartan companion of B. Let A be another positive quasi-Cartan

companion of B.

Since A = A(B) is a cluster algebra of finite type, we see that A is the unique
positive quasi-Cartan companion of B up to simultaneous sign changes in rows and
columns (due to the results of Section 1.4). That is, by applying simultaneous sign
changes in the rows and columns of A, we can obtain all positive quasi-Cartan
companions of B. Note also, that all matrices obtained in this way are positive

quasi-Cartan companions of B.

In particular, A can be obtained from A by applying simultaneous sign changes in

some collection I of rows and columns of A.

Suppose that A = (@zy) is the matrix obtained by simultaneously changing signs in
row and column k of the matrix A for some k. Also, suppose that {,:z € To} C ®
is obtained by setting 4, = 7, for z # k, and 4 = —~,. We then have the following

simple result.

LEMMA 3.3.1 {#;:z € I'g} is a companion basis for ' giving rise to the positive

quasi-Cartan companion A of B.

Proof Since {y,:z € Ty} is clearly a Z-basis for Z®, we need only check that

(F2+Yy) = @ay for all z,y € Ty.
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If z,y # k, then (%2,%y) = (Ye, V) = Gay = Gay.

For y # k, we have (Y, %y) = (=7k»Vy) = —Qky = iy, and similarly, (3, 5%) = ayr-
Also, (Yk, k) = Gk = 2. u
As an immediate consequence of Lemma 3.3.1, we have the following.

COROLLARY 3.3.2 The subset {F,:z € Tg} C @ given by

? Y. ifzel

is a companion basis for I' giving rise to A.

This result tells us that in order to give a complete description of all of the companion
bases for I', we now only need describe those that give rise to some fixed positive
quasi-Cartan companion of B. (This is because an arbitrary companion basis for I'
differs from one giving rise to the fixed positive quasi-Cartan companion of B, only

by the signs of its elements.)
3.4 A Description of all Companion Bases for I

We now focus our attention on the companion bases for I" that give rise to some fixed
positive quasi-Cartan companion A of B. We start by fixing an arbitrary companion
basis for I" giving rise to A, and then proceed to show that we can obtain all other
such companion bases for I' from this initial companion basis. This enables us to
give a complete description of all of the companion bases for I', in terms of the given

initial companion basis.

Let {y;:2 € T'o} C @ be a companion basis for I' and suppose that A = (agy) is the

positive quasi-Cartan companion of B given by azy = (Vz,7y) for all z,y € Tp.
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Firstly, we show that we can use the companion basis {v,:z € I'o} to find more

companion bases for I' that give rise to A.

Let W be the Weyl group of ®. We then have the following simple result.

LEMMA 3.4.1 For any w € Ws, both {wyy:z € Ty} C @ and {—~wy:z € To} C
® are companion bases for T' giving rise to the positive quasi-Cartan companion A

of B.

Proof Let w € Ws. Then, w is an orthogonal linear transformation of V' which
permutes the set of roots ®. From this, we can deduce that {w~y;:z € I'g} C &
must be a companion basis for I giving rise to A. It then follows immediately that

{—~wy,:z € Tp} C @ is also a companion basis for I" giving rise to A. ||

The result of Lemma 3.4.1 leads us to ask whether or not we can describe all of the
companion bases for I that give rise to A in terms of the “initial” companion basis
{7z: @ € Tp}. The following well known result will provide the key in helping us to

answer this question.

PROPOSITION 3.4.2 Suppose p:V — V is an orthogonal linear transformation

which permutes the set of roots ®. Then, there is some w € Wg such that Il = wll.

Proof Since ¢ permutes the set of roots ®, it is easy to see that oIl is a vector
space basis for V. If « € @, we can write a = Z?—:l c;a; with either ¢; > 0 for all
1<i<n,ore <0foralll<i<n. Butthen, since pa = > c;o(a;), and
again using the fact that ¢ permutes the set of roots ®, we see that each o € & is a
linear combination of Il with all coefficients being non-negative, or all coefficients

being non-positive. Therefore, (Il is a simple system.
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Now, from [Hum2, Theorem 1.4] we have that any two simple systems of & are
conjugate under Wg. Therefore, since Il is a simple system, we see that there is

some w € Wg such that @Il = wll. [ ]

Let {§,:z € Ty} C ® be another companion basis for I' giving rise to A. We aim to

describe this companion basis in terms of the companion basis {v,:z € I'g}.

Define a map T:V — V by specifying T(vy,) = 4, for all z € Ty, and extending
linearly. By definition, we have that T is an invertible linear transformation. So,
in order to be able to apply Proposition 3.4.2 to T, we must show that 7' is an

orthogonal transformation which permutes the set of roots ®.
Checking the orthogonality of T is a simple task.
LEMMA 3.4.3 The map T:V — V is an orthogonal transformation.

Proof The result follows as an easy consequence of the fact that (vz,vy) = (dz, dy)

for all z,y € Ty. |

The following result provides the main step towards establishing that T' permutes
the set of roots ®. The proof we present is an analogue of the first two parts of the
proof of [Hum2, Theorem 1.5]. Before stating this result, we first give a preliminary

definition.

DEFINITION 3.4.4 Let o € ®. Since {y,:z € 'y} C @ is a companion basis,
we can write o uniquely in the form a = Zmero CzYz With ¢, € Z for all xz € Ty.
We then define Zzero lcz| to be the height of o with respect to the companion basis

{’yl.: IS Fo}.
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PROPOSITION 3.4.5 Let Wg be the Weyl group of & and suppose that W' is
the subgroup of Wa generated by the reflections s., for x € T'g. Then, for any a €

there exists w € W’ and ¢ € T'g such that a = wy,.
Proof Let a € ® and consider the non-empty subset W'a C ®.

Let § be an element of W'a of minimal height with respect to the companion basis

{7z:z € To}. We claim that § = £+, for some y € Ty.

Since {yz:z € T} C & is a companion basis, we can write § = ) .p cz¥, With
cz € Z for all z € To. We have 0 < (6,8) = >_ cp, ¢2(8,72), and therefore, there

must be some y such that c,(4,v,) > 0.

If 6 = +7,, then we are done. Suppose that this is not the case and consider the

root

5y,(6) = 6 —(8, 1)y
= Z cze — (6, 1) vy
z€Tly

= Z ceVe + (cy — (8,7)) Yy € Wa
Ty

Now, we have cy(d,vy) > 0. So, there are two possibilities:

(i) ¢y > 0 and (8,7y) > 0,

(i) ¢y < 0 and (4,7y) < 0.

In case (i), using Lemma 1.2.4, we see that ¢, — (6,v,) = ¢y — 1 < ¢y, and moreover,

that |cy, — (J,7y)| < |eyl-

In case (ii), using Lemma 1.2.4, we see that |c, — (6,7y)| = |ey + 1] < |yl
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Therefore, in either case we see that the height of s, () with respect to the com-
panion basis {v,:z € T'g} is less than the height of § with respect to the companion

basis {v,:z € [p}. This is a contradiction.
So, we must have that § = Fry,.

In particular, there is some w € W’ such that either wa = 7, or wa = —7,. In the
former case, we write o = w'vy, by taking w’ = w™! € W', and in the latter case,

we write @ = w'yy by taking w' = (sy,w)' =wls,, € W. [ |
As an immediate consequence of the above, we have the following corollary.

COROLLARY 3.4.6 Ifa € ®, then we can write o in the forma = sy, -+ sy, ()

with x1,...,2,y € Ty.

Note: Let W' be as given in Proposition 3.4.5. The third part of the proof of

(Hum?2, Theorem 1.5] establishes that W/ = Ws.

Recall that we had defined an orthogonal linear transformation 7:V — V by ex-
tending linearly the map sending ~, to 4, for all z € T'g. We were hoping to show
that this map permutes the set of roots ®. We will be able to do this by combining

the result of the following lemma with that of Corollary 3.4.6.
LEMMA 3.4.7 If v is a root, then Tsy = s(,)T.

Proof The result follows from the fact that 7" is an orthogonal linear transforma-

tion. |

PROPOSITION 3.4.8 T permutes the set of roots ®.
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Proof Let a be a root. From Corollary 3.4.6, we see that we can write « in the
form a = s,, -84, (1) with z1,..., 24,y € [o. But then, (repeatedly) applying

Lemma 3.4.7, we see that

Ta = s7(y,y) * 57(1,) (T (W) = 85, -~ 86,, (8y)-

In particular, T« is a root since §,,...,d;,,d, are all roots.
The result then follows since T is invertible. [ |

By applying Proposition 3.4.2 to T, we are now able to prove the following result
which gives useful insight into the relationship between the companion bases {v,: z €

I'g} and {6z:z € Tp}.

LEMMA 3.4.9 There is some w € Wg and some orthogonal linear transformation

0:V — V which permutes II such that 6, = wo~y, for all x € T'y.

Proof By Proposition 3.4.2, we have that there is some w € Ws such that T1I =

wll.

Define 0 = w™'T:V — V. It is immediate that o is an orthogonal linear transforma-
tion. Moreover, since TTI = wII, we see that w™!TTI = II, and so w™ T permutes the
set of simple roots II. The proof is completed by noting that wo(vy,) = T(v.) = 8z

for all z € T'g. |

Note: Given Proposition 3.4.8, the fact that Lemma 3.4.9 holds is essentially

contained in [Sam, p.87].

We will now see that the converse of Lemma 3.4.9 also holds.
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LEMMA 3.4.10 Let w € Wy and let p be an orthogonal linear transformation of
V that permutes II. Then, the subset {wpy,:xz € To} C & is a companion basis for

T' giving rise to A.
Proof We start by checking that {wpvy,:z € T} C ®.

Given any root a, we have from [Hum2, Theorem 1.5 & Corollary 1.5] that a can
be written in the form a = sq, - sa,, (@) for some aiy,..., 04, 5 €I, with ¢ € N

and 1 <14q,...,4,J < n.
Since p is an orthogonal linear transformation, it is easily seen that

pa = Sp(ail) tee Sp(ait)(p(aj))a

and therefore, since p permutes II, we deduce that pa € ®. Consequently, we see

that {wpy,:z € Tg} C ® and that p permutes the set of roots ®.

Since w and p are both orthogonal linear transformations, it is clear that
(WpYe, wpYy) = (VarYVy) = Gazy for all z,y € Tg. Therefore, it just remains to

be checked that {wpy,:x € T'g} is a Z-basis for Z®.

Let z € Z®. We want to write z as an integral linear combination of the roots wpy,

for z € I'g.

Since w™! € Wg is an orthogonal linear transformation of V that permutes ®, we see
that w™!z € Z®. Furthermore, it is clear that p is invertible (since p permutes IT),
and that the inverse map p~!:V — V is also an orthogonal linear transformation
of V that permutes II, and moreover, permutes ®. (Note that if u,v € V, then

1

(p~lu, p~1v) = (pp~'u, pp~1v) = (u,v), using the orthogonality of p.) We thus have

that p~lw™1z € Z®.
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1 1

Therefore, since {v;: ¢ € To} is a Z-basis for Z®, we can write p~ ' w™" 2 = >__p 0zVe

with a, € Z for all z € T'y. In particular, we have

s = wp(p w2

= wp Z Az Yz

z€lg

= Z Az WP Yz

zeclg

as required.

In order to check the Z-linear independence of {wpvy,:z € TI'o}, we suppose that
Zzél"o azwpy, = 0 with a, € Z for all z € T'g. The result then follows from the
Z-linear independence of {,:x € Ty} since p~lw™! Zzel‘g Az WPV = Zzero ApYz =

0. ]
We have now established the following result.

THEOREM 3.4.11 The companion bases for T' that give rise to A are precisely
the sets of the form {wovyz:z € T'o} C @, where w € Wg and o is an orthogonal

linear transformation of V' that permutes II.
In view of Section 3.3, we also have the following corollary.

COROLLARY 3.4.12 The companion bases for I' are precisely the sets of the
form {e,woy,:x € To} C @ where w € W, o is an orthogonal linear transformation

of V that permutes I, and €, € {£1} for all z € Ty.

We note that a complete description of the orthogonal linear transformations of
V that permute IT is well known (and easily obtained) in each of the simply-laced

Dynkin cases. (Refer to [Bou, Chapter VI Section 4], for example.) In each case,
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these may be interpreted as the graph automorphisms of the corresponding Dynkin

diagram.

We have now given a complete description of all of the companion bases for I in

terms of the (arbitrary) initial companion basis {y,;:z € I'o}.

Note: In principle, this establishes a method of constructing all of the companion
bases for I'. Recall that in Section 3.2 we outlined a procedure for constructing an
initial companion basis for I". Therefore, using Corollary 3.4.12 (together with a
description of the orthogonal linear transformations of V' that permute IT), we may
then construct all of the other companion bases for I' from this initial companion

basis.

3.5 A Refined Description of Companion Bases in Type
A

For this section, we restrict our attention to only the Dynkin type A, case. We

show that in this case, we can refine the result of Theorem 3.4.11.

Let {v.:z € T'g} C ® be a companion basis for I. Also, suppose that 4 = (azy) is

the positive quasi-Cartan companion of B given by azy = (z,7y) for all z,y € Ty.

From Theorem 3.4.11, we have that the companion bases for " giving rise to A
are precisely the sets of the form {wovy,:z € I'v} C ® where w € W3 and o is an
orthogonal linear transformation of V' permuting II. (Note that since @ is the root
system of Dynkin type Ay, then Wg = Sp,41, the symmetric group on n + 1 letters.)

By considering the possible choices for o, we can refine this description.
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Suppose the simple system Il = {az, ..., a,} of ® is chosen such that (o;, o;41) = —1

forall1 <i<mn-1,and (og,;) =0 for all 1 <7 < j < n otherwise.

For n > 2, it is then easily established that there are just two orthogonal linear
transformations of V' that permute II. These are the identity map on V and the
map o:V — V given by setting o(a;) = any1—; for all 1 < i < n and extending
linearly. (Note that in the Dynkin type A; case, the identity map on V is the only

orthogonal linear transformation of V' that permutes II.)

Using this information, we obtain the following result.

THEOREM 3.5.1 The companion bases for I' giving rise to A are precisely the

sets of the form £{wvy:z € Ty} with w € Ws.

Proof We start by noting that all sets of the form +{w~;:z € T'o} are companion
bases for I' giving rise to A by Lemma 3.4.1. We therefore just need to prove that

all of the companion bases for I" giving rise to A are of the stated form.

In the n = 1 case, this is clear.

Suppose n > 2 and let {§;:z € Ty} C ¢ be a companion basis for I' giving rise to
A. We have that §, = woy, for all z € 'y, for some w € Wg and some orthogonal

linear transformation o: V — V permuting II.

We saw above that there are only two possible choices for o. One possibility is that
o is the identity map on V, in which case it follows immediately that §, = wv,
for all z € T'g. The other case to consider is where ¢ is the map given by setting
o(a;) = an+1—; for all 1 <4 < n, and extending linearly. In this case, we will show

that there is some v € Wg such that §, = —v+y, for all z € T'g.
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Now, if wg is the longest element in Wg, then it is well known (and not hard
to show) that wo(e;) = —apt1-; for all 1 < ¢ < n. Therefore, woo(;) = —a;
for all 1 < i < n. So, wgo is minus the identity map on V. But, there is a
unique element v € Wgs such that w = vwg. For this choice of v we see that

bp = WOy, = VWEOYy = —VY, for all z € TY.
This completes the proof. |

Since there are (n + 1)! elements in W, we see that there can be at most 2(n + 1)!
companion bases for I' giving rise to A. For n > 2, we will now check that there are

exactly 2(n + 1)! such sets.

PROPOSITION 3.5.2 For n > 2, there are precisely 2(n + 1)! companion bases

for T giving rise to A.

Proof Firstly, suppose w,v € Wy and wvy, = v, for all z € I'g. Then, v wy, =

v, for all £ € I'g. If o € ®, then we can write o in the form o = Zzel‘o CaVa

where ¢, € Z for all z € Ty. Therefore, we have v 'wa = v~ lw Zzel‘o CeVe =

ZrGFo cx(vlwy,) = Zzel‘o czvz = a. So, v~ lw € Wa sends no positive roots to

1

negative roots, and hence we must have v='w = 1. Thus, v = w. (This also shows

that if w,v € W and —w~y, = —v~y, for all z € Ty, then w = v.)

Finally, suppose w,v € Wg and wy, = —v7y, for all z € Tg. Then, v wy, = —v;

for all z € Ty. Therefore, for every o € ® we see that v 'wa = —a. So, v™'w € Wp

1

sends every positive root to a negative root, and hence v~ 'w = wy, the longest

element in Wg. But wg(os) = —apny1-; for all 1 < i < n, whereas v™!

w(ai) = —Q;
for all 1 < 4 < n. This is a contradicition. Therefore, we see that there are no

elements w,v € Wg such that wy, = —v~, for all z € T'. |
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Note: Inthe n =1 case, it is clear that there are only two companion bases for T’
(the quiver consisting of only one vertex and no arrows) giving rise to A (the 1 x 1

matrix whose sole entry is 2).
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Chapter 4

Dimension Vectors via
Companion Bases

In this chapter, we start to consider the significance of companion bases. In partic-
ular, we establish the main result of this thesis. This result can be regarded as a
generalisation, in the Dynkin type A case, of part of Gabriel’s Theorem. Suppose
we are given a cluster-tilted algebra of Dynkin type A, and suppose further that we
are given a companion basis for the quiver of this cluster-tilted algebra. By express-
ing the positive roots of the corresponding root system in terms of this companion
basis, and taking the absolute values of the coefficients appearing in these expres-
sions, we associate a vector to each positive root. OQur main result establishes that
the vectors obtained in this way are the dimension vectors of the finitely generated

indecomposable modules over the given cluster-tilted algebra.

We start this chapter by seeing how Gabriel’s Theorem motivates the introduction
of these vectors associated to the positive roots. The first step in the proof of the
main result is then to describe these vectors. We do this by studying the structure
of the quiver of the given cluster-tilted algebra, and showing that the positive roots

can be associated with certain “unoriented paths” in this quiver. Our attention then

62



turns to the finitely generated indecomposable modules over the given cluster-tilted
algebra. We show that these are associated with the same unoriented paths, which
then enables us to deduce that their dimension vectors are the same as the vectors

associated to the positive roots.

We conclude this chapter by conjecturing that analogues of the main result hold in
the Dynkin type D and F cases, and discussing some possible strategies for proving

this conjecture.

4.1 Motivation and Main Result

Here, we look at the motivation for, and give a statement of, our main result.

Let k be an algebraically closed field, let @ (with n vertices) be an alternating quiver
of simply-laced Dynkin type, with underlying graph A, and let

c - Db(kQ — mod)

B F
be the corresponding cluster category. Suppose A is the cluster algebra of Dynkin
type A. Also, suppose that & C V is the root system of Dynkin type A, where V is

a Euclidean space with positive definite symmetric bilinear form ( , ). Finally, let

II ={a,...,an} be a simple system of &.

Due to the classification of the cluster algebras of finite type (Theorem 1.1.5), we
have that there is some seed (x¢, Bo) in A such that the Cartan counterpart A(By)

is a Cartan matrix of type A.

By Theorems 2.3.1 and 2.3.2, the seed (xg, By) corresponds to a basic cluster-tilting
object Tp in C. Let Ag = End¢(7p)°P be the associated cluster-tilted algebra. It

follows from Corollary 2.4.2 that I'® = I'(By) is the quiver of Aq.
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Since the Cartan counterpart A(By) is a Cartan matrix of type A, we have that the
quiver I'’ must be an orientation of A. In particular, the graph underlying I'V is a
tree. It therefore follows from [BMR3, Theorem 4.2] that Ag = k', and hence Ag

is (isomorphic to) a path algebra of finite representation type.

Now, applying Gabriel’s Theorem to Ay will help us to deduce a little more infor-
mation about the companion basis II for T?. (We saw in Section 3.2 that II is a

companion basis for I'0.)
Recall that Gabriel’s Theorem [Gab] may be stated as follows.

THEOREM 4.1.1 Let @ be a connected quiver and let K be a field. Then, K@
has finite representation type if and only if the underlying graph of Q is a Dynkin

diagram of one of the following types: A, (n>1), D, (n >4), Eg, E7 or Es.

In this case, if & is the root system of the corresponding Dynkin diagram with sim-
ple system o= {é1,...,an} and corresponding positive system T, then there is a
bijective correspondence between the set of isoclasses of the finitely generated inde-

composable K é-modules and the set of positive roots .

Under this correspondence, if M is a finitely generated indecomposable Ké—module,
and the dimension vector of M is (di,...,dy), then the positive root corresponding

to M isa=dia1+ ...+ d,én,.

Since II is a simple system of ®, we can write each positive root a € ®* uniquely
as an integral linear combination of a1,...,a,. Moreover, all of the coeflicients in
these expressions must be non-negative. In particular, we can associate a vector to
each a € &1, where the components of this vector are the coefficients appearing in

the expression for « in terms of a1,...,a,. Gabriel’s Theorem then tells us that
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the vectors obtained in this way are the dimension vectors of the finitely generated

indecomposable Ag-modules.

Let A be the cluster-tilted algebra of simply-laced Dynkin type given by A =
Ende(T)°P where T is a basic cluster-tilting object in C. Suppose that (x, B) is
the seed corresponding to 7T in the cluster algebra A, so that I" = I'(B) is the quiver
of A. Write I' = (T'g,I'1), where I’y is the set of vertices of I', and T'; is the set of
arrows of I'. Let ¥ = {~,:z € o} C ® be a companion basis for I'. Then, ¥ is
a Z-basis for Z®. So, we can write each root in ® uniquely as an integral linear
combination of the elements of the companion basis ¥. This enables us to assign a

vector to each root, as follows.

DEFINITION 4.1.2 Let o € ® and suppose that o = ) 1, Yz with c; € Z for

all z € Tg. We define dY to be the vector dY = (|cz|)zers-

Note that for every a € ®, the vector dg associated to « is the same as the vector
d¥, associated to —a. For this reason, we will usually restrict our attention to the

vectors dY for a € ®.

Gabriel’s Theorem tells us that the vectors d.! for o € T are the dimension vectors
of the finitely generated indecomposable Ag-modules. Motivated by this fact, we

introduce the following definition.

DEFINITION 4.1.3 We call ¥ a strong companion basis for T' if the vectors dy
for a € ®* are the dimension vectors of the finitely generated indecomposable A-

modules.

Having already seen how to find all of the companion bases for T', it is natural to

ask whether or not we can decide which of these companion bases are strong.



We will start by considering the Dynkin type A, case, with n € N fixed but arbitrary.
We then have that @Q is an alternating quiver whose underlying graph is the Dynkin
diagram of type A,, that the cluster algebra A is of Dynkin type A,, and that
the root system & is of Dynkin type A,. The main result we will establish is the

following important result.

THEOREM 4.1.4 Let A = End¢(T)°P be a cluster-tilted algebra of Dynkin type
A,, where T is a basic cluster-tilting object in C. Suppose that (x,B) is the seed
corresponding to T in the cluster algebra A, so that T' = I'(B) is the quiver of A.
Then, all companion bases for I' are strong. That is, if ¥ C & is a companion basis
for T', then the vectors dy for a € ® are precisely the dimension vectors of the

finitely generated indecomposable A-modules.

Giving a proof of this result will be our main aim of the following four sections,

throughout which we will keep the current set-up.

We will later conjecture that the equivalent result holds in each of the Dynkin type
D,, (n > 4), Eg, E7 and Eg cases, and discuss what progress we can make towards

proving this conjecture.

4.2 Quivers of Cluster-tilted Algebras of Dynkin Type
A

The aim of this section and the next is to develop our understanding of the structure
of the quivers of the cluster-tilted algebras of Dynkin type 4,. We do this by making

use of a known alternative description of these quivers.

We start this section by considering the triangulations of a regular (n+3)-gon. Using

a result from [FZ3], we will see that these triangulations correspond to the seeds of
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the cluster algebra of Dynkin type A,, and hence to the basic cluster-tilting objects
in C. Also, we have a natural way of associating quivers to these triangulations

(from [CCS1]).

We will see that for any given triangulation of a regular (n + 3)-gon, the quiver
associated to this triangulation is the quiver of the associated cluster-tilted algebra,
therefore establishing that the quivers associated to the triangulations of a regular
(n + 3)-gon are precisely the quivers of the cluster-tilted algebras of Dynkin type

A,

In the next section, we then start to examine some of the basic properties of the

quivers associated to the triangulations of a regular (n + 3)-gon.

Let P, 13 be a regular (n+3)-gon. We have that [®>_1| = In(n+1)+n = In(n+3)

which is equal to the number of diagonals of P, 3.

Following [FZ3], let the vertices of P43 be Py, Py,..., P,y3, labelled in the anti-
clockwise direction, and identify the almost positive roots with the diagonals of P, ;3

as follows. (Recall that II = {a,...,a,} is a simple system of ®.)

For 1 <4 < 2tl identify —agi—1 € ®>_; with the diagonal joining P; and Pny3-s,
and for 1 <17 < 7, identify —ag; € 1 with the diagonal joining P;y; and P,y3 ;.
Finally, for each 1 <4 < j < n, identify the positive root o; + 41 + ... + a; with
the unique diagonal that crosses precisely the diagonals —a;, —aiq1,..., —c;. (Note
that two diagonals are said to cross if they are distinct and have a common interior

point.)

We then have the following result from [FZ3, Proposition 3.14].
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PROPOSITION 4.2.1 Let a,3 € $>_1. Then,

| 1 if the diagonals o and B cross,
(allB) = { 0 otherwise.

So, compatible sets are collections of mutually non-crossing diagonals. Therefore,
there is a one-to-one correspondence between the set of clusters (or equivalently,

seeds) of A and the set of triangulations of P13 by non-crossing diagonals.

Let T be a triangulation of P, ;3. Then, we can associate a connected quiver Qr
to T as in [CCS1, Section 3.2]. Take the vertices of QT to be the midpoints of the
diagonalsin T. Let ¢ and j be vertices in Qr lying on diagonals d; and d; respectively.
Then, there is an arrow from i to j in Qr if d; and d; bound a common triangle
(from the triangulation), and the angle of minimal rotation about the common point
of d; and d; taking the line through d; to the line through d; is in the anticlockwise

direction.

Suppose that (x, B) is the seed of A corresponding to the triangulation T of P, 3
as given by Proposition 4.2.1 above. It follows immediately from [FZ2, Proposition
12.5] that Qr is the quiver associated to B (taking the vertices of Qr to be indexed

by the corresponding cluster variables in A).

Now, we have that the seed (x, B) corresponds to some basic cluster-tilting object
T in C. In view of Corollary 2.4.2, we then have that Qr is the quiver of the

cluster-tilted algebra A = End¢(T")°P.

Therefore, the quivers associated to the triangulations of P,,3 are precisely the

quivers of the cluster-tilted algebras associated to the basic cluster-tilting objects in

C.
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4.3 The Structure of Quivers Associated to Triangula-
tions

In this section, we start to examine the structure of the quivers associated to the
triangulations of a regular (n + 3)-gon. In particular, we introduce the concept of
shortest unoriented paths in these quivers. Shortest unoriented paths will play a

key role in the proof of Theorem 4.1.4.

Keeping the triangulation T of P, 35 from the previous section, recall that Q1 denotes

the quiver associated to T.

Since @t is the quiver of a cluster-tilted algebra, we will now consider its structure
more closely. Firstly however, we note that all of the triangles in the triangulation

T are of the following three types:

(I) Triangles that consist of one diagonal and two boundary edges of Py, 3.
(IT) Triangles that consist of two diagonals and one boundary edge of P, 3.
(III) Triangles that consist of three diagonals of Py 3.

Note: Since n > 1, at least one side of any given triangle in T must be a diagonal

of ]p'n,+3 .

By the definition of Qt, we have that a triangle in T of type (I) gives rise to a vertex
in QT, a triangle in T of type (II) gives rise to an arrow between two vertices in Q,

and a triangle in T of type (III) gives rise to an oriented 3-cycle in Q.

Let = be a vertex in QT, and let d, be the corresponding diagonal of P,,;3 in T.

Then, d,; must bound precisely two triangles in T. If d; bounds two triangles of
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type (I), then we must have n = 1, and z is the only vertex of Q. If d, bounds a
triangle of type (I) and a triangle of type (II), then z has valency one. If d; bounds
a triangle of type (I) and a triangle of type (III), then z lies on a 3-cycle in Q7 and
has valency two. If d; bounds two triangles of type (II), then z has valency two.
If d, bounds a triangle of type (II) and a triangle of type (III), then z is a vertex
at which an arrow meets a 3-cycle, and z has valency three. Finally, if d, bounds
two triangles of type (III), then z is a vertex at which two 3-cycles meet, and z has

valency four. This covers all possible cases for the vertex z.

Suppose d is a diagonal in T, joining the vertices P, and P, of P,.3. The diagonal
d divides the polygon P,.3 into two parts, ]P’dig and ]PZ;B We can consider Pflis

n

and ]P’d:r:; as two polygons which have been “glued together” along their shared

n

boundary edge d. So, if IP’,il:?, and ]P’d;?, have | and m sides respectively, then

n

l+m=(n+3)+2=n+5.

Note: For a triangulation X of a polygon P, we will write diag(X) to denote the
subset of the set of diagonals of P that appear (i.e. form the boundaries of the

triangles) in X.

The triangulation T of P,13 induces triangulations T¢' and T¢ of P4\, and P4,
respectively. Each element of diag(T) \ {d} appears in precisely one of diag(T¢" ) or
diag(T¢" ). We have that d ¢ diag(’ﬂ‘d+),diag(']l‘i_ ), since d is a boundary edge of
both P, and P4_,.

It is clear that no diagonal in T4" can bound the same triangle (in T) as any diagonal
in T . As an immediate consequence of this, we see that there can be no cycles in
the underlying (unoriented) graph of @t containing vertices corresponding to the
elements of diag(T%") and vertices corresponding to the elements of diag(T% ). This

proves the following.
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LEMMA 4.3.1 In the underlying graph of QT, the only cycles are 3-cycles arising

from triangles in T of type (III).
As aresult of Lemma 4.3.1, we see that two 3-cycles in Q cannot meet in an arrow.

Note: The above description of the possibilities at a vertex in Q1 and Lemma 4.3.1

were shown independently in [BV].

Recall that Qt is the quiver of the cluster-tilted algebra A = End¢(T)°P where T
is the basic cluster-tilting object in C corresponding to (the seed corresponding to)

the triangulation T.

Let I be the ideal of the path algebra kQt generated by the set of all paths in Q1
consisting of two consecutive arrows in any given 3-cycle. It is clear that It is an

admissible ideal of kQt, and we have the following.
PROPOSITION 4.3.2 The cluster-tilted algebra A is isomorphic to k—]c');rl.

Proof The result follows immediately from [BMR3, Theorem 4.2] due to the result

of Lemma 4.3.1. [}

Closely related to the paths in a quiver are the unoriented paths in that quiver.

These are defined as follows.

DEFINITION 4.3.3 Let Q' be a quiver and suppose that i and j are vertices of
Q'. We define an unoriented path in Q' from i to j to be a sequence of consecutive
arrows of Q' leading from 1 to j, where the orientations of the arrows are ignored.

Trivial paths on the vertices of Q' are also considered to be unoriented paths in Q'.

We define the length of an unoriented path in Q' from i to j to be the number of

arrows appearing in that path (including multiplicities). An unoriented path in Q'
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from i to j of minimal length will be called a shortest unoriented path in Q' from 1

to j.

We have the following.

LEMMA 4.3.4 Let i and j be vertices of Qr. Then, there is a unique shortest

unoriented path in Qr from i to j.

Proof Firstly, note that the existence of an unoriented path in QT from 7 to j is

a trivial consequence of the fact that Q is connected.

Suppose by way of contradiction that p and ¢ are distinct shortest unoriented paths
in Qr from 7 to j. Moving along p starting from 7 and heading towards j, suppose

that the vertices of p are ¢ = p1,ps,...,p, = j. Likewise, suppose that the vertices

of garei =q1,q92,...,¢ = j.

Let k € N be the smallest index such that p; # qx. We know that such a k exists since
p and g are distinct. Now, we have that p, = ¢.(= j). So, let s,t € N\ {1,...,k—1}
be the smallest indices such that p; = ¢;. Then, there is an unoriented cycle in

QT on the vertices DPk—1yDksPk+1s---3DPs—1,Ps = Qt,qt—-15- - ,4qk+1,9ks PDk—1- BUta we
have already seen that the only (unoriented) cycles in Qt are 3-cycles. So, this cycle

must be a 3-cycle.

This contradicts p and g both being shortest unoriented paths in Qr from i to j.

Therefore, there is a unique shortest unoriented path in Qr from 7 to j. |

Let ¢ and j be vertices of Q7. From Lemma 4.3.4 we have that there is a unique

shortest unoriented path in Qr from ¢ to 5. But also, we have that there is a unique
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shortest unoriented path in Qr from j to i. Moreover, it is clear that this must be

the reverse of the shortest unoriented path from 7 to j.

Throughout the remainder of this chapter, we will identify the shortest unoriented
paths in the quiver of a cluster-tilted algebra of Dynkin type A with their reverse
paths. So, the shortest unoriented paths in such a quiver can be thought of as

corresponding to (unordered) pairs of vertices.

4.4 Description of Vectors Associated to the Positive
Roots

We briefly recall our current set-up. We have that A = End¢(7)°P is a cluster-tilted
algebra of Dynkin type A,, with T a basic cluster-tilting object in C. The seed of A
corresponding to T is (x, B), meaning that I' = I'(B) is the quiver of A. But also,
the seed (x,B) corresponds to the triangulation T of P, 3, and we have that T is

the same as the quiver Qt associated to this triangulation.

Let ¥ = {y;:z € Ty} C & be a companion basis for I', where Iy denotes the set
of vertices of I'. We have already seen that we can associate a vector d> to each
root a € ®. Recall that, for a given root a, this is the vector whose components are
the absolute values of the coefficients of the 7,’s in the (unique) expression for a in

terms of the roots ~, for z € I'y.

Our aim is to show that the vectors d¥ for a € ®* are the dimension vectors of the

finitely generated indecomposable A-modules.

Our strategy for achieving this aim will be as follows. Firstly, we will establish a

bijection between the set of shortest unoriented paths in I' and the set of positive

73



roots ®*. Using this bijection, we will be able to give a complete description of
the vectors dY for « € ®*. Secondly, we will note that (the isomorphism classes
of) the finitely generated indecomposable A-modules are also in bijection with the
shortest unoriented paths in I'. This will then establish a bijection between the set
of positive roots ®* and the set of (isomorphism classes of the) finitely generated
indecomposable A-modules. The final step will then be to show that for any given
positive root a, the vector dY is the dimension vector of the finitely generated

indecomposable A-module corresponding to a.

We are going to need some way of associating shortest unoriented paths in T" to

(positive) roots. The following definition provides this.

DEFINITION 4.4.1 Let a € ®. We can write a uniquely in the form a =
> eely Ca¥z With ¢z € Z for all z € Tg. Let I = {z € I'g:c; # 0}. If the elements of
I are precisely the vertices of a shortest unoriented path p in T, then we say that o

has support p.

Straight away, we see that no root can have two distinct shortest unoriented paths

as support.

LEMMA 4.4.2 Let o be a root. Then, o has at most one shortest unoriented path

as support.
Proof This is immediate due to the fact that ¥ is a Z-basis for Z®. ]

Given any shortest unoriented path in I', we will now show that we can exhibit a

positive root which has that shortest unoriented path as support.
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We can deal with the trivial shortest unoriented paths immediately. Suppose that p
is the trivial shortest unoriented path on the vertex z € I'y. Then, «, is a root with

support p. Therefore, either 7y, or —v, is a positive root with support p.
We must now consider the non-trivial shortest unoriented paths in I".

Let p be a non-trivial shortest unoriented path in I', and suppose that the vertices
of p, taken in consecutive order from one end of p to the other, are zg,z;,...,x¢
(t > 1). Supposing that 0 < j < i < ¢, we see that z; is joined by an arrow in I’
to z; if and only if j = 4 — 1. (This follows immediately from the fact that p is a

shortest unoriented path in I'.)

Now, ¥ = {v,:z € I'g} C ® is a companion basis for I". Therefore, supposing that
0 < j <1< t, we then have that ('yzi,%j) = 41 if and only if j = 7 — 1, and

(’)’zi,’)’xj) = 0 otherwise.
The key result enabling us to find a positive root with support p is the following.

PROPOSITION 4.4.3 If1 <r <t, then

r k
Sozp * " Syay (Yz0) = Yao + Z( (H Ve Yay_q ) Yay -
k=1 =1

Proof We proceed by induction on r.

In the initial case when r = 1, we have s, (Yz0) = Yeo — (Ya1s Yoo ) Va1, SO the result

holds in this case.

For our induction hypothesis, we suppose that » > 2 and

r—1 k
Syep_y """ Smay (Yao) = Vao + Z( (H Yai> Ver-1 ) Ve -
k=1 1==1
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NOW’ 'S’Ymr (S'Ya:,._l e S'le (720)) = S’Y:c,._l e S'Yzl (’YZO) - (FY(tr’ 8’)’:::,._1 e S'Y:nl (7310)) Yz, -

We have,

r—1 k
(72:1-, 8’7;:,._1 e 3’7’11 (710)) = <’Yﬂlr7’y$0 + Z( (H 72‘,1’7211 1 ) ’sz>
k=1 =1
r—1 k
= (Yzrr Vo) + D _(=1) (H Yars Vor-x ) (Vars Var) -
k=1

Therefore, since (7z,,7z,) = 0 and since (vz,,vz,) # 0 only for k = 7 — 1, we see

that

r—1
N C2) B Co Vi (H (%,,%,_1)> (s Yer)
=1
T
= (_l)r—l H ('7w1>'711_1)
=1
It therefore follows that
r—1 k
S¥er $vay_y " Svay (Yzo) = Yao Z( (H Yars Yor-1 > Vi,
T
- (_1)7‘_1 (H (7E177331—1)> Yz,
r k
= Yz +Z( (H ’7101"711 1 )7%
k=1 =1

as required. |

By taking r = t in Proposition 4.4.3, we have that

Svay "7 Sy (Yz0) = Yao + Z 1)k (H 'Yzz"Y:cz-l)) ey -
=1

We claim that the root s, ---3%1(%0) has support p. Indeed, we have already
noted that (’le,’)'zl_l) =4l forall 1 <! <t So, for each k, 1 < k < t, we have
that (—1)* Hle (Yei» Y211 ) = £1. Therefore, Saz, " S4a, (Vo) 18 Of the form

Sy, T Sy (Yz0) = Yao &= Va1 £+ F Vs
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showing that s, - -« 84, (7z,) has support p.

We have thus exhibited a positive root with support p, for if sy, -+ s, (Vo) is not

a positive root, then —s., -+ sy, (7z,) is a positive root with support p.

We have now shown that for any given shortest unoriented path p in I', there is
some positive root a which has support p. Moreover, we have shown that we can
choose a such that all of the coeflicients in the unique expression for a in terms of ¥
belong to the set {0,£1}. (Note that whether p is a trivial or a non-trivial shortest
unoriented path in T', the positive root with support p obtained as above satisfies
this property.) In particular, the vector dg has a one in each position corresponding

to a vertex of ' lying on p, and zeros everywhere else.

We will now see that the positive root with support p that we have exhibited is in fact
the unique positive root with support p. In view of the fact that any positive root
has at most one shortest unoriented path in I' as support (refer to Lemma 4.4.2), we
are able to show this by establishing that the number of distinct shortest unoriented

paths in I" is equal to the number of positive roots in ®.

To this end, observe firstly that the number of (distinct) non-trivial shortest un-

n
2

path in I associated to each pair of distinct vertices of I'. Also, there are n trivial

oriented paths in I' is given by ( ), since there is a unique shortest unoriented

shortest unoriented paths in T', one associated to each vertex. Therefore, the total

number of shortest unoriented paths in I is

n n! 1 1
(2>+n—m+n—§n(n—1)+n—§n(n+l),

which is equal to the number of positive roots in ®.

We have now established the following result.
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PROPOSITION 4.4.4 There is a bijective correspondence between the set of short-
est unoriented paths in T' and the set of positive roots &, with each shortest un-
ortented path in I' corresponding to the unique positive root which has that shortest

unoriented path as support.

As a consequence of this result, we see that we have now given a complete description

of the vectors dY for o € ®+.

Let a be a positive root. Then, there is some shortest unoriented path p in I" such
that o has support p. The vector d¥ has a one in each position corresponding to a
vertex of I" lying on p, and zeros everywhere else. In this way, the vectors associated

to the positive roots correspond precisely to the shortest unoriented paths in T

4.5 Completion of the Proof of Theorem 4.1.4

Recall that we are trying to show that the vectors d? for all positive roots a are the

same as the dimension vectors of the finitely generated indecomposable A-modules.

In the previous section, we were able to completely describe the vectors dY for
a € &1 by associating a positive root to each shortest unoriented path in I'. Here,
we will see how we can associate a finitely generated indecomposable A-module to
each shortest unoriented path in I', and we will complete the proof of the desired

result.

Firstly, we recall from Proposition 4.3.2 that we have an isomorphism of k-algebras
A= ’“]—F, where I is the admissible ideal of kI" generated by the set of all paths

in T' consisting of two consecutive arrows in any given triangle (3-cycle). It is

then a standard result that the category A-mod of finitely generated A-modules is
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equivalent to the category rep,(I', I) of finite dimensional representations of I' over

k which satisfy the relations in I.

In order to associate finitely generated indecomposable A-modules to the shortest
unoriented paths in I'; we start by considering a method of associating a represen-

tation R, of I" over k to each shortest unoriented path p in T

Let p be a shortest unoriented path in I'. To each vertex of I' lying on p we associate
the vector space &, and to each vertex of I" not lying on p we associate the zero space.
Also, to each arrow of T lying on p we associate the identity map on k, and to each
arrow of T’ not lying on p we associate the zero map. In this way, we obtain a

representation R, of I over k.

It is easy to see that R, is an indecomposable representation of I over k. Also,
because p is a shortest unoriented path in ', we have that p never passes through
two consecutive arrows in any given triangle in I'. In particular, R, never has
two consecutive identity maps in any given triangle, and therefore, R, satisfies the

relations in I.

So, the above gives us a way of assigning a different indecomposable representation
in rep, ([, I), and hence a different finitely generated indecomposable A-module, to

each different shortest unoriented path in I'.
We now complete the proof of Theorem 4.1.4 with the following proposition.

PROPOSITION 4.5.1 The vectors d(‘f for a € ® are the dimension vectors of
the finitely generated indecomposable A-modules. That is, ¥ is a strong companion

basis for T.
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Proof Firstly, we note that since A is cluster-tilted from an algebra with simply-
laced quiver of Dynkin type, then as a consequence of [BMR1, Theorem A], we
have that the number of (isomorphism classes of) finitely generated indecomposable
A-modules is equal to |®*|. Therefore, the described method of assigning finitely
generated indecomposable A-modules to shortest unoriented paths in I' provides
us with a bijective correspondence between the set of all (isomorphism classes of)
finitely generated indecomposable A-modules and the set of all shortest unoriented

paths in .

We now complete the proof by showing that for each positive root a, the dimen-
sion vector of the finitely generated indecomposable A-module corresponding to the

shortest unoriented path in " corresponding to « is equal to dy.

Let a be a positive root, and let p be the shortest unoriented path in I' corresponding
to a. (So, a has support p.) Then by construction, we have that the dimension
vector of the finitely generated indecomposable A-module corresponding to p has
a one in every position corresponding to a vertex of I' lying on p, and a zero in
every position corresponding to a vertex of I not lying on p. So, we see that the
dimension vector of the finitely generated indecomposable A-module corresponding

to p is equal to dY. |
EXAMPLE 4.5.2 Let I be the following quiver.

3

/\

1 —>2<~——4

Using Section 4.2, it is easily checked that I' arises from a triangulation of a regular

7-gon, and therefore I' is the quiver of a cluster-tilted algebra A of Dynkin type Ay.
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In fact, A = & where I is the admissible ideal of kT" given by I = (cb, dc, bd) (refer

to Proposition 4.3.2).

Let @ be the root system of Dynkin type A4, and suppose that II = {a1, a2, a3, as} C

® is a simple system of .

Firstly, we will show that the set ¥ = {v1,v2,73,74} C ® given by v1 = —au,

Y2 = —Qg — a3, Y3 = 3, Y4 = (4 is a companion basis for T'.
That ¥ is a Z-basis for Z® is clear.

Let B = (b;j) be the skew-symmetric integer matrix associated to the quiver T.

(Recall that the rows and columns of B are indexed by the vertices of I".) Then,

0
-1 0 1 -1
0

We must check that the matrix A = (a;;) given by a;; = (v;,v;) for 1 < 4,5 < 4is

a positive quasi-Cartan companion of B.

We have

Since |a;j| = |bs;| for all ¢ # j, it follows from Corollary 3.1.3 that A is a positive

quasi-Cartan companion of B.

We will now check that the vectors associated to the positive roots with respect to

¥ are the dimension vectors of the finitely generated indecomposable A-modules.
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Firstly, we find the vectors associated to the positive roots with respect to ¥:

o =-m dy, = (1,0,0,0)

Qo = —7Y2 — 73 dql (0 1, 1,0)

a3 =73 dgtl;; = (0707 laO)

Q= Y4 dgl4:( ,0,0,1)
artaz=-71-7—-73 dgl—ﬂm = (1, 1, 1a0)

az + a3 = —v s = (0,1,0,0)
043+044:’Y3+’74 d23+a4:( 70717])
a+artaz=—-m—" dy togtas = (1,1,0,0)

a2 + o3+ ag=—v2+ g’2+03+a4 (0, 1,0, 1)

o1 tagt+ag+og=—y1—"v2+ 4 da1+a2—+—a3+a4 = (1,1,0,1)

The indecomposable representations of I' that satisfy the relations in I are as follows:

0
/\
k——0~—0
k
/\
0—0~—"—0

/\

k—F>k=—0

/N

00— 0=<~—"k

0
/\
0——k~—0
0
/\
0——0~—k%

s\

0——k=~——0

/\

O——k~<=7T"k

Therefore, we see that the vectors dy for o € & are the dimension vectors of the

finitely generated indecomposable A-modules.
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4.6 A Conjectured Generalisation

With the proof of Theorem 4.1.4 now completed, we conjecture here that the result
of this theorem holds for all cluster-tilted algebras of simply-laced Dynkin type. The
main result of this section shows that the problem of proving this conjecture can be
reduced to that of proving an equivalent but simpler one. We conclude the section

by commenting on some possible strategies for solving this reduced problem.
We need to return to a more general set-up.

Let k be an algebraically closed field, let @ (with n vertices) be an alternating quiver

of simply-laced Dynkin type, with underlying graph A, and let

Db(kQ — mod)

C= 7

be the corresponding cluster category. Suppose that A is the cluster algebra of
Dynkin type A. Also, suppose that ® C V is the root system of Dynkin type A,
where V is a Euclidean space with positive definite symmetric bilinear form ( , ).

Finally, let IT = {1, ..., an} be a simple system of ®.
Motivated by the result of Theorem 4.1.4, we make the following conjecture.

CONJECTURE 4.6.1 Let A = End¢(T)°P be a cluster-tilted algebra of simply-
laced Dynkin type, where T is a basic cluster-tilting object in C. Suppose (x, B) is
the seed corresponding to T in the cluster algebra A, so that T = T'(B) is the quiver
of A. Then, all companion bases for T are strong. That is, if ¥ C & is a companion
basis for T, then the vectors dY for a € ®F are precisely the dimension vectors of

the finitely generated indecomposable A-modules.
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The main focus of this section will be to see what progress we can make towards

proving Conjecture 4.6.1.

Let A, T, (x, B) and T be as in the statement of Conjecture 4.6.1. Given a companion
basis for T", we have seen that we can associate a vector to each positive root. We
will start by showing that the collection of vectors associated to the set of positive
roots is the same, regardless of the chosen companion basis for I'. This then shows
that if one companion basis for I" is strong, then all of the companion bases for I" are
strong, thereby reducing the problem of proving Conjecture 4.6.1 to the problem of
showing that we can find a strong companion basis for I'. We will then proceed by

considering some possible strategies to try to solve this reduced problem.

PROPOSITION 4.6.2 Let ¥ = {y,:2 € 9} C ® and © = {d,:x € To} C @ be
two companion bases for T. Then, {dY:a € ®*} = {d2:a € ®*}. In particular, the
set of vectors assoctated to the set of positive roots, with respect to a given companion

basis for T, does not depend on the chosen companion basis.

Proof Suppose that ¥ gives rise to the positive quasi-Cartan companion A of B,
and suppose that © gives rise to the positive quasi-Cartan companion A’ of B. (So,
A = (azy) and A" = (al,,) are respectively given by azy = (72, vy) and a, = (dz, 6y)

for all z,y € T'y.)

By applying sign changes to the elements of ©, we may obtain a companion basis

for T giving rise to A (refer to Section 3.3).

Let © = {€20z:2 € Ty} C ® be a companion basis for I' giving rise to A, where

ez € {£1} for all z € T'y.

We start by showing that {d2:a € &} = {dg: a€dt}.
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Let o € . Then, we can write o uniquely in the form o = > cz0; withey € Z

€l

for all z € T'g. Since ¢, € {1} for all € Ty, we have that o = >, €2¢,0,, and

S0 @ = ) cr, €2Cz(€20z)-

Therefore,

Q,
L
|

= (lEszDzGFo
= (lez] |le)xef‘o
= (|Cm|)z€Po

= d°

a

This shows that {d9:a € T} = {daé: acd}.

We may therefore complete the proof by checking that {d¥:a € ®+} = {dg): o €
ot}

Let T be the (invertible) orthogonal linear transformation of V' defined by speci-
fying T(vz) = €40, for all z € Ty, and extending linearly. We have already seen
that 7" must permute the set of roots & (refer to Section 3.4 and in particular,

Proposition 3.4.8).

Let a € ®. Then, we can write & uniquely in the form o = erl“o CeYe With ¢, € Z
forallz € Tg. We have Ta = 3, 1 2T (Vz) = D ,cr, €2(€202), and thus d¥ = dga.

Because T permutes the set of roots ®, it therefore follows that

(d¥:a € ) = {d®:a € ®). (4.1)

Also, we have —a = . (—cz)7: and so d¥ = d¥,. Since = = — (@), this
shows that {dY:a € 7} = {d¥:a € &~ }. Therefore, {dY:a € &} = {d¥:a € &T}.

Similarly, we may see that {d?: a€d}= {dg): a€ dt}
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It then follows from (4.1) that {d}:a € T} = {dg:a € ot}
This completes the proof. |

It follows immediately that in order to prove Conjecture 4.6.1, it is enough to prove

the following.

CONJECTURE 4.6.3 Let A = End¢(T)°P be a cluster-tilted algebra of simply-
laced Dynkin type, where T is a basic cluster-tilting object in C. Suppose (x,B)
is the seed corresponding to T in the cluster algebra A, so that T' = T'(B) is the
quiver of A. Then, there exists a strong companion basis for T'. That is, there is
some companion basis ¥ C ® such that the vectors dg for a € ®T are precisely the

dimension vectors of the finitely generated indecomposable A-modules.

We conclude this section by mentioning two possible strategies for proving Conjec-

ture 4.6.3.

One possibility would be to try to make use of the companion basis mutation pro-
cedure introduced in Chapter 3 (Theorem 3.1.4 in particular), to construct a strong

companion basis for T.

Recall that there must be some seed (xg, By) of A such that the Cartan counterpart
A(Byp) is a Cartan matrix of type A. Let Ty be the corresponding basic cluster-
tilting object in C. Then, the cluster-tilted algebra Ag = End¢(7p)°P has quiver
I'" = I'(Bg) which is an orientation of A. Moreover, recall that the simple system
= {o,...,a,} is a strong companion basis for '’ (for some indexing of the simple

roots by the vertices of I'?).

86



By applying companion basis mutations to II, we are able to obtain a companion
basis for I'. Therefore, if we can show that companion basis mutation preserves

strongness, then it will follow that we can find a strong companion basis for T

So, we may prove Conjecture 4.6.3, and hence also Conjecture 4.6.1, by proving that

companion basis mutation preserves strongness.

As an alternative approach to proving Conjecture 4.6.3, we could try to give a
procedure for explicitly constucting a strong companion basis for I". In Chapter 5,
we will see that we can do this in the case where A is a cluster-tilted algebra of
Dynkin type A, by making use of the description of the quivers of the cluster-tilted
algebras of Dynkin type A given in Sections 4.2 and 4.3. As a consequence, this will

in fact provide us with an alternative proof of Theorem 4.1.4.
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Chapter 5

A More Explicit Approach

In this chapter, we again focus our attention on the Dynkin type A case. However,
here we place particular emphasis on more explicit considerations than those of the
previous chapter. In particular, we obtain an alternative (more explicit) proof of

our main result, Theorem 4.1.4.

In Section 3.2, we presented a method for finding a companion basis for the quiver
of any given cluster-tilted algebra of simply-laced Dynkin type. A weakness of this
method is the following. In order to find a companion basis for the quiver of a
given cluster-tilted algebra, we have to find a sequence of quiver mutations taking
us from that quiver to another quiver for which we already have a companion basis
(for example, a Dynkin quiver). Here, we show how to explicitly construct a strong
companion basis for the quiver of any given cluster-tilted algebra of Dynkin type
A. Of key importance is a procedure we introduce for labelling the vertices of any
such quiver. Detailed consideration of these labelled quivers will reveal a number of
useful properties, enabling us to give a simple method for constructing an explicit

companion basis for each such quiver. The advantage of the method that we present
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here is that the desired companion bases may simply be read off from the labelled

quivers.

We prove directly that these constructed explicit companion bases are strong. That
this provides us with an alternative proof of Theorem 4.1.4 then follows from Propo-

sition 4.6.2.
Throughout this chapter, we keep the following set-up.

Let k& be an algebraically closed field and let Q be an alternating quiver whose

underlying graph is a Dynkin diagram of type A,, n € N. Let

_ Db(kQ — mod)

¢ F

be the corresponding cluster category. Suppose A is the cluster algebra of Dynkin
type A,. Also, suppose that ® C V is the root system of Dynkin type A,, where
V is a Euclidean space with positive definite symmetric bilinear form (, ). Finally,

let II = {ai,...,a,} be a simple system of P.

5.1 Preliminaries for the Labelling Procedure

Recall that the quivers of the cluster-tilted algebras of Dynkin type A, are precisely
the quivers associated to the triangulations of a regular (n+3)-gon. We have already
seen that these quivers are connected and made up of linear sections (i.e. subquivers
whose underlying graphs are Dynkin diagrams of type A) and cyclically oriented
triangles. Vertices have valency four if and only if they lie at a point where two
triangles meet, valency three if and only if they lie at a point where a linear section

meets a triangle, valency one if and only if they lie at the end of a linear section
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(not meeting a triangle), and valency two otherwise. Also, the only cycles in these

quivers are cyclically oriented triangles.

In this section, we continue the study of these quivers. In particular, we cover the
preliminary results and introduce the terminology required in preparation for intro-

ducing our procedure for labelling the vertices of such quivers in the next section.

Let P43 be a regular (n 4+ 3)-gon. Let the vertices of P, 3 be Pi,..., P,y3, la-
belled in the anticlockwise direction, and suppose that the almost positive roots are

identified with the diagonals of P, 3, as in Section 4.2.

Let T be a triangulation of P, 13 and suppose that d € diag(T). Suppose also that d
joins the vertices P, and P, of P,.35. We saw in Section 4.3 that d divides P, 3 into
two polygons ]P;{:S and sz:rs with respective triangulations T¢" and T¢  induced
from the triangulation T of P,,3. We noted also that d ¢ diag(T?"), diag(T¢"),
and that no diagonal in T¢" bounds the same triangle (in T) as any diagonal in
T¢". Therefore, if Qe+ and Q.- are the quivers corresponding respectively to

the triangulations T¢" and T of IP’diLHS and P4

n n;3, then we see that QTd+ and

Qpa- together form the full subquiver of Qr on all vertices of Q1 except the vertex

corresponding to d € diag(T).

For e € {+,—}, let @;3 be the convex polygon obtained from ]P’f;_3 by adding an
extra vertex % and two extra boundary edges, one from P, to 2%, and the other
from z% to P,, so that d becomes an interior diagonal of fﬁ‘f;s (Note that if IP%:3
and ]P’;il;?, have [ and m sides respectively, then ﬁ;ﬂg and @;3 have [+ 1 and m+1
sides respectively.) By construction, we see that there are triangulations T¢" and

T¢™ of P4, and P9 respectively, defined by diag('ﬁ"ﬁ) = diag(']Td+) U {d} and
n+3 n-+3

diag(T?™) = diag(T¢™ ) U {d}.
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Let Q74+ and Q74- be the quivers corresponding to these triangulations of @:3
and @1;3 Both of these quivers have a vertex corresponding to d € diag(T). It is
then clear that the connected quiver obtained from Qs+ and Qx,- by identifying

these two vertices is Q1.

We now introduce a definition, and make use of the above observations in the proof

of the lemma which follows it.

DEFINITION 5.1.1 Suppose that z, y and z are the three vertices of a triangle
(3-cycle) in Qr. We define the section of QT above = to be the full subquiver of Qt
on all vertices that can be reached on unoriented paths starting at x which do not

pass through y or z.

Note: With z, y and z as in Definition 5.1.1 above, it is a simple observation that
the section of Q1 above z, the section of QT above y, and the section of Q1 above

z are pairwise disjoint.

LEMMA 5.1.2 Let z, y and z be the three vertices of a triangle in Q. Then, the
section of QT above x arises as the quiver associated to a triangulation of a regular

m-gon Py, for some m > 4.

Proof Suppose that d, € diag(T) is the diagonal of P, 3 corresponding to the
~ 3+ ~g—

vertex . Associated to the diagonal d;, there are polygons IPﬁig and Pﬁiz,; with

triangulations T and T respectively. Furthermore, it is clear from above that

the section of QT above z is given by either Q'Tr at Of . The result follows. W

Tz

In the following two definitions, we introduce some useful terminology distinguishing

certain vertices in Q.
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DEFINITION 5.1.3 We call any vertex of Qr belonging to a cyclically oriented

triangle a triangle vertez.

DEFINITION 5.1.4 A vertex of Qr is said to be an end verter if it has valency

zero, valency one, or is a triangle vertez of valency two.

So, the end vertices of Qp are precisely those vertices corresponding to diagonals in
T which bound a triangle in T of type (I). (Refer to Section 4.3 for a description of

the types of triangles that may appear in any given triangulation of P, 3.)

Now, it is well known (and easy to show using a counting argument) that any
triangulation of a regular polygon with at least four sides must contain at least two
triangles of type (I). Also, no diagonal in a triangulation of a regular polygon with at
least five sides can bound two triangles of type (I). Therefore, any quiver associated
to a triangulation of a regular polygon with at least five sides must have at least
two end vertices. Note that any triangulation of a regular 4-gon must consist of a
single diagonal bounding two triangles of type (I), and so the associated quiver must

consist of a solitary end vertex (of valency zero).

We conclude this section by introducing some terminology concerning shortest un-

oriented paths in Q.

Let i and j be vertices in QT and consider the (unique) shortest unoriented path p
in Qr from 7 to 7. It is clear that p does not pass through two consecutive arrows of
any given triangle in QT, and that none of the arrows appearing in p appear more

than once. (Likewise, none of the vertices appearing in p appear more than once.)

Starting from ¢ and moving along p towards j, we may pass through a number of

triangle vertices. We make the following definitions.
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DEFINITION 5.1.5 For any triangle with two vertices appearing in p, we call
the first vertez of that triangle appearing in p (when moving from i towards j) a left
triangle vertez relative to p. We call the second vertex of that triangle appearing
mn p a right triangle vertex relative to p, and we call the vertex of that triangle not

appearing in p a top triangle vertex relative to p.

DEFINITION 5.1.6 Suppose x, y and z are the three vertices of some triangle in
Qt, and suppose further that x, y and z are respectively left, right and top triangle
vertices relative to p. Then we call y the right triangle vertex corresponding to x

relative to p, and we call z the top triangle vertex corresponding to x relative to p.

It is worth noting that since two triangles can meet in a vertex in Qr, then it is
possible for a vertex to be a right triangle vertex relative to p with respect to one

triangle, and a left triangle vertex relative to p with respect to another triangle.

5.2 The Labelling Procedure

Throughout the remainder of this chapter, we take A to be the cluster-tilted algebra
of Dynkin type A, given by A = End¢(T)°P, where T is a basic cluster-tilting
object in C. We suppose also that (x, B) is the seed of A corresponding to T, so
that I' = ['(B) is the quiver of A. (We note that I' is the quiver Qr associated to

some triangulation T of a regular (n + 3)-gon Pp43.)

Our aim is to construct explicitly a strong companion basis for I'. We will proceed
as follows. Firstly, we will outline a procedure for labelling the vertices of the quiver
I'. After examining some properties of the labelled quiver I', we will then introduce

a candidate companion basis for I'. The proof that this candidate companion basis
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is indeed a companion basis for I' will rely on these properties. Again making use
of the properties of the labelled quiver T, we will be able to complete our aim by
proving (independently of the proof of Theorem 4.1.4) that the companion basis for

I' that we have constructed is strong.

We will now outline a procedure for labelling the vertices of T' using the labels

1,...,n.

In the previous section, we saw that for n > 2, I' must have at least two distinct

end vertices.

Consider T together with a choice of an ordered pair of end vertices, distinct if
possible. We will now outline a procedure for labelling the vertices of I', given this

initial choice of end vertices, by induction on the number n of vertices of T'.

If T has a single vertex (i.e. if n = 1), then we label that vertex 1, and the labelling

is complete.

Fix k > 2 and suppose that in the cases where n < k, we have labelled the vertices
of all possible choices for T', for any given initial choice of an ordered pair of end

vertices in T' (distinct if possible).

Suppose now that n = k and that we have chosen an ordered pair of distinct end
vertices in I'. Label the first vertex of this ordered pair 1, and consider the shortest
unoriented path pin IT" from 1 to the other chosen end vertex. Starting from 1, move
along p, labelling subsequent vertices consecutively 2,3,4,..., up to and including
the first left triangle vertex i relative to p. (Note that 1 could be a left triangle
vertex relative to p. Note also that there may be no left triangle vertices relative to

p, in which case, the labelling procedure ends here.)
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Denote the section of I' above the top triangle vertex corresponding to i relative
to p by I'. As a consequence of Lemma 5.1.2, it follows that I is the quiver of a
cluster-tilted algebra of Dynkin type A. Suppose that there are a vertices in I'V. We
have that the top triangle vertex corresponding to 7 relative to p is an end vertex
in I’. We then obtain an ordered pair of end vertices in I'' by choosing another end
vertex in I, distinct if possible (i.e. if @ > 1), and setting this chosen end vertex to

be the first vertex in the ordering.

By induction, we have a labelling of the vertices of I using the labels 1 up to a,
given this choice of an ordered pair of end vertices in V. Add 7 to each of the
vertex labels in this labelling for IV, and then assign the labels thus obtained to the

corresponding vertices in T'.

Label the right triangle vertex corresponding to i relative to p with ¢ + a + 1.
Then, from ¢ + a + 1, continue along p labelling subsequent vertices consecutively
i+a+2,i+a+3,..., and proceed as above for each subsequent left triangle vertex
relative to p. The second of our initially chosen end vertices of I" will be the last

vertex to be labelled, and will be labelled n.

Suppose the vertex labelled j is a left triangle vertex relative to some path p consid-
ered in the labelling procedure, and that there are b vertices in the section of I" above
the top triangle vertex corresponding to j relative to p. Then, due to the inductive
nature of the labelling procedure, we see that the top triangle vertex corresponding
to j relative to p will be labelled 7 + b. Also, by construction, the right triangle

vertex corresponding to j relative to p will be labelled j + b+ 1.

Note: To label (the vertices of) I' according to the above procedure, we initially

choose two end vertices (distinct if n > 2) in I'. But we also make a further choice
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of an end vertex for each left triangle vertex relative to some path considered in the
labelling procedure. Because of these choices, there are potentially many different
labellings of T" that can be obtained using the outlined procedure. This is not
a problem however, as all of the labellings of T" that may be obtained using the
outlined procedure share the important properties that we will need to enable us to
explicitly construct a strong companion basis for I'. The focus of the next section

will be on studying these properties.

The labelling of I' that we obtain using the above procedure may seem a little
unnatural. However, it is a labelling that can be obtained by constructing T’ from

the Dynkin quiver of type A, (oriented and labelled as shown)

1¢— 23— ¢—n—-1<—n

by applying quiver mutations.

We conclude this section by giving a detailed example showing the labelling proce-

dure in action.

EXAMPLE 5.2.1 Let € be the following quiver.
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It is easily checked that Q arises from a triangulation of a regular 14-gon, and is
therefore the quiver of a cluster-tilted algebra of Dynkin type Aj1;. (Note that we

don’t need to worry about relations, as they play no role in the labelling procedure.)

We will use the prescribed labelling procedure to obtain a labelling of (the vertices

of) Q.

The first step is to choose an ordered pair (a, b) of end vertices in Q (as shown above).
We label the first vertex in this pair 1, and then consider the shortest unoriented
path p in Q from 1 to the other chosen end vertex. Starting from 1 and moving
along p, labelling subsequent vertices in increments of one, we have that 2 is the

first left triangle vertex relative to p.

Q
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]

We must now consider the section Q' of 2 above the top triangle vertex c corre-

sponding to 2 relative to p.
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(Note that Q' arises from a triangulation of a regular 10-gon.)

Since ¢ is an end vertex in ', by choosing another end vertex d in ', we obtain
an ordered pair (d,c) of end vertices. We now start to label the vertices of {?/,
proceeding in the same manner as above. We label the first vertex of our ordered
pair 1, and consider the shortest unoriented path p’ in ' from 1 to the other chosen
end vertex. Starting from 1 and moving along p/, labelling subsequent vertices in

increments of one, we have that 3 is the first left triangle vertex relative to p'.

QI

1

N/

O

.e\
@ <— @ —> (O <— D) ~<— =

We must now consider the section Q2" of €)' above the top triangle vertex e corre-

sponding to 3 relative to p'.

By following the labelling procedure, we obtain the following labelling of the vertices

of Q.

Having now completed the labelling of 2", we add 3 to each of the labels of the

vertices of 2", and assign the labels thus obtained to the corresponding vertices in
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We label the right triangle vertex corresponding to 3 relative to p’ with the la-
bel 6. Then, starting from 6, we proceed along p’' labelling subsequent vertices in

increments of one. This gives us the following labelling of the vertices of €'

QI

O —> Q) — D) <— =
[
1SN

We now add 2 to each of the labels of the vertices of €', and assign the labels thus

obtained to the corresponding vertices in €.
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Finally, by labelling the right triangle vertex corresponding to 2 relative to p with

the label 10, and then proceeding (from 10) along p, we complete the labelling of .

Q
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5.3 Properties of the Labelled Quiver

For the purposes of this section, we suppose that the vertices of the quiver I" have
been labelled according to the labelling procedure outlined above. In fact, through-
out the remainder of this chapter, whenever we refer to the quiver of any cluster-
tilted algebra of Dynkin type A, we will automatically suppose that its vertices have
been labelled according to the outlined labelling procedure. Also, by a minor abuse
of notation, we will usually refer to the vertices of that quiver by their labels, whilst

still regarding the labels as numerical values.

The main focus of this section is on examining some of the properties of the labelled
quiver I'. In particular, we prove two results regarding the vertex labels of the
shortest unoriented paths in I' (from vertices labelled 7 to vertices labelled j, with
i < j), which in fact classify these shortest unoriented paths into two distinct types.
These results will subsequently be very useful. They will help us firstly to find an
explicit companion basis for I'; and then moreover, to give a direct proof that this

companion basis for I' must be strong.
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During the procedure for labelling the vertices of I', a number of shortest unoriented
paths in I' are considered. In fact, these shortest unoriented paths determine the
given labelling of the vertices of I'. We therefore call them the labelling paths for

the given labelling of (the vertices of) T.

We will now describe these labelling paths for the given labelling of T

Recall that the first step in the labelling procedure is to consider a shortest unori-
ented path joining two initially chosen end vertices of I'. In the labelled quiver T,
this is the shortest unoriented path from 1 to n. We call this labelling path the

0-labelling path for T.

Due to the inductive nature of the labelling procedure, it is a simple matter to
describe the other labelling paths for the given labelling of I'. We will call these
other labelling paths m-labelling paths, where for a given labelling path, m € N
depends on how “close” that labelling path is to the 0-labelling path for I'. For
m € N, we define m-labelling paths by using (m — 1)-labelling paths. (We are able

to do this, given that we have already introduced the 0-labelling path for I'.)

Let m € N and suppose that i is a left triangle vertex relative tc an (m —1)-labelling
path p for I'. Suppose also that there are a vertices in the section of I above the top
triangle vertex corresponding to 7 relative to p. Due to the inductive nature of the
labelling procedure, we then have that the shortest unoriented path in I' from ¢ + 1
to 1+ a is a labelling path for T'. We call this labelling path an m-labelling path for
I'. Note that the vertex labelled 7 - a is the top triangle vertex corresponding to %
relative to p, and the vertex labelled 7 + 1 is another end vertex in the section of I'

above this top triangle vertex.
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It is clear that every vertex of I lies on exactly one labelling path. Furthermore, for
any given triangle in I', it is easily seen that there is a unique labelling path which

passes through exactly two vertices of that triangle.

Fix an arbitrary triangle in I and let p be the labelling path which passes through
two vertices of that triangle. Relative to p, we may consider the vertices of the given

triangle as a left, a right and a top triangle vertex.

Suppose that the left triangle vertex relative to p is labelled j and that there are b
vertices in the section of I" above the top triangle vertex corresponding to j relative
to p. The top and right triangle vertices corresponding to j relative to p must then
be labelled j+b and j+ b+ 1 respectively. In particular, the label of the left triangle
vertex relative to p is lower than the label of the top triangle vertex relative to p,

which in turn is lower than the label of the right triangle vertex relative to p.

Since this holds for every triangle in T, we make the following definition, in which

reference to specific labelling paths for I" is dropped.

DEFINITION 5.3.1 If the vertices of a triangle in the labelled quiver I' have labels
i,7,k withi < j < k, then we call 1 a left triangle vertex in I, j a top triangle vertex

in T, and k a right triangle vertex in I'.

Furthermore, we call j the top triangle vertez in I' corresponding to i, and we call

k the right triangle vertez in I' corresponding to i.

In the situation where two triangles meet in a vertex, we see that that vertex can

be both a right triangle vertex in I" and either a left or a top triangle vertex in T.

The following consequence of Definition 5.3.1 is immediate.
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COROLLARY 5.3.2 A given vertez of I is a left (resp. top, right) triangle vertex
in I if and only if it is a left (resp. top, right) triangle vertez relative to some labelling

path for the given labelling of T.

We make the following definitions.

DEFINITION 5.3.3 We call the shortest unoriented path in T' from 1 to n the

trunk of T.

DEFINITION 5.3.4 Suppose that i is a left triangle vertex in I' and suppose that
there are a vertices in the section of I' above the top triangle vertex in ' correspond-
ing to i. Then, that top triangle vertex is labelled i + a, and we call the shortest
unoriented path in T' from i + 1 to i + a a branch of T'. (In the case where a = 1,

we call the branch a trivial branch of T'.)

Also, we call the triangle on vertices 1,1+ a,i+a+1 the base triangle of the oranch.

Note: We have that the trunk of T" is the 0-labelling path for I'. Also, the branches

of I" are the m-labelling paths for ', for m > 1.

We now take a closer look at some of the properties of the labelled quiver I, starting

with the following remark.

REMARK 5.3.5 We note that no vertex of I' can be both a top triangle vertez in
I' and a left triangle vertex in T'. Indeed, given any top triangle vertex in I', we see
(by construction) that there is a branch of I' starting at some end vertex of I' and
ending at that top triangle vertex in I'. By definition, the given top triangle vertex
in ' cannot be a left triangle vertex relative to this branch. However, the given top

triangle vertex in T lies on no other labelling path for I.
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Consider the shortest unoriented path in I" from 1 to n (i.e. the trunk of I'). By
construction, as we move along this path from 1 towards n, the labels of subsequent
vertices strictly increase. In fact, if k£ lies on this path and is not a left triangle
vertex in I', then the vertex following k is k + 1. Whereas, if k lies on this path and
is a left triangle vertex in I', then the vertex following k is k + a + 1 where a is the
number of vertices in the section of T" above the top triangle vertex corresponding

to k.

Due to the inductive nature of the labelling procedure, we have that each of the

branches of I" satisfies properties analogous to these.

Making use of these properties, we obtain the following useful result.

PROPOSITION 5.3.6 Leti be a vertex in ' and consider the shortest unoriented
path p in T from i to n. As we move along this path from i towards n, the labels of
subsequent vertices strictly increase. If j lies on p and is not a left triangle vertex
in T, then the vertex following j is j + 1. Also, if j lies on p and is a left triangle
vertex in I', then the vertex following j is j+a-+1, where a is the number of vertices

in the section of T' above the top triangle vertex corresponding to j.

Proof We proceed by (reverse) induction on the vertex labels.

As an initial case, we see that the result is clear for the shortest unoriented path in

T’ from n to n.

For our induction hypothesis, we assume that the result holds for all vertices [ with

n>10>1.

From the comments made prior to stating this proposition, we see that if ¢ lies on

the shortest unoriented path in I" from 1 to n, then the result holds.
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So, suppose that ¢ lies on a branch. Suppose that the left triangle vertex of the base
triangle of this branch is m, and suppose that there are ¢ vertices in the section of I"
above the top triangle vertex in I corresponding to m. Then, 7 lies on the shortest
unoriented path in I" from m + 1 to m -+ ¢, and the vertices of the base triangle of

this branch are m, m + ¢ and m 4+ ¢ + 1.

Again due to the comments made prior to stating this proposition, we see that as
we travel along the shortest unoriented path in I' from i to m + ¢, the labels of
subsequent vertices strictly increase. Also, if 7’ lies on this path and is not a left
triangle vertex in ', then the vertex following j' is 5/ + 1. And if j' lies on this
path and is a left triangle vertex in T', then the vertex following 7’ is j' + a’ + 1,
where a’ is the number of vertices in the section of I above the top triangle vertex

corresponding to j'.

Also, by the induction hypothesis, we have that the shortest unoriented path in I'

from m + ¢ + 1 to n satisfies the required result.

It therefore follows that the unoriented path p' in I’ constructed by combining the
shortest unoriented path in I' from i to m + ¢, the shortest unoriented path (of
length one) in I" between m + ¢ and m + ¢+ 1, and the shortest unoriented path
in I between m + ¢+ 1 and n, has the desired properties (since the vertex labelled
m + ¢ cannot be a left triangle vertex in I'). So, all that remains to be checked is

that p’ is the shortest unoriented path in I" from 7 to n (i.e. that p’ = p).

It is clear that p’ is an unoriented path in T from ¢ to n. Suppose z (m < z < m+c)
is the vertex preceeding m + ¢ in p/, and suppose y (y > m + ¢ + 1) is the vertex

following m + ¢+ 1 in p'. It is enough to check that z, m 4- ¢ and m 4+ ¢+ 1 are not
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the three vertices of a triangle in T", and that m + ¢, m + ¢+ 1 and y are not the

three vertices of a triangle in I' (whenever such vertices z and y exist).

In both cases this is clear, since m, m + ¢ and m + ¢ + 1 are the three vertices of
the base triangle for the branch containing i, and no two triangles in I can share

aln arrow.

Therefore, p' is the shortest unoriented path in I’ from ¢ to n, and so the result

holds. [ |

It is clear that we have the following corollary of Proposition 5.3.6.

COROLLARY 5.3.7 Let i be a vertex in T’ and consider the shortest unoriented
path p in T from 1 ton. If j lies on p and is a left triangle vertex in I', then the

vertez following j (on p) is the corresponding right triangle vertex in I.

We now turn our attention to shortest unoriented paths in I'" from vertices ¢ to j

with 7 < j, and with the aid of Proposition 5.3.6, we obtain another useful result.

PROPOSITION 5.3.8 Let i and j be vertices in I', i < j, and suppose p is the
shortest unoriented path in T from i to j. Then, there can be at most one instance of
a left triangle vertex in T lying on p being followed by the corresponding top triangle

vertex in I'.

Proof By Corollary 5.3.7, no left triangle vertex in I' lying on the shortest unori-
ented path in T from i to n can be followed (on that path) by the corresponding top
triangle vertex in I'. So, it j lies on the shortest unoriented path in I' from 7 to n,
then no left triangle vertex in T' lying on p is followed (on p) by the corresponding

top triangle vertex in I'.
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Suppose j does not lie on the shortest unoriented path in I" from ¢ to n. Since j > 1,
there must be some left triangle vertex k in I, lying on the shortest unoriented path
in I from ¢ to n, such that j lies in the section of I" above the top triangle vertex in

I’ corresponding to k.

Note that k lies on the shortest unoriented path in I" from 4 to n, so no left triangle
vertex in I' lying on the shortest unoriented path in T' from 7 to k& can be followed

by the corresponding top triangle vertex in T'.

Suppose there are a vertices in the section of I' above the top triangle vertex cor-
responding to k. Then the top triangle vertex in I' corresponding to k is labelled

k + a, and the right triangle vertex in I" corresponding to k is labelled k + a + 1.

We get an unoriented path in I" from j to n by combining the shortest unoriented
path in T" from j to k£ + a, the shortest unoriented path (of length one) in I from
k+atok+a+1, and the shortest unoriented path in I from & + a + 1 to n. It
is easily checked that this path is in fact the shortest unoriented path in I' from j
to n. Therefore, by the result of Proposition 5.3.6, we have that as we travel along
the shortest unoriented path in I' from j to k + a, the labels of subsequent vertices

strictly increase.

So, as we travel along the shortest unoriented path in I" from k& + a to j, the labels
of subsequent vertices will strictly decrease. As an immediate consequence of this
we see that no left triangle vertex in I' lying on the shortest unoriented path in I’

from k + a to j can be followed by the corresponding top triangle vertex in I'.

Now, the shortest unoriented path in I" from ¢ to j is the path obtained by combining

the shortest unoriented path in " from i to k, the shortest unoriented path (of length
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one) in I' from k to k + a, and the shortest unoriented path in ' from & + a to j.
So, if j doesn’t lie on the shortest unoriented path in I' from 7 to n, then exactly
one left triangle vertex in I lying on p is followed by the corresponding top triangle

vertex in I'.

Therefore, we see that there can be at most one instance of a left triangle vertex in

I' lying on p being followed by the corresponding top triangle vertex in T'. |

REMARK 5.3.9 Suppose i and j are vertices in I' with i < j. From the proofs of
Propositions 5.3.6 and 5.3.8, we see that the label of every vertex lying on the shortest
unoriented path p in T' from 1 to j must be greater than or equal to i. Moreover,
if some left triangle vertex k in T lying on p is followed by the corresponding top
triangle vertez, labelled k + a, where a is the number of vertices in the section of I'
above that top triangle vertex, then the label of every vertex lying on p must also be
less than or equal to k + a. On top of this, the vertexz k + a must lie on the shortest
unoriented path in T from j to n, and so no left triangle vertex in T lying on the
shortest unoriented path in T’ from j to k + a can be followed by the corresponding

top triangle vertez.

5.4 An Explicit Companion Basis for I'

Recall that we want to construct explicitly a strong companion basis for (the labelled
quiver) I'. We will firstly specify a positive quasi-Cartan companion of B, and
then introduce a candidate companion basis for I', defined using the labelling of
the vertices of I'. In order to prove that this candidate companion basis is indeed a

companion basis for I', we start by showing that it gives rise to the specified positive
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quasi-Cartan companion of B, before showing that it is a Z-basis for Z&®. The proof

that the constructed companion basis is strong will be given in the next section.

Constructing a positive quasi-Cartan companion of B is a simple task.

DEFINITION 5.4.1 Let Ar = (a;j) be the matriz whose entries are given as

follows: Suppose i and j are vertices of T, i # j.

(i) If i and j are joined by an arrow in T, i is a left triangle vertez in T' and j is
the corresponding right triangle vertex in T', we set a;; = aj; = 1.

(ii) Otherwise, if i and j are joined by an arrow in T', we set a;; = aj; = —1.

(1it) If i and j are not joined by an arrow in ', we set a;j = aj; = 0.

(iv) For all vertices k in ', we set ag = 2.

LEMMA 5.4.2 The matriz Ar introduced in Definition 5.4.1 is a positive quasi-

Cartan companion of B.

Proof By construction, we have that Ar is a quasi-Cartan companion of B.

Hence, it just remains to establish the positivity of Ar.

Treating the matrix Ar as an assignment of signs to the arrows of I' (in the natural
way), we see that each triangle in I" has exactly one (an odd number) arrow assigned
positive sign. Therefore, since B is a matrix appearing in a seed of the cluster algebra
A of (finite) Dynkin type A,, we see by Theorem 1.4.5 and Propositions 1.4.6 and

1.4.7 that the matrix Ar must be positive. |

We now introduce a candidate companion basis {f1,...,0n,} € ® for I'. (Recall that

II={ai,...,an} is a simple system of ®.)
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DEFINITION 5.4.3 For each vertex ¢ in the quiver T, let m; be the number of
left triangle vertices appearing in the shortest unoriented path in T from i ton. Ifi
is not a left triangle vertex in T, then set B; = (—1)™iq;. Ifi is a left triangle vertex
in T, then set B; = (—1)™ (i + ...+ ®it+a), where a is the number of vertices in the

section of I' above the top triangle vertex corresponding to i.

Notice that for each ¢, ; is a root, since it is plus or minus a sum of consecutive

simple roots.

The following simple lemma will help us to prove that our candidate companion
basis for ' gives rise to the matrix Ar. In other words, that (8;,8;) = a;; for all

1<i,j<n.

LEMMA 5.4.4 Let ¢ # n be a vertex in I.

(i) If i is not a left triangle vertez in T, then (; is positive (resp. negative) if and
only if Biy1 is positive (resp. negative).

(i) If i is a left triangle vertex in T', and there are a vertices in the section of I’
above the corresponding top triangle vertex, then [3; is positive (resp. negative) if

and only if Bi+a and Bitqt1 are negative (resp. positive).

Proof (i) Suppose i is not a left triangle vertex in I'. By Proposition 5.3.6 we
see that ¢ is followed (immediately) by 7 + 1 on the shortest unoriented path in I’
from i to n. As an immediate consequence of this we see that [§; is positive (resp.

negative) if and only if 841 is positive (resp. negative).

(ii) On the other hand, suppose that ¢ is a left triangle vertex in I', and that there
are a vertices in the section of I" above the top triangle vertex corresponding to .

Then, the top and right triangle vertices in I" corresponding to ¢ will be labelled ¢ +a
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and ¢ 4+ a + 1 respectively. Again by Proposition 5.3.6, we see that 7 is followed by
i1+ a1 on the shortest unoriented path in I" from 7 to n, and that ¢ + a is followed
by ¢+ a+ 1 on the shortest unoriented path in I" from 7 4+ a to n (noting that ¢ + a
cannot be a left triangle vertex in I'). Therefore, we see that (§; is positive (resp.

negative) if and only if 8;1, and B;;4+1 are negative (resp. positive). |

PROPOSITION 5.4.5 With Ar = (ai;) and {(1,...,0n} as given in Defini-

tions 5.4.1 and 5.4.3 respectively, we have a;; = (0;, 3;) for all 1 < 14,5 < n.

Proof Suppose i is a left triangle vertex in I'. Suppose also that there are a > 1
vertices in the section of I' above the top triangle vertex in I' corresponding to
i. Then, the said top triangle vertex will be labelled ¢ + a and we must have

B; = i(ai + ...+ Ozi+a).

If j # i+ a is a vertex in the section of T above i +a (i.e. if i +1 < j < i+ a), then
by construction we see that 8; = +(a; + ...+ «a,), where 7 < i+ a. Therefore, since

(0 + ...+ Ciyq, 0+ ...+ a,) = 0, we see that (G, ;) = 0 = a;; in this case.

By Lemma 5.4.4, we see that if 3; is a positive (resp. negative) root, then f;,, and

Birar1 are negative (resp. positive) roots.

The top triangle vertex i +-a cannot be a left triangle vertex in I' (by Remark 5.3.5),
and so Bi1q = £a;44. Therefore, since (o + ... + Qita, —;1q) = —1, we see that

(Bi, Bita) = =1 = Gijita-

Also, Bitatr1 = (a1 + - + Qitariye), for some ¢ > 0, withc=0if i+a+1
is not a left triangle vertex in I'. Therefore, since (a; + ...+ ®ija, —Qitat1 — ... —

ai+a+1+c) =1, we see that (ﬁiaﬁi+a+1) =1=a;i+a+1-
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For j > i+ a+ 1, it is clear that we have (G;, 8;) = 0 = a;.

In the a = 1 case, we have that i is a left triangle vertex in I', and that the
corresponding top and right triangle vertices are labelled 1+ 1 and 7 + 2 respectively.
Furthermore, we have 8; = *(a; + ai4+1), Bit+1 = Fay1 and Bijo = Flaipe +
...+ @iyoyc), for some ¢ > 0, with ¢ = 0 if 7 + 2 is not a left triangle vertex in T'.
Therefore, (8;, Bi+1) = —1 = aii41 and (Gi, Biye) = 1 = aji42. Also, for j > i+ 2t

is clear that (5;, 5;) = 0 = a4;.

So, if 7 is a left triangle vertex in I, we have shown that (8;, 8;) = a;; for all j > i.

Now suppose 7 is not a left triangle vertex in I'. So, 8; = *a;. Then, 841 =
+(air1 + ... + dit14c), for some ¢ > 0, with ¢ = 0 if < + 1 is not a left triangle
vertex in I'. Also, ;41 must have the same sign as 3; by Lemma 5.4.4. Therefore,

(Bi, Biy1) = =1 = a@;;41. For j > i+ 2, it is clear that (3;, 5;) = 0 = a;;.

Therefore, for every vertex i, we have shown that (8;,8;) = a;; for all j > 4.
Furthermore, since a;; = aj; for all ¢ and j, and (8;, 8;) = (B;, ;) for all 7 and j, we

have (ﬁl,ﬁ]) = Q4j for all ¢ 75 j

Finally, since (8;,8:;) = 2 = a;; for all 1 < i < n, we see that a;; = (Bi, B;) for all

1<i,j<n. |

With the following result, we establish that the candidate companion basis

{Bi1,...,8,} C ® is indeed a companion basis for T

PROPOSITION 5.4.6 The set{f1,...,0n} C ® as obtained from Definition 5.4.3

is a Z-basis for Z®.
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Proof It is clear from the construction that {8, ...,8,} is a linearly independent
set. (Note that for each 7, §3; is of the form 8; = #(o; + ... + 1), with ¢ > 0.
Therefore, we see that the n x n matrix whose (i,7)-entry is defined to be the

coefficient of o in f3; is upper triangular.)

In order to complete the proof, it is enough to show that each simple root «o; € II
can be written as an integral linear combination of {fi,...,08,}. This being the
case, it then follows immediately that the Z-span of {f1, ..., 3,} must contain Z®.
Furthermore, since {31,...,08,} C ®, the Z-span of {f,...,B,} must in fact be

equal to Z®.
If 7 is not a left triangle vertex in I, then 5; = £o; and so o; = £3;.

Suppose now that ¢ is a left triangle vertex in I'. If there are a > 1 vertices in the
section of I' above the top triangle vertex corresponding to 7, then 3, = +(a; +...+

Qita), and so oy = £06; — @iy41 — ... — Qiyq-

Now, consider the shortest unoriented path in T' from ¢+ 1 to i + a (the top triangle
vertex in ' corresponding to 7). Starting from ¢ + 1 and moving towards ¢ + a,
suppose that the vertices appearing in this path are respectively i,42,...,% (so

i1=t+1and i, =1+ a).

Consider iz, 1 < k < t. If 74 is not a left triangle vertex in I, then 8;, = +oy,,
and ig 1 = i + 1. If 4; is a left triangle vertex in ', then by construction, 3;, =

i(aik +a 1+ ...+ aik+l_1). Also, 6“ = tajyq.

Therefore, we see that 5;, +...+ 8, = E;J::H cjo with ¢; = £1 for all j. Moreover,

we can write a1 + ... + Qiya = 23:1 bjﬁij with b; = %1 for all j.
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Therefore, a; = +3; — 3.:1 bjﬂij where 41,...,4; are the vertices of the shortest

unoriented path in I from ¢ + 1 to ¢ + a.
This completes the proof. | ]
We have now proved that the following result holds.

COROLLARY 5.4.7 The set {B1,...,0n} C @ as obtained from Definition 5.4.3

is a companion basis for I'.

EXAMPLE 5.4.8 Here, we construct a companion basis for the labelled quiver

considered in Example 5.2.1.

>7<—6

O <€«— 00 —>Ul<— i <—W

/N

1—2<—10—>11

As noted previously, the quiver §2 arises from a triangulation of a regular 14-gon
and is therefore the quiver of a cluster-tilted algebra of Dynkin type A;i1. So, by

applying Corollary 5.4.7, we are able to obtain a companion basis for €.

Take ® to be the root system of Dynkin type Aj;;, with simple system II

= {011, e .,an}.

We start by noting that 2 and 5 are the only left triangle vertices in 2.
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Consider the vertex labelled 1. We have that 1 is not a left triangle vertex in Q
and that 2 is the only left triangle vertex in 2 lying on the shortest unoriented path

from 1 to 11. Therefore, we set 81 = —a;.

Now consider the vertex labelled 2. This vertex is a left triangle vertex in ), and
is the only left triangle vertex in Q lying on the shortest unoriented path from 2 to
11. We have that the top triangle vertex in Q corresponding to 2 is 9. Therefore, as

there are seven vertices in the section of ) above 9, we set 8y = — (a2 + -+ + ag).

Continuing in this way, we also obtain 03 = —as, 84 = —a4, 85 = —(as + ag + ay),

Be = ag, Br = a7, B = as, By = ag, B0 = a1 and B11 = a11.
We have that {31,...,811} C ® is a companion basis for 2.

(We note that a routine check establishes that the constructed companion basis for

2 does indeed give rise to the matrix Aq that we obtain from Definition 5.4.1.)

5.5 The Constructed Companion Basis for I' is Strong:
A Direct Proof

Theorem 4.1.4 tells us that all companion bases for I' must be strong. In particular,
the (explicit) companion basis T = {f1,...,8,} € ® for I' that we constructed in

the previous section must be strong.

Recall that in Section 4.4 we established, for each companion basis for I, a bijective
correspondence between the set of shortest unoriented paths in I' (identifying each
shortest unoriented path with its reverse) and the set of positive roots, depending
on that companion basis. This was in fact one of the key steps in the proof of

Theorem 4.1.4.
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In this section, we construct this bijective correspondence explicitly for the com-
panion basis Y. Furthermore, we do this independently of the general construction
given in Section 4.4. This then enables us to give a direct proof of the fact that
T is a strong companion basis for I'. We conclude this section by noting that as
a consequence of Proposition 4.6.2, we therefore obtain an alternative proof of our

main result, Theorem 4.1.4.

Rather than identifying shortest unoriented paths in T" with their corresponding
reverse paths, as in Section 4.4, we will here just consider shortest unoriented paths

in I from vertices ¢ to j with ¢ < j. For this reason, we make the following definition.

DEFINITION 5.5.1 Let 7 and j be vertices in I' with i < j. Then, we call the
shortest unoriented path in I' from i to j a positive shortest unoriented path in T’

(or an su™-path in T for short). We denote the set of all sut-paths in T by sut(T).

In order to construct the desired bijective correspondence between the set of sut-
paths in T and the set of positive roots, it is enough to show that for each su™-path
p in T, we can find explicitly a positive root with support p. This is because the
number of (distinct) suT-paths in T is equal to the number of positive roots, and no

positive root can have two different su™-paths as support (refer to Section 4.4).

Now, Proposition 5.3.8 tells us that for any su™-path p in T, there can be at most one
instance of a left triangle vertex in I' lying on p being followed by the corresponding
top triangle vertex in T'. So, there are essentially two types of sut-paths in I
Those for which every left triangle vertex in I is followed by the corresponding right
triangle vertex in I', and those where exactly one left triangle vertex in I is followed

by the corresponding top triangle vertex in I'.

In the following proposition, we examine the relationship between the positive roots

and the first of these types of su™-paths in I.
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PROPOSITION 5.5.2 Let i and j be vertices in I' with i < j. Let p be the
shortest unoriented path in I from i to j. Suppose that whenever p passes through
a left triangle vertex in T", it does not then proceed through the corresponding top
triangle vertez in I'. Then:

(i) If j is not a left triangle vertex in T', then the positive root o; + ajp1 + ... + @
has support p.

(ii) If j is a left triangle vertex in I and there are a vertices in the section of I' above

the top triangle vertex in T' corresponding to j, then the positive root o; + a1 +

...+ aj+ ...+ ajiq has support p.

Proof We start by noting that the vertex j must lie on the shortest unoriented
path in T from ¢ to n. (Because otherwise, the proof of Proposition 5.3.8 shows that
some left triangle vertex in ' lying on p must be followed (on p) by the corresponding

top triangle vertex in I'.)

Starting from 7 and moving towards j, suppose that the vertices in the shortest

unoriented path from 7 to j are respectively 71,42,...,%. (So, 41 =4 and ¢, = j.)

Fix k, 1 < k < t. If iy is not a left triangle vertex in I', then §;, = Fa;, and

Tyl = g + 1.

If iy, is a left triangle vertex in I', then G;, = £(a; + ... + &, +m), Where m is
the number of vertices in the section of T" above the top triangle vertex correspond-
ing to ix. By assumption, p must proceed through the right triangle vertex in I
corresponding to i;. But this vertex must be labelled iy +m + 1, and so we have

i1 =ik +m+ 1.

In case (i), we have that j is not a left triangle vertex in I', and hence f3;, = *ay,.
It is then clear that we can write a; + ;41 + ...+ a; in the form ¢18;; + ... + ¢,

with ¢; = +1 for all . Therefore, we see that a; + a;41 + ... + «a; has support p.
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In case (ii), we have that j is a left triangle vertex in I', and 3;, = +(a;, +...+ 4, +a)-
So, in a similar manner, we see that the positive root a; + a; 1+ . Aot 4 ajia

has support p. |

Now we complete the picture by examining the relationship between the positive

roots and the su™-paths in " that weren’t covered by the above proposition.

PROPOSITION 5.5.3 Let i and j be vertices in T' with i < j, and let p be the
shortest unoriented path in T' from i to j. Suppose that at some point, p travels
through a left triangle vertex in I' and then proceeds through the corresponding top

triangle vertex in I'. Then, the positive root o; + ... 4+ aj_1 has support p.

Proof Starting from ¢ and moving towards j, suppose that the vertices in the
shortest unoriented path in I from i to j are respectively i1,142,...,%. (So, i; =1

and 7; = j.)

We have from Proposition 5.3.8 that only on one occasion can p travel through a
left triangle vertex in I" and then proceed through the corresponding top triangle

vertex in T'.

Suppose z is a left triangle vertex in I lying on p, suppose that there are a vertices
in the section of I' above the top triangle vertex corresponding to z, and suppose
ir = = and iy = x + a for some k, where 1 < k < t. (Note that z must lie on the

shortest unoriented path in I' from ¢ to n.)

Whenever the shortest unoriented path in I" from 7 to = passes through a left triangle
vertex in I', then it does not proceed through the corresponding top triangle vertex

in I'. Therefore, from the proof of Proposition 5.5.2, we see that we can write the
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positiveroot a;+...+ay+.. .+ Qziq inthe form a;+.. .4tz +. ..+ azrq = Zle aB;,

with ¢; = %1 for all [.

Whenever the shortest unoriented path in T from j to = + a travels through a left
triangle vertex in I', then it must proceed through the corresponding right triangle
vertex in I' (see the last part of Remark 5.3.9). Therefore, again using the proof of
Proposition 5.5.2, we see that we can write the positive root a; + ... 4+ a4 in the

form o + ...+ aziq = Elt:k+1 B, with ¢ = £1 for all L.

Therefore, o + ... + aj_1 = Zle abi, — Zfzkﬂ c1B;, with ¢; = £1 for all I, and so

we see that the positive root o; + ... + a;_; has support p. |

In view of the paragraph following Definition 5.5.1, we have now constructed an
explicit bijective correspondence (for the companion basis T for I') between the set
of suT-paths in I" and the set of positive roots. Under this correspondence, a given

suT-path p in I corresponds to the unique positive root that has support p.
We now give an example.

EXAMPLE 5.5.4 Again, we consider the labelled quiver 2 introduced in Exam-

ple 5.2.1.

>7<————6

QO<«— 00— Ul<— i <— W

/N

1—2<~—10—11
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Suppose @ is the root system of Dynkin type Ay1 and that I = {o4,...,a11} C @

is a simple system of .

In Example 5.4.8, we constructed a companion basis {81,...,811} C ® for §, given

by i = —a1, B2 = —(2 + - + ag), B3 = —as, B1 = —a4, B5 = —(a5 + ag + a7)

and G; = o; for all 6 < i < 11.

Here, we consider two sut-paths in . For each of these, we find the positive root

which has that sut-path as support.

Let p; be the shortest unoriented path in Q from 4 to 10. We see that every left
triangle vertex in 2 lying on p; is followed by the corresponding right triangle vertex
in § (since 5 is followed by 8). Therefore, since 10 is not a left triangle vertex in §2,
we have from part (i) of Proposition 5.5.2 that the positive root as + - -+ + ajp has
support p;. Indeed, by expressing a4 + --- 4+ ajg in terms of the given companion

basis for §2, we obtain ag + -+ + a9 = ~B4 — Os + B + Bo + Sio-

Let py be the shortest unoriented path in 2 from 1 to 5. We see that the left triangle
vertex 2 lies on ps and is followed by 9, the corresponding top triangle vertex in 2.
Hence, by Proposition 5.5.3, we have that the positive root o1 + a2 + a3 + a4
has support p;. We conclude this example by noting that oy + a2 + a3 + g =

—B1 — B2+ B5 — Bs — By, thus confirming this.

Using the established bijective correspondence (for the companion basis T for T)
between the set of suT-paths in I’ and the set of positive roots, we may now describe
the vectors dX for o € ®*. This will then enable us to complete a direct proof of

the fact that T is a strong companion basis for T'.

Let a be a positive root and suppose that p is the sut-path in I' which corresponds

to a. Then, o has support p. The following lemma tells us that the vector d} has a
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one in each position corresponding to a vertex of I" lying on p, and zeros everywhere

else.

LEMMA 5.5.5 Let a be a positive oot and suppose that o = Yy ., ¢;5;. Then,

c; € {0,£1} for all1 <i < n.

Proof The result follows immediately from the proofs of Propositions 5.5.2 and

5.5.3. -
COROLLARY 5.5.6 The companion basis T = {B1,...,8n} C @ for ' is strong.

Proof Having now completed the description of the vectors df for a € &7, the
fact that T is a strong companion basis for T follows by proceeding exactly as in

Section 4.5. ]

We have now seen that we can construct explicitly a strong companion basis for the
quiver of any given cluster-tilted algebra of Dynkin type A. Therefore, by Proposi-

tion 4.6.2, we have provided an alternative proof of our main result, Theorem 4.1.4.
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Chapter 6

Companion Basis Mutation and
Dimension Vectors

In the final chapter of this thesis, we return to considering the procedure of com-
panion basis mutation (introduced in Theorem 3.1.4). We start by giving an outline

of the contents of this chapter.

Suppose that A is a cluster-tilted algebra of simply-laced Dynkin type, and that T
is the quiver of A. By Proposition 4.6.2, the set of vectors associated to the positive
roots of the corresponding root system is the same with respect to any companion
basis for ' We may therefore consider this set of vectors as the set of vectors

associated to the positive roots with respect to I'.

Suppose that by applying a single quiver mutation to I, we obtain the quiver I",

and let A’ be the cluster-tilted algebra associated to I'.

Via inward companion basis mutation, we will sec that each companion basis for I’
induces a map from the set of vectors associated to the positive roots with respect to
T, to the set of vectors associated to the positive roots with respect to I['. Moreover,

we will show that this map does not depend on the choice of companion basis for T'.
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In the Dynkin type A case, we will give an explicit description of this map. Finally,
in this case, as a consequence of our main result (Theorem 4.1.4), we will then
deduce that given the dimension vectors of the finitely generated indecomposable
A-modules, we can immediately write down the dimension vectors of the finitely

generated indecomposable A’-modules.
Our set-up for this chapter is as follows.

Let k be an algebraically closed field, let @ (with n vertices) be an alternating quiver

of simply-laced Dynkin type, with underlying graph A, and let

_ D*(kQ — mod)
=——

C

be the corresponding cluster category. Suppose that A is the cluster algebra of
Dynkin type A. Also, suppose that & C V is the root system of Dynkin type A,
where V is a Euclidean space with positive definite symmetric bilinear form ( , ),

and let IT = {1, ..., @,} be a simple system of ®.

Let A = End¢(T)°P be a cluster-tilted algebra, where T is some basic cluster-tilting
object in C. Suppose that (x, B) is the seed of A which corresponds to T, so that
T = T'(B) is the quiver of A. Write I" = (I'g,I"1), where I'g is the set of vertices of

I, and I'; is the set of arrows of T.

Finally, let ¥ = {y;:z € I's} € ® be a companion basis for I, and suppose that
A = (agy) is the positive quasi-Cartan companion of B given by azy = (vz,7y) for

all z,y € Tp.

Note: Although we only consider inward companion basis mutation in this chap-
ter, we note that analogues of the results established here may be obtained similarly

with regard to outward companion basis mutation.
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6.1 Maps Induced by Mutation

In this section, we study a collection of maps associated to the companion bases
for ', induced by companion basis mutation. In order to enable us to define these
maps, we start by showing that the set {dY:a € ®*} has |®*| distinct elements.

That is, each vector d¥ uniquely determines the positive root a.

PROPOSITION 6.1.1 |[{d}:a € ®*}| = |®*|. That is, the vector d¥ is different

for each positive root «.
Proof Let o, € @' and suppose dY = dg’. We will show that a = .

Suppose a = ZZEFO azv, and § = Zzero bzye with agz,by € Z for all € T'g. Since

dy = d;’, we have |az| = |bz| for all z € T'y.

Let I = {z:b, = a,} and J = {z:b; # a,} (ie. J = {x:a; # 0and by = —a}).

Define vy =3 ;027 € Z® and 6 = ) . ; a,7. € Z9.
Then, a =y + 6§ and =~ — 4.

Since a, 3 € ¢, we have
2=(a,a)=(y+4,7+8)=(7,7) +2(%0)+(49)

and

2=(8,8)=(y—=067—8) = (v,7) —2(7,9) + (69).

It therefore follows that we must have (,v) + (4,d) = 2.

Now, for any 0 # z € Z®, it is clear that we must have (z,z) € N. (Note that
(, ) is positive definite, and (z, z) is clearly an integer.) But also, we cannot have

(2,2) = 1 (refer to [CS]). Therefore, there are two cases to consider.
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Case 1: Suppose (v,7) = 2 and (6,6) = 0. In this case, we must have that § = 0

and hence a = .

Case 2: Suppose (v,7) = 0 and (6,8) = 2. In this case, we must have that v = 0
and hence a = —(3. But this contradicts the fact that a and 3 are both positive

roots.

Therefore, case 2 cannot arise, and so we must have a = (3 as required. |

By Proposition 4.6.2, the set of vectors associated to the positive roots is the same
with respect to any companion basis for I'. For notational convenience, we will call

this set D(T). In particular, we have D(I') = {dY:a € &*}.

Let k be a vertex in I" and suppose that I is the quiver obtained from I' by applying
quiver mutation at the vertex k. The vertex k corresponds to a row and column of
B and hence to a cluster variable zx € x. We have that I'' = T'(B’), where (x/, B')
is the seed of A obtained from (x, B) by mutating in the direction zj. The seed
(x', B') corresponds to some basic cluster-tilting object 7" in C, and so I" is the

quiver of the cluster-tilted algebra A’ = End¢(7")°P.

Denote the set of vertices of IV by I'y, and let ¥/ = {y.:z € Ty} C ® be the compan-

ion basis for I'V obtained from ¥ by mutating inwardly at k (refer to Theorem 3.1.4).

In view of Proposition 6.1.1, associated to the companion basis ¥ for I', we have
the following bijective map
¢in: D(T) — D(T)
&y — dYr.

[0 «
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Likewise, we have such a bijective map associated to each companion basis for T'.

We will show that these bijective maps are all the same.
That they all have the same domain, and all have the same codomain, is immediate.

Let © = {v,:z € Tg} C @ be another companion basis for I'; and suppose that
O' = {v:z € Ty} C @ is the companion basis for I obtained from © by mutating

inwardly at k.
We will show that the maps d)g; and ¢f?1 are equal.

Recall that by applying sign changes to the elements of ©, we can obtain a com-
panion basis T = {é,:z € I'g} C ® for T giving rise to A (refer to Corollary 3.3.2).
(Note that 6, = +v, for all z € T'y.) Let Y/ = {§,:2 € Ty} € ® be the companion

basis for IV obtained from Y by mutating inwardly at k.
It follows as a consequence of the following result that qb?; = ¢i(?1'

LEMMA 6.1.2 Fiz z € Ty and let Q@ = {2z € To} C & be the companion basis

for T given by
] v ifz=2
({7

otherwise.

Then: (i) The companion basis Q' = {¢,:z € Ty} C @ for I' obtained from Q by

mutating tnwardly at k is given by

; { -Vl ifr =z,

v, otherwise.

(ii) 5% = 6.
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Proof (i) There are three cases to consider.

Case 1: Suppose z # k and there is no arrow in I’ from 2 to k. In this case, we have

£, =& =—v, = —v,, and &, = v, for all z # z.

Case 2: Suppose there is an arrow in I' from z to k. (Note that we must then have
21

z # k.) In this case, we have &, = s¢, (&) = sy, (—v:) = —s,, (vz) = —v, and

& = for all z # 2.

Case 3: Suppose z = k. In this case, we have £, = —/, since ), = & = —vp = —V}.
Also, if z # z and there is no arrow in I from z to k, then &, = ¢, = v, = v/}, and

if there is an arrow in I' from  to k, then &, = s¢, (&) = s_u, (Va) = 80, (V2) = V.

Thus, in each case we see that ¢, = v/}, for all z # z, and &, = —1),.

(i) Let @ € T and write a = Y azv, with a; € Z for all z € Tg. Then, we

zelg

have o = Zmero by€, where b, = a, for all z # z, and b, = —a,. Furthermore, if
a= er% cgVl, with ¢ € Z for all z € ', then a = Zme% d.&. where d, = ¢, for

all z # z, and d, = —c,. In particular, d2 = df} and d2' = d¥} for all a € &+.

It follows immediately that the maps d)i(;)l and qﬁi% are equal. | |
The following is an obvious consequence of Lemma 6.1.2.

COROLLARY 6.1.3 ¢2 = ¢r.

With the following result, we now prove that all of the bijective maps associated to

the companion bases for I' are the same.
PROPOSITION 6.1.4 ¢ = ¢2.
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Proof From Corollary 6.1.3 we have that ¢2 = ¢X. So, we will prove the desired

result by showing that d)i\fl = ¢$

Since ¥ = {y;:x € Iy} and T = {§,:z € Iy} are both companion bases for I'
giving rise to A, we have from Theorem 3.4.11 that there is some orthogonal linear
transformation o:V — V (which permutes the set of simple roots IT) and some

w € Wa (the Weyl group of ®) such that §, = wo+y, for all z € T'y.

Let a € 1 and write a = ZzeFo azYr With a, € Z for all x € I'g. Since w and o
both permute the set of roots ® (refer to the proof of Lemma 3.4.10), we see that
woa € ®. In particular, either woa € ®* or —woa € . Suppose without loss of

generality that woa € .

420z, and therefore d¥ = dY, ., (= d¥ ,q)-

We have woa = Zmepo A WO Yz = Zzel’o

By Proposition 6.1.1, woa must be the unique element of ®* having this property.

So, it only remains to check that d¥ = dJ

woa”*

We start by showing that wov), = §,, for all z € TY,.
There are two cases to consider.

Case 1: Suppose that there is no arrow in I' from z to k. Then, wovy, = woy, =

0z =0y,
Case 2: Suppose that there is an arrow in I' from z to k. Then,

woy, = wo(sy (Ve)) = wo(Ve = (Yo V&) Vi)
= woYe — (Vo) k) WO Yk

= 0z — (Yer Tk) Ok
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= g — (0z,8%) Oy

= S& (61)

Finally, we see that if o = Ea:el“’o ¢z, with ¢, € Z for all z € T, then woa =

’ 1
2oeery, CaWOYy = D gcry Caly. Therefore, dY = df . (= dT,

v
woa —waa) and hence ¢in =

T

in®
This completes the proof. |

We have now seen that the map ¢: D(I') — D(I") does not depend on the com-
panion basis ¥ for I". That is, if we replace ¥ with any other companion basis for

I', then we still get the same map. We will therefore call this map ¢};.

6.2 Towards an Explicit Description of ¢.,

We now aim to describe the map ¢! :D(I') — D(I") explicitly. That is, to find
a rule that enables us to directly compute the image of any given vector in D(T)
under ¢11; We start by showing that whenever qﬁ}; (equivalently ¢§’1) is applied to a
vector in D(I"), then the resultant vector differs from the initial vector in at most

one component.

Let a € ®% and write & = Y ., Gzz With a; € Z for all z € Ty. Using this

expression for o in terms of ¥, we can obtain an expression for o in terms of ¥'.

Suppose z is a vertex of I". If there is no arrow in I" from z to k, then v, = ~y,. On the

other hand, if there is an arrow in I" from z to k, then 4, = Sy (Vz) = Yo — (Yas V&) Vies

129



and hence v; = v}, + (Y2, V&) ¥, (since 4}, = 7x). Therefore, we have

a = Z ArYe + Z Az Ve

-~k z—k

= > aVet > as(Ve + (Yo W) W)
z»k z—k

= Y aetarvh+ Y 0z (Yo W)
z#k z—k

= Zaz%,p + (ak + Z az (Ves ’Yk)) Ve-
24k ok

Notice in particular that dY and dY differ in at most one component, the k-

component. Therefore, in order to describe the map d)il;l, we should aim to express
the k-component of dg’ solely in terms of the components of d¥. That is, we want

to express |ax + Y, 1 @z (Y2, 7&)| solely in terms of the integers |a;| for z € To.

The following lemma will subsequently enable us to do this in the Dynkin type A,

case.
LEMMA 6.2.1 |~|ax| + >, laz|| = lak + D245k @z (Y2, W) is an even integer.

Proof We will show that

—lak] + D lag| - (ak +y ax(%,%)> = —lax| —ar + Y _ (laz| — as(Yar %))

z—k z—k z—k

is even. The result then follows.
Firstly, since ay € Z, we have that —|ag| — aj, is even.

Let  be a vertex in I', and suppose that there is an arrow in T from z to k. Since
V¥ is a companion basis for I', we must have (v;,vx) = £1. Thus, |az| — az(Vz, k) =
laz| F a,. Now, since a, € Z, |a;| — a; and |a;| + a, are both even, and hence

laz| — az(Vz, V&) is even.

Therefore, —|ag| — ar + >, (|az] — az(Vz, &) is even. [ ]
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6.3 A Description of ¢}, in Dynkin Type A,

In this section we restrict our attention to only the Dynkin type A, case. (That is,
we suppose that A is a Dynkin diagram of type A,.) In this case, we are able to
give an explicit description of the map ¢! : D(T') — D(I"), by using Lemma 6.2.1.

We finish by highlighting a consequence of this description due to Theorem 4.1.4.

PROPOSITION 6.3.1 Leta € ®T and suppose that a = erro azYe Withay € Z

for all x € Ty. We then have

ak+ Y as(Ve, W)

z—k

- |—|ak|+ 3 Jasl

z—k

Proof We have that all of the components of both d¥ and d¥ must belong to the

set {0,1} (refer to Section 4.4). Therefore, |a,| € {0,1} for all vertices z in I, and

|ak + Zm——ﬂc az('Ya:,'Yk)' € {Oa 1}

Since |a.| € {0,1} for all vertices z in I', and due to the bijective correspondence
between the set of positive roots and the set of shortest unoriented paths in T’

established in Section 4.4, a simple case-by-case analysis establishes that —|ay| +

> ook laz] € {0, £1}.

We have now shown that |ax + >, ac(Vz, )|, |—lak] + D,k lazl| € {0,1}. It

therefore follows from Lemma 6.2.1 that

ar+ Y ag(Var W)

z—k

= »"‘ak‘ + Z |az]

z—k

as required. |

We have proved the following.
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COROLLARY 6.3.2 Let o € &1 and suppose that d¥ = (dz)zer,- Then, d¥ is

given by

()= {* i
*/z |—dk + > .1 dzl ifz=k.
By Theorem 4.1.4, we have that the dimension vectors of the finitely generated
indecomposable A-modules are precisely the elements of the set D(T"). Likewise, the

dimension vectors of the finitely generated indecomposable A’-modules are precisely

the elements of the set D(I'). We have therefore established the following.

COROLLARY 6.3.3 Given the dimension vectors of the finitely generated in-
decomposable A-modules, we can simply write down the dimension vectors of the

finitely generated indecomposable A'-modules.
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