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Photoelectron Diffraction

by

John Francis Hart

Abstract

This thesis is concerned with the development and application of a new method 
of performing multiple scattering calculations of X-ray Photoelectron Diffraction 
(XPD) from periodic surfaces. The technique is based on the dynamical theory 
of Reflection High Energy Electron Diffraction (RHEED), allowing more efficient 
access to high photoelectron energies (lOOOeV and above) than is available using 
present calculational schemes. Convergence tests have been performed to identify 
the limitations of the present method.

The method is applied to two overlayer systems for which XPD experimental 
data is available, c( 2  x 2)S and c( 2  x 2)0 on Ni(OOl). For the c( 2  x 2)S system, 
which is relatively well understood and therefore a good test system, data at 
four emission (take-off) angles is fitted, giving optimum agreement with the S 
atoms occupying hollow sites at a vertical adsorption height of between 1.30A and 
1.35A. The agreement is improved slightly for the lowest two take-off angles by 
an outward relaxation in the top Ni-Ni layer spacing. Comparison is made with 
single scattering calculations for the system and the present method shown to be 
far superior at the lowest take-off angle. This clearly demonstrates the importance 
of multiple scattering at grazing emission angles.

For the c( 2  x 2)0 system, data at two take-off angles is fitted giving optimum 
agreement with the O atoms in hollow sites at an adsorption height of 0.75A. 
By allowing a small outward relaxation in the top Ni-Ni layer spacing, an almost 
equally good fit to the data is found at am adsorption height of 0.80A. An off- 
centre bonding site which has been proposed, in which the O atoms are displaced 
from their hollow sites by 0.3A in the [110] direction has been considered and 
ruled out.
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Chapter 1

Introduction

During the last thirty years, the enormous interest in surface science, due in 

large measure to the many practical applications, has led to the the development 

of experimental techniques to study atomic arrangement at surfaces. Numerous 

such techniques utilise electrons in some way: low energy electron diffraction 

(LEED), reflection high energy electron diffraction (RHEED), photoelectron 

diffraction and Auger electron diffraction to name but a few. The interaction 

between electrons and the atoms of a crystal is much stronger than that of X- 

rays and neutrons, meaning that electrons are far more likely to undergo multiple 

scattering events, and that they have a much shorter inelastic mean free path. 

Electrons are therefore an excellent surface probe, but the consequence of using 

them is that a multiple scattering theory is often needed to analyse experimental 

data. This thesis is concerned with the surface technique of X-ray photoelectron 

diffraction, in which relatively high energy photoelectrons (500-1500eV) are used. 

A full multiple scattering theoretical treatment will be developed which is based 

on RHEED theory. This is a rather different approach compared to current 

multiple scattering methods which tend to be based on methods suitable for low 

energy electrons.

1



Chapter 1

1.1 Surface Science

2

As already noted, the study of surfaces, defined as the top few atomic layers 

of a solid, has become a hugely important area of research in both physics and 

chemistry. Many physical properties of solids can be understood because, in the 

bulk, solids are essentially periodic in the three spatial dimensions. The formation 

of a surface breaks this periodicity resulting in changes of geometric and electronic 

structure there. The arrangement of atoms at the surface is, in general, not what 

would be expected by an abrupt termination of the bulk lattice. The surface 

atoms may relax outwards or inwards, or may rearrange themselves in the plane 

of the surface in order to minimise their energy. Indeed most semiconductor 

surfaces display some form of atomic reconstruction in an attempt to satisfy their 

dangling bonds. The formation of a surface and the subsequent rearrangement of 

atoms results in strong modifications of the electronic structure in this vincinity. 

Localised surface states are created which lie in forbidden bulk energy bands, and 

electrons in these states are trapped in the surface region.

As well as these fundamental reasons for studying surfaces, many technological 

applications depend on the use of solid surfaces, and could be improved with 

a better understanding of the role played by the surface. Understanding 

heterogeneous catalysis is a commonly cited reason for surface research. Certain 

chemical reactions display marked increases in reaction rate when in the presence 

of a solid surface. Furthermore, the pre-adsorption of certain species on the 

surface can promote or poison the catalytic reaction. Thermionic emission 

provides another technological application. When a metal is heated, conduction 

band electrons may be ejected from the surface. The effect is used in many 

electrical devices, and provides the source of electrons in cathode ray tubes.
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Surfaces also play an important role in the manufacture and operation of 

semiconductor devices. Fabrication is performed by the epitaxial growth of 

one material onto another. The operation of such devices depends crucially 

upon electronic properties across the various interfaces, for example at the 

junction of p-type and n-type semiconducting layers or at the junction between 

a semiconducting material and a metallic contact. An understanding of the 

electronic structure and growth modes at surfaces is therefore essential to the 

design and fabrication of these components. The applications mentioned here and 

others, along with other apects of surface science in general have been discussed 

by Prutton [1 ].

1.2 Photoelectron Diffraction

A variety of techniques have been developed which give information about 

the atomic structure of surfaces. These can be divided into three categories: 

techniques which probe the real-space lattice such as Field Ion Microscopy 

(FIM) and Scanning Tunneling Microscopy (STM), diffraction techniqes (LEED, 

RHEED, Surface X-Ray Diffraction) which probe the reciprocal lattice, and 

techniques which give indirect information about atomic structure. Methods 

which fall into this final category include Surface X-ray Absorption Fine Structure 

(SEXAFS), Auger electron diffraction and photoelectron diffraction, a technique 

which will be discussed in more detail.

When a sample is illuminated with electromagnetic radiation, a core level 

electron may be photoemitted from a surface atom. Interference can be observed 

between the directly emitted component of the photoelectron wave field and the 

components which are scattered elastically from the surrounding atoms. This
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produces variations in the photoemitted signal when measured either as a function 

of emission angle or of energy, and analysis of the signal can give information 

about the local atomic environment of the emitting atom. The surface sensitivity 

of the technique comes from the relatively short inelastic mean free path of 

electrons, which from a universal curve such as in ref. [2 ] is found to be between 

5-15A for 50-1000eV electrons. Therefore, although the incident radiation may 

create photoelectrons deep within the structure, only those created close to the 

surface will escape and contribute to the elastic signal. The remainder undergo 

an inelastic scattering event at some point and are absorbed by the crystal or are 

emitted with a reduced energy to form part of the inelastic background.

The idea that the variations in the photoelectron signal from adsorbed atoms 

could be used to determine surface structure was first proposed in a theoretical 

paper by Leibsch published in 1974 [3], although strong diffraction effects had 

been observed from single crystal substrates some years earlier. Verification of 

Leibsch’s ideas came in 1978, with the publication of the first sets of adsorbate 

photoelectron diffraction experimental data. Woodruff et al. [4] demonstrated 

the angular dependence of Na 2 p photoemission signal (kinetic energy 46eV) from 

Na adsorbed on Ni(OOl), Kono et al [5] showed the angular dependence of the 

O Is signal (kinetic energy 951eV) from O adsorbed on Cu(OOl), while Kevan et 

al [6 ] measured the variation of the Se 3d signal from Se adsorbed on Ni(OOl) as 

a function of photoelectron energy.

Since these first quantitative measurements, photoelectron diffraction has 

become an accepted method in quantative surface structural analysis. The 

technique has been used to study ordered overlayer systems [14-22], and also 

to study disordered adsorbate species [7-11]. The latter application is one of the
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strengths of photoelectron diffraction: conventional diffraction techniques such as 

LEED require long range order in the structure parallel to the surface, whereas 

photoelectron diffraction, being a local structural technique does not require this. 

There are several other advantages of photoelectron diffraction. The technique 

is element specific, as core level binding energies are characteristic of the emitter 

species. This allows each different element present to be studied separately. With 

enough energy resolution, core binding energy shifts can be used to independently 

study atoms of the same element in different chemical states. Such a study was 

recently performed by Weiss et al. [1 1 ]. In a similar way, energy level splitting 

in magnetic atoms allows the diffraction patterns of photoelectrons with different 

spins to be studied separately, a method termed spin polarised photoelectron 

diffraction [23].

The experiments mentioned above which first demonstrated photoelectron 

diffraction [4, 5, 6 ] were conducted rather differently. The methods employed 

by Woodruff and Kevan, although different in that Woodruff measured the 

angular photoelectron dependence and Kevan the energy dependence, both 

utilise photoelectrons in the low energy range of roughly less than 2 0 0 eV. The 

measurements of Kono used a much higher photoelectron energy of 951eV. The 

physics involved with low and high energy photoelectron diffraction is rather 

different, and the two have developed into distinct experimental techniques. Low 

energy experiments are based on the fact that electrons below about 200eV have 

a relatively large cross-section for backscattering. Hence if a photoelectron is 

emitted from an adsorbate above the surface, components of the wave field 

will be backscattered from substrate atoms allowing the desired interference 

with the direct wave to be observed. Experiments utilising backscattering are
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O O
(a) (b)

Figure 1.1: The low and high energy modes of photoelectron diffraction. Diagram (a) is for 

a low energy photoelectron emitted from the adatom, where backscattering from the substrate 

is utilised. Diagram (b) is for a high energy photoelectron. In this case near-forward scattering 

is the dominant mechanism and hence diffraction may only be seen at shallow emission angles 

relative to the substrate. (From Woodruff [29])

generally performed in the LEED-like geometry shown in Fig. 1.1(a). The 

alternative technique is to use high energy photoelectrons of around 500-1500eV. 

For electrons of such energy, atomic scattering is strongly focussed in the forward 

direction, within a cone with half angle of approximately 30°. For a high energy 

photoelectron emitted from an adsorbed atom, components of the wave field 

scattered from the substrate are large only at grazing angles with respect to the 

surface, giving an experimental geometry similar to RHEED. This is illustrated in 

Fig. 1 .1 (b). Excellent reviews of the low and high energy modes of photoelectron 

diffraction have been published by Woodruff [30] and by Fadley [31] respectively.

The general method of determining a structure by these two methods of 

photoelectron diffraction is similar to that used in LEED. Trial structures are 

taken, and their photoemission signals predicted by performing a scattering 

calculation. The calculations are qualitatively compared with experimental data 

to find the structure for which the calculation best agrees with the data. Recently 

it has been proposed that a full hemispherical photoelectron diffraction pattern
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can be thought of as a photoelectron hologram, the interference pattern between 

a reference wave (the direct component) and scattered object waves (scattered 

waves from surrounding atoms) [33]. Much current work, especially at high 

photoelectron energies, is concerned with finding mathematical reconstruction 

schemes (closely related to Fourier transformation) to directly give the real- 

space atomic co-ordinates, thereby removing the need to perform trial-and-error 

scattering calculations [34].

1.3 X-Ray Photoelectron Diffraction (X P D )

The high energy mode of photoelectron diffraction, which is the subject of this 

thesis, is usually called X-ray photoelectron diffraction (XPD) because laboratory 

soft X-ray sources are normally used to create the photoelectrons. One of the 

advantages of using high energy photoelectrons is the relatively simple first order 

theoretical interpretation. Some features can be directly interpreted qualitatively: 

when other atoms lie above the emitter, the strong forward nature of the 

scattering from them can produce what have been called ’’forward focussing” 

peaks, large experimental peaks in emitter-scatterer bond directions. Simple 

geometric considerations then allow some information about the emitter-scatterer 

registry to be derived.

For adsorbate systems, the emitting atoms usually lie above the surface, and 

the forward scattering features tend to be directed along or into the surface and 

cannot be observed. There have been numerous studies of such overlayer systems 

using grazing emission XPD over recent years [14-19], and analysis of such data 

requires comparison with a scattering calculation. The higher energies involved 

with XPD means that some progress can be made with a single scattering theory:
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the wave function of the photoelectron in the far field is taken to be composed of 

an unscattered wave, and a number of waves which propagate to a neighbouring 

atom before being scattered into the same direction as the unscattered wave. A 

more detailed description of this approach can be found in chapter 2 . The single 

scattering theoretical approach has proved to be quite successful in describing 

experimental data for many systems, and was assumed to be generally valid for 

photoelectrons approaching the lOOOeV range. Recently however, experiments 

have been performed which cannot be reconciled by a single scattering treatment 

[14, 16, 36, 37] at energies where single scattering was previously assumed to be 

applicable. Complicated multiple scattering calculations are required to analyse 

such data.

Several multiple scattering schemes have been developed for XPD [24-27], a 

topic which is also discussed in greater depth in the next chapter. Precise details 

of the calculational schemes vary from author to author, but a common feature of 

them is that atomic scattering of the photoelectron is described by phase shifts 

of a partial wave expansion of the photoelectron wave function. This kind of 

approach requires only a few phase shifts at low energies but requires more as 

the energy is increased. The computational time required for calculations of this 

type scales approximately as I4, where I is the number of phase shifts included 

[26]. As XPD naturally involves high energies, such calculations tend to require 

great computational effort because of the I4 scaling. Approximations have been 

introduced in some cases [26] to reduce the size of the calculations at energies 

greater than around 500eV.

The aim of the present work is to develop an alternative approach to XPD 

multiple scattering calculations, which is hoped could be particularly useful for



Chapter 1 9

relatively high energy photoelectrons of approximately lOOOeV and above. The 

method is based on RHEED theory, in which the wave function is expanded 

in plane waves rather than spherical waves, and is suitable for periodic surfaces 

only. This approach provides an economical solution in the RHEED energy range 

of about lOkeV and above. The XPD energy range of roughly 500-1500eV lies 

inbetween the low and high energy limits, making calculations based on either 

limiting expansion more complicated. Although the lower end of this energy 

range will be inaccessible using a plane wave expansion, it is expected that the 

method will be quite suitable for higher energies of about lOOOeV and above. 

The XPD calculations based on RHEED theory will be more computationally 

demanding at around lOOOeV than at typical RHEED energies, but they are 

expected be significantly less demanding than the spherical wave approach at the 

same energy. Hence the possibility of more efficient and accurate analysis of XPD 

data in the high energy range.

1.4 Structure of the Thesis

In the next chapter, a brief review of current theoretical techniques is given, 

including single scattering and multiple scattering methods. The theoretical 

framework for the new XPD scheme is then set up, the required formulae being 

derived from dipole transitions to a dynamical final state which is obtained from 

a RHEED computer program.

The first part of chapter 3 is devoted to the multiple scattering theory of 

RHEED. A detailed description of the 2-D Bloch wave approach of Maksym and 

Beeby will be presented, introducing the concepts of slicing a crystal into layers 

parallel to the surface and the scattering properties of each being represented by a
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scattering matrix. The second part of the chapter is concerned with extracting the 

quantities from the RHEED computer code required to perform the numerical 

matrix element integrations derived in chapter 2 . A practical problem in the 

numerical integration is encountered, stemming from the need to retain numerical 

accuracy when dealing with rapidly decaying exponential terms. A method for 

overcoming this problem is presented.

In chapter 4, some practical questions regarding the XPD calculation are 

addressed. The calculation is based on a RHEED wave function which converges 

quickly at electron energies of about lOkeV and above. It is therefore important 

to determine how quickly the calculation converges in the lOOOeV energy range. 

This is done by performing convergence calculations for two systems, one at 738eV 

in the lower part of the XPD range, and one at a higher energy of 954eV. The 

validity of using the high energy potential of RHEED in the XPD energy range 

is also investigated.

The XPD program is applied to a real system in chapter 5. The Ni(001)c(2x2)S 

surface has been studied at length in the literature and its structure is quite 

accurately known. An experimental XPD study had yielded a set of high 

resolution data, thus providing an excellent opportunity to test the theory. 

Comparison between the theory and experimental data is provided by an R-factor 

analysis. This also allows a comparison with the single scattering calculations 

published with the data.

In chapter 6 , the program is applied to a somewhat less accurately known 

adsorption system. Ni(001)c(2x2)0 surface has been studied extensively in the 

literature however there remains some controversy as to the bonding site and 

and the height of the adlayer. Calculations are presented which investigate
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the adsorption height of the overlayer, a proposed asymmetric bonding site and 

relaxation in the top Ni-Ni layer spacing by quantitative comparison with XPD 

data from the literature.



Chapter 2

X-Ray Photoelectron Diffraction

In this chapter, a new method for performing XPD calculations from periodic 

surfaces will be developed. It has been explained in the previous chapter how 

single scattering theoretical models have failed to account for certain experimental 

results due to multiple scattering of the photoelectron. Computer programs 

have been developed to account for multiple scattering, but tend to be based on 

theoretical techniques suitable for low energy electrons, and require large amounts 

of memory and CPU time when applied to XPD energies of >500eV. The present 

method is based on the multiple scattering theory of RHEED, and provides a 

way of performing more efficient calculations in the upper XPD range of around 

lOOOeV.

The photoelectron diffraction experiment will be described first, allowing some 

angles to be defined which will be required in the later derivations. Some features 

of XPD introduced in chapter 1 will then be expanded upon. Existing theoretical 

methods, including both single and multiple scattering procedures will be quickly 

reviewed and the new method then described in detail.

12
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2.1 E xperim en tal A rrangem en t

Any photoelectron diffraction experiment involves illuminating a sample with 

electromagnetic radiation and monitoring the resulting photoelectron flux as 

a function of emission angle or energy. The schematic arrangement of a 

photoelectron diffraction experiment is shown in Fig. 2.1. Several angles have 

been indicated, which will be required later in the chapter. A cartesian co­

ordinate system has been defined with the surface lying in the x-y plane. The 

angles 9 and <j> define the direction of observation: the azimuthal angle (f> is 

measured from the x-axis, and polar angle 9 measured from the x-y plane. The 

polar angle defined like this is sometimes referred to as the ” take-off” angle. 

Angle a  is defined to be the angle the incident radiation beam makes with the 

surface. The polarisation vector of the radiation, which lies in a plane normal 

to the direction of propagation, has also been indicated. The directions of X-ray 

incidence and electron emission have been shown in the same plane in Fig. 2.1 in 

order to coincide with experiments considered in forthcoming chapters. This may 

not be the case in general, but these incidence and exit directions are fixed with 

respect to one another and angles 0 , <f> (and consequently a) adjusted by rotating 

the sample.

A synchrotron radiation source is usually required to access low photoelectron 

kinetic energies (about 200eV and below) for backscattering experiments. The 

experiment then can be performed in scanned angle and scanned energy modes. 

In scanned angle mode, the photon energy is fixed and photoelectron signal 

monitored as a function of 9 or <f>. Alternatively, scanned energy mode can be 

used where the experimental geometry is fixed and the incident photon energy 

hv varied. In this case the photoelectron signal is measured as a function of final
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Photons ( hv)

Polarisatioi
plane

x

Electron
emission

Sample

Figure 2.1: The experimental arrangement for photoelectron diffraction. For angle scans the 

photoelectron intensity is monitored as 9 or <f> is varied at a fixed hv. For energy scans, the 

geometry is fixed and hv is varied.

kinetic energy. XPD experiments axe usually performed using laboratory sources 

of soft X-rays, removing the need for synchrotron radiation. The photon energy 

is then fixed, and the experiment is performed in scanned angle mode.

2.2 Forward Scattering

A feature which is sometimes seen in XPD experimental data is a forward 

focussing peak, and is one of the more directly interpretable features of XPD 

[1 2 , 32]. The effect is caused by the strong forward nature of the scattering at 

energies greater than about 500eV, and can be demonstrated by means of a simple 

model calculation. Consider two isolated Cu atoms taken to be separated by 5A. 

A high energy photoelectron (lOOOeV) represented by a spherical wave, is emitted 

from one of the atoms. Part of the outgoing wave encounters the other Cu atom
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and scatters from it, while part remains unscattered. The angular distribution of 

the scattering is determined by the scattering factor, which for this calculation has 

been taken from the tables in [28]. The scattered and unscattered components are 

then allowed to interfere, and the intensity calculated as a function of scattering 

angle. The situation is illustrated in Fig. 2 .2 , and the results of the calculation 

plotted. Clear interference fringes are seen, but the most striking feature is the 

large peak centered at a scattering angle of 0°, the interatomic direction. This is 

the forward focussing peak.

Forward focussing peaks are most readily seen in XPD data when the emitting 

atom lies below the outermost later, such as in an overlayer consisting of more 

than one atomic layer. A photoelectron created in a lower layer will scatter from 

an atom (or chain of atoms) above it giving rise to a peak in that direction, as 

seen in the earlier example. Identification of forward focussing features, which 

are ususally found at relatively high take-off angles, allows information regarding 

emitter-scatterer bond directions to be derived directly by simple geometric 

considerations. For example, the effect has been used to study the tilt angle 

of CO adsorbed on Ni(001) [13].

A common use of XPD is to investigate sub-monolayer adsorption systems with 

a view to identifying the adsorption site of the foreign species [12,15, 18]. In such 

applications, forward focussing features caused by scattering from atoms in the 

overlayer are in directions parallel to the surface and are not readily observed. 

Strong modulations in the photoemitted signal can still be observed at low take-off 

angles (< 2 0 °) however, due to near forward scattering events within the overlayer 

and scattering from the substrate, although this second contribution is weaker 

due to the larger scattering angles involved. Sensitivity to the substrate generally
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direct wave

scattered wave

ScattererEmitter
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(D
c

Scattering angle 0  (degrees)

Figure 2.2: A model calculation to demonstrate the ”forward focussing” of high energy 

photoelectrons. A lOOOeV photoelectron is emitted from one Cu atom, part of which scatters 

from the other (upper diagram). Observed intensity is plotted as a function of scattering 

angle 0  (lower diagram), showing interference fringes and a forward focussing peak along the 

interatomic axis.
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depends on the adsorption height of the overlayer and the take-off angle at which 

the measurements are taken [18]. Deriving structural information from such data 

requires quantitative comparison of the data with scattering calculations, a topic 

which is now discussed further.

2.3 Current X P D  Calculational Schemes

2.3.1 Single Scattering Calculations

Forward focussing features provide useful, but largely qualitative information 

about surface structure. In general it is necessary to perform scattering 

calculations and compare them with experiment to determine structural 

parameters. The most common theoretical model used to interpret XPD data 

over recent years has been the single scattering cluster (SSC) model.

In the SSC framework, the scattering is restricted to a cluster of atoms centred 

on the emitter, and so does not require that the structure possess translational 

symmetry parallel to the surface. The intensity is calculated from the interference 

between the direct wave and one scattered wave from each atom in the cluster. 

Even this simplified model requires sophisticated computer programs to treat 

accurately: a full treatment should include spherical wave scattering, and two 

interfering final state channels corresponding to U +  1 and k — 1 (allowed dipole 

transitions), where U is the initial state angular momentum quantum number 

[25]. Such programs can be demanding on CPU time, and so some treatments 

have used plane wave scattering, assumed an initial s-state so that the final state 

involves only a p-wave, or used both of these approximations.

The outline presented here is the approach given by Fadley [31], to which 

the reader is referred to for a more comprehensive discussion. The model uses
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plane wave scattering and a 5-wave initial state, and as such represents the most 

simplified approach to SSC calculations. The review by Fadley also discusses the 

accuracy of the approximations used. The intensity in a given direction 7(k) is 

derived from a dipole transition between an initial core state ipc(r) and a final 

state ip(r, k),

I{k) oc |(^ (r,k )|€  • r|-0 c(r)> |2,

where e is the polarisation of the incident radiation. The single scattering 

approximation comes with the description of the final state wave function, which 

is written as

t/>(r, k) =  k) +  £  ^ ( r ,  r , ->■ k).
3

This final state can be seen to be composed of a wave (j>o{r, k) which propagates 

directly to the detector along k, and all waves —¥ k) which result from

the initial (j>o wave propagating towards a scatterer j  at r ,, being subsequently 

scattered into the direction k. The detector essentially lies at infinity along k and 

so the waves 4> are taken to be of the limiting spherical form of <j>o oc exp (ikr)/r  

and <t>j oc fj(0}) exp(ifc|r -  r ; |) /jr  -  r ,|.

The quantity fj(6) is the electron-atom scattering factor for atom j ,  and this 

approach takes it to be a plane wave scattering factor. This assumes that although 

(po is spherical, the portion incident upon scatterer j  has sufficiently low curvature 

to be treated as a plane wave (known as the ’’small atom approximation” [35]). 

The scattering factor may be written as the complex number

= l/# j) |expN 'j(0 ,-)].

meaning the overall phase shift of a scattered wave (f>j relative to <j>o is 

krj( 1 — cos Oj) +  due to the path length difference and the scattering
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phase shift. The final expression using an s-initial state for the observed intensity 

in direction k  for an X-ray beam with polarisation e is given by

I ( k) oc e • ke +  £  ^ l / ; ( 0 j ) l Wse {expi[fcr.,(l -  cos6 )̂ +  ibj(6j)]}

r ■3 3

The Wj are Debye-Waller factors to account for thermal motion of the atoms 

in the structure, and the exp(—7 L), exp(—7 ^ )  are attenuation factors which 

simulate the decay of the outgoing waves due to inelastic scattering. This decaying 

nature means that scatterers further away from the emitter contribute less to the 

calculated signal. Calculations therefore converge as the cluster size is increased, 

the size of the converged cluster being determined by trial calculations.

The single scattering formalism of photoelectron diffraction, even with the 

refinements described earlier, does not include all orders of scattering and as 

such breaks down for certain systems when strong multiple scattering effects are 

present [14, 15]. It is difficult to say exactly when single scattering approaches 

fail. At shallow angles of emission, dynamical effects are expected to be more 

significant, since the photoelectron travels almost parallel to the surface, thus 

encountering more scatterers. This effect has been shown to be strongest 

along azimuths corresponding to closed packed atomic rows [15], where the 

photoelectron may undergo multiple small-angle scatterings before emerging from 

the crystal. The type of atoms present in the structure is also important, heavy 

strong-scattering atoms increasing the likelihood of multiple scattering.
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2.3.2 M ultip le  S cattering  C alculations

Much of the early work on multiple scattering schemes for angle resolved 

photoemission was aimed at low energy electrons. Leibsch [3], Pendry [38] and 

Li et d. [39] proposed methods for calculating photoemission spectra, all of which 

were based on techniques from LEED theory. More recently methods have been 

developed to perform multiple scattering calculations for the higher energy XPD. 

Most of these methods exploit the short inelastic scattering length for electrons 

of this energy, thereby restricting the multiple scattering calculation to a cluster 

of atoms localised around the emitter. Again, translational symmetry parallel to 

the surface is not required for cluster calculations of this type.

Saldin et d. have developed a method called the concentric shell algorithm 

[26] which can be applied to XPD. In this technique, the volume surrounding 

the emitting atom is divided into concentric shells, each containing a number of 

scattering atoms. The photoelectron wave field between each pair of neighbouring 

shells, say q and q +  1 , is assumed to take the same form, a linear combination 

of spherical waves

l,m

where a \^  are the expansion coefficients and hj1̂ is a spherical Hankel function 

of the first kind. A matrix is calculated which relates the coefficients Afj£ to 

the coefficients via the relation

A (9) =  s(«)A(0)

A a n d  being vectors whose elements axe the corresponding expansion 

coefficients. The elements of A ^  sure determined from a dipole transition between 

the core state (I, m) and the quantum numbers of the partial wave.



Chapter 2 21

The matrix describes the full multiple scattering of the photoelectron wave 

between the origin and shell q. For an iV-shell system, the aim is to compute the 

scattering matrix which allows the final outgoing wave field to be determined. 

A method is given for carrying out a multiple scattering calculation within a 

shell and between two shells by a Green function method, allowing to be 

determined recursively from S ^ . Full details of this process are given in ref. [26].

The computer time required for cluster calculations of this type scales roughly 

as Z4 where Z is the number of angular momentum states in the spherical wave 

expansion [26]. The size of Z depends upon the energy of the photoelectron, 

becoming larger as the energy increases. Other sophisticated methods based on 

the expansion of an outgoing spherical electron wave about a new centre (the 

scatterer) have been developed by Friedman and Fadley [25], and by Fritzche 

[24]. These methods are also based in the theoretical framework of the partial 

wave expansion, and in the same way become very computer intensive at XPD 

energies.

Approximation techniques are sometimes introduced to reduce the scale of the 

calculations in spherical wave cluster methods. An approach taken by Saldin et 

al. in the concentric shell method is to employ what they term the ’’forward 

scattering approximation” , based on the forward nature of the scattering in the 

XPD energy range. All intra-shell multiple scatterings are neglected, as these 

paths involve quite large scattering angles, and the final amplitudes are 

found by taking successive transmissions of the initial amplitudes through the 

shells. This essentially neglects all backscattering (6 > 90°) events either within 

a shell or between shells. Fritzsche has also described approximate techniques to 

reduce the scale of full multiple scattering calculations [24].
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In summary then, any multiple scattering calculation based on a spherical wave 

expansion will require a large number of angular momentum states to converge at 

high energies. The possibility of an alternative calculation which is not based on a 

spherical wave expansion is therefore an attractive option, and is now addressed.

2.4 A New M ultip le  S cattering  Schem e for X P D

A method for calculating XPD patterns from periodic surfaces which includes 

full multiple scattering will be introduced in this section. The technique is 

based on the dynamical theory of RHEED, which is given in chapter 3. Plane 

waves are used as a basis set for the wave function expansion rather than the 

partial wave expansions described above. The plane wave expansion converges 

quickly at RHEED energies (lOkeV and above), requiring only a few terms for 

simple surfaces. More terms will be needed at XPD energies, a problem which 

will be addressed in chapter 4, but the method should provide a more efficient 

way of performing the higher energy XPD calculations without introducing 

approximations.

2.4.1 T he X P D  P a tte rn

The starting point for this theory is the electric dipole approximation for atomic 

transitions. A full treatment of this can be found in standard quantum mechanics 

texts such as Schiff [44], and is not given here. Within the dipole approximation, 

the photoelectron intensity predicted in direction k far from an emitter is

/ ( k) oc |(V7 (r ,k ) |e  • r | ^ m(r))|2. (2 .1 )

In this expression, the emitter is taken to be at the origin, tpnim is the initial core 

level wave function, rpf is the unbound photoelectron wave function and e is the
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polarisation vector of the incident light. It is the modulations of the signal as a 

function of emission angle that is of interest rather that an absolute value, so only 

the calculation of this expression is required. For this reason the ’’proportional 

to” symbol will be replaced by an ’’equal to” symbol in the following derivations. 

There are some factors which need to be considered before any matrix elements 

are calculated: emitters with different local surroundings, the magnetic sub-levels 

in a particular orbital and the polarisation of the incident X-ray beam. Each of 

these will now be treated in turn.

(i) Inequivalent Emitters. The observed XPD signal comes from a large number 

of emitting atoms. The process is incoherent, that is, there is no interference 

between waves originating from different atoms. The total intensity can therefore 

be written as the sum of the intensities from each emitting atom. For a system 

with j  emitting atoms at positions r J5 the intensity is

W  =  J2 IW’/ M I *  • (r  -  r j)IV ’nlm(r  -  rj ) ) | 2>
j

which by a change of integration variable in each matrix element may be written

J(k ) =  Y ,  l<V’/ ( r  +  rj)|e  • i # „ ,m(r))|2. (2.2)
3

It is known that the surface posseses translational symmetry, so this intensity 

can be thought of as originating from a large number of unit cells. Since each 

cell is identical, only one need be considered to predict the XPD pattern. The 

summation over j  in Eq. (2.2) is therefore restricted to run over emitters in a 

single unit cell only.

(ii) Magnetic Sub-levels. By simple energy considerations, the final state 

energy corresponding to a particular initial orbital can be calculated, and the 

photoelectron detection apparatus tuned to this energy. This initial orbital has
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a degeneracy of 2  x (2 / + 1 ) in the absence of a magnetic field, and so the (21 + 1 ) 

different spatial wave functions must be taken into account. Each of these states 

is equally likely to be excited for a filled core level, and as the contributions from 

different emitters are incoherent, the intensity must be summed over magnetic 

quantum number m. Taking this into account gives

•W = £  Sl(^/(r + ri)l€-rl̂ "f>n(r)>|2
m = - l j

=  E S I * - a - / '  (2.3)
m = —l j

where the polarisation vector has been removed from each matrix element and 

the substitutions

Rmj =  {i>t{r  +  r i)lr IV w (r)) (2.4)

have been made.

(iii) X-Ray Polarisation. The expressions (2.3) and (2.4) can be used to calculate 

XPD intensities for incident radiation with polarisaton vector e. In general 

however, the X-ray source will produce an unpolarised radiation beam, and so 

Eq. (2.3) must be integrated over all orientations of the polarisation vector,

/ ( k ) = E E / \€ -R mj\2de. (2.5)
m = —l j

Let the plane of polarisation be the y'-z' plane of a cartesian frame (x', y \  z'). The 

orientation of polarisation vector e can be described by a single angle (3, defined 

to be measured anticlockwise from the y' axis. This is illustrated in Fig. 2.3. The 

unit polarisation vector can therefore be expressed
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Polarisation 
plane >

Figure 2.3: The polarisation vector, positioned in the y'-z' plane of system (x',y\z') by the 

angle (3.

It is now necessary to express e in the frame (x, y , z), which is shown in Fig. 2.1. 

This requires two co-ordinate transformations: a clockwise rotation of <£ about 

the z' axis, followed by an anticlockwise rotation of a  about the new y' axis. 

This assumes that X-ray incidence and electron exit are in the same plane as in 

Fig. 2 .1 . When this is not the case, the only difference is that the first rotation 

about the z7 axis will be through a different angle depending on the incident 

X-ray direction. Using the appropriate rotation matrices, e in the (x, y, z) frame 

is

e =

 ̂ — cos a  sin <f> cos (3 +  sin a  sin /3 ^

(2.7)cos (J) cos (3 

 ̂ sin a  sin $  cos (3 +  cos a  sin j 

The angles a  and (j> have been defined at the beginning of the chapter, and are 

indicated in Fig. 2.1. By using this expression for €, the required integration in
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Eq. (2.5) is found to be

/ _ r2ir
le -R ^ I  de =  J  ̂ |sin/?(i?xmj sin a  +  R zmj cos a)

+  cos p (Rymj cos </> + Rzmj sin a  sin <f> — Rxmj cos a  sin <f>)\2 d/3.

Expanding the absolute square and performing the integration gives the result

J  |e • Rmj|2 d e  =  w  ( |A m j \2 +  \Bmj\2) , (2.8)

where Amj and B mj axe given by

Afnj —— Rxrnj Sin Of ~1“ Rgmj COS Oi (2.9)

B mj =  Ry mj cos <f> +  R z mj sin ol  sin <f> — Rx mj cos ot. sin (f>. (2.10)

For an unpolarised X-ray beam, the photoelectron intensity can be calculated by 

using Eqs. (2.8), (2.9) and (2.10) in (2.5).

2.4.2 Wave Functions

The state ipf in the matrix elements defined in Eq. (2.4) is the photoelectron

final state. This can be described as a time-reversed scattering state: the angle

resolved measurement of the photoemission signal defines ky, the component of 

final wave vector parallel to the surface, which is analagous to the ky defined by an 

incident beam of electrons. This approach is often called the ” one-step” model of 

photoemission. The scattering wave function consists of an incident plane wave, 

orientated to give the correct ky, which is allowed to scatter from the crystal 

surface, giving rise to a set of scattered waves in the vacuum matched onto a set 

of Bloch waves in the crystal. The time-reversed counterpart is a set of incoming 

’’scattered” waves and a single outgoing plane wave travelling towards the detector 

in the vacuum, and is found by forming the complex conjugate of the scattering
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state. Previous theoretical work at low energies in photoelectron diffraction and 

spectroscopy have made use of a time-reversed LEED wave function in similar 

calculations [40, 41, 42, 43]. As previously explained, because of the higher 

energies involved in the present work, RHEED theory is used to calculate the 

final state. A full treatment of the dynamical theory of RHEED is given in 

chapter 3, and for the moment only the form of the wave function is required. 

For a surface periodic in the parallel dimensions (x  and y) with reciprocal mesh 

vectors k , the RHEED wave function can be written

where k|| is the the component of incident wave vector parallel to the surface and 

p  is a 2—D position vector (x , y). The final state, found by complex conjugation, 

is therefore

This wave function accounts for all possible scattering between emission and 

detection, since the coefficients <j>it(z) are computed by a numerical integration 

of the Schrodinger equation of the system.

The core-level wave functions, in Eq. (2.4), can be expected to be

described reasonably well by those of a free atom. Clementi and Roetti [45] have 

expressed Roothaan-Hartree-Fock atomic wave functions in the analytic form

ip(r) =  exp(ik|| • p) £  <j>K(z) exp (in ■ p) (2 .11)
K

^ /(r)  =  exp(—ik|| • p) <f>’K(z) exp ( - i n  ■ p ) . (2 .12)

r) =  5 ^ csXs(r), (2.13)
5

where the basis states Xs are Slater orbitals, which take the form

Xs(r) =  N$rn‘ 1 exp ( - a sr)Ylm(0, <j>). (2.14)
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The factor N s in (2.14) is a normalisation constant given by the expression

(2I5>[(2 n ) ! ]2

and the Yim(9,<f>) are normalised spherical harmonics in complex form. The 

expansion coefficients cs are such that the full expression for tpnim(T) is normalised 

to unity. The coefficients cs, orbital exponents as and principal quantum numbers 

of the individual basis states ns are all tabulated.

2.4.3 Calculation of Matrix Elements

The total intensity from the periodic system of emitters has been shown to depend 

on the matrix elements R mj ,  defined in Eq. (2.4). In this section it will be shown 

how these matrix elements can be calculated. Writing the in integral form 

gives

R mj = J  ipf{T +  Tj) r V>nJm(r) dr. (2.16)

The initial and final state wave functions, Eqs. (2.13), (2.14) and (2 .1 2 ), can be 

sustituted into Eq. (2.16) to give the rather complicated expression

Rmj =  exp(ik|| • pj) csNs exp (in • Pj)
K ,s

X J  M z  +  Z j )  exp [i(k|| +  k)  • p] r r n a_ 1  e x p ( -a r )^ m(0 , <f>) dr. (2.17)

It is convenient to simplify this expression by defining the vector quantities P mKj 

as

p m K j  = csNs j  (j)K(z + Z j )  exp [i(k|| + k,) • p] r rna~l e x p (-a sr)y;m(0, <f>) dr,
s J

(2.18)

allowing the matrix elements R ^  to be written as

R mj = exp(ik|| • pj) 53 exp(z/c • Pj) P mKj. (2.19)
K
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The aim now is to calculate the P mKj- For computational reasons, it is

necessary to work in the cartesian co-ordinate system in which the final state

wave function is represented, shown in Fig. 2.1. The quantity rlYim(6, <f>) can 

be straightforwardly expressed in the cartesian frame using the usual co-ordinate 

transformations between the spherical and rectangular systems. Let the cartesian 

form of rlYim(6, (j>) be denoted by yim(x,y, *)• Eq. (2.18) can now be written as

P mKj = Y l Cs I M z + zi) exp(iqK * p) r  rn* e x p (-a sr ) ^ m(x, y, z) dr, (2.20)
s ^

where, for notations! convenience, the substitutions

qK =  k|| +  k , (2.21)

n's =  ns — I — 1 (2.22)

have been made and the product csNs has been denoted Cs. To proceed, vector 

r  is written in component form, giving

P m K j  —

^ Z s C s f  <t>Kj exp(iq« • p) x r< exp( - a sr)yimdxdydz ^

(2.23)Cs J <t>Kj exp(zqK • p) y r< e x p (-a sr)yimdxdy dz 

<t>Kj exp(zq#c • p) 2 r< e x p (-a  sr )y lmdx dy dz 

The presence of the exponential factors exp(iqK • p) and exp(—asr) in the 

integrands of Eq. (2.23) makes it possible to introduce some simplifications. It is 

clear that

r exp(—a sr) =  {ex p (-a sr ) } ,
uOt$

and so the factor rn'a can be generated by operating with

£  <124)

n' times on exp(—asr). In exactly the same way, since

exp(iqK • p) =  exp[iqKxx  +  iqnyy],
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the differential operators x  and y, defined as

d
x =

d(iqKx) ’ V d(iqKy) ’ 

can be introduced into Eq. (2.23) to generate occurences of x  and y by operating 

on exp(iqK- p). Replacing r, x  and y in Eq. (2.23) by their appropriate operators 

gives

(2.25)

^ HsCs 5 <f>Kjxyimexp(iq#c • p ) fn'» exp{ - a sr)dxdydz ^

\

(2.26)

/

Es Cs!  <l>Kjyyim exp(zq#c • p)rn'* e x p (-a sr)dxdydz  

E s Cs J <(>Kjzyim exp(iq« • p)r<  exp{ - a sr)dxdydz  

with y im now being yim(x, y, z). The advantage of introducing operators f , x  

and y is that they may be removed from the integral over x  and y co-ordinates, 

leaving a simpler integral to evaluate. Operating on the result then generates the 

full x-y integral. Adopting this procedure, Eq. (2.26) becomes

P  m K j  —

f  Y,SCS I  (f>Kj [xyimrn* f  exp(iqK • p) exp(~ a sr)dxdy\ dz ^

E* Cs J <f>Kj [yyimfn> S exp(zqK • p) e x p (-a sr)dxdy\ dz 

E 5 Cs J <f>KjZ [yimr< f  exp{iqK • p) e x p ( -a sr)dx dy] dz 

The two dimensional integral

\

(2.27)

J  = J  exp(iq/c * p) exp(—o sr) dxdy (2.28)

which appears in all three components parenthesised in Eq. (2.27) may be 

performed analytically. The details of the integration axe given in Appendix 

A, the result being

exp(—|z|tas)X =  27TQ.
b%s

(2.29)

where the parameter b^., is defined by

b L  = oi,2 +  <&. (2.30)
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It is convenient at this point to define a set of functions of the z co-ordinate 

and some parameter 6, by the relations

/'•> -  (2.31)

=  - j t p  <2-32>

where n > 1 and Op are a set of real coefficients. The lowest order function, n =  1, 

is defined to be
/(1) =  « c p ( J ^ )  (233)

The definitions (2.31) and (2.32) allow a relationship between the coefficients in 

the summations of any two consecutive functions / ^  and /(n+1) to be found. 

Let dp and a'p be the expansion coefficients in and / ( n+1) respectively. By 

substituting (2.31) into (2.32) and performing the differentiation, an explicit 

expression for / ( n+1) in terms of Op can be found. As Eq. (2.31) dictates that 

/ ( n+1) takes the form

<2-34)
r  p = 0

this expression may be compared to the explicit expression, which leads to the 

relations

a;0 =  (2 n +  l)a 0

a'p =  Op_i +  (2n +  1 — p)ap (1 < p < n )  (2.35)

dn+1 =  Om = 1.

The coefficient o!n+l is always equal to unity because of the definition of the lowest 

order function fW  in (2.33). As the coefficients of are defined by (2.33), the 

coefficients of any function can be calculated by repeated use of relations 

(2.35).
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Using the definition (2.33), the result of integral (2.28) can be written as

I  =  2 irasf£ l , (2.36)

f n l  having the subscripts ks because of its dependence on the parameter bKs, 

defined by Eq. (2.30). Substituting this result into Eq. (2.27) gives

P  m K j  —

2tt £ s  Cs f  <$>k(z + Z j)  [:xyim{x, y, z)f<  asf£]{z)\ dz

(2.37)2tt Es Cs J <!>k{z +  Zj) [yyim(x, y , z ) r n '» a s f K s ( z ) ]  d z  

2 tt  E s C5 J< /> k(z +  Z j)  z  [,y lm ( x , y, z ) f <  < * , / £ ] ( * ) ]  d z

where explicit dependence on the 2  co-ordinate has been indicated. By changing 

the order of the integrations and summations and employing a change of 

integration variable, Eq. (2.37) can be re-written in the form

m K j

1 f  <t>K(z)9mn(z -  zi ) dz ^ 

f  -  Z j ) d z

f M z )9mit(z ~  zj ) dz

(2.38)

using the definitions

ffmK.(z ) =  2?T Y ,  c s iy im (x ,  y, z ) f n- a sf £ ] ( z )
s

9Lk (z) = 27rX)Cs2/yim(i,y ,2)fn'*aJ/^ (2 )
5

9mK,(z ) =  27T Y), Csz y tm(x, y, z ) fn‘ a sf£ l(z).

(2.39)

The integrals in Eq. (2.38) are now in the correct form for numerical evaluation, 

once the functions in Eq. (2.39) have been evaluated by applying the differential 

operators. To do this it is necessary to know the result of operating on a function 

f n l  with ^5 V defined in Eqs. (2.24) and (2.25). The dependence of

a function f ^ ]  on the quantities as and the components q^x and qny, is held
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l ,m yim(x,y, z)

0,0 y f k

1,0 y/^COSe

1,±1 T ^ s i n ^ ±  *v)

2,0 \/ife(3cos20 - l ) (2z2 -  i 2 -  y2)

2, ±1 =F cos 9 sin 0e±i(t> * \ / E  ±  *y)z

2, ±2 \ y f ^  sin2 0e±2i*

3,0 cos3 9 -  3 cos 9) V/ J ( 2 z 2 -  3x2 -  3y2)z

3,±1 Tyfifc  sin 0(5 cos2 9 -  l j e ^ * \ f 3 ; ( iz2 ~  &  ~ y2)(* ±  *v)

3, ±2 sin2 9 cos 0e±2t* 'J W i*  ±  ni)2z

3, ±3 ^ y / ^ - s m 39e±3i* ^ \ / ^  *y)3

Table 2.1: The first few spherical harmonics Yim($, <f>) and the corresponding y im(x, y, z). The 

yim(x,y ,z)  are the quantities rlYim(d,<f>) in a Cartesian representation, with x and y replaced 

by the differential operators x and y.

completely within the parameter defined in Eq. (2.30). Hence the required 

differentiations can be performed via the chain rule,

r J K s

x/,(n)Ks

y f i n)Ks

dbKs d f c l1

Q> P 0* dbus

dbKs d f t t
d( iqKx) db/ts

d f t t
d(iqKy) dbK, '
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From Eq. (2.32), it is known that

_ /, f (n+1)
"oT ~  “ °K , s J k s  jOVKs

and by differentiating Eq. (2.30) appropriately, the relations

dbKs _  a s 
dois

dbKs iqKx
d(iqKx) bKs

dbns _  iQKy
d{iQKy) bKs

can easily be shown. The required results are therefore

r / S  =  <*s/& +1)

*/& ’ =  ( i Q K x ) ^  (2-40)

y f (Ks = (*9Ky)/Ks+1).

The first few yim(x, y, z) are shown in Table 2.1. Having selected the one 

corresponding to the quantum numbers I and m, it is a straightforward matter 

to calculate the functions 9mK,(z ) and 9mn(z ) using results (2.40). For

example, assume for simplicity that the initial state summation over index s in

Eq. (2.13) contains terms such that n '(=  ns — I — 1) =  0. This removes all

occurences of the operator f. If the calculation is being performed for say, the

quantum numbers I =  1 and m  = 1, then the functions (2.39) may be calculated 

using the I =  1, m  =  1 entry in Table 2.1 to be

9*k (z ) =  2 * y ^ £ C sa s [(««x +  ~ /« ]]

9i k (z ) =  O *  [(9Ki9«.y +  t^Ky) f n l  -  i/k ]] (2.41)

I ^
91k (Z) =  27rl / S  C>a s {9Ky -  *?Kl) z f (Ks-
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Having determined these functions for the I and m  required, the final step is to 

perform the integrations over the z  co-ordinate in Eq. (2.38). These integrations 

must be performed numerically since the coefficient 4>k (z ) appearing in the 

integrands is extracted from a computer program used to numerically calculate 

RHEED intensities. The limits of integration in Eq. (2.38) are strictly ±oo, but 

in practice, the integrals need only be performed over a finite z  range as the 

9mn(z ~  zi ) ’ 9mn(z ~ zj) 311(1 9mn(z “  zj) decay rapidly away from the zh  the 2  

co-ordinate of the emitter. This is due to the exponential term in the functions 

defined in Eq. (2.31) and physically is a consequence of the localisation of 

the initial core state. Details of how the numerical integrations are performed are 

given in chapter 3.

The P mKj can therefore be calculated from Eq. (2.38), and the matrix elements 

by using Eq. (2.19). The XPD intensity can then be calculated from the 

equations in 2.4.1.

2.4.4 Finite Angular Resolution

It has been shown in the previous sections how the XPD intensity can be 

calculated. The formulae are for an ideal system however, in which emission 

occurs into a direction specified by the angles (0, <j>). In practice, such perfect 

angular resolution is not attained, as the detection apparatus will always subtend 

a small solid angle at the surface. The experiment therefore measures the 

integrated intensity over this solid angle

for perfect angular resolution. The calculations must account for this integration

(2.42)

where I eXp(0, <t>) is the measured signal, and 1(0, <f>) is the intensity distribution
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before any comparison with experiment can be made.

Typically, the detector aperture defines a cone of half-angle about 3.0°, 

although some high resolution measurements have been made in which the half­

angle is 1.0 —1.5° [18, 71]. To account for the finite angular resolution, calculated 

intensities centred around the direction (0, <f>) are averaged. The process is 

illustrated in Fig. 2.4, where a 9-(j) grid of calculated points separated by 1° 

in each direction is shown, with the point of interest shaded. High resolution 

experimental data for this point is simulated by averaging points within ± 1 ° in 

both the 9 and the 0 directions, and lower resolution data simulated by using 

points within ±2°. These points are indicated in Fig. 2.4.
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Figure 2.4: Averaging to simulate the finite angular resolution of the experiment. The circles 

represent calculated points on a d-<f> grid separated by 1° in each direction, with the shaded 

circle being the point of interest. High resolution experimental data is simulated by averaging 

points within the ±1° square, while lower resolution data uses points within the ±2° square.
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Multiple Scattering Theory find Application to

XPD

In chapter 2, the wave function used as the photoelectron final state was of the 

form of that used in RHEED calculations. This chapter deals with the calculation 

of the RHEED wave function and the subsequent work required to evaluate the 

XPD expressions of chapter 2.

The first part of the chapter introduces the theoretical techniques used in elastic 

RHEED calculations. Typical RHEED experiments utilise electrons in the 10- 

lOOkeV range, incident upon the surface at a grazing angle of about 5° or below. 

The low angle of incidence means that despite only penetrating a small distance, 

the electron encounters many atoms before emerging from the surface. Although 

the scattering cross section of an isolated atom for such electrons may be small 

enough to treat by kinematic theory, a full dynamical theory is needed to describe 

a system of atoms. The first part of the chapter introduces a dynamical theory 

used to calculate RHEED intensities.

The second part of the chapter is concerned with the modifications to a RHEED 

computer program required to perform the XPD calculations described in chapter

38
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2. The method devised to do the XPD calculation is described, and some practical 

problems with its implementation identified and resolved.

3.1 M ultiple Scattering Theory o f RHEED

3.1.1 Introduction

A multiple scattering theory used to calculate RHEED intensities will be 

introduced here. The basic approach to most of the theoretical work published 

on RHEED is to divide the system into smaller units by slicing it parallel 

to the surface [46, 47, 49, 50]. The scattering properties of these units are 

described by matrices whose elements can be accurately calculated by solving 

the time independent Schrodinger equation. These matrices are then combined 

to determine the scattering properties of the system, and hence the RHEED 

intensities. The theory described here is that of Maksym and Beeby [46, 47], 

although the precise details of the calculation vary from author to author.

Consider the elastic diffraction of a beam of electrons by a surface which is 

periodic in the two parallel dimensions (x , y), but need not be in the perpendicular 

dimension (z ). If the two dimensional vectors describing the periodic surface cell 

are denoted by a =  (ax, ay) and b =  (6X, 6y), then their reciprocal vectors can be 

written

a * =  T ~ (bv’ ~ b•). b * =  ? ( - « * .  «•)• (3-1)
1̂1 A \\

The quantity A\\ is the area of the real space surface unit cell. The 2 D reciprocal 

mesh is defined by the vectors k  =  la.* 4- mb*, where I and m  are integers. The 

scattering potential V  (r) clearly has the same periodicity as the structure itself
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and therefore can be Fourier expanded in terms of the reciprocal mesh vectors as

^  m  =  E  v*  (z) exp (iK • p) • (3-2)
K

Vector p  is a position vector parallel to the surface (z, y), and the expansion 

coefficients VK depend on the z co-ordinate. The electron wave function ^ (r) 

does not have the same periodicity as the crystal. By Bloch’s theorem in two 

dimensions, however, ip(r) may be written as

ip{r) =  ^(r)exp(zk|| • p),

where ky is the component of incident electron wave vector parallel to the surface. 

<£(r) is a function which does have same periodicity as the crystal and so may 

be Fourier expanded in the same way as V(r). Thus the electron wave function 

becomes

4>(t) =  exp(tk|| • p) Y ,  4>k {z) exp (in ■ p ) . (3.3)
K

The diffracted intensities are found by solving the time-independent Schrodinger 

equation
Orri

V V (r) +  k2xjj(r) =  —2"V (r)^(r). (3.4)
n

For high energy electrons, there are some small corrections to this equation caused 

by relativistic effects, which have been discussed by Maksym [52]. Substituting 

Eqs. (3.2) and (3.3) into Eq. (3.4) gives a coupled system of ordinary differential 

equations for the <}>k (z),

=  f r E  Vk - v * * ,  (3.5)

where the k2n  are the perpendicular components of diffracted wave vectors

k2K(z) = k2 -  k|| -4- k  2 . (3.6)
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To calculate the RHEED intensities, it is necessary to solve Eqs. (3.5) for the 

wave function coefficients f a .

3.1.2 The Scattering Potential

The coefficients of the Fourier expansion of the potential, Eq. (3.2), are given by 

the expression

where the integration is taken over the area of the real space surface unit cell. It 

is necessary to evaluate these coefficients in order to solve the equations (3.5).

For RHEED calculations, it is usual to write the total potential as the sum of 

atomic or ionic potentials

Tj being the position vector of atom j .  Although writing the potential in this 

form neglects the redistribution of charge due to chemical bonding, fast moving 

electrons are primarily scattered by the atomic nuclei and core electrons, and so 

equation (3.8) is expected to give a reasonably accurate description. Substituting 

this into Eq. (3.7) gives after some slight manipulation

where the summation index a  runs over atoms in the surface unit cell and the 

integration is now over the entire plane. Using the definition of the atomic form 

factor

(3.7)

V(r) =  l > ( | r - r i |) (3.8)
j

II a

(3.10)
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q being the momentum transfer and U(r) the reduced potential, the expression 

for the potential coefficients can be re-written as

The quantities / Q(/c, z  — za) in this expression are found from the definition

and these must now be calculated to obtain the potential coefficients.

In the paper of Doyle and Turner [53], the form factor is represented as the 

sum of N  Gaussian terms

and the parameters a^bi tabulated for many neutral atoms and ions. Other 

authors have also published such parameters [54, 55, 56] which have become 

known as ’’Doyle-Tumer coefficients” . The scattering vector s used by Doyle and 

Turner is related to the vector q used above by s =  q / 47r. The effects of thermal 

motion are accounted for by multiplying the form factor by a Debye-Waller factor 

exp(—ilfas2), where the quantity Ma is related to the mean square vibrational 

amplitude of atom a, and can be found in the literature [54]. Including the 

Debye-Waller correction and using q rather than s, the form factor becomes

This form of / Q(q) can be used in Eq. (3.12) and the integral performed 

analytically, giving the result

II a
(3.11)

/a(q ||.z) =  y  /.(q)exp(*fl,*) dqz, (3.12)

N

/a(s) =  ^ 2  Oi e x p (-6jS2), (3.13)
i=l

(3.14)
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The potential coefficients are obtained by using this expression for / Q(/c, z) in 

Eq. (3.11).

The potential coefficients in Eq. (3.11) are real. Absorptive effects of the 

crystal are accounted for by having an imaginary component of the potential. 

All processes which can cause electrons to be scattered out of the Bragg beams 

into the inelastic background must be considered. Among such contributions 

are thermal vibrations of atoms (thermal diffuse scattering), statistical defects 

in the structure and electronic excitations. Each contributes to the imaginary 

potential in a different way making a fully quantitative analysis of absorption a

difficult task, although calculations of the thermal diffuse scattering contribution

have been made by Bird and King [57], and also by Dudarev et ol. [54]. The 

general approach in high energy electron diffraction however is to approximate 

the imaginary potential by taking it to be proportional to the real part, and to 

treat the constant of proportionality as an adjustable parameter. The imaginary 

part is typically around 10% in RHEED calculations. This approach is used here, 

and so the coefficients of the full optical potential are given by

V it(z) = (l + xp)VK(z), (3.16)

where Vk(z )  are the coefficients in Eq. (3.11), and p  is the constant of

proportionality.

3.1.3 The Scattering Matrix

Once the potential coefficients are known, the RHEED intensities can be found by 

the numerical solution of the coupled equations (3.5). The boundary conditions 

of the problem are that the <f>K,(z) take the asymptotic form of the plane waves

<j>K(z) ~  SKo exp(-ikKz) +  R k  exp(ikKz) z oo
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~  Tk  exp(—ikKz) z —> —oo. (3.17)

Above the upper surface (z —► oo) of the structure, this corresponds to an incident 

wave of unit amplitude and a set of reflected waves with amplitudes R k - Below 

the lower surface, there is a set of transmitted waves with amplitudes To 

model the real situation of a surface layer on an infinitely thick substrate, the 

structure should be thick enough so that the transmitted amplitudes T/c are very 

small.

To solve equations (3.5), it is convenient to make the substitution

4>n{z) =  Qk (z) exp(ikKz) +  Q ^(z)  exp( - i k Kz), (3.18)

where the <t>n{z) have been written as the sum of upward and downward 

propagating waves with 2 -dependent amplitudes, Q%(z). To uniquely define the 

Q%(z), another relation is required. Choosing this relation to be

exp ( i k ^ z ) ^ ~ -  +  exp =  0 (3.19)
az az

means that second order derivatives of Q%{z) do not appear when (3.18) is 

substituted into (3.5). Introducing the definition (3.18) allows the scattering 

properties of the various ’’layers” in the structure to be described by a matrix 

formalism. A ’’layer” here is used to mean any two-dimensionally periodic slice 

of the structure. Consider one such layer in the structure, with top and bottom 

surfaces at 2* and z\> respectively. The vectors I and R  are defined to be composed 

of ingoing and outgoing wave amplitudes at the upper surface {Qj^izt) and 

Qi,(zt)) and X, T  to be the ingoing and outgoing amplitudes at the lower surface 

(Q£(2 &) and Qk (zi,)). The situation is illustrated in Fig. 3.1. The scattering 

properties of the layer can be described by a scattering matrix 5 , which relates
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I R

z = zt ------------- *-

z = zb

X

Figure 3.1: Schematic diagram of the wave amplitudes entering and leaving a layer. The 

vectors I and R  are composed of the amplitudes Qji(zt) and Q%,{zt) respectively, and X  and 

T are composed of Q£(z&) and

the amplitudes of the beams entering the layer to those leaving it. Hence the 

scattering matrix is defined by

(3.20)
( R  ' f Sr s 2 >

. T , s*

In addition to the scattering matrix, it is necessary

matrices: the transfer matrix M

R  N
(

Mi m 2 '
M

, m 3 m 4 y . T y

(3.21)

and its inverse N

' x ' ( x ' a '

v 1 /
(3.22)

N\ N2

\ n 3 n , j

Each of the four sub-matrices of M, N  and S  contains n x n elements, where n  

is the number of beams retained in the wave function expansion, Eq. (3.3). By 

substituting equations (3.18) and (3.19) into the coupled set (3.5), the differential
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equations satisfied by the amplitudes Q%{z) can be found. From the paper of 

Maksym and Beeby [46], the solutions are

Q k (z ) = Qk'-oo -  <%'(2) exp(2 ifcKz)

[  Qk> (*') exp(2ikKz’)dz'.
J —oo

(3.24)

The quantity Q^'-oo *s defined as limz^ _ 00Q'^(z). From these two expressions it 

is possible to evaluate the elements of sub-matrices M2 and M4 . Starting at 2 5 , 

the bottom surface of the layer (taken to be —0 0 ), the Q^'-oo set to 6KK’,

and (3.24). At the upper surface, the Q^izt)  form the /cth column of M2, and 

the QJi{zt) the Kth column of M4 . This corresponds to the amplitudes of the 

incident and reflected waves at the top surface required to give the transmitted 

amplitudes The integrations may be repeated for the different k  thus

generating the remaining columns of M2 and M4 . The elements of 7VX and 7V3 can 

be obtained from equations similar to (3.23) and (3.24) in which the integration is 

performed from the top surface (taken to be + 0 0 ) downwards through the layer. 

The columns of Ni and are generated by repeatedly starting the integration 

with Q£ , +00 =  5k k > for all k . It is a straightforward matter from equations (3 .2 1 ) 

and (3.22) to show that the sub-matrices of S  can be expressed in terms of the 

sub-matrices of M  and N  as

and the integration upwards through the layer performed according to (3.23)

(3.25)
NsiVf1 j
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3.1.4 The Layer Doubling M ethod

In principle, it should be possible to compute the scattering matrix for a layer 

of arbitrary size by the integration procedure previously outlined. In practice 

however, the integration range which can be used is limited. From equation 

(3.6), it can be seen that for beams with large enough /c, the corresponding 

kK is imaginary. These so-called ’’evanescent” beams lead to components in 

the numerical integration which grow or decay exponentially. The exponentials 

eventually become too large or too small to represent on a machine with finite 

precision, and numerical accuracy is lost [52]. The solution to this problem is 

to divide the integration range into sections over which the integrations can 

be accurately performed. The scattering matrices for each section can then be 

found and combined using the layer doubling algorithm of LEED theory [58], 

which will be described here. Maksym [48] has shown that it is necessary to 

use the scattering matrix 5, rather than the transfer matrices M  and N  for 

this combination process to be numerically stable. Consider two layers, labelled 

a  and /?, with known scattering matrices Sa and S& respectively. The layer 

doubling algorithm allows the scattering matrix of the composite layer Sa/J, to 

be calculated by using the individual scattering matrices of the a  and j3 layers. 

If the P segment is stacked onto the a  segment as shown in Fig. 3.2, it can be 

seen that the individual scattering matrices by definition obey the equations

v w /
= sf ' u '

1 / T )
= sa ' x '

(3.26)

and by considering the stacked layers as a single entity, that
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The amplitudes at the common boundary are U and W . By expanding equations

(3.26), the ampliudes U and W  may be eliminated, and the four sub-matrices of 

S a& expressed in terms of the the sub-matrices of S a and S&:

s f  = s ? ( i  -  s ^ s i r ^ r ,

_  C 0  I 0 0 ( 1  QCC q P \ - 1  QOi Qp
— ^ 2  “• *->1 V1 — ° 2  )  ‘-, 2*->4 j

  cot . na/i c& Ca \~  1 C& Qa
—  ^ 3  “ r  \ L  ~

sf  = ssii-slssy'sl
These four equations allows the scattering matrix of a stack consisting of any 

number of segments to be found, and so the integration range is no longer limited. 

Hence in principle, the integration can be performed through the entire system 

of surface and substrate. In practice however it possible to take advantage of the 

substrate consisting of identical layers of unit cells. To calculate the substrate 

scattering matrix, only the scattering matrix for one of the unit cell layers needs 

to be computed. Once the unit cell scattering matrix is known, it can be used 

together with the layer doubling algorithm (since S a =  S13) to generate the 

scattering matrix of two layers of unit cells. Repeating this procedure gives the 

scattering matrix of a stack of four unit cell layers, then eight, sixteen and so 

on. The process converges rapidly providing the system is absorbing, giving the 

substrate scattering matrix in a substantially reduced CPU time compared with 

direct integration. The scattering matrix for the surface is computed separately, 

and finally the layer doubling algorithm used again to generate the system 

scattering matrix from the surface and substrate matrices.

When the system scattering matrix has been calculated, it is a simple task to 

evaluate the reflection coefficients. The boundary conditions in Eq. (3.17) dictate 

that there are no waves incident at the bottom surface of the structure (X =  0),
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I R

U P layer

a  layer w

X T

Figure 3.2: Schematic diagram of the layer doubling method. The scattering matrices for the 

a  and /3 sections are calculated separately. The layer doubling algorithm is then used to find 

the composite scattering matrix.
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and the vector containing the incident amplitudes I has elements (^q . Hence 

the reflected amplitudes R  can be readily obtained from the definition (3.20). 

Finally, the flux reflection coefficients are given by \RK \2Re(kK)/ k0.

3.2 A pplication  to  X PD  C alculations

In chapter 2, it was shown that the XPD pattern depends on the calculation of 

the matrix elements Rmj defined in Eq. (2.4), the matrix elements of r  between an 

initial bound state and a time-reversed RHEED state. The important quantities 

required to evaluate the R mj are the P mKj, which were defined in Eq. (2.18). Each 

component of P m/cj was reduced from a three dimension to a one dimensional 

integral by analytically performing the integrations parallel to the surface. The 

numerical evaluation of the remaining integrals is dealt with in this section, and 

entails the modification of the RHEED computer program.

3.2.1 T he  R H E E D  C om puter P rog ram

The XPD calculation has been performed by evaluating the quantities P mKj via a 

modified version of a RHEED computer code. The RHEED program of Maksym 

essentially follows the theory of Maksym and Beeby presented in this chapter. 

The slight difference is that instead of working with the amplitudes Qk (z) and 

Q k ( z ) 5 program works with the new variables

= Q«(z)exp(»fcic2),

V>«(z) =  Q n ( z ) e x p ( - i k K z).

This change means that the expansion coefficients of the final state wave function, 

<t>n are now given by

<t>K (z) =  (z) +  (z), (3.28)
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and the scattering matrices now relate the ’’ingoing” values of to the 

’’outgoing” values.

The size, composition and structure of the unit cell, the potential data, the 

direction of beam incidence, the beam set and the operational mode of the 

calculation (polar or azimuthal scan) are all read in from an input file. As well 

as allowing the beams in the calculation to be input manually via their labels 

l ,m  (=  la* 4- mb*), there is also an option which allows an area of reciprocal 

space to be selected. The program then selects all beams within that area for the 

calculation. The RHEED calculation for a single point proceeds as follows:

•  read input data

•  select beam set for calculation (if ’’area” option used)

•  calculate Fourier components of the potential which couple beams

• calculate substrate unit cell 5-matrix

•  use layer doubling algorithm to convert unit cell 5-matrix to full substrate 

5-matrix

•  calculate surface 5-matrix

•  use layer doubling to combine surface and substrate 5-matrices into system 

5-matrix

•  find reflection coefficients from system 5-matrix.

If the program is used to calculate the reflection coefficients as a function of 

polar angle, the beam set and the potential coefficients remain the same for all 

points, and only the 5-matrix calculations need be repeated for each point. In the
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azimuthal mode, the required beam set may change from point to point, so the 

required beams need to be re-selected and the potential coefficients re-calculated 

before the 5-matrix calculations.

3.2.2 M atrix Element Integrals (i): A Simplified Case

In order to perform the XPD calculation several modifications have been made 

to the RHEED computer program. From Eq. (2.38), it can be seen that for the 

XPD calculation it is necessary to numerically accumulate integrals of the type

J  (t>K.(z )gimK(z)dz. (3.29)

The function gxmK(z) is one of the modulation functions defined in Eq. (2.39), 

where i stands for x, y or 2 . Although the exact form of gxmKt{z) depends on 

several parameters, it is always strongly localised around the emitter. Since the 

short inelastic scattering length means that even for bulk emission the elastic 

signal comes from the top few atomic layers only, the matrix element integrations 

are localised to the surface region. This is convenient from a computational point 

of view as the substrate 5-matrix can be calculated exactly as it is done in the 

RHEED calculation. All emitting layers can be put into the ’’surface” part of the 

calculation and the required integrals accumulated during the calculation of the 

surface 5-matrix.

Calculating the required matrix element integrals is complicated by the 

presence of strong evanescent beams. In such cases the RHEED program splits 

its integration range into segments small enough to cope with them, calculates 

the 5-matrix for each segment in turn and uses the layer doubling algorithm to 

accumulate the 5-matrix of the entire region. Unfortunately this process makes 

the matrix element integrals more difficult to extract as will be shown in the



Chapter 3 53

following section. Hence as a simplified example to illustrate the underlying 

technique, the ’’ideal” case will be dealt with first: that is, a case where the 

integration range of the RHEED program is unlimited. Such a case would be 

a calculation including only propagating beams. Having introduced the method 

via this simplified example, it will be extended to cope with the realistic case in 

the next section.

In the RHEED computer program, the <I>k,(z) are never explicitly calculated, 

however it is possible to see how integrals of the type (3.29) may determined by 

means of a simple example. Consider photoemission from one ordered plane of 

atoms. The photoelectron final state is derived from the diffraction of an incident 

electron beam by the plane of atoms. Assuming that the range for numerical 

integration is unlimited, the reflected and transmitted waves can be obtained 

from the transfer matrix definition (3.21)

I =  M4T R  =  M2 T, (3.30)

since it is known from the boundary conditions that the elements of I axe Sk q 

and those of X  are all zero. The elements of vectors I  and R  can be directly 

equated with ipK {z —>• +oo) and i ^ { z  -f-oo). Hence if <j> is a vector composed 

of the 4>k (z), from (3.28), the limiting value of <t> is

<f)(z —̂ +oo) — M2T  -f- M4T  =  (M2 +  M4 )T.

The matrices which in the limit become M2 and M4, are known at each integration 

step of the 5-matrix calculation, since it is their elements which are repeatedly 

incremented during the integration. Denote their values at some general point 

in the integration by M2(z) and M4 (z). The vector T  can only be found at the 

end of the integration by solving equations (3.30), and so it is not possible to
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determine <j> at some general point. It is possible for an integral of the type

(3.29) to be found however. If the matrix

J  [M2(z) + Mi (z)]g\nK{z)dz (3.31)

is accumulated during the integration through the layer, and the vector T  

determined using the final values of M2 and M 4 , the vector then obtained by 

performing

[ / \M2(z) + M4 (z)]g'mK(z)dz^ T

has elements

J  < t> K ,( z ) g 'm K ( z ) d z .

To summarise this example then, in order to compute integrals of the form (3.29), 

the matrix [M2 (z) +  should be treated as the integrand. At the

end of the integration, the vector T  can be found, and when multiplied by the 

integrated matrix, yields a vector <f> whose elements are the required integrals

(3.29).

It is quite straightforward to extend this method to calculate the <t>K,{z) 

integrals. Consider now the same plane of emitting atoms adsorbed onto a semi­

infinite substrate. It is convenient to split the structure into a ’’surface” region 

which contains the emitting layer, and a ’’bulk” part. The photoelectron final 

state this time is derived from the diffraction of an incident electron beam by 

the full structure. The total wave field in the surface is the combination of the 

incident wave at the upper boundary and the waves backscattered from the bulk 

incident at the lower boundary. The situation is shown in Fig. 3.3. In the RHEED 

program, during the surface 5-matrix calculation, the transfer matrices M2 and 

M4 are calculated as in the previous example, by integrating from the surface- 

bulk interface up through the layer. In addition to this, the matrices Ni and iV3
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I 5 | I SiX  I

Surface Surface

5JI SJXI XI

[5| + S|X]I 5‘[S| +  SJAT]I 

Bulk 

SJ[5J +  SJX]I

Figure 3.3: Determination of the waves entering and leaving the surface and bulk layers 

using the surface (superscript s) and bulk (superscript b) scattering ipatrices. To calculate the 

integrals involving the <f>n(z) over the surface layer, the waves leaving the layer must be known. 

The surface region is shown in two parts to highlight the contribution of the backscattering 

from the bulk region. Matrix X  is defined in Eq. (3.33)

are calculated by integrating over the same region in the opposite direction. The 

prescription to find integrals of the type (3.29) requires the ’’transmitted” waves 

(T in previous example) to be known. Referring to Fig. 3.3, the upper left diagram 

corresponds to the M2 /M 4 calculation, and the transmitted waves are given by the 

surface scattering matrix definition as SJI. The upper right diagram corresponds 

to the N 1/N 3 calculation, but finding the transmitted waves is slightly more 

complicated. The waves entering the surface layer at the surface/bulk interface 

have been defined as XI, where X  is an unknown matrix. The waves entering 

and leaving the various layers have been labelled by using the scattering matrix
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definitions and X .  Clearly, the waves leaving the bulk region are the same waves 

which enter the surface region at the lower boundary, that is

S b2{Ss4 +  S S3X )  I  =  X I,  (3.32)

and solving this equation for X  gives

X  =  (1 -  (3.33)

Thus the transmitted waves for the upper right diagram are

S?(l -  S j S j r ^ S J I .  (3.34)

Hence the problem is solved: for each modulation function g ^^ iz )  the matrices

J [ M 2(z) + Mi (z)}g\nK(z)dz, J  [Ni(z) +  N 3(z)]g'mK(z)dz (3.35)

are accumulated, and after the integrations, multiplied by the ’’transmitted” 

waves

SJI, 5J ( 1 -  52653T 1^ 5 4T  (3.36)

respectively. If the resulting vectors are denoted <j>M and <j)N to indicate the

matrices used in the integration, then the elements of [<j>M +  <pN] are the required

integrals

J  M z h i n t t ( z ) d z .

3.2.3 M atrix  E lem ent In tegrals (ii): R ealistic  Case

The previous section developed a method to calculate the required integrals for 

the XPD calculation using the RHEED program, with the assumption that the 

surface 5-matrix could be calculated using a single integration range. In a realistic 

calculation however the surface 5-matrix integration range can be split into
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smaller segments over which it is possible to accurately represent the strongest 

evanescent waves on the computer. The method of the previous section needs to 

be modified to handle such cases.

When the surface integration range contains more than one segment, the 

surface 5-matrix is generated by repeating the process of calculating a segment 5- 

matrix and using layer doubling to combine it with the others. In such a case the 

method given in 3.2.2 cannot be used: although the matrix integrals, Eq. (3.35) 

can be performed, the linear combinations required (i.e. the ’’transmitted” waves) 

would be needed for each individual segment. Calculating these would require 

knowing the remainder of the surface 5-matrix, a quantity which has not been 

calculated at that point. This clearly poses a problem, especially if the whole 

range of the surface 5-matrix calculation contributed to the matrix element 

integrals in Eq. (2.38). Fortunately though, the modulation function g%mK{z) 

is strongly localised around z  =  0  and only a small part of the whole integration 

range contributes significantly to the integrals.

A convenient solution to the problem is to take advantage of the strong 

localisation of the pJn/cW* The surface integration range can be divided into 

three regions: a central part around z = 0 which contributes to the integrals 

in Eq. (2.38), and regions above and below where the glmK(z) is small enough 

to render the contributions from these regions negligible. The central region 

is usually small enough to be handled with one integration segment, and the 

other two regions may contain any number of segments. The matrix integrations, 

Eq. (3.35) are performed in the central region, leaving the problem of determining 

the linear combinations required to go with them. As shown in the previous 

section, these quantities are the waves leaving that region. Fig. 3.4 is a schematic
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Figure 3.4: The division of the surface integration range into three segments for a general 

beam set. The superscripts on the scattering matrices indicate the segment they represent. 

The matrix element integrals are performed in segment (6), so the important quantities are the 

waves leaving (6). The matrices M, and X"  are defined in Eq. (3.37).

SSI S i x  i

Surface (a) Surface (a) Surface (a)

S4 I S2XI X I SSMHI M" I

MI SiMI X nI S ix "  I S i X I

Surface (b) Surface (6 ) Surface (b)

S f  I SIX" I SIX'  I X ’l

M'l SoBM'I

Surface (c)
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diagram showing the division of the integration range into three segments, labelled 

(a), (b) and (c). The waves entering and leaving each segment can be easily found 

by applying the method used in 3.2.2 to a three-layer system, and in Fig. 3.4 are 

written in terms of the matrices

X  = (i -  s b2s azy ls b2s$

X '  = (i -  s f s f y ' s f s ?

X "  = (i -

M  = (i -

M' = (1  -  s f s f y l s f

M" = (i -  s l s ^ y 1 s bx ' .

(3.37)

The superscripts on the S'-matrices in (3.37) denote the corresponding segment 

in the surface (B denotes the bulk region). The important quantities in Fig. 3.4 

are the waves leaving region (6), which can be seen to be

T x =  S f  I 

T 2 =  S \X "  I 

T 3 =  S i x ’ I.

(3.38)

So, if the quantities

4>M =  +  M b(z)]g'mK(z)dz} (Tj +  T 2) (3.39)

and

4>N =  ( / [iVf(z) +  T 3 (3.40)

are evaluated, then the elements of the vector [<j>M+<j>N] are the required integrals, 

Eq. (3.29).
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The inclusion of stronger and stronger evanescent beams in the calculation 

have the effect of shortening the maximum integration range. It is possible that 

the central segment, (b) in Fig. 3.4 over which the modulation functions are 

significant, exceeds the maximum integration range. A method which allows 

segment (b) to be composed of two segments has been devised to solve this 

problem, which uses a double application of the previous three-segment method. 

For all calculations performed, the extent of the (b) region has never required more 

than two integration segments. The method can be extended to allow segment (b) 

to be composed of even more segments, but will become more computationally 

demanding due to the need to store more matrices or to recalculate some.

3.2.4 The X PD  Calculation

It is now possible to calculate the components of P mK,j as defined in Eq. (2.38), 

shown below

1 f  -  Zj)dz ^

P  m K j  — f  M z ) f fm n (z  -  Zj)dz 

f  M z )  gzmK(z -  Zj)dz 

There are at least three different glmK{z — Zj), where i denotes x ,y  or z. This 

number increases for initial orbitals with I ^  0  as the magnetic quantum number 

m  may take on 21 +  1 different values, and for surfaces containing j  emitters at 

different depths Zj. For each distinct modulation function, vectors <j>M and <pN 

must be calculated, as defined in Eqs. (3.39) and (3.40). Fortunately, although 

the number of modulation functions required can become quite large for I ^  0 , a 

separate pair of integration matrices as defined in Eq. (3.35) is not required for 

each. The full set of modulation functions can always be generated from linear 

combinations of a much smaller set of functions. Using this smaller set instead of
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the full set greatly reduces the amount of memory needed. The various <j>M and 

<f>N can then be generated by taking the corresponding linear combination of the 

smaller set of integrals. The elements of the vector [<f>M + <f>N] are the k  different 

integrals for the modulation function. Hence the P m/cj can be calculated for all 

77i, fc, and j , and the matrix elements R mj- found from Eq. (2.19). The required 

intensity can then calculated by the method given in section 2.4.1.
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Initial Calculations

Chapters 2  and 3 have set out the basic theoretical framework for this type of 

XPD calculation and shown how a RHEED computer program can be modified 

to perform it. In practice however, the application of the method may be limited 

by the number of basis states required in the calculation. As has been mentioned 

elsewhere in the thesis, multiple scattering calculations involving electrons in the 

XPD energy range of roughly 500-1500eV are notoriously difficult: the energy lies 

between the low and high energy limits, so calculations using spherical or plane 

wave expansions will require more basis states than in the limiting cases. This 

chapter is concerned with the application of the XPD calculation at energies of 

around lOOOeV, which is relatively low compared with typical RHEED energies. 

First the validity of the high energy Doyle-Turner potential is investigated at XPD 

energies. The important question of convergence is then addressed by means of 

trial convergence calculations on experimental systems, and the limitations of the 

method identified.

62
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4.1 T he D oyle-Turner P o ten tia l

There are several problems involved in performing RHEED-type calculations at 

lower energies. One such problem is the scattering potential of the crystal. The 

method used to calculate the coefficients in the 2 -D Fourier expansion of Eq. (3.2) 

of the potential in RHEED has been outlined in chapter 3. This approach makes 

use of the tabulated representation of the atomic form factor provided by Doyle 

and Turner [53] to find the real part of each coefficient, and the imaginary part 

then taken to be proportional to the real part. Potentials derived from the 

tabulations of Doyle and Turner are known as Doyle-Tumer (DT) potentials. A 

potential constructed this way is independent of electron energy. Strictly however 

there is an energy dependent contribution to the potential, which is very small 

energies of several keV, meaning the Doyle-Tumer representation is an excellent 

one for applications such as RHEED. The aim of this section is to investigate 

how valid the DT potential is at energies in the XPD range.

The standard procedure for calculating the potential for low energy electrons 

has been given by Pendry [58]. The basic method is to divide the crystal into 

” muffin tins” , the largest possible non-overlapping spheres which can be drawn 

around the atoms. Each atom is assumed to be spherically symmetric, and the 

core electronic wave functions modified so that it is electrically neutral within 

the muffin tin. A Schrodinger equation can be written down for the many-body 

system of core electrons and incident electron within a muffin tin. The core 

part of the wave function can be eliminated since the individual atomic core 

wave functions are known and are not easily polarised, which leaves an equation 

governing the motion of the incident electron. The equation expresses the direct, 

or Hartree potential, which is the electrostatic potential due to the core electrons
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plus the nucleus, and the exchange potential in terms of the core state wave 

functions. Computer programs such as MUFPOT are available to calculate these 

potentials [59].

The concern is that the DT potential, while valid for high electron energies, 

is not a good representation in the XPD range. To check the validity of the 

DT potential, the DT atomic potentials is compared with the calculated energy 

dependent potential. It is a straightforward matter to obtain the atomic DT 

potential. Fourier transformation of the form factor in Eq. (3.10) gives

ip(r) =  - 47T^7^T5 f  / ( q) exp(iq • r) dq. (4.1)

The DT representation of / ( q), Eq. (3.14) can be used in Eq. (4.1) allowing the 

integrations to be performed analytically, giving the DT atomic potential as

v (r) = ( ^ ) 2 exp(—4ir2r2/6j). (4.2)

The full potential has been calculated by the computer program MUFPOT. 

By making the unit cell dimension and the muffin-tin radius of the calculated 

potential unrealistically large, the free-atom potential for a particular energy can 

be obtained. This may then be compared with the DT potential from Eq. (4.2).

Fig. 4.1 is a comparison between the two potentials: the solid line is the 

calculated potential for a Cu atom at llOOeV, and the line with diamonds is 

the DT potential. The DT potential can be seen to fit well to the calculated 

potential. The small discrepancies between the two can be attributed to the 

energy dependence of the calculated potential, held completely in the exchange 

term. This exchange contribution to the potential, has been calculated by 

MUFPOT as described above for four different electron energies. These are 

shown in Fig. 4.2 with the Hartree potential shown for reference. It is clear from
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Figure 4.1: Comparison between a calculated potential of a HOOeV electron in a Cu atom 

(solid line) including exchange and correlation effects, and the analytic form given by the Doyle- 

Tumer expression in Eq. (4.2), (line with diamonds).

these results that as the electron energy is reduced, the exchange contribution 

becomes more significant, and hence the DT potential becomes less accurate. 

For calculations around the lOOOeV range and above however, the exchange 

correction can been seen to be small and therefore the DT potential is still a 

very good representation. Hence it can be assumed that no major errors will 

arise at energies in the higher part of the XPD energy range by using the DT 

potential.

4.2 Convergence

As has been described in earlier chapters, the final state wave function of the 

photoelectron is taken to be a time-reversed RHEED state and is written as 

the expansion (2.12). Although in principle this expansion is over the infinite
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Figure 4.2: The exchange and correlation contribution to the potential plotted for different 

electron energies. The Hartree potential, which is the classical electrostatic potential and is 

energy independent, is shown for reference.
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set of reciprocal mesh vectors k , the series may be truncated after a certain 

number, when the addition of further terms does not affect the results of the 

calculation. The calculations are said to be converged when this condition is 

satisfied. The question of convergence is an important one, since when there is a 

quantitative comparison with experimental data, an unconverged calculation can 

lead to incorrect structural conclusions. At RHEED energies of lOkeV and above, 

the expansion (2.11) converges very quickly for simple surfaces, that is, only a 

few terms (’’beams”) are required. Such calculations are very efficient, requiring 

only modest amounts of memory. For XPD calculations in the the lOOOeV range, 

a significantly larger number of beams must be included to achieve convergence. 

The problem to be addressed here is the applicability of this method of XPD: 

can convergent calculations actually be performed at energies of IkeV or lower? 

Of course the expansion will always converge if enough beams are taken, but 

the calculations escalate in computational effort as n3, where n is the number 

of beams. The XPD calculation also requires more memory than the RHEED 

calculation: it was shown in chapter 3 that to compute the required matrix 

elements, a number of matrices must be integrated over part of the surface region. 

Clearly then a decision must be made as to whether it would be computationally 

feasible to perform calculations for a given system.

It is difficult to estimate how many beams are required for a particular 

calculation. The number depends upon the final energy of the photoelectron, 

the direction in which it is observed (azimuthal angle and take-off angle) and 

the constituent atoms of the structure, and hence a convergent beam set can 

only be determined by trial calculations. Two different adsorbate systems will be 

considered here, both have been studied experimentally by XPD and have final
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photoelectron energies approaching lOOOeV. They therefore represent potential 

systems for which this method could be applied. The convergence tests have been 

carried out in a systematic way. First, beams with the k vector perpendicular to 

k|| were included. These beams form the zeroth Laue zone, and correspond to the 

semi-circle containing the specular spot in a RHEED pattern. It is known from 

RHEED calculations that beams in this zone tend to be the most important. 

Once convergence in this zone is found, increasingly higher order zones are 

included until the full calculation converges. At RHEED energies, the beam set 

is asymmetric in that only a small number of Laue zones are required compared 

with the number of beams within each zone. As the energy is lowered down to 

lOOOeV, an increasing number of Laue zones are required to attain convergence. 

It is worth noting that in the following calculations, all zones contain roughly 

equal numbers of beams. In practice, the higher order zones may need fewer 

beams than the lower ones, allowing the full beam set to be reduced.

4.2.1 Ni(001)c(2 x 2)0

The surface structures of oxygen adsorbed on the Ni(OOl) surface has been studied 

experimentally by many different techniques, and the system will be treated 

in greater depth in chapter 6. Saiki et al [19] have conducted experiments 

in which the O Is core level has been excited by Al Ka radiation, giving rise 

to photoelectrons outside the structure having an energy of 954eV. The trial 

calculations have been performed for the oxygen overlayer adsorbed 0.8A above 

a bulk terminated Ni(OOl) substrate. The oxygen atoms have been situated in 

fourfold hollow sites, and the take-off angle set at 0  = 11°.

The convergence of the calculation can be clearly seen if the calculated intensity
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Figure 4.3: Calculated XPD intensities from the 0  Is core level of c(2 x 2)O/Ni(001) for 

various different beam sets. Calculations at the three azimuthal angles shown can all be seen 

to converge to asymptotic values for large beam sets. (Photoelectron energy=954eV)

at a given point is plotted against the number of beams included. This is shown 

for three different points <£ =  0°, 15° and 45° in Fig. 4.3, (f) being the azimuthal 

angle measured from [100]. It is known from RHEED calculations that symmetry 

azimuths normally require more beams due to enhanced multiple scattering effects 

[60]. The calculations in directions [100] and [110] should therefore represent a 

worst case for convergence. All three curves can be seen to converge to asymptotic 

values as more beams are included, the number of beams required being about 

150. As a rough guide to the CPU time required to perform a set of calculations 

for this structure, calculations involving 150 beams require approximately 27 

minutes per point on a HP735 workstation. The available XPD data is in the form
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of azimuthal scans for various polar angles, requiring calculations to be performed 

over a 45° azimuthal wedge. Using these figures, a single azimuthal curve would 

require roughly 20 hours CPU time, sampling every 1 degree. This figure can be 

reduced to «  15 hours (20 minutes/point) by removing some superfluous beams 

from the higher zones, as described earlier.

These trial calculations show that it is possible to perform convergent 

calculations on this particular system. The CPU time required of approximately 

2 0  minutes per point is well within the capabilities of the computing resources 

available, and short enough to enable calculations to be repeated for different 

surface parameters in order to find the optimum agreement with experimental 

data.

4.2.2 S i ( l l l ) - v /3 x y/% Sb

The S i(lll)-\/3  x %/Z Sb surface is attractive for this method of XPD: 

experimental data is readily available [16], and, since the surface has been studied 

by the multiple scattering technique of Saldin et al. [26], it would allow direct 

comparison between two very different theoretical approaches. To perform the 

convergence calculations, the model of the surface given by Chen et al. [16] is 

used. That is, the Sb atoms relax from T 4 bonding sites to form trimers with a 

bond length of 2.9A. The overlayer is taken to be 2.7A above an unreconstructed 

S i(lll)  surface terminated with a double Si layer. The 3d core level of Sb is 

excited yielding photoelectrons of 738eV outside the solid. A polar take-off angle 

of 6 ° is used.

Calculations are shown for the [1 1 2 ] and [1 1 2 ] azimuths, which correspond 

to two symmetry directions for the surface, and are expected to be worst cases
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Figure 4.4: Calculated XPD intensities from the Sb 3d core level of (a /3  x \/3)Sb/Si(lll) for 

various different beam sets. Calculations at the two azimuths shown can be seen to converge 

for large beam sets. (Photoelectron energy=738eV)

for convergence. The results are shown in Fig. 4.4, as before in the form of 

calculated intensity against number of beams in the calculation. The calculations 

again converge to asymptotic values, but the number of beams required is over 

200, which is significantly greater than for the O/Ni system. As a guide to the 

time needed to perform full calculations for this structure, a calculation involving 

235 beams requires roughly 70 minutes per point on a HP735 workstation. The 

published data on this system, which is, as for the O/Ni system, in the form of 

azimuthal scans at various polar angles, and the required calculations are over 

a 60° azimuthal wedge. Therefore, a single curve sampled every 1 degree would 

take over 70 hours CPU time. Even if this figure was halved by sampling every
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2 degrees, the CPU time would still be over double that of the O/Ni system. 

Performing full calculations for this system would involve producing a family of 

curves at different polar angles, then varying the surface parameters and repeating 

the calculations to find the optimum agreement with the experimental data. The 

amount of time to perform such a task would be too great, so it is concluded that 

the calculations are too large for the computing resources available.

4.2.3 Discussion

The XPD program has been applied to two different adsorbate systems, and it has 

been concluded that while calculations for the O/Ni(001) system (photoelectron 

energy 954eV) are quite feasible, calculations for the S b /S i(lll) system (738eV) 

are not. There are several reasons why the Sb/Si requires more beams to converge, 

the most obvious one being the low energy. The convergence criteron will 

naturally vary from system to system, but in general, the scale of the calculations 

can be expected to rise sharply as the energy is lowered below lOOOeV, since the 

scattering becomes less focussed in the forward direction. Another factor which 

contributes to the beam set required is the atomic species present. For sub­

monolayer adsorbate systems, the photoelectron is scattered predominantly by 

the atoms in the overlayer. This is especially true for the Sb/Si system, since the 

overlayer was 2.7A above the outermost Si layer, and hence scattering from the 

substrate can be expected to be quite small. Antimony, having an atomic number 

of 51, represents a fairly strong scatterer, and when coupled with the energy of 

738eV it is not surprising that the beam set required is so large. Oxygen on the 

other hand is a light atom and therefore a relatively weak scatterer, which together 

with the higher energy represents a more favourable system for convergence.
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The motivation behind this work was to investigate the possibility of performing 

calculations in the higher XPD energy range («  lOOOeV and above), where other 

methods suffer because they are based on a spherical wave basis. It appears that 

in the Sb/Si case, this method suffers a similar fate because of the low energy 

involved. That is not to say that the calculations are impossible: spherical wave 

methods have been applied to systems having keV energies, although the use 

of supercomputing facilities was required [61]. Certainly calculations with this 

method at low energies of «700eV would be possible with similar facilities, but 

it is doubtful as to whether it is the most efficient solution. Before embarking on 

such a set of calculations however, attention should be paid to the accuracy of 

the potential. It was shown earlier in the chapter that the Doyle-Turner potential 

becomes less accurate at lower energies, a factor which could lead to errors in the 

calculations once significantly below IkeV.

In summary the trial calculations show features which are expected to be true 

for most systems, namely full convergence at energies below IkeV is difficult to 

achieve. This is especially true for surfaces containing atoms with high atomic 

number, a rough guide to scattering strength for fast moving electrons. This 

method for XPD calculations is therefore likely to be of greatest use in the energy 

range of lOOOeV and above, which is generally inaccessible for calculations based 

on the spherical wave basis.
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Application to Ni(001)c(2 x 2)S

In this chapter, the theory of XPD presented in chapters 2 and 3 will be applied 

to an experimental system. There are two main aims of this investigation. The 

first and foremost is to test the theory. The sub-monolayer adsorbate system 

Ni(001)c(2 x 2)S has been the subject of much experimental and theoretical work. 

As a result its structure is quite well understood, thereby providing an excellent 

test case. The second aim is to directly compare the results of this full multiple 

scattering analysis to a single scattering analysis of the same data.

The experimental data used is taken from the literature. High resolution XPD 

experiments on the system have been performed by Saiki et al [18], the data 

being in the form of azimuthal scans at four different take-off angles ranging from 

6° to 16°. The photoelectron kinetic energy is in the upper part of the XPD range 

at 1085eV and is therefore suitable for this theoretical approach.

The chapter is structured as follows. First, the process used to normalise 

a calculated curve to allow direct comparison with an experimental curve is 

described, followed by definitions of several R-factors for quantitative comparison 

between theory and experiment. Calculations are then presented for various 

structures, and the R-factors used to find the optimum structure. Finally, the

74
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calculations are compared with single scattering curves published with the data.

5.1 Comparison of Theory w ith Experiment

5.1.1 Normalisation

Before experimental and theoretical curves can be directly compared, the 

theoretical curve needs to be normalised. The method adopted for this 

normalisation is the same as that given by Saiki et al. [19] whereby the theoretical 

curve is made to have an anisotropy (defined as [Imax — Imin]/Imax) as close as 

possible to that of the experiment. This method of normalisation has been chosen 

over other, perhaps more straightforward procedures simply because it has been 

used in the single scattering analysis accompanying the experimental data. This 

allows a direct comparison with the single scattering analysis, which can be found 

later in the chapter.

The normalisation procedure of Saiki et al. is as follows. Let the raw 

experimental and theoretical curves over n points be denoted by /exp(n) and 

I t h ( n ) .  Finite angular resolution of the detector apparatus should already have 

been accounted for in the theoretical curve by the averaging procedure described 

in chapter 2. The first step is to scale the experimental curve so that the intensities 

lie between 0 and 1,

I '  (n) =  ^exp^  ~
e x p \ ) Tmax  _  Tm in  

exp exp

where 7™^ and are the maximum and minimum values of the raw data. 

Next, the average value of both the raw theoretical curve and the rescaled 

experimental curve are subtracted, giving the rescaled sets

C M  =  C M - J - E  C M -
n
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4 ( n )  =  / * ( « ) - !  £ & ( " ) •
n n

The rescaled theoretical set 7^(n) is now forced to have the same ±  area as the 

rescaled experimental data set / ^ ( n )  by

4 (n )  =  4 ( n )  x ( ^ )  , 

where the areas A exp and Ath are defined by

^ x P =  £ l 4 » | ,  Ath = £  1 4  (n) I.
n n

The final step of the normalisation is to put the theoretical data set I'th(n) onto the 

same scale as the original experimental curve. This is done by adding the average 

of the I'exp set which was subtracted, and reversing the process which scaled the 

original experimental set to be between 0 and 1. The normalised theoretical data 

set, I^h (n), is therefore given by

/  i  Tm in  \

4 ( n )  =  4 (n) + -  £  4p(n) +  X « s r  -  C 1)-
\  n 1 exp 1 exp /

and can now be directly compared with the raw experimental data I exp(n)-

5.1.2 R eliab ility  Factors

A reliability factor (R-factor) is a formula or prescription which puts a numerical 

value on the degree of disagreement between two curves, usually a comparison 

between theoretical and experimental curves. The procedure to determine the 

best agreement with experimental data is to systematically vary structural 

parameters in order to find a global minimum in the R-factor, and is a standard 

method for analysing LEED data [65].

Van Hove et al [72] have defined five R-factors for the analysis of LEED I-V 

curves with theory, designed to be sensitive to different features of the curves.
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These axe

* 1  =  E M T - t f l / E K *
n n

«  =  E l ' f ' - W E I - C f
n n

i?3 =  fraction of energy range with slopes of different sign

n n

R5 = E W T - W E i W -
n n

In these formulae, / '  denotes the first derivative of an intensity with respect 

to energy. The set Rl-Rh  provides sensitivity to all of the features which are 

considered to be important in an experiment-theory comparison of LEED I-V 

curves. R1 and R 2  tend to emphasise the agreement in the positions, height and 

width of peaks and troughs. R3-R5, which involve the gradients of the curves, 

were introduced to account for the insensitivity of R 1 and R 2 to other features of 

the I-V curves such as bumps and shoulders within a single peak, and the actual 

shape of the peaks.

The R-factors R1-R5 have been used to compare theoretical XPD curves with 

experiment [18, 19], with the quantities / '  denoting the first derivative of an 

intensity with respect to azimuthal angle rather than energy. The merits of the 

individual R-factors when applied to XPD are discussed later in the chapter.

5.2 Ni(001)c(2 x 2)S

The XPD calculation described in chapters 2 and 3 will be applied to an 

experimental system in this section. The system chosen is the Ni(001)c(2 x 2)S 

overlayer system, essentially for two reasons. The first is that there is a general 

agreement on the structure, which provides a good test system for the theory,
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and the second is that there is an excellent set of high resolution XPD data, at a 

suitable energy for this approach, available in the literature.

Sulphur adsorbed onto clean nickel surfaces is of particular technological 

interest: it is well known that the presence of small amounts of S can poison 

certain catalytic reactions over Ni and other transition metal catalysts. The 

methanation reaction CO+3 H2 -» CH4+H2 O over a Ni(OOl) surface is a dramatic 

example of S poisoning. The presence of only «0.2ML of S on the Ni catalyst can 

result in rate of methane production being slowed by an order of magnitude. The 

interest in the S-Ni system has therefore led to many studies of the geometry of 

the c( 2  x 2)S and p ( 2  x 2 )S surfaces. The c( 2  x 2 ) surface is regarded is one of the 

better understood adsorption systems in the field of surface science, and as such it 

is often used as test system. Indeed much contemporary work on various inversion 

schemes in high energy photoelectron holography use the Ni(0 0 1 )c(2  x 2)S surface 

as such a test system [18].

Numerous techniques have been used to study the system, including LEED 

[64, 65, 6 6 ], photoelectron diffraction [67], STM [6 8 ] and surface extended X-ray 

absorption fine structure [69]. The general consensus is that the c(2  x 2)S surface 

is formed with the sulphur atoms bonded in fourfold hollow sites, at a vertical 

height of between about 1.30 and 1.40A above the top Ni layer. There is evidence 

for a slight increase in the spacing of the outer Ni layers compared with the bulk 

value [18, 6 6 ], and the LEED analysis by Oed et al. [6 6 ] reports some buckling 

in the second layer of Ni.



Chapter 5 79

5.2.1 An Experimental X PD  Study

The XPD study of the system by Saiki et al [18] will be briefly described in this 

section. The experiment was performed using a high angular resolution electron 

analyser of ±1.5°, the aim being to assess whether high angular resolution data 

would allow more information about the bonding site to be determined when the 

adsorption height is relatively high (roughly > 1 .0 A).

The problem of using XPD with such systems is illustrated in Fig. 5.1. A 

photoelectron emitted from a S atom in the overlayer must be scattered through a 

large angle by the Ni substrate in order to be detected due to the large adsorbate- 

substrate registry, and this contribution to the full signal is therefore much weaker 

than the scattering from within the overlayer. An earlier XPD study on the same 

system has shown this to be the case. To extract information about the adsorption 

height and the first to second layer Ni spacing (z and di2 respectively in Fig. 5.1), 

the experiment must be able to detect small changes in the diffraction signal 

caused by scattering from the Ni substrate. It is very difficult to resolve such 

detail using a standard electron analyser, which typically has resolution of the 

order ±3°, and so the experiment was conducted using the high angular resolution 

analyser. The use of such a high angular resolution analyser had been previously 

shown to increase dramatically the amount of fine structure in the diffraction 

signal [71].

The XPD experiment was conducted with an experimental arrangement as 

shown in Fig. 2.1. Unpolarised Mg Ka  radiation (/ii/=1253.6eV) was used to 

excite the S 2p core level, yielding photoelectrons with an energy of 1085eV. 

For any adsorbate XPD experiment, the forward nature of the scattering means 

to attain information regarding the substrate, it is necessary to collect the
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substrate
scatteringdirect

adlayer
scattering

Figure 5.1: Schematic diagram showing adsorbates well above the substrate. The angles 

involved with scattering from the substrate can be seen to be much greater than for scattering 

within the adlayer. The substrate signal is therefore much weaker.

photoelectrons at fairly low take-off angles, less than about 20-25°. This is 

especially true for the present system: as the S atoms lie well above the top 

Ni layer, grazing take-off angles are required to reduce the angles involved with 

scattering from the Ni as much as possible. Azimuthal angular-scans were 

performed at at four different take-off angles, 6°, 10°, 12° and 16°. The angle 

between X-ray incidence and electron exit was fixed at 48° and data was taken 

over a 1 0 0 ° azimuthal range encompassing the [1 0 0 ] and [0 1 0 ] azimuths, before 

being mirror averaged across the [1 1 0 ] symmetry azimuth to improve reliability. 

Both the raw and mirror averaged data are presented in the paper, the raw data 

being in very good agreement with the averaged data, indicating a good quality 

data set.

5.3 Calculations

Calculations have been performed for many trial surface structures to find the 

optimum agreement with the data, allowing the overlayer height and to a lesser
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extent the top Ni-Ni spacing and adsorption site to be varied. Thorough 

convergence tests have been carried out for the Ni(OOl) c(2x2)S surface, and show 

that the calculations require approximately 150 beams, which is quite manageable 

on a HP735 computer. This is to be expected as S is not a particularly heavy 

atom and the photoelectron energy at 1085eV is relatively high. The calculations 

are therefore on roughly the same scale as the Ni(001) c(2 x 2)0 system, for which 

convergence tests were demonstrated in chapter 4, which gives a guide as to the 

CPU time required.

5.3.1 Non-Structural Parameters

The non-structural parameters in the calculation are associated with corrections 

to the Doyle-Tumer potential [48]. The volume-average potential can be defined 

as the average with respect to the z  co-ordinate of the zeroth Fourier component 

of the potential. This usually needs to be adjusted for RHEED calculations as 

it does not correctly reproduce Bragg peaks in experimental rocking curves. The 

RHEED program accounts for this by adding a constant correction term to the 

zeroth Fourier component of the potential, and the correction allowed to approach 

zero at the surface as a Gaussian. Such a procedure changes the wavelength of the 

electrons in the solid, and hence the Bragg condition. In RHEED calculations, 

the size of the correction (typically ±few eV) is determined by alligning calculated 

peak positions with experiment. For the XPD calculation, the correction to the 

volume-average potential can be treated as an adjustable parameter to improve 

the fit between experimental and theoretical curves.

To account for absorption, an imaginary part is added to the potential, taken 

to be proportional to the real part. This has been discussed in more detail in
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chapter 3. The constant of proportionality can be expected to depend on the 

energy of the electrons, reflecting the inelastic mean free path. This constant is 

taken to be around 0.1 for calculations at RHEED energies, but can be treated 

as an adjustable parameter to improve agreement with data. Thermal motion of 

the atoms is accounted for by Debye-Waller factors, also discussed in chapter 3.

Trial calculations for the present system have shown that the overall agreement 

with experiment is improved with a constant correction to the volume-average 

potential of —3eV. Significant improvements in the fits were not observed by 

increasing the size of the imaginary potential, so the calculations were performed 

with the constant of proportionality set at 0.1. Bulk Debye-Waller factors from 

the literature [54] were used for both bulk and surface atomic layers. Strictly, the 

surface layers should incorporate different Debye-Waller factors than the bulk, 

but trial calculations performed with larger Debye-Waller factors for the surface 

yielded results almost indistinguishable from those using bulk factors.

5.3.2 Adsorption Height

The first set of calculations are to determine the optimum adsorption height with 

no relaxations in the bulk layers. Previous studies of this system have indicated 

that the most likely adsorption site is the fourfold hollow, so the S atoms in 

these calculations have been fixed in such sites. Calculations using the non- 

structural parameters described above have been performed for all four polar 

angles, 6  =  6°, 10°, 12° and 16°. For each take-off angle, the overlayer height 

has been varied from z=1.20A to 2= 1.50A in steps of 0.05A, encompassing the 

1.30-1.40A range which previous studies have shown to be the most likely height.

Figs. 5.2 - 5.5 show for each take-off angle some calculated curves with overlayer
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height varied in steps of 0.1 A, along with the experimental curves taken from [18]. 

A first remark about the calculations,which applies to all four take-off angles is 

that even though the calculated curves are separated by quite large steps of 0.1 A, 

only subtle changes are observed. This is due to the weak sensitivity of XPD 

to the substrate for relatively high adsorbates, as discussed earlier, and displays 

very clearly the need for high resolution experimental work in order to study such 

systems.

The lowest take-off angle of 0 =  6° (Fig. 5.2) contains by far the most fine 

structure of the four, due to the stronger scattered signal at grazing take-off 

angles. All four calculated curves are very similar despite the low take-off angle. 

Much of the fine structure has been predicted, especially between 30 — 60° for 

2:=1.30A and z=1.40A, where agreement is very good. The features in the 0 — 20° 

range can be clearly identified in the theoretical curves, although the relative 

intensities are not in full agreement. None of the calculations correctly predict 

the doublet observed experimentally between 20—30°, all predicting a single peak 

across this angular range.

The calculations at 9 = 10° (Fig. 5.3) show more variations with adsorption 

height z. All of the features of the experimental curve are correctly reproduced 

by the curves, and are in the correct positions. As the adsorption height is varied, 

it is the relative heights of the features rather than their position which change. 

The peak at approximately 27° can be seen to increase with z and the depth of the 

trough at 45° becomes less pronounced. When the height has reached z=1.50A, 

the theoretical curve can clearly be seen to be an inferior match to the data than 

the other three.

Excellent agreement can bee seen for the curves calculated at z=1.20A and
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z=1.50 A

1

'Data

1.20 A

0 10 20 30 40 50 60 70 80 90

Azimuthal angle (degrees)
Figure 5.2: Theoretical XPD curves (solid lines) for different adsorption heights of the c(2 x 2)S 

overlayer on a bulk terminated Ni(001) substrate at take-off angle 0 =  6°. Experimental data 

is from ref. [18].
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1.40 A
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Data

1.30 A

10 20 30 40 50 60 70 80 90
[100] Azimuthal angle (degrees) [010]

Figure 5.3: Same as Fig. 5.2 but for take-off angle 0 =  10°.
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1.50 A

1.40 A

r\

A '

Data

1 .2 0  A

10 20 30 40 50 60 70 80 900
[100] Azimuthal angle (degrees) [010]

Figure 5.4: Same as Fig. 5.2 but for take-off angle 6 —  12°.
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;=1.50 A

1.40 A

1.30 A

1 .2 0  A

0 10 20 30 40 50 60 70 80 90

[100] Azimuthal angle (degrees) [010̂

Figure 5.5: Same as Fig. 5.2 but for take-off angle 0 =  16°.
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z—1 .30A at 0 =  12° (Fig. 5.4). All the features observed experimentally have 

been correctly predicted by these two curves, although the doublet centred at 

approximately 32° is predicted to be slightly wider than that in the data. The 

calculations performed at 2=1.40A and 2= 1.50A are visibly poorer fits to the 

data, the main discrepancy coming in the heights of the aforementioned doublet.

It has been noticed that the previous calculations have displayed only small 

variations with adsorption height, and this is especially true for the calculations 

at 0 =  16° (Fig. 5.5). All the calculated curves are seen to be remarkably 

similar. This is due to the larger scattering angles involved with a take-off angle 

of 16° weakening even more the sensitivity to the substrate position. All four 

theoretical curves are in good general agreement with the data, even though this 

particular take-off angle is potentially the most difficult to attain good agreement. 

Experimental data is usually less reliable at higher take-off angles: the anisotropy 

is usually much smaller due to the weak scattered signal, meaning experimental 

noise plays a greater role.

The R1 - R5 of Van Hove et a/., as defined earlier in the chapter have 

been calculated using the curves shown in Figs. 5.2-5.5, and the calculations 

at intermediate bonding heights not shown. The resulting R-factors are shown in 

Fig. 5.6, where they have been moved to be on the same vertical scale for clarity. 

Calculations at all four polar angles have contributed to the curves in Fig. 5.6. 

Individual R-factors were calculated for each polar angle and then averaged to 

give a point on the curve.

Factors R1 - R4 all display clear minima in their curves. Perhaps the least 

convincing of the four is R3, which is the percentage of points where the 

theoretical and experimental gradients do not agree in sign. As such, R3 is
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sensitive to the additional fine structure which is displayed in the theoretical 

curves. For example, consider the set of curves calculated at 0 =  10° in Fig. 5.3. 

The calculated curve at 1.30A displays fine structure between the peaks at 

approximately 27° and 39°, where although the magnitude of the structure is 

small, the gradient changes sign many times. This structure is not present in the 

experimental curve, the gradient changing sign just once in the corresponding 

angular range. The result is a poor R3 for the calculated curve, despite being a 

visibly good fit to the data. This could also prove to be a problem with R4 and R5. 

The theoretical curves will naturally predict fine structure that cannot be resolved 

experimentally despite the steps taken to simulate finite angular resolution. Any 

resulting gradient discrepancies could lead to misleadingly poor values of R4 and 

R5. Nontheless it is encouraging that all R1 - R5 in Fig. 5.6 show steep increases 

at adsorption heights greater than 1.35A, and only R5 does not show an increase 

at adsorption heights less than 1.30A. The minima of the curves in Fig. 5.6 

indicate that an overlayer height of 1.30A-1.35A gives best agreement with the 

data.

For most XPD analyses of this type, the R-factors used tend to take the form 

of R1 or R2 [18, 26, 16], using the absolute difference between the experimental 

and normalised theoretical data points rather than the gradients of the curves. 

Saiki et al. [19] have found that structural conclusions based on R1 are in good 

agreement with conclusions based on the other R-factors. For the remainder of 

the comparisons between theory and experiment, R1 will be used. This has the 

obvious advantage that R1 concentrates on the positions and relative sizes of 

the features in two curves rather than the fine structure, removing the worry 

about enhanced fine structure in the theoretical curves giving poor values of R3 -
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Figure 5.6: Reliability factors R1 - R5 for calculations on Ni(001)c(2x2)S. Points on each 

curve are the average R-factor for the four take-off angles. The curves indicate that the an 

overlayer height of 1.30A-1.35A gives best agreement with the data. Note the multiplying 

factors which have been used to display all five curves on the same range as R2
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R5. Another advantage is that the calculations accompanying the XPD data in 

ref. [18] have been analysed using R l, allowing some form of comparison with the 

present calculations.

5.3.3 Adsorption Site

The previous calculations assumed the S atoms occupied fourfold hollow sites 

and the most favourable adsorption height determined to be 1.30A-1.35A. The S 

atoms are now fixed at this height (1.35A), and the S atoms moved in-plane. As 

it as generally agreed that the S atoms are bonded in the hollow site, a full set 

of calculations has not been performed. To demonstrate that the calculations 

are sensitive to lateral displacements of the S atoms, calculations have been 

performed for two alternative sites, the on top and the bridge. All three sites 

are schematically illustrated in Fig. 5.7. The calculated curves are shown in 

Fig. 5.8, where all three are for a take-off angle of 10°.

The experimental curve has been shown with each calculated curve for direct 

comparison, and the R l factor shown to quantitatively indicate the degree 

of agreement between theory and experiment. It is clear by a simple visual 

comparison that the hollow site does indeed give the best agreement of the three 

with the experimental data. This is supported by the significantly lower R l 

for this site of 0.043 compared with 0.056 (bridge) and 0.058 (top). The top 

site calculation shows poor agreement with the experimental curve in the 30-60° 

range, and the bridge site displays many smaller discrepancies over the whole 

angular range. The general shapes of all three calculated curves can be seen to 

be quite similar. This indicates a large contribution to the signal by scattering 

within the overlayer, a feature which has been described earlier. The scattering
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•  •
a bo © o

2.49A

Figure 5.7: The three different bonding sites for which calculations have been performed. 

Large circles represent the top layer of Ni(OOl). Position (a) is the hollow site, (b) the bridge 

site and (c) the on top site.

from the substrate however is still an important factor which clearly affects the 

results of the calculations, even at such high adsorption heights.

5.3.4 Substrate Relaxation

All of the calculations shown so far have been performed with no relaxations in 

the underlying nickel layers. Previous studies on the system have reported an 

increase in the outer Ni-Ni layer spacing [66, 18]. To investigate this, a further 

set of calculations have been performed with the outer Ni-Ni layer spacing (d12) 

increased from 1.76A to 1.86A, an expansion of 5.7%, with the S atoms occupying 

the preferred hollow sites. The earlier calculations at the higher polar angles of 

6 =  12° and 6 =  16° were less sensitive to variations in the overlayer height 

that those at 9 — 6° and 6 =  10°, they are expected to be even less sensitive to 

variations in du. Therefore to save computer time, calculations with the relaxed
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Bridge, Rl=0.056

0 10 20 30 40 50 60 70 80 90

[100] Azimuthal angle (degrees) [010J
Figure 5.8: Results of a calculation at a fixed adsorption height of 1.35A, for three different 

adsorption sites. The solid lines are calculated curves, the dotted lines the same set of 

experimental data. The values of Rl are shown for each site as an indication of the agreement.
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substrate have been performed for 0 =  6° and 9 =  10° only. The same procedure 

as before has been followed, that is to repeat the calculation varying the height 

of the S overlayer. The summed R l for these calculations is presented in Fig. 5.9, 

along with the R l for the unrelaxed substrate using only the 9 = 6° and 9 =  10° 

calculations. A first remark is regarding the Rl calculated for the unrelaxed 

substrate. When all four take-off angles are considered, from Fig. 5.6 it can be 

seen that the same minimum Rl occurs at both 2 = 1 .30A and 2 = 1 .35A. When 

R l is calculated using just the lowest two take-off angles, the 2 = 1 .30A height is 

clearly favoured over 2=1.35A. This indicates that the calculations at 9 — 12° 

and 9 =  16° have an effect on the R l analysis despite being less sensitive the 

overlayer height.

From Fig. 5.9 it can be seen that the outward relaxation in di2 the minimum 

R l is lowered from 0.0428 to 0.0413. This is only a small difference, but it is 

comparable to changes observed by moving the overlayer height. The minimum 

in R l remains at 1.30A when the substrate relaxation is included, but the general 

shape of the curve appears to have shifted to a slightly lower adsorption height, 

as the R l obtained at 2 = 1 .25A is only a little higher than that at 1.30A and 

there is a sharper increase between 2 = 1 .30A and 2 = 1 .35A.

In summary, a full set of calculations for allowing the S overlayer to vary and 

keeping the Ni substrate unrelaxed gives an optimum height of 2=1.30A-1.35A. 

Further calculations for 9 =  10° supported the hollow bonding site above the on 

top and bridge geometries, both of which had much larger values of R l. The 

fact that R l can be decreased by moving the top Ni-Ni spacing outwards by 

0.1 A provides evidence that there is some relaxation, but it is difficult to be fully 

quantitative as calculations were only performed for this one value. The most
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F ig u r e  5.9: Summed R l factors using calculations at 0 =  6° and 0 =  10°, for various 

adsorption heights. The solid line is with d \ 2  having the bulk spacing of 1.76A and the broken 

line is with d\ 2  relaxed to 1.86A. The arrow at 1.30A indicates the minimum of both curves.
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favourable adsorption height when the relaxation is included remains the same 

as for the unrelaxed substrate at z=1.30A, although the general shape of the R l 

curve appears to shift to favour slightly a lower adsorption height. Again, it is 

difficult to be fully quantitative as only the two lowest take-off angles were used to 

perform this analysis, and from calculations on the unrelaxed substrate, it seems 

th a t including the higher angles may affect these results. Overall, the results are 

in very good agreement with other studies of the system, and provides evidence 

of the applicability of this new scheme for XPD calculations.

5.3.5 Com parison with Single Scattering Theory

In this section the multiple scattering (MS) calculations which have been 

performed in this chapter are compared with the single scattering (SS) analysis 

of Saiki et al. [18]. Accurate spherical wave treatments of XPD require large 

amounts of CPU time, and so some SS approaches have either used plane wave 

scattering or assumed s-emission. In the second approximation, instead of the 

initial photoelectron (angular momentum quantum number Z*) being emitted into 

final interfering Z* +  1 and Zt- — 1 channels, it is assumed that Z* =  0 (s-state) and 

final angular momentum If = 1 (p-state). The SS approach employed by Saiki is 

therefore a relatively sophisticated calculation as it includes full spherical wave 

scattering and the correct p —► interfering s + d final states involved with 2p 

photoemission.

The MS calculations in this chapter for the lowest two take-off angles gave the 

lowest value of R l at 1.30A(± 0.05A) for S bonded in fourfold hollow sites. There 

was some evidence for a small outward relaxation (0.1 A) in gZi2, although only 

this one relaxation was tried. The SS analysis of the same data resulted in an
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MS R 1=0.042

SS Rl=0.039

10 20 30 40 50 60 70 80 900

[100] Azimuthal angle (degrees) [010]

Figure 5.10: The best fit single scattering (SS) calculation of Saiki, and the best fit multiple 

scattering (MS) calculation using the present method at take-off angle 9 =  10°. Solid lines are 

the calculated curves, the dotted lines the same set of experimental data.
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MS R 1=0.041

SS Rl=0.068

0 10 20 30 40 50 60 70 80 90

[100] Azimuthal angle (degrees) [010]

Figure 5.11: The best fit single scattering (SS) calculation of Saiki, and the best fit multiple 

scattering (MS) calculation using the present method at take-off angle 0 =  6°. Solid lines are 

the calculated curves, the dotted lines the same set of experimental data. The MS calculation 

can be seen to be a far superior fit to the data than the SS calculation, resulting a significantly 

lower value of R l.
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optimum structure which has the S overlayer bonded in the same geometry at 

1.39A(±0.05A) above the Ni substrate. Again there was evidence for relaxation 

in du. This SS analysis used only the highest two take-off angles to arrive at the 

optimum dn  spacing, as no minimum was found in the 0 =  6° and 9 =  10° R l 

curves. Intuitively one would expect the lowest take-off angles to provide more 

sensitivity to this parameter, and a possible reason given for the null R l analysis 

was tha t multiple scattering was important. It is possible to assess this by direct 

comparison between the present MS calculations at the low take-off angles and 

the SS curves published in ref. [18].

The same normalisation procedure and R-factor analysis as Saiki et dl. has been 

used to allow this comparison between calculations. Fig. 5.10 shows comparison 

with the experimental data for the best fit SS and MS calculations. Both can 

be seen to reproduce the experimental data very well, in fact the SS calculation 

displays a slightly value of R l, 0.039 compared with 0.042 for the MS calculation. 

The MS calculation displays far more structure than both the SS calculation and 

the data, and suggests broader angular averaging could reduce the MS value of 

R l. It is not really possible from these curves to conclude that SS is not adequate 

to model the data.

The very lowest take-off angle shows conclusively the failure of SS theory. 

Fig. 5.11 shows the SS and MS for 0 =  6°. It is quite clear that the MS approach 

is a far superior calculation: almost all of the fine structure is reproduced with the 

relative intensities in good agreement with the data. The only major discrepancy 

is the failure to predict the doublet centred around 25°, and its symmetry related 

counterpart around 65°, a single broad peak being predicted instead. The SS 

calculation is poor at predicting both peak positions and peak intensities, which
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is reflected in its R l factor of 0.068 compared to the MS value of 0.041.

In summary then, is has been shown that, at least at the lowest take­

off angle (Fig. 5.11), the experimental data cannot be reproduced with a SS 

theory, even with the refinements described above. This suggests the presence of 

multiple scattering events caused by the photoelectron travelling almost parallel 

to the surface. The MS calculations using the present method reproduce the 

experimental data far better than the SS calculations, and therefore represents 

a more reliable means of analysing such data. Even at higher take-off angles 

(Fig. 5.10), although good agreement between SS and experiment may be 

obtained, it is no guarantee that MS effects are not present. As all orders of 

scattering are not included in SS calculations, it may be that the best agreement 

with the data is found using incorrect structural parameters. The validity of 

SS calculations can only be completely verified by obtaining the same structural 

parameters from more accurate MS calculations.
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A Study of Ni(001)c(2 x 2)0

6.1 Introduction

The interaction of oxygen with clean nickel surfaces has been studied in depth 

over recent years. Such studies include adsorption geometries [13,17,19,78-83] , 

the kinetics of the interaction [73, 74], and of the electronic structure [75, 76]. 

A comprehensive review of the interaction of oxygen with nickel surfaces can be 

found in ref. [77]. This chapter is concerned with the c(2 x 2)0  adsorption system 

on the (001) surface of nickel. This system in itself has been the subject of many 

studies in the literature, largely due to the uncertainty as to its structure, as 

many, often conflicting models have been proposed for location of the O atoms.

As will be discussed in the next section, it is difficult to form an ideal c(2 x 2)0  

overlayer structure on Ni due to the relative ease of oxygen to diffuse into the 

bulk, and the early onset of oxide formation. This poses a problem, as a particular 

technique may be sensitive to sub-surface O and lead to results different to those 

from an ideal overlayer, possibly resulting in incorrect structural conclusions being 

drawn from the data. XPD studies of the c(2 x 2) surface utilising O emission 

are clearly affected by the presence of buried oxygen contributing to the observed

101
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signal. The approach taken to reduce the signal from sub-surface emitters is to 

take measurements at grazing angles of emission. This increases the probability of 

inelastic scattering for sub-surface emitters due to the increased distance required 

for a photoelectron to travel in the solid before it escapes. The observed signal 

then largely originates from the overlayer. It was shown in chapter 5 however 

that single scattering analysis of XPD data can break down at low emission 

angles, requiring a multiple scattering approach to reproduce the experimental 

data. Grazing emission XPD data from the c(2 x 2) surface previously analysed 

by a single scattering approach will be analysed by the present multiple scattering 

theory.

The chapter is structured as follows. The next section will describe some of the 

problems which can be encountered when forming the Ni(001)c(2 x 2 )0  surface. 

Some previous analyses of the system will then be described, followed by details 

of the XPD experiment from which the data is taken for the present calculations. 

A set of calculations is presented for the hollow site and the optimum overlayer 

height determined by an R l anaysis. Similar calculations are then presented for 

a site with the O atoms displaced laterally from the hollow and compared with 

those for the hollow site. Finally, the effect of relaxing the top Ni-Ni layer spacing 

outwards will be investigated and the results discussed.

6.2 The Ni(001)c(2 x 2 )0  Surface

6.2.1 Problem s

Upon exposure of a clean Ni(OOl) surface to oxygen, sub-monolayer adsorption 

with no disruption of the crystal lattice initially occurs. This leads to the 

formation of the p (2 x 2) and the c(2 x 2) structures, which have ideal coverages
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of 0.25 monolayers (ML) and 0.5 ML respectively. Oxygen can penetrate into low 

index Ni surfaces quite easily. The onset of penetration occurs at coverages less 

than 0.5 ML (the ideal c(2 x 2) coverage) at 300K, and thin islands of NiO are 

formed immediately. Atomic oxygen can also diffuse into the bulk at temperatures 

of between 450-600K. This means the practice of annealing the surface to intensify 

the LEED spots corresponding to the overlayer can actually worsen the surface, 

as it causes any excess surface oxygen to be dissolved into the bulk. Hence, 

it is possible to have a mixture of chemisorbed oxygen, dissolved oxygen and 

isolated nuclei of NiO present at coverages less than 0.5 ML. Structural studies 

of the c(2 x 2) surface are therefore very problematic: a particular technique may 

be sensitive to sub-surface oxygen and affect structural conclusions drawn from 

the measurements. As NiO nuclei and buried oxygen are difficult to completely 

avoid, steps should be taken to minimise their contribution in order to deduce 

information about the overlayer structure.

6.2.2 Proposed M odels

There has been some controversy in the literature as to the structure of the 

c(2 x 2)0 surface, and a number of different structures proposed. A reason for 

this may be due to the presence of unwanted sub-surface oxygen in some studies, 

causing problems which have been outlined above. A brief review of some of the 

proposed models will be given here.

Most early studies of the system were done by comparison of dynamical LEED 

I-V calculations with experiment. The O atoms were assumed to occupy a four­

fold hollow site and the overlayer height z  varied to find the best fit with the 

data. Andersson et al. [78] in 1973 found a best fit of z=1.5A by this method,
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although only the energy range 20-60eV was considered. A subsequent LEED 

analysis by Demuth et al. [79] used a larger energy range and found the optimum 

^ to be 0.9A, a figure also supported by the LEED calculations of Van Hove 

and Tong [80]. In 1980 however, an XPD study by Petersson et dl. [13] found 

the most favoured bonding site to be in the same plane as the top layer of 

Ni atoms (2 = 0 .0A). Although this in-plane geometry was in conflct with the 

previous LEED studies, a later theoretical paper by Upton and Goddard [81] 

gave a value of 2 = 0 .2 6 A, only slightly above the in-plane geometry. A further 

LEED study by Tong and Lau in 1982 [82] considered a wide range of values of 2 , 

and found that the data could be fitted equally well for 2 = 0 .0 A and for £=0.90A. 

In another LEED study in 1983, Demuth et ol. [83] proposed that the O layer 

had z=0.80A, and that the O atoms were displaced laterally from the fourfold 

hollow site by 0.30A in the [110] direction. Bonding away from the fourfold hollow 

had not been considered previously, and this new proposed position was termed 

the ’’pseudobridge” bonding site. In an XPD study by Saiki et dl. [17] in 1987, 

the fourfold hollow site at z=0.80-0.95A gave better agreement with the data 

than the corresponding pseudobridge site, and in a tensor LEED analsis by Oed 

et al. [84] in 1989, the fourfold hollow was again favoured, at a slightly lower 

bonding height of z=0.77A. In this latter study, buckling and relaxation in the 

outer two Ni layers were also considered, and sites displaced from the fourfold 

hollow by more than 0.2A were ruled out. A later XPD study by Saiki et al. [19] 

supported the lower bonding height proposed by Oed et al., finding optimum 

agreement at z=0.75A, again favouring the fourfold hollow site rather than the 

pseudobridge site.
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6.2.3 X P D  Studies

Several studies of the system have been performed using XPD, primarily by the 

Fadley group. In the paper of Saiki et al [19], XPD was used to study the 

interaction of oxygen with the Ni(001) surface from the c(2 x 2) phase through 

to the saturated NiO phase at higher O exposures. The study of the c(2 x 2) 

surface in this work was performed by taking azimuthal scans at four take-off 

angles ranging from 8° to 17°. Some of this data  has also been published in the 

review by Fadley [31], and similar data has appeared in an earlier paper by Saiki 

et al. [17].

The experiment of refs. [19, 31] will be considered in more detail here. Al K a  

(hi/ =  1486.6ey) radiation was used to excite the Is core level of O, resulting 

in photoelectrons having energy 954eV outside the solid. Measurements were 

taken for the c(2 x 2) surface obtained from an O exposure of 30 Langmuir, 

which corresponded to a coverage of 0.38 ML. Even at this low exposure, it 

was estimated that 10-15% of the 0  atoms formed small oxide islands. The 

photoelectrons were collected with a detector having angular resolution of ±3° 

and four azimuthal scans were taken at polar angles of 8°, 11°, 14° and 17°. 

Directions of X-ray incidence and electron exit were in the same plane, separated 

by a polar angle of 72°. In order to reduce the emission from oxide islands and 

from sub-surface O interfering with the signal from the overlayer, only the lowest 

two data sets, 9 = 8 ° and 0 =  11° were used to perform the structural analysis. 

Inelestic scattering is enhanced for sub-surface emission at low take-off angles as 

described earlier. The single-scattering analysis of the data resulted in a best fit 

with the O atoms in fourfold hollow sites at an adsorption height of z=0.75A.
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The aim of the calculations in this chapter is to determine the optimum bonding 

height of the 0  atoms using the multiple scattering program, and to investigate 

the somewhat controversial pseudobridge bonding site proposed by Demuth et 

al. [83]. The effect of introducing a relaxation in the to Ni-Ni layer spacing is 

also investigated towards the end of the chapter. The data used is taken from 

the experiment described in refs. [19, 31] at two take-off angles of 6 =  8° and 

9 =  11°. Although data at higher take-off angles is available [19], it is thought to 

be less reliable due to enhanced sub-surface O contributions, and was not used 

in the accompanying SS analysis.

6.3.1 H ollow-Site Calculations

Most recent studies of the system, as described in the previous section, place 

the O atoms in four-fold hollow sites at a vertical height of between 0.75A and 

1.00A above the outer Ni layer. The first set of calculations presented are for the 

O atoms occupying such hollow sites, with the optimum adsorption height to be 

determined. No relaxation in the outer Ni-Ni layer spacing has been allowed.

Calculations have been performed from z=0.60A through to z=0.90A in steps 

of 0.05A for both take-off angles, and the results are presented in Figs. 6.1-6.2. 

Calculations have also been performed at the in-plane bonding site, a structure 

proposed by Petersson et al [13], and the structure ruled out. These calculations 

are not shown here.

An initial observation from these results is that despite the poorer angular 

resolution, these results are far more sensitive to the adsorption height z than 

the calculations which were presented in chapter 5. This is due to the much
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Figure 6.1: Theoretical XPD curves (solid lines) for different adsorption heights of the 

c(2 x 2)0 overlayer on a bulk terminated Ni(001) substrate at take-off angle 0 = 8°. 

Experimental data (broken line) is from ref. [31]
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Figure 6.2: Same as Fig. 6.1 but for take-off angle 0 =  11°.
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lower values of z  considered here, meaning the angles involved with scattering 

from the substrate are lower and the signal consequently stronger. The point 

has been discussed in chapter 5. For the 8° take-off angle, the calculation at 

z=0.90A can be seen to be in poor agreement with the data. Although the 

peaks at about 25° and 65° are present, the doublet centred around 45° is not, 

with the calculation predicting a triplet structure with a maximum at 45°. The 

three calculated curves between 2= 0.85A and 2=0.75A are in better agreement 

with the data. For z=0.85A, small peaks at about 40° and 50° have developed, 

although there is still a small peak at 45°. This peak has practically vanished for 

the 2= 0.80A calculation, which is in very good agreement with the data. The 

2= 0.75A calculation is also in good agreement, although the trough predicted at 

45° has become deeper than that in the data, and the peaks at 25° and 65° become 

slightly smaller. These trends continue as 2 is reduced, causing the calculations 

at 2= 0.70A and 2= 0.60A to be rather less convincing fits. At 2= 0.60A, the curve 

is dominated by the two peaks at 40° and 50°, and the peaks which were at 25° 

and 65° hardly recognisible.

A notable feature of the calculations at 11° is the amount of structure on the 

calculated curves compared with the data. The experimental curve is largely 

featureless, with two broad peaks which appear to be doublets. On the other 

hand, the calculated curves, even with averaging to account for the resolution of 

the experiment display much more structure. None of the calculated curves in 

Fig. 6.2 reproduce the data as well as for the 8° calculations, however the trends 

seen in those calculations are present again here. At 2=0.90A, there is quite a 

prominent doublet at 45° which is not seen in the data. Despite having large 

peaks at 25° and 65°, there are deep troughs at about 35° and 55° and some
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structure in the 10-20° and 70-80° ranges which are also not seen in the data, 

causing the fit to be poor. At 2= 0.80A, the doublet at 45° has become smaller, 

and has disappeared at 2=0.75A, making this calculation the best visual fit to 

the data. Agreement is quite good between about 25-65°, although the depth 

of the valley is predicted to be deeper than observed experimentally. There is 

still structure predicted in the 10-20° and 70-80° ranges however. The curve at 

2=0.70A is quite similar to the 2=0.75A curve, but the valley centred around 

45° has become deeper and some shoulder features can be seen at about 37° and 

53°. These features can also be seen in the 2=0.75 A calculation, but are much 

weaker. There are hints of such shoulder features in the data, especially the one at 

53°, suggesting there is structure which has not been resolved in the experiment. 

The calculation at 2= 0.60A is a poor fit to the data, with the aforementioned 

shoulders having developed into peaks, and the valley around 45° has become 

even steeper.

An R l analysis has been performed on these calculations, R l having been 

defined in chapter 5. The average R l from the 0 =  8° and 0 =  11° calculations is 

shown in Fig. 6.3, and can be seen to display a clear minimum at an adsorption 

height of 2= 0.75A ±  0.05A. Although this height is lower than the height 

determined by the majority of studies of the system (0.80-0.90A), the figure is in 

good agreement with the XPD study of Saiki et al. [19] which gave 2= 0.75A, and 

with the LEED analysis of Oed et al. [84] which gave 2=0.77A.

There is some concern about the calculations performed at 0 =  11°, since 

they do not produce as good agreement with the data as the calculations at 

0 =  8°. There are several possible reasons for this. It should be remembered 

that the calculation is for an ideal overlayer system, consisting of a perfectly
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Figure 6.3: The Rl analysis of the calculations in Figs. 6.1 and 6.2

ordered c(2 x 2) O layer on a pure Ni substrate. As has been discussed earlier, 

creating a good overlayer is difficult for this particular system, especially with 

the tendancy for O to diffuse into the bulk or to form pockets of NiO. Any sub­

surface O emission picked up in the experimental signal is not accounted for in the 

calculations, and the contribution will be greater for higher take-off angles. Also, 

the angular resolution of the experiment is quite low, quoted as ±3°, meaning 

more averaging of points is needed to produce the theoretical curves.

In summary then, this set of calculations, in which the O atoms were placed 

in four-fold hollow bonding sites and the Ni substrate was not allowed to relax, 

give a best fit to the data at 2=0.75A (±0.05A). The best fit at 6  =  11° is not as 

good as the best fit at 6  =  8°, which may be due to the greater effects of buried 

O in the data a t 6 =  11°, or some other non-ideal surface effects.
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Figure 6.4: Schematic diagram of the pseudobridge geometry proposed by Demuth et al. [83]. 

The 0  atom (filled circle) is displaced from the hollow site by 0.30A in the [110] direction.

6.3.2 The Pseudobridge Site

Most studies of the Ni(001)c(2 x 2 )0  system have placed the O atoms in four-fold 

hollow sites. A LEED study in 1983 by Demuth et al. [83] however concluded the 

hollow site is a local ’’saddle point” and that an asymmetric pseudobridge site 

is preferred. This site is illustrated in Fig. 6.4: the O atom, represented by the 

filled circle, is displaced by 0.30A in the [110] direction.

A set of XPD calculations have been performed for the pseudobridge site in 

the same way as for the hollow site. The Ni substrate has not been allowed to 

relax, and the O overlayer has been varied between 0.70A and 0.95A in steps of 

0.05A. The calculations, again for the two take-off angles 0 =  8° and 9 =  11°, are 

shown in Figs. 6.5 and 6.6.

The curves at 0 =  8° in Fig. 6.5 can seen to be very different to the 

corresponding calculations for the hollow site. Whereas the best agreement for 

the hollow site was at 0.75A, the best pseudobridge site is somewhat higher than
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Figure 6.5: Theoretical XPD curves (solid lines) for different adsorption heights of the 

c(2 x 2)0 overlayer, with the 0  atoms occupying the pseudobridge sites as shown in Fig. 6.4. 

The take-off angle is 8°.
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Figure 6.6: Same as Fig. 6.5, but at a take-off angle of 11°.
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this at about 0.80-0.85A. The z=0.95A curve displays a peak at 45°, but this 

has largely disappeared at 2=0.85A, giving excellent agreement with the data 

in the 20-70° range. The agreement in the 0-20° and 70-90° ranges is decidedly 

worse however. The shoulders in the data at about 18° and 72° are not predicted, 

and broad peaks at about 10° and 80° seen which are much larger than in the 

experiment. The curve at 2= 0.80A is similar to the z=0.85A curve, except the 

trough at 45° is slightly more pronounced and the peaks at about 25° and 65° 

smaller. Again, agreement in the 0-20° and 70-90° ranges is poor. These trends 

are continued as z is lowered to 0.75A and 0.70A, with the development of the 

trough at 45° and the diminishing peaks at 25° and 65° making agreement with 

the data visibly poorer.

Similar behaviour can be seen for the calculations at 6 =  11° in Fig. 6.6, in 

tha t better agreement with the data occurs at higher z  than for the hollow site. 

In the hollow calculations of Fig. 6.2, a broad doublet centred upon 45° meant 

agreement with the data at z=0.80A and above was not good. In the pseusobridge 

calculations, the same doublet can be seen to have practically disappeared by 

2=0.85A, giving good agreement in the 25=65° range for 2=0.85A and z=0.80A. 

At heights below z=0.80A, a pronounced trough develops which is not seen in the 

data. Again, general agreement with the data of all the pseudobridge calculations 

at this angle is worse than for 6  =  8°, as for the hollow calculations. All curves 

predict structure in the 0-20° which is not present in the data. Such behaviour 

was seen is Fig. 6.6 for the hollow site, but the disagreement is far worse for the 

pseudobridge site.

The R1 analysis of the calculations in Figs. 6.5 and 6.6 is shown in Fig. 6.7. 

Again the average of the R l from each polar angle is plotted against adsorption
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Figure 6.7: The R1 analysis of the calculations in Figs. 6.5 and 6.6. The best pseudobridge 

site is at 0.85A, but has a far higher mimimum Rl compared with the hollow site.

height. From this it is quite clear that although the pseudobridge geometry 

displays a minimum at 0.85A, the corresponding R l is much higher than that of 

the optimum hollow site. These calculations indicate that simple fourfold hollow 

bonding at an adsorption height of 0.75A(±0.05A) provides a far better fit to the 

data  than any height in the pseudobridge geometry of Fig. 6.4.

6.3.3 Substrate Relaxation

In the calculations so far, the top Ni-Ni layer spacing (d^) has remained at 

the bulk value of 1.76A. A further set of calculations has been performed in 

which du  relaxed outwards from 1.76A to 1.86A, and the overlayer height varied 

between z=0.70A and 0.95A. The average R l factors from the 8° and 11° have
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Figure 6.8: Rl curves for di2=1.76A (bulk value) and di2= 1.86A (5.7% expansion). Both are 

for the O atoms occupying hollow sites. The two curves have approximately the same m in im u m  

R l, occuring at different z values

been calculated giving the curve shown in Fig. 6 .8 . The R l curve from the 

calculations with di2=1.76A is also shown in this figure. It can be seen from 

Fig. 6.8 that both curves display a clear minimum at approximately the same R l 

value: Rl=0.0479 for the di2=1.76A calculations and Rl=0.0484 for di2= 1 .8 6 A. 

The minimum is shifted to a higher 2: value of 0.80A when d12=1.86A however. 

Given the low angular resolution of the data, the problems associated with a non­

ideal experimental surface and the limited data set, it is not possible to conclude 

that the structure with the slightly lower R l is favoured. These calculations 

cannot distingush between the two structures.

W hat is clear from Fig. 6 .8  however is that the calculations are very sensitive
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to d u , more so than for similar calculations on the S/Ni system (Fig. 5.9), where 

the S atoms adsorbed at a much higher z. Hence with increased experimental 

resolution, as seen in the previous chapter and a larger set of reliable experimental 

data, the two best-fit structures above should be able to be separated, and z  and 

d\2 accurately determined for this system.

6.4 D iscussion

An extensive set of calculations have been performed for the Ni(001)c(2 x 2)0 

system. The fourfold hollow site has proved to be more favourable than the 

pseudobridge geometry of Demuth et oi [83], with an optimum adsorption height 

of 0.75A. This is in good agreement with results of the single scattering XPD 

analysis of Saiki et ol. [19] and the LEED analysis of Oed et al. [84]. A further 

set of calculations for the hollow site have been performed with the top Ni-Ni 

layer spacing (du) relaxed outwards to 1.86A. A minimum in the R l curve is 

seen at an overlayer height of 0.80A, this minimum being only slightly higher 

than the minimum in the unrelaxed R l curve. Previous studies have found better 

agreement with such an outward relaxation in d\2 [84].

The quality of reproduction of the experimental curves was in general not as 

good as for the S/Ni system dealt with in the previous chapter. Calculations for 

the lowest take-off angle of 8° are in better agreement with the data than those at 

11°. There are several possible reasons for this. The calculations are for a surface 

possessing perfect translational symmetry: effects such as surface roughness and 

finite domain size are not accounted for. There axe also the problems surrounding 

unwanted sub-surface O contributing more to the signal at higher take-off angles. 

Such effects are also not accounted for.
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A notable feature of the calculations in this chapter is that despite the increased 

amount of broadening required, they are far more sensitive to variations in 

the structural parameters than the calculations in the previous chapter. The 

XPD study of Ni(001)c(2 x 2)S [18] in chapter 5 has shown that high resolution 

experiments reveal enhanced fine structure in the data, especially at the lower 

take-off angles. The use of such equipment to collect data for the c(2 x 2 )0  

surface would clearly allow a more accurate study of the system to be performed, 

especially from a theoretical point of view, since it would involve less broadening 

of the calculations in order to compare with the data. This would allow far more 

accurate determination of adsorption height, substrate relaxation and possible 

off-centre displacement of the O atoms than has been possible with the present 

data.



Chapter 7

Summary and Conclusions

In this thesis, a new theoretical approach to X-ray photoelectron diffraction 

(XPD) is developed. Although kinematic scattering theories of XPD have been 

developed, some being quite sophisticated, they do not describe the full multiple 

scattering of the photoelectron and have been shown to be inadequate in certain 

cases. To be completely general, a fully dynamical theory is required.

Most of such contemporary theories use a partial wave expansion of the 

photoelectron wave function, subsequent scattering by the surrounding ion cores 

being described by an associated set of phase shifts. This approach is similar 

to tha t used in LEED calculations, and at energies around 200eV and below, 

only a few partial waves are needed. This number rises rapidly with electron 

energy, as the scattering becomes more asymmetric. Most XPD studies utilise 

electrons in the 500-1500eV range, and so multiple scattering theories based on 

the partial wave expansion require the retention of many waves. Typically, CPU 

time for cluster calculations as described in chapter 2 scales as the fourth power 

of I, the number of angular momentum states retained. At high photoelectron 

energies, the partial wave approach can require vast amount of CPU time, even 

supercomputer facilities in order to perform fully converged calculations.
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Whereas other methods apply low energy scattering techniques to the XPD 

energy range, the present method approaches the multiple scattering problem 

from the other extreme. For reflection high energy electron diffraction (RHEED), 

which utilises energies of lOkeV and above, a plane wave expansion of the wave 

function provides the most efficient solution, with only a few waves being required 

for the most simple surfaces. At XPD energies, more waves need to be included 

in the wave function expansion, but the approach remains more efficient than the 

partial wave approach above approximately lOOOeV.

In chapter 2, the theoretical framework for the calculation is set up. The 

intensity is calculated from a dipole matrix element between an initial core state 

and a fully dynamical final state. The final state is taken to be a time-reversed 

RHEED wave function, which requires the surface have translational symmetry 

so that it may be expanded in terms of the reciprocal mesh vectors. The initial 

state is expressed analytically as a linear combination of Slater orbitals, with the 

relevant parameters taken from the literature. No assumptions are made about 

how the final state is calculated, just that it takes a certain mathematical form. 

From here, the integrals over the x  and y co-ordinates (parallel to the surface) 

are performed analytically, reducing the calculation to an integral over the z 

(perpendicular) co-ordinate. Different types of emitter, magnetic sub-shells and 

the polarisation of the X-ray beam are all fully accounted for.

The remaining integration over the 2  co-ordinate is addressed in chapter 3. 

This is done numerically by the modification of a RHEED computer program. 

The program uses scattering matrices to describe the scattering properties of 

two-dimensional slices of the structure, and they are combined via the layer 

doubling algorithm to calculate the RHEED intensities. The problem encountered
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when converting the program to perfom the XPD calculation is extracting 

the z-dependent components of the wave function from the scattering matrix 

calculations. These components are never explicitly calculated in the program, 

and the problem is further complicated by the limited numerical integration range 

allowed in the program to retain numerical accuracy when strong evanescent 

waves are present. The strong localisation of the initial core state allows a 

convenient solution by separating the relatively small z  range which contributes 

to the matrix element integration. A method is devised whereby the integration 

may be performed over this smaller range.

There are some limitations to this approach to the XPD calculation. The 

method is applicable to periodic surfaces only, and from a computational point 

of view, it is difficult to acheive convergence at energies below about 900eV. The 

XPD program is approximately 25% slower than the original RHEED program 

because of the extra calculations invlolved. It also requires more memory in 

order to store the matrices needed to perform the matrix element integration. 

The angular resolution of the experiment is another limiting factor, as extra 

calculations are always required to simulate broadening in the polar (0) direction 

for azimuthal scans. The limitations of the calculation are demonstrated in 

chapter 4. For the Ni(001)c(2 x 2)0 surface with photoelectron energy 954eV, 

convergence is shown to occur with about 150 beams. Calculations for the S i( l ll) -  

y/Z x y/Z Sb surface with photoelectron energy 738eV and a slightly larger unit 

cell, are shown to require about 230 beams to converge. Computer time scales 

approximately as n3, where n is the number of beams, and this second system 

is beyond the capabilities of the present method with the computing resources 

available, especially when coupled with the rather poor angular resoultion of the
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experimental data. As noted in chapter 4, methods based on the partial wave 

expansion are applied to the high energy range using supercomputing facilities. 

Similar facilities would certainly allow this method to be applied to systems which 

prove difficult to converge, either because of the low energies or the presence of 

strong scattering atoms.

The method has been compared with experimental data in chapters 5 and 

6. In chapter 5, calculations are performed for the Ni(001)c(2 x 2)S system, 

for which an excellent set of high resolution XPD data is available from the 

literature. The system has been studied at length previously and the structure is 

quite well understood. Calculations have been performed for all four polar angles 

available and are in good agreement with the data. Quantitative comparison 

with the data is performed via an R-factor analysis. Despite the weak sensitivity 

of the calculations to surface parameters because of the high adsorbate-substrate 

registry, the R-factors considered give best agreement with the S atoms in fourfold 

hollow sites at a vertical height of 1.30-1.35A above the underlying Ni, in good 

agreement with other studies. A further set of calculations indicate that R- 

factor can be improved by relaxing the top Ni-Ni spacing outwards slightly. The 

calculations are compared with single scattering calculations for the same system 

and are clearly superior at the lowest take-off angle.

The XPD program is applied to Ni(001)c(2 x 2)0  in chapter 6. The system 

is not as well defined as for the previous system, with many often conflicting 

structures having been proposed in the literature. Although data is available for 

four take-off angles, calculations are performed the two lowest only since they are 

thought to be the most reliable. The calculations display far more sensitivity to 

surface parameters than for the previous S/Ni system due to the lower adsorption
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height. Calculations are again in good agreement with the data despite having to 

be broadened more to simulate the lower angular resolution of the data. Optimum 

agreement is with the 0  atoms occupying fourfold hollow sites at 0.75A above 

the unrelaxed Ni substrate. Allowing the top Ni layer to relax outwards by 0.1 A, 

fourfold hollow bonding with the O atoms 0.80A above the top Ni layer gives an 

equally good fit to the data. The pseudobridge site proposed in the literature, 

in which the O atoms are displaced by 0.3A from their hollow sites is considered 

and ruled out.

The limitations outlined above could be relaxed somewhat with more efficient 

RHEED calculations for large beam sets. Maksym [52] has recently described 

a fast Fourier transform method in which for large n, n being the number of 

beams, computer time scales as 16n2log(n). For calculations involving more than 

about 75 beams, this new program is more efficient than the n3 program. A new 

method is being developed [60] in which several thousand beams can be routinely 

and efficiently handled. An interesting prospect for future work would be to 

use a RHEED progam capable of handling enormous beam sets. The general 

method to perform the XPD calculation using a RHEED wave function has been 

established in chapter 2, where only the mathematical form of the wave function 

was used. Some further work would be required to modify the program should 

the approach to calculating the RHEED intensities be different than that given 

in chapter 3, but this may be easier if the wave function in the surface layers is 

more readily accessible. This would also relieve the memory requirements of the 

current method used to extract the wave function. With the prospect of many 

thousands of beams being routinely handled, convergence at lower energies could 

be straightforwardly acheived, limited only by the accuracy of the Doyle-Tumer



Chapter 7 125

potential. The subject of the Doyle-Turner potential is discussed in chapter 4. 

Surface disorder is usually treated by defining a very large unit cell and simulating 

the disorder within that cell. The large real space translation vectors mean a very 

dense reciprocal mesh and consequently a very large beam set. This restricts the 

present XPD calculation to ordered surfaces, but this restriction would be eased 

by a similarly modified RHEED program capable of handling enormous beam 

sets. Hence, in principle, the limitations of the present program could be largely 

removed, resulting in a much wider range of applications.



APPENDIX A

Evaluation of Integral I

The derivation of photoemission formulae in chapter 2  requires the evaluation of 

an integral X  which takes the form

X — J  exp(ik.p) exp(—pr)dp, (A.l)

where k is the vector (kx, ky), p  is the vector (x, y) and dp is the element of area 

dxdy. This appendix shows how X  may be evaluated analytically.

First, the aim is to find an expression for exp(—/3r) in terms of a three 

dimensional vector r. Define the pair of Fourier transforms $ (r) and $(q) by

=  7 ^ 3  /  *(0) ex p (-iq  • r) dq (A.2)

4(q) =  /$ ( r )e x p ( iq  • r)d r. (A.3)

Substituting (A.2) into (A.3) gives

=  / { / * ( r/) exp(*^‘ r,) dr,} exp(-< q ’ r) * i -  (A -4)

By now setting $(r) =  exp(—/?r), (A.4) becomes

exp(-{3r) =  f  { J  exp(-/?r;) exp(zq • r ') dr'} e x p (-iq  • r) dq. (A.5)
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The parenthesised integral in (A.5) over r ' can be evaluated by standard methods, 

the result being

J  exp(-/?r') exp(iq • r') dr' =  ^ ^ q2y , (A.6)

and hence exp(—fir) may be written in integral form as

Eq. (A.7) is the expression required, exp(—/3r) written in terms of the three 

dimensional vector r. This can be used to simplify the required integral, Eq. (A.l). 

Direct substitution of this integral representation of exp(—/3r) in (A.l) gives

4/J /■ exp(tk • p) e x p (-iq  • r)
1~ (£ )5  J — WT¥r q p’ ( }

which can be more conveniently re-written as

4/? f  exp[i(k -  q,|) • p] exp{ -iq zz) , A
1 ~  W )2 J ------------------------- p ’ { ]

where qy is the two dimensional vector (qx, qy). The integral over p  in (A.9) can

be seen to be a two dimensional delta function

J exp[i(k -  q,|) • p]dp =  (27r)2<5(k -  qj), (A.10)

and using this result in (A.9) gives

t  _  A o f°° exp(~ig2z)
fiL  (0* + + g|)2 ( ^

In reaching (A. 11), the relation q2 =  q | + q% has been used, and then qy replaced 

by k following the result (A.10). This can be simplified by writing (A.11) as

I  =  - 4 0 - ° -  r  6Xp(~ ifeZ) da (A 12)
P 0(k2) J- 0 0  0* +  k* +  q} q*' l j
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which removes the square from the denominator of the integrand. The integral 

in (A. 12) is more straightforward than that in (A.11) since it has simple poles 

at q2 =  ±i{P2 +  A;2)1/2. Let the integral in (A.12) be denoted by J. J  can be 

evaluated in the complex plane, closing the contour in the lower half-plane for 

positive z, and in the upper half-plane for negative z. The two results are

(A.13)
(p2 +  k2) 2

* « p [ + * ( g + ^ ]  ( 14)
(P2 +  A;2) 2

These two results can be combined by recognising that the sign of the exponent 

is negative in both cases, and hence

(/?2 +  A:2)*

Integral X  can now be evaluated by using result (A. 12),

1  =  ~ 4^d(jc*)' Â'16^

The differentiation can be performed using Eq. (A. 15), giving

W )  =  ~ 2(;32 +  fc2)! f1 +  |Z|(^  +  ^  exp[_|z|(^  +  fc2)1" ’ (A17)

and hence the desired result

x  =  2 ^ exi ^ |2|6)(l +  \z\b), (A.18)

where the parameter b is defined by

b2 = /32 + ifc2. (A.19)
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