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New Environments for Neurophysiological Investigations

by
Arvindra Singh Sehmi

ABSTRACT

The main topics of research are in the sub-areas of neurophysiology that are concerned with
measurement of the electrical activity arising from contracting muscle (EMG) and from the
surface of the scalp (EEG). Investigations are restricted to the surface-recorded interference
pattern EMG, and to the EEG waveform recorded in response to sensory stimulation, known as
the evoked potential (EP). The EMG and EP are representative of two important classes of signal
commonly encountered in engineering, namely random noise-like and deterministic
non-stationary. The thesis describes work on the development of a variety of new techniques and

methods of analysis for application in neurophysiology and electrodiagnosis.

* A general purpose signal processing computer has been built which incorporates a
high level of user-machine ergonomics. Turning Points Spectral estimation of the
interference pattern EMG is simulated on this computer to demonstrate its flexibility
for constructing analysis and control applications.

¢ Some emphasis is placed on methods of improving the quality of acquired EMG data
for use in the analysis of the dynamics of the neuromuscular system. In this respect,
the author describes the design of a fully controllable muscle loading system which
uses dc electromagnetic suspension technology. The above computer can be used to
control this muscle load for accurate loading protocols in EMG-Force modelling
experiments.

* Techniques involved in the design and construction of the computer lead to
higher-level program and data analysis specifications which employ Arificial
Intelligence (Al) computing methods. These AI methods, in conjunction with some of
those techniques which were used for EMG analysis, are applied to the investigation
of single-trial EPs.

e A suite of adaptive EP analysis procedures, which include a prototype fuzzy expert
system, facilitate the extraction of EP component latency variability estimates, and also
provide automatic selective single-trial averaging. The latter selective averaging
facility, can be used to enhance underlying activity and to examine the relationships

that might exist between different components in the EP.
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Introduction

The main topics of research that this thesis will address are in the sub-areas of neurophysiology
that are concerned with measurements involving the electrical activity arising from contracting
muscle and from the surface of the scalp. The electrical signals are known as the electromyogram
(EMG) and electroencephalogram (EEG) respectively. The author restricts investigations to the
surface-recorded interference pattern EMG, and to the EEG waveform recorded in response to
sensory stimulation, known as the evoked potential (EP). Since the electrogenesis of EMG and
EP signals in man is at the cellular level, there is much interest and value to be gained from the
extraction of both quantitative and qualitative descriptors of these signals. The descriptors should
lead us to a deeper understanding of some aspects of the biophysical mechanisms that govern
bioelectric signal generation. In this respect, the EMG and EP signals can be used to locate and
identify gross anatomical features of their respective origins, and they can also be used to model

the dynamic behaviour of their associated neuromuscular / neural systems.

Due to the recent advances in electronics and computer engineering, there is a wider availability of
small, relatively inexpensive, and powerful computers. It has also become more realistic to
consider the benefits of integrating what may have been distinct analysis methodologies under the
unified control and/or supervision of a computer. Attempts to integrate several, possibly complex,
procedures have been impeded in the past by the problems of ensuring simple user-machine
interactions. To circumvent this problem in a computer-based environment, techniques to create
sophisticated external data links and internal graphical and tactile interfaces to the underlying

analysis procedures are available.

These advances have provided new opportunities for rapid, on-line, digital signal processing of
electrophysiological data and the comprehensible display of results. Two important classes of
signal that are commonly found in engineering are the random noise-like signal and the
non-stationary deterministic signal. The analysis methods available for these types of signal are
also applicable to EMG and EP since EMG data is usually represented by random-noise models
and EP data by non-stationary, deterministic models. The quantitative analysis of random-noise
signals is generally performed by spectral estimation techniques, whereas non-stationary

deterministic signal estimation is usually accomplished by averaging and/or filtering.

(i)



EMG and EP signals differ significantly in their noise content and also in the relative amounts of
inherent quantifiable information. The noise and information contents are mutually related. The
raw EMG signal has a high signal-to-noise ratio and often it contains an excess of quantifiable
information which makes subsequent interpretation confusing. Despite the excessive information
content, extraction of a statistically significant set of signal quantifiers from the EMG is very
difficult because of the noise-like nature of this signal. Spectral averaging techniques help to
reduce the information content in EMG signals to a manageable size, and they provide the

additional benefit of allowing a reduction in the variance of the noise in the spectral estimate.

In contrast to the EMG, the EP has a low signal-to-noise ratio and the problem in this case
becomes one of extracting as much information as possible from the data. The non-stationary,
deterministic model of the signal makes averaging one of the most effective estimation methods
available. EPs, though, are not exactly deterministic, and averaging tends to under-perform for this
and other reasons. Spectral estimation methods are not widely used to quantify the EP, since the
additive noise and signal power bands overlap in the frequency domain. Digital filtering of the EP

has been investigated extensively by many researchers and is now gaining some popularity.

The EMG from a contracting muscle can be used with concurrent muscle force measurements to
model the dynamics of muscles. The noise-like features of the EMG can, however, cause the
model estimation procedures to become unstable. Careful control of the quality of the EMG
during data acquisition reduces restrictions that must be placed on the choice of modelling

algorithm (Lago, 1979).

The work presented in this thesis concerns the development of a variety of new techniques and
methods of analysis for application in both clinical and research-based EMG and EP studies.
There is some emphasis on methods of improving the quality of acquired EMG data for use in the
analysis of the dynamics of the neuromuscular system. Spectral estimation of the EMG as outlined
by Lago (1979) is simulated on a general purpose signal processing computer which exhibits a high
level of user-machine ergonomics in its design. This computer can also be used to control an
instrument that will provide accurate muscle loading protocols for EMG-Force modelling
experiments. The lessons that were learnt in the design and construction of the computer, pointed
the way towards higher-level program and analysis specifications that embraced techniques from
Artificial Intelligence (AI). These Al techniques, in conjunction with some of the techniques

which were used for EMG analysis, were applied to the investigation of EPs.
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The integrated system comprising the general purpose computer and the controllable muscle load,

and an another comprising several suites of EP analysis programs, constitute those environments

which are referred to in the title of this thesis. The techniques used to create these environments

and to analyse the data are of interest, not only in neurophysiology and electrodiagnosis, but also

in several areas of engineering.

A brief summary of the chapters that follow is provided below to introduce the order of reading:

Chapter One gives a short resumé of the history of electrodiagnosis as we know it today.
Chapter Two provides a literature review of some of the quantitative methods in EMG
analysis that have evolved in the last three decades. The author shows that the accurate
control of force and its measurement is of importance, both in quantitative EMG analysis
and in the modelling of EMG-Force dynamics.

Chapter Three discusses the development and specification of a flexible menu-driven
signal processing computer. The computer has been configured to perform a simulation
of the EMG Turning Points Spectral Analysis procedure (Jones and Lago, 1983) which is
described in chapter two.

Chapter Four and Chapter Five address the problem of providing accurate, controlled
and repeatable forcing protocols in EMG investigation and in the modelling of
EMG-Force dynamics. A computer-controlled static and dynamic loading system and
force transducer which uses dc electromagnetic suspension technology is described.
Results are given showing the force control that is achievable.

Chapter Six introduces the Brainstem Auditory Evoked Potential (BAEP) and some of its
uses through a concise literature review. This review is provided because the analysis
methods used in chapter three for EMG signals are extended later into the EP signal
domain.

Chapter Seven describes some procedures in the quantitative and qualitative analysis of
evoked potentials. The difficulty of performing the qualitative analysis task introduces a
requirement for intelligent knowledge-based programming methods (i.e. Expert Systems
(ESs)). The methodology behind expert systems programming is presented through a
description of some well known ESs that incorporate inexact reasoning mechanisms.
Chapter Eight discusses a non-linear adaptive signal processing technique that has been
developed for automatically detecting significant events in the BAEP. This analysis is
pursued further and applied to the automatic enhancement and scoring of BAEP data.
The technique is equally applicable to other evoked potentials.

Chapter Nine concludes this work with a discussion, recommendations for further
research, and application possibilities for the ideas that have been investigated.

(iii)



Chapter One

The Background of Electrodiagnosis

1.1 Animal Electricity

The early history of electrodiagnosis was significantly affected by the two great wars. A large
number of survivors from both World Wars bore peripheral nerve injuries. The postwar interest in
the treatment and care of these and similar patients received further impetus from the advances in
electronic technology taking place at the time. It was much earlier in the eighteenth century,

however, that the interest in animal electricity led to the birth of electrodiagnosis.

Duverney (1700), a French anatomist, performed the initial classic experiment of electrically
stimulating a frog muscle (Morgan, 1868). The first published report on muscle contraction using
static electricity (with a Leyden jar as the source of stimulus) was by Kratzenstein (1746) who two
years earlier had used it to straighten out the contracted finger of a paralysed woman. In the
following years many reports appeared on electrotherapy for the purpose of curing paralysis and
other diseases. In 1758, Beccaria noted that the contractions arising from electrical stimulation
were stronger than those observed from mechanical stimulation (Colwell, 1922). An explanation
was required for the muscle’s increased response arising from electrical stimuli travelling along
neural pathways. Seven years later in 1795 Fontana guessed that “if it be not electricity, it may be
something however very analogous to it ”. Nearly three decades later Galvani began his series of

experiments with muscle contraction in the frog.

Galvani noted a relationship between electricity and muscle contraction. His belief that the body
generated this electricity led him to call it animal electricity. He observed that this electricity arose
not from muscle, but from nervous tissue especially the brain, and that the nerves were the
conductors whose oily sheaths prevented the dispersion of electricity. Galvani compared the
muscle to Leyden jars, as the receptacles of animal electricity. Thus the frog current was a nerve

current and not one of muscular origin.
In 1792, Volta wrote of Galvani’s work, “it contains one of the most beautiful and surprising

discoveries and the germ of many others ” (Volta, 1816). A year later Volta objected with, “It is thus

that I have discovered a new law, which is not so much of a law of animal electricity but they are in

1-1



reality the effects of a weak artificial electricity which is excited in a manner of which there is no doubt,
by the simple application of two plates of different metals ” (Volta, 1793). Galvani’s works imply that

the phenomena belong to some forms of spontaneous animal electricity.

The confusion arose in assigning the source of animal electricity. Volta insisted that a current
source and the muscle formed part of a closed circuit so as to produce contractions. Galvani
proved that a muscle could be stimulated by placing the free end of a nerve across a muscle
without the intervention of metals, showing that electricity could be generated by animal tissue.
Later Volta’s pile was constructed and used to investigate stimulation thresholds. Volta’s invention
nearly extinguished any arguments in favour of electricity of muscular origin. This was because all

the effects which Galvani attributed to animal electricity could be produced with Volta’s battery.

It was not until Nobili improved the galvanometer that further advances were made in
electrophysiology. In 1838, Matteucci proved conclusively that contracting muscle generated
electricity (Matteucci, 1844). In 1851, DuBois-Reymond obtained readings of muscle responses
from the arm of a man using jars of liquid as electrodes. This was probably the first demonstration

of electromyography as we know it today.

Electrotherapy in the form of electropuncture became popular as the distinction between, and
location of, motor and sensory nerves became more apparent. Duchenne tried to establish a
routine of treatment using cloth-covered electrodes for percutaneous stimulation. He was one of
the first to use faradic stimulation and in one case produced contractions with a current of such
high intensity that he admits to having produced a fracture of the cervical vertebrae. Heidenhein
(Biedermann, 1898) noticed that occasionally, in the presence of disease a muscle might respond
better to continuous current even though it failed to respond to faradic current. Baierlacher
(Neumann, 1865) reported having made this observation in the paralysed muscles of a twenty eight
year old woman and as a direct result of this, Erb credited Baierlacher with the discovery of
electrodiagnosis. This observation was explained by Neumann in 1864 (Neumann, 1865) when he
used a mechanical device to interrupt continuous current. He noticed that interruptions exceeding
a certain rate had no effect on paralysed muscle. The first important conclusion in
electrodiagnosis was thus made - the duration of current was the critical factor in eliciting a

muscular contraction.

Piper (1912) recorded voluntary contractions in the forearm flexors of man in 1907 with the string
galvanometer. He believed that the distinctive rhythms found in each muscle indicated the rate of
stimuli received from the central nervous system. Proebster (1928) described spontaneous
irregular action potentials in the denervated muscles of a boy with a traumatic plexus birth lesion

and in another patient with long-standing poliomyelitis. Proebster used a recording galvanometer



and tested muscle in voluntary as well as in electrically induced contractions, and it is to him that
most authors give credit for the beginning of clinical electromyography (EMG). At about this
time, Adrian (Adrian and Bronk, 1929) introduced the coaxial needle electrode and the
loudspeaker to EMG. This enabled observations of the potentials from single motor units in the

muscle and monitoring of the intensity and quality of the complex electrometer record.

Lindsley (1935) made the first tracings of a patient with myasthenia gravis and noted the marked
fluctuations in amplitude of the motor unit responses to contraction. In 1941 Denny-Brown and
Nevin recorded the characteristic potentials of myotonia. In the same year, Buchthal and
Clemmensen validated neurogenic and myogenic findings in muscular atrophy with clinical EMG,
and Hoefer obtained rhythmic potentials in rigid muscles at rest in patients with Parkinsonism. In
1950, Bayer demonstrated an increase in the size of muscle potentials with increases in the force of

contraction (Lenman, 1959).

Until the middle of the present century, most electrodiagnostic exploration was conducted in the
muscle. In 1948, Hodes, Larrabee and German stimulated nerves at two different points and by
correlating the temporal difference in muscle response with distance, were able to determine
conduction velocity. Liberson found that conduction occurs in both directions and that the
portion of the impulse which is antidromic returns through the reflex arc. This permitted yet
another recording to be taken from the muscle supplied by the stimulated nerve and is known as
the F-wave response. Single fibre EMG as described by Ekstedt, did not appear until 1964, at
which time it allowed the recording of jitter. The increasingly useful information available from

EMG, caused its use to spread with considerable speed.

At about the same time as EMG was beginning its foundations with Galvani, Caton (1875)
presented an account of the spontaneous electrical activity of the brain, of motor potentials and of
sensory evoked responses (EP) at the Annual Meeting of the British Medical Associaton in
Edinburgh. He reported that “When any part of the grey matter is in a state of functional activity, its
electric current usually exhibits a negative variation. On the areas shown by Dr Ferrier to be related to
rotation of the head and to mastication, negative variation of the current was observed to occur
Whenever these two acts respectively were performed. Impressions through the senses were found to
influence the currents in certain areas; e.g, the currents of that part of the rabbit’s brain which Dr
Ferrier has shown to be related to movemenfs of the eyelids, were found to be markedly influenced by

stimulation of the opposite retina by light ™.



Caton’s experiments on the brain of the rabbit were carried out using a Thompson galvanometer
which would not have been capable of following the rapidly changing potentials of the
electroretinogram (Halliday, 1968). He was more likely to have measured the relatively slow
changes in the voltage of the cortical surface. Since that time all advances in this field (as was the

case in EMG) had to await the discovery and application of improved methods of transduction.

With the development of the thermionic valve differential amplifier (Adrian and Matthews, 1934)
and of signal averaging techniques (Dawson, 1951, 1954) researchers were able to investigate the
possible existence of repeated and similar electrical responses in the electroencephalogram

(EEG) in response to sensory stimulation (i.e. evoked potentials, EPs).

Modern-day EMG and EP investigations involve the use of a vast array of tools and techniques to
perform qualitative and quantitative measurements of the electrophysiological activity. The tools
used to obtain the data for investigation are designed to retain as many inherent characteristics as
possible in the presence of much distracting and occluding influences (e.g. radio frequency noise
and tissue noise). The techniques used to analyse the data are designed to remove (and/or ignore)
distracting information and enhance (and/or extract) those features of interest. Some of these
tools and techniques will be presented in the sections of this work that are concerned with

collection and control of EMG data and computer-aided analysis of EMG and EP data.
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Chapter Two

Muscle Electrophysiology, Computing Techniques in
Electromyography (EMG) and EMG-Force Dynamics

This chapter presents a simplified account of muscle electrophysiology. Following this is a brief
account of the literature published recently on quantitative analysis of the interference pattern
EMG. Later the relationship between the EMG and resultant force in the modelling of muscle

dynamics is examined.

2.1 The Electrophysiology of Skeletal Muscle

Human skeletal muscle consists of striations of muscle fibres enclosed in the sarcolemma
membrane and terminated by tendons, Fig.[2.1(a)]. Typical fibre diameters range from 5 to 100
microns and a typical muscle may have as many as a million fibres. Individual fibres are made up
of parallel sub-units called myofibrils which consist of longitudinally repeated units termed
sarcomeres which are bounded by the so-called z lines. The sarcomeres are the fundamental

elements that contribute towards muscular contraction following electric stimulation.

Fig.[2.1(b)] shows a single load bearing or extrafusal muscle containing fibres which form the main
mass of the muscle. These are responsible for generating forces or causing changes in muscle
length. They are innervated by a class of nerve cell found in groups of nuclei located in the grey
matter of the ventral horn of the spine. This group, called the a-motor neurones, have cell bodies
whose diameters range from 25 to 100pm and have long processes, from 8 to 20um in diameter,
called axons (Rosenberg et al., 1982). These axons conduct nerve impulses to the extrafusal
muscle fibres. The a-motor neurones terminate on the motor end plates attached to the extrafusal
muscle fibre. The nerve impulse is a localised voltage change approximately 100V in amplitude
and 1ms in duration that occurs across the membrane surrounding the nerve-cell body and axon.
It is propagated along the axon at a velocity of about 50 to 120 m/s, the exact velocity being partly
dependent on the diameter of the axon. Nerve impulses are often referred to as action potentials
or, because of their relatively short duration, as spikes. Action potentials can be propagated
repetitively to produce spike trains having mean frequencies which may vary from one pulse every
few seconds to several hundred pulses per second. When the nerve impulse reaches the junction
between the axon and the muscle fibre, a series of complex electro-chemical events lead to a wave
of depolarisation sweeping over the entire muscle fibre and resulting in contraction of the muscle

fibre. Each terminal branch of a single a-motor neurone axon innervates one extrafusal fibre of
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Fig.[2.1(a)] Schematic of human skeletal muscle showing
the major structures it contains.



one muscle, and all the extrafusal muscle fibres innervated by a single a-motor neurone lie within
the same muscle. This collection of muscle fibres and one a-motor neurone is called a motor unit.
The groups of motor units making up a skeletal muscle vary in size and number, depending upon

the function of that muscle.

The force of contraction of the entire muscle may be graded by increasing the number of active
motor units within a muscle and by altering the frequency of the nerve impulses reaching the
muscle over the axons of the q-motor neurones. A train of nerve impulses will hence produce a

series of force twitches that combine and result in a sustained force level.

An important component of this motor unit system is the muscle spindle (see Fig.[2.1(b)]). This is
a complex sensor that responds to imposed length and velocity changes and is thought to provide
information which is important in the control of movement and in the maintanance of posture.
The fibres within the muscle spindle, the intrafusal fibres, transmit length and velocity information
to the spinal cord through the sensory afferent axons (types Ia and Ib). In addition these intrafusal
fibres are innervated by the +y-motor or fusimotor neurones These are thought to modify
(modulate) the response of the muscle spindle sensory endings to imposed length changes. This
modulating information is obtained from neighbouring segments within the spinal cord, the higher
neural centres, and from within the muscle itself through deformation of the intrafusal muscle
fibres. In the latter, deformation is caused by length changes imposed on the parent muscle which

distorts the fine terminals of the sensory axons.

The neuromuscular system thus contains complex processes that can be likened to a
servomechanism that controls muscle force and length. The basic measurable unit of activity
required for analysis of this system is the electric field associated with the muscle membrane
depolarisation. This can be measured with concentric needle or surface electrodes. The motor
unit action potential (MUAP), as it is called, thus provides the basic currency of neuromuscular

system identification and electromyography (EMG).
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2.2 Computer-Aided Electromyography

Electromyography has major relevance in non-invasive clinical neuromuscular investigation,
diagnosis and motor control studies in man. Electromyographic recordings involving the
concentric needle electrode were introduced by Adrian and Bronk in 1929 to record motor unit
action potentials in human muscle. In normal muscle, the amplitude of a MUAP recorded with
such an electrode may range from 10 to 300,.V. The number of phases (slope reversals) of
MUAPs recorded with bipolar needle electrodes may range from one to four with the following
distribution: 3% monophasic, 49% biphasic, 37% triphasic, and 11% quadriphasic (Buchthal et al.,
1954). MUAPs having more than four phases are usually indicative of abnormal muscle tissue. '
The time duration of MUAPs ranges from 1 to 13ms (De Luca, 1979). The above parameters are
greatly affected by the type of needle used and the geometric arrangement of the active muscle

fibres of each motor unit with respect to the recording site.

MUAPs undergo characteristic changes in voltage, duration and waveform shape after
pathological loss of motor axons or muscle fibres. The correlations that exist between EMG
potentials and the pathological changes of motor units are the basis of the clinical uses of
quantitative EMG in neuromuscular diseases, as pioneered by the works of Kugelberg, Buchthal,
Lambert, Hausmanowa-Petrusewicz and many others over the last thirty years (Desmedt (ed),

1983).

EMG, as it is generally carried out, relies principally on visual inspection of the changes in
potential displayed on the oscilloscope, and auditory interpretation of the signals when they are
played through a loudspeaker. The simple data provided is useful and often adequate to establish
or confirm a diagnosis in a variety of neuromuscular disorders. The method is, however, subjective

to some degree, and a great deal depends on the experience of the operator.

Attempts to use computers in EMG were made in the early 1970s to obtain objective results that
could be presented in a quantitative, reproducible and practical manner. These practical methods
were intended to reveal information essential for the integration of computer-aided EMG into
daily use at EMG laboratories. Computers may be used either for the diagnosis of motor
disorders in clinical neurology, or for monitoring and research revalidation, orthopaedic surgery,
clinical pharmacology, sports medicine, human physiology and psychology. State-of-the-art
automatic analysers can process input data, control various examination protocols or menus, host
programmable modules (stimulators, filters, amplifiers, recorders, etc.), and generate databases of
patient data. A new generation of computer-aided EMG machines incorporating the attributes of

Artificial Intelligence to create expert systems will almost certainly be available in a primitive form



within the next decade. Expert systems will be used to augment the skills of the electromyographer
or his assistant by providing advice on planning neuromuscular investigations based on the
interpretation of patient symptoms and test results. Such co-operative systems will use a set of
coded relationships, or rules, that embody the steps employed in arriving at a diagnosis, coupled

with a data bank of anatomical and procedural facts on EMG.
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2.3 Quantitative Methods in EMG Analysis

As mentioned in the previous section, diagnostic EMG studies focus most attention towards the
isolation of individual action potentials in the belief that their visually identifiable features will
reveal any motor unit disorders. Fig.[2.2] shows a selection of normal and pathological MUAPs as
measured with concentric needle electrodes. Though examination of individual action potentials
may be satisfactory, in some cases false negatives can occur. These arise in the early stages of
disease, either because an active pathological unit is not close enough to the recording site to be
detected, or because it may be close enough but inactive due to its high activation threshold. Also
false positives arise as many normal motor units exhibit a small percentage of polyphasic action
potentials. It is thus desirable to investigate maximal contractions involving all motor units in the
vicinity of the needle electrode in order to provide additional information. Unfortunately these
large contraction levels cause MUAPs from several motor units to overlap and interfere producing
a signal which is difficult to interpret, as in Fig.[2.3]. Various analytical techniques have been
developed to evaluate (characterise) the interference pattern EMG in both time and frequency

domains. The methods that have evolved in these domains are discussed in the following sections.

23.1 Time Domain Analysis Techniques

The early analogue methods of EMG quantification included the RMS value, the zero crossing

rate and, counting the number of spikes in a one second epoch.

The RMS measurement has advantages over many of the other methods of mean voltage
measurement in that it is a precise and standard measure of any continuous time waveform. It
does not require the insertion of filters or time constants other than those normally used to limit
the bandwidth of the EMG recording. RMS measurement may yet prove of diagnostic value when
used as one of a group of measurements made automatically during computerised analysis
(Hayward, 1983).

The zero crossing rate is related to total activity but is not well correlated with generated force
(Fusefeld, 1971, 1972, 1978). In this instance recordings were made from a single point in the
deltoid, using monopolar electrodes. The healthy patients in the control group were able to
control the force of contraction, whereas those patients in the study who suffered from primary
muscle diseases, failed to control it. The inadequate control of force in the test group of patients is
unfortunately expected, but nevertheless undesirable, and it is an example of one significant source

of error arising between the separate groups in the same experiment.
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Fig.[2.2] A selection of normal and pathological MUAPs
as measured with a bipolar congentric needle electrode
(adapted from JONES and LAGO, 1983).




Fig.[2.3] MUAPs from normal first dorsal interosseous
muscle during progressively more powerful contractions.
In the interference pattern (c), individual units can
no longer be clearly distinguished. The time scale is
10ms (token from LENMAN and RITCHIE, 1970).




The counting of positive or negative excursions in the EMG (spikes) was first performed manually
on photographic records by Bergstrom (1958). Automatic methods of spike counting (e.g. Close
et al,, 1966) were introduced but the usefulness of these methods was limited by a lack of validated
results. In addition, the need to standardise the electronic technique for both healthy subjects and
patients was not appreciated at the time (Hayward, 1983).

The method of turns analysis was introduced by Willison in 1963. It involved counting the number
of amplitude increments contained in the slope between phase reversals of the waveform. Turns
analysis was conceived as a tool to improve the certainty of diagnosis of muscular dystrophy.
Willison’s mechanical apparatus recorded the turns count in increments whose amplitude was
chosen by the user (usually 100 V). The elegance in this method was that measurements were
related only to the previous reference point and not to any reference baseline of the signal. The
method was planned for incorporation into the clinical environment as opposed to just being used

in the research laboratory, but was extremely time-intensive and so was not popular.

The above technique was automated by Fitch (1967) and produced as its output two pulse trains
derived from the interference pattern EMG. The first was an indication of the times of occurrence
of phase reversals in the signal. The other was an indication of the times of occurrence of
amplitude increments between phase reversals of the waveform. These pulse trains provided the
turns (NT) and amplitude counts respectively. The turns count was normalised in time to simplify
comparisons. The mean amplitude (MA) was the ratio between NT and the amplitude count. The
MA represents the average amplitude of all the individual components that have been measured in
the EMG. The information contained in the two pulse trains is sufficient to reconstruct the

original signal provided that the amplitude threshold is sensitive enough (about 100 V).

Turns analysis and some of its variations has found more widespread use in the laboratory than any
other method to date as workers in other fields gained experience with it. The turns count gives a
crude estimate of the rate at which the neural impulses are firing. It has diagnostic significance
since the neural impulses give rise to MUAPs that contain a number of phases. These reversals of
direction in the interference EMG over a fixed time have also been shown to correlate with the
percentage of polyphasic action potentials measured from single motor units (Daube, 1981). The
Fitch analyser has been used (Rose and Willison, 1967) to demonstrate the differences between
normal, dystrophic and partially denervated muscle, and to investigate the effect of age in normal
subjects (Hayward, 1977). Developments of this device have also allowed histogram displays
showing the relative frequency of various times between reversals, i.c. the inter-peak intervals.
Differential diagnosis of limb girdle syndrome has been provided from this information (Willison,
1971). Comparison of these methods made by Troup et al. show that amplitude and turn counts

and integrated EMG are not linearly related and that the amplitude count is a more reliable
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measure of the intensity of muscle activity than the integrated EMG. Hayward (1983) points out,
however, that even control values show significant differences from one laboratory to another.
Therefore, in order to enable valid comparisons to be made between results of turns analysis (and
other methods) in different individuals and in different muscle groups, many aspects of the way in
which the EMG is recorded need to be standardised. These include, as with the zero crossings
method above, the sites at which muscles are to be sampled, the way in which the muscles are to be

activated, and the force of contraction (Hayward, 1983).

The lack of force control in diseased patients is a typical problem when using sprung load cells and
standard weights, because the level of force (and inertial forces associated with the latter) is

invariably in the patient’s control. The problem becomes more acute:

e as the demanded forcing level increases,
o if the patient suffers from the advanced stages of neuromuscular disorder, or
e if the patient is young, and/or unable to understand the clinicians explicit instructions on

the forcing protocol.

The range of maximum force developed in healthy subjects also varies considerably with the
method of force generation used (Hayward and Willison, 1973). Such problems could also
account for the limited amount of research being conducted with dynamic measurements on

diseased patients using the time domain techniques that have been mentioned above.

Some dynamic measurements were conducted by Fugelsang-Frederiksen et al. (1977, 1978, 1981)
from vastus medialis in healthy subjects. In this case, a ramp of activity was controlled by visual
feedback of the force signal by asking the subject to match the output of a ramp generator
(calibrated for a 0-20Kgf over 27 seconds). In a normal subject, the mean amplitude ratio was
constant over this wide force range showing an independence of this ratio with increasing force.
Analysis of the turns-amplitude / force curves showed a phase relationship beetween electrical
activity and mechanical effect as the force is increasing or decreasing. No results were reported
for abnormal subjects and again it can be assumed that this method of force control is not
practicable in such situations. It does however have considerable potential for application in

muscle physiology within the research laboratory.

A commercial implementation of the Fitch analyser (Medelec Ltd., 1978) has recently been
modified to incorporate Stalberg’s alterations to the turns/amplitude technique (Stalberg et al.,
1983). To make the method of turns and amplitude counting insensitive to force level and hence
easier to use, a plot of turns (NT) versus mean amplitude (MA) was introduced. The relationship
is linear for low to medium force but skews for forces exceeding 50% of maximal. This occurs

because, as the mean amplitude increases almost linearly with force, the number of turns reaches a



saturation level before maximal force is approached. This is due to the superposition of individual
MUAPs and would suggest that the mean amplitude ratio is not independent of force as was the
case in the observation of Fugelsang-Frederiksen mentioned above. The ratio should decrease as
contraction forces approach the maximum. Stalberg’s method is sensitive in detecting myopathies

and gives the same yield as conventional measurements in neuropathies.

A new technique using turns and amplitude measures (Nandedkar et al., 1986) attempts to create
a set of parameters that are more representative of the way an electromyographer would visually
quantify an EMG response. The upper centile amplitude is derived from the histogram of turns
amplitudes (using a 100V threshold) and represents the amplitude of the largest spikes in the
interference pattern EMG. An activity measure indicates how full the interference pattern is.
This is essentially a quantification of the total baseline existence of the EMG. The complexity of
the EMG is reflected in the number of small segments parameter. This parameter is calculated by
counting the number of small turns (segments) that exist for a short time (i.e the low-amplitude,
high-frequency components). This last parameter is a non-specific, but sensitive characteristic of

neuromuscular disorders because small segments are produced by complex or polyphasic MUAPs.



23.2 Decomposition of the Electromyogram

The EMG analysis methods described above provide much information on muscle physiology but
fail to adequately describe the neuromuscular system at the spinal level. The control scheme that
governs muscle contraction and the control of force is effected through the neuronal connections
from several subsystems. These can be both at the spinal level and from higher centres in the
central nervous system (Andreassen, 1978). A window into the central nervous system is opened
through analysis of the discharge sequences obtained from individual motor units, the motor unit
action potential train (MUAPT). The statistics of the times of occurrence of MUAPs in the
MUAPT are greatly affected by small detection errors of as little as one percent (Shiavi and
Negin, 1973). This problem, in addition to interfering MUAPs, means that highly reliable
decomposition methods are essential to investigate the patterns of neuronal activation or firing of

individual motor units during high force-level contractions.

Attempts have been made (Bergmans, 1971; Prochazka et al., 1972, 1973; Guiheneuc et al,, 1983;
Le Fever and De Luca, 1984; McGill et al., 1985) to automate completely or partially the detection

and identifiction of MUAPs from the interference pattern.

Bergmans (1971) developed two programs having different degrees of human interaction.
Detection of MUAPs was performed using a software delay line, a sliding window of fixed duration
and thresholds set using potentiometers. Provision was made for detection of five different
potentials using point-to-point comparison. Two consecutive potentials identical to one of the five
templates and separated by at least 23ms from each other was the criteria used for acceptance.
Superimposed potentials were rejected. The template matching was sensitive to artifacts and noise
and resulted in both false positives and false negatives. Once a potential was recognised by the
program, the operator was allowed to confirm or deny acceptance. The program was too

time-intensive and was modified to give the task of recognising potentials to the operator.

Prochazka et al. (1972, 1973) developed a system to accomodate small changes in the action
potential shapes and superimpositions. The operator selects four different MUAPs with a
manually adjusted amplitude threshold. These four MUAPs constitute the original templates for
subsequent classification. The computer then sorts and averages all detected potentials into the
template bins based on a minimum mean square error calculation. Unrecognised potentials are
held separately for later decomposition by subtracting templates from them. The choice of
template(s) used to resolve a superimposition is made by the operator. The end of analysis is
preceded by a statistical evaluation of the firing frequency. Accuracies of between 95% and 100%
have been claimed for signals containing up to six MUAPs.



A fully automatic decomposition scheme on EMG obtained at up to 30% force-level has been
devised by McGill et al. (1985). The EMG is differentiated to transform the MUAPsS in the signal
into sharp spikes which are easily identifiable. Those spikes that exceed a certain threshold have
their Canonically Registered Fourier Transform (CRDFT) computed. The CRDFT is computed
by taking the discrete Fourier transform (DFT) of the spike followed by an interpolation of the
trigonometric polynomial specified by the DFT cocfficients. The DFT is then rotated in such a
way that the peak of the continuous waveform underlying the samples will lie at the midpoint of the
analysis interval, This then forms the canonical template for matching with other MUAPs treated
in a similar way. The CRDFT is independent of the arbitrary phase of the spikes, and therefore
serves to align the peaks of the spikes in the frequency domain. It is claimed that the procedure
allows a lower sampling frequency to be used so reducing memory usage and processing time. To
a certain degree, identification of spikes belonging to the same train is performed using the shape
and regularity of MUAP firing as criteria. Representations of the true MUAP shapes are obtained
by averaging MUAPs in the raw EMG using the identified trains of sharp spikes as triggers.
Analysis time for a 10 second epoch of EMG has been reported to be 90 seconds. It is hard to see
how this is going to be accurate as superimpositions are not resolved resulting in weak

approximations of the firing statistics (recall the observation of Shiavi and Negin, 1973).

One of the most advanced recognition programs applied to MUAPs has been developed by Le
Fever and De Luca (1982). A special electrode which permits three channel recordings from the
same motor unit is used. The recordings offer identification of interfering potentials and those
potentials that have similar shapes. All channels are sampled at 50 KHz to reduce error during
alignment of templates with unclassified MUAPs. All channels are then compressed by storing
only those segments of activity exceeding a noise threshold set by the operator. Pattern
recognition is performed with information from the discharge timings of detected MUAPs using a
manually assisted statistical analysis. The algorithm is based upon a maximal a posteriori
estimation of the probability of the moment each MUAP present in the recording will fire. If the
new MUAP and the template are found to have been produced by the same unit then the template
is updated to compensate for random variations in the MUAP waveform. Otherwise, it is
considered to be a new motor unit firing, and is treated as the initial estimate for the new template.
The method is capable of resolving superimposed MUAPs. The program is time-consuming, but
the reliable determination of firing rates of up to eight MUAPs that is achieved at maximal

contraction is not yet possible using any other method.

A commercial implementation (Nicolet Inc., 1986) of the method due to McGill et al. (1985)
produces the results shown in Fig.[2.4(a)] to Fig.[2.4(c)].
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233 Frequency Domain Analysis Techniques

Frequency domain or harmonic analysis is generally performed using the well known Fourier
transform. This can be understood as a decomposition of the signal into sinusoidal components of
different frequencies, or into travelling waves of different length in the case of propagating action
potentials. The strength of the components as a function of the frequency constitutes the spectrum
of the signal. One aspect of spectral analysis is that it offers a means of detecting periodicities

hidden within deterministic or random signals (e.g. Interference pattern EMGs).

Numerical signal analysis, with the use of discrete Fourier transforms implemented on digital
computers, has increased the possibilities of manipulating the EMG signals in ways not possible
with any analogue filter bank analyser or the techniques already mentioned in the previous

sections.

The digitised signal is first multiplied by a time window. This is because only a finite record length
can be used to estimate the spectrum of the signal. The finite record length causes errors in the
estimate through leakage to adjacent spectral components. This leakage can be reduced if the
signal is smoothly tapered down towards both ends of the record. The conversion to the frequency
domain is then done with a discrete Fourier transform. Normally a fast Fourier transform (FFT)
devised by Cooley and Tuckey (Brighman, 1974) is used to reduce computational time and effort.
A subsequent calculation of squared absolute values of the transformed signal gives the power
spectrum. Mathematically the power spectrum G(jw) can be represented in terms of the Fourier

amplitude ¥ (jw) by the following formula:

Gliw) = Bm(12D) [ W)Y -« Eq[2.1]

These Fourier components are the results of a Fourier transform:

+T
Y(jw) = j.' g)(t)cxp(-jmt)dt ................... Eq.[2.2]

where 2T is the length of the observation interval.

Apart from its mathematical function of time to frequency domain transformation, the transform
can be considered as an averaging of the time dependent signal ®(t) with an oscillating weighting
function. It can also be interpreted as a correlation between the signal and an oscillating function.

W¥(jw) is thus sensitive to the occurence of periodic components in the signal.
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The usefulness of the FFT as a tool in signal analysis is seen in Fig[2.5(a)] to Fig.[2.5(d)]. A
computer generated biphasic action potential, as seen in normal muscles, and the corresponding
power spectrum is shown in Fig.[2.5(a)]. Fig.[2.5(c)] illustrates the result of summing the biphasic
potentials such as might be generated during a maximal contraction. The potentials have been
randomly distributed over the observation interval and the total signal has the character of random
noise. The power spectrum now contains large fluctuations but in the mean it has the same shape
as that of the individual signals. Hence the spectrum of randomly summated signals essentially
reflects the properties of the individual components. Another case of particular interest is the
temporal summation which occurs in the spectral analysis of MUAP trains. Fig.[2.5(b)] depicts
the spectrum of a series of single MUAPs arriving in a regular sequence. Here the spectrum is
characterised by a number of peaks occurring at frequencies equal to the repetition rate and its
harmonics. Also in this case the spectrum envelope has essentially the same shape as that of the
individual signals in the pulse train. In Fig.[2.5(d)] the signals have been assumed to arrive in
bursts with small relative time differences, having been distributed over the observation interval
with a dispersion having a standard deviation of approximately 1.2% of the length of the
observation interval. A dramatic change is produced in the power spectrum of the signal as
compared with that of the original signal. In this case the plot reveals several properties of the

signal which are hidden from visual inspection of the time sequence results.

The above example is an indication that spectral analysis can reveal underlying mechanisms of the
EMG signal rather than describing details of the shape of the signal. It is this property of the
Fourier transform that provides the interrelations between spectral measures and other
characteristics of the signal, such as changes in the duration of a signal with otherwise unchanged
form causing a change in the spectrum. Thus for example, the duration per phase in a MUAP will
have an effect on the positioning of the spectral features on the frequency axis. For MUAPs with
irregular phases one can show that the zero crossing frequency (indicative of the average duration
per phase) is essentially a function of the rate of spectral decrease on the high frequency side
(Rice, 1944, 1945). Note the connection established with a time domain characteristic. Also, as
fatigue in muscle increases, the nerve conduction velocity increases (Lindstrom et al., 1970) which
in turn leads to MUAPs of increased duration. This produces a similar effect in the spectrum as
the above. Indeed the tracking of the median frequency (Stulen and De Luca, 1982) provides an
index of localised muscle fatigue. Additionally information concerning the average firing rate and

firing rate variations (Lago and Jones, 1981) can be obtained from the power spectrum.

These methods, however, continue to be used only as reseach tools mainly because the spectral
shape is influenced by a variety of phenomena which interact in a very confusing manner. In
particular motor neurone firing time statistics and time delay variations (Lago and Jones, 1977)

influence the spectral profile as well as the conduction velocity and MUAP shape (other problems
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are associated with baseline drift, needle movement, size of the innervation zone, syncronisation
and cross-talk). Correct interpretation of the spectral shape is thus extremely difficult and many
conflicting results have been reported. The dilemma is further increased because the spectrum of
interference EMG can be shown to be the product of a function derived from the pooled motor
neurone pulse train spectrum ¢(w) and the spectrum of the average action potential |H|2 (see
Fig.[2.6]). Significantly different action potentials can also produce similar spectra because the

spectra do not contain any phase information.

In general it seems that the EMG spectral data yields useful information readily when it is
processed so as to enhance a particular feature such as the peak frequency, the average firing

frequency or the median frequency. The spectrum in full detail is not easy to interpret.

23.4 Turning Points Spectral Analysis

The information of most interest, relating to the existence of multiphasic (abnormal) potentials, is
contained in the time locked groups of turning points within the interference pattern EMG, as
recognised by Willison (1963) and others. This information exists in the power spectrum of the
EMG itself but is overwhelmed by the other influences already described above. If however
spectral analysis is performed on the point process describing the EMG, then much of the

distracting information from the power spectrum can be removed.

This technique (Lago and Jones, 1983) involves marking only significant turning points in the
interference pattern EMG. The selection of significant peaks is performed after a noise reduction
process and then peak amplitude comparisons with a peak discrimination factor is used. This
limits the acceptance of artifactual deflections along a wave due to noise. Once the markers have
been assigned, a 0-1 binary sequence is obtained upon which an FFT is performed. The

processing sequence resulting in the turning points spectrum is illustrated in Fig.[2.7].

A prime attraction of this method lies in the fact that the spectral shape arising from normal
muscle producing a predominance of biphasic or triphasic potentials is reasonably simple.
Fig.[2.8(a)] and Fig. [2.8(b)] show this. More complex shapes arise from more complex potentials
as in Fig.[2.8(c)] and Fig.[2.8(d)].

Research work on inferring the shape of the action potentials from the turning points spectrum is
currently being conducted by colleagues (Jones, Lago, and Parekh). The first area of investigation
involves the creation of standard spectra, representative of normals and of known disorders, which
are characterised by their mean and first two principle components. It is then intended that new
spectra should be classified by observing which standards they are closest to. The second

approach concerns preprocessing the sequence of time markers that represent significant peaks in
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the EMG in such a way as to produce marker sequences which have spectra of the type in
Fig.[2.8(a)]. This preprocessing, called splitting involves the allocation of successive markers to
two or more sequences in a cyclic order, shown in Fig,[2.9]. It can be shown that the number of
splitting processes required to obtain simple spectra as in Fig.[2.8(a)] is related to the number of
positive phases in the action potential. For example, the sequence of turning points related to the
interference pattern EMG of the spectrum of Fig,[2.8(c)] would require at least a four way split to
produce the flat simple spectrum of Fig.[2.8(a)]. The reasoning behind this is that these my(')pathic
potentials, having four positive phases, will spatially summate but maintain the grouping and time
locked sequencing that is hidden in the resultant interference EMG at moderate to high
contraction levels. An alternative process of thinning successively allocates the events of the
original sequence at random to two new sequences. In either case the objective is to remove the
clustering effect of the time locked sequence of turning points (mentioned earlier) so that they can
be considered as each marking only one turning point of the action potential. Fig.[2.10] shows the
thinning and splitting process applied to a synthetic EMG made up of action potentials with four

positive phases.

Despite considerable experience gained using the methods described in the sections above, few
are used routinely in most clinical situations. This is presumably because an adequate set of
diagnostic standards (results interpretation criteria and normative databases) and examination
procedure standards (use of standard electrodes and forcing protocols) do not exist. Additionally
on-line computing facilities incorporating these methods have not been developed and/or
perfected for use in the clinical environment (the exception to this is the turns-amplitude analysis
of Stalberg et al., (1983)). Furthermore incorrect classification of patients using automatic analysis
of the interference EMG in controlled situations is known although not well documented (Jones

and Lago, 1983).
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2.4 The Modelling of Emg-Force Dynamics

This section is intended to provide information on some of the muscle modelling procedures that
have been tried by several researchers. The accurate control of force in these experiments is
highlighted to give the reader an insight into the problems that can occur without it. EMG-force
modelling is a quantitative technique that is used in EMG investigations, and hence this resumé is
purposely included in this chapter. Nevertheless, a definite binding exists between the ideas that
follow, and those that resulted in the work described in chapters four and five which are concerned

with the accurate control of muscle loading,.

In-vitro experiments to determine the mechanical properties of muscle have been conducted by
Wilkie (1956) in a series of isometric (constant length) and isotonic (constant force) contraction
experiments. Wilkie used simple apparatus consisting of a lever arm pivoted about its centre and a
dissected frog sartorius muscle clamped to one end. By applying loads at one end of the lever and

tetanising the muscle at the other, he was able to determine the following:

(a) tetanic tension-length curve,
(b) isometric stress-strain curve,
(c) isotonic contraction-time curve,
(d) force-velocity curve, and

(e) the active-state curve.

These curves are directly related to the three element (non-linear) elastic model of Hill (1938),
Fig[2.11]. The parallel elastic component (PEC) represents the elasticity of the passive muscle
and of the joint. The force generator is mimicked by the contractile component (CC), and the
series elastic component (SEC). The CC transmits its force through the SEC and together they
represent the elasticity of the tendons and ligaments. Wilkie’s experimental results are shown in
Fig[2.12(a)] to Fig[2.12(d)]. The characteristics show the typical static and dynamic
non-linearities associated with contracting soft tissue. Fig.[2.12(b)] illustrates a set of isotonic

shortenings of muscle against various loads. This indicates the following:

¢ anincrease in latency to the point when the muscle has developed isometric tension equal
to the isotonic load,

e adecrease in the maximum shortening, and

e adecrease in the initial velocity of shortening, i.e. the initial slope of the curve, decreases

with increasing contraction force.
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FromFig.[2.12(b)] Wilkie deduced that when the velocity of shortening is zero (at the plateau
points) then the tension developed by the muscle is only a function of its length. However, this is
only strictly true when the muscle length is near its in-vivo length. The plot of the isotonic force
against the initial velocity of shortening gives the characteristic of Fig.[2.12(c)]. This has been
described by Hill (1938) using the equation:

V=bFo-F)F+2) . . oo vveenmn.. Eq.[23]

where V = dx/dt = velocity, F = force, Fp = maximum isometric tension. The parameters a and
b have thé dimensions of force and velocity respectively and are in fact functions of muscle length
as can be deduced from Fig.[2.12(a)]. The curve shows that even when there is no load on the
muscle the velocity has a certain limited value. It does not become infinite as would that of an
undamped elastic body. Under isometric conditions, when the velocity is zero, the force is
maximal. The non-linearity suggests that if the system is a viscous-elastic one, then the viscosity

must be non-linear.

The active-state curve (interrupted line) of Fig.[2.12(d)] describes the isometric tension which the
CC can develop (or bear at any instant without lengthening) at any point in time. To measure this,
the effect of the SEC must be removed by quick stretch or by sudden isotonic loading. The
experimental conditions are arranged such that sudden isotonic loading occurs after a change in
length greater than the amount by which the SEC contributes to the tension developed by the
muscle (from the stress-strain curve). In this way the twitch-like tension developed solely by the
CC was measured (Ritchie, 1954). Under these conditions the tensions produced after various
durations of tetanus, must pass through the active-state curve. The peak points are selected since
the CC and SEC are at constant length during this part of the twitch. Therefore the tension
produced at this point must be due to the CC only.

Dynamic models based on Eq.[2.3] have been developed by many researchers (Hof and Van Den
Berg, 1981; Glantz, 1977; Bawa, Mannard and Stein, 1976; Rees et al., 1986). An example is the
thirteen parameter electrical analogue due to Hof and Van Den Berg (1981) for investigations on
the gastrocenemius-soleus complex. The characteristics describing the PEC and SEC can be
determined experimentally or by heuristic mathematical descriptions of their probable forms. Hof
and Van Den Berg (1981) used a logarithmic expression for the SEC derived from the inverse
relationship existing between the SEC compliance (reciprocal of elasticity) and the active state
(Ritchie and Wilkie, 1958). The PEC was modelled on exponential data obtained from the
literature. The driving signal for their analogue, to give the active state characteristic, was chosen
to be the rectified and smoothed EMG as this is the most convenient measureable signal
representative of the neuronal input to the CC. As would be expected in such a model, the
proliferation of parameters requires an equal amount of calibration procedures when used with

different subjects and in different muscles. The models have been relatively hard to use for in-vivo
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investigations for this reason and that the parameters specifying the elements of the model are
non-linear (Jones, 1986). Although some of the results obtained are promising, the models will be
difficult to use routinely.

For routine studies, a simpler approach is necessary employing linear models of the muscle
dynamics. In order to study the system with linear descriptions one must assume that either the
force or length are regarded as constant and also that the effects of fatigue are carefully
considered. The latter is important when large records of EMG data are required. This demands
longer periods of contraction leading to variations in the EMG signal itself which in turn is used to
drive some of these models. One method of in-vivo linear modelling is to first estimate the average
isometric twitch response experimentally. This can be done by supramaximally stimulating the
muscle, synchronously averaging the resulting response and then fitting this response to a
parameterised mathematical equation (Milner-brown et al., 1973). The equation used could take
the form of a linear combination of two exponentials to account for the rising and decaying parts in

the twitch response: f(t) = Aexp(-at) - Bexp(-t).

Another method is to take the smoothed and rectified EMG as a close representative of neuronal
activity and then relate it to the actual force produced by an appropriate system identification
method. The impulse response of such a model then provides the average twitch response. Bekey
et al. (1966) investigated the human triceps muscle using an on-line parameter tracking procedure
implemented on an analogue computer. The rectified EMG-force relationship was successfully
described by a second order differential equation when using short bursts of rhythmical voluntary
contraction. The reasons for their particular forcing protocol and choice of model were not
explained. Other second order models have been reported by Cogshall et al. (1970), Gottlieb et al.
(1971), Mannard et al. (1973), Crosby (1978), Lago (1979), and Zahalak (1979).

Lago (1979) points out that in an almost noise-free situation all modelling algorithms will yield,
essentially, the same estimates for parameters., However the presence of noise in the majority of
input data is such that the choice of modelling algorithm and data collection procedure must obey
precise criteria to produce reliable and non-oscillatory results. In addition to the need for
restricting the muscle length and velocity of contraction for isometric and isotonic investigations
respectively, it is particularly important in isometric conditions to constrain the tension such that

the data lies on or near the linear portion of Fig.[2.12(a)].

No studies so far reported have demonstrated that a linear EMG-force model can be made totally
independent of the force pattern. The reasons for the residual dependence of the models on the
force pattern demanded are still conjectural. The problems of EMG-force non-linearity is,

however, a likely cause. An example of a yet unexplained EMG-force relationship is shown in
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Fig.[2.13), where bursts of EMG can be seen when the force has dropped to almost zero. These
details of the EMG should be interpreted as noise as far as identification algorithms are concerned
(Jones et al., 1987).

2.4.1 The Integrated EMG (IEMG) and Force

Clinicians and physiologists have sought to quantify the total activity, which is closely related to the
generated force, and also the fluctuations which contain information on the constituent action
potentials. Although much literature exists on the relationship between the EMG and force
(Brigland and Lippold, 1954; Troup and Chapman, 1972; Lloyd, 1971; amongst others) the results
of these experiments are not quite in agreement (Metral and Gasser, 1981). The mathematical
relationships postulated have included linear, non-linear, quadratic and even linear followed by an
exponential. These discrepancies can be attributed to the variations in experimental procedure
used. First, and most likely, is the contraction protocol used (both static or dynamic and isometric
or isotonic) and muscle or muscle group investigated. Second, a confusion between smoothed and
integrated (averaged) EMG (IEMG) exists in terms of the time constants used for the electronic
integration and the prior rectification, be it half or full wave. Finally, the effects of fatigue have not

been carefully evaluated.

One definition of the IEMG is equivalent to measuring the area under the fully rectified signal for
three arbitrarily chosen sub-intervals of period Y/ sec to give a total integration period of '/ sec
(Lippold, 1952). Another version is to use the full-wave rectified signal followed by an RC low
pass filter (Inman et al., 1952). The time constant was chosen subjectively to compromise between
an output smooth enough to permit usefi/ analysis and such that it would be small enough to yield
a desired accuracy. Hof and Van Den Berg (1981) used a third order averaging filter (Garland et
al, 1972) and a time constant (T) of approximately 25ms. According to physiological data
(Edman, 1970) T should be very short. However one would prefer to have a large T to obtain
sufficient smoothing of the rectified signal. Hof and Van Den Berg (1981) determined their time
constant by applying a step input to the summing point of their integrator and selected a T such

that their non-linear Hill model did not produce any noticeable slowing down of the step response.

Using the gastrocenemius-soleus muscle group and surface electrodes, a linear relationship has
been found between the area-type IEMG and the isometric tension throughout the normal
contraction range (Lippold, 1952). De Vries (1962) have also reported a linear relationship with
the same IEMG method as Lippold at very low levels of contraction in the elbow flexors with
surface electrodes. The rectified and electronically smoothed IEMG has revealed a linear relation

with a time delay (Inman et al., 1952). Thus, by and large, it was generally accepted that the IEMG
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provided a reasonable index of muscle activity for most of the larger and smaller muscles with
short tendons. However, Bigland and Lippold (1954) observed that certain muscles, such as the

tibialis anterior, have given rise to quadratic relations under isometric conditions.

Under isometric isotonic conditions it is not possible to describe the IEMG with any form of
numerical index (due to the variations between muscles and subjects) and the qualitative
information obtained has not been very useful for physiological studies. In order to provide an
insight into the recruitment, firing frequency and synchronisation of active motor units it is more
appropriate to investigate other applications of the IEMG in situations that are closely related to

normal voluntary effort. The use of dynamic forcing protocols is necessary in these situations.

Bigland and Lippold (1954) studied the relationship between the IEMG and tension at various
velocities of shortening in voluntary contraction. For constant velocity anisotonic tests on the calf
muscles, a linear relation between IEMG and velocity of shortening and lengthening was found.
Also less electrical activity was required during the lengthening, or negative velocity phase. This
finding is in agreement with the force-velocity relationship determined by Hill (1938). For isotonic
and varying velocity tests, a linear relation was again found, although in the lengthening phase the
electrical activity remained constant. The constant electrical activity points were used to draw a

family of force-velocity curves and were once again in agreement with the Hill equation.

Gottlieb and Aggarwal (1971) investigated the relation between the foot torque and the IEMG
from the soleus muscle. The actual foot torque was compared with the output from two cascaded
first order low pass filters (producing a second order function) using the IEMG as input.
Isometric step and ramp force tracking was employed and one of the time constants was said to be
related to the active state although it was not specified how exactly, apart from the response shape
that was obtained. The muscle twitch response obtained from this model was not similar to that
actually measured. The conclusion was, that if the EMG should undergo any dynamic changes of
its own which are independent of the applied torque (e.g. through the stretch reflex loop), then

the model was bound to reveal less information on the muscle dynamics (cf. Fig.[2.13]).

Metral et al. (1981) recorded the surface EMG from the extensor carpi radiales of normal human
subjects during voluntary isometric anisotonic contractions. A bi-linear relation was obtained
between the IEMG and force. It was stressed that the pursuit task had to be perfectly linear to
obtain this relation. Otherwise, often a good parabolic fit was obtained with correlation coefficient
greater than 0.98. The first linear trend occurred up to 50% maximum contraction in agreement
with Milner-Brown et al. (1973). The second linear trend of higher slope above 50% suggested a
rapid increase in IEMG attributable to the recruitment of higher threshold motor units having

large amplitude action potentials. A subsequent analysis of the relationship between the running
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sum of the IEMG and increasing force produced a fit to the sum of two increasing exponentials.
The first exponential was taken to represent the contractile properties of the muscle
(tension-length), and the second taken to represent motor unit recruitment on the basis of the

parameter variations with changing muscle length and rate of tension increase.
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Chapter Three

A Computer System for Control and Digital Signal
Processing Applications

3.1 Introduction

This chapter provides a descriptidon of the main elements in a flexible and ergonomically efficient
computer for use in basic digital signal processing, data acquisition and external instrument
control tasks. The computer architecture is such that the reconfiguration for different procedures
is relatively straightforward. To-date, the computer has been configured for two analysis
procedures. It has wider use in the control of, and acquisition of data from, the muscle load which
is described in chapter four. Experience gained with this Signal Processing Computer (SPC), and
the emergence of new computer and software technologies, point the way towards a greater
emphasis on the use of commercial hardware and high level programming languages. This should
allow for shorter research and development timescales in order to create analysis environments

that embody the basic philosophy and functionality of the SPC.

Today instrumentation in almost every field is becoming increasingly smart or intelligent. This is
primarily because the incorporation of a microprocessor and its associated software allows more
complicated analysis to be performed and permits a more complex configuration than in a
conventionally designed instrument. The rapid proliferation of advanced instrumentation
ownership among the general public has put demands on the system designer to obscure most of
the complexity of the the instrument behind an interface that is user friendly. Lack of time to
consult systems that perform complex analyses is an important consideration in the specification
and design of today’s computers which must be relatively quick, especially in a clinical
environment where time is often a critical factor. There is little doubt that, through the use of
suitable software and the associated interface hardware, instrument ergonomics can be maximised

in terms of user friendliness.

A significant problem with most of the digital signal processing systems available today is the
rigidity of the user interface adopted. As a result of this, an inordinate amount of time is required
to consult the system and its associated manuals. The SPC was designed for use either by those
with no expertise in digital signal processing or in situations where the user is unable to pay much
attention to the instrument. Such situations may arise in the operating theatre or outpatient clinic.

The SPC uses a menu-driven user interface to maximise ease of interaction. The system allows



entry of analysis parameters, patient details etc. in a convenient manner by presenting the user
with a page of options on the screen, and allowing him to depress the appropriate
software-monitored (soft) keys. The small number of keys used to control the instrument obviates
the need for an alphanumeric keyboard, although this can be connected if required. Relabelling of
the keys and the use of branching menus allows the user to progress through signal acquisition,
processing and display of results with the knowledge that all options have already been considered
by the system programmer. Furthermore, the instrument exists as a single portable unit,
containing the display unit with its soft-keys, a 5'/4 inch floppy disk drive and various data

acquisition and programmable processing cards.

3-2



3.2 Instrument Specification

The computer was required to perform on-line analysis of data that had previously been analysed
off-line and this led to real-time data throughput being considered. The normal pre-requisite for
real-time analysis is a small (dedicated) mini or microcomputer. In an attempt to overcome the
development of a dedicated system restricted to only one or a group of analysis methods, a strategy
of flexible application was adopted based on generic software and simple, but versatile hardware.
This would enable the creation of dedicated systems based on re-configurations of the various
system modules. The modules comprise a suite of software routines and programmable hardware
which together allow the construction of multiple and independent applications by a programmer

familiar with signal processing and the basic system concepts.

By real-time analysis one most often intends to convey the idea of very fast processing of data
whilst it is being acquired. In practice, however, real-time analysis is performed on-line at a speed
appropriate to the amount of time allowable before the display of results or the execution of
actions. The advantages of doing an analysis in real-time are as follows and were considered

important requirements for this computer system:

e Immediate availability of information to the user. This leads to greater throughput and
makes repetition of experiments, where validation is necessary, relatively easy.

e System and analysis parameter settings can be optimised rapidly by examining the full or
partial results of a data analysis.

e Controlled variables can be continually monitored and adjusted in accordance with
experimental and ambient conditions.

e The fact that complex results can be obtained quickly makes it possible to design and
implement other investigation procedures that would otherwise be impracticable or
overlooked.

The disadvantages highlighted when considering real-time analysis were:

e Real-time programs are more complex than others with regard to the difficulty of design
and coding and with regard to testing, debugging, and implementation.
e A good source of test data (simulated or real) is essential for test purposes.



Two applications in clinical signal processing were specified for development in the computer:

® The first was acquisition and processing of blood flow and pressure signals during surgery.
In this application, derived from Butler et al. (1980) and Law et al. (1983), the surgeon
would be presented with flow, pressure, or ECG displays, or vascular impedence modulus
or phase characteristics to assist in the assessment of the vascular system.

o The second application area was implemented as a simulation in this work and is intended
to demonstrate a potential use of the computer in an electromyography outpatient clinic.
A description of the analysis procedure used (Turning Points Spectral Analysis of the
Interference Pattern EMG (Lago and Jones, 1983)) has been presented in chapter two
(Sec.[2.3.4]).

These analyses required the instrument to be capable of sampling at least three channels of
information (e.g. blood flow, blood pressure, and ECG). To accommodate electromyographic
investigations and to adhere to the philosophy of flexibility in other medical, biological, and
industrial applications, the system was required to facilitate acquisition of up to four multiplexed

channels with 8 or 12 bits resolution at a nominal sampling frequency of 3.3 kHz.

The software was designed to aid both straightforward reconfiguration and ease of interaction with
the instrument. The SPC should also be easy to expand and to this end the use of commercial
boards adhering to the S-100 bus standard was specified. This will enable additional boards to be

bought from manufacturers and the present ones to be updated.
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3.2 SPC Hardware Organisation

The specification of the SPC outlined in Sec.[3.1] has been translated into the system shown in
Fig.[3.1], which clearly illustrates the way system software interacts with hardware to provide a
simple patient/user interface. The hardware schematic diagram in Fig.[3.2] shows both the

individual elements of the SPC and their communication links across the S-100 bus.

3.2.1 General Hardware Description

The SPC is essentially a dual-processor computer containing six boards, three of which are
standard commercial boards. One of the two processors (6 MHz Zilog Z80B) resides in the
commercial Single-Card Computer (SCC) together with 64 kbytes of RAM, three serial ports,
three parallel ports, and two counter-timers. The second processor (4 MHz Zilog Z80A) resides
in the Signal Acquisition Processor (SAP) board. This was initially designed by Hailstone and
Watson in 1983, and subsequently modified by Hailstone and Sehmi during 1984, to cater for EMG
acquisition and analysis. The SAP is intended to control signal acquisition of up to four channels
of input data and also to drive XY plotter outputs for obtaining hard copies of results via the
Signal Acquisition Card (SAC). To ensure control over the processors, a hierarchical
arrangement had to be adopted, giving rise to a host and slave processor configuration. The SCC

is considered the host processor and the SAP, the slave or satellite processor.

Through host-resident communication protocol programs and slave-resident monitor programs,
the host is able to control the slave processor by passing coded messages (i.e. control data) across
the data lines of the S-100 bus and these are then decoded and executed (the handshaking
mechanism will be explained later in the software section). Using a similar handshaking method to
transfer acquired data to the host from the slave would be very time consuming. A Dual Plane
Memory (DPM) (Watson, 1983) was the solution implemented for this (non-control) data transfer
between the slave and host processors because it allows two independent 16 kbyte blocks of data
(i.e. memory planes) to be accessed separately by both the host and slave processors. The host
processor can force the SAP to interchange these planes of data immediately by issuing a single
plane-swap command using the communication protocol programs. The above dual-processor
arrangement allows for signal acquisition on the SAP and signal processing on the SCC, thus

permitting concurrent operation.

The remaining (commercial) boards are the floppy disk controller, and the graphics controller. A
Cromemco 16K floppy disk controller (FDC) card provides disc Input/Output (I/O) and other
facilities such as boot-strapping the operating system from disk on power-up. This facility is

required to obviate the need for a keyboard terminal and VDU monitor for loading the operating
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system and executable files of an application. The RS232 serial line on the FDC allows the
connection of a terminal and monitor for local (i.e. on the machine) program development (edit,
compile, link, run, and debug) through disk-based operating system facilities. A Matrox ALT 512
graphics controller provides logical overlay of two 256 x 256 resolution video planes on a seven

inch diagonal display monitor. An external VHF connection is provided to drive larger monitors.

The non-commercial hardware modules and how they interact with each other is described briefly

in the following three sections.

3.2.2 The Signal Acquisition Processor (SAP)

Fig.[3.3] shows a schematic diagram of this slave processor board as it existed prior to the new
developments to be mentioned later. The main features of this board are the use of a local bus to
communicate with 8 kbytes of local PROM, 24 kbytes of local RAM of which the last 16 kbytes are
a plane in the DPM, the timer, I/O and protocol-communication ports, and the remote S-100 bus.
The memory chips are addressed in the order in which they have just been mentioned. To the
right of the schematic diagram are the control, data and address signals used to interface the DPM
and SAC. Decoder A provides all the I/O mapped control signals for the SAC and a single control
signal for the DPM. The SAC control (select) signals are used to address the analogue to digital
converter (ADC) and the multiplying digital to analogue converters (MDACsS), and to select the
analogue switches (ASWs) for multiplexing data into the computer. The DPM control signal is
used to swap the planes in the DPM. In addition, decoder A also provides control signals for the
peripheral parallel interface, programmable interval timer, and the host-slave communication
protocol ports. The latter are the route through which the SAP exchanges control information

with the host processor along the S-100 bus.

The SAP/host interface has its base address set in host I/O space and can be changed with
switches. The interface base address is fixed in SAP I/O space. The control-data (CNTR/DATA)
port is read-only and hence an input port (with respect to the SAP), and the status-data
(STAT/DATA) port is write-only and hence an output port. During normal operation the host
loads the CNTR port with a data byte that contains bit-coded information. This informs the SAP
whether to expect an additional data byte through the input DATA port, in the case of a
SAP-settable function, or whether to send data to the output DATA port, in the case of a
SAP-readable function. The SAP will update its STAT port with a coded data byte whenever it is
executing a task that has been requested by the host. In this way the host always has the immediate
SAP status available for interrogation. When the SAP is idle it polls the host’s ready and read/set
flags that are set through the CNTR port and will respond accordingly. A similar communication

protocol exists within the host processor which is more complicated because it is required to
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interpret and act upon more information from the SAP status byte. A description of this protocol
and its interaction with the SAP communication protocol will be treated separately in the section

on software organisation.

The programmable interval timer (Intel 8253) is organised as two related and one independent
16-bit counter-timers, with all modes of operation being software programmable (i.e. settable) by

the SAP under host control.

The arrangement described above will enable interrupt driven signal acquisition to be performed.
The sampling interval can be adjusted easily by changing the count values that are loaded into the
counter timers. At the end of each sampling interval the SAP is interrupted on a counter time-out
and an interrupt service routine (ISR) acquires a byte of data through the SAC. The multiplexing
of more than one channel of data is performed by the ISR in the monitor program residing in the
SAP. The ISR outputs a data word to the analogue switches thereby selecting the correct input

channel to sample.

The peripheral parallel interface (Intel 8255) is not dedicated and could be used to interface
additional peripheral devices such as a printer or various alarm devices to signal any error

conditions should the SPC be configured as a monitoring instrument.

3.2.3 The Signal Acquisition Card (SAC)

This board had not been fully integrated into the SPC at the time the author had completed the
simulation suite of programs (for EMG Turning Points Spectral Analysis) running on the SCC.
Several elements remained to be added and debugged in the SAP board. This procedure was
taken up by a colleague (Kabay, 1985) who was required to correct and implement the following:

¢ The synchronisation of trigger timing between Sample and Hold (S&H) Amplifier and
Analogue to Digital Convertor (ADC).

e The implementation of programmable anti-aliasing filters for automatic selection of
cut-off frequency, bandwidth and roll-off.

The schematic of Fig.[3.4] shows the main elements of the signal acquisition card. These are:

e abank of analogue switches (ASW) used for input data multiplexing,

e two 12-bit multiplying digital to analogue converters (MDAC) used for automatic offset
adjustment and programmable gain control respectively,

e one 12-bit analogue to digital converter (ADC) with integrated 10V reference for
conversion of input data to a form useable by the computer, and

e asample and hold amplifier used to enable accurate conversion of input data during the
sampling interval.
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Two analoyue switchces are used to put the gain MDAC into the bipolar mode for plotting
purposes. The SAC is interfaced directly to the SAP through the SAP local data bus and several

control sigrals.

The intendzd operation of the SAC is largly software driven and is explained in some detail later in

Sec.[3.34].

3.2.4 The Dual Plane Memory (DPM)

A schematic diagram of this board is shown in Fig.[3.5]. The DPM comprises two planes, each
consisting of 16 kbytes of static RAM, and is configured such that one plane resides in the memory
space of the host processor and the other resides in the memory space of the SAP. The former
plane in host memory space is phantomed through the S-100 bus and can be selected to be on any
one of the four 16 kbyte boundaries of the SAP’s full address space. An output control signal from
the DPM board logic provides the necessary phantoming signal. When this signal becomes active,
the host processor board will automatically disable its own currently addressed memory location
thereby allowing only the DPM memory location at the same address to be accessed. The other
DPM plane is accessed through the local bus between the SAP and the DPM board. Under host
control the SAP can initiate a plane swap which is used to transfer acquired data to the SCC (host)
from the SAP. This is the main use of the DPM although it could be used to transfer data and
executable programs to the SAP from the SCC.

More detailed descriptions of the plane reversal procedure under software control are given in
Sec.[3.3.5]. The DPM feature in the SPC provides data throughput at much faster rates than could
be obtained using direct data bus utilisation techniques such as I/O and direct memory access
(DMA). The transition time for a plane swap is equivalent to the execution time of the single
output instruction needed to negate the SAP plane swap control signal and is approximately 1.7ps.
DMA methods using the Z80 family of processing logic having the same memory bandwidth would
take typically 7 to 8ms.
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3.3 SPC Software Organisation

The software for the SPC is written in a mixture of RATFOR and Z-80 Assembly Language. A
large part of the author’s work was concerned with the development and specification of the SPC

software and it is for this reason that a thorough explanation is provided.

3.3.1 General Software Description

The SPC software can be divided into three major modules:

e (i) Host-resident kernel program: this suite of macros and dedicated subroutines
provides the nucleus of generic user-configurable programs to run the desired application
on the SPC. The kernel provides any number of screen pages each with its own menu.
With each page is a RETN key function used to access the previous menu page and seven
programmer definable key functions, one of which provides up to three pages of HELP
information. These pages describe in detail the usage of the remaining key functions
which might, for example, set the parameters for subsequent data analysis. By attaching a
page (with its own key function definitions) to the key function definition of a preceding
page, a branching tree structure can be built to any depth limited only by the available
memory space. A simple three-level tree structure is shown in Fig.[3.6]. The kernel
program also handles the SAP communication protocol.

e (ii) Host-resident graphics utilities package: this provides graphics primitives to display
computed results in a visual format. This is attractive to a clinician, e.g. a physician, and
has the added advantage of being able to convey trends or patterns in computed results

more readily than a numerical listing.

e (iii) SAP-resident monitor program; this communicates with the host processor through
the SAP-local-bus/S-100 interface. The SAP monitor executes the instructions asked of it
by the host and consistently updates its status messages which can then be looked at by the
host. Various functions may be set or read in the SAP by the host. The settable functions
include the sampling frequency, number of input channels, analogue signal gain and offset
using the MDACSs, and DPM plane swaps.

These modules can be combined to create an integrated system application during the program
writing stage. The design of the software modules allows a structured and systematic
reconfiguration method for the SPC task handling capabilities. The ability to program in a high
level language for floating point calculations is beneficial where speed is unimportant. Assembler

programs can be used for speed optimisations.
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The SPC software will now be described with the aid of flow diagrams. These will show the general
operation of the major macros and subroutines but will not represent them exactly as they
currently exist, since they have all undergone improvements implemented by Kabay (personal
communication, 1988) to incorporate hardware changes in the SAC and new signal processing
utilities. Detailed software listings of the current programs are available from the Department of
Engineering at the University of Leicester (c/o Professor N.B. Jones). Attention will be paid to the
communication protocol existing between the SAP and Host processors (under routines SAPPRO
and HSTPRO respectively). A brief overview of the implementation of MUSCLE, the EMG
Turning Points Spectral Analysis simulation package for the SPC is then given.

3.3.2 The Host Resident Kernel Program

The kernel is concerned with the overall control and co-ordination of the instrument, and the
prompting of and display of information to the user. The prompting is organised as a menu page
and selection of options is made by depressing the appropriate (soft) key from those surrounding
the menu page. Depressing a menu soft-key leads to any one of the following actions being

performed:

e The execution of a function previously attached to that key during the program writing
stage. This function may change the screen display into another menu page, with
prompting of further options.

e Display of computed results.

e Simple message display (e.g. HELP information).

The soft-keys are always monitored for activation. Whether they have a function attached to them
or not is entirely up to the programmer during the instrument configuration period. Soft-key
functions exist as subroutines and therefore always return to the parent menu page unless the
function generates a new menu page, in which case the function is a child as in Fig.[3.6]. The

kernel also performs the protocol operations with the SAP.

All menu pages are generated by specifying the macro SPCKEY (see Fig.[3.7]). This macro writes
the user defined menu and soft key legends to the screen through SETMEN. SPCKEY then
monitors the keys with GETKEY and will transfer control to the selected subroutine when a key is
depressed. At the end of each key scan the status of the SAP is checked by means of the protocol
handler HSTPRO. SPCKEY contains two reserved key functions: Key 1 is used to step up the
menu tree to the immediate parent menu page and Key 2 is used to access the user defined HELP
pages. Keys 3-8 are initially undefined and can be used to generate the child menu pages in the
menu tree by specifying a new instance of the macro SPCKEY in the subroutine attached to the
key definition. For each instance of SPCKEY the programmer must provide the key legends, the
menu and help texts, and the subroutines attached to the Keys 3-8.
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A suite of SAP function calls are provided to aid the programmer in setting and reading SAP
parameters (i.e. SAP settable and SAP readable functions respectively). These functions load the
relevant control and data words corresponding to the desired action, and then, by invoking
HSTPRO, the control and data words are sent to the SAP CNTR and DATA ports (see Fig.[3.3],
Sec.[3.2.2]). The SAP then executes the requested command under SAPPRO, in the SAP monitor
program. The SAP settable functions provided are:

(i) Immediate Control Functions

Activate DPM plane swap (SAPMPS)

Start signal acquisition (SAPST)

Stop signal acquisition (SAPSP)

Transfer Data/Program via DPM (SAPXFR)
Execute transferred program (SAPXEC)
Plot transferred data (SAPPLT)

(ii) Control Functions With Data

Data/Program start low addressbyte (ASDPAL)
High address byte (ASDPAH)
Data/Program length low byte (ASDPLL)
High byte (ASDPLH)

Set sampling interval low byte (ASSIL)

Set 8 or 12-bit A/D conversion (ASWDLN)
High byte (ASSIH)

Set input channel number (ASCSPC)

Set gain MDAC low byte (ASGNL)

High byte (ASGNH)

Set offset MDAC low byte (ASOFL)

High byte (ASOFH)

Automatic input signal gain set (ASAGN)
Automatic input signal offset set (ASAOFF)
Set data plotting time base interval (ASPTI)

The parameter values used to set the SAP with the functions in (ii) above can be read from the

SAP by the host using similar functions that are prefixed ARxoxx instead of ASxocoex.

The SPCKEY flow diagram describing the essential operations of the kernel program is given in
Fig.[3.7]. Note that a similar flow diagram describes each instance of the SPCKEY macro at each
non-terminal node of the menu tree in Fig.[3.6]. Terminal nodes can only originate from a parent
SPCKEY macro, and each macro must have a parent macro except for the Level 1 root macro (in

which case the ’parent’ accessed through the RETN key is the CDOS operating system).
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3.3.3 The Host Resident Graphics Utilities Package

Primitive subroutines for the Matrox ALT-512 graphics board are provided in this package, called
GRAPH which is written entirely in Z-80 Assembly language. The host resident kernel program
uses these whenever it has to write to the display screen to draw graphics and print text, etc. The
graphics board has a display field consisting of two 256 x 256 planes of video RAM. It contains its
own refresh memory, TV sync and video generator, and all I/O for the S-100 bus. Each dot (pixel)
is addressable via the X-Y registers. The X-Y, dot colour (black or white), clear, plane select,
status flags, and display mode control registers can be accessed by the host processor via six input

and two output ports.

A selection of graphics primitives in GRAPH allow the user to perform simple drawing tasks.
Functions are available to plot and position points on the screen, draw lines and axes, and print
characters in standard and greek fonts. The spatial orientation and size of the printed characters
can also be specified. Different graphics screen modes enable the display of logical combinations
of the video planes. Additional functions allow the storage and retrieval of graphics images to and

from specified files on disk.

Together these primitives are sufficient to create adequate screen displays for the menu pages, and

displays of computed results in the form of graphs and charts.

3.3.4 The Sap Resident Monitor Program

Tasks related to input data acquisition, SAP configuration, and communication with the host
processor are performed by SAPMON. The primary or foreground task is to monitor the SAP
control port (see Fig.[3.3], Sec.[3.2.2]) for host requests which are then executed as secondary or
background tasks after the immediate SAP status has been made available to the host through the
SAP status port. The foreground task is always returned to, and the SAP status updated, when the
background task is completed. This concept can be illustrated with the flow diagram of Fig.[3.8].

Within the SAP monitor program reside several major subroutines:

e SAPPRO: This handles the SAP/Host protocols. The CNTR port is polled and the
control words are read when signalled by the host. SAPPRO continually updates SAP
status by loading its STAT port with a status word. The host can then interrogate this port
when necessary to co-ordinate message transfer. This constitutes a simple handshake
mechanism implemented under software control.
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e SAPCWI: This interprets the host control word that is obtained through the SAP control
port under SAPPRO. The interpreted command is then executed and SAPPRO is
re-entered. All set and read functions that the host can request of the SAP (see
Sec.[3.3.2]) are performed by the corresponding slave subroutines in the SAP monitor
program.

® SAPRST: This performs SAP initialistaion after a hardware reset or software controlled
reset from the host processor. SAPRST sets the stack pointer, performs a RAM test,
selects plane 1 of the DPM, sets up the signal acquisition card (SAC) with default values
for the input channel, gain and offset, and loads a default sampling interval count for the
interrupt timers and a default A/D conversion word length. Control is then transferred to
SAPPRO.

Signal acquisition under SAPMON is interrupt driven to allow the host to be monitored during
input samples. This fits into the general philosophy of foreground and background tasking. The
signal acquisition is thus considered a task of secondary priority relative to that of monitoring the
host. With this arrangement the acquisition of data can be terminated if this is required by the
host application. The start and stop commands are issued through the CNTR port in the manner
described above. If SAP default values are not to be used, then the host application program must
use the SAP set functions under the kernel program to select the A/D conversion word length,
sampling interval, and the gain and offset values per input channel. The sequence of events that

occurs during interrupt driven signal acquisition is illustrated in Fig.[3.9].

On receiving a start signal acquisition command from the host, START will set up a vector address
for the correct interrupt service routine (12 or 8-bit) and load the programmable interval timers
with the interval counts corresponding to the selected sampling interval. The STAT port is
updated signalling acquisition under way to the host and then the Z-80 maskable interrupt is
enabled before returning to SAPPRO. When the timer times-out, the SAP is interrupted and the
vectored interrupt service routine (ISR) is executed. The interrupt is disabled and each channel
specified for input is in turn set up with a gain and an offset by loading the MDACs with the
appropriate 12-bit data words. The specified channels are multiplexed and sampled, and the
digitised data is loaded into the DPM. The interrupt is enabled and SAPPRO re-entered to
monitor the host. At this point the SAP could be interrupted again by the timer or alternatively
stopped by a command from the host. The end of data acquisition causes the interrupt to be
disabled.

Once the DPM plane in SAP memory space has been filled with data the acquisition ISR will
request a plane swap command from the host by setting a flag in the STAT port. SAPPRO is

re-entered to monitor the host reply. The host should then acknowledge causing a plane swap.
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The host should restart SAP signal acquisition again if more data is needed. This time data is
channelled into the conjugate DPM plane. During data acquisition by the SAP, the host could be
storing the previous plane of DPM data onto disk for later processing. In this manner therefore,
with judicious choice of sampling frequency, it is possible to acquire multi-channel records of data

which occupy more memory than is directly addressable by an 8-bit microprocessor.

Other powerful facilities provided under SAPMON are the ability to execute programs or plot
data transferred to it from the host via the DPM.

3.3.5 The SAP/HOST Communication Protocols

A full discussion of these protocols in the sections above would not have been appropriate since
these dealt specifically with local descriptions of the main software modules in the SPC. The

protocols are necessarily interactive and will be explained together.

SAPMON, the SAP-resident monitor program contains the protocol handling subroutine,
SAPPRO. The host-resident kernel program communicates with the SAP through HSTPRO.
Both these programs utilise the control/data (CNTR/DATA) and status/data (STAT/DATA)
ports in the SAP. These ports are I/O mappcd in both the host: via the S-100 bus, and the SAP: via
the local bus (See Fig.[3.3], Sec.[3.2.2]). The CNTR port, set by the host processor application
program through HSTMON, and read under SAPPRO, is assigned the following configuration:

The SAP/HOST CoNTRol Port

FIIre[ST47131211T0]

e 7-3: SAP function codes

e 2:SAP Read or Set function (R/S)

e 1: HOST ReaDY signal (RDY)

o 0: SAP software controlled ReSeT (SAPRST)

Similarly the STAT port which is loaded by SAPPRO, and read by the host under HSTPRO, has
the configuration below:

The SAP/HOST STATus Port

EXIXTST413T2 71707

5: SAP sending ERRor code to HOST (ERR)

4: SAP sending DaTA to HOST (DTA)

3: Current DPM Memory Plane (CMP: 0 =Plane 1, 1 =Plane 2)
2: SAP Requesting a DPM Plane Swap (RPS)
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e 1: SAP currently ACQuiring data (ACQ)
e 0: SAP ACKnowledges HOST is ready (ACK)

Some of the following will have been mentioned briefly above. However, for the sake of clarity and

completeness in this section, it is necessary to restate a few facts.

Fig.[3.10] describes SAPPRO. This is SAPMON’s foreground task in relation to Fig.[3.8]. Since
the SAP responds to host initiated commands, the top loop in SAPPRO monitors the SAP CNTR
port to see if the host is ReaDY to request that a task be performed. When the host is ready it
activates RDY in the control word, and SAPPRO will respond by setting the STAT port status
word ACKnowledge (ACK) bit low, and DaTA (DTA) bit high. The control word is then tested
for the type of function that is to be performed. In the case of a read function, SAPPRO must tell
the host that data is being sent to it via the output DATA port by making DTA active. In the case
of a set function, data to be used must be obtained from the input DATA port. Both function
types reset ACK for the next cycle of SAPPRO.

The other status bits that SAPPRO can use to flag certain conditions to the host are ERR, CMP,
ACQ, and RPS. The ERRor flag is followed by an error code that HSTPRO will submit for
interpretation and user notification. The Current Memory Plane signal is provided only for
background information. It could be used as an indicator of which plane is being accessed in
display format design or during SAP reset procedures. ACQ and RPS are used extensively during
SAP data acquisition. The former flags that data ACQuisition is under way and the latter
Requests a DPM Plane Swap when a plane has been filled. The response of the host to these
signals was designed for EMG data acquisition of at least 32 kbytes of data sampled at 1 kHz. This
allows for 15 seconds of 12-bit data and sufficient spectral resolution to interpret gross changes in
the form of the turning points spectra up to 500Hz. Over 95% of the power of surface EMG is
contained within this frequency range, therefore this bandwidth can be regarded as adequate for

the majority of EMG spectral methods.

Unlike SAPPRO, the host protocol handler (HSTPRO) does not function as a foreground task
module within the host application program. It is invoked once at each execution of SPCKEY
(See Fig.[3.7], Sec.[3.3.2]) to check SAP status as part of the major task which is the application
program. Also, HSTPRO must be called explicitly by any application subroutines attached to
SPCKEY key functions if they require SAP activation.

HSTPRO is summarised briefly with the aid of Fig.[3.11]. On entry into this subroutine a CHanGe
flag in the host-resident kernel program is examined to determine whether the application

program wants to activate the SAP. Either a read function is performed as the default action or
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else the set function is flagged and the DATA port is loaded with the relevant set function data
byte. ReaDY is activated and the CNTR port updated so that the SAP can respond according to
the decode of the higher order bits in the control word (Sec.[3.3.4]). The host is notified by the
SAP that this control word has been received through the ACKnowledge flag in the SAP status
word. The host RDY flag is de-activated and, if SAP ACK has been turned off under SAPPRO,
then HSTPRO is left. If ACK is still active, then the SAP status word is examined to determine
the DaTA and ACQuisition flag states. If data is available, the ERRor state is then determined or
else the ACQ flag is copied into the a kernel program flag image and HSTPRO is subsequently
left.

The Control of DPM Plane Swapping

The above description accounts for much of the work that HSTPRO performs. The portions of
Fig.[3.11] that test and react to, the MPS and RPS flags conduct the SAP/HOST communication
during signal acquisition. MPS is the name given to the host control function bit pattern assigned
to a Memory Plane Swap, and RPS is the SAP status flag that Requests a Plane Swap from the
host. This part of Fig.[3.11] is considered critical in the control of the timing of DPM plane swaps
during EMG data capture.

The performance of the protocol outlined below has only been tested by the author under debug
conditions (in the Summer of 1984) since the SAC was not fully functioning (as indicated in
Sec.[3.2.3]). Debug tests did show that the intended sequencing of operations and DPM plane
swapping were operational. Providing an example of the sequence of actions that an application
program would have to perform for EMG data capture, will simplify the explanation of this
segment of the HSTPRO flow diagram.

The SAP is set up for interrupt driven signal acquisition as described in Sec.[3.3.4]. At this point
the ACQ is active through SAPMON. The SAP ACK flag is inactive and, between data samples,
SAPPRO monitors the host control word for DPM swap or stop acquisition commands. During
data capture into the first DPM plane, the host application program would have triggered the SAP
immediate command: SAPMPS (Sec.[3.3.2]). HSTPRO responds by setting the local Memory
Plane Swap (MPS) flag active. In this case the loop 1: ACK active? - MPS? — ACQ active?, is
entered under HSTPRO.

When the first DPM plane has been acquired, data acquisition is stopped by not re-enabling the
interrupt (Sec.[3.3.4]) and SAPPRO activates ACK and RPS. As a result HSTPRO signals a DPM
plane swap and the application program restarts signal acquisition by invoking the SAP function
START again. The RPS flag will become active under SAPPRO at the end of the second DPM
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plane data capture, but will not be recognised by the application program until the first plane has
been processed. Should more than two planes of data be required, the processing undertaken by
the application program would have to be restricted to simple operations such as data transfer to
another memory block, or even writing the data to disk, before reSTARTing the next DPM plane
data capture. This is necessary to ensure that the data around the 16 kbyte boundary of the DPM
planes remains contiguous when swapped into core memory space or stored on disk. In essence,
the processing of the DPM plane in host memory space under the application program must take
less time than it takes for the SAP to fill the DPM plane in its memory space. In this way temporal

discontinuities in the signal at a DPM plane boundary can be minimised.

To save communication time, HSTPRO can be edited to include the dashed-line branch in
Fig.[3.11]. This allows HSTPRO to turn the MPS signal on and off by itself for continuous plane
swapping. SAPMON’s interrupt service routines would also have to be edited to re-enable the
interrupt flip flop after a completed DPM plane data capture process instead of leaving it disabled
(see Fig.[3.9]), and to count the required number of plane swaps before de-activating the ACQ
flag, thus allowing HSTPRO to return to the application program.

The other combinations of RPS and MPS tests that are present in HSTPRO simply ensure that the
DPM planes are not swapped unless the application program is also ready to do so. In addition,
by demanding a plane swap before entering HSTPRO, one is able to swap DPM planes outside
periods of data acquisition (e.g. transferring data to SAP for plotting), in which case a plane swap

can occur without an active RPS flag signal from the SAP.
Kabay has since changed the protocol to suit his application and data acquisition strategy

(personal communication, 1988). These changes will be described briefly at the end of this
chapter.
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3.4 Simulated EMG Spectral Analysis in the SPC

The SPC has been configured for a simulation of EMG spectral analysis using the tools available in
the Host resident kernel program. Some twenty instances of the macro SPCKEY are used to give
an equal number of menu pages together with their corresponding key definitions. The major
menu pages (the non-terminal nodes in the resulting tree structure) are used to select data
acquisition and EMG analysis parameters, and to provide control and manipulation of the
graphical display of computed results. The SAP can be set up according to various options
selectable in menu pages emanating from the root menu. These include a start and stop signal
acquisition control and the sampling interval. Menu pages are provided so that spectral and
simple time domain analysis procedures can be performed. In the former the user can select the
EMBG record length and the number of data points on which an FFT is to be performed. In the
case of Turning Points Spectral analysis, the simulated EMG data (due to Parekh, 1986) is first
reduced to a 0-1 binary sequence, as described in Sec.[2.3.4], before performing the power spectral
estimation. The time domain analysis options are: Zero crossings per second, mean value,
rectified mean value, mean square value, and the displayed record length. All analysis routines
were implemented in RATFOR for ease of coding, even though this proved to be expensive on

memory.

Owing to the limited memory space available in the computer (48 kbytes), for running the full
application program, some non-terminal node menu pages perform a memory overlay. This
essentially means that all current information must be stored in parameter data files on disk before
reloading the next selected menu page and all its child menu pages. Although this does take time

it was effective because the spectral and time domain analyses are arranged as distinct overlays.

Some of the typical display formats that have been obtained in the application program MUSCLE
are illustrated in Fig,[3.12]. These are from left to right:

the root menu,

one help page,

data acquisition and EMG analysis parameter selection,
results display selection,

FFT routine parameter selection,

raw EMG data display,

EMG power spectral density display, and

the EMG turning points spectral density display.
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3.5 Further Developments to the SPC

This section will outline the additional developments that have been made to the SPC by Kabay
following Hailstone’s, Watson’s and the author’s initial work on the basic design and specifications

of the firmware.

The SPC has been taken to completion by Kabay. He has followed the design principles laid down
by the initial team of workers already mentioned in the text above. Kabay has configured the SPC
for Vascular Impedence Calculations (Butler et al., 1980). A list of changes and enhancements to
the SPC have kindly been provided by him and these are given below:

[A] Hardware

e The SAC now contains anti-aliasing filters using digital switched capacitor filters (type
Motorola MF10) providing programmable cut-off frequency, bandwidth and roll-off
characteristics.

The SAC multiplexer is buffered to prevent voltage loading errors.
The input amplifier has been replaced by a high quality instrumentation amplifier to
minimise dc offset and to improve CMRR and frequency response.

e Syncronisation between the S&H amplifier and ADC has been improved.

[B] Software

e Automatic setting of input gain and offset for each channel selected by the operator.

e The ISR for data acquisition contains provision for the settling time of the gain and offset
control DACs when two or more channels of data are being acquired.

e Automatic de-multiplexing of digitised data stored as 8 or 12 bit ADC words.

e A Real-time coherent averaging utility has been provided using channel 1 data for the
averaging trigger reference. Up to 128 frames of triggered data can be acquired for
improvements in signal to noise ratio in noisy environments. The trigger selection menu
provides a zoom facility to increase resolution of the trigger point in the data acquired
through channel 1.

e Automatic delay compensation between input channels to offset software overheads.
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3.6 Discussion

The primary purpose of this chapter has been to explain the contributions of the author in the
developments of the SPC. The SPC has evolved through the contributions of several workers over
the last six years and has been taken to completion recently (Hailstone et al., 1986, reproduced in
Appendix [A]). It has been shown how simple building blocks of fairly low technology can be

combined to provide flexibility and ease of interaction with the computer system.

The SPC design philosphy is as important as its intended function in the areas of EMG and
cardiovascular data processing. Today, however, there are available more effective methods for
creating similar functionality and ease of use for less effort and in far lower time spans. In this
respect, cheap personal computers (IBM PC and compatibles) and the wealth of programming
languages and programming environments (e.g. C, Prolog, Windows, MetaWindows, etc. ) must be
considered. The real-time functionality of the SPC can be achieved using a PC under PCDOS and
plug-in commercial data acquisition cards containing DPM-type memory buffers. The
man-machine interface can be designed using a windows environment and all SPC signal
processing and control functions can be implemented in a modern high level language with

virtually no serious speed limitations.

Using techniques based on artificial intelligence (AI), developed in recent years, and now available
for the PC, we now have new opportunities for instrument design. The use of expert systems
technology will permit instrument designs that provide traditional analytical capabilities with
interpretation and evaluation of the results. Ultimately it will be possible to control the instrument
behaviour during data acquisition and analysis according to expert knowledge about the task

domain.

The author will show in a later chapter how some of these ideas have been taken into consideration
for Event Analysis in Evoked Potentials (EPs). Much of the design strategy adopted for the SPC
has been used to create an EP analysis package written in the C language contained in a PC-based
environment and controlling external data acquisition hardware (Appendix [D1]). Expert
interpretation of the analysis results is then provided by an expert system written in Prolog

(Appendix [C1 and C2]).

As it stands the SPC still has considerable potential for use. The muscle load, described in the next
chapter, can be controlled easily by the SPC. The computer can be programmed to output forcing
patterns and concurrently analyse the actual force and EMG signals measured from the subject

under test. With respect to the work that has been done on EP analysis, the SPC can be used to
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drive electronic stimulators for the provision of sensory stimuli to the patient. Cognitive EP
studies sometimes use complex patterns of mixed stimuli which can also be programmed into the

machine.
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Chapter Four

A Controllable Force Generator and Transducer System
for Muscle Investigations

4.1 Introduction

As mentioned in Sec.[2.3], the study of EMG provides information concerning the structure and
functioning of the motor units (MU) it represents. Also, associated with any muscular contraction
is the generation of a force and a change in length of muscle. In Sec.[2.4] it was determined that
relationships between EMG-force and muscle length-shortening velocity are both of interest in

determining the dynamics of the neuromuscular system.

Linear models to study the dynamics of the neuromuscular system have been considered by

researchers because:

e (i) When the muscle contraction is isometric and surface electrodes are used, it is known
that the static relationship between EMG and force is linear for many, but not all, muscles
(Milner-brown and Stein, 1975; Lawrence and De Luca, 1983).

e (ii) The elementary force wave (force twitch) generated as the result of a single motor
neurone pulse can last up to 100ms, whereas the corresponding component of the EMG
(the MUAP) is over in much less than ten milliseconds. Hence, a lincar model can be
assumed such that the model’s impulse response will have the characteristics of some

’average’ or ’representative’ force twitch (Jones et al., 1987).

The relationships describing the mechanics of muscle are highly non-linear making linear
modelling unsuitable for EMG-force dynamics in non-isometric conditions. Ideally one would
prefer to have the muscle (or muscle group) under investigation subjected to both isotonic and
isometric contractions. In addition the provision of dynamic force variations at nearly constant
muscle length is desirable for certain forms of neuromuscular investigation. Quantitative EMG
studies used in the characterisation of the neuromuscular system, would also benefit from having

such controllable muscle loads.

The usefulness of linear dynamic models in situations where non-isometric conditions do exist (e.g.
biomechanics of sport) can therefore be said to be somewhat limited. However, in sports medicine
for example, there is potential value in knowing the dynamics of force build up and decay in

athletes using theoretically sound means of monitoring changes in muscle characteristics during



training and recovery from injury, even if there is a restriction to isometric conditions. Linear
modelling is therefore worth pursuing and it should benefit from better methods of force control

and measurement (Jones et al., 1988, reproduced in Appendix [B4]).

This chapter and the next describe the development and design of a system for controllable muscle
loading and force transduction for use in EMG-force modelling and quantitative EMG
investigations. The system described will enable production and measurement of deterministic

forcing patterns from the patient under test.

4.2 Current Loading Methods and their Limitations

Much of the literature regarding neuromuscular investigation stresses the importance of obtaining
interference pattern electromyograms (EMG) under isotonic conditions. Isometric loading is
considered to be of lesser importance but, nonetheless, desirable. Fig.[4.1] shows some of those
methods most frequently used in current clinical practice. Static, or constant force, loading can be
achieved using a set of standard weights. In situations where load cells and springs are used, the
patient must compress and extend them to produce just the right amounts of load level and
dynamic force variation. The amount of force produced is monitored using strain guage
transducers and/or calibrated meters. Other more complicated techniques are used in situations
where patients exert contractions isometrically against a force transducer. One complicated
technique uses suitable appparatus to stabilise and support the joints involved in the test, such that
their spatial geometries minimise force interference from non-targetted muscle groups. The
measured force controls the vertical position of a horizontal target line on an oscilloscope, and the
patient attempts to match this with a second line. A microprocessor controls the position of the
target line causing it to either move up and down or remain stationary at a fixed level (Le Fever

and De Luca, 1982).

The methods of muscle loading mentioned above suffer from three major drawbacks. First, and
most important, is that the accuracy of isotonic loading is determined by the patient’s motor and
sensory control abilities. The success of the examination depends on the full co-operation of the
patient. The patient must concentrate and be able to contract and relax his muscles in a
deterministic, predictable manner at the request of the investigator. This degree of co-operation is

not always obtained, especially in severe cases of neuromuscular disorder and in young children.
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Second, since a full interference EMG is produced under conditions of powerful contraction
(large force levels), the patient often cannot maintain a spring or load cell at a constant
compressed length for large static loading. At large static loading levels maintaining a standard
weight motionless to minimise inertial forces also becomes difficult and for dynamic measurement

on muscles, springs and weights are even more difficult to control.

Finally, when dynamic variations in the load are required, they must be reproducible in their
amplitude and frequency both during and across individual tests. Repeated loading sequences
should (a) be kept to a minimum and (b) occur after long resting intervals, especially when the
patient’s muscle is examined with a needle electrode which can be painful. Frequent repetitions as
a result of unsatisfactory loading sequences must therefore also be avoided. Such conditions
cannot be achieved with any confidence using current methods. The limitations can cause patient
trauma and discrepancies in results across separate trials and muscle testing procedures because

of the inconsistent forcing protocols that are used.

It is necessary therefore to have systems where:

e (a) static levels and dynamic changes in muscle loading are under the control of the
examiner,

e (b) the load remains constant when required irrespective of small patient movements,
(c) static and dynamic variations in loading are repeatable, and

e (d) a virtually constant muscle length is achieved during dynamic loading.

The goal of point (d) can be achieved using visual feedback through the patient and is based on the
constant length requirements only. In other words, the patient is not asked to follow a moving
force target but to maintain a constant position target. The assumumption we make is that manual
patient control over muscle length alone, is simpler with the assistance of visual position feedback
than attempting to control both force and muscle length independently and simultaneously. This
assumption has been confirmed in tests. The advantages of this approach are apparent under

dynamic loading conditions where the frequency of force variations can alter slowly.
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4.3 The Controllable Magnetic Muscle Load and Force Transducer (Magload)

A useful loading device will produce a relationship between force and muscle length that is
constant over a range of variation in muscle length. To provide this characteristic and in addition
provide dynamic loading, the control of a d.c. electromagnet was proposed and developed. The
familiar open-loop inverse square law characteristic of the solenoid (electromagnet) is reshaped

over a limited airgap distance using closed-loop force feedback.

The device design closely follows techniques derived from the field of magnetic suspension. The
principle of magnetic suspension may be illustrated by considering the steel ball suspension system
shown in Fig.[4.2]. A steel ball is attracted upwards by an iron-cored solenoid. The ball interrupts
a beam of light falling onto a phototransistor. The collector current in this phototransistor is then
used as a measure of the vertical height of the steel ball. This measurement is then used to control
the current through the solenoid so that the ball is restored to an equilibrium position at which the
force of gravity is exactly opposed by the attractive force of the solenoid. This is shown in the

graph accompanying Fig.[4.2].

Magload differs from the steel ball suspension mainly in the type of feedback signal used. The
light source and phototransistor (a position transducer) of the suspension system are replaced by a
transducer system which measures the force (or equivalent parameter) produced by the solenoid.
Additionally, the steel ball is replaced by a steel reaction plate attached to, or somehow interacting
with, the patient. Strictly speaking there is no suspension, but the methods used to control
solenoid current are similar. This type of arrangement constitutes the core of Magload. The force
of attraction between the solenoid and the reaction plate is kept constant over a 30mm airgap
(corresponding to a restricted patient movement) by using the force feedback to control the

current through the solenoid.

Technical drawings of the complete mechanical assembly are shown in Fig[4.3(a)] and
Fig.[4.3(b)]. These show the main assembly, which is pivoted about a horizontal axis, and the
reaction plate attached to and positioned in front of, the fixed electromagnet. The patient
interacts with this system using the horizontal rod above the pivotal axis of the main assembly.
This rod can be adjusted vertically to provide a mechanical advantage of up to 21/, times the
attractive force of the magnet with a correspondingly increased arc of movement. The free space

behind the electromagnet is used to house the electronic control circuitry.
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Fig.[4.3(a)] Side view of MAGLOAD mechanical assembly.
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A better view of the major elements in the main assembly is shown in the photographs of Fig.[4.4].
The dimensions of the cylindrical rods making up this system were calculated using simple bending
moment theory. A 2:1 safety factor was used to avoid bending when maximum designed loads are
present at the reaction plate. The inertia of the main assembly was calculated using both
theoretical and trifilar suspension methods. The values were within 10% of cach other. The
average value for the inertia is 0.367 Kgm? .

The fluctuations in airgap length about a nominal value are related to the variations in contracting
muscle length. These airgap fluctuations are presented visually to the patient who must maintain
them at a minimum. Therefore the nominal airgap distance can be held approximately constant.
If the airgap changes, the electromagnet system reacts to keep the force constant throughout the
available airgap. The constant force characteristic that has been achieved, effectively simulates the
force-extension characteristic of a very long spring several meters in length. Fig.[4.5] shows the
system in use. In this example the biceps muscle of the patient is being tested. The elbow joint is
secured to an adjustable platform. The force pattern is controlled remotely, either manually by the

investigator or with a computer (e.g. the SPC in chapter three).



Fig.[4.4] The reaction plate, pivot, and adjustable
bar of the main assembly.
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Chapter Five

Magnetic Load Design and Experimental Results

This chapter considers the design of the magnetic muscle load (Magload). The design enables
complete contol over both static and dynamic forcing patterns. Experimental results will be given
and the chapter will end with a discussion of the likely uses for Magload. Detailed schematic

diagrams of the magnetic and electronic control circuits are provided in Appendix [B2].

5.1 The Muscle Load Design Overview

It was required that the electromagnet be capable of providing 250N force at a nominal airgap of
20mm. This force level was chosen subjectively by observing students perform weight training
exercises at the University gymnasium. The nominal airgap distance was chosen from a
compromise between allowing small movements for the subject, and the magnet-amplifier design
constraints. The latter constraints primarily relate to the size of the magnet, power output, and the
corresponding complexity of the control amplifier system. A U-shaped magnet capable of
providing up to 500N at this airgap was designed such that the required maximum load is achieved
at power dissipation levels not necessitating forced cooling. A U-shaped magnet was selected for
its simplicity of construction. Magnetic circuit design is an iterative procedure, as is apparent from
calculations available in Appendix [B1], and a simple magnet shape was necessary for the

prototype stages.

The following notation is used in the electromagnet design:

e a-Pole face area (m2)

Ayw - Window area (m2 )

B - Electromagnet flux density (T)

F - Force produced by electromagnet (N)

¢ - Forcing ratio

I - Steady state load current (A)

i - Instantaneous load current (A)
1- Mean turn length (m)

L - Inductance of coil windings (H)
N - Number of turns

NI - Ampere-turns

P - Power dissipation (W)

R - Resistance of coil (2)

S - Reluctance of airgap
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ELECTROMAGNET SYSTEM DESIGN PROCEDURE

C START )

USING F = Ba/2uy
SELECT B AND o
FOR REQUIRED F

CHODSE A, AND CHODSE NOMINAL AIRGAP

CALCULATE MEAN LENGTH x AND

TURN LENGTH L CALCULATE NI
USING NI = 2Bx/p,

18
DISSIPATION
HIGH 1

LINEARLY DOUBLE YES
ALL MAGNET
DIMENSIONS

CALCULATE
TIME CONSTANT
T FROM
PT = 2Fx

l

CALCULATE POWER
DISSIPATION USING
P = (NIfPl/A,

1

STATIC DESIGN
)

FROM F = (NIJu, 074X AND W = Ldl/dt + \[

FROM MAGNET OPEN-LOOP FORCE vs AIRGAP
CHARACTERISTIC AT CONSTANT CURRENT WE DETERMINE
THE DESIRED dF/dt

WE DOBTAIN A SLEW RATE OF FORCE dF/dt = P/x[M /M - 1]

|
DYNAMIC DESIGN

l

GIVEN P, x, AND \{ AT THE MAXIMUM LOAD AND
AT THE NOMINAL AIRGAP WE CALCULATE \{
FOR THE REQUIRED VDLTAGE FORCING.

[SELECT POWER AMPLIFIER SPECIFICATIEINﬂ

END

Fig.[5.1] Summary of static and dynamic design procedures

used for the magnetic load system.



V5 - Supply voltage (V)

V1 - Load voltage (V)

x - Airgap distance (m)

po - Permeability of free space

p - Resistivity of coil windings (m)
b - Coil wire cross section area (mz)

e - Coil time constant (Sec)

Before examining the detailed design aspects of Magload, an appreciation of the general design
procedure adopted is provided in Fig.[5.1]. This shows a partition between the static and dynamic

design considerations employed. Each of these will be discussed in turn below.

5.1.1 Static Design Considerations

This section is concerned mainly with the design and testing of the magnetic circuit. A magnet
consists of the core and the coil each of which must be designed correctly for maximum overall
efficiency. Consider the simple magnetic circuit of Fig.[5.2]. Assuming that the magnetic flux
density is the same throughout the core (i.e. no flux leakage), the force on the reaction plate
exerted by the electromagnet may be computed by considering the change in stored energy in the
airgap when work is done in changing the airgap length x by an amount 2A x. The force required

acts through half this distance.

Force x Distance = Energy per Unit Volume x Change in Volume of Airgap

ie. FAx = (B2/2 ko) - 2aAx
therefore:

F=B%a/po
or for a single pole:

F=B%a/2po . « « v o ittt Eq.[5.1]
The ampere turns required to produce a flux density B are:

NE=2BX /o - « « « v v v e v e e e e e e e e e e e e e Eq.[5.2]
Combining Eq.[5.1] and Eq.[5.2] gives:

F=(ND?poa/8x . . . . v i i it Eq[5.3]

This equation suggests that for a given current and airgap, the force will increase with pole face
area. The choice of pole face area is also influenced by amplifier design, since the inductance (and

hence time constant) of the coil depends on the dimensions of the pole face.
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It is also evident from Eq.[5.3] that the force-airgap distance and force-current characteristics will

be highly non-linear. Other factors important in the design of the magnet are:

saturation in the magnetic core,
flux leakage,
power loss in the coils, and

magnet weight.

Changes in magnet parameters result in changes to other magnet parameters and in the magnet

operating conditions. A useful illustration of these interactions is shown in Fig.[5.3].

Eq.[5.3] holds under the ideal condition of infinite permeability of the iron paths and therefore the
absence of any flux leakage. Mild steel is used in this application and the mild steel core possesses
reluctance of a significant magnitude compared to the airgap reluctance. This leads to large flux
leakages and higher flux densities in the limbs of the magnet than in the airgap. An operating
point of 0.65T was chosen to avoid saturation in the magnet core (2.0 wb/m? (T) for mild steel).
This ensures that the mild steel core remains in the linear region of the magnetisation curve at its
maximum force level of 250N and nominal airgap of 20mm. This precaution is also necessary to
reduce power dissipation (i.e. use of lower coil currents) and, because of the control system, to
allow for transient fluctuations in coil current, and hence flux density, when the airgap changes due
to patient movements. Increasing the magnet’s dimensions also helps to limit saturation in the

core, e.g. increasing the pole face area increases flux leakage, thereby reducing flux density.

The size of the magnet coil is determined by the design of the magnet limbs and poles. The choice
of using a high voltage and low current design for the coil or vice versa is influenced predominantly
by the ampliﬁér requirements and to a lesser extent by the coil itself (i.e. magnetic material, coil
windings guage, and insulation properties). Two important parameters in the coil design are the
power required to produce the required ampere-turns NI, and the time constant of the coil 7, i.e.

the ratio of its inductance L to its resistance R.

Using a linearised model of Eq.[5.3] we can can gain an insight into the role played by the coil time
constant in any attempt to control the force developed by the magnet. At the nominal airgap, the
magnet current (i.e. current through the coils of the magnet) generates a certain force, and any
displacement x from this position results in a change i in the current. If we assume that the change

in force of attraction f is a linear function of the airgap x and current i, then:
=-kix +kai . ... ... Eq.[54]

where ki is the force per metre at constant current, and k2 is the force per ampere at constant

airgap. These can be determined experimentally for a given magnet.
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The relationship between the magnet current and supply voltage Vjp is:

RI+Ldi/dt=Vp . . ... ... ... ... 0. Eq.[5.5]
In Laplace transform notation Eq.[5.4] and Eq.[5.5] become:

F(s) = -k1 X(s) + k2I(s)

Is) =(k3s/(X+s7)).Vp(s) . . ... o o o v v v v oL Eqs.[5.6]
Eqs.[5.6] produce an open-loop description of force:

F(s) = -k1 X(s) + (kek3/(A +s7)).Vp(s) . . . .. .. ... Eq.[5.7]

The quantity that can be controlled directly by the amplifier system is the voltage across the
magnet coils. This voltage will in turn alter the coil current and hence the force produced. The
coil time constant ¢ represents the lag in coil current behind the controlling voltage. This
application required holding the force constant over the operating range of airgaps, and the task
was accomplished by holding the airgap flux constant using a primary flux feedback loop. In this
way the non-linear force-airgap characteristic becomes very nearly linear. Therefore, the force is

now independent of the airgap, or in Eq.[5.4] the constant kj reduces to zero.

The flux loop hence changes the open-loop system Eq.[5.7] to:
F(s) = (kek3/(A +s7)).Vp(s) . . . .. ... ... ... Eq.[5.8]

which is a simple first order lag, and so the linearisation using flux feedback control leaves the
force variations proportional only to i. The speed of fluctuations in i is largely determined by the
time constant of the magnet coils. Since the time constant of the coil is large, this leads to a narrow
bandwidth for the overall response of the control system. A large forcing voltage capability is
therefore necessary to obtain a high bandwidth for the system. This will allow transient current
and force variations to occur quicker than is dictated by the coil time constant. The transient
changes in force with varying airgap will then be sufficiently rapid to make the force produced by

the magnet appear constant to the patient competing with the system.

The apparently constant nature of the transmitted force relies on the assumption that the fastest
possible twitch response that can be produced by human muscle is slower than the worst-case
response time of the magnet to demanded force alterations. Such worst-case response times for
the magnet are achieved by forcing fast voltage changes across the magnet coils, and they are

concerned with the dynamic design of the system to be discussed in the next section.
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Fig.[5.4] The Electromagnet core and coils showing the
recess in the pole faces used to mount the flux
transducers.



A photograph of the core and coils is shown in Fig.[5.4] and their corresponding dimensions are
shown in Fig.[5.2].

The static open-loop characteristics of the magnet are:

e (i) the Force F vs Airgap x at constant current I, and
o (ii) the Force F vs Current I at constant airgapx .

These characteristics were found experimentally using the arrangement shown in Fig.[5.5] with the
magnet coils connected in parallel. The measurements taken can be found in Appendix [B3], and
the curves obtained are shown in Fig,[5.6] and Fig.[5.7]. The cantilever arrangement illustrated in
Fig.[5.5] was necessary to distribute (share) the test loads evenly between the two pole faces of the
U-shaped magnet.
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5.1.2 Dynamic Design Considerations

The design of the static behaviour of Magload concerned the magnetic circuit alone, and was
discussed in the previous section. The coil requirements evolving from static considertions are
closely linked with the power amplifier design in dynamic considerations. This link mainly relates
to the ability to force voltage changes across the electromagnet windings at rates faster than are

dictated by the coil time tonstant.

Due to the amount of power which is dissipated in the magnet (see Appendix [B1]), the current in
the magnet is not controlled by a Class A amplification system. Instead, to maximise amplifier
efficiency and lower power supply rating, the electronics to drive the magnet use Class D
amplification methods employing the principles of Pulse Width Modulation (PWM).

The technique of PWM is illustrated in Fig.[5.8] which shows the currents and voltages in the
transistor amplifier and magnet. By varying the ratio of the On to Off time of the drive transistor
amplifier an average current can be maintained in the magnet. As a result of this, an average force
is produced by the magnet. The force required at the nominal airgap can be set by adjusting this
On-Off ratio. Any instantaneous cﬁanges in airgap, and hence instantaneous force, result in the
On-Off ratio being altered through the flux feedback loop, keeping the force constant and equal to

the preset level.

The overall control scheme for the magnet is shown in Fig.[5.9]. The position signal provides the
patient with a visual indication of the location of the reaction piece in the airgap. This helps the
patient to maintain approximate isometric conditions with the force being held constant (or
varying) by the control system. Positive current feedback is used in a minor controlling loop to
boost the response of the system at large airgaps (i.e. greater than the nominal 20mm gap). This
effectively overcomes attractive force losses due to flux leakage. Since the major feedback signal
(flux) is proportional to the controlled variable (force), no compensation is used. This feature has
the advantage that the flux feedback signal can be used directly as an indication of the force output
of the system. Hence, the magnetic load functions as both the controller and the transducer of
muscle loading patterns. The time constant for the magnet is 57.2ms (see Appendix [B1])
suggesting a bandwidth of approximately 17.5Hz. The average isometric twitch response of muscle
is in the region of 25ms for a group of very fast motor units and rises to as much as 100ms with
slower motor units (Lago, 1980). Therefore, in order to achieve a response time for the system
which is quicker than the duration of the fastest average isometric twitch response, there is a need
to obtain a bandwidth for the system which is at least greater than twice that dictated by the

magnet time constant.
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To obtain a high bandwidth for the control system through voltage forcing we consider the

behaviour of the magnet in relation to the supply voltage as follows (Whorlow, 1978):

The total force is given by:

F=((NDZpoa)/4x® . . . . . . i i i it Eq.[5.9]
Therefore:

dF/dt = (2N?poa) /4. Idi/dt . . . . . . . ... .... Eq.[5.10]

Combining Eq.[5.5] and Eq.[5.10]:
dF/dt = (2N?poal)/4x%. (Vp-IR)/L
= [2N?poa.(PR).(Vp/R-1)]/42°L
SinceL = N2/S,S = 2x/poa, P = PR,and V| = IR
dF/dt = (P/x).(Vp/VI-1) . . . o v i i i Eq.[5.11]

The quantity Vp/ V] describes the voltage forcing ratio £ in the positive direction when the drive
transistor amplifier is turned on. ¢ is the ratio of the supply voltage to the steady state voltage drop
across the resistive part of the magnet when a quiescent current I is being maintained with the full
supply across the magnet. When the drive transistor amplifier is turned off this current still flows
due to the inductance of the coils and is recirculated through the power supply by the freewheeling
diode. By virtue of this recirculated current flow, a voltage V| will exist across the resistive part of
the magnet and provides the negative voltage forcing of current through the coils since the
inductive drop is now in a direction opposite to that of the resistive drop. The difference between
Vp and V| determines the rate at which the decaying inductive current falls when the drive
transistor is off. The more V) approaches Vp, the less decay there will be in the inductive current;
consequently there will be a lower current ripple. Values of Vi less than one half of the supply

voltage result in inadequate forcing and the ripple current increases.

This can be shown easily from Eq.[5.5]:
Ldi/dt=(Vp-VI) . . ... ... ... ... ..., Eq.[5.12]

This represents the forcing of current in the magnet in the positive direction. In the negative

direction :
Ldi/dt=Vi . . . . . @ e e e e e e e e e e Eq.[5.13]

Hence for equal positive and negative forcing we equate Eq.[5.12] and Eq.[5.13] and it emerges
that:

E=Vp/VI=2 . . e Eq[5.14]



If & is required less than 2 then the circuit of Fig.[5.10(a)] is adequate. Otherwise the equal
positive and negative voltage forcing circuit of Fig.[5.10(b)] must be implemented (Hodkinson,
1975). This circuit is more complex to drive however, requiring the use of an invertor amplifier to

drive the topmost PNP transistor when an NPN type can not meet power requirements.

The required value of £ is obtained by first defining the quantity dF/dt. This represents the
slewing rate of force generated by the magnet-amplifier combination and is related to the forced
current variations in the magnet. To demonstrate the selection of a slewing rate of force, we refer
to Fig.[5.7] and assume we are operating at the nominal airgap of 20mm and at a force of 10N. A
movement of 10mm, to 30mm, caused by the patient would make it necessary for the magnet to
produce the equivalent of approximately 30N at 20mm. The period of growth for this force must
be quicker than the time taken for an average isometric twitch response to rise and decay. Thus,

taking 20ms as a reasonable response time for the build-up of magnetic force, we find that:
dF/dt = (200/20x103) = 10kNs* . . . . .. .. ... ... Eq.[5.15]

By substituting the power dissipation value of 350W (see Appendix [B1]) and nominal airgap of
20mm in Eq.[5.11], & is found to be approximately 1.5. Therefore at the maximum specified force
of 500N and nominal airgap of 20mm, a single-ended amplifier as in Fig.[5.10(a)] is sufficient for
the current variations needed in this application. Appendix [B1] explains the choice of supply
voltage based on this value of &,

5.13 Additional Considerations and Features

The large amounts of power that are being switched through the magnet cause concern for the
safety of both user and patient. In this respect the use of PWM means that the switching signals
can be transmitted to the power amplifier through galvanic or optical isolation units. Magload
uses optical isolation to separate the patient, user, and low voltage control circuits from the high
power modules. In addition, there are protection circuits for the power amplifier, and monitor

circuits for the high voltage reservoir capacitor.

An opto-isolated primary operations sequencer maintains orderly and safe use of Magload. The
primary sequencer will give permission to drive the system only when all control circuit board
voltages are stable, the power amplifier base drive is off, and there is no mains disturbance. When
a start command is issued, the high voltage reservoir capacitor is charged and the base drive
enabled. At this point the user can introduce desired forcing reference patterns. A stop
command, mains disturbance, or current overload will discharge the reservoir capacitor and
disable the base drive. The force reference pattern must be turned off before permission to start

can be reissued.
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The force reference input can be controlled with a local waveform generator providing d.c.,
sinusoidal, and triangular voltages. The force pattern can also be controlled through the digital to

analogue output of a computer.
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5.2 Results and Discussion

The experimental arrangement of Fig[5.11] was used to measure the static closed-loop
characteristics of the controllable muscle load. A load cell was connected horizontally between
the middle of the pull rod of the main assembly and a screw arrangement that was secured to the
rear of the main frame. A static force level was then set with the control d.c. voltage reference.
Various airgaps were produced, by adjusting the screw arrangement, and the corresponding force
was read from the calibrated load cell meter. This was repeated at ten different force levels. The
results obtained from this experiment are shown graphically in Fig.[5.12] and are tabulated in
Appendix [B3].

At large force levels and airgaps the effects of flux leakage are noticeable. These effects occur
despite the minor current control loop that is used to boost the response at large airgaps. Another
factor that contributes to this non-linearity is the geometric misalignment of the pole faces and
reaction plate throughout the total available airgap. This can be improved by including another
minor control loop using the position of the reaction plate as the feedback signal. A more
favourable approach, would be to re-design the main assembly such that the reaction plate
remained parallel to the pole faces during the stroke length, and/or to re-design the magnet for

minimal flux leakage.

As mentioned earlier, the inertia of the main assembly is 0.367 Kgm?. The effect of this on force
control is assumed to be negligible as visual position feedback is used to maintain approximate
isometric conditions. Visual position feedback helps to minimise any accelerations of the main
assembly, due to patient tremor for example, and as such will maximise the ease with which a

patient is able to perform a force pursuit exercise.

Frequency and time responses of the system were measured using an Ono Sokki CF-910 mini FFT
analyser. The input signal to Magload (channel A in the analyser) consisted of the d.c. reference
force level additively combined with 20Hz bandlimited white noise. The output from Magload
(channel B in the analyser) was taken directly from the flux force transducer mounted on the pole
face of the electromagnet. This transducer is linear up to 2.0T. Fig.[5.13] shows the input
reference voltage and the voltage measured from the flux transducer. Fig.[5.14(a)] to Fig.[5.14(d)]
show the frequency response of the system and the coherence function relating the test signal to
the output at increasing force levels. The frequency responses therefore represent the transfer

function between the delivered and demanded forces in the system.

5-10
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Fig.r5.12j Static closed—loop characteristic for MAGLOAD
showing a high degree of linearity between 5Smm and 30mm
airgaps at ten force levels.



The magnitude and phase plots exhibit some minor periodic resonances of unknown origin. They
may arise from coupling between the large inductance of the magnet and the mains reservoir
capacitor (LC = 1.25H x2000F = 0.05Hz). These resonances persist in the magnitude plots up to
the higher force levels whereas they are attenuated in the phase plots. The phase plots are almost
linear and roll off at -2.25°/Hz to -45° at 20Hz. The coherence remains high at all force levels
throughout the frequency range. Using a higher bandwidth noise it is found to go to zero at 50Hz

before returning to a high value and remaining above 0.75 up to 100Hz (not shown).

There is an improvement in the coherence functions as the d.c. force level is increased. This can
be attributed to a small limitation of the system. We recall that in Sec.[5.1.2] a forcing ratio of 1.5
was determined for the magnet-amplifier configuration. This suggested that a single-ended
transistor amplifier was sufficient to provide the required voltage forcing. This was, however, only
true at the maximum designed force and nominal airgap. In this particular system, the load voltage
Vi decreases at lower force levels and with decreasing airgaps. The implication of this is that the
forcing ratio increases and the current ripple in the magnet increases leading to lower values in the
coherence function. If this situation was detrimental to the performance of the system then the
circuit of Fig.[5.10(b)] would have to be used to maintain equal positive and negative current
forcing voltages across the magnet drive transistor. The PWM switching frequency was made as
high as possible (20KHz) to avoid substantial current ripple. Higher switching frequencies would
necessitate more complex drive circuitry to control the power dissipation in the magnet transistor

amplifier at turn-on, and particularly at turn-off.

Various forms of forcing are of interest in the study of the dynamic properties of muscle (see
Sec.[2.4]). Current research work in EMG decomposition and fatigue being conducted by the
author’s colleagues involves the use of Magload to provide accurate long duration ramp force
patterns. A small magnetic device based on the ideas behind Magload has been built by an
undergraduate student for testing the small muscles in the hand. This device uses a bobbin-shaped
electromagnet with tapered ends containing a cylindrical reaction piece passing through its centre
and lying along its vertical axis. Using a Class A drive amplifier, the magnet is capable of
providing static forcing levels up to 0.5N that remain nearly constant over a 2cm stroke length. It
should be possible to incorporate a flux or current feedback loop into this system to mprove

linearity and enable controlled dynamic forcing.

Fig.[5.15] shows a diagram of an improved magnet design that could be implemented in the future
in similar systems to Magload. The diagram shows a cylindrical magnet having an E-shaped axial
cross section. The coil is wound around the short central pole at one end of the hollow cylinder,
and the remainder of the cylinder contains a freely moving disc which would function as the

reaction plate. In this way the flux paths are restricted to the cylinder walls, the airgap between the
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Fig.[5.13] Demanded (top) and output (bottom) force voltage
waveforms. The demanded force pattern is d.c. + 20Hz
bandlimited white noise. The d.c. reference represents

a 20N static force level.
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Fig.[5.14(a)] Frequency response of the system at 2Kg
d.c. reference plus white noise.

TOP: Magnitude.

MIDDLE: Phase.

BOTTOM: Coherence function.
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Fig.[5.14(b)] Frequency response of the system at 4Kg
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central pole face and disc, and the airgap between the disk circumference and cylinder wall. If
airgap between the disc circumference and the inner surface of the cylinder wall is narrow, then
friction throughout the full stroke of the disc will be minimal because there will be an equal force
of attraction between the cylinder wall and the total disc circumference. The reaction plate
remains parallel to the pole face because of the circumferential force on the disk and the
geometrical constraints of the magnet construction. The latter and the constrained flux paths will
minimise flux leakage. Another advantage of this method is the 50% reduction in power
dissipation, yet producing the same amount of force as can be produced by an equivalent
U-shaped magnet. The use of a single pole implies that both the force F and airgap x will be
reduced by a factor of 2, so the power P will be reduced by a factor of 4. Hence, for the same force,
the current I must be increased by a factor of 2 which in turn increases the power by a factor of 2.

The effective decrease in the power will therefore be 50%.

From the above discussion, it is evident that there is virtually no restriction on the forcing
protocols that can be designed with Magload and more flexibility is obtainable under computer
control. Magload will faithfully and repeatedly reproduce demanded force patterns, and it will
also provide a direct measure of the force produced. The main disadvantage of the current
Magload system is its expense and weight. Fig.[5.16] shows some of the interactions that are

possible with the Magload system.
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Fig.[5.16] Illustration of some of the useful subject
interactions with the MAGLOAD system.



Chapter Six

Features and Uses of Brainstem Auditory Evoked
Potentials (BAEPs)

6.1 Introduction

Physical orsensory stimulation of the human peripheral nervous system and/or some psychological
process wil, under normal circumstances, result in changes to the on-going electrical activity of the
central nerous system (CNS). These variations in voltage are known as event related potentials
(ERPs). Eoked potentials (EPs) are ERPs that follow a sensory stimulus. Emitted potentials
occur in tle absence of any evoking stimulus and are normally associated with the cognitive

function of he CNS.

ERPs are generated by a polarisation of charge across the membranes of cells in the nervous
system. Tly can often be seen as a wave or group of waves in the electroencephalogram (EEG)
even when recorded on the cortex at a distance from their origin. The morphology of the
measured jotential depends on the geometry of the active membranes with respect to the
recording ste(s), on the synchronisation of activity between cells, and on the impedence of the
volume corductor in which the cells are active. Amorphous collections of cells and/or little
synchronisaion between the cells, makes it difficult to record potentials at a distance. Therefore,
ERPs offera limited (though useful) look at the processes of the nervous system. Furthermore,
overlappingpotential fields from different groups of simultaneously active cells make it difficult to
distinguish between those measurements that are associated and are not associated with the

evoking eveit.

Most ERPs are indistinguishable in routine EEG recordings because of their inordinately low
amplitudes (0.1 to 2. V) and the interference of background cerebral electrical activity and
electromyogaphic (EMG) artifacts (Chiappa, 1982). Isolation of the ERP from overlapping
potentials gnerated by cells that are not related to the event is usually performed by filtering and
averaging. iltering usually involves restricting the frequency response of the recording system to
those frequncies present in the ERP. Averaging exploits the non-stationary time locked nature of
an ERP wit its related stimulus and assumes that background EEG activity is a stationary random

noise proces that will be uncorrelated with both the ERP and the stimulus.
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The information contained in the structure of features (feature events or waves) in averaged
sensory EPs provides important insights into the sensory systems that is not available through other
clinical tests (Picton, 1988). A major use is in the assessment of the neurological condition of the
sensory receptor. The presence or absence of EP waves and their latencies are the primary
characteristics used in clinical interpretation. The presence of a normal EP generated by the brain
is reasonable evidence for correct function in the peripheral receptor. Absence of a normal EP is
indicative of pathology in the sensory end-organ, the generator mechanism for the EP, or the

neural pathways between them.

Over the past decade, several methods have been developed to study the EP. Of these,
pattern-shift visual, brainstem auditory, and short-latency somatosensory EPs have come into
routine clinical use and are now firmly established as valuable clinical tools. EPs are widely used
to assess hearing in infants who cannot respond reliably in behavioural tests (Picton, 1988). They
are also used to confirm the presence of lesions in the sensory system when demyelinating disease
(e.g. in the optic nerve) is suspected because of indications in another area of the central nervous

system. This is particularly relevant to:

e the diagnosis of multiple sclerosis,
determination of the anatomical distribution of a disease process, and

® monitoring continuously the integrity of a pathway that cannot be examined clinically
because of anaesthesia (Chiappa, 1982; Halliday, 1982; Colon et al., 1983).

Therefore, EPs will often be used to study patients with multiple sclerosis, nervous system
tumours, trauma and stroke. EPs also have important uses in intra-operative monitoring
procedures, and in intensive care environments, as well as in infants whose sensory systems cannot
be accurately assessed. These tests provide sensitive, quantitative information complementing

standard clinical neurological examination.

In this study the author has developed a procedure to analyse the short latency acoustically evoked
brainstem electrical acivity or brainstem auditory evoked potential (BAEP). Therefore, the
remaining section of this chapter presents a simple description of BAEP-related physiology,

recording techniques, and clinical uses.



6.2 Brainstem Auditory Evoked Potentials (BAEPs)

This section provides a general appreciation of the physiology and uses of the BAEP in auditory

investigations.

6.2.1 Origin of BAEP Components

The output of the cochlea and VIII nerve can be examined using techniques pioneered by
Portmann and co-workers in the late 1960s (Halliday, 1982). The more central connections of the
VIII nerve comprised of brainstem pathways provide the BAEP potential in response to an
acoustic transient (click) which is generated by passing a 0.1 msec pulse through shielded
headphones. The BAEP is most effectively obtained with a high intensity click stimulus and can
contain up to seven components within the following 10ms. These are labelled I-VII according to
Jewett’s (1970) classification. There is considerable evidence that at least the first five components
correspond to the successive activation of peripheral and pontomedullary (cochlea, spiral
ganglion, and eighth nerve), pontine (cochlear nucleus, superior olivary nucleus, and lateral
lemniscus tracts and nuclei), and midbrain (inferior colliculus) portions of the brainstem pathway
(Stockard et al., 1978). Volume-conducted acoustic nerve and brainstem potentials recorded with
electrodes at the vertex (electrode, Cz) and mastoid (electrode, Ai) are shown in the diagram of

Fig[6.1].

The precise correlations of scalp-recorded BAEP components with deep sub-cortical structures
are unknown (Stockard et al., 1978) and they are certainly more complex than is suggested by
Fig.[6.1]. The BAEP generators within the brain might be serially or non-serially linked,
simultaneously active, or have sustained activity. Hence there cannot be a direct correspondence
between different componenets in the BAEP and different anatomical loci. However, the degree
of correspondence that does exist, permits one to use the latencies of the early wave components
I-V as indirect measures of sensorial registration of the stimulus along the brainstem pathway.
More precisely, the inter-peak latency (IPL) of waves I and III is a measure of conduction in the
extra-axial and pontomedullary segments of the auditory pathway and the ITI-V IPL is a measure

of conduction in the more rostral pontine and midbrain segments of the pathway.

Wave I of the BAEP is a negative potential recorded at the ear being stimulated (the ipsilateral
side). This is a manifestation of the VIII nerve action potential generated in response to the click
stimulus in the segment of the nerve near to the cochlea. Waves II and III are thought to emanate
from the cochlear nucleus and superior olivary complex respectively. There is some evidence
(Buchwald et al., 1975) that wave II is connected with the VIII nerve since this component

disappears when connections of this nerve to the brainstem are destroyed ipsilaterally, but not



Fig. [6.1] Diagram of normal latencies at BOdBSL for components Ithrough
VIL. Lesions at different levels of the auditory pathway tend to produce
response abnormalities in the components, althougth the affected
component(s) does not specify the precise generator(s) of the response
(taken from Stockard et al., 1977).



contralaterally. The generator sites for components IV and V are difficult to locate. Lesions in
the mid and upper pons, in the region of the lateral lemniscus and inferior colliculus, produce
abnormalities in both waves but do not stop the generation of either. The majority of workers in
this field appear to agree that there is no complete answer available yet. In terms of clinical
interpretation however, there is no difference between the two possibilities as they lie so close to
one another (Chiappa, 1982). It is unknown whether the BAEPs reflect activity of groups of
neurones or the action potentials in fibre tracts or a combination of both. A further complication
regarding BAEP generator locations is that the surface recorded potential components are the
summation of electrical activity of many thousands of neurones and their processes. The
electrically active sites are dispersed in anatomically discrete nuclei and tracts between which

there is much interaction.
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622 Methods of Recording BAEPs

In routine clinical practice, patients should be tested in the supine position and sedated whenever
there is significant artifactual muscle activity. Ideally the patients should be asleep. To record
BAEDPs, repeated clicks at about 10 Hz (to avoid mains synchronisation) are generated in high
quality shielded earphones as described earlier. Monaural stimulation is used because normal
responses from one ear can obscure abnormal responses from the other during binaural
stimulation and so the contralateral (nonstimulated) ear is masked with white noise. BAEPs are
normally recorded with rarefaction (where the initial movement of tymphanic membrane is
outward) or, their opposite, condensation clicks. Different polarities produce different wave
morphologies, amplitudes, and latencies, and on some occasions the BAEP is pathological with a
single click polarity only. Alternating clicks can cancel stimulus artifact and cochlear
microphonics (a nerve action potential prior to wave I) since these are click-phase sensitive.
However, this is not used routinely because the waves produced are an average representation of

the waveforms elicited with either polarity alone.

Electrode derivations (montage) for BAEP measurements conform to the international 10-20
standard. One electrode is placed at the vertex Cz, and the other two are placed over the primary
auditory areas left and right, on or in the region of the earlobes ipsilaterally Ai, and contralaterally
Ac.

Due to the extremely small amplitudes, which range from 0.1 to 2V, between 1000-4000
responses are measured for averaging. At least two similar averages must be obtained from each
ear, thus providing a simple estimate of the reliability of the recording. The decision as to how
many responses to average is determined by the degree of inter-trial variability of IPLs; the I-III,
ITII-1V, and I-V IPLs should not vary by more than 80usec at most between trials. If they do, then
louder clicks and/or patient sedation should be used (Stockard et al.,1978).

If the intertrial criteria for reproducibility is met then the measurements will almost always be
made from the sum of the averages in each trial. Fig.[6.2] shows the 95% confidence limits for
normal BAEP wave component latencies at various intensity levels (obtained from Wessex
Regional Audiology Centre). Stimulus intensity is adjusted to 60-70 decibels above sensation (or
hearing) threshold level (dBSL/dBHL). The contralateral ear is masked with 30-40 dBSL white
noise. The stimulus intensity has a large influence on the BAEP. Decreasing the intensity,
produces a longer latency and a decrease in amplitude, especially of waves II, IV, and VI. In cases
where there is difficulty in identifying wave V (or the IV/V complex), reducing stimulus intensity to
0-10 dBSL may help to identify this component since it is selectively preserved near threshold.
Because of this, the plot of Wave V Latency as a function of Stimulus Intensity is used to
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characterise the BAEP. Fig.[6.3] shows the persistence of wave V at low intensity levels. The
complete test, at several intensity levels, should take one hour to complete and possibly up to two

hours in an intensive care unit.

6.2.3 Clinical Uses of the BAEP

Non-pathological factors such as age, sex, temperature, and technical factors such as stimulus rate,
stimulus polarity, electrode derivations, and amplifier filter settings can affect the morphology of
the BAEP. It would be out of context to expand any further on this matter save to say that with
constant test conditions reproducibility can be excellent making the BAEP an important
electrophysiological test. Stockard et al. (1978) provide a thorough treatment of the
non-pathologic factors influencing BAEPs. The clinical interpretation of BAEPs is based almost
entirely on the IPLs which reflect conduction properties of the brainstem auditory tract. IPLs are
seldom affected by changes in the stimulus intensity and disorders of the peripheral hearing

apparatus, although the absolute latencies of the wave components are affected.

[A] Multiple Sclerosis

Brainstem auditory evoked potentials may reveal a clinically unsuspected demyelinating lesion as
in multiple sclerosis (MS). Though pattern-shift visual and short-latency somatosensory EPs
provide better diagnosis because of their less complex morphology, the stability of wave V in the
BAEDP lends itself equally well to identification and interpretation in MS. Robinson et al. (1982)
investigated MS using binaural stimulation and recording from two channels of the standard
BAE-P electrode montage. They tried to identify component V in all records, arbitrarily defining it
as being the most negative-going potential in the latency range 5.5-10 msec. Three types of
abnormality in the BAEP were found to exist with the occurrence of MS. First, there is an
increase in wave V latency and the earlier components may lie within normal limits. Second, acute
degradation of the BAEP makes wave V identification impossible, despite clear post-auricular
muscle reflex and middle-latency components. Finally, wave V has a greatly reduced amplitude in

comparison with a normal and well formed component II1.

[B] Acoustic Neuromas

This is a tumour arising on the VIII nerve and usually causes deafness. It is the most common of
the space-occupying lesions in the cerebello-pontine angle. The detection of these lesions is of
considerable importance as the tumours are usually benign and can be removed with little trauma
when detected at an early stage. The BAEP in some patients with acoustic neuromas do not
contain a wave I and the I-III interval cannot be determined. In these cases it is necessary to use

an external auditory canal needle electrode in an attempt to demonstrate wave 1. In a group of 25
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patients with acoustic neuromas and five with cerebello-pontine angle meningiomas, all had
abnormal BAEPs on the side with the tumour. Five had normal CAT scans and two had normal
standard audiometric findings. The incidence of false-positive tests was low, i.e. a pronounced
abnormality in the I-III or I-IV IPL without a tumour detected with radiographic contrast study of
the posterior fossa. Patients with large acoustic neuromas may also have BAEP abnormalities of
the III-V IPL after stimulation of the contralateral ear. This is thought to be caused by the
complex distortion and cross-compression of brain-stem structures. The condition improves after

removal of the tumour (Chiappa et al., 1982)
[C] Other Nervous-System Diseases and Uses

BAEP abnormalities have been reported in other diseases of the myelin and various
leukodystrophies. Discases connected with the degeneration of the spinal dorsal-root ganglia,
axons, and posterior columns (e.g. Friedriech’s ataxia and Charcot-Marie-Tooth disease) exhibit
abnormal BAEPs. Chiappa et al. (1982) postulate that the same process of degeneration occurs in
the auditory system homologues of these structures, viz. the spiral ganglia, the auditory nerve, and
its central connections. The BAEP has proved useful in assessing the irreversibility of brain
damage resulting in coma due to anoxia, hepatic failure, or drug abuse. Starr (1976) studied
patients certified clinically brain dead i.e. having no vestibulo-ocular reflex, no pupillary reactions,
and no spontaneous respiration. In these patients any auditory evoked potentials originating from
brainstem structures (waves II-V) were absent. Wave I, from the VIII nerve, was present, but with
prolonged latency. High doses of anaesthetic agents (and barbiturates) do not seriously alter the
BAEP, even when the electroencephalogram is isoelectric. Hashimoto et al. (1980, 1981) have
reported using the BAEP to monitor the hazardous procedure of posterior fossa surgery, e.g. on
the arterial tree. Another area of much attention is the use of the BAEP in paediatric
applications. Screening for hearing defects is more easily performed electrophysiologically in
infants because the conventional behavioural hearing tests may not be practicable. Several
investigators have reported the use of BAEP monitoring in sudden infant death syndrome (cot

death) and mental retardation.



Chapter Seven
Quantitative Analysis and Interpretation of EPs

The first half of this chapter will consider some analytical methods that have been developed to
study EPs, and will highlight some of the obstacles that need to be surmounted. The interpretation
(ie. labelling or scoring) of the EP waveform is then considered. This leads on to a brief
discussion of knowledge based systems and their possible application in the problem of

interpreting and scoring the EP.

7.1 Introduction

The simplest model of an EP consists of the sum of an invariant (non-stationary) signal and
random noise. In this model the noise is assumed to be primarily due to background EEG activity
that is uncorrelated with either the stimulus or the noise from another application of the stimulus.
This additive model accounts for biological artifacts, such as high frequency EMG activity, and

non-biological instrumentation and electromagnetic interference (EMI) noise.

It is worth noting that the EP model differs from the model of interference and needle EMG, in
that the EMG exhibits statistical stationarity similar to that of the additive noise. In the latter case
the noise is mainly non-biological and due to EMI. Another difference between the two models is
that the signal to noise ratios (SNR) are not comparable. EP feature extraction and analysis
techniques are hampered by the low SNR obtainable in single responses and they are encouraged
by the fact that significant features are deterministic. The converse is true for EMG analysis
techniques (see chapter two). It is because of these fundamental differences that one rarely
applies the approaches adopted in EMG analysis to EP analysis, unless the problems of low SNR
in the EP are dealt with carefully prior to, or during analysis.

In the previous chapter we saw that ensemble averaging is used to extract the EP signal from
additive noise, and is based on the prior assumptions of the simple EP model mentioned above.
This provides an unbiased estimate of the signal at increased SNR which improves as the number
of single response EPs contributing to the average increases. The assumption of an invariant
signal implies that the population of cells which generates the EP responds in the same way to each
occurrence of the eliciting stimulus. The assumption is a reasonable one for some, but not all
cases. Changes in the degree of adaptation and habituation and level of attention and fatigue can

affect the EP, particularly in late waves that are usually associated with higher cognitive function.



Therefore, the same stimulus can evoke different responses resulting in variations to the latency
and/or amplitude of the EP. For such cases, biased estimates with lower than expected SNRs
result from averaging the signal (Ruchkin, 1988).

It is now a generally accepted premise that EP signals do exhibit variability (Aunon et al., 1981).
Although one of the most important problems in EP research is still signal extraction, more
recently there has been an increased interest in the determination of the variability associated with
the signal (Madhavan et al., 1985; McGillem et al., 1985).

The effect of latency variation upon the averaged signal waveform resembles that of a low pass
filter, since attenuation of fine-detail, high-frequency activity occurs. Ruchkin has shown
mathematically (1965) that this phenomenon can be expressed in terms of a linear filtering
operation. The original signal corresponds to the filter input, the latency-blurred average
corresponds to the filter output, and the filter’s frequency response is the Fourier transform of the
probability density function of the latency. He states that if the effective range of latency variation
is T seconds, then there will be heavy attenuation of the average signal waveform at frequencies

above /21 Hz and relatively little attenuation at lower frequencies.

It may be desirable to reduce the distortion caused by latency variability if the features of interest
are seriously obscured. The possibility of achieving this depends on whether the SNR is sufficiently
high, so that the data can be effectively analysed on a single response (i.e. single trial) basis before
averaging, thereby permitting extraction of signal latencies and quantification of the variability on a
trial-to-trial basis.
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7.2 ERP Estimation by Latency-Corrected Averaging

Computation of averages by this method requires filtering single trials, estimating the latency of
features, and then aligning the corresponding features by shifting each trial in time. The alignment

procedure is followed by averaging across trials to produce the latency-corrected average (LCA).

Woody (1967) and McGillem and Aunon (1977) have developed methods for LCA. Woody’s
method has been employed by several laboratories and the latter method is beginning to obtain
wider clinical use and evaluation (Ruchkin, 1988). The descriptions given below refer to the more

general ERP signals.

72.1 Method 1 (due to Woody):

This method uses adaptive correlation detection. The approach cross-correlates a template
representative of the ERP under study with single trials of the response in order to estimate the
latency of significant features. The single trials are then corrected for their individual latency
variations whence a new average response is computed. The conventional average is chosen as the
initial template. Iterations with each new LCA can be done until no further improvements are
obtained. The convergence criterion is based on the average of the cross-correlation coefficients

between each trial suitably shifted by its estimated latency and the template.

There is no guarantee of convergence for the process. Woody’s simulation studies determined that
(a) convergence to the true ERP response waveform occurred if the rms SNR was greater than 0.2,
and (b) the choice of initial template was not critical. Ruchkin (1988) has found that the rms SNR
should be above 0.4 to 0.5 for reliable convergence to occur. The performance of Woody’s method
can be improved by prefiltering the data, thereby increasing the SNR. Tukey (1978) suggests
prewhitening the data and template in the pass band, thereby increasing the fidelity of the peak of

the cross-correlation function. It is not known whether this suggestion has been implemented.

The Woody procedure is capable of compensating for shifts in the latency of the entire waveform
but cannot cope with random shifts in the individual components of the ERP. Furthermore, the
possible existence of strong components such as alpha waves, causes the Woody procedure to align
to them (Aunon and Sencaj, 1978). Also, this procedure can produce, from noise-only data, LCAs
that appear to contain perfectly plausible signals (McGillem et al., 1985; Ruchkin, 1988).



72.2 Method 2 (due to McGillem and Aunon):

This method was devised to overcome limitations of the method due to Woody described above. It
is non-iterative and deals with multiple peaks in the analysis epoch. The LCA procedure is aided
by initially filtering the single trials of ERP data with a Wiener-like minimum mean square error
filter which selectively attenuates at those frequencies where the SNR is low. After filtering, the
peaks in the ERP are found by cross-correlating the single trials with a template having the general
shape of the peaks. Histograms for the number of peaks found at each latency (sampling point)
are constructed for both positive and negative peaks. Positive peaks add one unit to the positive
peaks latency bin and negative peaks subtract one unit from the negative peaks latency bin. These
two latency bins together constitute a polarised histogram which is then subjected to a running

average over the analysis epoch.

The zero crossings of the running average provide estimates of the boundaries of the latency range
of positive and negative peaks in the ERP. A nonparametric sign test at a specified confidence
level is used to reject the null hypothesis that the samples in the latency ranges are drawn from a
zero mean population (McGillem et al., 1981). In another report (Aunon and Sencaj, 1978), the
parametric student’s t-test is used instead, to test the hypothesis that the samples are drawn from a
zero mean normal distribution. This procedure partitions the latency interval into regions of
significant ERP component activity. For each significant region, the responses containing an
identifiable peak in that region are aligned, so that peaks coincide. The latency-corrected
waveforms are then averaged over a specified range in the vicinity of the peak, and the result is

reproduced at the mean latency for that particular component.

Statistics of the latencies of the peaks in each LCA segment provide measures of component
variability. Since the latency variability for each component is different, and there can be
differences in the set of trials that contribute to the LCA of each component, the LCA of the
whole waveform is reproduced as a series of disjoint LCA segments over time. Some components

may be omitted if the significance tests failed to reject the null hypothesis.

For the two methods outlined above, it is not known in general how much error in latency
measurements may be introduced. Simulation studies by the authors of method 2 suggest that
reliable results are obtained for rms SNRs at or above 0.5 (-6 dB) and that relatively flat polarised
histograms are produced with noise only data which can be readily distinguished from data with a
signal content.
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Ruchkin (1988) states that the ability of method 2 to cope with (a) multiple component variability
and (b) not needing a starting cross-correlation template as with method 1, are the major criteria
that will make method 2 a more satisfactory technique for dealing with variable latency data.
Somehow, it was overlooked that there is still the need to specify a peak detection template,

hypothesis testing significance levels, and component averaging ranges.

In a recent paper, the authors (McGillem et al., 1985) have reported an improvement to method 2
by converting the disjoint LCA segments into a smooth curve using least-squares fitting of power
series (i.e. Chebyshev polynomials or Fourier series). However, where components were omitted
in the LCA generation stage, the approximating functions behaved erraticaily and required the use
of various compensation techniques. The compensations included the use of the conventional
average as an approximation to missing components. Using invariant simulated data embedded in
noise at different SNRs, the authors claim that the computed measures of latency variability are
accurate to less than one sampling interval. This appears to suggest that computed variability

measures using LCA are entirely due to the signal and not due to the ongoing EEG noise.



7.3 ERP Estimation by Digital Filtering

Averaging is a means of reducing additive noise interference. Noise attenuation can also be
obtained using linear digital filtering techniques. Since linear filters are frequency selective, they
can improve the SNR when the signal and the noise do not occupy the same frequency bandwidth
and the noise model is additive. Filtering will not generally reduce variance in amplitude and
latency of components when noise modulates the signal randomly (e.g. through random
fluctuations in membrane potential and the metabolic state of the generator cells). The major

benefits of simple linear filtering of ERP data are:

® A reduction in the number of trials used to obtain clear average responses thereby
minimising the effects of habituation etc. and random noise modulation.

e Single trial measurements are possible in situations of high SNR and high frequency
separation of signal and noise (e.g. with slow late waves associated with cognitive ERPs
such as the N200 and P300).

o Digital filters can exhibit zero phase shift distortion and input data need not be
irrevocably transformed.

The use of filters for smoothing the average ERP can be done on either the individual trials before
summation or simply on the average alone. Both these will produce the same result since the
operations of averaging and filtering are both linear. If an estimate of the latency variability of the
filtered data is required, then the data must be filtered on a trial-to-trial basis because the variance

computation is non-linear (Ruchkin, 1988).

There are three types of filters that are commonly used in ERP estimation. The first may be called
conventional digital filters which achieve their action by computing a weighted sum of amplitudes
over a finite range of adjacent sampled data points of the input. These are known as finite impulse
response (FIR) filters (Lynn, 1971). The second are called recursive or autoregressive and are more
sophisticated conventional digital filters that generate output values by operating on both the
weighted input and previous output data points. These are known as infinite impulse response
(IIR) filters (Lynn, 1977; Taylor and MacFarlane, 1974). Implementation of IIR and FIR filters
requires the specification of the weighting function used. The discrete Fourier transform of the
filter weighting function is the frequency transfer function of the filter. Therefore, one may use a
rough knowledge of signal and noise spectra when formulating a filter weighting function. The
main advantage of the above types of filter is the computational economy and the possibility of

implementing these filters on-line. The main disadvantage is that the specification is largely
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pragmatic and empirical. The filters are not optimal in the sense that noise interference is only
reduced to a pre-determined minimum for stationary noise. In fact the noise and signal

characteristics may change over time from one stimulus delivery to the next.

The third type of filter used in ERP estimation attempts to reach optimal noise rejection
performance in each trial by minimising the expected mean square difference between the filter
output and the actual signal. These a posteriori Wiener-like filters (McGillem and Aunon, 1977;
De Weerd and Martens, 1978; Ruchkin, 1988) assume that:

both signal and noise processes have stationary statistics,

signal and noise are uncorrelated,

the analysis epoch is of infinite duration, and

the power spectra of the signal and the noise are known exactly.

The transfer function of such filters G(jw) is given by S(juw)/(S(jo) + N(jw)) where S(jw) and N(jw)
are the power spectra of the signal and the noise respectively. From this relationship it is seen that
G(jw) attenuates heavily at frequencies where the noise power is greater than the signal power and

approaches unity in the reverse situation.

The application of a posteriori Wiener-like filters (APWF) to ERPs is obviously less optimal than
is suggested by the transfer function G(jw) and the assumptions associated with its formulation.
ERPs are transitory, generally having high frequency, short duration and short latency components
and low frequency, long duration and long latency components. Furthermore, the analysis epoch
is, of course, finite. The effectiveness of APWEF is further limited by the fact that only the power
spectrum [S(jw) + N(jw)] is measurable directly. The individual component spectra must be
estimated from the average spectrum of the individual trials and the spectrum of the average.
DeWeerd (1981) points out that this method of spectral estimation is only valid for deterministic
signals and is therefore at odds with the APWF assumptions again. Additionally, he states that the
SNR must be high before the estimates can be considered close enough to the true signal and true
noise spectra for a reliable determination of G(jw). This situation can only occur with prolonged

averaging of ERPs, which in turn descreases the initial need for APWF.

The transitory nature of an ERP results in the power contribution of high frequency and low
frequency components being averaged over the entire analysis interval. This happens because the
transients do not usually occupy the entire interval, and so the power is underestimated. DeWeerd
(1981) has suggested the use of his time varying a posteriori filter (TVAP) to take into account the
transient property and corresponding temporal power distribution of the ERP. TVAP has been
formulated to operate on the averaged ERP only; hence it is intended exclusively for smoothing

and cannot be used for latency variability measurements.
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McGillem and Aunon, (1977) employ Wiener’s minimisation of the squared error between the
signal and its estimate in their MMSE filter (Sec.[7.2.2]). The MMSE filter derivation depends on
the general Wiener assumptions already mentioned, apart from the finite duration of the ERP,
which is accounted for. This filter was developed for use on single trial ERPs and not on average
ERPs, and so it is possible to use it for latency variability investigations. Its use in this respect is
adequate provided that the latency variability does not render the average ERP an invalid estimate
of the single trial responses (Ruchkin, 1988).

No one is currently in a position to state which type of filtering technique discussed above is best
for ERP estimation. Cariton and Katz (1980) and Boston (1983) have compared the performance
of a posteriori filters and conventional digital filters. The results of these studies were obtained
from simulations, somatosensory ERPs, and auditory brainstem ERPs, and indicate that the time
invariant a posteriori filters are not, or are only marginally, better than conventional filters. TVAP
may offer a better performance over conventional filters, but this remains to be seen (Ruchkin,

1988).



7.4 Computer Identification of Features in BAEPs

Some of the ideas behind the ERP estimation methods described above are the basis of automatic
BAEDP feature extraction techniques reported in the literature. Several reseachers have attempted
to analyse the average response to locate significant wave components (Gabriel et al., 1980;
Fridman et al, 1982) without much success except in the simpler cases where the wave
components can be visually separated. The common element in all these techniques is to maximise
SNR in the average BAEP, thus making it sufficiently clean to be examined by an algorithmic peak

detection processor.

The problem that one often faces is that the BAEP components can be embedded in residual noise
thereby making the peak location inaccurate. Gabriel et al. (1980) filter their data using a
quadratic, seven-point, least squares fit. They then use zero crossings in the derivative of the
filtered data with time windows to locate and label (according to Jewett’s (1970) classification) the
BAEP features. The placement of these windows in time and their width is based on normal
latency values obtained from the literature. It has been reported that a 98% peak detection
accuracy for waves I, III and V can be achieved to within +2 sampling points with 65-75 dBHL
BAEP data. They where unable to resolve the IV/V complex however, and go on to say that peaks
that are not clearly defined in the average are still generally recognised as the appropriate peaks,
even though they may not be labelled correctly. These inadequacies have not been considered to
be a problem as they suggest (for normal data only) that their algorithm can be useful in training
personnel in the identification of BAEP waves, and that it can provide a check against the
judgement of experienced examiners. In our experience, the detection and localisation of BAEP
waves requires additional knowledge besides that obtainable through an examination of the

averaged response only. This is due, of course, to the variability of the data across trials.

Fridman et al. (1982) used an informal approach to the filtering of BAEP data before the
detection of peaks. BAEPS were optimally filtered on a subaverage-to-subaverage basis. The total
number of trials used was 2000 with each subaverage containing 200 trials. Fridman et al.
reasoned that the SNR is largest over the frequency range in which the phase variance of the
power spectra of single subaverages is the smallest. The same reasoning was applied to the ratio of
the amplitudes of total averaged data and subaveraged data power spectra. The passband was
defined to lie in the region of maximum SNR as determined by these criteria. Peak detection was
done simply on an examination of the zero crossings of the derivative of the filtered sequence with
no indication as to how the components were labelled correctly. It would appear from their results
that exactly five components had to be found before being serially assigned the labels I-V. The

filtering procedure was therefore being used, and relied upon, to extract the exact number of
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components expected in a BAEP. It is difficult to see how such a technique can be used to resolve
complex components and to distinguish between multiple peaks in the vicinity of any single
component. Nevertheless, the resulting amplitude and latency statistics obtained from the filtered

data were reported to be significantly more reliable than those obtained from unfiltered data.

In their paper on the evaluation of BAEPs using dynamic time warping (DTW), Picton et al.
(1988) give a brief insight into the true complexity associated with the automatic selection of
BAEP components. Their DTW technique provides a simple means of demonstrating differences
between waveforms by stretching or shrinking portions of one temporal sequence to make it
similar to another reference sequence. The reference template waveform was constructed from
the hierarchical combination of pairs of normal BAEPs by DTW. This normal template is then
used to assess the morphology of test BAEPs by determining the amount of warping necessary to
fit the test BAEP to the normal template. Distortion measures obtained from this procedure are
then used in conjunction with the location of peaks in the normal template to identify peaks in the

test BAEP.

Picton et al. used three approaches to identify peaks of the BAEP: First, manual peak
identification was used, which, as the authors’ quite rightly state, is simple to perform and quite

difficult to describe. However, in normal waveforms, waves I, III, and V were identified as follows:

® Wave I was identified as the most prominent peak after 1.2 msec and before the waveform
moved negatively towards the baseline.

® Wave III was the first prominent peak occurring at least 1.5 msec after wave 1.

® Wave V occurred at least 1.3 msec after wave III as the most prominent positive wave or
the second of two prominent positive waves or the last positive wave prior to the
waveform moving negatively towards the baseline. This disjunction of conditions is
probably an attempt by the authors’ to home-in on the elusive wave V in the possible
presence of a wave IV/V complex and/or early wave VI.

® The procedure is complemented with an identification of the waves in the reverse
direction in time, starting with wave V as the most prominent positive peak preceding the
most prominent negative-going shift in the waveform after 5.0 msec.

In cases of ambiguity, additional information was obtained from a comparison between the
ipsilateral and contralateral recordings. Additionally, the effects of changing the stimulus intensity
or rate of stimulation were used to determine the exact location of the waves. Wave V should
remain visible and shifted towards a longer latency at lower intensities and faster rates
(Sec.[6.2.2]). Waves I and III are larger in the ipsilateral recording and wave 1 is readily observed

at high intensities and slower rates.
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The second peak detection approach adopted by Picton et al. was that of Fridman et al. (1982)
using zero crossings of the filtered BAEP. This method has already been described above.
Finally, the DTW technique was used against a normal template.

Results of the second and third approaches measured against the manual approach in 96 normal
BAEPs showed that the zero crossing method obtained errors of 1%, 3% and 26% in the detection
of waves I, III, and V respectively. The DTW approach produced corresponding errors of 0%,
2%, and 26%. In 40 abnormal BAEPs, the error values were 3%, 13% and 60% for the zero
crossing method and 5%, 3%, and 18% for the DTW method. The most common errors for the
DTW method were cited as being the selection of wave VI instead of wave V, the selection of the
second wave in bifid components, the inability to resolve the IV/V complex, and the inability to
distinguish between cochlear-microphonics (Sec.[6.2.2]) and wave I. The most common errors

encountered in the zero crossing method were as suggested in the description given above.

Many approaches to BAEP peak identification do not examine responses at the single-trial or
small subaverage level to reject artifacts which will affect the identification process. The rejection
of artifactual activity is important (Schulman-Galambos and Galambos, 1975), and is normally
performed manually by simply halting data acquisition whilst observing the accumulation of the
average on the CRT screen. The removal of offending trials should be performed on an automatic

basis when considering computer-based peak identification.

Feature extraction in BAEPs using the procedural (algorithmic) or deterministic techniques
encountered in the discussions so far, seems unlikely to attain the levels of reliability necessary for
routine clinical use. The complexity involved must suggest a re-evaluation of the decision models
used. The complexity will obviously increase in situations of abnormal morphology of the
waveform, where irregular shifts in the latency of components, multiple components, and/or the
absence of components can occur. A problem exists in the special case of BAEP feature
identification because the qualitative information contained in the BAEP is difficult to describe
quantitatively. A personal view is that in order to allow the analysis of BAEPs to provide both
qualitative as well as quantitative information, it is necessary to couple the powerful algorithmic
techniques available on the one hand, with symbolic interpretation techniques on the other. This
view also applies to other ERPs. The algorithmic methods can be used to extract quantitative
values and symbolic descriptors of the data. These symbolic descriptors can then serve as the
database of facts upon which a knowledge-based system (KBS) will perform reasoning for

qualitative interpretation of the data.
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Research work that will be described in the next chapter addresses the problems associated with
BAEP analysis with the above thoughts in mind. A method called ‘Event Analysis’ has been
developed to identify and characterise the important waves contained in the BAEP. In this study,
wave components are identified by analysing the ensemble of responses that comprise the
averaged BAEP. The results from a group of analysis procedures are then interpreted by a
prototype knowledge-based, or as it is sometimes called, expert system. This expert system (ES)
contains some of the subjective methods of decision making that a human expert might use to

locate the best possible position of wave components (see Appendix [C1]).

The foregoing discussions have pointed out some of the important underlying characteristics of the
BAEDP that arc of interest to the clinician, mainly with respect to the extraction of the latency
variability of wave components. ‘Event Analysis’ provides these quantitative statistics. Additional
information using these statistics is inferred for the construction of new average waveforms. The
new averages are obtained by separatating single trials into homogeneous sets of those trials which
contain specific combinations of significant peaks. The selection of the group of significant peaks
in the initial set is currently performed manually. Ultimately, this initial set will comprise those
peaks that have been selected by an enhanced and validated version of the prototype ES.

The author’s first thoughts on the implementation of an ES were directed towards the
interpretation of quantitative results from some standard and widely used EMG and/or EP
analyses. The large amounts of data and qualitative results available for normal subjects, made
these areas good candidates to commence investigations involving the intelligent interpretation of
the results from various analyses. Later, it became apparent, through the author’s work on BAEP
analysis, that an ES approach could be used for qualitative BAEP feature extraction and
interpretation. The ideas that are behind the prototype that was constructed, can nevertheless be
applied in simple EMG data interpretation. Moreover, the techniques of Artificial Intelligence
that are now available, can be applied to the planning of EP and EMG data analysis procedures
(Fuglsang-Frederiksen and Jeppesen, 1987; Andreassen et al., 1987).

The implementation of the prototype ES for BAEP interpretation (called EPAXIS) was carried
out at the Turing Institute (Glasgow, Scotland) during a period of secondment from Leicester
University between October 1987 and January 1988. The system was implemented in Quintus
Prolog (Ver. 2.0) under Unix BSD 4.2 on a Sun Microsytems 3/50 minicomputer. It was later
ported onto an IBM PC-AT in SD-Prolog (Ver. 1.2) under MS-DOS 3.30 (Appendix [C2]). The
research work conducted at the Institute is reproduced in the publication included in
Appendix [C1]. What follows is a brief description of knowledge-based system techniques, some
of which were used in the construction of the prototype ES. This description should help to clarify
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the implementation details contained in Appendix [C1]. A similar description was included in a
specification for expert system techniques in quantitative EMG analysis for the EMG-equipment
manufacturer Medelec Ltd (Woking, Surrey) in 1985.
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7.5 General Knowledge-Based System Concepts

Knowledge-based systems behaving in an apparently intelligent way have evolved over the last
decade (Kulikowski, 1980). Both KBSs and conventional computer programs have knowledge
about the problem domain and information on how to manipulate that knowledge. The distinction
lies in the manner of representation of the knowledge used. Conventional programs have implicit
knowledge, that is usually opaque, about domains that are static and formalised. KBSs have
explicit knowledge, that is transparent, about domains that are usually subjective and judgemental.
Central to a KBS is an inference mechanism which uses the knowledge contained in the
knowledge-base (KB) to reason about the problem domain. The explicit separation of knowledge
from inference provides flexibility and enhanced transparency, especially in terms of altering or

modifying the systems behaviour.

A classification of KBSs due to Hayes-Roth and Waterman (1979), suggests two distict types of
KBS, namely, rule-based and network-based systems. There is nothing rigid in this classification
scheme, and indeed it is quite common to combine these two models of knowledge representation

and their principles in the construction of specific KBSs.

7.5.1 Rule-Based Systems

Problem solving and intelligent, expert-like behaviour can be simulated to a certain degree using

if-then type rules of the form:

IF (antecedent) THEN (consequence), or

IF certain facts are known to be true (or false)
THEN arrive at an appropriate conclusion.

These are also known as production systems. Problem solving can be thought of as a transition
from a specified state to a goal state through application of rules governed by a strategy. To
implement a production system three types of knowledge are necessary. First, declarative
knowledge is the facts pertaining to the problem domain. Second, procedural knowledge provides
the basis for manipulating the state descriptions, and finally, control knowledge specifies how such
manipulations can be effected. Sometimes, however, it is not easy to distinguish between

procedural and control knowledge.

If the control strategy of a system is:

(a) start with a collection of facts (declarative knowledge),
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(b) apply all the applicable rules related to the known facts
(using procedural knowledge and directed by control knowledge),
(c) derive new facts and eventually the solution to the problem,

then the system is said to have adopted a data-directed or forward chaining inference.
Goal-directed or backward chaining starts with an unproven hypothesis and attempts to match this
with the facts known about the problem. The rules in the KB are in fact used to derive more

information about their premises.

Another aspect of the control strategy involves the type of search technique adopted in matching
the facts and knowledge about the facts. Search techniques commonly used are breadth first,
depth first, and a combination of both using heuristic pruning. Heuristic pruning involves an
examination of the current search path and obtaining some measure of confidence for it. The
measure of confidence is sometimes specified using basic common sense reasoning or
rules-of-thumb. If the confidence measure at the current node in the search path falls below a
threshold, then all solutions below this node are eliminated, and the search continues along

another path from a node higher up in the search space.

The classic example of an if-then type production system is MYCIN which was developed for the
diagnosis of infectious diseases (Shortliffe, 1976; Shortliffe et al., 1979). MYCIN is a
backward-chaining deduction system. The primitive facts in MYCIN are stored as triples in the
form (Context - Parameter - Value). A context is some real-world entity that the system is
currently reasoning about, for example, it may be an organism of sorts. A parameter is an attribute
of the context, such as identity or strain. The value is an instance of the parameter, for example, it
might be the actual name of the organism such as streptococcus. With each triple there is an
associated certainty factor (CF) with a value between -1 (negation) and +1 (certainty). A rule
premise contains a conjunction of triples, and each rule will have a CF attachment to its
conclusion. At the start of a consultation there will be many triples in the knowledge base, some of
which will have empty values. Certain triples represent the goals of the consultation and these will
obviously be unfilled at the start. MYCIN begins with a list of possible diagnoses and uses the
production rules to work towards the primitive facts. Eventually, primitive facts which are known,
from clinical observations and laboratory results, enable the empty ones to be instantiated (i.e.
filled). MYCIN uses a theory of inexact reasoning to obtain cumulative CFs for each conclusion
made through the invocation of premises in a rule. These CF calculations are discussed later in

Sec.[7.6.1].
A context tree is used as part of the control strategy to specify the organisation of knowledge. The

system can explain its conclusions by examining both the context tree and the individual rules that
have been used to infer the conclusions. Use of MYCIN-like systems has highlighted some of the
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problems related to human engineering. MYCIN-type rules can cope with a degree of uncertainty
in their rules and factual base, but it is difficult to extend the rules and facts to reflect any
uncertainty that may occur in quantified variables (Nilsson, 1980). Finally, it is not easy to express
a given piece of knowledge in the form of a rule, and the meaning of some of the rules in the
system may not be immediately comprehensible to an uninitiated user, even when such rules are

coded in English.

7.52 Network-Based Systems

An example of a network-based system is PROSPECTOR (Duda and Hart, 1977). It was
developed to assist field geologists in the evaluation of sites for the existence of certain ore
deposits, and for the selection of favourable drilling locations. The knowledge in PROSPECTOR
is captured in a series of hierarchical models consisting of spaces, which are in turn connected by
rules to form a network. The concept of a space, is simply a place holder for some evidence or a
hypothesis. Each space has an a priori probability value indicating how true it is. At the start of a
run these probabilities are usually low. The rules connecting the spaces specify how the
probability values are propagated from one space to the next as the run proceeds and evidence is
accumulated up the network. The network rules in PROSPECTOR may be logically combined. In
comparison to, say MYCIN, the lower spaces in the hierarchy can be likened to the premise part in
a production, and the higher spaces can be likened to the action part. Similarly, the connecting

rules between spaces can be likened to the mechanism for inexact reasoning,

The implementation of inexact reasoning in PROSPECTOR involves the computation of rule
strengths which are defined by likelihood ratios for sufficiency (LS) and necessity (LN) (see
Sec.[7.6.2]). PROSPECTOR does not create new spaces in the same way as MYCIN will create
new facts using its rules. The system is concerned solely with the propagation of probability values
through the network of spaces constituting its models. Also, the inference network has no
understanding of the context of the rules and the geological relationships between spaces.
Therefore, PROSPECTOR uses a classification of minerals in the form of a semantic net to enable
it to perform associative deductions. For example, the user will not be consulted about the
implications of the presence of sulphides, when it has already determined some information on
pyrite (as pyrite is a member of the sulphide group). The top level structure of PROSPECTOR is
thus a collection of spaces forming the nodes of an inference network. At the lower level is the
semantic net, with its nodes contained within the spaces if they are unique to the spaces, or with its

nodes appearing outside the spaces if they can be referred to by other statements.
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Some systems attempt to arrange the knowledge in the task domain into several distinct chunks or
frames of knowledge. A frame may be thought of as a collection of rules all of which relate to a
particular aspect of a problem. Frames are then linked in a network that encompases the entire

problem domain.

PIP (Present Illness Program) is a frame-based system developed at MIT providing expert advice
in the diagnosis of renal diseases and related disorders (Szolovitz et al., 1978). Knowledge in this
system is organised in frames. A frame in PIP contains all the information related to a particular

hypothesised disease. The information in these frames is typically:

e Triggers which activate the hypothesis frame.

® A set of findings linked by rules characterising the disease state.

® A set of relations describing the inter-relationships between different frames, e.g.,
information as to whether the current state can be complicated by other disorders.

® A section where conflict resolution is effected.

® A section where an estimate of likelihood for the current frame is calculated.

PIP maintains a matching and a binding score. The former determines the degree of congruence
between observed findings and expected values. The latter is just a ratio of the expected number
of findings for the current hypothesis to the total number of reported findings. These scores are
then combined to give a local score. Finally the local score is updated to reflect the effect of other
frames on the current frame and to give a likelihood estimator for the frame. A hypothesis frame
is activated if the conditions specified in the frame trigger are satisfied. The hypothesis frame can

be in the active, semi-active or inactive state, depending on the value of the binding score.

Another frame-based system which has had impressive success is INTERNIST, the computer
consultant for internal medicine (Pople and Myers, 1974). In INTERNIST, every diagnosis Dj has
a set of manifestations {M;}. These M;j are associated with an evoking strength and a frequency
count. The evoking strength (L{di / mi]) is defined as a number in the range 0-5 characterising the
likelihood of disease Dj causing manisfestation Mj. The frequency count is the likelihood that a
patient having disease D; exhibits manifestation Mj. The control strategy for this system lies in an
exhaustive search of the disease hierarchy. A heuristic measure of the reliability of the diagnosis
reached is computed based on evoking strength, frequency count, manifestations explained and/or
unexplained by the current or other frames (Szolovitz et al.,, 1978). Frame-based systems are
better at capturing the causal reasoning mechanisms which model the human way of thinking than

say, if-then systems. Frame-based systems are also referred to as semantic networks.
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CASNET is a causal associated network for diagnosing disease states in glaucoma (Kulikowski,
1980). The network nodes in CASNET consist of real, physiologically distinct, states. A set of
tests provide evidence and likelihood as to which one of the dysfunctional states the patient is in.
Some of the nodes are termed the starting states, and some the final states. Causal connections
between nodes are represented as links, with link strengths specifying the likelihood of one node
being causally responsible for another node. For every node a number called the status of the
node is computed based on simple tests. The node is confirmed or denied depending on the value
of this status. A weight value is also computed which for each node, provides the strength of the
causal associations of the nodes under consideration to all its surrounding confirmed and denied
nodes. An acceptable path in the network is a path connecting any starting node to any final node
which does not contain any denied nodes. This path constitutes the diagnosis, and the nodes in the
path hold the explanations of the diagnosed disease state. The control strategy here attempts to

confirm nodes and find an acceptable path based on the weight value computed for nodes.

The approach taken by the author to interpret results from event analysis is a combination of
rule-based system techniques and knowledge representation in frames. This has resulted in a suite
of programs called EPAXIS that reason with symbolic information generated by the analysis
programs. The frames of knowledge contain certainty factor attachments which are propagated
through the inference network using methods derived from fuzzy logic (Zadeh, 1979). Further

details of this reasoning mechanism are given in the next section.
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7.6 Inexact Reasoning in Expert Systems

The knowledge-based systems presented so far all use some form of inexact reasoning and

heuristics. The reasons for this are threefold:

(i) The data and knowledge is unreliable.
(ii) The data and knowledge is not static.
(iii) The search space for solutions is potentially very large.

With ideal and/or simple KBSs, the knowledge and data do not lead to false, inexact, or tentative
conclusions. Once conclusions have been made by such a system, there is no need to modify or
retract facts in the light of new information (i.e. the system is displaying monotonic reasoning). In
real-world applications data can be noisy and error-prone due to extraneous measurements and
missed observations. Additionally, the knowledge captured in the system can be ill-specified in
terms of its consistency and correctness. A single line of reasoning, not supporting multiple
arguments and multiple conclusions, is therefore inadequate for many ill-conditioned, i.e.

heuristic, tasks.

Many systems which employ heuristics defend their methodology only on the basis of the results
they have produced. The approaches have been criticised for being unnecessarily fabricated. For
example, MYCIN’s own formalism for reasoning with uncertainty could have been replaced by the
thoroughly studied Bayes’ theorem. Bayes’ rule could be used to calculate the probability of a
disease given some evidence from the a priori probability of the discase and the conditional
probabilities relating the observations to the diseases (Stefik et al., 1983). The amounts of data
being considered are so large, however, that conditional independence of observations must often
be assumed. The need to resort to an assumption of independence is often seen to undermine the
merits of the rigorous statistical model (Stefik et al., 1983). The PROSPECTOR system seeks a

compromise by replacing the observations with subjective estimates of prior probabilitics.

Another approach to inexct reasoning that is divergent from classical predicate logic is fuzzy logic
(Zadeh, 1979). Zadeh’s theory of approximate reasoning provides characterisation of linguistic
variables, e.g. high amplitude, mild polyphasicity, early latency etc., by a mapping of the numerical
values of the variables in a fuzzy set into corresponding possibility values. For example the fuzzy
proposition X has high amplitude is characterised using the fuzzy set:
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(X e (0,10), 0.1)
(X e (10,100), 0.3)
(X e (100,),0.7)

The interpretation of the proposition X has high amplitude is then taken to be X may be less than
10 with a possibility 0.1 of having a high amplitude, between 10 and 100 with a possibility 0.3 of
having a high amplitude, and so on. The possibility value has no direct relationship to a probability
value. Conceptually, it represents the degree of certainty with which the value of an attribute is
believed to be true. The po\ssibility value is usually determined from a continuous function related
to the (fuzzy) set of values for an attribute (variable). There will be more said about fuzzy sets in
Sec.[7.6.2].

We will now consider briefly the mechanisms of inexact reasoning implemented in MYCIN and
PROSPECTOR. This will be followed with a description of the fuzzy reasoning mechanism that
was implemented in the prototype ES described in Appendix [C1].

7.6.1 Certainty Factor Calculations in MYCIN

When MYCIN makes a conclusion using its rules, a primitive fact will be added into its dynamic
database together with a computed certainty factor for this fact. This certainty factor (CF) is

computed from:

(i) the combined certainty factors of the individual clauses in the rule premise,

(it) the certainty factor attachment of the rule, and possibly from the

(iii) certainty factor of the original primitive fact if it existed already in the dynamic
database.

The operation performed in (i) is simply the minimum CF of the premise clauses. This is
multiplied by the CF attachment of the rule to give a certainty factor CR. CR is stored together
with the primitive fact in the conclusion provided the conclusion does not already exist. If the
conclusion already exists with a certainty factor of CI, then the computation in (iii) is done as

follows:

CF = CI + CR(1-CI) for CR,CI > 0.

CF = -(|CI| + |CR|(1-|CI])) forCR,CI < 0.

CI + CR

CF =
1 - min(|CI|,|CR|)

for CLCR < 0, [CR|,|CI| = 1.

CF = 1 with a combination of 1 and -1 for CR,CI.
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Using these formulae, MYCIN is able to cope with non-monotonic judgemental reasoning.
Shortliffe (1976), provides a formalised description of the epistemology which is loosly based upon
Bayes’ theorem. The variation in the computed CF is shown in Fig.[7.1(a)], (Alty and Coombs,
1984).

7.62 Uncertainty in PROSPECTOR

As we have seen already, PROSPECTOR, has a rule strength between spaces using the LS and LN
ratios. LS and LN measure the degree to which a change in probability of one space will affect the
probability of another. One way to visualise this arrangement is in terms of source spaces and
target spaces. The source spaces contain facts used as evidence at lower levels in the
PROSPECTOR model hierarchy, and the target spaces contain hypotheses at higher levels in this
hierarchy. The target spaces are, in turn, the source spaces for higher level spaces, and so on. The
top level of the hierarchy represents the goal of the model. This interpretation then reduces to a
production rule representation having probabilistic attachments through the rule strength

formalism; a vague similarity with a rule-based system is evident.

The propagation of probability values in the model is driven by Bayes’ theorem relating the
hypotheses H to the evidence E:

P(H|E) = P(E|H). 11% .................. Eq[7.1]

where P(H|E) is the conditional probability of H being true given E, and P(E|H) is the
conditional probability of E existing given H. P(H) and P(E) are the prior probabilities of H and
E respectively; these being estimated by the expert during the formulation of a PROSPECTOR
model. Given that P(not X) = P(~X) = 1 - P(X), it can be shown that:

P(~H|E) = P(E|~H) .%Iﬂ ............... Eq[7.2]
Dividing Eq.[7.1] and Eq.[7.2] gives:
P(H|E) _ P(E[H) P(H)
P(~H|E) ~ PE[~H) P(~H)
therefore, if odds O(X) = P(X)/(1 - P(X)) then:
O(H|E) = %I?LH—H)). OH) . o oo i Eq.[7.3]



or, this equation may be rewritten as:

O(H|E) = LS. O(H)

which is the odds version of Bayes’ theorem and relates, through the likelihood ratio LS, how the
odds of H change with an observed true E. Similarly:

O(H|~E) = LN.O(H)

informs us how to calculate the new odds of H given that E is definately untrue using the likelihood
ratio LN.

LS and LN therefore provide a means of changing the prior odds of H if E is true and E is untrue
respectively. One or the other is used as the rule strength depending upon whether E is true or

untrue. They are related by the equation:

_ (1-LS.P(E|~H))
N =0 rE~m)

and generally1l < LS < o and 0 < LN < 1 so that, for example, statements like: if there is fire
then there is smoke can be made with a reasonable amount of certainty. A problem does exist
however, since one may want to state that the presence of E will increase the odds on H, but the
absence of E will have no effect, i.e. in this case LS > 1, and LN = 1 which is inconsistent with
Eq.[7.4] and probability theory. PROSPECTOR, nevertheless, has methods of dealing with this

inconsistency.

The decision to use either LS or LN depends on whether or not E or ~E are known with
certainty. This is not usually the case, and in a perfect world it would be dealt with by a linear
interpolation (Alty and Coombs, 1984). If E is known to be true with evidence E’, e.g. P(E|E’),
then:

P(H|E') = P(E|E').P(H|E) + (1- P(E|E").P(H|~E)

One problem with this linear interpolation approach, is that when the network is set up, all nodes
are assigned prior odds. Since LN and LS relate the prior odds across the network, an expert
would have great difficulty in setting up a completely consistent network. The model building
experts usually give the prior odds of nodes and the LN, LS values in a subjective manner. Thus
the network will usually be mathematically inconsistent. If E’ is the evidence that causes the user
to suspect the presence of E, then the probability of H will be altered to P(H|E'). This will be
between P(H| ~E) and P(H|E). If P(H|E') has the value 0 then P(H|E’) should be P(H| ~E).
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When P(E|E’) has the value 1, P(H|E’) should have the value P(H|E). If, however, we know
nothing about E (i.e. P(E|E') = P(E)) then the prior odds on H should not change. Thus
P(H|E') = P(H). These three points give us the relationship between P(H|E’) and P(E|E’) as
shown in Fig.[7.1(b)].

This technique in PROSPECTOR overcomes the problem of inconsistent LN, LS and prior odds
assigned to the network by the expert, thereby eliminating erroneous propagation of probabilities.
It yields the relationships below for the piecewise approximations in Fig.[7.1(b)]:

(P(H) - P(H| ~E))

P(H|E') = P(H| ~E) 5

.P(E|E)

for 0 < P(E|E’) < P(E), and

(P(H|E) - P(H))
(1-P(E)

for P(E) < P(E|E") < 1.

P(H|E’) = P(H) + -(P(E|E’) - P(E))

The same piecewise approximation technique is used to map user input probability values to the
prior odds allocated to the spaces that prompt for that user input. The user supplies a certainty
factor C(E|E') between 5 (the queried value is definately true) and -5 (definately not true). A
value of 0 for C(E|E') has no effect on the prior probability, and the extreme values force the
probability to 1 or 0.

The graph of C(E|E') against the prior probability P(E) is shown in Fig.[7.1(c)]. The piecewise

approximation relationships are:

PE(E) = PE) + S (1. pE))
for C(E|E") > 0, and
P(E|E') = P(E) + C(E;i').P(E)

for CE|E’) < 0.

Suppose the user supplied the value of 3 for the certainty of a piece of evidence E which had a
prior probability P(E) = 0.6 in the PROSPECTOR network. The adjustment made to the prior
probability would then be 0.6 + (3/5)(0.4) = 0.44.
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Onme last point to consider is the logical combinations of probability values between the spaces in
the PROSPECTOR model. Combination with the logical operators AND, OR, and NOT is
effected using Fuzzy Set theory (Zadeh, 1979). For AND, the minimum probability is taken. For
OR, the maximum probability is taken, and NOT simply negates the probability.

7.63 Fuzzy Certainty Factor Calculations in EPAXIS

EPAXIS is an acronym for EP Analysis and eXpert Interpretation System. It is a suite of
programs used to automatically score the auditory brainstem evoked potential. The expert system
part is provided in Appendix [C1] and the (event) analysis part is will be described in the next
chapter. EPAXIS uses fuzzy certainty factors for its uncertainty mechanism, mainly because the
fuzzy sets used, can be specified easily from the normative values of latency variability quoted in
the literature. Usually the numbers of the fuzzy set will be normally distributed about their central
value since this is expected when a measurement is subject to a large number of small
disturbances. Therfore, using two terms (i.e. the mean and standard deviation), permits the error
specification to be invariant for many types of measurement. This is an important advantage in EP
analysis. Bayes’ theorem, as we have seen, is difficult to implement because of the need to supply
prior probabilities. Medelec Ltd. have conducted their own normal data study with the aid of the
event analysis program, and these vah'JcS will be substituted into EPAXIS in the future.

In Sec.[7.4] some methods of feature identification in BAEPs were discussed. The techniques
produced results that provided no sensitivity and specificity information for latency labels of the
features detected. In some cases it was even possible to allocate the wrong labels to features; this
being confirmed visually after the fact. Unfortunately, this approach is unsatisfactory because it
would be difficult to express the degree of pathology connected with the features in the BAEP
using their latency values. There is also no way to incorporate provision of a set of features that fit
the selection criteria for a particular BAEP component. Since manual feature selection can be
highly judgemental, providing such possibilities in a system for feature selection might be more

acceptable to a clinician.

The rules that EPAXIS contains are modelled on the judgemental processes that an expert uses
for BAEP scoring. The data provided by event analysis are examined by EPAXIS rules in the
early stages of a goal-directed reasoning process. Candidate choices for features are given fuzzy
values which are propagated through the search space towards the final goal of finding waves I-IV.
Hence, the quantitative results are easily assigned qualitative descriptions for the system to reason
with.
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The method by which fuzzy values are assigned to the data relies on the definition of a fuzzy model
for the normal brainstem potential. The model is described next, and in fact is comprised of two

parts, namely, the procedural and the declarative model components.

[A] The Fuzzy Procedural Model (Database)

The fundamental primitive for information modelling is propositional statements of the form: an
attribute of an object has a partcular value. This is represented in the Prolog language as the

symbolic structure:

Object Attribute Value.

We may express that a component wave of the BAEP occurs at position X by writing:

Wave position_is X.

As soon as Wave does not occur exactly at X then we have introduced an amount of imprecision,
where X does not exactly reduce to one element in the domain Uwave (universe of discourse) of
the variable Wave. X is then the set of mutually exclusive possible values for Wave. In the
imprecise proposition above, the set X may not have clear boundaries. Then X is what Zadeh
(1979) has named a fuzzy set and Wave position_is X is said to be a fuzzy proposition. A fuzzy set
X say, is described by means of a membership function px. This is a function mapping from the
domain Uwave to the interval [0,1]. A value of 1.0 represents full membership and a value of 0

represents non-membership. Intermediate values of px for Uwave represent partial membership.

The fuzzy set (ITx) of values which the results of event analysis (X') can take for a wave
component (Wave) in the domain of BAEP waves (Uwave ), is given uniquely by the fuzzy
membership function (ux ). The membership function for the domain Uwave is shown in Fig.[7.2].
This is termed the fuzz function and enables assignments of reliability or fizz to the results of the
event analysis algorithm and the peaks in the averaged BAEP response.

Refering to Fig.[7.2], peaks in the bin segment shown, have their fuzz computed by a simple
interpolation through a mapping of their times of occurrence onto the fuzz function. For example,
the bin peak at ’B’ maps to a fuzz of 1.0 indicating full membership of X in Uwave and A’ maps to a
fuzz of 0.8 indicating partial membership of X in Uwave.

Zadeh also calls IIx the possibility distribution. Its identification can be subjective since the

definition of wx can be subjective. The importance of this distribution is the order it imparts on

the domain Uwave and it should contain all possible values of Wave. In this application, px has
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been estimated from a linear approximation to the normal statistical distribution of the individual
components in the BAEP. This can be altered dynamically in EPAXIS since the model
descriptions are generic. The flexibility that this provides is important in maintaining the
separation between the components in the expert system as a whole and for its adaptability to

other EP domains.

Fig.[7.3] illustrates the complete fuzzy procedural model for the BAEP. The fuzz functions are
located along the time axis at the normal mean values (initially) for each component wave of

interest.

Prolog descriptions for each wave are constructed via the execution of the declarative model
(explained later) when required. The generic Prolog structures for a fuzzy function (or fuzzy

latency window) are:

fuzzwindow(WaveNumber, Anchor, [P, Q, R, S]).
modifs(WaveNumber, [a, b, c, d]).
current_shift(WaveNumber, Shift).

where [P, Q, R, S] are defined in terms of the modifiers [a, b, ¢, d]. The modifiers are set to
constant values, but conceptually they can be continuous functions of time that modulate their
respective fuzz function regions. The Prolog predicate current_shift/2, is used to relocate the

anchor point for the fuzzy function along the time axis.

This structure means that the fuzzy functions can adopt any suitable form and location. The
description adopted for the prototype system is simple. The modifiers for each wave in the current
implementation of EPAXIS are: [0, 1, 2, 1]. This results in fuzzy function descriptions: [P, Q, R, S]
= [0, Sd, 2 . Sd, Sd], where Sd is the normal latency standard deviation for a particular wave
component. Hence, the total width of each fuzzy function is 4 standard deviations. The extents of
the spread either side of the anchor point (normal mean latency value for the component wave)
correspond to the 99% confidence limits (note that the distribution of latencies for BAEP

components is assymetric).
We have seen how the results of the event analysis algorithm can be asssigned reliability measures.

To reason effectively with these tagged data requires the declarative model and the inference

machine (rule interpreter) to be compatible at the higher level.
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[B] The Fuzzy Declarative Model (Knowledge Base)

This model attempts to capture the expert decision making processes used to interpret (label) a
BAEP. The fuzzy procedural model described above makes it possible to formulate propositions

of the form:

Object Attribute FuzzyValue.
FuzzyValue = Value + Fuzz.

Furthermore we can formulate the consequence of fuzzy propositions by using rules or

productions:

if: Object Attribute FuzzyValue
then: ObjectX AttributeX ValueX.

The value ValueX of object ObjectX is concluded with the fuzzyness Fuzz (in FuzzyValue) of object
Object.

The certainty with which a proposition holds is expressed with a propositional attachment called

the certainty factor, cf. Therefore we can write:

if: ObjectX AttributeX FuzzyValueX cf CF
then: ObjectY AttributeY ValueY.

The value ValueY of object ObjectY is concluded with a combination of the fuzzyness FuzzX of
object ObjectX and the cf attachment CF : [0.0, 1.0]. This in effect allows the modeller to express
the reliability or confidence with which a proposition is being made when the object value is
completely true. If the object value is fuzzy, then this is reflected nevertheless through a

combination of fuzzy and certainty values.

The production if contralateral recording is available then contra_wave_V position_is X, produces a
piece of evidence that may be needed for reasoning whilst the antecedent is true, but the evidence
is not terribly important if the antecedent is false. To prevent the assertion of the consequent with
a low certainty value in the absence of a contralateral recording, another extension to our existing
formalism is required. In this case we must assign a weighting to evidence for truth and a

weighting to evidence for falsehood:

if: ObjectX AttributeX FuzzyValueX of CFwt (WtT,WtF)
then: ObjectY AttributeY ValueY

The combined fuzzy value for object ObjectX is calculated in two stages:
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[1] Fuzz = FuzzX.CF

Introducing the clause weights (Wi7, WiF ) we obtain a total reliability for the antecedent
proposition in the production rule. This is termed the fuzzy reliability factor (FRF ):

[2] FRF _WtF + Fuzz(WtT - WtF)
max(WtT, WtF)

The value ValueY of object ObjectY is concluded with the fuzzyness FRF of object ObjectX.
Fig.[7.4] illustrates the variation of the clause weight (FRF ) with the certainty factor attachment
(or combined fuzzy value) of the rule proposition. The contribution of truth and falsehood to the
declarative interpretation of an antecedent proposition (and how much this contributes to the
assertion of consequent propositions), is determined by the truth and falsehood weights.
Adjustments of these weights is equivalent to an adjustment of the slope of the line in Fig.[7.4].
The steeper the positive slope, the higher is the contribution of truth of antecedents in the
assertion of consequents, and the less falsehood detracts. Negative slopes have the same effect as
negation of the antecedent propositions. Use of weights that produce negative slopes is not

recommended as it obscures the declarative content of the rules.

Rules containing conjunctions of antecedents get their individual FRFs combined before the

assertion of a consequent using the following relationships:

ClauseWtA = WtFA + FuzzA(WtTA - WtFA)
ClauseWtB = WtFB + FuzzB(WtTB - WtFB)
etc...

ClauseWtA + ClauseWtB + .... + ....
max(WtTA, WtFA) + max(WtTB, WtFB) + ... + ....

FRF =

where a clause weight ClauseWtX is the individual FRF of a single antecedent X in the
conjunction. If consequent has a certainty factor attachment, then the FRF calculated as above is

combined with this as in stage [1] above.

These ideas are employed in a structured declarative model (knowledge base of rules) with a rich

syntax. The grammar for the rules is summarised below in Backus-Naur Form:
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rule ::=
(term) :: if (antecedent)
then (consequent).
antecedent :: =
(antecedent) & & (antecedent)
| (antecedent) or (antecedent)
| (antecedent) cf (number)
| (antecedent) wt (weightT, weightF)
| (antecedent) cf (number) wt (weightT, weightF)
| (term).
consequent :: =
(consequent) && (consequent).
| (consequent) cf (number).
| (term).
term ;i =
any Prolog term.
number :: =
[float : (0.0, 1.0)].
weightT, weightF :: =
[float : (0.0, 5.0)}.

The effectiveness of the above fuzzy descriptions of data and the use of a fuzzy reasoning
mechanism will only be determined through an extensive validation study. It is hoped that this
work will continue in the future and that the expert system will be extended to encompass other EP
domains. A sample run of EPAXIS and comments on the author’s experience so far with the

representation scheme are provided in Appendix [C1].
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Chapter Eight

Computer Assisted Analysis of Single Response BAEPs

8.1 Introduction

We have seen that the major features in the averaged ERP are due to components common to all
the individual responses (trials). In the special case of ERP data, ensemble averaging can be an
inadequate estimation of the ERP. The averaging process will obscure any subtle variations within
and between the components of the individual responses. Individual responses are related to the
excitability of the corresponding generator sites in the central nervous system (Sec.[6.2.1]) and so,
it is possible therefore, that the information contained in these variations is clinically more
important than the gross information contained in the average response. The ability to extract
such information will greatly improve the understanding, and/or confirm existing observations, of

the underlying relationships between the components of ERPs.

In Sec.[7.2] various techniques were introduced for the analysis of single response ERP data.

Several factors that are common to these techniques can be identified quite readily:

® Analysis is performed on a single response or small sub-average basis.

e The single responses are digitally filtered before further analysis. This filtering usually
assumes that the noise which is combined additively with the ERP signal can be described
by a wide band stationary model.

® An enhanced average ERP is obtained by summating the preprocessed single responses.
The number of single responses used in total during the entire analysis procedure is
usually of the same order as would be used in the conventional averaging process.

¢ In some cases, an attempt is made to identify the major components of the ERP in the
averaged response.

To date, some efforts have been made to estimate the latency variability associated with ERP
components. In particular, the analysis procedure due to McGillem and Aunon (1985), mentions
some experiments that are currently being pursued to obtain latency variability information

(Sec[7.2.2)).



In this investigation, single response ERP data is analysed using a specialised peak detection
algorithm which reduces it to a sequence of events. Hence, the procedure is called Event Analysis.
The events detected within each response are synchronously summed to provide estimates of the
locality of major components in the ERP and, in turn, estimates of the component latency
variability.

Much of the development work for event analysis was conducted using BAEPs as the input data
because they exhibit a very low SNR and sometimes a very complex component structure. Other
ERPs tend to have better noise characteristics and simple component structure, with the possible
exception of very long latency emitted potentials (i.e. above 1 sec). However, as it is not firmly
established what the true component structure of these emitted potentials actually is, and because
they are usually of high amplitude, we can assume that BAEPs provide a good basis for the
validation and incremental construction of generic and robust ERP analysis algorithms. Reference
will therefore be made to BAEPs only from now on, in spite of the fact that the event analysis
procedure is itself a non-specific procedure. In reading the text, the phrase single response can be

freely interchanged with the phrase small sub-average, unless the latter is stated explicitly.

8.1.1 Event Analysis Algorithm Summary

The approach taken by the author to analyse BAEP data, differs from that taken by other
researchers in several respects. The following points will serve to highlight why event analysis is
different to other techniques, and also they will provide the reader with a resumé of the analysis

procedure before details are discussed in the next sections:

o (a) The additive noise model of BAEP data (Sec.[7.1]), where the measured single
response X is the sum of a non-stationary signal s plus random noise n, is interpreted in
terms of an additive combination of a signal event sequence {Es} and a noise event
sequence {Ea}. That is, after event extraction, the measured single response event
sequence {Ex} is given by:

{Ex} = {Bs} +{En} . . . o o o i Eq.[8.1]

¢ (b) Normally no filtering is performed on the single responses prior to event extraction. A
form of adaptive prefiltering is available however, and it may be invoked if the original
data is severely contaminated with high frequency noise.

e (c) Synchronous summation of {Ex}m over M trials, giving {Ex}, produces an event bin
which effectively partitions the averaged response X into component and non-component
regions. The reduction of data to an event sequence has the distinct advantage of being
immune to large amplitude artifacts in the single responses. This makes it possible to
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observe features in the event bin which are related to corresponding features in the
averaged response. Some features in the average response, which are detected in the
event bin, may be smeared out and not visually identifiable; even though they do exist at
the level of the constituent single responses.

(d) A basic knowledge based interpretation of BAEPs is performed as discussed in the
last chapter (and Appendix [C1]). This interpretation procedure is intended to locate and
label the most significant five components in the BAEP. Currently, the significant
components are selected manually on the basis of observable features in the event bin,
observable features in the averaged BAEP response, and latency variability statistics.

(e) Several different latency corrected and enhanced averages are then produced
automatically, by intelligent trial selection, following the determination of significant
components.

(f) Multiple representations of the same waveform produced after (¢) provide sufficient
information for the analysis of relationships between components.

(g) The number of trials needed for analysis, in comparison to conventional BAEP
estimation methods, is reduced, in general, by a factor of between 32 and two. This
depends on whether single responses or small sub-averages are used as input. The trial
reduction factors are based on normal BAEP estimations which use 2048 trials for
analysis.

(h) Advances have been made towards the accurate estimation of signal-related latency
variability to within +2 sample points ( +0.08ms).

(i) Event analysis is generic in terms of its applicability to all ERPs because of the
adaptive analysis procedure adopted. '

(i) The algorithm has been used to provide fast and reliable estimates of component
latencies in an EP normal data study (conducted by Robinson and Robinson of Medelec
Ltd., Woking, Surrey - between January and March, 1988).

(k) The algorithm has achieved sufficient performance to warrant its implementation on
the next generation of multi-purpose EMG/ERP machines currently being developed at
Medelec Ltd. It is being re-structured for real-time ERP analysis in a hybrid
microprocessor architecture (using the TMS 32020C Digital Signal Processor and the
MC68000). The main use of event analysis in this context, will be to enable automatic
component labelling, and the provision of latency variability estimates.



8.2 Data Acquisition - Equipment and Procedure

A Medelec Mystro MS25 five-channel amplifier system and a Medelec ST10 stimulator was used
as the stimulation protocol controller and stimulation source respectively. Two MS25 analogue
outputs are connected to a CED 1401 data acquisition system. The CED 1401 contains 16, 12-bit
analogue to digital conversion inputs. The acquisition hardware is driven by software written in
the C language running on an IBM PC-AT computer with all inter-communication being effected
via a CED 1401 interface card. The driver program initialises the CED 1401 for data acquisition at
a sampling rate of 25 kHz. The CED 1401 then waits for a succession of triggers from the MS25,
thus enabling it to acquire data from both analogue inputs. Each trigger signal is synchronised
with a 50% delayed delivery of the auditory stimulus. This causes the ipsilateral and contralateral
channel recordings to be digitised in a pre and post stimulus format before being held in the CED
1401 2 MByte mass memory. Both channels consist of 1024, 20ms trials, with each trial containing
500, 16-bit words split between the pre and post stimulus periods. At the end of data acquisition,
all data is sent to the computer for storage in archive files on hard disk and subsequent analysis.

Fig.[8.1] is a schematic representation of the data acquisition setup that was used.

After data acquisition, it is possible to control the CED 1401 with the driver program in order to
make small subaverages from the data. The 2 Mbyte mass memory limit dictates the maximum size
and number of subaverages obtainable. The usual protocol adopted in our tests consisted of the
acquisition of 1024 trials per channel, each of which could be reduced to subaverages containing a

maximum of 16 single trials (i.e. a minimum of 64 subaverages per channel).

Filter cut-offs were set at 100 Hz and 1.5 kHz, the stimulation repetition rate was 5 Hz, and the
contralateral ear was masked with 40 dBSL white noise. Stimulation intensities used were from 20

dBSL to 80 dBSL.

It is worthwhile noting that the filter roll-offs are -20dB / decade and -40dB / decade at the low and
high ends of the pass band respectively. The filter settings provide sufficient aliasing protection
and some limiting of high frequency EMG artifacts, which would otherwise overload the input
analogue to digital convertors. Higher order, filter roll-off characteristics, in the upper end of the
pass band, could remove nearly all EMG artifactual activity at the expense of severe phase
distortion. The phase distortion is not desirable, so improved response fidelity is often achieved

using post acquisition, zero-phase digital filtering (Sec.[7.3]).
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In the discussion section of chapter three (Sec.[3.6]), it was suggested that the functionality of the
SPC could be achieved, and improved upon, in several ways. The types of system mentioned
immediately above provide an analysis environment with greatly improved capability and
performance compared with the SPC. An important aspect of using this type of environment, has
been the short time-scale required for the development of the event analysis algorithm (less than
1 man-years). Additionally, the ease with which real data can be acquired, has enabled a largely
data-driven approach to be adopted in the development process, with simulations being used
primarily for confirmative and demonstrative purposes. These points contrast well with the overall

SPC development and algorithm implementation strategy.



8.3 The Event Binning Process

The event binning process (item (c), Sec.[8.1.1]) relies on the following three sub-processes:

e (i) First, a peak detection algorithm is applied to a digitised single response BAEP to
extract events.

e (ii) Second, the events are extracted from all the trials comprising the averaged BAEP
response.

e (iii) Finally, synchronous summation of the events across all trials is performed, to provide
estimates of the locality of BAEP components.

In sub-process (i), an event is assigned to the point where a pair of maxima enclose a minimum
such that the amplitude differences between the maxima and the enclosed minimum are larger
than an arbitrary threshold value. This threshold value is termed the peak discrimination factor, or
PDF (not to be confused with the probability density function). The method of event extraction
used in this analysis is similar to that implemented prior to the calculation of Turning Points
Spectra of interference pattern EMGs (Lago and Jones, 1983), which was described in Sec.[2.3.4]
and simulated on the SPC (Sec.[3.4]). The difference lies in making certain that an event is
assigned only at points where there is maximal separation, in amplitude terms and with respect to

the chosen PDF value, between the pair of maxima and the enclosed minimum.

The sequence of N digitised data points following the m'™ stimulus is do, di, ... , dN.1 = {dn}m.
The stimulus is delivered M times giving N x M data points in total. A turning point is defined as a
change in sign of the gradient, where a traversal from positive to negative gradient indicates a
maximum and the converse indicates a minimum. The maxima dmy/i and dmy/ii Which enclose a

minimum dmn/j and precede the minimum dmn/jj, must satisfy all of the following conditions:

|dmi-dmnj | >PDF . . . . . ... 00000 Eq.[8.2]
ldmgii-dmnj ] >PDF . . . . .o Eq[83]
| dmxi-dmngj | >PDF . . . . . .00 Eq.[8.4]

where the indices satisfy: mx/i < mn/j < mx/ii < mn/jj

such that a significant event can be assigned to the maximum dmx/i occurring at the index value
(sampled point) mx/i. A significant event is also assigned to the minimum dmn/j occurring at the
index value mn/j. Note that the true latency of events, is the index value, multiplied by the
sampling interval, and that this will be assumed to be understood from here onwards.
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Event extraction commences with a default maximum dmx/0 and a default minimum dmn/o being set
to the largest polarised integer values the computer can hold, thereby ensuring that Eq.[8.2] is true
at the start of analysis in the current sequence. Then a candidate minimum dmp/j is compared with
the minumum that was found immediately prior to it, and the lower-amplitude minimum of the two
is assigned to dmn/. The lower minimum is used in the PDF comparison with the candidate
maximum dmyii as in Eq.{8.3]. When this condition succeeds, a minimum dmnjj is found that
makes Eq.[8.4] true, confirming that significant events occur at times mx/i and mn/j. During this
latter phase of analysis, any maxima found along the waveform are compared with the maximum
dmuyii, and the higher-amplitude maximum of the two is assigned to dmx/ii. The updating procedure
conceptually slides the 1}/ wave template, described by Eqs.[8.2-8.4], backwards in time by 1 wave,
and then the search cycle repeats to obtain another pattern of peaks that fit the template and
conditions just described. Implicit in this one wave backward slide , is that Eq.[8.2] is automatically
satisfied in all the subsequent search cycles. In this way, valid events represent those peaks
enclosing the deepest troughs with respect to the chosen PDF value.

The strength of performing peak detection in the manner described above is demonstrated in
Fig[8.2], which shows an uncharacteristic BAEP waveform that contains large amounts of high
frequency noise and spike artifacts. Peaks and troughs have been found successfully in both the
smoothed and unsmoothed versions of the same potential. The smoothed BAEP was produced by
two convolutions with a 3-point, unit area, triangular window. It has fewer turning points detected
in it, since the convolution process has diminished the amplitude of some of the original noisy

turning points.

Eq.[8.1] can be rewritten to reflect the fact that the data sequence {dn}m contains both maxima

mx, and minima mn events:
{Ex} = {Eymx} + {Ewma}
{Es} = {Esmx} + {Esmn}
{En} = {Ewmx} + {Ewmn}
{Exmx} + {Exmn} =
{Esymx} + {Esmn} + {En/mx} + {Enfmn} . . . . . . . . . .. Eq.[8.5]

A more realistic model of the event detection sub-process, requires the incorporation of an event

detection error term, so that Eq.[8.1] now becomes:
{Ex} = {Es} + {En} - {Eerr} ................. Eq.[8.6]
where: {Eerr} = {Eerr/mx} + {Eerr/mn}

The objectives of event extraction are:



<Y
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(a) BAEP data which contains a few spikes and high frequency noise around the peaks.

1 1 1 1 1 1 I 1 1

(b) A smoothed version of the above data.

Fig.[8.2] Locations of peaks and troughs as found with the peak detection
algorithm. In both (a) and (b), the same PDF value of 30 ordinates has been
used. The maximum peak-to-peak deflection of the two traces is
approximately 220 ordinates.



e toreduce {En} to zero, and
e to maximise the term ({Es} - {Eerr}) by a judicious choice of PDF value.

If these objectives can be achieved, then {Ex} will contain nearly all of the signal-related events in
{dn}m.

Sub-process (ii), simply applies sub-process (i) to all the individual trials in the averaged BAEP

response, and simultaneously invokes sub-process (iii).

In sub-process (iii), a 1 x N integer array B[N] = by, by, ... , bn.1, is maintained, where the bn
represent accumulator bins for the number of occurrences of significant events (both maxima and
minima) at times n across the ensemble of M signal sequences. To enable an improvement in the
registration of stimulus-related events only, and not noise-related events, the elements by in the
array B[N] are decremented at points where significant event-minima occur, and incremented at
points where significant event-maxima occur. This method of summing events, simulates averaging
of significant events across all the responses, apart from the omission of the formal division by N.
Therefore, event-maxima are labelled with ’ + 1’, event-minima with ’-1’, and all other points in

{dn}m are labelled with °0’.

The polarised labelling and summation process, assumes that low counts will occur in B[N] when
noisy epochs of data are temporally synchronised across a large set of trials. We note that, with
noisy data, there should be an equal probability of finding temporally synchronous event-maxima

and event-minima across trials.

The accumulator bin count or event bin is formally described by:

M
bn =3 '{Ex}m
m=1

1 at Bvent Maxima
where: Ex = -1 at Bvent Minima
0 Elsewhere
and, {Ex} = B[N] = {bn}, forn=12,..,N . . . . . ... .. Eq.[8.7]
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8.4 Data Simulations and Some Intermediate Results

Several programs were written to simulate data having the general characteristics of BAEPs.
These programs are included in Appendix [D2], and they were used extensively for the validation

of event analysis and for the demonstration of results.

Four sets of noise data are used in conjunction with a single set of simulated signal data. The noise
and signal data each contain 64 trials of 500 data points each. Two of the noise files contain real
background EEG, recorded as described in Sec.[8.2], but without the use of any evoking stimulus
and contralateral channel masking. The remaining two noise files contain simulated pink noise.
Both of the the latter noise data files were produced by generating random deviates having poisson
and gaussian amplitude distributions respectively, and then bandlimiting each of them in the
frequency domain between 300 Hz and 1.5 kHz. The simulated signal is a 1 kHz, exponentially
decaying, sine wave. The pre-stimulus period of this sine wave is clamped to zero, and the

exponential decay begins in the post-stimulus period, decaying to 0% at the end of the trial record.

The noise files are individually added to the signal file, to produce four simulated data sets. Prior
to addition, the noise and signal data are normalised. After combination, the data is maximally
scaled. The data so produced, allows one to test the event analysis algorithm with a deterministic
signal, having similar noise characteristics to the BAEP. The use of an exponentially decaying sine
wave, and pre-normalisation, enables investigations to be conducted at SNRs varying from 0 dB
down to -28 dB within the post-stimulus period. This range of SNRs, is sufficient to cover the

worst case SNR expected in a BAEP, even at the lowest stimulus intensities.

Most of the illustrations presented from now on, will be in a similar format to that shown in
Fig.[8.3]. The upper window contains the grand averaged response of 64, zero-mean, single trials
or small sub-averages (GAV), and the lower window contains the corresponding event bin (BIN).
Only post-stimulus period data are shown, which consist of 250 sampled points acquired at 25 kHz.
These 10ms epochs of data are delimited by the 1ms interval marks in each window. GAV
amplitude values are provided in terms of absolute ordinates, without reflecting the scaling
required to fit the data in the window. For real BAEP data, cach GAV ordinate represents
approximately 0.25nV. BIN amplitude values represent the actual values contained in the event

bin.
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In all diagrams the BIN is displayed in two forms:

e (a) Discrete vertical lines show the latency histograms of the positive half of the event bin.
This format was chosen so as to emphasise the correlation between features in the BIN
and those in the GAV. Note, there no relation is implied between those peaks in the
GAYV and those peaks in the BIN that have the same numeric labels.

e (b) A smoothed version of the latency histogram is shown as the continuous line forming
an envelope over (a). This curve was produced on an empirical basis, in order to
transform the latency histogram into smooth segments that can be partitioned easily in the
computer, using the sarne peak detection algorithm that was used to create the histogram
initially.

Several smoothing functions were tried in (b), and the best performance was achieved with two
passes of a three point moving average followed by a convolution with a three point triangular
window. During the early stages of the algorithm development, it was determined that the widths
of the smoothing functions should be as small as possible, so as not to artificially distort the

inherent structure of (a).

Figs.[8.4(a) - 8.4(c)] show a selection of event bins that have been generated from one of the above
simulated data sets at different settings of PDF. The noise data file used in this example contains
single trials of spontaneous background EEG. These diagrams serve to illustrate all of the points
that have been discussed in the last section. The structuring in the BIN becomes more
pronounced in the vicinity of GAV peaks as the PDF value is reduced from 75% to 25% of the
maximum peak-to-peak deflection. The accuracy with which the BIN delimits GAV features
(throughout the record), improves as the PDF value is reduced. Hence, the power to resolve
events during the binning process increases at lower PDF values. The BIN structuring is also
affected by the gradual change in SNR along the waveform. Peaks in the BIN are less pronounced
as the SNR decreases. Nevertheless, Figs.[8.4(b) and 8.4(c)] show BIN peaks which are very
nearly spaced at the 1ms intervals of the peaks in the GAV. Accurate segmentation of the GAV
into component and non-component regions is hence likely to be successful at low PDF values and

at SNRs as low as -20 dB (the SNR is 0 dB at 1ms [GAYV peak ’0’}, and -20 dB at 7ms [GAV peak
,6’]).

The ability to segment the BAEP is the first step towards the automatic detection of its
components, and the subsequent estimations of their latency variability. Fig.[8.4(d)] shows the
superior results obtained for the segmentation by using a PDF value which has been chosen
adaptively on a single trial basis. This method of PDF selection will be described in the next

section.
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Fig.[8.4] The effect of the PDF value on the structuring that occurs in the
event bin (BIN). The PDF value per single trial varies from 75% of the
maximum peak-to-peak deflection, to one that is determined adaptively.



Figs.[8.5(a) - 8.5(c)] display the same GAV data as in Fig.[8.4]. The BIN in this case is produced
by modifying the event binning process, such that synchronous summation in the event bin occurs
with event maxima only. That is, in Eq.[8.7], the event minima are labelled with *0’ when detected,
instead of ’-1’. This prevents cancellation of event-maxima by event-minima in the event bin B[N].
It can be seen from these results, that there is a degradation in BIN structuring compared to that
obtained using bin cancellation in Fig.[8.4]. The BIN structure is worse in regions of low SNR, and
the latency histograms take on a remarkably uniform distribution. McGillem and Aunon (1977),
have observed a similar distribution when random noise data was analysed with their MMSE filter
and peak detection algorithm (Sec.[7.2.2]).

At a later stage, the author gives a probabilistic model of the bin cancellation process in order to
quantify its effectiveness in noise-event suppression. However, at this point a heuristic explanation
is offered which requires the restatement of Eq.[8.5] in terms of the set of single event sequences

{Ex}m that comprise the BIN sequence {Ex}:

M
We know that: {Ex} = 3 {Ex}m
m=1

1 at Event Maxima
where: Ex = -1 at Event Minima
0 Elsewhere

M
Therefore, fromX =3 (s + n)m = S + N, we can rewrite Eq.[8.5] as:
m=1

{Ex/mx} + {Ex/mn} =

{Es/mx} + {Es/mn} + {ENmx} + {ENomn} . . . . . . . .. .. Eq.[8.8]

The peak detection algorithm described previously, was designed to minimise the number of
events detected in the term ({EN/mx} + {EN/mn}). If, however, the noise-events {En/mx} and
{Ex/mn} are erroneously detected within the single trials, then it is probable that the summation of
the polarised numeric labels assigned to these events (" +1’), will tend towards zero across all
trids, as the number of trials tends towards infinity. If bin cancellation is not used, then the sum of
theindividual {En/mn}m in the term {EN/mn}, is not available to diminish the sum of the individual
{Eymx}m in the term {En/mx}. This causes the event bin {Ex} = B[N], to accumulate values
which become uniformly distributed in noisy epochs of data. Bin cancellation can, therefore, be
thought of as a low pass event filter that is computationally very efficient.
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Fig.[8.5] Results obtained from the same data used in Fig.[8.4]. In this case
the event bins have been computed without the use of bin cancellation. This
causes substantial loss of structure in the BIN.



Some cancellation is also expected to occur between the terms {Es/mx} and {Es/mn}. The
non-stationary assumption used for BAEP data, makes it reasonable to say that events in these
terms will rarely occur within the same temporal space across trials, and if they do, then it will
happen with negligible frequency. Additionally, a physiological phenomenon exists that supports
the statistical argument. It has long been known, that sensory stimulation will actually reduce,
rather than increase, the spontaneous activity of the brain. This observation due to Berger (1929),
follows from the fact that the alpha rhythm of the brain is at its maximum excitation only when one
is completely relaxed. These background brainwaves, the major source of noise in all ERPs,
decrease in amplitude following tactile or auditory stimulation. A similar reduction can be
induced by voluntary movements or even mental arithmetic. Berger suggests that this is a
generalised response of the brain correlating with attention. ERPs, therefore, actually suppress
background EEG activity. So, the use of synchronous summation of events will be enhanced in the
region of the ERP components, since the temporal separation of true maxima and minima events

will be less affected by EEG noise.
Comparing Fig.[8.4] and Fig.[8.5] again, we can conclude, that the use of a bin cancellation

technique will provide better estimates of the locality of BAEP features when the data is

contaminated with noise and the SNR is low.
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8.5 Adaptive Selection of Peak Discrimination Factor

A deficiency in the peak detection method as it stands at this point in the discussion, is that it relies
on some knowledge of what value to assign to the PDF. The use of similar peak detection
algorithms by both Parekh (1987) and Lago and Jones (1983), for EMG turning points spectral
analysis, incorporated an empirical choice of the PDF value. Their PDF values were usually set to
about 3% of the maximum peak-to-peak signal deflection, since this provided the sufficient and
repeatable peak discrimination in the analysis and subsequent classifications of turning point
spectra that they were seeking. Additionally, the high SNR obtainable, the random, noise-like
nature, and perhaps, the fact that general characteristics of the EMG were being investigated in
the frequency domain, made it unnecessary to be very strict with the choice of PDF value. The
main difference between EMG signals and EPs in this context, is that in the former case the PDF
is being used to reduce information content, and in the latter case the PDF is being used to
maximise information content. It follows, therefore, that the choice of a PDF value must be dealt

with carefully.

The BAEP has a particularly large noise content even after averaging. Fridman et al. (1982) have
estimated that the SNR is at best 1:1 based upon an average of 200 trials. This suggests that
contamination of the BAEP by EEG, EMG and movement artifact is quite substantial, and that a
judicious choice of PDF for peak selection would be difficult to make. Simply standardising on
one PDF value, for use across the entire ensemble of BAEPs, is unlikely to be successful in
segmenting the averaged BAEP, and this was demonstrated in Fig.[8.4]. Too large a PDF value,
will result in events being missed, and too low a PDF value, will cause extra noise events to be

detected which do not cancel out in the available number of trials.

Event analysis incorporates a PDF value specification which is performed adaptively prior to the
event binning process. An estimate of the noise in each sequence {dn}m is computed, and the
value obtained is then used as the PDF. In this way we can compensate for transient changes
affecting the assumed statistical stationarity of background EEG activity. This noise estimate does
not lend itself to a calculation of the SNR, as it is not a measure of signal power. The estimate is
calculated solely for its appropriateness to this analysis. Peak detection algorithms which
incorporate an amplitude threshold criterion, require, as a rule of thumb, a threshold value that
will be greater than the most common noise deflections, but less than the deflections associated
with the peaks that are being sought. If this requirement can be achieved, then it should enable the
inclusion of those fluctuations arising from true signal components, and the omission of those

fluctuations arising from noise.
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8.5.1 Frequency Distributions of Single Response Deflections

Individual responses are processed by the specialised peak detection algorithm (sub-process (i)
described in Sec.[8.3]. The PDF value is set to zero at this point, so that all maxima and minima
turning points are found. The distribution of amplitude differences between adjacent maxima and
minima (max/min deltas), is determined using a discrete-valued histogram. The statistics of this
frequency distribution provide estimators for the characteristic noise deflections contained within
the single responses. Histograms are computed for both the noise-only pre-stimulus record, and
the post-stimulus record. The frequency distributions are different for all subjects, and different
for all the individual responses in the same data set. The event binning process is then performed
using PDF values obtained from this noise amplitude information. The two main processes now

needed for event analysis are summarised in Fig.[8.6].

The response-specific PDF value, used in the event binning process, is determined from the mode
of the post-stimulus frequency distribution. The author has found that there is no significant
difference in results, when either the pre-stimulus or post-stimulus mode value is used. This result

was expected, since the two distributions consistently have similar shape.

The amplitude differences in the two halves of the data sequence {dn}m (i.e. over n=[1, N/2], and
n=[(N/2+1), N] ), thus provide another pair of sequences, each being denoted by Ao, Ay, ... , AP-1
= {Ap}m. Construction of the frequency distribution H[Ap]m from the sequence {Ap}m, requires
a subjective choice of the optimal classwidth CW to be used. The choice of this parameter
depends on the amount of resolution required, and to a lesser degree on the sample size. Too high
a resolution (many classes or small CW) will lead to multimodal distributions, and too low a
resolution will tend to obscure the important information in the distribution. Dixon et al. (1983),
suggest that in order to obtain a smooth histogram, the number of classes NC should be
approximately equal to the square root of the sample size. The class width is then found by

dividing the range of data by NG, i.e. :

[Ap]max - [Ap]min

lass Wi =
Class Width, CW Number of Classes, NC

The mode value of H[Ap]m, Amd, is then given by the end value of the class containing the highest

number of observations. The mean value is also calculated from the distribution:

_NC f;
A=3 [(5)(CW2+CW.G-DD] - -« o oot oo Eq.[8.10]

i=1
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where f; is the frequency of occurrence of the observation in the i*™ class, and P is the total number
of observations. The ratio fi / P is, therefore, the relative frequency in the i class. The maximum
number of observations usually seen on either side of the stimulus, is in the range 50 to 100. NC is
hence chosen to be about 10 (ie. +/Pmax = 4/100), and accordingly an optimal CW for
pre-stimulus and post-stimulus histograms can be calculated for each of the M response sequences
{dn}o to {dn}Mm-1.

The implementation of Eq.[8.9] produced reasonably good performance, in that structuring was
observed in the BIN in most cases. This suggested that the PDF values were being optimally
selected on a single response basis. Examination of H[Ap]m, however, often showed that the effect
of outlying observations (i.c. a large [Ap]max) reduced the resolution in H[Ap]m, and the mode
class sometimes contained too high a percentage of the observations in {Ap}m. The solution to this
problem was to double the number of classes for increased resolution, and to compute the CW on
the grounds that high amplitude spikes (i.e. outliers) will be drawn from near the upper decile of
the distribution describing the sequence {Ap}m. We assume that this distribution is normal, so the
new range of data used in Eq.[8.9] is, the mean y, plus one standard deviation o, (i.e. giving

P(Ap < 0.84)). Eq.[8.9] is now modified to read:

. [Aplu + [Aplo
1 cw=—wplptlape 8.
Class Width, Number of Classes, NC = 20 Eq/[8.11]

Multimodality in H[Ap]m, due to the increased resolution, is rarely observed, although it is

expected in situations of very low SNR.

Fig.[8.4(d)], shows how the use of the adaptive PDF value has resulted in a significant
improvement in the correlation of BIN features with GAV features, compared to that obtained

with a trial selection of PDF values, as in Figs.[8.4(a), (b), and (c)].
Fig.[8.5(d)] shows the high sensitivity obtained with the adaptive PDF value, resulting in an

expected uniform BIN distribution in regions of low SNR when no bin cancellation is

employed, (Sec.[8.4]).
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8.6 Spike Rejection and Adaptive Low Pass Filtering

The problems associated with large amplitude spikes and residual high frequency noise in the data
have been described earlier with respect to averaging of BAEP data. Unfortunately, reduction of
the data into a sequence of turning points is not immune from these artifacts, and erroneous spikes
will be regarded as valid events during the binning process. To a certain degree, these spikes can
be smoothed out of the original data by heavy filtering, but one would risk incomplete suppression
of large spikes and lose fidelity in the BAEP components. The techniques described below,
provide spike rejection during the event binning process, and soft filtering of the data which retains

much of the response fidelity.

An extra class in H[Ap]m, Aspk, is defined to hold observations lying outside the interval
([Aplp + [Aplo ), and is used to implement a spike-rejection criteria during event analysis. For
example, the high frequency, large amplitude spikes in the data of Fig.[8.1(a)], can be rejected
during the event binning process, by using the value of Aspk, and some knowledge of the
distribution of latency intervals between maxima and minima turning points in {dn}m. The latency
intervals in the two halves of the data sequence {dn}m (ie. over n=[1, N/2], and
n=[(N/2+1), N}), give a pair of sequences denoted by (At)o, (At)1, ..., (A)P1 = {(A)p}m. The
desired histogram H[(At)p]m, is constructed in a similar manner to H[Ap]m. Spike rejection is
performed by comparing all events, prior to binning, with the spike class value Aspk , and the
latency interval mode class value (At)ma. If the event is drawn from both classes simultaneously,

then the event is rejected, because it is of high frequency and large amplitude.

H[(At)p]m contains information related to the characteristic frequencies that exist in the response
sequence {dn}m. The timing information that is available, in terms of the number of sampling
points between commonly occurring fluctuations in the signal, is used to adaptively specify the
width w of a simple, first-order, linear-phase, autoregressive moving average filter. The filter can
be invoked prior to the event binning process. It is derived from the rectangular linear-phase filter

of 2k + 2 equal weights (Taylor and MacFarlane, 1974), and has the transfer function:

E(z) 1-7&*?
- D@ Z@1-2)
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if k = w/2 - 1, then by inverse z-transform:

en = en-1) + [ d(n+w2) - d(n-wr2) ]

and for unity gain at dc:

en = e + (Vo). [d+w)-dipw)] « - v o v o oo L Eq.[8.12]
where: w = 2. (At)md

Since (At)md approximates the most common intervals defined by the times of occurrence of
adjacent maxima and minima, the factor 2 in (w = 2. (At)md ), makes w approximate the actual
event intervals defined by the times of occurrence of adjacent minima. Since w is usually found to
be between four and twelve sample points wide, the first transmission zero in the frequency
response will lie between 2 kHz and 6 kHz. This range of frequencies is above the high cut-off of
the input analogue filters and will ensure that residual high frequency power is attenuated.
Zero-phase is restored by a unit leading shift of all data points in the filtered sequence {en}m.
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8.7 The Effects of Sub-Averaging and Filtering on the Event Binning Process

The event analysis procedure seeks to provide a simple method to determine BAEP component
latency variability using a small data set. It has already been said how useful latency variability
information alone might be for the clinician. Nevertheless, in reality clinicians may view this
information with some scepticism if it is not provided in conjunction with the traditional, and
normally reliable, estimations of the averaged response. Performing an averaging procedure on a
small set of single responses requires data of sufficiently high quality to yield an acceptable
response estimate. In the case of scalp recorded BAEPS, the data is only likely to have sufficient
signal power in responses obtained at the highest intensity levels. The main objective then, in the
context of producing good, clinically acceptable, BAEP estimations, is to ensure that the SNR is

increased before averaging.

The SNR in single responses can be improved by the filtering process described in the last section.
Additionally, at the expense of an increase in the fotal number responses, we can improve the
SNR by averaging within contiguous subsets of single responses. Increases in SNR result in
improved estimations of the BAEP. However, because of the small number of trials being
analysed, and because these trials might be either filtered or sub-averaged, it is possible that the
bin cancellation assumptions of Eq.[8.8] will be violated. The effects of filtering or sub-averaging
on bin canccllation are due to the attenuation of high frequency random noise fluctuations.
Refering to Eq.[8.8], we recall that for bin cancellation to operate as a low pass event filter, the
term ({EN/mx} + {EN/mn}) should tend towards zero as the number of responses tends towards
infinity, because the noise-events are random and uncorrelated between trials. If the filtering and
sub-averaging operations adversely affect the noise-event distribution in both the temporal and the
spatial dimensions, then as far as the peak binning process is concerned, it is likely that the error in

the term ({ EN/mx} + {EN/mn}) will increase.

If we model the detection of noise-events across trials by a discrete random binomial process, then
it will be possible to predict the error in event-counts for different probabilities of event detection.
The author will discuss this probability model later in Sec.[8.8]. At this point we note that there
exists a trade-off between providing clean BAEP averages and ensuring that bin cancellation is
maximised for adequate BIN structuring when small numbers of single responses are being

analysed.
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8.7.1 Event Binning with Sub-Averaged Responses

As before, we assume that the single response is Xm = (s + n)m, where the signal s is
time-invariant, and the noise n is additive, statistically stationary, and uncorrelated with either s or
the stimulus. The individual component latency variabilities across all xm will be entirely due to
the variance of n in xm. In reality, the components in s exhibit a degree of variability, so the
measured variance will be due to both s and n in xm. If we create small sub-averages
xi = X (s + n)j, consisting of i consecutive single responses, and make the reasonable assumption
that all the s in the sub-averages [Xj]m are time-invariant provided i is sufficiently small, then the
contribution to the error in measured latency variance due to n, can be reduced by the number of
responses i per sub-average. The use of sub-averages in event analysis will, therefore, yield a

maximum likelihood estimation of the latency variability.

The results shown in Fig.[8.7] were obtained by performing the event binning process as illustrated
in Fig[8.6]. The different sets of data consisted of sub-averages generated from single BAEP
responses recorded ipsilaterally at a stimulus intensity of 60 dB from a normal adult male. Each
set of data consisted of 64 sub-averages, and the number of single responses per sub-average was
varied by powers of two from set to set. As the size of the sub-averages increases, so does the total
number of responses in the GAV. This is reflected in the improved quality of the GAV as we
progress from Fig.[8.7(a)] to Fig.[8.7(d)]. In Fig.[8.7(a)] there is residual high frequency noise and
a complex wave IV/V component in the GAV at peak ’3’. Fig.[8.7(d)] contains hardly any residual
noise and exhibits separation of wave IV at GAV peak *3’ and wave V at GAV peak '4’.

In all cases the structuring that exists in the BIN in the vicinity of GAV components is evident.
Fig.[8.7(a)] shows very good BIN structuring, despite the fact that the sub-averages contain only
one response each. There is a broad BIN peak in the vicinity of the inflection in the GAV between
GAY peak ’3 and GAYV peak ’4, corresponding to the underlying wave V in the wave IV/V
complex. This BIN peak becomes more prominent as the sub-average size increases. The small
variability in wave V, which results in a point of inflection at low response counts, is revealed by the
bifid BIN peaks (*7 and ’8’) in Fig.[8.7(d)], despite the good wave V representation in the GAV.
On serial examination of Figs.[8.7(a) - 8.7(d)], one is able to observe the developments of the bifid
BIN peak and wave V. In this data, a close coupling between waves IV and V is suggested, first by
the complex component at low response counts, and second by the simultaneous occurrence of
bifid BIN peaks at higher response counts. This hypothesis can be tested with an intelligent

averaging method described later.
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Fig.[8.7] The effects of increasing the sub-average size on BIN structure
and the shape of the GAV response.
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Fig. [8.8] The effects of increasing the sub-average size on the distributions
of adjacent maxima and minima amplitude differences, in both the
pre-stimulus and post-stimulus periods, of the single response sub-averages
(trial #12 was selected arbitrarily).



The BIN structuring is slightly better in Fig.[8.7(a)] than it is in Fig.[8.7(b)], and thereafter it
improves significantly. In Fig.[8.7(a)], it would seem that the bin cancellation process has
successfully produced BIN segmentation. However, the increased activity in the BIN of
Fig.[8.7(b)], suggests that the random distribution of polarised noise-events in Eq.[8.5] (i.e.
{En/mx} and {En/mn}) has been altered, effectively increasing the error in the event bin {Ex}.
The return to improved BIN segmentation in Fig.[8.7(c)] and Fig.[8.7(d)] is almost certainly due to
the higher SNR and the low pass gaussian filtering obtained through making larger sub-averages.
Therefore, in this latter case, the advantages of the low frequency event filtering have been

superseded by the increase in SNR.

Figs.[8.8(a) - 8.8(d)] illustrate the frequency distributions H[Ap]m, of amplitude differences
between adjacent maxima and minima, calculated as described in Sec.[8.5.1] for the adaptive
selection of PDF values. The same data sets as in Fig.[8.7] were used. H[Ap]m changes
progressively from approximately normal to Poisson as the size of the sub-average increases. This
behaviour supports the explanations given above for the effects of sub-averaging on BIN
segmentation. We can see, as was previously noted in Sec.[8.5.1], that the two H[Ap]m produced
from each side of the stimulus have very similar shape. Hence, either of the mode values [Amd]m

of H[Ap]m, can be used to approximate the response-specific PDF values.

The following points are given in summary of what has been said so far in this section:

e The random nature of additive noise means that the benefits of bin cancellation are most
apparent when single response or low SNR data is being analysed.

e The use of sub-averages, results in a trade-off between obtaining good BIN segmentation
using a small number of responses, and the provision of good quality averaged BAEPs
which normally requires a large number of responses.

e The interest in obtaining latency variability estimates, means that the size of the
sub-averages must be both small enough to preserve signal variability information, and
large enough to offset adverse effects on bin cancellation.

The use of ERPs for real-time monitoring of the central nervous system in intensive care units and
during surgical operations, means that automated analysis procedures must be optimised for
speed. Very recently, the author has made a short investigation into another form of sub-averaging
which generates combinatorial averages of single responses from small sets of the data. These
combinatorial averages retain some of the advantages of both bin cancellation and small
sub-averages, without actually having to increase the fotal number of single responses when the

size of the sub-average is increased.
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Combinatorial averaging is simply a careful re-structuring of the order in which the original
ensemble of data is combined. If, for example, we want to analyse an ensemble of 64 responses
and specify a sub-average size of four, then a data set of 65 responses is acquired and divided into
13 subsets of five responses each. Five sub-averages are produced from the five possible
combinations of four single responses within each subset. This results in a total of 65 sub-averages,
64 of which will be analysed. These sub-averages have an improved SNR because they contain
more responses, but the SNR of their grand average will not be different to that achievable by
averaging the original ensemble of single responses. This local improvement in SNR indicates that
the BIN structuring (and GAV segmentation) will be better than that obtainable with no
sub-averaging.

Figs.[8.9(a) - 8.9(d)] shows the results of combinatorial averaging using the same data set as in
Fig.[8.7(a)] (i.e. 64 single responses). All GAVs in Fig.[8.9] are the same as expected, but the BIN
structures show marked differences as the combinatorial sub-average sizes increase. The broad
peak in the BIN of Fig.[8.7(a)] at wave V is no longer present in Figs.[8.9(b) - 8.9(d)]. These
instead, now show a pronounced peak in the vicinity of the GAV inflection. It is difficult to predict
where the benefits of higher SNR start to replace the benefits of bin cancellation. Given the small
amount of work done in this one area, the author is only in a position to guess where this optimal
point lies. Examination of both BIN representations (discrete and smoothed) shows that good
BIN structure relies on the dense clustering of discrete BIN values. This characteristic is present
in Fig.[8.9(c)] and the clustering starts to weaken in Fig.[8.9(d)]. The optimal point, therefore,
probably lies between sub-average sizes of four and eight responses, in which the noise variance

will be attenuated by between 25% and 12.5% respectively.

As was found with the normal sub-averaging process, when the sub-average size is small, the noise
variance will be attenuated less, helping bin cancellation. The signal can be considered invariant
within the sub-average, so we can expect an unbiassed latency variability estimate. When the
sub-average size is large, the noise variance will be attenuated more, which is detrimental to bin
cancellation. The signal can no longer be considered invariant within the sub-average, so we can

expect a biased latency variability estimate, despite the increase in SNR per sub-average.

Fig.[8.10] shows the frequency distributions H[Ap]m corresponding to the combinatorially
averaged data. We can see how the distributions remain normal longer than was the case in
Fig.[8.8] as the sub-average size increases. This averaging method is not fully evaluated, though
there is strong evidence that it will prove to be useful in the analysis of low intensity BAEPs due to

the retention of benefits arising from both sub-averaging and bin cancellation. The important
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(d) 8 responses/sub-average = 64 responses in total.

Fig.[8.9] The effect of increasing the sub-average size on BIN structuring,
when the sub-averages are generated combinatorially. The total number of
responses in all cases will remain the same, despite the increase in
sub-average size.
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Fig.[8.10] The effect of increasing the sub-average size on the distributions
of adjacent maxima and minima amplitude differences, in both the
pre-stimulus and post-stimulus periods, of the combinatorial sub-averages.



point about this form of averaging, is that all the assumptions for event analysis are preserved, i.e.
the author has been careful not to obscure latency variability information by keeping sub-averages

small, and the noise is still randomly distributed.

8.7.2 Event Binning with Filtered Single, and Sub-Averaged, Responses

The detailed discussion on sub-averaging given above has, hopefully, provided the reader with a
clear understanding of how the SNR in sub-averages influences BIN structure. Adaptive low pass
filtering was discussed in Sec.[8.6], and this procedure is useful for achieving improved SNRs in

the ensemble of single responses and sub-averages prior to event analysis.

The results given in Figs.[8.11 - 8.14] correspond to the filtered respresentations of the data sets
used in Figs.[8.7 - 8.10]. In general there is an improvement in both the quality of the GAV and
the features in the BIN. In all cases the progress of structuring in the BINs follows a similar
pattern to that of their unfiltered counterparts. The H[Ap]m, however, behave quite differently, in
that none contain normal distributions of adjacent maxima and minima amplitude differences, but
are more Poisson-like. This suggests that the benefits of bin cancellation are of lesser importance
with filtered data than with unfiltered data, and that the major benefit is obtained through an

increase in the SNR.

Although there is no dramatic improvement in the BIN structures of Figs.[8.11 and 8.13] over
Figs.[8.7 and 8.9], we have achieved enhanced estimations of the averaged responses, albeit at the
expense of another computational process. Since the parameters for the adaptive filtering are
obtained through the application of generic event analysis functions, the integration of adaptive
filtering into the kernel processes outlined by Fig.[8.6] was straight-forward in programming terms.
There is no major disadvantage in the use of the adaptive filter, so it would be entirely up to the

user of the suite of event analysis programs to decide for or against its invocation.

One is unable to predict the exact (non-frequency dependent) effects that any filtering process will
have on amplitude variations in individual responses. This further increases the difficulty of
making a judicious choice of PDF value. Hencg, it is another argument for the use of an adaptive

PDF estimation procedure.
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Fig. [8.11] Results obtained with filtered representations of the data sets
used in Fig.[8.7]. BIN structuring is improved due to a reduction in much of
the distracting noise at the single trial level. The appearance of the GAV is

much better than in Fig. [8.7].
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Fig.[8.12] Results obtained with filtered representations of the data sets
used in Fig. [8.8]. The filtering procedure has altered the frequency
distributions H[Ap]m.
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Fig. [8.13] Results obtained with filtered representations of the data sets
used in Fig.[8.9]. BIN structuring is Improved and the appearance of the
GAYV is much better than in Fig. [8.9].
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Fig. [8.14] Results obtained with filtered representations of the data sets
used in Fig. [8.10]. The filtering procedure has altered the frequency
distributions H[Ap]m in a similar way to that in Fig.[8.10].



8.8 A Model of the Synchronous Summation of Noise Events

The last section has emphasised the importance of the bin cancellation process for BIN structuring
when single responses or small sub-averages are being analysed. In addition, filtering can be used
to enhance both the BIN and the GAV. The author has also mentioned the advantages which can
be gained from a reducion in the total number of trials required for an interpretation of the BAEP.
From a commercial point of view, one can argue that providing trial reduction in conjunction with
latency variability information, is the immediate task that must be addressed in BAEP research.
For the first time then, it might be possible to seriously consider the use of BAEPs (and other

EPs), for real-time monitoring of the central nervous system.

The fast generation of averages depends on both the stimulus repetition rate and the total number
of responses acquired. In most circumstances, it is better to use low stimulus repetition rates
where one can observe all the wave components in the BAEP (Sec.[7.4]). It follows that the total
number of responses used is the main issue that must be considered when a fast averaging

procedure is designed.

Although an automatic fast averaging procedure has not yet been implemented by the author, the
modelling of bin cancellation with noise events has produced an insight into how this can be
achieved with the existing kernel programs. As it stands, event analysis generates probability
values for the events that are detected. The remainder of this chapter will make it clear to the
reader how these probability values are calculated. For the time being, it is sufficient to say that all
detected events, within and across trials, occupy a two dimensional space which is used to ascertain
this probability. This local event-probability p, can be used to provide criteria for stopping data

acquisition during fast averaging.

The two event analysis processes depicted in Fig.[8.6] can be implemented as a single process, and
for each iteration of this super - process, the value of p can be re-calculated. We restate Eq.[8.6]

which is:
{Ex} = {Es} + {En} - {Eerr}

and reiterate the objectives of event extraction which are:

e toreduce {Ea} to zero, and
e tomaximise the term ({Es} - {Eerr}) by adaptive PDF value estimation.
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With a small trial size, the sum of terms {En}m across M responses may contribute to the error in
the event bin B[N]. Certainly, if p is very low, then the numbers of {En/mn}m and {En/mx}m found
in {En}m will be small, and their relative proportions are not likely to differ significantly, therefore
resulting in an error. Determination of the probability of having an error, on the basis of the value
p, will in turn allow the analysis to be driven in real-time, and terminated when an acceptable value

of p is reached.

The acceptable value of p depends on an acceptable error contribution from {En}m. When this
value of p is rcached, then one can assume confidently, that the BIN structuring is adequate and
that the BIN may exhibit an acceptably small error in its event counts. At this point, the analysis
should to be in a reasonably good position to proceed with the latency variability estimations. The
idea of dynamically monitoring the quality of the results from the analysis should prove to be very
useful for knowledge based interpretation of the BAEP in an extended version of the EPAXIS
expert system, since the results will contain the maximum amount of quantitative information for

the expert system to reason with.

The probability model for bin cancellation with noise events utilises the generation of pairs of
independent discrete random binomial processes. A pair of binomial processes represent a series
of noise events [En/mx] and [En/mn], which are assumed to be drawn from the same temporal
location in their corresponding event sequences {En/mn}m and {En/mx}m across M independent
trials (i.c. they are synchronised). Furthermore, we assume that an event will always occur in each
trial, and, therefore, we are subject to the constraint that the total number of the maxima and
minima events does not exceed the total number of trials M. We know that with optimal bin
cancellation, the sum of the polarised labels attached to all of the [En/mx] and [En/mn] should give a
zero value in {Ex} when there are no signal-related events {Es}; see Eq.[8.8]. In order to
simulate an error-count § in the event bin after M trials, it is only necessary that the total number

of occurrences, of both [En/mx] and [En/ma], differs by .

The discrete binomial probability P(X = m)Mm of obtaining m events in M trials, at an event

probability p, is given by:
PX=mM=MCpn.pm.p(M-m)

M!

where M C m is the binomial coefficient = m!.(M-m)!

The discrete error probability P(X = B)M of obtaining an error of B in M trials is calculated for
both the positive and negative errors § = 0, +1, ..... + MaxErr (10), at several values of p up to
0.5. For each value of B, the trial size M is varied as M = 4, 8, 12, ....., MaxTrials (128). For each
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of these values of M, a partial error probability P(X = B)m is calculated for each of the
consecutive trials m = 0, 1, ....., M/2. These represent the probability associated with just one of

the possible ways in which an error of B can be generated in M trials. P(X = B)m is given by:
PX=Bm=PX=mMm.[PX=m+B)M + PX =m-B)M], forM-B<m <8,
PX=Bm =PX=mM.P(X=m+p)M, form < M-g,and
P(X =B)m = PX =m)M.P(X = m-B)M, form > .

The total error probability P(X = B)m for all the different ways of generating an error of g at one

value of M is then given by:
M/2

PX=BM=2 (}’(X o) T T Eq.[8.13]
m=

A plot of P(X = B)M versus M, is just one of the family of curves of error probability for all values
of B. Another representation of the information contained in this family of curves is the
cumulative error probability. In order to generate this family of curves, the values P(X < g)m for
all trials M and B are calculated from the P(X = B)M values after computing Eq.[8.13]:

MaxErr
PX < B)M =10 5 ) BP(X o)) S Eq.[8.14]

This gives the probability of obtaining an error of less than B in M trials at a particular event
probability value p. P(X < B)M is only an esitmate, since MaxErr < < o. The simulation results
and their corresponding graphs are included Appendix [D3]. The simulation programmes are
available in Appendix [D2]. An example of one family of curves for P(X = B)M is given in
Fig.[8.15] for p = 0.1. This shows that the probability of obtaining small error counts is high when
the trial size is small. As the trial size approaches 100, the curves at all values of B converge
rapidly to a low error probability value. The bin cancellation error actually rises from M = 4 to
about M = 40 for B = [1 to 5], before attaining a very shallow exponential decay beyond M = 40.
This would seem to suggest that, without the aid of filtering and/or averaging to improve the SNR
of single responses, reliance on bin cancellation for producing structure in the BIN is feasible only
with a critical trial size of about 40. We must remember, however, that the latter statement is only
valid for an event probability p of 0.1, and that the critical trial size must be increased at lower

values of p.
Refering to Fig.[8.15], the efficacy of fast averaging can be predicted when a value of p is reached

by mapping from the trial number on the abscissa to the error probabilities on the ordinate at

various values of 8. Alternatively, we could first establish an acceptable error count (e.g. five), and
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Probability (P(X=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers of
Trials (M) at p=0.10.
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Fig. [8.15] Discrete binomial probability simulations for bin cancellation with
noise events. Family of curves P(X = p)m,atp =0, 1, ... ,5 and p = 0.1.



Probability (P(X<=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers
of Trials (M) at p=0.10.
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Fig.[8.16] Cumulative binomial probability simulations for bin cancellation
with noise events. Family of curves P(X QM,atp = 0, 1, ... ,5Sand p = 0.1



then run the event anlysis procedure over a block of, say, 64 trials. If the dynamically computed
value of p is greater than or equal to 0.1, then we can be reasonably confident that there is a low
probability (less than 0.07) of obtaining an error of exactly five bin counts or events. Fig.[8.16],
which shows the cumulative probability P(X < B)M, reveals that there is a high probability
(greater than 0.85) of obtaining at least an error of up to five events, and conversely a low

probability of obtaining an error greater than five events.

We have seen from the above how it may be possible to implement a fast averaging procedure by
using a dynamic check on the parameter p. The only change necessary for its implementation into
event analysis, is to unify processes [A] and [B] in Fig.[8.6]. When sub-averaging and/or filtering
are used, the criteria for stopping the averaging can be relaxed because of the increased SNR of

the data.
The remainder of the discussion on event analysis will consider how latency variability estimates

and the value of parameter p are obtained. Finally, the latency variability information will be used
to generate enhanced averages of the BAEP through intelligent trial selection.
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8.9 Latency Variability and Component Trajectories

During the event binning process, a two dimensional map of the events occurring within and across
the single responses is maintained. This map, T[M,N] is represented in the computer as an M x N
bit array, whose elements tm represent markers for the events in the response sequences. A bit in
this map is set to 1, only when event-maxima {Emx/m}m are found. The row index m and column
index n in tm g, correspond respectively to the response number and the time (sample point) at
which an event-maximum has occurred. T[M,N] is called the trajectory map for reasons which will

become obvious later, and it is updated continvously during process [A] in Fig.[8.6].

The reasons for the care taken to ensure that a good BIN structure was obtainable, become clearer
at this stage of event analysis. Imagine a bit-mapped (pixel) image of T[M,N], and consider only
the post-stimulus portion T[M,N/2]. The space occupied by T[M,N/2], in which maxima-events are
set to 1, will resemble a peppered sheet of paper. If this were to be placed above the BIN of any of
the example diagrams presented so far, i.e. pasted into the GAV window, then the minimum
points in the BIN features will delimit several vertical segments in the space occupied by T[M,N/2].
These vertical segments will contain different proportions of the lit pixels depending on the
individual widths of the delincating BIN features. The space that these vertical segments occupy is
denoted by T[M,\N], or local trajectory space. The region bounded by the start of the first
(leftmost) segment and the end of the last (rightmost) segment is denoted by T[M,yN], or global
trajectory space, where vy is always less than 1/2. The remaining space in T[M,yN], is delimited by
the points between BIN features, and is called the inter-trajectory space T[M,N]. In general
X\ + v = v, and, furthermore because the delimitate points in the BIN are the adjacent minima,

must be zero.

With Figs.[8.17 and 8.18], the author is not attempting to describe any EP-type dependent features,
so we break from the normal, and use a pattern reversal visual evoked potential (PRVEP) data set
(left eye, full-field, 56’ check size, maximum contrast, Ts - F; electrode derivation). The responses
were inverted before analysis to obtain a BIN corresponding to the event-minima, thereby
indicating where the P100 component is located (at the GAV label e’ ). The use of a PRVEP
also serves to demonstrate the generality of event analysis, except for the change in time scale

required (i.e. in the case of the PRVEP, from 10ms to 500ms).

Fig.[8.17(a)] will help to familiarise the reader with the concepts of the trajectory map outlined
above. This diagram shows the partitioning of the GAV window by the minimum points in the BIN
features. Fig.[8.18(a)] is a filtered version of the same data set. The global trajectory space
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(a) Segmentation of the trajectory (event) map using BIN minima locations.
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(b) Segmentation of the trajectory (event) map after iteration.

Fig. [8.17] Illustrations of the trajectory map obtained during event analysis,
and their segmentation into global, local, and inter-trajectory spaces (see
text). In (a), the label ’¢ 'indicates the location of the P100 PRVEP

component (note: time scale is SO0ms per division in this case).
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(a) Segmentation of the trajectory (event) map using BIN minima locations.
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(a) Segmentation of the trajectory (event) map after iteration.

Fig. [8.18] Illustrations of the trajectory map as in Fig. [8.17] using the same
PRVEP data and filtering. There are fewer event-maxima in the map here
compared to Fig. [8.17], and the PI00 component is defined very well, in the
BIN, GAV, and T[M,xN] (note: time scale is 50ms per division in this case).



occupies a distance C - A = yN, and the distance that a single vertical segment spans in local
trajectory space is B - A. The sum total of these vertical segment spans is AN. In these examples

there is no inter-trajectory space, sov = 0.

The regions bounded by the segments in local trajectory space contain significant GAV features,
some of which might be of physiological importance. Each region also contains a population of
latency markers, which were determined at the single response level, for the event-maxima that are
part of the GAV feature contained in the region. The recognition of individual members of this
local population of event-maxima, is reflected in the corresponding discrete BIN values. Each
smoothed BIN feature can be viewed as an approximation to the distribution of the latencies in the
local population of event-maxima. The peak in the smoothed BIN feature, therefore, represents
the modal latency value of the local population of event-maxima. The mean latency of this local
population, similarly, represents the mean latency value of the event-maxima which give rise to the
corresponding GAV feature. It follows then, that the variance associated with each local
population of event-maxima will approximate the variance of the corresponding GAV feature.

This variance value is used as the estimate of component latency variability.

The effects of outlier observations on the mean latency estimate is minimised by performing an
iterative procedure which converges to an unbiased mean estimate of the local population. This
procedure first involves making an initial estimate of the standard deviation of the latency o, and
the mean latency p, of the local population. The latency intervals (e.g. B - A in Figs.[8.17(a) and
8.18(a)]), are then reset to p. = 1.65¢ so as to enclose 95% of the population of event-maxima,
assuming that they are normally distributed (c.f. spike rejection in Sec.[8.6]). This procedure is
iterated through 10 cycles. The cycle count was determined through extensive tests with many data
sets, and with iteration cycles reaching 50 in some cases. It was found that convergence to the local
population mean and standard deviation could be achieved with cycle counts greater than seven.
After this iterative process, the distributions of the reduced local populations are examined for any
skew, and the latency intervals are adjusted to compensate for the original assumption of

normality.

The resulting estimates for BIN segmentation are given in Figs.[8.17(b) and 8.18(b)] for the
unfiltered and filtered PRVEP data respectively. In both these cases, the local trajectory space
has been greatly compressed, and there is now an inter-trajectory space T[M,u\N]. The distance
that a single vertical segment spans in inter-trajectory space is C - B, and in local trajectory space
this is B - A. The global trajectory space spans the distance D - A. The effectiveness of the
iterative segmentation process is exemplified by examining the prior and post bounds of BIN peak
’4’ from Figs.[8.17(a) and 8.17(b)] respectively. We can see the common effect where prior bounds

adjust to locate onto the most dense cluster of discrete BIN values. Further evidence of its
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effectiveness is provided by counting the number of events in local and inter-trajectory space as the
size of sub-averages increases and/or filtering is used. With the data sets of Fig.[8.9 and 8.13] (i.e.
averaged and filtered data respectively), it was found that the ratio of the number of event-maxima
found in local trajectory space to the number found in inter-trajectory space increased by nearly
400%. This means that the iterative segmentation process delimits local populations of events that
are related to the components in the GAV, and that these events are not due to noise, since they

persist with sub-averaging and filtering.

Having obtained the optimal bounds within T[M,A\M], it is possible to plot the trajectory of the
components in the single responses from one trial to the next using the latency values of the
event-maxima in the segments of T[M,AM]. This will provide the user with a graphical
representation of where the components occur after the application of the stimulus and show how

they progress across trials.

Fig.[8.19] illustrates the trajectory mapping obtained with the simulated data set described in
Sec.[8.4]. We recall that this data set consisted of an invariant-signal file (i.e. in short: 64 trials of a
1 kHz, exponentially decaying, sine wave), combined additively with four different noise files to
produce four ensembles of simulated responses. In Figs.[8.19(a) and 8.19(b)], where both the
noise data are real, sponatancous, EEG records, the trajectories up to five milliseconds (i.e. at
BIN peak ’4’ and a SNR of -14 dB in the GAV), contain high proportions of active periods and few
quiet periods. Beyond this, as the SNR decreases, the trajectories become more variable and
contain higher proportions of quict periods. The detection and/or mis-detection of event-maxima
is reflected in the activity of trajectories, and the omission of event-maxima is reflected in the quiet
phases of the trajectories. In Figs.[8.19(c) and 8.19(d)], where the noise data are bandlimited,
random, Poisson noise and random, gaussian noise respectively, the trajectories are highly variable
and contain long quiet periods. This behaviour raises some questions about the accuracy of
measurements of latency variability using the descriptive statistics of the trajectories, since, with

the invariant underlying signal, the measured latency variability should be zero in all cases.

To a certain degree, the measured latency variability is driven by the additive noise characteristics,
and it is important to determine the amount of error that is introduced into the measurement. The
author has investigated this problem using the data from the simulations which were described in
Sec.[8.4]. In addition, two more sets of data were generated, each, as before, consisting of four
ensembles of simulated responses. These last two data sets were generated by adding the four
individual noise files in turn to the signal file. However, prior to the addition, the single trials in
the signal file were temporally shifted such that an artificial and pre-determined latency variability
could be introduced into the signal peaks. In both data sets the mean signal latency was zero. In
one of them, the induced standard deviation (Sd) in signal latency was 0.04ms, and in the other it

8-29



Crand Av PDF:20

(a) Signal + Spontaneous EEG (1 response/sub-average)

PDF: 14

(b) Signal 4 Spontaneous EEG (2 responses/sub-average)

GPOI FIX PDF:96

Event Ulna

(¢) Signal -f Poisson noise

(d) Signal £ gaussian noise

Fig. [8.19] Trajectory maps obtained for one of the data sets used in the
component latency variability recovery experiments. In each case, the
simulated signal is invariant and combined with different noise data. The
data set shown here is the same as that shown in Fig. [8.4].



was 0.08ms. Hence, in all, the three data sets consisted of data whose underlying signals had
induced latency distributions N(0,0) (i.e. an invariant signal), N(0,0.0016), and N(0,0.0064)

respectively.

These data sets were passed through the event analysis procedures and the measured latency
variability estimates were obtained for all the detected peaks. For each data set the measured
latency variability of a peak was plotted against the SNR (and actual latency) at that peak. The
three graphs obtained are reproduced in Figs.[8.20 - 8.22]. The errors in the recovery of the mean
signal latency and the Sd of the signal latency are both <0.08ms for EEG noise and <0.16ms for
the Poisson and gaussian noise, up to -10 dB. Beyond -10 dB the errors increase by approximately
50% with relatively worse errors occurring with Poisson and gaussian noise compared to those
with EEG noise. The error values can be interpreted in terms of sampling points by dividing them
by 0.04ms, ie. the reciprocal of the sampling frequency (25 kHz). A complete set of results,
including the numerical and graphical outputs of event analysis, is included in Appendix [D4].

McGillem et al. (1985) have derived an expression for the amount of error that additive noise
introduces into latency measurements. Their approach was to compute the standard deviation of
single trial peak latency measurements for an invariant signal plus random gaussian noise model.
Latency measurements were made as was described in Sec.[7.2.2]. The resulting expression for the

standard deviation of the latency (SDL) at a signal peak is as follows:

43.R .
SDL = % .................... Eq[815]

where R is the radius of curvature of the peak in sec? (i.e. a measure of its sharpness - the smaller
it is the narrower the peak), fs is the sampling frequency and it is assumed that this is at the
Nyquist rate for the noise. For a typical BAEP, a single component might correspond to a loop of
a 1 kHz sinusoid (fo = 1 kHz). The corresponding radius of curvature R = (1/2=fo)? =
2.53x10 sec?, and for a sampling frequency of 25 kHz, the standard deviation of the latency
would be:

043.253x10%.25000 027

SDL = =
V/SNR /SNR
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"The value of the latency measurement error, as predicted by the expression above, would be much
greater than that obtained in the experiments that have just been described for SNRs as low as
-10 dB. Therefore, the careful application of adaptive PDF values in the selection of peaks, and
the iterative component location procedures seem to work very well together when used to extract

latency variability measures.

It is not known what effects a reduction in sampling frequency and sub-averaging and/or filtering
will have on the latency variability estimates. However, if Eq.[8.15] is used as a guideline, then one
can confidently predict that the outcome will be favourable, in that the latency variability estimates
will be improved due to a reduction in the error through (a) an increase in SNR, and (b) a
reduction in fs. It is expected that changes in the analogue filter settings will affect the accuracy of
the latency variability recovery due to the inclusion/exclusion of high frequency activity. In
Figs.[8.20 - 8.22], the poorer estimates of latency variability obtained with the data containing
Poisson and gaussian noise, are paradigmatic of the effects of noise bandwidth on the definition of
the signal peaks (cf. R in Eq.[8.15]). In this respect pre-whitening the data may improve the
estimate, provided no additional filtering is used, because the definition of peaks and bin
cancellation will be enhanced, and the estimated PDF values will be lowered for increased

sensitivity.

In the author’s opinion, the latency statistics obtained with event analysis are sufficiently accurate
to be used for assessing the latency variability associated with real BAEP signals. Since the SNR in
other ERPs is generally much higher than in BAEPs, latency variability estimates can be

determined in these cases also.
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Fig. [8.20] Error in recovery of mean signal latency T (+/- 1Sd) in noise vs SNR. Signal latency
distribution is N(0,0) and noise files are spontaneous EEG, Poisson, and gaussian.
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Fig.[8.21] Error in recovery of mean signal latency T (+/- 1Sd) in noise vs SNR. Signal latency
distribution is N(0,0.0016) and noise files are spontaneous EEG, Poisson, and gaussian.
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8.10 Significance Testing of BAEP Components

In this section the author will clarify the relationship between the various trajectory spaces and fast
averaging. The local event-probability p, which connects the concepts of trajectory spaces and fast
averaging, is described first. Following this, it is shown how p can be used in determining the
significance of those trajectories associated with BAEP components. Extraction of the significant
components (i.e. trajectories) enables one to reduce the number of candidate trajectories
competing for definite assignment to individual components. This will be important in the
enkancements that need to be incorporated into the prototype expert system (EPAXIS) for the
automatic selection of BAEP components and their interpretation. The statistical properties
associated with event-maxima in significant trajectories, provide the means of re-examination of
the ensemble of single responses in order to create homogenous sets of single responses containing
specific components and combinations of components. From an EP/ERP research point of view,
this presents us with new and considerable possibilities to investigate the relationships between

components.

Once the limits of global trajectory space T[M,yN] have been determined with the help of BIN
features, we can calculate the probability of an event-maximum occurring anywhere within this

space. This global event-probability pg is given by:

_ total number of event-maxima found in T[M,yN]
total number of event-maxima possible in T[M,yN] = M. yN

Pg

A similar calculation is performed for the local event-probability p1 (previously denoted by p) in
local trajectory space T[M,\N], and for the inter event-probability pi in inter-trajectory space
T[M,.N]. When the distribution of event-maxima in T[M,yN] is uniform, it is expected that
pt = pi. This is a situation that is most likely to occur with single responses exhibiting white noise
characteristics. In the presence of non-stationary signal activity, it is expected that p; will be less
than p;, due to a relative increase in the total number of signal-related event-maxima found in
T[M,AN]. Achieving higher values for pj, as the number of responses being analysed increases, is
indicative of the presence of signal-related activity. Therefore, as described in Sec.[8.8], p1 can be

used as a stopping criterion in fast averaging,

In order to test whether or not a trajectory is significant, we need to determine if the sample of
event-maxima in the segments of T[M,\N] is drawn from the same population of event-maxima in
T[M,yN] and/or T[M,.N]. The true distributions of events in the trajectory spaces are not really

known. In the presence of non-stationary activity it is assumed that: (a) the distribution of events
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in T[M,.N] is uniform, (b) the distribution of events in the segments of T[M,\N] is binomial (cf. the
model of bin-cancellation described in Sec.[8.8]), and (c) the distribution of events in T[M,yN] is
lies somewhere between (a) and (b). Without having to make any assumptions about the
distributions of events, the significance of trajectories can be determined using a x2 tests for
goodness of fit of the individual segment distributions in T[M,AN] to the overall distributions in
either of, or each of T[M,yN], TIM,AN], or T[M,uN] (i.e. using pg, p1, or pi respectively). The
trajectories can then be classified (graded) according to the degree of goodness of fit to these

distributions.

To decide at the significance level a whether the trajectory events constitute a sample from a
population with an arbitrary distribution f(x), we first compute the expected number of
observations that would fall in each category of the sample as predicted by f(x). To compare the
observed frequencies oj, for the i category, with expected (theoretical) frequencies ej, we

compute the xz statistic over the r categories:

A trajectory sample is comprised of two categories r[1] and r[2], where r[1] is success [01,e1], i.e.
containing those trajectory events that have been found, and r{2] is failure [02,e2], i.e. containing
those trajectory events that have not been found or, in fact, non-existent. For category r[1], the
observed frequency 01 of events is obtained by simply counting the number of trajectory events.
The expected frequency et in r[1] is computed by multiplying the width of the segment in the local
trajectory by pe = pg, pi, or pi, depending upon which distribution is being fitted (i.e. e1 = width
of T[M,A\N] segment x pe). For category r[2], 02 and e2 are computed by subtracting o1 and e1
from the total number of trials being analysed M. Therefore, after simplification, the xz statistic
for a trajectory in a segment of T[M,\N] is given by:

2 (o1-€1)? + (01-€1)®
X €1 M-e

The null hypothesis, that the trajectory events are drawn from the distribution f(x), is rejected at
o = 90% significance level, if x2 exceeds )(2-9,1 = 271 for one degree of freedom v = 1. The X2
probability value P(x2 |v) is numerically computed for the trajectories during event analysis using

the incomplete gamma function provided in Press et al. (1988).
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The results tables in Appendix [D4] show the X2 statistics for the data sets that were used to
produce Figs.[8.20 - 822]. The values for x* and P(x? |v) in these tables were calculated using the
local event-probability pi so as to determine the trajectories with the highest grade. The values for
x2 and P()(2 | v) which are computed using pg and pj are not yet available in event analysis. They
can, however, be calculated very easily using the probability and span values which are available
from the analysis (see result tables in Appendix [D4]).

In conjunction with the scheme proposed for dynamic data-quality monitoring for fast averages
(Sec.[8.8]), this trajectory grading concept will have implications for the enhancements that are
being incorporated into the EPAXIS expert system. The grading scheme is actually another form
of measuring the quality of the data.

The next section discusses a method of generating enhanced averages of the BAEP by intelligent
trial selection. The use of the word intelligent is deliberate, in order to emphasise the connection
between event analysis and the EPAXIS expert system. The designs of both systems were
complementary to one another. It is the author’s intention that EPAXIS will automatically
perform the decision process of trajectory selection and subsequent scoring of the BAEP, using
the significance values for the trajectories, and BIN and GAYV information, etc. as are output by
event analysis. For the purposes of the following discussion on intelligent averaging, it is not
important that EPAXIS and event analysis are functionally interfaced. The decision making
intended for EPAXIS at this stage of event analysis has been performed manually.
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8.11 Enhanced Averaging by Intelligent Trial Selection

The information, contained in the trajectories, which relates to the latency of events, is vital for
enhanced averaging. We have seen how trajectories can be graded for quality and then manually
selected (or automatically selected with EPAXIS) to be representative of specific components in
the averaged BAEP. For each of the five major components in the BAEP, the corresponding

trajectory contains information on:

(a) the mean latency of the component,

(b) the variance of the component,

(¢) the latency of each of the detected event-maxima that constitute the component, and
(d) which trials in the ensemble of responses contain an event-maximum related to a

specific component.

Item (d) is perhaps the most useful for enhanced averaging, since it enables one to selectively
re-average the ensemble of responses. This is done by averaging only those trials that have a valid
event in a trajectory. Since the five major trajectories are component-specific, the five new
averages of the BAEP which can be produced, will each serve to enhance their own source
component. An enhancement can be achieved because, only those trials with events are included,
and more importantly, only those trials that contain noise-events and/or events due to spikes, are
omitted. As the author shall demonstrate shortly, this simple procedure has proved to be

surprisingly effective.

The five component-specific averages are called the source averages, and using their trajectories,
the analysis has been extended to produce derived averages, which comprises an homogeneous set
of trials containing pre-determined combinations of component-specific trajectories and their
events. These derived averages allow for the investigation of the relationships that may exist

between components.

In order to generate the above source and derived averages, the event analysis program first maps
the events contained within the five pre-selected, component-specific, trajectories into the first five
columns of an M x 13 bit array, C[M,13] (where M is the total number of trials). Bits in C[M,13]
are set to '1’ in the five source columns corresponding to each of the component-specific
trajectories, and in the M rows corresponding to the trial numbers that contain events in the
trajectories. Second, the homogenous sets of trials that result in the derived averages are
generated in the remaining eight derived columns in C[M,13]. The first five of the derived columns

are generated by performing a bit-wise ’and’ operation on selected combinations of source
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columns. This operation produces the intersection-sets of homogeneous trials. The remaining
three derived columns are generated by performing a bit-wise ’or’ operation on sclected

combinations of source columns, and gives the union-sets of homogeneous trials.

The combinations of BAEP components chosen for the derived columns in C[M,13] are formally

specified as follows:

o The pre-selected component-specific trajectories T are:

Tt = {et, €2, ..., eM-1} wheret = 0,1, .....,5and em = 1o0r 0,
and the overall source set S = { T1, T2, ..... ,Ts}.

e The intersection sets [j are:

Lh=TiNTs
L=TiNTs,
I3 =TsNTs,
Is =T2aN Ty,

Is=TiNT3NTs,
and the overall intersect set I = {I3, I, ....., Is}.

e The union sets Yy are:

Y1=T1UT3UTs,

Y2 =T2UTs,
Y3=T1UT2UT3UT4U Ts,

and the overall union set U = {Y1, Y2, Y3}.

e The universal combination set C = {8, [, U}, which is represented in the computer
as the bit-mapped array C[M,13].

The trajectory combinations in I and U were specified on the basis of what has been stated, about
the manifestation of certain components in the presence of others, in numerous publications (e.g.
" Jewett, 1970; Picton, 1988). In particular, there is much quoted of the normal values for waves I,
III and V, and their respective inter-peak latencies. This is because they have consistent
representations in the averaged waveform at all stimulation intensity levels and stimulus repetition
rates. Additionally, a normal data study (conducted by Robinson and Robinson of Medelec Ltd,
Woking, Surrey, 1988) has also consistently shown high correlations between these waves and also

between waves II and IV.

8-36



Apart from the intelligent averaging described above, it is also feasible to compute a form of
latency corrected average (LCA) using the mean latencies of events in the component-specific
trajectories. Since the total number of responses being analysed is small, it should be
advantageous to temporally align events, that fall within the bounds of a component-specific
trajectory, with the mean latency prior to re-averaging. The procedure used in this investigation
does not splice-out segments of the LCA corresponding to each component-specific trajectory and
then attempt to fit a curve to the segments (cf. LCA described in Sec.[7.2]). Instead, five grand
LCAs are generated, which have each been, in-turn, corrected to the mean latency of one of the
five component-specific trajectories. From each of these grand LCAs, a source LCA is produced
using trials chosen from S as for the five source averages mentioned earlier. Selective re-averaging
has to be performed several times using trials chosen from Ij or Yj to generate each one of the
derived LCAs. For these cases, to extract the corrected form of each component, re-averaging is
performed however many times there are trajectories in the individual I; or Y; respectively. For
example, if the derived LCA for I1 was being generated, and the column vector for I in the
combination map showed 10 trials containing the combination of trajectories ( T1 N T3 ), then the
resultant LCA would be computed from the sarne 10 trials taken from both grand LCAs for T1 and
T3. This means that the derived LCA for I; would eventually contain a total of 20 trials.

The latency alignment in LCA will exaggerate the contributions of trajectory events to the
morphology of the corresponding components in the averaged BAEP. The peak of a latency
corrected component will, in most cases, be found to exist at the mean latency of the trajectory
used for the correction. Generally, one would attempt to select the trajectories corresponding to
each of the five major components in the BAEP, so that the intersect and union sets of trials would
be meaningful. To extend event analysis for intelligent averaging with other EPs would simply be a

case of redefining the combinations of interest in I and U.

Some illustrative results for intelligent averaging and event analysis are given in the case studies

that follow in the next section.
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8.12 Event Analysis Case Studies

A complete set of results from event analysis of BAEPs can be overwhelming, especially if both
ipsilateral and contralateral channels are being investigated. The case studies that are presented
here will attempt to provide a global overview of the full event analysis procedure using
contralateral channel data only. A small, but representative set of graphical and statistical output
will be interspersed with short descriptions of the objectives, so that the reader may see how the

event analysis programs can be used to find information in the BAEP.

8.12.1 Case Study A

Infor ion:

e Data sct:
Name - 10xmb.10; Channel - contralateral; Stimulus intensity - 75 dBSL; Sex - male.
e Data specification:

16 responses / sub-average; 64 unfiltered sub-averages; 1024 responses in total.

The diagrams in Fig.[8.23] show the general results obtained from the preliminary stages of event
analysis. The reader should be familiar with their formats and meaning. Fig.[8.23(d)] shows the
frequency distribution of latency intervals between adjacent maximum and minimum events,
H[(At)p]m, which is used for spike rejection in, and adaptive low pass filtering of the ensemble of
trials (Sec.[8.6]). The information in the event bins of Fig.[8.23(b)] suggests that significant activity
exists in the GAV (Fig.[8.23(a)]) at latencies in the vicinity of BIN peaks ’1’,’2’,’3’,°5’, and *7’. The
trajectories in Fig.[8.23(a)] which correspond to these BIN peaks bisect the major components of

the averaged BAEP.

The number of trajectories present in the latency interval occupied by the major BAEP
components is low in comparison to the number of features of interest in the BAEP. This
behaviour is expected, since the trials being analysed consist of small sub-averages (Sec.[8.7]), and
the stimulation intensity is high which also serves to increase the SNR of the 1024 individual single
responses. In this case, the benefits of bin cancellation were most likely to have been superseded
by the benefits of having an increased SNR (Sec.[8.7]).

Wave I in Fig.[8.23(a)], at about 1.5ms, is broad and has a ragged-fop consisting of multiple peaks.
This is reflected in the bifid BIN peaks 0’ and ’1’. It would be a relatively simple matter to score
(or label) this BAEP using information from the well-structured BIN in conjunction with normal

values for the latency of components (given in Appendix [D5]). However, to gain a greater
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Fig. [8.23] General results obtained from preliminary stages of event
analysis.



understanding of the activity that produced the complicated wave I component, one must resort to
an examination of the BAEP at the single-response or single sub-average level (Sec.[7.1]). We will

use intelligent averaging to aid an investigation of the BAEP at this lower level.

The statistics for this data set, which were generated at the preliminary stages of event analysis, are
shown below m Table [8.1] (see Appendix [D4] for an explanation of the attributes in the table):

Event Probabilities:

Max GPks possible (uniform) : 12800
Total GPks found : 684
Global Probability of Pk : 0.05

Max LPks possible (uniform) : 7424
Total LPks found : 493
Local Probability of Pk : 0.07

Max InterPks poss. (uniform) : 5376
Total InterPks found : 191
Inter Probability of Pk : 0.04

Lem N® GPkAmpl GPklat BPkAmpl BPklat Mn SD Q E <ChiSq ChSqP BinomP %Swps CC Span
0 . 162 1.72 1558 144 142 007 27 30 048 049 000 4219 090 7
1 . 217 2.80 1683 172 176 009 23 34 759 001 000 3594 088 8
2 . 230 3.96 3686 296 292 009 43 34 508 002 000 6719 093 8
3 . 689 4.96 3641 392 390 012 47 47 000 094 000 7344 089 11
4 . 392 592 1023 440 440 007 20 26 197 0.16 000 3125 095 6
5 57 6.88 3858 496 500 009 37 34 056 045 000 5781 093 8
6 .-372 7.68 1220 544 546 008 26 30 088 035 000 40.63 093 7
7 .-450 8.32 2475 588 595 008 35 30 173 0.19 0.00 54.69 0385 7
8 . 208 9.48 2152 632 627 008 28 26 041 052 000 4375 090 6
9 0 0.00 2947 676 682 010 40 34 226 013 000 6250 0.93 8
10 0 0.00 2258 728 732 011 32 38 254 011 000 5000 0.9%4 9
11 0 0.00 2282 784 1787 009 32 34 025 062 000 5000 0.94 8
12 0 0.00 2177 824 830 008 31 30 010 0.75 000 4844 0.89 7
13 0 0.00 2240 888 885 012 40 43 044 051 000 6250 0.80 10
14 0 0.00 2453 916 916 006 32 26 275 010 0.00 50.00 0.89 6

Table [8.1]

The number of events (peaks) found in local trajectory space T[M,AN] (493) is much higher than
was found in inter-trajectory space T[M,uN] (191). This indicates that there should be some
non-stationary (i.e. signal-related) activity present. The local probability p of finding an event in
T[M,\N] is 0.07, and from the bin cancellation simulation results in Appendix [D3] one can infer

that the chance of obtaining an error of greater than five counts at one sampling point in the event
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bin is less than 5% (using P(X <5)64 at p = 0.06). If the chance of an error was much higher, then
it would be necessary to recompute the analysis with the inclusion of an additional ensemble of
trials. With this particular data set, the error probability value P(X <S5)¢4 is not strictly valid
and/or representative of the bin cancellation process. This is because the probability distribution
of the noise has been affected by the sub-averaging process (Sec.[8.8]). Nevertheless, it was
beneficial to mention just how P(X <pB)m is intended to be used when single-response data is

being analysed with a fast averaging paradigm in mind.

To proceed with the generation of intelligent averages, the individual T; must be selected after
consideration of the xz values, the percentage of trials that contain an event, and above all, the
mean latency values with respect to the standard normal values given in Appendix [D5]. If we
manually assign the trajectories Ti corresponding to BIN peaks ’1°, ’2°,°3’, °5, and *7 to the overall
source set S, then the resulting combination set C will have a bit-mapped representation C[M,13]
as shown in Fig.[8.24]. The fav-source (fast average source) traces in both Figs[8.24(a) and
8.24(b)] are the source averages computed from the individual Ti. The infersect traces in
Fig.[8.24(a)] are the derived averages computed from the intersect sets Ii. In Fig.[8.24(b)], the
union traces are the derived averages computed from the union sets Yi. For comparisons, the
average of the source averages and the conventional BAEP average are also provided. All the
averages are delineated at the mean latency values of the selected trajectories. The numeric labels
attached to the traces have the format - Column vector number in C[M,13] which was used (trace
number) : Combination forrmula | Number of trials contained in the average. An example of the
latter for a trace in the intersect set is 9 : 024 | 24, which should be read as - column vector 9 (or

trace 9) : from combination of trajectories 2 and 4 | contains 24 trials.

Trace 2 in Fig.[8.24], as expected, enhances wave 2, but it has no representation of the rightmost
part of wave I which was selected in trace 1. This trace contains the leftmost part of the bifid wave
I which was indicated by BIN peak ’0’ in Fig.[8.23(b)]. There is a marked showing of wave I'V or a
possible wave IV/V complex with a very weak showing of a wave V inflection. This is unusual,
since there is a relatively high percentage of trials in the average (67%). By comparison, trace 1,

which has just over half as many trials (36%), shows clear representations of all the waves.

In trace 4, wave II is very prominent and wave I is not present at all, even though the average
contains 57% of the trials. When any of the waves I, ITI, or V are being enhanced, there appears to
be a good representation of all other waves. When either waves II or IV are being enhanced, there
appears to be a good representation of the other wave only. These phenomena have been
repeatedly observed in other BAEPs. Trace 9 clearly supports the observation of an exclusive
wave I and IV correlation. Traces 6, 7, and 8 show very good BAEPs, obtained from low numbers

of trials, because of the enhancements included from either of waves I, ITI, or V. The BAEP in
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trace 10 is obtained from only 20% of the available trials, and it is has a much better morphology
than the conventional raw average. Wave I is clearly defined and the strong negativity expected

after wave V is also evident.

The difference in ensemble size between traces 12 and 13 is only six trials. These traces contain
88% and 98% of the available trials respectively, however, the waveforms are quite dissimilar.
They both emphasise the waves II and IV, and the waves I, III, and V phenomena mentioned

above.

Fig.[8.25] shows the latency corrected averages for this data set derived from grand LCAs using
the lcafav-source trajectory information. They show neither significant improvements over the
averages in Fig.[8.24], nor have they introduced any distortion. Examination of the standard
deviations for the respective trajectories in Table [8.1] shows that trajectory five will cause a
maximum latency correction in the ensemble of trials, since it has the highest variability. For 70%
of these trials, the latency shift will be less than three sampling points, so the effects of latency

correction will not be dramatic.

The traces in Figs.[8.26 and 8.27] show the fav-source and derived averages, and the lcafav-source
and derived averages respectively for the data set in Fig.[8.23(a)]. The difference in this case, is
that the trajectory corresponding to Bin peak ’0’ is used to generate traces 1, 6, 7, 10, 11, and 13
(i.e. all those traces that have trajectory Tp in their combination set). On examination of the
complete set of traces in both Figs.[8.26 and 8.27] which are generated using T1 and not Ts, it can
be seen that their wave V representations are very small compared to their counterparts in
Figs.[8.24 and 8.25]. This is not what is expected, given that waves I and V are highly correlated in
the BAEP. All traces that are generated using Ts help to pull out the rightmost peak in the bifid
wave I component, which corresponds to the trajectory selected previously. One can strongly
postulate therefore, that the leftmost peak in the bifid wave I component does not arise from the

same polysynaptic chain in brainstem pathways as the rightmost peak.
8.122 Case Study B
Background Information:

e Dataset:

Name - 3xmb.20; Channel - contralateral; Stimulus intensity - 65 dBSL; Sex - male.
o L ‘fication:

16 responses / sub-average; 64 filtered sub-averages; 1024 responses in total.
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In this case study, the GAV peak in Fig.[8.28(a)] corresponding to BIN peak ’5’ in Fig.[8.28(b)] is a
wave IV/V complex. The GAV component is broad and has prominent shoulders on each of its
sides. These shoulders are reflected in the BIN structure by small peaks on either side of BIN
peak ’5’. All the other major components are noticeably represented in the BIN, though there is
some erratic behaviour between waves II and III which tends to distort them. Wave I in the GAV
is swamped by the presence of large stimulus-related artifacts. With intelligent averaging we hope

to determine the precise locations of the peaks in the wave IV/V complex.

The statistics for this data set are given below in Table [8.2]:

Event Probabilities:

Max GPks possible (uniform) : 13824
Total GPks found : 462
Global Probability of Pk : 0.03

Max LPks possible (uniform) : 7616
Total LPks found : 348
Local Probability of Pk : 0.05

Max InterPks poss. (uniform) : 6208

Total InterPks found : 114
Inter Probability of Pk : 0.02

Item N° GPkAmpl GPklat BPkAmpl BPklat Mn SD QO E ChiSq ChSqP BinomP Z%Swps CC Span

0 . 212 2.36 2774 144 136 012 25 29 113 029 000 3906 100 10
1 . 220 3.76 5596 232 236 014 41 35 220 014 000 64.06 098 12
2 .71 5.44 2348 304 293 010 20 23 078 038 000 3125 100

3 . 199 6.32 1623 336 340 007 17 18 0.02 088 000 2656 1.00

4 . 505 7.04 6115 380 384 007 31 18 1421 000 000 4844 1.00

5 .-270 8.28 3324 536 531 013 33 32 004 084 000 5156 100 11
6 0 0.00 1986 628 630 014 25 35 643 001 000 3906 100 12
7 0 0.00 3825 708 702 012 30 32 029 059 000 4688 100 11
8 0 0.00 2564 73 734 006 15 15 001 091 000 2344 1.00 S
9 0 0.00 1654 828 817 016 32 38 235 013 000 5000 097 13
10 0 0.00 3569 876 878 008 25 20 147 022 0.00 3906 1.00 7
1 0 0.00 2680 948 926 016 34 35 008 078 000 5313 097 12
12 0 0.00 3624 972 970 007 20 18 047 049 000 3125 1.00 6

Table [8.2]
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Fig.[8.28] General results obtained from preliminary stages of event analysis.



To continue with the author’s convention of assigning the five trajectories in the source set S to the
major BAEP components, it will be necessary to omit assigning T4 since a wave I'V does not exist in
this case. Therefore, the trajectories T1, T2, T3, and Ts corresponding to BIN peaks *0’, ’1’, ’4’, and
’5’ only will be used.

In Fig.[8.29] the source and intersect traces that are computed from T4 are obviously not available.
Trace 2 shows a distinct wave IV component, despite there being a complex wave IV/V in the
GAV. A note was made in case study A of the high degree of correlation that exists between
waves II and IV. The separation between waves IV and V in trace 2 is only about 0.5ms. This can
result in an apparent fusing of these potentials during averaging when either has an associated
variability that causes their peaks to overlap. The small separation of waves in the complex is
confirmed by trace 3, where the high correlation between waves III and V has caused an

enhancement of wave V, and consequently a resolution of the complex.

The traces that enhance wave I, either directly through a combination formula containing T1, or
indirectly through a correlation with wave I, show little or no artifactual activity. The average of
the fav-source averages (sum) contains cleaner wave I and wave II components than the raw
average. This average is a form of weighted averaging, since some trials will be included more
times than others, depending on the number of occurrences in the source set S. Favour is given to

those trials with highly correlated components in the Tj contained in S.

The LCAs for the data set in Fig.[8.28] are given in Fig.[8.30]. There is perhaps a very slight
improvement in the sharpness of wave I and the resolution of the wave IV/V complex in these

traces, but no other advantages over the averages in Fig.[8.29] are obvious.

8.12.3 Case Study C

nd In

e Dataset:

Name - combd4.dat; Channel - contralateral; Stimulus intensity - 65 dBSL; Sex - male.
e Data specification;

4 responses / sub-average; 64 filtered sub-averages; 64 responses in total. *

( * The sub-averages are combinatorially averaged)

The data set shown in Fig.[8.31] is produced from combinatorially sub-averaged data as described
in Sec.[8.7.1]. The GAV in Fig[8.31(b)] and the BIN in Fig.[831(c)] are the same as in
Fig.[8.13(c)]. Since the total number of trials in this GAV is small (64), wave V at about 6.1ms is
not yet represented by an obvious peak. The wave V shoulder in the GAV waveform emerges as a

distinct peak after continued averaging (see Fig.[8.11(d)]). The task of assigning a latency label to
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average.

Fig.[8.29] Combination map and enhanced averages as obtained by
assignment of the 11 for BIN peaks O, °T, ’4’, °?°, and ’5’ in Fig.[8.28(b)] to
the overall source set S.
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Fig.[8.30] Combination map and LCAs as obtained by assignment of the i
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S and corresponding grand LCAs.



this shoulder is easily accomplished when the BIN information is used for guidance. Without it,
the process of scoring this BAEP is open to some subjectivity. In addition, the GAV peaks around
1.5ms and 2.5ms are too broad to be regarded as good estimations of the wave I and wave II BAEP
components. In a situation such as this, an experienced clinician might attempt to score the
BAEP, although it is more likely that several more trials would be averaged to hopefully obtain the
quality of average shown in Fig.[8.11(d)] (512 trials) so as to remove any need for subjectivity.

If real-time monitoring of patients using BAEPs is to be achieved in the future, we must attempt to
generate good estimations of the components using a small number of responses. The intelligent
averaging proposed in this section has shown some promise in this respect, and it is further
demonstrated that the components of this GAV can be extracted from the small number of

available responses. The statistics for this data set are given below in Table [8.3]:

Event Probabilities;

Max GPks possible (uniform) : 13440
Total GPks found : 476
Gilobal Probability of Pk : 0.04

Max LPks possible (uniform) : 8000
Total LPks found : 415
Local Probability of Pk : 0.05

Max InterPks poss. (uniform) : 5440
Total InterPks found : 61
Inter Probability of Pk : 0.01

Lem N¢ GPkAmpl GPklLat BPkAmpl BPklat Mn SD QO E ChiSq ChSqP BinomP %Swps CC Span
0 . 10847 1.60 2645 108 116 012 31 33 030 058 000 4844 100 10
1 . 8005 2.68 3833 1.64 165 006 27 17 880 0.00 000 4219 1.00
2 . 9966 3.64 2075 228 224 009 23 27 082 037 000 3594 1.00
3 . 5295 5.16 3690 272 262 013 37 37 001 090 000 5781 097 11
4 . 3621 9.12 798 308 303 003 11 7 319 007 000 1719 100
5 . . 779 9.44 5328 360 363 010 42 30 922 0.00 000 6563 100
6 . 0 0.00 1418 464 465 004 18 13 212 015 000 28.13 1.00
7 . 0 0.00 2869 504 514 013 34 37 040 052 000 5313 100 11
8 . 0 0.00 4545 608 595 017 39 40 005 083 0.00 6094 100 12
9 . 0 0.00 1557 680 671 014 38 40 023 064 0.00 5938 097 12
10 0 0.00 1787 724 725 005 11 17 255 011 000 1719 100
1 0 0.00 2708 752 752 007 19 20 0.06 080 000 2969 1.00
12 0 0.00 1481 8.04 802 011 23 30 297 008 000 3594 096
13 0 0.00 3226 852 859 016 42 43 010 0.76 000 6563 091 13
14 0 0.00 1324 920 919 010 21 27 199 0.16 000 3281 100 8

Table [8.3]
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Fig.[8.31] General results obtained from preliminary stages of event analysis.



File: COMB4.DAT

, 1:001
16
2:002 k. "]
V; Vv 18
~3:003
23
4:004 9 :024
34 19
TTET T 5:005 o 3V A-
—-2 39 vy
#: 123450 1E310111213
T: 13 5138
(a) Fav-source traces [1-5] and intersect traces [6-10].
File COMB4.DAT
TIE =TT= :TEIS
P==: T i=11E=E . 1:001 11:135
fEfl: ilT-E-rE 60
HHEEIIZZilEEE %
EEEriri iriSSS 2:002 12:024
fZ=ZEfT=2f=ZE I 52
—==T====T==== R/[
TTEEETTETTEEE
mEEEEi iEEiEEE
t: : T= : T =t = 3:003 13:1-5
=TT :=T = T r=7T= 63
l:.==E=§.: l.f;iEiE:E:
<ZiTZ: ::T1227Z s
IETT1i1:T;ZEE 4:004 g
—iZiTTTTIiTE!E M
REEZ{E!, jLIEEE R
1 :Z=f: i:i :E=E 5:005 A
SZITE: =i ! EEE w

1 23H5b10 310111213
13 518

(b) Fav-source traces [1-5], union traces [11-13], sum of traces 1-5, and conventional
average.

Fig. [8.32] Combination map and enhanced averages as obtained by
assignment of the +: for BIN peaks °1°,°S’, ’5°, °7°, and ’8’ in Fig. [8.31(c)] to
the overall source set S.
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The distribution of events that have been found for this data set are shown in Fig.[8.31(a)]. There
is a definite clustering of the events in the vicinity of the main components. A broad component
(e.g. waves L, II, and IV) will have a correspondingly wide cluster of events and a sharp component
will have a correspondingly narrow cluster of events (e.g. wave II and V). Broad components (and
shoulders) appear in the average of small sized ensembles, when the underlying activity is either
highly variable, consists of tightly-coupled bifid components, or contains few representations of the
component. The wave V shoulder is an example of the presence of high variability in the
underlying activity (standard deviation is 0.17ms). In Fig.[8.31(a)], this component, unusually, also
shows large periods of non-activity between stimulus applications. Waves I and II are examples of

bifid components.

Table [8.3] shows that the majority of events (87%) lie within local trajectory space which is most
likely due to the low pass filtering used (Sec.[8.6]). Therefore, it follows that most of the
trajectories should contain an event in a high percentage of the trials. The observed number of
events for trajectories corresponding to BIN peaks ’1’, ’3’, ’5’, and ’7’ confirms this expectation.
Selecting these trajectories for the calculation of the intelligent and LCA averages results in the

traces given in Figs.[8.32 and 8.33].

The intersect traces that are generated with Ts show marked enhancements of the wave V
component. Again, as we have seen from the other case studies, wave II is clearly distinguised in
the presence of wave IV, and there is a high degree of co-existance between waves I, III, and V.
Trace 10 in Fig.[8.32], which is generated from only nine sub-averages, shows a very good BAEP in
which all components are visible, including the bifid peaks that waves I and II contain. In
Fig.[8.33], the sum of the lcafav-source averages (sum) is similar to the conventional average.
Wave V, which was previously a broad shoulder, now exists as a small peak due to the latency
alignment of its constituent events. The latency at which this wave V peak occurs is about 0.01ms
earlier than the wave V peak in the fav-source average of trace 5 in Fig[8.32]. It is evident
therefore, that the subjectivity that might be involved in scoring the conventional average can be

removed with a global examination of the averages produced by these forms of enhanced

averaging.
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8.13 Discussion

ERPs are used as non-invasive indicators of human brain function in both clinical and research
applications. These electromagnetic signals directly reflect some aspects of the neural activity
associated with the specific brain mechanisms that underlie sensorimotor and cognitive processing.
Scalp recorded ERPs, however, provide an incomplete and distorted view of intracranial neural
processes (Vaughan and Arezzo, 1988). These limitations are due both to the inability of some
neural generator sites to produce electric fields that can be recorded at a distance on the scalp,

and to the summation of different neural generator activities at the scalp.

Neurones that constitute a generator site exhibit some transmembrane ionic charge separation
when depolarised through electrically excitable membranes or through chemically mediated
synaptic effects. This charge separation initiates transmembrane current flows along the existing
voltage gradient. The transmembrane current flow associated with the excitatory post synaptic
potential (EPSP) depolarisation creates an extracellular negativity or current sink, flanked by
relative increases in extracellular positivity or current sources. At the same time, extracellular
current flows down the potential gradient created by the sink, at the site of active depolarisation,

and the sources along the neural membrane extending outward from the sink.

Electrically depolarised membranes trigger action potentials that propagate along the axon and
through its branches to the axon terminals. Some of this axonal current passes across the neural
membrane in order to complete the circuit of current flow. The extracellular sink associated with
this propagated depolarisation moves along the axon, flanked by sources that precede and follow

the region of depolarisation.

Thus, the current sources and current sinks associated with the generator sites of ERPs are either
stationary, in the case of EPSP induced excitations, or travelling, in the case of propagated action
potentials. The spatial geometry of the stationary current sources and current sinks will affect the
field potential recorded outside of the active neural tissue. If there is anatomical symmetry in
adjacent activated neurones, then the sources and sinks will cancel one another, so that no
significant extracellular current would flow beyond the dendritic field of the individual neurone.
This concept of source-sink cancellation can be applied to groups of symmetrically activated
neurones or generator sites which will have sharply localized extracellular field potentials. If there
is an unequal distribution of sources and sinks in any dimension, then a potential field will be
generated beyond the region of active tissue, and it will be measurable at the scalp. Unequal
distributions of sources and sinks can be represented by a paired source and sink, which gives rise

to the dipolar model of field potential generation. ERPs of cortical origin principally reflect

8-46



graded EPSPs that sum due to a common orientation of the active cellular elements. They have
complex variations in magnitude, polarity and spatial extent over time as the intracortical patterns
of sources and sinks change in strength and location. In contrast the ficlds set up by action
potentials travelling along fibre tracts in subcortical structures (e.g. in the brainstem), obtain their
complexity from the traversal of complex pathways with a number of synaptic relays and changes in
orientation. The surface manifestation of potential fields generated within subcortical pathways
and from cortical generators are therefore more complex than has generally been appreciated

(Vaughan and Arezzo, 1988).

The identification of the anatomical generators of ERP compcnents is essential for clinical
applications in which ERPs are employed to aid in the localization of brain pathology. Very
simply put, identification begins by mapping the surface ERP topography, and then, in conjunction
with knowledge of the cellular anatomy of active structures, provides a basis for identifying the
specific generators. Given any surface potential distribution, there are an infinite number of
possible intracranial generator configurations, however constraints are imposed by known features
of brain anatomy and physiology. The use of dipolar models of ERP generation can then be used
to approximate an observed ERP distribution (Scherg and Von Crammon, 1985). For this form of
modelling, the topographic data must be reliable and include all the major maxima, minima and
points of inflection. It is in this latter respect, that the author believes the enhanced averages
produced by event analysis can complement and extend the data obtained from such quantitative

models of the electrogenesis of ERPs.

The methodology for event analysis described in this chapter has demonstrated how simple
constructs can be combined to enhance features in BAEPs and other signals under the class of
event related potentials. The stimulus-locked feature of BAEP components, and previous
experience with turning points analysis in interference pattern EMG (Sec.[2.3.4]), has formed the
the basis for a representation of the BAEP as a sequence of events. Decomposition of the BAEP
into event sequences throughout a series of stimulus-locked trials, means that at least one
population of events will result for each component, if and only if that component is non-stationary
and detectable. Analysis of these populations of events gives a set of sample statistics that provide
component latency variability information and the ability to select the best trials from the ensemble

for re-averaging, so as to enhance pre-selected components.

The problems of poor SNR were overcome by adaptively estimating the peak detection threshold
value from one trial to the next, by sub-averaging and filtering, and by a process of event
cancellation in the event accumulator bins. The use of these methods has been described in detail
and some simulations were performed to determine their effectiveness. Combinations of these

techniques can be used to analyse BAEPs using small numbers of responses. Results have been
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given for 1024 and 64 trial BAEPs at 65 dBSL stimulus intensity which have demonstrated the
ability to perform controlled dissections of the signal to extract information that is hidden by a

conventional averaging process.

Control over a signal dissection is aided by the statistics that are generated during the analysis.
Significant trajectories, corresponding to the major BAEP components, are chosen on the basis of
their xz probability values, the percentage of trials that contain an event, their mean latency values,
and the structuring in the event bin. The significant trajectories are used to generate a
trials-combination map which drives the construction of new enhanced averages from trials in the

original ensemble.

In general, global consideration of all the enhanced averages provides more information than is
available from the conventional average alone. The unfavourable effects of including a few low
quality responses into the conventional average has been demonstrated. Conversely, it has been
shown that there are significant advantages to be gained when responses that do not contain events
are excluded from the average, and that this trial exclusion process can be performed on an
automatic basis using event analysis and intelligent averaging. Selection of the correct trajectories
for the computation of the enhanced averages is necessary to obtain any improvement of normal
features. However, one can also select trajectories that do not correspond to normal features in
the BAEP. This essentially serves to hypothesise that an underlying, and significant, component
does exist in the region occupied by the trajectory. The hypothesis is tested by examination of the
resulting averages, and severe distortion of previously observable normal (and/or well-formed)
features will reject the hypothesis that a significant component does exist. The selection of
statistically significant trajectories (p = 0.05, Sec.[8.10]) and/or trajectories containing greater
than 40% of the available trials, appear to result in reliable enhancements to the components in

the BAEP.

The results given in Sec.[8.12], suggest that BAEP generators are locked, in that strong
synchronisation exists between certain generator sites and not others, e.g. between the generator
sites for waves II and IV, and between the generator sites for waves I, III, and V. It is known that
the BAEP components mainly reflect synchronised action potentials in afferent fibre tracts, and
that these potentials are not representative of serial activation of the ascending pathways. The
bifid components are possibly due to the different axonal conduction velocities in different afferent
pathways. Compound action potentials in the separate pathways will become temporally
dispersed, and this dispersion will be further complicated by the repeated firing of neurones within
the sensory pathways following a single auditory stimulus. In addition, particularly in the auditory
system, there are parallel bilateral projections that synapse within or bypass each relay nucleus
(Stockard et al., 1978; Scherg and Von Crammon, 1985). So the simultaneity of surface and depth
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potentials may be entirely due to chance, since the complexity of the intracranial signals and the
shifts in timing of their peaks along their intracranial course leads to opportunities for
synchronisation of the surface and depth recorded peaks that do not reflect activity within the

same generator (Vaughan and Arezzo, 1988).

The effects of habituation and facilitation are not expected to contribute to this observed complex
behaviour, since the process of acquiring the largest ensemble of responses (1024 trials) only lasts

for 3!/2 minutes with the recording protocol used for these experiments (Sec.[8.2]).

The knowledge required to allocate a trajectory to a BAEP component is procedural in most cases.
Sometimes, a deeper, more complex knowledge is required to arbitrate between multiple and
equally likely trajectories. In order to effect this arbitration, additional channels of data may have
to be examined. Following this, it would be necessary to score the data based on decisions made
about the quality of the new, enhanced averages, and also to justify these decisions. These
decision-making processes are difficult to specify and then encapsulate in a procedural paradigm.
The EPAXIS prototype expert system is a first attempt to address this problem using techniques
derived from the field of artificial intelligence. In the future, as more information becomes
available (e.g. from multiple channels), the experience gained with EPAXIS should be used to
intelligently contain the new problems that will arise with regard to the management of
information and its comprehensive and comprehensible presentation to the user. The latter will no
doubt involve the use of intelligent graphical interfaces that can be created in a small
microcomputer-based environment. The graphical interfaces currently available for small
computers, can be given an intelligence by embedding them into a knowledge-based environment
that supervises and plans the presentation of graphic information (results and reports) based on a
priori task specifications. In the author’s opinion, the implementation of this type of concept (i.e.
reasoning with graphical objects) is necessary if the benefits of event analysis are to be extended

into the multiple channel and/or real-time monitoring regime.

Apart from the direct applicability of event analysis to other EP and ERP data, it should be
possible to investigate data having similar characteristics derived from other areas of
electrophysiology and engineering. For example, the basic ideas of coherent averaging followed by
component variability analysis and improved waveform estimation can be employed in the
extraction of the motor unit action potential jitter in single fibre EMG. From the engineering
domain, fault diagnosis using data from vibration tests on rotating machinery (e.g. gearboxes), and
intermittent fault analysis in the process industry are the most obvious application areas for event

analysis.

8-49



A paper has recently been published (Sehmi et al., 1988, in Appendix [D6]) which describes the

event binning processes summarised in Fig.[8.6].
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Chapter Nine

Discussion and Conclusions

The research work described in this thesis has resulted in several new approaches to the
investigation of neurophysiological data. The data of interest represent examples from two
important classes of signal that are commonly encountered in neurophysiology and engineering.
The characteristics of these signals differ significantly, though the techniques used by the author
for their analysis have not differed to the same extent. The first class of signal, to which the EMG
belongs, exhibits noise-like characteristics that have important implications when the dynamics of
muscle are being modelled. EPs are drawn from the second class of signal which display
non-stationary deterministic characteristics. Simulation experiments conducted by the author with
spectral analysis of EMG turning points (Lago, 1979), provided a conceptual basis for the analysis
of the (very different) EP signal.

Turning Points Spectral Analysis (TPSA) of the EMG was simulated on the small computer
system (SPC) that was the subject of chapter three. The SPC is a multi-processor computer
designed for flexible digital signal processing which incorporates ease of use and portability. The
objectives for this computer were met by using a modular approach to the design of both hardware
and software components. The author’s involvement was mainly concerned with the design and
specification of the software that allows for much of the flexibility that the SPC exhibits. Branching
menus and built-in programmable interfaces between the host and slave processors allow the
applications developer to re-configure the SPC rapidly for various, simple, data acquisition and
analysis tasks. The signal acquisition rates are fast enough to cope with the majority of bioelectric
signals to make the SPC a suitable machine for intra-operative data collection and on-line analysis.
The on-line analysis capability of the SPC is achieved by a background tasking philosophy
programmed into the host kernel programs. Background analysis tasks obtain data via a
dual-plane memory which is symmetrically mapped into the address spaces of both the host and
slave processors. The SPC development was taken to completion recently, at which point several

applications in bioelectric signal analysis had been implemented successfully.

Apart from the four ADC inputs that the SPC contains, a pair of DAC outputs can be used to
provide control signals to peripheral equipment (e.g. x-y plotter, EP stimulator). The SPC can,
therefore, act as an intelligent host by providing pre-programmed control signals that adapt to
changes in the status of measured input signals or in response to analyses performed on input
signals. Examples for the use of the latter are transducer calibration and compensation during

data acquisition tasks.



The noise-like features of EMG have been described in chapter two and their adverse effects in
dynamic EMG-force modelling were shown to be of importance when specifying the model and its
parameters. This identified the need to improve the quality of EMG and force data when
EMG-force measurements were performed. The approach taken by the author to address this
general problem has been to provide computer-controllable forcing protocols that, as far as
possible, relieve the patient from the simultaneous pursuit and generation of dynamic force
patterns in isometric dynamic loading experiments. Techniques from clectromagnetic suspension
theory were applied to solve this problem. Chapters four and five have described in detail how the
highly non-linear force-airgap characteristic of an electromagnet can be manipulated in a negative
flux-feedback control system to give isometric, dynamic control over muscle loadings of upto 250N.
Small deviations from isometric conditions through patient movements are compensated by the
control system for the electromagnet. The electromagnet feedback control signal is a direct
measure of the delivered force, and it can therefore be used as the force output. In this sense, the
system also behaves like a force transducer. The wide bandwidth of the system will allow
numerous computer controllable forcing strategies to be adopted for EMG-force modelling
experiments. The computer system described in chapter three is a very suitable vehicle to host the
intelligent control process for this muscle load, and in addition, it could be used to simultaneously

acquire the actual force and EMG signals during an experiment.

The loading system can be improved by changing the magnetic circuit as suggested in chapter five.
Additionally, the mode of interaction with the device could be made simpler. This can be done by
changing the position of the magnet in relation to the electronics housing so that the subject does
not have to reach-out for the main assembly when interacting with the system. An ideal situation
would be one in which the main assembly was remote from the drive electronics. A special
frame-like structure could be constructed to hold the main assembly, within which the subject
(possibly seated) competes against applied force variations. The major disadvantage of the muscle
load is its expense. This can be reduced considerably by incorporating the new magnet design
suggested in chapter five and by lowering the maximum load specification. As a result of this the
magnet dimensions and power dissipation can be reduced, thereby enabling the use of cheaper

power transistors and simpler drive and control electronics.

Common to the simulation program that was implemented on the SPC and the analysis procedure
developed for EP signals, is a data reduction process that converts the digitised signals to a
sequence of events. For EP data, this reduction process has the advantage of being tolerant to
large noise-induced artifacts. In EMG analysis by the TPSA method, this has the additional
advantage of providing information on the mean firing rate of the population of active motor units
that give rise to the interference pattern (Lago and Jones, 1977, 1983). The original EMG

reduction process applied to EP data has been extended to incorporate both positive and negative



events in the time-series. Since EPs are assumed to be non-stationary, derministic signals, the
bipolar event sequence can be synchronously summated across the ensemble of responses in a way
analogous to the coherent time-averaging estimation process. This coherent summation of events
results in a bipolar latency histogram which effectively delimits those regions in the averaged

response that contain stimulus-locked activity.

Use of the latter delimiting information and the concept of a component trajectory, has enabled
the author to extract EP component latency variability estimators which have proved to be
accurate to within +2 sampling points (i.e. +0.08ms at 25 kHz sampling frequency) at
signal-to-noise ratios as low as -10dB. More rescarch work needs to be done to investigate the
effects of changes in sampling rate on the extraction of these latency variability estimates. The
component variability data is used to extract homogenous sets of trials from the original ensemble
of responses that contain various combinations of components. The combinations of components
that are selected depend on the type of EP that is being analysed and the statistics describing the
component trajectories. The examples given in the thesis are specific to the BAEP. It has been
shown that simple re-averaging of the trials contained in the homogenous sets can lead to a

marked enhancement of underlying activity in the BAEP.

The results of experiments using real BAEP data are described in detail in chapter eight. Several

conclusions can be made about this approach to EP analysis:

e (a) Resolution of the wave IV/V complex component is possible in situations where either
wave I'V or V exist as points of inflection in the complex.

e (b) Latency corrected averaging can be used to assist in the resolution of tightly coupled
wave IV/V complex components.

e (c)Itis possible to extract both wavelets in bifid components.

e (d) Event analysis highlights significant relationships between different components.

e (e) A priori knowledge of the correlation between components can be used to enhance
the one, which is not clearly defined in the averaged response and/or the trajectory map,
with a trajectory selection on the other.

e (f) The combination map provides a global overview of the trials that contain activations
of the selected components. In the future, it may be feasible to use the combination map
to perform a topographical correlation of events in multiple channel cognitive EP analysis.
Given the recording geometry and the underlying brain anatomy regarding possible
generator sites, an intelligent cluster analysis could be performed to extract the most likely
groups of events from all combination maps that are related. In this respect, an inductive
learning algorithm (Shepherd, 1985) may be applicable because of its ability to perform
generalisations that will cope with the possiblity of having noise-related events in the
combination map. The induced pattern recognition rules could then be used as part of a
rule-based system that also encapsulates the relevant anatomical knowledge.
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e (g) It is common to find significant periods of non-activity in the combination map (even
when sub-averages are used), which strongly suggests that the underlying neural
generators do not contribute to the scalp-recorded ficld potential at every stimulus
delivery.

e (h) The observation of silent periods means that there is little hope in achieving an EP
estimation from a single stimulus (Madhavan et al., 1985). This will almost certainly be an
impossibility with BAEPs due to the extremely low signal-to-noise ratios present in single
trials. Several trials would have to be averaged to ensure registration of all components in
the BAEP.

e (i) Event analysis can achieve high performance with a greatly reduced number of
responses (up to 32 times lower against a conventional average using 2048 trials).

The selection of trajectories to represent the five most important components in the BAEP,
requires a deep understanding of BAEP morphology and the underlying neuroanatomy of the
brainstem pathways when meaningful interpretations are to be made from the resulting enhanced
averages. Selection of trajectories is expected to be even more complicated in situations where
pathology is evident. Symbolic representations of the parameters describing the trajectories,
coupled with a shallow morphological knowledge of the normal BAEP have been used to build an
expert system that will select those trajectories that are the most likely candidates for components.
The expert system, called EPAXIS, incorporates reasoning with uncertainty using the theory of
fuzzy logic, for which details were discussed in chapter seven.

More recently, the ideas behind EPAXIS have been used by Robinson and the author to
implement a structured decision table for trajectory selection in a spreadsheet programming
environment (Microsoft EXCEL). This pseudo-expert program takes as input compatible

information files that are generated by the event analysis suite of programs.

It is quite clear that there is a large amount of information available from event analysis. Most of
this information is contained in the morphology of the enhanced averages and the statistics for the
trajectories. Sensible interpretations of this information rely on the special knowledge of the user
who can use the suite of programs to dissect EPs at the single trial level. The process of exploring
the multiple dimensions occupied by the parameters that are user-specified (currently there are
five, each of which can usually have up to 10 possible values) can become unmanageable. Event
analysis therefore needs extensions for pattern recognition incorporating heuristic search for
features in the average using the event bin data and trajectory statistics. If we look at the expert
system methodology as a means of coping with complexity in signal processing situations that
require interpretation, management, planning, etc., then the methodology becomes more than just

an increasing interest in computer science, it becomes essential.
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This research has established, in theory and in practice, relationships between EMG analysis and
controllable muscle loading, and between EP analysis and knowledge-based systems. A common
factor in the work has been the integration of several analysis and control paradigms which are
centred around small-computer technology. The integration of the analysis components is aided
by the programming concepts and software structures that are used, and careful design of the
user-machine interfaces. This has led to a high level of user controllability and ease of supervision
during analysis procedures. The resulting environments provide valuable assistance in both

clinical and research-orientated EMG and EP investigations.

The SPC is currently being used intra-operatively for jet ventilation studies in anaesthesia. The
magnetic loading device is being used extensively in EMG-force modelling at the University of
Leicester, and the event analysis suite of programs is being implemented on the next generation of
EMG/EP machines at Medelec Ltd (Woking, Surrey, England). Four publications have been
produced as a direct result of this research initiative. All of these papers are included in the

Appendices.
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Introduction

~significant problem with most digital signal processing
systens so far introduced is the rigidity of the user inter-
adtive format adopted. As a result of this an inordinate
anount of time is required to consult the system. This
signal processing instrument has been designed for
either by nonexperts or in situations where the user is
unable to pay much attention to the instrument (for
example in an operating theatre). The signal processing
computer (SPC) is a friendly menu-driven system present-
igthe user with a page of options on the screen, allowing
anry of analysis parameters, patient data etc. in a conve-
manner through depression of the appropriate soft
key The relabelling of these buttons and
branching menus allows the user to progress through a

the wuse of

agnl acquisition, processing and display of results with
k prior knowledge that all options have been considered
previowsly in the laboratory during the program writing

Furthermore, the instrument exists as a single trans-
portable unit, containing the display with its soft keys, a
Sin disk drive and various data acquisition and pro-
fesing cards. The small number of buttons used to control
k instrument dispenses with the need for an alphanu-
naic keyboard,

Jequired.

although this can be connected if

2Instrument requirement and specification

The first field of instrument application was chosen to
temedical signal acquisition and processing, particularly
dblood flow and pressure during surgery. In this applica-
tin derived from Butier et al. (1980) and Law et al
(1) the surgeon could be presented with flow, pressure
oECG displays, or vascular impedance modulus or phase
characteristics. An application area considered later is for
ftue use in an electromography outpatient clinic. This

application is illustrated by Fig. 5 and is derived from
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EMG analysis. Vascular impedance

Laco and Jones (1983). Consequently, the initial require-
ment placed upon the instrument was a capability to
sample up to three channels of signal input (namely flow,
pressure and EGG) at sampling frequencies of up to 2 kHz.
To provide for the electromyographic application area and
many other medical, biological and industrial applications,
the present system facilitates acquisition of up to four
multiplexed channels (8 or 12 bits) at a nominal sampling
frequency of 3-3kHz, the maximum for a single channel
being 10kHz. Apart from ease of use and safety in a clini-
cal environment, the instrument should be portable, inex-
pensive and produce a visual display of computed results
rather than numeric tabulation.

These requirements were derived from the current and
proposed research work at the universities of Sussex and
Leicester. Bearing in mind that other uses for the machine
are envisaged besides that already mentioned, the instru-
ment is amenable to expansion using commercial boards
configured to the standard S-100 bus. It was also specified
that programming of the machine could be done locally or
remotely in a high-level language such as Fortran or in
assembler via any CP/M compatible development facility.
The full instrument specification is listed in the Appendix.

3 Hardware organisation

The specifications outlined have been translated into the
hardware shown in Fig. 1, which portrays the front panel

Fig. 1 Front panel ofthe signal processing computer
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be instrument. Its principal features are four input
mels, for example, flow, pressure, ECG or other data,
foppy disk drive (FDC) for transferring programs
lor data to and from the remote research computers in
hboratory, a monitor and eight button keys. Fig. 2 is a
atic diagram of the system as a whole.
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video graphics
. controller C:D
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| montor KMATROX ALT 512
8888
S
1
0
0
DP ( >
M b
U
local s
bus
| 0—p—
T sac || SAP (‘,:_\—J>
—— <
signal |
inputs 1 L satellite
XY
plotter outputs
hﬁ Signal processing computer hardware ;/L
The host processor is a standard single-card computer

Poporating a 6 MHz Z80B microprocessor, 64 kbytes of
{ and three each of serial and parallel ports and
ws. A Matrox ALT-512 graphics board provides
g6 x 256 resolution on a 5% in display monitor. An RS232
gecior allows a VDU and terminal to be connected if
ired for local program developments and debug facili-
son the machine itself. It is not proposed that this
uld be used in clinical situations. The 16kbyte FDC
pairols disk 1I/O. The front end or slave processor board
made up of 6 MHz Z80B microprocessor, 24 kbytes of
and 8kbytes of PROM three parallel ports and
be timers. This card controls signal acquisition of up to
prchannels of input data and xy plotter outputs for hard
iy of results. Signal acquisition is performed using a
pivare programmable analogue/digital convertor (ADC)
h automatic offset and gain facility. This dual processor
rugement allows for signal acquisition on the front end
ud signal processing on the host. To facilitate the direct
ler of acquired/processed data to/from the host
bm/'0 the slave processor, the dual plane memory
PPM) is used. This feature provides data throughput at
faster rates than are obtainable through direct stan-
ud data bus utilisation techniques such as I/O and direct
ory access (DM A). The dual plane memory is mapped
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into both the host’s and the front-end processor’s memory
spaces, occupying a 16 kbyte block in each. This arrange-
ment allows data being acquired by the slave to be loaded
into its half of the DPM through its local bus while the
host concurrently performs data manipulation on its half
of the DPM across the S-100 bus. Thus parallel processing
can be achieved without bus contention problems. ‘Phan-
toming’ is used to switch out the pre-existed memory over-
laid in the host computer. The dual-plane memory
provides 32kbytes of store in two 16 kbyte blocks which
may be swapped between the memory maps of the two
processors by means of one I/O instruction from the host.
The transition time is approximately 1-7s, thus enabling
acquisition and processing of data requiring more than a
16kbyte buffer space to be implemented in real time.
DMA techniques having the same memory bandwidth
would take typically 7-8 ms. Fig, 3 illustrates the idea pre-
sented above.

Programs to be run on the slave processor can be down-
loaded via disk to the host DPM memory space and then
transferred to the slave by issuing a memory plane swap
under program control.

64k B4k p—==-=-=---- 1
]
DOS ' ]
48k ! expandable |
]
© DPM ! :
32k 32k
resident
progs OPM
16k
d?ti 8k local RAM
108H RSTRINT 0 PROM

Fig. 3 Dual plane memory

4 Software organisation

Today instrumentation in almost every field is becoming
increasingly smart or intelligent. This is primarily because
the incorporation of a microprocessor, and its associated
software, allows more complex configuration and analysis
to be performed than in an instrument designed conven-
tionally. There is little doubt that, through the use of suit-
able software and the associated interface hardware,
instrument ergonomics can be high in terms of user friend-
liness.

The software driving the SPC can be divided into three
major modules:

() Host resident kernel program: this suite of macros
and dedicated subroutines provides the nucleus of
user-configurable programs to run on the SPC for the
purpose desired. The kernel provides any number of
pages in a menu. With each page is a reserved RETN
key function used to access the previous menu page
and seven programmer definable key functions, one of
which provides up to three pages of HELP informa-
tion. These are used to describe in detail the conse-
quences of the remaining key functions which might
be, for example, used to set various analysis param-
eters. This branching structure allows for numerous
levels of depth in the tree just by specifying the macros
during the program writing stage. A simple three-level
structure is shown in Fig. 4.

The kernel program also handles the protocol with
the acquisition processor.

(ii) A host resident graphics utilities package provides an
adequate facility to display computed results in a
visual format. This is attractive to the examiner, e.g.
surgeon or doctor, and has the advantage of being
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able to convey trends or patterns in computed results
more readily than a list of figures,

nThe monitoring program existing in the front end pro-
cessor provides protocol handling with the host
through which various functions may be set or slave
processor status determined. The settable functions
include the sampling frequency, ADC gain and offset,
DPM plane swaps, plotting time base, signal acquisi-

termination, and specifi-

tion initiation and input

cation.

RETN TO OS

By combining these modules as an integrated whole
during the program writing stage, most medical and bio-
logical signal acquisition and analysis packages can be
assembled with ease. This will provide a complete menu
driven system that is adequately user friendly and flexible.
Programs used to provide key functions in the kernel can
be written in a high level language for double precision
number crunching in FFTs and matrix operations. Where

speed is important, assembler programs can be used.

RETN SET ACQ DISP DATA
5 6 7 8 _ PROVIDE 3
LEVEL 1 4 3 2 1 HELP "» PAGES INFO
I 11 [ uEm
DATA
ENTER DISPLAY RAW OR SIGNAL ACQUISITION SET ANALYSIS NO FUNCTION NO FUNCTION
PinSNT OBTAnS FROCIBSED SIGNAIS CONTROL PARAUETIR3
(STAHT~STOP) .
RETN TO LEVEL 1 1
rpmr H
REm P pC 1 PROVIDES
LEVEL 2 4 3 2 1 HELP — HELP ENFO
Ix1 »
/t 5\
X  SFRQ
A
SET SET SET
Y X SAMPLING
FREQUENCY
LEVEL 3 ooo
oooad
\ 4 Three-level host resident kernel program
Stem#: i*n
Previe# »#i#ie H Aetic»
Provie# e:##:##
Retamm To"AMKS "
Further ImFemetiem "
PRESS key for required function
>TAIT] IDI.SEI R U B
Fig. 5 Examples ofvideo displayformats
PRESS key for required function
A
* EEEUEUH Example of the video display formats that can be
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Appendix

University of Sussex signal processing computer specification

Hardware:

processor
memory
peripheral
interfaces
timers

display size
display resolution
system bus

disk drive

analogue inputs
analogue outputs
sampling frequency
single channel (max.)

four channels (max.)

data buffer size

Software:
operating system
languages
resident code

b Medical & Biological Engineering & Computing

main processor acquisition
processor

Z30B Z80B

64 kbytes 32 kbytes

3 x serial

3 x 8 bit parallel 3 x 8 bit parallel

3 x 16 bit 3 x 16 bit

+in diagonal

256 x 256 pixels

S$100 (2 spare card slots)
5%in DSDD 390kbytes
formatted (up to 3
drives can be added)

4 channels 12 or 8 bits
2 channels 12 bits

12-5kHz (8 bits)
(10-0kHz (12 bits)
7-0kHz (8 bits)
3-3kHz (12 bits)
16 kbytes

CDOS (a superset of CP/M)

Ratfor, Fortran 1V, Basic, Z80 assembler
graphics primitives

signal acquisition

menu co-ordination

main/acquisition processor protocols
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Appendix [Bl]

MAGLOAD: Design Calculations
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Design Calculations for MAGLOAD

The following notation is used in the electromagnet design which refers to the digram in this

appendix:

a - Pole face area (m?)

Aw - Window area (m?)

B - Electromagnet flux density (T)

F - Force produced by electromagnet (N)

¢ - Forcing ratio

I - Steady state load current (A)

i - Instantancous load current (A)
1- Mean turn length (m)

L - Inductance of coil windings (H)

N - Number of turns

NI - Ampere-turns
e P -Power dissipation (W)
e R - Resistance of coil (©2)
S - Reluctance of airgap
e Vp - Supply voltage (V)
e Vi-Load voltage (V)
e Xx - Airgap distance (m)
e o - Permeability of free space
e p - Resistivity of coil windings (m)
e b - Coil wire cross section area (mz)
e - Coil time constant (Sec)

The force F for a single pole is given by:

(B1.1)



At at flux density of 0.65 T, the force per unit area is 168.11 kN/m?. For the specified SOON forcing
required (i.e. 250N per pole face with a U-shaped magnet) the pole face area a is calculated to be
14.87cm? (3.85 cm?)

The mean turn length 1 given a window area Aw of 4 x 4 cm? is therefore 23.4cm. The

ampere-turns NI at the nominal airgap x of 2cm is:

2Bx 2x0.65x2.0x102
NI = = SEIEX = 20690 At
wo 4w x 10

The power dissipation P that can be expected is:

_ (ND?pl  (20690)°x1.78x10° x23.4x102

P
Aw 16x 107

=111 kW

This power dissipation is obviously unmanageable without some forced cooling, so power

reduction is achieved by doubling the poleface area and doubling the window dimensions.

B%a
2Zpo

FromF =

Twice a implies twice the force F. Since F o (NI)2 and we require the same force level with twice
the poleface area 2a, the ampere-turns NI must be reduced by \/2. As a result of this, the original
power dissipation will be reduced by 50%. The factor of 4 increase in the window area reduces the
power dissipation by a further factor of 4. The increase in magnet dimensions, however, causes the
mean turn length to go ﬁp by 25% of the original which results in a 25% increase in power

dissipation. The overall reduction in power dissipation is, therefore: 0.5 x 0.25 x 1.25 = 0.156.

The adjusted parameter values for the magnet are:

NI = 20690/ (\/2) = 14630 At
1 =234x125 =2925cm
w = (2x4)2 = 64 cm?
a = 2x14.87 = 545% cm® (a standard 2 in? section was used = 5.20 cm? )

_ (14630)*x 1.78x 108 x 29.25x 102

P = 174.
‘ 64x10™ 112w

(B1.2)



‘When the magnet coils are wound, the circular cross-sectional area of the wire means that the full
window area will not be filled. Approximately 60% of the available window area will be occupied
by a perfectly wound coil. Errors in maintaining the alignment of adjacent windings increases the
unoccupied window area. Hence a packing factor of 0.5 is introduced which means the actual
power dissipation will be approximately twice the calculated value. So P becomes aproximately
350 W.

To obtain a high bandwidth for the control system through voltage forcing we consider the
behaviour of the magnet in relation to the supply voltage as follows (Whorlow, 1978):

The total force is given by:
o 0D poa Eq[B1.1]
T ...................... . .
Therefore:

dF 2N% o a di
e e e I Eq[B1.2]

Combining Eq.[5.5] and Eq.[5.10]:

dF 2N?poal  (Vp-IR)  2N?poa.(PR).(Vp/R-1)

dt 4x* : L 4xX°L

Since L = N?/S,S = 2x/poa, P = ’R,and Vi = IR
dF/dt = (P/x).(Vp/Vi-1) . . v i i i i i i Eq.[B1.3]

The quantity Vp/ Vi describes the voltage forcing ratio £ in the positive direction when the drive
transistor amplifier is turned on. § is the ratio of the supply voltage to the steady state voltage drop
across the resistive part of the magnet when a quiescent current I is being maintained with the full
supply across the magnet. When the drive transistor amplifier is turned off this current still flows
due to the inductance of the coils and is recirculated through the power supply by the freewheeling
diode. By virtue of this recirculated current flow, a voltage V| will exist across the resistive part of
the magnet and provides the negative voltage forcing of current through the coils since the
inductive voltage drop is now in a direction opposite to that of the resistive voltage drop. The

difference between Vp and V) determines the rate at which the decaying inductive current falls

(B13)



when the drive transistor is off. The more V| approaches Vp, the less decay there will be in the
inductive current; consequently there will be a lower current ripple. Values of V) less than one

half of the supply voltage result in inadequate forcing and the ripple current increases.

This can be shown easily:
Ldi/dt=(Vp-VI) . . .. . . . ... Eq.[B14]

This equation represents the forcing of current in the magnet in the positive direction. In the

negative direction :
Ldi/de=VI . .. ... 0 e Eq.[B1.5]

Hence for equal positive and negative forcing we equate Eq.[B1.4] and Eq.[B1.5] and it emerges
that:

E=Vp/VI=2 ittt i e Eq.[B1.6]

If ¢ is required less than 2 then the circuit of Fig.[5.10(a)] is adequate. Otherwise the equal
positive and negative voltage forcing circuit of Fig.[5.10(b)] must be implemented (Hodkinson,
1975). This circuit is more complex to drive however, requiring the use of an invertor amplifier to

drive the topmost PNP transistor when an NPN type can not meet power requirements.

The required value of ¢ is obtained by first defining the quantity dF /dt. This represents the
slewing rate of force generated by the magnet-amplifier combination and is related to the forced
current variations in the magnet. To demonstrate the selection of a slewing rate of force, we refer
to Fig.[5.7] and assume we are operating at the nominal airgap of 20mm and at a force of 10N. A -
movement of 10mm, to 30mm, caused by the patient would‘ make it necessary for the magnet to
produce the equivalent of approximately 30N at 20mm. The period of growth for this force must
be quicker than the time taken for an average isometric twitch response to rise and decay. Thus,

taking 20ms as a reasonable response time for the build-up of magnetic force, we find that:
dF/dt = (200/20x103) = 10kNs? . . . . . .. .. ... .. Eq.[B1.7]

By substituting the power dissipation value of 350W and nominal airgap of 20mm in Eq.[B1.3], £ is
found to be approximately 1.5. Hence, it follows, that at the maximum specified force of SOON and
nominal airgap of 20mm, a single-ended amplifier as in Fig.[5.10(a)] is sufficient for the current

variations needed in this application.

(B1.4)



The time constant of the magnet + = Aw/ Spl. From the reluctance S = 2x/ poa, the equation for
the power dissipation P = (NI)?pl/Aw, and Eq.[B1.1], it can be shown that there is a relationship
Pr = 2Fx . At a maximum force level of 500N, airgap of 20mm, and power dissipation of 350 W,
this gives + = 57.2 ms. The actual power disspation is an approximation so the time constant will

be lower than the worst case of 57.2 ms.

Several iterations of the following calculation were necessary to arrive at a satisfactory choice for

the power supply voltage and the coil wire gauge. Only the final iteration is given here:

If we start with 22 SWG (0.028 in / 0.07 cm diameter) enamelled wire then the cross-sectional area

b will be 3.9 x 107 m?. Using the exact packing factor of 0.6, N can be estimated from:
N = 0.6 x Aw/b = 9846 turns in total

From NI = 14630, the steady state load current will be 1.5 A. Vj is therefore 235V, given a power
dissipation of 350 W. This implies that the supply voltage of approximately 360V is needed to

provide a voltage forcing ratio £ of 1.5.

Connecting the coils in parallel results in an adjustment of I to 3A and V| to 120V for
approximately the same power dissipation (i.e. related to ampere-turns). The power dissipation
must be kept constant to maintain both the coil time constant and the designed force. After the
coils were wound, it was found that the number of turns actually achieved was 3100 per coil.
Therefore, there is a further reduction by a factor of 3100/4923 = 0.63 in the amount of window
area Aw used by the coils. To maintain the ampere-turns, I must be increased to 3/0.063 = 4.8A.
The load voltage per coil V] is thus 73V and the required supply voltage Vjp is thus 110V. These

voltage and current values are used to assist in the selection of a drive transistor.
The resistance R¢ of the coil windings can be approximated from:

r. - Np(x063) _  3100x1.78x10°x (2925¢ 10 x063)
¢ b N 39x107

= 26.1Q

and because the coils are in parallelR = R¢/2 = 13 ().

The reluctance of the airgap S is:

2 2x2.0x1072
s=—f X - 13x107
KLod 47 x10

(B1.5)



Therefore, at the nominal airgap, the inductance of the coils L = N2/S = 0.75H. The time
constant of the coil can be checked by using 7+ = L/R = 57.7 ms.

As a way of checking the behaviour of the magnet against the design equations (i.e. to see if
saturation and flux leakage is being avoided) several flux measurements were taken. The

maximum force that will be produced at the design flux density of 0.65T is:

0.65% x 0.0522

F =
4rx107

= 909.1N

The flux density expected for 500N is {0.65 x /(500 / 909.1)} = 0.48T. The expected

ampere-turns is:

2Bx 2x0.48%0.02
NI = = 15279 = 3100xI
o 4w x10

The load current I is therefore expected to be be measured at 4.93A. From the results given in
Fig.[5.7], I is 5.3A. The error is about 4.3% which is acceptable, and we can assume that flux
leakage is minimal and that saturation is being avoided. The use of the equation NI = 2Bx/po is

therefore valid.

(B1.6)
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MAGLOAD: Circuit Diagrams
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Appendix [B3]

MAGLOAD: Tabulated Results



MAGSOLP.XLS

MAGLOAD: Static Open-Loop Characteristics using Cantilever [ [
and Heig?ffrnolder Arlrangement.l Mass of cintilever jnd ueights[Holder, Hcl= 4 .3Kgf.
Suspended Mass, Ms (5Kg to 50Kg). Therefore, Corrected Magnet Coil Current, Im is:
[Im=(Ms/(Ms+Mc))**1/2 x 1
Where 1 is the measured Magnet Coil Current.
I |
The Following Results Provide the Force Vs Current at Constant AirGap Characteristic.
AirGap
Ms/Kg X/mm 1/A Im/A
50 5 1.4 1.34
10 2.9 2.78
20 5.6 5.37
25 5 1.2 1.1
10 2.1 1.94
15 2.9 2.68
20 3.8 3.51
25 4.9 4.53
30 6.1 5.63
15 5 0.9 0.79
10 1.7 1.5
15 2.4 2.12
20 3.2 2.82
25 4 3.53
30 5 4.41
35 5.9 5.2
10 5 0.8 0.67|
10 1.5 1.25
15 2 1.67
20 2.7 2.26
25 3.4 2.84
30 4.1 3.43
35 4.9 A
5 5 0.8 0.59
10 1.3 0.95
15 1.7 1.25
20 2.2 1.6
25 2.6 1.91
30 3.3 2.42
35 4 2.93
0 5 0.6 0.6
10 1 1
15 1.2 1.2
20 1.5 1.5
25 1.8 1.8
30 2.2 2.2
35 2.5 2.5

Page 1



MAGSCLP .XLS

MAGLOAD: Static Closed-Loop Force Vs Airga,

n Distance Characteristic.

Load Cell Calibration: 0.45mV/Kgf.

Measurements of Force taken with Pull Rod at 255mm above pivot point. Values are then

translated to 400mm. (Note: Rea?Eion plate is 200mm below pivot point).

Load Setting = 1Kgf at 15mm Nominal Airgap.

# 1 2 3 4 5 6 7
Airgap Dist. X/mm 5 10 15 20 25 30 35
Magnet Current I/A 0.2 0.4 0.6 1 1.3 1.35 1.6
Load Cell Volts/mV 0.42 0.45 0.45 0.44 0.43 0.42 0.33
Force at 255mm/Kgf 1.5 1.57 1.57 1.56 1.55 1.5 1.2
Force at 400mm/Kgf 0.97 1 1 1 0.99 0.97 0.77
Load Setting = 2Kgf at 15mm Nominal Airgap.

# 1 2 3 4 5 6 7,
Airgap Dist. X/mm 5 10 15 20 25 30 35
Magnet Current I/A 0.2 0.5 0.8 1.3 1.6 1.7 2.1
Load Cell Volts/mv 0.89 0.96 1 0.95 0.95 0.9 0.8
Force at 255mm/Kgf 2.8 3.1 3.14 3.1 3.1 2.8 2.5
Force at 400mm/Kgf 1.79 1.98 2 1.98 1.98 1.79 1.59
Load Setting = 3Kgf at 15mm Nominal Airgap.

# 1 2 3 4 5 6 7
Airgap Dist. X/mm 5 10 15 20 25 30 35
Magnet Current I/A 0.3 0.6 1 1.7 2.1 2.4 2.6
Load Cell Volts/mV 1.41 1.5 1.55 1.5 1.48 1.35 1.2
Force at 255mm/Kgf 4.3 4.6 4.71 4.6 4.6 4.1 3.7
Force at 400mm/Kgf 2.75 2.93 3 2.93 2.93 2.61 2.36
Load Setting = 4Kgf at 15mm Nominal Airgap.

# | 1 2 3 4 5 6 7
Airgap Dist. X/mm 5 10 15 20 25 30 35
|Magnet Current I/A 0.4 0.7 1.2 1.9 2.4 2.6 2.9
Load Cell volts/mV 1.95 2.05 2.1 2 2 1.9 1.75
Force at 255mm/Kgf 5.8 6.1 6.27 6.1 6.1 5.7 5.3
Force at 400mm/Kgf 3.7 3.89 4 3.89 3.89 3.63 3.38
Load Setting = 5Kgf at 15mm Nominal Airgap.

# 1 2 3 4 5 6 7
Airgap Dist. X/mm 5 10 15 20 25 30 35
Magnet Current I/A 0.6 1.1 1.6 2.4 3 3.2 3.7
Load Cell volts/mv 2.6 2.6 2.65 2.65 2.6 2.4 2.33
Force at 255mm/Kgf 7.7 7.7 7.84 7.84 7.7 7.1 6.9
Force at 400mm/Kgf 4.91 4.91 5 5 4.91 4.53 4.4

Page 1




MAGSCLP.XLS

Load Setting = 6Kgf

at 15mm Nominal Airgap.

# 1 2 3 4 5 6 7
Airgap Dist. X/mm 5 10 15 20 25 30 35
|[Magnet Current I/A 0.7 1.1 1.8 2.7 3.1 3.7 3.8
Load Cell Volts/mV 2.95 3.1 3.2 3.15 3.15 3.1 3
Force at 255mm/Kgf 8.8 9.2 9.41 9.3 9.3 9.2 8.8
Force at 400mm/Kgf 5.61 5.87 6 5.93 5.93 5.87 5.61
Load Setting = 7Kgf at 15mm Nominal Airgap.

# [ 1 2 3 4 5 3 7
Airgap Dist. X/mm 5 10 15 20 25 30 35
Magnet Current 1/A 0.8 1.2 1.9 2.8 3.5 3.9 4.3
Load Cell Volts/mV 3.6 3.7 3.75 3.75 3.7 3.6 3.1
Force at 255mm/Kgf 10.6 10.9 10.98 10.98 10.9 10.6 9.2
Force at 400mm/Kgf 6.77 6.95 7 7 6.95 6.77 5.87
Load Setting = 8Kgf at 15mm Nominal Airgap.

# 1 2 3 4 5 6 7
Airgap Dist. X/mm 5 10 15 20 25 30 35
Magnet Current 1/A 0.9 1.4 2 3 3.7 3.9 4.3
Load Cell volts/mV 4.2 4.27 4.3 4.3 4.3 4.2 3.6
Force at 255mm/Kgf 12.3 12.55 12.55 12.55 12.55 12.3 10.6)
Force at 400mm/Kgf 7.84 8 8 8 8 7.84 6.78
Load Setting = 9Kgf at 15mm Nominal Airgap.

# 1 2 3 4 5 [ 7
Airgap Dist. X/mm 5 10 15 20 25 30 35
Magnet Current I/A 0.95 1.35 1.7 2.95 3.6 4 4.4
Load Cell Volts/mvV 4.7 4.75 4.85 4.83 4.8 4.75 4.4
Force at 255mm/Kgf 13.8 13.9 14.12 14.12 14 13.9 12.9
Force at 400mm/Kgf 8.8 8.86 9 9, 8.93 8.86 8.22
Load Setting = 10Kgf at 15mm Nominal Airgap.

# 1 2 3 4 5 [ 7
Airgap Dist. X/mm 5 10 15 20 25 30 35
Magnet Current 1/A 1 1.6 2 3.2 4 4.35 4.6
Load Cell Volts/mV 5.35 5.35 5.4 5.35 5.3 5 4.3
Force at 255mm/Kgf 15.59 15.59 15.67 15.59 15.49 14.69 12.55
Force at 400mm/Kgf 9.88 9.88 10 9.88 9.82 9.31 8

Page 2
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Published Paper on EMG-Force Modelling and MAGLOAD
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NTRODUCTION

issessment of neuro muscular conditions in
nsmen by static testing is of limited value
e nost athletic events involve dynamic con-
ions.  Fatigue testing is important but
st monitor dynamic performance either.

pts to characterise the dynamics of muscle
hampered by the difficulties of defining a
ile enough model of sufficient generality and
terpreting the results.

mly area where significant progress has been
¢in this direction is for isometric contrac-
s as there now seems to be some theoretical

15 for the experimental methods used thus

wing some insight into the reliability of the
¢ and the interpretation of its parameters,

two major effects which can be observed

ing the voluntary dynamic contraction of

isted muscle are the build up of the force and
the associated emg signal. Both of these

fts derive from the same cause, the

maﬂng motoneurone bombardment.

is known that the static relationship between
md force is linear for many, but not all,

tles when the contraction is isometric and

fice electrodes are used (1) (2) and it has
1proposed that a linear model can be usefully
med as a means of characterising the dynamic
ationship between emg and force.

¢clementary force wave (force twitch)

gated as the result of a single motoneurone
e lasts several hundred milliseconds while
corresponding component of ;he emg (the

or unit action potential) is over in much

s than ten milliseconds. Hence, if a linear
el can be assumed then its impulse response

il have the characteristics of some "average"
('representative" force twitch,

is also known that if the muscle changes

yh, particularly at variable speed then

we non-linearities are encountered (3) and
ssimilar linear models cannot be postulated
fescribe contractions in non-isometric
fitions.

EMG-force measuring system for assessing

tment of Applied Mathematiés, The University of Porto, Portugal

NS Previous studies are briefly described in which the dynamic relationship between emg and
le force is estimated for isometric contractions.
ncols and analysis algorithms is discussed and the need for careful control of the force pattern
Existing methods are considered and a new solution proposed.
force transducer based on a controlled electromagnet is described.
ntages of the use of these machines in emg-force estimation experiments are discussed.

The need to design suitable experimental

The new muscle load
The advantages and dis-

The usefulness of a linear dynamical model in
research into the biomechanics of sport can
therefore be said to be somewhat limited.
However, the potential value of knowing the
dynamics of force build up and decay in athletes
is such that a theoretically sound means of
monitoring changes in muscle characteristics
during training and recovery from injury is of
value even if it is restricted to isometric con-
ditions. This line of work is therefore worth
pursuing.

This paper describes some experiments which have
been tried to assess the problems of estimating
the parameters of appropriate models relating
force to emg and presents a new machine of con-
siderable flexibility which may prove useful for
this and for other related investigations.

2 PREVIOUS STUDIES

Experimental studies in this area date back to
the late 1960's when parameter tracking on an
analogue computer was used to produce a second
order model relating the rectified emg to force
for the human triceps (4). No account was taken
of noise, nor of the choice of modelling
algorithm. It was shown in 1971 that a second
order model of the soleus muscle gave good
results, but again the model was assumed to be
overdamped a priori and the effect of the noise
and modelling algorithm ignored (5). In 1976
and 1978 two attempts at using the rectified emg
as a force predictor were reported (6,7). The
first included some degree of non-linearity.

The second used a linear second order overdamped
model again, but in this case the results
differed significantly from previous work on the
same muscle using a different force pattern.

Experiments by the authors on the human deltoid
muscle to help clarify the difficulties have
shown that if an overdamped second order model is
assumed then the model parameters are very
dependent on the force pattern if an rms
modelling technique is used.

Further pilot studies have demonstrated that the
design of experiments, the modelling algorithms
and the assumptions regarding the nature of the
noise are crucial factors in defining the poles



the model (8) (9). An algorithm incorpor-

ing 2 modulation instead of an additive noise
el has been shown to give an overdamped system
expected even when the poles are unconstrained
D) .

1985 other workers reported studies on human
bialis anterior using auto-regressive moving
erage models (l1). An attempt to have the
tient follow a pseudo-random binary force
[Nern was made but abandoned because of diffi-
ity in following the required pattern. An
pulse followed by a sine wave was then used.
e results obtained were often unrealistic
omplex poles) and contained a pure time delay
ich was at variance with much of the previous
rk.

search to date indicates that if an appropriate
bise model is assumed and the identification
gorithm designed to account for it correctly
Ln it is possible to greatly reduce the depend-
ce of the model on the force pattern. Most
rkers agree that a second order model is
propriate and that its impulse response is

lated to the muscle twitch response. No

udies so far reported have however demonstrated
at a linear emg-force model can be made totally
dependent of the force pattern.

e reasons for the residual dependence of the

del on the force pattern demanded are still
onjectural. However, the problems of emg-force
on-linearity, which can be manifested as com-
licated noise models, is a likely cause. An
meple is shown in fig. 1 where bursts of emg
tan be seen when. the force has dropped to almost
%ro. (The details of the emg are interpreted

s noise as far as the identification algorithm
psconcerned).

Further development of this technique towards
application in sports medicine as a means of
peasuring the dynamic performance of muscle thus
still requires the accurate control and
monitoring of the muscle load and hence, in
isometric conditions, the muscle force.

3 METHODS OF MUSCLE LOADING AND FORCE
MEASUREMENT

Most assessment of muscles currently used involve
static isotonic and isometric tests to measure
basic strength. The dynamic tests already
referred to are still at the experimental stage.
loading methods should therefore take account of
the requirement for static testing as well as
allow for dynamic measurements.

Common methods presently used to achieve static
loading include a set of standard weights, com-
pressible load cells, and springs. In the case
of load cells and springs the patient under test
has to produce the correct amount of static or
dynamic forcing by compressing the load cell or
pulling the spring. The amount of force

produced is monitored using strain gauge trans-
ducers and/or calibrated meters. Several

workers have used elaborate techniques where con-
tractions are performed isometrically against a
load cell and the subject is asked to dynamically
match a force pattern which is visually presented
() (12) Appropriate apparatus is
used to stabilise and support the joints.

All these techniques of muscle loading suffer
from three major drawbacks. Firstly, and most
importantly, is that the loading level remains
within the subject's control. The success of

the procedure depends on the ability of the
subject to concentrate and to contract and relax
his muscles in a controlled manner at the request
of the examiner while maintaining an isometric
situation. To some extent this is non objective.

Secondly, because tests need to be carried out
under conditions of high force levels, the
subject often cannot maintain a spring or load
cell at a constant compressed length, At large
static loading levels maintaining a standard
weight motionless to minimise inertial forces
also becomes difficult. For dynamic measurement
on muscles, springs and weights are even more
difficult to control.

Finally, when dynamic variations in the load are
required, they must be repeatable during and
between individual tests. This cannot be
achieved with confidence using any of the current
methods. The limitations can cause discrepancies
when attempting to compare individual subject data
from separate trials and muscle testing pro-
cedures due to the non-standardisation of investi-
gative protocol.

It is therefore necessary to have a system where:

i static levels and dynamic changes in muscle
loading are under the control of the examiner,

ii the load remains constant, if required, irres-
pective of small patient movements,

iii static and dynamic in loadings are repeatable,
and :

iv a virtually constant muscle length can be
maintained during dynamic loading using some
form of feedback, usually visual, via the
subject, based on these constant length
requirements only. That is, the subject is
not asked to follow a moving force target but
to maintain a constant position target.

4 THE MAGNETIC SUSPENSION BASED CONTROLLABLE
MUSCLE LOAD

A useful loading device will produce a relation-
ship between force and muscle length that is
constant over a range of muscle length variation.
To provide this characteristic and in addition
provide dynamic loading, the control of a d.c.
electromagnet is proposed. The familiar open-
loop inverse square law characteristic of the
solenoid (electromagnet) is reshaped over a
limited airgap distance using closed-loop force
feedback. The fluctuations in the airgap length
about its nominal value are related to the
variations in contracting muscle length. These
airgap fluctuations are made available visually
to the subject who will be required to maintain
them at a minimum. Therefore, the muscle length
is held approximately constant. If the muscle
length changes, and in turn alters the airgap
distance, the electromagnet control system
adjusts to keep the force constant throughout the
available airgap.

The electromagnet in the prototype is capable of
providing 250N force at a nominal airgap of 20mm.



povide this comfortably and within acceptable
r dissipation levels, a U-shaped magnet

mble of providing up to 500N at this airgap
designed. An important factor contributing
the efficiency of the system is the power

lifier design. Here, considerations of

ting voltage capability in relation to the

et inductance and in turn its time constant
tne important in order to maintain an

uate bandwidth of the control system.

¢electronics to drive the magnet use the
Riciple of Pulse Width Modulation. By varying
Feratio of the ON-OFF time of the drive tran-
stor amplifier a desired average current in the
met can be maintained. As a result, a

sired average force is produced by the magnet.
¢ force needed at the nominal airgap can be set
padjusting this ON/OFF ratio. Instantaneous
inges in airgap, and hence instantaneous force,
silt in this ON-OFF ratio being altered via a
zlback loop to keep the force constant and

il to the demanded level. The controlling
wiback signal can be derived from any trans-
ible parameter proportional to force. In

[is design a measure of flux density in the
gap of the electromagnet was used. This was
rected using a Hall effect transducer mounted

2 pole face of the electromagnet. Fig. 2

iws a schematic diagram of the control scheme
prloved .

¢ nagnet operates at 0.65 wb/m producing the
isigned maximum forcing level of 250N with a
arent of approximately 4.5A at the nominal air-
p distance of 20mm. The choice of 0.65 wb/m
sures that the mild steel magnetic circuit

pins in the linear region of the magnetisation
e for any transient changes in coil current

il hence flux density. Power dissipation in

e magnet is also reduced at a lower flux

nsity . This is at the expense of increased
gretic circuit dimensions and a compromise had
1 be reached. Fig. 3 shows the results obtained
loading force against airgap distance at ten
ce levels in the closed-loop configuration.

e non-linearity at large airgaps is mainly due
nleakage flux and geometric misalignment of

e pole faces and reaction plate through the
milable airgap. Minor positive position and
wrent feedback loops of low gain can be added
1boost the response in this region. This

wult constitutes the static performance of the
ynet-amplifier configuration. The high

yree of linearity has been achieved by paying
lise attention to the dynamic design

nsiderations.

¢ electromagnet is part of a closed-loop

itrol system which is required to adjust its

ment so as to maintain the flux density at the
signed operating point. To obtain bandwidths
operation larger than that dictated by the
metic circuit time constant, the amplifier

sign becomes important. Larger bandwidths are
ly possible because of the capability of

ting current variations through the coils of
relectromagnet. A rate of change of force of
Y/sec has been achieved. The former figure
calculated from the electromagnet static load
racteristics assuming that a change in airgap
20mm is mached by a change in force by the
ctromagnet of 200N in 20ms. The choice of

s is to ensure that the build-up of force is
:ker than the fastest average isometric twitch

response in human muscle. This is the region of
25ms for a group of very fast motor units in the
muscle and it can rise to as much as 100ms with
slower motor units.

Fig. 4 shows the frequency response of the system
and the coherence function relating the test sig-
nal to the output. The input is a voltage
comprising a d.c reference corresponding to a
demanded force of 80N modulated by bandlimited
white noise. The output is the feedback signal
taken from the flux transducer mounted in a pole
face of the electromagnet. The relationship is
therefore between the demanded and delivered
forces in the system. The phase plot is seen to
be almost linear and rolls-off at —2.25°/Hz

to -45% at 20Hz. The magnitude plot exhibits
some minor resonances of unknown origin. The
coherence ramains very high throughout the
frequency range but goes to zero at 50Hz (not
shown) before returning to a high value and
remaining above 0.75 up to 100Hz.

The system described has been designed for
testing large muscles such as the biceps and the
quadriceps and has been made geometrically
adjustable to accommodate not only different
muscles but different subjects as well. Two
views of the device are shown in fig. 5.

A smaller device involving similar principles has
been designed for testing muscles of the hand and
other small muscles.

It is thought that this type of testing machine
used either in its static or dynamic modes would
also have medical and physiological applications.

The important advantage of the system in the
present context is that the subject only needs to
maintain a crude approximation to constant length
using visual feedback. The force fluctuations
are in the control of the operator or of a
computer. Furthermore, the device also acts as
a force transducere as the flux density in the
airgap is measured for the purposes of control
and this signal is an objective measure of force
and its relationship to the demanded force is
known via the transfer Iunction of the system.
This transfer function .s seen to be satisfactory
for the purpose. The machine is very well
suited to computer controlled experimentation.
The main disadvantage of the machine at present
is its expense.

5 CONCLUSIONS

The testing of human muscle as a means of
assessing training or treatment is of signifi-
cance in sport. If the testing is limited to
static measurements or crude dynamics involving
considerable uncertainty due to the substantial
subjective element present then the testing is
of limited value.

A review of the literature and some pilot studies
by the authors have shown that isometric emg-
force modelling offers the possibility of a
simple general model of muscle provided care is
taken in the treatment of noise and in the design
of the algorithm. Although this approach looks
promising the models have some residual
dependence on the force pattern and until such
time as this can be resolved by further refine-
ments of the model structure and identification



algorithms, careful control of the force is (7)
required.
The testing system presented based on controlled
d.c. electromagnets is shown to have many of the
characteristics required for the furtherance of (8)
this area of work.
REFERENCES
(1)  MILNER-BROWN, H. S. and STEIN, R. B. The
relationship between the surface electro- (9)
myogram and muscular force. J. Physiol,
246, 549-569, 1975.
(2) LAWRENCE, J. H. and De LUCA, C, J. Myo-
electric signal versus force relationship
in different human muscles. J. American (10)
Physiol. Soc, 1653-1659, 1983,
(3)  WILKIE, D. R. The mechanical properties of
muscle. British Medical Bulletin, 12,3
177-182, 1956.
(11)
(4)  COGGSHALL, J. C. and BEKEY, G. A. Emg-force
dynamics in human skeletal muscle. Med.
Biol. Eng, 8, 265-270, 1970. T
(12)

(5) GOTTLIEB, G. L. and AGARWAL, G. C. Dynamic
relationship between isometric muscle
tension and the electromyogram in man.

J. Appl. Physiol, 3, 345-351, 1971,

(¢)  WINTER, D. A. Biomechanical model relating
emg to changing isometric contraction.

Eng, Ottowa, 1976.

Average Filtered
Rectified emg

CROSBY, P. A. Use of surface electromyogram
as measure of dynamic force in human limb
muscles., Med & Biol. Eng. and Comput, 16,
519-524, 1978.

JONES, N. B. and LAGO, P. J. Dynamic
estimators of muscle force from the emg.
IEE Colloquium Digest 1981/57B Neuro
Muscular Control Systems, 61-67, London,
1981.

JONES, N. B. and LAGO, P. J, Parametric
models in the diagnosis of neuro-muscular
disease. Inst, M.C., Symposium, Control
Systems Concepts_and Approaches in Clinical
Medicine, 31-38, Univ. of Sussex, 1982.

LAGO, P. J. and JONES, N. B. Parameter
estimation of system dynamics with modula-
tion type noise-application to relationship
between emg and force transient in muscle.

IEE Proc. 13D, 6, 221-228, 1984,

REES, N. W., BASON, P. T. and SAMARASIRI,
B. S. Muscle modelling and force estimation
IFAC Conf. Proceedings, York, 1985.

De LUCA, C. J. Le FEVER, R. S, McCUE, M. P.
and XENAKIS, A. P. Control scheme governing
concurrently active human motor units
during voluntary contractions. J. Physiol.
329, 129-142, 1982, -

Time (s)

Filtered Force

Aol

| ) T i I

Time (s)

Fig 1
model are indicated

EMG and force waves. Departures from assumed



+V

DRIVE
AMPLIFIER

-V

+Vp

~“~MZOPEXODAOMEM

POWER
TRANSISTOR
AMPLIFIER

PULSE

oV

PROTECTION CURRENT FEEDBACK

CIRCUITS

FLUX, CURRENT, AND POSITION FEEDBACK

I
EWNDED S
FIRCE PILOT [a]
PITERN OSCILLATOR L
—] AND B A
‘ MARK/SPACE T
CONTROL 1
o
N
FEEDBACK
AMPLIFIERS
Fig2
1+
z
% 10-}
-]
.|
3 94
e
£

ZOm=D>COn

Schematic diagram of electromagnetic force
generator and transducer

+ ¢ & X O ¢ O 9w @ N
1 i
O VM N W & W N -

)
—

1 1 1

Fig 3

a3l
-t
wn
N
o

25 20 15 L0

Airgap distance (mm)

Generated force as a function of airgap for different

demanded force levels




MAG

180

deg.

-ISO

20Hz

20 Hz

Frequency response of the system

Top:
Middle;
Bottom:

Magnitude as a function of frequency

Phase as a function of frequency . Fig 5
Coherence as a function of frequency

All scales linear

I wo views of the prototype machine



Appendix [Cl]

Published Paper on EPAXIS Expert System



EPAXIS

An Expert System for Automatic
Component Labelling In Evoked
Potentials

TIRM-88-32
Sehmi, A
September, 1988

For further information on this and other Turing Institute Research Memoranda, please contact:

Turing Institute Press
George House

36 North Hanover Street
GLASGOW G12AD
Tel: 041-552-6400

Copyright Notice
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, photocopying, recording or otherwise without the permission of

the Turing Institute.



ABSTRACT

Neuroelectric data assessment by human experts involves a complex process of data
“ reduction and pattern recognition. This paper presents research in the development of a
‘3 knowledge-based system for assisting an expert in the interpretation of a particular type
of neuroelectric data, namely evoked potential (EP) data. This work constitutes part of a
larger research effort currently being conducted by the University of Leicester and
Medelec Ltd. The machine analysis consists of two main phases. Firstly, signal
processing techniques are used to locate the major peaks (ie. 'components' or 'waves')
in an averaged EP signal. This method is based on statistically estimating noise
characteristics (Sehmi, 1987) suitable for detecting significant deflections in each EP
signal, then constructing a histogram of deflections at each sampling interval summed
over all individual signals. Peaks in this histogram correlate significantly with major

peaks in the corresponding averaged EP.

* The peak-finding algorithm provides input to the second phase of the analysis for
labelling the peaks, performed by a knowledge-based system written in Prolog. The
system comprises of some 50 rules that are driven by an interpreter that will allow for
reasoning with uncertainty, using a method based on Zadah's (1965) theory of fuzzy

? sets. The system utilises a 'fuzzy model' of the EP containing both declarative and
procedural knowledge. The declarative part contains a description of temporal
relationships between significant EP components, and the procedural part defines demon
procedures for computing values for EP attributes and certainty factors.



1 Introduction

The assessment of neuroelectric data by human experts is based upon complex processes of data
reduction, feature extraction and evaluation, some of which are apparently subjective. The task
of evaluating the data falls largely on the human expert. A greater part of the data reduction and
some of the feature extraction processes are performed in dedicated computing machinery.

Our intention is to score and interpret EPs automatically. Clinical interpretation is a more
ambitious goal that would have to use additional patient specific observations that are currently
not available. Applications of a peak detection algorithm to analyse:

[1] Short Latency Auditory Brainstem Potentials (Baeps),
[2] Pattern Reversal Visual EPs (Prveps), and
[3] Somatosensory EPs (Sseps),

have shown that underlying activity, not discernable by simple visual observation of the
averaged EPs, can be extracted from the results. This information can be used to accurately
locate true peaks in the averaged EP in conjunction with a simulation of the subjective
methods of peak location which a human expert might use.

1.1 Solution QOutline

Experienced clinicians working in the field of EP have a mental template of what to expect their
data to look like on their CRT screens. The data is matched against this mental template and
reduced to a sequence of latency and interval labels. The EP data interpretation by human experts
relies on focussing first on the most prominent features in the data (i. e. islands of activity
such as the largest peaks and troughs, the sharpest peaks, the broadest peaks, and ‘the peak in
the middle of the screen’). Secondly, tentative labels are assigned to these peaks. Subsequent
labelling of features is made with respect to the current decisions until the complete waveform
is scored. Sometimes, intermediate decisions are discarded, and new reference features are
selected.

To simulate this complex process a declarative model of expert reasoning is encoded as a
collection of production rules. By allowing the attachment of certainty factors to the rule
clauses, it is possible to weight the decisions being made on the data. This declarative model
interacts with a procedural model of the data, which comprises of fuzzy membership functions
describing each significant component of the data. The interaction between these models is
achieved by a series of demon functions that contain algorithms for computing values for
attributes and certainty factors, used in the reasoning process.

A common problem with the interpretation of data using a knowledge-based approach is the
reduction of the raw data to a form that is usable by the reasoning modules. The technique
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chosen depends largely on the type of information that is to be extracted during the reasoning
process. We are interested in accurately labelling the major components in EPs and hence our
data reduction method attempts to obtain peak information.

To provide input to the knowledge-based system, a non-linear adaptive algorithm has been
developed to analyse the raw EP data. The algorithm statistically estimates certain noise
characteristics in the single responses that constitute the averaged EP. These noise estimators
are then used to detect all significant deflections (activity) in the individual responses. A
histogram is then constructed from activity at each sampling interval. The peaks in this
histogram have been found to correlate significantly with the major peaks (i. e. '‘components’' or
'waves') in the corresponding averaged EP. This then provides a good starting point for data
input to knowledge-based system which will then attempt to assign labels to the corresponding
deflections in the averaged EP response.

The following sections of this document will describe:

[1] the application domain,

[2] the data reduction algorithm,

[3] the procedural model used to describe the data,

[4] the declarative model (or knowledge base) used to describe the expert decision making
process and,

[5] the expert system interpreter and the propagation of certainty values.



2 The Application Domain

In order to test the knowledge-based paradigm of signal interpretation we shall use the Baep
signal. This is perhaps the most complex of the EPs that have been mentioned. The Baep
single responses are of low amplitude and signal to noise ratio. However, the data reduction
algorithm performs well even under these circumstances. Hence, it should be possible to
combine this information in the reasoning process to label Baep components accurately.

Below is a brief description of how EPs in general are obtained with an indication of the
features of interest in Baeps for this study.

2.1 Evoked Potentials (EPs)

The application of sensory stimuli to the peripheral nervous system will, under normal
circumstances, result in changes to the on-going activity of the central nervous system. These
variations are known as evoked potentials (EPs). Some EPs can often be seen as a wave or
group of waves in the electroencephalogram (EEG). Most EPs however, are indistinguishable
in routine EEG recordings because of their inordinately low amplitudes (0.1 to 2 microvolts)
and the interference of background cerebral electrical activity and electromyographic (EMG)
artifacts (Chiappa and Ropper 1982).

By exploiting the non-stationary time locked nature of an evoked potential with its related
stimulus and assuming that background EEG activity is a stationary random noise process,
simple synchronous signal averaging can be used to extract the EP. The features of the electric
potentials (waves) in the averaged EP brought out in this way are used in the assessment of
neurological condition as each wave is generated by a specific anatomical structure within the
nervous system. The presence or absence of the appropriate EP waves and their latencies are the
primary characteristics used in clinical interpretation.

Several methods have been developed over the past decade to study the EP. Of these, pattern-
shift visual, brainstem auditory, and short-latency somatosensory EPs have come into routine
clinical use and are now well established as valuable clinical tools. EPs are used to reveal the
presence of clinically unsuspected lesions in the sensory system when demyelinating disease is
suspected because of indications in another area of the central nervous system. This is
particularly relevant to

[1] the diagnosis of multiple sclerosis,

[2] determination of the anatomical distribution of a disease process,

and,

[3] to monitoring continuously the integrity of a pathway that cannot be examined clinically
because of anaesthesia (Chiappa, 1982; Halliday, 1982; Colon et. al. , 1983).



Therefore, EPs are often used in patients with multiple sclerosis, nervous system tumors,
trauma, stroke, in intra-operative monitoring procedures, and in intensive care environments, as
well as in infants whose sensory systems cannot be accurately assessed. These tests provide
sensitive, quantitative information complementing standard clinical neurologic examination.

Baeps

Evoked potential studies of the auditory system have proved extremely useful in the
understanding of the physiological mechanisms of hearing in man. As a result of this they add
to the diagnostic reportoire of the clinician for neurological and audiological investigation.

The Baep is best obtained with a high intensity click stimulus, and within the following 10
msec, could contain up to seven components labelled I-VII, according to Jewett's (1970)
classification. There is considerable evidence that at least the first five components correspond
to the successive activation of peripheral and pontomedullary (cochlea, spiral ganglion, and
eighth nerve), pontine (cochlear nucleus, superior olivary nucleus, and lateral lemniscus tracts
and nuclei), and midbrain (inferior colliculus) portions of the brainstem pathway (Stockard et.
al., 1978). This is shown in the diagram of Fig.[2.1], when these acoustic nerve and brainstem
potentials are volume-conducted to recording electrodes at the vertex (electrode, Cz) and mastoid
(electrode, Aj).

The components I-V in the Baep are those that are of most interest in audiological
investigation as their variability under normal circumstances is low (about 300usecs). It is
quite possible though that the consistency of underlying activity is reflected in a distorted
manner in the averaged response. This arises through a combination of averaging and the low
signal to noise ratio of Baep single responses. The components (mainly the later ones above 4
msecs) then appear to be highly variable and/or fused. It is also possible that these components
exist not as peaks, but as inflections on the rising or falling edges of a neighbouring
component. This distortion in the Baep makes the task of assigning unique labels, I-V,
difficult. Very often a clinician will have to perform multiple tests to gather evidence for the
location of particular Baep components. The problem is magnified when the intensity of
stimulus, and hence the amplitude of the responses, is reduced.

The data reduction algorithm described in the next section helps overcome these difficulties. It
provides the type of data that can be used in an expert system for resolving possible
ambiguities in the component labelling procedure.
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Fig. [2.1] Diagram of normal latencies at 60 dBSI for components I through
VH. Lesions at different levels of the auditory pathway tend to produce
response abnormalities in the components, although the affected
component(s) does not specify the precise generator(s) of the response (taken
from STOCKARD et al, 1977)



3 Measurements of Baeps from the Analysis of Single
Response Data

The usual averaging process to extract the Baep waveform from an ensemble of individual
responses assumes that the time-locked signal s(t) repeats itself faithfully for each delivery of
stimulus and that the mean value of the background EEG noise n(t) will tend towards zero. If all
of this were true, then averaging would be the optimal data analysis technique to implement
prior to detection of significant components in the Baep. This, however, cannot be the case as
there is considerable variability among responses (Aunon et al, 1981; Brazier, 1964) due to the
effects of habituation, fatigue, and neuromuscular artifact. Distraction from the stimulus is a
factor that may affect evoked potentials other than the Baep. In the averaged evoked potential the
major features are due to components common to all the individual responses, and as such will
obscure any subtle variations in the excitability of the central nervous system. The information
contained in these variations could be as important as the gross information contained in the
average. A procedure written in the C language is described for peak detection in the Baep. The
individual responses to auditory stimuli are processed by a specialised peak detection algorithm.
Estimates of the characteristic noise deflections contained within these responses are obtained
from statistics of a frequency distribution of the amplitude differences between adjacent maxima
and minima found in a 'noise-only' pre-stimulus run. These characteristic noise amplitudes are
different for all subjects and different for all the individual responses in the same data set. With
this noise amplitude information a second pass is made over the individual responses to
determine the location of significant component peaks in the averaged response.

3.1 Outline of the Peak Binning Algorithm

The procedure relies on detecting the times of occurrence of significant events within the
constituent sweeps of the Baep signal. These are defined as a pair of maxima enclosing a
minimum such that the amplitude differences between the maxima and the enclosed minimum
are larger than an arbitrary threshold value. This threshold value is termed the peak
discrimination factor (PDF). The method of extraction of events in this analysis is similar to
that used prior to the calculation of Turning Points Spectra of interference pattern EMGs (Lago
and Jones, 1983). The difference lies in the attention paid to ensuring that an accepted event
represents the maximum of highest amplitude and that the enclosed minimum is the deepest
trough with respect to the chosen (peak discrimination factor or peak amplitude threshold level)
PDF value. The sequence of N measured data points following the ith stimulus is do, d1, .. .,
dN-1 = {dk}i. The stimulus is delivered M times giving N x M data points in all. A turning
point is defined as a change in slope; positive to negative slopes indicate maxima and the
converse indicate minima. Maxima dmx/j, dmx/j+1, enclosing a minimum dmn/1 have to

satisfy all the following conditions:

|[dmx/j - dmn/1| > PDF .......... Eq. [3.1]



|[dmx/j+1 - dmo/1| >PDF .......... Eq. [3.2]
|[dmx/j+1 - dmn/1+1] > PDF .......... Eq. [3.3]

such that a significant event is assigned to the maximum dmx/j at time mx/j (the real latency is
the index value multiplied by the sampling interval and is assumed understood from here
onwards). The algorithm commences with the maximum dmx/j set to the largest possible
positive integer value the computer can hold ensuring that Eq. [3.1] is true at the start of
analysis in the current sequence. Then the candidate minimum dmn/1 is compared with the
minimum that was found immediately prior to this to retain the lower of the two. This is used
in the PDF comparison with candidate maximum dmx/j+1 in Eq. [3.2]. As soon as this
condition succeeds then a minimum dmn/1+1 is found that makes Eq. [3.3] true thus confirming
a significant event occurs at time mx/j. During this latter phase of analysis, any maxima found
along the waveform are compared with the maximum dmx/j+1 to retain the higher of the two.
The updating procedure in effect ‘slides' this 11/2 wave template backwards by one wave and
repeats the search for another pattern that fits the conditional tests just described. Implicit in
this procedure is that the first condition automatically succeeds for all subsequent cycles. In this
way accepted events represent those maxima enclosing the deepest troughs with respect to the
chosen PDF value. In practice this method of peak detection is robust even with very noisy
data.

It is apparent that this method relies on some knowledge of what value to assign to the PDF.
Parekh (1987) and Lago and Jones (1983) have used similar peak detection algorithms in the
analysis of turning point spectra of interference pattern EMG. Their choice of PDF value was
largely empirical and was usually set to 3% of the maximum peak-to-peak deflection of the
data. as this provided an adequate resolution for the subsequent classifications they were looking
for.

The Baep has a high noise content (Fridman et. al., 1982) and a judicious choice of PDF value
would be difficult to arrive at in the way it was above with EMG signals. The Peak Binning
algorithm (Sehmi, 1987) assigns PDF values adaptively before analysing the single responses
(or sub-averages of single responses) that make up a Baep. This is done by making an estimate
of the 'noise’ in the sequence {di};. In this way any transient changes affecting the assumed
statistical stationarity of background EEG activity can be partially compensated for.

The PDF assignment is determined from the 'modal’ value of the histogram computed from the
amplitude differences between adjacent maxima and minima in a noise only pre-stimulus data
sequence. The method assumes that the noise is additive to the signal in the post stimulus data
sequence. This is not entirely true as the background EEG activity is suppressed (Berger, 1969)
with sensory stimulation. This in fact helps the algorithm perform more efficiently.



The detection of positive peaks in the single responses lead to positive assignments in an
accumulator or bin. An inverse assignment on negative peaks helps in the segmentation of the
bin around majcr components in the Baep. Following the analysis of all single responses in the
Baep, the bin is separated into positive and negative sequences. The positive bin sequence is
convolved with a latency corrected 3-point backward moving average ( twice), and further with a
3-point unit area triangular window (twice). The convolution process removes small baseline
fluctuations produced in the second moment computation whilst preserving resolution, and
maximising pardoning in the region of the major components in the corresponding Baep
averaged response. Fig. [3.1] shows an averaged Baep response and the ccwresponding smoothed
bin clearly indicating those islands of activity occurring in the averaged response. It should
now be possible to use the bin information to find and label the major components in the

averaged Baep response, whether they exist as true turning points or as points of inflection.

This data is written to files in the form of Prolog-readable terms. The structure of these terms

have the following general format:

data(PeakType, NumberOfPeaks, ListOfPeaks).
ListOfPeaks - [Posl/Ampll,, PosN/AmpIN].

A 1139 PBE: US

naxJbia: 9 010»)

Fig. [3.1] An averaged Baep response in the upper window and the
cooresponding smoothed bin histogram in the lower window. The peaks in
the bin histogram correlate well with the major activity in the Baep. It is
evident that activity not observable in the Baep is reflected in the
fluctuations ocurring in the bin.

(Because the algorithm attempts to disregard noise in the single responsesy
we assume that these fluctuations vreflect activity obscured through the



. averaging process)

4 A Fuzzy Model Description for Baep Interpretation

The Baep (and most neuroelectric data) can be highly contaminated with unwanted noise. This
noise and the small variability in the times of occurrence of wave components in the single
responses, almost always leads to a contaminated and distorted averaged response. It is however
possible to extract general characteristics from the averaged response, only because our visual
and mental faculties collaborate so well. Experts are able to perform correlations, selective
filterings, weight assignments and generalisations quite naturally in order to identify and label
wave components in a Baep.

The data reduction algorithm, described in section 3, makes it possible for a machine to get first
estimates on where Baep components exist by examining peaks in the bin. The next problem
we face is to resolve conflicts between multiple bin peaks that can cluster together in the
immediate vicinity of one Baep component. This can be due to noise contamination that has
not been completely removed with the data reduction method. It is also plausible to suggest that
multiple peaks in the bin (especially in and around the later Baep components) are due to the
activation of generator sites from the contralateral channel reflecting their activity in the
recorded ipsilateral channel.

These problems have led to the specification of a fuzzy model describing Baeps. The model
comprises two parts, namely the procedural and declarative components. The models employ
techniques allowing uncertain descriptions of the data reduction output and the patterns of Baep
components in the averaged response.
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4.1 The Fuzzy Procedural Model (Data Base)

The fundamental primitive for information modelling in an expert system are propositional
statements of the form: 'an attibute of an object has a partcular value’. This is represented in

Prclog as the symbolic structure:
Object Attribute Value
We may express that 'a component wave of the Baep occurs at position X' by writing:
Wave position_is X

As soon as Wave does not occur exactly at X then we have introduced an amount of

imprecision, where X does not exactly reduce to one element in the domain UWave (universe

of discourse) of the variable Wave. X is then the set of mutually exclusive possible values for
Wave.

In the imprecise proposition above, the set X may not have clear boundaries. Then X is what
Zadeh (1965) has named a fuzzy set and Wave position_is X is said to be a fuzzy proposition.
A fuzzy set X say, is described by means of a membership function py. This is a function
mapping from the domain Uyy,,,. to the interval [0,1]. 1 represents full membership and O

non-membership and intermediates represent partial membership.

The fuzzy set (ny) of values which bin peaks (X) can take for a wave component (Wave) in
the domain of Baep waves (Uy/,ye) is given uniquely by the fuzzy membership function
(x). The membership function for the domain Uyy,y,, (our only domain) is shown in Fig.
(4.1]. This is termed fuzz function and enables assignments of reliability or fuzz to the results

of the data reduction algorithm and the peaks in the averaged Baep response

Fuzz 4

Fuzz Function

| C
I A B Bin
P Segment
J\/\/U\//\
>
Time

. [4.1] Mapping of Bin Peaks onto the Fuzz Function to obtain Peak

1.0 —
0.8 =

Reliability measures.
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Referring to Fig. [4.1], peaks in the bin segment shown, have their fuzz computed by a simple
interpolation through a mapping of their times of occurrence onto the fuzz function. For
example, the bin peak at 'B' maps to a fuzz of 1.0 indicating full membership of X in
Uwave and 'A’ maps to a fuzz of 0.8 indicating partial membership of X in Uyyz,e-

Zadeh calls my the possibility distribution and its identification can be subjective as the
definition of iy can be subjective. The importance of this distribution is the order it imparts
on the domain Uyy,,, and it should contain all possible values of Wave. In this application,
Hx has been estimated from a linear approximation to the normal statistical distribution of the
individual components in the Baep. This can be altered dynamically in the system since the
model descriptions are generic. The flexibility that this imparts is important in maintaining the
separation between the components in the expert system as a whole and its adaptability to other
EP domains.

Fig. [4.2] illustrates the complete fuzzy procedural model for the Baep. The fuzz functions are
located along the time axis at the normal mean values (initially) for each component wave of

interest.
Time/msecs
I I 1 ] 1 ] I I | I | | |
0.0 1.0 2.0 3.0 4.0 5.0
Averaged
/ Baep Response
Fuzzy
Functions
aSd b.sSd c.Sd dsd
Fuzz Sd = Normal Sd of Wave
1.0 Anchor = Norm Mean of Wave

S [P, Q R, S] = Fuzz Function Descriptor

/I R R K [a, b, ¢, d] = Fuzz Function Modifiers
/ ° \

> Time
ol
Anchor

Fig. [4.2] A Fuzzy Procedural Model for Brainstem EPs.
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Prolog descriptions for each wave are constructed via the execution of the declarative model
(explained later) when and where required. The generic Prolog structures for a fuzzy function (or

window) are:

fuzzwindow(WaveNumber, Anchor, [P, Q, R, S]).
modifs[WaveNumber, [a, b, ¢, d]).
current_shift(WaveNumber, Shift).

where [P, Q, R, S] are defined in terms of the modifiers [a, b, ¢, d]. These are set to constants,
but conceptually they can be functions of time that modulate their respective fuzz function
regions. The current shift is used to relocate the anchor point for the fuzzy function along the

time axis.

This structure means that the fuzzy functions can adopt any suitable form and location. The
description adopted for the prototype system is simple. The modifiers for each wave are: [0, 1,
2, 1], resulting in fuzzy function descriptions: [0, Sd, 2*Sd, Sd]. Hence, the total width of each
fuzzy function is 4 standard deviations. The extent of the spread either side of the anchor point
(normal mean latency value for the component wave) corresponds to the 99% confidence limits
(note that the distribution of latencies for Baep components is assymettric).

We have seen how the results of the data reduction algorithm can be assigned reliability

measures. To reason with these 'fagged data effectively requires that the declarative model and
the inference machine (rule interpreter) are compatible at the higher level.
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4.2 The Fuzzy Declarative Model (Knowledge Base)

This model attempts to capture the expert decision making processes used to interpret (label) a
Baep. The fuzzy procedural model described in the previous section makes it possible to
formulate propositions of the form:

Object Attribute FuzzyValue
FuzzyValue = Value + Fuzz

Furthermore we can formulate the consequence of fuzzy propositions by using rules or
productions:

if:  Object Attribute FuzzyValue
then: ObjectX AttributeX ValueX

The value ValueX of object ObjectX is concluded with the fuzziness Fuzz (in FuzzyValue)
of object Object.

The certainty with which a proposition holds can be expressed with a propositional attachment
called the certainty factor, cf. Therefore we can write:

if: ObjectX AttributeX FuzzyValueX cf CF
then: ObjectY AttributeY ValueY

vThe value ValueY of object ObjectY is concluded with a combination of the fuzziness FuzzX
of object ObjectX and the cf attachment CF:[0.0, 1.0]. This in effect allows the modeller to
ekpress the reliability or confidence with which a proposition is being made when the object
value is completely true. If the object value is fuzzy, then this is reflected nevertheless through
a combination of fuzzy and certainty values.

The production 'if contralateral recording is available then contra_wave_V position is X'
represents knowledge that is applicable only if the antecedent is true. However we would like to
express the influence of the antecedent on the consequent when the antecedent is false. To
prevent the automatic assertion of the consequent with a low certainty value in the absence of a
contralateral recording, another extension to our existing formalism is required. In this case we
must assign a weighting to evidence for truth and to evidence for falsehood:
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if:  ObjectX AttributeX FuzzyValueX cf CF wt (WtT, WtF)
then ObjectY AttributeY ValueY

The combined fuzzy value for object ObjectX is calculated in two stages:
[1] Fuzz = FuzzX * CF

Introducing the clause weights (WiT, WiF) we obtain a total reliability for the antecedent
proposition in the production rule. This is termed the fuzzy reliability factor (FRF):

WtF + Fuzz(WtT - WtF)
[2] FRF = e
max(WtT, WtF)

The value ValueY of object ObjectY is concluded with the fuzziness FRF of object
ObjectX.

Fuzzy Clause Wt

(FRF)
A
Truth Wt.

Y

Falschood Wt. ___|
>
X
Rule Cf

Falsehood Wt used when Cf = 0.
Truth Wt. used when Cf = 1.0.
Y = Falsechood Wt + X.(Truth Wt - Falsity Wt.).

Fig. [4.3] Variation of FRF with rule certainty factor (or

combined Fuzz).

Fig [4.3] illustrates the variation of the clause weight (FRF) with the certainty factor
attachment (or combined fuzzy value) of the rule proposition. The contribution of truth and
falsehood on the declarative interpretation of an antecedent proposition (and how much this
contributes to the assertion of consequent propositions), is determined by the truth and
falsehood weights. Adjustments of these weights is equivalent to an adjustment of the slope of
the line in Fig. [4.3]. The steeper the positive slope, the higher is the contribution of truth of
antecedents in the assertion of consequents, and the less falsehood detracts. Negative slopes have

the same effect as negation of the antecedent propositions. Use of weights in this manner is not
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recommended as it obscures the declarative content of the rules.

Rules containing conjunctions of antecedents get their individual FRFs combined before the

assertion of a consequent:

ClauseWtA = WtFA + FuzzA(WtTA - WtFA)
ClauseWtB = WtFB + FuzzB(WtTB - WtFAB)
etc...

ClauseWtA + ClauseWTB + .... + ....

FRF = cccccemccccmocccciciccccicccmcenccccncnenae - -—e-
max(WtTA, WtFB) + max(WtTA, WtFB) + .... + ....

If consequent have certainty factor attachments then the FRF calculated as above is combined

with this as in stage [1] above.

These ideas are employed in a structured declarative model (knowledge base of rules) with a rich
syntax. The grammar for the rules is summarised below in BNF:

Rule Grammar :-

rule ::= <term> :: if <antecedent>
then <consequent>.

antecedent ::= <antecedent> & & <antecedent>
| <antecedent> or <antecedent>
| <antecedent> c¢f <number>
| <antecedent> wt <weightT, weightF>
| <antecedent> cf <number> wt <weightT, weightF>

| <term>
consequent ::= <consequent> && <consequent>.
| <consequent> cf <number>.
| <term>.
term ::= any Prolog term

number ::= [l'loat : (0.0, 1.0)]

weightT, weightF ::= [float : (0.0, 5.0)]
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Knowledge Base Structure
The rules contained in the knowledge base are structured into:
Control (meta) rules

These are rules that direct the search through the knowledge base when driven by the inference
engine or rule interpreter. Our task requires some direction as to which Baep waves to look for
in the absence of others. Examples are:

rulel7 ::

if

channel = ipsi

& & wave I = found
&& wave_II = found
& & wave_ Il = found
& & wave IV = found
& & wave V = found
then

all_peaks = found.

rulel8 ::

if

channel = contra

&& wave_II = found

&& wave III = found
& & wave_ IV = found
& & wave_V = found

then

all_peaks = found.

Descriptive rules

These are rule which produce qualitative descriptions for the Baep. They are generally higher
level abstractions of the characterising rules below. Through backward chaining via the rule
interpreter these rules activate the characterising rules. Descriptive rules are useful for two
reasons. Firstly, they provide clear derclarative semantics of what is being performed in the
interpretation task which is useful in the debugging phase (notably understandable
explanations). Secondly, the abstraction allows for increased generality and therfore application
of the same rules in similar domains. Examples of these rules are:
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rule02 ::

if

Wave list_of pks_is ListOfPks+(bin_pks)
&& Wave best_pk_is Pos/Fuzz+(ListOfPks)
then

Wave position_is Pos cf Fuzz.

rule07 ::

if

Wave fuzz_window_is FuzzWindow

& & Wave pks_are ListOfPks+(PksType,FuzzWindow)
then

Wave has_pks_of type PksType+(ListOfPks).

rule09 ::

if

Wave stats_of are Stats

& & Wave modifiers_are Modifs

& & Wave is_described_by WaveModel +(Stats,Modifs)
then

Wave model_of is WaveModel.

Characterising rules

The knowledge base can be considered as an AND/OR graph with its leaves being the
conjunction of antecedents in these characterising rules. Specificity is handled here entirely.
They are the interface with the data through procedural mappings that activate demons. These
rules return the appropriate Prolog data structures which are examined and the results of which
are propagated upwards from this level mechanisms. Examples of these rules are:

rulel0 ::

if

Wave mean_is Mean

&& Wave sd_is Sd

then

Wave stats_of are (Mean,Sd).

rule35 ::

if

channel = ipsi

& & wave_I position_is PosWave I ¢f Fuzz_
&& (
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wave_I is_expected_at EPos _1+Tol _I+(wave_III)

wave I is_expected_at EPos_I+Tol I+(wave_V)

)
& & $(Diff is PosWave_I-EPos_I)
&& S$(Diff =< Tol I)
then

pos_wave_I_at = PosWave_I.

The corresponding demon procedure mappings are performed through a predicate defined as
external/2:

external(Wave expected_at PosAndTol+(RefWave,RefPos),
external(Wave mean_is X, norm_mean(Wave, _,[X])).
external(Wave sd_is X, norm_sd(Wave, _,[X])).

The next section will go on to describe very briefly the top level interpreter used in this system.
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S The EPAXIS Interpreter

This interpreter shell is backward chaining and provides uncertain inference and explanation
capabilities on the declarative model described in the previous section. It also provides the
interfacing with the procedural model through invocation of the user-defined demon-procedures.
The interpreter executes the declarative model (i.e. knowledge base) in much the same way as
Prolog executes the interpreter itself. Hence, it is possible to pass goals to Prolog for
execution. This is neccessary for mathematical constructs and interfacing to other languages. An
important specification for this implementation has been separation of all EPAXIS modules. In
this respect the same interpreter can be used to execute knowledge bases that will be defined in
the future for labelling different EPs.

The structure used in the shell derives from the work of Shapiro (1983) and Niblett (1984). The
implementation of uncertain reasoning is a variant of that described by Lebailly et. al. (1987).
The scheme below shows the basic structure of the EPAXIS interpreter:

% Top call
solve(X) :-
solve(X, Fuzz, []).

% Is goal known
solve(X, Fuzz, _ ) :-

known(X cf Fuzz),
|

% Is goal solvable using a procedural call
solve(X, Fuzz, _ ) :-
external(X, Demon),
!’
execute_demon(Demon, Fuzz).
% Is goal solvable using a rule
solve(X, Fuzz, Stack) :-
Rule :: if Conds then Goal,
satisfy(Conds, CondsFuzz, [Goal+Rule|Stack]),
conclude(Goal, CondsFuzz, Fuzz).
% Ask user for solution
solve(X, Fuzz, _ ) :-
askable(X),
!
L

certain(Fuzz).

Satisfyl/3 attempts to solve the antecedent propositions by recursively invoking solve/3 with
each proposition in turn. A successful goal will cause satisfy/3 to calculate its fuzzy value
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(FRF) and eventually a combined fuzzy value (CondsFuzz) for all propositions. ConcludelS

will tlien assert the conclusion with the fuzzy value of the antecedents.

In the case when goals are already known (i.e. they have been proved already) and the antecedent
proposition has a certainty factor attachment, a simple product of fuzzy values performed before
the calculation of the FRF. A similar multiplicative process is performed if the assertion of a
particular consequent has a precedent. This latter process allows the accumulation of evidence

for some items to strengthen or weaken evidence for others dynamically.
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6 Results

The results of a consultation are given in Appendix [A]. This demonstrates the rudimentary
explanation facility provided. Of greater interest is how the objects and values in the generic
rules have become unified with data structures extracted from the raw Baep data. This has been

performed using the procedural attachments interacting with the procedural model.

7 Conclusion

The use of an expert systems approach to automatic component labelling in evoked potentials

has demonstrated several points:

[IJ The use of a high level language (such as Prolog) has provided for rapid prototyping even in
a complex domain. This can be attributed to the ease with which abstraction and separation of
concepts is done.

[2] It should be possible to generate 'siand alone' knowledge bases for other EPs using the one
interpreter shell developed for this Baep domain.

[3j The use of a model of uncertainty for data description provides the sortee of expressive power
needed for reasoning in this noisy domain.

[4] The authors personal experience was that it is easier to modify the interpreter than it was to
modify the knowledge base. Initial problems were concerned with defining a useful rule
description language and designing a useful structure in which to fit the rules.

[5] There is a trade-off between the characterising and descriptive rules. They could really merge
together, but this would be to the detriment of declarative understanding. It is entirely up to the
rule writer (knowledge engineer) how far to pursue this separation. For debugging and
explanations it is a task worth pursuing. If explanations and maintainence are unimportant,
then a final version can contain a condensed rule set for faster rule execution. This is however

unlikely.
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(appendix)
ff We enter the Prolog System and load the ezpert system (EPAXIS):
7~ [makefile].
¥ To start the consultation we enter the query:
7 gotop(X).

¥ This activates the top level goal ’solve(baep pks found = X, Fuzz, []).

% A question 1s asked.

!What channel is this recording taken from (ipsi/contra) ['why.’ to see why] ? > why.
|

% We have typed in ’why’ for an ezplanation.
% This 1s listed simply from an ezamination
7 of the current goal stack.

In order to find the value of baep_pks_found,
I'm trying rule rulei2T.

This concludes about baep_pks_found.

To prove the conditions of rule rulel2T,
[ need to know the value of labelling.

In order to find the value of labelling,
I'm trying rule rulel3.

This concludes about labelling,

To prove the conditions of rule rulel3,

| need to know the value of normal interp.

In order to find the value of normal interp,
'n trying rule rulei5.

This concludes about normal_interp.

To prove the conditions of rule ruleib,
I need to know the value of all_peaks.

In order to find the value of all_peaks,

I'm trying rule rulel7.

This concludes about all peaks.

To prove the conditions of rule rulel?7,

I need to know the value of channel

To find the value of channel, I'm asking you!

i After explanation the question is prompted again.

ihat channel is this recording taken from (ipsi/contra) [’'why.’ to see why] ? > ipsi.

% lo more questions and the system attempts to solve the top level goal.

' The goal is successful after examining the Baep data
f using the fuzzy models described in the report.

% The reply from the system is:
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The goal [baep_pks_found=yes] has been proved
The explanation for baep_pks_found=yes is as follows :

rulel2T ::

if
labelling=successful
then

baep_pks_found=yes.

i ve can ask 'how' certain conclusions were reached.
fe.g. by entering ’labelling=X.’

‘hich fact would you like to query (’'end.’ to end)
(eg. 'peak 5 found=magic.’) -> labelling=X.

% This is how
ruleld ::

if
normal_interp=yes

then
labelling=successful.

| Again we have the option to query

ihich fact would you like to query (’end.’ to end)

(eg. ‘peak_5_found=magic.’) -—> normal_interp=X.

rulel5 ::
if
all peaks=found
then

normal interp=yes.

7 Ete. ...

Which fact would you like to query ('end.’ to end)
(eg. ‘peak 5 found=magic.’) -> all_peaks=X.

lel? ::

if

channel=ipsi

t& wave_I=found
k& wave_II=found
t¢ wave_III=found
t& wave_IV=found
t¢ wave_V=found
then
all_peaks=found.

"hich fact would you like to query (’end.’ to end)
(eg. ‘peak_b_found=magic.’) —> channel=ipsi.

02:54 Jan 18 1988
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annel=ipsi because you told me so!
hich fact would you like to query (‘end.’ to end)
(eg. ‘peak 5 found=magic.’) -> wave_I=X.

11e36T ::

os8_wvave_I_at=284
len
jave_I=found.

1ich fact would you like to query (’end.’ to end)
(eg. ‘peak_5_found=magic.') —> pos_wavelat=X.

11e35 ::

‘hannel=ipsi
k& wave I position is 284
L& ( wavel is expected_at 285.0+14.0+wave III
o
wave_ | is_expected at 285.0+14.0+wave_V
)
L& $(—1.0 is 284-285.0)
L& $(abs(—1.0,1.0))
L& $(1.0=<14.0)
hen
pos_wave | at=284.

7 We have asked to see how ’'wave_I position_is X’ has been
7 Jound. Because this comes from the activation of a generic
§ rule, we have been given lots of other information.

Vhich fact would you like to query (’end.’ to end)
(eg. ‘peak_5_found=magic.') -> wave_I position_is X.

wave_IV position has been found in the averaged Baep response
(grand_pks) with a certainty of 0.57. This was determined from the fuzzy
procedural model of the Baep.

uleC1 ::

f

wave_IV list_of_pks_is[388/414/0.571428)+grand_pks
k& wave_IV best_pk_is 388/0.571428+[388/414/0.571428]
hen

wave_IV position_is 388 cf 0.571428.

And so on for peak positions.

This data provides the component labels and
is of great importance for the future work
as a list of optional peaks is also attached.

uleO1l ::
f

2:54 Jan 18 1988
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(appendix)

vave_V list_of_pks_is[388/414/1.0,411/ -43/0.857142,406/ -108/0.142857]+grand_pks

tk vave_V best_pk_is 388/1.0+[388/414/1.0,411/ -43/0.857142,406/ -108/0.142857]
then

wave_V position_is 388 cf 1.0.

rule01 ::

if

vave_IT list_of_pks_is[320/ -234/1.0,326/ -300/1.0]+grand_pks
tk vave_II best_pk_is 320/1.0+[320/ -234/1.0,326/ -300/1.0]
then

wave_II position_is 320 cf 1.0.

rule0l ::

if

vave_III list_of_pks_is[345/ -105/1.0,347/ -90/1.0,358/ -340/1.0}+grand_pks
k& wave_TII best_pk_is 345/1.0+[345/ -105/1.0,347/ -90/1.0,358/ -340/1.0]
then

vave_ITI position_is 345 cf 1.0.

rle01 ::
it
vave_I list_of_pks_is[284/ -177/1.0,286/ -182/1.0]+grand_pks

tk wave_I best_pk_is 284/1.0+[284/ -177/1.0,286/ -182/1.0]
then

vave_I position_is 284 cf 1.0.

| This is another gemeric rule which we query about.

fhich fact would you like to query (’end.’ to end)
(eg. ‘peak_5_found=magic.’) —> wavel list of pks is X.

rule06 ::
if
wave [V has_pks_of type bin_pks+

[370/10/1.0,376/15/1.0,390/15 /0.857142,385/11 / 0.142857]
then

wave IV list_of pks is[370/10/1.0,376/15/1.0,390/15/0.857142,385/11/0.142857)+ bin_pks.
rle06 =

if
wave IV has pks_of type grand_pks+[388/414/0.571428]

then
wave IV list_of pks is[388/414/0.571428)+grand_pks.
$%%% Ete. $%%%

¥ The rules are gradually chaining back to the point where
% the wave models are made.

Which fact would you like to query (*end.’ to end)
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(appendix)
(eg. ‘peak 5 _found=magic.’) -> wave_I has_pks_of_type X.

rule07 ::
if
vave_IV fuzz_window_is[wave_IV,363.0/0.0,363.0/1.0,384.0/1.0,391.0/0.0]
t¥ wave_IV pks_are[370/10/1.0,376/16/1.0,390/15/0.857142,385/11/0.142857]+

(bin_pks, [wave_IV,363.0/0.0,363.0/1.0,384.0/1.0,391.0/0.0])
then

| vave_IV has_pks_of_type bin_pks+
[370/10/1.0,376/15/1.0,390/15/0.857142,385/11/0.142857] .

1% Etc. %%
| This is the point where we can query about the model.

thich fact would you like to query ('end.’ to end)
(eg. ‘peak_5_found=magic.’) —> wavel fuzz_window_ is X.

% The fuzzy window is created from here onwards

rule08 ::

if

wave IV current_shift is 0

k& wave IV model of is[wave_IV,363.0,363.0,384.0,391.0]

| £& wave IV window_isjwave IV,363.0/0.0,363.0/1.0,384.0/1.0,391.0/0.0]-+

| ([wave_IV,363.0,363.0,384.0,391.0},0)
then

wave IV fuzz_window_is[wave_IV,363.0/0.0,363.0/1.0,384.0/1.0,391.0/0.0].
%%% Etc. %%%

\ ¥ The model making rule is queried.

Which fact would you like to query ("end.’ to end)
(eg. ‘peak 5 found=magic.”) =-> wave_I window_is X.

% The reply is that this was calculated using fuzzwindow/4.

| This is an example of the activation of a demon through

| a procedural attachment to our declarative model of rules.
vave_I window_is[wave_I,282.0/0.0,282.0/1.0,297.0/1.0,302.0/0.0]+
([vave_I,282.0,282.0,297.0,302.0],0)

v2s calculated using fuzzwindow(wave_I, [wave_I,282.0,282.0,297.0,302.0],
0, [wave_I,282.0/0.0,282.0/1.0,297.0/1.0,302.0/0.0])

} Ve end the consultation at this point.

ihich fact would you like to query (’end.’ to end)
(eg. ‘peak_5_found=magic.’) —> end.

% A listing of what has been determined globally is printed.

This is what is known in the working memory :
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iown((baep_pks_found=yes)cf 0.999988,[rule12T)]).
iown((labelling=successful)cf 0.99999,[rule13]).

iown((normal interp=yes)cf 0.999992,[rule15]).
iown((all_peaks=found)cf 0.999994,[rule17]).
lown{(wave_V=found)cf 1.0,[rule47T]).
town((pos_wave_V_at=388)cf 1.0,[rule45]).

town($(0.0=<15.0)cf 1.0,[calculated]).

1own($(abs(0.0,0.0))cf 1.0,[calculated]).

1own($(0.0 is 388—388.0)cf 1.0,[calculated]).

1own(wave_V is_expected_at 388.0+15.0+wave I cf 1.0,[rule05]).

1own(wave_V expected_at 388.0+15.0+ (wavel °," 284)cf 1.0,[calculated]).

1own((wave IV=found)cf 1.0,[rule44T]).
rown((pos_wave IV _at=370)cf 1.0,[ruled3]).
nown($(3.0=<17.0)cf 1.0,[calculated]).
nown($(abs(3.0,3.0))cf 1.0,[calculated]).
nown($(3.0 is 370—367.0)cf 1.0,[calculated]).
nown(wave IV position_is 370 cf 1.0,[rule02]).

%% Etc. (Approz. 100 items) %%%

nown(wave_I model of is[wave_],282.0,282.0,297.0,302.0]cf 1.0,[rule09]).
nown(wave_l is_described_by[wave _],282.0,282.0,297.0,302.0]+

((287.0 *.* 5.0)",°[0,1,2,1])cf 1.0,[calculated]).
mown(wave_ I modifiers_are[0,1,2,1]cf 1.0,[calculated]).
:nown(wave_I stats_of are (287.0 *,*' 5.0)cf 1.0,[rulel0]).
mown(wave_ I sd_is 5.0 cf 1.0,[calculated]).
tnown(wave I mean_is 287.0 cf 1.0,[calculated]).
mown(wave I current_shift is 0 cf 1.0,[calculated]).
amown((channel=ipsi)cf 1.0,[told]).

% gotop(X) returns ’yes’ as the answer to
% the goal ’solve(baep_pks_found = X, Fuzz, [])’.

X = yes
|-

% Normal ezit to the Prolog system.
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Probabilily (P(X=bela)M) of Bin Cancellation Error (bela) for Increasing Numbers of

Trials (M) al Differenl Event Probabililies p.

p=0.010 ~
M 4 16 32 48 64 80 96 112 128
P(X=0)M 0.926 0.763 0.638 0.571 0.532 0.506 0.488 0472 0.457
PX=1)M 0.0373 0.12 0.187 0.229 0.257 0.278 0.293 0.305 0.313
P(X=2)M 0 0.00901] 0.0284; 0.0506] 0.0729]  0.0942 0.114 0.132 0.148
P(X=3)M 0] 0.000423] 0.00282] 0.00756] 0.0143]  0.0226 0.032| 0.0421]  0.0526
P(X=4)M 0] 1.38E-05{ 0.000204] 0.00084| 0.00212| 0.00416] 0.00697| 0.0105] 0.0148
P(X=5)M 0{ 3.35E-07} 1.15E-05] 7.35E-05] 0.000251] 0.000614] 0.00123] 0.00214]  0.0034
=0.020
M 4 16 3R 48 64 80 96 112 128
P(X=0)M 0.862 0.638 0.533 0.49 0.459 0.432 0.405 0.381 0.359
P(X=1)M 0.0696 0.188 0.258 0.295 0.315 0.324 0.324 0.32 0.312
P(X=2)M 0] 00278 0.0735 0.114 0.148 0.176 0.196 0.209 0.217
P(X=3)M 0 00026 0.0139] 0.0315] 0.0521] 0.0731]  0.0926 0.11 0.124
P{X=4)M 0] 0.000171] 0.00198] 0.00669] 0.0143] 0.0243] 0.0357] 0.0475{ 0.0589
P(X=5)M 0| 8.3E-06| 0.00022] 0.00114] 0.00322| 0.00669] 0.0115| 0.0174 0.024
p=0.040
M 4 16 3R 48 64 80 96 112 128
P(X=0)M 0.762 0.536 0.464 0.409 0.363 0.326 0.298 0.275 0.257
P(X=1)M 0.121 0.26 0.318 0.327 0.315 0.295 0.276 0.259 0.244
P(X=2)M 0 00717 0.148 0.196 0.218 0.224 0.221 0.215 0.208
P(X=3)M 0 0.013 0.051)  0.0918 0.123 0.143 0.153 0.158 0.159
P(X=4)M 0] 0.00169] 0.0135] 0.0346] 0.0579 0.078 0.093 0.103 0.1
P(X=5)M 0| 0.000164] 0.00288| 0.0108{ 0.0231] 0.0368] 0.0496] 0.0604 0.069
p=0.060
M 4 16 R 48 64 80 96 112 128
P(X=0)M 0.689 0.498 0413 0.346 0.3 0.268 0.244 0.226 0.211
P(X=1)M 0.159 0.3 0.33 0.308 0.278 0.253 0.233 0.217 0.204
P(X=2)M 0 0.113 0.197 0.223 0.222 0.212 0.202 0.192 0.183
P(X=3)M 0[ 0.0293] 0.0909 0.134 0.153 0.159 0.159 0.157 0.154
P(X=4)M 0] 0.00555] 0.0335] 0.0674} 0.0921 0.107 0.114 0.118 0.12
P(X=5)M 0] 0.000798; 0.0101 0.0289 0.0485 0.064 0.0749 0.0824 0.0875
p=0.080
M 4 16 R 48 64 80 96 112 128
P(X=0)M 0.638 0473 0.369 0.303 0.262 0.234 0.213 0.197 0.185
P(X=1)M 0.187 0.324 0.32 0.28 0.248 0.224 0.206 0.191 0.18
P(X=2)M 0 0.148 0.22 0.223 0.1 0.197 0.185 0.174 0.166
P(X=3)M 0] 0.0486 0.122 0.153 0.16 0.158 0.154 0.15 0.145
P(X=4)M 0 00119 0.0556] 0.0912 0.109 0.117 0.12 0.121 0.12
P(X=5)M 0] 0.00223] 0.0211f 0.0474] 0.0671] 0.0794| 0.0869] 0.0915{ 0.0943
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p=0.100
M 4 16 3R 48 64 30 96 112 128
P(X=0)M 0.603 0.448 0.335 0.273 0.236 0211 0.193 0.178 0.167
P(X=1)M 0.205 0.336 0.303 0.257 0.226 0.204 0.187 0.174 0.163
P(X=2M 0 0.177 0.227 0215 0.198 0.183 0.171 0.161 0.153
P(X=3M 0 0.0686 0.142 0.159 0.159 0.154 0.148 0.142 0.137
P(X=4)M 0 0.0202 0.0748 0.105 0.117 0.12 0.12t 0.119 0.117
P(X=5)M 0] 0.00463] 0.0335] 0.0619] 0.0785 0.0877) 0.0927] 0.0953] 0.0964
p=0.200
M 4 16 32 48 64 80 96 112 128
P(X=0)M 0.527 0.352 0.249 0.204 0.176 0.158 0.144 0.133 0.125
P(X=1)M 0.231 0.317 0.238 0.197 0.172 0.155 0.142 0.131 0.123
P(X=2)M 0 0.232 0.205 0.179 0.16 0.146 0.135 0.126 0.119
P(X=3)M 0 0.138 0.161 0.152 0.142 0.132 0.124 0.118 0.112
P(X=4)M 0  0.0667 0.114 0.121 0.119 0.115 0.111 0.107 0.103
P(X=5)M 0]  0.0254] 0.0734] 0.0902] 0.0957] 0.0968 0.0958 0.094] 0.0919
p=0.300
M 4 16 32 48 64 80 96 112 128
P(X=0)M 0.466 0.303 0.217 0.177 0.154 0.138 0.126 0.116 0.109
PX=1)M 0.208 0.278 0.209 0.173 0.151 0.135 0.124 0.115 0.108
P(X=2)M ] 0.216 0.187 0.161 0.143 0.13 0.119 0.111 0.105
P(X=3M 0 0.14 0.155 0.142 0.13 0.12 0.112 0.106 0.1
P(X=4)M 0] 0.0739 0.118 0.119 0.114 0.108 0.103]  0.0981] 0.0937
P(X=5)M 0]  0.0301] 0.0842 0.0956/ 0.0967| 0.0949] 0.0922] 0.0892]  0.0862
p=0.400
M 4 16 32 48 64 80 96 112 128
P(X=0)M 0.375 0.248 0.192 0.162 0.142 0.126 0.117 0.109 0.102
P(X=1)M 0.164 0.21 0.179 0.156 0.139 0.126 0.116 0.107 0.101
P(X=2)M 0 0.148 0.154 0.143 0.131 0.121 0.112 0.104]  0.0983
P(X=3)M 0]  0.0854 0.122 0.125 0.119 0.112 0.106f  0.0996)  0.0943
P(X=4)M 0 0.039]  0.0881 0.103 0.104 0.102]  0.0974]  0.0931 0.089
P(X=5)M 0] 0.0136] 0.0575| 0.0801 0.088] 0.0893] 0.0879] 0.0854] 0.0826
=0.500
M 4 16 32 48 64 80 96 112 128
P(X=0)M 027 0.14]  0.0993] 0.0812] 0.0704 0.063] 0.0575] 0.0533] 0.0498
P(X=1)M 0.108]  0.0974]  0.0779 0.067] 0.0597] 0.0545] 0.0505] 0.0472] 0.0446
P(X=2)M 0 00553 0.0551] 00515 0.0481] 0.0452| 0.0428] 0.0407; 0.0388
P(X=3)M 0] 0.0251] 0.0351 0.037] 0.0368 0.036 0.035 0.034 0.033
P(X=4)M 0} 0.00892] 0.0199] 0.0247] 0.0267] 0.0275] 0.0276] 0.0275| (Q.0273
P(X=5)M 0] 0.00238] 0.0101] 0.0153| 0.0183 0.02] 0.0211] 0.0216] 0.0219

Page 2




CHARTO010.XLC

Probability (P(X=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers of
Trials (M) at p=0.01.

Curves for beta = 0 to 5 - Top to Bottom
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Probability (P(X=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers of
Trials (M) at p=0.02.

Curves for beta = 0 to 5 - Top to Bottom
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Probability (P(X=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers of
Trials (M) at p=0.04.

Curves for beta = 0 to 5 - Top to Bottom

0.8

0.7 \

0.6 T§>¥

0.5

P(X=beta)M 0.4
0.3 e e

0.2 e

0.1
.t T T
0 20 40 60 80 100 120 140
Number of Trials (M)

Page 1



CHART060.XLC

Probability (P(X=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers of
Trials (M) at p=0.06.

Curves for beta = 0 to 5 - Top to Bottom
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Probability (P(X=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers of
Trials (M) at p=0.08.

Curves for beta = 0 to 5 - Top to Bottom
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Trials (M) at p=0.10.

Curves for beta = 0 to 5 - Top to Bottom
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Probability (P(X=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers of

Trials (M) at p=0.30.
Curves for beta = 0 to 5 - Top to Bottom
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Probability (P(X=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers of
Trials (M) at p=0.50.

Curves for beta = 0 to 5 - Top to Bottom
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Prcbabilily (P(X<=belajM) of Bin Cancellalicr. Error (bcla) for Increasing Numbers of

Trials (M) al Diffcrenl Event Probabililies p. j 1

i : 1 I : ! i
P-C.CIC ! 1 i I
M 1 4 161 32; 481 64 80 961
PX<=OM 1 0.963' 0.8711 0.7811 0.7121 0.653 0.601 0.552;
P(X<=ljM i 1 0.991 0.9691 0.941 0911 0.878 0.846
P(X<=2)M 1 1 I: CI971 0.992 0.9831 0.973 0.96
P(X<=3)M 1 il 1 0.999 0.998 { 0.995 0.992
PX<=4M , Il I 1 | 1 0.999 0.999
P(X<=5)Ml P I 1 1 li 1 1
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! 1 1 ; i
M 1 ~t] Ml 96
PX<=G).Ui 0.92' CTél: 0.6531 0.553! O.T661 0.395] 0.336
P(X<=1)M; I 0.9691 0911 C.847| 0.781 0.7181 0.661
P(X<=2)M| I 0.9971 C.9ei| 0.96! 0.93, 0.894j 0.856
P(X<=3)\l| 1 1 0.9981 0.9921 0.982] 0.967! 0.919
PX =4)Mi 1 Il 1! 0.999; 0.996 0.997 0.984
P(X<=5).VI li 1 Ji 1 0.999 0.9981 0.996

; [ ] : 1 ! 1 i i
p=o0.0io0 ! !
M i 4 16 32 48. 64 80 96
P(X<=OLV| 0.8791 0.653 0.466 0.335 0.252 0.2 0.169
P(X<=1)M 1 0.913 0.784 0.663 0.567 0.496 0.444
PX<=2)M 1 0.985 0.932 0.859 0.785 0.719 0.665
PX<=3M 1 0.998 0.983 0.951 0.908 0.862 0.819
PX<=4M 1 1 0.997 0.986 0.966 0.94 0.911
P(X<=5M 1 1 0.999 0.996 0.989 0.977 0.961
p=0.060
M 4 16 32 48 64 80 96

PX<=0M 0.841 0.552 0.335 0.223 0.169 0.142 0.126

P(X<=))M 1 0851 0.665 0.531 0.447 0.395 0.359
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PX<=3)M 1 0.994 0.953 0.888 0.822 0.766 0.72
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PX<=5)W 1 1 0997 0.985 0.963 0.937 091
p=0.G80 1
M 4 16 2 48 64 80 96
P(X<=0)M 08131 0.465 0.252 0.17 0.136 0.121 0.112
P(X<=1)M 1 0.789 0.572 045 0.384 0345 0318
P(X<=2)M 1 0937 0.792 0.673 0.595 0.541 0.503
P(X<=3).1l 1 0.986 0.914 0.826 0.754 0.699 0.657
P(X--4HM 1 0997 0.97 0918 0.863 0.816 0.777
P(X<=5)M 1 1 0991 0.965 0.931 0.896 0.864
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CHRTCO020.XLC

Probability (P(X<=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers
of Trials (M) at p=0.02.

Curves for beta <= 0 to 5 - Bottom to Top
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Probability (P(X<=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers

of Trials (M) at p=0.06.

Curves for beta <= 0 to 5 - Bottom to Top
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Probability (P(X<=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers
of Trials (M) at p=0.08.

Curves for beta <= 0 to 5 - Bottom to Top
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Probability (P(X<=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers
of Trials (M) at p=0.10.

Curves for beta <= 0 to 5 - Bottom to Top
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of Bin Cancellation Error (beta) for Increasing Numbers

of Trials (M) at p=0.20.
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Appendix [D4]

Event Analysis: Results for Latency Variability Recovery Experiments



\ttribute Definitions for Event Analysis Result Tabl

Item N
Index number equivalent to the number of trajectories or BIN/GAYV peaks
GPkAmpl
Amplitude of peak in the GAV (1 unit = 25nV)
GPkLat
Latency of peak in the GAV (ms)
BPkAmpl
Amplitude of smoothed peak in the BIN (arbitrary units)
BPkLat
Latency of smoothed peak in the BIN (ms)
Mn
Mean latency value of events in a trajectory (ms)
SD
Standard deviation of latency of events in a trajectory (ms)
o
Total number of observed events (after compression) in a trajectory
E
Total number of expected events in a trajectory = (Span x Local event probability)
ChiSq
x2 statistic = (O - E)2 /E
ChSqP
Probability of xz statistic with one degree of freedom
BinomP
Binomial probability of finding an event in a trajectory
T%SwWps
Percentage of trials containing an event in a trajectory
CC
Compression coefficient = 1.0 - { (Actual Number of Observed Events - O) / Actual
Number of Observed Events }.
Span
Width of the region occupied by a trajectory after iterative convergence to the mean
latency of 95% of the population of trajectory events.



1:1 EVENT ANAINSIS RESULTS FOR NOISE DATA HIES

i .

[IA| Event Probabilities: Noise File VINLEEG Image Data Set Name GVINLEEG

Max GPks possible (uniform) : 12925
Total GPks found 168 i
Global Probability of Pk ' 0,05 |

i 1 1
Max LPks possible (uniform) :9128
Total LPks found 1512
Local Probability of Pk 10,06

1 !
Max InterPks poss, finiform) w4500

TotallnterPks found 1N ;
Inter Proba%)iljty of Pkl (004 1 t’
1 1 1

ItemNum  GPkAmpi {GPkLat 3PkAm.pl
0 4111 0,92 66511
-4411 145 101721
21 55751 15! 5663
3 36961 52 5639
4 - 11149 632 5191
5 163841 8.63 8030
6 67321 924 1001
7, 0: 0 5509
91 ol 0 7079
9 0 0 5925
10 c 0 40101
1 0 0 7009
12 01 0 5529
13 o! 0 8468
14 01 0 10480
1

iBPkLat

'M
1,52}
2,28
2.64
325
35
41
4.561
532
572
6,4
664
7,58
8
8.76
9.2

1
1
i

133
217
293
3B
3621
41
458
523
5.66
631
6%
755
796
8.7
9.12

SD

PR

10
0061
0.11
0.1
0.07
011
0.151
0.07
0.13
015
0.09
0.1
0.13
0.07
0.08
0.12

[13] Event Probabilities: Noise File VIN2EEG Image Data Set Name GVIN2 EEC

1 1 [
Max GPks possible (uniformi) : 12672
Total GPks found 1572
Global Probability of Pk 20,05

1 i
Max LPks possible (uniform) 8640
Total LPks found 1450
ocal Probability of Pk . 0,05

! 1
Max InterPks poss. (uniform) :4032
Total InterPks found 2122
Inter Probability of Pk 0,03

ItemiNum ~ GPkAmpl ~ GPkLat BPkAmpl
0 -2240 22 8503
1 -2441 249 12312
2 396 332 7952
3 274 3,76 8445
4 2608 452 10752
5 4972 588 5362
6 4391 62 12358
1 5446 7,52 4585
8 13765 9.24 10548
9 0 0 7044
10 0 0 7057
11 0 0 75719
12 0 0 12505
13 0! 0 11346
14 [ 91191

=)

BPkLat

M
0.96
1.89
248

28
332
404
428
4n
548

58
6,16
712

74
776
8.56

1.02
181
249
2,82
335
395
43

543
5.75
6,28
7,02
741

787
8.56

SD

0.13
008
0.07
0.08
0.15
0.11
0.08
0.14
0.11
0.05
0,14
0,14
0.11
0.15

0.1

Pigf 1

E

29
25
25
37
25
25

29
20
41
33
36
31

37
20
20
23
40
30
2
40
30
13
40
37
30
40
27

ChiSq

ChiSq

566
0.47
0,03
053
117
745
3.64
04
745
032
1.17
0.36
4.05
291
1.89

4.8
4.65
1.82
0.19
0.6
1.57
0.19
24
0.06
4121
0.07
0,86
2,26
54
035

ChSqP

ChSqP

0.02
0.49
0.85
047

0.28
0.01

0.05
0.52
0.01
057
028

0.55
0,04
0,09
0.17

0.03
0.03
0.18
0.67
044
0.21
0.67
0.12
08
0,04
035
0.13
002
055

BinomP

BinomP

coococococoocococoococ oo o

cococ oo oc oo oo oo o oo

%Swps
4531
54.69
51.56
42.19

50

7,Swps
43.75
43,75
39.06
39.06
57.81
39.06
39.06
53.13
4531
3125
64 06
51.56
56.25
48.44
4531

cc

(€9

0,88
0,91
0.89
097
0.39
0,85
0,34
0,74
0,81
0.88
0.89
0.95
0.97
081
0.92

0.88
0,97

093
077
0,86
0.93
0.83
0.88
091
0,85
0,82
0,86
0,84
097

Span

Span

DTS ool E a9l oo



S\RTSTSAS

['C| Event Probabilities: Noise File POI3LDAT Image Data Set Name GPOISLDAT |

! I 1 i
Max GPks possible (uniformi) : 12288
Total GPks found ' 1471
Global Probability of Pk 0.01 1

1 ! !
Max LPks possible (uniform; : 7040
Total LPks found 125
Local Probability of Pk 0021

; 1
Max InterPks poss. (uniform) : 5248 !
Total Inte."Pks found 22 1

Inter Probability of Pk :0.00 1
! ! 1
1 1
fiemNum “k.Ampl iGPkuat  IBPkAmpl  BPxLat
O 72891 181 7454
li 54391 3241 86201
2 3993! 404 6477"
3 87591 5.16 4979
4 4337 6,12 9257j
5| 15276! 6,92 121101
6: 15131 78 163941
7| -11621 8 14 9139!
8| 152191 9241 8092!
1 1 i 1

|:0| Event Probabilities: Noise File GAS3LDAT image

1

; i
Max GPks possible (j.niform)

14083 !

Total GPks found 192
Global Probability of Pk 0.01

1 1
Max IPks possible (uniform) : 9536
Total LPks found : 150
Local Probability of Pk 2002

Max InterPks poss. (uniform) : 4544

Total InterPks found t 12

Inter Probability of Pk :0.00

ItemNum ~ GPkAmpl ~ GPkLat BPkAmpl ~ BPkIt
0 16165 084 16384
1 5705 164 1mn
2 2239 3.6 15431
3 9035 44 8829
4 16384 52 12133
5 8952 7,04 10138
6 6686 788 8154
7 2700 8.76 7080
8 5954 9.56 10237
9 0 s
0 0 0 10138
1 0 0 9

i [ !
j j I
! : j
i ! 1
! 1 [
i !
1
1 1
|
1
! ! [
1
! ! !
iM 180 10
1761 1.79 004;
2441 238 0il}
328 3.03 023i
4,081 421 0251
516| 507! 0.2:1
6,321 6,371 0,14
6961 6851 0.12
7.68 7,76' 0,1
9,96] 9,061 0.22
1 ’ 1
Data Set Name GGASBLDAT
! ! 1
1
1
Mn SD 0
1 0,96 0,1
148 1.56 018
224 228 0.07
288 2.89 0.06
32 342 0.22
4,56 44 0,16
5,52 5,29 0,23
592 6.12 021
696 683 0,16
732 739 0.12
8.44 8.5 022
944 9.35 0,15

1

16

ChiSq

Chisq

ChSqP
0.12 0.73
0 0,97
0,05 0.82
407 0.04
0.15 07
0.62 0.43
89 0
0.6 044
403 0.04
!
ChSqP
489 0.03
281 009
7.09 0.1
07 04
0.5 0.7
0.25 062
0.59 044
21 0,15
0.25 0.62
0.14 071
021 0.65
0.28 0.6

BinomP

BinomP

0
0
0
0
0
0
0
0
0

SOoOoOoOooTTTToo

%Swps
791
14,06
29.69
2344
29.69
23,441
29.69
15.63
21.93

%Swps

25
17.19
21.88
125
3438
21.88
3125
21.98
21.88
18.75
31.25
8B4

@«

€O

P —

R

Span

Span



(a) Spontaneous EEG (1 response/sub-average)

GUIM2.EEC  Maxpkpk:64 PDF: 2

(b) Spontaneous EEG (2 responses/sub-average)

Grand Av GPOIBL.DAT Maxpkpk:768

Event Bins

(c) Band-limited random Poisson noise

Grand Av GGASBL.DAT Maxpkpk:601

Event Bins

(d) Band-limited random gaussian noise

Trajectory maps obtained for the noise data sets used in the component
latency variability recovery experiments.



SNRTESTS.XLS

[2] EVENT ANALYSIS RESULTS FOR FIXED LATENCY SIGNAL + NOISE DATA FILES
T
2A] Even! Probabilities: Noise File VIN1.EEG Image Dsta Sel Neme GEEG1.FIX
| L1
Max GPks possible (uniform) : 13688
Totsl GPks found 1727
|Globsl Probebility of Pk : 0.05
| | 1
Nex LPks possible (uniform) : 4864
Tolal LPks found : 455
Local Probability of Pk : 0.09
] 1 ]
Max InterPks poss. (uniform) : 9024
Tota) InterPks found ;272
Inter Probability of Pk 0 0.03
ItemNum |GPkAmpl |GPklat  |[BPkAmpl |BPklet  |Mn hill (/] E ChiSq ChSqP BinomP | %Swps cc Spen
0 16384 1 16384 1 1 0.03 59 12| 2212 0 0 92.19! 1 2|
1 7975 2 14405 2 2 0.04 59 24 81.98) 0 0; 92.19, 0.98 4
2 2996| Kl 9303 Kl 3 0.06 52| 36 164 0 0 81.25 0.93 6
3 1893 4.04 4408 4 3.95 0.13 49T 64 3.52 0.06 0 76.56 0.86 Ill
4 1361 5 4214 5.08 5.04 0.07 39[ 36 0.6 0.44 0 60.94 0.85 Sl
5 1081 [ 2282 6.04 6.12 0.12 39[ 60 112.68 0 0 60.94 08 lﬂ
[} -1338 7.08 2071 712 .04 0.07 27T 36 5.05 0.02 0 42.19 0.87 Bl
7 120 8.16) 1256 172 .1 0.11 29| 54 7267 0 0 4531 0.98] 9
8 1548 944 2308, 8.24 8.24 0.12 SBT 60] 123.74 0 0 59.38 0.93 lOl
9 0 0 2606 8.72 8.72 0.07 R 3 0.98 0.32 0 50 0.91 6]
fi[ 0 0 2175, §.52) 9.52 0.07, 32| 38 0.98, 0.32 0 50, 0.78 B
(28] Eveill Pmbabi]iliﬁs: Noise File VIN2.EEG Imege Data Set Name GEEG2.FIX
Mex GPks possible (uniform) : 14272
Total GPks found : 607
Globel Probebility of Pk : 0.04
Mex LPks possible {uniform) : 6144
Totsl LPks found : 461
Locel ProbTbility of PkI : 0.08
[Nox InterPka poss. (uniform) : 8128
[Totsl InterPks found 1 136
[inter Probability of Pk : 0.02
ltemNum |GPkAmp! [GPklat BPkAmp! [BPklat Nn SD 0 B ChiSq ChSqP BinomP [ ZSwps cC Span
0 16384 1 16384 1 0.99) 0.03, 57 10 275.19 ) 0 89.06 1 2
1 5214 2| 13636 2 2 om 56 190 10069 0 0 87.5 0.98 4
2 3364 3 9294L 2.96 2.98 0.08 53 H 23.55 0 0 82.81 0.98| 7
3 1978 4 4778] 3.92 3.98 0.1 4 43 0.04 0.83 0| 68.75 0.9 9|
4 717, 5.04 3949L 5 [ 0.14 39 58 60.43 0 0 60.94 0.85) 12
5 355, 6.12 919] 568 5.61 0.08) 17 A 17.3 0 0 26.56! 0.85 7
6, 273 7 2558{ 6.2 6.14 0.11 27 43 18.74 0 0] 4219) 096 9
7 42 8.2 1108 6.56 6.53 0.06 18 ] 167 0.2 o 2969 095 5
8 -30 9.36 2120 6.96 7.07| 0.12 3 48 14.14 0 0 54.69 0.9 10
o 0 0 2114 8.28 821 0.11 U 43 606] 0.0 o 5319 0.81 9
10 0] 0 1411 88 886 0.1 25 38, 11.72[ 0 0 39.06 0.93 8
1 0] 0 1726 932 93 0.08 A H 5.79 0.02 0 315 0.89 7
12 ﬂl 0 2687 9.6} 9.74 0.08 31 ) 043 0.51 0 4844 0.86 7

Pege 3



SNRTESTS.XLS

| EvenlLPmbahilitiels: Noise File POIBL.DAT Image Data Set Name G|

Mex GPks possible {uniform) : 13760

Tots] GPks found 189

Global Proliability of Pl[t 1 0.01

Nax LPks possible {uniform) : 5504

Totsl LPks found : 148

Local Probebility of Pk : 0.03

Max InterPks poss. {uniform) : 8256

Totsl InterPks found 141

Inter Probsbility of Pk : 0.00

ltemNum |GPkAmpl |GPkist  [BPkAmpl |BPklst |Nn 0 %Swps cC
0 16384 1 0.96 0.98 0.03 0 0 32.81 1 3
1 8558 2 2,08 2.07 0.03 0.14 0 23.44 1 2
2 3302 296 3.16] 3.07 0.11 0.71 0 2344 1 8
3 3052 1 4.08 4.08 0.06/ 0.57 0 18.75 1 6|
[} 1466 492 5.12 5.1 0.2 0 0 23.44 1 16,
5 1978 5.95 6.12 5.97 0.16 0.33 0 26.56 1 12
6 682 6.88 7.04 6.88 0.17 0.03 0 21.88 1 13
1 2283 7.68 172 1.66 0.11 0.46/ 0 28.13 1 9}
8 -628 9.2 8.72 8.88 0.2 0.01 0 26.56 1 16
9 0{ 0 9.52 9.51 0.02 0.77 .06 6.25 1 1

[2D] Evenl] Probnbi]ilieis: Noise File GASBL.DAT Image Data Set Name GGAS.FIX

Nex GPks possible (uniform) : 13824

Totel GPks found : 207

Globel Probability of Pk : 0.01

Nax 1Pks possible (uniform) : 5952

Total LPks found : 161

Locsl Probtibility of Pk :0.03

Nax InterPks poss. {uniform) : 7872

Totsl InterPks found : 46

Inter Probability of Pk : 0.01

ItemNum |GPkAmpl |GPklst  |{BPkAmpl |BPklsl |Nn 0 ASwps cC
0 16384 1 0.96) 0.88 005/ 0 0 46.88 1 5
1 7107, 2 2.04 2.03 0.07 0.01 of 28.13) 1 6
2 4542 3 3.04 3.07 0.06 0.01 0f 20.31 1 4
3 1344 3.96 4 4 0.07 0.38 0 20.31 i 6,
4 1444 5.08 4.92 5.12 0.16] 0.4 0 28.13) 1 13
5 2339, 5.96/ 5.96 6.03 0.21 0.03 0 32.81 1 17
6 895 784 7 7.01 0.07 0.64 0 14.06 1 6
i 516 8.68[ 7.68 7.62 0.13 0.27 0 2344 1 11
81 0l 40{ 9.56 9.03 0.3 0 0 31.5 0.96/ 25

Page 4




Grand Av GEEGI.FIX Maxpkpk:722 PDF:20

(a) Signal + Spontaneous EEG (1 response/sub-average)

Grand Av GEEG2.F1X flaxpkpk:755 PDF:14

Evnnt Bins

(b) Signal + Spontaneous EEG (2 responses/sub-average)

GPOl FIX PDF:96

(c) Signal + Poisson noise

Grand Av Maxphpk:676 PDF:102

Event Bl

(d) Signai + gaussian noise

Trajectory maps obtained for one of the data sets used in the component
iatency variability recovery experiments. Ineach case, the simulated signal
is invariant and combined with different noise data.



SNOO. XLC

SNR (*dB) and Latency (ms)
00 03 07 10 14 17 20 00 03 07 10 14 17 20 00 03 07 10 14 17 20 00 03 07 10 14 17 20
.0 .5 .1 5 .0.7.90.5.1.5.0.7.90.5 .1 .,5.0.7.9.0 .5 .1 .5.0.7.9
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
EEGL.FIX EEG2.FIX PC .F X GAS.FIX

E

T (ms)

Error in recovery of mean signal latency T (+/- ISd) in noise vs SNR. Signal latency distribution
N(0,0) and noise files are spontaneous EEG, Poisson, and gaussian.

Page 1



SNRTESTS.XLS

3] EVENT ANALYSIS RESULTS FOR INDUCED LATENCY VARIANCE SIGNAL (SD = 0.04ms) + NOISE DATA FILES
[3A] Event Probabilities: Noise File VIN1.EEG Imsge Data Set Nsme GEEG1.004
Max GPks possible (uniform) : 14208
Totsl GPks found 1707
Globa} Probsbility of Pk : 0.05
I 1
Max LPks possible (uniform) : 6976
Tots} 1Pks found ; 555
local ijhgi_tuf Pkl :0.08
[Nax InterPks poss. (uniform) : 7232
[Total InterPks found s 152
[llller Probsbility of Pk : 0.02
ltemNum |GPkAmpl [GPkLst  [BPkAmpl [BPklst [Mn ) 0 E ChiSq _ [ChSqP___[BinomP _[%Swps _ [CC Spen
0 16384 1] 16384 1 1 0.04 60) 20 11312 0 0 93.75 1 4
1 7060 2] 14647 2 2.01 0.05) 57 20 96.65 0 0 89.06] 1] 4
2 3658 3] 10586] 3 3 0.07 52 3 20.81 0 0 81.25) 0.96 5
3 2232 4 6668]  3.96 4.03 0.12) 50 51 0.08 0.78 0 78.13) 0.89] 10]
4 1295 5.04 3572, 4.96 4.99) 0.12] “ 51 4.6 0.03 0]  68.75) 0.9} 10}
5 -897 5.68 1912 5.72 5.18 0.08 29 36, 2.19 0.09 of 4531 0.97] K
6] 244 6.08] 1550 6.2) 6.26 0.1 28 46 24.42) 0 of 437 03] )
7 1165 868] 1610 6.88 6.78 0.12 1 51 30.84 0 of 5156 0.85 10
8 462 9.24] 1924 7.6 757, 0.12 35 51 24.34 0 0] 54.69 0.98 10
9[ 0] o] 2276 8 ] 0.09 39 41 0.2 0.65 0| 6094 0.95 8
10{ 0 0| 985 84| 8.37 0.06 19 25) 272 0.1 0) 29.69 09 5
11 0 0 U4 8.76] 876 007 33 31 0.38 054 0 51.56) 0.89 5
12 0 0 2530 9.2| 9.2 0.16] 42 7] 7.56 0.01 0 65.63 0.7, 14}
13 0 0 4119 9% 9.69 0.07 U 31 0.75) 0.39 0 53.13) 0.81 6]
[3B] Event Probabilities: Noise File VIN2.EEG Image Dota Set Nsme GEEG2.004
] 1
Wex GPks possible (uniform) : 14272
Totel GPks found : 569
Global Probability of Pk : 0.04
[Mex LPks possible (uniform) : 5824
Total LPks found ;431
Locs! Probability of Pk 0.07
l ]
Nex InterPks poss. (uniform) : 8448
|Tots] InterPks found : 138
[Inter Probability of Pk : 0.02
ItemNum |GPkAmp! |GPklat  [BPkAmpl [BPkist  {Nn SO 0 E ChiSq ChSgP BinomP | %Swps cC Spen
0 16384 1] 16384 1 1 0.04 59) 19 120.3 0 0 82.19 1 4
1 7952 21U 2 2.02 0.06 54 7] 61.62) 0 0 84.38] 1 5]
2 21 3] 11891 3 3 0.07 52 28 3.2 0 ] 81.25 1 G
3 1724 4 7083 396 398 0.08 39) EX] 2.14 0.14 0 60.94 0.98 7l
4 1049 5 3380) 4.96] 49 0] | 4 793 0 0| 50 0.62 9
5 480 592 2092 58 581 0.08] 23 33 6.45 0.01 of 359 0.9 7
[3 4 7.52 2202 5.2 6.21 0.13] M 52 33.81 0 0| 5313 0.87 1
7] 1409 9.28 1604 6.8 6.9 0.09 21 3 9.24 0 0 32.81 1 7
[ 0 0 242 764 748 0.13 31 52 4595 0 0 48.44 0.84 11
9 0 of 2005 8.04 8.07 0.07 17 28 8.25) 0 0 26.56 1 6
10 0 0 1970 8.56 8.6 0.08 21 28 3.48 0.06, 0 32.81 091 8]
11 0 0 3166 9.08 9.18] 0.1 35 43 4.09 0.04 0 54.69) 0.92 9
12 of of 2168 9.4 9.78] 0.04 13 14 0.13 0.72) 0 20.31 1 3
1

Pege 5



SNRTESTS XLS

3¢] Evcnlrhnbubiliﬁcls: Noise l’ileI POIBL.DAT Imege Dots Set Neme GPQL.004
Nox GPks possible (uniform) : 13376
Totsl GPks found : 188
Globel Probability of Pk : 0.01
T |
Nex 1Pks possible (uniform) : 7744
Total LPks found 1168
Local Probability of Pk : 0.02
[ [
Nex InterPks poss. (uniform) : 5632
Total InterPks found 120
Inter Probability of Pk : 0.00
ItemNum _{GPkAmp! [GPklst  |BPkAmpi [BPklat  [Nn hij 0 E ChiSq ChSqP BinomP | %Swps [£9 Spen
0 16384 1 16384 1 0.99, 0.06 28 8 53.39) 0 0} 43.75 1 [
1 8256 2 12378 1.96 1.95 0.06 20 1 27.55( 0 0 31.25 1 )
2 3759 3. 4239 2.92 3.06 0.17 15 19 146 0.23 0 234 1 14
3 2385 4.04 2318 3.84 4.03 0.25 14 25 7.93| 0 0 21.88 1 _18]
4 1855 5.08) 4186 5.16 4.96 0.2 27 25 0.26 0.61 0 4219 i 18
) 728 6.08 3012 6.08 6.21 0.19 11 21 6.87 0.01 0 17.19 1 15
6 2006 6.92 5794 6.96] 6.97 0.18 23 21 0.4 0.56 0f 3594 1 15
7 55 .84 3346 7.92] 8.06 0.28] 21 29 419 0.04 o 3281 0.95 21
8 -694 8.44 1813 9.1le 9.05 0.12 9 12 1.22 0.27 0 14.06 1 9
[3D] Evcntl Probabilities: Noise File GASBLDAT Image Data Sel Neme GGAS.004
Max GPks possible (uniform) : 12828
Tola! GPks found 1194
Globel Proliabilily of P}( :0.02
Max LPks possible (uniform) : 6400
Total LPks found : 160
Locsl Prohtibility of Plrl : 0.03
Max InterPks poss. (uniform) : 6528
Total InterPks found )
mler Probsbility of Pk : 6.01
llemNum_|GPkAmp] [GPkLat BPkAm] BPklet  [Nn S 0 E ChiSq ChSqP BinomP _ |%S CC Span
0 16384 1 16384 0.96 0.98 0.0 25 8 41.29 0 0 39.06 1 5
1 7688 2 11009 2 2.05 0.1 A 14 8.26] 0] 0 37.5) 1 9
2 3721 3 5735 282 2.96 0.09 14 11 0.85] 0.36 0l 2188 1 7
3 753 4.04 3658 3.96/ 3.92 0.15 17 19 0.36 0.5% 0 26.56 1 12)
4 2091 5.12 4404 5.24] 5.24 0.19 20| 26| 2.04 0.15, 0 31.25 1 18]
5 173 6 4214 5.92| 6.06 0.21] 2 27 331 0.07 of 32 1 17
6 876 7.04 §703 £.96/ 7.08 0.18 23| 2 0.07, 0.8] 0 35.94 1 15
i 545, 7.92 1912 8.44 8.6 0.24 17 30]1; 11.25 0 D% 26.56 1 19}
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PDF: 17

(a) Signal + Spontaneous EEG (1 response/sub-average)
PDF 17

(b) Signal + Spontaneous EEG (2 responses/sub-average)

GPOI1.884

(c) Signal + Poisson noise

(d) Signal + gaussian noise

Trajectory maps obtained for one of the data sets used in the component
latency variability recovery experiments. In each case, the simulated signal
has been supplied with an artificial latency variability (N(0,0.0016)) and then it
is combined with different noise data.



SNO04.XLC

SNR (-dB) and Latency (ms)

00 03 07 10 14 17 20 00 03 07 10 14 17 20 00 03 07 10 14 17 20 00 03 07 10 14 17 20
0.5 .15 .0.7.90.,521.5.0.7.9.0.5.1.5.0.7.9.0.5.1.5.0.7.9
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0.56
0.48
0.4
32
.24

.16 1
08

0

0.08
-0.16
0
0

EEG2. POI.00 GAS.004

o o oo

T (ms)

.24
.32
-0.4

Error in recovery of mean signal latency T (+/- 1isd) in noise vs SNR. Signal latency distribution
N(0,0.0016) and noise files are spontaneous EEG, Poisson, and gaussian.
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SNRTESTS.XLS

4] EVENT ANALYSIS RESULTS FOR INDUCED LATENCY VARIANCE SIGNAL (SD = 0.08ms) + NOISE DATA FILES
[ ] | ]
[44] EventI Probabilimis: Noise File[ VINL.EEG Image Dals Sel Nsme GEEG1.008
|Nsx GPks possible {uniform) : 14400
Totsl GPks found : 687
Globsl Protiabﬂ of Pr 1 0.05
Max 1Pks possible (uniform) : 8064
Total LPks found : 532
Locs] Probsbility of Pk 1 0.07
Mox InterPks poss. (uniform) : 6336
Totel InterPks found : 185
Inter Probability of Pk : 0.02
ltemNum [GPkAmpl |GPklat  |BPkAmpl |[BPklat  |Mn D 0 E ChiSq _ |ChSqP__ [BinomP__ |%Swps Spen
0] 16384 096] 16384 1 0.98 0.1 55, 38 18.72 0o 0 85.94 098 B
1 6196 2 15174 204 201 0.1 49 U 14.53 0 0 76.56 1 8
2 3364 3] 15314 296 296 0.07 40] 25 14.05) 0 0 62.5 0.95) 3|
3 2364 4 112n 3.92 4 015 50 51 0.04 0.84 0 76.13 0.88) 12
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Event Bins

(a) Signal + Spontaneous EEG (1 response/sub-average)
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(b) Signal + Spontaneous EEG (2 responses/sub-average)

Event Bins

(c) Signal + Poisson noise

Grand Av PDF 52

(d) Signal + gaussian noise

Trajectory maps obtained for one of the data sets used in the component
latency variability recovery experiments. In each case, the simulated signal
has been supplied with an artificial latency variability (N(0,0.0064)) and then it
is combined with different noise data.
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Normal Latency Values for the Brainstem Auditory Evoked Potential (BAEP) / ms

|

I

(Monaural Stimulation, Ipsilaterally, Ai - Cz)

l

Intensity Level dBSl

Wave # 75 65 55 45 35 25 15 5
I 1.40 1.60 1.80 2.20 2.70 2.90

I1 2.60 2.80 3.00 3.30 3.60 3.80

111 3.70 3.80 3.90 4.30 4.70 5.10 5.90 5.60
IV 4.60 4.80 5.00 5.40 5.80 6.60

Iv/v 5.20 5.20 5.60 5.90 6.40 7.00 7.70 7.80
v 5.40 5.50 5.80 6.00 6.60 7.10 7.70 8.10
VI 6.90 7.10 7.50 7.80 8.40 9.20 9.50

VIl 8.70 9.00 9.00 9.60

sd 0.20 0.20 0.20 0.30 0.30 0.40 0.40 0.40
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NEW DEVELOPMENTS IN COMPUTER APPLICATIONS IN NEUROLOGY

A S Sehmi, University of Leicester,
N L Robinson, A J Charles, Medelec Ltd,
P M Robinson, University of Surrey.

1 Introduction

Clinical neurophysiology is concerned with making diagnostic inferences about diseases of the
nervous system. A major procedure which is used in this process is the recording and analysis of
the activity of the brain. This activity takes the form of electrical impulses which underlie the basic
communication mechanisms of the central nervous system. It is frequently required that the
activity of a specific part of the brain be assessed, and this is achieved by causing the structure
under test to be activated by sensory stimulation. The resulting activity will then be synchronised
in time with the sensory stimulus. Analysis of this activity is usually hampered by the fact that the
size of the signal generated in response to sensory stimulation is very much smaller than the size of
the other brain (EEG) and muscle (EMG) activity. The EEG and EMG are present all of the
time and represent the major noise sources in any recording. In the past, the problems associated
with distracting noise have been addressed by the use of coherent averaging techniques which
enhance the signal to noise ratio (SNR). In this paper we shall discuss the use of some new
approaches to signal estimation which provide additional information of clinical importance and

has proved to be more effective than conventional averaging.

2 Evoked Potential M re of Brain Activi

Very simply, the brain can be considered to consist of a series of elements in which the basic unit is
aneuron. Information is transmitted along the neurons in the form of digitally encoded electrical
impulses. Communication between two basic units is effected through chemical release at the first
unit and molecular recognition at the second. Molecular recognition results in the generation of a
new electrical impulse which is then relayed via the cable network propagating from the second
unit. When the brain acts as a system, populations of units act in unison, and it is unusual for units
to function independently. The synchronous activation of substantial numbers of neurons
generates a significant electrical field. As an electrical impulse moves through the specific
population of neurons, which are themselves confined to discrete anatomical loci, the fluctuations,
in the electrical field associated with impulse transmission, give rise to a change in the cortical
surface potential. This change is measured as a potential difference between monitoring electrodes

placed over a site anatomically close to the activity, and a remote reference site.
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During the course of any sensory stimulation experiment, more than one anatomical structure in
the depths of the brain are activated within the territory of the recording electrode geometry. This
is reflected in the recordings of complex waveforms which may include activity from both serially
and concurrently activated structures, which in turn, may or may not be activated in synchrony. In
these recordings, known as evoked potentials, the activities of separate anatomical structures are
described as individual components of the waveform. It is generally accepted that, provided
* exactly the same stimulus is applied repeatedly, the neuronal responses should be the same, i.e.
the resulting signals are non-stationary and deterministic. A major limitation of this interpretation
is the implicit assumption that the status of the neurons is constant across stimulation trials. This
constraint limits the scope of investigation severely, and precludes investigation of one of the most
important features of brain activity, namely the brain’s ability to habituate to some forms of
stimulus and to facilitate others. These types of change are known to be among the most sensitive
to the disease process and, therefore, warrant the examination of new techniques which are less

limited in their assumptions.

The complexity of evoked potentials poses significant signal processing problems. Solutions to
these problems are of immediate clinical importance. It is possible that the approach described in
this paper will have wider application to signals with similar characteristics derived from related
areas in electrophysiology (e.g. in cognitive evoked potentials), and to signals derived from

engineering (e.g. in fault monitoring and communications).

3 The Nature of the Analysis Problem

The aim of the clinical neurophysiologist is to gain the maximum amount of information about the
effectiveness of signal transmission within the brain. These signals take the form of electrical
impulses which, when recorded remotely from the scalp, are represented as maximum and/or

minimum deflections in a time series voltage record.

Approaching the estimation problem from a signal processing viewpoint, a number of features in

the data need to be considered:

e 1) It is often difficult to accurately predict the precise characteristics of the signal since
these can change substantially with onset and progression of disease.

® 2) The signal itself should not be treated as entirely deterministic, as trial-to-trial changes
are known to occur and these changes may carry important clinical information.

e 3) There is no substantial difference between the frequency content of the noise and that
of the signal.

e 4) The signal to noise ratio is often very low (< -20dB).
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The main approach to 1, 3 and 4 has been signal averaging, however this has precluded the
possibility of estimating behaviour in 2. We have developed a new technique called Event
Analysis 1. which allows all of the above points to be considered.

4 Recording Procedure

An ensemble of scalp-recorded potentials is amplified and then digitised using a Medelec Mystro
MS25 connected to a CED1401 analogue to digital conversion system. Each trial in the ensemble
consists of the time series related to a single sensory stimulus. During the course of an experiment,
up to 1024 trials may be acquired. The electrode placements, sampling rate, and analogue filters
are adjusted depending on the type of evoked potential recording which is being undertaken, and
they are set according to the standard protocols. In simulation experiments, analagous data
formats are used to allow simple mapping from simulation trials to experimental trials. For the
purposes of this discussion, results will be limited to signals recorded following auditory
stimulation, the corresponding evoked potential being known as the Brainstem Auditory Evoked
Response (BAER). Fig.[1] shows the setup used for the acquisition of data. Elementary BAER

characteristics and some clinical applications are described in the appendix.

5 Event Analysis

The data used in this analysis can be described by an additive noise model. The measured single
response X, obtained after the delivery of one sensory stimulus, is the sum of a non-stationary signal
s plus random noise n. The response is interpreted during analysis in terms of an additive
combination of a signal event sequence {Es} and a noise event sequence {En}. The measured

event sequence {Ex} is then given by:
{Ex} = {Es} + {En}

An event is assigned at a turning point where a pair of maxima are interleaved with a pair of
minima, such that the amplitude differences between the adjacent turning points are greater than a
threshold value 2.

5.1 Estimation of Peak Threshold

Separate peak threshold values are determined for each of the single responses in the data. The
threshold value (or peak discrimination factor, PDF) is, therefore, adaptive on a trial-to-trial basis,
and its computation is based on the assumption that the signal and noise are combined additively.
This additive model predicts that, at points where signal and noise occur together, the resulting
activity will be greater in amplitude than when the noise occurs alone. The amplitude deflections

between turning points are calculated and a frequency distribution is constructed. The
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proportional contribution of the noise-related deflections in the histogram bins is assumed to be
high because of the low SNR of the single response data, and hence the modal class value will
represent a measure for the noise-related amplitude deflections. The threshold used for the
reduction of the individual responses to an event sequence {Ex}, is set to the upper value of the
modal bin. The event sequence is thus limited to those turning points which fulfil the requirement
that they are bounded by turning points with amplitude separation greater than the calculated
threshold. Although, as is expected, this process will cause a rejection of some events which may
be related to the true signal, it allows for adaptation to changing noise levels and protects the
anlaysis from being biased towards the highest amplitude events. This bias is a major defect of

conventional averaging, except in very large ensembles of data.

5.2 Estimation of Signal Component Locations

The event sequence at this stage consists of both true signal events and noise events extracted from
a series of independent trials. The events are labelled either positive or negative depending on
whether they resulted from a maximum or a minimum defelection. Signal-related events will be
confined to a discrete time interval, and noise-related events will be randomly distributed.
Polarised event-latency histograms are obtained from a synchronous summation of the bipolar
events across all of the independent single responses (i.e. histograms of the number of times of
occurrence of events at a time measured with respect to the onset of stimulus delivery). Modelling
of this synchronous summation process has been performed to determine its effectiveness in the
cancellation of noise-events !, Results from this simulation show that there is an error in
cancellation if the noise is wideband and stationary, and the number of trials is low. However, the
error can be reduced by digital filtering and/or creating small sub-averages from the single

responses prior to event analysis.

The positive half of the latency histogram is smoothed and its minima locations provide
segmentation of the corresponding ensemble of single responses into component and
non-component intervals. The unbiassed mean latencies of these segments are determined by a
convergent iterative procedure which uses the segment boundaries as initial values. Only those
events in the ensemble that lie within the resulting latency intervals (usually described as trajectory
events) are used in subsequent analysis. It is possible that some single responses will not yield a

trajectory event. A summary of the event analysis procedure is shown in Fig.[2].

It will be clear that, throughout the procedure, the tendency has been to discard outlier data which
is likely to contaminate results rather than to increase the size of the data set until the weighting of
outliers is reduced. This has resulted in the ability to analyse signals using substantially smaller
numbers of trials (64-128 trials for BAERs at 60 dB stimulus intensity), whilst retaining estimates
of the underlying signal characteristics. Using the latencies of trajectory events, it is possible to
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produce descriptive statistics for the signal components and to derive enhanced signal waveforms
using latency corrected averaging >. This is performed by temporally aligning all events within a
component interval by applying shifts to selected data trials which are then conventionally
avéragcd. Trajectory events also enable one to extract and enhance specific components and/or
combinations of components. These procedures have been implemented 1 and in conjunction
with correlation analysis, they will allow for the investigation of relationships between different
components, since some temporal synchronisation between trajectory events will exist across an

ensemble of single responses and also within single responses.

53 Results of Simulation Experiments

In order to assess the effectiveness of the approach described above, a number of experiments
have been performed using data simulations where both the SNR and latency variability of the
signal can be controlled. The simulations have shown that it is possible to reliably estimate the
latency variability of components to within two sampling points at a SNR as low as -15 dB.
Examples of results from event analysis performed on a simulated BAER data set are shown in
Figs.[3 and 4]. The data shown in Fig.[4] consists of 64 trials of an exponentially decaying, 1 kHz
sine wave, which has been additively combined with spontaneous EEG. Prior to the combination,
both the signal and the noise are normalised, so that the simulation experiments will reflect the
performance of event analysis across a wide range of signal to noise ratios (i.c. 0 dB at 1ms to
-21 dB at 7ms).

Following encouraging results obtained from single channel BAER recordings 14 it is intended to
extend event analysis into the multi-channel recording regime. This will help to enhance the
understanding of neuronal communication mechanisms in the brain, by analysing data containing

temporal information which has been obtained spatially over the scalp.
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Event Bina

(a) PDF value = 75% of Maxpkpk.

Cr«n<l Av CtEQI.TIX Ma%fkpk:722

(b) PDF value = 50% of Maxpkpk.

CEECL.nX  M»K»kpk:722 PDF:181

Event Bin*

(c) PDF value = 25% of Maxpkpk.

Cr«n<l Av CIECI.FIX  M.Mpkpk 72Z

(d) PDF value is determined adaptively.

Fig.[4] The effect of the PDF value on the structuring that occurs in the
event bin (BIN). The PDF value per single trial varies from 75% of the
maximum peak-to-peak deflection, to one that is determined adaptively
(taken from Ref. 1).
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Medelec

CLINICAL APPLICATIONS

rainstem Auditory Evoked Response

eoOnV  10ms

cessment of the integrity of the auditory neural pathway can
performed by recording, using scalp electrodes, the far field
lentials produced in the auditory nerve and brainstem.

ictrode Placement

lhe signal is produced at bothAiand
oth electrodes nnay be considered
ve. This may be confirmed by
ording from Ai and Czindependently
jred to a remote (non-cephalic)
ording site. The full signal may then
obtained by addition of the two
:es. The signal arising from Ai may
)be investigated by recording both
laterally and contralaterally (Ai-Cz
1A - cz) Subtraction of these traces
- cz) minus (Az - cz) would then
wthe signal on Ai.

ctrodes should be non-polarisable
Ag/AgCl EEG type,

ctrical contact is made using either
ctrode jelly or bentonite paste,
ctrode resistances should be
3cked to be less than 6k 0.

Green

As or Wrist

Necutral

Active

imulation

tnaural Clicks

& Polarity - rarefaction

ration - 0.1 ms

oetition Rate - < 10Hz

ensity- >60dB HL

ER may also be recorded following
le pip stimulation when some
quency discrimination may be
3sible.

Acquisition

Recording Sensitivity->20pV/div*

Filter: Low Frequency cut off-<300Hz
High frequency cut o ff->3kHz

*Recording sensitivity may have to be
adjusted to take account of muscle
activity. In general it is best to use the
highest sensitivity which does not
cause the averager to overload.
Averaging

Analysis time — 10 ms

Sweeps — 1024

Post Average
Display Sensitivity — 200nV

Effect of filters on recording
BAER

It should always be borne in mind that
filtering, although often extracting a
signal from the background noise, may
alter the waveform recorded. In
extreme cases alteration of wave
latency of 1/8 - %Hz of the signal
frequency may occur. In the case of
BAER this may amount to + 250 /vs in
latency. Filtering may also affect the
relative amplitude of waves. These
factors make it important to
standardise recording parameters for
all tests.

Superior Colliculus

Cochlear Nuclei

Auditory Nerve

Identification of Waves

eoonV 1OM
V\Aves |, Ill, V are the most con-
sistently observed.
Wave I

Thought to arise from activity in the
Vilith nerve. This potential is
generated as a negativity at Ai and its
identity can often be confirmed by
comparing the recording from the
vertex to contralateral ear, when this
wave will be considerably reduced.

Wave Il

Proposed to reflect activity in Pons.
This potential also arises largely as a
negativity at Ai and will therefore be
reduced by recording from the vertex
to the contralateral ear.

Wave V

Arising, it is thought, from activity in
the midbrain, this potential is often the
most reliable. Waves IV and V are
often fused, hence wave V may well
not be the fifth vertex positivity. A
more characteristic feature is that it
typically consists of a vertex positivity
followed by a long, sharp negative
potential.

Medical
Geniculate Body

Inferior Colliculus

Lateral Lemniscus

Olivary Nucleus



CLINICAL APPLICATIONS

Multiple Sclerosis

BAERs are of most use when a non
brainstem structure has a pathological
profile since the tests then documents
a second locus. It is not unusual to find
patients with normal results from one
ear and abnormal results from the
other.

The most common change in BAER
seen in MS is an increase in the |-V
latency very often coupled with
reduction in the amplitude of wave V.

Typical trace obtained from a patient
with MS showing reduction in wave V
amplitude.

In an extreme case waves Il, lll. IV are
almost absent butwaves | and V are
preserved.

Acoustic Neuromas

These usually develop in the internal
auditory canal and can compress the
eighth nerve, resulting in the complete
abolition of all waves or an increase in
the interpeak latency of early waves.

Acoustic neuroma associated with
hearing loss abolishing all waves after
component |

Wave | has normal latency but all other
waves are abnormal.

Brainstem Tumours

Tumours intrinsic to the brainstem can
increase the interpeak latency of the
brainstem waves tand V or the waves
subsequent to wave Il mav be
abolished. In the case of multi-level
tumours the position is considerably
more involved and all waves except
wave | may be absent.

A pontine tumour resulting in
increased interpeak latency of waves
Il and IV.

A rostral pons-midbrain  tumour
resulting indiminished waves IVand V.

Objective Hearing
Assessment

BAER can be used as a non-invasive
measure of hearing threshold in both
infants and adults; wave V being the
most resilient component for this
application.

Other applications include intra-
operative monitoring and assessment
of patient status in intensive care and
coma.

Also it is used to monitor development
of auditory function in the very young.

Non-pathological factors
affecting peak latencies
AGE

This is of particular importance with
premature infants where wave V
latency may be a useful parameter in
assessing developmental age.

WAVE

LATENCY

MONTHS YEARS

With patients over 50 years normal
values also need to be increased.

SEX
Females have slightly shorter latencies

STIMULUS INTENSITY

Other factors influencing latency ae
temperature and repetition rate.
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