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A B S T R A C T

This research contributes to a better understanding of how reconfig-
urable Field Programmable Gate Array (FPGA) devices can safely be
used as part of satellite payload data processing systems that are ex-
posed to the harsh radiation environment in space. Despite a growing
number of publications about low-level mitigation techniques, only
few studies are concerned with high-level Fault Detection, Isolation
and Recovery (FDIR) methods, which are applied to FPGAs in a sim-
ilar way as they are applied to other systems on board spacecraft.

This PhD thesis contains several original contributions to knowl-
edge in this field. First, a novel Distributed Failure Detection method
is proposed, which applies FDIR techniques to multi-FPGA systems
by shifting failure detection mechanisms to a higher intercommunica-
tion network level. By doing so, the proposed approach scales better
than other approaches with larger and complex systems since data
processing hardware blocks, to which FDIR is applied, can easily be
distributed over the intercommunication network. Secondly, an in-
novative Availability Analysis method is proposed that allows a com-
parison of these FDIR techniques in terms of their reliability perfor-
mance. Furthermore, it can be used to predict the reliability of a spe-
cific hardware block in a particular radiation environment. Finally,
the proposed methods were implemented as part of a proof of con-
cept system: On the one hand, this system enabled a fair comparison
of different FDIR configurations in terms of power, area and perfor-
mance overhead. On the other hand, the proposed methods were all
successfully validated by conducting an accelerated proton irradia-
tion test campaign, in which parts of this system were exposed to
the proton beam while the proof of concept application was actively
running.
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1
C H A P T E R 1 : I N T R O D U C T I O N

1.1 why reconfigurable fpgas in space?

Nowadays, Field Programmable Gate Arrays (FPGAs) are commonly
used on board spacecraft. The importance of these devices for space
applications is illustrated by the figures given in Table 1, which show
that the vast majority of Integrated Circuits (ICs) on board the Sentinel-
2 spacecraft, a current mission of the European Space Agency (ESA),
are FPGAs. As evidenced by Table 1, while Application-Specific Inte-
grated Circuits (ASICs) and microcontrollers still play an important
role for platform applications, payload processing applications are
mainly implemented with FPGAs.

Today, three main types of space qualified FPGA technologies are
employed in commercial products. The most common technology is
antifuse, which is used by one-time programmable FPGAs. One ad-
vantage of these devices is their natural tolerance against radiation
effects because the hardware configuration is fixed. In principle, these
devices can still suffer from Single Event Upsets (SEUs) in user logic
and embedded Random Access Memory (RAM) cells. However, radi-
ation tolerant versions are available, which offer hardened user flip-
flops by design, e.g. the RTAX and RTSX devices by Microsemi.

The second technology is based on Static Random Access Mem-
ory (SRAM) memory, i.e. the configuration of the FPGA is stored in
volatile memory cells. An obvious benefit of these devices is the pos-
sibility to reconfigure the hardware in later design or even mission
stages. Furthermore, some of these devices like the newer Virtex-4
and Virtex-5 FPGAs by Xilinx offer high performance and a large

Table 1: FPGA usage example: Sentinel-2 mission [2]

IC Type Quantity Platform Quantity Payload

FPGA 118 37
Custom ASIC 72 6

Microcontrollers 23 0

Standard ASIC 10 0

1



1.1 why reconfigurable fpgas in space? 2

amount of logic and embedded memory resources as well as dedi-
cated Digital Signal Processing (DSP) blocks. In contrast to their an-
tifuse counterparts, SRAM-based FPGAs are in principle more sus-
ceptible to SEUs because the hardware configuration can be altered
by radiation effects (e.g. Virtex-4QV and earlier devices by Xilinx).
FPGAs with radiation hardened configuration memory are also avail-
able, however, e.g. Virtex-5QV devices by Xilinx or ATF280 devices
by Atmel.

Recently, flash memory based FPGAs are also being considered for
use in space projects, e.g. the ProASIC3 device by Microsemi. Simi-
lar to SRAM-based FPGAs they can be reconfigured and offer good
performance. The usage of such devices on long space missions is,
however, problematic due to their rather low immunity to the Total
Ionising Dose (TID) effect and Single Event Latchups (SELs) [4].

Internal studies at the Jet Propulsion Laboratory (JPL) estimate that
the raw, uncompressed data captured from spectroscopy instruments
on board recently proposed U.S. missions could reach 1 to 5 Terabytes
per day [5]. It is therefore recommended to drastically reduce the
data volume which must be stored on board and later transmitted
to Earth by transforming the raw measurements of payload instru-
ments into intermediate results performing on-board processing. In a
technology assessment National Aeronautics and Space Administra-
tion (NASA) scientists also found that Xilinx FPGAs are best suited
for such high performance tasks due to their flexibility and their em-
bedded DSP blocks compared to single board computers and DSP
processors. Apart from the increase in performance, SRAM-based
FPGAs offer the capability of being reconfigured - a feature not to
be underestimated for space projects. Pingree describes the typical
problem of one-time programmable FPGAs in [6]. For one of the in-
struments on the NASA Juno spacecraft to Jupiter the engineers had
to design and program the FPGA design two years before launch.
Since the FPGA was one-time programmable, it could not be changed
or improved without an high impact to the project cost and schedule.
Furthermore, as the spacecraft travels for five years to Jupiter, instru-
ment calibration activities may be required during that time, in which
the FPGA design cannot be changed too. With SRAM-based FPGAs,
however, hardware updates could easily be applied in later design
stages or even in-flight.
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1.2 scope and objectives

As illustrated in the previous section, the usage of reconfigurable
FPGAs in space is particularly interesting for applications that require
high performance computing capabilities, e.g. for data compression,
encryption, filtering and extraction. Therefore, the Fault Detection,
Isolation and Recovery (FDIR) schemes proposed in this PhD thesis
are mainly aimed at such high performance applications. Since the
algorithms for such tasks can be quite complex, it might be necessary
to split up the application into several hardware modules, which can
then be distributed over several FPGAs. This possible segmentation
must be taken into account too, i.e. the proposed FDIR schemes must
also be applicable to reconfigurable multi-FPGA systems.

Nearly all recent publications are concerned with SRAM-based Xil-
inx Virtex-4QV and Virtex-5QV FPGAs, as they are currently the only
fast SRAM-based FPGAs, which are available in space-qualified ver-
sions. In addition, there is some interest in also using commercial
and defence-grade SRAM-based FPGAs on board spacecraft. On the
one hand, these devices are much cheaper than their space-qualified
counterparts and are therefore of interest for low-cost space missions.
On the other hand, there is no indication at present that the latest
SRAM-based FPGA devices, like Xilinx Virtex-7 or Altera Stratix-10,
will ever be available in space-qualified, radiation-hardened versions.
If extreme performance is required for a specific mission, however, the
usage of commercial devices might be justifiable. Except for the Xilinx
Virtex-5QV device and the low-performance Atmel ATF280 device,
all current (and most likely many future) SRAM-based FPGAs suffer
from radiation-induced failures due to Single Event Effects (SEEs) in
their configuration memory and user memory elements. Therefore,
the proposed FDIR schemes must be as technology-independent as
possible to ensure that they remain valid for this broad range of avail-
able SRAM-based FPGA devices.

It quickly became clear that no recent work exists, which thor-
oughly surveys this rich research field. Therefore, a literature review
was conducted, which on its own became an original contribution
to knowledge in this field and which was later published in one of
the leading computing survey journals [7]. The state of the art can
coarsely be broken down into: (i) work on low-level radiation miti-
gation techniques that can be applied during run-time, (ii) work on
fault emulation, avoidance and analysis techniques that can be ap-
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plied during design-time and (iii) work on research and demonstrator
platforms, implementing one or several of the techniques mentioned
above.

The literature survey revealed two major research gaps:

1. Most publications are concerned with low-level and technology-
dependent mitigation techniques but only few studies deal with
high-level, more technology-independent FDIR methods, which
are applied to FPGAs in a similar way as they are applied to
other systems on board spacecraft.

2. Although some publications cover reliability and availability
analysis methods respectively, they are mainly used to demon-
strate the capabilities of a particular mitigation technique. How-
ever, when applying a FDIR method to a reconfigurable FPGA-
based system, the ability to predict its overall effect on the sys-
tem reliability is essential. The prediction must at least take into
account the configuration memory and user RAM blocks of the
SRAM-based FPGA since these elements are most susceptible
to radiation effects. Then, the analysis method can be used (i)
to predict the reliability of a certain hardware implementation
in a specific radiation environment and (ii) to compare different
FDIR approaches against each other.

To fill the first gap, a novel high-level FDIR method called Dis-
tributed Failure Detection is proposed in this PhD thesis, which is tar-
geted at satellite payload data processing applications. Compared to
earlier approaches, it is original because the data processing appli-
cation is partitioned into several hardware blocks called stream pro-
cessors. These processors communicate with each other via a mod-
ern switched fabric network architecture that offers excellent scala-
bility. The Distributed Failure Detection method allows the applica-
tion of hot redundancy to stream processors. This is made possible
by integrating the failure detection mechanisms into the network ar-
chitecture. As a consequence, redundant stream processors can be
distributed throughout the network without restrictions. This can be
a real advantage for large systems, in which processing nodes are
constantly added, deleted, removed or reconfigured. Although it is
later demonstrated that this approach works fine for reconfigurable
multi-FPGA systems, it is not limited to those. Since the approach
is rather technology-independent, it could even be applied to similar
distributed computing systems.
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To fill the second gap, a novel Availability Analysis method is pro-
posed, which aims at predicting the achievable reliability of a stream
processor in a particular radiation environment. In addition, it allows
a fair comparison of different FDIR configurations. The proposed ap-
proach advances the current state of the art in several aspects. The sys-
tematic method is implemented as a set of tools integrated together
and could therefore be easily automated. One of the tools is a novel
fault injection system, which can emulate SEUs in the configuration
memory of a reconfigurable FPGA. Compared to earlier systems, it
cannot only find the so-called sensitive bits but is also able to clas-
sify them, depending on how the system can recover from failures,
which are triggered by upsets in these sensitive bits. By doing so, the
achievable reliability of more complex FDIR approaches can also be
analysed. Another tool is a novel Block RAM profiling tool, which
estimates the number of sensitive RAM bits by analysing the aver-
age usage of embedded RAM blocks in simulation. Such a method
has not previously been proposed in literature. However, it can sig-
nificantly increase the prediction precision because the influence of
embedded RAM blocks cannot be neglected for many data process-
ing applications.

The proposed FDIR approach as well as all tools required for the
Availability Analysis method are implemented in a proof of concept
system. Aside from demonstrating the concepts, the system is used
for an in-depth analysis of several popular FDIR approaches in terms
of power, area and performance overhead. This study is another orig-
inal contribution to the current state of the art. Again, although simi-
lar research results can be found in literature, they are mainly used to
emphasise the capabilities of a particular mitigation technique. How-
ever, a fair comparison between different techniques is often difficult
to draw due to a variety of measurement setups and terminologies
used by different research groups.

To complete the picture of the research work, the proposed ap-
proaches are all validated in a real radiation environment by irra-
diating parts of the proof of concept system with accelerated protons.
Firstly, it is demonstrated that the FDIR hardware and software com-
ponents are mature enough to detect and recover from failures in a
real radiation environment that causes much higher SEU rates than
any solar particle event observed in history. Secondly, it is proven that
the Availability Analysis method provides accurate estimates.
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The research approaches and results presented in this thesis can
be valuable for both scientists and engineers. Firstly, it can serve as a
tutorial for the space engineering community since in-depth back-
ground information is given for particular FPGA devices that are
suitable for data processing applications on board spacecraft. Most
notably, the hands-on character of the proposed Availability Anal-
ysis method and the practical results gained from the power, area
and performance overhead measurements as well as from the irra-
diation test campaign can contribute valuable information to other
space projects. Secondly, the proposed FDIR approach is not only
of interest for space engineers but also for researchers concerned
with distributed computing in general. Since the approach is rather
technology-independent, it can also be abstracted from the FPGA
user case and applied to other computing systems.

1.3 overview of thesis contents

The thesis is structured as follows. In Chapter 2, the state of the
art in this rich research field is surveyed. After a thorough review
of recent literature, research gaps are identified and existing miti-
gation techniques are summarised by providing a decision strategy
for researchers and engineers who are novices in this field. In Chap-
ter 3, the theory behind the proposed Distributed Failure Detection
method is explained, including a detailed description of all employed
FDIR components. The proposed Availability Analysis method is in-
troduced in Chapter 4, including a functional description of the novel
fault injection and Block RAM profiling tool. Next, the proof of con-
cept system is described in Chapter 5 by providing detailed informa-
tion about all hardware and software components. With this proof
of concept system, the power, area and performance overhead of sev-
eral popular FDIR approaches is measured in Chapter 6. Thereafter,
Chapter 7 demonstrates how the Availability Analysis method can be
applied in practice by predicting the reliability of the proof of con-
cept system in different FDIR configurations and for different exam-
ple satellite missions. Both the Distributed Failure Detection and the
Availability Analysis method are then validated by means of an accel-
erated proton irradiation test campaign in Chapter 8. Finally, Chapter
9 concludes the PhD thesis and gives an overview of future work.
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2
C H A P T E R 2 : L I T E R AT U R E S U RV E Y

2.1 introduction

Electronics on board modern spacecraft comprise a considerable num-
ber of FPGA devices. Although these devices were mainly used to
implement rudimentary glue logic in the early days, they enable far
more complex operations today. Regardless of the application such
as science, Earth observation or military surveillance, a trend to ever
increasing payload data volumes can be observed. Thus, data pro-
cessing in space can be essential for some missions as payload data
downlinks can be too slow to transmit these growing data volumes,
even if data compression techniques are applied.

Many payload data processing applications benefit from an effi-
cient implementation in hardware using programmable logic devices.
Modern SRAM-based FPGAs offer huge amounts of logic resources,
allow fast clocking and can quickly be reconfigured which makes
them ideal platforms for the implementation of such algorithms. They
are, however, prone to radiation effects in space because the state of
their memory cells can be flipped due to single and multiple event
upsets caused by radiation. Hence, design techniques to mitigate ra-
diation effects must be applied to these devices. In the past ten years,
research on such mitigation methodologies established its own rich
field, which is thoroughly surveyed in this chapter.

The chapter is structured as follows. Section 2.2 discusses radiation
effects in space as well as their effects on SRAM-based FPGAs. Then,
in Section 2.3, terminology, failure modes and mitigation techniques
are outlined. In Section 2.4, mitigation techniques applied during run-
time operation are reviewed dividing this huge field into three areas:
techniques aimed at the (i) configuration memory, (ii) user logic and
(iii) embedded RAM blocks. A brief survey of methodologies that
can be applied during design time is then given in Section 2.5. Then,
Section 2.6 covers the simulation, emulation and analysis of radia-
tion effects, including accelerated radiation testing and fault injection.
Section 2.7 is dedicated to purpose-built hardware platforms, which
have been used in research projects on SRAM-based FPGAs for space

9
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applications. Section 2.8 provides a summary of the reviewed tech-
niques as well as design recommendations. In Section 2.9, the state
of the art is analysed to identify research gaps that can be filled with
innovations proposed in the course of this PhD work. Finally, Section
2.10 concludes the chapter.

2.2 radiation effects in sram-based fpgas for space

2.2.1 Sources of Radiation Effects

The space radiation environment comprises a large range of energetic
particles with energies from several keV up to GeV and beyond. The
main elements are [15, 16]:

• Trapped radiation: Energetic electrons and ions are magneti-
cally trapped in the so-called Van Allen radiation belts which
extend from 100 km to 65,000 km and consist mainly of elec-
trons up to a few MeV and protons of up to several hundred
MeV energy. The Earth’s magnetic field is not symmetrical, lead-
ing to local distortions. One important distortion is known as
the South Atlantic anomaly. Spacecraft passing this area are ex-
posed to an increased level of radiation.

• Galactic cosmic rays: High-energy charged particles which en-
ter the solar system from outside and which are composed of
protons, electrons and fully ionized nuclei.

• Solar energetic particles during solar flares and coronal mass
ejections: High-energy particles which are encountered in inter-
planetary space and close to Earth and which are seen in short
bursts associated with other solar activity. The duration of such
bursts can be a few hours up to several days. They consist of
protons, electrons and heavy ions in the energy range of a few
tens of keV to GeV and beyond. The particles of the regular so-
lar wind have rather low energies and are thus less of a concern
for electronic devices in space.

In addition, secondary radiation is generated by the interaction of
energetic particles with materials. One example is bremsstrahlung, a
high-energy electromagnetic radiation that is caused by the decelera-
tion of a charged particle in materials.
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Figure 1: Common radiation effects that must be mitigated in SRAM-based
FPGAs

2.2.2 Radiation Effects

An overview of common radiation effects that must be mitigated in
SRAM-based FPGAs is given in Figure 1. The main effects are:

• TID Effect: Ionisation of electronic components is caused by elec-
trons, protons and bremsstrahlung and leads to a degradation
due to increasing leakage currents and other effects [17]. Pro-
cesses that cause ionisation are based on photon interaction and
include the photoelectric effect, compton effect and pair produc-
tion, all leading to the production of free electrons and hole-
electron pairs [18]. The accumulation of these effects is called
TID and is usually measured in krad with 1rad = 10−2Gy =

6.24 · 107MeV
g [19]. For space-qualified Virtex-4QV and Virtex-

5QV devices, the TID is of no concern since the dose is guaran-
teed to be 300 krad for Virtex-4QV devices [20], respectively 1

Mrad for Virtex-5QV devices [21].

• SEL: A potentially destructive SEE that can trigger parasitic
PNPN thyristor structures in a device [17]. Similar to the TID
effect, SELs are of no concern for Virtex-4QV and Virtex-5QV
devices since both devices have a guaranteed latchup immunity
to LET > 100MeV · cm2 ·mg−1 [20, 21].

• SEU: This class of SEE is a soft error that changes the state of
a bistable element. It is triggered by heavy ions and protons
and results from ionisation by a single energetic particle or the
nuclear reaction products of an energetic proton. The ionisation
induces a current pulse in a p-n junction whose charge may
exceed the critical charge which is required to change the logic
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state of the element. As a result, the value of a memory bit
can be flipped [15]. SEU is the most common effect for SRAM-
based FPGAs as it may affect the configuration memory as well
as memory cells that are used as part of the user logic (flip-flops,
embedded RAM).

• Single Event Functional Interrupt (SEFI): This class of SEE inter-
feres with the normal operation of the FPGA and is thus typi-
cally used to classify failures that affect the circuits needed to
operate the FPGA. So far, six types of SEFIs have been identified
for Virtex-4QV devices [3]:

– Power-On-Reset (POR) SEFI: results in a global reset of all
internal storage cells and the loss of all program and state
data.

– SelectMAP (SMAP) SEFI: results in loss of either read or
write capability through the SelectMAP interface.

– Frame Address Register (FAR) SEFI: results in the frame
address register continuously incrementing.

– Global Signal SEFI: results in disruption of global signals
like Global Write Enable, Global Drive High etc.

– Readback SEFI: occurs when a portion of readback data
has been upset and can lead to a false-positive detection of
a SMAP SEFI.

– Scrub SEFI: causes corruption of the data stream being
downloaded to the device.

• Single Event Transient (SET): This class of SEE is a momentary
voltage or current disturbance which may propagate through
subsequent circuitry and eventually manifests as SEU once it
reaches a latch or other memory elements [22].

2.2.3 Single Event Effects Rates

SEU rates in FPGAs depend on the particular device component in
which they occur (see Section 2.3.2 below). The mitigation strategy for
Virtex-4QV FPGAs must mainly take into account single event effects,
as these devices are tolerant to accumulated ionisation and SELs. In
contrast, Virtex-5QV devices are radiation hardened by design. This
was achieved by replacing the configuration memory and flip-flop
cells by dual-node counterparts that require charge collection in at
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Table 2: Example SEFI and SEU rates for a Virtex-4QV SX55 [3]

Component Unit LEO GEO

All SEFIs Device·Years/Events 36 103

User flip-flops Upsets/Device·Day 0.0702 0.0387

Block RAM Memory Upsets/Device·Day 4.05 4.49

Configuration Memory Upsets/Device·Day 7.56 4.28

least two active nodes before an upset can occur. Furthermore, all
flip-flop inputs are now protected by SET filters and Triple Modular
Redundancy (TMR) is applied to control circuitry and registers [23].

Static and dynamic cross-sections for most FPGA blocks with re-
gards to the Virtex-4QV family, can be found in [3, 24]. Using these
cross-sections, SEU and SEFI rates can be calculated for a particular
design and orbit. For European space projects the necessary calcula-
tion methods are standardised in [16] and [17].

In [3], SEU and SEFI rates for several orbits in quiet solar maximum
conditions were calculated using the CREME96 model. For illustra-
tion, rates for two orbits are given in Table 2. The first one is a Low
Earth Orbit (LEO) at 800 km altitude with an inclination of 22.0◦, the
second one is a Geostationary Earth Orbit (GEO) at 36,000 km. The
FPGA type is a XQR4VSX55 and it is assumed that all memory cells
are used, i.e. the upset rates per bit-day are scaled to the whole device.
It can be seen that the likelihood of SEFIs is low, with approximately
one SEFI every 36 years in LEO and every 103 years in GEO.

Assuming that all flip-flop cells are used, the chance of an upset in
these elements is far below 0.1 upsets per device-day. In contrast, if
a design heavily utilises Block RAM (BRAM) blocks (in this example
all blocks are used), the probability of an upset is more than 400

times higher than for a flip-flop upset due to the high ratio of BRAM
cells to flip-flop cells. For the configuration memory cells the ratio is
even larger: In LEO more than 7.5 upsets can occur per device-day. It
is, however, assumed that all configuration memory cells are utilised
which is unrealistic for a real design.

The results above show that mitigation techniques must mainly fo-
cus on configuration memory and Block RAM upsets. Although SEFIs
occur only rarely, they can necessitate an undesired full reconfigura-
tion and must therefore be mitigated as well as possible. In contrast,
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a mitigation strategy for flip-flops may not be necessary for some
applications.

In 2012, Quinn et al. presented first on-orbit results for Virtex-4QV
FPGAs [25], collected from an experimental payload launched by
Los Alamos National Laboratory. The system comprises two Virtex-4
FPGAs running the same digital signal processing application. The
mitigation strategy is based on TMR in combination with scrubbing.
Using fault injection experiments and the CREME96 model, an ob-
servable output error rate of approximately one in 15 to 25 days was
predicted before launch. This rate is based on a calculated configura-
tion memory upset rate of 68 to 89 SEU/device·day.

The on-orbit results are surprising: Firstly, the measured upset rate
per unit is much lower than predicted (19 SEU/unit·day). Secondly, the
only two measurable output errors were triggered by SEUs in bit loca-
tions which could not be predicted by fault injection before. Thirdly,
a SelectMAP SEFI was observed, although such a failure should only
occur very rarely according to worst case predictions. Finally, the au-
thors were able to observe atypical events where many bits in one
single frame were corrupted all at the same time.

The authors assume that the measured upset rate is artificially low
due to the shielding of the spacecraft and the duty cycle of the device.
It was further found that 8.42% of SEU events are actually Multiple
Bit Upsets (MBUs), although the vast majority has a size of only two
bits. 78% of the SEUs occurred in Configurable Logic Blocks (CLBs),
followed by ca. 15% in BRAM interconnect and ca. 6% in Input Out-
put Blocks (IOBs).

2.3 overview of radiation mitigation techniques

2.3.1 Terminology

Several techniques can be applied during the design process to miti-
gate soft errors in digital circuits. A classification of these techniques
is presented in Section 2.3.3 below, which makes use of the termi-
nology introduced in the NASA Fault Management Handbook [26].
Although targeting flight systems in general, this terminology proves
to be well suited to describing soft error mitigation techniques for
FPGAs too.

A common terminology to describe an abnormal state of a system
includes the three terms: fault, error and failure. Although several
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standards define these terms slightly differently, a fault is usually un-
derstood as the cause of an error and an error as the cause of a failure.
For instance, in functional safety standard ISO 26262, a fault is de-
fined as an “abnormal condition that can cause an element or an item
to fail”. The error is defined as the “discrepancy between a computed,
observed or measured value or condition, and the true, specified, or
theoretically correct value or condition”. Finally, the failure is defined
as the “termination of the ability of an element, to perform a function
as required”.

According to the Fault Management Handbook, failures can ei-
ther be prevented or tolerated. In the first case, actions are taken to
avoid failures either at design time or run time. The Design-Time
Fault Avoidance includes “design function and FM [fault manage-
ment] capabilities to minimize the risk of a fault and resulting failure”
whereas Operational Failure Avoidance “predicts that a failure will
occur in the future and takes action to prevent it from happening”.
With failure tolerance, failures are either accepted or mitigated. Fail-
ure Masking techniques “allow a lower level failure to occur, but mask
its effects so that it does not affect the higher level system function”.
Failure Recovery techniques “allow a failure to temporarily compro-
mise the system function, but respond and recover before the failure
compromises a mission goal”. Finally, Goal Change strategies “allow
a failure to compromise the system function, and respond by chang-
ing the system’s goals to new, usually degraded goals that can be
achieved”.

In the following, erroneous FPGA output is seen as a failure. Al-
though the failure is always caused by a fault, a fault does not neces-
sarily lead to a failure. In an FPGA circuit design, such a fault could
be for example a flipped bit in a flip-flop or a re-programmed logi-
cal operation due to a falsified look-up table. In any case, only if the
faulty resource is actually used in the design the associated fault will
finally lead to a failure.

2.3.2 Failure Modes in SRAM-based FPGAs

An FPGA model, commonly found in literature [27], which is suitable
for illustration of different fault and failure modes of SRAM-based
FPGAs is shown in Figure 2. SRAM-based FPGAs comprise a config-
uration memory layer that stores the configuration of the FPGA in
SRAM memory cells and a user logic layer on which the actual cir-



2.3 overview of radiation mitigation techniques 16

User Logic Layer

Configuration Memory Layer

Ion Strike

Figure 2: Model of an SRAM-based FPGA

cuit is implemented. A typical circuit utilises sequential and combi-
national logic elements and often accesses embedded BRAM and/or
DSP blocks. User flip-flops and other user memory resources as well
as the DSP blocks are physically present, whereas combinational logic
gates are realised with Look-Up Tables (LUTs) within CLBs.

The configuration bits on the configuration memory layer control
the resources on the user logic layer, including the wiring between
the resources, the content of the LUTs and the configuration of the
CLB, BRAM, DSP and IOB blocks.

If an ion hits the FPGA, it can affect memory resources (i) on the
configuration memory or (ii) on the user logic layer. In both cases,
upsets can be seen as faults which may lead to a failure. And in both
cases, the system can fortunately recover from such failures because
affected memory cells can be updated with correct values. Since the
configuration bits control “really everything” [27], the configuration
memory is the main concern of most mitigation strategies. However,
although more than 60 percent of the configuration bits are used to
control routing resources, only 10 to 20 percent of routing resources
are used in a typical design [28]. The ratio between used configura-
tion bits and user flip-flops bits is, however, usually still so high that
flip-flop upsets account for only a few percent of all upsets. And obvi-
ously, configuration bit upsets can lead to much more unpredictable
behavior than flip-flop upsets. In contrast to user flip-flops, Block
RAM upsets can be as much of a concern as configuration memory
upsets if large amounts of these resources are utilised in a design.

A fault in the configuration memory may lead to a failure in case
the affected configuration bit controls a resource which is utilised
by the design. In Xilinx terminology, configuration bits can be classi-
fied as Essential and Critical Bits [29]. Essential Bits are the subset of
configuration bits which are responsible for resources of the design.
Thus, a fault affecting an Essential Bit may lead to a failure. Because
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Figure 3: Classification of fault management strategies and corresponding
mitigation techniques

not every resource of a design is used by the application non-stop,
only faults in a subset of the Essential Bits, also referred to as Critical
Bits, are guaranteed to manifest as failure.

A fault in a user flip-flop can lead to a failure if its value is used
by subsequent circuitry. Although the failure can propagate through
the system until it becomes measurable at the output, it is often only
of transient nature. If the flip-flop is used in state-dependent logic,
however, a failure can be ’trapped’ in a feedback loop until the logic
is reset to a known (initial) state. For instance, if a bit of a counter
register is flipped, the counter ’jumps’ and the output is permanently
falsified.

A fault in a Block RAM cell can lead to a failure with the next
read access. Often, the memory is not immediately accessed and the
manifestation of the failure is delayed.

2.3.3 Classification of Mitigation Techniques for SRAM-based FPGAs

Figure 3 shows an overview of fault management strategies, classi-
fied according to the aforementioned terminology, together with the
corresponding mitigation techniques surveyed in this chapter.

During run time, failure masking techniques can be used to toler-
ate failures. Failure masking is usually achieved by redundancy. Most
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commonly, spatial redundancy is applied, for instance TMR, Partial
TMR, Duplication with Compare (DWC) or Reduced Precision Re-
dundancy (RPR). Alternatively, information redundancy techniques
can be used to detect and mask failures in certain types of circuits, for
example Error Detection and Correction (EDAC) codes or Algorithm
Based Fault Tolerance (ABFT).

Aside from failure masking, failure recovery techniques can be
used during run time too. Failure recovery is usually done by refresh-
ing the memory, which is often referred to as scrubbing.

During design time, several techniques can help to avoid faults in
advance, including tools for the susceptibility analysis (e.g. for the
quantification of sensitive configuration bits) and tools which place
and route a circuit design in a reliability-oriented way.

2.4 mitigation design techniques aimed at run-time fail-
ure tolerance

In this section a review of the rich field of failure tolerance tech-
niques that can be applied during run-time, targeting both the con-
figuration memory and the user logic is presented. Different scrub-
bing approaches are outlined with regards to the configuration mem-
ory. Besides implementation specific differences (Blind vs. Readback
Scrubbing, Device vs. Frame-Oriented Scrubbing, External vs. Inter-
nal Scrubbing), two fundamentally different concepts found in litera-
ture, are discussed too. The first concept combines periodic scrubbing
with a low-level redundancy approach whereas the second concept
implements an FDIR approach in which the configuration memory
is only repaired once a failure has been detected in user logic. For
the user logic, different redundancy concepts are surveyed. Again,
it turns out that the concepts presented in literature can roughly be
divided into two categories. The first type of spatial redundancy is
applied to the netlist of the circuit and is thus a quite low-level ap-
proach. The second type is a modular redundancy approach in which
whole hardware blocks are operated in hot redundancy.

2.4.1 Configuration Memory

Single and multiple bit upsets in the configuration memory of SRAM-
based FPGAs can be mitigated by periodically writing a known to be
correct bitstream to the device. This technique is often referred to as
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scrubbing and several types of implementations can be found in re-
search literature and application notes. In the following, the different
methodologies and architectures are classified using a similar termi-
nology as introduced in [30, 31] including:

• Blind vs. Readback Scrubbing.

• Device vs. Frame-Oriented Scrubbing.

• Periodic vs. On-Demand Scrubbing.

• External vs. Internal Scrubbing.

2.4.1.1 Blind vs. Readback Scrubbing

The most basic methodology is blind scrubbing where the config-
uration memory is periodically updated with a known to be good
copy of the original bitstream. This copy which is sometimes referred
to as the ’golden copy’, is stored in an external, radiation hardened
memory. An external or internal configuration controller controls the
download of the bitstream via one of the configuration interfaces of
the FPGA. Using the classification shown in Figure 3, blind scrub-
bing can be described as an operational failure avoidance methodol-
ogy because faults are handled in a preventive manner without any
knowledge about the current health state of the system.

One concern that is sometimes raised in connection with blind
scrubbing is the fact that the configuration controller gains write ac-
cess to the configuration memory even if there is no need for scrub-
bing. Since the configuration interface is prone to SEFIs, a bitstream
download can be affected by radiation effects, potentially leading to
a corrupted design. Therefore, Xilinx recommends a SEFI detection
before each write access that includes a FAR check and a status and
control register check [28].

To further minimise the risk of a corrupted bitstream download, the
readback feature of SRAM-based FPGAs can be utilised for scrubbing.
Using one of the configuration interfaces, bitstreams cannot only be
written to the device but also read back during operation. With this
capability, unnecessary write accesses to the configuration memory
can be avoided during scrubbing: Before writing a correct bitstream
to the device, the current bitstream is read and checked for upsets.
Only if upsets are detected, the correct bitstream is eventually writ-
ten. Such a scrubbing methodology can be identified as a failure re-
covery technique. Two possible detection mechanisms are commonly
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used: The first one is based on comparison and relies on golden bit-
stream copies. The current bitstream is read back from the FPGA and
compared to the golden copy, either by bit-wise comparison or more
simply, by calculating a Cyclic Redundancy Check (CRC) checksum
during readback which can then be compared with the CRC value
of the golden copy (later referred to as CRC readback scrubbing). If a
mismatch is detected, the golden copy is used to overwrite the current
bitstream.

The second detection mechanism is based on information redun-
dancy and uses the Error-Correcting Code (ECC) bits which are em-
bedded into each configuration frame. This Single Error Correction
and Double Error Detection (SECDED) code allows the detection of
single and double bit upsets and the correction of single bit upsets.
For multiple bit upsets with more than two wrong bits, the syndrome
value is indeterminate [32]. During readback, a syndrome value is
calculated by an ECC logic that must be initiated as a user primi-
tive called FRAME_ECC_VIRTEX4 for Virtex-4 devices and FRAME_ECC_-

VIRTEX5 for Virtex-5 devices respectively [33]. The syndrome value
does not only identify upsets but can also localise single upsets. Hence,
two possible failure recovery methodologies can be combined with
the ECC logic: Either the erroneous bit is flipped and the corrected
bitstream is written back to the device (later referred to as ECC read-
back scrubbing) or the whole bitstream is overwritten with a golden
copy from memory.

A methodology that allows the detection and correction of multi-
ple bit upsets using a custom-built EDAC core is presented in [34].
The authors divide a configuration frame into several data segments
and interleave the bits of these data segments. Then, an EDAC check
code is calculated for each segment. Since adjacent memory cells are
distributed over several data segments, multiple bit upsets can be
detected and corrected. A recent work that advances this concept is
proposed in [35]. Here, the process of detecting multiple bit upsets
and correcting them is separated. The detection is done using a novel
lightweight error detection coding technique called Interleaved Two
Dimensional Parity whereas the correction utilises so-called erasure
codes as can be found in reliable storage devices and similar applica-
tions.

Starting with the Virtex-5 architecture, an internal readback CRC
logic allows a continuous and automatic readback in the background
[33]. In the first readback round, a golden CRC checksum is calculated
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Table 3: Summary: Blind scrubbing vs. readback scrubbing

Methodology Attributes

Blind Scrubbing

• Simple implementation.

• Robust for MBU mitigation.

• Unnecessary write accesses.

Readback &
Comparison

• Comparator necessary.

• Robust for MBU mitigation.

• Reduced risk of corrupted download.

Readback &
EDAC

• Rather complex implementation.

• Cannot cope with more than two upsets
per frame.

• Reduced risk of corrupted download.

which is later used to compare the CRC values of the subsequent
rounds to. Once a mismatch has been detected, dedicated user logic
can initiate a reconfiguration of the device or a bitstream repair using
the ECC logic [36]. A summary of Blind and Readback Scrubbing
approaches is given in Table 3.

2.4.1.2 Device vs. Frame-based Scrubbing

All scrubbing methodologies mentioned in the last paragraph can
use different bitstream sizes. However, the configuration memory is
typically scrubbed with a full bitstream or on a frame by frame ba-
sis. The first case, sometimes also referred to as device-based scrub-
bing, requires a rather simple implementation. Except for the mod-
ified header information, the bitstream can directly be downloaded
from a memory to the configuration interface. One drawback of this
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Table 4: Summary: Device-based vs. frame-based scrubbing

Methodology Attributes

Device-based

• Simple implementation.

• Scrubbing SEFIs may affect the whole de-
sign.

Frame-based

• Increased implementation complexity.

• Decreased scrubbing speed.

• Scrubbing SEFIs can only affect one
frame.

solution is the susceptibility of the configuration interface to SEFIs. If
such an upset occurs during download, the whole design is likely to
become corrupted. Frame-based scrubbing requires a more complex
configuration controller implementation because each frame must be
prepared before download. But, the benefit of this approach is the
possibility to isolate the effects of a SEFI to a single frame. Aside from
the increased complexity of implementation, the scrubbing speed is
decreased too. First, a SEFI check must be done before downloading
each frame. Secondly, each frame bitstream comes with an overhead
due to its header. Finally, after each frame a dummy frame must be
written to flush the pipeline [28].

In some applications increased scrubbing speed is desired. This is
especially true for applications in which scrubbing is used as the only
mitigation technique. In [37], such a ’low-cost’ strategy, based on an
idea presented in [38], is proposed. The authors point out that many
configuration frames are scrubbed although they contain no or only
a small number of essential bits. As a consequence, they propose to
constrain the placement of the design in such a way that the num-
ber of frames with essential bits is minimised. Then, the frame-based
scrubber must only take this subset of frames into account. A sum-
mary of Device and Frame-based Scrubbing approaches is given in
Table 4.
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Figure 4: On-demand scrubbing

2.4.1.3 Periodic vs. On-Demand Scrubbing

In many designs, the scrubbing process is independent of other mit-
igation techniques. Then, the configuration memory is periodically
scrubbed for upsets with a fixed scrubbing rate.

Alternatively, the scrubbing process can also be triggered by a fail-
ure detection mechanism. Such a methodology can be advantageous
in systems where continuous scrubbing is unwanted. Eventually, the
availability of a system depends on the time a faulty component re-
mains unrepaired. This time can be minimised by either increasing
the scrubbing frequency or by implementing a mechanism that can
trigger a repair process immediately after failure detection. With the
aid of stochastic models, Siegle et al. showed in [9] that in principle,
on-demand scrubbing always maximises the availability.

Depending on the implementation, on-demand scrubbing can be
power saving because the scrubbing logic is only active if required.
Becker et al. investigated in [39] the power consumption of Virtex-
II devices during reconfiguration. Although the authors use a LZSS
decompression core during reconfiguration, the power consumption
is increased by only 95 mW. Nevertheless, the avoidance of additional
resource overhead is always beneficial, especially for systems where
failure detection mechanisms are implemented anyway.

In the literature, on-demand scrubbing is mainly mentioned in
connection with systems utilising dynamic partial reconfiguration.
In many proposed systems, spatial redundancy, e.g. TMR, is imple-
mented by using redundant reconfigurable modules and a majority
voter within the static area. Due to the physical separation of the
reconfigurable modules, on-demand scrubbing can be advantageous
here. The majority voter can easily be designed as a failure detec-
tion mechanism which is able to identify a faulty module and which
can trigger a scrubbing process on-demand, targeting only the faulty
component.

Paulsson et al. presented such a system in [40] for Virtex-II devices.
The authors use so-called Dynamic TMR or Hardware Test Benches
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as failure detection mechanisms and reconfigure a partition only if a
failure has been detected. Researchers at University of Arizona pro-
posed similar mechanisms for their SCARS system that is based on
Virtex-5 devices [41]. Here, a faulty reconfigurable module is only
scrubbed after a failure has been detected by software routines. Jacobs
et al. propose a similar approach in [42]. Again, failures in reconfig-
urable modules are detected by voters or comparators and scrubbing
is triggered only for the faulty module on-demand. Straka and his
colleagues at University of Brno [43] also work on a fault tolerant
framework for SRAM-based FPGAs. Very similar to the already men-
tioned approaches, a so-called Generic Partial Reconfiguration Con-
troller receives error signals from reconfigurable modules and trig-
gers on-demand scrubbing if required. Azambuja et al. also use ma-
jority voters as failure detection mechanisms and scrub a faulty recon-
figurable module only after a failure has been detected [44, 45]. The
authors emphasise the increased repair speed compared to a full re-
configuration. In [46], Iturbe et al. propose a fault management strat-
egy in which they combine on-demand blind scrubbing, triggered by
a majority voter as failure detection mechanism, with ECC readback
scrubbing.

A methodology that aims at speeding up the on-demand scrubbing
process is presented in [47]. The authors analyse the statistical distri-
bution of sensitive bits within a partial bitstream. Instead of starting
the scrubbing process from the first byte position of the bitstream, it
is started from the one frame for which the authors calculated that
this start position minimises the Mean Time to Recover (MTTR). For
a set of benchmark circuits, an average MTTR reduction of 30% was
achieved. A methodology with a similar aim is presented in [48]. The
authors partition a circuit design and apply a specific redundancy
scheme (like DWC or TMR) to each partition. If one of these parti-
tions is detected to be faulty, it is scrubbed by an external reconfig-
uration controller on demand. The authors developed an algorithm
which optimises the floorplanning of the different partitions to find
an optimal solution in terms of reconfiguration time, area and perfor-
mance overhead. Results for a set of example circuits suggest that the
reconfiguration time can heavily be reduced although this reduction
is at the cost of an increased area and performance overhead. A sum-
mary of Periodic and On-Demand Scrubbing approaches is given in
Table 5.
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Table 5: Summary: Periodic vs. on-demand scrubbing

Methodology Attributes

Periodic

• Mean Time To Recover (MTTR) depends
on scrubbing rate.

• No failure detection mechanisms on user
logic layer necessary.

• Possibly increased power consumption.

On-Demand

• MTTR is minimised.

• Partial scrubbing is possible.

• Access to configuration memory is min-
imised.

• Failure detection mechanisms on user
logic layer necessary.
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2.4.1.4 External vs. Internal Scrubbing

The scrubbing logic can be implemented internally or externally. From
the available configuration interfaces, the SelectMAP interface is com-
monly used for external scrubbing due to its high throughput rates.
The Internal Configuration Access Port (ICAP), internal counterpart
to SelectMAP, can be used if the scrubbing logic is implemented
on user logic layer. Internal scrubbing is sometimes seen as a ’low-
budget’ solution because it does not necessitate an external configu-
ration controller and a memory for the golden bitstream copies. It can
be argued, however, that in most space applications a radiation hard-
ened supervisor as well as reliable memory for the initial bitstream
configuration is available anyway.

External scrubbing via the SelectMAP interface is commonly seen
as the more robust approach and is also recommended by Xilinx [28].
Melanie Berg and other researchers at NASA come to similar conclu-
sions in [49] where the authors compare an external blind scrubber to
an internal ECC readback scrubber by Xilinx. The internal scrubber
is based on a PicoBlaze microcontroller and its design was published
in the no longer available application note [50]. Using heavy-ion SEE
radiation testing, it was found that the external scrubber was always
recoverable without the need for a reset or power cycle whereas the
internal scrubber was never recoverable. Thus, the internal scrubber
consistently reached a state where it could not operate anymore, ei-
ther because of MBUs which cannot be handled by the scrubber or
because the scrubber itself was hit by ions.

Heiner et al. from Brigham Young University improved the fault
tolerance of the same Xilinx scrubber design by applying TMR and
Block RAM scrubbing [51]. In radiation tests it was found that the
improved scrubber performs much better but still, in more than 45%
of all tests the design failed at some point, requiring a subsequent
full reconfiguration of the device. The authors assume that the miss-
ing ability of ECC readback scrubbers to repair MBUs was the main
reason for this behaviour.

Ebrahim et al. from the University of Edinburgh also work on
a fault-tolerant ICAP controller in the course of their R3TOS sys-
tem [52]. The controller is based on Xilinx’ XPS_HWICAP core. The con-
troller is not only used for scrubbing but also for partial reconfigura-
tion. Similar to the ICAP controller described above, the scrubber is
an ECC readback scrubber. To improve its fault-tolerance the authors
apply spatial redundancy but instead of applying TMR to the whole
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Table 6: Summary: External vs. internal scrubbing

Methodology Attributes

External

• Robust.

• Radiation hardened external controller
and memory needed.

Internal

• In case of ECC readback scrubbing,
MBUs cannot be repaired.

• No external controller and no golden bit-
stream copies necessary.

controller, only a so-called Recovery Module is triplicated. This mod-
ule, on the other hand, is able to gain access to the ICAP interface
only for the sake of recovering the controller from failures. A sum-
mary of External and Internal Scrubbing approaches is given in Table
6.

2.4.1.5 Integration with Dynamic Partial Reconfiguration

Most scrubbing approaches described in literature assume a static
user design. If dynamic partial reconfiguration is used as part of the
normal operation, however, e.g. to time-share chip area by swapping
different modules during runtime, the reconfiguration and scrubbing
process must be somehow orchestrated because only one of them
can gain access to the configuration interface at the same time. Fur-
thermore, if blind scrubbing or CRC readback scrubbing is used, the
golden bitstream must be kept updated after each partial reconfigu-
ration to mirror the currently running design.

One approach to overcome these problems is described by Heiner
et al. in [30]. The authors use a CRC readback scrubber as described
earlier. Instead of downloading the bitstream of a reconfigurable mod-
ule and updating the golden bitstream afterwards, the authors sug-
gest to simply integrate the bitstream of the reconfigurable module
into the golden bitstream. During the next scrubbing cycle the scrub-
ber detects a discrepancy between the golden bitstream and the bit-
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stream which has been read back from the device due to mismatch-
ing CRC sums. As a consequence, it will then ’repair’ the bitstream
by writing the updated frames to the device.

2.4.2 User Logic

While failure recovery takes mainly place on configuration memory
layer, failure masking is implemented on user logic layer using some
kind of redundancy. Most commonly, spatial redundancy is used but
also information and temporal redundancy can be found for specific
components.

2.4.2.1 Spatial Redundancy

By far the most common form of spatial redundancy is TMR. In this
approach, all components of a circuit are triplicated as depicted in
Figure 5 and a majority voter is placed at the end which chooses the
correct output.

To decrease the susceptible area the circuit can further be parti-
tioned by adding additional voters as can bee seen in Figure 6. The
possible increase of availability is discussed by McMurtrey et al. in
[53] using Markov chains. The authors show that the reliability is in-
deed increased because the area of each circuit stage and therefore the
chance that more than two redundant circuit stages fail is decreased.

Since the voter is a single point of failure it is usually triplicated too.
As mentioned earlier, upsets affecting feedback loops, e.g. counter
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or state machines, can be problematic because the failure is trapped
in the loop. To overcome this problem voters can be placed inside
feedback loops. This technique, sometimes also referred to as XTMR
(Xilinx TMR) [54, 55], synchronises the flip-flops automatically after
repair, see Figure 7.

Most commonly, TMR is applied to the netlist of a circuit using
automatic insertion. Several commercial and academic software tools
are available, including the TMRTool by Xilinx [56], Precision Hi-Rel
by Mentor Graphics [57] and Synplify Premier by Synopsys [58]. A
notable free collection of tools is the BYU EDIF Tool suite, developed
at Brigham Young University [59].

Researchers at Politecnico di Torino found analytically that TMR
protected circuits are still prone to SEUs because in some cases one
single configuration bit upset can lead to multiple failures on user
logic layer, invalidating the TMR approach [1]. Logic blocks inside
the fabric of the FPGA are interconnected via switch boxes which
are built from Programmable Interconnect Points (PIPs). The authors
found that one single configuration bit can control two or more PIPs
and they identified three possible modifications caused by one SEU,
as depicted in Figure 8. Given a pair of connections (a), a short be-
tween the connections can occur (b), both connections can be opened
(c) or a bridge between the connections can be created (d). If the con-
nections belong to two redundant circuits of a TMR system, the voter
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will choose a wrong or falsified output. For Virtex-II devices, this fail-
ure mode which is sometimes also referred to as Domain Crossing
Error (DCE), was partly confirmed by Quinn et al. [60] by fault injec-
tion experiments, although the authors point out that SEU induced
“DCEs are possible when TMR is incompletely applied to a design,
but they appear to be rare otherwise”. However, the authors found
that TMR can even be defeated by multiple bit upsets with two or
more bits. Using a stochastic model, they predict a worst case prob-
ability for DCEs of 0.36% for Virtex-II devices and up to 1.2% for
Virtex-5 device.

One obvious drawback of TMR is the large area and thus power
overhead that can exceed more than 200%. To decrease the overhead
of TMR, several alternatives were proposed in literature. One exam-
ple is Partial TMR as discussed by Pratt et al. in [61,62]. The basic idea
is to apply TMR only to feedback paths and optionally to their inputs
to avoid so-called persistent errors [63] in state-dependent logic. By
doing so, only failures with a transient nature can occur. The authors
demonstrated for a DSP Kernel design that the number of persistent
bits decreased by 63% if only the feedback is triplicated at the cost of
26% hardware overhead. By applying Partial TMR to feedback paths
and their inputs, the persistent bits were reduced by two orders of
magnitude at the cost of 40% hardware overhead. This Partial TMR
approach is part of the already mentioned TMR Tool by Brigham
Young University.

Another drawback of TMR is its strong impact on the performance
of a circuit, especially if the circuit contains many TMR partitions. For
instance, Kastensmidt et al. analysed the performance of a digital FIR
filter design in [64]. The implementation without TMR could achieve
a performance of 154 MHz, whereas the performance of the TMR ver-
sion with a maximum number of possible partitions dropped down
to 123 MHz.

A less common form of spatial redundancy is DWC where a circuit
is duplicated and the output of the redundant circuits is compared by
a comparator. Naturally, this mechanism is only able to detect failures
instead of masking them. It can be useful for systems which allow a
downtime but need to implement fail-silent behaviour or it can also
be used as a failure detection mechanism that triggers scrubbing on-
demand. Johnson et al. investigated DWC in detail [65]. By means of
fault injection experiments and radiation tests, the authors found that
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DWC can detect approximately 99.85% of all failures at the cost of ca.
200% hardware overhead.

An extension to DWC is proposed by Anderson et al. in [66]. The
authors use DWC as failure masking technique by taking advantage
of the probabilistic distribution of a circuit’s output. The authors use
a system comprising five cascaded half-band filters whose output is
characterised by a distinct, non-uniform distribution. Once the com-
parator detects a mismatch, it selects the output with the higher prob-
ability by checking a stored histogram. Due to the discrete bins of
the histogram, correct detection percentage can be bad for lower sig-
nificant bits. Therefore, the authors combine this approach with an
additional history buffer filled with the last decisions.

Instead of applying spatial redundancy to the netlist of a circuit,
the whole circuit can also be seen as a module which is then dupli-
cated or triplicated. This approach is easy to implement [67] but lacks
the automatic re-synchronisation after repair which can be achieved
by netlist approaches like XTMR. However, a benefit of modular re-
dundancy is the physical separation of the modules which allows a
partial (on-demand) scrubbing [44].

Today’s usage of modular redundancy is often driven by systems
that utilise dynamic partial reconfiguration and in which the design
is broken up into physically separated partitions anyway. Thus, it is
no surprise that the earlier mentioned systems proposed by Pauls-
son [40], Jacobs [42] and Straka [68] are all based on modular re-
dundancy. All these systems have in common that one or more vot-
ers and/or comparators are placed in the static area, similar to the
scheme depicted in Figure 9. The failure detection mechanism mon-
itors the output of redundant modules and triggers an on-demand
scrubbing process once a failure has been detected. An interesting as-
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pect of such a system is its adaptability as pointed out by Jacobs et
al. in [42]: Since redundant modules can be added and removed on-
demand, the system availability can be tuned according to external
constraints in terms of area and power overhead.

Another technique that can be understood as a modification of
modular TMR is RPR. The idea of applying RPR to FPGAs in space
systems goes back to several works at the U.S. Naval Postgradu-
ate School, Monterey [69–72] and was later followed up by Bratt et
al. [73, 74]. Instead of using three redundant copies of a module, one
module processes data with full precision while the two other mod-
ules process the data with reduced precision. Hence, RPR is suitable
for algorithms that process data which is represented by a block of
bits ordered in increasing or decreasing importance, e.g. fixed-point
numerical problems [70]. A decision block determines if a failure has
occurred as follows [73]:

if((|FPOut − RP1Out| > Th) and (RP1Out = RP2Out))

then output⇐ RP2Out else output⇐ FPOut

end if �
The full precision output FPOut is always chosen if no failure has

been detected or if the reduced precision modules disagree. The deci-
sion further depends on a threshold level Th: The full precision mod-
ule is assumed to be correct if its output differs less than Th from the
reduced precision module output RP1Out. For an FIR filter design,
Bratt et al. showed in [73] that the failure rate can be improved by ca.
200 times compared to an unprotected design at the cost of ca. 70%
hardware overhead. For the same circuit, a full TMR mitigation ap-
proach improves the failure rate by ca. 1200 times at the cost of 208%
hardware overhead.
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2.4.2.2 Information Redundancy

Although information redundancy techniques are mainly applied to
memory and communication channels, several circuits can profit from
them too. Information redundancy techniques add redundant bits to
data to be able to detect or even correct falsified information. An ex-
ample for the first case is the CRC code whereas error correction can
be achieved for instance by Hamming codes.

EDAC techniques are often applied to state machines. The states
can be encoded using different coding schemes, e.g. binary, one-hot
or Gray. In addition, parity bits can be added to achieve a Hamming
code which enables the detection or correction of bit upsets. In [75],
the robustness of state machines with binary, one-hot, Hamming with
a distance of 2 (H2) and Hamming with a distance of 3 (H3) codes
was tested using synchronous fault injection. According to the au-
thors, H3 encoding can fully handle single errors and is least affected
by double bit errors. State machines with H2 encoding have less over-
all errors than state machines with one-hot encoding and about half
the error rate of state machines with binary encoding. Due to the
hardware overhead and the decreased performance, the author con-
cludes that H2 encoding is the best compromise in terms of size,
speed and fault-tolerance. For SRAM-based FPGAs, however, these
results should be regarded with care because the influence of con-
figuration memory upsets is not taken into account. Using fault injec-
tion, Morgan et al. found in [76] that the additional required logic can
“potentially add more unreliability than the reliability it adds to the
original circuit”. An actual implementation of a fault-tolerant state
machine that uses Hamming codes is described for instance in [77].

An interesting application of information redundancy for the sake
of error detection and correction is ABFT which goes back to the work
of Huang and Abraham in 1984 [78]. ABFT is used to implement fault
tolerant matrix operations. Recently, Jacobs et al. investigated in [79]
the overhead and reliability of ABFT in FPGA systems. The authors
use a Multiply and Accumulate (MAC) unit where the inputs are
fed from Block RAM and where the output data is written back to
Block RAM. One of the implementations uses a second MAC unit
that generates and validates the checksums. Compared to TMR, the
hardware overhead is as follows: 21% LUT overhead (TMR: 148%),
24% flip-flop overhead (TMR: 84%), 0% Block RAM overhead (TMR:
200%) and 25% DSP48 overhead (TMR: 200%). From 100,000 injected
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faults, 1,216 errors occurred in the unprotected design, 351 errors in
the ABFT design and 42 errors in the TMR design.

2.4.3 Block RAM

The embedded RAM blocks in Virtex devices need special care regard-
ing the mitigation because very similar to the configuration memory,
upsets in Block RAMs can accumulate, leading to an ever decreas-
ing reliability of the memory. Although the Block RAM content can
be read out via the configuration interface, external scrubbing is not
possible during operation because the RAM can not be accessed by
configuration and user logic at the same time [32].

The recommended mitigation approach by Xilinx [80] includes TMR
for the Block RAM (including triplicated voter) and a memory scrub-
bing engine implemented on user logic layer, similar to the scheme
depicted in Figure 11. This method can only be applied to single-
port RAMs because eventually, they must be replaced by dual-port
counterparts as the second port is required for scrubbing. A counter
auto-increments the address of the second port and once the voter
detects a failure, the counter is stopped, the voted and thus corrected
output is written back to memory and the counter is started again.

Rollins et al. present a comprehensive comparison of fault-tolerant
memories in SRAM-based FPGAs in [81]. The study covers the TMR
and scrubbing approach as described above plus several information
redundancy techniques, including duplication with error detection
codes and error detection and correction, applied in different config-
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urations (with and without triplicating the logic, with and without
memory scrubbing). The fault-injection results are similar to what
Morgan observed when applying information redundancy to state
machines [76]: First, the area overhead of the information redundancy
techniques sometimes exceeds the TMR approach and secondly, the
failure rates are always even worse than the rate for the unprotected
design. Only if Block RAM is used as Read Only Memory (ROM),
some of the information redundancy techniques perform slightly bet-
ter than the unprotected design but always worse than TMR.

2.5 mitigation design techniques aimed at design-time

fault avoidance

Another group of mitigation techniques, which can best be described
as fault avoidance techniques applicable during design time are dis-
cussed in this section. This group includes analytic approaches that
are aimed at analysing the sensitivity of circuits but also at reducing
this sensitivity, for instance, by re-routing the circuit design.

As already mentioned in Section 2.4.2, researchers at Politecnico di
Torino found that the TMR approach can be invalidated by SEUs be-
cause a single configuration bit upset can lead to multiple failures on
the user logic layer. By observing and analysing this fault mechanism,
a set of tools has been developed which allow the avoidance of these
faults already at design time.

In [82], a Static Analyzer tool (STAR) is presented. Based on the
researcher’s knowledge about the proprietary bitstream format, the
tool is able to determine the critical configuration bits of a circuit
design. If TMR is applied to this circuit, the tool also determines the
bits which can invalidate the TMR approach as described before.

Based on STAR, a Reliability-Oriented Place and Route (RoRA) al-
gorithm has been developed [83, 84]. By re-routing the circuit, RoRA
can avoid the problem of single upsets attacking the TMR approach.
The authors were able to demonstrate that RoRA minimises the num-
ber of wrong answers of circuitry to which TMR or XTMR is applied
drastically. Furthermore, the authors point out that RoRA can identify
critical configuration bits much faster than fault injection experiments.
However, compared to the original TMR version, the re-routing de-
creases the performance of the circuit.
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To increase the performance of circuits to which TMR is applied, a
tool called V-Place was then presented in [85] and it was shown that
this tool can optimise the circuit’s frequency up to 44%.

The STAR tool was later updated to STAR-LX. The main advan-
tages are the reduction of the analysis time of more than five times
as well as the ability to analyse the dynamic evaluation of the design
under the presence of SEUs [86]. A modification which can analyse
the effects of MBUs called STAR-MCU is presented in [87]. To miti-
gate the effects of MBUs, a new placement algorithm called PHAM
was presented in [88].

For engineers and scientists who are interested in building their
own netlist analysis and CAD tools, researchers from Brigham Young
University present an interesting JAVA toolkit called RapidSmith [89].
The toolkit offers a rich Application Programming Interface (API) to
parse, analyse and manipulate XDL files (which can easily be created
from Xilinx netlists). A very recent work that makes use of this toolkit
is presented in [90]. In this paper, the authors estimate the susceptibil-
ity of an FPGA design. To determine the number of sensitive bits that
are responsible for the different SEU induced effects, as discussed in
Section 2.4.2.1 and shown in Figure 8, the authors conduct the post-
routing analysis using appropriate API functions of RapidSmith.

2.6 simulation, emulation and analysis of single event

effects

This section gives a brief overview of techniques for simulation, em-
ulation and analysis of single event effects, including accelerated ra-
diation testing and fault injection. These techniques are necessary to
validate any mitigation methodology applied to the design.

2.6.1 Accelerated Radiation Testing

Although first in-flight data for Virtex-4 devices have been published
[25], the common way to gain reliable static and dynamic cross-sections
for these devices is by means of accelerated radiation testing.

To simulate high-energy galactic cosmic rays and solar event heavy
ions on ground, the FPGA is exposed to low energy ions available in
particle accelerators. The quality of the simulation can be evaluated
by the amount of energy lost per unit length of track, also referred
to as Linear Energy Transfer (LET). Because the SEE sensitive region
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is rather thin, ions with lower energies are sufficient for simulation
as long as the LET is similar to the one of galactic cosmic rays and
solar event heavy ions. The typical energy range used for simulation
is of the order of several MeV/A and the penetration range is between
30 and 100 µm. In general, the estimation of the SEU sensitivity using
this concept is rather conservative [91]. The machine most commonly
used for heavy ion SEU testing is the cyclotron. Several accelerators
can be found across Europe, for instance the facilities GANIL and
IPN in France, SIRAD and LNS in Italy, GSI in Germany and the HIF
in Belgium [92].

Single event phenomena can also be induced by protons. Linear
accelerators and cyclotron accelerators are capable of generating pro-
tons with sufficient energy to simulate solar flare and proton belt
conditions [15].

Regarding Virtex devices, most test result data has been collected
at the cyclotron at Texas A&M University and/or at the cyclotron at
Lawrence Berkeley National Laboratory and published by Los Alamos
National Laboratory, NASA Goddard Space Flight Center and the Xil-
inx Radiation Test Consortium. Quinn et al. present in [93] results
regarding radiation-induced MBUs in Virtex, Virtex-II and Virtex-4
devices and discuss the general reliability concerns of Virtex FPGAs
in [94]. In [60] they present the results regarding circuitry to which
TMR is applied and discuss the problem of domain crossing errors.
In [95], first results for Virtex-5 are published. In 2009, results regard-
ing the SEU-susceptibility of logical constants were presented [96]. In
the same year, a paper describing their methodology for static and
dynamic testing was published too [97]. The upset characterisation
of embedded PowerPC cores is presented by Allen in [98] and the
more general characterisation for Virtex-4QV FPGAs by Swift in [99],
finally leading to the summary report published by NASA and Xil-
inx [3]. One year later, a report summarising the results gathered
from dynamic testing and from the testing of protected designs was
published by Allen [24]. Recently, the static SEU characterisation of
Virtex-5QV was presented in [23].

2.6.2 Fault Injection

As an alternative to accelerated radiation testing, upsets in the config-
uration memory can also be emulated by fault injection.



2.6 simulation, emulation and analysis of single event effects 38

Comp

DUT 1

DUT 2

Faut Injection
System

Test Vector
Generator

10
10
11

Figure 12: Example of a fault injection system

Although many different fault injection implementations have been
presented in literature, the basic structure is similar for many systems,
see Figure 12. Two devices are simultaneously fed by test vectors.
One of the devices is used as a ’golden’ reference while faults are
injected into the second Device Under Test (DUT). Fault injection is
based on bitstream manipulation: Often, a configuration frame is read
back from the FPGA via one of the configuration interfaces, one or
more bits are flipped and the frame is written back to the device.
The outputs of both FPGAs are compared by some mechanism which
detects if the fault injection led to a failure. Alternatively, only one
DUT can be used and its response is compared to ’golden’ answers
during the fault injection campaign. In the following, two exemplary
European systems are presented.

A fault injection system with a long history in Europe is FLIPPER,
developed by Alderighi et al. under ESA funding [100]. The system
comprises one Virtex-II Pro FPGA as controller that can be connected
to a DUT board hosting the FPGA under test. The controller commu-
nicates with a software running on a host PC via USB. In contrast
to the example depicted in Figure 12, only one DUT is used and its
response is compared to stored, known to be correct answers. Test
vectors can be converted from testbench stimuli and are fed into the
DUT after one or more faults were injected into the bitstream. Results
from FLIPPER were compared to acceleration testing results [101] and
the authors conclude that FLIPPER is an effective tool to evaluate dif-
ferent mitigation techniques due to its capability to predict failure
rates, provided that raw configuration bit upset rates of the target en-
vironment are known. However, the authors also point out that the
failure rate might be underestimated because SEUs in flip-flops, SETs
and MBUs are not emulated. FLIPPER was also compared to and
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used for the analysis of the STAR/RoRA tool as described in Section
2.5 [102].

The second fault injection system developed under ESA funding is
FT-UNSHADES from University of Seville. Compared to FLIPPER, its
initial aim was the emulation of SEUs and MBUs that originate from
SETs and thus manifest in flip-flop cells rather than the emulation of
configuration memory upsets. The system is based on a Virtex-II and
the circuit under test is duplicated and compared within one FPGA.
In each campaign, the application is driven to the desired fault injec-
tion time, the clock is stopped, the fault is injected into the desired
flip-flop(s) of one of the circuits, the clock is restarted and the out-
puts of both circuits are compared to detect any mismatch [103, 104].
Later, the injection system was updated (FT-UNSHADES-uP) to al-
low a more in-depth analysis of microcontrollers. The system only
uses one circuit under test whose output is compared to the theoreti-
cally correct output and it is now able to also inject faults into Block
RAMs, LUTs and SRL16s [105, 106]. More recently, FT-UNSHADES2

has been developed [107]. The system is based on Virtex-5, and all
data management is processed in hardware, leading to much higher
fault injection rates. Now, the system can also be used to inject faults
into the configuration memory and the usability was increased due
to a simplified design flow and a web browser based user interface.

2.6.3 Availability Analysis

Regarding availability analysis methods for SRAM-based FPGAs, only
a small amount of work exists. McMurtrey et al. use Markov models
to estimate the reliability of TMR systems [53]. Among other things,
the authors investigate how multiple TMR partitions increase the
reliability. Ostler et al. present a reliability analysis of SRAM-based
FPGAs in [108]. The methodology takes particular radiation environ-
ments into account and is based on fault injection experiments. Kastil
et al. present a dependability analysis of their fault tolerant systems
in [109]. Applications hosted on SRAM-based FPGAs are partitioned
into functional units to which different redundancy configurations
can be applied. An automatic tool creates a Markov model of the over-
all system. Martin et al. also uses Markov chains in [110] to model the
availability that can be achieved with different scrubber implementa-
tions. In two recent publications, Hoque et al. deal with probabilistic
model checking techniques for aerospace applications [111, 112]. The
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authors use a continuous-time Markov reward model to determine
the availability of the configuration memory when scrubbing is ap-
plied as recovery technique.

2.7 research platforms for sram-based fpgas in space

This section presents an overview of several research platforms that
comprise SRAM-based FPGAs. It summarises concepts, which could
possibly be applicable to future spacecraft data processing systems.

Flight heritage for Virtex-4 and Virtex-5 is relatively rare and many
of the payloads serve only as technology demonstrators so far. From
the publicly available information, it seems that none of the platforms
utilises dynamic partial reconfiguration as a functional feature. Al-
though dynamic partial reconfiguration may offer benefits for some
projects, it can be assumed that in-flight experience for this unique
capability of SRAM-based FPGAs is still a long way off.

However, in the research community, this topic is actively investi-
gated. In the following, six platforms and frameworks are presented
that comprise Virtex devices which utilise dynamic partial reconfig-
uration and which specifically target space applications. A summary
of the systems is given in Table 7.

The platforms can coarsely be classified by the way the reconfig-
urable modules are used. Most of the platforms implement a System
on Chip (SoC) in which the reconfigurable modules are connected
to a soft Central Processing Unit (CPU) core, i.e. the reconfigurable
modules are used as hardware accelerators that can be installed on
demand. The other group of platforms uses reconfigurable modules
as processors that can process data streams independently and thus
without interaction of a CPU.

2.7.1 Reconfigurable System on Chip

A demonstrator platform called Dynamically Reconfigurable Process-
ing Module (DRPM) is under development at University of Bielefeld
and Paderborn, Germany [113]. It is based on a prototype platform
called RAPTOR-X64. Aside from a communication module, the sys-
tem comprises two processing modules, each module including a
Virtex-4 FPGA. The reconfiguration controller is part of the FPGA. It
is not only used to reconfigure the FPGA via the ICAP interface but
also for scrubbing of the configuration memory. The partial recon-
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Table 7: Comparison: Research platforms for SRAM-based FPGAs in space

System Architecture

Braunschweig Macro-Pipeline Multiprocessor
Brno Hardwired hardware blocks
Bielefeld/Paderborn General Purpose SoC
Edinburgh/IKERLAN Reconfigurable Computer
Florida General Purpose SoC
Arizona Several FPGAs hosting single task pro-

cessors

Communication Mechanism

Braunschweig Network on Chip
Brno Hardwired
Bielefeld/Paderborn Embedded Macro Bus Structure
Edinburgh/IKERLAN via ICAP
Florida PLB Bus
Arizona OPB Bus

Key Features

Braunschweig NoC used to isolate modules during the
reconfiguration process.

Brno Reconfiguration controller implemented
in hardware.

Bielefeld/Paderborn Embedded Macro to allow flexible place-
ment of modules.

Edinburgh/IKERLAN Modules are handled as hardware tasks.
Communication via ICAP to allow flexi-
ble placement of modules.

Florida Adaptive fault-tolerance.
Arizona Two-level healing methodology.

FDIR Strategy

Braunschweig Scrubbing.
Brno Different redundancy modes and on-

demand scrubbing.
Bielefeld/Paderborn Scrubbing.
Edinburgh/IKERLAN Scrubbing due to continuous task re-

configuration. Fault-aware task allocator
(hard errors). Fault-tolerant ICAP con-
troller.

Florida Adaptable, modular redundancy and on-
demand scrubbing.

Arizona Software-based fault detection. Partial
on-demand scrubbing. Cold module re-
dundancy. Task allocation to another
FPGA.
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figurable modules are connected using so-called Embedded Macros
which embed a bus structure into tiles. The main motivation for such
a structure is given in [114]: By dividing a partial reconfigurable area
into atomic units called tiles, modules of different sizes can be more
efficiently placed at run-time. It was found that an embedded bus
structure with shared signals supports the flexible placement of the
modules optimally due to its homogeneity. The tool STARECS from
Politecnico di Torino [115] is used to analyse the SEU effects on the
system and at present, work regarding the fault-tolerant communica-
tion via the Embedded Macros is in progress.

Researchers at University of Edinburgh, UK are also working to-
wards a partial reconfigurable system on Virtex-4 FPGAs. The main
objective of the work is a Reliable Reconfigurable Real-Time Oper-
ating System (R3TOS), introduced in [116]. Reconfiguration is done
by R3TOS internally through the ICAP port. In the course of the re-
search on R3TOS, an Area-Time Response Balancing Algorithm (ATB)
for scheduling real-time hardware tasks was proposed in [117] and
a task allocator in [118], which is able to deal with spontaneously
occurring faults. The paradigm followed in Edinburgh is that hard-
ware tasks are handled like normal threads in a higher programming
language (e.g. POSIX threads). To ’call’ a hardware task, the recon-
figurable module needs an appropriate interface, which is proposed
in [119]. In the same paper, an interesting approach for inter-task com-
munication is presented: Instead of utilising a network with a high
resource overhead, the data is simply copied from the output buffer
of one module to the input buffer of another module by reading the
data through ICAP and writing it back. One benefit of avoiding an
on-chip communication is the fact that less wires need to cross the
partial reconfigurable modules which increases the flexibility regard-
ing the module placement. Built on the ICAP-based communication,
a second task allocator called Snake is presented in [120] and because
R3TOS is heavily making use of the ICAP port, a fault-tolerant ICAP
controller is introduced in [52].

Researchers at University of Florida, USA are working towards a
framework for the usage of Commercial Off-The-Shelf (COTS) FPGAs
in space applications. The system also utilises dynamic partial re-
configuration and one main aspect of their work is adaptable fault-
tolerance that is achieved by adding and removing redundant re-
configurable modules depending on external constraints in terms of
availability and power [42, 121]. The basic structure of the proposed
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framework is depicted in Figure 13. Several reconfigurable partitions
are connected to a controller that comprises failure detectors. The
controller itself is connected via a PLB bus to an on-chip Microblaze
softcore. The controller, the bus and the softcore, as well as its pe-
ripherals, are placed in the static area of the FPGA. The static area is
hardened against SEUs by applying TMR to the netlist of the design.
The researchers also investigated the suitability of ABFT for such sys-
tems [79] and presented their own fault injection system [122].

Researchers at University of Arizona, USA, are working on a Virtex-
5 based partial reconfigurable system called SCARS which is intro-
duced in [41] and based on a two-level healing methodology. The
system comprises five Virtex-5 FPGAs, each including a Microblaze
soft core which is responsible for the self-healing. The partial reconfig-
urable modules are partitioned together with redundant copies into
so-called slots and connected to the Microblaze processor bus. The
software running on the Microblaze is responsible for the detection of
faulty modules. If a fault is detected, the module is scrubbed through
the ICAP interface. If the failure persists, it is seen as an hard er-
ror and another redundant module in the slot is activated. The five
FPGAs are connected to a master node in a wireless network. Once
all modules in a slot are faulty, the task which was running in the
faulty slot is moved by the master node to another FPGA.
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2.7.2 Reconfigurable Stream Processors

The work on reconfigurable FPGAs at the University of Braunschweig,
Germany, goes back to a data processing unit for a camera on-board
the Venus Express mission. In 2007, an update of this architecture
was proposed which also allows in-flight partial reconfiguration [124].
To interconnect the partial reconfigurable modules, a Network on
Chip (NoC) called SoCWire was proposed in [125] which is heavily
based on SpaceWire, the only space-qualified point-to-point network
architecture [126]. The main motivation to use a NoC approach can be
found in [127]: During the reconfiguration process, glitches can occur
since frames become directly active during the write cycle. To qual-
ify such a system for space applications, the partial reconfigurable
module must be isolated from the host system which can optimally
be achieved by a NoC approach. The successful isolation and thus
protection against such glitches was shown in [128]. SoCWire became
part of a demonstrator platform called DRPM, developed in coop-
eration with the European Space Agency and Astrium Ltd., UK. The
demonstrator comprises one or more modules, each module with a ra-
diation hardened reconfiguration controller and two Virtex-4 devices.
In 2011, an Advanced Microcontroller Bus Architecture (AMBA) to
SoCWire bridge was presented in [123] and recently a higher proto-
col called SoCP, which is also based on a SpaceWire protocol, was
introduced in [129]. The basic structure of the DRPM can be seen in
Figure 14. The reconfiguration controller, depicted on the left hand
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side of Figure 14, is implemented on a reliable antifuse FPGA. It com-
prises a SoC with a LEON3 CPU and several peripherals, e.g. mem-
ory controllers. The Virtex-4 FPGAs, one of them depicted on the
right hand side, are divided into reconfigurable partitions which are
interconnected via a SoCWire routing switch.

A more theoretical framework that deals with FDIR for SRAM-
based FPGAs is proposed by researchers at University of Brno, Czech
Republic. Several hardware blocks are arranged in a hardwired pro-
cessing pipeline. For each hardware block, a different redundancy
mode can be applied, e.g. TMR or DWC. The output of the failure
detectors is connected to a bus and the health status of the hard-
ware blocks is reported via this bus to a reconfiguration controller.
In contrast to other approaches presented here, the reconfiguration
controller is implemented in hardware. In the course of this research,
the design of online failure checkers was first proposed in [130] and
later extended to the overall framework [68]. The reconfiguration con-
troller is described in [43] and a fault injection system is presented
in [131]. Finally, a dependability analysis for the framework is de-
scribed in [109].

2.8 summary of existing mitigation techniques

Research on mitigation techniques for SRAM-based FPGAs for space
applications has engendered a very large number of publications in
this research field. As it was shown in Section 2.3.3 the proposed
methodologies can be split into just a few main categories targeting (i)
the configuration memory, (ii) the user logic or (iii) the Block RAMs.
Regrettably there are not enough design details in the open litera-
ture in order to compare the existing methods fairly. In addition, on-
board designs are very much dependent on mission objectives and
constraints. In most cases, the decision on the use of a particular
technique will be based on a trade-off between power, area and per-
formance overheads as well as achievable system availability. In this
section a summary of the reviewed mitigation methods is presented
which is illustrated by an example decision strategy on selecting the
right mitigation technique. It is hoped that the proposed decision
strategy can serve as a guidance to researchers and engineers who
are novices in the field. However, it is expected that designers will
exercise their own judgment and draw their own conclusions taking
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Figure 15: Example decision flow

into account the specifics of their projects when considering the rec-
ommendations given below.

Figure 15 exemplifies the main steps, which a decision process on
selecting a particular mitigation technique for SRAM-based FPGAs
on board spacecraft might involve. Considering the fact that space
engineering projects usually require strict verification procedures, it
might be a wise decision to choose a solution with the lowest possible
implementation complexity to meet the given constraints.

If the FPGA design is often reconfigured, for instance because the
chip area is shared by several applications, it could be decided not
to apply any mitigation technique at all. This is because every time
the system is reconfigured it is brought back into a safe initial state,
i.e. possible faults in configuration memory and user memory are re-
moved too. This simple solution has no additional power, area or per-
formance overhead at all. If it does not lead to a satisfactory system
availability, however, one may add periodic scrubbing which is able
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to remove faults in the configuration memory during the time the sys-
tem is running. Still, failures can be ’trapped’ in state-dependent user
logic but fortunately, the ratio of user memory elements to sensitive
configuration bits is often small enough to gain a significant increase
in system availability anyway.

If frequent full reconfigurations are not part of the normal oper-
ation, one must consider to add a combination of mitigation tech-
niques. Applying spatial redundancy without implementing a repair
strategy (like scrubbing) is not recommended because it only extends
the time span until the system becomes unreliable. On the other hand,
a strategy solely based on scrubbing is not an ideal solution either be-
cause faults can manifest as permanent failures within the user mem-
ory logic. Thus, a failure detection and/or failure masking technique
is usually combined with a failure recovery technique.

Most payload data and imaging applications could be classified as
either being of a processor type or a stream type. The first type com-
prises all kinds of microcontrollers and -processors or custom-built
processors used for data acquisition and similar tasks. These types
of applications are never or rarely reset or restarted and may contain
a large state space and a huge amount of state variables. Embedded
RAM is often used to store data over a long period of time. The sec-
ond type comprises circuits that can mainly be found in payload data
processing applications, for tasks like data compression, encryption
or filtering. These types of applications process data block-wise, e.g.
image by image, and often, the state space is traversed with each data
block. Typically, the number of state variables is low and embedded
RAM is mainly used for FIFO buffers.

Two possible mitigation strategies can be followed:

1. Spatial redundancy (partial TMR or full TMR) is applied to the
netlist of the circuit and the configuration memory is periodi-
cally scrubbed.

2. The whole circuit is duplicated or triplicated (modular redun-
dancy) and a majority voter or comparator, respectively, is used
as failure detector. Then, the failure recovery can be triggered
on demand.

The spatial redundancy mitigation strategy goes well with the pro-
cessor type of application because this low-level redundancy approach
allows automatic data resynchronisation after repair. This strategy
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is also simple to apply because commercial tools exist which auto-
mate the insertion. However, one must carefully verify that the used
toolchain does not optimise the inserted redundancy away. If the de-
sign is small enough and the power budget relaxed, full TMR leads to
the best possible system availability. If the design is too large to apply
full TMR, one could either use a multi-FPGA system or apply partial
TMR. With partial TMR, only the feedback loops are typically pro-
tected but not the data path within the user logic. As a consequence,
errors will become visible as transient failures at the output of the
FPGA. No matter which kind of TMR is applied, one must imple-
ment periodic scrubbing too. If external radiation-hardened hardware
is available or can be afforded, external scrubbing is the more reliable
approach. If either blind or readback scrubbing should be used de-
pends on the particular application but blind scrubbing is surely the
solution with the lowest implementation complexity.

The modular redundancy mitigation strategy goes well with the
stream type of application because the user logic can be brought back
to a safe initial state after each data block. One drawback of this
mitigation approach is the fact that state variables must be synchro-
nised between redundant instances after repair. But since data is pro-
cessed block-wise and the number of state variables is usually low,
technical solutions can be found to execute the data resynchronisa-
tion between the data blocks. Despite the increased implementation
complexity, this mitigation approach offers some real benefits. For
instance, the configuration memory must only be repaired after a
failure has been detected, which can maximise the system availabil-
ity and minimise the power consumption compared to the periodic
scrubbing approach. Often, the stream type of application does not
require maximum possible system availability. For instance, one may
tolerate a short downtime with each upset as long as the system is
fail-silent. In this case, it is sufficient to only duplicate the circuit
and to use a comparator as failure detector. If downtime is not an
option, modular TMR can be applied. If not enough chip area is avail-
able to triplicate the circuit, one can investigate if RPR is applicable.
Then, failures can be masked but the output of the circuit might be
degraded in precision until the faulty module is repaired. Modular
redundancy goes also well with multi-FPGA systems because redun-
dant instances can be distributed over several FPGAs.
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2.9 analysis of the state of the art

Research regarding mitigation techniques for SRAM-based FPGAs
can coarsely be broken down into:

• Work on research and demonstrator platforms, which may also
include one or more of the topics mentioned hereafter.

• Work on specific failure detection and masking techniques (TMR,
DWC etc.).

• Work on specific failure recovery techniques (mainly scrubbing).

• Work on fault emulation techniques.

• Work on fault avoidance techniques by improving the design
tools.

• Work on dependability analysis techniques.

Both, University of Braunschweig and University of Bielefeld pro-
vide hardware platforms which are scalable and which already im-
plement features very similar to real flight hardware. However, the
platforms do not implement any FDIR scheme yet. Due to the sup-
port from the European Space Agency and Airbus Defence and Space,
both platforms are available for a proof of concept implementation of
the FDIR methodology developed in the course of this PhD work.
Although both systems offer unique capabilities, the one by Univer-
sity of Braunschweig is chosen for this work because of the following
reasons:

• The system designed by University of Bielefeld is a SoC with
an embedded softcore on each FPGA whereas the system from
University of Braunschweig is based on stream processors that
can process incoming streams without the interaction of a CPU.
The FDIR methodology proposed in the course of this PhD
work aims at high performance computing which can best be
achieved with a system in which the algorithms are solely im-
plemented in hardware. Therefore, the proposed FDIR strategy
concentrates on such systems rather than on SoCs and as a
result of this, the system from Braunschweig is the preferable
choice.

• The system from University of Bielefeld includes an internal re-
configuration controller which uses the internal ICAP interface
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whereas the system from Braunschweig includes an external,
reliable reconfiguration controller which configures the FPGA
via the SelectMAP interface. As discussed in Section 2.4.1.4, ex-
ternal reconfiguration and scrubbing is commonly seen as the
more robust approach.

• The communication within the system from University of Braun-
schweig is based on a NoC whereas the system from Bielefeld
relies on a custom designed embedded bus structure. For the
here proposed approach, a NoC is the preferred choice. Due to
the nature of a NoC, the system is scalable, i.e. the available
bandwidth is not decreased if the number of network nodes
is increased. As a result, a NoC is a sound backbone for high
performance computing.

Two research platforms that are intended for the research on FDIR
are presented by researchers at University of Florida and University
of Brno. Although both platforms offer some unique and original fea-
tures, e.g. a reconfiguration controller fully implemented in hardware
(Brno) or the possibility to add and remove redundant modules dur-
ing flight (Florida), they are both lacking the flexibility and scalability
needed for applications like the ones targeted by the FDIR methodol-
ogy proposed here. Both approaches are restricted to one FPGA and
thus, the FDIR scheme cannot be applied to multi-FPGA systems. Fur-
thermore, the approach of University of Florida is a SoC which may
not fulfill the needs for high performance computing. A platform
that targets multi-FPGA systems is proposed by researchers at Uni-
versity of Arizona. In this approach each FPGA implements a SoC, in
which failure detectors, implemented in software, detect faulty hard-
ware modules. The approach can best be compared to a distributed
computing system, since hardware tasks are moved to other network
nodes in case of permanent failures. Although this approach is in-
teresting due to its two-level FDIR methodology, it mainly takes hard
errors into account and it can be assumed that it also would not fulfill
the performance requirements needed here.

Regarding failure detection and failure masking techniques, two
approaches could be followed. The first approach would be based on
spatial redundancy at netlist level. Several research groups, e.g. at
Brigham Young University and University of Turin, provided valu-
able contributions to this field. The second approach would be based
on modular redundancy as used for example by Paulsson, Jacobs and
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Straka. For this work, a framework based on the latter approach is
chosen because:

• The approach becomes rather technology and application inde-
pendent.

• The approach allows the tuning of the system availability and
the power consumption during flight.

• The approach is easier to qualify for space applications and sim-
plifies the development of stochastic system availability models.

• The approach allows on-demand scrubbing, i.e. a faulty module
is only repaired after a failure has been detected.

• The approach goes well with systems utilising dynamic partial
reconfiguration as a functional feature since the reconfigurable
partitions are already physically separated.

As discussed in Section 2.6.3, not much work exists regarding avail-
ability analysis methods. However, it is believed that such analysis
methods are important for every FDIR framework as they can provide
statements on the quality of the employed FDIR techniques. Thus,
the FDIR framework developed in the course of this work should
also include such a method. It was found that previous works take
only the configuration memory into account. However, other FPGA
building blocks, especially Block RAMs, cannot be ignored due to the
large amounts of buffers that are typically used by streaming applica-
tions. Thus, a more complete, yet easy to follow availability analysis
methodology will be presented in this thesis, which also takes Block
RAM and flip-flop upsets into account.

2.10 conclusions

The literature survey reveals a large number of high quality publica-
tions in the field of SRAM-based FPGAs, including work on failure
detection, failure recovery and fault simulation. In the course of this
PhD work, elements from all these research fields will be evaluated
and assembled to one overall FDIR methodology which will be later,
as a proof of concept, implemented on a hardware platform devel-
oped at University of Braunschweig, Germany. Other research groups
exist that also aim at finding such an overall FDIR methodology. How-
ever, none of these groups proposed a solution that is flexible and
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scalable enough to allow high performance computing with stream
processors that can be distributed over several FPGAs. Summarised,
the following gap in the research landscape can be identified:

• No FDIR scheme exists that specifically targets multi-FPGA sys-
tems in which stream processors can freely be distributed over
several FPGAs.

• No availability analysis method exists, which specifically targets
such a FDIR framework and which also takes Block RAM and
flip-flop upsets into account.

The undertaken literature survey is the first attempt at present-
ing a systematic and analytical overview of this rich research field,
which has not been subjected to a thorough analysis in recent years.
In addition, the proposed design recommendations, resulting from
the survey, can facilitate a fast start to the topic for both scientists and
engineers, who are novices in the field.
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C H A P T E R 3 :
D I S T R I B U T E D FA I L U R E D E T E C T I O N M E T H O D

3.1 introduction

The analysis of the state of the art in Section 2.9 revealed that no
FDIR approach for SRAM-based FPGAs exists, which specifically tar-
gets multi-FPGA systems. Furthermore, all approaches described in
literature so far do not allow a flexible placement of stream processors
on reconfigurable partitions because usually, the connections between
redundant hardware modules and failure detectors are hardwired.

In this chapter, a novel technique called Distributed Failure Detec-
tion is proposed that shifts failure detection mechanisms to a network
level. Instead of hardwired connections, the stream processors are in-
terconnected via a NoC. This NoC can span across several FPGAs,
making this FDIR approach especially applicable to multi-FPGA sys-
tems.

This novel method, which can also be understood as an FDIR hard-
ware framework, comprises the following main components:

• Data processing is done by so-called stream processors, which
can process incoming network data streams automatically. Each
stream processor implements a specific data processing algo-
rithm, e.g. data compression, encryption, filtering etc.

• The stream processors are placed on dynamically reconfigurable
partitions implemented on SRAM-based FPGAs. The partitions
are interconnected with each other in an arbitrary NoC topol-
ogy via routing switches.

• If increased system availability is desired, a stream processor
can be duplicated or triplicated, i.e. the processor works in mod-
ular, hot redundancy.

• Adding or removing redundant processors could be done dur-
ing operation, i.e. the FDIR method is adaptive to reliability,
area and power constraints.

53
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Figure 16: Stream processor architecture

• Failure detection and masking is done by one or several voter
modules, which are integrated into the network. A voter mod-
ule can also work as a comparator. The module outputs a health
status, which can be used by an external controller to initiate a
failure recovery process.

• If a stream processor is used in hot redundancy, the input net-
work streams must be multicast within the network. Such a mul-
ticast mechanism is also part of the FDIR framework.

• A special addressing scheme is required to isolate possible fail-
ures propagating through the network to avoid congestion.

• All the aforementioned mechanisms are integrated into a custom-
designed NoC routing switch.

The chapter is structured as follows. In Section 3.2, the required
architecture of a stream processor is defined. Section 3.3 discusses an
example network topology and explains the flow-control mechanism
of the NoC. Then, a Failure Mode and Effects Analysis (FMEA) is
presented in Section 3.4 that analyses possible failure modes, which
can occur in network streams. Section 3.5 presents the core FDIR
components, which are designed according to the outcome of the
FMEA, including the voter mechanism, the multicast mechanism and
the addressing scheme. In Section 3.6, a possible data resynchronisa-
tion technique is proposed, which utilises the proposed FDIR compo-
nents. Finally, Section 3.7 concludes the chapter by summarising the
proposed novelties.
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3.2 stream processor architecture

In the proposed FDIR framework, the different processing steps are
executed by dedicated stream processors which can process incoming
data streams independently.

The architecture of a typical FPGA based stream processor is shown
in Figure 16. An Intellectual Property (IP) core, the purpose of which
is to accelerate a desired DSP functionality, is embedded into the
stream processor. The stream processor further comprises a NoC in-
terface for the data exchange, some state machine logic and a memory
for state variables. Input control words are interpreted by the state
machine whereas input data words are directly fed into the acceler-
ator IP core. An additional memory holds all variables necessary to
configure the IP core. If the processing pipeline uses a specific proto-
col, a protocol parser and/or protocol generator may be added to the
inputs and outputs of the core.

The employed IP cores are of a passive nature, e.g. they represent
hardware accelerators that are designed to be connected as slaves to a
CPU bus. With the additional logic in the stream processor, however,
the cores become intelligent enough to process incoming data without
the interaction of a CPU, solely by interpreting data and command
words in the network input stream. Furthermore, suitable IP cores
process input data block-wise. For instance, such a block could be a
line of pixels, a full image or a series of images (think of hyperspectral
image compression and similar applications). As a rule of thumb, it
should be possible to reset the core after each data block without
affecting the processing of subsequent blocks.

All FPGA building blocks within one processor are multiplied too
if modular redundancy is applied. Therefore, an upset in a user mem-
ory cell can manifest itself as a measurable failure in the network out-
put stream in the same way as an upset in the configuration memory.
Regarding the Block RAMs of SRAM-based FPGAs, Rollins et al. [81]
showed that redundancy is the only effective mitigation approach be-
cause other mitigation techniques (like error detection and correction
codes) rely on additional logic that must be implemented as part of
the potentially unreliable FPGA fabric, see also Section 2.4.3.
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3.3 network topology

With the Distributed Failure Detection methodology, failure detectors
become part of a network. This novel approach allows the free dis-
tribution of redundant stream processors throughout the network be-
cause the output of each processor can be routed to any failure de-
tector, independent of its location in the network. The network can
even span over several FPGAs, i.e. links may connect network nodes
on-chip but also off-chip. The possibility to place redundant stream
processors on several FPGAs has many advantages, for example in
cases where the chip area of one FPGA is not sufficient to host a full
fault-tolerant design.

An example network topology is shown in Figure 17. Several par-
titions (circles) are interconnected via routing switches. A proces-
sor has been triplicated and the resulting instances (grey circles) are
placed on some of these partitions. Say, data is sent from a source
node Src to the processor and the processor sends the processed data
to sink node Sink. As the processor is triplicated, the data must first
be multicast within the routing switches. For instance, routing switch
1 multicasts the packets to output port 1, 3 and 4. In switch 2 and 3,
the packets are then routed to the other two redundant instances. Af-
ter processing, the resulting packets are routed to the failure detector,
which in this case is the voter module V, connected to routing switch
3. Finally, the output of the voter is routed to the sink node. Typically,
the network packets do not arrive simultaneously at the redundant
processors. The latency between each redundant processor and the
failure detector may differ too. In addition, the partitions might be



3.4 failure mode and effects analysis 57

Cn C4 C3 C2 C1 C0

FCT

Network Packet

EOP Marker Logical Address

Interface #1 Interface #2

RX Buf

TX Buf

TX Buf

RX Buf
din

nwrite
full

dout
nread
empty

Figure 18: Flow-control mechanism between two nodes

implemented in different clock domains. As a result, the voter mod-
ule must be able to deal with asynchronous network streams.

To enable a synchronisation of incoming network streams, the NoC
must be flow-controlled as shown in Figure 18. Each network packet
may start with a logical address (that is typically used for routing
within switches) and is terminated by an End of Packet (EOP) marker.
Every time the receive buffer has space for eight more characters, the
receiving node sends out a Flow Control Token (FCT). Therefore, the
receiving node can easily apply back-pressure to the communication
channel, i.e. it can force the source node to freeze by ceasing the trans-
mission of further FCTs.

3.4 failure mode and effects analysis

To draft the voter design, it is first necessary to understand the failure
modes that can occur in the network output streams of the stream
processors since these must be fully covered by the failure detector.

It was found in an FMEA that two types of failure modes must be
expected, those which affect the payload of network packets (appli-
cation data) and those which affect the network traffic itself. A short
summary of the analysis is shown in Figure 19. In detail, the follow-
ing failure modes were found:

• Case (A): Typical operation. The network packets are identical
but may arrive at different points in time at the voter module.
This non-synchronicity can be handled by exploiting the flow
control of the network architecture. The voter module applies
backpressure to the network channels that already received some
data until at least one data character has arrived in all slots (i.e.
a receive buffer assigned to a particular processor).
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• Case (B): The network packets have an identical structure, i.e.
the network protocol is faultless, but their payload differs due
to a failure in the application. In most applications, this case
will be the most observed one because the probability of a fail-
ure in the application is usually larger than the probability of
a failure in the network related components. This failure mode
can be detected by a majority voter or comparator mechanism
that compares the (synchronised) network streams character by
character.

• Case (C): One of the network packets does not arrive at all.
It seems as if the corresponding processor became faulty and
ceased the transmission for some reason. This case can be han-
dled by a timeout mechanism with a timeout value TIP, here-
after also referred to as inter-packet timeout, which is triggered
once the first redundant packet arrives in one of the slots of the
voter module. If the timeout elapses and one of the redundant
network packets has not arrived in its slot, this slot is marked
as faulty.

• Case (D): The transmission of one of the network packets sud-
denly stops before the EOP marker is reached. This case can
be handled by a second timeout mechanism with a timeout
value TIC, hereafter also referred to as inter-character timeout,
which is always retriggered when data character(s) are available
in some slots but not in others. If the timeout expires, it must be
assumed that the processor associated with the still empty slot
suddenly stopped the transmission and thus this slot is marked
as faulty.

• Case (E): One processor becomes a babbling idiot and is transmit-
ting undefined data at undefined points in time. Dealing with
this case can be problematic if the data from the babbling idiot
arrives much earlier than the data from the two other healthy
processor instances. Then, the inter-packet timeout would ex-
pire first and the two healthy slots would be spuriously marked
as faulty (actually all slots would be marked as faulty because
further voting is not possible). As it is rather unlikely that two
processors fail at the same time, this case is handled by assum-
ing that the early packet is wrong, i.e. the corresponding slot
is temporarily marked as faulty. Then, a second timeout value
TLR, hereafter also referred to as last-resort timeout, is started. If



3.5 failure detection and isolation mechanisms 60

NoC
Codec 1

NoC
Codec 2

NoC
Codec N

Switch
Matrix

Slot 1

Slot 2

Slot 3

TX Buf.

Word
Voter

Voter State Machine

Slot Health Status (2:0)

Figure 20: Voter module embedded into NoC routing switch

the packets from the healthy processors arrive within this time-
out period, no further action is required. If they do not arrive,
however, all slots must be marked as faulty.

Aside from the aforementioned failure modes, another mode must
be considered when multicasting data. If a processor becomes faulty,
it may block incoming traffic. This case can be handled by using a non-
blocking multicast mechanism that comprises a multicast timeout. If
one of the processors blocks incoming data throughout the timeout
period, it is afterwards excluded from the multicast until the end of
the current packet transmission.

3.5 failure detection and isolation mechanisms

3.5.1 Voter Mechanism

In this section, the design of the voter module, based on the out-
come of the FMEA, is described in detail. To save some hardware
resources, the voter module is not connected externally to the NoC
routing switch as depicted in Figure 17. Instead, it is embedded into
the switch as can be seen in Figure 20 (dashed box). Network packets
arriving at an arbitrary input port can be routed to any slot (input
buffer) of the voter module. Since the output of the voter module is
connected to the switch matrix too, it can be routed to any output
port of the routing switch.
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Table 8: Variable Definitions: Voter

Variable Description

data_available(3:1) not empty(3:1)
min2SlotsOk At least two slots are marked as healthy
min1OkSlotHasData At least one healthy slot has data available
min2OkSlotHaveData At least two healthy slots have data available
allOkSlotsHaveData All healthy slots have data available
allOkSlotsHaveEOP An EOP character arrived in all healthy slots
allOkSlotsVotedOk Data in all healthy slots is identical
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First, some variables are defined which simplifies the following de-
scription of the state machine, see Table 8. Aside from these variables,
voting_ok(3:1) is a bus provided by the embedded Word-Voter [132]
which is implemented as shown in Listing 1.

Listing 1: Implementation of Word-Voter

voting_ok(3:1) := "111" when dout(1)=dout(2)=dout(3)

"011" when dout(1)=dout(2)

"101" when dout(1)=dout(3)

"110" when dout(1)=dout(2)

din(0) := dout(1) when voting_ok(3:1) = "111" or "011" or "101"

dout(2) when voting_ok(3:1) = "110" �
The signal slot_status(3:1) is a register which stores the health

status of each slot and which can also be updated by an external
instance. The registration of the new status is done in several steps.
If a write enable signal is active, the new status is temporarily stored
and a pending flag is set for each updated slot.

Then, the pending flag register is moved to a temporary register
once data is flowing in all pending slots again. Afterwards, a status
update flag reg_status_update is set for each slot in which an EOP
character has been detected. This flag is used by the state machine to
finally reactivate the slot in its idle state.

Waiting for the data to flow again is necessary since there might be
some delay between the registration of the new status and the arrival
of the first valid data. Waiting for the EOP character is necessary due
to the integrated spilling mechanism: If a slot is marked as faulty, all
incoming data in this slot is deleted (or spilled) to prevent other parts
of the network from being blocked. After the slot is marked as healthy
again, the next arriving packet in this slot will be valid (detectable
by an EOP of the current packet). Thus, the spilling must be stopped
once a status update has been registered successfully. This is achieved
by setting the default value for the nread signals as shown in Listing
2.

Listing 2: Default value of nread signals

for i = 1:3 loop

nread(i) := slot_status(i) or reg_status_update(i)

end loop �
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state s1 This is the idle state in which the state machine re-
mains until a new packet arrives in at least one healthy slot under
the premise that at least two slots are healthy. Furthermore, if the
slot status register has been updated from an external instance in the
meanwhile, the new status is registered now. Pseudo code for the
implementation of this state is shown in Listing 3.

Listing 3: Implementation of state S1

for i = 1:3 loop

if register_status_update(i) then

slot_status(i) := register_status(i)

end if

end loop

if min2SlotsOk and min1OkSlotHasData then -- Transition T1

timer := inter-packet timeout value

state := S2

end if �
state s2 The role of this state is the synchronisation of the incom-
ing data streams. Since data is not taken out of the receive buffers
yet, back pressure is applied to the slots where data arrives earlier.
While the state machine remains in this state, the inter-packet time-
out counter is active. The state is left under two possible conditions:
Either data has arrived in all healthy slots or the timeout expired. In
the first case, the state machine proceeds to the normal voting oper-
ation in state S4. In the latter case, the next action is determined in
state S3. Pseudo code for the implementation of this state is shown in
Listing 4.

Listing 4: Implementation of state S2

timer := timer - 1

if allOKSlotsHaveData then -- Transition T2a

timer := inter-character timeout value

state := S4

elsif timer = 0 then -- Transition T2b

state := S3

end if �
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state s3 This state is entered once the timeout has expired in
state S2, i.e. not every healthy slot received a packet. The state is left
under three possible conditions. If only two slots were healthy before,
all slots must be marked as faulty and the state machine moves to
idle state S1. If all slots were healthy and two packets arrived, the slot
without packet is marked as faulty and the state machine moves on
to state S4. If three slots were healthy and only one packet arrived,
the slot in which this packet arrived is marked as faulty and the last-
resort timeout value is loaded into the timer. Then, the state machine
moves back to state S2. Pseudo code for the implementation of this
state is shown in Listing 5.

Listing 5: Implementation of state S3

if slot_status(3:1) = "111" then

if min2OKSlotsHaveData then -- Transition T3a

for i = 1:3 loop

slot_status(i) := slot_status(i) and data_available(i)

end loop

state := S4

else -- Transition T3b

for i = 1:3 loop

slot_status(i) := not(slot_status(i) and data_available(i))

end loop

timer := last-resort timeout value

state := S2

end if

else -- Transition T3c

slot_status(3:1) := "000"

state := S1

end if �
state s4 During the voting or the comparison of the incoming
data, the state machine remains in this state. Data is only read from
each healthy slot if the transmit buffer of the output port is not full.
On the other hand, data is only written to the transmit buffer if at
least two healthy slots have data available. As long as some healthy
slots have data while some others are empty, the inter-character time-
out counter is active. Once all slots have data available, however, the
counter is reloaded. This state is left under two conditions: If the
current packet was transferred successfully, the state machine moves
back to idle state S1. If the Word-Voter flags a mismatch or the time-
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out expired, the state machine moves to state S5. Pseudo code for the
implementation of this state is shown in Listing 6.

Listing 6: Implementation of state S4

for i = 1:3 loop

if slot_status(i) = '1' and full(3) = '0' then

nread(i) := '0'

end if

end loop

if min2OKSlotsHaveData then

nwrite(3) := '0'

end if

if allOKSlotsHaveData then

timer := inter-character timeout value

else

timer := timer - 1

end if

if allOkSlotsHaveEOP then -- Transition T4a

state := S1

elsif timer = 0 or (allOKSlotsHaveData and not allOkSlotsVotedOk)

then -- Transition T4b

last_char_voting_ok(3:1) := voting_ok(3:1)

state := S5

end if �
state s5 This state is entered if either the inter-character timeout
has expired or a voting mismatch has been detected. If only two slots
were healthy so far, all slots are marked as faulty and the state ma-
chine moves to idle state S1. Otherwise, it is checked if the timeout
expired or a voter mismatch occurred. In the first case, the empty slot
is marked as faulty. In the latter case, the slot that disagreed with the
other slots during voting is marked as faulty. Then, the state machine
moves back to state S4. Pseudo code for the implementation of this
state is shown in Listing 7.

Listing 7: Implementation of state S5

if slot_status(3:1) = "111" then -- Transition T5a

if timeout expired then

for i = 1:3 loop

slot_status(i) := slot_status(i) and data_available(i)

end loop
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else

for i = 1:3 loop

slot_status(i) := slot_status(i) and last_char_voting_ok(i)

end loop

end if

state := S4

else -- Transition T5b

slot_status(3:1) = "000"

state := S1

end if �
3.5.2 Multicast Mechanism

Multicasting data to redundant stream processors is done in a dis-
tributed manner within the routing switches. As mentioned in Sec-
tion 3.4, the multicast mechanism must be of non-blocking nature to
handle faulty processors that block incoming network traffic. A con-
ceptual circuit diagram of the non-blocking multicast mechanism is
shown in Figure 22. Say, a network packet arrives at port 0 and its
logical address is assigned to physical port 1, 2 and 3. Then, the mul-
ticast mechanism will transfer a data character to port 1, 2 and 3 if the
receive buffer of port 0 is not empty and all transmit buffers of port
1, 2 and 3 are not full. This is done by using the handshake signals
full, empty, nread and nwrite as can be seen in Listing 8.

Listing 8: Implementation of multicast handshake signals

minOneFull := (full(1) and multicastEn(1)) or

(full(2) and multicastEn(2)) or

(full(3) and multicastEn(3))

nwrite(1:3) := empty(0) or minOneFull

nread(0) := minOneFull �
To tolerate potentially faulty stream processors, a multicast timeout

mechanism is used which is always active if one and only one output
port of all active output ports is full, see Listing 9.

Listing 9: Implementation of multicast timeout mechanism

timerReload := true if not

only_one_set(full(1:3) and multicastEn(1:3)) �



3.5 failure detection and isolation mechanisms 67

NoC Port 1

FF 1

nwrite

full

Q EN

D

TX 1

NoC Port 2

FF 2

nwrite

full

Q

D

EN

TX 2

NoC Port 3

FF 3

nwrite

full

Q

D

EN

TX 3

Timer

= 0

timerReload

NoC Port 0
RX In

nread

empty

(multicastEn(3))

(multicastEn(2))

(multicastEn(1))

Not only one set

Figure 22: Circuit diagram of the multicast mechanism

If this timeout elapses, it is assumed that the stream processor,
which is associated with the blocking output port, is faulty. Then,
the output port is removed from the current multicast round by set-
ting its multicastEn flag to zero. As a result, the remaining redun-
dant stream processors receive input data, although some additional
latency, equal to the multicast timeout period, must be expected.

3.5.3 Addressing Scheme

The proposed NoC routing switch comprises a routing table, which
can be programmed by sending configuration network packets to an
internal configuration port. The same configuration port is also used
to program the timeout values described in the previous sections.

The routing switch can handle two types of addresses: (i) physical
addresses (range 1 to 31) that correspond to the number of the routing
switch ports and (ii) logical addresses (range 32 to 255) that can freely
be mapped to routing switch ports. Reserved address 0 is used to
reach the internal configuration port.

Within the network topology, each partition has a hard-coded logi-
cal address, i.e. even if a partition can host different types of stream
processors, the logical address always remains the same for this par-
tition. Similarly, the embedded voter module and the internal config-
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uration port have their own fixed logical address. There are several
good reasons why the address is mapped to the partition rather than
the stream processor, e.g.:

• The FDIR framework remains application-independent. Only
the predefined partitions in the network require a logical ad-
dress. Which stream processors are placed on these partitions
later on does not matter.

• It is not required to re-synthesise the Hardware Description Lan-
guage (HDL) code of redundant stream processors for different
addresses.

By programming the routing table, the logical addresses can be
mapped to output port(s) of the routing switch. If a logical address
is mapped to more than one output port, the multicast mechanism
becomes active as described in Section 3.5.2. As a consequence, any
desired data flow within the network, including multicasts, can easily
be implemented by simply reprogramming the routing tables within
the routing switches.

Aside from the already mentioned failure modes, the FMEA also
revealed that in some cases the logical or physical address of a net-
work packet could be falsified due to a failure in the stream processor.
This failure mode is a serious hazard for a network as it can lead to
congestion if a packet is routed to the wrong part of the network. This
is especially true for babbling idiots, which transmit indefinitely long
network packets.

Regarding failure isolation, two cases must be distinguished. If the
logical or physical address of a faulty network packet is not falsi-
fied, it will find its way to the next voter module. Within the voter
module, the faulty packet is masked out and therefore the failure is
successfully isolated. However, if the address is falsified, the packet
must be removed from the network as soon as possible to avoid any
congestion.

To achieve this, the following simple but powerful failure isolation
mechanism is added to the routing switch:

• Aside from mapping a logical address to one or more output
ports, it can also be restricted to one single input port. Then,
any faulty packet taking on the identity of another packet will
be deleted by the routing switch if it does not arrive at the input
port, to which the logical address was restricted to. In addition,
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any packet with a logical address that is not stored in the rout-
ing table is deleted by the switch. Ultimately, the combination
of these two mechanisms ensures that packets with wrong ad-
dresses are deleted by the routing switch, in which they try to
take a route they are not allowed to.

• Similarly, physical addresses can be falsified. In normal oper-
ation, physical addresses are not needed for the data flow be-
cause all communication within the FPGAs is based on logi-
cal addressing. They are, however, required during the initial
configuration of the system because the routing tables cannot
be programmed without physical addresses. To achieve failure
isolation, another mechanism is added that allows physical ad-
dressing to be switched off for each port of the routing switch.
Therefore, physical addressing can simply be disabled for all
routing switch ports after initial configuration.

3.6 data resynchronisation

An often-mentioned problem in connection with modular redundancy
is the required data resynchronisation between the redundant mod-
ule instances after a module has been successfully repaired. Fortu-
nately, typical payload processing applications do not depend on too
many state variables. The number of state variables required for the
initialisation of a processor after reset is often limited to a handful
of configuration and feedback variables. For instance, an image com-
pression core might need a variable storing the compression quality
and one storing the image line width. Another example could be an
encryption algorithm used in some feedback mode. Here, a feedback
variable storing the last cipher text might be needed to initialise the
freshly repaired processor.

Assuming that the processing chain has more network bandwidth
available than the input data stream or alternatively, that well dimen-
sioned buffers are available in the network, the data processing could
be stopped for a short time period in which the state variables are
shared between the currently functional stream processors and the
freshly repaired stream processor. It is proposed to use the already
available resources in the FDIR methodology presented here to ac-
complish this task.

As can be seen in Figure 16, each stream processor already com-
prises a state variable memory, which stores all required initialisation
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variables externally to the embedded IP core. Thus, it is sufficient
to dump theses variables over the network to the freshly repaired
processor, which can then store this variable set in its own state vari-
able memory. To increase the reliability of this mechanism, the state
variables of the two functional processors could first be compared be-
fore the freshly repaired processor registers them. Since each voter
module also works as comparator, an elegant solution would utilise
the voter module for this task. Consider the example shown in Fig-
ure 17. Say, the processor connected to routing switch 1 has been
just repaired and needs to be updated with initialisation variables.
The other two processors could stop the data processing after finish-
ing the processing of the current block of data and send their state
variables to voter module V. The voter module could compare the
network packet, which contains the state variables, and forward all
identical state variables to the freshly repaired processor which then
updates its own memory. However, there are two main issues that
must be taken into account:

1. The two functional stream processors are not running synchro-
nously and therefore a synchronous request to dump the state
variable memory could lead to situations where one processor
is dumping newer and hence other variables than the second
processor.

2. The two functional stream processors must stop any data pro-
cessing until the freshly repaired instance has updated its own
state variable memory and resumed its operation. Otherwise,
the shared variables might be already invalid once they become
active in the freshly repaired processor.

To solve the first problem, the request to dump the state variables
must be injected into the input data stream. For instance, a small hard-
ware module placed at the beginning of the processing chain could
send out a small synchronisation request packet. This request packet
would traverse the network like the regular network stream. Relative
to this input data stream it would arrive at the same bit position and
thus it could be ensured that the still functional processors receive
this request packet when they are both in the exact same state. Then,
the functional processors could bundle their state variables into a syn-
chronisation packet, which is attached to the output data stream.

At some point, the voter module would receive the redundant syn-
chronisation packets. The voter module is able to detect this special
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kind of packet and would move into a resynchronisation mode. While
in this mode, the aforementioned second issue could simply be solved
by applying backpressure to the slots associated with the two func-
tional processors. In other words, after receiving the synchronisation
packets, no more data characters are taken out from the slot buffers
and therefore the functional processors would be forced to stop the
data processing (with some latency as the buffers in the network path
would fill up first). In addition, the voter module could start a data-
synchronisation timeout. The timeout period must be chosen wisely
to (i) give the freshly repaired module enough time to update its state
variable memory but (ii) also take the buffer sizes and bandwidths
within the network into account. The voter module would then send
the synchronisation packet to the freshly repaired stream processor.
If no comparison mismatch occurred, the voter module would go
into a special wait state afterwards. A short time later, the synchro-
nisation packet would arrive at the freshly repaired processor, which
would update its state variable memory and resume operation. Once
the first data is processed, its first output packet would arrive at the
voter module, which is still in its wait state applying backpressure to
the other two redundant processors.

Now, the voter module would reintegrate the freshly repaired stream
processor because the first output packet of the freshly repaired pro-
cessor would be identical to the output packets of the other two re-
dundant processors. It would stop the backpressure and resume nor-
mal operation. However, if the data-synchronisation timeout elapsed,
it would be assumed that something went wrong during resynchro-
nisation. In this case, the backpressure would be released and nor-
mal operation would be resumed without reintegrating the freshly
repaired processor.

3.7 conclusions

The novel Distributed Failure Detection technique presented in this
chapter offers many advantages compared to classic mitigation ap-
proaches for SRAM-based FPGAs. On the one hand, the methodology
is adaptive, i.e. redundancy can be added or removed during flight to
either increase the system availability or decrease the power consump-
tion of the system. On the other hand, by utilising a NoC as commu-
nication architecture, redundant stream processors can be distributed
over several FPGAs and hence, multi-FPGA systems can be utilised
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more efficiently. Although data resynchronisation after repair is a se-
rious issue, a novel resynchronisation scheme was proposed, which
results in low implementation complexity and area overhead. Further-
more, the design of an innovative voter module has been presented.
In fact, the module is much more than just a majority voter: Firstly,
it integrates into a network architecture which allows the voting of
processor instances that can freely be distributed over the network.
Secondly, it is able to synchronise incoming network streams and can
cope with all failure modes that typically emerge in such streams. Fi-
nally, it can signal the status of each slot to an external supervisor
and can automatically reintegrate repaired processors. In addition,
an appropriate multicast mechanism and addressing scheme is pro-
posed, which guarantees a fault-free routing of data streams through
the network. All the aforementioned mechanisms are integrated in a
custom-designed NoC routing switch.

The FDIR methodology is not technology-dependent and could
be applied in a similar way to other systems consisting of multiple
processing elements interconnected in a modern switched fabric net-
work.



4
C H A P T E R 4 : AVA I L A B I L I T Y A N A LY S I S M E T H O D

4.1 introduction

SRAM-based FPGAs suffer from radiation induced failures, see Sec-
tion 2.2. However, the device can be recovered from these failures by
one of the configuration memory refresh methods reviewed in Section
2.4.1. Therefore, a combination of a failure detection and a recovery
technique makes this type of FPGA a repairable system. The proba-
bility that a repairable system functions correctly is called steady state
availability, often defined as:

A =
Tm

Tm + Td
(1)

where Tm is the uptime and Td the observed downtime, which is
the sum of the time required to detect and recover failures.

Availability analysis is an integral part of space product assurance
procedures and a dedicated European Cooperation for Space Stan-
dardization (ECSS) standard is available for European space projects
[133]. This standard gives several definitions for availability. In the fol-
lowing the term availability stands for inherent steady state availabil-
ity, i.e. downtime during idle periods does not contribute to the over-
all system availability. According to the ECSS standard, important
objectives of availability analysis include the verification of whether
or not a system conforms to the availability requirements. In addi-
tion, it also identifies unavailability contributing factors in order to
quantify their impact on (i) the decision-making process, and (ii) the
risk evaluation, reduction and control. The implementation of such
an availability analysis method with regards to SRAM-based FPGAs
has two significant advantages:

• It gives an estimation of the number of failure occurrences that
are to be expected either during a specific mission time frame
or the overall mission lifetime.

• It allows the comparison of different redundancy and recovery
schemes, which is especially important for applications where
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Figure 23: Block diagram of the proposed availability analysis methodology

an optimal mitigation approach must be found trading-off power,
area and reliability overheads.

In this chapter, a methodology is presented that allows the avail-
ability analysis of stream processors, implemented on SRAM-based
FPGAs. In Section 4.2, an overview of the proposed methodology
is given. Section 4.3 describes how the number of sensitive memory
elements can be quantified, including configuration memory, Block
RAM and flip-flop cells. In Section 4.4, stochastic Petri net models for
the most important FDIR configurations are proposed. Finally, Sec-
tion 4.5 concludes the chapter by outlining the proposed novelties.

4.2 overview

A block diagram of the proposed methodology is depicted in Figure
23. First, the SEU rates per bit-day are determined for the configura-
tion memory, the Block RAMs (hereafter also referred to as RAMB16)
and the flip-flops of a particular SRAM-based FPGA device in a spe-
cific orbit. In the following, a Virtex-4 FPGA device is used as an ex-
ample. The calculations are based on static SEU characterisation data
that was gathered from accelerated radiation testing and published by
Xilinx and NASA [3]. The radiation environment, i.e. the heavy ion
and proton fluxes of the orbit, is calculated using radiation models
standardised in the European standard ECSS-E-ST-10-04C [134]. The
calculated SEU rates give the probability of a bit flip in one single
memory element.
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However, to compute the availability of a stream processor, the SEU
rate per day and stream processor must be known and not just the
rates for the memory elements. Thus, the bit upset rates must be
scaled by the number of sensitive memory elements that must first be
determined. The sensitivity of the configuration memory is quantified
by randomly injecting faults into the memory using a fault injection
system whereas the sensitivity of the Block RAMs is estimated using
a custom-built memory profiling tool. For the usually small number
of flip-flops it is simply assumed that all of them are sensitive. Once
the sensitivity of all memory types is quantified, the SEU rate for the
whole stream processor is known.

To analyse the availability, the chosen failure recovery approach
must also be considered. The typical recovery approach for the con-
figuration memory is often referred to as scrubbing, a mitigation tech-
nique that refreshes the memory content from time to time with a cor-
rect bitstream, see Section 2.4.1. In contrast to partial reconfiguration,
scrubbing does not affect the user memory and can thus be executed
during circuit operation. For some failures, however, such a memory
refresh is not sufficient because the failure could have already mani-
fested itself in the user logic (e.g. state machines, counters and similar
state-dependent logic). Then, the user logic must additionally be reset.
For user memory (RAMB16s and flip-flops), two basic failure modes
exist: (i) a failure can either propagate to an output of the FPGA or (ii)
it can get trapped in a feedback loop. In the first case, the failure is of
a transient nature only and no further recovery actions are required.
In the latter case, the user logic must be reset to a safe initial state.

If one wants to model the availability of a processor to which a
specific recovery approach is applied, e.g. frame-based scrubbing or
partial reconfiguration, the SEU rates for the aforementioned failure
modes must be calculated separately. For instance, some configura-
tion memory bit upsets only require a memory scrub, while others
need an additional circuit reset. Therefore, the SEU rates for all these
cases must be determined. This is accomplished for the configuration
memory by the fault injection system that automatically tries to re-
cover from a failure in several ways and is thus able to classify and
quantify the sensitive bits, described in Section 4.3.1. For the RAMB16

cells and flip-flops, a custom-built netlist parser tool analyses how
many of these memory elements propagate into feedback loops and
how many of them do not. Then, the SEU rates for both cases can be
calculated.
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Once all SEU rates of interest are available, the steady-state avail-
ability is calculated using Stochastic Petri Nets. Several models are
proposed, which take different redundancy and failure recovery ap-
proaches into account but in principle, this modelling technique is
flexible enough to support all kind of FDIR approaches.

4.3 quantification of sensitive memory elements

The following three main types of memories, available in radiation-
tolerant SRAM-based FPGAs, must be considered in a detailed avail-
ability analysis:

• Configuration memory: The configuration of the FPGA is stored
in volatile SRAM memory cells. A part of the memory stores
control bits, which define the routing resources and the content
of the LUTs. Thus, a radiation-induced upset in one of these
sensitive memory elements can manipulate the circuit in such a
way that a failure becomes measurable at its output.

• Block RAM: In many streaming applications, a large amount of
embedded RAM blocks is utilised by the user logic. If a value,
which was falsified by an upset, is read from such a memory,
it can manifest itself as a failure and either propagate to the
output of the circuit or get trapped in a feedback loop within
the circuit.

• User flip-flops: In most cases, flip-flops do not contribute as
much as the aforementioned memory types to the overall cross-
section due to their typically low number. However, since flip-
flop upsets can get trapped in feedback loops too (which re-
quires some failure recovery action), they are not neglected for
the proposed availability analysis method.

4.3.1 Configuration Memory (via Fault Injection)

Although analytic tools for the quantification of sensitive configura-
tion memory bits are available, see Section 2.5, fault injection is prob-
ably still the most reliable technique for this task due to its capability
to take into account the dynamic behaviour of the application. With
this capability, the following steps can be accomplished:
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• The quantification of three types of sensitive configuration bits.
Those which lead to failures that:

– can be scrubbed (FC/S).

– need an additional circuit reset after scrubbing (FC/SR).

– can only be repaired by a repeated partial reconfiguration
of the stream processor (FC/Re).

• The creation of a database that stores information about config-
uration bits, for which the failure mode is exactly known. The
database can later be used to validate FDIR techniques.

As part of this PhD work, a fault injection system is proposed as
outlined in Figure 24. The FPGA is divided into three partitions host-
ing three identical stream processors, all interconnected using a NoC
routing switch. The proposed voter module is part of this NoC rout-
ing switch, see also Section 3.5. A network bridge allows the com-
munication between external components and each partition via a
network. The fault injection campaign is controlled by two instances:

• An embedded software running on a microprocessor is respon-
sible for the fault injection itself. This is done by first retrieving a
desired single configuration frame from RAM, to which the par-
tial bitstream under investigation has been copied before. Then,
a bit in this configuration frame is flipped before it is finally
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downloaded to the FPGA via one of its configuration interfaces,
e.g. SelectMAP.

• A software running on a host PC controls the fault injection
campaign by sending telecommands to the embedded software
system.

A flow chart of the novel fault injection and failure classification al-
gorithm can be seen in Figure 25. After injecting a fault into the partial
bitstream of one of the stream processors, the host PC software sends
a full input data block to the FPGA. The data block is multicast to
the three identical stream processors within the NoC routing switch.
The returning data from the stream processors is routed through the
voter module, which is used as a failure detector, and then returned
to the host PC software. The host PC software requests the status
of the voter module from the microcontroller to determine if the in-
jected fault led to a failure. If this is not the case, the configuration
frame is scrubbed to avoid an accumulation of faults in the config-
uration memory and the next random fault is injected. If there was
a mismatch, however, the sensitive bit is classified as FC/S. The con-
figuration frame is scrubbed and the host PC software sends another
data block to the stream processors to check if the scrubbing was suc-
cessful. If so, no additional actions are required and the next random
fault can be injected. If not, the classification of the sensitive bit is up-
dated to FC/SR and the circuit is reset by the embedded system (again
by sending an appropriate telecommand). Then, the procedure is re-
peated. If the reset was successful, the next random fault is injected.
Otherwise, if the stream processor is still not returning a correct an-
swer, the classification is updated to FC/Re. The classification for each
injected bit is stored in a database for later analysis.

Faults are injected just before a data block is sent to the stream pro-
cessor. In reality, however, a fault could also occur during processing.
Preceding fault injection was chosen intentionally as it represents a
worst-case scenario that maximises the detection coverage of sensitive
bits.

The automatic fault injection technique can be rather slow since
full data blocks (e.g. full images) are sent through the stream proces-
sors. However, this is important to make sure that all of the states
of the circuit are traversed. It might take some time until the fault
manifests itself as a failure by propagating to the circuit’s output and
as a consequence, the failure could stay undetected if the state space
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is not fully covered. The technique allows a very detailed classifica-
tion of the different failure modes, using a real application. It is also
non-intrusive, i.e. no circuit modifications are required for the fault
injection campaign. Therefore, a fully placed and routed design could
be analysed in a very late design phase, an important aspect for the
typical qualification process in space engineering projects. And even
if only a limited number of faults can be injected, useful results can
still be obtained by using statistical theory. Since the outcome of the
fault injection campaign has a binomial distribution (recall the classic
urn problem), the number of sensitive configuration bits can be esti-
mated by a rather low number of statistical samples. To get an idea
how many samples are necessary, the formula for Wald confidence
intervals [135] can be used:

p = p̂± z1− 1
2α
·
√
1

n
p̂(1− p̂) (2)

where p̂ is the proportion of success (e.g. the ratio of sensitive bits
to all bits), n the number of trials, and z the 1 − 1

2α quantile of a
standard normal distribution with α as error percentile.

Once the fault injection results are available, a more conservative
approach for the final estimation of the proportion is chosen. The
so-called Clopper-Pearson interval is known to have never less than
the given coverage rate [135] which makes it a good candidate for
worst-case estimations.

4.3.2 Embedded Block RAM (via Memory Profiling)

Streaming applications often utilise huge amounts of embedded Block
RAM elements, e.g. as First In, First Out (FIFO) buffers or ROM. As
a consequence, the number of sensitive bits inside these elements can
be rather large, sometimes comparable to the total number of sensi-
tive configuration bits. Therefore, upsets in Block RAMs cannot be
neglected in an availability analysis. However, the estimation of the
Block RAM utilisation is complicated if not impossible with the stan-
dard toolchain. If only the absolute number of Block RAMs is taken
into account, the number of susceptible bits would be way too over-
estimated. In reality, the number of sensitive bits depends on the dy-
namic behaviour of the application. Firstly, many rows within a Block
RAM are simply not used. Secondly, faults affecting memory rows
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which are not read out after the fault occurred will also not lead to a
failure.

In the course of this work, a novel tool for the dynamic profiling
of Block RAMs has been developed. The basic idea, as outlined in
Figure 26, is as follows: The processing of one full data block is simu-
lated using a post-synthesis simulation model, e.g. in ModelSim [136].
During simulation, a vcd-file is created for each Block RAM which
records the changes on the address and write enable lines of both
ports for the whole simulation run. Furthermore, some information
about the Block RAM is stored in a nfo-file, including the read and
write width configuration, the write mode (write-first, read-first, no-
change) as well as a flag which signals if the data in and data out lines
of both ports are actually connected. All this information is gathered
and stored automatically by a Tcl script, which is executed within the
simulator.

Once all files are available, another tool parses the vcd-files into C++
objects where the time-value pairs of the signals are stored. Then, the
memory profiling begins: The tool steps through the simulation run
to identify read and write accesses. This is accomplished by searching
for signal changes in the address and write enable lines of connected
ports. While write accesses can easily be identified by the correspond-
ing write enable signal, read accesses must be guessed. This is done
by interpreting an address change, which occurs while the write en-
able signal is low, as a read access. The approach is slightly conser-
vative but without any further knowledge about the circuit, it must
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be assumed that any valid data at the output of a Block RAM is also
used in the design.

The memory profiling tool has three main tasks. Firstly, it must
identify the real utilisation of the Block RAM. Since the tool keeps
track of the memory addresses that were accessed during the sim-
ulation run, the number of used memory bits can easily be calcu-
lated. Secondly, it must identify which memory rows, respectively
addresses, are used as ROMs and which are used as RAMs. This is
achieved by interpreting rows, which are only accessed for reading
but not for writing, as ROM rows. Thirdly, the tool must determine
a correction factor for each RAM row that takes the time spans into
account in which a fault cannot manifest itself as a failure.

Take the timeline in Figure 27 as an example, where some read
and write accesses of one memory address are shown. The first fault
SEU1 occurs between a read access trd2 and a subsequent write ac-
cess twr2. Since the memory row is overwritten with a new value, the
fault cannot manifest itself as a failure. The second fault SEU2, how-
ever, manifests itself as a failure because the memory row is read out
at trd3. All N time spans Tm,n in which a memory row m is suscep-
tible (grey boxes in Figure 27) are first accumulated by the memory
profiling tool. Then, the results of all M memory rows are averaged.
Finally, dividing the averaged value by the total simulation time leads
to the correction factor τS:

τS =

∑M∑N Tm,n

M · tsim
(3)

τS can only be calculated for RAM rows because obviously, ROM
rows are never overwritten by the user logic. RAM rows in Block
RAMs that are configured in read-first mode must be handled in a
similar way: In this mode, a memory row is read out just before the
write access and thus the whole time span between the last and the
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current write access must be assumed to be susceptible to upsets, i.e.
τS = 1.

The memory profiling tool outputs one log-file per Block RAM
with detailed profiling information and one csv-file with a summary
of all results.

With the profiling tool, the number of susceptible Block RAM bits
can be quantified. However, the quantification of the failure modes
is not done yet. As mentioned earlier, a failure can either propagate
to an output of the FPGA or it can get trapped in a feedback loop.
While no special recovery action is necessary in the first case, the
latter failure mode necessitates a circuit reset. To get an idea how
many of the failures propagate into feedback loops, a netlist parser
was developed. The tool takes an edif-file as input and parses the
netlist into a directed graph of C++ objects. Then, the tool is able to
traverse the graph using a Depth-First Search (DFS) algorithm. The
netlist is flattened in such a way that the graph only comprises prim-
itives (flip-flops, RAMB16s etc.) as vertices. Within each vertex, all
inputs are connected to all outputs. In other words, it is assumed that
a failure, which arrives at an input of a primitive can propagate to
any output of that primitive.

The implemented algorithm takes a set of primitives, here RAMB16

blocks, as starting points. From the starting points, all possible edges
and vertices are explored until either (i) an output pin of the FPGA is
found or (ii) an input pin of a primitive is found which was already
visited in the current exploration. In this case it is clear that the fail-
ure got caught in a feedback loop. If at least one output pin of the
source primitive leads to a feedback loop, the second failure mode
(necessitating a reset) is assumed for that primitive.

4.3.3 User Flip-Flops

The number of user flip-flops can easily be determined using the stan-
dard toolchain or alternatively, by counting the flip-flop primitives
in the netlist graph. But again, it is unclear how many of the flip-
flops propagate into feedback loops. Therefore, the netlist parser tool
is used a second time, using flip-flops primitives as starting points
rather than Block RAM primitives. As for the Block RAMs, if at least
one output pin of the source primitive leads to a feedback loop, the
second failure mode (necessitating a reset) is assumed for that primi-
tive.
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Table 9: Possible recovery actions for all failure modes

Failure Mode Recovery Action

FC/S Reconfiguration OR Scrubbing
FC/SR Reconfiguration OR (Scrubbing AND Reset)
FC/Re Reconfiguration
FROM (ROM cells) Reconfiguration
FRAM (RAM cells) Reconfiguration OR Reset
FFF (flip-flops) Reconfiguration OR Reset

4.4 availability analysis

4.4.1 Radiation Environment

First, the bit upset rates for the configuration memory, the Block
RAMs, and the flip-flops in a particular radiation environment must
be determined. The required heavy-ion and proton fluxes are calcu-
lated according to ECSS-E-ST-10-04C [134]: For cosmic rays, the ISO-
15390 GCR model is used while solar minimum conditions are as-
sumed. For trapped electrons, the AE8MAX model is used for low
Earth orbits (LEO) and the MEOv2 model for medium Earth orbits
(MEO). For trapped protons, the AP8MAX model is used for both,
LEO and MEO. The fluxes during Solar Particle Events (SPEs) are
calculated using the CREME96 Worst Case 1 Day solar flare model.
All fluxes are averaged over 100 orbits and thus take any anomalies
into account. Common practice is followed by assuming 100 mil of
solid spherical aluminium shielding, although it was shown in the
past that this assumption is an underestimation for most spacecraft
electronics boxes [137].

4.4.2 Stochastic Petri Net Models

For availability modelling, stochastic Petri nets are used that can an-
alytically be solved with the TimeNET 4.1 tool [138]. In the follow-
ing, several nets are proposed that can estimate the availability of a
stream processor in a particular FDIR configuration. Three basic con-
figurations are covered, see Figure 28. In configuration (a), a stream
processor is used without redundancy. Since no failure detector exists
in this configuration, failure recovery must be done in a preventative
manner. If the data is processed in bursts, it is proposed to do periodic
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Figure 28: Example of a typical satellite payload streaming architecture with
a stream processor in different redundancy configurations: (a) No
redundancy, (b) Duplication with Comparison, (c) Triple Modular
Redundancy

partial reconfiguration between the bursts (approach 1). To further in-
crease the availability, this approach can be combined with additional
periodic scrubbing (approach 2). In configuration (b), a stream proces-
sor is duplicated and a comparator is used as failure detector. Once a
failure is detected, both stream processors are reconfigured (approach
3). In configuration (c), a stream processor is triplicated and a major-
ity voter is used for failure detection and masking. Once a failure is
detected, the faulty stream processor is reconfigured (approach 4).

First, however, the total number of estimated sensitive bits of each
failure mode must be multiplied by the corresponding bit upset rate
(for FFF, it is assumed that half of the flip-flops is storing a logical
1 and the other half a logical 0). Then, since the stochastic Petri net
method requires Mean Time Between Failure (MTBF) values rather
than failure rates, the inverses of the resulting failure mode upset
rates are used as input parameters for the models.

The MTBF value for a specific failure mode Fx is calculated as fol-
lows:

MTBF(Fx) = (nx ·Bx)−1 (4)
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where nx is the number of sensitive memory elements for the spe-
cific failure mode and Bx the upset rate per bit-day for this specific
type of memory element in the targeted radiation environment.

example 500,000 sensitive configuration memory elements for fail-
ure mode FC/S (failures that can be repaired by scrubbing) were
found for a specific stream processor using the aforementioned fault
injection method. The FPGA will fly in an orbit for which a configura-
tion memory cell bit upset rate of 7 ·10−7(bit ·day)−1 was determined.
Then, the MTBF value for this failure mode is:

MTBF(FC/S) = (
7 · 10−7

bit · day
· 500, 000 bits)−1 = 2.9 days (5)

4.4.2.1 No Redundancy

First, the availability of a single stream processor is investigated. With-
out redundancy, no reliable failure detector mechanism exists and as
a consequence, failure recovery must be done in a preventative man-
ner, i.e. without any knowledge about the health status of the pro-
cessor. A strategy solely based on scrubbing cannot be recommended
due to the failures which can get trapped in the user logic. Consult-
ing Table 9, two approaches can be applied, depending on how the
input data is streamed into the processor:

approach 1 - periodic partial reconfiguration If the in-
put data is delivered in bursts, e.g. 500 image frames, and there is
some time between the bursts to do a partial reconfiguration, it is
recommended to do such a periodic reconfiguration just before the
processing of each burst. The benefit of this solution is its simplic-
ity and the fact that the processor can be recovered from all possible
failure modes in one go.

The stochastic Petri net model has three basic nets that are linked
to each other via logical conditions. For the aforementioned case, the
first net is shown in Figure 29. The net models the health status of
the processor: If the token is on place MOD_OK, the processor is work-
ing correctly. If one of the failure modes occurs (modelled by the ex-
ponential transitions mod_seu_*), the token moves into state MOD_F1.
The failure recovery process is modelled by the immediate transition
mod_reconfig which is only enabled when a trigger condition in the
second net becomes true.
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Figure 29: Stochastic Petri net no. 1 (approach 1)

Figure 30: Stochastic Petri net no. 2 (approach 1)
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Figure 31: Stochastic Petri net no. 3 (approach 1)

The second net, as depicted in Figure 30, models the data flow
through the processor. A token represents the data block. Transition
df_proc_time is deterministic and models the processing time of the
data block. After processing, the first net is checked for the health sta-
tus and the token moves either to place DF_OK or DF_FAILED. Then, the
token moves back to the start place DF_START and another stochastic
experiment begins. On the way back to the start place, the token is
duplicated and one copy of the token moves to DF_RECONF_CNT. This
place is a counter which counts the number of processed data blocks.
If the reconfiguration interval threshold value is reached, the counter
place is cleared and the failure recovery trigger condition becomes
true.

A third net is used for the modelling of the overall processor avail-
ability. The currently processed data block can either be counted as
OK or failed, see Figure 31. The transitions in this net are only enabled
when the token is on place DF_OK or DF_FAILED in the second net. Ul-
timately, the steady state availability of the processor is determined
by calculating the probability that the token is on place SYS_OK.

approach 2 - periodic reconfiguration and scrubbing

If the burst length is long or the probability of FC/S is rather high, it
might be worth to combine the periodic partial reconfiguration with
a more frequent periodic scrubbing. The Petri nets must slightly be
modified to model this case. In the first net, see Figure 32, tokens
moving via mod_seu_cm arrive at a new place called MOD_F2. From
there the token can leave back to MOD_OK via a new deterministic tran-
sition for scrubbing called mod_scrub, analogous to mod_reconfig. To
trigger this transition, an additional counter called DF_SCRUB_CNT is
added to the second net, see Figure 33, parallel to DF_RECONF_CNT.
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Figure 32: Stochastic Petri net no. 1 (approach 2)

Figure 33: Stochastic Petri net no. 2 (approach 2)
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Figure 34: Stochastic Petri net no. 1 (approach 3)

4.4.2.2 Redundancy with On-Demand Reconfiguration

If the stream processor is duplicated or triplicated, a comparator or
voter module, respectively, can be used as failure detector. Then, the
failure recovery process can be triggered on demand. Since the pro-
cessor is immediately reconfigured and does not have to wait for the
next recovery cycle, the availability increases.

approach 3 - duplication with comparison With two re-
dundant stream processors, the Petri net model can be simplified
because the repair process becomes independent of the data flow
through the stream processor. Instead, both stream processors are im-
mediately reconfigured once a failure has been detected. Therefore it
is sufficient to only use an extended Petri net no. 1 as can be seen
in Figure 34. As before, the token represents the health status of the
system. Because a comparator cannot determine which one of the
two redundant stream processors is faulty in case of a mismatch, the
token represents both processors. If one of the processors becomes
faulty, i.e. one of the failure modes Fx occurs, the token moves via
the corresponding exponential transition mod_seu_* to place MOD_F.
After a short failure detection time, modelled by exponential transi-
tion mod_detect, both stream processors are repaired and the system
is up and running again. The repair time, modelled by deterministic
transition mod_rep, must be the time span necessary to reconfigure
both stream processors. On the other hand, since a token represents
two stream processors, the time values for the exponential transitions
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Figure 35: Stochastic Petri net no. 1 (approach 4)

mod_seu_* must be halved because the probability of a failure is dou-
bled. Ultimately, the steady state availability is determined by calcu-
lating the probability that the token is on place MOD_OK.

approach 4 - triple modular redundancy If three stream
processors are running in hot redundancy, a majority voter can be
used for detecting and masking failures, i.e. at least two processors
must be faulty at the same time to make the system unavailable. How-
ever, if just one stream processor fails, it can be repaired in the back-
ground without affecting the operation of the other two processors.
To model this FDIR configuration, the Petri net depicted in Figure
35 can be used. It is identical to the one for the Duplication with
Comparison configuration except that three tokens are used instead
of one. This time, each token represents one stream processor. As a
consequence, the exponential transitions mod_seu_* are triggered by
the MTBF values for just one single stream processor and the repair
time mod_rep is only the time span required to repair one processor. If
one processor fails, one of the three tokens moves from place MOD_OK

to place MOD_F and then back to MOD_OK after the detection and repair
time elapsed. Ultimately, the steady state availability is determined
by calculating the probability that at least two tokens are on place
MOD_OK.
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4.5 conclusions

In this chapter, a novel methodology for a systematic availability anal-
ysis of stream processors, implemented on SRAM-based FPGAs, has
been presented. The proposed methodology provides a new capa-
bility allowing the detailed analysis of a circuit without a detailed
knowledge of its internal structure. The methodology is implemented
as a set of tools integrated together. A new configuration memory
failure classification algorithm is proposed, which advances fault in-
jection systems described in literature (see also Section 2.6.2). In addi-
tion, a novel Block RAM profiling tool is developed and incorporated
allowing Block RAM failure quantification. The proposed approach to
availability analysis could easily be automated and is non-intrusive,
i.e. it does not require any circuit modifications. Hence, the method-
ology can serve as an essential tool during the design and qualifica-
tion phase of space electronics systems that incorporate SRAM-based
FPGAs, simplifying the evaluation of the appropriate FDIR mecha-
nisms. This is the first implementation of an ESA standard availabil-
ity approach with regards to SRAM-based FPGAs, which addresses
a gap in the current space qualification process.



5
C H A P T E R 5 : D E M O N S T R AT I O N S Y S T E M D E S I G N

5.1 introduction

In the previous chapters, the theory behind the two main PhD pro-
posals was described. To prove that the theory is true, a proof of
concept system is developed, which is now described in detail in this
chapter. The system is built from hardware, embedded software and
workstation software components. It allows the validation of both the
Distributed Failure Detection and the Availability Analysis method.

The chapter is structured as follows. In Section 5.2, the hardware
platform and all surrounding test bench components are described.
Then, Section 5.3 goes into detail about the implementation of the
hardware components of the system, including the stream processor,
the FDIR routing switch, the SRAM-based FPGA design and the FDIR
supervisor SoC design. Section 5.4 covers the software components,
including the embedded FDIR supervisor software, the embedded
instrument simulator software, the host PC software and the Block
RAM profiling software. Finally, Section 5.5 concludes the chapter.

5.2 hardware platform

As discussed in Section 2.9, the DRPM system, developed by Univer-
sity of Braunschweig and Airbus Defence and Space, was chosen as
hardware platform for the proof of concept implementation. A photo
of the DRPM motherboard is shown in Figure 36 and a more detailed
view of one of its daughterboards in Figure 37.

The DRPM motherboard comprises a ProASIC3e flash-based FPGA
device by Microsemi [139], which implements a SoC that is later used
to host the FDIR supervisor application. This SoC is connected to
various external memories and several communication interfaces, in-
cluding SpaceWire, CAN bus and RS-232.

The motherboard is connected to two daughterboards, both com-
prising SRAM-based FPGAs of type Virtex-4 by Xilinx. Printed Cir-
cuit Board (PCB) interconnects enable the communication between
the Virtex FPGAs and the ProASIC3e FPGA. Furthermore, the Pro-

93
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Figure 36: Photo of the DRPM motherboard

Figure 37: Photo of one of the DRPM daughterboards
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Figure 38: Block diagram of the test bench

ASIC3e device can access the 8-bit wide SelectMAP interfaces of the
Virtex-4 FPGAs to (re)configure the devices. In addition, a set of PCB
traces enable the intercommunication between the two Virtex devices.
On each daughterboard, the Virtex-4 FPGAs are connected to their
own SpaceWire interfaces, i.e. direct data communication with stream
processors implemented on these devices is feasible.

The DRPM system is integrated into a test bench as shown in the
block diagram in Figure 38. The host PC is connected to the DRPM
system via two Ethernet-to-SpaceWire bridges. One SpaceWire bridge
allows the communication between the PC and the LEON3 micropro-
cessor. The other SpaceWire bridge is used for direct communication
with the Virtex-4 FPGAs.

In addition, a SPWRTC development board by Cobham Gaisler
[140] is used as data generator and/or data sink. The board is well
suited for this task as it comprises a LEON2 microprocessor and
two SpaceWire interfaces that can be used in Direct Memory Access
(DMA) mode, i.e. data can be transmitted/received directly from/to
memory. One of the SpaceWire ports is connected to the SRAM-based
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FPGAs. Therefore, data can directly be sent into a processing chain
of stream processors. The other SpaceWire port is used for the recep-
tion of commands or the transmission of status updates. To save an
additional external SpaceWire routing switch, this port is connected
to the DRPM system. If the host PC wants to communicate with the
SPWRTC board, it can send commands to the DRPM, which then for-
wards these commands to the SPWRTC board. Similarly, status mes-
sages from the SPWRTC board can be sent to the host PC through the
DRPM system.

5.3 hardware components

5.3.1 Network on Chip

The NoC used for the proof of concept implementation is called
SoCWire and was developed by University of Braunschweig. Detailed
information can be found in related literature listed in Section 2.7.2.
The NoC is well suited for the proof of concept implementation as it
fulfills the requirements described in Section 3.3.

5.3.2 Stream Processor

It was found that image compression is a good example for typical
satellite payload data processing applications. Therefore, an image
compression stream processor was implemented as part of the proof
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of concept system, which is based on a publicly available Joint Photo-
graphic Experts Group (JPEG) IP core from opencores.org [141]. The
core is embedded into a stream processor module as depicted in Fig-
ure 39. Data enters and leaves the processor via a SoCWire network
interface. Input data is expected as raw Red, Green and Blue (RGB)
image data in raster scan order with a line width of 640 pixels and a
height of 480 pixels.

protocol Communication with the stream processor is done us-
ing Consultative Committee for Space Data Systems (CCSDS) teleme-
try packets [142] with a maximum payload size of 65,536 bytes. The
packet format is defined as follows:

• Packet Version Number (3 bits):
Always zero.

• Packet Type (1 bit):
Always 0 (stream data).

• Secondary Header Flag (1 bit):
Always zero (no secondary header used).

• Application Process Identifier (11 bits):
Not used (but could be used to identify different processors).

• Grouping Flags (2 bits):
01 - first packet, 00 - continuing packet, 10 - last packet.

• Sequence Count (14 bits):
Continuous sequence count, modulo 16384.

• Packet Data Length (16 bits):
Size of the packet payload data - 1.

• Packet Payload Data (1 - 65,536 bytes):
Raw image data as input, compressed JPEG data as output.

state machine The stream processor is able to process incoming
data streams automatically. The required logic is a state machine as
shown in Figure 40. On the one hand, the state machine interacts with
the NoC interface and parses the aforementioned CCSDS protocol.
On the other hand, it communicates with the embedded JPEG core
via a so-called On-chip Peripheral Bus (OPB) interface.
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After an initial configuration of the JPEG core, the state machine
waits for the first data character to arrive at the NoC interface. This
first data character is the logical address and is therefore skipped.
Then, the state machine checks for the correctness of the CCSDS
packet header. From this header, the size of the packet payload is
extracted. If the received packet contains a command, it is executed
(compression level setting) and the state machine waits for the next
packet to arrive. If the received packet is a data packet, however, the
payload data is shifted into the JPEG core pixel-wise, i.e. byte-wise.
Once the whole payload of the packet is shifted in, it is checked to
see if the packet is properly terminated with an EOP character. If this
is the case, the state machine checks that the image was entirely pro-
cessed. If so, the state machine waits until the JPEG core is finished
with image processing. If not, the state machine waits for the next
incoming CCSDS packet.

If an error occurs during protocol parsing, the state machine moves
to state Spill data. While being in this state, all incoming data is
deleted from the receive buffer up to and including the next EOP.

ccsds protocol generator The output of the JPEG core is
connected to a protocol generator via a FIFO buffer. Once the FIFO
buffer has at least 1,024 bytes available, the state machine of the pro-
tocol generator creates a CCSDS packet in the same format as de-
scribed above, i.e. compressed images are transmitted in 1 kB-sized
chunks. The logical network address used for packet transmission is
not hard-coded. Instead, the value is taken from an external signal. As
mentioned in Section 3.5.3, the reconfigurable partition gets a fixed
logical address assigned and not the hosted stream processor. Techni-
cally, this is implemented by a constant value in the static area, which
is propagated to the packet generator within the stream processor.

5.3.3 FDIR Routing Switch

The custom-designed FDIR routing switch is based on the SoCWire
routing switch implementation developed by University of Braun-
schweig. However, as can be seen in the block diagram in Figure 41, it
was greatly extended by the following components: (i) a routing table
for logical addresses, (ii) a voter module, (iii) a multicast mechanism
and (iv) a configuration port, which allows the programming of the
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Figure 41: Block diagram of FDIR routing switch

routing table and the timeout values that are needed for the voter
module and the multicast mechanism.

routing table / timeout values The routing table is imple-
mented in a 32x32 bit Dual-Port RAM within the configuration port,
i.e. up to 32 logical addresses are supported. The 32-bit word for each
logical address is divided into two halves: in the lower 16 bits, each
bit represents an output port to which the logical address is assigned.
For instance, if a packet arrives with a logical address that is assigned
to 0x0e, the packet will be multicast to port 1, 2 and 3. In the upper 16

bits, each bit represents an input port at which packets are allowed to
arrive with this particular logical address, see also Section 3.5.3. For
instance, a value of 0x0f means that packets with this logical address
are only permitted to arrive at port 0, 1, 2 and 3.

If a new packet arrives at one of the input ports, a so-called entrance
logic extracts the logical address from the packet. Then, it will request
the lower bit vector from the routing table for this particular address.
Since one entrance logic exists for each input port, the access to the
routing table must be done via a fair round robin arbitration: First, the
entrance logic puts the desired logical address on a request bus. Then,
once the routing table has the bit vector for this address available, it
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asserts a valid signal so the entrance logic can continue to process the
new packet. At the same time, the entrance logic is connected via a
single signal to the corresponding bit position in the upper bit vector.
Hence, the entrance logic is immediately notified if the new packet is
actually allowed to be processed at its input port. If not, the entrance
logic will delete the complete packet up to and including the next
EOP character.

Within the configuration port, additional registers store the mul-
ticast, inter-packet, inter-character and last-resort timeout value. All
values are expressed in clock cycles and stored in 24-bit wide regis-
ters. Since the Virtex-4 FPGAs run at 100 MHz, the maximum timeout
span is approximately 168 ms.

configuration port As can be seen in Figure 41, the configura-
tion port is connected to the switch matrix via physical port number
0. Aside from hosting the aforementioned routing table and timeout
value registers, it also comprises a state machine that can receive and
transmit configuration packets in CCSDS packet format:

• Packet Version Number (3 bits):
Always zero.

• Packet Type (1 bit):
Always 1 (configuration command).

• Secondary Header Flag (1 bit):
Always zero.

• Application Process Identifier (11 bits):
Not used.

• Grouping Flags (2 bits):
11 - unsegmented data.

• Sequence Count (14 bits):
Used as command identifier (lower 8 bits): 0x01 - request rout-
ing table, 0x02 - request timeout values, 0x03 - set routing table,
0x04 - set timeout values.

• Packet Data Length (16 bits):
Size of the packet payload data - 1.

• Packet Payload Data (1 - 65,536 bytes):
Command 0x01 and 0x02: One dummy octet. Command 0x03:
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128 octets with routing table values is ascending order, i.e. from
logical address 32 to 63, MSB first. Command 0x04: 12 octets
with (i) broadcast timeout, (ii) inter-packet timeout, (iii) inter-
character timeout and (iv) last-resort timeout, MSB first.

If a command is sent to the configuration port to retrieve either the
routing table or the timeout values, the configuration port will send
out the data in the same format as described above. The network
packet will be transmitted using the logical address of the configura-
tion port. Thus, it is first required to assign this logical address to a
physical port by programming the routing table. Retrieving the val-
ues back from the routing switch is a simple way of ensuring that the
data was transmitted and stored correctly before.

voter module The voter module was designed and integrated
into the routing switch as proposed in Section 3.5.1. The pseudo-code
given in that section is nearly identical to the real HDL implementa-
tion and a separate description of its functionality is therefore not
necessary. As can be seen in Figure 41, the slots of the voter module
(dashed box) are connected to the switch matrix via port n+ 1, n+ 2

and n+ 3. Thus, the real port number of each slot depends on the
total number of physical ports available in the routing switch, which
can be configured during synthesis with a generic value. The output
of the voter module is connected to the switch matrix too, allowing
full flexibility in routing the network traffic. Any input port of the
routing switch can be routed to any slot of the voter module and the
output of the voter can leave the routing switch via any output port.

multicast mechanism The concept of the multicast mechanism
was briefly discussed in Section 3.5.2. To make it part of the routing
switch, however, it must be incorporated into the switch matrix. Then,
the number of output ports is flexible and it is not predefined which
output ports of the matrix are actually used for the multicast (as this
is defined by the logical address mapping, see Section 5.3.3 above).

The combinational data multiplexing logic of the switch matrix was
extended as follows:

• Check for every input port if output port(s) are currently con-
nected and if multicasting is currently allowed for these output
port(s).
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• If this is the case, find all connected output ports, count their
number and check how many of them are full, i.e. how many
are blocking outgoing traffic.

• If one and only one output port is blocking but more than one
output ports are connected, a multicast timeout register reload
signal for this input port is not asserted, i.e. the timer is active.

• If several output ports are connected to one input port, no data
is read from the input port if at least one output port is blocked.

• Similarly, no data is written to the output ports if at least one
output port is blocked.

A multicast timeout register exists for each input port of the routing
switch. A dedicated sequential logic keeps track of the current state
of these registers:

• If the data multiplexing logic asserts a timeout register reload
signal, the corresponding counter is reloaded. Otherwise, it is
decremented every clock cycle.

• If the timeout register of a specific input port reaches zero, the
logic checks which connected output port is blocking. Then, the
blocking output port is removed from the multicast round by
setting a corresponding disable flag.

• Once the data transfer between an input port and some output
ports is finished, the above mentioned disable flags are reset, i.e.
an output port can only be removed from the multicast mech-
anism for the duration of one network packet. With the next
packet, the routing switch will try to use this output port again.
This is important because if a faulty, blocking stream processor
is repaired, it must automatically be supplied with new input
data afterwards.

5.3.4 Virtex-4 FPGA Design

A block diagram of the Virtex-4 FPGA design is depicted in Figure 42.
It comprises: (i) three reconfigurable partitions, all connected to the
(ii) FDIR routing switch described in Section 5.3.3 above, (iii) a Space-
Wire interface, (iv) a SpaceWire to NoC bridge, allowing the commu-
nication between the NoC and external components via SpaceWire
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Figure 42: Block diagram of Virtex-4 FPGA design

and (v) a NoC to NoC bridge, allowing the communication between
the first and the second Virtex-4 FPGA.

reconfigurable partitions Each partition is large enough to
host a JPEG image processing stream processor. To implement the
FPGA design, the methodology described in the Xilinx Partial Recon-
figuration User Guide [143] was followed. In first experiments, the
workflow based on the PlanAhead tool was used, which greatly sim-
plifies the process of finding the right dimensions for each partition
due to its simple graphical user interface. A screenshot of the final
FPGA floorplan, extracted from this tool, is shown in Figure 43. The
reconfigurable partitions are shown as white boxes, whereas the so-
called static area is shown in blue. All NoC and FDIR components
are implemented in this static area.

Later on it was found that the script-based workflow is much more
convenient, faster and reliable. First, the JPEG stream processor as
well as the static area is pre-synthesised using for instance the XST
synthesis tool. This process must be done just one time. Then, a Tcl
script maps, places and routes the netlist of each stream processor
using the Xilinx toolchain. The main output of this workflow is a
full bitstream comprising the static area with a JPEG stream proces-
sor preplaced on each partition and a partial bitstream for each JPEG
stream processor, which can later be used for failure recovery. In ad-
dition, blank bitstreams are created for each partition, which can be
used to erase a stream processor, e.g. to save power. The size of each
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Figure 43: Virtex-4 FPGA floorplan



5.3 hardware components 106

partition is defined by area constraints in the UCF constraint file, an
example for the first partition is shown in Listing 10.

Listing 10: Area constraints for partition 1

INST "prmodule_1" AREA_GROUP = "pblock_prmodule_1";

AREA_GROUP "pblock_prmodule_1" RANGE=SLICE_X0Y160:SLICE_X63Y255;

AREA_GROUP "pblock_prmodule_1" RANGE=DSP48_X0Y40:DSP48_X4Y63;

AREA_GROUP "pblock_prmodule_1" RANGE=RAMB16_X0Y20:RAMB16_X6Y31; �
As can be seen, the dimensions must be defined for each type of

building block used in the design. For the JPEG stream processor, it is
sufficient to define areas for CLB slices, DSP blocks and Block RAMs.

spacewire interface Although not fully related to the work
on this PhD thesis, a SpaceWire interface was developed as a side
project, replacing the original SpaceWire interface by STAR-Dundee
[144], which was delivered by University of Braunschweig as part of
the DRPM system. In contrast to the original interface, the custom-
built SpaceWire interface is fully synchronous. Instead of doing asyn-
chronous clock recovery, the incoming data-strobe signals are over-
sampled. As a consequence, not one single timing constraint is re-
quired, a fact that prevented some frustration during the FPGA de-
sign phase.

The design of the interface is rather simple as it is fixed to one
clock frequency. Using double data rate output registers and four
times input data oversampling, data can be transmitted and received
with a data rate of 200 Mbit/s at 100 MHz clock frequency.

spacewire to noc bridge This bridge is basically a SoCWire
core whose application-side interface is connected to the application-
side interface of the SpaceWire core. Both network components use a
FIFO-like interface, allowing a simple handshake between both. The
inverted full flag of the first core can directly be connected to the read
enable signal of the second core, whereas the inverted empty flag of
the second core can be connected to the write enable signal of the first
core.

noc to noc bridge Similarly to the SpaceWire to NoC bridge,
the NoC to NoC bridge connects the application-side interface of one
SoCWire core to the application-side interface of another SoCWire
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Figure 44: Block diagram of NoC to NoC bridge

core. However, while the first core is implemented on the local FPGA,
the second core is implemented on the remote FPGA. As a conse-
quence, the data, read and write signals are bridged from one Virtex-
4 FPGA to the other Virtex-4 FPGA via PCB traces and are therefore
crossing clock domains.

To avoid unreliable data communication due to metastability and
setup and hold violations, an asynchronous FIFO buffer is used for
transferring the data from one clock domain to the other. Figure 44

shows a block diagram of the NoC to NoC bridge, comprising the
SoCWire interface and the FIFO buffer.

Both the read side of the FIFO buffer and the SoCWire core are
clocked by the local clock. Signal dout of the FIFO buffer is con-
nected to din of the SoCWire core, the inverted full signal of the
SoCWire core nfull is used as read enable signal rd_en on the FIFO
side and the inverted empty signal of the FIFO buffer nempty is used
as write enable signal wr_en on the SoCWire side. The output side
of the SoCWire core is directly connected to the remote FPGA via
x_nempty_local and x_dout_local. For handshaking, an almost full
flag x_afull_remote is received from the remote side.

On the write side of the FIFO, the wr_en and din signals are pro-
vided from the remote FPGA and are sampled using the remote clock
x_clk_remote. For handshaking, an almost full flag x_afull_local is
transmitted to the remote side.

To further improve reliability, all signals provided by the remote
FPGA are sampled in IOB flip-flops. The flip-flops are clocked by the
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remote clock that is first recovered by a source-synchronous Digital
Clock Manager (DCM). In the other direction, the local almost full
flag x_afull_local is also sampled in an IOB flip-flop using the re-
covered remote clock.

On transmission side, the outgoing signals are sampled in IOB flip-
flops using the local clock. A replica of the local clock is created in an
IOB too, using an output double data rate register. On rising edge a
constant value of 0 is registered, on falling edge a constant value of 1

(inverted clock).
By sampling the data already in the IOBs and by replicating the

clocks, possible skew between the data and clock lines is limited to
the PCB traces. Since the propagation delays of the PCB traces are not
known, the inverted clock is transmitted, which gives some additional
room for skew.

5.3.5 FDIR Supervisor SoC Design

A block diagram of the SoC design, which is implemented on the
flash-based ProASIC3e FPGA, is shown in Figure 45. The rather com-
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plex SoC was developed by University of Braunschweig as part of the
DRPM system. The SoC is based on the GRLIB by Cobham Gaisler
[145] and includes a LEON3 microprocessor, which is used to run the
FDIR supervisor software, see Section 5.4.1.

Since the SoC proved to be well designed, only a handful of mod-
ifications were done (highlighted in grey): (i) an additional General
Purpose Input Output (GPIO) port was added to the AMBA proces-
sor bus to communicate with the voter modules inside the FDIR rout-
ing switches and (ii) a SelectMAP (SMAP) core was redesigned from
scratch to also enable bitstream readbacks from the Virtex-4 devices.

additional gpio port The GPIO port is 16-bit wide, divided
in two halves. The lower eight pins are used to interface the voter
module on the first FPGA, the upper eight pins are used to interface
the voter module on the second FPGA. The lower four pins of each
half are used by the voter module to transmit a debug code to the
FDIR supervisor, which is defined as follows:

• 000: No error.

• 001: Inter-packet timeout occurred.

• 010: Inter-character timeout occurred.

• 011: Voting error occurred.

• 100: Last-resort timeout occurred.

Three of the four upper pins of each half are both input and out-
put pins, whereas the fourth bit is used to switch the direction of
these pins. If the pins are configured as input, the FDIR supervisor
software can retrieve the current slot status from the voter module,
e.g. the value 011 means that slots 1 and 2 are healthy whereas slot
3 is marked as faulty. If the pins are configured as outputs, the FDIR
supervisor can update the slot status of the voter module after failure
recovery.

The GPIO port triggers an interrupt once one of the signals changes.
The FDIR supervisor software can catch this interrupt in a service
routine to initiate an appropriate failure recovery action.

selectmap core The redesigned SelectMAP cores are used to
interface the 8-bit wide SelectMAP interfaces of the Virtex-4 FPGAs.
Goal of the redesign was the possibility to also read back bitstreams
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from the Virtex-4 devices and to send them to any component in the
SoC, e.g. to the LEON3 microprocessor or to the SpaceWire interface.

The original functionality remains: A full or partial bitstream can
be sent through the SoCWire network to one of the SelectMAP cores.
Since the bitstream includes all commands necessary to interface the
configuration state machine of the Virtex-4 FPGAs, it can simply be
clocked into the device without any modifications. Due to the nature
of the SoC design, the bitstream can either be sent from the LEON3

processor or transferred directly from the data memory via DMA.
Reading back the bitstream is slightly more complex: First, the Se-

lectMAP interface must be switched to write mode. Then, the com-
mands in Listing 11 are written to the interface.

Listing 11: SelectMAP commands for bitstream readback

x"aa", x"99", x"55", x"66", -- sync word

x"20", x"00", x"00", x"00", -- noop

x"30", x"00", x"80", x"01", -- rcrc

x"00", x"00", x"00", x"07",

x"20", x"00", x"00", x"00", -- noop

x"20", x"00", x"00", x"00", -- noop

x"30", x"00", x"80", x"01", -- shutdown

x"00", x"00", x"00", x"0b",

x"20", x"00", x"00", x"00", -- noop

x"30", x"00", x"80", x"01", -- rcrc

x"00", x"00", x"00", x"07",

x"20", x"00", x"00", x"00", -- noop

x"20", x"00", x"00", x"00", -- noop

x"20", x"00", x"00", x"00", -- noop

x"20", x"00", x"00", x"00", -- noop

x"20", x"00", x"00", x"00", -- noop

x"20", x"00", x"00", x"00", -- noop

x"30", x"00", x"80", x"01", -- rcfg

x"00", x"00", x"00", x"04",

x"30", x"00", x"20", x"01", -- far: start from 0x00

x"00", x"00", x"00", x"00",

x"28", x"00", x"60", x"00", -- read from fdro

x"40", x"0a", x"d3", x"81", -- 0xad381 = 709,505

-- (all frames from

-- sx55 + one dummy)

x"20", x"00", x"00", x"00", -- noop

x"20", x"00", x"00", x"00"; -- noop �
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After synchronising the interface, a shutdown command is sent to
the Virtex-4 FPGA. Then, the FAR is set to 0, i.e. the full bitstream is
read back from the first byte position. By writing the desired number
of frames (0xad381) to the device, the readback is activated.

Now, the SelectMAP interface must be switched to read mode. The
bitstream is clocked out from the Virtex-4 device byte by byte and
stored in a FIFO buffer, which is connected on the read side to an
internal SoCWire interface. Once all bytes are read, the SelectMAP
interface is switched back to write mode and the commands in Listing
12 are written.

Listing 12: SelectMAP commands for restarting the FPGA

x"20", x"00", x"00", x"00", -- noop

x"30", x"00", x"80", x"01", -- start

x"00", x"00", x"00", x"05",

x"30", x"00", x"80", x"01", -- rcrc

x"00", x"00", x"00", x"07",

x"30", x"00", x"80", x"01", -- desync

x"00", x"00", x"00", x"0d",

x"20", x"00", x"00", x"00", -- noop

x"20", x"00", x"00", x"00"; -- noop �
As can be seen, the Virtex-4 device is first started, the CRC register

is then reset and the SelectMAP interface finally de-synchronised.

5.4 software components

5.4.1 FDIR Supervisor Software

Core of the embedded system is the FDIR supervisor software run-
ning on the LEON3 microprocessor. Its purpose is two-fold: On the
one hand it executes failure recovery actions for faulty stream proces-
sors. On the other hand it includes several functions for availability
analysis and hardware verification.

The software is based on the real time operating system RTEMS
[146] and comprises several tasks as depicted in Figure 46. Inter-task
communication is done via message queues and events. In the follow-
ing, a brief overview of the each task is given.

initialisation task Execution of the application begins with
the initialisation task. First, the peripherals are initialised, including
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Figure 46: Overview of FDIR supervisor software tasks

system clock, SD-RAM, file system, and all NoC components. Then,
the message queues, tasks and semaphores are created. Thereafter,
the tasks are started and the pointers to the hardware registers, the
interrupt handler and the stream handlers are initialised. Finally, the
task deletes itself.

spacewire 1 receive task This task handles incoming data
from the second SpaceWire interface that is connected to the host
PC. The following commands are supported:

• OPEN_FILE: Opens a file in the file system. If it does not exist,
the file is created first.

• DELETE_ALL_FILES: All files are deleted from the file system.

• CLOSE_FILE: Closes the currently opened file.

• PRINT_TABLE: Prints a list of all files in the file system to the
serial debug port.

• GET_FILE_INFO: Returns the data length and the name of a par-
ticular file in the file system via SpaceWire.

• GET_NO_FILES: Returns the number of files in the file system via
SpaceWire.

• PRINT_VOTER_STATUS: Prints the health status of the voter slots
to the serial debug port.

• GET_VOTER_STATUS: Returns the health status of the voter slots
via SpaceWire.
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• RESET_VOTER_STATUS: Resets the health status of the voters to a
specific value.

• FULL_CONFIG: Initiates a full configuration (via CPU) with a given
full bitstream file. This is done by sending a message to the Con-
figuration Task.

• PARTIAL_CONFIG: Initiates a partial reconfiguration (via CPU)
with a given partial bitstream file. This is done by sending a
message to the Configuration Task.

• PARTIAL_CONFIG_DMA: Initiates a partial reconfiguration (via DMA
transfer) with a given partial bitstream file. This is done by send-
ing a message to the Configuration Task.

• FDIR_MAPPING: Maps partial bitstreams of stream processors to
voter slots. This is necessary because the supervisor must be
aware of which stream processor output is routed to which
voter slot.

• CREATE_DMA_FILE: Modifies partial bitstreams in such a way that
they can be transferred directly from memory to the SelectMAP
cores via SoCWire.

• FPGA_RESET: Resets a particular Virtex-4 device or a particular
reconfigurable partition on one of the Virtex-4 devices.

• SET_DEBUG_OUTPUT: Switches debug output via serial port on/off.

• INJECT_FAULT: Takes a desired configuration frame from mem-
ory and flips a desired bit within the frame before downloading
it to one of the Virtex-4 devices. The same command can be used
to scrub a frame.

• VOTER_VERI: Starts the voter verification procedure by sending
a message to the Verification Task.

• READBACK: Triggers a bitstream readback from a Virtex-4 device
by sending a message to the Readback Task.

• FILE_DOWNLOAD: Returns a requested file from the file system to
the host PC via SpaceWire.

• TRANSFER_ROUTING_TABLE: Forwards the routing tables for the
FDIR routing switches to the SPWRTC board. Then, the instru-
ment simulator software can configure the routing switches with
these tables.
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• TRANSFER_TIMEOUTS: Forwards the timeout values for the voter
modules and the multicast mechanisms to the SPWRTC board.
Then, the instrument simulator software can configure the rout-
ing switches with these values.

• TRANSFER_IMAGE: Transfers a raw test image to the SPWRTC
board. Beforehand, the raw image must be uploaded to the file
system of the DRPM system.

• SEND_IMAGE: This command is forwarded to the SPWRTC board.

• TRANSFER_JPEG: This command is forwarded to the SPWRTC
board.

• RESET_AVAIL: This command is forwarded to the SPWRTC board.

Nearly all above listed commands acknowledge their correct execu-
tion by transmitting an answer packet to the host PC via SpaceWire.
Often, these answer packets contain additional status and debug in-
formation. Aside from the listed commands, the task also supports
file uploads from the host PC to the file system via SpaceWire.

spacewire 0 receive task This task handles incoming data
from the first SpaceWire interface, which is connected to the SPWRTC
board, i.e. it handles status updates transmitted by the instrument
simulator software. All updates are directly forwarded to the host PC
by sending them to the message queue of the SpaceWire 1 Transmit
Task.

spacewire 0 & 1 transmit tasks These two tasks transmit
data from their message queues to the corresponding SpaceWire in-
terfaces, i.e. to the host PC or the SPWRTC board.

repair task The repair task is triggered by an event generated
due to an GPIO interrupt, i.e. when the health status of some voter
slot changes. First, the routine checks which slots are marked as faulty
and which stream processors are mapped to these slot. Then, it tries
to repair these stream processors by means of partial reconfiguration
via DMA transfer. Next, the routine updates the health statuses of the
corresponding slots and waits until the voter successfully reintegrates
the freshly repaired stream processors. Finally, a status information is
sent to the host PC, which contains the numbers of the repaired slots
as well as the time that was required to repair the system. During
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the proton irradiation test campaign, see Chapter 8, the routine also
initiated a readback of the partial stream processor bitstream.

voter verification task This task can be used to verify the
correct functionality of the voter modules. Beforehand, a database
file must be uploaded to the DRPM system, which comprises a list of
known to be sensitive configuration memory bits within a particular
partial stream processor bitstream.

The algorithm injects a fault into each listed configuration mem-
ory bit. After each injection, it waits until the assigned voter module
signals a detected failure via its health status. It is checked if the
correct slot was marked as faulty and it is also checked that no false-
negatives are signaled for the other slots. Finally, the stream processor
is repaired by means of partial reconfiguration and the voter health
status updated before the next fault is injected.

For each injected fault, a status information is sent to the host PC,
which contains the injected bit position, the time that was needed to
detect the failure and the time that was needed to recover the failure.
The algorithm stops automatically if (i) a wrong slot is detected as
being faulty, (ii) the voter module is unable to reintegrate a stream
processor after failure recovery or (iii) all sensitive bits in the database
file were successfully tested.

readback task This task is able to trigger a bitstream readback
by communicating with the SelectMAP core described in Section 5.3.5.
The communication is partly done by sending messages via the NoC
and partly via a dedicated GPIO port. The readback of full bitstreams
and the readback of single configuration frames is supported.

First, the SelectMAP core is set up with so-called forward addresses,
which either routes the bitstream to the LEON3 microprocessor or
the SpaceWire 1 interface, i.e. directly back to the host PC. For per-
formance reasons, the latter approach was chosen during the proton
irradiation test campaign. Then, the SelectMAP core is configured to
either read the full bitstream or a single frame. In case of a single
frame, also the FAR address of the frame is configured. All aforemen-
tioned configuration steps are done by sending appropriate messages
through the NoC to the SelectMAP core.

Finally, the readback is triggered via a dedicated GPIO pin. Once
the readback is active, the task polls another GPIO pin to determine
when the readback is finished.
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During the design phase, a small bug in the SoCWire Protocol
(SoCP) core was found. SoCP is the mailbox protocol for SoCWire that
was also developed by University of Braunschweig [129]. It is used on
top of SoCWire and allows the reading and writing of registers within
the core. This functionality is utilised by the aforementioned configu-
ration steps. At the same time, the SoCP core also allows data stream-
ing, which is used for the transmission of the bitstream. It turned
out that streams are likely to get corrupted when a register is writ-
ten or read during their transmission, making a polling of a register
impossible while a readback is active. Hence, the NoC was only used
for the initial configuration, whereas the polling was realised via an
additional GPIO port.

configuration task This task can reconfigure a Virtex-4 FPGA
with either a partial or a full bitstream. Two methods are imple-
mented: The simple but slow method reads the bitstream block-wise
from the SD-RAM into the main memory of the CPU. Then, each
block is sent via the NoC to the SelectMAP core, which is transfer-
ring the data to the SelectMAP interface of the Virtex-4 FPGA. The
more complex but much quicker method is using a DMA transfer, i.e.
the bitstream is directly sent from the SD-RAM controller to the Se-
lectMAP interface. Beforehand, however, the bitstreams must be pre-
pared using the CREATE_DMA_FILE command. After transfer, the task
checks if the (re)configuration was successful and sends an appropri-
ate status information to the host PC.

5.4.2 Instrument Simulator Software

As mentioned in Section 5.2, the test bench of the proof of concept
system comprises a LEON2-based SPWRTC board. The microproces-
sor on this board runs a software written in Bare-C that acts primarily
as an instrument simulator, which is described in detail hereafter. The
following functions are implemented:

• The software is used to transmit raw test images to the stream
processors with a frequency of 10 Frames Per Second (FPS).

• The software also receives the returned JPEG images and com-
pares them to a pre-stored golden copy. Thus, the availability
can be measured by counting the number of transmitted raw
images and the number of correctly received JPEG images.
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• Since the SPWRTC board is directly connected to the Virtex-4
FPGAs, the software can also be used to transmit routing tables
and timeout values to the FDIR routing switches.

• In fixed intervals, status information is transmitted to the host
PC via the DRPM system, including the current time stamp and
the number of transmitted and correctly received images.

main() function A flowchart of the main() function is shown
in Figure 47. Before the function enters the infinite while loop, the
SpaceWire interfaces, the interrupts and the timer are set up. Space-
Wire interface 0, connected to the DRPM, is set up to run at 50 Mbit/s
and SpaceWire interface 1, connected to the Virtex-4 FPGAs, is set
up to run at 200 Mbit/s. For both interfaces, interrupts are enabled
that indicate if the link received an Error End of Packet (EEP) charac-
ter (RX_EEP) or got disconnected (DIS). Another interrupt CNT_TRIG is
triggered once a full SpaceWire packet has been received. Finally, the
timer is set up to trigger a TICK interrupt every 10 ms.

The software implements service routines, which set appropriate
flags once an interrupt occurs. These flags are polled within the in-
finite while loop for each SpaceWire interface. If an RX_EEP or DIS

or some other unknown interrupt occurs, the SpaceWire interface is
reset, i.e. it is first disconnected, then reconnected and finally the
reception of the next SpaceWire packet is enabled. This failure re-
covery approach is required to handle all kinds of corrupted net-
work streams, which might be produced by faulty stream proces-
sors, e.g. during a fault injection campaign. If a CNT_TRIG interrupt
occurs, the size of the received packet is determined and the func-
tion handle_spw[0|1]_data() is called. Then, the data reception for
the next packet is enabled. If a TICK interrupt occurs, a counter is
incremented, which is used as divider for the tick signal. Every 100

ms, a function spw_trigger_sendlist() is called. Every second, a
function send_housekeeping() is called, which transmits the earlier
mentioned status information to the host PC via the DRPM system.

handle_spw0_data() function This function handles data
received at SpaceWire interface 0, connected to the DRPM system.
Similarly to the FDIR supervisor software, a couple of commands are
supported:

• TRANSFER_ROUTING_TABLE: Stores a routing table for the FDIR
routing switch to memory. Then, the routing table is transmit-
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ted to the Virtex-4 FPGAs via SpaceWire interface 1. Finally, a
command is sent to the FDIR routing switch to retrieve the rout-
ing table back to verify that the transmission was successful.

• TRANSFER_TIMEOUTS: Stores timeout values for the FDIR rout-
ing switch to memory. Then, the values are transmitted to the
Virtex-4 FPGAs via SpaceWire interface 1. Finally, the values are
retrieved back from the switch to verify that the transmission
was successful.

• SEND_IMAGE: Toggles the periodic transmission of raw images to
the stream processors.

• RESET_AVAIL: Resets the counters for the transmitted and cor-
rectly received images.

• TRANSFER_JPEG: Transmits the golden JPEG image via Space-
Wire to the DRPM file system. Then, the host PC can retrieve
it from the DRPM system.

Aside from the listed commands, the function also supports file
uploads from the DRPM system. The file upload capability is used
for transferring the raw test image from the host PC via the DRPM
to the main memory of the SPWRTC board. Once the full raw im-
age is received, the function packs the data into 15 CCSDS packets
and memory pointers to these packets are stored in a so-called send
list. This send list can be triggered by the instrument simulator soft-
ware. As a result, the CCSDS packets are automatically transmitted
to the Virtex-4 FPGAs via SpaceWire interface 1 using DMA transfer.
After setting up the send list, it is triggered one time by calling the
spw_trigger_sendlist() function to create the initial golden JPEG
copy.

handle_spw1_data() function This function handles data
received at SpaceWire interface 1, connected to the Virtex-4 FPGAs:

• If a JPEG image is received in CCSDS packet format, it is checked
for errors, unpacked, stored in memory and finally compared
to the golden JPEG copy. If both files are identical, the counter
for the correctly received images is incremented. However, if no
golden copy is available yet, the received file is stored in mem-
ory for this purpose.
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• If a CCSDS packet is received from a FDIR routing switch and
the packet contains a routing table, the routing table is com-
pared to the one, which was transmitted to the routing switch
before. Then, a status information is transmitted to the host PC
via the DRPM system indicating if the received table matches
the transmitted one.

• Similarly, if timeout values are received back from a FDIR rout-
ing switch, these values are compared to the ones, which were
transmitted to the routing switch before. Again, a status infor-
mation is transmitted to the host PC indicating the outcome of
the test.

spw_trigger_sendlist() functions These functions are used
to trigger the transmission of one or more SpaceWire packets, defined
in the send list, via one of the SpaceWire interfaces. Beforehand, how-
ever, the send lists must be set up. This is done by first storing the
packets in memory. Then, a memory pointer to the data block as well
as the size of the block is stored in a structure, which is added to the
send list. For instance, the raw image is stored in several packets in
memory. By simply setting up and triggering the send list, they are
transferred to the SpaceWire interface via DMA.

For convenience, wrapper functions are implemented, which set
up and trigger a send list with just one entry. The memory pointer
and the block size can be given as function parameters. For example,
these functions are used to transmit the routing tables to the Virtex-4
devices or status information packets to the DRPM system.

5.4.3 Host PC Software

The software running on the host PC is written in C++ using the
platform-independent Qt framework [147]. During development, the
software was successfully compiled for Linux, OSX and Windows. It
is used for sending commands to and receiving status information
from the embedded FDIR supervisor and instrument simulator soft-
ware via SpaceWire.

The graphical user interface of the software is divided into two
halves. In the top half, the controls are arranged in seven tabs, each
responsible for a specific task or group of tasks. In the bottom half,
status information from both the embedded systems and the host PC
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Figure 48: Screenshot of host PC software: bitstream setup

software is printed to a console. In the following, the content of the
seven tabs is briefly explained.

tab 1 - settings On this tab, the communication interfaces are
configured, for instance the IP addresses of the Ethernet to Space-
Wire bridges by manufacturer 4Links, which are used to communi-
cate with the embedded systems. The bridges use a simple TCP pro-
tocol and an appropriate custom-built driver has been implemented,
based on the QTcpSocket class.

tab 2 - bitstream setup On the second tab, the user can enter
information about bitstreams into a database, including the type (full
vs. partial), the FPGA, the partition, the local file name, and the asso-
ciated SQLite [148] database file that is used for fault injection results.
A screenshot of the tab is depicted in Figure 48. Via the buttons on
the right hand side, the following commands can be triggered:

• Delete All: Deletes all files from the DRPM file system.
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• Upload All: Uploads all bitstreams from the database to the
DRPM file system.

• DMA All: Creates DMA-capable versions of all bitstreams in the
DRPM file system.

• Full > FPGAs: Executes a full configuration of a specific FPGA.
Which FPGA is configured can be selected by ticking check-
boxes.

• Reset FPGAs: Resets both FPGAs.

• Print List: Prints the content of the file system to the console
in the bottom half of the tool.

• Debug On/Off: Switches the debug output from the DRPM sys-
tem via serial port on/off.

tab 3 - routing switch setup The controls on the third tab
allow the configuration of the FDIR routing switches, including the
timeout values and the routing tables. Depending on the test bench
setup, the user can transmit the configuration packets to the routing
switches directly from the host PC or via the instrument simulator
software. A message in the console window informs the user if the
transmission of the values was successful.

tab 4 - fault injection This tab comprises all controls needed
for the automatic and manual fault injection as well as for the voter
verification:

• For the automatic fault injection, a partial bitstream must be cho-
sen. Then, the software analyses the bitstream and creates a list
of bitstream byte offsets and corresponding FAR addresses. The
offsets are necessary to “cut out” a configuration frame from the
partial bitstream that is stored in the file system of the DRPM
whereas the FAR address is needed to download the configu-
ration frame to the right memory position within the FPGA’s
configuration memory. Unfortunately, the relation of the FAR
address to the byte offset is not linear and thus knowledge
about the bitstream layout is needed. Public information can
be found in the reference design file package attached to appli-
cation note XAPP988 [28]. During bitstream analysis, clock and
IOB related configuration frames are skipped. Once all config-
uration frames are stored in the list, the user can start either a
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full or random fault injection campaign. In the first case, faults
are injected into the configuration memory bit by bit, starting
from a desired bit position. In the latter case, the software picks
a random frame from the list and a random bit from within the
frame. Beforehand, however, a continuous data stream through
the stream processor must be started, which can either be pro-
vided by the host PC software or the embedded instrument sim-
ulator software. Then, the software executes the fault injection
campaign as proposed in Section 4.3.1. However, to speed up
the campaign, the latest software version does not classify the
configuration bit. Instead, it is only tested if a bit is sensitive
or not. This information is stored in a SQLite database and can
later be used for voter verification and other tasks.

• For debug purposes, the user can also execute a single fault
injection by manually entering a FAR address, byte offset and
bit position.

• As briefly described in Section 5.4.1, the FDIR supervisor soft-
ware includes a voter verification task that can be controlled
from this tab too. First, the user must create a binary version of
the SQLite database mentioned above, containing only the sen-
sitive bits, and upload it to the file system of the DRPM. Then,
the user can choose a specific voter module and the slot that is
associated with the stream processor, into which the faults are
injected. After starting the campaign, the FDIR supervisor soft-
ware injects faults into each sensitive bit of the chosen stream
processor bitstream and checks if the voter handles the resulting
failure correctly. Status information is constantly transmitted to
the host PC software and printed to a dedicated console. It in-
cludes the detection time, the correction time as well as a list of
all faults that did not lead to a failure.

tab 5 - fdir test This tab mainly comprises controls for the bit-
stream file mapping and the live demonstration mode. A screenshot
is depicted in Figure 49.

• The bitstream file mapping function allows the user to map par-
ticular bitstreams to particular voter slots. In addition, it can be
chosen which slots are handled by the failure recovery routine.
Both is important for the FDIR supervisor software as it is oth-
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Figure 49: Screenshot of host PC software: FDIR test
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erwise not aware of which stream processor is transmitting its
output to which voter slot.

• The live demonstration mode allows the user to send a video
stream through a stream processor chain. The compressed video
is then rendered to screen in a separate window. The raw image
data is retrieved from a webcam connected to the host PC us-
ing the OpenCV library [149]. The live demonstration mode is
especially effective if no redundancy is applied to a stream pro-
cessor. Then, the user can inject faults into the processor and
the effects become visible in the video stream. To do so, the
following controls are available:

– A fault can be injected into a known to be sensitive bit of
a particular stream processor bitstream. The sensitive bit is
taken from the aforementioned SQLite database file.

– The last frame in which a fault was injected can be scrubbed.

– A partial reconfiguration of the stream processor can either
be done via CPU or DMA transfer.

– The partition can be reset.

– The health statuses of the voter modules can be reset.

tab 6 - instrument The controls on the sixth tab are used to
communicate with the instrument simulator software. First, the user
can retrieve a raw image from the webcam (or alternatively use an al-
ready existing one). Then, this image can be uploaded to the DRPM
file system. Next, the file can be transferred to the instrument simula-
tor, which in turn creates a golden JPEG file. If desired, the user can
command the instrument simulator software to transfer the golden
JPEG file back to the DRPM file system, from which it can be re-
trieved to the host PC. One button allows the user to start and stop
the periodic transmission of raw test images, another button resets
the availability counters. The number of transmitted and correctly re-
ceived images as well as some other status information is constantly
received from the instrument simulator software and printed to a
dedicated console.

tab 7 - beam test This tab gives quick access to the controls
needed during the irradiation test campaign described in Section 8:
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• One button triggers a script, which sets up the whole test bench
automatically, i.e. the bitstreams are uploaded, the FPGAs are
configured, the routing switch tables and timeout values are
set, the bitstream files are mapped and the raw test image is
uploaded to the instrument simulator.

• The user can enter the file path to a SQLite database file, in
which the status information from the FDIR supervisor software
is collected, including the time stamp, the time to failure value,
the time needed for failure recovery as well as the file name of
the bitstream that was read back from the Virtex-4 FPGA after
failure detection. Once the test is running, the content of this
database file is shown in a table, which is updated in real-time.

• The user can enter the file path to another SQLite database file,
in which the status information from the instrument simula-
tor software is collected, mainly the time stamp, the number of
transmitted images as well as the number of correctly received
images. Again, this information is shown in a table during the
test.

• The user can enter the path to a directory, in which the readback
bitstreams are stored. The file naming is based on the transmis-
sion time stamp.

• The user can start and stop the test by pressing corresponding
buttons.

• During development, the proton beam was mimicked by fault
injection. For this reason, a button allows the user to start or
stop periodic fault injection with a given frequency.

5.4.4 Block RAM Profiling Software

The Block RAM profiling software is an essential part of the proposed
availability analysis method, see Section 4.3.2. It comprises two parts:
(i) a script file (*.do file) for the HDL simulator ModelSim, (ii) a profil-
ing tool written in C++ using the Qt framework, of which a screenshot
is shown in Figure 50.

script file First, a post place & route simulation model is com-
piled and loaded in ModelSim. Then, the script file is loaded, which
executes the following steps:



5.4 software components 127

Figure 50: Screenshot of Block RAM profiling software
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• The simulation model is searched for all Block RAM instances.

• A waveform file (*.vcd file) and an information file (*.nfo) is
created for each Block RAM instance.

• The following signals are added to each waveform file:

– ADDRA: Memory address port A.

– ENA: Block RAM enable port A.

– WEA: Write enable port A.

– ADDRB: Memory address port B.

– ENB: Block RAM enable port B.

– WEB: Write enable port B.

• The following information is collected for each Block RAM in-
stance and stored in the correspondent information file:

– WRITE_MODE_A: Write mode port A (write first vs. read first
mode).

– WRITE_WIDTH_A: Write width of port A.

– READ_WIDTH_A: Read width of port A.

– WRITE_MODE_B: Write mode port B (write first vs. read first
mode).

– WRITE_WIDTH_B: Write width of port B.

– READ_WIDTH_B: Read width of port B.

– DIA_CONNECTED: Indicates if port A data input is connected.

– DIB_CONNECTED: Indicates if port B data input is connected.

– DOA_CONNECTED: Indicates if port A data output is connected.

– DOB_CONNECTED: Indicates if port B data output is connected.

profiling tool The algorithm of the Block RAM profiling tool
comprises four C++ classes as can be seen in the Unified Modeling
Language (UML) diagram in Figure 51. Core of the tool is an object
of class VCDParser. The main steps of the algorithm are as follows:

• The waveform file is opened and analysed line by line (the file
format is defined in IEEE 1364-2005 [150]).

• Each file describes a module, which in this case is a Block RAM
instance. For this module, an object of class VCDModule is cre-
ated.
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VCDParser

- fileName : QString
- moduleList : QList<VCDModule*>

+ VCDParser(fileName : QString)
+ VCDParser()
+ parseFile()
- createModule(modName : QString) : VCDModule*
- addTvVal(sigId : QString, time : double, val : QChar)
- binStringToInt(binString : QString, ignoreLsbs) : int

VCDSignal

- sigName : QString
- sigId : QString
- sigBusLoc : int
- tvList : QMap<double, QChar>
- lastKnownKey : double

+ VCDSignal(sigName : QString, sigId : QString, sigBusLoc : int)
+ getSignalName() : QString
+ getSignalID() : QString
+ getSignalBusLocation() : int
+ getTvList() : QMap<double, QChar>
+ getLastKnownKey() : double
+ addValToTvList(time : double, val : QChar)
+ setLastKnownKey(key : double)

VCDModule

- modName : QString
- sigList : QList<VCDSignal*>

+ VCDModule(modName : QString)
+ VCDModule()
+ getSignalByName(sigName : QString, sigBusLoc : int) : VCDSignal*
+ getSignalsById(sigId : QString) : QList<VCDSignal*>
+ getNextStep(startTime : double, sigName : QString, busWidth : int, nextValue : QString*) : double
+ getValue(currentTime : double, sigName : QString, busWidth : int) : QString
+ getName() : QString
+ createSignal(sigName : QString, sigBusLoc : int)

VCDRamEntry

- lastWritePoint : double
- lastReadPoint : double
- timeUsed : double
- wasNeverWritten : bool

+ VCDRamEntry()
+ getLastReadPoint() : double
+ getTimeUsed() : double
+ wasNeverWritten() : bool
+ regWritePoint(wp : double, dummyWrite : bool, writeFirst : bool)
+ regReadPoint(rp : double)

Figure 51: UML diagram of Block RAM profiling tool
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• In the header part of the waveform file, the signals are defined
(ADDRA, ADDRB etc.). Buses are split into single wires and each
wire carries a unique identifier that is used in the body part of
the file. For each wire, an object of class VCDSignal is created.

• In the body part, all signal changes over time are listed. While
parsing the body part of the file, value changes for specific
signals are stored in a list by calling the addValToTvList(..)

method of the corresponding VCDSignal objects.

• Once the waveform file is parsed, the algorithm analyses the
information file. For each memory cell of the Block RAM, an
object of class VCDRamEntry is created.

• Now, the actual Block RAM profiling begins. The tool steps
through the waveform data from the beginning to the end of
the simulation run. Depending on the configuration of the Block
RAM, signal changes can occur on the write enable signals of
port A and B and on the memory address buses of port A and B.
By calling the getNextStep(..) method of the VCDModule object
for each signal/bus mentioned above, the next minimal time
step, at which a signal change occurs, can be determined.

• If a write enable for port A or B is active at the current time
step, the corresponding memory address is determined and the
memory write is registered for this memory cell by calling the
regWritePoint(..) method of the corresponding VCDRamEntry

object.

• Similarly, read enables for the ports are registered by calling the
regReadPoint(..) method of the corresponding VCDRamEntry

object.

• Every time a new write point is registered for a specific memory
cell, the time span between the last write point and the last read
point is added to an accumulation register. The accumulated
time stored in this register represents the time, in which the
memory cell is susceptible, see also Section 4.3.2.

• Once the complete simulation run is analysed, the above men-
tioned accumulated times of each memory cell are averaged
over all memory cells of the Block RAM. Dividing this averaged
time span by the total simulation time leads to the correction
factor TS described in Section 4.3.2.
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File: file_82.vcd
Module: jpeg_socw_tb.DUT.JpegEnc_1_U_QUANT_TOP_U_RAMZ_Mram_mem
BRAM Width: 18 / Depth: 1024
Used Memory Rows: 128 (12.5%)
Rows used as RAM: 128
Rows used as ROM: 0
Total simulation time: 46303.9
Total RAM time: 417315
Average RAM time: 3260.27 (7.04103%)
Susceptible RAM Bits: 162.225 / 18432
Susceptible ROM Bits: 0 / 18432 �

Figure 52: Example output of Block RAM profiling tool

• Then, the number of sensitive RAM bits can be determined by
multiplying the correction factor by the number of used RAM
bits.

An example output of the Block RAM profiling tool for one wave-
form file is shown in Figure 52.

First, the tool lists the file and module name, the Block RAM width
and the Block RAM depth. Then, it lists the number of memory rows
used as RAMs and ROMs. Next, it lists the total simulation time and
the average time span in which a memory cell is susceptible (the
percentage value in brackets is the correction factor TS). Finally, the
absolute number of susceptible RAM and ROM bits is given.

5.5 conclusions

A complex proof of concept system based on a mix of different tech-
nologies was implemented, which comprises components that are
very similar to the ones found in spaceborne hard- and software, e.g.:

• Virtex-4 SRAM-based FPGAs are used, which are available in
space-qualified versions.

• The ProASIC3e device that implements the FDIR supervisor
SoC design could easily be replaced by a radiation-hardened
anti-fuse FPGA.

• All network communication is done via SpaceWire, a network
protocol found in many modern space engineering projects.

• The JPEG image compression stream processor is a good exam-
ple for typical satellite payload data processing applications.
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• The embedded FDIR supervisor software is written for RTEMS,
a popular real time operating system for on-board computers.

This realistic demonstration system implements for the first time
the Distributed Failure Detection method in a multi-FPGA system. As
a result of that, it becomes possible to validate both the Distributed
Failure Detection and the Availability Analysis method, proposed in
Chapter 3 and 4, respectively. In the following chapters, the system
is used for several important purposes: first to obtain power and per-
formance measurements, then for the availability analysis of the im-
plemented stream processor (using fault injection experiments and
the Block RAM profiling method) and finally as a test bench for an
accelerated proton irradiation test campaign.



6
C H A P T E R 6 : E VA L U AT I O N O F F D I R M E C H A N I S M S

6.1 introduction

A multitude of failure detection, masking and recovery techniques for
SRAM-based FPGAs have been proposed in the literature. Although
power, area or performance overhead figures are sometimes given,
they are usually not suitable for comparing the techniques fairly since
a variety of incompatible measurement setups and terminologies are
used by the different authors.

In Section 2.9 the claim was made that modular redundancy is the
best approach for the FDIR methodology proposed in the course of
this PhD work. Now, with the proof of concept implementation de-
scribed in the previous Chapter 5, it is feasible to prove if this is also
correct in terms of power, area and performance overhead. Hence,
this chapter aims at measuring these overheads for several popular
mitigation techniques applied to the same benchmark circuit.

The chapter is structured as follows. In Section 6.2, an overview
of the power measurement setup is given. The different failure de-
tection, masking and recovery techniques that are examined in this
chapter are explained too. In Section 6.3, the measurement results are
given. Section 6.4 discusses the results before the chapter is finally
concluded in Section 6.5.

6.2 experimental methodology

6.2.1 System Overview and Power Measurement Setup

The essential parts of the DRPM system needed for the following
measurements are outlined in Figure 53. For all measurements, the
second FPGA device (LX100) remained unconfigured. As mentioned
earlier, the SoC on the ProASIC3e device implements a LEON3 micro-
processor that is connected to two memories via AMBA bus. The 2

GBit SD-RAM memory stores the bitstreams for the Virtex-4 FPGAs,
the smaller MRAM is utilised as main memory by the microproces-
sor. A NoC routing switch allows the system to transfer data to the

133
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Figure 53: Simplified overview of power measurement setup

SelectMAP configuration interfaces of the two Virtex-4 FPGAs. This
can either be done via DMA transfer or via CPU. In the first case,
the SD-RAM controller is a bus master, which can transfer data from
memory directly to one of the SelectMAP interfaces. In the latter case,
the microprocessor retrieves data from SD-RAM, storing it in MRAM
temporarily, before it is finally transferred to one of the SelectMAP
interfaces. The AMBA bus and the SelectMAP interfaces run at 40

MHz whereas the LEON3 microprocessor runs at 20 MHz.
The power consumption is measured by a Tektronix TDS5054B

oscilloscope using a high precision current probe TCP312. The 5 V
power line is tapped with the current probe, i.e. the power consump-
tion of all components on the PCB is measured. This type of setup
was chosen on purpose because the real power consumption of the
mitigation techniques is of interest, which also includes some CPU
load and external memory accesses.

6.2.2 Failure Masking and Detection

Two basic approaches for failure masking and detection are described
in literature, both based on spatial redundancy. The first approach
applies TMR to the netlist of a circuit whereas the second approach
implements a modular redundancy technique, i.e. a whole hardware
block is multiplied. For the measurements, both approaches have
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Figure 54: Failure masking and detection designs. From left to right: (a) no
redundancy, (b) modular TMR, (c) netlist TMR

been implemented, see also Figure 54. The design implemented on
the SX55 device comprises a NoC routing switch X that interconnects
the FPGA with external devices. The JPEG image compression stream
processor was used as benchmark circuit, which is connected to the
NoC switch too. In design (a), no redundancy is applied to the stream
processor. In design (b), the whole stream processor is triplicated and
each instance Cn is connected to the routing switch. In design (c),
TMR is applied to the netlist of the JPEG stream processor, i.e. the vot-
ing is done within the JPEG image compression block. First, the JPEG
core was synthesised as a stand-alone module. The resulting netlist
was then used as input to the TMRTool 13.2 by Xilinx [151], which ap-
plied TMR to the netlist using the default settings. The JPEG core has
a fair amount of state-dependent logic (like state machines, counter
etc.) and therefore 833 inserted one-bit voters could be counted in
the modified netlist. Finally, the netlist was integrated into the full
FPGA design. To allow a fair comparison, all three designs comprise
the same components except that only in design (b) the voter module
within the FDIR routing switch is clocked and therefore active.

6.2.3 Failure Recovery

Regarding SRAM-based FPGAs, failure recovery is mainly done by
refreshing the configuration memory.

In case of modular TMR, partial reconfiguration is a popular recov-
ery scheme. If a partial bitstream is downloaded to the FPGA device,
it does not only include the configuration memory content but also
the user memory initialisation values, i.e. the start-up content of the
flip-flops and the Block RAMs.

In case of netlist TMR, a partial reconfiguration of a faulty partition
is not possible since no physical separation between the partitions ex-
ists. Thus, a memory refreshing technique called scrubbing is often
implemented. Although quite similar to a regular partial reconfigura-



6.3 results 136

Table 10: Area: Failure masking

Design Slices RAMBs DSP48s

(a) No Redundancy 9,953 (40%) 90 (28%) 10 (1%)
(b) Modular TMR 21,852 (88%) 260 (81%) 30 (5%)
(c) Netlist TMR 20,909 (85%) 258 (80%) 30 (5%)

tion, the start-up content of user memories is not written to the FPGA
and as a result, scrubbing can be executed during normal circuit oper-
ation. For the measurements presented here, two scrubber types have
been implemented according to a Xilinx application note [28]. The
first one is a device-based blind scrubber, which downloads a full
bitstream to the device. The second one is a frame-based scrubber,
which downloads the content of the full bitstream frame by frame.

Except of the frame-based scrubber, all aforementioned recovery
techniques are implemented as pure hardware solutions (via DMA
transfer) and as software solutions (via CPU). In the first case, data
transfers to the SelectMAP interface are rather fast since the 8-bit
wide interface runs at 40 MHz. The software-based scrubbers, how-
ever, are slow due to the lower CPU frequency of 20 MHz and the
increased number of required memory accesses.

Due to technical limitations, the frame-based scrubber is only im-
plemented in software. It reads a block of data, representing a con-
figuration frame, from the full bitstream stored in SD-RAM. Then, it
appends the configuration frame header and an empty dummy frame
that is required to flush the pipeline of the configuration engine. The
FAR address of each frame is calculated in software. Due to the het-
erogeneity of Virtex-4 devices, the calculation is rather complex and
time consuming. As an alternative, the prepared configuration frames
could be pre-stored in SD-RAM or the FAR addresses of all configu-
ration frames could be stored in a look-up table. However, both ap-
proaches would necessitate increased memory resources, which are
usually rare in space electronics systems.



6.3 results 137

Table 11: Performance: Failure masking

Design Min. Period Max. Frequency

(a) No Redundancy 9.04 ns 110.66 MHz
(b) Modular TMR 9.52 ns 105.02 MHz
(c) Netlist TMR 10.10 ns 98.97 MHz

6.3 results

6.3.1 Failure Masking and Detection

6.3.1.1 Area Overhead

Table 10 lists the resources that are needed for the implementation
of the three designs. Although many one-bit voters are added to the
netlist of the design, the netlist TMR approach (c) needs slightly less
slices than the modular TMR approach. In addition, two Block RAMs
are saved. It can be assumed that the voters, which are implemented
in LUTs, can easily be mapped into slices with unused LUTs. In con-
trast, the modular TMR approach constrains the areas of the parti-
tions physically. Thus, the toolchain is unable to optimise components
across the partition boundaries, which could also explain why two
Block RAMs are saved when applying the netlist TMR approach.

6.3.1.2 Performance Overhead

Table 11 lists the performance overhead of each design. All figures
given are post-place & route and were gathered by incrementing the
timing constraints step by step until the place & route tool was unable
to meet the constraints. Unsurprisingly, the design to which no redun-
dancy was applied performs the best and can reach a clock frequency
of 110.7 MHz. The modular TMR approach reaches a lower clock fre-
quency of 105 MHz, again most likely due to the physical area con-
straints, which limit the toolchain in its place and route efforts. An-
other drop of performance is observed for the netlist TMR approach,
which can only reach less than 99 MHz. Since this design was not
able to meet the planned target frequency of 100 MHz, a DCM was
added to all three designs that decreases the clock frequency to the
next possible step. Therefore, all following power measurements were
conducted at 98.875 MHz.
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Table 12: Power: Failure masking (no data processing)

Design Current [A] Power [W] Rel. Power [W]

(0) Not configured 0.94 4.70 0.00

(a) No Redundancy 1.14 5.71 +1.01

(b) Modular TMR 1.31 6.57 +1.87

(c) Netlist TMR 1.36 6.78 +2.08

Table 13: Power: Failure masking (active data processing)

Design Current [A] Power [W] Rel. Power [W]

(0) Not configured 0.94 4.70 0.00

(a) No Redundancy 1.19 5.94 +1.24

(b) Modular TMR 1.34 6.69 +1.99

(c) Netlist TMR 1.36 6.82 +2.12

6.3.1.3 Power Overhead

Table 12 lists the power overheads of all designs that are clocked but
do not process any data. In contrast, Table 13 lists the overhead dur-
ing active data processing. First, the static power of the PCB was mea-
sured by keeping both SRAM-based FPGAs unconfigured. Although
the LEON3 microprocessor was running, it did not execute any de-
manding tasks or memory accesses. The average power measured in
this setup was 4.7 W. Then, the SX55 device was configured with
design (a), which led to a power consumption of 5.7 W, an increase
of ca. 1 W compared to the unconfigured design. Afterwards, the
FPGA was configured with the modular TMR design (b), resulting
in a power consumption of 6.6 W, an increase of nearly 1.9 W. The
netlist TMR design (c) could even exceed this result by another 0.2 W.

Naturally, the power consumption increases during active data pro-
cessing, as can be seen in Table 13. However, the increase seems to
depend on the design. Although the power overhead of all TMR ap-
proaches contains a rather large static part, this is particularly true
for the netlist TMR design.

One benefit of modular TMR is the fact that redundant instances
can be switched off on-demand if power must be saved. To measure
how much power can be saved, blank bitstreams were created for
each partition that allow the removal of stream processors from the
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Table 14: Power: Modular TMR (no data processing)

Design Current [A] Power [W] Rel. Power [W]

(0) Not configured 0.94 4.70 0.00

(1) All blanked 1.05 5.26 +0.56

(2) C1 1.14 5.71 +1.01

(3) C2 1.14 5.70 +1.00

(4) C3 1.14 5.71 +1.01

(5) C1 +C2 1.23 6.13 +1.43

(6) C1 +C3 1.23 6.16 +1.46

(7) C2 +C3 1.23 6.14 +1.44

(8) C1 +C2 +C3 1.31 6.57 +1.87

Table 15: Power: Modular TMR (active data processing)

Design Current [A] Power [W] Rel. Power [W]

(0) Not configured 0.94 4.70 0.00

(1) All blanked 1.05 5.27 +0.57

(2) C1 1.15 5.76 +1.06

(3) C2 1.15 5.75 +1.05

(4) C3 1.15 5.76 +1.06

(5) C1 +C2 1.25 6.23 +1.53

(6) C1 +C3 1.25 6.24 +1.54

(7) C2 +C3 1.25 6.23 +1.53

(8) C1 +C2 +C3 1.34 6.69 +1.99

design. The results are listed in Table 14 and 15, again for phases
without data processing and phases with active data processing.

If all partitions are blanked, the average power consumption is 5.3
W, i.e. the static area of the FPGA design consumes approximately 0.6
W. If one of the cores is installed, a further increase of 0.45 W can be
observed. Installing all three JPEG cores leads to a more or less linear
increase with an overall power consumption of 6.6 W. During active
data processing, the power consumption increases linearly too.

6.3.2 Failure Recovery

Table 16 lists the times needed for each failure recovery approach. A
partial reconfiguration of one of the JPEG stream processors can be
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Table 16: Performance: Failure recovery

Design Time (CPU)
[s]

Time (DMA)
[ms]

(a1) Partial Reconfiguration C1 0.53 27.5
(a2) Partial Reconfiguration C2 0.53 27.5
(a3) Partial Reconfiguration C3 0.55 27.5
(b) Device-based Scrubbing 1.44 129

(c) Frame-based Scrubbing 16.93

done in less than 30 ms via DMA transfer but takes more than half a
second if executed by the microprocessor. The long execution time is
due to the fact that the CPU must first load a block of configuration
data from SD-RAM to MRAM before it is finally downloaded to the
SRAM-based FPGA. As the size of one data block is only 4 kB and the
clock frequency of the CPU is low, low performance must be expected.
Similarly, device-based scrubbing can be executed in 129 ms when
using DMA transfer whereas the same transfer takes 1.44 s via the
microprocessor. Device-based scrubbing can be quicker than partial
reconfiguration though because the partial bitstream also contains
the start-up content of the user memory elements. Due to the chosen
implementation, the frame-based scrubber is extremely slow. Aside
from the increased processing time needed by the CPU, each frame
must be flushed with an empty frame. Together with the required
frame header, the data volume that must be transferred to the FPGA
is effectively doubled. In this implementation, the FAR address for
each frame is calculated in software which explains the extremely
low performance of this solution.

The given results should be understood in a qualitative manner
due to their strong dependency on the chosen implementation. It is
worth to point out, however, that the time needed to execute a failure
recovery action can be much longer than possibly expected, especially
since the performance of space qualified components is rather low. It
is also worth to point out that software-based solutions can bear a
high performance overhead.

Table 17 lists the power overhead of each failure recovery approach
that was measured while the system was running in a modular TMR
configuration with three active JPEG cores. The base power needed
during normal system operation was 6.69 W. During partial recon-
figuration and device-based scrubbing via CPU an increase of ca. 0.5
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Table 17: Power: Failure recovery

Design Power (CPU)
[W]

Power (DMA)
[W]

(0) System running 6.69

(a) Partial Reconfiguration 7.18 (+0.49) 7.02 (+0.33)
(b) Device-based Scrubbing 7.21 (+0.52) 6.99 (+0.30)
(c) Frame-based Scrubbing 7.31 (+0.62)

W was observed. The increased power overhead includes operations
executed by the CPU, read accesses to the SD-RAM, write and read
accesses to the MRAM as well as write accesses to the configuration
memory of the SRAM-based FPGA. The frame-based scrubber con-
sumes even 0.6 W, which is most likely due to the additional pro-
cessing overhead required for the calculation of the FAR addresses.
In contrast, the same failure recovery approaches executed via DMA
transfer led to a power overhead increase of only 0.3 W since they
only include read accesses to the SD-RAM and write accesses to the
configuration memory.

6.4 discussion

6.4.1 Failure Masking and Detection

The simple rule that a triplicated circuit also consumes two times
more power and resources can be confirmed. There are, however, dif-
ferences between the TMR implementations. It seems as if the netlist
TMR approach requires slightly less resources than the modular TMR
approach, which is most likely due to the area constraints applied in
the latter approach, which limit the place and route capabilities of
the toolchain. On the other hand, the modular TMR approach offers
better performance. This is due to the fact that many routes must
be added for the inserted one-bit voters in the netlist TMR approach,
which potentially increases the critical path length. The modular TMR
approach also consumes less power than the netlist TMR approach.

One advantage of the modular TMR approach is its capability to
make a system adaptable to reliability and power consumption con-
straints, respectively, because redundant instances can be added or
removed on demand. In case of the JPEG stream processor, approxi-
mately 0.5 W can be saved for each removed redundant instance.
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With its better performance and lower power overhead, together
with the possibility to further save power by temporally switching off
redundant instances, the modular TMR approach seems to be well
suited for payload data processing applications, in which high per-
formance might be a more important factor than system availability.
Systems with high availability requirements, however, have to buy
the increased reliability at the cost of maximum power consumption
and minimum performance.

6.4.2 Failure Recovery

Reconfiguring SRAM-based FPGAs can be quite expensive in terms
of power consumption. In the DMA implementation an average power
consumption of 0.3 W was observed whereas the CPU implementa-
tion reached 0.5 W, a considerable figure taking into account that the
JPEG stream processor consumes the same amount of power. In real-
ity, the FPGA is usually scrubbed with low frequency, ranging from
one scrub cycle per every few seconds to minutes or even hours. Then,
the average power consumption becomes negligible. However, some
publications suggest a high “non-stop” scrubbing frequency. While
this might increase the system availability, one should take the power
consumption into account when considering such an approach.

If a stream processor in a modular TMR configuration is only re-
paired once a failure has been detected (as it is the case in the pro-
posed FDIR methodology), the power consumption is minimised since
no unnecessary memory accesses are executed. In addition, repairing
one single stream processor is quicker than executing a device-based
scrubbing cycle.

Regardless of the chosen failure recovery approach, a hardware-
based implementation will usually perform better than a software-
based implementation. On the one hand, the power required during
reconfiguration is most likely decreased since less memory accesses
are needed. On the other hand, the failure recovery action can be
executed much quicker, which leads to a lower average power con-
sumption over time.

6.5 conclusions

Several FDIR techniques were evaluated in this chapter. The eval-
uation approach is novel, as failure detection and failure recovery
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approaches are compared fairly in terms of power, area and perfor-
mance overhead for the first time.

Two popular TMR approaches, often described in literature, were
compared in terms of power, area and performance overhead. For the
used benchmark circuit, modular TMR performs better than netlist
TMR in terms of achievable clock frequency and power consump-
tion but requires slightly more logic resources. Hence, this approach
seems to be well suited for high performance payload data processing
applications as targeted by the proposed FDIR methodology.

It was found that the reconfiguration process can be expensive in
terms of power consumption if necessary external memories are also
taken into account. This result further supports the idea of using a
real FDIR approach, in which faulty stream processors are only re-
paired once a failure has been detected. If this is not the case, the
scrubbing rate should be adapted to the mission’s constraints in terms
of availability and power overhead. As it will be shown in Section
7.5.1 of the following chapter, a scrubbing interval of approximately
8 minutes can already be sufficient even for a design without a redun-
dancy scheme. If the design is protected by a netlist TMR approach,
the interval could be increased substantially to several hours or even
days.

In general, a hardware-based implementation of the reconfigura-
tion controller performs much better than a software-based imple-
mentation.



7
C H A P T E R 7 :
AVA I L A B I L I T Y A N A LY S I S C A S E S T U D Y

7.1 introduction

This chapter aims at demonstrating how the Availability Analysis
method, proposed in Chapter 4, is applied in practice. The necessary
parameters are determined for the proof of concept implementation,
introduced in Chapter 5, step by step. For simplicity, only the two big
contributors to the steady-state availability are taken into account:
The configuration memory and the Block RAMs. Furthermore, only
dynamic partial reconfiguration is used as failure recovery strategy.
For illustrative purposes, the steady-state availability figures for two
European satellite missions are calculated for each redundancy con-
figuration. By doing so, the capabilities of each FDIR approach can
easily be compared.

The chapter is structured as follows. Section 7.2 gives an overview
of early fault injection experiments that were used to validate the
FDIR components of the proof of concept system. In Section 7.3, the
SEU rates for the configuration memory and the Block RAMs are
computed for the two example satellite missions. Then, in Section
7.4, the number of sensitive configuration memory and Block RAMs
cells within the JPEG stream processor is determined, which allows
the calculation of the MTBF figures that must be expected during
the two example satellite missions. Next, the steady-state availability
of the stream processor in three different redundancy configurations
and for both example satellite missions is determined in Section 7.5.
Section 7.6 discusses the results before the positive influence of the
Block RAM profiling tool on the prediction precision is illustrated in
Section 7.7. Finally, Section 7.8 concludes the chapter.

7.2 preliminary fault injection experiments

In the early development phase of the proof of concept system, many
fault injection experiments were conducted to gain a better under-
standing of the extend of SEU-induced data corruption. Some exam-
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Figure 55: Corrupted JPEG images due to fault injections

ples of corrupted JPEG images are shown in Figure 55. As can be seen,
only a single bit flip in the configuration memory can have dramatic
effects on the algorithm.

Later on, an automatic fault injection system was implemented that
was at that time slightly different to the one proposed in Section 4.3.1.
Instead of using the voter module as failure detector, failures in the
network stream were detected by the host PC software by comparing
the returned JPEG images to a golden copy. The results of the fault
injection campaign were stored in a SQLite database, including the
classification of the sensitive bits.

Once the voter module was implemented and integrated into the
FDIR routing switch, this SQLite database turned out to be very use-
ful for the verification of the voter module. As described in Section
5.4.1, the FDIR supervisor software includes a task for the voter verifi-
cation. Using the aforementioned SQLite database as input, this task
was able to verify that the voter module detects the same bits as being
sensitive as the early fault injection system did before. Interestingly,
a very small number of sensitive bits did not lead to failures during
this verification campaign. It turned out that in extremely rare cases
the manifestation of failures due to SEUs can be data-dependent. For
instance, if a darker image is processed the upset might not lead to
a failure but once a lighter image is processed the same upset might
manifest itself as a failure. In the following, this data-dependency is
not taken into account because of its rareness. However, the situation
might be different for other kinds of algorithms and should be thus
kept in mind.

7.3 radiation environments

To estimate the availability of the JPEG stream processor in a specific
radiation environment, the heavy ion and/or proton fluxes of this
environment must first be known. As proposed in Section 4.4.1, these
fluxes are calculated according to standard ECSS-E-ST-10-04C.
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Figure 6. XQR4VSX55—Measured Main Proton Upset Susceptibilities 
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Figure 7. XQR4VFX60—Measured Main Proton Upset Susceptibilities 
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Figure 8. XQR4VLX200—Measured Main Proton Upset Susceptibilities 
 
Although not as widely used, a Weibull fit of proton data is useful as a way of describing 
the data in a function, so fit parameters are given in Table 6 for upsets and Table 7 for 
SEFIs. 
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Figure 56: Cross-section for configuration memory cells in XQR4VSX55 de-
vices as provided by NASA/Xilinx [3]

Table 18: SEU rates per bit-day for ESA missions

Mission Config. Memory Block RAM

Sentinel-3 7.3E-07 2.3E-06

Sentinel-3 (SPE) 2.9E-04 1.1E-03

Galileo 2.6E-07 5.8E-07

Galileo (SPE) 9.4E-04 3.7E-03

Two satellite missions of the European Space Agency are consid-
ered for the case study:

• Sentinel-3, LEO, 814.5 km altitude, 98.65
◦ inclination.

• Galileo, Medium Earth Orbit (MEO), 23,222 km altitude, 56
◦

inclination.

For the two ESA missions, the SEU rates per bit-day are calcu-
lated using the OMERE tool, which greatly simplifies the SEU rate
prediction according to the aforementioned ECSS standard. OMERE
was developed by the French company TRAD with support from the
French space agency Centre National d’Études Spatiales (CNES) [152].
Aside from the mission parameters, the cross-sections for the mem-
ory elements must be fed into the tool. This can be done by entering
the Weibull parameters provided by NASA and Xilinx [3]. The corre-
sponding cross-section curves for proton fluxes are shown in Figure
56 and 57. The computed SEU rates are listed in Table 18: Under nor-
mal conditions, the SEU rates for Sentinel-3 are higher than the rates
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Although not as widely used, a Weibull fit of proton data is useful as a way of describing 
the data in a function, so fit parameters are given in Table 6 for upsets and Table 7 for 
SEFIs. 
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Figure 57: Cross-section for Block RAM cells in XQR4VSX55 devices as pro-
vided by NASA/Xilinx [3]

for Galileo due to the influence of the inner radiation belt. The oppo-
site is true for Solar Particle Events (SPEs) as the lower orbit offers a
natural protection due to the geomagnetic shielding of the Earth.

7.4 quantification of sensitive memory elements

7.4.1 Configuration Memory

To quantify the number of sensitive configuration memory bits, a sim-
plified version of the fault injection system proposed in Section 4.3.1
is used. Since the failure recovery strategy is solely based on partial
reconfiguration, a further classification of the sensitive bits (into FC/S,
FC/SR, FC/Re) is unnecessary and therefore only the total number of
sensitive bits FC is of interest.

In the same section it was claimed that random fault injection is suf-
ficient for the estimation of the total number of sensitive bits within a
bitstream. Using the formula for Wald confidence intervals (see Equa-
tion 2), the number of required fault injections can be estimated: Sup-
pose, a typical 95% confidence interval (z = 1.96) with an interval
width of ±0.2% (p = p̂± 0.002) is desired while 15% of all configu-
ration bits are guessed to be sensitive (p̂ = 0.15). Then, n becomes
122,451.

Based on this estimation, a campaign with 150,000 fault injections is
chosen, which can be conducted within a couple of hours. In contrast,
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Table 19: Random fault injection results

# Tested # Sensitive 95% confidence interval
Min Max

1,000 134 (13.40%) 11.35% 15.67%
5,000 701 (14.02%) 13.07% 15.01%
10,000 1,382 (13.82%) 13.15% 14.51%
50,000 6,922 (13.84%) 13.54% 14.15%
100,000 13,899 (13.90%) 13.69% 14.11%
150,000 20,870 (13.91%) 13.74% 14.09%

a full fault injection campaign that injects faults into all 3,735,264 bits
of the stream processor bitstream would take several weeks.

The results of the random fault injection campaign are given in
Table 19. As can be seen, the estimation of the percentage of sensitive
bits becomes better with an increased number of fault injections, i.e.
the confidence interval width becomes narrower. Using the worst case
assumption, the total number of sensitive bits is:

FC = 0.1409 · 3735264bits = 526299bits ≈ 526300bits (6)

To prove that this estimation is realistic, a full fault injection cam-
paign was conducted as well, which revealed that 523,543 bits (14.02%)
are sensitive. Since this result is within all confidence intervals found
in Table 19, it is proven that random fault injection can provide ac-
curate results. For illustrative purposes, the fault injection results are
visualised in a heat map, see Figure 58. The tested stream processor
is hosted on a reconfigurable partition in the top left corner of the
Virtex-4 FPGA, spanning vertically row 1 to row 3. The detail shown
in the heat map corresponds to the white box labeled “prmodule_1”
in Figure 43. Each pixel in the heat map represents 4 bits of a con-
figuration frame. The colour code of the pixels is as follows: (i) blue
= tested, (ii) green = 1 bit sensitive, (iii) yellow = 2 bits sensitive, (iv)
orange = 3 bits sensitive, (v) red = 4 bits sensitive.

To calculate the MTBF figures for the different radiation environ-
ments, the SEU rates from Table 18 must first be multiplied by the
total number of sensitive configuration memory bits and then the re-
ciprocal value must be taken from this result. The resulting MTBF
figures can be found in Table 20 and express how long it takes in av-
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Table 20: MTBF values for configuration memory

Mission MTBF

Sentinel-3 2.6 days
Sentinel-3 (SPE) 9.4 minutes
Galileo 7.3 days
Galileo (SPE) 2.9 minutes

erage until a failure occurs at the output of the stream processor that
was triggered by an upset in the configuration memory.

7.4.2 Block RAM

The number of sensitive Block RAM bits is determined using the
Block RAM profiling tool. For the theoretical background see Section
4.3.2 and for the practical implementation see Section 5.4.4.

A post place & route simulation model of the JPEG stream pro-
cessor is simulated in ModelSim. The HDL testbench simulates the
processing of one full image, resembling the scenario found in the
proof of concept implementation: The data enters the stream proces-
sor via SpaceWire with a data rate of 160 Mbit/s and the raw source
images are sent periodically every 100 ms. It is especially important
to model the frame rate accurately because the processing of one im-
age takes only around 50 ms, i.e. half of the time the Block RAMs of
the stream processor are idle and are thus not susceptible to SEUs.

In total, the stream processor comprises 83 Block RAMs. In Virtex-4
devices a Block RAM block comprises 18,432 bits. Therefore, without
any knowledge about the usage of the Block RAMs, one could assume
a total of 1,529,856 Block RAM bits.

From this large number of total Block RAM bits, the profiling tool
revealed that 524,964 bits (34.3%) are used as RAM bits and 27,351

bits (1.8%) as ROM bits.
Now, taking the correction factor τs into account, the Block RAM

profiling tool predicts that only 67,858 RAM bits (4.4%) must actually
be counted as being susceptible. Thus, together with the ROM bits, a
total of 95,209 sensitive Block RAM bits is estimated.

Similarly to the configuration memory, the MTBF figures for the
different radiation environments are calculated by first multiplying
the SEU rates from Table 18 by the total number of sensitive Block
RAM bits and then taking the reciprocal value from this result. The
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Table 21: MTBF values for Block RAMs

Mission MTBF

Sentinel-3 4.6 days
Sentinel-3 (SPE) 13.7 minutes
Galileo 18.1 days
Galileo (SPE) 4.1 minutes

Table 22: Steady-state availability: No redundancy

Mission Reconfiguration Interval (images)
5 50 500 5000

Sentinel-3 0.999998 0.99998 0.9998 0.998

Sentinel-3 (SPE) 0.9991 0.992 0.93 0.52

Galileo 0.9999993 0.999994 0.99994 0.9994

Galileo (SPE) 0.997 0.97 0.79 0.20

resulting MTBF figures can be found in Table 21 and express how
long it takes in average until a failure occurs at the output of the
stream processor that was triggered by an upset in one of the Block
RAMs.

7.5 availability analysis results

7.5.1 No Redundancy & Periodic Reconfiguration

First, the steady-state availability of a stream processor is determined,
to which no redundancy is applied. It is assumed that the images are
processed in bursts, i.e. that a partial reconfiguration can be done
between the bursts periodically. For modelling, the stochastic Petri
nets for approach 1 from Section 7.5.1 are used. The first net, see
Figure 29, is slightly simplified. Instead of the six exponential tran-
sitions mod_seu_*, only two are required now: The first transition is
triggered using the MTBF value for the configuration memory, the
second one is triggered using the MTBF value for the Block RAMs.
For the deterministic transition df_proc_time, 100 ms is used since
images in the proof of concept system are transmitted with a fre-
quency of 10 frames per second. The reconfiguration interval thresh-
old value v_reconf_intvl represents the burst length. For this case
study, burst lengths of 5, 50, 500 and 5000 images are chosen. The
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Table 23: Steady-state availability: DWC and TMR

Mission DWC TMR

Sentinel-3 0.999996 0.999999999...
Sentinel-3 (SPE) 0.998 0.9999998

Galileo 0.999998 0.999999999...
Galileo (SPE) 0.995 0.999998

results for the different mission scenarios and burst lengths are given
in Table 22.

7.5.2 Duplication with Comparison & On-Demand Reconfiguration

If the stream processor is duplicated and the voter module is used
in comparator mode, faulty stream processors can be repaired by the
FDIR supervisor on demand. If a mismatch occurs between the net-
work output streams of the JPEG stream processors, the comparator
cannot determine which one of the processors is faulty and is thus
marking both slots as being faulty. This change in the health status
of the voter module triggers an interrupt in the FDIR supervisor soft-
ware, which executes a partial reconfiguration of both stream proces-
sors. In the following, it is assumed that the failure detection time is
50 ms, the reconfiguration time for each processor is also 50 ms and
the voter resynchronisation takes another 100 ms, leading to a total re-
pair time of 200 ms. To model this FDIR configuration, the stochastic
Petri net for approach 3, see Figure 34, is solved. The resulting avail-
ability figures for the different mission scenarios are given in Table
23.

7.5.3 Triple Modular Redundancy & On-Demand Reconfiguration

If the stream processor is triplicated, a faulty stream processor can
also be repaired on demand as described above. To model this con-
figuration, the stochastic Petri net for approach 4, see Figure 35, is
solved. This time, however, one token represents one stream proces-
sor and as a result the repair time is the one required for only one
processor instance. Thus, the total repair time is only 150 ms instead
of 200 ms. The availability figures for the different mission scenarios
are given in Table 23.
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7.6 discussion

The steady-state availability is an excellent figure to compare differ-
ent FDIR configurations against each other. As can be seen in Table
22, an approach solely based on periodic reconfiguration can lead to a
decent stream processor availability if the reconfiguration interval is
rather short. During solar particle events, however, the approach per-
forms poorly. In addition, this approach is only of interest if the data
is processed in bursts. Then, a partial reconfiguration can be executed
during these bursts. It must also be kept in mind that the figures given
here are describing the so-called inherent steady-state availability, i.e.
planned downtime due to the periodic reconfiguration is not visible
in the availability figure.

As can be seen in Table 23, the Duplication with Comparison mode
performs well, even during solar particle events. Since on-demand
reconfiguration is used, the downtime due to a failure is very low. In
addition, this mode can be used for applications in which the data
is processed continuously. Still, lost JPEG images must be accepted
from time to time. If this is no option, the Triple Modular Redundancy
approach can further increase the availability, making lost images an
extremely rare event.

From this comparison it can be concluded that Duplication with
Comparison seems to be a decent solution for many satellite payload
data processing applications. Only during harsh mission phases, a
switch to TMR mode might be necessary. This observation supports
the idea behind the proposed Distributed Failure Detection method:
Since the method is adaptive, redundancy can be added or removed
during flight and therefore the system availability can be increased or
decreased too, depending on the current radiation environment and
other mission constraints.

7.7 advantages of block ram profiling

As discussed in Section 4.3.2, the susceptibility of the Block RAM bits
cannot be neglected in availability analysis of SRAM-based FPGAs
due to the large amount of Block RAMs used in some satellite pay-
load data processing applications. In order to substantiate this claim,
the reliability of a stream processor, to which no failure recovery
method is applied, will be analysed and compared for the following
three cases:
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Figure 59: Influence of Block RAM profiling

• Case (a): The susceptible Block RAM bits, determined by the
Block RAM profiling tool, are taken into account in the avail-
ability analysis.

• Case (b): The Block RAMs are fully neglected in the availability
analysis.

• Case (c): All Block RAM bits within the stream processor are
assumed to be susceptible in the availability analysis.

For illustration, the mission Sentinel-3 (SPE) is used in the ensuing
analysis. For cases (a) and (b), the MTBF values are listed in Table 20

and Table 21. For case (c), where all Block RAM bits are assumed to
be sensitive, the corresponding MTBF value can be calculated in the
same way, but this time all 1,529,856 Block RAM bits must be taken
into account, resulting in:

MTBF(FRAM/A) =

(1.1 · 10−3 SEU/bit·day · 1529856 bits)−1 · 86400 s/day = 51.3s (7)

Since the system becomes unreliable each time when one of the
failure modes occurs, its reliability diagram can be represented by a
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Table 24: Steady-state availability: Block RAM influence

Repair Interval (images) Case (a) Case (b) Case (c)

50 0.992 0.997 0.95

500 0.93 0.97 0.62

5000 0.52 0.75 0.09

series connection of blocks corresponding to each failure mode. The
reliability of a series system over time can be calculated as follows:

R(t) = e
−t

n∑
i=1
λi

(8)

where t is the time and λi = 1/MTBF the failure rate of mode i.
The reliability over time of the aforementioned three cases is plot-

ted in Figure 59. It can be seen from Figure 59 that the reliability curve
corresponding to case (c), where all Block RAM bits are assumed to be
sensitive, drops to zero very quickly. The difference of the prediction
between case (b), where no Block RAMs are considered and case (c)
can be as high as 75%. However, since the Block RAM profiling tool
identifies only a fraction of Block RAM bits as sensitive, the curve
of the corresponding case (a) is the more realistic estimate. The maxi-
mum difference of the prediction between case (a) and the other cases
is 37%. From this example, it becomes clear that the impact of the sus-
ceptible Block RAM bits cannot be ignored. Without any knowledge
about the usage of the Block RAMs, the actual reliability curve could
lie anywhere between case (b) and (c).

It has to be noted that the degree to which the total number of
the estimated sensitive Block RAM bits eventually affects the esti-
mated availability figure depends very much on the failure recov-
ery approach. As an example, Table 24 shows the availability figures
computed for the approach, in which a single stream processor is pe-
riodically reconfigured (approach 1 in Section 4.4.2.1). If the stream
processor is repaired very frequently, say every 5 images, the impact
is rather low because at this point of time, the probability that the
stream processor is still healthy is high for all three cases. However,
if it is repaired less frequently, e.g. every 5,000 images, the impact
becomes much more visible as evidenced by the bottom row in Table
24.
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7.8 conclusions

In this chapter, the proposed Availability Analysis method was prac-
tically applied to the proof of concept system. The JPEG stream pro-
cessor was characterised using the proposed fault injection system
and Block RAM profiling tool. It was proven that random fault injec-
tion can provide accurate results, which is a completely new finding.
The MTBF and the availability figures were determined for several
redundancy configurations, based on two example satellite missions.
By doing so, it was shown for the first time that Duplication with
Comparison and Triple Modular Redundancy can perform extremely
well when coupled with on-demand reconfiguration. Furthermore,
the positive influence of the Block RAM profiling tool was illustrated
by comparing the predicted figures to two border cases, in which ei-
ther the Block RAMs are not taken into account at all or assumed to
be fully susceptible.
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C H A P T E R 8 : VA L I D AT I O N O F F D I R S T R AT E G Y

8.1 introduction

With support from the European Space Agency, an accelerated proton
irradiation test campaign was conducted at the Paul Scherrer Institut
(PSI) in Villigen, Switzerland in the night from the 8th to the 9th of
May 2015. Christian Poivey, staff at ESA-ESTEC, was in control of
the proton beam while the author of this thesis was monitoring and
controlling the device under test. The test started around midnight.
Wojciech Hajdas from PSI set up and calibrated the beam, which took
around three hours to finish. Unforeseen problems with secondary
radiation effects further delayed the start of the actual test. Thus, the
first successful test run was started around 4 am. Three experiments
were conducted, each with a series of test runs. The last run was
finished around 12 pm.

Main objectives of the test campaign were:

• The validation of the Distributed Failure Detection method, pro-
posed in Chapter 3, by proving that the proof of concept system
is able to automatically detect failures and recover itself in a real
radiation environment using a real-world application design.

• The validation of the Availability Estimation method, proposed
in Chapter 4, by proving that the estimated availability for the
proof of concept system correlates with the system availability
measured during the test campaign.

The chapter is structured as follows. In Section 8.2, the test setup
is described in detail, including the test bench, the FPGA designs
and the test procedure. Then, all test results are given in Section 8.2,
including the outcome of the static and dynamic tests and the estima-
tion of the MTBF and availability figures based upon the test results.
Finally, Section 8.4 concludes the chapter by summarising the find-
ings.

157
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Figure 60: Backside of DRPM daughterboard

8.2 test setup

The DUT is a commercial FPGA device of type Virtex-4 XC4VSX55 by
manufacturer Xilinx. The DUT is mounted on a daughterboard of the
DRPM system with dimensions: 115 x 115 mm2, see Figure 37. The
DUT as well as all other components on the daughterboard are not
radiation-hardened by design. No components are mounted behind
the DUT on the backside of the daughterboard. Only passive compo-
nents (mainly resistors and capacitors) are mounted in the very di-
rect surrounding of the DUT. The daughterboard is connected to the
DRPM mainboard via two high speed interconnects by manufacturer
Samtec, see also Figure 60. To guarantee signal integrity, the length of
the cables is only 10 inch (254 mm). However, the cables are flexible,
allowing a certain degree of freedom in mounting the daughterboard
during the test campaign.

Aside from the daughterboard with the mounted DUT, five other
devices are located in the test chamber as can be seen in the block
diagram in Figure 61:

• The DRPM mainboard is connected via a SpaceWire cable to an
Ethernet-to-SpaceWire bridge by manufacturer 4Links.

• The DRPM mainboard is connected via two SpaceWire cables
to the SPWRTC board.

• Both, the mainboard and the SPWRTC board are powered by a
switchable power supply.
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Figure 61: Block diagram of the test bench used during the beam test

• The Ethernet-to-SpaceWire bridge is connected via an Ethernet
cable to the host PC, located in the control room.

• The Ethernet-to-SpaceWire bridge is powered by a 24 V desk
power supply.

Figure 62 shows a view of the test chamber. The beam line is fol-
lowed by a collimator (large metal ring) that shapes the proton beam.
The DUT is mounted behind the collimator.

A simplified block diagram of the FPGA design that is used during
the irradiation campaign is shown in Figure 63.

The first FPGA is mounted on the DUT board that is irradiated.
The FPGA design was minimised as much as possible to simplify the
analysis of the resulting data, e.g. the DCMs were removed as they are
known to be prone to single event effects. As a proof of concept appli-
cation, the JPEG image compression stream processor is used, which
was described in Section 5.3.2. Since the proposed FDIR approach
is based on dynamic partial reconfiguration, the stream processor is
hosted on a reconfigurable partition.

Aside from the stream processor, only a NoC to NoC bridge is
implemented on the irradiated FPGA, which is necessary to commu-
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Figure 62: A view of the test chamber
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Figure 63: Block diagram of the FPGA design used during the beam test
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nicate with the second FPGA. The cross-section of the bridge is not
known but is assumed to be very small and is thus neglected.

The second FPGA is mounted on the mainboard that is not irradi-
ated during the test campaign. It comprises a second JPEG stream pro-
cessor, which works in hot redundancy together with the JPEG stream
processor hosted on the irradiated FPGA. It further comprises a FDIR
routing switch, to which both stream processors are connected. In ad-
dition, the NoC is bridged to a SpaceWire interface, which allows the
communication with external components. The voter module within
the routing switch is used as a comparator. Once this module detects
a failure, a health status is flagged to the FDIR supervisor software
running on the LEON3 microprocessor, which is implemented on the
ProASIC3e FPGA on the same mainboard. The LEON3 microproces-
sor can access the configuration memory of both Virtex-4 FPGAs via
their SelectMAP interface.

The following steps are repeated throughout the test campaign:

1. Every 100 milliseconds, the instrument simulator software (im-
plemented on the SPWRTC board) sends a full raw image via
SpaceWire to the second FPGA.

2. Within this FPGA, the raw image is multicast to both JPEG
stream processors.

3. Both JPEG stream processors process the raw image and send
the resulting JPEG image to the comparator module.

4. The comparator module is doing a bitwise comparison of the
two redundant network streams. In case of a mismatch, the
comparator module flags a health status to the FDIR supervi-
sor software and stops forwarding any data, i.e. the comparator
module is fail-silent. The following steps are initiated after a
failure detection:

• The FDIR supervisor reads back the configuration bitstream
of the irradiated FPGA for later data analysis.

• Since the FDIR supervisor cannot determine which JPEG
stream processor failed, both stream processors are recon-
figured via their SelectMAP interfaces.

• After reconfiguration, the FDIR supervisor sends a request
to the comparator module to continue the comparison.
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5. If no mismatch occurs, the comparator module is simply for-
warding the JPEG image to the SPWRTC board via SpaceWire.

6. The instrument simulator software running on the SPWRTC
board is comparing the JPEG image to a “golden copy”. A counter
is keeping track of the number of correctly received JPEG im-
ages. At the same time, another counter is keeping track of the
number of transmitted raw images. Therefore, the software can
continuously determine the availability of the system.

8.3 test results

8.3.1 Overview

The proton test was conducted at two energy levels: 100MeV (test
runs 17 to 21) and 200MeV. At 200MeV, two different fluxes were
used, ca. 4.2 · 106 p/cm2·s (test runs 3, 4 and 7 to 12) and ca. 8.3 ·
106 p/cm2·s (test runs 5, 6 and 13 to 16). While the test was running, a
radiation detector measured the fluence [p/cm2]. Since the active beam
time was measured too, the flux can easily be calculated by dividing
the measured fluence by the run time.

It turned out that the shielding of the two FPGAs, which were as-
sumed to be reliable (second Virtex-4 and ProASIC3e device), was not
sufficient. During the test, SEUs also occurred in these devices from
time to time, most likely due to neutron scattering. Two basic failure
modes were observed that indicated upsets in these devices: (i) the
ProASIC3e device stopped the transmission of status information to
the host PC and (ii) the SPWRTC board did not receive any images
back from the second Virtex-4 FPGA. To circumvent this unforeseen
issue, the DRPM system was connected to a power supply that was
switchable from the control room. By doing so, the test could be man-
ually stopped every time one of the aforementioned failure modes
occurred and the DRPM system was power cycled. Then, the system
was set up again and the test restarted. Therefore, the test result data
presented in the following was gathered from several test runs. The
first two test runs no. 1 and no. 2 are not taken into account since the
aforementioned issue was detected during these runs and thus the
gathered results must be assumed to be (partly) wrong. Also test run
no. 8 was skipped because a power cycle was already necessary after
the detection of two failures, i.e. the sample size was too small to be
taken into account for further data analysis.
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Figure 64: Screenshot of bitstream compare tool

8.3.2 Static SEU Characterisation

After each failure detection, the bitstream was read back from the
Virtex-4 device, transmitted to the host PC via SpaceWire and stored
to hard disk. A custom-built tool was developed for post analysis of
all bitstreams. A screenshot of the tool is shown in Figure 64. First, the
readback bitstreams are aligned to a golden bitstream (*.bit file) and a
masking file (*.msk file) generated by the Xilinx toolchain. Then, the
files are compared byte-wise. To do so, the readback file is XORed
with the bitstream file and the inverted mask file is applied by an
AND operation. The resulting byte contains logical 1s at the positions
where an upset occurred. If the byte is not zero, the algorithm steps
through all bits of the byte to identify the exact bit position of the
upset. For this bit position, the FAR address of the corresponding
frame is determined. Since the tool is aware of the FPGA’s internal
memory structure, it is able to determine if the upset occurred in the
area of the JPEG stream processor, in Type 0, Type 1 or Type 2 blocks.
Type 0 blocks comprise CLBs, IOBs and DSPs. Type 1 blocks comprise
bits responsible for Block RAM interconnect. Type 2 blocks comprise
the Block RAM bits.

Each bitstream that was read back from the device contains sev-
eral SEUs. This is due to the fact that many bits are not used in the
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Table 25: Overview: Number of SEUs in different memory blocks

Experiment SEUs
JPEG

SEUs all
FPGA

SEUs
Type 0

SEUs
Type 1

SEUs
Type 2

200 MeV
4.2E+06 2606 16938 9244 1484 6210

200 MeV
8.3E+06 1796 11762 6509 963 4290

100 MeV
8.5E+06 1970 12860 6891 1161 4808

All 6372 41560 22644 3608 15308

design and that it therefore takes some time until a sensitive bit is
hit by a particle, which eventually causes a measurable failure. In the
meanwhile, several SEUs accumulate in the configuration memory.
We use this fault accumulation to our advantage and calculate the
static cross-sections of the device with it. Since the aforementioned
tool can distinguish between Type 0, 1 and 2 blocks, separate cross-
sections for both the CLBs and the Block RAMs can be calculated.
Memory content of Block RAMs actually used by the design cannot
be analysed as it is masked out by the masking file. However, around
two-thirds of the Block RAMs are not used by the design and were
thus available as on-chip radiation detectors. An overview of the num-
ber of detected SEUs for the different configuration memory blocks
can be found in Table 25, a graphical representation is shown in the
pie charts in Figure 65.

The aforementioned bitstream analysis tool also determined the
number of bits in the different blocks of the golden bitstream file and
the masking file, the results can be found in Table 26. In the following,
the number of comparable bits is of interest, which is the number of
configuration bits minus the number of masking bits.

Using the figures from Table 25 and 26, the cross-section of a spe-
cific memory block type can easily be determined by dividing the
number of SEUs by the measured fluence. Then, the cross-section per
bit is calculated by dividing the cross-section value of the memory
block by the number of comparable bits within this memory block.

To validate the Availability Analysis method proposed in the course
of this PhD, see Section 4, two cross-sections are of particular interest.
The first cross-section covers the configuration memory bits (CLBs,
IOBs, DSPs, Block RAM Interconnect etc.) whereas the second cross-
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Figure 65: Percentage of detected SEUs in different memory blocks

Table 26: Number of bits in golden bitstream file and masking file

Block Configuration
Bits

Masking Bits Comparable
Bits

Total FPGA 22702808 2936184 19766624

JPEG 3873024 153072 3719952

Type 0 13844224 539344 13304880

Type 1 2120192 74240 2045952

Type 2 6738392 2322600 4415792
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Table 27: Cross-Section: Configuration Memory (Type 0 and Type 1)

Experiment Fluence Runtime SEUs X-Section X-Section
per bit

[p/cm2] [s] [cm2] [cm2/bit]

200 MeV
4.2E+06 3.82E+10 9176 10728 2.81E-07 1.83E-14

200 MeV
8.3E+06 2.67E+10 3207 7472 2.80E-07 1.83E-14

100 MeV
8.5E+06 3.42E+10 4028 8052 2.36E-07 1.54E-14

Table 28: Cross-Section: Block RAM (Type 2)

Experiment Fluence Runtime SEUs X-Section X-Section
per bit

[p/cm2] [s] [cm2] [cm2/bit]

200 MeV
4.2E+06 3.82E+10 9176 6225 1.63E-07 3.69E-14

200 MeV
8.3E+06 2.67E+10 3207 4290 1.61E-07 3.64E-14

100 MeV
8.5E+06 3.42E+10 4028 4808 1.41E-07 3.19E-14

section is for the Block RAM memory cells. For all experiments, both
cross-sections can be found in Table 27 and 28.

For comparison, the cross-sections for the configuration memory
and the Block RAMs in (space graded) XQR4VSX55 devices, provided
by NASA and Xilinx [3], can be consulted. However, as shown in
Figure 56 and Figure 57, the device was only characterised up to 60

MeV. Still, it can be seen that our measured cross-sections for 100

MeV and 200 MeV are plausible as they are following the trend quite
well, although the Weibull fits seem to be too conservative, presuming
slightly larger cross-sections.

8.3.3 Dynamic Testing: Experiment No. 1

Test runs 3, 4 and 7 to 12 were conducted at 200MeV with a flux of
ca. 4.2 · 106 p/cm2·s. The overall run time was 9176 s and 439 failures
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Table 29: Overview: 200MeV, 4.2 · 106 p/cm2·s

Run Fluence Run Time Flux # Failures
[p/cm2] [s] [p/cm2·s]

3 3.70E+09 889 4.16E+06 49

4 1.00E+10 2410 4.15E+06 118

7 3.84E+09 910 4.22E+06 44

9 4.10E+09 991 4.14E+06 44

10 1.16E+09 275 4.22E+06 13

11 6.80E+09 1639 4.15E+06 63

12 8.60E+09 2062 4.17E+06 108

Total: 3.82E+10 9176 4.16E+06 439

were detected in total. Table 29 gives an overview of the individual
test runs.

After each failure detection, the FDIR supervisor software transmit-
ted a status message to the host PC, which contained the time that
elapsed since the last failure detection. As expected, the probability
distribution of these time to failure values can be approximated by an
exponential distribution as can be seen in the histogram in Figure 66.
Averaging these time values results in the MTBF figure for a specific
test run. An overview of the calculated MTBF values can be found in
Table 30.

Table 30: MTBF Values: 200MeV, 4.2 · 106 p/cm2·s

Run MTBF
[s]

3 17.15010417

4 19.71884615

7 20.2452907

9 21.28947674

10 20.46020833

11 24.83907258

12 19.03834112

Overall mean: 20.22905671

The averaged MTBF value can now be compared to the predicted
MTBF value that is based on our estimation of sensitive configura-
tion memory and Block RAM elements. Therefore, this most crucial
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Figure 66: Time to failure values of the first 200 MeV experiment

part of the proposed availability analysis method can indirectly be
validated.

The Block RAM profiling tool determined 67,858 sensitive Block
RAM bits used as RAMs and 27,351 sensitive Block RAM bits used
as ROMs, see Section 7.4.2. The random fault injection campaign pre-
dicted around 526,300 sensitive configuration memory bits within the
JPEG stream processor, see Section 7.4.1. Using the measured cross-
sections, the MTBF value is predicted as follows:

MTBF = [4.16 · 106p/cm2·s · (1.83 · 10−14 cm2/bit · 526300 bits+

3.69 · 10−14 cm2/bit · (67858+ 27351) bits)]−1 = 18.275 s/p (9)

As can be seen, the error of the prediction is low. In relation to the
measured value of 20.23 s, the predicted value of 18.28 s is off by only
9.7%.

8.3.4 Dynamic Testing: Experiment No. 2

Test runs 5, 6 and 13 to 16 were conducted at 200MeV with a flux of
ca. 8.3 · 106 p/cm2·s. The overall run time was 3207 s and 343 failures
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Table 31: Overview: 200MeV, 8.3 · 106 p/cm2·s

Run Fluence Run Time Flux # Failures
[p/cm2] [s] [p/cm2·s]

5 1.70E+09 203 8.37E+06 2

6 2.80E+09 333 8.41E+06 37

13 8.22E+09 994 8.27E+06 91

14 2.02E+09 246 8.21E+06 28

15 1.92E+09 231 8.31E+06 27

16 1.00E+10 1200 8.33E+06 140

Total: 2.67E+10 3207 8.31E+06 343

Table 32: MTBF Values: 200MeV, 8.3 · 106 p/cm2·s

Run MTBF
[s]

5 9.822631579

6 8.253333333

13 10.69113889

14 8.05037037

15 8.660288462

16 8.59028777

Overall mean: 9.146973294

were detected in total. Table 31 gives an overview of the individual
test runs.

The calculated MTBF values for all test runs can be found in Table
32. Again, the averaged MTBF value can be compared to the predicted
MTBF figure:

MTBF = [8.31 · 106p/cm2·s · (1.83 · 10−14 cm2/bit · 526300 bits+

3.64 · 10−14 cm2/bit · (67858+ 27351) bits)]−1 = 9.185 s/p (10)

This time, the predicted value of 9.185 s matches the measured
value of 9.147 s nearly perfectly, with an error of only 0.4%.
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Table 33: Overview: 100MeV, 8.5 · 106 p/cm2·s

Run Fluence Run Time Flux # Failures
[p/cm2] [s] [p/cm2·s]

17 8.99E+09 1100 8.17E+06 81

18 2.83E+09 330 8.58E+06 24

19 5.76E+09 669 8.61E+06 44

20 1.00E+10 1164 8.59E+06 92

21 6.57E+09 765 8.59E+06 68

Total: 3.42E+10 4028 8.48E+06 309

Table 34: MTBF Values: 100MeV, 8.5 · 106 p/cm2·s

Run MTBF
[s]

17 12.9291875

18 13.61826087

19 14.05593023

20 12.16035714

21 11.14865672

Overall mean: 12.51813322

8.3.5 Dynamic Testing: Experiment No. 3

Test runs 17 to 21 were conducted at 100MeV with a flux of ca.
8.5 · 106 p/cm2·s. The overall run time was 4028 s and 309 failures were
detected in total. Table 33 gives an overview of the individual test
runs and the calculated MTBF values can be found in Table 34.

The averaged MTBF value is again compared to the estimated MTBF
value:

MTBF = [8.48 · 106p/cm2·s · (1.54 · 10−14 cm2/bit · 526300 bits+

3.19 · 10−14 cm2/bit · (67858+ 27351) bits)]−1 = 10.586 s/p (11)

For this experiment, the prediction error is 15.4% and is thus slightly
greater than the error figures seen in the previous experiments.
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Figure 67: Measured versus predicted MTBF values

Table 35: Measured availability during test campaign

Experiment TX Images RX Images Availability

200 MeV
4.2E+06 80724 77621 0.961560

200 MeV
8.3E+06 28586 26266 0.918841

100 MeV
8.5E+06 35845 33741 0.941303

A graphical comparison of the measured and the predicted MTBF
values for all three aforementioned experiments can be found in Fig-
ure 67.

8.3.6 Availability Analysis

During the beam test, the instrument simulator software was count-
ing the transmitted images and the correctly received images. Thus,
the availability could simply be calculated by dividing the number of
correctly received images by the number of transmitted images. The
results are given in Table 35.
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Table 36: Predicted availability using stochastic Petri nets

Experiment Availability Error [%] Availability Error [%]
using measured MTBF using predicted MTBF

200 MeV
4.2E+06 0.96388 0.2 0.96017 0.1
200 MeV
8.3E+06 0.92347 0.5 0.92377 0.5
100 MeV
8.5E+06 0.94290 0.2 0.93318 0.9

Using the measured MTBF values given in the previous sections,
the steady-state availability can also be predicted using stochastic
Petri nets. Since Duplication with Comparison was used as redun-
dancy scheme, the Petri net shown in Figure 34 is used. Instead of
multiple exponential transitions mod_seu_x, only one transition is nec-
essary, which is triggered with the averaged MTBF value for each test
experiment. Two more parameters are needed: The exponential de-
tection time mod_detect and the deterministic repair time mod_rep.
For the detection time, an average value of 50 ms is assumed, which
corresponds roughly to the processing time of one image. The repair
time can be determined more precisely. During the beam test, the
FDIR supervisor software measured the time span between the fail-
ure detection and the successful update of the voter health status after
repair. In average, the failure recovery procedure took 608 ms, includ-
ing the readback of the bitstream. To this figure, another 100 ms must
be added, which corresponds to the image frame period. This is re-
quired because the first image after repair is always corrupted due
to the technical implementation of the voter module and the stream
processor. The freshly repaired stream processor starts data process-
ing only at the beginning of a new full image. Then, this new image
is processed by the voter module. However, the voter module needs
at least one network packet to reintegrate the freshly repaired proces-
sors. Thus, the first JPEG image after repair becomes corrupted since
this network packet, which comprises the first 1 kB data block of this
JPEG image, is skipped by the voter module.

The availability can also be predicted using the MTBF values that
were estimated in the previous sections (see Equations 9 to 11).

The results of the availability prediction for both cases are listed in
Table 36. If the measured MTBF value is used, the predicted availabil-
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Figure 68: Measured versus predicted availability figures (based on pre-
dicted MTBF)

ity matches the measured availability extremely well with an error of
0.5% or less. This result shows that the stochastic Petri net model is
well designed, although it must be pointed out that it delivers slightly
too optimistic results.

If the predicted MTBF value is used instead, the predicted availabil-
ity matches the measured availability nearly as well, which can also
be seen in the bar chart in Figure 68. This result is very positive as it
shows that the quantification of sensitive memory elements does not
need to be extremely precisely. Only based on the fault injection ex-
periments and the Block RAM profiling method, the estimated MTBF
values were off by up to nearly 16% compared to the measured values.
However, since the MTBF is so much longer than the average repair
time, the error of the MTBF estimation plays only a negligible role
for the availability estimation. This outcome strongly supports the
idea of the availability analysis method proposed in this PhD work,
which claims that a very good availability estimation is feasible with
a rather simple and coarse-grain approach to the quantification of
sensitive memory elements.
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8.4 conclusions

The accelerated proton irradiation campaign was a full success. Firstly,
it was demonstrated that the FDIR hardware and software compo-
nents are mature enough to detect and recover from failures in a real
radiation environment that causes higher SEU rates than any solar
particle event observed in history. Secondly, it was indirectly proven
that the estimation of the number of sensitive bits (via fault injection
experiments and Block RAM profiling) was quite accurate. It was
possible to predict the MTBF value measured during the beam test
with a maximum error of only 15.4%. Even more interestingly, it was
shown that despite this error a much better prediction of the avail-
ability was feasible with an error of only 0.9% or less. Therefore, both
the proposed Distributed Failure Detection and Availability Analysis
method were successfully validated.
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C H A P T E R 9 : C O N C L U S I O N S A N D F U T U R E W O R K

9.1 summary

SRAM-based FPGAs are very interesting for modern approaches to
data processing on board spacecraft since these devices offer high
performance and a large amount of logic and embedded memory re-
sources. However, except for the radiation-hardened Virtex-5QV de-
vice, all modern SRAM-based FPGAs suffer from SEU-induced fail-
ures in their configuration memory and user memory elements, re-
gardless of their qualification level (space, defence or commercial).
Hence, techniques are required, which can mitigate radiation-induced
soft errors.

The thesis began with a thorough survey of mitigation techniques
for SRAM-based FPGAs in Chapter 2. Since no recent work existed,
which surveyed this rich research field, the literature survey on its
own became an original contribution to knowledge in this field and
was therefore later published in a leading computing survey journal.
After a short introduction to relevant radiation effects, a common
terminology was introduced to simplify the classification of the re-
viewed mitigation techniques. This was an important step since it
turned out that one of the main obstacles for a good literature review
is the heterogeneity of terminology used in scientific publications. Us-
ing this common terminology, the reviewed techniques could be clas-
sified as either being aimed at run time failure tolerance or at design
time fault avoidance. Failure masking, detection and recovery tech-
niques active during operation fall into the first category, whereas all
techniques used during the design phase fall into the second category.
The literature survey exposed two basic mitigation concepts: While
the first one is based on netlist TMR combined with configuration
memory scrubbing, the second one is based on modular redundancy
combined with some on-demand failure recovery approach.

Since this PhD thesis is mainly aimed at high performance satellite
data processing applications, the focus was from the beginning on
a right balance of performance, reliability and power consumption,
rather than solely on high reliability. A striking number of publica-

175
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tions are only concerned with high reliability and often the motto
seems to be: “The more the merrier”. This is particularly true for
the netlist TMR approach, which offers excellent reliability but comes
with a high power, area and performance overhead. For payload data
processing applications that are often based on complex algorithms,
however, performance might be the number one factor and power
and area is usually in short demand. Therefore, the second mitiga-
tion concept based on modular redundancy seemed to be the more
promising candidate. In terms of performance, it was assumed that
such an approach is superior to netlist TMR because less additional
routing is required, which would eventually increase the critical path
length of the circuit. In terms of power and area overhead, modular
redundancy is particularly interesting in combination with dynamic
partial reconfiguration. Then, hardware components, respectively re-
dundant copies of these components, can be added and removed dur-
ing operation, depending on the current power and area constraints
of the space mission phase. As a consequence, the reliability of the
system can be increased only if it is really necessary.

Although a good number of works in the field of modular redun-
dancy exists, it turned out that most proposals are rather technology-
and application-dependent and none of them is really applicable to
multi-FPGA systems or at least scales well with the size of the ap-
plication. This research gap was filled with the proposal of the novel
Distributed Failure Detection method in Chapter 3. First, the appli-
cation is partitioned into several hardware tasks, which are imple-
mented within so-called stream processors. Regardless of the underly-
ing algorithms, every stream processor has the same unified interface,
which greatly simplifies the analysis of possible failures modes and
decreases the hardware complexity of the required failure detectors.
The stream processors are implemented on reconfigurable partitions,
i.e. redundant copies can be added or removed during operation to
adapt the system to current power or reliability constraints. The main
novelty and the biggest difference to all other systems proposed in
literature lies in the fact that the intercommunication between the
stream processors is based on a switched fabric NoC rather than a
communication bus or some kind of hard-wiring. Now, the commu-
nication scales well with the size of the application and the stream
processors can be distributed over an arbitrary number of FPGAs
in a multi-FPGA system. However, the question raised how FDIR
methods can now be incorporated into such a communication archi-
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tecture. The proposed Distributed Failure Detection method solves
this problem by making failure detection mechanisms part of the net-
work architecture. A voter module is embedded into a NoC routing
switch, which can receive network streams from redundant stream
processors, regardless of their position within the network topology.
A FMEA revealed that the implementation of the voter module must
be more complex than the implementation of a simple majority voter,
because (i) the redundant network streams are not synchronous and
(ii) failure modes specific to the network approach must be taken into
account, for instance missing packets or so-called babbling idiots. The
FMEA led to a unique, elegant and very small voter module design
that can handle all failure modes and that can automatically switch
from voter mode to comparator mode if one of the redundant net-
work streams is missing. On the input side, data must be provided to
the redundant stream processors simultaneously. This is solved by a
simple but robust multicast mechanism that is also part of the NoC
routing switch. Since network packets can be falsified due to failures
in the stream processors, they can potentially congest the network
if they take wrong routes. To avoid any congestion, failure isolation
mechanisms were also added to the NoC routing switches. Finally, an
idea for a possible data resynchronisation mechanism was proposed
as well, which makes use of the FDIR components already available
in the network. Often, the problem of data resynchronisation after re-
pair is mentioned as the main drawback of all modular redundancy
approaches.

Although the possibility of using different redundancy configu-
rations is an attractive feature of the Distributed Failure Detection
method, the question remains, what level of reliability can be achieved
with each configuration. Answering this question is interesting (i) to
compare different FDIR approaches against each other and (ii) to pre-
dict the achievable reliability in a specific radiation environment, i.e.
on a specific space mission. The literature survey revealed that not
much work regarding availability analysis for SRAM-based FPGAs
exists. And the work that does exist is mainly making use of such
analysis techniques to emphasise the advantages of a particular mit-
igation technique. Therefore, a novel Availability Analysis method
is introduced in Chapter 4. While the workflow of the method itself
might be not particularly novel, the incorporated techniques are inno-
vative. The first problem of modular redundancy that must be taken
into account is the fact that data in user memory is not automati-
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cally resynchronised after repair as it is the case with a classic TMR
and scrubbing approach. Therefore, faults in the configuration mem-
ory can manifest themselves as failures in the user logic if they get
trapped in a feedback loop. Many failure recovery approaches exist,
for instance partial reconfiguration or scrubbing, but not all of them
can handle all possible failure modes. For example, a trapped failure
in the user logic can only be repaired by means of partial reconfigura-
tion or scrubbing combined with a circuit reset. To enable availability
modelling for all possible combinations, a better understanding of
the fault-failure mechanism is required, i.e. it must be possible to de-
termine the probability of different failure modes, depending on how
the system can recover from a failure. For example, it might be inter-
esting to know the probability of failures that can be repaired by a
simple scrub or the probability of failures that can only be repaired
by a partial reconfiguration. This is achieved by a novel fault injection
algorithm. In contrast to other approaches described in literature, it
is not only able to determine the number of sensitive configuration
memory bits but also the number of sensitive configuration memory
bits that fall into a specific failure mode class. Another significant dif-
ference to other availability analysis methods described in literature
is the fact that the proposed one also takes the influence of Block
RAMs into account. Except for the number of Block RAMs utilised
by a stream processor, not much is known about them when only the
standard FPGA toolchain is used. Thus, a designer might decide to
fully neglect the Block RAMs in an availability analysis or to assume
that all Block RAM bits are susceptible. While this might be fine for
a worst case analysis, it can be far off from reality, especially in sys-
tems with huge amounts of Block RAMs. To get a better estimate of
the real susceptibility of the Block RAMs, an innovative Block RAM
profiling tool was proposed. The idea is simple: A typical user case
of a stream processor is simulated, e.g. for the processing of one sin-
gle data block. During simulation, all read and write accesses to all
Block RAMs are monitored. By doing so, it can be determined how
many memory rows are actually used in a real-world scenario. But
furthermore, the tool also takes into account the time spans in which
a fault in a memory row cannot manifest itself as a failure because
the content of the memory row is overwritten before the next read
operation. By means of these time spans, a correction factor can be
calculated that further increases the prediction precision. Finally, the
proposed Availability Analysis method also comprises several exam-
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ple stochastic models that are based on Petri nets. By solving these
models, the availability of a particular FDIR configuration in a partic-
ular radiation environment can be calculated.

All FDIR components and availability analysis tools were imple-
mented in a complex proof of concept system described in Chapter
5 that comprises hardware, embedded software and workstation soft-
ware components. Most importantly, the system proves that the pro-
posed mechanisms can actually be implemented in real hard- and
software. In addition, the system became an excellent test bench for
further research and validation purposes. The relevance of the proof
of concept system is underlined by the fact that it comprises compo-
nents very similar to the ones found in spaceborne hard- and soft-
ware.

The first research activity carried out with the proof of concept
system was concerned with power, area and performance measure-
ments of different FDIR configurations, see Chapter 6. Most notably,
it was shown that modular TMR performs better than netlist TMR in
terms of performance and power overhead, a great result supporting
the choice of modular TMR for high performance payload data pro-
cessing applications. In addition, it was shown that failure recovery
techniques can bear a large power overhead, which suggests that on-
demand failure recovery approaches are more power efficient than
fast, periodic ones.

The second research activity that made use of the proof of concept
system is described in Chapter 7 and applied the Availability Anal-
ysis method to the JPEG stream processor that is implemented as
part of the system. The availability of the stream processor in three
different redundancy configurations was determined for two exam-
ple space missions. As an important finding, it was proven that ran-
dom fault injection delivers good results, making a full fault injection
campaign unnecessary. Furthermore, it was shown that on-demand
failure recovery approaches are superior to periodic ones in terms of
achievable availability because the mean time to repair is minimised.
Using one of the example space missions, the positive influence of
the Block RAM profiling tool was demonstrated as well.

The third and most important experimental research activity is de-
scribed in Chapter 8. Due to great support from the European Space
Agency, it became possible to validate both the Distributed Failure
Detection and the Availability Analysis method by means of accel-
erated proton testing. First of all, the test date became an important
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deadline for a flawless implementation of the proof of concept system.
The FDIR components of the Distributed Failure Detection method
were all working as expected throughout the whole test campaign,
i.e. all failures were successfully detected by the voter module and
the system could always be recovered from the failure. The system
was slightly simplified for the test campaign to ensure that the result-
ing data could be better analysed. Thus, only one redundancy con-
figuration (Duplication with Comparison) was tested at two different
energy levels. By doing so, the MTBF and availability values of the
system could easily be measured in real-time and later compared to
the figures predicted by the Availability Analysis method. It turned
out that the measured MTBF values matched the predicted MTBF
values very well, with a maximum error of only 15.4%. Thus, it was
indirectly proven that the estimation of the number of sensitive bits
(via fault injection experiments and Block RAM profiling) was quite
accurate. The cross-sections required for the prediction of the MTBF
values were calculated from the bitstreams that were read back from
the irradiated FPGA device after each failure detection.

9.2 conclusions

In this thesis, an innovative FDIR strategy for SRAM-based FPGAs
is proposed, which is, in contrast to earlier work, specifically aimed
at high performance satellite data processing applications. The ratio-
nale of this decision is that such high performance devices are best
utilised in applications in which large data streams must quickly be
processed in realtime, for instance in data compression or image fea-
ture extraction applications.

The proposed FDIR methodology comprises a hardware frame-
work that interconnects so-called stream processors in a NoC architec-
ture. Each stream processor executes one processing step in hardware
and a data processing pipeline can easily be implemented by con-
necting several stream processors in series. Since the NoC is based
on a modern switched fabric architecture this approach is unique
in comparison with previous work. The processing pipeline and the
functionality of its stream processors can arbitrary be changed dur-
ing operation by reprogramming the routing tables and by utilising
the dynamic partial reconfiguration feature of SRAM-based FPGAs.
Furthermore, the NoC can span several FPGAs via off-chip intercon-
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nections, which offers excellent scalability for high performance data
processing applications.

Failure detectors are integrated into the NoC to recover from soft er-
rors caused by radiation effects. This is a novel approach because the
monitored stream processors are not hardwired to the detector(s). In-
stead, the output of any stream processor can be routed to any input
of any failure detector in the network. By doing so, stream processors
can be added, removed, duplicated, or relocated and then integrated
into the failure detection process by simply reprogramming the rout-
ing tables of the network. It does not even play a role on which FPGA
the failure detectors and the individual monitored stream processors
are located. The proposed FDIR mechanisms were evaluated in terms
of power and area overhead as well as performance. It was shown that
they have no significant disadvantages compared to other approaches.
Rather, the analysis of an example application revealed that the per-
formance of a circuit can be increased when using the proposed FDIR
methodology instead of a classic TMR approach that is applied to the
netlist of the circuit.

As a proof of concept, the hardware framework was successfully
implemented in a complex demonstration system that resembles a
real flight system. The correct functionality was validated in a proton
irradiation test campaign. It was shown that the FDIR methodology
can withstand much higher soft error rates than the ones that must
be expected during space missions.

To estimate the reliability of the data processing pipeline, a new
availability analysis method is proposed in this thesis as well. The
number of sensitive SRAM configuration memory bits is predicted
by a random fault injection system, whereas the number of sensitive
Block RAM memory bits is predicted by a novel Block RAM profiling
algorithm that analyses memory accesses during a simulation run.
The FDIR configuration is modelled by stochastic Petri nets and the
availability figures are determined by solving the underlying Markov
chains. Compared to earlier work, the proposed approach does not
neglect the influence of Block RAM bit upsets and thus provides more
accurate results. Furthermore, it also allows the modelling and analy-
sis of more complex FDIR configurations as it is based on Petri nets.

The availability analysis was also validated during the proton ir-
radiation test campaign. Beforehand, the error rates expected during
the test were predicted for the demonstration system using the pro-
posed analysis method. It was shown that both the predicted error
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rates and the resulting availability figures match the measured figures
accurately. In addition, the test provided new data not yet published
in other work, which enabled the calculation of the static cross-section
for Virtex-4 SX55 devices at energies of 100 MeV and 200 MeV.

9.3 contributions

The novelty contributions claimed in this PhD thesis can be sum-
marised as follows:

• Novel Distributed Failure Detection method for the detection of
failures in the output data streams of network nodes, which
can be distributed over several FPGAs.

The main novelty lies in the fact that the intercommunication of
stream processors is done via a switched fabric NoC architec-
ture. Failure detection and isolation mechanisms are embedded
into NoC routing switches. Compared to the state of the art, this
approach scales much better with the size of the application, can
be applied to multi-FPGA systems and allows high-speed com-
munication between the stream processors. It is thus well suited
for high performance payload data processing applications.

• Novel Availability Analysis method for the prediction of the fail-
ure rates and the availability figures for a stream processor in a
particular FDIR configuration and radiation environment.

The most significant novelty is the Block RAM profiling tool.
Compared to the standard FPGA toolchain, it allows a much
better estimate of susceptible Block RAM bits within a stream
processor (or any other circuit) and therefore increases the over-
all prediction precision for MTBF and availability figures. It ad-
vances the state of the art because prior work fully neglected
the influence of Block RAM susceptibility. The second novelty
is the new fault injection algorithm. The novelty lies in its capa-
bility to classify sensitive bits depending on how a system can
recover from failures that a triggered by upsets in these sensitive
bits. Fault injection systems described in literature are only able
to quantify the number of sensitive configuration bits without
any further classification. Since the classification enables more
general and complex availability models, the state of the art is
advanced by the proposed algorithm.
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• First systematic survey of the literature on failure detection, iso-
lation and recovery approaches for space-borne SRAM-based
FPGAs.

The survey is on its own a novel contribution to knowledge be-
cause no recent work existed, which thoroughly surveyed this
rich research field. Together with the included design recom-
mendations, the literature survey can serve as a tutorial for both
scientists and engineers who are novices in this field.

9.4 limitations and future work

The Distributed Failure Detection method proved to work reliably
throughout the design and validation phase. However, error-free com-
munication depends on the correct choice of timeout values for both
the voter module and the multicast mechanism. Since the proof of
concept system implements only a small network, the parameters can
roughly be estimated. However, in a large network the choice of cor-
rect parameters is more critical mainly due to the non-deterministic
nature of the NoC architecture. Therefore, it would be interesting to
work on analytical and/or simulation models in the future, which
could automatically determine the correct timeout values for given
network topologies and network traffic conditions.

The Availability Analysis method could be extended by much more
complex stochastic Petri net models. Currently, only the availability
of a single stream processor is modelled. In the future, the models
could be advanced to take also processing chains into account, in
which several stream processors are connected in series. In addition,
the voter modules are always assumed to be fault-free at present. The
fault injection system is designed to not inject faults into configura-
tion memory bits related to IOBs. During experiments, it was acci-
dentally discovered that there might be a chance that SEUs can create
shorts in the IOBs, which could potentially damage the device. Thus,
it would be valuable to look into this matter in the future as well.

The results of the power, area and performance measurements are
limited to the specific proof of concept implementation and thus lack
generality. Although they still provide some interesting, qualitative
statements, it would be beneficial to repeat the experiments for other
types of stream processors in the future. To a certain degree, the same
applies to the Availability Analysis case studies and the beam test
results. However, the JPEG stream processor was chosen intentionally



9.4 limitations and future work 184

as it is believed that it represents a broad range of typical payload
data processing algorithms. In any case, the limitation on one kind
of stream processor does not impair the validation of the Availability
Analysis method, it just makes the resulting figures less general.
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