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Abstract

In recent years, general state space models have been proven to be ex-

tremely useful in modelling wide range of economic and financial time

series. Subsequently, particle filters, a computational simulation based

method along with its related techniques had burst into our spectrum

and fill our expectation of estimating general state space models. How-

ever, particle methods can be computationally intensive, as well as pos-

sibly requiring stringent restrictions on the parameters space to achieve

timely convergence. In this thesis, I propose several improvements to

particle methods on different aspects. A list of the improvements are:

general computational time reduction in particle filters, modified particle

smoothing algorithm, more accurate parameter and state variable estima-

tion through the utilizations of Modified Entropy particle filter, and apply

novel general state space model estimation method to real economic and

financial time series.
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Chapter 1

Introduction

Real-world economic and financial processes produce observable outcomes that have

often been referred as data or information. In nature, such observed information can

be discrete (e.g., yearly economic growth rate, monthly inflation rate, etc.) or con-

tinuous (e.g., stock prices, exchange rate, etc). The information may be generated

from a single source, or corrupted with noise or transformed or indexed from other

sources, etc. All these possibilities spark a fascinating underlying problem regarding

the characteristics and the behaviour of such real-world information processes. Hid-

den Markov models or general state space models 1 consist of a Markov chain that

is hidden and an observable process that depends on the Markov chain, which have

been the most popular choices among other models in modelling observed economic

and financial information processes in recent years.

During the 1980s, the Kalman filter of Kalman [1960] has gradually become an

extremely popular tool in estimating various economic models that are specified in

the form of linear and Gaussian state space model. Such prevalence was largely due

to the endeavours of people like Anderson and Moore [1979], Harvey and Phillips

[1979], Stock and Watson [1988], Pollock et al. [1993], Hamilton [1994], among oth-

ers. However, the applicability of Kalman filter has been confined to linear and

Gaussian state space model. In recent years, the hidden Markov models or general

state space models have been thought of being more realistic and appropriate than

the linear and Gaussian state space model in modelling real economic and financial

processes. Earlier attempts in estimating general state space models were based on

the Kalman filter and related techniques such as: the extended Kalman filter, the

unscented Kalman filter, and the grid method. However, all these methods have not

1A word of clarification would be that the non-linear and non-Gaussian state space models have
been referred to as the general state space in the Statistics literature.
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been able to live up to our expectations of accuracy and simplicity. For instance,

the extended Kalman filter depends on local linear approximation, which can lead

to large approximation error when the function is highly non-linear; the unscented

Kalman filter relies on excessive normal approximations, where its performance can

be degraded substantially when the state space is non-Gaussian; the grid method

requires O(TG2) computation, where G is the grid and T is the time length, and it

requires G to be sufficient large to get a good approximation to the state space. To

overcome such problem of estimating general state space models, a computational

based simulation technique called the sequential Monte Carlo methods or particle

filters have been established and widely implemented in estimating the hidden state

variables, as well as unknown parameters within the model.

Nearly 20 years on, since particle filters were firstly established as an alterna-

tive to the aforementioned Kalman based methods, they have been able to fulfil our

expectation of improving estimation accuracy to certain extend where the previous

Kalman based methods have been unsuccessful. Moreover, their applicability in the

fields of statistics and engineering was largely the strive of Gordon et al. [1993],

Doucet et al. [2001], Crisan and Doucet [2000], Godsill et al. [2001], among others.

On the contrary, the particle methods have become a very useful tool in economics

and finance through the work of Pitt and Shephard [1999], DeJong and Dave [2006],

Fernandez-Villaverde and Rubio-Ramirez [2007], and Pitt et al. [2012]. Envisaging

the particle filters literature up to date, the objective of this thesis is to establish

and develop more accurate and informative particle filtering and particle smoothing

techniques that better serves the analysis purpose in economics and finance. More

precisely, the thesis is to suggest a set of improved methods that enable us to handle

the estimation of the state variables and population parameters within the general

state space models in less computational and more accurate manner. However, before

heading towards the main discussions, the following sections introduce and charac-

terize the features of the general state space model, as well as the estimation tasks

that will be involved with such type of model.

1.1 Model Specification

Developing estimation methods for learning the hidden state variables and the un-

known parameter associated with general state space models have been receiving vast

amount attention in the past two decades, for example, Gordon et al. [1993], Durbin

and Koopman [2000], Arulampalam et al. [2002], Poyiadjis et al. [2005], among others.

2



The attraction towards the employment of general state space models in modelling

economic and financial time series has been down to their unique characteristics in

deriving knowledge from observed information. More specifically, general state space

model derives a relationship through linking the hidden variables to observed infor-

mation, where these hidden variables have been referred as the state variables. The

relationship is said to be the key to understand the underlying behaviour of observed

processes such as: exchange rate, stock prices, inflation, and many more.

The general state space model has often been referred to as Hidden Markov mod-

els in the statistic literature. The mainstream definition of the state space model

is to assume that both stochastic processes {Xt}t≥1 and {Yt}t≥1 are defined on a

measurable space (Ω,F). These stochastic processes depend on parameter θ ∈ Θ,

for Θ is a subset of Rr, and r denotes the dimension of the parameter space. 2 The

process {Xt}t≥1 has been assumed to be hidden or unobserved Markov process with

transition density fθ(x
′|x), that is:

Xt|Xt−1 = xt−1 ∼ fθ(.|xt−1). (1.1)

Note that the initial density of the hidden process {Xt}t≥1 is known as X1 ∼ µ1.

Despite that the process {Xt}t≥1 is unknown, it is assumed to be partially observed

through the observation process {Yt}t≥1. Moreover, the conditional density of the

observation at time instance t given Xt is:

Yt|Xt = xt ∼ gθ(.|xt). (1.2)

A more familiar specification of the general state space model in the stream of the eco-

nomics literature consists of the following functional forms of the transition equation

and the observation equation, such as

Xt = ψθ(Xt−1, Vt, θ) and Yt = φθ(Xt,Wt, θ), (1.3)

where {Wt}t≥1 and {Vt}t≥1 are mutually i.i.d. noise sequences. φθ and ψθ are possible

non-linear functionals that determine the evolution of the hidden state and observa-

tion processes 3.

In the thesis, one of the crucial contributions is the estimation of stochastic volatil-

2Loosely speaking, the dimension is simply the number of parameters within the model specifi-
cation.

3Note that the definitions of technical terms such as: stochastic process, Markov process, tran-
sition density, along with the subsequent particle filtering, particle smoothing, will be defined and
explained in chapter 2
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ity (SV) models by using newly developed techniques of particle filtering and particle

smoothing. Wherein SV models are prototype state space models, which have been

widely applied to model time series such as stock price, market index, and exchange

rate. SV models assume that the hidden logarithm of volatility or variance {Xt}t≥1

of the observed time series follows a Markovian process, and has a probabilistic struc-

ture fθ(xt|xt−1). Moreover, the observed information or data of interest, {Yt}t≥1 has

been assumed to be governed by a probability model gθ(yt|xt). See Shephard [1996]

and Durbin and Koopman [2000] for more detailed discussion. One of the simplest

univariate SV model, where certain amount simulation studies in the thesis will be

based upon, can be expressed through the following two equations:

Xt = θ1Xt−1 + θ2Vt, (1.4)

Yt = θ3 exp
(
Xt/2

)
Wt, (1.5)

where Vt and Wt can be assumed to be i.i.d. standard normal with mean 0 and

variance 1, and X1 ∼ N(µ1, σ
2
1). Equations (1.4) and (1.5) have often been referred

as the state equation and the observation equation respectively. The above transition

equation that induces the volatility at time t depends on a linear function of previous

time period volatility. Suppose that the exchange rate or the market index is denoted

by et, then the series of interest (as in the observation equation) is Yt = ∆ log(et)

for t = 1, · · · , T . 3 The stochastic process Xt is indeed the logarithm of variance of

the exchange rate or the market index. Modification can be made on the transition

(state) equation of the model, which would permit the hidden volatility to take into

account more realistic and versatile situations of the hidden volatility, such as non-

linear structure and additional information. An example that includes both cases is

the following discrete version of the re-parametrized continuous time Cox-Ingersoll-

Ross model in Poyiadjis et al. [2011], which takes the following form:

Xt = µ+Xt−1 + φ exp(−Xt) + exp(−Xt/2)Vt, (1.6)

Yt = β exp
(
Xt/2

)
Wt. (1.7)

In the transition equation (1.6), the non-linearities have been introduced through the

exponential term, and the additional information is µ, which represents the mean

reversion value.

In the thesis, I also consider the Phillips curve model in the general state space

format. In this model, the inflation rate corresponds the observation process {Yt}t≥1

3∆ denotes the difference operator, e.g. ∆ log(et) = log(et)− log(et−1).

4



and the unobserved natural rate unemployment corresponds the hidden state process

{Xt}t≥1. In addition, this model can be seen as a very simple dynamic macroeconomic

model with fewer parameters.

1.2 Estimation of the Model

The estimation of the general state space involves obtaining the estimate of hidden

state sequence {Xt}t≥1 and making inference about the unknown population param-

eters θ. For general state space models where learning the state sequence is the only

task, then such scenario has been referred as the general state space model with

known parameters. On the contrary, general state space models with the task of

learning both state sequence and unknown parameters has been referred as general

state space models with unknown parameters. The conventional assumptions this

type of models suggest that the estimation of both state variables and unknown pa-

rameters are closely tied to one another. In this section, I elaborate on the difficulties

associate with the estimation of the general state space model.

1.2.1 General State Space Model with known Parameters

By state inference, it is referring to the estimation of the hidden state variables or

sequence {Xt}t≥1. Hereby I explain the procedure of obtaining the estimate of state

variables when the parameters are known in the general state space model. Two

very different approaches can be adopted to complete such task, they are: particle

filtering and particle smoothing. With particle filtering, it says that provides the

set of available observations {Yt}t≥1 up to time instance t, then the estimates of

{Xt}t≥1 can be obtained through the marginal density function pθ(xt|y1:t). Where

the estimation of the marginal density pθ(xt|y1:t) is in fact by its empirical density

that obtained through particle samples. On the contrary, particle smoothing is saying

that given the full observations set is available, e.g. {Y1:T}, then the estimate of state

variable can be obtained from the marginal smoothing density of pθ(xt|y1:T ). The

estimation of particle smoothing carries out in a backward fashion instead of the

forward fashion with the particle filtering. The full extended discussions on particle

filtering and particle smoothing have been placed in chapter 2 and 5.

5



1.2.2 General State Space Model with unknown Parameters

The above discussed state sequence estimation was under the assumption of knowing

the value of parameters in the model. However, in many real world time series utiliz-

ing the general state space model, such a condition is impossible to fulfil. Therefore,

the estimations of general state space models are: obtaining the estimate of state

sequence and making inference of unknown parameters. This is a much more com-

plicated problem than the one with merely state inference given the parameters are

known. One of the complications lies within the order of estimation. By the order of

estimation, it means whether one should firstly estimate the parameters then the state

sequence; or the vice-versa; or even at the same time. Despite the various attempts

that have been made in the past to handle such difficulty, inadequacies remain either

in estimation accuracy and computational timing. Kantas et al. [2011] provided a

survey on the existing parameter estimation methods in general state space models

with unknown parameters.

Chapter 4 and 5 study two different approaches for both state and parameter

estimation, where these two approaches differ from the order of their estimation. In

chapter 4, I perform a modification to the existing Entropy particle filter of Liverani

and Papavasiliou [2006]. Such particle filters estimate firstly the unknown parameters,

and then it performs the above state inference based on the estimate of parameters.

In which the modified Entropy particle filter follows the order of firstly estimate

the parameters then the state sequence. On the contrary, chapter 5 investigates

the approach of combining Expectation-Maximization (EM) algorithm with particle

techniques for ’off-line’ estimation. By off-line, it means that the observations are

processed as a batch during the estimation. Such an approach estimates the param-

eters and the state sequence in an iterative fashion. For example, given the target

parameters are θ = {θ1, θ2, θ3} in the SV model of Harvey et al. [1994] and Durbin

and Koopman [2000](that defined by equations (1.4) and (1.5)) and θ = {µ, φ, β} in

the Cox-Ingersoll-Ross model (that defined by equations (1.6) and (1.7)), the EM-

particle smoothing carries out the estimation in the following fashion: firstly imposes

some initial values for the set of parameter, namely θ0, it then allows to estimate

the state sequence {Xt|T}t≥1 by particle smoothing. Subsequently, the estimate of

{Xt|T}t≥1 is utilized to compute a new set of parameter values, θ1, which allow us

to repeat the particle smoothing step. The iteration stops once the convergence is

reached.
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1.3 Thesis Outline

This thesis is structured as follows: to make the thesis as self-contained as possible,

chapter 2 lays the fundamental knowledge of state space model, particle filtering, and

particle smoothing. Subsequently, chapter 3 develops a novel degeneracy diagnostics,

namely the Shannon information entropy diagnostics. This newly technique can be

implemented as an alternative to existing degeneracy detection to all particle filters

for as long as resampling procedure is used. In addition, it provides an empirical

guide-line over the selection of existing resampling schemes for the application of

particle filters. In chapter 4, I present modification on the Entropy particle filter for

parameter estimation of the general state space model in Liverani and Papavasiliou

[2006]. Within chapter 5, I developed a modified forward filtering and backward

sampling smoothing method. In addition, the newly proposed smoothing method has

been embedded into the EM algorithm for off-line parameter estimation in general

state space models. Chapter 6 ends the thesis with a summary of the results and a

prospect of future works.

1.4 Contribution of Thesis

The contribution of chapter 3 is the development of the Shannon information entropy

diagnostics. This new diagnostics can be utilized in the same way as other widely

applied diagnostics such as the effective sample size and the coefficient variation to

determine the necessity of resampling in particle filtering. However, I show that

Shannon information entropy diagnostics avoids over-resampling compare to exist-

ing diagnostics. The simulation evidences suggest that particle filter utilizing the

Shannon information entropy diagnostics provides at least as good precision as the

particle filter with the effective sample size diagnostics. However, the resampling per-

centage of particle filter with the Shannon information entropy diagnostics is lower

than that of with the effective sample size diagnostics. The Shannon information

entropy diagnostics presented in chapter 3 is widely applicable and conforms to the

attendant reductions in computational cost. These two aspects are in-line with the

two of the five paradigms that were made by Durham and Geweke [2012] on their

work of sequential posterior simulators for Bayesian inference.

The contribution of chapter 4 can be summarised as follows: looking beyond

the estimation of state process into the more formidable parameter inference within

general state space models, I modified the Entropy particle filter of Liverani and

Papavasiliou [2006] by introducing additional refinement procedure. The simulation
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evidences suggest that the modified entropy particle filter demonstrates greater im-

provement over the estimation of both state process and parameter which is by the

original entropy particle filter. The modified entropy particle filter is very attractive

and particularly useful in parameter estimation for general state space models.

Typically, conventional particle smoothing algorithms will have computational

complexity of O(TN2). Such fact has been one of the major drawbacks that had

prevent particle smoothing from being extensively applied in reality. However, the

forward filtering and backward sampling smoothing of Godsill et al. [2004] (has of-

ten been referred as the GDW smoothing algorithm) has computation complexity

of O(TN). In chapter 5, I incorporate modification steps within the GDW smooth-

ing algorithm, where the modification takes into account of the backward smoothing

weights prior to the resampling step in the GDW smoothing. In the thesis, for the

sake of simplicity, I shall refer the modified algorithm as the modified GDW (MGDW)

smoothing algorithm. The MGDW smoothing also has the computational complexity

of O(TN). In addition, I show that through simulation studies, the MGDW smooth-

ing performs at least as good as any existing smoothing techniques.

One final contribution of the thesis to the particle filtering literature is the ex-

tended work of a novel parameter estimation method for general state space models.

Such estimation method brings up two existing, yet quite different techniques to-

gether: EM algorithm and particle techniques, to carry out the off-line estimation in

the dynamic system. This work extends the novel estimation method by utilizing the

Shannon information entropy diagnostics of chapter 3 in particle filtering and employ-

ing the aforementioned MGDW smoothing, which forms the EM-MGDW method in

the thesis. Such formalization builds a valid estimation techniques that make the EM

algorithm and particle techniques to become feasible for real data applications. The

method of EM-MGDW smoothing method demonstrates great feasibility in off-line

parameter estimation among general state space models. Moreover, I have success-

fully applied this method to estimate the parameters of the non-linear Phillips curve

model and the stochastic volatility models. In the meantime, the implementation of

this method will not be effected by the number of unknown parameters.
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Chapter 2

Backgrounds

Abstract

Particle filters have been widely applied to filter state sequences and estimate un-

known parameters for Hidden Markov models or general state space models. But

within economics, the usage of particle filters has only begun recently. The objective

of this tutorial is twofold: firstly, to provide a self-contained introduction on the basics

of particle filtering and particle smoothing. Then to demonstrate the attractiveness

of particle methods in the estimation of general state space models.
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2.1 Introduction

This chapter provides a tutorial review of the Kalman filter, Particle filters, and of

related matters, which aims to make this thesis as self-contained as possible.

Markov chain is a stochastic process in which the next state depends only on the

current state. Markov chains have many applications as statistical modelling tool

of real-world observation processes, and it is the single most important background

information of the hidden Markov models or general state space models that we will

be considering in this thesis.

The Kalman filter has been renowned for its ability to estimate linear and Gaus-

sian state space models, wherein such models are in fact a special type of the general

state space model. Most of all, a leading application of the Kalman filter (Kalman

[1960]) of the 1960s was in aerospace engineering, when it was used by NASA to

guide the Apollo mission on its journey to the moon. Econometricians have been

much slower to adopt the Kalman filter than statisticians. During the 80s and 90s,

the Kalman filter has become a device for constructing the observed likelihood func-

tion of time series being modelled in state space format, which subsequently allows

to estimate the population parameters within the dynamic system. A recapitulation

of the Kalman filter and of Kalman based filters will provide a comparable basis for

the discussion of particle filters. It is the flexibility of particle filters and their ability

to cater to non-linear and non-Gaussian models or general state space models that

accounts for their importance in the field of economics. The discussion of the Kalman

filter and the Kalman smoothing follow very closely to Pollock et al. [1993]. However,

I provide further derivations (that were not shown in Pollock et al. [1993]) that need

to arrive at the Kalman filter.

The advantage of particle filters, in comparison with other approximation meth-

ods, such as the extended Kalman filter, is that, when dealing with the estimation

of general state space models, they do not require troublesome local linearisation

or functional approximations. Ever since the development of the bootstrap filter by

Gordon et al. [1993], generic particle filters have been continuously refined and de-

veloped. The developments have come in from two streams. In one stream have been

the order of firstly sampling, then resampling, and the representatives of such stream

is the bootstrap filter Gordon et al. [1993] among others. The other stream has been

the development on the order of firstly resampling then sampling, where the auxil-

iary particle filter of Pitt and Shephard [1999] have been the first and foremost filter

that follows such order. See Lopes and Tsay [2011] and Creal [2012] for an extensive

review of the use of particle filters in econometrics.
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Particle smoothing tends to be more computationally challenging than particle

filtering. Smoothing consists of estimating the distribution of the state sequence

at a particular time given the observations beyond that time. Therefore, given the

additional information, one would expect that the trajectory estimates of the state

sequence obtained via smoothing will be ’smoother’ to those obtained by the particle

filter alone. The most widely applied particle smoothing techniques are: the forward

filtering and backward smoothing by Kitagawa [1987], the two-filter smoothing for-

mula by Bresler [1986], and the generalized two-filter algorithm by Briers et al. [2010].

The two-filter smoothing combines a forward filter with a backward information filter,

where the difference between the two filter smoothing techniques and the generalized

two-filter algorithm lies in the construction of the backward information filter.

This chapter is organized as follows: section 2 defines and explains concepts such

as: stochastic process, Markov chain, and general state space models. The derivation

of the Kalman filter, the construction of likelihood using the prediction error from

Kalman filtering, and various smoothing algorithms are discussed in section 3. In

section 4, we review the idea of importance sampling and sequential importance sam-

pling. Finally, section 5 introduces the conventional particle smoothing techniques

such as: the forward filtering and backward smoothing, the two-filter smoothing for-

mula, and the generalized two-filter algorithm.

2.2 State Space Models

In this section, I introduce the concept of stochastic process and discuss Markov chain

and their related features.

2.2.1 Stochastic processes

A familiar example of a stochastic process in continuous time would be the price

of a stock recorded continuously in seconds throughout the trading day. On the

contrary, an example of a stochastic process in discrete time would be the sequence

of temperatures recorded at 9 o’clock every morning at the University of Leicester in

Leicester. A formal definition can be given as follows

Definition 2.2.1 (Stochastic process). A stochastic process X is a family {Xt : t ∈
T} of random variables Xt : Ω → S. T is called the time index set and S is called

the state space.

In this thesis, I focus on stochastic processes in discrete time, which assumes
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T ⊂ N or T ⊂ Z in the above definition. On the other hand, processes in continuous

time is where T = [0,∞) or T = R.

In the thesis, the term of random variable will be repeatedly employed. One can

think of it as if there is a set Ω representing the outcomes of a random experiment

that can be observed by means of various measurements. These measurements assign

numbers to the outcomes, thus the notion of random variable is a function or act

to capture such procedure. Readers can refer to Capinski and Kopp [2005] for a

systematic treatment on knowledge of measure and probability theory.

Definition 2.2.2 (sample path). For a given event or outcome ω ∈ Ω the collection

{Xt(ω) : t ∈ T} is called the sample path of X at ω.

Note that for discrete time of T ⊂ N, then the sample path is a sequence; for

continuous time T = R, the sample path is a function from R to S. The distintion

between processes is not merely restricted on their time index T , but also on state

space S. A special case would be that the state space S is defined as a countable set,

and then X is then called discrete state space process or discrete process. Hence a

list of type of sample paths that we may refer to in the thesis are: sample path of a

discrete process in discrete time, sample path of a discrete process in continuous time,

and sample path of a continuous process in continuous time. The above example of

the observed stock price of the trading day can be seen as sample path of a continuous

process in continuous time; whereas the example of daily temperature can be seen as

sample path of a discrete process (for S ⊂ T) in discrete time.

2.2.2 Markov chains

Markov chain is a special kind of stochastic process. The evolution of the process

in the future depends merely on the present and not on where it has been in the

past. In result of that the applications of particle methods in the thesis aim to

estimate dynamic models of continuous economic and financial information processes

in discrete time. We therefore restrict our attention to general state spaces in discrete

time. By general state space, it means that the state space S = R.

Definition 2.2.3 (Markov chain). Let X be a stochastic process in discrete time with

general state space S. X is called a Markov chain if X satisfies the Markov property

of

P (Xt+1 ∈ A|X0 = x0, · · · , Xt = xt) = P (Xt+1 ∈ A|Xt = xt),
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for all measurable sets 1 A ⊂ S.

The above definition states that the process depends on the past only through

the present. More specifically, given the knowledge to the current state Xt, then the

next state Xt+1 is independent of the past states X0, · · · , Xt−1. Note that if S is

countable, e.g. S ⊂ N, then the preceding definition of general state space Markov

chain becomes the definition of discrete version of Markov chain.

This thesis deals merely with the homogeneous Markov chains, which refers to

the distributions P (Xt+1 ∈ A|Xt = xt) that are independent of time t. The term of

transition kernel, which will be frequently mentioned throughout the thesis, describes

the probability of the Markov chain moves between states, which is defined as:

P (Xt+1 ∈ A|Xt = xt) =

∫
A

K(xt, xt+1)dxt+1, (2.1)

where the integration is with respect to a suitable dominating measure.2 The follow-

ing is an example of such a process.

Example 2.2.2.1 (Random walk). Suppose the random walk takes the following form

Xt+1 = Xt + εt+1, (2.2)

where εt+1 is standard normally distributed with mean 0 and variance 1, and the

density function takes the form of φ(z) = 1√
2π

exp(− z2

2
). Let X1 ∼ N(0, 1), then the

transition process of Xt can be described via

Xt+1|Xt = xt ∼ N(xt, 1).

The following discussion induces that Xt is a Markov chain,

P (Xt+1 ∈ A|Xt = xt, · · · , X0 = x0) = P
(
εt+1 ∈ (A− xt)

)
= P (Xt+1 ∈ A|Xt = xt)

=

∫
A

φ(xt+1 − xt)dxt+1.

1The definition of measurable set is that let sample space Ω be a nonempty set, and F a σ-algebra
over Ω, then the sets in F are called measurable sets.

2Suppose that υ and µ are measures on a measurable space (Ω,F), we say that v is absolutely
continuous with respect to µ if µ(A) = 0 implies v(A) = 0 for A ∈ F. We write this as υ � µ.
Moreover, we say that the measure µ dominates υ when 0 6 υ(F) 6 µ(F).

13



Thus the transition kernel is

K(xt, xt+1) = φ(xt+1 − xt) =
1√
2π

exp
{
− (xt+1 − xt)2

2

}
.

In order to obtain the m-step transition kernel, according to equation (2.2), we can

write Xt+m as follows

Xt+m = Xt+m−1 + εt+m

= Xt+m−2 + εt+m−1 + εt+m

=
...

= Xt + εt + · · ·+ εt+m.

Thus, Xt+m|Xt = xt ∼ N(xt,m) as εt are assumed to be i.i.d. Therefore, if we

standardize Xt+m|Xt = xt to be of standard normal, the probability distribution will

be

P (Xt+m ∈ A|Xt = xt) = P (Xt+m − xt ∈ A− xt)

=

∫
A

1√
m
φ

(
xt+m − xt√

m

)
dxt+m,

and the m-step transition kernel is therefore

K(xt, xt+m) =
1√
m
φ
(xt+m − xt√

m

)
=

1√
2π

1√
m

exp
{
− (xt+m − xt)2

2m

}
.

To define an ergodic Markov chain (as it will be used in Chapter 4), we need to

outline the definitions of irreducibility and recurrence.

Definition 2.2.4 (Irreducibility). Given a distribution µ on the states S, a Markov

chain is said to be µ-irreducible if for all sets A with µ(A) > 0 and for all x ∈ S,

there exists a m ∈ N such that

P (Xt+m ∈ A|Xt = x) =

∫
A

Km(x, y)dy > 0.

Irreducible is an important feature when we analyse the limiting behaviour of the

Markov chain. The above definition says that the Markov chain will visit any state

with a positive probability. In other words, A Markov chain is called irreducible if it

only consists of a single class, i.e. all states communicate.

Definition 2.2.5 (Recurrence). (a) A set A ⊂ S is said to be recurrent for a Markov
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chain X if for all x ∈ A

E(VA|X0 = x) = +∞,

where VA denotes the number of time of visiting the state in set A.

(b) A Markov chain is said to be recurrent, if

• The chain is µ-irreducible for some distribution µ.

• Every measurable set A ⊂ S with µ(A) > 0 is recurrent.

For general state spaces as we are considering here, we need to consider the number

of visits to a set of states rather than single state. The above definition emphasizes

that a set is recurrent if on average it is visited infinitely often. In other words, there

is a non-zero probability of visiting such a set infinity times. Checking recurrence of

a Markov chain can be difficult, however a well-known proposition states that if a

Markov chain is irreducible and has a unique invariant distribution, then this chain

is also recurrent. Finally, an important point that we will be needed is as follows: a

Markov chain on a state space S is ergodic, if it is irreducible and positive recurrent.

2.2.3 General State Space Models

The general state space model has been also known as the Hidden Markov models

(HMMs), which consists of a Markov chain that is hidden and an observable stochas-

tic process that depends on the Markov chain. More precisely, the model comprises

a Markov chain {Xt}t≥1, where the Markov chain is linked to another observable

stochastic process {Yt}t≥1, which says that Xt governs the distribution of the corre-

sponding Yt. The process Yt is said conditional on Xt that is independent from its

past {Yt−1, · · · , Y0}. The following definition is from chapter 1 of Cappe et al. [2005]:

Definition 2.2.6. Consider an X-valued discrete-time Markov chain {Xt}t≥1, such

that X1 ∼ µ(x1) and Xt|(Xt−1 = xt−1) ∼ f(xt|xt−1). The estimation of {Xt}t≥1 rely

on observable Y-valued process {Yt}t≥1. We assume that given {Xt}t≥1, the observa-

tions {Yt}t≥1 are statistically independent and their marginal densities with respect

to a dominating measure λ are given by Yt|(Xt = xt) ∼ g(yt|xt). Then such model is

called the hidden Markov model.

Once the reality problems can be boiled down to a framework that can be speci-

fied by the general state space, then our aims would be that given some observations,

whether we can estimate hidden sequence of states, as well as the unknown population
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parameters (if the model is parametrized by both states variable and unknown pa-

rameters). Examples of general state space models appeared frequently in economics

and finance literature are presented in the following.

Example 2.2.3.1 (Linear and Gaussian State space models Pollock [2003]). Let

Xt ∈ X = Rp, Yt ∈ Y = Rq, X1 ∼ N
(
0, σvIσ

′
v(I − FtF

′
t )
−1
)

and

Xt = FtXt−1 + σvVt, Transition Equation (2.3)

Yt = HtXt + σwWt, Observation Equation

where the disturbances Vt and Wt are normally distributed with mean vector 0 and

identity covariance matrix I respectively. Let’s omit the time index t, and assume

matrices F,H, σv and σw have appropriate dimensions, then we can obtain that the

following densities functions respectively:

f(xt|xt−1) ∼ N(Fxt−1, σvIσ
′

v), Transition density

g(yt|xt) ∼ N(Hxt, σwIσ
′

w), Observation density.

The analytical solution (the Kalman filter) to the above model was given by

Kalman [1960] and Kalman and Bucy [1961]. Such model has been widely used for

target tracking and time series modelling. An extensive discussion of the linear Gaus-

sian state-space model has been studied by Anderson and Moore [1979]. Finally, the

derivation of the Kalman filter and its related are presented in the following section.

Stochastic volatility Model

In the modelling of share price, stock market index, or foreign exchange rate, we use

the relative returns or the log-returns to describe the relative change over time of

the price process. The variances of these types of return tend to change over time:

the large and small values in the sample occur in clusters. More specifically, large

changes at certain moments in time tend to be followed by large changes of either

sign, and small changes tend to be followed by small changes, such phenomenon has

been referred to as volatility clustering. The term volatility has been interpreted as

variance in econometrics.

The autoregressive conditional heteroscedasticity (ARCH) model of Engle [1982]

and the generalized ARCH of Bollerslev [1986] have been widely used to model the

changes in volatility of financial and economic information processes. The stochas-

tic volatility (SV) model is however an alternative approach to the ARCH/GARCH

framework. It sets up a model containing an unobserved variance component, the
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logarithm of which is specified directly as a linear or non-linear stochastic process.

This model has appeared in option pricing and exchange rate modelling for the past

two decades. The stochastic volatility model is a prototype general state space model.

This thesis considers SV models of continuous process in discrete time. In the fol-

lowing example, we will see a stochastic model in its discrete time form, which has

been briefly mentioned in equation (1.4) and (1.5) of the introduction.

Example 2.2.3.2. The observations {Yt}t≥1 are the log-returns, {Xt}t≥1 is the log-

volatility, which is assumed to follow a stationary autoregressive of order 1 (AR(1)).

Xt = θ1Xt−1 + θ2Vt, Vt ∼ N(0, 1), (2.4)

Yt = θ3 exp(Xt/2)Wt, Wt ∼ N(0, 1),

where Vt and Wt are i.i.d. sequences. The parameter θ3 plays the role of the constant

scaling factor, θ2 is the volatility of the log-volatility, and θ1 governs the persistence in

the volatility. The Xt represents the logarithm of variance of the observation process

Yt, meanwhile, Yt the process of interest has often been transformed from the operation

of ∆ log et, where et is the actual observation value such as exchange rate and stock

price at time stance t, and the notation ∆ indicates the difference operation. This

model can further be transformed into a linear and Gaussian state-space models via

log-transformation, for instance, taking logarithms of the squared relative returns, we

have

Xt = θ1Xt−1 + θ2Vt, (2.5)

Rt = log Y 2
t = log θ2

3 +Xt + Zt, where Zt = logW 2
t .

Note that since Wt is standard normal, Zt follows the logχ2
1 distribution and the

mean and variance of Zt are known to be −1.2749 and π2/2 = 4.93, respectively, see

Harvey et al. [1994]. This model has been study by Durbin and Koopman [2000], who

approximated the log-distribution by a finite mixture of Gaussian distribution, which

allows the SV model becomes a conditionally linear and Gaussian state space model.

Regime Switches in Econometrics

The Markov-switching autoregressive models have been used to characterize macroe-

conomic fluctuations. Such model was developed by Hamilton [1989], it provided a

formal statistical representation of the idea of expansion and contraction that consti-

tute two distinct economic phases within the study of business cycle. An improved

version of Hamilton’s model was discussed in the book by Kim and Nelson [1999],
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which is described in the following example.

Example 2.2.3.3 (Linear Markov Switching model). We have {st}t≥1 take values

from a discrete space, e.g st ∈ S ⊂ N. For example we can denote economy in an

expansion state as st = 1 and in a contraction state as st = 0. We assume st is

a Markov chain such that p(s1 = i) = µ1(i) , and p(st = i|st−1 = j) = fs(i|j) for

i, j = {0, 1}. Suppose that we observe Yt directly but can only make an inference

about the value of st based on the realization of Yt. The inference will be formed in a

probability format, which is

ξit = p(st = i|It, Xt; θ),

where θ denotes the unknown parameters and It = {y1, · · · , yt}, and the hidden state

variable Xt is Xt ∈ X = Rd, and the product σ-algebra 3 is defined as Z = S × X.

Hence we have Zt = (st, Xt) ∈ Z. Conditional upon st, we could form the following

model when X1|s1 ∼ N(0,Σs1),

Xt = AstXt−1 +BstVt, Vt ∼ N(0, Iv) (2.6)

Yt = DstXt +GstWt, Wt ∼ N(0, Iw),

where Vt and Wt are mutually independent and Gaussian, and Ast, Bst, Gst, and

Gst are coefficient matrices with appropriate dimensions. Provided with the above

information, we have

µ(z) = µ(s, x) = µs(s)N(0,Σs),

f(zt+1|zt) = f
(
st+1, xt+1|st, xt

)
= fs(st+1|st)N(Astxt, BstB

′

st),

g(yt|zt) = g(yt|st, xt) = N(Dstzt, GstG
′

st).

The inference on the above model can be conduct through the use of the Kalman

filter. Further estimation on the desire state of the economy st can be computed

through the computation of the observed likelihood of Yt. The detailed formulas of

that can be found in Hamilton [1989] and Hamilton [2005].

The state space approach provides significant benefits over traditional time se-

ries techniques for problems such as multivariate data and non-linear/non-Gaussian

characteristic processes. In order to make inference about a dynamic system in state

space model, it requires at least two models: which is the aforementioned transition

equation and observation equation. Accordingly, the techniques conduct the inference

3A term in measure theory, it simply denotes the collection of all subsets of sample space Ω.
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such as seeking filtered estimates of state variable Xt, which will be the discussion in

the following sections.

2.3 The Kalman Filter

The linear and Gaussian state space model consists of two equations, which are

Xt = FtXt−1 + εt, for εt = σvVt, (2.7)

Yt = HtXt + ηt, for ηt = σwWt, (2.8)

where Xt and Yt are the state vector and the observation vector at time stance t,

respectively. The transition disturbance εt and the observation error ηt are assumed

to be mutually uncorrelated random vectors, but normally distributed with zero mean

vector and covariance or dispersion matrices

V (ηt) = Ωt and V (εt) = Φt. (2.9)

Note that the notation of Ωt is the covariance at time t, not the sample space Ω. The

initial state X1 ∼ N(m1, P1) and the information set (filtration) at time t is defined as

the set of observations It = {y1, · · · , yt}, where yi are realisation of Y . The insights on

the preceding model can be grasped as: the state variable satisfies certain stochastic

equation with linear coefficients and Gaussian initial condition; and the observation

equation satisfies an evolution of the equation with a linear function. Provided the

state disturbance εt and the observation error ηt are i.i.d normally distributed but

mutually independent from each other, then the inference on state variable given the

observation up to time t is to learn the distribution of p(xt|It). Furthermore, for

the present problem the Kalman filter (as shown in the following section) derives the

mean and covariance of such distribution.

2.3.1 Derivation of Kalman Filter

Before heading straight to the derivations of the Kalman filter, a few necessary defini-

tions are outlined: the state-vector estimates mt|t−1 = E(Xt|It−1) and mt = E(Xt|It)
and their associated covariance matrices V (Xt−mt|t−1) = Pt|t−1 and V (Xt−mt) = Pt,

where V (Xt) denotes covariance of random vector Xt. A summary of equations as-
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sociated with the Kalman filter are listed as follows:

mt|t−1 = Ftmt−1, (2.10)

Pt|t−1 = FtPt−1F
′

t + Φt, (2.11)

ρt = Yt −Htmt|t−1, (2.12)

Et = HtPt|t−1H
′

t + Ωt, Error dispersion (2.13)

Kt = Pt|t−1H
′

tE
−1
t , Kalman gain (2.14)

mt = mt|t−1 +Ktρt, (2.15)

Pt = (I −KtHt)Pt|t−1. (2.16)

In the above list, equation (2.12) and (2.14) are merely definitions. To derive equation

(2.10), we use equation (2.64) in Theorem (2.7.1) in the Appendix A to show that

E(Xt|It−1) = E
{
E(Xt|Xt−1)|It−1

}
= E{FtXt−1|It−1}

= Ftmt−1. (2.17)

By equation (2.63) in Theorem (2.7.1) in the Appendix A, equation (2.11) can be

obtained as follows

Pt|t−1 = V (Xt|It−1) = V (FtXt−1 + εt|It−1)

= Φt + FtPt−1F
′

t . (2.18)

The covariance of prediction error, e.g as defined in equation (2.12) can be obtained

with the following steps

Et = V (ρt) = V (Yt −Htmt|t−1) = V (HtXt + ηt −Htmt|t−1)

= V (Ht(Xt −mt|t−1) + ηt)

= HtPt|t−1H
′

t + Ωt. (2.19)
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To obtain equation (2.15), we begin by demonstrating the following expression that

C(Xt, Yt|It−1) = E
{(
Xt − E(Xt|It−1)

)(
Yt − E(Yt|It−1)

)′}
= E

{(
Xt −mt|t−1)(HtXt + ηt −Htmt|t−1

)′}
by eq (2.8) and (2.10)

= E
{

(Xt −mt|t−1)(Xt −mt|t−1)
′
H
′

t

}
= Pt|t−1H

′

t (2.20)

Now given equation (2.62) in Theorem (2.7.1) from Appendix A and equation (2.20),

we have

mt = E(Xt|It) = E(Xt|It−1) + C(Xt, Yt|It−1)V −1(Yt|It−1){Yt − E(Yt|It−1)}

= mt|t−1 + Pt|t−1H
′

tE
−1
t ρt

= mt|t−1 +Ktρt. by eq (2.14) (2.21)

The dispersion of Xt given the information set It can be obtained by using equation

(2.63) of Theorem (2.7.1):

Pt = V (Xt|It) = V (Xt|It−1)− C(Xt, Yt|It−1)V −1(Yt|It−1)C(Yt, Xt|It−1)

= Pt|t−1 − Pt|t−1H
′

tE
−1
t HtPt|t−1

= (I −KtHt)Pt|t−1 (2.22)

The prediction errors or innovations {ρ1, · · · , ρt} are mutually uncorrelated random

variables, and there is a one-to-one linear relationship between the prediction errors

and the observations {y1, · · · , yt} that forms the information set It. Pollock et al.

[1993] and Pollock [2003] have provided clear demonstrations of this point. In addi-

tion, the derivation of mt and Pt are in fact the mean and covariance of the target

density function p(xt|It). In other words, the results we derived provide the optimal

solution to the estimation of state variables problem if the highly restrictive linear

and Gaussian assumptions hold.

2.3.2 Likelihood Function

In the linear-Gaussian state-space model, the Kalman filter can be used to construct

the observed likelihood function. More specifically, given Xt, ηt, and εt are Gaussian,

then the distribution of observations yt conditional on xt is Gaussian with mean and
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variance that are given by equations (2.12) and (2.13), respectively

yt|xt, It−1 ∼ N
(
Htmt|t−1, HtPt|t−1H

′

t + Ωt

)
. (2.23)

It is saying that

fYt|Xt,It−1(yt|xt, It−1) = (2π)−n/2|HtPt|t−1H
′

t + Ωt|−1/2 exp{−1

2
(yt −Htmt|t−1)

′

(HtPt|t−1H
′

t + Ωt)
−1(yt −Htmt|t−1)},

wheremt|t−1 and Pt|t−1 are the mean and covariance of the predictive density p(xt|It−1),

which has been derived and presented in equation (2.10) and (2.11). Note that t de-

notes the observation length, which is t = 1, · · · , T , and n is the dimension of the

observation vector Yt. The joint log-likelihood can accordingly be expressed as

T∑
t=1

log fYt|Xt,It−1(yt|xt, It−1). (2.24)

This likelihood can also be derived via the density of the prediction error ρt for

t = 1, · · · , T . Equation (2.24) can be maximized numerically with respect to the

unknown parameter matrices H, F , Ω and Φ. Provide reasonable initial values and

the log-likelihood function is convex, then quadratic convergence of the estimates can

be achieved with the use of Newton liked numerical methods.

The fact that the Kalman filter allows to form the observation likelihood function

conveniently given the framework of the state space model to be linear and Gaus-

sian, and then the subsequent estimation for the unknown parameters become handy.

However, cautions should be taken during the estimation. Because in the absence

of restrictions on H, F , Ω and Φ, the parameters of the state space representation

are unidentified, and the discussion on un-identifications can be found in chapter 11

of Hamilton [1994]. Further discussion on the likelihood estimation in Kalman filter

can be found in Pollock [2003].

2.3.3 Kalman Smoothing

This section reviews two of the most widely applied Kalman smoothing algorithms,

they are: the classical smoothing algorithm and the de Jong’s algorithm. These two

algorithms belong to the class of fixed interval smoothing where econometricians have

been particularly interested in. Their respective derivations in the proceeding section

take the ground of conditional expectation. On the contrary, the Kalman forward-
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backward smoothing algorithm has been formed from Bayesian stand-point. Given

the Kalman forward-backward algorithm will not be discussed in here, and readers

can refer to Pollock et al. [1993] for detailed derivations and discussions. In addition,

readers who do not want to be distracted by tedious algebra derivations, can jump

right through to the establishment of equation (2.34) and (2.35).

The idea behind fixed-interval smoothing is to revise each of the state estimates

conditional upon the full information set IT when it has become available. Then the

recursion of smoothing estimation takes the filtering estimates and runs from time T

to 1 in a backward fashion. Given the sequence of the prediction errors {ρ1, · · · , ρT}
obtained from the Kalman filtering are mutually independent with zero expectations,

then by equation (2.62) and (2.63) in Theorem (2.7.1) from the Appendix A and

taking notice with their recursiveness, we can arrive at the following two expressions

E(Xt|IT ) = E(Xt|Im) +
T∑

i=t+1

C(Xt, ρi)V
−1(ρi)ρi, (2.25)

V (Xt|IT ) = V (Xt|Im) +
T∑

i=t+1

C(Xt, ρi)V
−1(ρi)C(ρi, Xt). (2.26)

Note that m in the equation (2.25) and (2.26) denotes the time index, which should

not be confused with the estimate mt. The term V −1(ρi) in both equations (2.25) and

(2.26) is actually the covariance of the prediction errors E−1
t . On the contrary, finding

the generic covariance C(Xt, ρi) requires more thought. In the following expression,

through a recursive formula which allows to represent ek in terms of Xt −mt|t−1 and

in terms of the state disturbances and observation errors which occur from time t.

The prediction error at time t is therefore

ρt = Yt −Htmt|t−1

= Ht(Xt −mt|t−1) + ηt. (2.27)

A new expression of mt can be obtained by substituting equation (2.12) into equation

(2.15), which is

mt = mt−1 +Kt(Yt −Htmt−1)
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We replace Yt in this newly expression above by equation (2.8) and lag it by one

period, and then substitute it into equation (2.10), we have

mt|t−1 = Λtmt−1|t−2 +Mt(Ht−1Xt−1 + ηt−1),

where Mt = FtKt−1 and Λt = Ft(I −Kt−1Ht−1). If we subtract equation (2.7) by the

above expression, and then by running the recursion from it, we may deduce that

Xt −mt|t−1 = Λt,q+1(Xt −mt|t−1) +
t−1∑
i=m

Λm,j+2(vi+1 −Mi+1ηj). (2.28)

For i ≥ t, follow by equations (2.27) and (2.28), we have

C(Xt, ρi) = E{Xt(Xt −mt|t−1)
′
Λ
′

i,t+1H
′

i} (2.29)

= Pt|t−1Λ
′

i,t+1H
′

i .

Given we know that Ft+1Pt = Λt+1Pt|t−1,4 for i > t, then

C(Xt, ρi) = PtF
′

t+1Λ
′

i,t+2H
′

i and C(Xt+1, ρi) = Pt+1|tΛ
′

i,t+2H
′

i (2.30)

Note that covariance matrix P is symmetric. Using equation (2.30), it arrives at the

following equation

C(Xt, ρi) = PtF
′

t+1P
−1
t+1|tC(Xt+1, ρi). (2.31)

If we substitute equation (2.31) into equation (2.25) form ≥ t− 1, and with V −1(ρi) =

E−1
i , then we obtain

E(Xt|IT ) = E(Xt|Im) +
T∑

i=m+1

Pt|t−1Λ
′

i,t+1H
′

iE
′

iρi (2.32)

= E(Xt|Im) + Pt|t−1Λ
′

t,t+1qt.

Similarly, equation (2.26) can be re-arranged as

V (Xt|IT ) = V (Xt|Im)− Pt|t−1Λ
′

m+1,t+1QtΛm+1,t+1Pt|t−1. (2.33)

4It can be shown through simply algebra manipulations.
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Note that the terms of qt and Qt are as follows, respectively

qt =
T∑
i=t

Λ
′

i,t+1H
′

iE
−1
i ρi = H

′

tE
−1
t ρt + Λt+1

′qt+1, (2.34)

Qt =
T∑
i=t

Λ
′

i,t+1H
′

iE
−1
i HiΛi,t+1 = H

′

tE
−1
t Ht + Λt+1

′Qt+1Λt+1. (2.35)

These recursions are set to be initiated with qT = H
′
TE
−1
T ρT and QT = H

′
TE
−1
T HT .

Both terms qT and QT can be computed backwards until time stance reaches 1. Hence

all our devoted efforts so far have been set to obtain equation (2.34) and (2.35), and

we can now move on to form two of the previous mentioned smoothing algorithms.

Classic smoothing algorithm. If we replace the covariance term C(.) in equa-

tion (2.25) with expression in (2.31), and with m set to t, yields

E(Xt|IT ) = E(Xt|It) + PtF
′

t+1P
−1
t+1|t

T∑
i=t+1

C(Xt+1, ρi)V
−1(ρi)ρi. (2.36)

Once more, by equation (2.25), we have,

E(Xt+1|IT ) = E(xt+1|It) +
T∑

i=t+1

C(Xt+1, ρi)V
−1(ρi)ρi, (2.37)

so it follows that equation (2.36) can be written as

E(Xt|IT ) = mt|T = E(xt|It) + PtF
′

t+1P
−1
t+1|t{E(xt+1|IT )− E(xt+1|It)}. (2.38)

Performing similar procedure as above, the covariance of the smoothed estimate can

be expressed as follows

V (Xt|IT ) = Pt|T = Pt − Jt{Pt+1|t − Pt+1|T}J
′

t , (2.39)

where Jt = PtF
′
t+1P

−1
t+1|t. Equations (2.38) and (2.39) represent the fixed interval

smoother and dispersion respectively, and such an algorithm have been referred as

the classic smoothing algorithm.

De Jong’s algorithm. If we have m = t − 1, and given Λt,t+1 = I, the above
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equations (2.32) and (2.33) can be re-expressed as

E(xt|IT ) = mt|T = mt|t−1 + Pt|t−1qt, (2.40)

V (xt|IT ) = Pt|T = Pt|t−1 − Pt|t−1QtPt|t−1. (2.41)

The terms of qt and Qt are given by equations (2.34) and (2.35) respectively, and

the new smoothing algorithm has been known as the de Jong’s algorithm. Such

an algorithm avoids a matrix inversion at each discrete time step, which should be

more efficient than the above classical fixed-interval smoother. The above smoothing

algorithms should theoretically provide the same result, but slight difference can

occur due to the variations of starting value imposed to the starting position of each

algorithms. Note that our discussion of Kalman filter has been following the work of

Pollock et al. [1993], and similar but more comprehensive discussion can be found in

Hamilton [1994] and Anderson and Moore [1979].

2.4 Particle Filters

In more general specifications of state space models, the Kalman filter will be in-

applicable to the estimation of their state variables given the conditions of linear

and Gaussian are no longer satisfied. Three non-linear filters such as: the extended

Kalman filter (EKF), approximated grid-based methods, and particle filters have

been developed to overcome the difficulty that had been prosed by non-linear and

non-Gaussian state space models. For instance, the EKF utilizes the local lineari-

sation to approximate the non-linearity functions in the model. However, since the

EKF always approximates the target density function p(xt|It) to be Gaussian, the

performance will becomes poor if the true density in highly non-Gaussian, e.g. it is

bimodal or multi-modal. On the contrary, the approximated grid-based methods take

the decomposed cells of the predefined state space. However, sufficiently dense cells

are needed to acquire a good approximation of the target density p(xt|IT ), which will

not be an ideal method for the estimation as the dimensionality of the state space

increases.

Particle filters or Sequential Monte Carlo methods (SMC) provide the advantages

of simplicity and precision over other previously mentioned methods in estimating

general state space models. The applicability of the SMC exploits the idea of se-

quentially approximating intractable target densities by the corresponding empirical

measure of these target density function p(xt|It). In the following, it becomes clear

that the empirical measure of target densities are formed through the samples (parti-
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cles) that are generated from an importance density. Nevertheless, such method was

not fully adapted in practice to estimate general state space models until the work of

Gordon et al. [1993], their bootstrap filter was considered as a breakthrough in the

area of target tracking and on-line estimation. However, development of the boot-

strap filter was largely motivated by the works of importance sampling of Muller [1990]

and Smith and Gelfand [1992]. The bootstrap filter is a combination of sequential

importance sampling and resampling procedures, where generic filters sharing such

resemblances have been branded with the name of Sequential Monte Carlo methods.

2.4.1 Derivation of Particle Filter

Part of the estimation task associated with general state space models is to recur-

sively estimating the hidden state Xt at time t given the information It observed at

that time. The process has been referred to as filtering estimation. One can achieve

it by constructing an approximation to the probability density function p(xt|It) at

each time t. We outline the procedures of particle filtering in obtaining such density

function recursively in the following.

Prediction Stage. Suppose the observations are available at time t − 1, and

p(xt−1|It−1) is known to us. Then this density function can be used to estimate

the predicting density p(xt|It−1) in the following way

p(xt|It−1) =

∫
p(xt, xt−1|It−1)dxt−1 (2.42)

=

∫
p(xt|xt−1, It−1)p(xt−1|It−1)dxt−1

=

∫
f(xt|xt−1)p(xt−1|It−1)dxt−1. by def (2.2.6)

From the penultimate expressions to the last line of equation (2.42) is nothing more

than the Markov property.

Update State. By the Bay’s theorem in the Appendix B and with the new obser-

vation yt becomes available, we have

p(xt|It) =
p(yt|xt, It−1)p(xt|It−1)

p(yt|It−1)
(2.43)

=
g(yt|xt)p(xt|It−1)∫
g(yt|xt)p(xt|It−1)dxt

by def (2.2.6)

∝ g(yt|xt)p(xt|It−1).
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In the above equation, g(yt|xt) plays the role of likelihood function and p(xt|It−1) is

in fact the prior density function. Analytical solutions of the above model can only

be computed for few special cases, e.g the Kalman filter for the linear and Gaussian

state space model.

2.4.2 Sequential Importance Sampling

Sequential Monte Carlo (SMC) performs importance sampling sequentially to ap-

proximate the target distribution pt(xt|It) for t = 1, · · · , T . More specifically, at time

t, the set {xit, ωit}Ni=1 is a collection of samples (often referred to as particles set) and

associated weights, characterizes the target posterior density pt(xt|It) as follows:

p̂(xt|It) =
N∑
i=1

ωitδ(xt − xit) ≈ p(xt|It), (2.44)

where δ(.) is Dirac delta function, which says δ(xt − xit) = 1 when xt − xit, and

δ(xt − xit) = 0 when otherwise. The eminent tasks would be to provide answers to

questions on where are the particles or samples {xit}Ni=1 coming from and how are

the weights formed. A brief answer is that the particles are sampled from the so-

called importance density q(xt|xt−1, It), and then weights are formed by the following

expression

ωit ∝ ωit−1

g(yt|xit)p(xit|xit−1)

q(xit|xit−1, It)
, (2.45)

where ωit−1 is the weight of ith particle at time t − 1. The above equation (2.45) is

indeed the principle of importance sampling. It can be shown that as the number

of particles N → ∞, the estimate or empirical measure of the right hand side of

equation (2.44) converges to the true target density p(xt|It).
The sequential importance sampling algorithm (SIS) consists of recursive update

of the particles and associated weights as each measurement received sequentially. A

brief description of two of the important step are:

• Propagate step: for i = 1 : N , sample xit ∼ q(xt|xit−1, It).

• Update step: Subsequently, the weights at time t+1 can be obtained according

to equation (2.45).

One final remark is that the SIS algorithm starts at t = 1, where the weights will

be assumed to be 1/N , and xi1 ∼ q(xi1|xi0, I1), for i = 1, · · · , N . Readers can refer
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to Crisan and Doucet [2002] for the convergence of particle filters and Arulampalam

et al. [2002] for the discussion on selection of importance density function.

2.4.3 Resampling

The applicability of particle filters was held back due to the so called weight degen-

eracy (growing variance) problem. The following example demonstrates the effect of

such problem.

Example 2.4.3.1 (Relative variance). Given the relative variance of importance

sampling estimator takes the following form, as it is given by equation (26) of Doucet

and Johansen [2008], which is

VIS[Ẑt]

Z2
t

=
1

N
(

∫
π2
t (x1:t)

qt(x1:t)
dx1:t − 1),

where N is number of particles. In addition, Ẑt denotes the importance sampling

estimator and Z is the term of normalizing constant, and the target density is

πt(x1:t) =
t∏
i=1

πi(xi) =
t∏
i=1

N(xi; 0, 1).

Suppose the importance density to be

qt(x1:t) =
t∏
i=1

qi(xi) =
t∏
i=1

N(xi; 0, σ2).

Considering time is at t, the relative variance is then

VIS[Ẑt]

Z2
t

=
1

N

[ ∫ {
(2π)−t/2 exp

(
−
∑

i

x2t,i
2

)}2

(2π)−t/2(σ2)−t/2 exp{−
∑

i

x2t,i
2σ2}

dx1:t − 1
]

=
1

N

[ ∫
(2π)−t/2 exp

{
−
∑
i

x2
t,i +

∑
i

x2
t,i

2σ2
}(σ2)t/2

}
dx1:t − 1

]
=

1

N

[
(

σ2

2σ2 − 1
)t/2
∫

(2π)−t/2(
σ2

2σ2 − 1
)−t/2 exp

{
− 2σ2 − 1

2σ2

∑
i

x2
t,i

}
dx1:t − 1

]
=

1

N

{( σ2

2σ2 − 1

)t/2 − 1
}
.

The above derivation assumed the posterior densities have been updated sequentially

up to time t, which explains the reason why there is power of t that indicates the

29



multiplication of densities.

Now, the last line of the above expression indicates that the relative variance will

increase exponentially with time t so long as σ2

2σ2−1
> 1. For example, if σ2

2σ2−1
= 1.2,

for time t = 100, we would have

VIS[Ẑt]

Z2
t

≈ 1

N
(8.28× 107). (2.46)

In other words, to make the relative variance 0.001, one would need to employ 8.3×
1010 particles. Clearly, this is impracticable, and resampling procedure limits such

effect.

According to the above example, the sequential importance sampling is destine

to fail as t becomes large. However, in the literature of particle filters, two methods

are proposed to limit the effect of weight degeneracy, they are selection of importance

distribution and resampling. The later has been proven extremely effective in dealing

with weight degeneracy in real applications in spite of the side effects might have been

associated with its usage. One of those curial side effects is for instance, resampling

reduces the diversity of the particles, and hence leads to paths degenerate.

In the following, we explain the idea of resampling procedure in SIS algorithm.

Furthermore, we show the convergence of the SIS algorithm remain intact in spite of

the introduction of resampling step. In each of the recursive steps of particle filtering,

a set of particles {xit, ωit}Ni=1 allows us to construct an empirical measure p̂(xt|It) as

defined in equation (2.44). Given the approximation of target distribution as p(xt|It),
suppose one’s aim is to estimate Ep

{
(h(x)

}
for h(.) to be measurable, then, under

suitable regularity conditions, Crisan and Doucet [2002] and others have shown that

∫
S

h(xt)p̂(xt|It)dxt =
N∑
t=1

ω̃ith(xit)→
∫
S

h(xt)p(xt|It)dxt = Ep(h(x)), (2.47)

where ω̃it is the normalized weight for ith particle, that is

ω̃it = wit/
N∑
j=1

wjt . (2.48)

The convergence property implies that if our intention is to estimate the state variable

Xt = h(Xt), for h is an identity function, then the estimates would be the mean of

particles {xit}Ni=1 that are assumed from the approximation density p̂(xt|It). However,

the weight degeneracy problem limits the applicability of SIS algorithm. However,
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the resampling algorithm perform the following: given the set {xit, ωit}Ni=1, one can

draw an index I = {I1, · · · , IN} according to the normalized weights ω̃it, such that

the sum of counts
∑N

j=1 Ij = N (not necessary equal to N). A new particle set can

be formed as {x̃jt , ω̄
j
t = 1/N}Nj=1. It has been shown that, as N →∞, then

1

N

N∑
j=1

h(x̃jt)→
N∑
t=1

ω̃ith(xit). (2.49)

Equation (2.47) and (2.49) together shows that the SIS filter with resampling still

converges to the target density function. The intuition of resampling is essentially

replicating particles carrying relatively large weight, which effectively produces suffi-

cient amount of particles for the estimation of the target density. Note that particle

filtering with resampling carried out at each time step has often been referred as SIS

with resampling (SIR), its algorithm has been displayed in the following.

Algorithm 1: Sampling Importance Resampling.

1. At time t = 1,

(a) Sample xi1 ∼ q(x1|x0, I1).

(b) Compute the weights wi1 = 1/N .

2. At time t > 1

(a) Sample xit ∼ q(xt|xit−1, It).

(b) Compute the weights ωit via equation (2.45), and normalize it to be

ω̃it =
ωit∑N
i=1 ω

i
t

.

(c) Resample {xit, ω̃it}Ni=1 to obtain {x̃jt , ω̄
j
t = 1/N}Nj=1.

(d) go to t+ 1, and then cease it at t = T .

2.4.4 Generic Particle Filter

Resampling schemes like systematic resampling or stratified resampling are operation

that is at least with O(N) computational cost. In addition, as it has been mentioned

previously resampling imposes additional ’noise’ due to the reduction of particles

diversity. Hence one may want to avoid excessive resampling. In order to achieve

that, it requires ways of measuring the level of particle degeneracy. In other words,
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we execute resampling only when degeneracy is detected. One of the most widely

implemented measure of degeneracy is the so called effective sample size (ESS) that

introduced by Liu [1996], which is

NEss =
N

1 + V (w∗,it )
,

where w∗,it = p(xit|It)/q(xit|xit−1, It) is the ”true weight”. The small NEss indicates se-

rious weights degeneracy. Since such weight cannot be computed exactly, an estimate

of NEss has been proposed to be as

N̂Ess =
1∑N

i=1(ω̃it)
2
, (2.50)

where ω̃it is the normalized weight obtained through equation (2.48). Note that the

value of NEss will be either less or equal to N , which is NEss ≤ N . Sampling

importance resampling (SIR) is a generic term for particle filters possess sampling,

resampling feature, moreover, the resampling step will be performed only when the

N̂Ess is less than certain threshold value Nthre.

Algorithm 2: Generic particle filter.

1. At time t = 1

(a) Sample xi1 ∼ q(x1|x0, I1).

(b) Compute the weights wi1 = 1/N .

2. at time t > 1

(a) Sample xit ∼ q(xt|xit−1, It).

(b) Compute the weights ωit via equation (2.45), and normalize it to be

ω̃it =
ωit∑N
i=1 ω

i
t

.

(c) Calculate N̂Ess via equation (2.50).

(d) If N̂Ess < Nthre,

i. Resample {xit, ω̃it}Ni=1 to obtain {x̃jt , ω̄
j
t = 1/N}Nj=1.

(e) Go to t+ 1, and then cease it at t = T .

A list of particle filters have been utilized in economics and finance are: the boostrap

filter of Gordon et al. [1993], the auxiliary particle filter of Pitt and Shephard [1999],
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the Liu-West filter of Liu and West [2001], and the Rao-Balckwellized particle filter

of Chen and Liu [2000]. Doucet and Johansen [2008] provide a tutorial on particle

filtering and smoothing over their developments in the past two decades. In addition,

Lopes and Tsay [2011] and Creal [2012] give extensive review of the use of particle

filters in econometrics.

2.5 Smoothing Algorithms

In the discussion over the Kalman filter, we introduced various smoothing algorithms

within the spectrum of linear and Gaussian state space models. This section intro-

duces smoothing techniques such as: the forward filtering and backward smoothing,

the two-filter formula, and the generalized tow-filter formula that can be used in

the cases of non-linear and non-Gaussian state space models. Moreover, among the

three smoothing formulas, the generalized two-filter formula, have demonstrated great

improvements over the forward filtering backward smoothing technique in terms of

precision on state variable estimation, see Briers et al. [2010]. The two-filter smooth-

ing formula was firstly introduced in non-linear Bayesian estimation by Bresler [1986].

Subsequently, the generalized two-filter formula developed by Briers et al. [2010] relies

on the introduction of a set of artificial probability distributions to obtain a modi-

fied backward time filter. In this section, we review the forward filtering backward

smoothing method, the two-filter smoothing formula, and the generalized two-filter

smoothing formula in the framework of general state space model.

The forward filtering backward Smoothing

Let x1:T = {x1, · · · , xT} and IT = {y1, · · · , yT}, then the joint distribution p(x1:T |IT )

can be decomposed as

p(x1:T |IT ) = p(xT |IT )
T−1∏
t=1

p(xt|xt+1, IT ) (2.51)

= p(xT |IT )
T−1∏
t=1

p(xt|xt+1, It).

The above expression reveals that conditional on xt+1 and It, xt is independent of

information {yt+1, · · · , yT}. In the meantime, the term p(xt|xt+1, It) can be expressed

as

p(xt|xt+1, It) =
f(xt+1|xt)p(xt|It)

p(xt+1|It)
. (2.52)
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According to equation (2.52), it says that the density of p(xt|xt+1, It) can be ob-

tained through available information such as: the prediction density p(xt+1|It), the

transition density f(xt+1|xt), and the posterior density p(xt|It). Morover, in equation

(2.52), where state xt conditions to the state at future time instance xt+1 is where

the backward smoothing comes in, which can be explained through the following

derivation on the marginal smoothing density,

p(xt|IT ) =

∫
p(xt, xt+1|IT )dxt+1 (2.53)

=

∫
p(xt|xt+1, IT )p(xt+1|IT )dxt+1

=

∫
p(xt|xt+1, It)p(xt+1|IT )dxt+1

= p(xt|It)
∫
f(xt+1|xt)p(xt+1|IT )

p(xt+1|It)
dxt+1. by eq (2.52)

The above expression states that once we have computed all the prediction and fil-

tering densities p(xt+1|It) and p(xt|It) respectively for all t = 0, 1, · · · , T , then it is

possible to obtain {p(xt|IT )} recursively in a backward fashion. The only missing

piece in equation (2.53) is to obtain the term p(xt+1|IT ). However, we can start from

p(xT |IT ) in order to obtain p(xT−1|IT ). It also answer the reason that the smooth-

ing algorithm will be executed backwards. This idea was first proposed by Kitagawa

[1987]. Alternative view of the estimation of p(xt|IT ) is integrating {x0:t−1, xt+1:T} out

of joint distribution of equation (2.51), where x1:t−1 = {x1, · · · , xt−1} and xt+1:T =

{xt+1, · · · , xT}.
The two-filter smoothing formula

The two-filter smoothing formula of Bresler [1986] combines the output of two in-

dependent filters: the forward filter given by the particle filtering and the backward

information filter calculating p(yt:T |xt). The computation of p(yt:T |xt) is given by the

following equation,

p(yt:T |xt) =

∫
p(yt, yt+1:T , xt+1|xt)dxt+1 (2.54)

=

∫
p(yt+1:T |xt+1)p(xt+1|xt)p(yt|xt)dxt+1

=

∫
p(yt+1:T |xt+1)f(xt+1|xt)g(yt|xt)dxt+1. by Def (2.2.6)

The functions within the right hand side of the integral are known from the filtering

process; therefore, given the prediction and the backward information filter, we can
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obtain the smooth density via

p(xt|IT ) = p(xt|y1:t−1, yt:T ) (2.55)

=
p(xt, y1:t−1, yt:T )

p(y1:t−1, yt:T )
=
p(xt|y1:t−1)p(yt:T |xt, y1:t−1)

p(yt:T |y1:t−1)

∝ p(xt|It−1)p(yt:T |xt). as It−1 = y1:t−1

The backward information filter p(yt:T |xt) can be obtained according to equation

(2.54).

The Generalized two-filter smoothing formula

In the two-filter smoothing formula, the backward information filter is not a proba-

bility density in argument xt and it is even possible that
∫
p(yt:T |xt)dxt =∞. Since

sequential Monte Carlo based approximations can only be used to approximate fi-

nite measures. To circumvent the problem that we are facing, Briers et al. [2010]

introduce a set of artificial probability distributions {γt(xt)}. The modifications are

described as follows: the probability distribution {γt(xt)} for t = 1, · · · , T are defined

such that:

p(yt:T |xt) > 0⇒ γt(xt) > 0,

and at t = T , we define

p̃(xT |yT ) =
g(yT |xT )γT (xT )

p̃(yT )
, (2.56)

where

p̃(yT ) =

∫
g(yT |xT )γT (xT )dxT .

It is said that the function p̃(xT |yT ) in equation (2.56) is by construction a probability

measure. In similar fashion, the joint distributions

p̃t(xt:T |yt:T ) =
γt(xt)

∏T
k=t+1 f(xk|xk−1)

∏T
k=t g(yk|xk)

p̃(yt:T )
, (2.57)

where

p̃(yt:T ) =

∫
· · ·
∫
γt(xt)

T∏
k=t+1

f(xk|xk−1)
T∏
k=t

g(yk|xk)dxt:T .
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Then one can show that the following is true 5

p(yt:T |xt) = p̃(yt:T )
p̃(xt|yt:T )

γt(xt)
, (2.58)

providing

p̃(xt|yt:T ) =

∫
· · ·
∫
p̃t(xt:T |yt:T )dxt+1:T . (2.59)

Up to this moment, one key question that readers may have in mind is how do we

select the artificial distribution γt(xt) at each time period. The discussion on this

aspect can be found in Briers et al. [2010].

Taking equation (2.58), the backward information filter has been re-expressed the

marginal density p̃(xt|yt:T ) and the artificial density γt(xt). Therefore, by substi-

tuting equation (2.58) into equation (2.55), the marginal smoothed distribution of

generalized two-filter formula can be expressed as follows

p(xt|IT ) ∝ p(xt|It−1)p̃t(xt|yt:T )

γt(xt)
, (2.60)

and

p(x1|IT ) ∝ µ1(x1)p̃t(x1|y1:T )

γ1(x1)
(2.61)

where µ1 is the initial density of x1. The steps of computing {pt(xt|IT )} of the

generalized two-filter smoother are listed in the following:

• Store the prediction densities {p(xt|It−1)} from the filtering recursion.

• Compute and store {p̃(xt|yt:T )}.

• For all t = 1, · · · , T , obtain p(xt|IT ) through the combination of p(xt|It−1),

p̃(xt|yt:T ), and γt(xt), as it has been expressed in equation (2.60).

2.6 Conclusion

In this introduction chapter, we start with definitions on stochastic process and sam-

ple path and Markov chain. This prelude categorizes the specific type of economic

5The derivation of equation (2.58) has been omitted since it does not contribute to the thesis as
while except adding algebra manipulations. However, it can be requested from me or refer to the
work of Briers et al. [2010].
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and finance processes that this thesis studies. In addition, these definitions serve as

building-blocks that allow us to further introduce the concept of ergodicity of Markov

chains. Subsequently, Markov chain provides a standing-point to formalize the dy-

namics structure of state variable that explains the observed economic and financial

processes. Building upon on this information, we define and introduce the general

state space model, which has proven to be particularly attractive in modelling time

series processes in economics and finance.

The rest of the chapter reviews techniques that enable us to estimate general state

space models. Those techniques are: the Kalman filter, Kalman smoothing, particle

filtering, and particle smoothing. Provided particle filtering and particle smoothing

being two of those most appropriate and accurate classes of techniques of all exist-

ing ones in dynamic model inference, an overview of particle filtering and its related

knowledge are therefore discussed in great length.

2.7 Appendix

Appendix A

Block Matrix Inversion formulas

Definition 2.7.1.

(A−BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1

where A,B,C, and D are matrices with appropriate dimension.

The Calculus of Conditional Expectations

Theorem 2.7.1. The Calculus of Conditional Expectations Consider the jointly dis-

tributed normal random vectors X and Y , which possesses the linear relationship of

E(Y |X) = α + βX. The following conditions are true:

E(Y |X) = E(Y ) + C(Y,X)V −1(X){X − E(X)}, (2.62)

V (Y |X) = V (Y )− C(Y,X)V −1(X)C(X, Y ), (2.63)

E{E(Y |X)} = E(Y ), (2.64)

V {E(Y |X)} = C(Y,X)V −1(X)C(X, Y ), (2.65)

V (Y ) = V (Y |X) + V {E(Y |X)}, (2.66)

C{Y − E(Y |X), X} = 0. (2.67)
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Proof. To begin, for simplicity case, X and Y are assumed to be univariate random

variable (although the random vector case can be derived in similar way). Equation

of the linear relationship may be multiplying throughout by f(x), and integrates with

respect to X, which gives

E(Y ) = α + βE(X), (2.68)

whence α = E(Y )−βE(X), and substitute it into the equation of linear relationship,

which yields

E(Y |X) = E(Y ) + β{X − E(X)}. (2.69)

Next, let multiply the linear relationship by X and f(x) and then integrated with

respect to X to provide the following equation

E(XY ) = αE(X) + βE(X2). (2.70)

Multiplying equation (2.68) by E(X) gives

E(X)E(Y ) = αE(X) + β
{
E(X)

}2
. (2.71)

whence, subtract equation (2.71) from equation (2.70), we get

β = {E(XY )− E(X)E(Y )}{E(X2)− (E(X))2} (2.72)

= C(x, y)V −1(y). (2.73)

For (2.62), plugging equation (2.72) into equation (2.69), we have what we need as

in equation (2.62).

For (2.63), given equation (2.62), we can re-express it as

E(Y |X)− E(Y ) = C(Y,X)V −1(X){X − E(X)}.

The above expression is multiplied by {Y − E(Y )}, then take expectation on both

sides, after few of the re-arrangements, equation (2.63) will be obtained.
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For (2.64), we have

E
{
E(Y |X)

}
=

∫
X

∫
Y

yf(y|x)dyf(x)dx =

∫
Y

y

∫
X

f(x, y)dxdy

=

∫
Y

yf(y)dy = E(Y ).

For (2.65), it is nothing more than the Law of total variance.

For (2.66), given equations (v) and (ii), we have

V (Y |X) = V (Y |X) + V {E(Y |X)} − C(Y,X)V −1(X)C(X, Y ),

then, equation (2.66) will be apparent.

For (2.67), it is

C
{
Y − E(Y |X), X

}
= E

{(
Y − E(Y |X)

)
X
}
− E

{
Y − E(Y |X)

}
E{X}

= E{Y X} − E{E(Y |X)X} = E{Y X} − E{Y X} = 0.

Appendix B

Conditional Probabilities. There are P (A|B) = P (A ∩ B)/P (B) and P (B|A) =

P (B ∩ A)/P (A). Therefore, the conditional probability can be written as

P (A|B) =
P (A ∩B)

P (B)
=
P (A ∩B)

P (A)

P (A)

P (B)
=
P (B|A)P (A)

P (B)
. (2.74)

Moreover, we can deduce that

P (A ∩B ∩ C) =
P (A ∩B ∩ C)

P (B ∩ C)

P (B ∩ C)

P (C)
P (C) (2.75)

= P (A|B ∩ C)P (B|C)P (C).

Bayes’ Theorem. The theorem is conveyed by the equation

P (Hi|E) = P (E∩Hi)
P (E)

, wherein (2.76)

P (E) =
∑

i P (E ∩Hi) =
∑

i P (E|Hi)P (Hi).

39



Here, P (Hi) is the prior probability of the hypothesis Hi and P (Hi|E) is its posterior

probability in the light of the evidence E.

The Chapman–Kolmogorov Equation. The marginal probability of the event

A can be obtained from the joint probability of the events A and B by a process of

integration:

P (A) =

∫
B

P (A ∩B)dB.

In a Markov chain, the probability of the transition from state B to state A is

determined without reference to any the preceding states. That is to say, the next

state depends only on the current state and not on the past. If the sequence of

events C,B,A is governed by a Markov process, then there is P (A ∩ B ∩ C) =

P (A|B)P (B|C)P (C). Therefore,

P (A ∩ C) =

∫
B

P (A|B)P (B|C)P (C)dB, (2.77)

and

P (A|C) =
P (A ∩ C)

P (C)
=

∫
B

P (A|B)P (B|C)dB. (2.78)

The Strong Law of large number. Suppose that X1, X2, · · · are independent,

identically distributed, with E(X1) = µ <∞. Let Sn = X1 +X2 + · · ·+Xn, then

Sn
n
⇒ µ almost surely.
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Chapter 3

Resampling with Shannon

Information Entropy diagnostics

and Resampling Schemes

Comparison

Abstract

This chapter proposes a novel weight degeneracy diagnostics to particle filtering that

is based upon the idea of the Shannon information entropy. This new diagnostics

overcomes the potential over-resampling problem associated with the most widely

applied effective sample size diagnostics. In addition, according to the evidence of

accuracy measure over the inference of hidden state sequence, the new diagnostics

exhibits more stable performance than the effective sample size diagnostics. The

claims have been demonstrated through the aspects of mathematical derivation and

simulation studies. The aspect of simulation studies have been conducted on the

comparison between these two weight degeneracy diagnostics of two different types

of state space models: linear Gaussian model and non-linear time series model. A sep-

arate contribution of this chapter focuses on the usage of finite particle counts, where

local linearisation particle filter equipped with the Shannon information entropy di-

agnostics has been performed in a simulation based investigation on various existing

resampling schemes. This investigation provides further supplementary information

for theoretical discussion on resampling schemes selection in particle filtering, as well

as a synopsis on particle filtering implementation for empirical researchers.
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3.1 Introduction

The method of Sequential Monte Carlo or particle filtering is a simulation technique,

which gains its prevalence through its renowned ability of estimating non-linear and

non-Gaussian state space models. The objective of this chapter will be twofold: first,

I propose a novel weight degeneracy diagnostics that derives from the idea of Shannon

information entropy. The new diagnostics exhibit superiority over the existing effec-

tive sample size diagnostics. The specifications of superiority means computational

cost will be less expensive whilst sustaining estimation precision, which has been

demonstrated through mathematical derivations, and later supported by simulation

applications. Second, considering the constraint of finite particles usage in practice,

this chapter provides empirical implementation guidance to the selection over various

existing resampling schemes in particle filters.

Applications of particle filters in the domain of economics and finance can be

retroactive to the mid of 90s, with the work of Kitagawa [1994] and Kitagawa [1996]

on economic time series data analysis, and Shephard [1996] on stochastic volatility.

The more recent ones are: the formulation and estimation of dynamic equilibrium

models utilizing particle filtering of Fernandez-Villaverde and Rubio-Ramirez [2005]

and the learning of time series through stochastic volatility modelling by Pitt and

Shephard [1999].

The underlying models within the aforementioned applications of particle filter-

ing are belonging to general state space model. Estimating this type of models with

previously developed Kalman based filters have emerged to be formidable, and fre-

quently suffered from serious drawback of low estimation precision. Consequently,

the attention has lately shifted to utilize the numerically based approach, which has

been referred as sequential Monte Carlo methods or particle filters. Despite the fact

that particle filtering method provides the solution of suboptimal estimation to the

non-linear and non-Gaussian state space model, it has most certainly not prevent

particle filters from a tremendous success in various fields. Such prevalence was mas-

sive due to the initial contribution of Gordon et al. [1993]. Their breakthrough lies

mostly due to the introduction of the multinomial resampling technique into particle

filtering. This implementation alleviates the effect of weight degeneracy, and it sub-

sequently sustains the stability of sequential updating of particle filtering algorithm

in a reasonable time length.

The essence of resampling procedure is to discard particles that carry relatively

smaller weights; in the meantime duplicate particles have relatively larger weights.

Therefore, this procedure forms a new set of particles at each time instance. Ac-
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cordingly, this newly revitalized particle set stabilizes the performance of sequential

updating of particle filtering algorithm, providing reasonable approximation for the

target (posterior) distribution. In spite of the significant role of resampling plays

in particle filtering, its existence has been overshadowed by the introduction of re-

sampling noise and the addition of computation complexity. The latter issue had

been tackled by Kong et al. [1994], who devised a weight degeneracy diagnostics

through the so called coefficient variation formula. This diagnostics detects the ran-

domness across the whole particle weights at given time stance. More specifically,

the action of resampling will be proceeded if the diagnostics result falls below a

pre-specified threshold, and therefore, the resampling acts as a reinforcement to bal-

ance out the particles for their subsequent time instance. Another related but more

widely implemented weight degeneracy diagnostics is the effective sample size of Liu

[1996]. However, both weight degeneracy diagnostics derive from taking the square

of particle weight values, which can often result in potential over detection on weight

degeneracy. Therefore, the computational cost increases via unnecessary resampling

steps. In this chapter, I propose an alternative diagnostics that originated from the

idea of Shannon information entropy. This novel diagnostics process the particle

weights without modifications, which then determines the necessity of resampling at

such time stance. Consequently, I shall demonstrate on the aspect of computational

time, the Shannon information entropy diagnostics is more efficient compare to the

effective sample size diagnostics and their related diagnostics.

In the light of the aforementioned multinomial resampling technique, other re-

sampling schemes such as: residual resampling of Liu [1996], stratified resampling

of Carpenter et al. [1999], and systematic resampling of Kitagawa [1996] was sub-

sequently been developed and implemented in particle filtering. Douc et al. [2005]

provide a theoretical comparison for these four resampling schemes in the direction of

the conditional variance. An additional contribution of this chapter is that I extend

the work Douc et al. [2005], by looking into an important practical issue, which is over

the choice of previously listed resampling schemes whilst the particle counts are finite.

The investigation conducted through extensive experiment studies, which allows to

draw inference that have been derived from their performances in real applications

over aspects of estimation accuracy and computational efficiency.

The chapter is organized as follows: section 2 provides insights into a crucial

question of why would researchers be interested in utilizing particle filters? Sec-

tion 3 demonstrates the significant role of resampling procedure and illustrates the

various existing resampling schemes in particle filtering. Section 4 proves the newly

proposed Shannon information entropy diagnostics that overcomes the potential over-
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resampling problem associated with the effective sample size diagnostics. Section 5

conducts various simulation comparisons between the Shannon information entropy

diagnostics and the effective sample size in terms of the measure of root mean square

error. Moreover, considering the aspects of estimation precision and computational

efficiency, I examine four of the most widely implemented resampling schemes in par-

ticle filtering literature. Section 6 draws the conclusions and discuss future researches

on this topic.

3.2 Extended Kalman Filter vs Particle Filters

This section seeks evidences on why particle filter are invariably superior to the ex-

tended Kalman filter for intricate problem such as estimating the non-linear and

non-Gaussian state space models. To complete the demonstration, I consider esti-

mating the time series model of Kitagawa [1996]. This time series model has been

frequently adopted for simulation studies in the development of various particle fil-

tering and particle smoothing in the literature, for instance, Doucet et al. [2000a] and

Doucet and Tadic [2003]. The following example illustrates through the model.

Example 3.2.0.1 (Non-linear time series model). Let the measurement equation and

the transition equation be defined as:

yt = g(xt) + wt =
x2
t

20
+ wt,

xt = f(xk−1) + vt =
xt−1

2
+

25xt−1

1 + x2
t−1

+ 8 cos(1.2t) + vt,

where wt ∼ N(0, σ2
w) and vt ∼ N(0, σ2

v). Furthermore, σ2
w = 1, σ2

v = 10, and wt and

vt are mutually independent with x1 ∼ f(x1) = N(0, 10). The derived densities are

yt ∼ g(yt|xt) = N
(x2

t

20
, 1
)
,

xt ∼ f(xt|xt−1) = N
(xt−1

2
+

25xt−1

1 + x2
t−1

+ 8 cos(1.2t), 10
)
.

The SIR filter or the bootstrap filter has been utilized to estimate the above non-

linear time series model. In addition, multinomial resampling has been embedded

into the bootstrap filter. In the simulation of the model in Example (3.2.3.1), the

true state values have assumed to be known. Furthermore, the root mean square

error or empirical standard deviation is the measure of discrepancy between the true

state values and their estimates. This measure has been undoubtedly the most widely
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adapted measure of discrepancies in particle filter literature, which takes the following

form

RMSE(xt|t) =
1

R

R∑
i=1

( 1

N

N∑
j=1

(xjt|t − x
j
t)

2
)1/2

, (3.1)

where

• xjt is the true simulated state for the jth particle, with j = 1, · · · , N .

• xjt|t is the jth estimate at time step t given information set It.

• R is the number of repetitions.

Figure (3.1) reveals that the bootstrap particle filter with multinomial resampling

tracks the actual state process rather well. On the contrary, there are apparent dis-

crepancies between the EKF estimates and the true state process.

Figure 3.1: Estimation of state variables using the EKF (dashed line) and Bootstrap particle filter

with multinomial resampling (dotted line). The actual state variables are represented by the solid

line.

Table (3.1) reports the RMSE of EKF and three types of particle filters with

systematic resampling (see the following list). Column 2 displays that RMSE of the

EKF that are at least 4 times larger than the RMSE of particle filters. Since the

EKF does not evolve with particle counts, the differences among the RMSE values
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across the entire column 2 (EKF) represent distinctive Monte Carlo error from sim-

ulation. In addition, the RMSE of all three particle filters are comparable to each

other. It seems as the theory predicts that as the number of particles N becomes

large, the RMSE of all particle filters invariably converge to some value. However,

so far as the time series model (example 2.2.3.1) concerning, the preceding compar-

ison results between the EKF and particle filters exhibits similar results. Hence for

empirical researchers, who have seldom had the experience with particle filters (in

estimating non-linear and non-Gaussian state space models), I hope the above sound

evidence is self-explanatory regarding to its usefulness. These three particle filters

will be re-appearing in our subsequent simulation study, and therefore their respective

characteristics are displayed as follows:

Table 3.1: RMSE of the EKF and Particle filters, where the Monte Carlo repetitions R to be 100
runs.

RMSE EKF Bootstrap Linearised Linearised Ess
N=100 19.3640 5.4767 5.9231 6.0596
N=250 20.2550 5.3179 5.5655 5.5574
N=500 19.6660 5.1981 5.2062 5.3281
N=1000 20.0085 5.1348 5.0333 5.0988
N=2500 20.7216 5.1483 4.9184 4.9785
N=5000 20.5277 5.2243 4.9049 4.9985
N=10000 20.4259 5.1796 4.8646 4.9376

List of Particle filters (LPFs)

1. Kalman filter, the optimal filter for linear and Gaussian state space model,

where their target posterior density function can be derived analytically as to

be normally distributed.

2. Bootstrap particle filter: the importance density qθ(xt|xt−1, It) is set to be

equalling the transition density fθ(xt|xt−1) and the resampling will be per-

formed at each time instance.

3. Bootstrap particle filter with Ess: the importance density qθ(xt|xt−1, It) is set

to be equalling the prior density fθ(xt|xt−1) and the resampling is merely per-

formed when the effective sample size (Ess) fall below the threshold Nthre.

4. Linearisation particle filter: the importance density qθ(xt|xt−1, It) is obtained

by local Linearisation of observation equation (refer to Doucet et al. [2000a] for

more details) and resampling is at each time step.
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5. Linearisation particle filter with Ess: same as (4) in this list, but the resampling

is merely performed when the effective sample size (Ess) fall below the threshold

Nthre.

6. Linearisation particle filter with Shannon entropy: same as (4) in this list, but

the resampling is merely performed when the Shannon information entropy

diagnostics fall below the threshold Nthre.

3.3 Resampling

This section focuses on the following tasks: The first one would be to build our under-

standing on the significance of resampling procedure in particle filtering. In the sub-

sequent task, I introduce and discuss four of the most widely implemented resampling

schemes, they are: multinomial resampling, residual resampling, stratified resampling

and systematic resampling. The multinomial resampling of Gordon et al. [1993] had

emerged to the first and foremost among all other resampling schemes. In fact, the

average computational complexity of multinomial resampling is O(N log2(N)). This

implies for a state sample size of T , the computational complexity of particle filtering

algorithm such as SIR will be at least O(TN log2(N)).

3.3.1 Demonstrations

An insightful theoretical example in Doucet and Johansen (2008, p12), which has

also been derived and discussed in example (2.4.3.1) in chapter 1 shows that: in

the sequential algorithm without resampling, the variance of their estimates grow

exponentially with the time step t. Such problem occurs in almost all sequential

importance sampling applications. The reason being due to the so called weight

degeneracy phenomena. The term of weight degeneracy illuminates a phenomenon

within the sequential importance algorithm. That is that as the most of particle

weights are nearly zero and only few carry the significant weights, and therefore the

pre-determined and great amount of particles loss their capability in approximat-

ing the target densities as time step increases. This is one of the reasons why the

approach of particle filtering to various fields of research did not take off until the

contribution of Gordon et al. [1993].

I demonstrate the importance of resampling through usage of the following simu-

lation example. Simulation will be conducted upon a univariate linear and Gaussian

model where all parameters are assumed to be known. Given such dynamic system
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model, estimation uses the Kalman filter is known to be an optimal. Nevertheless,

the model still serves the purpose of showing how resampling overcomes (as least

partially) the problem of weight degeneracy in sequential particle filtering.

Example 3.3.1.1 (Linear and Gaussian Dynamic model). The following model is

the simplest state-space models. It consists of two equations

Yt = HtXt + σwWt, Measurement Equation (3.2)

Xt = FtXt−1 + σvVt, Transition Equation (3.3)

where yt is the observations in the system and xt is the state variable. The mea-

surement error wt and the transitional disturbance vt are pre-assumed to be mutually

uncorrelated random variables with the respected mean and variances are

Wt ∼ N(0, 1) and Vt ∼ N(0, 1). (3.4)

Suppose σv = 1, σw = 1, Ht = 1, and the transition parameter Ft = 1. Given that

information, the transition equation is defined as AR(1) process. The posterior has

a closed form, that is known to be normal distribution.

Figure (3.2) shows the distribution of particle weights in the scenarios with and

without resampling procedure. The top panel has been produced with sequential

importance sampling algorithm without resampling, the weight degeneracy can be

easily identified, even with as fewer as 10 time instances. The distribution of particle

weights within the bottom panel shows that: for all three separated time instance, all

particles possess significant values and with no sign of particular larger weights. In

addition, the behaviour of particle weights distribution has been maintained through-

out for all three time counts. This type of particle weights distribution implies that

we have sufficient amount of particles to obtain a reasonable approximation to the

target posterior density p(xt|It) that guarantees reliable the state estimation.

Figure (3.3) demonstrates that, particle filter with resampling, their standard de-

viation of 50 sets of particle weights remain stable. On the contrary, particle filter

without resampling, as indicated by the thick solid line, shows a clear exponential

increment of their weights standard deviation. This implies to a certain extent that

resampling has the capability to re-balance the particles, and allows particle filters

to alleviate from the effect of weight degeneracy. However, this encouraging evidence

revealed by resampling provides no theoretical information regarding to the estima-

tion of state path. To summarise, in the particle filter literature, a well performed
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particle filtering algorithm relies on two aspects: first is that the selection of im-

portance density should be close to the optimal density distribution. Second one is

that the resampling algorithm should introduce as small variance as possible. The

selection of the importance density has direct effects in helping to determine the most

suitable amount of particles that is needed for the particle filtering approximation.

The detailed discussions on ways of selecting appropriate importance density can be

found in Arulampalam et al. [2002] and Pitt and Shephard [1999].

Figure 3.2: Particle weights of particle filtering without resampling (top plot) versus particle

weights of particle filtering with resampling (bottom plot). The number of particles N is 1, 000 and

time instances t are 2, 10, and 50 respectively.
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Figure 3.3: The standard deviation of particle weights of particle filtering with and without

resampling.

3.3.2 Resampling Schemes

The intuition of a set of particle weights can be thought of as a measure on the

likelihood of their respective particles (within the set) being in the target posterior

distribution. Smaller weights (in relative sense) indicate their corresponding parti-

cles that contribute moderately to the approximation of target posterior distribution.

Moreover, with the amount of small particle weights being large; the approximation

will be burdened as most of the computational works taken by small weighted par-

ticles, which does not actually contribute much to the approximation, as well as the

estimation of hidden states. Doucet and Johansen [2008] pointed out that, in se-

quential importance sampling, the weight degeneracy exists almost always as time

instance increases, where majority normalized importance weights in the set close to

zero with the exception of few particles carry significant weights.

In particle filtering, the formidable degeneracy issue can be overcome with the im-

plementation of resampling procedure. Resampling performs a probabilistic selection

on a given set of standardized weight, which eliminates particles with small weights,

whereas those with large particle weights are duplicated. Accordingly, the duplica-

tion counts help to form a new set of particles with the set of particle weights to be
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reset uniformly equal. Despite the appealing property associated with resampling in

particle filter, it should be pointed out that with the addition of resampling step,

resampling inflicts some extra ’noise’ into the approximation. This is simply due to

the duplication process that reduces distinct particles, thus degrading the accuracy

of the particle approximation. However, resampling remains to be essential to guar-

antee bounded conditional variance of the filter in the long-run.

Four of the most widely utilized resampling schemes are: multinomial resam-

pling, residual resampling, stratified resampling, and systematic resampling. Their

individual description, as well as their distinctive differences are listed as follows:

Multinomial Resampling : The idea of multinomial resampling can be under-

stood as: given the standardized particle weights {ω̃i}Ni=1, I intend to generate

a N elements random duplication index I = {I1, · · · , IN}, where the sum of I ′s

are equal to N . To do so, it is suggested by firstly generating a random variable

U from uniform distribution of [0, 1], then determining the index I such that

whether u ∈ {
∑I−1

j=1 ω
j,
∑I

j=1 ω
j}, where u is the realization of random variable

U . More specifically, the index I i will be recorded once if ui fall in the interval

{
∑I−1

j=1 ω
j,
∑I

j=1 ω
j}, such procedure will be carried out N times, where N uni-

form random variables will be generated. It means that some of the intervals

can be picked out multiple times, whereas other may not be picked out at all.

Therefore, the index I = {I1, · · · , IN} is essentially a duplication vector with

the values of I i determines how many time the ith particle will be duplicated.

For instance, suppose I i can be any integer of (0, N), and Is = 3, which simply

indicates the sth particle will be duplicated 3 times.

Residual Resampling : residual resampling of Liu [1996] has also been referred as

remainder resampling. This scheme has been proven to give smaller conditional

variance than the multinomial resampling, at least theoretically. In this scheme,

for i = 1, · · · , N , set

N i = bNω̃ic+ N̄ i, (3.5)

where the notation b.c indicates floor of the numerical value. The set of

{N̄1, · · · , N̄N} is distributed according to the multinomial distribution M(N −
R, ω̄1, · · · , ω̄N), where R =

∑N
i=1bNωic and

ω̄i =
Nω̃i − bNω̃ic

N −R
. (3.6)
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In other words, the values of N̄ i for i = {1, · · · , N} are obtained using the above

procedures as described in above multinomial resampling. The proof of show-

ing the conditional variance of residual resampling is less than the conditional

variance of multinomial resampling can be found in Douc et al. [2005].

Stratified Resampling : This resampling scheme partitions the unit interval (0, 1]

into N different parts, hence (0, 1] = (0, 1/N ]∪(1/N, 2/N ]∪· · ·∪
(
(N−1)/N, 1

]
.

Given those small intervals, one can draw a set of samples ū1, · · · , ūN , e.g.

ūi ∼ U
((

(i − 1)/N, i/N
])

for i = 1, · · · , N . The indices I(Ū i) can be obtain

via the following expression

I(ūi) =
N∑
i=1

1(∑i−1
j=1 ω̃

j ,
∑i
j=1 ω̃

j
](ū), (3.7)

where ū is uniformly sampled from those partitioned intervals, and moreover

these samples from portioned intervals are independent from each other.

Systematic Resampling : The uniform samples ui are obtained via ui = u1 +

(i − 1)/N , for i = 2, · · · , N , where u1 is drawn from a uniform U [0, 1/N ]

distribution. As compare with stratified resampling, systematic resampling

is still the case that the unit interval is divided into N sub-intervals ((i −
1)/N, i/N ] and one sample is taken from each of them, which is the same as

in stratified resampling. However, given all uniform samples share the same

relative position u1, therefore the samples are no longer independent from each

other. As pointed out in Douc et al. [2005], since the samples are not from

independent sub-intervals like they are in stratified resampling, it will not be

as simple as other resampling simple formulas for the conditional variance of

systematic resampling.

If we trace back to the residual resampling, one would notice that instead of using

multinomial resampling on given remainder weights ω̄i in residual resampling, we

could replace it with stratified resampling for their reminder weights. Other scheme

such as the coupled methods can form attractive resampling scheme and worth to

be exploited on their accuracy, as well as their computational efficiency. Both strat-

ified resampling and systematic resampling possess computational complexity to be

approximately over O(N).
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3.4 Shannon Information Entropy diagnostics

In the SIR algorithms, resampling has been performed at each time step in the SIR

type of filtering algorithms. Such an act demands excessive computational effort.

To overcome the large computational complexity associated with SIR filters, Liu

[1996] and others suggested the so-called effective sample size (ESS) diagnostics.

The Ess diagnostics insists that resampling step should only be executed when the

value of Ess is smaller than some threshold particle counts, otherwise resampling

should be avoided. Such a criterion is defined by equation (51) in Arulampalam et al.

[2002]. The coefficient variation diagnostics developed by Kong et al. [1994] is another

degeneracy diagnostics, and the diagnostics per-Se is closely related with the Ess

diagnostics. In this section I demonstrate that the novel Shannon information entropy

diagnostics is a more time efficient diagnostics for degeneracy compared to both

coefficient variation diagnostics and Ess diagnostics. Note in the following discussion,

the subscripts of particle weights ω̃ such as time t and parameter θ, will be omitted

for the sake of simplifying notations.

3.4.1 Effective Sample Size

The previously discussed sequential importance sampling approach is bound to fail

in the long run, because of the curses of weight degeneracy. One of the important

methods that had revived sequential importance sampling or particle filters is through

the introduction of resampling procedure. However, the downsides of employing

resampling would be the introduction of additional noise, as well as increasing the

computation complexity in the model estimations. Therefore, it seems particularly

attractive in practice that a dignostics that can be set-up to detect weight degeneracy,

and perform resampling only when weight degeneracy is eminent. The most widely

applied dignostics is the so-called effective sample size N̂Ess (Liu [1996]), which has

been defined as

N̂Ess =
{ N∑

i=1

(ω̃i)2
}−1

, (3.8)

where N is the number of particles, and the standardized ith weight is

ω̃i =
ωi∑N
j=1 ω

j
.
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The value of NEss varies between 1 (all weights are insignificant except one) and N

(equal weights). Prior to wide applications of the effective sample size dignostics,

Kong et al. [1994] had already proposed another dignostics that has been known as

the coefficient variation, which has been defined through the following expression

CVN =
{ 1

N

N∑
i=1

(
Nω̃i − 1

)2}1/2

. (3.9)

The value of CVN is minimal (equal to 0) when the normalized weights ωi are all

equal to 1/N , which means that no variation among all weights. On the contrary,

the maximum of CVN equals (N −1)1/2, which corresponds to the scenario where the

effective sample size NEss equal to 1. As the matter of fact, the relationship between

NEss and CVN can be summarized through the following equation

N̂Ess =
N

1 + CV 2
N

. (3.10)

The derivation of the above equation can be verified as follow

N̂Ess =
N

1 +
[{

1
N

∑N
i=1

(
Nω̃i − 1

)2}1/2]2

=
N

1 +
{

1
N

∑N
i=1

((
Nω̃i

)2
+ 1− 2Nω̃i

)}
=

N

1 +
(
N
∑N

i=1(ω̃i)2 + 1− 2
) by

∑N
i=1 ω̃

i = 1

=
{ N∑

i=1

(ω̃i)2
}−1

.

3.4.2 Shannon Information Entropy

The effective sample size diagnostics has been the most widely applied degeneracy

diagnostics till date. However, the usage of square of weights has two potential prob-

lems when determining whether or not to resample at their respective time instance.

The first is that the large proportion of weights within a set are relatively small, and

those weights correspond their respected particles are actually close within the target

density. Though resampling is seemingly unnecessary, the square of value of weights

in the Ess diagnostics might be saying otherwise. The second is down to the small

number recognition of the computer, the square of amount weights can simply be set

as zero, and therefore such avoidance can result over detecting weight degeneracy.
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Given the potential problems associated with Ess diagnostics and related diagnos-

tics, inspired by the idea entropy idea in Chapter 7 of Cappe et al. [2005], I introduce

an alternative weight degeneracy diagnostics based upon the concept of Shannon in-

formation entropy. This novel diagnostics takes the value of weights as they originally

are in order to detect the existence of weight degeneracy. The motivation of adopting

the Shannon information entropy is due to its basic definition. In information the-

ory, Shannon information entropy measures the uncertainty associated with a piece

of information (random variable). A mathematical display of this description is, for

a random variable X, with N , outcomes {xi : i = 1, . . . , N}, where the Shannon

information entropy, a measure of uncertainty denoted by H(X), can be defined as

H(X) = −
N∑
i=1

p(xi) log2 p(xi),

where p(xi), is the probability mass function of outcome xi.

The preceding description shares similarity with the standardized particle weights

ωi, where ωi can be thought as the point mass of the random variable X at the

particle (sample) realization xi. In the meantime, all normalized weights ωi has value

between 0 and 1, with their sum equals to 1. Therefore, the randomness or disorder

of standardized weights can be characterized by a similar expression as the one above

(Shannon information entropy formula), which is

E = −
N∑
i=1

ωi log2(ωi). (3.11)

Equation (3.11) can be understood as if all normalized weights are zero expect for

one, then there is a minimum disorder among the particle set, and therefore the

Shannon entropy is at its minimal. On the contrary, if all particles carry equal weight,

which means all particles are uniformly distributed, this set of particles exhibits

great randomness or disorder. This is the situation that the Shannon entropy is at

its maximum that equals to log2(N). In the light of the above idea, I formed the

weight degeneracy diagnostics that can be implemented in any particle filters where

the effective sample size diagnostics is applicable. The appealing advantage with the

Shannon information entropy is that it does not distort the small weights in their

calculations.

Proposition 3.4.1. Suppose for all ωi ∈ (0, 1) and
∑N

i=1 ωi = 1, with i = {1, · · · , N},
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and for N is large, then

2−
∑N
i=1 ωi log2(ωi) ≥

( N∑
i=1

ω2
i

)−1
. (3.12)

Proof. To show equation (3.12) is true, is equivalent to showing the following expres-

sion is true,

2
∑N
i=1 ωi log2(ωi) ≤

N∑
i=1

ω2
i .

Since ωi ∈ (0, 1), we can always find a value of Ci ∈ (0, 1) the following is true

2ωi log2(ωi) ≤ Ci.

For example, logarithmic base 2 of 1 is zero, this indicates that ωi = 1, but this is

not true since ωi ∈ (0, 1). Given the above expression, we have

2ω1 log2(ω1)2ω2 log2(ω2) · · · 2ωN log2(ωN ) ≤ C1C2 · · ·CN

=⇒ 2
∑N
i=1 ωi log2(ωi) ≤

N∏
i=1

Ci

≤ CN ,

for C = Max{C1, · · · , CN} and C ∈ (0, 1). For N →∞, then CN → 0, which gives

CN → 0 <
N∑
i=1

ω2
i = ω2

1 + · · ·+ ω2
N ,

for N sufficiently large. Hence we have

N∑
i=1

ω2
i ≥ 2

∑N
i=1 ωi log2(ωi).

This completes the proof.

A remark is that the highest information entropy would be for all particles carrying
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equal weight of 1/N , and the following is true

E = −
N∑
i=1

ωi log2(ωi) ≤ −
N∑
i

1

N
log2(

1

N
)

= − log2(
1

N
).

The above inequality implies that

2−
∑N
i=1 ωi log2(ωi) ≤ 2log2(N) = N,

where N is the number of particles. Hence for any threshold, Nthre is an integer

between 0 and N , we have Nthre ≤ N . In other words, the resampling procedure can

be avoided since the threshold is less than the dignostics result.

The above proposition shows that when the number of particle counts N is large,

the Ess dignostics will detect weight degeneracy more often than the Shannon entropy

dignostics. For instance, suppose the threshold Nthre = 0.5N and N = 10000, then

this implies that the Ess dignostics detects degeneracy if
∑N

i=1 ω
2
i > 0.0002, but

suppose C = 0.999, then the Shannon entropy dignostics detects degeneracy if E−1 ≥
0.000045(0.99910000). According to these numerical comparison, it seems that the

Shannon information entropy diagnostics reduces resampling merely when N is large.

However, this appears not to be the case in practice. More precisely, the inverse of

the Shannon information entropy value is bounded above by
∏N

i=1 Ci, and the value

like Ci = 0.999 seldom turns up, which implies that the geometric decay accelerates

towards zero even with small N . The follow simulation example demonstrates such

claim where the Shannon entropy diagnostics performs well with small particle counts.

Demonstration

The set-up of our demonstration is that given the state sample (time) size T to be 200

and the particle counts N to be 2000. The standardized particle weights of performing

the local linearisation particle (resample at each step) has been stored in a T by N

matrix. Those weights should not exhibit too much degeneracy since the resampling

has already been conducted at each time step in the filtering. I set the threshold of

Nthre to be 0.5 ∗ N . The Ess dignostics has been performed on the weights (stored

in the T by N matrix). In the end, approximately 24% degeneracy was still detected

out of 200 time length. On the contrary, the Shannon information entropy dignostics

detects merely approximately 5% out of 200 time steps. In the simulation, those time

steps have been flagged out by the Shannon information entropy dignostics appear to
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be a subset of that of those by the Ess dignostics. In other words, despite all weights

in the demonstration are the standardized weights from SIR (resampled at each step)

algorithm, a further Ess dignostics on those weights still detects substantial amount

degeneracy.

Figure (3.4) shows three different type of sets of particle weights: undetected

particle weight set, detected particle weight set by Ess, and detected particle set by

both Ess and Shannon entropy dignostics. Clearly if the set is undetected, which

implies that all particle weights within such set carry relatively same weight or same

value, and all particle weights contribute to filtering estimation. In the mid plot of

Figure (3.4), that is flagged out by the Ess dignostics, which does not behave much

differently from the undetected particle weight set (top plot), except few stands out.

In addition, the standard deviations for top, mid, and bottom plots in Figure (3.4) are

0.00035, 0.00052, and 0.001, respectively. The critical issues with the Ess dignostics

is that resampling will be performed in cases that it may not even be required.

However, a potential linear computational reduction can be obtained from utilizing

the Shannon information entropy dignostics. The following section verifies this claim,

as well as making accuracy comparison among these two dignosticss.

Figure 3.4: The detected and undetected particle set of particle weights.

3.5 Simulations

In this section, the Shannon information entropy diagnostics is embedded into local

linearisation particle filter to replace the Ess diagnostics, which forms linearised en-
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tropy filter, LPF6. The filter of LPF6 is then compared with the Ess diagnostics

coupled with both bootstrap filter and local linearisation particle filter. The second

part of this section utilizes LPF6 filter in order to investigate the behaviour of both

accuracy and efficiency of aforementioned four of existing resampling schemes. The

accuracy comparison derives from the measure of RMSE, which records the devia-

tions between the actual states and its estimates. RMSE has been widely adapted

deviation measure in field of particle filtering researches, e.g. Arulampalam et al.

[2002]. Alternative ways of measuring deviations are also available, e.g. the mean

absolute error in Liverani and Papavasiliou [2006].

The models that will be used for simulation studies have been introduced in sec-

tion 2 and 3, and they are: the linear and Gaussian model of example (2.3.1.1) and

the non-linear time series model of example (2.2.3.1), respectively. In estimation, the

importance function is be thought to be the back-bone of each particle filter. For

instance, the derived importance density function for linearised entropy filter, LPF6

depends on the linearisation for the linear and Gaussian model and local linearisation

for the non-linear time series model, respectively. The detailed discussions and spec-

ified derivations of our importance density functions can be found in Doucet et al.

[2000a].

3.5.1 Ess diagnostics vs Shannon Information Entropy diag-

nostics

3.5.1.1 Linear and Gaussian Model

The state time T has been set to be 500 for the simulation on the example of linear

and Gaussian model. Table (3.2) compares the results obtained from various parti-

cle filters coupled with different degeneracy diagnostics. The comparison has been

extended accordingly across 7 different particle counts, as displayed in column 1.

Moreover, the RMSE between the linearised entropy filter (LPF6) and linearised Ess

filter (LPF5) are comparable, with the former tends to be fractionally better than the

latter. Note the Monte Carlo standard deviation is placed in the parentheses. Given

the Kalman filter is optimal for linear and Gaussian state space model, the results of

Kalman filter (listed in column 2 within Table (3.2)) are predictably smaller than all

the particle filters. However, except bootstrap with Ess filter, the rest of filters seem

to converge towards the value of Kalman filter as the number of particles increases.

Besides the accuracy comparison, Table (3.3) demonstrates the computational as-

sessment of different degeneracy dignosticss through percentage of resampling mea-
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sure. To be more specific, the percentage of resampling is the fraction of number of

detected degeneracy over the time length T . The percentages of the linearised entropy

filter, LPF6 (displayed in column 4) are smaller than the linearised Ess dignostics,

LPF5 across all particle counts. The resampling percentage with LPF6 is invariably

up to 20 percent less than LPF5. To summarise, in the linear and Gaussian state

space model, our newly proposed Shannon information entropy dignostics (denoted

as LPF6) has the capability of producing comparable performance to the existing

one, but with a smaller computational cost.

Table 3.2: The RMSE of Kalman filter and Particle filters for linear and Gaussian model, with
Nthre = 0.75 ∗N and Monte Carlo repetition R to be 100 runs.

RMSE Kalman Bootstrap Bootstrap Ess Linearised Ess Linearised Entropy
(LPF1) (LPF2) (LPF3) (LPF5) (LPF6)

N=100 0.7825 (0.0026) 0.8256 (0.0032) 0.8655 (0.0034) 0.8295 (0.0032) 0.8277 (0.0032)
N=250 0.7881 (0.0026) 0.8221 (0.0031) 0.8677 (0.0033) 0.8246 (0.0031) 0.8240 (0.0031)
N=500 0.7880 (0.0025) 0.8172 (0.0030) 0.8604 (0.0032) 0.8192 (0.0031) 0.8183 (0.0031)
N=1000 0.7852 (0.0025) 0.8163 (0.0030) 0.8577 (0.0032) 0.8177 (0.0030) 0.8172 (0.0030)
N=2500 0.7875 (0.0023) 0.8146 (0.0030) 0.8574 (0.0031) 0.8148 (0.0030) 0.8148 (0.0030)
N=5000 0.7834 (0.0025) 0.8139 (0.0031) 0.8575 (0.0032) 0.8142 (0.0031) 0.8141 (0.0031)
N=10000 0.7811 (0.0025) 0.8100 (0.0031) 0.8543 (0.0032) 0.8104 (0.0031) 0.8101 (0.0031)

Table 3.3: Percentage of resampling steps of linear and Gaussian model, ESS vs. SIE.
RMSE Bootstrap Ess Linearised Ess Linearised Entropy

(LPF3) (LPF5) (LPF6)
N=100 62.82 50.82 33.62
N=250 63.16 52.64 33.91
N=500 63.06 53.17 33.92
N=1000 63.47 54.19 34.47
N=2500 63.22 54.13 34.25
N=5000 63.22 54.19 34.00
N=10000 63.22 54.42 34.30

3.5.1.2 Non-linear Time Series Model

For the non-linear time series model as illustrated in Example (2.2.3.1), the task of

obtaining the optimal filter (as the Kalman filter for linear and Gaussian model) can

be a formidable one. The state time T of the non-linear time series is set to be

500, with the particle counts takes to be 7 different amount across from being 100

to 10, 000. In Table (3.4), the results in the column (4) suggest that the linearised

particle filter with entropy diagnostics provide comparable precision to particle filters

with the Ess diagnostics.

Table (3.5) compares the percentage of resampling obtained from the linearised
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entropy filter, LPF6 and linearised Ess filter, LPF5. The values are at least 15 percent

less with LPF6 than it is for LPF5. This result is invariably maintained through all

particle counts.

Table 3.4: The RMSE of particle filters for non-linear time series model, with Nthre = 0.5∗N and
Monte Carlo repetitions R to be 100 Runs.

RMSE Bootstrap Bootstrap Ess Linearised Ess Linearised Entropy
(LPF2) (LPF3) (LPF5) (LPF6)

N=100 5.3483 (0.0736) 5.7073 (0.0697) 5.6255 (0.0801) 5.6653 (0.0790)
N=250 5.1414 (0.0727) 5.5720 (0.0689) 5.3287 (0.0766) 5.3490 (0.0789)
N=500 5.0277 (0.0724) 5.4838 (0.0668) 4.9941 (0.0755) 5.0757 (0.0760)
N=1000 4.9725 (0.0734) 5.4550 (0.0682) 5.0916 (0.0775) 5.0058 (0.0760)
N=2500 4.9819 (0.0724) 5.4650 (0.0668) 4.8629 (0.0754) 4.8679 (0.0763)
N=5000 4.9399 (0.0740) 5.4495 (0.0677) 4.8160 (0.0771) 4.8565 (0.0754)
N=10000 4.9251 (0.0743) 5.4305 (0.0689) 4.7460 (0.0780) 4.7598 (0.0762)

Table 3.5: Percentage of resampling steps of non-linear time series model, ESS vs. SIE.
RMSE Bootstrap Ess Linearised Ess Linearised Entropy

(LPF3) (LPF5) (LPF6)
N=100 41.74 65.42 47.30
N=250 41.53 71.35 52.49
N=500 41.95 73.89 56.44
N=1000 41.79 75.32 59.71
N=2500 41.05 77.18 63.43
N=5000 42.03 78.06 65.05
N=10000 41.63 79.09 66.17

3.5.2 Resampling Schemes Comparison

In this section, I look into an additional problem, which is on the extension to the

resampling schemes comparison by Douc et al. [2005]. For all reality problems involv-

ing the implementation of particle filtering, the desire for infinite and extremely large

number of particle is infeasible due to the computational constraint of time and cost.

Under the frame of finite particles, we hope to provide an empirical guidance over the

selection of resampling schemes through simulation experiments derived from two of

the prototype state space models. The experiments will be running on the aforemen-

tioned four different resampling schemes. More specifically, the performances of those

resampling schemes will be diagnostics by embedding them into local linearisation

particle filter with the Shannon entropy diagnostics, which is the LPF6 in section

2. Moreover, in order to have a broad picture over the attributes of each individual

scheme, I proceed as follows: first, I set the particle counts to vary whilst the state

sample size to be fixed. This would allow us to perceive how each resampling scheme
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would behave when the number of particle counts change. Secondly, I allow the state

sample size to vary while set the particle counts to be fixed.

In practice, despite particles have to be finite, the question of what is the opti-

mal number of particles in a specific problem remains as a debatable topic in the

literature. Doucet and Johansen [2008] and Arulampalam et al. [2002] believe that

number of particles to be employed should be determined largely by the selection

of importance density distribution. Such an answer seems far from being satisfying,

possibly with the thought of the rule of thumb may indeed be infeasible to obtain.

However, we leave this debate as it is given the concern in the very chapter is to

observe the performance of resampling schemes.

3.5.2.1 Linear and Gaussian Model

For the linear and Gaussian model, I examine the precision of each resampling scheme.

Their results are displayed in Figure (3.5), which contains the RMSE of all four

resampling schemes in particle filter LPF6 at various particle counts whilst set the

state size to be fixed (T = 500). All four resampling schemes produce higher RMSE

with small particle counts, and then the value of RMSE stabilizes as the selected

particle counts become larger. Moreover, the overall behaviour of each resampling

schemes demonstrated in Figure (3.5) are very similar at different particle counts.

The same behaviour is exhibited in the Figure (3.6), where the state sample sizes

are set to vary whilst the number of particles is fixed (N = 2000) . Moreover, in

Figure (3.6), there appears to be a sharp drop of RMSE at state sample size of

50, then it bounces back as the state size dimensions increase. However, the RMSE

soon remains stable as the state size dimension reaching 1000. Moreover, through the

increment on the state size, all RMSE of the resampling schemes are no different from

each other. I suspect such an ’up-and-down’ phenomena could be potentially due to

the fact of additional ’noise’ introduced by resampling, which exhibit rather strongly

when there is only few states in the filtering estimation. Such conjecture will require

further investigation. Finally, the specifications of these two simulation studies are:

the Monte Carlo repetitions is set to be R = 50 and the threshold Nthre = 0.75 ∗N ,

where N is the number of particle counts.
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Figure 3.5: The RMSE comparison of resampling schemes using linear and Gaussian model.

12 different particle counts are considered, which has been listed in the horizontal axis, that are

(25, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000).

Figure 3.6: The RMSE comparison of resampling schemes using linear and Gaussian model. 8

different state sample sizes are considered, which has been listed in the horizontal axis, that are

(25, 50, 100, 250, 500, 1000, 2500, 5000).

3.5.2.2 Non-linear Time Series Model

For the non-linear time series model, with the Monte Carlo repetitions R = 50 and

threshold at 0.75N , the behaviour of those four resampling schemes behaves similarly
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in both cases of particle counts and sample state are changing, as they are displayed

in Figure (3.7) and (3.8), respectively. In Figure (3.7), the RMSE of each resampling

scheme remain closely throughout. On the contrary, for case with the changing of

state sample size , the behaviour of the resampling schemes among themselves are

slightly more unsettled as compare their behaviour for case in Figure (3.7). However,

the RMSE of all resampling schemes remain comparable.

Figure 3.7: The RMSE comparison of resampling schemes using non-linear time series model.

12 different particle counts are considered, which has been listed in the horizontal axis, that are

(25, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000).
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Figure 3.8: The RMSE comparison of resampling schemes using non-linear time series model. 8

different state sample sizes are considered, which has been listed in the horizontal axis, that are

(25, 50, 100, 250, 500, 1000, 2500, 5000).

A brief summary leads to perceive that: providing the evidence of the simulation

studies of both of the linear and Gaussian model and the non-linear time series

model, with the constraint of finite amount particles, all four resampling schemes

have almost identical RMSE values. No trace has been found over the concerns

of multinomial resampling produces larger estimation deviations over residual and

stratified resampling. Building upon on the resampling schemes comparison using

particle filter with the Shannon information entropy diagnostics, another investigation

is to conduct similar comparison for particle filter with the Ess diagnostics. Hence

it would provide additional information regarding to the comparison between the

Shannon information entropy diagnostics and Ess diagnostics.

3.5.3 Computational Efficiency

The previous simulation results (considering the scenarios of the changing of both

particle counts and state sample sizes) have demonstrated that all four resampling

schemes produce comparable estimation accuracy. I further the resampling schemes

comparison by examining their computational efficiency, in which the efficiency will

be measured in terms of CPU time. Such comparison will be purely for the purpose

of providing a way for empirical researchers in their selection of the most suitable

resampling schemes for their respective problems. To do so, I use the linear and

Gaussian model as the basis model, and then apply the local linearisation particle
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filter with Shannon information entropy diagnostics to different resampling schemes.

Within this set-up, two distinct state sample sizes 100 and 500 and three various

particle counts 100, 500 and 1000 have been considered simultaneously. Similar ex-

aminations can be applied to other state space models such as the non-linear time

series model.

Table (3.6) reveals the computational efficiency of the four different resampling

schemes discussed in the local linearisation particle filters. For example, given state

time instances to be 500 and number of particle counts to be 1000, the average com-

putational time to complete local linearisation filter with systematic resampling is

approximately 0.3344 seconds, whereas the time of that local linearisation filter with

multinomial resampling is almost 143 folds more than that of systematic resampling.

Such difference (multinomial vs. systematic) will be even greater when the number of

particles increases. Table (3.6) further demonstrates that both systematic resampling

and stratified resampling in our simulation requires less computational time than the

others. Moreover, as far as finite particle counts are used, the multinomial resampling

of original idea of Gordon et al. [1993] has a serious drawback in practice over its

computational time efficiency. Despite the results of preceded computational exami-

nations may vary among problems, it however can still be adapt as a trail exercise in

determining the most suitable resampling scheme before embarking on comprehensive

work.

Table 3.6: CPU time of each resampling scheme implemented within the local Linearisation filter,
time is measured in seconds (that is averaged over 50 Monte Carlo runs) .

Number of particles resampling 100 500 1000
State multinomial 0.1141 2.4144 9.4359

100 residual 0.0537 1.0700 4.1803
stratified 0.0184 0.0681 0.1409

systematic 0.0138 0.0362 0.0672
State multinomial 0.5537 12.2994 47.9787

500 residual 0.2791 5.4800 21.2959
stratified 0.0931 0.3488 0.7131

systematic 0.0619 0.1747 0.3344

3.6 Conclusion

The conclusion of this chapter is two fold: firstly, in sequential importance sample

and resampling, the Shannon information entropy diagnostics offers a linear compu-

tational reduction over the effective sample size diagnostics. Moreover, this reduction
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introduce no effect to the precision of the estimation of utilizing sequential impor-

tance sample and resampling. The amount computational efficiency gain with the

Shannon information entropy diagnostics will depend on the underlying model that

I aim to estimate. Secondly, for finite particle counts, existing resampling schemes

provide almost identical estimation in terms of root mean squared error. However,

according to the derived evidences from our simulation studies, stratified resampling

and systematic resampling possess computational time efficiency over multinomial

resampling.

Regarding to future research, the Shannon information entropy diagnostics can

certainly be applied to all sequential importance sample and resampling particle filters

such as: auxiliary particle filter, regularized particle filter, and so on. Combination

of different resampling schemes will certainly worth further investigation, where their

attributes can be compared in similar fashion as in this chapter. Finally, considering

the diagnostics decision of resampling, further study should be dedicated in knowing

the possible existence of a greatest lower bound for any given set of particle weights.

3.7 Appendix

All the simulations and calculation of CPU times are coded with Matlab, then they

are performed on Matlab 7.10.0 (R2010 a) on a Desktop computer with Intel(R)

Core(TM) 2 Duo, CPU of 3.00GHZ, and RAM of 3.00GB.
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Chapter 4

Modified Entropy Particle Filters

Abstract

The Entropy particle filter of Liverani and Papavasiliou [2006] is an attractive tool

to estimate both state variable and unknown parameter in the general state space

model. In order to reduce the variation of convergence of unknown parameter and

obtain more accurate estimates for state variable, this chapter proposes a set of

modifications to the original Entropy particle filter of Liverani and Papvasiliou. Such

modification is essentially a process of refinement for the prior parameter distribution.

The modified Entropy particle filter has the same uniform convergence property as

the original Entropy particle filter. Simulation experiments demonstrate that the

modified Entropy particle filter outperforms its predecessor in terms of state variable

estimation; in addition, it also exhibits superior statistical stability in estimating the

unknown parameters.

4.1 Introduction

Estimation of static parameters in non-linear and non-Gaussian state space model or

general state space model has been a long-standing problem in spite of the various

attempts that have been made in the past two decades.

General state space models, also known as Hidden Markov models (HMM) in the

statistics literature, they have the capability to handle a remarkably wide range of

economic time series processes. The advantage of the general state space model is

that it can model the behaviour of various processes separately and then put the

substructures together to form a concrete system for the processes. Earlier works on

general state space models are Kitagawa [1987], Gordon et al. [1993], Liu and West
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[2001], and among many others.

For general state space models with unknown static parameters, the estimation

task becomes much more complicated than merely state variables estimation whilst

the parameters are known. An approach that involves the artificial evolution of pa-

rameters in Liu and West [2001] assumes the parameters behave as Markov chains

that evolve over time. Other approaches like Doucet and Tadic [2003], estimate the

parameters through the aid of computing the derivatives of the particle filter. Kan-

tas et al. [2011] provided an extensive summary over different parameter estimation

approaches for general state space models.

Liverani and Papavasiliou [2006] proposed the so called Entropy based particle fil-

ter for estimating the hidden state variable when the static parameters are unknown

in the general state space models. Notwithstanding the claim that the work of Liv-

erani and Papavasiliou [2006] focuses on the estimation of the state variable with the

intention of avoiding resampling the unknown static parameters, the Entropy parti-

cle filter is capable of estimating the parameters of the general state space models.

The simulation results of Liverani and Papavasiliou [2006] indicate that the Entropy

particle filter is an extremely promising technique to the estimation of general state

space model. More specifically, the Entropy particle filter possesses the ability to

produce deviation errors of the state variable that are comparable to those provided

by conventional particle filtering techniques. In addition, their experiments showed

that providing that the initialized parameters are generated from a reasonable prior

distribution, the estimates of unknown parameters converge to the true parameter

values.

In order to reduce the convergence variation of the parameters, I propose a set

of modification on the Entropy particle filter algorithm that is called the modified

Entropy particle filter (MEPF). The modification is essentially re-computing weights

in the Entropy particle filter that refines the prior distributions of unknown parame-

ters. The MEPF not only stabilizes the parameter estimation, but also provides more

precise inference on state variable. Such improvements have been demonstrated in

simulation experiments, and the modification procedure can be universally applied

to Entropy particle filter in its general applications.

This chapter proceeds as follows: section 2 discusses the state space models that

we are interested in and outline the problems we are dealing with. In addition, I

describe the idea of the Entropy particle filter, and outline its implementation pro-

cedures. The modified Entropy particle filter and its algorithm are explained and

discussed in section 3. Section 4 performs several experiments on the application of

both MEPF and EPF to linear and Gaussian state space model. Finally, section 5
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draws the conclusions that are derived from our simulation experiments. Moreover it

points out potential problems that are associated with the application of the Entropy

particle filter.

4.2 Particle Filters

4.2.1 Setting

This chapter extends the Entropy particle filter of Liverani and Papavasiliou [2006]

to reinforce the estimation capabilities on general state space models. Hence, for the

sake of notation consistency, the following setting will be in-line with the authors,

and therefore such setting will be slightly different from the one appeared in the

introduction and Chapter 2 of the thesis. The system takes the following form:

{
Xt+1 ∼ Kθt(Xt, .)

θt+1 = θt.
(4.1)

where θt has been referred as a non-dynamic component. This non-dynamic com-

ponent corresponds to the fixed but unknown parameter, and the parameter θt is

assumed to takes values in a compact subset of a Euclidean space Θ ⊆ Rr, where r

can be understood as the dimensions of the space. 1 Assuming that the initial dis-

tribution of X1 is known, where X1 ∼ µ1, and the process of {Xt}t≥1 is the so called

transition process that has been partially observed through the following observation

equation

Yt = h(Xt) +Wt. (4.2)

Equation (4.2) is the observation equation, where the observation process {Yt}t≥0

depends on Xt through function h(.). It also is assumed that we know the distribution

of the stochastic process {Wt}t≥0.

The notation of Kθt(Xt, .) in equation (4.1) defines the transition density. The

subscript of θt indicates that for the transition process or the Markov process to be

ergodic, 2 one would require additional information on the non-dynamic component,

e.g. knowing the fixed value of θ.

1One can think of the inducing compactness follows natural from the use of metric space Rr,
which it is known that any compact subset of a metric space Θ ⊆ Rr is closed and bounded. In
addition, given it is Rr, therefore closeness and boundedness induce compactness.

2Definition of Ergodicity has been given in page 16 of Chapter 2 in the thesis.
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The strong motivation for studying the above system (defined through equation

(4.1) and (4.2) ) is that such system can be employed to model many real world

information processes, e.g. to the monthly inflation data (as economic theory claims)

is associated with a unobserved process that is called natural rate unemployment;

the missile movement tracking system, and the underlying volatility of exchange

rate . The goal can be summarized as: estimate the hidden state sequence Xt and

possibly parameter θ, provided all the information up to time instance t. The observed

information can be formalized into an information set such that It = {y0, y1, · · · , yt}.
The applicability of particle filters become an extremely useful tool once we consider

to estimate the dynamic system that is in a non-linear and (or) non-Gaussian format.

4.2.2 Estimation

4.2.2.1 States Estimation

Consider a model where θ is assumed to be known, the focus will be entirely on

filtering the state variable Xt. The filtering can be understood as the process of

obtaining the target probability distribution function pθ(xt+1|It+1) via

pθ(xt+1|It+1) ∝ gθ(yt+1|xt+1)pθ(xt+1|It). (4.3)

The derivation of equation (4.3) is the result of a recursive two stages process: predic-

tion and update, which has been shown in detail in Chapter 2 of the thesis, and also

explained in Gordon et al. [1993] and Arulampalam et al. [2002]. A set of comments

will be made accordingly on each of the individual terms in equation (4.3) in spite of

the omission of derivation. pθ(xt+1|It) is the so called predictive distribution of xt+1,

which can be obtained by integrating out of xt from the joint density p(xt+1, xt|It).
3 The term gθ(yt+1|xt+1) is the likelihood function.

In the state variables estimation with fixed parameter θ, the particle filtering

produces the following sets at time stance t

{xit, θi : i = 1, · · · , N} θi = θj = c, for i = j

and their corresponding standardized weights such as

{ω̃it : i = 1, · · · , N},
3Strictly speaking, we need to invoke the Lebesgue measure over this integration.
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where c denotes some known real value. Then the sets {xit, θi}Ni=1 and {ω̃it}Ni=1 ap-

proximate the target distribution pθ(xt|It) at time stance t. A snapshot of all the

reason is that constructing analytical target probability density function is feasible

for limited cases such as the Kalman filter for linear and Gaussian models. Once the

system is non-linear, approximation for the target density function pθ(xt+1|It+1) can

be made through the application of particle filters. An extensive review of different

type of particle filters can be found in Arulampalam et al. [2002].

4.2.2.2 States and Parameters Estimation

In reality, situations tend to be more complicated. The inclusion of non-dynamic

component or unknown fixed parameter θ, as described in equation (4.1) has been

proven to be useful from modelling perspective. However, working with the involve-

ment of this additional unknown parameter has turned out to be more complex than

merely handling the estimation of state variables along. The following discussion

outlines the estimation framework with unknown parameter.

The state equation (4.1) in the previous setting can be represented in following

functional function (as in the introduction of the thesis)

Xt+1 = ψθ(Xt, Vt, θ). (4.4)

The addition of θ on the right hand side indicates that we are dealing with both state

and parameter estimation; Vt denotes an independent and identically distributed

stochastic process. Alternatively, the unknown parameter can be inserted into the

aforementioned predictive density function and likelihood function which become

fθ(xt|xt−1, θ) and gθ(yt|xt, θ). (4.5)

This means that the probability density functions are known if they are conditional on

the parameter θ. Subsequently, the objective becomes constructing the joint posterior

distribution p(xt, θ|It), which by the Bayes’ theorem, can be expressed as

pθ(xt+1, θ|It+1) =
pθ(yt+1|xt+1, θ)p(xt+1|θ, It)pθ(θ|It)pθ(It)

pθ(yt+1|It)p(It)
(4.6)

∝ pθ(yt+1|xt+1, θ)fθ(xt+1|θ, It)pθ(θ|It).

The above equation indicates that the density function pθ(θ|It) will be an important

piece of ingredient in the filtering process. However, this probability density function

is unknown to us. The first two probability density functions on the right hand side
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are given by equation (4.5). Therefore, the situation that lies ahead is that we have

the usual problems of the state estimation outlined previously and the additional

issue of the estimation of pθ(θ|It). Notice that the term pθ(θ|It) drops out if θ is

known, and then equation (4.6) simplifies to become the state estimation of equation

(4.3) .

4.2.3 Entropy Particle Filter

This section reviews the Entropy particle filter and related knowledge. The following

description derives from the introduction on particle filter in Liverani and Papavasil-

iou [2006], which differs from our previous discussion of particle filters only from the

notational aspect.

The standing-point of Liverani and Papavasiliou [2006] aims to avoid resampling

over the parameters and construct a particle filter that will converge uniformly in

time. To do so, they take an approach of weighted average of particle filters whilst

treating parameters θ as constant, and also able to sample θ from a ’reasonable’ prior

distribution u. More specifically, suppose a set of independent samples {θj}Mj=1 is

generated from distribution u, it then would result a total of M particle filters that

correspond to M generated θ values. The particle filter of unknown parameters is

therefore defined as:

Φ̃M,N
t (µ1 ⊗ u) =

M∑
j=1

ωt(θj)Φ
N
n (µ1 ⊗ δθj), (4.7)

where µ1 is the previous defined initial distribution of state variable X0 and u is the

prior distribution of θ. The term of µ1 ⊗ u denotes the particle filter is constructed

based on the outer products of initial particle set (from a probability measure of µ1)

and the parameter samples (from a probability measure of u). The left hand side

of the equation denotes the particle filter for unknown static parameters. The term

ΦN
n (µ ⊗ δθj) on the right hand side represents the particle filter where the unknown

static parameter has been fixed to θj. In addition, the term ωt(θj) can be computed

in a way that it in fact approximates the likelihood of parameters θ being given as

θj:

ωt(θj) ≈ p(θj|It), (4.8)

where t indicates time instance. Equation (4.7) is indeed another representation of

equation (4.6). However, the new representation conveys extra information regarding
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the possible approach that deals with the estimation problems in general state space

models. This possible approach takes into account the fact that the correct initial

distribution δa of parameter θ is unknown, where a is the truth of θ. It then disen-

tangles this problem by initializing parameters θ from a good prior u, and associate

it with particle filter, which will eventually converge to the optimal filter as if it has

been correctly initialized according to δa.

At this point, computing the weighted parameter functions ωt(θj) that correspond

to the particle filter needs immediate attention. This is actually where the idea of

Entropy comes in and plays the crucial part in approximating the likelihood of pa-

rameters pθ(θ|It). More specifically, it starts by assuming that there is a one-to-one

correspondence between each θ and the limiting distribution of the observation pro-

cess vθ. Furthermore, it assumes that for each θ the observation process satisfies

the large deviation principle,4 it therefore allows to derive the weights of initialized

parameters at time t as

ωt(θi) =
e
∑T
t=1 log

{
Tvθi (yt)

}
∑M

j=1 e
∑T
t=1 log

{
Tvθi (yt)

} (4.9)

=
1∑M

j=1 e
∑T
t=1 log

{ vθj (yt)
vθi

(yt)

} ,
where i, j = 1, · · · ,M . Note that the derivations of Entropy measure of Liverani and

Papavasiliou [2006] can be referred to in the Appendix of this paper. If we plug the

above expression into either equation (4.6) or (4.7), we achieve our approximation for

the term of parameter weights density pθ(θ|It). Moreover, the value of those limiting

distributions can be obtained provided we know the value of θj and observations

yt, and therefore the whole process does not involve the particle filters. From the

implementation stand-point, the second line of equation (4.9) is better in computation

since it avoids the troublesome sum of large number of small values.

A point that has been made in Liverani and Papavasiliou [2006] was that, as T

becomes large, the weight or mass of parameters will be concentrated or close to one

θ ∈ {θ1, · · · , θM}, which would be the one that minimizes the entropy distance or

distribution deviation between vθ and va. Moreover, it would lead to the truth of a,

4The mathematical definition of large deviation theory is beyond the scope of this thesis. How-
ever, the following explanation may be offer some insights. In some sense, the large deviation
principle is an analogue of weak convergence of probability measures, but one which takes account
of how well the rare events behave. Hence it allows to discover the behaviour of each sampled
parameters given the observations towards the true value.
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provided we could generate infinite number of sample parameters from the prior of u

and T is large.

4.2.4 The Algorithm

The following algorithm implements the Entropy particle filter delineated above. Note

that since the parameters θ have been assumed to be static, therefore an index of

time will be omitted, and disclosed as θ.

Algorithm 1: Entropy particle filter.

1. Initialization. At t = 1, we generate M independent random samples from

the prior distribution u. These M samples are said to be the set of initialization

parameters {θj : j = 1, · · · ,M}. For each sample θj at time instance t, we form

the corresponding weight ωt(θj) and the number of particles N j
t of the particle

filter. Nevertheless, the initial weights are assigned to be

w1(θj) =
1

M
, j = 1, · · · ,M,

and the number of particles that correspond to each particle filter at given

sample θj is

N j
1 = N j = 1, · · · ,M.

Hence, according to the representation of equation (4.7), the particle filter with

unknown static parameters at time t = 1 takes the following form

Φ̃M,N
t (µ1 ⊗ u) =

1

M

M∑
j=1

ΦN
t (µ1 ⊗ δθj), (4.10)

where ΦN
t (µ1 ⊗ δθj) is the particle filter at time t = 1 corresponding to the

initialized parameter θj.

2. Weighted parameters computation. The initialization does not involve

the calculation of parameters weight such as ωt(θj). For t > 0, the weighted

parameters are calculated according to equation (4.9). The number of particles

for each parameter θj are rounded up to the nearest integers via

N j
t = dωt(θj)× (N ×M)e, (4.11)

Where d·e denotes the ceiling of some value. One would expect the total number
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of particles that are used at time t will be

N ×M 6
M∑
j=1

N j
t 6 (N + 1)M. (4.12)

3. Evolution The number of particles N j
t and the weighted parameter ωt(θj) need

to be computed from time instance of t = 1, and ceased it when time reaches at

T . It would eventually provide us with a M × T matrix that contains number

of particles at each time instance for all initialized parameters. Moreover, this

part of the task has to be completed before the running of particle filer. For

example, the number of particles that correspond to each sample parameters θj

are N at the initialization, however the number of particles at time T might be

greater or less than the initial amount N that depends of the weight of sample

parameters. A remark would be: the total number of particles that are utilized

by particle filter at time t is
∑M

j N j
t . Hence this should not be confused with

the previous notation where N denotes the number of particles as in Chapter

2.

4. Particle filter. To obtain the estimates of the states, we use the following

particle filter

Φ̃M,N
t (µ1 ⊗ u) =

M∑
j=1

ωt(θj)Φ
Nj
t

t (µ1 ⊗ δθj). (4.13)

The difference between equation (4.10) and (4.13) is the number of particles

that are implemented at each time instance t given sample parameter θj. More

precisely, in equation (4.13), the number of particles utilized in particle filter

have been determined by the weighted parameter functions, whereas the particle

numbers for equation (4.13) was pre-set to be N .

4.3 Modified Entropy Particle Filter

In the first stage of calculating the weighted function of parameters, the estimates

of the static parameters at each time instance can be obtained by taking the sum of

weighted function of parameters times their respected initialized sample parameters.
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For example, the estimates of the parameters at time t would be

θ̂t =
M∑
j=1

θj ∗ ω̃t(θj), (4.14)

where ω̃t(θj) denotes the standardized weight function of parameters at time t given

the sample parameters to be θj. Such estimates converge to the true parameters

provided the state time t is sufficiently large and the initialized sample parameters

are generated from a reasonable prior distribution u. The simulation example in the

following section demonstrates that the sum of weighted parameters indeed converges

to the true value.

Despite the subtle notion of acquiring the estimate of the static parameter with

the Entropy particle filter, a more precise calculation of the estimates may be possible

if one has more information about the initial prior distribution. Following this stream

of thought, I propose a set of modifications to the Entropy particle filter, where it

refines the prior distribution for the generation of initialized parameters. The validity

of our modification relies on the convergence of the estimates to the true parameters.

Such fact has been ensured by the employment of limiting distribution as discussed

in Liverani and Papavasiliou [2006]. In addition, the uniform convergence of the

weighted average of particle filter has been shown in Papavasiliou [2005].

To achieve the refinement for the prior u, I propose to utilize the set of T estimates

acquired from the first stage of weighted function parameter calculation. However,

we are merely interested in those estimates that are near the region of the true

parameters value. Provided the estimates are converging in time, the establishment

of a break point will allow to determine the subset of estimates that are needed

for the purpose of refinement on the prior density u. By break point, it means for

instance, suppose the state time starts from 0 is T , the break point can be any

time instance within 0 and T . In the following particle filter algorithm, I adapt the

Golden ratio section method to determine such a breaking point. The breaking point

picks out the estimates values from the Golden section point to time instance T . For

example, suppose that we have T = 2, 000 time states, then the breaking-point would

be b2000 × (1/1.68)c. Hence we work with the estimates from 1, 236th to 2, 000th.

Admittedly, other endogenous or systematic ways of determining the break point are

possible. This new set of estimate values would allow us to form a more precise prior

distribution u1, and then this new prior u1 can be used to generate a new set of

sample parameters that corresponds the particle filter. By repeating this refinement

procedure, we would expect to obtain a more accurate estimation over the static
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parameter, as well as the state variables.

The algorithm of modified Entropy particle filter (MEPF) differs from the original

Entropy particle filter (EPF) of Liverani and Papavasiliou [2006] in the step of weight

computation (step 2 and 3 in Algorithm 1). The modifications are:

Algorithm 2: Modification Procedures.

1. At the completion of step 2 and 3 in the Entropy particle filter algorithm (Al-

gorithm 1) of (4.2.4), given the number of time states to be T and the number

of initialized sample parameters θ1 to be M , then the equation (4.14) will be

computed at every time instance for t = 1, · · · , T . Therefore it forms a set of

estimates θ̂ = {θ̂1, · · · , θ̂T}.

2. Compute the breaking point via

b = bT ∗ gc,

where ad-hoc g = 0.618 is the golden ratio point. Providing the break point, we

will be able to form a subset of θ̂ that is θ̂b:T = {θ̂b, θ̂b+1, · · · , θ̂T}. Subsequently,

we can compute the mean and standard deviation of the set of estimates θ̂b:T

to be θ̄m and σ, respectively.

3. Compute the root of mean square variation (RMSV) of θ̂b:T via

RMSVθ̂ =

√∑T
t=b(θ̂t − θ̄m)2

(T − b)
. (4.15)

Note that the above equation (4.15) measures the deviation of among the set

of estimates for the parameter θ, which differs from the definition of RMSE for

the state variable estimation as it was given by equation (3.1) in chapter 3.

4. (a) if RMSVθ̂ < ε, where ε denotes a tolerance bound, then go to step 4 in

Algorithm 1.

(b) If RMSVθ̂ > ε, the following procedures will be executed:

i. Form a new prior distribution u1(.) derived from information such as:

the set of estimates θ̂b:T , θ̄m, and σ.

ii. Simulate a new set of M initialized sample parameters from u1(.).

iii. Go back to step 1 above and repeat the steps until 4.a is satisfied.

The algorithm 2 of (4.3) can be embedded into the Entropy particle filter algo-

rithm of (4.2.4), which forms the modified Entropy particle filter. Note that setting
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the value for the tolerance bound ε will be pre-specified in the algorithm. It would

certainly be more interesting if the tolerance bound can be determined endogenously

within the algorithm.

4.4 Experiment

In this section, I consider the linear and Gaussian state space model that was proposed

in Liverani and Papavasiliou [2006],

Xt = θXt−1 + Vt, θ ∈ (0, 1) (4.16)

Yt = Xt +Wt, t = 1, · · · , T (4.17)

where Vt and Wt are standard normally distribute and independent random processes,

and parameter θ is assumed to be static but unknown. Yt is observable and we aim

to learn the parameter θ and state variable Xt. The limiting distribution of Yt can

be derived as

Yt ∼ N(E(Xt), V (Xt) + 1).

Given t→∞, we have

E(xt) = 0,

V (xt) =
1

1− θ2
.

Hence the limiting distribution vθ(Yt) is

vθj(Yt) =
1√

2πVθj(yt)
exp

{
− 1

2

y2
t

Vθj(yt)

}
,

where

Vθj(yt) =
2− θ2

1− θ2
.

Utilizing the Algorithm 2 in place of the 2nd and 3rd steps of the EPF algorithm,

forms the MEPF algorithm. For the purpose of comparison, I implement both MEPF

and EPF to the above state space model. Notice that the sampled initialized parame-

ters are assumed from uniform distribution u(0, 1) and the tolerance bound ε = 0.001,

hence the refined distribution within MEPF will also be uniform distribution. The

interval for the refined uniform distribution (Algorithm 2 step 4.b) is as follows
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• 1. According to the Algorithm 2 point 4.b, given the present model, the uniform

interval u(Imin, Imax) will be constructed via

Imax = θ̄m + 4 ∗ σ and Imin = θ̄m − 4 ∗ σ,

where θ̂m and σ are the mean and standard deviation of the refinement set of

selected estimates, which have been discussed in section 3. Notice that the use

of 4 ∗ σ is due to the intention of avoiding potential over and under estimation

of the parameter.

• 2.a if Imax < 1 and Imin > 0, then u(Imin, Imax) will be the refined prior

distribution.

• 2.b if Imax > 1 and/or Imin < 0, then u(min{θ̂b:T},max{θ̂b:T}) will be the

refined prior distribution.

Figure (4.1) demonstrates the estimates of parameter θ given by both the Entropy

particle filter (EPF) and the modified Entropy particle filter (MEPF). In this simu-

lation study, the number of initialized sample parameters M = 100 and the number

of particles that correspond to each initialized parameter is set to be N = 100. In

addition, the time states is T = 2, 000 and the true parameter θ in the system of

equation (4.16) is 0.7. Top plot in Figure (4.1) is produced by the EPF with ini-

tialized parameter prior distribution setting to be uniform u(0, 1). Despite that the

top plot indicates the convergence of the estimates towards the true parameter, the

time that it takes for the estimates to settle down occupies at least 20% of total time

state. On the contrary, the bottom in Figure (4.1) produced by the MEPF shows the

estimates converge immediately to the truth. The reason of such behaviour is that

the obtained estimates of MEPF are based on repeated refinements of the estimates

of EPF. The variation of the convergence of the estimates associated with the MEPF

is clearly much smaller compared to that of the EPF.
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Figure 4.1: The estimates of the parameter obtained through the weighted function of parameter

ωt(θj) at each time instance.

The Changing of Time State

The absolute deviation or L1 error will be utilized for the following comparison study

between the EPF and the MEPF, which is consistent with the use of deviation mea-

sure in Liverani and Papavasiliou [2006]. Note that other measure of deviations such

as mean squared error (MSE) that can also be adapted for similar comparison. Pro-

vided that the system defined in equation (4.16) is linear and Gaussian, the Kalman

filter will be an optimal filter, and therefore will be used as the benchmark for the com-

parison. The simulation experiment that produces Figure (4.2), the time instances

or the length of observations are set to vary from 50 to 10, 000 over 8 different values,

and the initialized sample parameters M = 100 and number of particles N = 100.

The dotted line represents the L1-error of MEPF tends to be lower than the solid

line (L1-error of EPF), except at the size of observations at 50. Furthermore, the

L1-error decreased by significant amount as the size of observations increases, then

it stabilizes with no further room of error reductions, e.g. at T = 50, the L1-error

of MEPF and EPF are 0.126 and 0.125 respectively, then they are reduced to 0.080

and 0.086 respectively at time states T = 10, 000. Furthermore, the MEPF improves

from the EPF for the state variable estimation by approximately 8 per cent.

Plot b in Figure (4.2) provides the comparison of the root mean squared error

(RMSV, as defined in Algorithm 2) of the estimates for the parameter that are given

by the EPF and the MEPF, respectively. Overall, the RMSV of the estimates of pa-
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rameter with the MEPF tends to be much more stable and smaller than the RMSV

produced by EPF.

Figure 4.2: The comparison between original EPF and modified EPF, where 8 different observation

lengths are examined, as indicated by the horizontal axis with (50, 100, 250, 500, 1000, 2000, 5000,

10000), and MC repetition R equals 50.

The Changing of the Number of Initialized Parameters

The following simulation investigates the performances of both the EPF and the

MEPF whilst the number of initialized sample parameters are set to vary from as

less as 20 to as much as 1, 000. Once more, the observations T = 1, 000, number of

particles N = 100, and the prior distribution for the initialized parameter is uniformly

distributed between 0 and 1. Figure (4.3) displays the results that are produced by

the methods of EPF and MEPF, where the L1-error of the state estimates is in plot

a and the RMSV of the estimates of parameter is in plot b. These evident results

reveal that the MEPF outperforms the EPF at each different number of initialized

parameters. In addition, for state variable estimation, the MEPF is capable of pro-

ducing comparable results that is given by the conventional bootstrap particle filter

for known parameter in Liverani [2006].

To summarize, the performance of both of the EPF and MEPF depends on two

crucial conditions: the number of observations and the prior distribution of initialized

parameter. More specifically, the number of observations have to be large for acquir-

ing good approximation with the Entropy measure, which has been shown in the

above simulation study of changing time state. On the other hand, the prior distri-
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bution where the initialized parameters are generated have significant influence over

the accuracy of both state variable and parameter estimation. For example, a sim-

ulation example carried out was that, if the prior uniformly distribution changes its

interval from (0, 1) to (-1, 1), with the setting of M = 100, N = 100, and T = 2, 000,

the L1 error of both the EPF and the MEPF will be around 0.28 compared to the

0.17 given by the bootstrap particle filter for unknown parameter state space model.

Hence, one should be aware of these two points while using Entropy particle filters

for estimating dynamic model with unknown static parameters.

Figure 4.3: The comparison between original EPF and modified EPF. where 7 different

sets of initialized sample parameters are examined, as indicated by the horizontal axis with

(20, 50, 100, 250, 500, 750, 1000), and MC repetition R equals 100.

4.5 Discussion

The modified Entropy particle filter is an extension of the Entropy particle filter

of Liverani and Papavasiliou [2006]. Results derived from the above experiments

demonstrate that, given specified error measure, the improvements of MEPF over

EPF are not only to the state estimates, but also to the stability of the estimates of

the unknown parameter.

Similar comparison procedures can certainly be conducted to state space models

that are non-linear and non-Gaussian with multi unknown parameters. This would

certainly provide a more complete picture over the performance of both of the En-

tropy particle filter and the modified Entropy particle filter. Moreover, application

83



to real economic and financial models will be the next task. However, in the imple-

mentation of Entropy particle filter, difficulties may arise due to the non-existence of

the close form for the limiting distribution of the observation sequence. Therefore,

approximation methods would be required in deriving the limiting distribution even

before the Entropy particle filter can be used.

In the direction of future researches, we are making a healthy progress in devel-

oping another method - ’truncated particle filter’ to overcome the entropy reliance

of both MEPF and EPF to the large size of the observations. I hope this newly

developed particle filter can give comparable errors to the conventional particle filter

with unknown parameter at any size of observations. Another interesting application

of entropy particle filters would be to non-ergodic Markov chains state space model.

By non-ergodic, it means that the initial value of the Markov chain is assumed un-

known. In similar application, Liverani and Papavasiliou [2006] concluded that given

the transition process to be non-ergodic, after certain amount of time states, the

particle filter converge and behave as like the one in an ergodic case. To avoid the

ad-hoc method of Golden ratio section, systematic way of determining the breaking

point of the estimates sequence for obtaining the refined prior distribution can be ex-

ploited, however, it could most likely burden the computational time of the method

of MEPF. Finally, a crucial problem associated with Entropy particle filters will be

the increasing of the dimension of parameter space. More specifically, as the number

of parameters increase, the computation of the weight of the parameter functions be-

come O(Md) (which becomes computationally cumbersome), where d is the number

of parameter and M is the number of initialization of each parameter.

4.6 Appendix

The following derivation of the weighted function of parameters is derived from the

entropy measure, wherein it aims to provide the background information for those

who are interested to know what exactly the role of entropy in the Entropy particle

filters. This introductory material follows closely the work by Liverani and Papavasil-

iou [2006].

By the large deviation principle, as the number of observations tend to infinity, one

would know the limiting distribution vθ and consequently learn the parameter θ. The

likelihood of θj should be approximately proportional to the distance of vθj from va,
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where a is the true value θ in the sense that

1

T

T∑
t=1

δYt
w−→ va, T →∞,

where w denotes weak convergence. Given the above observations, we have the

following approximation:

p(IT |θ) ≈ p
(
LT (y) ∈ B(va, ε)|θ

)
,

where LT (y) = 1
T

∑T
t=1 δYt , and B(va, ε) is the ball of radius around the distribution

vα with respect to the Levy-Prohorov metric that metrizes the weak convergence of

measures. Hence we have following probability density function approximated by the

entropy

p
(
LT (y) ∈ B(va, ε)|θ

)
≈ e−TIθ ,

where Iθ is the appropriate rate function or entropy function. For independent,

identically distributed (i.i.d) random variables, the entropy function is the entropy

distance between the distributions vθ and va, which is

Iθ ≈
∫
Rq

log
{dvα
dvα

(y)
}
va(dy).

Since the knowledge of the limiting distribution vα is missing, we replace it by the

large deviation, that is 1
T

∑T
t=1 δyt , which converges to vα. Then the entropy function

can be computed via a discrete formula as

IT (θ) := − 1

T

T∑
t=1

log{Tvθ(Yt)}. (4.6.1)

Given the above equation (4.6.1), the probability density of observation conditional

on the parameters can be expressed as

p(IT |θ) ≈ e
∑T
t=1 log{Tvθ(Yt)}. (4.6.2)

Now equation (4.8) can be represented as

ωt(θj) ≈ p(θj|It) =
p(It|θj)
p(It)

. (4.6.3)
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Substitute equation (4.6.2) into (4.6.3), the approximation of distribution p(It|θj)
takes the form of equation (4.9).
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Chapter 5

Modified Backward Sampling

Smoothing with EM algorithm -

Applications to Economics and

Finance

Abstract

This chapter demonstrates the attractiveness of particle smoothing in state variable

inference and unknown parameters estimation for state space models. I propose a

backward weight modification to the O(TN) forward filtering backward sampling

(FFBSa) algorithm of Godsill et al. [2004], namely GDW smoothing. The modified

GDW (MGDW) smoothing algorithm takes into account the backward information

while performing resampling at each time instance, and the MGDW smoothing re-

mains computation complexity of O(TN). A novel approach consists of the MGDW

smoothing algorithm and the EM algorithm has been carried out for off-line param-

eter estimation in general state space models. This novel method has been applied

and tested through a series of simulated studies and real economic data applications.

In which, I observe that, in terms of parameter estimation for general state space

models, this newly proposed method produces comparable results to the existing

ones.
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5.1 Introduction

In recent years, the focus in modelling time series processes in economics and finance,

has shifted from previous linear and Gaussian type of system to less restrictive and

perhaps more realistic non-linear and non-Gaussian state space models. The lat-

ter models have often been referred as the general state space model or the hidden

Markov model. Despite that the attractiveness and usefulness of the general state

space model have been shown in modelling observation process, the optimal state

variables estimation in such given setting will clearly be infeasible with the conven-

tional Kalman filter. In various approaches to overcome the aforementioned prob-

lem, a simulation based technique that has been branded as sequential Monte Carlo

(SMC) methods or particle filters have gained massive popularity in many scientific

domains, including economics and finance. For example, Fernandez-Villaverde and

Rubio-Ramirez [2007] demonstrate and justify the usefulness of particle filtering in

facilitating likelihood-based inference in a dynamic business cycle model. The reasons

of prevalence of particle filters in recent time have been largely due to their simplicity

and accuracy compared to those Kalman based filters such as: the Extended Kalman

filter, the unscented Kalman filter, and the grid method. For example, in estimat-

ing macroeconomic dynamic models, Fernandez-Villaverde and Rubio-Ramirez [2005]

and Fernandez-Villaverde and Rubio-Ramirez [2007] show the benefits of using par-

ticle filtering to the Kalman filter. A brief description on particle filtering would

be that it is a simulation technique that recursively propagates and updates a set of

weighted particles (samples), which forms a empirical measure that approximates the

target posterior probability distributions of the state variable. A list of references on

the development and the application of particle filtering over the past two decades

are Gordon et al. [1993], Liu and Chen [1998], Doucet et al. [2000a], Durbin and

Koopman [2000], Doucet et al. [2001], Doucet et al. [2000b], and so on.

On the contrary, particle smoothing did not receive as much attention as particle

filtering, at least during the first half of the past two decades. An important reason

for that was due to the extensive computational complexity associated with particle

smoothing methods. For instance smoothing algorithms such as: the forward filtering

and backward smoothing Kitagawa [1987], two-filter smoothing Bresler [1986], and

the generalized two-filter smoothing Briers et al. [2010] have computational effort of

O(TN2). Moreover, with these smoothing methods, obtaining of marginal smooth-

ing density has less of interest, as investigations of historical states generally focus on

trajectories and hence requires the knowledge of the collection of states together. An

ample progress on smoothing was due to Godsill et al. [2004] with the forward filter-
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ing and backward sampling (FFBSa) smoothing technique, which has computational

complexity of O(TN), and it allows the random generation of entire historical tra-

jectories from the forward joint density. Considering the role that particle smoothing

can play in parameter estimation for the dynamic model, this chapter not only inves-

tigates the FFBSa liked smoothing algorithm with order O(TN), but also proposes

and tests a newly modified FFBSa algorithm.

Over the years, great amount of researches have been devoted to both theory and

application of the particle filtering and the particle smoothing in estimating the hid-

den state variables for general state space models. On the contrary, the attention on

the estimation of the unknown parameters within general state space models has only

started in recent years. Initial attempts on estimating unknown but fixed parameters

were relying on augmenting the state whilst includes the unknown parameters, which

transforms the problem to be a complete filtering problem. The representatives of

such approach are: Liu and West [2001], Storvik [2002] and Fearnhead [2002]. The

work of Liu and West [2001] proposes to introduce artificial dynamics to the fixed pa-

rameters, whereas Fearnhead [2002] developed MCMC rejuvenation steps that takes

into account the state sufficient statistics from the posterior distribution. The lim-

itation associated with the aforementioned methods have been well documented in

the literature in, for instance, the work of Doucet and Tadic [2003] and Kantas et al.

[2011].

The most recent development on parameter estimation for general state space

models can be broadly divided into two classes: the maximum likelihood approach

and Bayesian approach. Moreover, the maximum likelihood approach has further

been categorized into two subclasses: the first one derives from the approximation

of the derivatives of the particle filter that had been proposed by Doucet and Tadic

[2003] and Poyiadjis et al. [2005]. An alternative class is the combination of particle

smoothing (PS) and EM algorithm of Briers et al. [2010] . The PS-EM approach

avoids the approximations of particle filter derivatives, wherein it has often been

considered to be less troublesome and more stable in really applications. Bayesian

approach has been heavily based on the use of Markov Chain Monte Carlo (MCMC)

method, where the MCMC is embedded into sequential filtering. References on such

idea are Andrieu et al. [2010] and Kantas et al. [2011]. The pros and cons of the

aforementioned methods in those two classes to the problem of on-line (estimation is

performed recursively given the observations are processed sequentially) and off-line

(estimation is performed iteratively given the observations are processed as a batch)

parameter estimation in general state space models have been summarised in Kantas

et al. [2011].
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In line with Briers et al. [2010], as well inspired by Kim [2005], the present chap-

ter constructs the modified PS-EM approach to estimate two economic models that

have been formed into the general state space format. The modifications are two

folds: firstly the O(TN2) forward filtering and backward smoothing or generalized

two-filter smoothing of Briers et al. [2010] have been replaced with O(TN) type of

forward filtering and backward sampling such as Godsill et al. [2004]. Subsequently,

building upon Godsill et al. [2004], I proposed a more stable version of forward filter-

ing and backward sampling method (MGDW smoothing), which takes into account

both forward and backward particle weights during the backward sampling process.

The experiment studies have shown that the MGDW smoothing performs at least

as good as the smoothing proposed by Godsill et al. [2004]. The modified PS-EM

approach is essentially a combination of the MGDW smoothing with EM estimation,

which will be referred as the EM-MGDW method. Overall, our simulation experi-

ment results provide comparable results to other parameters estimation approaches

that had mentioned above, but computationally less expensive. Moreover, our real

application results such as the estimation of the Phillips curves and the Cox-Ingersoll-

Ross volatility model demonstrate that the technique of the combination of MGDW

smoothing and EM algorithm or the EM-MGDW method can be widely applied

in economic and financial modelling. Other methods of off-line parameter learning

are: Doucet and Tadic [2003] use maximum likelihood that based on computing the

derivatives of particle filter and Andrieu et al. [2010] and Pitt et al. [2012] develop

the particle filter Markov Chain Monte Carlo sampler.

The remaining of the chapter is organized as follows: Section 2 presents the sta-

tistical model of interest, as well as reviewing the idea of particle filtering. Building

upon the knowledge of particle filtering, section 3 studies few existing smoothing tech-

niques. In addition, we investigate the performance of the newly proposed forward

filtering and backward sampling method (MGDW smoothing) over the existing ones.

Section 4 reviews the role of the EM algorithm in parameter estimation. In Section 5

we examine the performance of newly proposed smoothing algorithms combined with

the EM method through simulation study, as well as compare it to their counterpart

parameter estimation techniques. Section 6 looks through two real data applications

in economics. Finally, section 7 summarises the results and provides some concluding

remarks.
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5.2 Comparison of Particle Smoothing Algorithms

An alternative approach to state variable inference is particle smoothing. Particle

smoothing tends to be computationally more challenging than particle filtering. How-

ever, smoothing estimates the distribution of the state sequences at a particular time

given the observations are beyond this given time. Therefore, with the additional

information provided, one would expect that the trajectory estimates obtained via

smoothing will be ’smoother’ than those obtained through particle filter.

In the earlier part of particle smoothing literature, the most well-known and ap-

plied particle smoothing techniques are: the forward-backward smoothing by Kita-

gawa [1987], the two-filter smoothing formula by Bresler [1986], and the generalized

two-filter algorithm by Briers et al. [2010]. In Kantas et al. [2011], the forward-

backward smoothing has been referred as a class of methods that includes the forward

filtering backward smoothing (FFBSm) of Doucet et al. [2000b] and the forward fil-

tering backward sampling (FFBSa) of Godsill et al. [2004]. The two-filter smoothing

consists of forward filter and backward information filter. The difference between the

two filter smoothing and the generalized two-filter smoothing lies in their construction

of the backward information filter. The generalized two-filter smoothing introduces a

artificial prior distribution that allows it to cater to the possibility of the integration

of backward information filter over the support of state variable that might not be

finite in the two-filter algorithm. The detailed discussions on the above smoothing

algorithms can be found in Briers et al. [2010] and Chapter 2 of the thesis.

Both the FFBSm algorithm and the (generalized) two-filter algorithm require to

store the information of particle filtering distribution p(xt|It) for the purpose of facil-

itating smoothing calculation. The result of it leads to the memory requirement to

be of O(TN). Moreover, these smoothing techniques have computational complexity

of O(TN2). In this chapter, my aim is to reduce the computation complexity of

the method of combining EM approach with conventional particle smoothing for the

parameter estimation in general state space models. Therefore, we replace those two

aforementioned conventional smoothing algorithms with the FFBSa O(TN) compu-

tational complexity algorithm, such as: the Godsill-Doucet-West (GDW) smoothing

in Godsill et al. [2004] and the modified GDW (MGDW) smoothing. The MGDW

smoothing is an alteration of the algorithm Godsill et al. [2004] that takes into ac-

count both forward and backward weights. Such modification produces well balanced

sampling backward weights for the resampling in smoothing at each time instance.

Before moving onto the discussion of those O(TN) algorithms, we provide a brief

overview of the forward-backward concept.
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5.2.1 Forward-backward Concept

In contrast with forward recursive particle filtering, particle smoothing is performed

recursively backward in time according to the forward-backward smoothing formula,

which is

pθ(xt|IT ) =

∫
pθ(xt, xt+1|IT )dxt+1 (5.2.1)

=

∫
pθ(xt+1|IT )pθ(xt|xt+1, IT )dxt+1

=

∫
pθ(xt+1|IT )pθ(xt|xt+1, It)dxt+1

= pθ(xt|It)
∫
pθ(xt+1|IT )fθ(xt+1|xt)

pθ(xt+1|It)
dxt+1.

The preceding expression reveals that the marginal smoothing posterior density pθ(xt|IT )

can be obtained through a forward filtering recursion of the filter density pθ(xt|It),
the predictive density pθ(xt+1|It), and a previous backward recursion smoothed den-

sity pθ(xt+1|IT ). More specifically, unlike particle filtering, the smoothing algorithm

starts from the newest time instance T , then runs backward and ceases at time t = 1.

This type of smoothing has been referred to as the forward filter backward smoothing

(FFBSm) in the literature.

5.2.2 FFBSa-GDW Algorithm

Similar to FFBSm and generalized two-filter smoothing, the GDW smoothing also

requires that the previously discussed particle filtering has been performed. In other

words, the information of the set of particles and weights set {xit, ω̃iθ,t}Ni=1 should

be stored. The GDW smoothing serves the traditional idea of smoothing, which

is to obtain sample realizations from the entire smoothing density, and therefore

approximate the state variable in a backward fashion. This method can be described

as follows: where the joint posterior density can be factorized as

pθ(x1:T |IT ) = pθ(xT |IT )
T∏
t=1

pθ(xt|xt+1:T .IT ), (5.2.2)
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By the Markov assumption on the transition equation, we have

pθ(xt|xt+1:T , IT ) = pθ(xt|xt+1, It) (5.2.3)

=
pθ(xt|It)fθ(xt+1|xt)

pθ(xt+1|It)
∝ pθ(xt|It)fθ(xt+1|xt).

The first term pθ(xt|It) in the above equation has been revealed as the marginal

posterior density that can be approximated by particle filtering, and the second term

is identified as the transition density. Immediately, we would notice that the smooth

density function in equation (5.2.3) can be approximated by the following expression:

pθ(xt|xt+1:T , IT ) ≈
N∑
i=1

ωiθ,t|t+1δ(xt − xit), (5.2.4)

where δ(.) is the Dirac delta measure, and the smoothing weights are defined by

ωiθ,t|t+1 =
ω̃iθ,tfθ(xt+1|xit)∑N
j=1 ω̃

j
θ,tfθ(xt+1|xjt)

, (5.2.5)

where the normalized weights ω̃iθ,t have been stored from the filtering. The idea boils

down to taking the particle sets that approximate the marginal posterior pθ(xt|It)
for t = 1, · · · , T , then re-weighting the particles via equation (5.2.5), and this would

allow us to approximate the smoothing density. The following algorithm is from

Godsill et al. [2004].

Algorithm 1: FFBSa-GDW smoothing.

Given the pair of particles and its weights {xit, ω̃iθ,t} for i = 1, · · · , N and t =

1, · · · , T , have been computed through particle filtering.

• 1. For t = T , Re-sample x̄jT = xiT with probability ω̃iθ,T .

• 2. For t = T − 1 to 1,

– a. Compute the smoothing weight ωiθ,t|t+1 ∝ ω̃iθ,tfθ(xt+1|xit) for each i =

1, · · · , N .

– b. Re-sample x̄jt = xit with probability ωiθ,t|t+1.

– c. Go back to step a, and stop when t = 1.
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5.2.3 FFBSa-MGDW Algorithm

The modified GDW smoothing algorithm shares the resemblances with the GDW

smoothing. As the matter of fact, MGDW algorithm is a modification of the GDW

smoothing algorithm above. The modification has been done in the position of step

2.b in Algorithm 2 of (5.2.2). More specifically, within GDW algorithm, the backward

sampling weight ωθ,t|t+1 has been purely governed by the forward filtering density

fθ(xt+1|xit) and forward weight ω̃iθ,t. In the MGDW algorithm, I propose the backward

sampling weight to be a linear combination of the smoothing weight ωiθ,t|t+1 (step 2.a in

Algorithm 2 of (5.2.2)) and the smoothing weight from time instance t+1 of ωiθ,t+1|t+2.

In this manner, the backward sampling weight will therefore be determined not only

by the forward filtering process, but also the backward sampling information, which

is:

ω̂iθ,t|t+1 = λωiθ,t+1|t+2 + (1− λ)ωiθ,t|t+1, (5.2.6)

where λ ∈ {0, 1}. In the following practical implementation of the MGDW algorithm,

the value of λ has been set to be 0.5. Another way of choice of λ may be: directly

sample from a uniform distribution of interval (0, 1). However, other endogenous way

of determining the value of λ would be preferred in practical applications. Based upon

on the extra information given by the backward weights, the MGDW algorithm should

perform at least as good as the GDW smoothing empirically, especially for the state

process has frequent large change of values. This point requires further investigation.

Nevertheless, equation (5.2.6) should provide a more balanced sampling weights, and

therefore it should provide more stable estimation for the state variable.

Algorithm 2: FFBSa-MGDW smoothing

Given the pair of particles and weights {xit, ω̃iθ,t} for i = 1, · · · , N and t = 1, · · · , T ,

has been obtain from particle filtering.

• 1. For t = T , set {x̄jT = x̃jT , ω̃
j
θ,T |T = ω̃jθ,T = 1/N} for j = 1, · · · , N .

• 2. For t = T − 1 to 1,

– a. Compute the smoothing weight ωiθ,t|t+1 ∝ ω̃iθ,tfθ(xt+1|xit) for each i =

1, · · · , N .

– b. obtain ω̂iθ,t|t+1 through equation (5.2.6).

– c. Re-sample x̄jt = xit with probability ω̂iθ,t|t+1.

– d. Go back to step a, and stop when t = 1.
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Providing the normalized sampling weights in MGDW smoothing remains in the unit

interval and its sum equals to 1, therefore the sampling based upon on those weights

does not effect the approximation of the target distribution. Hence convergence of the

MGDW smoothing algorithm will follow exactly the GDW smoothing, which has been

given in Godsill et al. [2004]. Furthermore, the computational complexity of MGDW

smoothing remains to be of O(TN). The performance of MGDW smoothing will be

examined through a simple stochastic volatility model in the proceeding section.

5.2.4 GDW vs. MGDW

A proposed model for the smoothing algorithms comparison is a stochastic volatility

model in Durbin and Koopman [2000], which can be written as follows

Xt = θ1Xt−1 + θ2Vt, X1 ∼
(
0,

θ22
1−θ21

)
(5.2.7)

Yt = θ3 exp(Xt/2)Wt,

where both Vt and Wt are i.i.d normally distributed with mean 0 and variance 1. In

this model, θ1 is the so called persistence parameter, and the observed process Yt

depends on the hidden volatility (state variable) Xt. Hence, taking the simulated

process {Xt}Tt=1 as the benchmark, our present task is to discover the performance of

MGDW smoothing derive from the inference of the hidden volatility Xt.

The following Root mean square error (RMSE) has been used as the accuracy

assessment for comparisons such as: between particle filtering and smoothing algo-

rithm (bootstrap filter vs. MGDW and GDW smoothing), and among smoothing

algorithms (GDW vs. MGDW).

RMSE(xt|t) =
1

R

R∑
i=1

( 1

N

N∑
j=1

(xjt|t − x
j
t)

2
)1/2

,

where

• xjt is the true simulated state for the jth particle at time t, with j = 1, · · · , N .

• xjt|t is the jth estimate at time step t given observation set It.

• R is the number of repetitions.

Note that the purpose of this example is to access the performance of the MGDW

smoothing in estimating the state variable. The repetition R is set to be 100, and

the true underlying parameter values are: θ1 = 0.95, θ2
2 = 1, and θ3 = 0.4221.
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In figure (5.1), particle counts on the horizontal display means different particle

numbers, which are [50, 100, 250, 500, 750, 1000, 2500, 5000]. The RMSE of both GDW

smoothing and MGDW smoothing are less than the bootstrap filtering. In addition,

the performance of MGDW smoothing is at least as good as GDW smoothing. Similar

results were found (not listed) for the study of linear and Gaussian state space models.

Figure 5.1: Particle filtering and particle smoothing comparison based on simple volatility model.

5.3 Off-line Parameter Estimation - EM Algorithm

To be able to infer the hidden state variables is merely part of the jobs in estimating

the general state space model. A more important and interesting part of the job would

be to estimate the unknown but fixed population parameters that parameterizes

the state space model. This problem has received huge amount of attention over

the past 15 years. Existing parameter estimation methods for state space models

have been classified as: Bayesian or Maximum Likelihood (ML) and whether they

are implement off-line (batch) or on-line (recursively). In the approach of Bayesian

inference, the unknown parameters will be considered random, with a suitable prior

density attached to it for its inference. In the approach of ML, the inference of

unknown parameters is the maximizing argument in the observed likelihood function.

In an off-line framework, the inference on the parameters is carried out by iterating

over a fixed set of observations y1:t = {y1, · · · , yt} or It. On the contrary, in an on-line

framework, the inference is done by updating the parameters estimation sequentially

as new observations {yt}t>1 are available. This paper takes particular interest in off-
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line parameter estimation using maximum likelihood approach, more specifically, it is

the method of EM algorithm with the usage of particle smoothing. Provided the EM

technique possesses features of numerical stability and computationally cheaper (for a

large dimension parameter space) over the gradient ascent in off-line estimation. This

chapter extended the EM technique by replacing conventional O(TN2) smoothing

algorithms such as: FFBSm and generalized two-filter, by our newly proposed O(TN)

MGDW smoothing.

5.3.1 Likelihood Function

In general, given the realisations (observed data) IT = y1:T = {y1, · · · , yT} of random

vector Y = {Y1:T} with the parametric density pY |θ(Y ), the goal would be to find the

maximum likelihood estimate (MLE) of θ:

θ̂MLE ≡ argmax
θ∈Θ

pθ(Y |θ) = argmax
θ∈Θ

Lθ(θ|Y ), (5.3.1)

which is the equivalent as maximizing the log-likelihood of y0:t:

θ̂MLE ≡ argmax
θ∈Θ

log pθ(Y |θ) = argmax
θ∈Θ

Lθ(θ|Y ). (5.3.2)

Note that there is a change of notation, such as we use Y instead of the information

set I in the above likelihood formulation.

However, in state space models, as the state variables Xt is unobserved, it will

be difficult to solve either with equation (5.3.1) or (5.3.2). Therefore, we employ

EM algorithm, which fills the complete data Z = {X, Y }, then maximizes θ over the

expected log-likelihood of Z. Hence our previous maximization of observed likelihood

function has been transformed to be maximizing the joint likelihood function of Z =

{X, Y }, which is

θ̂ ≡ argmax
θ

Lθ(θ|X, Y ), where Lθ(θ|X, Y ) ≡ log pθ(X, Y |θ). (5.3.3)

The EM algorithm provides a tool to solve the above missing data problem as it is

proposed in equation (5.3.3). Note that the applicability of EM algorithm has also

been used for learning Gaussian mixture models. In order to obtain the expected

log-likelihood of Z, we make the use of particle smoothing matrix, which has been

computed from the estimation of state variables. This is the reason being of our

particular interest in particle smoothing that has previous discussed in the chapter.

The goal would be to apply our newly proposed MGDW smoothing in obtaining the
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most suitable smoothing values that can be used to aid the parameter estimation

through EM algorithm.

5.3.2 The EM Algorithm

The following description of EM algorithm includes the conventional expectation and

maximization steps that will be used in estimating general state space models:

S1 : Let m denote the mth iteration. Suppose we have the initial guess or initial

estimates θm. Given the observed data y and estimates θm, we can formulate

the conditional probability distribution of pθ(x, y|y, θm) for the complete data

z = (x, y).

S2 : Expectation - Our subsequent concern would be that in order to allow the

estimation of parameter θ through maximisation, we would have to make further

adjustment over the new conditional probability distribution p(z|y, θm). Such

an adjustment is through the approximation of expected joint log-likelihood,

which has often been referred as the Q-function

L(θ|z) ≈ EZ|y,θm [log pθ(Z|θ)] =

∫
Z

log pθ(z|θ)pθ(z|y, θm)dz (5.3.4)

=

∫
Z

log pθ(x, y|θ)pθ(x, y|y, θm)dz

=

∫
X

log pθ(x, y|θ)pθ(x|y, θm)dx

= EX|y,θm [log pθ(y,X|θ)] = Q(θ, θm).

Note that the integral over the set X is the closure of the set {x|pθ(x|y, θm) > 0},
and the above Q-function is a function of θ. One important remark over the

expectation step is that we transform the problem of estimation the maximum

likelihood estimates θMLE from observation density pθ(y|θ) to be estimating θ

with joint density pθ(x, y|θ). Since the missing part of the information X in Z

is unknown to us, the complete likelihood function Lθ(θ|z) is set to be approxi-

mated through its expectation, where the expectation of the log-likelihood can

be obtained through finite Monte Carlo simulations.

S3 : Maximization - The (m+ 1)th guess of θ will be obtained by maximizing the

following Q-functions

θm+1 = argmax
θ∈Θ

Q(θ, θm). (5.3.5)
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S4 : Two types of Stopping criterion can be employed, the first one is that Step S2

and S3 will be iterated until the estimates value stops changing: ‖θm+1−θm‖ <
εa for some εa > 0. Alternative one is that iterates until the log-likelihood

Lθ(θ|z) stop changing ‖Lθ(θ
m+1|z)− Lθ(θ

m|z)‖ < εb for some εb > 0.

In real applications using EM algorithm, with the most appropriate determination

of initial estimate θ0 is unavailable, then it is common to start EM from multiple

random initial guesses, and choose the one with the largest likelihood as the final

guess for θ.

5.3.3 The Objective Function

One of the remarkable features of the EM algorithm is that the maximization of its

objective function Q(θ, θm) guarantees an increase of the joint probability density

function, hence the joint likelihood function. Such a feature is summarized in the

following monotonicity property of the EM algorithm.

Proposition 5.3.1. The sequence of θ1, θ2, θ3, · · · , of EM estimates satisfy

pθ(y|θ1) ≤ pθ(y|θ2) ≤ pθ(y|θ3) ≤ · · · .

The proof of the above proposition is given in the Appendix A. The monotonicity

of the EM algorithm demonstrates that the EM iterates will not get worse in terms

of their observed likelihood value. But this property alone does not guarantee the

convergence of the sequence of estimates {θm} to the MLE of the observed likelihood

of pθ(y|θ). Moreover, the convergence of the sequence {θm} rely on the characteristics

of the log-likelihood Lθ(θ|x, y) and the Q-function Q(θ, θm), and the initial point θ0.

Quadratic convergence of EM algorithm can be achieved with additional work of the

inverse of Hessian matrix of the likelihood Lθ(θ|x, y); superlinear convergence can

be achieved with the calculation of gradient of likelihood Lθ(θ|x, y) such as BFGS

update. Note that the definitions of different convergences are given in the Appendix

A.

To be able to draw inference on the unknown parameters is an important goal

in modelling data sets with general state space models. Given the total observations

or the end time step to be t = T , then joint density function that includes the

parameters would be

pθ(x,y|θ) = µθ(x1)
{ T∏
i=2

fθ(xi|xi−1, θ)
}{ T∏

i=1

gθ(yi|xi, θ)
}

(5.3.6)
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where x = {x1, · · · , xT} and y = {y1, · · · , yT}. The essential parameters estimation

can be obtained through iterative EM algorithm on the likelihood of equation (5.3.3).

The objective function Q(θ, θk) can be formed by taking logarithms and conditional

expectations over the joint density function of equation (5.3.6), which is

Q(θ, θk) =

∫
L(θ|x,y)pθ(x|y, θk)dx =

∫
log pθ(x,y|θ)pθ(x|y, θk)dx (5.3.7)

=

∫
log
[
µθ(x1)

{ T∏
i=2

fθ(xi|xi−1, θ)
}{ T∏

i=1

gθ(yi|xi, θ)
}]
pθ(x|y, θ)dx by eq(5.3.6)

=

∫
log µθ(x1)pθ(x|y, θk)dx1 +

T∑
t=2

∫
log fθ(xt|xt−1, θ)pθ(xt|y, θk)dxt−1

+
T∑
t=1

∫
log gθ(yt|xt, θ)pθ(xt|y, θk)dxt.

A first brief glance of the above equation sparks an additional reason as to why we are

interested in particle smoothing. This identifies the role of particle smoothing in the

purpose of parameter estimation using EM algorithm. Suppose the above smooth-

ing densities can be approximated using the smoothing procedure that described by

equation (5.2.4), then the set of smoothing particles {x(i)
t|T} for i = 1, · · · , N can be

utilized as the generated samples for us to approximate the above objective function

Q(θ, θk), that is

Q̂(θ, θk) =
N∑
i=1

ω
(i)
1|T log pθ(x

i
1|T ) +

T∑
t=2

N∑
i=1

ωit|T log fθ(x
(i)
t|N |xt−1) (5.3.8)

+
T∑
t=1

N∑
i=1

ωit|T log gθ(yt|x(i)
t|N).

Given the density functions f(.) and g(.) are known, and the above objective function

is simply a function of parameter θ. Then M-step can be apply to obtain the k + 1

estimate, θk+1. Such estimate θk+1 will be adopted during the next round of parti-

cle filtering and smoothing, sub-sequentially it would allow to obtain the (k + 2)th

iteration estimate θk+2. These procedures will be repeated until the convergence is

reached.

5.3.4 The Standard Deviation of Parameter Estimates

Since we have known that the observed likelihood function fθ(Y |θ) is hard to work

with, which was the reason that we were using EM method in the first place. More
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specifically, which is to use the joint likelihood function fθ(X, Y |θ). Such diversion

has led to a much complicated route of deriving the variance and covariance of the

estimates. We aim to explain how does this complication arises, as well as provide

the new formula for the covariance of the estimates in this very section.

Conventionally, the variance and covariance matrix is the inverse of the observed

information matrix, which is

− ∂2 log pθ(Y |θ)
∂θ∂θ′

, (5.3.9)

where y is the realisation of random vector of Y and θ is the unknown but fixed

parameter vector. The problem is that we do not know pθ(Y |θ) since the state

variable is hidden in the model. But we do have pθ(Y |θ) =
∫
pθ(X, Y |θ)dX, where

the above observed information matrix can be re-expressed as

− ∂2 log pθ(Y |θ)
∂θ∂θ′

= −E
[ ∂2

∂θ∂θ′
log pθ(X, Y |θ)

∣∣∣IT] (5.3.10)

−E
[{ ∂

∂θ
log pθ(X, Y |θ)

}{ ∂

∂θ′
log pθ(X, Y |θ)

}∣∣∣IT]
+E
[ ∂
∂θ

log pθ(X, Y |θ)
∣∣IT]E[ ∂

∂θ′
log pθ(X, Y |θ)

∣∣IT].
The procedure enables us to derive the above expression is: firstly plug pθ(Y |θ) =∫
pθ(X, Y |θ)dX into the above observed information matrix of equation (5.3.9), then

through a series of ’chain-rule’ and expectation formula applications, we would have

the new observed information matrix that will be implementable in estimation. For

detailed derivations and explanations of the above equation (5.3.10), I would en-

courage reader refer to Kim [2005]. Note that the joint log-likelihood function

log pθ(X, Y |θ) has been defined above.

The potential practical difficulty with obtaining the observed information matrix

from using the above equation (5.3.10) is that, the value of second term on the right

hand side of the equation (expectation of the square of the gradients) can frequently

be larger than the combination of first term and third term (square of the expec-

tation of the gradients). This is due to the fact that for a random variable X, we

have
(
E(X)

)2
< E(X2). 1 Such problem can result in the inverse of the observed

information matrix to be non-positive definite. We adopt the trimming idea of Kim

[2005] to deal with this problem in our estimation. Note that in the following model

1In the context of probability theory, it is generally stated in the following form: if X is a random
variable and h is a convex function, then h

(
E(X)

)
≤ E

(
h(X)

)
. Since X2 is a convex function, the

proof of our case would follow the proof of the Jensen’s inequality.
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estimations, the terms where the observed information matrix involved have been

derived and listed in the Appendix B and C.

For the models are nested, they can be compared using a likelihood-ratio test

by computing their respected likelihood values. On the contrary, for models are not

nested, the conventional Akaike’s information criterion (AIC) or Bayesian informa-

tion criterion (BIC) can be used for the model comparison. The model comparison

task has been omitted during the studies to the Phillips model and the Stochastic

volatility model.

5.3.5 The Algorithm

The EM and particle smoothing method of estimating state space that has been

discussed so far can be summarised in the following algorithm.

Algorithm 3: EM - MGDW smoothing algorithm

Provided the model takes the form that has been defined as it is in equations (??)

and (??), and a set of initial parameter estimate θ0. Let k denote the kth estimates

and set k = 0, we perform:

• 1. Given the initial parameter value θk for k = 0, perform particle filtering

algorithm (Algorithm 1 of (2.4.4)) and store both particle values and parti-

cle weights {xit|t, ω̃it|t} for i denotes the ith particle and t denotes the tth time

instance.

• 2. Provided the values obtained through filtering, we perform the MGDW

smoothing (Algorithm 2 of (5.2.3)) to obtain the smoothing particle values and

smoothing particle weights {xit|T , ωit|T}.

• 3. Using the given parameters values θk and smoothing values, we maximizes

equation (5.3.8), and obtains the (k + 1)th estimates.

• 4. Takes the (k + 1)th set of values and go back to step 1. Iterated till the

observed likelihood deviation between k and k+1 is smaller than some tolerance

εb.

• 5. Compute the variance and covariance matrix of the last iteration of the set

of estimates.

The cons with EM algorithm are: its convergence can be slow (linear convergence).

In addition, since the EM method is locally optimal, it thus sensitive to initialization

and might be trapped in a local maximum. However, If the joint likelihood of models
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can be expressed in exponential form, then the M-step can be done analytically.

Finally, the selection of the particle size N depends on the presence of problem.

As far as my knowledge goes, there is actually no rule of thumb on this issue. In this

chapter, we start with a smaller N , increasing its value gradually and observe the

room of improvement in terms of filtering and parameter estimations. Having done

that, we admit this may not be the most optimal way of choosing the most ideal

particle size.

5.4 Test and Comparison

In this section, we intend to learn the performance of the method of EM algorithm

combined with MGDW smoothing in parameters estimation for general state space

models. We hope to achieve it through its applications onto studies using both

simulated data and real data.

5.4.1 Simulation

The simulation study employs the discrete version of Cox-Ingersoll-Ross (CIR) stochas-

tic volatility model that have been used in Poyiadjis et al. [2011]. The model is defined

as follows:

Xt+1 = µ+Xt + φ exp(−Xt) + exp(−Xn/2)Vt+1, (5.4.1)

Yt = β exp(Xt/2)Wt,

where Vt+1 andWt are i.i.d normal with mean 0 and variance 1. The model parameters

are θ = (µ, φ, β), where the parameter µ denotes the speed of mean reversion2 , β

is the volatility term of the square root volatility diffusion, and φ represents the

persistence of the volatility. The transition equation of CIR model incorporates a

non-linear dynamic term, and the stochastic disturbance term has been assumed to

depend on the volatility at previous time period. Inspired by Shephard [1996], in the

following implementation, we transform the above observation equation in equation

(5.4.1) to form the more familiar linear structure. More specifically, it is by squaring

the observation equation and taking the logarithm of it, which gives:

Rt = log(Y 2
t ) = α +Xt + W̃t, (5.4.2)

2In general terms, the essence of the concept of mean reversion is that a stochastic process such
as a stock price, its high and low values are temporary, and the value tends to be average value
overtime. In other words, the deviation from the average value is expected to revert to the average.
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where

α = log(β2) + E(log(W 2
t ))

W̃t = log(W 2
t )− E(log(W 2

t )) ∼ log(χ2
1)− E(log(χ2

1)),

and W̃t is the centred Chi-square distribution in Shephard [1996], with E(log(χ2
1)) =

−1.2749. Moreover, Harvey et al. [1994] pointed out that the mean and variance

of log(W 2
t ) are to be −1.2749 and π2/2 = 4.9348, where Wt is standard normal

random variable. The first and second derivatives of the joint likelihood function of

the observations pθ(X,R|θm) have been given in the Appendix B under the section

of the Cox-Ingersoll-Ross model, which would allow us to compute the observation

standard deviations. Note that let IT = {r1, · · · , rT}, with ri is the realization of Ri,

and the Q(θ, θm) function is

Q(θ, θm) = E
{
− 2 log pθ(X,R|θm)|IT

}
, (5.4.3)

where

pθ(X,R|θm) ∝
T∏
t=2

− 1

2π

{
exp(−Xt−1)

}− 1
2

exp
{
− 0.5 exp(Xt−1)

(
Xt − µ−Xt−1 − φ exp(−Xt−1)

)2
}

T∏
t=1

C1 exp
{1

2

(
exp(Rt −Xt − α− 1.2749)− (Rt − xt − α− 1.2749)

)}
,

where C1 is a constant, and therefore the logarithm of function p(.) is

log pθ(X,R|θm) ∝ −0.5
T∑
t=2

exp(Xt−1)
{
Xt − µ−Xt−1 − φ exp(−Xt−1)

}2

−0.5
T∑
t=1

{
exp(Rt −Xt − α− 1.2749)− (Rt − xt − α− 1.2749)

}
.
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The (m+ 1)th estimates are:

µm+1 =

∑T
t=2 E

{
exp(Xt−1)(Xt −Xt−1 − φm exp(−Xt−1))|IT

}∑T
t=2 E

{
exp(Xt−1)|IT

}
φm+1 =

∑T
t=2 E

{
(Xt − µm+1 −Xt−1)|IT

}∑T
t=2 E

{
exp(−Xt−1)|IT

}
αm+1 = log

[ 1

T

T∑
t=1

E
{

exp(rt −Xt − 1.2479)|IT
}]
.

Note that the initial state is discarded in the Q function. The true parameter values

are set to be µ = −0.1, φ = 0.5, and α = −4.9 with the use of number of particles

N = 2000, and length of the simulated observation T = 500. We use the EM and

MGDW smoothing method iteratively, and the 200th estimates are −0.09949(0.0269),

0.55(0.2151), and −4.956(0.0067) for parameter θ = {µ, φ, α}, respectively. Figure

(5.2) demonstrates the behaviour of each estimates during 200 iterations.

Figure 5.2: Parameter estimation using the EM-MGDW method for the Cox-Ingersoll-Ross model

with simulated data.

5.4.2 Comparison

In the following section, we investigate the performance of the EM-MGDW method

in real data application. In order to draw more concrete comparison to the existing

parameter estimation methods for general state space models, the investigation will

be deriving from the stochastic volatility model of Durbin and Koopman [2000], where
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the model takes the form of equation (5.2.7), that is

Xt = θ1Xt−1 + θ2Vt, X1 ∼
(
0,

θ22
1−θ21

)
Yt = θ3 exp(Xt/2)Wt.

In the observation equation above, the series of interest is Yt = ∆ log(et), where

et denotes the actual exchange rate and ∆ is the difference operator for discrete

sequence. Once more, for implementation simplicity, we re-write the observation

equation in the form of equation (5.4.2), which is

Rt = log(Y 2
t ) = α +Xt + W̃t. (5.4.4)

The objective Q function and their estimates can be straightforwardly derived as we

have done so for the Cox-Ingersoll-Ross model. For the detailed derivation of the

above stochastic volatility model, reader can refer to Briers et al. [2010].

The parameters of interest would be θ = {θ1, θ2, α} for the above model. Our

estimation employs the same data of Durbin and Koopman [2000], that is: the pound-

dollar daily exchange rates from October 1st, 1981 to June 28th, 1985. Our results

are drawn to compare with different estimation techniques that were developed in

Durbin and Koopman [2000] and Doucet and Tadic [2003]. In the estimation, we

use the number of particles N = 2000 and the iteration number k = 200. In Figure

(5.3), the volatility persistence value indicates the volatility follows mostly a unit

root process, and the bottom plot of the relative likelihood displays the behaviour of

the likelihood function. The 200th estimates and its standard deviations are given in

Table (5.1), and the estimate values are comparable to two of the existing methods.

Finally, the estimates α̂ = −2.1720 can be converted back and obtain the estimate

of parameter θ3 in the original observation equation. Note that the value in the

parentheses indicates standard deviations of the estimates.
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Figure 5.3: Parameter estimation using the EM-MGDW method for the stochastic volatility model

using Durbin and Koopman’s exchange rate data.

Table 5.1: The comparison between the EM-MGDW smoothing and existing estimation methods.

Ref. θ1 θ22 α
Durbin and Koopman 0.973 0.0299 -2.1863
Doucet and Tadic 0.968 0.0353 -2.1737

EM and MGDW smoothing
MGDW 0.9998(0.0000) 0.0259(0.0001) -2.172(0.0038)

5.5 Applications

5.5.1 Phillips Curves - US Inflation and Unemployment

The Phillips curve is an economic theory that describes the inverse relationship be-

tween the rate of unemployment and the rate of inflation in an economy. The new

classic version of the short run Phillips curve can be derived from the aggregated

supply function, then via the use of the Okun’s law, 3 which is

Πt = Πe
t + β(Ut − Un

t ) +Wt, (5.5.1)

3The Okun’s law describes a relationship between output and unemployment. However, this law
was primarily empirically observed rather than a result derived from theory.
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where Wt denotes the unexpected exogenous shocks to the supply, and Πt and Πe
t are

the inflation and expected inflation respectively. In addition, Ut represents unemploy-

ment and Un
t is the natural rate of unemployment. Another interesting econometric

problem that apart form the estimation of parameter β would be making inference

regarding the underlying behaviour of Un
t . In order to be able to use the Kalman

filter, economic researchers have been make the assumption that the natural rate of

unemployment follows a linear Markov process, which can be expressed as:

Un
t = γUn

t−1 + Vt. (5.5.2)

Equation (5.5.1) and (5.5.2) form a linear and Gaussian state space model. How-

ever, providing us with the EM-MGDW estimation method, we can now estimate a

less restrictive Phillips curve model. This motivates us to re-construct the transi-

tion equation of the Phillips model by including an addition of nonlinear term and

the modified supply shock. In Fernandez-Villaverde and Rubio-Ramirez [2007], who

solve the real business cycle model, and then use it for the purpose of investigating

the usefulness of particle filtering in estimating dynamic macroeconomic models. I

take a different route to these authors in this chapter, which imposes the Phillips

curve model to take a specific form, where it is similar to the those observation

equations and transition equations of the model given in Fernandez-Villaverde and

Rubio-Ramirez [2007], but with merely three parameters involved. However, the EM-

MGDW method is capable of incorporating more parameters. The newly proposed

model is defined as

Un
t = γUn

t−1 + φ
1

1 + exp(−Un
t−1)

+ exp
{
− 1

|Ut−1 − Un
t−1|

}
Vt

Πt = Πe
t + β(Ut − Un

t ) +Wt,

where Wt and Vt are assumed to be i.i.d normal with mean 0 and variance 1. The

parameters of interest are θ = {γ, φ, β}, where β indicates the relationship between

unemployment and inflation. For the transition equation, both γ and φ are persistence

parameters, with φ describes the effects of the nonlinear dynamics. Monthly U.S

unemployment and inflation data over from the period from Feb, 1970 to Sep 2011,

total of T = 500 observations will be used for the estimation of the above Phillips

model. The plots of the U.S inflation and unemployment are given in Figure (5.4).
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Figure 5.4: The monthly U.S inflation rate and unemployment rate from Feb 1970 - Sep 2011.

The joint likelihood function fθ(U
n,Π|θm) consists of the following densities:

fθ(U
n
1 |θ) ∼ N

(
0, 1
)
,

fθ(U
n
1 |θ, Un

t−1) ∼ N
(
γUn

t−1 + φ
1

1 + exp(−Un
t−1)

, exp(− 2

|Ut − Un
t−1|

)
)
,

fθ(Πt|Un
t , θ) ∼ N

(
Πe
t + β(Ut − Un

t ), 1
)
.

Similar as it were for the estimation of the Cox-Ingersoll-Ross model previously, we

discard the first state in the estimation, the Q(θ, θm) function for the Phillips model

will be expressed as follow. Note that the standard deviations of estimates will be

given in the Appendix C under the section of Phillips curve.

Q(θ, θm) = E
[
− 2 log fθ(U

n,Π|θm)|IT
]
, (5.5.3)

where

log fθ(U
n,Π|θm) ∝ −0.5

T∑
t=1

{
Πt − Πe

t − βm(Ut − Un
t )
}2

−0.5
T∑
t=2

Bt

{
Un
t − γmUn

t−1 − φm(1 + exp
(
− Un

t−1)
)−1}2

.
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and

Bt = exp
{ 2

|Ut − Un
t−1|

}
The (m+ 1)th estimates are:

γm+1 =

∑T
t=2E

[
BtU

n
t−1

{
Un
t − φm(1 + exp(−Un

t−1))−1
}
|IT
]

∑T
t=2E

[
Bt

{
Un
t−1

}2|IT
]

φm+1 =

∑2
t=2E

[
Bt

(
1 + exp(−Un

t−1)
)−1(

Un
t − γmUn

t−1

)
|IT
]

∑T
t=2E

[
Bt

(
1 + exp(−Un

t−1)
)−2|IT

]
βm+1 =

∑T
t=1E

[
(Ut − Un

t )(Πt − Πe
t )|IT

]
∑T

t=1E
[
(Ut − Un

t )2|IT
]

In the estimation, the number of particles N = 2000 and the iteration number k =

200. In Figure (5.5) shows the convergence through iterations of estimates for each

parameter. The 200th estimates and their standard deviations are γ̂ = 0.9315(0.0176),

φ̂ = 0.4204(0.1089), and β̂ = −0.0331(0.0228).

Figure 5.5: Parameter estimation using the EM-MGDW method for the Phillips curve model.

The negative value of estimate β̂ indicates that there exists a negative relation-

ship between inflation and unemployment based upon on the study of the U.S data.

Provided with the estimates of the parameters in the above Phillips curve model, we
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can estimate the hidden natural rate unemployment rate once more either by particle

filtering or by particle smoothing (MGDW smoothing). With the number of particles

are set to be 10000, where the simulated natural rates of unemployment are plotted in

Figure (5.6), where dotted line indicates estimates by filtering and dash line indicates

estimates by MGDW smoothing. The simulated natural rates of unemployment seem

reasonable and they do vary overtime.

Figure 5.6: The Simulated U.S natural rate of unemployment from Feb 1970 to Sep 2011 using

particle filtering and particle smoothing (MGDW).

5.5.2 Stochastic Volatility - UK vs. US Exchange Rate

This section investigates how good is the EM-MGDW smoothing method in estimat-

ing the previously outlined and discussed Cox-Ingersoll-Ross model when real data is

used. The model has been previously defined that was presented in equations (5.4.1)

and (5.4.2), the state equation and transformed observation equation are

Xt+1 = µ+Xt + φ exp(−Xt) + exp(−Xn/2)Vt+1, (5.5.4)

Rt = log(Y 2
t ) = α +Xt + W̃t, (5.5.5)

where

Yt = log et − log et−1,

α = log(β2) + E(log(W 2
t )),

W̃t = log(W 2
t )− E(log(W 2

t )) ∼ log(χ2
1)− E(log(χ2

1)).
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In addition, the exchange rate of interest Yt = ∆ log(et), where et is the real exchange

rate, and Xt denotes the logarithm of volatility or variance. The unknown population

parameters in the preceding model are θ = {µ, φ, α}. Then the CIR model is utilized

to model the UK - US daily exchange rate from the period of 2nd Apr, 2007 to

25th Apr, 2012, with total number of observations to be 1323. The logarithm of the

exchange rate, log(et) over the specified period has been displayed in panel (a) of

figure (5.7); the transformed exchange of interest, Rt is plotted in panel (b) of figure

(5.7).

Figure 5.7: UK vs. US exchange rate. Plot a is the logarithmic UK and US exchange rate; plot

b is the transformed UK and US exchange rate.

The derivations of the Q-function and the estimates of the population parameters

for the CIR model have been previously obtained, which are given in the section

of (5.5.1). The estimation of parameters θ = {µ, φ, α} that are derived have been

plotted in Figure (5.8), where the settings are: particles is N = 2000 and number

of iterations is k = 150. In addition, the estimates of the parameter at the 150th

iteration are µ̂ = −1.0489(0.0169), φ̂ = 1.7703(0.0455), and α̂ = −12.3320(0.0009)

respectively. Note that the values within the parentheses are standard deviation of

the estimates.

Provided with the estimates, our subsequent aim would be to obtain the hidden

volatility of the UK and US exchange rate. To do so, we estimate the hidden volatility

through both particle filtering (with entropy test) and MGDW smoothing, where

they are displayed in Figure (5.9). Overall, the simulated volatility either by particle

filter or particle smoothing behaves in a similar fashion. Note that the volatility
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estimation uses 5000 number of particles as compared to the 2000 particles in the

parameter estimation.

Providing the available simulated volatility values (X̂, that obtained through

particle filtering and particle smoothing) and the estimated parameters value (θ), we

plug all those values into the Cox-Ingersoll-Ross model. Subsequently, it allows us

to obtain a ’fitted’ transformed exchange rate R̂, which have been given in Figure

(5.10). In the top plot, the fitted transformed exchange rate is based on the filtered

volatility; whereas the fitted value in the bottom plot is from the volatility obtained

from MGDW smoothing. It seems that both the fitted values provide a base in terms

of representing the overall structure of the transformed exchange rate. Note that

such fitted value has been calculated through the usage of equation (5.4.2).

Finally, the proposed Phillips curve model and the Cox-Ingersoll-Ross model along

with the EM-MGDW estimation method can certainly be adapted for other data

sets. For instance, given the Phillips model, we may be able to learn the Phillips

relationship for the U.K; or the CIR model may allow us to see how the underlying

volatility of Yuan vs. Dollar does for the past 5 years.

Figure 5.8: UK vs. US exchange rate, parameter estimation using the EM-MGDW method.
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Figure 5.9: Comparison between the simulated Log-volatility of Particle filtering and MGDW

Particle smoothing.

Figure 5.10: The fitted of UK vs. US exchange rate using the simulated log-volatility obtained

from particle filtering and particle smoothing (MGDW).

5.6 Conclusion

In this chapter, we demonstrated empirically that the newly proposed MGDW smooth-

ing performs at least as good as the forward filtering backward sampling of the GDW

smoothing. The use of MGDW smoothing reduces the computational effort substan-
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tially as it is compared to existing smoothing techniques. This advantage has been

utilized in the approach of EM algorithm, which provides the EM-MGDW smooth-

ing in off-line parameter estimation for general state space models. Through both

simulation and real data applications, this novel method has proven to be reliable in

estimating unknown parameters. However, it has been pointed out that this method

tends to be sensitive to the selection of the initial values. The EM-MGDW method

caters the task of learning large unknown parameters, and also allows to compute the

likelihood for the purpose of model comparison.

We are in search of theoretic up-ground for the MGDW smoothing over the GDW

smoothing. Further researches lie to extend the EM-MGDW smoothing to multivari-

ate state space models, which will undoubtedly be more challenging as we will be

facing the problem of curse of dimensionality. However, it will be interesting to see

how far we could progress on this aspect. Finally, we would certainly like to know

more about the idea of forecasting based upon the general state space model, and

how would the roles be for both particle filtering and particle smoothing within it.

An important application of the EM-MGDW method would be for macroeconomic

dynamic models, e.g. Fernandez-Villaverde et al. [2006] and Fernandez-Villaverde

and Rubio-Ramirez [2007].

5.7 Appendix

Appendix A: Definitions and Proofs

Linear Convergence : Linear convergence means that there exists M > 0 and

0 < C < 1 such that ‖θm+1− θ∗‖ ≤ C‖θm− θ∗‖ for all m ≥M , where θ∗ is the

optimal value of θ.

Quadrtic Convergence : Quadrtic Convergence means that there exists M > 0

and 0 < C < 1 such that ‖θm+1 − θ∗‖ ≤ C‖θm − θ∗‖2 for all m ≥M , where θ∗

is the optimal value of θ.

Superlinear Convergence : Superlinear Convergence means ‖θm+1− θ∗‖/C‖θm−
θ∗‖ → 0 as m→∞.

Lemma 5.7.1. Suppose we have Lθ(θ|y) = log pθ(y|θ) and hθ0(θ) = Q(θ, θ0) + g(θ0),

then the following two statements are valid:

i.

Lθ(θ
0|y) ≥ Q(θ, θ0) + g(θ0), ∀θ, θ0,
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ii.

Lθ(θ|y) = Q(θ, θ) + g(θ), ∀θ.

Proof. Within this proof, we will use the concept of information entropy to describe

the discrepancy between two density functions. Readers need no prior knowledge of

information entropy to understand the proof of the above lemma. For part (i), By

definition θt+1 ∈ argmax
θ

Q(θ, θm), where Q(θ, θm) = EX|y,θm
{

log pθ(y,X|θ)
}

.

Lθ(θ|y) = log pθ(y|θ) =
∑
X

q(x) log pθ(y|θ)

=
∑
X

q(x) log
[
pθ(y|θ)pθ(x|y, θ)

q(x)

pθ(x|y, θ)
1

q(x)

]
=

∑
X

q(x) log pθ(x, y|θ) +
∑
X

q(x) log
q(x)

pθ(x|y, θ)
−
∑
X

q(x) log q(x),

where

D
{
q||pθ(.|y)

}
=
∑
X

q(x) log
q(x)

pθ(x|y, θ)

has often been referred to as the relative entropy, and

H(q) =
∑
X

q(x) log q(x)

is called as the entropy of q. Moreover, since we are able to choose the density

function of q, such that q(x) = pθ(x|y, θ0), then providing with the 0th estimates, the

above expression can be re-expressed as

Lθ(θ
0|y) =

∑
X

pθ(x|y, θ0) log pθ(x, y|θ) +D
{
pθ(x|y, θ0)||pθ(x|y, θ)

}
(5.7.1)

−H
{
pθ(x|y, θ0)

}
≥ Eθ0{log pθ(x, y|θ)}+ g(θ0)

= Q(θ, θ0) + g(θ0).

The reasons for the above equation (5.7.1) to stand are: the relative entropy will

always be non-negative and the definition of function g(), and the definition of Q

function such as:

D
{
pθ(x|y, θ0)||pθ(x|y, θ)

}
≥ 0,
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and

g(θ0) = H
{
pθ(x|y, θ0)

}
.

Hence we have proved part (i).

For part (ii), we know that if θ0 is set to be θ, then the relative entropy will be equal

to zero, which is:

D
{
pθ(x|y, θ)||pθ(x|y, θ)

}
= 0.

therefore we have

Lθ(θ|y) = Q(θ, θ) + g(θ).

Provided with the establishment of the above lemma, the proof of Proposition

(5.3.1) becomes straightforward.

Proof.

log pθ(y|θk) = Lθ(theta
k|y) = Q(θk, θk) + g(θk) by (ii) of Lemma A.1

≤ max
θ
Q(θ, θk) + g(θk)

= Q(θ, θk+1) + g(θk) by definition

≤ Lθ(y|θk+1), by (i) of Lemma A.

hence, Lθ(θ
k|y) ≤ Lθ(θ

k+1|y).
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Appendix B. The Cox-Ingersoll-Ross model

The variance and covariance of the joint log-likelihood function log pθ(X,R|θm) is

∂ log pθ(X,R|θm)

∂µ
=

T∑
t=2

exp(xt−1)
{
xt − µm − xt−1 (5.7.2)

−φm exp(−xt−1)
}

∂ log pθ(X,R|θm)

∂φ
=

T∑
t=2

{
xt − µm − xt−1 − φm exp(−xt−1)

}
(5.7.3)

∂ log pθ(X,R|θm)

∂α
= 0.5

T∑
t=1

{exp(rt − xt − αm − 1.2479)− 1}, (5.7.4)

∂2 log pθ(X,R|θm)

∂µ2
= −

T∑
t=2

exp(xt−1), (5.7.5)

∂2 log pθ(X,R|θm)

∂µ∂φ
= −(T − 1), (5.7.6)

∂2 log pθ(X,R|θm)

∂µ∂φ
=

∂2 log pθ(X,R|θm)

∂φ∂µ
, (5.7.7)

∂2 log pθ(X,R|θm)

∂φ2
= −

T∑
t=2

exp(−xt−1), (5.7.8)

∂2 log pθ(X,R|θm)

∂α2
= −0.5

T∑
t=1

{exp(rt − xt − αm − 1.2479)}, (5.7.9)

∂2 log pθ(X,R|θm)

∂µ∂α
= 0, (5.7.10)

∂2 log pθ(X,R|θm)

∂φ∂α
= 0. (5.7.11)

Therefore the gradient is:

∂ log pθ(X,R|θm)

∂θ′
=
{

∂ log pθ(X,R|θm)
∂µ

∂ log pθ(X,R|θm)
∂φ

∂ log pθ(X,R|θm)
∂α

}
.

and the second derivative is:

∂2 log pθ(X,R|θm)

∂θ∂θ′
=


∂2 log pθ(X,R|θm)

∂µ2
∂2 log pθ(X,R|θm)

∂φ∂µ
∂2 log pθ(X,R|θm)

∂α∂µ
∂2 log pθ(X,R|θm)

∂φ2
∂2 log pθ(X,R|θm)

∂α∂φ
∂2 log pθ(X,R|θm)

∂α2

 .
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Appendix C. The Phillips curve

The variance and covariance of the joint log-likelihood function log pθ(U
n,Π|θm) is

∂ log pθ(U
n,Π|θm)

∂γ
=

T∑
t=2

BtU
n
t−1

{
Un
t−1 − γmUn

t−1 (5.7.12)

−φm(1 + exp(−Un
t−1))−1

}
,

∂ log pθ(U
n,Π|θm)

∂φ
=

T∑
t=2

Bt(1 + exp(−Un
t−1))−1

{
Un
t−1 − γmUn

t−1 (5.7.13)

−φm(1 + exp(−Un
t−1))−1

}
,

∂ log pθ(U
n,Π|θm)

∂β
=

T∑
t=1

(Ut − Un
t )
{

Πt − Πe
t − βm(Ut − Un

t )
}
, (5.7.14)

∂2 log pθ(U
n,Π|θm)

∂γ2
= −

T∑
t=2

Bt(U
n
t−1)2, (5.7.15)

∂2 log pθ(U
n,Π|θm)

∂γ∂φ
= −

T∑
t=2

BtU
n
t−1(1 + exp(−Un

t−1)−1, (5.7.16)

∂2 log pθ(U
n,Π|θm)

∂γ∂φ
=

∂2 log pθ(U
n,Π|θm)

∂φ∂α
, (5.7.17)

∂2 log pθ(U
n,Π|θm)

∂φ2
= −

T∑
t=2

Bt

(
1 + exp(−Un

t−1)
)−2

, (5.7.18)

∂2 log pθ(U
n,Π|θm)

∂β2
= −

T∑
t=1

(Ut − Un
t )2, (5.7.19)

∂2 log pθ(U
n,Π|θm)

∂γ∂β
= 0, (5.7.20)

∂2 log pθ(U
n,Π|θm)

∂φ∂β
= 0. (5.7.21)

The gradient and the second derivative of the joint log-likelihood function can be

expressed in the same manner as in Appendix B.

Appendix D. Computing and Data Sources

All the calculations reported in this paper were condcuted using my own Matlab

code on Matlab 2010a on a Intel(R) Core(TM)2 Duo CPU E8400 @3.00GHZ, and

2.96GB of RAM. All data series used for application in this paper are taken from the

UK’s Datastream. For the daily exchange rate data, Datastream does not record the

exchange rates at weekends, which gives approximately 261 observations per year.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Contributions

This thesis makes several contributions to the literature of both particle filtering and

particle smoothing. The main contribution of Chapter 3 was the establishment of

the Shannon information entropy diagnostics. The proofed proposition and various

demonstrations have shown that the new test provides computational reduction to

the widely implemented efficient sample size test in particle filtering. In addition,

the empirical evidences reveal that particle filters with Shannon information entropy

diagnostics maintain or even improve the estimation accuracy compared to other par-

ticle filters without degeneracy diagnostics or particle filters with the effective sample

size diagnostics.

The contribution of Chapter 4 has been the development of the modified Entropy

particle filter. In which the modified filter seems to provide substantial improvements

compared to the Entropy particle filter, which was due to Liverani and Papavasiliou

[2006]. The improvements that derived from the simulation studies can be catego-

rized on two aspects: the state variable estimation accuracy and the stability of the

unknown parameter.

In particle smoothing, the forward filtering backward sampling algorithm has

massive computational advantage over both the forward filtering backward smooth-

ing algorithm and the generalized two-filter smoothing algorithm. Chapter 5 forms

a new forward filtering backward sampling algorithm (HPZ smoothing), which is

through the modification on the basis of the forward filtering backward sampling

algorithm of Godsill et al. [2004]. In which the HPZ smoothing shows that it per-

forms as least as good as the other smoothing algorithm in terms of state variable

estimation. Furthermore, Chapter 5 makes several extensions on the combination
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of EM algorithm and particle techniques for off-line parameter estimation of gen-

eral state space models. More specifically, the extensions were made on the particle

techniques of the combination estimation method. The particle techniques are fig-

uratively pointing to the classes of particle filtering and particle smoothing. A new

combined EM and particle techniques were formed by equipping using the Shannon

information entropy diagnostics to particle filtering and HPZ smoothing to particle

smoothing. This novel and newly formalized estimation method has been given the

name of EM-HPZ method in the thesis. The novel parameter estimation method

has been implemented in both simulated processes and real time series processes,

where their respective performances have shown very promising results as comparing

to existing estimation methods for general state space models.

6.2 Future Work

In the work of the Shannon information entropy diagnostics, I made no further at-

tempt in exploring and determining the existence of a diagnostics formula that gives

the greatest lower bound for each particle set at each time stance. My initial thought

of the question was that each different diagnostics formulas could be essentially differ-

ent ways of measuring variations of the set of particle weights. It may be incredibly

difficult to find a measuring formula that fulfils both expectations of the greatest

computational cost reduction and the most accurate estimation at once. However,

additional efforts to the problem should provide great return.

In the work of the modified Entropy particle filter, both the modified Entropy par-

ticle filter and the Entropy particle filter face great computational difficulty whilst

the number of unknown parameters increases. In addition, Entropy particle filters in

general require the number of observations to be large in order to achieve precise state

variable and parameter estimations. However, large observations may not always be

possible in reality situations. These two outlined problems have been studied and

with their potential solutions are due to be revealed in the near future.

A natural extension of the work of Chapter 5 on the combined EM algorithm and

particle techniques would be to estimate multivariate state space models. Though

embarking upon the investigation of the preceding problem will encounter formidable

challenges. Two of the notable challenges are: firstly how to handle the derivation

and implementation difficulties involved with the inference that are caused by the

increasing dimensions. Secondly, how would one cater the performance of parti-

cle techniques as it degrades due to the state and parameter dimensions increase?
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Though it may be the case that fewer of the challenges are foreseeable and others are

mostly unforeseeable, it will be interesting to discover the potential ideas that would

allow us to go further.
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Appendix

A list of Notations

• Xt: random variable/the state variable at time stance t.

• {Xt}Tt=1: the sequence of random variable/the state variable process.

• Yt: random variable/the Observation variable at time stance t.

• yt: the realization or observation of Yt.

• E(X): the expectation of random variable X.

• It: the collection of observation {y1, · · · , yt}.

• Vt: the disturbance of transition equation.

• Wt: the disturbance of observation equation.

• K(., .): the transition kernel function.

• θ: the population parameter vector.

• Θ: the population parameter space.

• p(.): probability density/mass function.

• pθ(xt|It−1): the predictive density function.

• pθ(xt|It): the filter density function.

• pθ(xt|IT ): the smoothing density function.

• fθ(xt|xt−1): the transition density function.

• gθ(yt|xt): the observation density function.
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• xit: the ith particle at time stance t.

• ωit: the ith particle weight at time stance t.

• ω̃it: the normalized ith particle weight at time stance t.

• ΦM,N
t (µ⊗u): the notation used in Liverani and Papavasiliou [2006], which is the

particle filter with the initial state density µ and prior density of the parameter

u.

• a: the true distribution of population parameter θ.

• ωt(θi): the weight of the ith parameter sample at time stance t in Entropy

particle filter.

• d.e: the ceiling of a real number.

• b.c: the floor of a real number.

• ψθ(Xt−1, Vt, θ): the functional form for transition equation.

• φθ(Xt−1,Wt, θ): the functional form for observation equation.

• E: denote the entropy value.

• Q(., .): the objective function in EM algorithm.

• µ1: the initial distribution of state variable X1.

Data

• Πt: the inflation rate at time stance t.

• Πe
t : the expected inflation at time stance t.

• Ut: the unemployment rate at time stance t.

• Un
t : the natural unemployment rate at time stance t.

• Rt: the logarithmic of square of the transformed exchange rate (the exchange

rate of interest) for time stance t.
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