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New Environments for Neurophysiological Investigations

by
Arvindra Singh Sehmi

ABSTRACT

The main topics of research are in the sub-areas of neurophysiology that are concerned with 

measurement of the electrical activity arising from contracting muscle (EMG) and from the 

surface of the scalp (EEG). Investigations are restricted to the surface-recorded interference 

pattern EMG, and to the EEG waveform recorded in response to sensory stimulation, known as 

the evoked potential (EP). The EMG and EP are representative of two important classes of signal 

commonly encountered in engineering, namely random noise-like and deterministic 

non-stationary. The thesis describes work on the development of a variety of new techniques and 

methods of analysis for application in neurophysiology and electrodiagnosis.

•  A general purpose signal processing computer has been built which incorporates a 
high level of user-machine ergonomics. Turning Points Spectral estimation of the 
interference pattern EMG is simulated on this computer to demonstrate its flexibility 
for constructing analysis and control applications.

•  Some emphasis is placed on methods of improving the quality of acquired EMG data 
for use in the analysis of the dynamics of the neuromuscular system. In this respect, 
the author describes the design of a fully controllable muscle loading system which 
uses dc electromagnetic suspension technology. The above computer can be used to 
control this muscle load for accurate loading protocols in EMG-Force modelling 
experiments.

•  Techniques involved in the design and construction of the computer lead to 
higher-level program and data analysis specifications which employ Artificial 
Intelligence (AI) computing methods. These AI methods, in conjunction with some of 
those techniques which were used for EMG analysis, are applied to the investigation 
of single-trial EPs.

•  A suite of adaptive EP analysis procedures, which include a prototype fuzzy expert 
system, facilitate the extraction of EP component latency variability estimates, and also 
provide automatic selective single-trial averaging. The latter selective averaging 
facility, can be used to enhance underlying activity and to examine the relationships 
that might exist between different components in the EP.
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Introduction

The main topics of research that this thesis will address are in the sub-areas of neurophysiology 

that are concerned with measurements involving the electrical activity arising from contracting 

muscle and from the surface of the scalp. The electrical signals are known as the electromyogram 

(EMG) and electroencephalogram (EEG) respectively. The author restricts investigations to the 

surface-recorded interference pattern EMG, and to the EEG waveform recorded in response to 

sensory stimulation, known as the evoked potential (EP). Since the electrogenesis of EMG and 

EP signals in man is at the cellular level, there is much interest and value to be gained from the 

extraction of both quantitative and qualitative descriptors of these signals. The descriptors should 

lead us to a deeper understanding of some aspects of the biophysical mechanisms that govern 

bioelectric signal generation. In this respect, the EMG and EP signals can be used to locate and 

identify gross anatomical features of their respective origins, and they can also be used to model 

the dynamic behaviour of their associated neuromuscular /  neural systems.

Due to the recent advances in electronics and computer engineering, there is a wider availability of 

small, relatively inexpensive, and powerful computers. It has also become more realistic to 

consider the benefits of integrating what may have been distinct analysis methodologies under the 

unified control and/or supervision of a computer. Attempts to integrate several, possibly complex, 

procedures have been impeded in the past by the problems of ensuring simple user-machine 

interactions. To circumvent this problem in a computer-based environment, techniques to create 

sophisticated external data links and internal graphical and tactile interfaces to the underlying 

analysis procedures are available.

These advances have provided new opportunities for rapid, on-line, digital signal processing of 

electrophysiological data and the comprehensible display of results. Two important classes of 

signal that are commonly found in engineering are the random noise-like signal and the 

non-stationary deterministic signal. The analysis methods available for these types of signal are 

also applicable to EMG and EP since EMG data is usually represented by random-noise models 

and EP data by non-stationary, deterministic models. The quantitative analysis of random-noise 

signals is generally performed by spectral estimation techniques, whereas non-stationary 

deterministic signal estimation is usually accomplished by averaging and/or filtering.
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EMG and EP signals differ significantly in their noise content and also in the relative amounts of 

inherent quantifiable information. The noise and information contents are mutually related. The 

raw EMG signal has a high signal-to-noise ratio and often it contains an excess of quantifiable 

information which makes subsequent interpretation confusing. Despite the excessive information 

content, extraction of a statistically significant set of signal quantifiers from the EMG is very 

difficult because of the noise-like nature of this signal. Spectral averaging techniques help to 

reduce the information content in EMG signals to a manageable size, and they provide the 

additional benefit of allowing a reduction in the variance of the noise in the spectral estimate.

In contrast to the EMG, the EP has a low signal-to-noise ratio and the problem in this case 

becomes one of extracting as much information as possible from the data. The non-stationary, 

deterministic model of the signal makes averaging one of the most effective estimation methods 

available. EPs, though, are not exactly deterministic, and averaging tends to under-perform for this 

and other reasons. Spectral estimation methods are not widely used to quantify the EP, since the 

additive noise and signal power bands overlap in the frequency domain. Digital filtering of the EP 

has been investigated extensively by many researchers and is now gaining some popularity.

The EMG from a contracting muscle can be used with concurrent muscle force measurements to 

model the dynamics of muscles. The noise-like features of the EMG can, however, cause the 

model estimation procedures to become unstable. Careful control of the quality of the EMG 

during data acquisition reduces restrictions that must be placed on the choice of modelling 

algorithm (Lago, 1979).

The work presented in this thesis concerns the development of a variety of new techniques and 

methods of analysis for application in both clinical and research-based EMG and EP studies. 

There is some emphasis on methods of improving the quality of acquired EMG data for use in the 

analysis of the dynamics of the neuromuscular system. Spectral estimation of the EMG as outlined 

by Lago (1979) is simulated on a general purpose signal processing computer which exhibits a high 

level of user-machine ergonomics in its design. This computer can also be used to control an 

instrument that will provide accurate muscle loading protocols for EMG-Force modelling 

experiments. The lessons that were learnt in the design and construction of the computer, pointed 

the way towards higher-level program and analysis specifications that embraced techniques from 

Artificial Intelligence (AI). These AI techniques, in conjunction with some of the techniques 

which were used for EMG analysis, were applied to the investigation of EPs.
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The integrated system comprising the general purpose computer and the controllable muscle load, 

and an another comprising several suites of EP analysis programs, constitute those environments 

which are referred to in the title of this thesis. The techniques used to create these environments 

and to analyse the data are of interest, not only in neurophysiology and electrodiagnosis, but also 

in several areas of engineering.

A brief sununary of the chapters that follow is provided below to introduce the order of reading:

•  Chapter One gives a short resumé of the history of electrodiagnosis as we know it today.
•  Chapter Two provides a literature review of some of the quantitative methods in EMG 

analysis that have evolved in the last three decades. The author shows that the accurate 
control of force and its measurement is of importance, both in quantitative EMG analysis 
and in the modelling of EMG-Force dynamics.

•  Chapter Three discusses the development and specification of a flexible menu-driven 
signal processing computer. The computer has been configured to perform a simulation 
of the EMG Turning Points Spectral Analysis procedure (Jones and Lago, 1983) which is 
described in chapter two.

•  Chapter Four and Chapter Five address the problem of providing accurate, controlled 
and repeatable forcing protocols in EMG investigation and in the modelling of 
EMG-Force dynamics. A  computer-controlled static and dynamic loading system and 
force transducer which uses dc electromagnetic suspension technology is described. 
Results are given showing the force control that is achievable.

•  Chapter Six introduces the Brainstem Auditory Evoked Potential (BAEP) and some of its 
uses through a concise literature review. This review is provided because the analysis 
methods used in chapter three for EMG signals are extended later into the EP signal 
domain.

•  Chapter Seven describes some procedures in the quantitative and qualitative analysis of 
evoked potentials. The difficulty of performing the qualitative analysis task introduces a 
requirement for intelligent knowledge-based programming methods (i.e. Expert Systems 
(ESs)). The methodology behind expert systems programming is presented through a 
description of some well known ESs that incorporate inexact reasoning mechanisms.

•  Chapter Eight discusses a non-linear adaptive signal processing technique that has been 
developed for automatically detecting significant events in the BAEP. This analysis is 
pursued further and applied to the automatic enhancement and scoring of BAEP data. 
The technique is equally applicable to other evoked potentials.

•  Chapter Nine concludes this work with a discussion, recommendations for further 
research, and application possibilities for the ideas that have been investigated.
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Chapter One 

The Background of Electrodiagnosis

1.1 Animal Electricity

The early history of electrodiagnosis was significantly affected by the two great wars. A large 

number of survivors from both World Wars bore peripheral nerve injuries. The postwar interest in 

the treatment and care of these and similar patients received further impetus from the advances in 

electronic technology taking place at the time. It was much earlier in the eighteenth century, 

however, that the interest in animal electricity led to the birth of electrodiagnosis.

Duverney (1700), a French anatomist, performed the initial classic experiment of electrically 

stimulating a frog muscle (Morgan, 1868). The first published report on muscle contraction using 

static electricity (with a Leyden jar as the source of stimulus) was by Kratzenstein (1746) who two 

years earlier had used it to straighten out the contracted finger of a paralysed woman. In the 

following years many reports appeared on electrotherapy for the purpose of curing paralysis and 

other diseases. In 1758, Beccaria noted that the contractions arising from electrical stimulation 

were stronger than those observed from mechanical stimulation (Colwell, 1922). An explanation 

was required for the muscle's increased response arising from electrical stimuli travelling along 

neural pathways. Seven years later in 1795 Fontana guessed that “if it be not electricity, it may be 

something however very analogous to it Nearly three decades later Galvani began his series of 

experiments with muscle contraction in the frog.

Galvani noted a relationship between electricity and muscle contraction. His belief that the body 

generated this electricity led him to call it animal electricity. He observed that this electricity arose 

not from muscle, but from nervous tissue especially the brain, and that the nerves were the 

conductors whose oily sheaths prevented the dispersion of electricity. Galvani compared the 

muscle to Leyden jars, as the receptacles of animal electricity. Thus the frog current was a nerve 

current and not one of muscular origin.

In 1792, Volta wrote of Galvani’s work, “it contains one o f the most beautiful and surprising 

discoveries and the germ of many others ” (Volta, 1816). A  year later Volta objected with, “It is thus 

that I  have discovered a new law, which is not so much o f a law of animal electricity but they are in
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reality the effects o f a weak artificial electricity which is excited in a manner o f which there is no doubt, 

by the simple application of two plates of different metals ” (Volta, 1793). Galvani’s works imply that 

the phenomena belong to some forms of spontaneous animal electricity.

The confusion arose in assigning the source of animal electricity. Volta insisted that a current 

source and the muscle formed part of a closed circuit so as to produce contractions, Galvani 

proved that a muscle could be stimulated by placing the free end of a nerve across a muscle 

without the intervention of metals, showing that electricity could be generated by animal tissue. 

Later Volta’s pile was constructed and used to investigate stimulation thresholds. Volta’s invention 

nearly extinguished any arguments in favour of electricity of muscular origin. This was because all 

the effects which Galvani attributed to animal electricity could be produced with Volta’s battery.

It was not until Nobili improved the galvanometer that further advances were made in 

electrophysiology. In 1838, Matteucci proved conclusively that contracting muscle generated 

electricity (Matteucci, 1844). In 1851, DuBois-Reymond obtained readings of muscle responses 

from the arm of a man using jars of liquid as electrodes. This was probably the first demonstration 

of electromyography as we know it today.

Electrotherapy in the form of electropuncture became popular as the distinction between, and 

location of, motor and sensory nerves became more apparent. Duchenne tried to establish a 

routine of treatment using cloth-covered electrodes for percutaneous stimulation. He was one of 

the first to use faradic stimulation and in one case produced contractions with a current of such 

high intensity that he admits to having produced a fracture of the cervical vertebrae. Heidenhein 

(Biedermann, 1898) noticed that occasionally, in the presence of disease a muscle might respond 

better to continuous current even though it failed to respond to faradic current. Baierlacher 

(Neumann, 1865) reported having made this observation in the paralysed muscles of a twenty eight 

year old woman and as a direct result of this, Erb credited Baierlacher with the discovery of 

electrodiagnosis. This observation was explained by Neumann in 1864 (Neumann, 1865) when he 

used a mechanical device to interrupt continuous current. He noticed that interruptions exceeding 

a certain rate had no effect on paralysed muscle. The first important conclusion in 

electrodiagnosis was thus made - the duration of current was the critical factor in eliciting a 

muscular contraction.

Piper (1912) recorded voluntary contractions in the forearm flexors of man in 1907 with the string 

galvanometer. He believed that the distinctive rhythms found in each muscle indicated the rate of 

stimuli received from the central nervous system. Proebster (1928) described spontaneous 

irregular action potentials in the denervated muscles of a boy with a traumatic plexus birth lesion 

and in another patient with long-standing poliomyelitis. Proebster used a recording galvanometer
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and tested muscle in voluntary as well as in electrically induced contractions, and it is to him that 

most authors give credit for the beginning of clinical electromyography (EMG). At about this 

time, Adrian (Adrian and Bronk, 1929) introduced the coaxial needle electrode and the 

loudspeaker to EMG. This enabled observations of the potentials from single motor units in the 

muscle and monitoring of the intensity and quality of the complex electrometer record.

Lindsley (1935) made the first tracings of a patient with myasthenia gravis and noted the marked 

fluctuations in amplitude of the motor unit responses to contraction. In 1941 Denny-Brown and 

Nevin recorded the characteristic potentials of myotonia. In the same year, Buchthal and 

Clemmensen validated neurogenic and myogenic findings in muscular atrophy with clinical EMG, 

and Hoefer obtained rhythmic potentials in rigid muscles at rest in patients with Parkinsonism. In 

1950, Bayer demonstrated an increase in the size of muscle potentials with increases in the force of 

contraction (Lenman, 1959).

Until the middle of the present century, most electrodiagnostic exploration was conducted in the 

muscle. In 1948, Hodes, Larrabee and German stimulated nerves at two different points and by 

correlating the temporal difference in muscle response with distance, were able to determine 

conduction velocity. Liberson found that conduction occurs in both directions and that the 

portion of the impulse which is antidromic returns through the reflex arc. This permitted yet 

another recording to be taken from the muscle supplied by the stimulated nerve and is known as 

the F-wave response. Single fibre EMG as described by Ekstedt, did not appear until 1964, at 

which time it allowed the recording of jitter. The increasingly useful information available from 

EMG, caused its use to spread with considerable speed.

At about the same time as EMG was beginning its foundations with Galvani, Caton (1875) 

presented an account of the spontaneous electrical activity of the brain, of motor potentials and of 

sensory evoked responses (EP) at the Annual Meeting of the British Medical Associaton in 

Edinburgh. He reported that “When any part of the grey matter is in a state o f functional activity, its 

electric current usually exhibits a negative variation. On the areas shown by Dr Ferrier to be related to 

rotation o f the head and to mastication, negative variation o f the current was observed to occur 

whenever these two acts respectively were performed. Impressions through the senses were found to 

influence the currents in certain areas; e.g., the currents o f that part o f the rabbit’s brain which Dr 

Ferrier has shown to be related to movements of the eyelids, were found to be markedly influenced by 

stimulation o f the opposite retina by light ”.
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Caton’s experiments on the brain of the rabbit were carried out using a Thompson galvanometer 

which would not have been capable of following the rapidly changing potentials of the 

electroretinogram (Halliday, 1968). He was more likely to have measured the relatively slow 

changes in the voltage of the cortical surface. Since that time all advances in this field (as was the 

case in EMG) had to await the discovery and application of improved methods of transduction.

With the development of the thermionic valve differential amplifier (Adrian and Matthews, 1934) 

and of signal averaging techniques (Dawson, 1951, 1954) researchers were able to investigate the 

possible existence of repeated and similar electrical responses in the electroencephalogram 

(EEG) in response to sensory stimulation (i.e. evoked potentials, EPs).

Modern-day EMG and EP investigations involve the use of a vast array of tools and techniques to 

perform qualitative and quantitative measurements of the electrophysiological activity. The tools 

used to obtain the data for investigation are designed to retain as many inherent characteristics as 

possible in the presence of much distracting and occluding influences (e.g. radio frequency noise 

and tissue noise). The techniques used to analyse the data are designed to remove (and/or ignore) 

distracting information and enhance (and/or extract) those features of interest. Some of these 

tools and techniques will be presented in the sections of this work that are concerned with 

collection and control of EMG data and computer-aided analysis of EMG and EP data.
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Chapter Two 

Muscle Electrophysiology, Computing Techniques in 
Electromyography (EMG) and EMG-Force Dynamics

This chapter presents a simplified account of muscle electrophysiology. Following this is a brief 

account of the literature published recently on quantitative analysis of the interference pattern 

EMG. Later the relationship between the EMG and resultant force in the modelling of muscle 

dynamics is examined.

2.1 The Electrophysiology of Skeletal Muscle

Human skeletal muscle consists of striations of muscle fibres enclosed in the sarcolemma 

membrane and terminated by tendons, Fig.[2.1(a)]. Typical fibre diameters range from 5 to 100 

microns and a typical muscle may have as many as a million fibres. Individual fibres are made up 

of parallel sub-units called myofibrils which consist of longitudinally repeated units termed 

sarcomeres which are bounded by the so-called z lines. The sarcomeres are the fundamental 

elements that contribute towards muscular contraction following electric stimulation.

Fig.[2.1(b)] shows a single load bearing or extrafusal muscle containing fibres which form the main 

mass of the muscle. These are responsible for generating forces or causing changes in muscle 

length. They are innervated by a class of nerve cell found in groups of nuclei located in the grey 

matter of the ventral horn of the spine. This group, called the a-motor neurones, have cell bodies 

whose diameters range from 25 to lOOjim and have long processes, from 8 to 20|xm in diameter, 

called axons (Rosenberg et al., 1982). These axons conduct nerve impulses to the extrafusal 

muscle fibres. The a-motor neurones terminate on the motor end plates attached to the extrafusal 

muscle fibre. The nerve impulse is a localised voltage change approximately IOOjjlV in amplitude 

and 1ms in duration that occurs across the membrane surrounding the nerve-cell body and axon. 

It is propagated along the axon at a velocity of about 50 to 120 m/s, the exact velocity being partly 

dependent on the diameter of the axon. Nerve impulses are often referred to as action potentials 

or, because of their relatively short duration, as spikes. Action potentials can be propagated 

repetitively to produce spike trains having mean frequencies which may vary from one pulse every 

few seconds to several hundred pulses per second. When the nerve impulse reaches the junction 

between the axon and the muscle fibre, a series of complex electro-chemical events lead to a wave 

of depolarisation sweeping over the entire muscle fibre and resulting in contraction of the muscle 

fibre. Each terminal branch of a single a-motor neurone axon innervates one extrafusal fibre of
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one muscle, and all the extrafusal muscle fibres innervated by a single a-motor neurone lie within 

the same muscle. This collection of muscle fibres and one a-motor neurone is called a motor unit. 

The groups of motor units making up a skeletal muscle vary in size and number, depending upon 

the function of that muscle.

The force of contraction of the entire muscle may be graded by increasing the number of active 

motor units within a muscle and by altering the frequency of the nerve impulses reaching the 

muscle over the axons of the a-motor neurones. A  train of nerve impulses will hence produce a 

series of force twitches that combine and result in a sustained force level.

An important component of this motor unit system is the muscle spindle (see Fig.[2.1(b)]). This is 

a complex sensor that responds to imposed length and velocity changes and is thought to provide 

information which is important in the control of movement and in the maintanance of posture. 

The fibres within the muscle spindle, the intrafusal fibres, transmit length and velocity information 

to the spinal cord through the sensory afferent axons (types la and Ib). In addition these intrafusal 

fibres are innervated by the y-motor or fusimotor neurones These are thought to modify 

(modulate) the response of the muscle spindle sensory endings to imposed length changes. This 

modulating information is obtained from neighbouring segments within the spinal cord, the higher 

neural centres, and from within the muscle itself through deformation of the intrafusal muscle 

fibres. In the latter, deformation is caused by length changes imposed on the parent muscle which 

distorts the fine terminals of the sensory axons.

The neuromuscular system thus contains complex processes that can be likened to a 

servomechanism that controls muscle force and length. The basic measurable unit of activity 

required for analysis of this system is the electric field associated with the muscle membrane 

depolarisation. This can be measured with concentric needle or surface electrodes. The motor 

unit action potential (MUAP), as it is called, thus provides the basic currency of neuromuscular 

system identification and electromyography (EMG).
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2.2 Computer-Aided Electromyography

Electromyography has major relevance in non-invasive clinical neuromuscular investigation, 

diagnosis and motor control studies in man. Electromyographic recordings involving the 

concentric needle electrode were introduced by Adrian and Bronk in 1929 to record motor unit 

action potentials in human muscle. In normal muscle, the amplitude of a MUAP recorded with 

such an electrode may range from 10 to 300|xV. The number of phases (slope reversals) of 

MUAPs recorded with bipolar needle electrodes may range from one to four with the following 

distribution: 3% monophasic, 49% biphasic, 37% triphasic, and 11% quadriphasic (Buchthal et al., 

1954). MUAPs having more than four phases are usually indicative of abnormal muscle tissue. 

The time duration of MUAPs ranges from 1 to 13ms (De Luca, 1979). The above parameters are 

greatly affected by the type of needle used and the geometric arrangement of the active muscle 

fibres of each motor unit with respect to the recording site.

MUAPs undergo characteristic changes in voltage, duration and waveform shape after 

pathological loss of motor axons or muscle fibres. The correlations that exist between EMG 

potentials and the pathological changes of motor units are the basis of the clinical uses of 

quantitative EMG in neuromuscular diseases, as pioneered by the works of Kugelberg, Buchthal, 

Lambert, Hausmanowa-Petrusewicz and many others over the last thirty years (Desmedt (ed), 

1983).

EMG, as it is generally carried out, relies principally on visual inspection of the changes in 

potential displayed on the oscilloscope, and auditory interpretation of the signals when they are 

played through a loudspeaker. The simple data provided is useful and often adequate to establish 

or confirm a diagnosis in a variety of neuromuscular disorders. The method is, however, subjective 

to some degree, and a great deal depends on the experience of the operator.

Attempts to use computers in EMG were made in the early 1970s to obtain objective results that 

could be presented in a quantitative, reproducible and practical manner. These practical methods 

were intended to reveal information essential for the integration of computer-aided EMG into 

daily use at EMG laboratories. Computers may be used either for the diagnosis of motor 

disorders in clinical neurology, or for monitoring and research revalidation, orthopaedic surgery, 

clinical pharmacology, sports medicine, human physiology and psychology. State-of-the-art 

automatic analysers can process input data, control various examination protocols or menus, host 

programmable modules (stimulators, filters, amplifiers, recorders, etc.), and generate databases of 

patient data. A  new generation of computer-aided EMG machines incorporating the attributes of 

Artificial Intelligence to create expert systems will almost certainly be available in a primitive form
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within the next decade. Expert systems will be used to augment the skills of the electromyographer 

or his assistant by providing advice on planning neuromuscular investigations based on the 

interpretation of patient symptoms and test results. Such co-operative systems will use a set of 

coded relationships, or rules, that embody the steps employed in arriving at a diagnosis, coupled 

with a data bank of anatomical and procedural facts on EMG.
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2 3  Quantitative Methods in EMG Analysis

As mentioned in the previous section, diagnostic EMG studies focus most attention towards the 

isolation of individual action potentials in the belief that their visually identifiable features will 

reveal any motor unit disorders. Fig. [2.2] shows a selection of normal and pathological MUAPs as 

measured with concentric needle electrodes. Though examination of individual action potentials 

may be satisfactory, in some cases false negatives can occur. These arise in the early stages of 

disease, either because an active pathological unit is not close enough to the recording site to be 

detected, or because it may be close enough but inactive due to its high activation threshold. Also 

false positives arise as many normal motor units exhibit a small percentage of polyphasic action 

potentials. It is thus desirable to investigate maximal contractions involving all motor units in the 

vicinity of the needle electrode in order to provide additional information. Unfortunately these 

large contraction levels cause MUAPs from several motor units to overlap and interfere producing 

a signal which is difficult to interpret, as in Fig.[2.3]. Various analytical techniques have been 

developed to evaluate (characterise) the interference pattern EMG in both time and frequency 

domains. The methods that have evolved in these domains are discussed in the following sections.

23.1 Time Domain Analysis Techniques

The early analogue methods of EMG quantification included the RMS value, the zero crossing 

rate and, counting the number of spikes in a one second epoch.

The RMS measurement has advantages over many of the other methods of mean voltage 

measurement in that it is a precise and standard measure of any continuous time waveform. It 

does not require the insertion of filters or time constants other than those normally used to limit 

the bandwidth of the EMG recording. RMS measurement may yet prove of diagnostic value when 

used as one of a group of measurements made automatically during computerised analysis 

(Hayward, 1983).

The zero crossing rate is related to total activity but is not well correlated with generated force 

(Fusefeld, 1971, 1972, 1978). In this instance recordings were made from a single point in the 

deltoid, using monopolar electrodes. The healthy patients in the control group were able to 

control the force of contraction, whereas those patients in the study who suffered from primary 

muscle diseases, failed to control it. The inadequate control of force in the test group of patients is 

unfortunately expected, but nevertheless undesirable, and it is an example of one significant source 

of error arising between the separate groups in the same experiment.
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The counting of positive or negative excursions in the EMG (spikes) was first performed manually 

on photographic records by Bergstrom (1958). Automatic methods of spike counting (e.g. Close 

et al., 1966) were introduced but the usefulness of these methods was limited by a lack of validated 

results. In addition, the need to standardise the electronic technique for both healthy subjects and 

patients was not appreciated at the time (Hayward, 1983).

The method of turns analysis was introduced by Willison in 1963. It involved counting the number 

of amplitude increments contained in the slope between phase reversals of the waveform. Turns 

analysis was conceived as a tool to improve the certainty of diagnosis of muscular dystrophy. 

Willison’s mechanical apparatus recorded the turns count in increments whose amplitude was 

chosen by the user (usually 100 ixV). The elegance in this method was that measurements were 

related only to the previous reference point and not to any reference baseline of the signal. The 

method was planned for incorporation into the clinical environment as opposed to just being used 

in the research laboratory, but was extremely time-intensive and so was not popular.

The above technique was automated by Fitch (1967) and produced as its output two pulse trains 

derived from the interference pattern EMG. The first was an indication of the times of occurrence 

of phase reversals in the signal. The other was an indication of the times of occurrence of 

amplitude increments between phase reversals of the waveform. These pulse trains provided the 

turns (NT) and amplitude counts respectively. The turns count was normalised in time to simplify 

comparisons. The mean amplitude (MA) was the ratio between NT and the amplitude count. The 

MA represents the average amplitude of all the individual components that have been measured in 

the EMG. The information contained in the two pulse trains is sufficient to reconstruct the 

original signal provided that the amplitude threshold is sensitive enough (about lOOjxV).

Turns analysis and some of its variations has found more widespread use in the laboratory than any 

other method to date as workers in other fields gained experience with it. The turns count gives a 

crude estimate of the rate at which the neural impulses are firing. It has diagnostic significance 

since the neural impulses give rise to MUAPs that contain a number of phases. These reversals of 

direction in the interference EMG over a fixed time have also been shown to correlate with the 

percentage of polyphasic action potentials measured from single motor units (Daube, 1981). The 

Fitch analyser has been used (Rose and Willison, 1967) to demonstrate the differences between 

normal, dystrophic and partially denervated muscle, and to investigate the effect of age in normal 

subjects (Hayward, 1977). Developments of this device have also allowed histogram displays 

showing the relative frequency of various times between reversals, i.e. the inter-peak intervals. 

Differential diagnosis of limb girdle syndrome has been provided from this information (Willison, 

1971). Comparison of these methods made by Troup et al. show that amplitude and turn counts 

and integrated EMG are not linearly related and that the amplitude count is a more reliable
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measure of the intensity of muscle activity than the integrated EMG. Hayward (1983) points out, 

however, that even control values show significant differences from one laboratory to another. 

Therefore, in order to enable valid comparisons to be made between results of turns analysis (and 

other methods) in different individuals and in different muscle groups, many aspects of the way in 

which the EMG is recorded need to be standardised. These include, as with the zero crossings 

method above, the sites at which muscles are to be sampled, the way in which the muscles are to be 

activated, and the force of contraction (Hayward, 1983).

The lack of force control in diseased patients is a typical problem when using sprung load cells and 

standard weights, because the level of force (and inertial forces associated with the latter) is 

invariably in the patient’s control. The problem becomes more acute:

•  as the demanded forcing level increases,
•  if the patient suffers from the advanced stages of neuromuscular disorder, or
•  if the patient is young, and/or unable to understand the clinicians explicit instructions on 

the forcing protocol.

The range of maximum force developed in healthy subjects also varies considerably with the 

method of force generation used (Hayward and Willison, 1973). Such problems could also 

account for the limited amount of research being conducted with dynamic measurements on 

diseased patients using the time domain techniques that have been mentioned above.

Some dynamic measurements were conducted by Fugelsang-Frederrksen et al. (1977,1978,1981) 

from vastus medialis in healthy subjects. In this case, a ramp of activity was controlled by visual 

feedback of the force signal by asking the subject to match the output of a ramp generator 

(calibrated for a 0-20Kgf over 27 seconds). In a normal subject, the mean amplitude ratio was 

constant over this wide force range showing an independence of this ratio with increasing force. 

Analysis of the turns-amplitude / force curves showed a phase relationship beetween electrical 

activity and mechanical effect as the force is increasing or decreasing. No results were reported 

for abnormal subjects and again it can be assumed that this method of force control is not 

practicable in such situations. It does however have considerable potential for application in 

muscle physiology within the research laboratory.

A  commercial implementation of the Fitch analyser (Medelec Ltd., 1978) has recently been 

modified to incorporate Stalberg’s alterations to the turns/amplitude technique (Stalberg et al., 

1983). To make the method of turns and amplitude counting insensitive to force level and hence 

easier to use, a plot of turns (NT) versus mean amplitude (MA) was introduced. The relationship 

is linear for low to medium force but skews for forces exceeding 50% of maximal. This occurs 

because, as the mean amplitude increases almost linearly with force, the number of turns reaches a
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saturation level before maximal force is approached. This is due to the superposition of individual 

MUAPs and would suggest that the mean amplitude ratio is not independent of force as was the 

case in the observation of Fugelsang-Frederiksen mentioned above. The ratio should decrease as 

contraction forces approach the maximum. Stalberg’s method is sensitive in detecting myopathies 

and gives the same yield as conventional measurements in neuropathies.

A new technique using turns and amplitude measures (Nandedkar et al., 1986) attempts to create 

a set of parameters that are more representative of the way an electromyographer would visually 

quantify an EMG response. The upper centile amplitude is derived from the histogram of turns 

amplitudes (using a 100 threshold) and represents the amplitude of the largest spikes in the 

interference pattern EMG. An activity measure indicates how/w// the interference pattern is. 

This is essentially a quantification of the total baseline existence of the EMG. The complexity of 

the EMG is reflected in the number of small segments parameter. This parameter is calculated by 

counting the number of small turns (segments) that exist for a short time (i.e the low-amplitude, 

high-frequency components). This last parameter is a non-specific, but sensitive characteristic of 

neuromuscular disorders because small segments are produced by complex or polyphasic MUAPs.
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23.2 Decomposition of the Electromyogram

The EMG analysis methods described above provide much information on muscle physiology but 

fail to adequately describe the neuromuscular system at the spinal level. The control scheme that 

governs muscle contraction and the control of force is effected through the neuronal connections 

from several subsystems. These can be both at the spinal level and from higher centres in the 

central nervous system (Andreassen, 1978). A  window into the central nervous system is opened 

through analysis of the discharge sequences obtained from individual motor units, the motor unit 

action potential train (MUAPT). The statistics of the times of occurrence of MUAPs in the 

MUAPT are greatly affected by small detection errors of as little as one percent (Shiavi and 

Negin, 1973). This problem, in addition to interfering MUAPs, means that highly reliable 

decomposition methods are essential to investigate the patterns of neuronal activation or firing of 

individual motor units during high force-level contractions.

Attempts have been made (Bergmans, 1971; Prochazka et al., 1972, 1973; Guiheneuc et al., 1983; 

Le Fever and De Luca, 1984; McGill et al., 1985) to automate completely or partially the detection 

and identifiction of MUAPs from the interference pattern.

Bergmans (1971) developed two programs having different degrees of human interaction. 

Detection of MUAPs was performed using a software delay line, a sliding window of fixed duration 

and thresholds set using potentiometers. Provision was made for detection of five different 

potentials using point-to-point comparison. Two consecutive potentials identical to one of the five 

templates and separated by at least 23ms from each other was the criteria used for acceptance. 

Superimposed potentials were rejected. The template matching was sensitive to artifacts and noise 

and resulted in both false positives and false negatives. Once a potential was recognised by the 

program, the operator was allowed to confirm or deny acceptance. The program was too 

time-intensive and was modified to give the task of recognising potentials to the operator.

Prochazka et al. (1972, 1973) developed a system to accomodate small changes in the action 

potential shapes and superimpositions. The operator selects four different MUAPs with a 

manually adjusted amplitude threshold. These four MUAPs constitute the original templates for 

subsequent classification. The computer then sorts and averages all detected potentials into the 

template bins based on a minimum mean square error calculation. Unrecognised potentials are 

held separately for later decomposition by subtracting templates from them. The choice of 

template(s) used to resolve a superimposition is made by the operator. The end of analysis is 

preceded by a statistical evaluation of the firing frequency. Accuracies of between 95%  and 100% 

have been claimed for signals containing up to six MUAPs.
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A  fully automatic decomposition scheme on EMG obtained at up to 30% force-level has been 

devised by McGill et al. (1985). The EMG is differentiated to transform the MUAPs in the signal 

into sharp spikes which are easily identifiable. Those spikes that exceed a certain threshold have 

their Canonically Registered Fourier Transform (CRDFT) computed. The CRDFT is computed 

by taking the discrete Fourier transform (DFT) of the spike followed by an interpolation of the 

trigonometric polynomial specified by the DFT coefficients. The DFT is then rotated in such a 

way that the peak of the continuous waveform underlying the samples will lie at the midpoint of the 

analysis interval. This then forms the canonical template for matching with other MUAPs treated 

in a similar way. The CRDFT is independent of the arbitrary phase of the spikes, and therefore 

serves to align the peaks of the spikes in the frequency domain. It is claimed that the procedure 

allows a lower sampling frequency to be used so reducing memory usage and processing time. To 

a certain degree, identification of spikes belonging to the same train is performed using the shape 

and regularity of MUAP firing as criteria. Representations of the true MUAP shapes are obtained 

by averaging MUAPs in the raw EMG using the identified trains of sharp spikes as triggers. 

Analysis time for a 10 second epoch of EMG has been reported to be 90 seconds. It is hard to see 

how this is going to be accurate as superimpositions are not resolved resulting in weak 

approximations of the firing statistics (recall the observation of Shiavi and Negin, 1973).

One of the most advanced recognition programs applied to MUAPs has been developed by Le 

Fever and De Luca (1982). A  special electrode which permits three channel recordings from the 

same motor unit is used. The recordings offer identification of interfering potentials and those 

potentials that have similar shapes. All channels are sampled at 50 KHz to reduce error during 

alignment of templates with unclassified MUAPs. All channels are then compressed by storing 

only those segments of activity exceeding a noise threshold set by the operator. Pattern 

recognition is performed with information from the discharge timings of detected MUAPs using a 

manually assisted statistical analysis. The algorithm is based upon a maximal a posteriori 

estimation of the probability of the moment each MUAP present in the recording will fire. If the 

new MUAP and the template are found to have been produced by the same unit then the template 

is updated to compensate for random variations in the MUAP waveform. Otherwise, it is 

considered to be a new motor unit firing, and is treated as the initial estimate for the new template. 

The method is capable of resolving superimposed MUAPs. The program is time-consuming, but 

the reliable determination of firing rates of up to eight MUAPs that is achieved at majdmal 

contraction is not yet possible using any other method.

A  commercial implementation (Nicolet Inc., 1986) of the method due to McGill et al. (1985) 

produces the results shown in Fig.[2.4(a)] to Fig.[2.4(c)].
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2 3 3  Frequency Domain Analysis Techniques

Frequency domain or harmonic analysis is generally performed using the well known Fourier 

transform. This can be understood as a decomposition of the signal into sinusoidal components of 

different frequencies, or into travelling waves of different length in the case of propagating action 

potentials. The strength of the components as a function of the frequency constitutes the spectrum 

of the signal. One aspect of spectral analysis is that it offers a means of detecting periodicities 

hidden within deterministic or random signals (e.g. Interference pattern EMGs).

Numerical signal analysis, with the use of discrete Fourier transforms implemented on digital 

computers, has increased the possibilities of manipulating the EMG signals in ways not possible 

with any analogue filter bank analyser or the techniques already mentioned in the previous 

sections.

The digitised signal is first multiplied by a time window. This is because only a finite record length 

can be used to estimate the spectrum of the signal. The finite record length causes errors in the 

estimate through leakage to adjacent spectral components. This leakage can be reduced if the 

signal is smoothly tapered down towards both ends of the record. The conversion to the frequency 

domain is then done with a discrete Fourier transform. Normally a fast Fourier transform (FFT) 

devised by Cooley and Tuckey (Brighman, 1974) is used to reduce computational time and effort. 

A  subsequent calculation of squared absolute values of the transformed signal gives the power 

spectrum. Mathematically the power spectrum G(j(o) can be represented in terms of the Fourier 

amplitude ^(jw) by the following formula:

G(jw) = lim(l/2T)|qf(j(o)^(-jw)|  Eq.[2.1]
T - »  00

These Fourier components are the results of a Fourier transform:

+ T

= /0 (t)ex p (-j(o t)d t..............................................................................Eq.[2.2]
-T

where 2T is the length of the observation interval.

Apart from its mathematical function of time to frequency domain transformation, the transform 

can be considered as an averaging of the time dependent signal 0 (t) with an oscillating weighting 

function. It can also be interpreted as a correlation between the signal and an oscillating function, 

is thus sensitive to the occurence of periodic components in the signal.
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The usefulness of the FFT as a tool in signal analysis is seen in Fig,[2.5(a)] to Fig,[2.5(d)]. A  

computer generated biphasic action potential, as seen in normal muscles, and the corresponding 

power spectrum is shown in Fig.[2.5(a)]. Fig.[2.5(c)] illustrates the result of summing the biphasic 

potentials such as might be generated during a maximal contraction. The potentials have been 

randomly distributed over the observation interval and the total signal has the character of random 

noise. The power spectrum now contains large fluctuations but in the mean it has the same shape 

as that of the individual signals. Hence the spectrum of randomly summated signals essentially 

reflects the properties of the individual components. Another case of particular interest is the 

temporal summation which occurs in the spectral analysis of MUAP trains. Fig.[2.5(b)] depicts 

the spectrum of a series of single MUAPs arriving in a regular sequence. Here the spectrum is 

characterised by a number of peaks occurring at frequencies equal to the repetition rate and its 

harmonics. Also in this case the spectrum envelope has essentially the same shape as that of the 

individual signals in the pulse train. In Fig.[2.5(d)] the signals have been assumed to arrive in 

bursts with small relative time differences, having been distributed over the observation interval 

with a dispersion having a standard deviation of approximately 1.2% of the length of the 

observation interval. A  dramatic change is produced in the power spectrum of the signal as 

compared with that of the original signal. In this case the plot reveals several properties of the 

signal which are hidden from visual inspection of the time sequence results.

The above example is an indication that spectral analysis can reveal underlying mechanisms of the 

EMG signal rather than describing details of the shape of the signal. It is this property of the 

Fourier transform that provides the interrelations between spectral measures and other 

characteristics of the signal, such as changes in the duration of a signal with otherwise unchanged 

form causing a change in the spectrum. Thus for example, the duration per phase in a MUAP will 

have an effect on the positioning of the spectral features on the frequency axis. For MUAPs with 

irregular phases one can show that the zero crossing frequency (indicative of the average duration 

per phase) is essentially a function of the rate of spectral decrease on the high frequency side 

(Rice, 1944, 1945). Note the connection established with a time domain characteristic. Also, as 

fatigue in muscle increases, the nerve conduction velocity increases (Lindstrom et al., 1970) which 

in turn leads to MUAPs of increased duration. This produces a similar effect in the spectrum as 

the above. Indeed the tracking of the median frequency (Stulen and De Luca, 1982) provides an 

index of localised muscle fatigue. Additionally information concerning the average firing rate and 

firing rate variations (Lago and Jones, 1981) can be obtained from the power spectrum.

These methods, however, continue to be used only as reseach tools mainly because the spectral 

shape is influenced by a variety of phenomena which interact in a very confusing manner. In 

particular motor neurone firing time statistics and time delay variations (Lago and Jones, 1977) 

influence the spectral profile as well as the conduction velocity and MUAP shape (other problems
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are associated with baseline drift, needle movement, size of the innervation zone, syncronisation 

and cross-talk). Correct interpretation of the spectral shape is thus extremely difficult and many 

conflicting results have been reported. The dilemma is further increased because the spectrum of 

interference EMG can be shown to be the product of a function derived from the pooled motor 

neurone pulse train spectrum <}>((»)) and the spectrum of the average action potential | H J ̂  (see 

Fig.[2.6]). Significantly different action potentials can also produce similar spectra because the 

spectra do not contain any phase information.

In general it seems that the EMG spectral data yields useful information readily when it is 

processed so as to enhance a particular feature such as the peak frequency, the average firing 

frequency or the median frequency. The spectrum in full detail is not easy to interpret.

23.4 Turning Points Spectral Analysis

The information of most interest, relating to the existence of multiphasic (abnormal) potentials, is 

contained in the time locked groups of turning points within the interference pattern EMG, as 

recognised by Willison (1963) and others. This information exists in the power spectrum of the 

EMG itself but is overwhelmed by the other influences aheady described above. If however 

spectral analysis is performed on the point process describing the EMG, then much of the 

distracting information from the power spectrum can be removed.

This technique (Lago and Jones, 1983) involves marking only significant turning points in the 

interference pattern EMG. The selection of significant peaks is performed after a noise reduction 

process and then peak amplitude comparisons with a peak discrimination factor is used. This 

limits the acceptance of artifactual deflections along a wave due to noise. Once the markers have 

been assigned, a 0-1 binary sequence is obtained upon which an FFT is performed. The 

processing sequence resulting in the turning points spectrum is illustrated in Fig.[2.7].

A  prime attraction of this method lies in the fact that the spectral shape arising from normal 

muscle producing a predominance of biphasic or triphasic potentials is reasonably simple. 

Fig.[2.8(a)] and Fig. [2.8(b)] show this. More complex shapes arise from more complex potentials 

as in Fig.[2.8(c)] and Fig.[2.8(d)].

Research work on inferring the shape of the action potentials from the turning points spectrum is 

currently being conducted by colleagues (Jones, Lago, and Parekh). The first area of investigation 

involves the creation of standard spectra, representative of normals and of known disorders, which 

are characterised by their mean and first two principle components. It is then intended that new 

spectra should be classified by observing which standards they are closest to. The second 

approach concerns preprocessing the sequence of time markers that represent significant peaks in
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the EMG in such a way as to produce marker sequences which have spectra of the type in 

Fig.[2.8(a)]. This preprocessing, called splitting involves the allocation of successive markers to 

two or more sequences in a cyclic order, shown in Fig,[2.9]. It can be shown that the number of 

splitting processes required to obtain simple spectra as in Fig.[2.8(a)] is related to the number of 

positive phases in the action potential. For example, the sequence of turning points related to the 

interference pattern EMG of the spectrum of Fig.[2.8(c)] would require at least a four way split to 

produce the flat simple spectrum of Fig.[2,8(a)]. The reasoning behind this is that these myopathic 

potentials, having four positive phases, will spatially summate but maintain the grouping and time 

locked sequencing that is hidden in the resultant interference EMG at moderate to high 

contraction levels. An alternative process of thinning successively allocates the events of the 

original sequence at random to two new sequences. In either case the objective is to remove the 

clustering effect of the time locked sequence of turning points (mentioned earlier) so that they can 

be considered as each marking only one turning point of the action potential. Fig.[2.10] shows the 

thinning and splitting process applied to a synthetic EMG made up of action potentials with four 

positive phases.

Despite considerable experience gained using the methods described in the sections above, few 

are used routinely in most clinical situations. This is presumably because an adequate set of 

diagnostic standards (results interpretation criteria and normative databases) and examination 

procedure standards (use of standard electrodes and forcing protocols) do not exist. Additionally 

on-line computing facilities incorporating these methods have not been developed and/or 

perfected for use in the clinical environment (the exception to this is the turns-amplitude analysis 

of Stalberg et al., (1983)). Furthermore incorrect classification of patients using automatic analysis 

of the interference EMG in controlled situations is known although not well documented (Jones 

and Lago, 1983).
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2.4 The Modelling of Emg-Force Dynamics

This section is intended to provide information on some of the muscle modelling procedures that 

have been tried by several researchers. The accurate control of force in these experiments is

highlighted to give the reader an insight into the problems that can occur without it. EMG-force

modelling is a quantitative technique that is used in EMG investigations, and hence this resumé is 

purposely included in this chapter. Nevertheless, a definite binding exists between the ideas that 

follow, and those that resulted in the work described in chapters four and five which are concerned 

with the accurate control of muscle loading.

In-vitro experiments to determine the mechanical properties of muscle have been conducted by 

Wilkie (1956) in a series of isometric (constant length) and isotonic (constant force) contraction 

experiments. Wilkie used simple apparatus consisting of a lever arm pivoted about its centre and a 

dissected frog sartorius muscle clamped to one end. By applying loads at one end of the lever and 

tetanising the muscle at the other, he was able to determine the following:

•  (a) tetanic tension-length curve,
•  (b) isometric stress-strain curve,
•  (c) isotonic contraction-time curve,
•  (d) force-velocity curve, and
•  (e) the active-state curve.

These curves are directly related to the three element (non-linear) elastic model of Hill (1938), 

Fig.[2.11]. The parallel elastic component (PEC) represents the elasticity of the passive muscle 

and of the joint. The force generator is mimicked by the contractile component (CC), and the 

series elastic component (SEC). The CC transmits its force through the SEC and together they 

represent the elasticity of the tendons and ligaments. Wilkie’s experimental results are shown in 

Fig.[2.12(a)] to Fig.[2.12(d)]. The characteristics show the typical static and dynamic 

non-linearities associated with contracting soft tissue. Fig.[2.12(b)] illustrates a set of isotonic 

shortenings of muscle against various loads. This indicates the following:

an increase in latency to the point when the muscle has developed isometric tension equal 
to the isotonic load,
a decrease in the maximum shortening, and
a decrease in the initial velocity of shortening, i.e. the initial slope of the curve, decreases 
with increasing contraction force.
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FromFig.[2.12(b)] Wilkie deduced that when the velocity of shortening is zero (at the plateau 

points) then the tension developed by the muscle is only a function of its length. However, this is 

only strictly true when the muscle length is near its in-vivo length. The plot of the isotonic force 

against the initial velocity of shortening gives the characteristic of Fig.[2.12(c)]. This has been 

described by Hill (1938) using the equation:

V = b(Fo-F)/(F  +  a) ............................................................................... Eq.[2.3]

where V =  dx/dt =  velocity, F =  force, Fo = maximum isometric tension. The parameters a and 

b have the dimensions of force and velocity respectively and are in fact functions of muscle length 

as can be deduced from Fig.[2.12(a)]. The curve shows that even when there is no load on the 

muscle the velocity has a certain limited value. It does not become infinite as would that of an 

undamped elastic body. Under isometric conditions, when the velocity is zero, the force is 

maximal. The non-linearity suggests that if the system is a viscous-elastic one, then the viscosity 

must be non-linear.

The active-state curve (interrupted line) of Fig.[2.12(d)] describes the isometric tension which the 

CC can develop (or bear at any instant without lengthening) at any point in time. To measure this, 

the effect of the SEC must be removed by quick stretch or by sudden isotonic loading. The 

experimental conditions are arranged such that sudden isotonic loading occurs after a change in 

length greater than the amount by which the SEC contributes to the tension developed by the 

muscle (from the stress-strain curve). In this way the twitch-like tension developed solely by the 

CC was measured (Ritchie, 1954). Under these conditions the tensions produced after various 

durations of tetanus, must pass through the active-state curve. The peak points are selected since 

the CC and SEC are at constant length during this part of the twitch. Therefore the tension 

produced at this point must be due to the CC only.

Dynamic models based on Eq.[2.3] have been developed by many researchers (Hof and Van Den 

Berg, 1981; Glantz, 1977; Bawa, Mannard and Stein, 1976; Rees et al., 1986). An example is the 

thirteen parameter electrical analogue due to Hof and Van Den Berg (1981) for investigations on 

the gastrocenemius-soleus complex. The characteristics describing the PEC and SEC can be 

determined experimentally or by heuristic mathematical descriptions of their probable forms. Hof 

and Van Den Berg (1981) used a logarithmic expression for the SEC derived from the inverse 

relationship existing between the SEC compliance (reciprocal of elasticity) and the active state 

(Ritchie and Wilkie, 1958). The PEC was modelled on exponential data obtained from the 

literature. The driving signal for their analogue, to give the active state characteristic, was chosen 

to be the rectified and smoothed EMG as this is the most convenient measureable signal 

representative of the neuronal input to the CC. As would be expected in such a model, the 

proliferation of parameters requires an equal amount of calibration procedures when used with 

different subjects and in different muscles. The models have been relatively hard to use for in-vivo
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investigations for this reason and that the parameters specifying the elements of the model are 

non-linear (Jones, 1986), Although some of the results obtained are promising, the models will be 

difficult to use routinely.

For routine studies, a simpler approach is necessary employing linear models of the muscle 

dynamics. In order to study the system with linear descriptions one must assume that either the 

force or length are regarded as constant and also that the effects of fatigue are carefully 

considered. The latter is important when large records of EMG data are required. This demands 

longer periods of contraction leading to variations in the EMG signal itself which in turn is used to 

drive some of these models. One method of in-vivo linear modelling is to first estimate the average 

isometric twitch response experimentally. This can be done by supramaximally stimulating the 

muscle, synchronously averaging the resulting response and then fitting this response to a 

parameterised mathematical equation (Milner-brown et al., 1973). The equation used could take 

the form of a linear combination of two exponentials to account for the rising and decaying parts in 

the twitch response: f(t) =  Aexp(-at) - Bexp(-pt).

Another method is to take the smoothed and rectified EMG as a close representative of neuronal 

activity and then relate it to the actual force produced by an appropriate system identification 

method. The impulse response of such a model then provides the average twitch response. Bekey 

et al. (1966) investigated the human triceps muscle using an on-line parameter tracking procedure 

implemented on an analogue computer. The rectified EMG-force relationship was successfully 

described by a second order differential equation when using short bursts of rhythmical voluntary 

contraction. The reasons for their particular forcing protocol and choice of model were not 

explained. Other second order models have been reported by Cogshall et al. (1970), Gottlieb et al. 

(1971), Mannard et al. (1973), Crosby (1978), Lago (1979), and Zahalak (1979).

Lago (1979) points out that in an almost noise-free situation all modelling algorithms will yield, 

essentially, the same estimates for parameters. However the presence of noise in the majority of 

input data is such that the choice of modelling algorithm and data collection procedure must obey 

precise criteria to produce reliable and non-oscillatory results. In addition to the need for 

restricting the muscle length and velocity of contraction for isometric and isotonic investigations 

respectively, it is particularly important in isometric conditions to constrain the tension such that 

the data lies on or near the linear portion of Fig.[2.12(a)].

No studies so far reported have demonstrated that a linear EMG-force model can be made totally 

independent of the force pattern. The reasons for the residual dependence of the models on the 

force pattern demanded are still conjectural. The problems of EMG-force non-linearity is, 

however, a likely cause. An example of a yet unexplained EMG-force relationship is shown in
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Fig.[2.13], where bursts of EMG can be seen when the force has dropped to almost zero. These 

details of the EMG should be interpreted as noise as far as identification algorithms are concerned 

(Jones et al., 1987).

2.4.1 The Integrated EMG (lEMG) and Force

Clinicians and physiologists have sought to quantify the total activity, which is closely related to the 

generated force, and also the fluctuations which contain information on the constituent action 

potentials. Although much literature exists on the relationship between the EMG and force 

(Brigland and Lippold, 1954; Troup and Chapman, 1972; Lloyd, 1971; amongst others) the results 

of these experiments are not quite in agreement (Metral and Gasser, 1981). The mathematical 

relationships postulated have included linear, non-linear, quadratic and even linear followed by an 

exponential. These discrepancies can be attributed to the variations in experimental procedure 

used. First, and most likely, is the contraction protocol used (both static or dynamic and isometric 

or isotonic) and muscle or muscle group investigated. Second, a confusion between smoothed and 

integrated (averaged) EMG (lEMG) exists in terms of the time constants used for the electronic 

integration and the prior rectification, be it half or full wave. Finally, the effects of fatigue have not 

been carefully evaluated.

One definition of the lEMG is equivalent to measuring the area under the fully rectified signal for 

three arbitrarily chosen sub-intervals of period /̂6 sec to give a total integration period of sec 

(Lippold, 1952). Another version is to use the full-wave rectified signal followed by an RC low 

pass filter (Inman et al., 1952). The time constant was chosen subjectively to compromise between 

an output smooth enough to permit useful analysis and such that it would be small enough to yield 

a desired accuracy. Hof and Van Den Berg (1981) used a third order averaging filter (Garland et 

al., 1972) and a time constant (T) of approximately 25ms. According to physiological data 

(Edman, 1970) T should be very short. However one would prefer to have a large T to obtain 

sufficient smoothing of the rectified signal, Hof and Van Den Berg (1981) determined their time 

constant by applying a step input to the summing point of their integrator zmd selected a T such 

that their non-linear Hill model did not produce any noticeable slowing down of the step response.

Using the gastrocenemius-soleus muscle group and surface electrodes, a hnear relationship has 

been found between the area-type lEMG and the isometric tension throughout the normal 

contraction range (Lippold, 1952). De Vries (1962) have also reported a linear relationship with 

the same lEMG method as Lippold at very low levels of contraction in the elbow flexors with 

surface electrodes. The rectified and electronically smoothed lEMG has revealed a linear relation 

with a time delay (Inman et al., 1952). Thus, by and large, it was generally accepted that the lEMG
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provided a reasonable index of muscle activity for most of the larger and smaller muscles with 

short tendons. However, Bigland and Lippold (1954) observed that certain muscles, such as the 

tibialis anterior, have given rise to quadratic relations under isometric conditions.

Under isometric isotonic conditions it is not possible to describe the lEMG with any form of 

numerical index (due to the variations between muscles and subjects) and the qualitative 

information obtained has not been very useful for physiological studies. In order to provide an 

insight into the recruitment, firing frequency and synchronisation of active motor units it is more 

appropriate to investigate other applications of the lEMG in situations that are closely related to 

normal voluntary effort. The use of dynamic forcing protocols is necessary in these situations.

Bigland and Lippold (1954) studied the relationship between the lEMG and tension at various 

velocities of shortening in voluntary contraction. For constant velocity anisotonic tests on the calf 

muscles, a linear relation between lEMG and velocity of shortening and lengthening was found. 

Also less electrical activity was required during the lengthening, or negative velocity phase. This 

finding is in agreement with the force-velocity relationship determined by Hill (1938). For isotonic 

and varying velocity tests, a linear relation was again found, although in the lengthening phase the 

electrical activity remained constant. The constant electrical activity points were used to draw a 

family of force-velocity curves and were once again in agreement with the Hill equation.

Gottlieb and Aggarwal (1971) investigated the relation between the foot torque and the lEMG  

from the soleus muscle. The actual foot torque was compared with the output from two cascaded 

first order low pass filters (producing a second order function) using the lEMG as input. 

Isometric step and ramp force tracking was employed and one of the time constants was said to be 

related to the active state although it was not specified how exactly, apart from the response shape 

that was obtained. The muscle twitch response obtained from this model was not similar to that 

actually measured. The conclusion was, that if the EMG should undergo any dynamic changes of 

its own which are independent of the applied torque (e.g. through the stretch reflex loop), then 

the model was bound to reveal less information on the muscle dynamics (cf. Fig.[2.13]).

Metral et al. (1981) recorded the surface EMG from the extensor carpi radiales of normal human 

subjects during voluntary isometric anisotonic contractions. A  bi linear relation was obtained 

between the lEMG and force. It was stressed that the pursuit task had to be perfectly linear to 

obtain this relation. Otherwise, often a good parabolic fit was obtained with correlation coefficient 

greater than 0.98. The first linear trend occurred up to 50% maximum contraction in agreement 

with Milner-Brown et al. (1973). The second linear trend of higher slope above 50% suggested a 

rapid increase in lEMG attributable to the recruitment of higher threshold motor units having 

large amplitude action potentials. A subsequent analysis of the relationship between the running
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sum of the lEMG and increasing force produced a fit to the sum of two increasing exponentials. 

The first exponential was taken to represent the contractile properties of the muscle 

(tension-length), and the second taken to represent motor unit recruitment on the basis of the 

parameter variations with changing muscle length and rate of tension increase.
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Chapter Three

A Computer System for Control and Digital Signal 
Processing Applications

3.1 Introduction

This chapter provides a description of the main elements in a flejdble and ergonomically efficient 

computer for use in basic digital signal processing, data acquisition and external instrument 

control tasks. The computer architecture is such that the reconfiguration for different procedures 

is relatively straightforward. To-date, the computer has been configured for two analysis 

procedures. It has wider use in the control of, and acquisition of data from, the muscle load which 

is described in chapter four. Experience gained with this Signal Processing Computer (SPC), and 

the emergence of new computer and software technologies, point the way towards a greater 

emphasis on the use of commercial hardware and high level programming languages. This should 

allow for shorter research and development timescales in order to create analysis environments 

that embody the basic philosophy and functionality of the SPC.

Today instrumentation in almost every field is becoming increasingly smart or intelligent. This is 

primarily because the incorporation of a microprocessor and its associated software allows more 

complicated analysis to be performed and permits a more complex configuration than in a 

conventionally designed instrument. The rapid proliferation of advanced instrumentation 

ownership among the general public has put demands on the system designer to obscure most of 

the complexity of the the instrument behind an interface that is user friendly. Lack of time to 

consult systems that perform complex analyses is an important consideration in the specification 

and design of today’s computers which must be relatively quick, especially in a clinical 

environment where time is often a critical factor. There is little doubt that, through the use of 

suitable software and the associated interface hardware, instrument ergonomics can be maximised 

in terms of user friendliness.

A  significant problem with most of the digital signal processing systems available today is the 

rigidity of the user interface adopted. As a result of this, an inordinate amount of time is required 

to consult the system and its associated manuals. The SPC was designed for use either by those 

with no expertise in digital signal processing or in situations where the user is unable to pay much 

attention to the instrument. Such situations may arise in the operating theatre or outpatient clinic. 

The SPC uses a menu-driven user interface to maximise ease of interaction. The system allows
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entry of analysis parameters, patient details etc. in a convenient manner by presenting the user 

with a page of options on the screen, and allowing him to depress the appropriate 

software-monitored (soft) keys. The small number of keys used to control the instrument obviates 

the need for an alphanumeric keyboard, although this can be connected if required. Relabelling of 

the keys and the use of branching menus allows the user to progress through signal acquisition, 

processing and display of results with the knowledge that all options have already been considered 

by the system programmer. Furthermore, the instrument exists as a single portable unit, 

containing the display unit with its soft keys, a 5^/4 inch floppy disk drive and various data 

acquisition and programmable processing cards.
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3.2 Instrument Specification

The computer was required to perform on-line analysis of data that had previously been analysed 

off-line and this led to real-time data throughput being considered. The normal pre-requisite for 

real-time analysis is a small (dedicated) mini or microcomputer. In an attempt to overcome the 

development of a dedicated system restricted to only one or a group of analysis methods, a strategy 

of flexible application was adopted based on generic software and simple, but versatile hardware. 

This would enable the creation of dedicated systems based on re configurations of the various 

system modules. The modules comprise a suite of software routines and programmable hardware 

which together allow the construction of multiple and independent applications by a programmer 

familiar with signal processing and the basic system concepts.

By real-time analysis one most often intends to convey the idea of very fast processing of data 

whilst it is being acquired. In practice, however, real-time analysis is performed on-line at a speed 

appropriate to the amount of time allowable before the display of results or the execution of 

actions. The advantages of doing an analysis in real-time are as follows and were considered 

important requirements for this computer system:

•  Immediate availability of information to the user. This leads to greater throughput and 
makes repetition of experiments, where validation is necessary, relatively easy.

•  System and analysis parameter settings can be optimised rapidly by examining the full or 
partial results of a data analysis.

•  Controlled variables can be continually monitored and adjusted in accordance with 
experimental and ambient conditions.

•  The fact that complex results can be obtained quickly makes it possible to design and 
implement other investigation procedures that would otherwise be impracticable or 
overlooked.

The disadvantages highlighted when considering real-time analysis were:

•  Real-time programs are more complex than others with regard to the difficulty of design 
and coding and with regard to testing, debugging, and implementation.

•  A  good source of test data (simulated or real) is essential for test purposes.
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Two applications in clinical signal processing were specified for development in the computer:

•  The first was acquisition and processing of blood flow and pressure signals during surgery. 
In this application, derived from Butler et al. (1980) and Law et al. (1983), the surgeon 
would be presented with flow, pressure, or ECG displays, or vascular impedence modulus 
or phase characteristics to assist in the assessment of the vascular system.

•  The second application area was implemented as a simulation in this work and is intended 
to demonstrate a potential use of the computer in an electromyography outpatient clinic. 
A  description of the analysis procedure used (Turning Points Spectral Analysis of the 
Interference Pattern EMG (Lago and Jones, 1983)) has been presented in chapter two 
(Sec.[2.3.4]).

These analyses required the instrument to be capable of sampling at least three channels of 

information (e.g. blood flow, blood pressure, and ECG). To accommodate electromyographic 

investigations and to adhere to the philosophy of flexibility in other medical, biological, and 

industrial applications, the system was required to facilitate acquisition of up to four multiplexed 

channels with 8 or 12 bits resolution at a nominal sampling frequency of 3,3 kHz.

The software was designed to aid both straightforward reconfiguration and ease of interaction with 

the instrument. The SPC should also be easy to expand and to this end the use of commercial 

boards adhering to the S-100 bus standard was specified. This will enable additional boards to be 

bought from manufacturers and the present ones to be updated.
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3.2 SPC Hardware Organisation

The specification of the SPC outlined in Sec.[3.1] has been translated into the system shown in 

Fig.[3.1], which clearly illustrates the way system software interacts with hardware to provide a 

simple patient/user interface. The hardware schematic diagram in Fig,[3.2] shows both the 

individual elements of the SPC and their communication links across the S-100 bus.

32.1 General Hardware Description

The SPC is essentially a dual-processor computer containing six boards, three of which are 

standard commercial boards. One of the two processors (6 MHz Zilog Z80B) resides in the 

commercial Single-Card Computer (SCC) together with 64 kbytes of RAM, three serial ports, 

three parallel ports, and two counter-timers. The second processor (4 MHz ZUog Z80A) resides 

in the Signal Acquisition Processor (SAP) board. This was initially designed by Hailstone and 

Watson in 1983, and subsequently modified by Hailstone and Sehmi during 1984, to cater for EMG 

acquisition and analysis. The SAP is intended to control signal acquisition of up to four channels 

of input data and also to drive XY plotter outputs for obtaining hard copies of results via the 

Signal Acquisition Card (SAC). To ensure control over the processors, a hierarchical 

arrangement had to be adopted, giving rise to a host and slave processor configuration. The SCC 

is considered the host processor and the SAP, the slave or satellite processor.

Through host-resident communication protocol programs and slave-resident monitor programs, 

the host is able to control the slave processor by passing coded messages (i.e. control data) across 

the data lines of the S-100 bus and these are then decoded and executed (the handshaking 

mechanism will be explained later in the software section). Using a similar handshaking method to 

transfer acquired data to the host from the slave would be very time consuming. A  Dual Plane 

Memory (DPM) (Watson, 1983) was the solution implemented for this (non-control) data transfer 

between the slave and host processors because it allows two independent 16 kbyte blocks of data 

(i.e. memory planes) to be accessed separately by both the host and slave processors. The host 

processor can force the SAP to interchange these planes of data immediately by issuing a single 

plane-swap command using the communication protocol programs. The above dual-processor 

arrangement allows for signal acquisition on the SAP and signal processing on the SCC, thus 

permitting concurrent operation.

The remaining (commercial) boards are the floppy disk controller, and the graphics controller. A  

Cromemco 16K floppy disk controller (FDC) card provides disc Input/Output (I/O) and other 

facilities such as boot-strapping the operating system from disk on power-up. This facility is 

required to obviate the need for a keyboard terminal and VDU monitor for loading the operating

3-5



S P C  H A R D W A R E

H O S T
SCC.64K RAM
| j  ARROGATE I  
[ J P U  Z - 8 0 B  J

16K DISC 
CONTROLLER

B - E]  U - 

V I D E O  
MONITOR

- □ □ □ □

G R A P H I C S  
CONTROLLER
(MATROX ALT 5 1 2  >

A
V

A
V

S IG N A L  l ° -  
I N P U T S  2 0 -

4 0 -

LOCAL  
B U S

SATELLITE

PLOTTER OUTPUTS

Fig.[3 .2 ]  SPC hardware sc h e m a tic  showing com m unication  
links a c r o ss  th e  S —100 bus.
SCC: Single Card Computer; SAP: Signal Acquisition Processor;  
DPM: Dual Plane Memory, SAC: Signal Acquisition Card.

J \
V

[>



system and executable files of an application. The RS232 serial line on the FDC allows the 

connection of a terminal and monitor for local (i.e. on the machine) program development (edit, 

compile, link, run, and debug) through disk-based operating system facilities. A  Matrox ALT 512 

graphics controller provides logical overlay of two 256 x 256 resolution video planes on a seven 

inch diagonal display monitor. An external VHP connection is provided to drive larger monitors.

The non commercial hardware modules and how they interact with each other is described briefly 

in the following three sections.

3 2 2  The Signal Acquisition Processor (SAP)

Fig. [3.3] shows a schematic diagram of this slave processor board as it existed prior to the new 

developments to be mentioned later. The main features of this board are the use of a local bus to 

communicate with 8 kbytes of local PROM, 24 kbytes of local RAM of which the last 16 kbytes are 

a plane in the DPM, the timer, I/O and protocol-communication ports, and the remote S-100 bus. 

The memory chips are addressed in the order in which they have just been mentioned. To the 

right of the schematic diagram are the control, data and address signals used to interface the DPM  

and SAC. Decoder A provides all the I/O mapped control signals for the SAC and a single control 

signal for the DPM. The SAC control (select) signals are used to address the analogue to digital 

converter (ADC) and the multiplying digital to analogue converters (MDACs), and to select the 

analogue switches (ASWs) for multiplexing data into the computer. The DPM control signal is 

used to swap the planes in the DPM. In addition, decoder A also provides control signals for the 

peripheral parallel interface, programmable interval timer, and the host-slave communication 

protocol ports. The latter are the route through which the SAP exchanges control information 

with the host processor along the S-100 bus.

The SAP/host interface has its base address set in host I/O space and can be changed with 

switches. The interface base address is fixed in SAP I/O space. The control-data (CNTR/DATA) 

port is read-only and hence an input port (with respect to the SAP), and the status-data 

(STAT/DATA) port is write-only and hence an output port. During normal operation the host 

loads the CNTR port with a data byte that contains bit-coded information. This informs the SAP 

whether to expect an additional data byte through the input DATA port, in the case of a 

SAP-settable function, or whether to send data to the output DATA port, in the case of a 

SAP-readable function. The SAP will update its STAT port with a coded data byte whenever it is 

executing a task that has been requested by the host. In this way the host always has the immediate 

SAP status available for interrogation. When the SAP is idle it polls the host’s ready and readlset 

flags that are set through the CNTR port and will respond accordingly. A  similar communication 

protocol exists within the host processor which is more complicated because it is required to
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interpret and act upon more information from the SAP status byte. A  description of this protocol 

and its interaction with the SAP communication protocol will be treated separately in the section 

on software organisation.

The programmable interval timer (Intel 8253) is organised as two related and one independent 

16-bit counter-timers, with all modes of operation being software programmable (i.e. settable) by 

the SAP under host control.

The arrangement described above will enable interrupt driven signal acquisition to be performed. 

The sampling interval can be adjusted easily by changing the count values that are loaded into the 

counter timers. At the end of each sampling interval the SAP is interrupted on a counter time-out 

and an interrupt service routine (ISR) acquires a byte of data through the SAC. The multiplexing 

of more than one channel of data is performed by the ISR in the monitor program residing in the 

SAP. The ISR outputs a data word to the analogue switches thereby selecting the correct input 

channel to sample.

The peripheral parallel interface (Intel 8255) is not dedicated and could be used to interface 

additional peripheral devices such as a printer or various alarm devices to signal any error 

conditions should the SPC be configured as a monitoring instrument.

3.23 The Signal Acquisition Card (SAC)

This board had not been fully integrated into the SPC at the time the author had completed the 

simulation suite of programs (for EMG Turning Points Spectral Analysis) running on the SCC. 

Several elements remained to be added and debugged in the SAP board. This procedure was 

taken up by a colleague (Kabay, 1985) who was required to correct and implement the following:

•  The synchronisation of trigger timing between Sample and Hold (S&H) Amplifier and 
Analogue to Digital Convertor (ADC).

•  The implementation of programmable anti-aliasing filters for automatic selection of 
cut-off frequency, bandwidth and roll-off.

The schematic of Fig. [3.4] shows the main elements of the signal acquisition card. These are:

•  a bank of analogue switches (ASW) used for input data multiplexing,
•  two 12-bit multiplying digital to analogue converters (MDAC) used for automatic offset 

adjustment and programmable gain control respectively,
•  one 12-bit analogue to digital converter (ADC) with integrated lOV reference for 

conversion of input data to a form useable by the computer, and
•  a sample and hold amplifier used to enable accurate conversion of input data during the 

sampling interval.
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Two analogue switchces are used to put the gain MDAC into the bipolar mode for plotting 

purposes. The SAC is interfaced directly to the SAP through the SAP local data bus and several 

control signals.

The intended operation of the SAC is largly software driven and is explained in some detail later in 

Sec.[3.3.4].

33.4 The Dual Plane Memory (DPM)

A  schematic diagram of this board is shown in Fig.[3.5]. The DPM comprises two planes, each 

consisting of 16 kbytes of static RAM, and is configured such that one plane resides in the memory 

space of the host processor and the other resides in the memory space of the SAP. The former 

plane in host memory space is phantomed through the S-100 bus and can be selected to be on any 

one o f the four 16 kbyte boundaries of the SAP’s full address space. An output control signal from 

the DPM  board logic provides the necessary phantoming signal. When this signal becomes active, 

the host processor board will automatically disable its own currently addressed memory location 

thereby allowing only the DPM memory location at the same address to be accessed. The other 

DPM  plane is accessed through the local bus between the SAP and the DPM board. Under host 

control the SAP can initiate a plane swap which is used to transfer acquired data to the SCC (host) 

from the SAP. This is the main use of the DPM although it could be used to transfer data and 

executable programs to the SAP from the SCC.

More detailed descriptions of the plane reversal procedure under software control are given in 

Sec.[3.3.5]. The DPM feature in the SPC provides data throughput at much faster rates than could 

be obtained using direct data bus utilisation techniques such as I/O and direct memory access 

(DM A). The transition time for a plane swap is equivalent to the execution time of the single 

output instruction needed to negate the SAP plane swap control signal and is approximately I.Vjjls. 

DM A methods using the Z80 family of processing logic having the same memory bandwidth would 

take typically 7 to 8ms.
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3 3  SPC Software Organisation

The software for the SPC is written in a mixture of RATFOR and Z-80 Assembly Language. A  

large part of the author’s work was concerned with the development and specification of the SPC 

software and it is for this reason that a thorough explanation is provided.

33.1 General Software Description

The SPC software can be divided into three major modules:

#  (i) Host-resident kernel program: this suite of macros and dedicated subroutines 
provides the nucleus of generic user-configurable programs to run the desired application 
on the SPC. The kernel provides any number of screen pages each with its own menu. 
With each page is a RETN key function used to access the previous menu page and seven 
programmer definable key functions, one of which provides up to three pages of HELP 
information. These pages describe in detail the usage of the remaining key functions 
which might, for example, set the parameters for subsequent data analysis. By attaching a 
page (with its own key function definitions) to the key function definition of a preceding 
page, a branching tree structure can be built to any depth limited only by the available 
memory space. A  simple three-level tree structure is shown in Fig.[3.6]. The kernel 
program also handles the SAP communication protocol.

#  (ii) Host-resident graphics utilities package: this provides graphics primitives to display 
computed results in a visual format. This is attractive to a clinician, e.g. a physician, and 
has the added advantage of being able to convey trends or patterns in computed results 
more readily than a numerical listing.

# (iii) SAP-resident monitor program: this communicates with the host processor through 
the SAP-local-bus/S-100 interface. The SAP monitor executes the instructions asked of it 
by the host and consistently updates its status messages which can then be looked at by the 
host. Various functions may be set or read in the SAP by the host. The settable functions 
include the sampling frequency, number of input channels, analogue signal gain and offset 
using the MDACs, and DPM plane swaps.

These modules can be combined to create an integrated system application during the program 

writing stage. The design of the software modules allows a structured and systematic 

reconfiguration method for the SPC task handling capabilities. The ability to program in a high 

level language for floating point calculations is beneficial where speed is unimportant. Assembler 

programs can be used for speed optimisations.
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The SPC software will now be described with the aid of flow diagrams. These will show the general 

operation of the major macros and subroutines but will not represent them exactly as they 

currently exist, since they have all undergone improvements implemented by Kabay (personal 

communication, 1988) to incorporate hardware changes in the SAC and new signal processing 

utilities. Detailed software listings of the current programs are available from the Department of 

Engineering at the University of Leicester (c/o Professor N.B. Jones). Attention will be paid to the 

communication protocol existing between the SAP and Host processors (under routines SAPPRO 

and HSTPRO respectively). A  brief overview of the implementation of MUSCLE, the EMG 

Turning Points Spectral Analysis simulation package for the SPC is then given.

33.2 The Host Resident Kernel Program

The kernel is concerned with the overall control and co-ordination of the instrument, and the 

prompting of and display of information to the user. The prompting is organised as a menu page 

and selection of options is made by depressing the appropriate (soft) key from those surrounding 

the menu page. Depressing a menu soft-key leads to any one of the following actions being 

performed:

•  The execution of a function previously attached to that key during the program writing 
stage. This function may change the screen display into another menu page, with 
prompting of further options.

•  Display of computed results.
•  Simple message display (e.g. HELP information).

The soft-keys are always monitored for activation. Whether they have a function attached to them 

or not is entirely up to the programmer during the instrument configuration period. Soft-key 

functions exist as subroutines and therefore always return to the parent menu page unless the 

function generates a new menu page, in which case the function is a child as in Fig.[3.6]. The 

kernel also performs the protocol operations with the SAP.

All menu pages are generated by specifying the macro SPCKEY (see Fig, [3.7]). This macro writes 

the user defined menu and soft key legends to the screen through SETMEN. SPCKEY then 

monitors the keys with GETKEY and will transfer control to the selected subroutine when a key is 

depressed. At the end of each key scan the status of the SAP is checked by means of the protocol 

handler HSTPRO. SPCKEY contains two reserved key functions: Key 1 is used to step up the 

menu tree to the immediate parent menu page and Key 2 is used to access the user defined HELP 

pages. Keys 3-8 are initially undefined and can be used to generate the child menu pages in the 

menu tree by specifying a new instance of the macro SPCKEY in the subroutine attached to the 

key definition. For each instance of SPCKEY the programmer must provide the key legends, the 

menu and help texts, and the subroutines attached to the Keys 3-8.
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A  suite o f SAP function calls are provided to aid the programmer in setting and reading SAP 

parameters (i.e. SAP settable and SAP readable functions respectively). These functions load the 

relevant control and data words corresponding to the desired action, and then, by invoking 

HSTPRO, the control and data words are sent to the SAP CNTR and DATA ports (see Fig.[3.3], 

Sec.[3.2.2]). The SAP then executes the requested command under SAPPRO, in the SAP monitor 

program. The SAP settable functions provided are:

(i) Immediate Control Functions

•  Activate DPM plane swap (SAPMPS)
•  Start signal acquisition (SAPST)
•  Stop signal acquisition (SAPSP)
•  Transfer Data/Program via DPM (SAPXFR)
•  Execute transferred program (SAPXEC)
•  Plot transferred data (SAPPLT)

(ii) Control Functions With Data 

Data/Program start low addressbyte (ASDPAL)
High address byte (ASDPAH)
Data/Program length low byte (ASDPLL)
High byte (ASDPLH)
Set sampling interval low byte (ASSIL)
Set 8 or 12-bit A /D  conversion (ASWDLN)
High byte (ASSIH)
Set input channel number (ASCSPC)
Set gain MDAC low byte (ASGNL)
High byte (ASGNH)
Set offset MDAC low byte (ASOFL)
High byte (ASOFH)
Automatic input signal gain set (ASAGN)
Automatic input signal offset set (ASAOFF)
Set data plotting time base interval (ASPTI)

The parameter values used to set the SAP with the functions in (ii) above can be read from the 

SAP by the host using similar functions that are prefixed ARm xc instead of ASm xc.

The SPCKEY flow diagram describing the essential operations of the kernel program is given in 

Fig.[3.7j. Note that a similar flow diagram describes each instance of the SPCKEY macro at each 

non terminal node of the menu tree in Fig.[3.6]. Terminal nodes can only originate from a parent 

SPCKEY macro, and each macro must have a parent macro except for the Level 1 root macro (in 

which case the ’parent’ accessed through the RETN key is the CDOS operating system).
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3 3 3  The Host Resident Graphics Utilities Package

Primitive subroutines for the Matrox ALT-512 graphics board are provided in this package, called 

GRAPH which is written entirely in Z-80 Assembly language. The host resident kernel program 

uses these whenever it has to write to the display screen to draw graphics and print text, etc. The 

graphics board has a display field consisting of two 256 x 256 planes of video RAM. It contains its 

own refresh memory, TV sync and video generator, and aU I/O for the S-100 bus. Each dot (pixel) 

is addressable via the X-Y registers. The X-Y, dot colour (black or white), clear, plane select, 

status flags, and display mode control registers can be accessed by the host processor via six input 

and two output ports.

A  selection of graphics primitives in GRAPH allow the user to perform simple drawing tasks. 

Functions are available to plot and position points on the screen, draw lines and axes, and print 

characters in standard and greek fonts. The spatial orientation and size of the printed characters 

can also be specified. Different graphics screen modes enable the display of logical combinations 

of the video planes. Additional functions allow the storage and retrieval of graphics images to and 

from specified files on disk.

Together these primitives are sufficient to create adequate screen displays for the menu pages, and 

displays of computed results in the form of graphs and charts.

33.4 The Sap Resident Monitor Program

Tasks related to input data acquisition, SAP configuration, and communication with the host 

processor are performed by SAPMON. The primary or foreground task is to monitor the SAP 

control port (see Fig.[3.3], Sec.[3.2.2]) for host requests which are then executed as secondary or 

background tasks after the immediate SAP status has been made available to the host through the 

SAP status port. The foreground task is always returned to, and the SAP status updated, when the 

background task is completed. This concept can be illustrated with the flow diagram of Fig.[3.8].

Within the SAP monitor program reside several major subroutines:

•  SAPPRO: This handles the SAP/Host protocols. The CNTR port is polled and the 
control words are read when signalled by the host. SAPPRO continually updates SAP 
status by loading its STAT port with a status word. The host can then interrogate this port 
when necessary to co-ordinate message transfer. This constitutes a simple handshake 
mechanism implemented under software control.
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•  SAPCWI: This interprets the host control word that is obtained through the SAP control 
port under SAPPRO. The interpreted command is then executed and SAPPRO is 
re-entered. All set and read functions that the host can request of the SAP (see 
Sec.[3.3.2]) are performed by the corresponding slave subroutines in the SAP monitor 
program.

•  SAPRST: This performs SAP initialistaion after a hardware reset or software controlled 
reset from the host processor. SAPRST sets the stack pointer, performs a RAM test, 
selects plane 1 of the DPM, sets up the signal acquisition card (SAC) with default values 
for the input channel, gain and offset, and loads a default sampling interval count for the 
interrupt timers and a default A /D conversion word length. Control is then transferred to 
SAPPRO.

Signal acquisition under SAPMON is interrupt driven to allow the host to be monitored during 

input samples. This fits into the general philosophy of foreground and background tasking. The 

signal acquisition is thus considered a task of secondary priority relative to that of monitoring the 

host. With this arrangement the acquisition of data can be terminated if this is required by the 

host application. The start and stop commands are issued through the CNTR port in the manner 

described above. If SAP default values are not to be used, then the host application program must 

use the SAP set functions under the kernel program to select the A /D  conversion word length, 

sampling interval, and the gain and offset values per input channel. The sequence of events that 

occurs during interrupt driven signal acquisition is illustrated in Fig.[3.9].

On receiving a start signal acquisition command from the host, START will set up a vector address 

for the correct interrupt service routine (12 or 8-bit) and load the programmable interval timers 

with the interval counts corresponding to the selected sampling interval. The STAT port is 

updated signalling acquisition under way to the host and then the 2!i-80 maskable interrupt is 

enabled before returning to SAPPRO. When the timer times-out, the SAP is interrupted and the 

vectored interrupt service routine (ISR) is executed. The interrupt is disabled and each channel 

specified for input is in turn set up with a gain and an offset by loading the MDACs with the 

appropriate 12-bit data words. The specified channels are multiplexed and sampled, and the 

digitised data is loaded into the DPM. The interrupt is enabled and SAPPRO re-entered to 

monitor the host. At this point the SAP could be interrupted again by the timer or alternatively 

stopped by a command from the host. The end of data acquisition causes the interrupt to be 

disabled.

Once the DPM plane in SAP memory space has been filled with data the acquisition ISR wUl 

request a plane swap command from the host by setting a flag in the STAT port. SAPPRO is 

re-entered to monitor the host reply. The host should then acknowledge causing a plane swap.
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The host should restart SAP signal acquisition again if more data is needed. This time data is 

channelled into the conjugate DPM plane. During data acquisition by the SAP, the host could be 

storing the previous plane of DPM data onto disk for later processing. In this manner therefore, 

with judicious choice of sampling frequency, it is possible to acquire multi-channel records of data 

which occupy more memory than is directly addressable by an 8-bit microprocessor.

Other powerful facilities provided under SAPMON are the ability to execute programs or plot 

data transferred to it from the host via the DPM.

3J.S The SAP/HOST Communication Protocols

A  full discussion of these protocols in the sections above would not have been appropriate since 

these dealt specifically with local descriptions of the main software modules in the SPC. The 

protocols are necessarily interactive and will be explained together.

SAPMON, the SAP-resident monitor program contains the protocol handling subroutine, 

SAPPRO. The host-resident kernel program communicates with the SAP through HSTPRO. 

Both these programs utilise the control/data (CNTR/DATA) and status/data (STAT/DATA) 

ports in the SAP. These ports are I/O mapped in both the host: via the S-lOO bus, and the SAP: via 

the local bus (See Fig.[3.3], Sec.[3.2.2]). The CNTR port, set by the host processor application 

program through HSTMON, and read under SAPPRO, is assigned the following configuration:

The SAP/HOST CoNTRol Port

I 7 I 6  I 5 I 4  I 3.1-24-1.1 0 I
•  7-3: SAP function codes
•  2: SAP Read or Set function (R/S)
•  1: HOST ReaDY signal (RDY)
•  0: SAP software controlled ReSeT (SAPRST)

Similarly the STAT port which is loaded by SAPPRO, and read by the host under HSTPRO, has 

the configuration below:

The SAP/HOST STATus Port

X | X | 5 | 4 | 3 | 2 | 1 | 0 |
•  5: SAP sending ERRor code to HOST (ERR)
•  4: SAP sending DaTA to HOST (DTA)
•  3: Current DPM Memory Plane (CMP: 0 = Plane 1 ,1  =  Plane 2)
•  2: SAP Requesting a DPM Plane Swap (RPS)
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* 1: SAP currently ACQuiring data (ACQ)
•  0: SAP ACKnowledges HOST is ready (ACK)

Some of the following will have been mentioned briefly above. However, for the sake of clarity and 

completeness in this section, it is necessary to restate a few facts.

Fig.[3.10] describes SAPPRO. This is SAPMON’s foreground task in relation to Fig.[3.8]. Since 

the SAP responds to host initiated commands, the top loop in SAPPRO monitors the SAP CNTR 

port to see if the host is ReaDY to request that a task be performed. When the host is ready it 

activates RDY in the control word, and SAPPRO wiU respond by setting the STAT port status 

word ACKnowledge (ACK) bit low, and DaTA (DTA) bit high. The control word is then tested 

for the type of function that is to be performed. In the case of a read function, SAPPRO must tell 

the host that data is being sent to it via the output DATA port by making DTA active. In the case 

of a set function, data to be used must be obtained from the input DATA port. Both function 

types reset ACK for the next cycle of SAPPRO.

The other status bits that SAPPRO can use to flag certain conditions to the host are ERR, CMP, 

ACQ, and RPS. The ERRor flag is followed by an error code that HSTPRO will submit for 

interpretation and user notification. The Current Memory Plane signal is provided only for 

background information. It could be used as an indicator of which plane is being accessed in 

display format design or during SAP reset procedures. ACQ and RPS are used extensively during 

SAP data acquisition. The former flags that data ACQuisition is under way and the latter 

Requests a DPM Plane Swap when a plane has been filled. The response of the host to these 

signals was designed for EMG data acquisition of at least 32 kbytes of data sampled at 1 kHz. This 

allows for 15 seconds of 12-bit data and sufficient spectral resolution to interpret gross changes in 

the form of the turning points spectra up to 500Hz. Over 95% of the power of surface EMG is 

contained within this frequency range, therefore this bandwidth can be regarded as adequate for 

the majority of EMG spectral methods.

Unlike SAPPRO, the host protocol handler (HSTPRO) does not function as a foreground task 

module within the host application program. It is invoked once at each execution of SPCKEY 

(See Fig.[3.7], Sec.[3.3.2]) to check SAP status as part of the major task which is the application 

program. Also, HSTPRO must be called explicitly by any application subroutines attached to 

SPCKEY key functions if they require SAP activation.

HSTPRO is summarised briefly with the aid of Fig.[3.11]. On entry into this subroutine a CHanGe 

flag in the host-resident kernel program is examined to determine whether the application 

program wants to activate the SAP. Either a read function is performed as the default action or
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else the set function is flagged and the DATA port is loaded with the relevant set function data 

byte. ReaDY is activated and the CNTR port updated so that the SAP can respond according to 

the decode o f the higher order bits in the control word (Sec.[3.3.4]). The host is notified by the 

SAP that this control word has been received through the ACKnowledge flag in the SAP status 

word. The host RDY flag is de activated and, if SAP ACK has been turned off under SAPPRO, 

then HSTPRO is left. If ACK is still active, then the SAP status word is examined to determine 

the DaTA and ACQuisition flag states. If data is available, the ERRor state is then determined or 

else the ACQ flag is copied into the a kernel program flag image and HSTPRO is subsequently 

left.

The Control of DPM Plane Swapping

The above description accounts for much of the work that HSTPRO performs. The portions of 

Fig.[3.11] that test and react to, the MPS and RPS flags conduct the SAP/HOST communication 

during signal acquisition. MPS is the name given to the host control function bit pattern assigned 

to a Memory Plane Swap, and RPS is the SAP status flag that Requests a Plane Swap from the 

host. This part of Fig.[3.11] is considered critical in the control of the timing of DPM plane swaps 

during EMG data capture.

The performance of the protocol outlined below has only been tested by the author under debug 

conditions (in the Summer of 1984) since the SAC was not fuUy functioning (as indicated in 

Sec.[3.2.3]). Debug tests did show that the intended sequencing of operations and DPM plane 

swapping were operational. Providing an example of the sequence of actions that an application 

program would have to perform for EMG data capture, will simplify the explanation of this 

segment of the HSTPRO flow diagram.

The SAP is set up for interrupt driven signal acquisition as described in Sec.[3.3.4]. At this point 

the ACQ is active through SAPMON. The SAP ACK flag is inactive and, between data samples, 

SAPPRO monitors the host control word for DPM swap or stop acquisition commands. During 

data capture into the first DPM plane, the host application program would have triggered the SAP 

immediate command; SAPMPS (Sec.[3.3.2]). HSTPRO responds by setting the local Memory 

Plane Swap (MPS) flag active. In this case the loop 1: ACK active? MPS? -*  ACQ active?, is 

entered under HSTPRO.

When the first DPM plane has been acquired, data acquisition is stopped by not re-enabling the 

interrupt (Sec.[3.3.4]) and SAPPRO activates ACK and RPS. As a result HSTPRO signals a DPM  

plane swap and the application program restarts signal acquisition by invoking the SAP function 

START again. The RPS flag will become active under SAPPRO at the end of the second DPM
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plane data capture, but will not be recognised by the application program until the first plane has 

been processed. Should more than two planes of data be required, the processing undertaken by 

the application program would have to be restricted to simple operations such as data transfer to 

another memory block, or even writing the data to disk, before reSTARTing the next DPM  plane 

data capture. This is necessary to ensure that the data around the 16 kbyte boundary of the DPM  

planes remains contiguous when swapped into core memory space or stored on disk. In essence, 

the processing of the DPM plane in host memory space under the application program must take 

less time than it takes for the SAP to fill the DPM plane in its memory space. In this way temporal 

discontinuities in the signal at a DPM plane boundary can be minimised.

To save communication time, HSTPRO can be edited to include the dashed-line branch in 

Fig.[3.11]. This allows HSTPRO to turn the MPS signal on and off by itself for continuous plane 

swapping. SAPMON’s interrupt service routines would also have to be edited to re-enable the 

interrupt flip flop after a completed DPM plane data capture process instead of leaving it disabled 

(see Fig.[3.9]), and to count the required number of plane swaps before de activating the ACQ 

flag, thus allowing HSTPRO to return to the application program.

The other combinations of RPS and MPS tests that are present in HSTPRO simply ensure that the 

DPM planes are not swapped unless the application program is also ready to do so. In addition, 

by demanding a plane swap before entering HSTPRO, one is able to swap DPM planes outside 

periods of data acquisition (e.g. transferring data to SAP for plotting), in which case a plane swap 

can occur without an active RPS flag signal from the SAP.

Kabay has since changed the protocol to suit his application and data acquisition strategy 

(personal communication, 1988). These changes will be described briefly at the end of this 

chapter.
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3.4 Simulated EMG Spectral Analysis in the SPC

The SPC has been configured for a simulation of EMG spectral analysis using the tools available in 

the Host resident kernel program. Some twenty instances of the macro SPCKEY are used to give 

an equal number of menu pages together with their corresponding key definitions. The major 

menu pages (the non-terminal nodes in the resulting tree structure) are used to select data 

acquisition and EMG analysis parameters, and to provide control and manipulation of the 

graphical display of computed results. The SAP can be set up according to various options 

selectable in menu pages emanating from the root menu. These include a start and stop signal 

acquisition control and the sampling interval. Menu pages are provided so that spectral and 

simple time domain analysis procedures can be performed. In the former the user can select the 

EMG record length and the number of data points on which an FFT is to be performed. In the 

case of Turning Points Spectral analysis, the simulated EMG data (due to Parekh, 1986) is first 

reduced to a 0-1 binary sequence, as described in Sec.[2.3.4], before performing the power spectral 

estimation. The time domain analysis options are: ZLero crossings per second, mean value, 

rectified mean value, mean square value, and the displayed record length. All analysis routines 

were implemented in RATFOR for ease of coding, even though this proved to be expensive on 

memory.

Owing to the limited memory space available in the computer (48 kbytes), for running the full 

application program, some non-terminal node menu pages perform a memory overlay. This 

essentially means that all current information must be stored in parameter data files on disk before 

reloading the next selected menu page and all its child menu pages. Although this does take time 

it was effective because the spectral and time domain analyses are arranged as distinct overlays.

Some of the typical display formats that have been obtained in the application program MUSCLE 

are illustrated in Fig.[3.12]. These are from left to right:

•  the root menu,
•  one help page,
•  data acquisition and EMG analysis parameter selection,
•  results display selection,
•  FFT routine parameter selection,
•  raw EMG data display,
•  EMG power spectral density display, and
•  the EMG turning points spectral density display.
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3.5 Further Developments to the SPC

This section will outline the additional developments that have been made to the SPC by Kabay 

following Hailstone’s, Watson’s and the author’s initial work on the basic design and specifications 

of the firmware.

The SPC has been taken to completion by Kabay. H e has followed the design principles laid down 

by the initial team of workers already mentioned in the text above. Kabay has configured the SPC 

for Vascular Impedence Calculations (Butler et al., 1980). A  list of changes and enhancements to 

the SPC have kindly been provided by him and these are given below:

[A] Hardware

•  The SAC now contains anti-aliasing filters using digital switched capacitor filters (type 
Motorola MFIO) providing programmable cut-off frequency, bandwidth and roll-off 
characteristics.

•  The SAC multiplexer is buffered to prevent voltage loading errors.
•  The input amplifier has been replaced by a high quality instrumentation amplifier to 

minimise dc offset and to improve CMRR and frequency response.
•  Syncronisation between the S&H amplifier and A DC  has been improved.

[B] Software

•  Automatic setting of input gain and offset for each channel selected by the operator.
•  The ISR for data acquisition contains provision for the settling time of the gain and offset 

control DACs when two or more channels of data are being acquired.
•  Automatic de multiplexing of digitised data stored as 8 or 12 bit ADC  words.
•  A  Real-time coherent averaging utility has been provided using channel 1 data for the 

averaging trigger reference. U p to 128 frames of triggered data can be acquired for 
improvements in signal to noise ratio in noisy environments. The trigger selection menu 
provides a zoom facility to increase resolution of the trigger point in the data acquired 
through channel 1.

•  Automatic delay compensation between input channels to offset software overheads.
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3.6 Discussion

The primary purpose of this chapter has been to explain the contributions of the author in the 

developments of the SPC. The SPC has evolved through the contributions of several workers over 

the last six years and has been taken to completion recently (Hailstone et al., 1986, reproduced in 

Appendix [A]). It has been shown how simple building blocks of fairly low technology can be 

combined to provide flexibility and ease of interaction with the computer system.

The SPC design philosphy is as important as its intended function in the areas of EM G and 

cardiovascular data processing. Today, however, there are available more effective methods for 

creating similar functionality and ease of use for less effort and in far lower time spans. In this 

respect, cheap personal computers (IBM PC and compatibles) and the wealth of p rogram m ing  

languages and programming environments (e.g. C, Prolog, Windows, MetaWindows, etc. ) must be 

considered. The real-time functionality of the SPC can be achieved using a PC under PCDOS and 

plug-in commercial data acquisition cards containing DPM-type memory buffers. The 

man-machine interface can be designed using a windows environment and all SPC signal 

processing and control functions can be implemented in a modem high level language with 

virtually no serious speed limitations.

Using techniques based on artificial intelligence (AI), developed in recent years, and now available 

for the PC, we now have new opportunities for instrument design. The use o f expert systems 

technology will permit instrument designs that provide traditional analytical capabilities with 

interpretation and evaluation of the results. Ultimately it will be possible to control the instrument 

behaviour during data acquisition and analysis according to expert knowledge about the task 

domain.

The author wiU show in a later chapter how some of these ideas have been taken into consideration 

for Event Analysis in Evoked Potentials (EPs). Much of the design strategy adopted for the SPC 

has been used to create an EP analysis package written in the C language contained in a PC-based 

environment and controlling external data acquisition hardware (Appendix [D l]). Expert 

interpretation of the analysis results is then provided by an expert system written in Prolog 

(Appendix [C l and C2]).

A s it stands the SPC still has considerable potential for use. The muscle load, described in the next 

chapter, can be controlled easily by the SPC. The computer can be programmed to output forcing 

patterns and concurrently analyse the actual force and EMG signals measured from the subject 

under test. With respect to the work that has been done on EP analysis, the SPC can be used to
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drive electronic stimulators for the provision of sensory stimuli to the patient. Cognitive EP 

studies sometimes use complex patterns of mixed stimuli which can also be programmed into the 

machine.
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Chapter Four

A Controllable Force Generator and Transducer System 
for Muscle Investigations

4.1 Introduction

As mentioned in Sec.[2.3], the study of EMG provides information concerning the structure and 

functioning of the motor units (M U) it represents. Also, associated with any muscular contraction 

is the generation of a force and a change in length of muscle. In Sec.[2.4] it was determined that 

relationships between EMG-force and muscle length-shortening velocity are both o f interest in 

determining the dynamics o f the neuromuscular system.

Linear models to study the dynamics of the neuromuscular system have been considered by 

researchers because:

•  (i) When the muscle contraction is isometric and surface electrodes are used, it is known 
that the static relationship between EMG and force is linear for many, but not all, muscles 
(Milper-brown and Stein, 1975; Lawrence and D e Luca, 1983).

•  (ii) The elementary force wave (force twitch) generated as the result of a single motor 
neurone pulse can last up to 100ms, whereas the corresponding component of the EMG  
(the M UAP) is over in much less than ten milliseconds. Hence, a linear model can be 
assumed such that the model’s impulse response wUl have the characteristics of some 
’average’ or ’representative’ force twitch (Jones et al., 1987).

The relationships describing the mechanics of muscle are highly non-linear making linear 

modelling unsuitable for EMG-force dynamics in non-isometric conditions. Ideally one would 

prefer to have the muscle (or muscle group) under investigation subjected to both isotonic and 

isometric contractions. In addition the provision of dynamic force variations at nearly constant 

muscle length is desirable for certain forms of neuromuscular investigation. Quantitative EMG  

studies used in the characterisation of the neuromuscular system, would also benefit from having 

such controllable muscle loads.

The usefulness of linear dynamic models in situations where non-isometric conditions do exist (e.g. 

biomechanics of sport) can therefore be said to be somewhat limited. However, in sports medicine 

for example, there is potential value in knowing the dynamics of force build up and decay in 

athletes using theoretically sound means of monitoring changes in muscle characteristics during
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training and recovery from injury, even if there is a restriction to isometric conditions. Linear 

modelling is therefore worth pursuing and it should benefit from better methods of force control 

and measurement (Jones et al., 1988, reproduced in Appendix [B4]).

This chapter and the next describe the development and design of a system for controllable muscle 

loading and force transduction for use in EMG-force modelling and quantitative EMG  

investigations. The system described will enable production and measurement of deterministic 

forcing patterns from the patient under test.

4.2 Current Loading Methods and their Limitations

Much of the literature regarding neuromuscular investigation stresses the importance of obtaining 

interference pattern electromyograms (EMG) under isotonic conditions. Isometric loading is 

considered to be of lesser importance but, nonetheless, desirable. Fig.[4.1] shows some of those 

methods most frequently used in current clinical practice. Static, or constant force, loading can be 

achieved using a set of standard weights. In situations where load cells and springs are used, the 

patient must compress and extend them to produce just the right amounts of load level and 

dynamic force variation. The amount of force produced is monitored using strain guage 

transducers and/or calibrated meters. Other more complicated techniques are used in situations 

where patients exert contractions isometrically against a force transducer. One complicated 

technique uses suitable appparatus to stabilise and support the joints involved in the test, such that 

their spatial geometries minimise force interference from non-targetted muscle groups. The 

measured force controls the vertical position of a horizontal target line on an oscilloscope, and the 

patient attempts to match this with a second line. A  microprocessor controls the position of the 

target line causing it to either move up and down or remain stationary at a fixed level (Le Fever 

and D e Luca, 1982).

The methods of muscle loading mentioned above suffer from three major drawbacks. First, and 

most important, is that the accuracy of isotonic loading is determined by the patient’s motor and 

sensory control abilities. The success of the examination depends on the full co-operation of the 

patient. The patient must concentrate and be able to contract and relax his muscles in a 

deterministic, predictable manner at the request of the investigator. This degree of co-operation is 

not always obtained, especially in severe cases of neuromuscular disorder and in young children.

4-2



2K̂

5 K g 2Kg

Fig.[4 .1 ]  Extant m e th o d s  o f  m u sc le  loading (taken  from 
JOHNSON, 1 9 7 8  and HAYWARD, 1 9 7 7 ) .



Second, since a full interference EMG is produced under conditions of powerful contraction 

(large force levels), the patient often cannot maintain a spring or load cell at a constant 

compressed length for large static loading. At large static loading levels maintaining a standard 

weight motionless to minimise inertial forces also becomes difficult and for dynamic measurement 

on muscles, springs and weights are even more difficult to control.

Finally, when dynamic variations in the load are required, they must be reproducible in their 

amplitude and frequency both during and across individual tests. Repeated loading sequences 

should (a) be kept to a minimum and (b) occur after long resting intervals, especially when the 

patient’s muscle is examined with a needle electrode which can be painful. Frequent repetitions as 

a result of unsatisfactory loading sequences must therefore also be avoided. Such conditions 

cannot be achieved with any confidence using current methods. The limitations can cause patient 

trauma and discrepancies in results across separate trials and muscle testing procedures because 

of the inconsistent forcing protocols that are used.

It is necessary therefore to have systems where:

•  (a) static levels and dynamic changes in muscle loading are under the control of the 
examiner,

•  (b) the load remains constant when required irrespective of small patient movements,
•  (c) static and dynamic variations in loading are repeatable, and
•  (d) a virtually constant muscle length is achieved during dynamic loading.

The goal of point (d) can be achieved using visual feedback through the patient and is based on the 

constant length requirements only. In other words, the patient is not asked to follow a moving 

force target but to maintain a constant position target. The assumumption we make is that manual 

patient control over muscle length alone, is simpler with the assistance of visual position feedback 

than attempting to control both force and muscle length independently and simultaneously. This 

assumption has been confirmed in tests. The advantages of this approach are apparent under 

dynamie loading conditions where the frequency o f force variations can alter slowly.
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4 3  The Controllable Magnetic Muscle Load and Force Transducer (Magload)

A  useful loading device wUl produce a relationship between force and muscle length that is 

constant over a range of variation in muscle length. To provide this characteristic and in addition 

provide dynamic loading, the control of a d.c. electromagnet was proposed and developed. The 

familiar open-loop inverse square law characteristic of the solenoid (electromagnet) is reshaped 

over a limited airgap distance using closed-loop force feedback.

The device design closely follows techniques derived from the field of magnetic suspension. The 

principle of magnetic suspension may be illustrated by considering the steel ball suspension system 

shown in Fig.[4.2]. A  steel ball is attracted upwards by an iron-cored solenoid. The ball interrupts 

a beam of light falling onto a phototransistor. The collector current in this phototransistor is then 

used as a measure of the vertical height of the steel ball. This measurement is then used to control 

the current through the solenoid so that the ball is restored to an equilibrium position at which the 

force of gravity is exactly opposed by the attractive force of the solenoid. This is shown in the 

graph accompanying Fig.[4.2].

Magload differs from the steel ball suspension mainly in the type o f feedback signal used. The 

light source and phototransistor (a position transducer) of the suspension system are replaced by a 

transducer system which measures the force (or equivalent parameter) produced by the solenoid. 

Additionally, the steel ball is replaced by a steel reaction plate attached to, or somehow interacting 

with, the patient. Strictly speaking there is no suspension, but the methods used to control 

solenoid current are similar. This type of arrangement constitutes the core of Magload. The force 

of attraction between the solenoid and the reaction plate is kept constant over a 30mm airgap 

(corresponding to a restricted patient movement) by using the force feedback to control the 

current through the solenoid.

Technical drawings of the complete mechanical assembly are shown in Fig. [4.3(a)] and 

Fig.[4.3(b)]. These show the main assembly, which is pivoted about a horizontal axis, and the 

reaction plate attached to and positioned in front of, the fixed electromagnet. The patient 

interacts with this system using the horizontal rod above the pivotal axis of the main assembly. 

This rod can be adjusted vertically to provide a mechanical advantage of up to 2 ^ / 2  times the 

attractive force of the magnet with a correspondingly increased arc o f movement. The free space 

behind the electromagnet is used to house the electronic control circuitry.
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Fig.[ 4 . 3 ( a ) ]  Side  view of MAGLOAD m e c h a n i c a l  a s s e m b ly .
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F ig .[4 .3 (b ) ]  Front view o f  MAGLOAD m ech an ica l  a ssem bly .



A  better view of the major elements in the main assembly is shown in the photographs of Fig.[4.4]. 

The dimensions of the cylindrical rods making up this system were calculated using simple bending 

moment theory. A  2:1 safety factor was used to avoid bending when maximum designed loads are 

present at the reaction plate. The inertia of the main assembly was calculated using both 

theoretical and trifilar suspension methods. The values were within 10% of each other. The 

average value for the inertia is 0.367 Kgm^ .

The fluctuations in airgap length about a nominal value are related to the variations in contracting 

muscle length. These airgap fluctuations are presented visually to the patient who must maintain 

them at a minimum. Therefore the nominal airgap distance can be held approximately constant. 

If the airgap changes, the electromagnet system reacts to keep the force constant throughout the 

available airgap. The constant force characteristic that has been achieved, effectively simulates the 

force-extension characteristic of a very long spring several meters in length. Fig.[4.5] shows the 

system in use. In this example the biceps muscle of the patient is being tested. The elbow joint is 

secured to an adjustable platform. The force pattern is controlled remotely, either manually by the 

investigator or with a computer (e.g. the SPC in chapter three).
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Chapter Five 

Magnetic Load Design and Experimental Results

This chapter considers the design of the magnetic muscle load (Magload). The design enables 

complete contol over both static and dynamic forcing patterns. Experimental results will be given 

and the chapter will end with a discussion of the likely uses for Magload. Detailed schematic 

diagrams of the magnetic and electronic control circuits are provided in Appendix [B2].

5.1 The Muscle Load Design Overview

It was required that the electromagnet be capable of providing 250N force at a nominal airgap of 

20mm. This force level was chosen subjectively by observing students perform weight training 

exercises at the University gymnasium. The nominal airgap distance was chosen from a 

compromise between allowing small movements for the subject, and the magnet-amplifier design 

constraints. The latter constraints primarily relate to the size of the magnet, power output, and the 

corresponding complexity of the control amplifier system. A  U-shaped magnet capable of 

providing up to 500N at this airgap was designed such that the required maximum load is achieved 

at power dissipation levels not necessitating forced cooling. A  U-shaped magnet was selected for 

its simplicity of construction. Magnetic circuit design is an iterative procedure, as is apparent from 

calculations available in Appendix [Bl], and a simple magnet shape was necessary for the 

prototype stages.

The following notation is used in the electromagnet design;

a - Pole face area (m^ )
Aw - Window area (m^ )
B - Electromagnet flux density (T)
F - Force produced by electromagnet (N)
 ̂- Forcing ratio 

I - Steady state load current (A) 
i - Instantaneous load current (A)
1 - Mean turn length (m)
L - Inductance of coil windings (H)
N - Number of turns 
NI - Ampere-turns 
P - Power dissipation (W)
R - Resistance of coil (fl)
S - Reluctance of airgap
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USING NX = EBx/po
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SELECT POWER AMPLIFIER SPECIFICATIONS

Flg.[5.l] Summary of static  and dynamic design procedures  
used for the m agnetic load system .



Vp - Supply voltage (V)
Vi - Load voltage (V)

X  - Airgap distance (m) 
jxo - Permeability of free space 
p - Resistivity of coil windings (m) 
b - Coil wire cross section area (m^)
T - Coil time constant (Sec)

Before examining the detailed design aspects of Magload, an appreciation of the general design 

procedure adopted is provided in Fig.[5.1]. This shows a partition between the static and dynamic 

design considerations employed. Each of these will be discussed in turn below.

5.1.1 Static Design Considerations

This section is concerned mainly with the design and testing of the magnetic circuit. A  magnet 

consists of the core and the coil each of which must be designed correctly for maximum overall 

efficiency. Consider the simple magnetic circuit of Fig.[5.2], Assuming that the magnetic flux 

density is the same throughout the core (i.e. no flux leakage), the force on the reaction plate 

exerted by the electromagnet may be computed by considering the change in stored energy in the 

airgap when work is done in changing the airgap length % by an amount 2A x. The force required 

acts through half this distance.

Force x Distance = Energy per Unit Volume x Change in Volume of Airgap 

i.e. F. A x =  (B^/  2 jxo) . 2aAx 

therefore:

F  =  B  ̂a / |xo 

or for a single pole:

F =  B ^ a /2 p .o  .................................................................................................. Eq.[5.1]

The ampere turns required to produce a flux density B are:

NI =  2 B x / |x o  .................................................................................................. Eq.[5.2]

Combining Eq.[5.1] and Eq.[5.2] gives:

F =  (N I)^poa/8x^ ..........................................................................................Eq.[5.3]

This equation suggests that for a given current and airgap, the force will increase with pole face 

area. The choice of pole face area is also influenced by amplifier design, since the inductance (and 

hence time constant) of the coil depends on the dimensions of the pole face.
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It is also evident from Eq.[5.3] that the force-airgap distance and force-current characteristics will 

be highly non-linear. Other factors important in the design of the magnet are:

•  saturation in the magnetic core,
•  flux leakage,
•  power loss in the coils, and
•  magnet weight.

Changes in magnet parameters result in changes to other magnet parameters and in the magnet 

operating conditions. A  useful illustration of these interactions is shown in Fig.[5.3].

Eq.[5.3] holds under the ideal condition o f infinite permeability of the iron paths and therefore the 

absence of any flux leakage. Mild steel is used in this application and the mild steel core possesses 

reluctance of a significant magnitude compared to the airgap reluctance. This leads to large flux 

leakages and higher flux densities in the limbs of the magnet than in the airgap. An operating 

point of 0.65T was chosen to avoid saturation in the magnet core (2.0 wb/m^ (T) for mild steel). 

This ensures that the mild steel core remains in the linear region of the magnetisation curve at its 

maximum force level of 250N and nominal airgap of 20mm. This precaution is also necessary to 

reduce power dissipation (i.e. use of lower coil currents) and, because of the control system, to 

allow for transient fluctuations in coil current, and hence flux density, when the airgap changes due 

to patient movements. Increasing the magnet’s dimensions also helps to limit saturation in the 

core, e.g. increasing the pole face area increases flux leakage, thereby reducing flux density.

The size of the magnet coil is determined by the design of the magnet limbs and poles. The choice 

of using a high voltage and low current design for the coil or vice versa is influenced predominantly 

by the amplifier requirements and to a lesser extent by the coil itself (i.e. magnetic material, coil 

windings guage, and insulation properties). Two important parameters in the coil design are the 

power required to produce the required ampere-turns NI, and the time constant of the coil t , i.e. 

the ratio of its inductance L to its resistance R.

Using a linearised model of Eq.[5.3] we can can gain an insight into the role played by the coil time 

constant in any attempt to control the force developed by the magnet. At the nominal airgap, the 

magnet current (i.e. current through the coils of the magnet) generates a certain force, and any 

displacem ents from this position results in a change i in the current. If we assume that the change 

in force of attraction f is  a linear function of the airgap s  and current i, then:

f  =  -k is  4- k % i .................................................................................................. Eq.[5.4]

where ki is the force per metre at constant current, and k2 is the force per ampere at constant 

airgap. These can be determined experimentally for a given magnet.
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The relationship between the magnet current and supply voltage Vp is:

RI +  L d i /d t  =  Vp ......................................................................................... Eq.[5.5]

In Laplace transform notation Eq.[5.4] and Eq.[5.5] become:

F(s) =  -k iX (s) +  k2 l(s)

I(s) =  ( ka /  (1 +  St) ) .  V p ( s ) .......................................................................Eqs.[5.6]

Eqs.[5.6] produce an open-loop description of force:

F(s) =  -ki X(s) 4- ( k2 ka /  (1 +  s t ) ) . Vp(s) .......................................... Eq.[5.7]

The quantity that can be controlled directly by the amplifier system is the voltage across the 

magnet coils. This voltage will in turn alter the coil current and hence the force produced. The 

coil time constant t  represents the lag in coil current behind the controlling voltage. This 

application required holding the force constant over the operating range of airgaps, and the task 

was accomplished by holding the airgap flux constant using a primary flux feedback loop. In this 

way the non-linear force-airgap characteristic becomes very nearly linear. Therefore, the force is 

now independent of the airgap, or in Eq,[5.4] the constant ki reduces to zero.

The flux loop hence changes the open-loop system Eq.[5.7] to:

F(s) =  ( k2 k3 /  (1 + s t ) ) . Vp(s) ................................................................Eq.[5.8]

which is a simple first order lag, and so the linearisation using flux feedback control leaves the 

force variations proportional only to i. The speed of fluctuations in i is largely determined by the 

time constant of the magnet coils. Since the time constant of the coil is large, this leads to a narrow 

bandwidth for the overall response of the control system. A  large forcing voltage capability is 

therefore necessary to obtain a high bandwidth for the system. This will allow transient current 

and force variations to occur quicker than is dictated by the coil time constant. The transient 

changes in force with varying airgap wül then be sufficiently rapid to make the force produced by 

the magnet appear constant to the patient competing with the system.

The apparently constant nature of the transmitted force relies on the assumption that the fastest 

possible twitch response that can be produced by human muscle is slower than the worst-case 

response time of the magnet to demanded force alterations. Such worst-case response times for 

the magnet are achieved by forcing fast voltage changes across the magnet coils, and they are 

concerned with the dynamic design of the system to be discussed in the next section.
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Fig.[5 .4 ]  The E le c tro m a g n e t co re  and co ils  show ing th e  
recess in the  pole face s  used to  m o u n t  th e  f lux

tra n sd u ce rs .



A  photograph of the core and coils is shown in Fig, [5.4] and their corresponding dimensions are 

shown in Fig,[5.2].

The static open-loop characteristics of the magnet are:

•  (i) the Force F  vs Airgap % at constant current I, and
•  (ii) the Force F  vs Current I at constant airgap %.

These characteristics were found experimentally using the arrangement shown in Fig.[5.5] with the 

magnet coils connected in parallel. The measurements taken can be found in Appendix [B3], and 

the curves obtained are shown in Fig.[5.6] and Fig.[5.7]. The cantilever arrangement illustrated in 

Fig. [5.5] was necessary to distribute (share) the test loads evenly between the two pole faces o f the 

U-shaped magnet.
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5.1.2 Dynamic Design Considerations

The design of the static behaviour of Ma^oad concerned the magnetic circuit alone, and was 

discussed in the previous section. The coil requirements evolving from static considertions are 

closely linked with the power amplifier design in dynamic considerations. This link mainly relates 

to the ability to force voltage changes across the electromagnet windings at rates faster than are 

dictated by the coil time Constant.

Due to the amount of power which is dissipated in the magnet (see Appendix [B l]), the current in 

the magnet is not controlled by a Class A  amplification system. Instead, to maximise amplifier 

efficiency and lower power supply rating, the electronics to drive the magnet use Class D  

amplification methods employing the principles of Pulse Width Modulation (PWM).

The technique o f PWM is illustrated in Fig.[5.8] which shows the currents and voltages in the 

transistor amplifier and magnet. By varying the ratio of the On to Off time of the drive transistor 

amplifier an average current can be maintained in the magnet. As a result o f this, an average force 

is produced by the magnet. The force required at the nominal airgap can be set by adjusting this 

On-Off ratio. Any instantaneous changes in airgap, and hence instzmtaneous force, result in the 

On-Off ratio being altered through the flux feedback loop, keeping the force constant and equal to 

the preset level.

The overall control scheme for the magnet is shown in Fig.[5.9]. The position signal provides the 

patient with a visual indication of the location of the reaction piece in the airgap. This helps the 

patient to maintain approximate isometric conditions with the force being held constant (or 

varying) by the control system. Positive current feedback is used in a minor controlling loop to 

boost the response o f the system at large airgaps (i.e. greater than the nominal 20mm gap). This 

effectively overcomes attractive force losses due to flux leakage. Since the major feedback signal 

(flux) is proportional to the controlled variable (force), no compensation is used. This feature has 

the advantage that the flux feedback signal can be used directly as an indication of the force output 

of the system. Hence, the magnetic load functions as both the controller and the transducer of 

muscle loading patterns. The time constant for the magnet is 57.2ms (see Appendix [Bl]) 

suggesting a bandwidth of approximately 17.5Hz. The average isometric twitch response of muscle 

is in the region of 25ms for a group of very fast motor units and rises to as much as 100ms with 

slower motor units (Lago, 1980). Therefore, in order to achieve a response time for the system 

which is quicker than the duration of the fastest average isometric twitch response, there is a need 

to obtain a bandwidth for the system which is at least greater than twice that dictated by the 

magnet time constant.
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To obtain a high bandwidth for the control system through voltage forcing we consider the 

behaviour of the magnet in relation to the supply voltage as follows (Whorlow, 1978):

The total force is given by:

F =  ( (N I ) ^ (L o a ) /4 j^ .....................................................................................Eq.[5.9]

Therefore:

d F / d t  =  ( 2 N ^ j i o a ) / 4 j c ^ . I d i / d t  .........................................................Eq.[5.10]

Combining Eq.[5.5] and Eq.[5.10]:

d F / d t  =  ( 2 N ^ j j L o a I ) / 4 z ^ . ( V p - I R ) / L

= [ 2 N ^ ^ i o a . ( I ^ R ) . ( V p / R - l ) ] / 4 % ^ L

Since L =  /  S, S =  2 jc / jxo a, P =  R, and Vi =  IR

d F / d t  = ( P / % ) . ( V p / V i - l ) ....................................................................Eq.[5.11]

The quantity Vp / Vi describes the voltage forcing ratio  ̂ in the positive direction when the drive 

transistor amplifier is turned on. § is the ratio of the supply voltage to the steady state voltage drop 

across the resistive part of the magnet when a quiescent current I is being maintained with the full 

supply across the magnet. When the drive transistor amplifier is turned off this current still flows 

due to the inductance of the coils and is recirculated through the power supply by the freewheeling 

diode. By virtue of this recirculated current flow, a voltage Vi will exist across the resistive part of

the magnet and provides the negative voltage forcing of current through the coils since the

inductive drop is now in a direction opposite to that of the resistive drop. The difference between 

Vp and Vi determines the rate at which the decaying inductive current falls when the drive 

transistor is off. The more Vi approaches Vp, the less decay there will be in the inductive current; 

consequently there will be a lower current ripple. Values of Vi less than one half of the supply 

voltage result in inadequate forcing and the ripple current increases.

This can be shown easily from Eq.[5.5]:

L d i / d t  =  (Vp-Vi)  ..................................................................................... Eq.[5.12]

This represents the forcing of current in the magnet in the positive direction. In the negative 

direction :

L d i / d t  =  V i ..................................................................................Eq.[5.13]

Hence for equal positive and negative forcing we equate Eq,[5.12] and Eq.[5.13] and it emerges 

that:

 ̂ =  V p /V i  =  2 ..............................................................................Eq.[5.14]
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If  ̂ is required less than 2 then the circuit of Fig. [5.10(a)] is adequate. Otherwise the equal 

positive and negative voltage forcing circuit of Fig.[5.10(b)] must be implemented (Hodkinson, 

1975). This circuit is more complex to drive however, requiring the use of an invertor amplifier to 

drive the topmost PNP transistor when an NPN type can not meet power requirements.

The required value of  ̂ is obtained by first defining the quantity dF/dt .  This represents the 

slewing rate of force generated by the magnet-amplifier combination and is related to the forced 

current variations in the magnet. To demonstrate the selection of a slewing rate of force, we refer 

to Fig.[5.7] and assume we are operating at the nominal airgap of 20mm and at a force of ION. A  

movement of 10mm, to 30mm, caused by the patient would make it necessary for the magnet to 

produce the equivalent of approximately 30N at 20mm. The period of growth for this force must 

be quicker than the time taken for an average isometric twitch response to rise and decay. Thus, 

taking 20ms as a reasonable response time for the build-up of magnetic force, we find that:

d F / d t  =  (200 / 20 x 10^) =  lO k N s '^ .........................................................Eq.[5.15]

By substituting the power dissipation value of 350W (see Appendix [B l]) and nominal airgap of 

20mm in Eq.[5.11],  ̂ is found to be approximately 1.5. Therefore at the maximum specified force 

of 500N and nominal airgap of 20mm, a single-ended amplifier as in Fig.[5.10(a)] is sufficient for 

the current variations needed in this application. Appendix [Bl] explains the choice of supply 

voltage based on this value of

5.13 Additional Considerations and Features

The large amounts of power that are being switched through the magnet cause concern for the 

safety of both user and patient. In this respect the use of PWM means that the switching signals 

can be transmitted to the power amplifier through galvanic or optical isolation units. Magload 

uses optical isolation to separate the patient, user, and low voltage control circuits from the high 

power modules. In addition, there are protection circuits for the power amplifier, and monitor 

circuits for the high voltage reservoir capacitor.

An opto-isolated primary operations sequencer maintains orderly and safe use of Magload. The 

primary sequencer will give permission to drive the system only when all control circuit board 

voltages are stable, the power amplifier base drive is off, and there is no mains disturbance. When 

a start command is issued, the high voltage reservoir capacitor is charged and the base drive 

enabled. At this point the user can introduce desired forcing reference patterns. A  stop 

command, mains disturbance, or current overload will discharge the reservoir capacitor and 

disable the base drive. The force reference pattern must be turned off before permission to start 

can be reissued.
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The force reference input can be controlled with a local waveform generator providing d.c., 

sinusoidal, and triangular voltages. The force pattern can also be controlled through the digital to 

analogue output of a computer.
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5.2 Results and Discussion

The experimental arrangement of Fig.[5.11] was used to measure the static closed-loop 

characteristics of the controllable muscle load. A  load cell was connected horizontally between 

the middle of the pull rod of the main assembly and a screw arrangement that was secured to the 

rear of the main frame. A  static force level was then set with the control d.c. voltage reference. 

Various airgaps were produced, by adjusting the screw arrangement, and the corresponding force 

was read from the calibrated load cell meter. This was repeated at ten different force levels. The 

results obtained from this experiment are shown graphically in Fig.[5.12] and are tabulated in 

Appendix [B3].

At large force levels and airgaps the effects of flux leakage are noticeable. These effects occur 

despite the minor current control loop that is used to boost the response at large airgaps. Another 

factor that contributes to this non-linearity is the geometric misalignment of the pole faces and 

reaction plate throughout the total available airgap. This can be improved by including another 

minor control loop using the position of the reaction plate as the feedback signal. A  more 

favourable approach, would be to re-design the main assembly such that the reaction plate 

remained parallel to the pole faces during the stroke length, and/or to re-design the magnet for 

minimal flux leakage.

As mentioned earlier, the inertia of the main assembly is 0.367 Kgm^. The effect of this on force 

control is assumed to be negligible as visual position feedback is used to maintain approximate 

isometric conditions. Visual position feedback helps to minimise any accelerations of the main 

assembly, due to patient tremor for example, and as such will maximise the ease with which a 

patient is able to perform a force pursuit exercise.

Frequency and time responses of the system were measured using an Ono Sokki CF-910 mini FFT 

analyser. The input signal to Magload (channel A in the analyser) consisted of the d.c. reference 

force level additively combined with 20Hz bandlimited white noise. The output from Magload 

(channel B in the analyser) was taken directly from the flux force transducer mounted on the pole 

face of the electromagnet. This transducer is linear up to 2.0T. Fig.[5.13] shows the input 

reference voltage and the voltage measured from the flux transducer. Fig.[5.14(a)] to Fig.[5.14(d)] 

show the frequency response of the system and the coherence function relating the test signal to 

the output at increasing force levels. The frequency responses therefore represent the transfer 

function between the delivered and demanded forces m the system.
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The magnitude and phase plots exhibit some minor periodic resonances of unknown origin. They 

may arise from coupling between the large inductance of the magnet and the mains reservoir 

capacitor (LC = 1.25H x 2000F = 0.05Hz). These resonances persist in the magnitude plots up to 

the higher force levels whereas they are attenuated in the phase plots. The phase plots are almost 

linear and roll off at -2.25“ / Hz to -45“ at 20Hz. The coherence remains high at all force levels 

throughout the frequency range. Using a higher bandwidth noise it is found to go to zero at 50Hz 

before returning to a high value and remaining above 0.75 up to lOOHz (not shown).

There is an improvement in the coherence functions as the d.c. force level is increased. This can 

be attributed to a small limitation of the system. We recall that in Sec.[5.1.2] a forcing ratio of 1.5 

was determined for the magnet-amplifier configuration. This suggested that a single-ended 

transistor amplifier was sufficient to provide the required voltage forcing. This was, however, only 

true at the maximum designed force and nominal airgap. In this particular system, the load voltage 

Vi decreases at lower force levels and with decreasing airgaps. The implication of this is that the 

forcing ratio increases and the current ripple in the magnet increases leading to lower values in the 

coherence function. If this situation was detrimental to the performance of the system then the 

circuit of Fig.[5.10(b)] would have to be used to maintain equal positive and negative current 

forcing voltages across the magnet drive transistor. The PWM switching frequency was made as 

high as possible (20KHz) to avoid substantial current ripple. Higher switching frequencies would 

necessitate more complex drive circuitry to control the power dissipation in the magnet transistor 

amplifier at turn-on, and particularly at turn-off.

Various forms of forcing are of interest in the study of the dynamic properties of muscle (see 

Sec.[2.4]). Current research work in EMG decomposition and fatigue being conducted by the 

author’s colleagues involves the use of Magload to provide accurate long duration ramp force 

patterns. A  small magnetic device based on the ideas behind Magload has been built by an 

undergraduate student for testing the small muscles in the hand. This device uses a bobbin-shaped 

electromagnet with tapered ends containing a cylindrical reaction piece passing through its centre 

and lying along its vertical axis. Using a Class A  drive amplifier, the magnet is capable of 

providing static forcing levels up to 0.5N that remain nearly constant over a 2cm stroke length. It 

should be possible to incorporate a flux or current feedback loop into this system to improve 

linearity and enable controlled dynamic forcing.

Fig.[5.15] shows a diagram of an improved magnet design that could be implemented in the future 

in similar systems to Magload. The diagram shows a cylindrical magnet having an E-shaped axial 

cross section. The coil is wound around the short central pole at one end of the hollow cylinder, 

and the remainder of the cylinder contains a freely moving disc which would function as the 

reaction plate. In this way the flux paths are restricted to the cylinder walls, the airgap between the
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central pole face and disc, and the airgap between the disk circumference and cylinder wall. If 

airgap between the disc circumference and the inner surface of the cylinder wall is narrow, then 

friction throughout the fuU stroke of the disc will be minimal because there will be an equal force 

of attraction between the cylinder wall and the total disc circumference. The reaction plate 

remains parallel to the pole face because of the circumferential force on the disk and the 

geometrical constraints of the magnet construction. The latter and the constrained flux paths will 

minimise flux leakage. Another advantage of this method is the 50% reduction in power 

dissipation, yet producing the same amount of force as can be produced by an equivalent 

U-shaped magnet. The use of a single pole impUes that both the force F and airgap x  will be 

reduced by a factor of 2, so the power F will be reduced by a factor of 4. Hence, for the same force, 

the current I must be increased by a factor of 2 which in turn increases the power by a factor of 2. 

The effective decrease in the power will therefore be 50%.

From the above discussion, it is evident that there is virtually no restriction on the forcing 

protocols that can be designed with Magload and more flexibility is obtainable under computer 

control. Magload will faithfully and repeatedly reproduce demanded force patterns, and it will 

also provide a direct measure of the force produced. The main disadvantage of the current 

Magload system is its expense and weight. Fig,[5.16] shows some of the interactions that are 

possible with the Magload system.
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Chapter Six 

Features and Uses of Brainstem Auditory Evoked 
Potentials (BAEPs)

6.1 Introduction

Physical orsensory stimulation of the human peripheral nervous system and/or some psychological 

process wili under normal circumstances, result in changes to the on going electrical activity of the 

central nerous system (CNS). These variations in voltage are known as event related potentials 

(ERFs). E/oked potentials (EPs) are ERPs that follow a sensory stimulus. Emitted potentials 

occur in tie absence of any evoking stimulus and are normally associated with the cognitive 

function of he CNS.

ERPs are generated by a polarisation of charge across the membranes of cells in the nervous 

system. Tley can often be seen as a wave or group of waves in the electroencephalogram (EEG) 

even when recorded on the cortex at a distance from their origin. The morphology of the 

measured potential depends on the geometry of the active membranes with respect to the 

recording ste(s), on the synchronisation of activity between cells, and on the tmpedence of the 

volume coiductor in which the cells are active. Amorphous collections of cells and/or little 

synchronisaion between the cells, makes it difficult to record potentials at a distance. Therefore, 

ERPs offer a limited (though useful) look at the processes of the nervous system. Furthermore, 

overlapping potential fields from different groups of simultaneously active cells make it difficult to 

distinguish between those measurements that are associated and are not associated with the 

evoking eveit.

Most ERPs are indistinguishable in routine EEG  recordings because of their inordinately low 

amplitudes (0.1 to 2|xV) and the interference of background cerebral electrical activity and 

electromyojraphic (EMG) artifacts (Chiappa, 1982). Isolation of the ERP from overlapping 

potentials gnerated by cells that are not related to the event is usually performed by filtering and 

averaging, filtering usually involves restricting the frequency response of the recording system to 

those frcqumcies present in the ERP. Averaging exploits the non-stationary time locked nature of 

an ERP witi its related stimulus and assumes that background EEG activity is a stationary random 

noise procès that will be uncorrelated with both the ERP and the stimulus.
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The information contained in the structure of features (feature events or waves) in averaged 

sensory EPs provides important insights into the sensory systems that is not available through other 

clinical tests (Picton, 1988). A  major use is in the assessment of the neurological condition of the 

sensory receptor. The presence or absence of EP waves and their latencies are the primary 

characteristics used in clinical interpretation. The presence of a normal EP generated by the brain 

is reasonable evidence for correct function in the peripheral receptor. Absence of a normal EP is 

indicative of pathology in the sensory end-organ, the generator mechanism for the EP, or the 

neural pathways between them.

Over the past decade, several methods have been developed to study the EP. Of these, 

pattern-shift visual, brainstem auditory, and short-latency somatosensory EPs have come into 

routine clinical use and are now firmly established as valuable clinical tools. EPs are widely used 

to assess hearing in infants who cannot respond reliably in behavioural tests (Picton, 1988). They 

are also used to confirm the presence of lesions in the sensory system when demyelinating disease 

(e.g. in the optic nerve) is suspected because of indications in another area of the central nervous 

system. This is particularly relevant to:

•  the diagnosis of multiple sclerosis,
•  determination of the anatomical distribution of a disease process, and
•  monitoring continuously the integrity of a pathway that cannot be examined clinically 

because of anaesthesia (Chiappa, 1982; Halliday, 1982; Colon et al., 1983).

Therefore, EPs wiU often be used to study patients with multiple sclerosis, nervous system 

tumours, trauma and stroke. EPs also have important uses in intra-operative monitoring 

procedures, and in intensive care environments, as well as in infants whose sensory systems cannot 

be accurately assessed. These tests provide sensitive, quantitative information complementing 

standard clinical neurological examination.

In this study the author has developed a procedure to analyse the short latency acoustically evoked 

brainstem electrical acivity or brainstem auditory evoked potential (BAEP). Therefore, the 

remaining section of this chapter presents a simple description of BAEP-related physiology, 

recording techniques, and clinical uses.
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6.2 Brainstem Auditory Evoked Potentials (BAEPs)

This section provides a general appreciation of the physiology and uses of the BAEP in auditory 

investigations.

62.1 Origin of BAEP Components

The output of the cochlea and VIII nerve can be examined using techniques pioneered by 

Portmann and co-workers in the late 1960s (Halliday, 1982). The more central connections of the 

VIII nerve comprised of brainstem pathways provide the BAEP potential in response to an 

acoustic transient (click) which is generated by passing a 0.1 msec pulse through shielded 

headphones. The BAEP is most effectively obtained with a high intensity click stimulus and can 

contain up to seven components within the following 10ms. These are labelled I-VII according to 

Jewett’s (1970) classification. There is considerable evidence that at least the first five components 

correspond to the successive activation of peripheral and pontomeduUary (cochlea, spiral 

ganglion, and eighth nerve), pontine (cochlear nucleus, superior olivary nucleus, and lateral 

lemniscus tracts and nuclei), and midbrain (inferior coUiculus) portions of the brainstem pathway 

(Stockard et al., 1978). Volume-conducted acoustic nerve and brainstem potentials recorded with 

electrodes at the vertex (electrode, Cz) and mastoid (electrode. A i) are shown in the diagram of 

Fig.[6.1].

The precise correlations of scalp-recorded BAEP components with deep sub-cortical structures 

are unknown (Stockard et al., 1978) and they are certainly more complex than is suggested by 

Fig.[6.1]. The BAEP generators within the brain might be serially or non-serially linked, 

simultaneously active, or have sustained activity. Hence there cannot be a direct correspondence 

between different componenets in the BAEP and different anatomical loci. However, the degree 

of correspondence that does exist, permits one to use the latencies of the early wave components 

I-V as indirect measures of sensorial registration of the stimulus along the brainstem pathway. 

More precisely, the inter-peak latency (IPL) of waves I and III is a measure of conduction in the 

extra-axial and pontomeduUary segments of the auditory pathway and the III-V IPL is a measure 

of conduction in the more rostral pontine and midbrain segments of the pathway.

Wave I of the BAEP is a negative potential recorded at the ear being stimulated (the ipsilateral 

side). This is a manifestation of the VIII nerve action potential generated in response to the click 

stimulus in the segment of the nerve near to the cochlea. Waves II and III are thought to emanate 

from the cochlear nucleus and superior olivary complex respectively. There is some evidence 

(Buchwald et al., 1975) that wave II is connected with the VIII nerve since this component 

disappears when connections of this nerve to the brainstem are destroyed ipsilateraUy, but not
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contralaterally. The generator sites for components IV and V are difficult to locate. Lesions in 

the mid and upper pons, in the region of the lateral lemniscus and inferior coUiculus, produce 

abnormaUties in both waves but do not stop the generation of either. The majority of workers in 

this field appear to agree that there is no complete answer available yet. In terms of clinical 

interpretation however, there is no difference between the two possibiUties as they lie so close to 

one another (Chiappa, 1982). It is unknown whether the BAEPs reflect activity of groups of 

neurones or the action potentials in fibre tracts or a combination of both. A  further complication 

regarding BAEP generator locations is that the surface recorded potential components are the 

summation of electrical activity of many thousands of neurones and their processes. The 

electricaUy active sites are dispersed in anatomicaUy discrete nuclei and tracts between which 

there is much interaction.
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6J2^ Methods of Recording BAEPs

In routine clinical practice, patients should be tested in the supine position and sedated whenever 

there is significant artifactual muscle activity. Ideally the patients should be asleep. To record 

BAEPs, repeated clicks at about 10 H z (to avoid mains synchronisation) are generated in high 

quality shielded earphones as described earlier. Monaural stimulation is used because normal 

responses from one ear can obscure abnormal responses from the other during binaural 

stimulation and so the contralateral (nonstimulated) ear is masked with white noise. BAEPs are 

normally recorded with rarefaction (where the initial movement of tymphanic membrane is 

outward) or, their opposite, condensation clicks. Different polarities produce different wave 

morphologies, amplitudes, and latencies, and on some occasions the BAEP is pathological with a 

single click polarity only. Alternating clicks can cancel stimulus artifact and cochlear 

microphonics (a nerve action potential prior to wave I) since these are click-phase sensitive. 

However, this is not used routinely because the waves produced are an average representation of 

the waveforms elicited with either polarity alone.

Electrode derivations (montage) for BAEP measurements conform to the international 10-20 

standard. One electrode is placed at the vertex Cz, and the other two are placed over the primary 

auditory areas left and right, on or in the region of the earlobes ipsilateraUy Ai, and contralateraUy 

Ac.

Due to the extremely smaU amplitudes, which range from 0.1 to 2p,V, between 1000-4000 

responses are measured for averaging. At least two similar averages must be obtained from each 

ear, thus providing a simple estimate of the reliability of the recording. The decision as to how 

many responses to average is determined by the degree of inter-trial variability of IPLs; the I-III, 

III-IV, and I-V IPLs should not vary by more than 80|xsec at most between trials. If they do, then 

louder clicks and/or patient sedation should be used (Stockard et al.,1978).

If the intertrial criteria for reproducibility is met then the measurements wiU almost always be 

made from the sum of the averages in each trial. Fig.[6.2] shows the 95% confidence limits for 

normal BAEP wave component latencies at various intensity levels (obtained from Wessex 

Regional Audiology Centre). Stimulus intensity is adjusted to 60-70 decibels above sensation (or 

hearing) threshold level (dBSL/dBHL). The contralateral ear is masked with 30-40 dBSL white 

noise. The stimulus intensity has a large influence on the BAEP. Decreasing the intensity, 

produces a longer latency and a decrease in ampUtude, especiaUy of waves II, IV, and VI. In cases 

where there is difficulty in identifying wave V (or the IV/V complex), reducing stimulus intensity to 

0-10 dBSL may help to identify this component since it is selectively preserved near threshold. 

Because of this, the plot of Wave V Latency as a function of Stimulus Intensity is used to
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characterise the BAEP. Fig,[6.3] shows the persistence of wave V at low intensity levels. The 

complete test, at several intensity levels, should take one hour to complete and possibly up to two 

hours in an intensive care unit.

623 Clinical Uses of the BAEP

Non-pathological factors such as age, sex, temperature, and technical factors such as stimulus rate, 

stimulus polarity, electrode derivations, and amplifier filter settings can affect the morphology of 

the BAEP. It would be out of context to expand any further on this matter save to say that with 

constant test conditions reproducibility can be excellent making the BAEP an important 

electrophysiological test. Stockard et al. (1978) provide a thorough treatment of the 

non-pathologic factors influencing BAEPs. The clinical interpretation of BAEPs is based almost 

entirely on the IPLs which reflect conduction properties of the brainstem auditory tract. IPLs are 

seldom affected by changes in the stimulus intensity and disorders of the peripheral hearing 

apparatus, although the absolute latencies of the wave components are affected.

[A] Multiple Sclerosis

Brainstem auditory evoked potentials may reveal a clinically unsuspected demyelinating lesion as 

in multiple sclerosis (MS). Though pattern-shift visual and short-latency somatosensory EPs 

provide better diagnosis because of their less complex morphology, the stability of wave V in the 

BAEP lends itself equally well to identification and interpretation in MS. Robinson et al. (1982) 

investigated MS using binaural stimulation and recording from two channels of the standard 

BAEP electrode montage. They tried to identify component V in all records, arbitrarily defining it 

as being the most negative-going potential in the latency range 5.5-10 msec. Three types of 

abnormality in the BAEP were found to exist with the occurrence of MS. First, there is an 

increase in wave V latency and the earlier components may lie within normal limits. Second, acute 

degradation of the BAEP makes wave V identification impossible, despite clear post-auricular 

muscle reflex and middle-latency components. Finally, wave V has a greatly reduced amplitude in 

comparison with a normal and well formed component III.

[B] Acoustic Neuromas

This is a tumour arising on the VIII nerve and usually causes deafness. It is the most common of 

the space-occupying lesions in the cerebello pontine angle. The detection of these lesions is of 

considerable importance as the tumours are usually benign and can be removed with little trauma 

when detected at an early stage. The BAEP in some patients with acoustic neuromas do not 

contain a wave I and the I-III interval cannot be determined. In these cases it is necessary to use 

an external auditory canal needle electrode in an attempt to demonstrate wave I. In a group of 25
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patients with acoustic neuromas and five with cerebello pontine angle meningiomas, all had 

abnormal BAEPs on the side with the tumour. Five had normal CAT scans and two had normal 

standard audiometric findings. The incidence of false-positive tests was low, i.e. a pronounced 

abnormality in the I-III or I IV  IPL without a tumour detected with radiographic contrast study of 

the posterior fossa. Patients with large acoustic neuromas may also have BAEP abnormalities of 

the III-V IPL after stimulation of the contralateral ear. This is thought to be caused by the 

complex distortion and cross-compression of brain stem structures. The condition improves after 

removal of the tumour (Chiappa et al., 1982)

[C] Other Nervous-System Diseases and Uses

BAEP abnormalities have been reported in other diseases of the myelin and various 

leukodystrophies. Diseases connected with the degeneration of the spinal dorsal-root ganglia, 

axons, and posterior columns (e.g. Friedriech’s ataxia and Charcot-Marie-Tooth disease) exhibit 

abnormal BAEPs. Chiappa et al. (1982) postulate that the same process of degeneration occurs in 

the auditory system homologues of these structures, viz. the spiral ganglia, the auditory nerve, and 

its central connections. The BAlEP has proved useful in assessing the irreversibility of brain 

damage resulting in coma due to anoxia, hepatic failure, or drug abuse. Starr (1976) studied 

patients certified clinically brain dead i.e. having no vestibulo-ocular reflex, no pupillary reactions, 

and no spontaneous respiration. In these patients any auditory evoked potentials originating from 

brainstem structures (waves II-V) were absent. Wave I, from the VIII nerve, was present, but with 

prolonged latency. High doses of anaesthetic agents (and barbiturates) do not seriously alter the 

BAEP, even when the electroencephalogram is isoelectric. Hashimoto et al. (1980, 1981) have 

reported using the BAEP to monitor the hazardous procedure of posterior fossa surgery, e.g. on 

the arterial tree. Another area of much attention is the use of the BAEP in paediatric 

applications. Screening for hearing defects is more easily performed electrophysiologically in 

infants because the conventional behavioural hearing tests may not be practicable. Several 

investigators have reported the use of BAEP monitoring in sudden infant death syndrome (cot 

death) and mental retardation.
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Chapter Seven 

Quantitative Analysis and Interpretation of EPs

The first half of this chapter will consider some analytical methods that have been developed to 

study EPs, and will highlight some of the obstacles that need to be surmounted. The interpretation 

(i.e. labelling or scoring) of the EP waveform is then considered. This leads on to a brief 

discussion of knowledge based systems and their possible application in the problem of 

interpreting and scoring the EP.

7.1 Introduction

The simplest model of an EP consists of the sum of an invariant (non-stationary) signal and 

random noise. In this model the noise is assumed to be primarily due to background EEG activity 

that is uncorrelated with either the stimulus or the noise from another application o f the stimulus. 

This additive model accounts for biological artifacts, such as high frequency EMG activity, and 

non-biological instrumentation and electromagnetic interference (EMI) noise.

It is worth noting that the EP model differs from the model of interference and needle EMG, in 

that the EMG exhibits statistical stationarity similar to that of the additive noise. In the latter case 

the noise is mainly non-biological and due to EMI. Another difference between the two models is 

that the signal to noise ratios (SNR) are not comparable. EP feature extraction and analysis 

techniques are hampered by the low SNR obtainable in single responses and they are encouraged 

by the fact that significant features are deterministic. The converse is true for EMG analysis 

techniques (see chapter two). It is because of these fundamental differences that one rarely 

applies the approaches adopted in EMG analysis to EP analysis, unless the problems of low SNR 

in the EP are dealt with carefully prior to, or during analysis.

In the previous chapter we saw that ensemble averaging is used to extract the EP signal from 

additive noise, and is based on the prior assumptions of the simple EP model mentioned above. 

This provides an unbiased estimate of the signal at increased SNR which improves as the number 

of single response EPs contributing to the average increases. The assumption of an invariant 

signal implies that the population o f cells which generates the EP responds in the same way to each 

occurrence of the eliciting stimulus. The assumption is a reasonable one for some, but not all 

cases. Changes in the degree of adaptation and habituation and level of attention and fatigue can 

affect the EP, particularly in late waves that are usually associated with higher cognitive function.
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Therefore, the same stimulus can evoke different responses resulting in variations to the latency 

and/or amplitude of the EP. For such cases, biased estimates with lower than expected SNRs 

result from averaging the signal (Ruchkin, 1988).

It is now a generally accepted premise that EP signals do exhibit variability (Aunon et al., 1981). 

Although one of the most important problems in EP research is still signal extraction, more 

recently there has been an increased interest in the determination of the variability associated with 

the signal (Madhavan et al., 1985; McGillem et al., 1985).

The effect of latency variation upon the averaged signal waveform resembles that of a low pass 

filter, since attenuation of fine-detail, high-frequency activity occurs. Ruchkin has shown 

mathematically (1965) that this phenomenon can be expressed in terms of a linear filtering 

operation. The original signal corresponds to the filter input, the latency-blurred average 

corresponds to the filter output, and the filter’s frequency response is the Fourier transform of the 

probability density function of the latency. He states that if the effective range of latency variation 

is T seconds, then there will be heavy attenuation of the average signal waveform at frequencies 

above V2T Hz and relatively little attenuation at lower frequencies.

It may be desirable to reduce the distortion caused by latency variability if the features of interest 

are seriously obscured. The possibility of achieving this depends on whether the SNR is sufficiently 

high, so that the data can be effectively analysed on a single response (i.e. single trial) basis before 

averaging, thereby permitting extraction of signal latencies and quantification of the variability on a 

trial-to-trial basis.
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7.2 ERP Estimation by Latency-Corrected Averaging

Computation of averages by this method requires filtering single trials, estimating the latency of 

features, and then aligning the corresponding features by shifting each trial in time. The alignment 

procedure is followed by averaging across trials to produce the latency-corrected average (LCA).

Woody (1967) and McGillem and Aunon (1977) have developed methods for LCA. Woody’s 

method has been employed by several laboratories and the latter method is beginning to obtain 

wider clinical use and evaluation (Ruchkin, 1988). The descriptions given below refer to the more 

general ERP signals.

7.2.1 Method 1 (due to Woody):

This method uses adaptive correlation detection. The approach cross-correlates a template 

representative of the ERP under study with single trials of the response in order to estimate the 

latency of significant features. The single trials are then corrected for their individual latency 

variations whence a new average response is computed. The conventional average is chosen as the 

initial template. Iterations with each new LCA can be done until no further improvements are 

obtained. The convergence criterion is based on the average of the cross-correlation coefficients 

between each trial suitably shifted by its estimated latency and the template.

There is no guarantee of convergence for the process. Woody’s simulation studies determined that 

(a) convergence to the true ERP response waveform occurred if the rms SNR was greater than 0.2, 

and (b) the choice of initial template was not critical. Ruchkin (1988) has found that the rms SNR 

should be above 0.4 to 0.5 for reliable convergence to occur. The performance of Woody’s method 

can be improved by prefiltering the data, thereby increasing the SNR. Tukey (1978) suggests 

prewhitening the data and template in the pass band, thereby increasing the fidelity of the peak of 

the cross-correlation function. It is not known whether this suggestion has been implemented.

The Woody procedure is capable of compensating for shifts in the latency of the entire waveform 

but cannot cope with random shifts in the individual components of the ERP. Furthermore, the 

possible existence of strong components such as alpha waves, causes the Woody procedure to align 

to them (Aunon and Sencaj, 1978). Also, this procedure can produce, from noise-only data, LCAs 

that appear to contain perfectly plausible signals (McGillem et al., 1985; Ruchkin, 1988).
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1 2 2  Method 2 (due to McGillem and Aunon):

This method was devised to overcome limitations of the method due to Woody described above. It 

is non-iterative and deals with multiple peaks in the analysis epoch. The LCA procedure is aided 

by initially filtering the single trials of ERP data with a Wiener-like minimum mean square error 

filter which selectively attenuates at those frequencies where the SNR is low. After filtering, the 

peaks in the ERP are found by cross-correlating the single trials with a template having the general 

shape of the peaks. Histograms for the number of peaks found at each latency (sampling point) 

are constructed for both positive and negative peaks. Positive peaks add one unit to the positive 

peaks latency bin and negative peaks subtract one unit from the negative peaks latency bin. These 

two latency bins together constitute a polarised histogram which is then subjected to a running 

average over the analysis epoch.

The zero crossings of the running average provide estimates of the boundaries of the latency range 

of positive and negative peaks in the ERP. A  nonparametric sign test at a specified confidence 

level is used to reject the null hypothesis that the samples in the latency ranges are drawn from a 

zero mean population (McGillem et al., 1981). In another report (Aunon and Sencaj, 1978), the 

parametric student’s t-test is used instead, to test the hypothesis that the samples are drawn from a 

zero mean normal distribution. This procedure partitions the latency interval into regions of 

significant ERP component activity. For each significant region, the responses containing an 

identifiable peak in that region are aligned, so that peaks coincide. The latency-corrected 

waveforms are then averaged over a specified range in the vicinity of the peak, and the result is 

reproduced at the meem latency for that particular component.

Statistics of the latencies of the peaks in each LCA segment provide measures of component 

variability. Since the latency variability for each component is different, and there can be 

differences in the set of trials that contribute to the LCA of each component, the LCA of the 

whole waveform is reproduced as a series of disjoint LCA segments over time. Some components 

may be omitted if the significance tests failed to reject the null hypothesis.

For the two methods outlined above, it is not known in general how much error in latency 

measurements may be introduced. Simulation studies by the authors of method 2 suggest that 

reliable results are obtained for rms SNRs at or above 0.5 (-6 dB) and that relatively flat polarised 

histograms are produced with noise only data which can be readily distinguished from data with a 

signal content.
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Ruchkin (1988) states that the ability of method 2 to cope with (a) multiple component variability 

and (b) not needing a starting cross-correlation template as with method 1, are the major criteria 

that will make method 2 a more satisfactory technique for dealing with variable latency data. 

Somehow, it was overlooked that there is still the need to specify a peak detection template, 

hypothesis testing significance levels, and component averaging ranges.

In a recent paper, the authors (McGillem et al., 1985) have reported an improvement to method 2 

by converting the disjoint LCA segments into a smooth curve using least-squares fitting of power 

series (i.e. Chebyshev polynomials or Fourier series). However, where components were omitted 

in the LCA generation stage, the approximating functions behaved erratically and required the use 

of various compensation techniques. The compensations included the use of the conventional 

average as an approximation to missing components. Using invariant simulated data embedded in 

noise at different SNRs, the authors claim that the computed measures of latency variability are 

accurate to less than one sampling interval. This appears to suggest that computed variability 

measures using LCA are entirely due to the signal and not due to the ongoing EEG noise.

7-5



73  ERP Estimation by Digital Filtering

Averaging is a means of reducing additive noise interference. Noise attenuation can also be 

obtained using linear digital filtering techniques. Since linear filters are frequency selective, they 

can improve the SNR when the signal and the noise do not occupy the same frequency bandwidth 

and the noise model is additive. Filtering will not generally reduce variance in amplitude and 

latency of components when noise modulates the signal randomly (e.g. through random 

fluctuations in membrane potential and the metabolic state of the generator cells). The major 

benefits of simple linear filtering of ERP data are:

•  A  reduction in the number of trials used to obtain clear average responses thereby 
minimising the effects of habituation etc. and random noise modulation.

•  Single trial measurements are possible in situations of high SNR and high frequency 
separation of signal and noise (e.g. with slow late waves associated with cognitive ERFs 
such as the N200 and P300).

•  Digital filters can exhibit zero phase shift distortion and input data need not be 
irrevocably transformed.

The use of filters for smoothing the average ERP can be done on either the individual trials before 

summation or simply on the average alone. Both these will produce the same result since the 

operations of averaging and filtering are both linear. If an estimate of the latency variability of the 

filtered data is required, then the data must be filtered on a trial-to-trial basis because the variance 

computation is non-linear (Ruchkin, 1988).

There are three types of filters that are commonly used in ERP estimation. The first may be called 

conventional digital filters which achieve their action by computing a weighted sum of amplitudes 

over a finite range of adjacent sampled data points of the input. These are known as finite impulse 

response (FIR) filters (Lynn, 1971). The second are called recursive or autoregressive and are more 

sophisticated conventional digital filters that generate output values by operating on both the 

weighted input and previous output data points. These are known as infinite impulse response 

(UR) filters (Lynn, 1977; Taylor and MacFarlane, 1974). Implementation of UR and FIR filters 

requires the specification of the weighting function used. The discrete Fourier transform of the 

filter weighting function is the frequency transfer function of the filter. Therefore, one may use a 

rough knowledge of signal and noise spectra when formulating a filter weighting function. The 

main advantage of the above types of filter is the computational economy and the possibility of 

implementing these filters on-line. The main disadvantage is that the specification is largely
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pragmatic and empirical. The filters are not optimal in the sense that noise interference is only 

reduced to a pre-determined minimum for stationary noise. In fact the noise and signal 

characteristics may change over time from one stimulus delivery to the next.

The third type of filter used in ERP estimation attempts to reach optimal noise rejection 

performance in each trial by minimising the expected mean square difference between the filter 

output and the actual signal. These a posteriori Wiener-like filters (McGillem and Aunon, 1977; 

D e Weerd and Martens, 1978; Ruchkin, 1988) assume that:

•  both signal and noise processes have stationary statistics,
•  signal and noise are uncorrelated,
•  the analysis epoch is of infinite duration, and
•  the power spectra of the signal and the noise are known exactly.

The transfer function of such filters GQw) is given by S(jù))/(S(j(o) +  N(j(o)) where S(jw) and N(jw) 

are the power spectra of the signal and the noise respectively. From this relationship it is seen that 

G(j(o) attenuates heavily at frequencies where the noise power is greater than the signal power and 

approaches unity in the reverse situation.

The application of a posteriori Wiener-like filters (APWF) to ERPs is obviously less optimal than 

is suggested by the transfer function G(ja)) and the assumptions associated with its formulation. 

ERPs are transitory, generally having high frequency, short duration and short latency components 

and low frequency, long duration and long latency components. Furthermore, the analysis epoch 

is, of course, finite. The effectiveness of APWF is further limited by the fact that only the power 

spectrum [S(jw) +  N(j(o)j is measurable directly. The individual component spectra must be 

estimated from the average spectrum of the individual trials and the spectrum of the average.

DeWeerd (1981) points out that this method of spectral estimation is only valid for deterministic

signals and is therefore at odds with the APWF assumptions again. Additionally, he states that the 

SNR must be high before the estimates can be considered close enough to the true signal and true 

noise spectra for a reliable determination of GQw). This situation can only occur with prolonged 

averaging of ERPs, which in turn descreases the initial need for APWF.

The transitory nature of an ERP results in the power contribution of high frequency and low 

frequency components being averaged over the entire analysis interval. This happens because the 

transients do not usually occupy the entire interval, and so the power is underestimated. DeWeerd 

(1981) has suggested the use of his time varying a posteriori filter (TVAP) to take into account the 

transient property and corresponding temporal power distribution of the ERP. TVAP has been 

formulated to operate on the averaged ERP only; hence it is intended exclusively for smoothing 

and cannot be used for latency variability measurements.
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McGillem and Aunon, (1977) employ Wiener’s minimisation of the squared error between the 

signal and its estimate in their MMSE filter (Sec.[7.2.2]). The MMSE filter derivation depends on 

the general Wiener assumptions already mentioned, apart from the finite duration o f the ERP, 

which is accounted for. This filter was developed for use on single trial ERPs and not on average 

ERPs, and so it is possible to use it for latency variability investigations. Its use in this respect is 

adequate provided that the latency variability does not render the average ERP an invalid estimate 

of the single trial responses (Ruchkin, 1988).

No one is currently in a position to state which type of filtering technique discussed above is best 

for ERP estimation. Carlton and Katz (1980) and Boston (1983) have compared the performance 

of a posteriori filters and conventional digital filters. The results of these studies were obtained 

from simulations, somatosensory ERPs, and auditory brainstem ERPs, and indicate that the time 

invariant a posteriori filters are not, or are only marginally, better than conventional filters. TVAP 

may offer a better performance over conventional filters, but this remains to be seen (Ruchkin, 

1988).
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7.4 Computer Identification of Features in BAEPs

Some of the ideas behind the ERP estimation methods described above are the basis of automatic 

BAEP feature extraction techniques reported in the literature. Several reseachers have attempted 

to analyse the average response to locate significant wave components (Gabriel et al., 1980; 

Fridman et al., 1982) without much success except in the simpler cases where the wave 

components can be visually separated. The common element in all these techniques is to maximise 

SNR in the average BAEP, thus making it sufficiently clean to be examined by an algorithmic peak 

detection processor.

The problem that one often faces is that the BAEP components can be embedded in residual noise 

thereby making the peak location inaccurate. Gabriel et al. (1980) filter their data using a 

quadratic, seven-point, least squares fit. They then use zero crossings in the derivative of the 

filtered data with time windows to locate and label (according to Jewett’s (1970) classification) the 

BAEP features. The placement of these windows in time and their width is based on normal 

latency values obtained from the literature. It has been reported that a 98% peak detection 

accuracy for waves I, III and V can be achieved to within ±  2 sampling points with 65-75 dBHL 

BAEP data. They where unable to resolve the IV/V complex however, and go on to say that peaks 

that are not clearly defined in the average are still generally recognised as the appropriate peaks, 

even though they may not be labelled correctly. These inadequacies have not been considered to 

be a problem as they suggest (for normal data only) that their algorithm can be useful in training 

personnel in the identification of BAEP waves, and that it can provide a check against the 

judgement of experienced examiners. In our experience, the detection and localisation of BAEP 

waves requires additional knowledge besides that obtainable through an examination of the 

averaged response only. This is due, of course, to the variability of the data across trials.

Fridman et al. (1982) used an informal approach to the filtering of BAEP data before the 

detection of peaks. BAEPS were optimally filtered on a subaverage-to-subaverage basis. The total 

number of trials used was 2000 with each subaverage containing 200 trials. Fridman et al. 

reasoned that the SNR is largest over the frequency range in which the phase variance of the 

power spectra of single subaverages is the smallest. The same reasoning was applied to the ratio of 

the amplitudes of total averaged data and subaveraged data power spectra. The passband was 

defined to lie in the region of maximum SNR as determined by these criteria. Peak detection was 

done simply on an examination of the zero crossings of the derivative of the filtered sequence with 

no indication as to how the components were labelled correctly. It would appear from their results 

that exactly five components had to be found before being serially assigned the labels I-V. The 

filtering procedure was therefore being used, and relied upon, to extract the exact number of
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components expected in a BAEP. It is difficult to see how such a technique can be used to resolve 

complex components and to distinguish between multiple peaks in the vicinity of any single 

component. Nevertheless, the resulting amplitude and latency statistics obtained from the filtered 

data were reported to be significantly more reliable than those obtained from unfiltered data.

In their paper on the evaluation of BAEPs using dynamic time warping (DTW), Piet on et al. 

(1988) give a brief insight into the true complexity associated with the automatic selection of 

BAEP components. Their DTW technique provides a simple means of demonstrating differences 

between waveforms by stretching or shrinking portions of one temporal sequence to make it 

similar to another reference sequence. The reference template waveform was constructed from 

the hierarchical combination of pairs of normal BAEPs by DTW. This normal template is then 

used to assess the morphology of test BAEPs by determining the amount of warping necessary to 

fit the test BAEP to the normal template. Distortion measures obtained from this procedure are 

then used in conjunction with the location of peaks in the normal template to identify peaks in the 

test BAEP.

Picton et al. used three approaches to identify peaks of the BAEP: First, manual peak 

identification was used, which, as the authors’ quite rightly state, is simple to perform and quite 

difficult to describe. However, in normal waveforms, waves 1, HI, and V were identified as follows:

•  Wave 1 was identified as the most prominent peak after 1.2 msec and before the waveform 
moved negatively towards the baseline.

•  Wave 111 was the first prominent peak occurring at least 1.5 msec after wave 1.
•  Wave V occurred at least 1.3 msec after wave 111 as the most prominent positive wave or 

the second of two prominent positive waves or the last positive wave prior to the 
waveform moving negatively towards the baseline. This disjunction of conditions is 
probably an attempt by the authors’ to home-in on the elusive wave V in the possible 
presence of a wave IV/V complex and/or early wave VI.

•  The procedure is complemented with an identification of the waves in the reverse 
direction in time, starting with wave V as the most prominent positive peak preceding the 
most prominent negative-going shift in the waveform after 5.0 msec.

In cases of ambiguity, additional information was obtained from a comparison between the 

ipsilateral and contralateral recordings. Additionally, the effects of changing the stimulus intensity 

or rate of stimulation were used to determine the exact location of the waves. Wave V  should 

remain visible and shifted towards a longer latency at lower intensities and faster rates 

(Sec.[6.2.2J). Waves 1 and 111 are larger in the ipsilateral recording and wave 1 is readily observed 

at high intensities and slower rates.
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The second peak detection approach adopted by Picton et al. was that of Fridman et al. (1982) 

using zero crossings of the filtered BAEP. This method has already been described above. 

Finally, the DTW technique was used against a normal template.

Results of the second and third approaches measured against the manual approach in 96 normal 

BAEPs showed that the zero crossing method obtained errors o f 1%, 3% and 26% in the detection 

o f waves 1, 111, and V  respectively. The DTW approach produced corresponding errors of 0%, 

2%, and 26%. In 40 abnormal BAEPs, the error values were 3%, 13% and 60% for the zero 

crossing method and 5%, 3%, and 18% for the DTW method. The most common errors for the 

DTW method were cited as being the selection of wave VI instead of wave V, the selection of the 

second wave in bifid components, the inability to resolve the IV/V complex, and the inability to 

distinguish between cochlear-microphonics (Sec. [6.2.2]) and wave 1. The most common errors 

encountered in the zero crossing method were as suggested in the description given above.

Many approaches to BAEP peak identification do not examine responses at the single-trial or 

small subaverage level to reject artifacts which will affect the identification process. The rejection 

of artifactual activity is important (Schuhnan-Galambos and Galambos, 1975), and is normally 

performed manually by simply halting data acquisition whilst observing the accumulation of the 

average on the CRT screen. The removal of offending trials should be performed on an automatic 

basis when considering computer-based peak identification.

Feature extraction in BAEPs using the procedural (algorithmic) or deterministic techniques 

encountered in the discussions so far, seems unlikely to attain the levels of reliability necessary for 

routine clinical use. The complexity involved must suggest a re-evaluation of the decision models 

used. The complexity will obviously increase in situations of abnormal morphology of the 

waveform, where irregular shifts in the latency of components, multiple components, and/or the 

absence of components can occur. A  problem exists in the specied case of BAEP feature 

identification because the qualitative information contained in the BAEP is difficult to describe 

quantitatively. A  personal view is that in order to allow the analysis of BAEPs to provide both 

qualitative as well as quantitative information, it is necessary to couple the powerful algorithmic 

techniques available on the one hand, with symbolic interpretation techniques on the other. This 

view also applies to other ERPs. The algorithmic methods can be used to extract quantitative 

values and symbolic descriptors of the data. These symbolic descriptors can then serve as the 

database of facts upon which a knowledge-based system (KBS) will perform reasoning for 

qualitative interpretation of the data.
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Research work that will be described in the next chapter addresses the problems associated with 

BAEP analysis with the above thoughts in mind. A  method called ‘Event Analysis’ has been 

developed to identify and characterise the important waves contained in the BAEP. In this study, 

wave components are identified by analysing the ensemble of responses that comprise the 

averaged BAEP. The results from a group of analysis procedures are then interpreted by a 

prototype knowledge-based, or as it is sometimes called, expert system. This expert system (ES) 

contains some of the subjective methods of decision making that a human expert might use to 

locate the best possible position of wave components (see Appendix [Cl]).

The foregoing discussions have pointed out some of the important underlying characteristics of the 

BAEP that are of interest to the clinician, mainly with respect to the extraction of the latency 

variability of wave components. ‘Event Analysis’ provides these quantitative statistics. Additional 

information using these statistics is inferred for the construction of new average waveforms. The 

new averages are obtained by separatating single trials into homogeneous sets of those trials which 

contain specific combinations of significant peaks. The selection of the group of significant peaks 

in the initial set is currently performed manually. Ultimately, this initial set will comprise those 

peaks that have been selected by an enhanced and validated version of the prototype ES.

The author’s first thoughts on the implementation of an ES were directed towards the 

interpretation of quantitative results from some standard and widely used EMG and/or EP 

analyses. The large amounts of data and qualitative results available for normal subjects, made 

these areas good candidates to commence investigations involving the intelligent interpretation of 

the results from various analyses. Later, it became apparent, through the author’s work on BAEP 

analysis, that an ES approach could be used for qualitative BAEP feature extraction and 

interpretation. The ideas that are behind the prototype that was constructed, can nevertheless be 

applied in simple EMG data interpretation. Moreover, the techniques of Artificial Intelligence 

that are now available, can be applied to the planning of EP and EMG data analysis procedures 

(Fuglsang-Frederiksen and Jeppesen, 1987; Andreassen et al., 1987).

The implementation of the prototype ES for BAEP interpretation (called EPAXIS) was carried 

out at the Turing Institute (Glasgow, Scotland) during a period of secondment from Leicester 

University between October 1987 and January 1988. The system was implemented in Quintus 

Prolog (Ver. 2.0) under Unix BSD 4.2 on a Sun Microsytems 3/50 minicomputer. It was later 

ported onto an IBM PC-AT in SD-Prolog (Ver. 1.2) under MS-DOS 3.30 (Appendix [C2]). The 

research work conducted at the Institute is reproduced in the publication included in 

Appendix [Cl]. What follows is a brief description of knowledge-based system techniques, some 

of which were used in the construction of the prototype ES. This description should help to clarify
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the implementation details contained in Appendix [Cl]. A  similar description was included in a 

specification for expert system techniques in quantitative EMG analysis for the EMG-equipment 

manufacturer Medelec Ltd (Woking, Surrey) in 1985.
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7.5 General Knowledge-Based System Concepts

Knowledge-based systems behaving in an apparently intelligent way have evolved over the last 

decade (Kulikowski, 1980). Both KBSs and conventional computer programs have knowledge 

about the problem domain and information on how to manipulate that knowledge. The distinction 

lies in the manner of representation of the knowledge used. Conventional programs have implicit 

knowledge, that is usually opaque, about domains that are static and formalised. KBSs have 

explicit knowledge, that is transparent, about domains that are usually subjective and judgemental. 

Central to a KBS is an inference mechanism which uses the knowledge contained in the 

knowledge-base (KB) to reason about the problem domain. The explicit separation of knowledge 

from inference provides flexibility and enhanced transparency, especially in terms o f altering or 

modifying the systems behaviour.

A  classification of KBSs due to Hayes-Roth and Waterman (1979), suggests two distict types of 

KBS, namely, rule-based and network-based systems. There is nothing rigid in this classification 

scheme, and indeed it is quite common to combine these two models of knowledge representation 

and their principles in the construction of specific KBSs.

7.5.1 Rule-Based Systems

Problem solving and intelligent, expert-like behaviour can be simulated to a certain degree using 

if-then type rules of the form:

IF (antecedent) THEN (consequence), or

IF certain facts are known to be true (or false)
THEN arrive at an appropriate conclusion.

These are also known as production systems. Problem solving can be thought of as a transition 

from a specified state to a goal state through application of rules governed by a strategy. To 

implement a production system three types of knowledge are necessary. First, declarative 

knowledge is the facts pertaining to the problem domain. ^ccxynA, procedural knowledge provides 

the basis for manipulating the state descriptions, and finally, control knowledge specifies how such 

manipulations can be effected. Sometimes, however, it is not easy to distinguish between 

procedural and control knowledge.

If the control strategy of a system is:

(a) start with a collection of facts (declarative knowledge).
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(b) apply all the applicable rules related to the known facts
(using procedural knowledge and directed by control knowledge),
(c) derive new facts and eventually the solution to the problem,

then the system is said to have adopted a data-directed or forward chaining inference. 

Goal-directed or backward chaining starts with an unproven hypothesis and attempts to match this 

with the facts known about the problem. The rules in the KB are in fact used to derive more 

information about their premises.

Another aspect of the control strategy involves the type of search technique adopted in matching 

the facts and knowledge about the facts. Search techniques commonly used are breadth first, 

depth first, and a combination of both using heuristic pruning. Heuristic pruning involves an 

examination of the current search path and obtaining some measure of confidence for it. The 

measure of confidence is sometimes specified using basic common sense reasoning or 

rules-of-thumb. If the confidence measure at the current node in the search path falls below a 

threshold, then all solutions below this node are eliminated, and the search continues along 

another path from a node higher up in the search space.

The classic example of an if-then type production system is MYCIN which was developed for the 

diagnosis of infectious diseases (Shortliffe, 1976; Shortliffe et al., 1979). MYCIN is a 

backward-chaining deduction system. The primitive facts in MYCIN are stored as triples in the 

form (Context - Parameter - Value). A  context is some real-world entity that the system is 

currently reasoning about, for example, it may be an organism of sorts. A  parameter is an attribute 

of the context, such as identity or strain. The value is an instance of the parameter, for example, it 

might be the actual name of the organism such as streptococcus. With each triple there is an 

associated certainty factor (CF) with a value between -1 (negation) and -1-1 (certainty). A  rule 

premise contains a conjunction of triples, and each rule will have a CF attachment to its 

conclusion. At the start of a consultation there will be many triples in the knowledge base, some of 

which will have empty values. Certain triples represent the goals of the consultation and these will 

obviously be unfilled at the start. MYCIN begins with a list of possible diagnoses and uses the 

production rules to work towards the primitive facts. Eventually, primitive facts which are known, 

from clinical observations and laboratory results, enable the empty ones to be instantiated (i.e. 

filled). MYCIN uses a theory of inexact reasoning to obtain cumulative CFs for each conclusion 

made through the invocation of premises in a rule. These CF calculations are discussed later in 

Sec.[7.6.1].

A  context tree is used as part of the control strategy to specify the organisation of knowledge. The 

system can explain its conclusions by examining both the context tree and the individual rules that 

have been used to infer the conclusions. U se of MYClN-like systems has highlighted some of the
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problems related to human engineering. MYCIN-type rules can cope with a degree of uncertainty 

in their rules and factual base, but it is difficult to extend the rules and facts to reflect any 

uncertainty that may occur in quantified variables (Nilsson, 1980). Finally, it is not easy to express 

a given piece of knowledge in the form of a rule, and the meaning of some of the rules in the 

system may not be immediately comprehensible to an uninitiated user, even when such rules are 

coded in English.

1JS2 Network-Based Systems

An example of a network-based system is PROSPECTOR (Duda and Hart, 1977). It was 

developed to assist field geologists in the evaluation of sites for the existence of certain ore 

deposits, and for the selection of favourable drilling locations. The knowledge in PROSPECTOR 

is captured in a series of hierarchical models consisting of spaces, which are in turn connected by 

rules to form a network. The concept of a space, is simply a place holder for some evidence or a 

hypothesis. Each space has an a priori probability value indicating how true it is. At the start of a 

run these probabilities are usually low. The rules connecting the spaces specify how the 

probability values are propagated from one space to the next as the run proceeds and evidence is 

accumulated up the network. The network rules in PROSPECTOR may be logically combined. In 

comparison to, say MYCIN, the lower spaces in the hierarchy can be likened to the premise part in 

a production, and the higher spaces can be likened to the action part. Similarly, the connecting 

rules between spaces can be likened to the mechanism for inexact reasoning.

The implementation of inexact reasoning in PROSPECTOR involves the computation of rule 

strengths which are defined by likelihood ratios for sufficiency (LS) and necessity (LN) (see 

Sec.[7.6.2]). PROSPECTOR does not create new spaces in the same way as MYCIN will create 

new facts using its rules. The system is concerned solely with the propagation of probability values 

through the network of spaces constituting its models. Also, the inference network has no 

understanding of the context of the rules and the geological relationships between spaces. 

Therefore, PROSPECTOR uses a classification of minerals in the form of a semantic net to enable 

it to perform associative deductions. For example, the user will not be consulted about the 

implications of the presence of sulphides, when it has already determined some information on 

pyrite (as pyrite is a member of the sulphide group). The top level structure of PROSPECTOR is 

thus a collection of spaces forming the nodes of an inference network. At the lower level is the 

semantic net, with its nodes contained within the spaces if they are unique to the spaces, or with its 

nodes appearing outside the spaces if they can be referred to by other statements.
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Some systems attempt to arrange the knowledge in the task domain into several distinct chunks or 

frames of knowledge. A  frame may be thought of as a collection of rules all of which relate to a 

particular aspect of a problem. Frames are then linked in a network that encompases the entire 

problem domain.

PIP (Present Illness Program) is a frame-based system developed at MIT providing expert advice 

in the diagnosis of renal diseases and related disorders (Szolovitz et al., 1978). Knowledge in this 

system is organised in frames. A  frame in PIP contains all the information related to a particular 

hypothesised disease. The information in these frames is typically:

•  Triggers which activate the hypothesis frame.
•  A  set offin d in g  linked by rules characterising the disease state.
•  A  set of relations describing the inter-relationships between different frames, e.g., 

information as to whether the current state can be complicated by other disorders.
•  A  section where conflict resolution is effected.
•  A  section where an estimate of likelihood for the current frame is calculated.

PIP maintains a matching and a binding score. The former determines the degree of congruence 

between observed findings and expected values. The latter is just a ratio of the expected number 

of findings for the current hypothesis to the total number of reported findings. These scores are 

then combined to give a local score. Finally the local score is updated to reflect the effect of other 

frames on the current frame and to give a likelihood estimator for the frame. A  hypothesis frame 

is activated if the conditions specified in the frame trigger are satisfied. The hypothesis frame can 

be in the active, semi-active or inactive state, depending on the value of the binding score.

Another frame-based system which has had impressive success is INTERNIST, the computer 

consultant for internal medicine (Pople and Myers, 1974). In INTERNIST, every diagnosis Di has 

a set of manifestations {Mj}. These Mj are associated with an evoking strength and a frequency 

count. The evoking strength (L[di / mi]) is defined as a number in the range 0-5 characterising the 

likelihood of disease Di causing manisfestation Mj. The frequency count is the likelihood that a 

patient having disease Di exhibits manifestation Mj. The control strategy for this system lies in an 

exhaustive search of the disease hierarchy. A  heuristic measure of the reliability of the diagnosis 

reached is computed based on evoking strength, frequency count, manifestations explained and/or 

unexplained by the current or other frames (Szolovitz et al., 1978). Frame-based systems are 

better at capturing the causal reasoning mechanisms which model the human way of thinking than 

say, if-then systems. Frame-based systems are also referred to as semantic networks.
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CASNET is a causal associated network for diagnosing disease states in glaucoma (Kulikowski, 

1980). The network nodes in CASNET consist of real, physiologically distinct, states. A  set of 

tests provide evidence and likelihood as to which one of the dysfunctional states the patient is in. 

Some of the nodes are termed the starting states, and some the final states. Causal connections 

between nodes are represented as links, with link strengths specifying the likelihood of one node 

being causally responsible for another node. For every node a number called the status of the 

node is computed based on simple tests. The node is confirmed or denied depending on the value 

of this status. A  weight value is also computed which for each node, provides the strength of the 

causal associations of the nodes under consideration to all its surrounding confirmed and denied 

nodes. An acceptable path in the network is a path connecting any starting node to any final node 

which does not contain any denied nodes. This path constitutes the diagnosis, and the nodes in the 

path hold the explanations of the diagnosed disease state. The control strategy here attempts to 

confirm nodes and find an acceptable path based on the weight value computed for nodes.

The approach taken by the author to interpret results from event analysis is a combination of 

rule-based system techniques and knowledge representation in frames. This has resulted in a suite 

of programs called EPAXIS that reason with symbolic information generated by the analysis 

programs. The frames of knowledge contain certainty factor attachments which are propagated 

through the inference network using methods derived from fuzzy logic (Zadeh, 1979). Further 

details of this reasoning mechanism are given in the next section.
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7-6 Inexact Reasoning in Expert Systems

The knowledge-based systems presented so far all use some form of inexact reasoning and 

heuristics. The reasons for this are threefold:

(i) The data and knowledge is unreliable.
(ii) The data and knowledge is not static.
(iii) The search space for solutions is potentially very large.

With ideal and/or simple KBSs, the knowledge and data do not lead to false, inexact, or tentative 

conclusions. Once conclusions have been made by such a system, there is no need to modify or 

retract facts in the light of new information (i.e. the system is displaying monotonie reasoning). In 

real-world applications data can be noisy and error-prone due to extraneous measurements and 

missed observations. Additionally, the knowledge captured in the system can be ill-specified in 

terms of its consistency and correctness. A  single line of reasoning, not supporting multiple 

arguments and multiple conclusions, is therefore inadequate for many iil-conditioned, i.e. 

heuristic, tasks.

Many systems which employ heuristics defend their methodology only on the basis of the results 

they have produced. The approaches have been criticised for being unnecessarily fabricated. For 

example, MYClN’s own formalism for reasoning with uncertainty could have been replaced by the 

thoroughly studied Bayes’ theorem. Bayes’ rule could be used to calculate the probability of a 

disease given some evidence from the a priori probability of the disease and the conditional 

probabilities relating the observations to the diseases (Stefik et al., 1983). The amounts of data 

being considered are so large, however, that conditional independence of observations must often 

be assumed. The need to resort to an assumption of independence is often seen to undermine the 

merits of the rigorous statistical model (Stefik et al., 1983). The PROSPECTOR system seeks a 

compromise by replacing the observations with subjective estimates of prior probabilities.

Another approach to inexct reasoning that is divergent from classical predicate logic is fuzzy logic 

(Zadeh, 1979). Zadeh’s theory of approximate reasoning provides characterisation of linguistic 

variables, e.g. high amplitude, mild polyphasicity, early latency etc., by a mapping of the numerical 

values o f the variables in a fuzzy set into corresponding possibility values. For example the fuzzy 

proposition X  has high amplitude is characterised using the fuzzy set:
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(X  e  (0,10), 0.1)
(X  e  (10,100), 0.3)
( X e  (100,oo),0.7)

The interpretation of the proposition X  has high amplitude is then taken to be X  may be less than 

10 with a possibility 0.1 of having a high amplitude, between 10 and 100 with a possibility 0.3 of 

having a high amplitude, and so on. The possibility value has no direct relationship to a probability 

value. Conceptually, it represents the degree of certainty with which the value of an attribute is 

believed to be true. The possibility value is usually determined from a continuous function related 

to the (fuzzy) set of values for an attribute (variable). There will be more said about fuzzy sets in 

Sec.[7.6.2].

We will now consider briefly the mechanisms of inexact rezisoning implemented in MYCIN and 

PROSPECTOR. This will be followed with a description of the fuzzy reasoning mechanism that 

was implemented in the prototype ES described in Appendix [Cl].

7.6.1 Certainty Factor Calculations in MYCIN

When MYCIN makes a conclusion using its rules, a primitive fact will be added into its dynamic 

database together with a computed certainty factor for this fact. This certainty factor (CF) is 

computed from:

(i) the combined certainty factors of the individual clauses in the rule premise,
(ii) the certainty factor attachment of the rule, and possibly from the
(iii) certainty factor of the original primitive fact if it existed already in the dynamic 
database.

The operation performed in (i) is simply the minimum CF of the premise clauses. This is 

multiplied by the CF attachment of the rule to give a certainty factor CR. CR is stored together 

with the primitive fact in the conclusion provided the conclusion does not already exist. If the 

conclusion already exists with a certainty factor of Cl, then the computation in (iii) is done as 

follows:

CF =  Cl +  CR(1 - Cl) for CR,CI >  0.

CF =  -( |C I| +  |C R |( 1 - |C I |) )  forCR,CI < 0.

Cl + CR
= r ^ ( |C I |,|C R |) '"C I.C R  < 0. |C R |,|C I| .  1.

CF =  1 with a combination of 1 and -1 for CR,CI.
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Using these formulae, MYCIN is able to cope with non monotonic judgemental reasoning, 

Shortliffe (1976), provides a formalised description of the epistemology which is loosly based upon 

Bayes’ theorem. The variation in the computed CF is shown in Fig.[7.1(a)], (Alty and Coombs, 

1984).

7.6.2 Uncertainty in PROSPECTOR

As we have seen already, PROSPECTOR, has a rule strength between spaces using the LS and LN 

ratios. LS and LN measure the degree to which a change in probability of one space will affect the 

probability of another. One way to visualise this arrangement is in terms of source spaces and 

target spaces. The source spaces contain facts used as evidence at lower levels in the 

PROSPECTOR model hierarchy, and the target spaces contain hypotheses at higher levels in this 

hierarchy. The target spaces are, in turn, the source spaces for higher level spaces, and so on. The 

top level of the hierarchy represents the goal of the model. This interpretation then reduces to a 

production rule representation having probabilistic attachments through the rule strength 

formalism; a vague similarity with a rule-based system is evident.

The propagation of probability values in the model is driven by Bayes’ theorem relating the 

hypotheses H to the evidence E:

P (H |E ) =  P (E |H ) .  Eq.[7.1]

where P (H |E ) is the conditional probability of H being true given E, and P (E |H ) is the 

conditional probability of E  existing given H. P(H) and P(E) are the prior probabilities of H and 

E  respectively; these being estimated by the expert during the formulation of a PROSPECTOR 

model. Given that P(not X) =  P (~ X )  = 1 - P(X), it can be shown that:

P ( - H |E )  = P (E |  Eq.[7.2]

Dividing Eq.[7.1] and Eq.[7.2] gives:

P (H |E ) P (E |H ) P(H)
P (~ H |E )  P ( E |~ H ) ’ P (~ H )

therefore, if odds 0 (X ) =  P(X)/(1 - P(X)) then:

0 (H  IE) = • 0 (H ) .Eq.[73]
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or, this equation may be rewritten as;

0 (H |E )  =  L S .O (H )

which is the odds version of Bayes’ theorem and relates, through the likelihood ratio LS, how the 

odds o f H  change with an observed true E. Similarly:

0 ( H |~ E )  =  L N .O (H )

informs us how to calculate the new odds of H  given that E is definately untrue using the likelihood 

ratio LN.

LS and LN therefore provide a means of changing the prior odds of H if E is true and E is untrue 

respectively. One or the other is used as the rule strength depending upon whether E is true or 

untrue. They are related by the equation:

( l - l ^ . P ( E | - H ) )
( 1 - P(E I H) )   H I ' ' j

and generally 1 < LS < oo and 0 < LN < 1 so that, for example, statements like: if  there is fire 

then there is smoke can be made with a reasonable amount of certainty. A  problem does exist 

however, since one may want to state that the presence o f E  will increase the odds on H, but the 

absence o f  E  will have no ejfect, i.e. in this case LS > 1, and LN = 1 which is inconsistent with 

Eq.[7.4] and probability theory. PROSPECTOR, nevertheless, has methods of dealing with this 

inconsistency.

The decision to use either LS or LN depends on whether or not E or ~ E  are known with 

certainty. This is not usually the case, and in a perfect world it would be dealt with by a linear 

interpolation (Alty and Coombs, 1984). If E is known to be true with evidence E% e.g. P (E |E '), 

then:

P (H |E ') =  P (E |E ') .P (H |E )  + ( 1 - P ( E |E ' ) ) .P ( H |~ E )

One problem with this linear interpolation approach, is that when the network is set up, all nodes 

are assigned prior odds. Since LN and LS relate the prior odds across the network, an expert 

would have great difficulty in setting up a completely consistent network. The model building 

experts usually give the prior odds of nodes and the LN, LS values in a subjective m anner. Thus 

the network will usually be mathematically inconsistent. If E' is the evidence that causes the user 

to suspect the presence of E, then the probability of H will be altered to P(H |E '). This will be 

between P(H | ~ E )  and P(H | E). If P(H | E') has the value 0 then P(H | E') should be P(H | ~ E ).
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When P (E |E ') has the value 1, P (H [E ') should have the value P (H |E ). If, however, we know 

nothing about E (i.e. P (E |E ') =  P(E)) then the prior odds on H should not change. Thus 

P (H |E ') =  P(H). These three points give us the relationship between P (H |E ') and P (E |E ') as 

shown in Fig.[7.1(b)].

This technique in PROSPECTOR overcomes the problem of inconsistent LN, LS and prior odds 

assigned to the network by the expert, thereby eliminating erroneous propagation of probabilities. 

It yields the relationships below for the piecewise approximations in Fig.[7.1(b)]:

P (H |E ') =  P (H |~ E )  + < 5 S 1 ^ E L Æ - , p (e |E ') 

forO < P (E |E  ) s  P(E), and

P (H |E ') =  P(H) +  (p (e |E ') -P (E ))

forP(E) < P (E |E ') <  1.

The same piecewise approximation technique is used to map user input probability values to the 

prior odds allocated to the spaces that prompt for that user input. The user supplies a certainty 

factor C (E |E ') between 5 (the queried value is definately true) and -5 (definately not true). A  

value of 0 for C(E |E ') has no effect on the prior probabUity, and the extreme values force the 

probability to 1 or 0.

The graph of C (E |E ') against the prior probability P(E) is shown in Fig.[7.1(c)]. The piecewise 

approximation relationships are:

P(E IE') =  P(E) +  . (1 - P(E))

for C(E IE') >  0, and 

P (E |E ') =  P(E) +  , p(E)

for C (E |E ') < 0.

Suppose the user supplied the value o f 3 for the certainty of a piece of evidence E  which had a 

prior probability P(E) =  0.6 in the PROSPECTOR network. The adjustment made to the prior 

probability would then be 0,6 + (3/5) (0.4) =  0.44.
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experts usually give the prior odds of nodes and the LN, LS values in a subjective manner. Thus 

the network will usually be mathematically inconsistent. If E' is the evidence that causes the user 

to suspect the presence of E, then the probability of H  will be altered to P(H | E '). This will be 
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When P (E |E ') has the value 1, P (H |E ')  should have the value P (H |E ). If, however, we know 

nothing about E (i.e. P (E |E ') =  P(E)) then the prior odds on H should not change. Thus 

P (H |E ' )  =  P(H). These three points give us the relationship between P (H |E ') and P (E |E ') as 

shown in Fig.[7.1(b)].

This technique in PROSPECTOR overcomes the problem of inconsistent LN, LS and prior odds 

assigned to the network by the expert, thereby eliminating erroneous propagation of probabilities. 

It yields the relationships below for the piecewise approximations in Fig.[7.1(b)]:

P(H IE') =  P(H I ~  E) . P(E IE )

forO s  P (E |E ') < P(E), and

P(H |E ')  =  P(H ) +  _ (p (E  IE ) - P(E))

forP (E ) a  P (E |E ')  <  1.

The same piecewise approximation technique is used to map user input probability values to the 

prior odds allocated to the spaces that prompt for that user input. The user supplies a certainty 

factor C(E | E') between 5 (the queried value is definately true) and -5 (definately not true). A  

value of 0 for C(E | E') has no effect on the prior probability, and the extreme values force the 

probability to 1 or 0.

The graph of C(E |E ')  against the prior probability P(E) is shown in Fig.[7.1(c)]. The piecewise 

approximation relationships are:

P(E |E 0  =  P(E) +  . (1 - P(E))

for C(E IE') >  0, and 

P (E |E ')  =  P(E) +  5 £ 1 £ 1 . p (e ) 

for C(E |E ')  <  0.

Suppose the user supplied the value of 3 for the certainty of a piece of evidence E which had a 

prior probability P(E) =  0.6 in the PROSPECTOR network. The adjustment made to the prior 

probability would then be 0.6 +  (3/5)(0.4) = 0.44.
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Orne last point to consider is the logical combinations of probability values between the spaces in 

the PROSPECTOR model. Combination with the logical operators AND, OR, and NOT is 

effected using Fuzzy Set theory (Zadeh, 1979). For AND, the minimum probability is taken. For 

O R, the maximum probability is taken, and NOT simply negates the probability.

7.63 Fuzzy Certainty Factor Calculations in EPAXIS

EPAXIS is an acronym for EP Analysis and eXpert Interpretation System. It is a suite of 

programs used to automatically score the auditory brainstem evoked potential. The expert system 

part is provided in Appendix [Cl] and the (event) analysis part is will be described in the next 

chapter. EPAXIS uses fuzzy certainty factors for its uncertainty mechanism, mainly because the 

fuzzy sets used, can be specified easily from the normative values of latency variability quoted in 

the literature. Usually the numbers of the fuzzy set will be normally distributed about their central 

value since this is expected when a measurement is subject to a large number of small 

disturbances. Therfore, using two terms (i.e. the mean and standard deviation), permits the error 

specification to be invariant for many types of measurement. This is an important advantage in EP 

analysis. Bayes’ theorem, as we have seen, is difficult to implement because of the need to supply 

prior probabilities. M edelec Ltd. have conducted their own normal data study with the aid of the 

event analysis program, and these values will be substituted into EPAXIS in the future.

In Sec. [7.4] some methods of feature identification in BAEPs were discussed. The techniques 

produced results that provided no sensitivity and specificity information for latency labels of the 

features detected. In some cases it was even possible to allocate the wrong labels to features; this 

being confirmed visually after the fact. Unfortunately, this approach is unsatisfactory because it 

would be difficult to express the degree of pathology connected with the features in the BAEP  

using their latency values. There is also no way to incorporate provision of a set of features that fit 

the selection criteria for a particular BAEP component. Since manual feature selection can be 

highly judgemental, providing such possibilities in a system for feature selection might be more 

acceptable to a clinician.

The rules that EPAXIS contains are modelled on the judgemental processes that an expert uses 

for BAEP scoring. The data provided by event analysis are examined by EPAXIS rules in the 

early stages of a goal-directed reasoning process. Candidate choices for features are given fuzzy 

values which are propagated through the search space towards the final goal of finding waves I-IV. 

Hence, the quantitative results are easily assigned qualitative descriptions for the system to reason 

with.
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The method by which fuzzy values are assigned to the data relies on the definition of a fuzzy model 

for the normal brainstem potential. The model is described next, and in fact is comprised of two 

parts, namely, the procedural and the declarative model components.

[A] The Fuzzy Procedural Model (Database)

The fundamental primitive for information modelling is propositional statements of the form: an 

attribute o f  an object has a partcular value. This is represented in the Prolog language as the 

symbolic structure:

Object Attribute Value.

We may express that a component wave o f  the BAEP occurs at position X  by writing:

Wave position is X.

As soon as Wave does not occur exactly at X  then we have introduced an amount o f imprecision, 

where X  does not exactly reduce to one element in the domain Uwave (universe o f discourse) of 

the variable Wave. X  is then the set of mutually exclusive possible values for Wave. In the 

imprecise proposition above, the set X  may not have clear boundaries. Then X  is what Zadeh 

(1979) has named a fuzzy set and Wave position J s  X  is said to be a fuzzy proposition. A  fuzzy set 

X  say, is described by means of a membership funetion |xx. This is a function mapping from the 

domain Uwave to the interval [0,1], A  value of 1.0 represents full membership and a value of 0 

represents non-membership. Intermediate values of jjlx for Uwave represent partial membership.

The fuzzy set (Tlx ) of values which the results of event analysis (X )  can take for a wave 

component (Wave) in the domain of BAEP waves (Uwave ), is given uniquely by the fuzzy 

membership function (jxx )• The membership function for the domain Uwave is shown in Fig.[7.2]. 

This is termed the fuzz function and enables assignments of reliability or fuzz to the results of the 

event analysis algorithm and the peaks in the averaged BAEP response.

Refering to Fig.[7.2], peaks in the bin segment shown, have their fiizz computed by a simple 

interpolation through a mapping of their times of occurrence onto the fUzz function. For example, 

the bin peak at ’B’ maps to a fuzz of 1.0 indicating full membership of in Uwave and ’A ’ maps to a 

fuzz of 0.8 indicating partial membership of% in Uwave-

Zadeh also calls IIx the possibility distribution. Its identification can be subjective since the 

definition o f |xx can be subjective. The importance of this distribution is the order it imparts on 

the domain Uwave and it should contain all possible values of Wave. In this application, jxx has
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been estimated from a linear approximation to the normal statistical distribution of the individual 

components in the BAEP. This can be altered dynamically in EPAXIS since the model 

descriptions are generic. The flexibility that this provides is important in maintaining the 

separation between the components in the expert system as a whole and for its adaptability to 

other EP domains.

Fig. [7.3] illustrates the complete fuzzy procedural model for the BAEP. The fuzz functions are 

located along the time axis at the normal mean values (initially) for each component wave of 

interest.

Prolog descriptions for each wave are constructed via the execution of the declarative model 

(explained later) when required. The generic Prolog structures for a fuzzy function (or fuzzy 

latency window) are:

fuzzwindow(WaveNumber, Anchor, [P, Q, R, Sj). 
modifs(WaveNumber, [a, b, c, d]). 
current_shift(WaveNumber, Shift).

where [P, Q, R, S] are defined in terms o f the modifiers [a, b, c, d]. The modifiers are set to 

constant values, but conceptually they can be continuous functions of time that modulate their 

respective fuzz function regions. The Prolog predicate current_shift/2, is used to relocate the 

anchor point for the fuzzy function along the time axis.

This structure means that the fuzzy functions can adopt any suitable form and location. The 

description adopted for the prototype system is simple. The modifiers for each wave in the current 

implementation of EPAXIS are: [0,1, 2,1], This results in fuzzy function descriptions: [P, Q, R, S] 

=  [0, Sd, 2 . Sd, Sd], where Sd is the normal latency standard deviation for a particular wave 

component. Hence, the total width of each fuzzy function is 4 standard deviations. The extents of 

the spread either side of the anchor point (normal mean latency value for the component wave) 

correspond to the 99% confidence limits (note that the distribution of latencies for BAEP  

components is assymetric).

W e have seen how the results of the event analysis algorithm can be asssigned reliability measures. 

To reason effectively with these tagged data requires the declarative model and the inference 

machine (rule interpreter) to be compatible at the higher level.
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[B] The Fuzzy Declarative Model (Knowledge Base)

This model attempts to capture the expert decision making processes used to interpret (label) a 

BAEP. The fuzzy procedural model described above makes it possible to formulate propositions 

of the form:

Object Attribute FuzzyValue.
Fuzzy Value =  Value 4 - Fuzz.

Furthermore we can formulate the consequence of fuzzy propositions by using rules or 

productions:

if: Object Attribute FuzzyValue
then: ObjectX AttributeX ValueX.

The value ValueX of object ObjectX  is concluded with the fuzzyness Fwzz (in FuzsyValue) of object 

Object.

The certainty with which a proposition holds is expressed with a propositional attachment called 

the certainty factor, cf. Therefore we can write:

if: ObjectX AttributeX FuzzyValueX cf CF
then: ObjectY AttributeY ValueY.

The value ValueY of object ObjectY  is concluded with a combination of the fuzzyness FuzzX  of 

object ObjectX  and the cf attachment CF : [0.0,1.0]. This in effect allows the modeller to express 

the reliability or confidence with which a proposition is being made when the object value is 

completely true. If the object value is fuzzy, then this is reflected nevertheless through a 

combination of fuzzy and certainty values.

The production if contralateral recording is available then contra jvaveJV position  J s  X , produces a 

piece of evidence that may be needed for reasoning whilst the antecedent is true, but the evidence 

is not terribly important if the antecedent is false. To prevent the assertion of the consequent with 

a low certainty value in the absence of a contralateral recording, another extension to our existing

formalism is required. In this case we must assign a weighting to evidence for truth and a

weighting to evidence for falsehood:

if: ObjectX AttributeX FuzzyValueX cf CF wt (WtT,WtF)
then: ObjectY AttributeY ValueY

The combined fuzzy value for object ObjectX  is calculated in two stages:

7-27



[1] Fuzz =  FuzzX . CF

Introducing the clause weights (IVtT, WtF ) we obtain a total reliability for the antecedent 

proposition in the production rule. This is termed fuzzy reliability factor (FRF ):

[2] FRF - WtF)
max(WtT, WtF)

The value ValueY o f object ObjectY  is concluded with the fuzzyness FRF of object ObjectX.

Fig.[7.4] illustrates the variation of the clause weight (FRF ) with the certainty factor attachment

(or combined fuzzy value) of the rule proposition. The contribution of truth and falsehood to the 

declarative interpretation of an antecedent proposition (and how much this contributes to the 

assertion of consequent propositions), is determined by the truth and falsehood weights. 

Adjustments of these weights is equivalent to an adjustment of the slope of the line in Fig.[7.4]. 

The steeper the positive slope, the higher is the contribution of truth of antecedents in the 

assertion of consequents, and the less falsehood detracts. Negative slopes have the same effect as 

negation of the antecedent propositions. Use of weights that produce negative slopes is not 

recommended as it obscures the declarative content of the rules.

Rules containing conjunctions of antecedents get their individual FRFs combined before the 

assertion of a consequent using the following relationships:

ClauseWtA = WtFA + FuzzA(WtTA - WtFA)
ClauseWtB =  WtFB + FuzzB(WtTB - WtFB) 
etc...

_ _  ClauseWtA + ClauseWtB 4- .... 4- ....
FRF =  "

max(WtTA, WtFA) 4- max(WtTB, WtFB) 4- .... 4- ....

where a clause weight ClauseWtX is the individual FRF of a single antecedent X  in the 

conjunction. If consequent has a certainty factor attachment, then the FRF calculated as above is 

combined with this as in stage [1] above.

These ideas are employed in a structured declarative model (knowledge base of rules) with a rich 

syntax. The grammar for the rules is summarised below in Backus-Naur Form:
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Rule Grammar

rule :: =
(term) :: if (antecedent) 
then (consequent), 

antecedent :: =
(antecedent) && (antecedent)
I (antecedent) or (antecedent)
I (antecedent) cf (number)
I (antecedent) wt (weightT, weightF)
I (antecedent) cf (number) wt (weightT, weightF)
I (term), 

consequent :: =
(consequent) && (consequent).
I (consequent) cf (number).
I (term), 

term =
any Prolog term, 

number :: =
[float : (0.0,1.0)]. 

weightT, weightF :: =
[float : (0.0, 5.0)].

The effectiveness of the above fuzzy descriptions of data and the use of a fuzzy reasoning 

mechanism will only be determined through an extensive validation study. It is hoped that this 

work will continue in the future and that the expert system will be extended to encompass other EP 

domains. A  sample run of EPAXIS and comments on the author’s experience so far with the 

representation scheme are provided in Appendix [Cl].
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Chapter Eight 

Computer Assisted Analysis of Single Response BAEPs

8.1 Introduction

We have seen that the major features in the averaged ERP are due to components common to all 

the individual responses (trials). In the special case of ERP data, ensemble averaging can be an 

inadequate estimation of the ERP. The averaging process will obscure any subtle variations within 

and between the components of the individual responses. Individual responses are related to the 

excitability of the corresponding generator sites in the central nervous system (Sec.[6.2.1]) and so, 

it is possible therefore, that the information contained in these variations is clinically more 

important than the gross information contained in the average response. The ability to extract 

such information will greatly improve the understanding, and/or confirm existing observations, of 

the underlying relationships between the components of ERPs.

In Sec.[7.2] various techniques were introduced for the analysis of single response ERP data. 

Several factors that are common to these techniques can be identified quite readily:

•  Analysis is performed on a single response or small sub-average basis.
•  The single responses are digitally filtered before further analysis. This filtering usually 

assumes that the noise which is combined additively with the ERP signal can be described 
by a wide band stationary model.

•  An enhanced average ERP is obtained by summating the preprocessed single responses. 
The number of single responses used in total during the entire analysis procedure is 
usually of the same order as would be used in the conventional averaging process.

•  In some cases, an attempt is made to identify the major components of the ERP in the 
averaged response.

To date, some efforts have been made to estimate the latency variability associated with ERP 

components. In particular, the analysis procedure due to McGillem and Aunon (1985), mentions 

some experiments that are currently being pursued to obtain latency variability information 

(Sec.[7.2.2j).
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In this investigation, single response ERP data is analysed using a specialised peak detection 

algorithm which reduces it to a sequence of events. Hence, the procedure is called Event Analysis. 

The events detected within each response are synchronously summed to provide estimates of the 

locality of major components in the ERP and, in turn, estimates of the component latency 

variability.

Much of the development work for event analysis was conducted using BAEPs as the input data 

because they exhibit a very low SNR and sometimes a very complex component structure. Other 

ERPs tend to have better noise characteristics and simple component structure, with the possible 

exception of very long latency emitted potentials (i.e. above 1 sec). However, as it is not firmly 

established what the true component structure of these emitted potentials actually is, and because 

they are usually of high amplitude, we can assume that BAEPs provide a good basis for the 

validation and incremental construction of generic and robust ERP analysis algorithms. Reference 

will therefore be made to BAEPs only from now on, in spite of the fact that the event analysis 

procedure is itself a non-specific procedure. In reading the text, the phrase single response can be 

freely interchanged with the phrase small sub-average, unless the latter is stated explicitly.

8.1.1 Event Analysis Algorithm Summary

The approach taken by the author to analyse BAEP data, differs from that taken by other 

researchers in several respects. The following points will serve to highlight why event analysis is 

different to other techniques, and also they will provide the reader with a resumé of the analysis 

procedure before details are discussed in the next sections:

•  (a) The additive noise model of BAEP data (Sec.[7.1]), where the measured single
response x is the sum of a non-stationary signal s plus random noise n, is interpreted in 
terms of an additive combination of a signal event sequence {Es} and a noise event 
sequence {En}. That is, after event extraction, the measured single response event 
sequence {Ex} is given by:

{Ex} =  {Es} -h {En} .....................................................................................Eq.[8.1]

(b) Normally no filtering is performed on the single responses prior to event extraction. A  
form of adaptive prefiltering is available however, and it may be invoked if the original 
data is severely contaminated with high frequency noise.

(c) Synchronous summation of {Ex}m over M trials, giving {E x }, produces an event bin 
which effectively partitions the averaged response X  into component and non-component 
regions. The reduction of data to an event sequence has the distinct advantage of being 
immune to large amplitude artifacts in the single responses. This makes it possible to
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observe features in the event bin which are related to corresponding features in the 
averaged response. Some features in the average response, which are detected in the 
event bin, may be smeared out and not visually identifiable; even though they do exist at 
the level of the constituent single responses.

•  (d) A  basic knowledge based interpretation of BAEPs is performed as discussed in the 
last chapter (and Appendix [Cl]). This interpretation procedure is intended to locate and 
label the m ost significant five components in the BAEP. Currently, the significant 
components are selected manually on the basis o f observable features in the event bin, 
observable features in the averaged BAEP response, and latency variability statistics.

•  (e) Several different latency corrected and enhanced averages are then produced 
automatically, by intelligent trial selection, following the determination of significant 
components.

•  (f) Multiple representations of the same waveform produced after (e) provide sufficient 
information for the analysis of relationships between components.

•  (g) The number of trials needed for analysis, in comparison to conventional BAEP 
estimation methods, is reduced, in general, by a factor of between 32 and two. This 
depends on whether single responses or small sub-averages are used as input. The trial 
reduction factors are based on normal BAEP estimations which use 2048 trials for 
analysis.

•  (h) Advances have been made towards the accurate estimation o f signal-related latency 
variability to within ±  2 sample points ( ±  0.08ms).

•  (i) Event analysis is generic in terms of its applicability to all ERPs because of the 
adaptive analysis procedure adopted.

•  (j) The algorithm has been used to provide fast and reliable estimates o f component 
latencies in an EP normal data study (conducted by Robinson and Robinson of Medelec 
Ltd., Woking, Surrey - between January and March, 1988).

•  (k) The algorithm has achieved sufficient performance to warrant its implementation on
the next generation of multi-purpose EMG/ERP machines currently being developed at 
M edelec Ltd. It is being re-structured for real-time ERP analysis in a hybrid 
microprocessor architecture (using the TMS 32020C Digital Signal Processor and the 
MC68000). The main use of event analysis in this context, will be to enable automatic 
component labelling, and the provision of latency variability estimates.
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8.2 Data Acquisition - Equipment and Procedure

A  M edelec Mystro MS25 five-channel amplifier system and a Medelec STIO stimulator was used 

as the stimulation protocol controller and stimulation source respectively. Two MS25 analogue 

outputs are connected to a CED 1401 data acquisition system. The CED 1401 contains 1 6 ,12-bit 

analogue to digital conversion inputs. The acquisition hardware is driven by software written in 

the C language running on an IBM PC-AT computer with all inter communication being effected 

via a CED 1401 interface card. The driver program initialises the CED 1401 for data acquisition at 

a sampling rate of 25 kHz. The CED 1401 then waits for a succession of triggers from the MS25, 

thus enabling it to acquire data from both analogue inputs. Each trigger signal is synchronised 

with a 50% delayed delivery of the auditory stimulus. This causes the ipsilateral and contralateral 

channel recordings to be digitised in a pre and post stimulus format before being held in the CED  

1401 2 MByte mass memory. Both channels consist of 1024, 20ms trials, with each trial containing 

5 0 0 ,16-bit words split between the pre and post stimulus periods. At the end of data acquisition, 

all data is sent to the computer for storage in archive files on hard disk and subsequent analysis. 

Fig.[8.1] is a schematic representation of the data acquisition setup that was used.

After data acquisition, it is possible to control the CED 1401 with the driver program in order to 

make small subaverages from the data. The 2 Mbyte mass memory limit dictates the maximum size 

and number of subaverages obtainable. The usual protocol adopted in our tests consisted of the 

acquisition of 1024 trials per channel, each of which could be reduced to subaverages containing a 

maximum of 16 single trials (i.e. a minimum of 64 subaverages per channel).

Filter cut-offs were set at 100 H z and 1.5 kHz, the stimulation repetition rate was 5 Hz, and the 

contralateral ear was masked with 40 dBSL white noise. Stimulation intensities used were from 20 

dBSL to 80 dBSL.

It is worthwhile noting that the filter roll-offs are -20dB / decade and -40dB /  decade at the low and 

high ends of the pass band respectively. The filter settings provide sufficient aliasing protection 

and some limiting of high frequency EMG artifacts, which would otherwise overload the input 

analogue to digital convertors. Higher order, filter roll-off characteristics, in the upper end of the 

pass band, could remove nearly all EMG artifactual activity at the expense of severe phase 

distortion. The phase distortion is not desirable, so improved response fidelity is often achieved 

using post acquisition, zero-phase digital filtering (Sec.[7.3]).
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In the discussion section of chapter three (Sec.[3.6]), it was suggested that the functionality of the 

SPC could be achieved, and improved upon, in several ways. The types of system mentioned 

immediately above provide an analysis environment with greatly improved capability and 

performance compared with the SPC. An important aspect of using this type o f environment, has 

been the short time-scale required for the development of the event analysis algorithm (less than 

1V2 man-years). Additionally, the ease with which real data can be acquired, has enabled a largely 

data-driven approach to be adopted in the development process, with simulations being used 

primarily for confirmative and demonstrative purposes. These points contrast well with the overall 

SPC development and algorithm implementation strategy.
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8 3  The Event Binning Process

T he event binning process (item (c), Sec.[8.1.1]) relies on the following three sub-processes:

•  (i) First, a peak detection algorithm is applied to a digitised single response BAEP to 
extract events.

•  (ii) Second, the events are extracted from all the trials comprising the averaged BAEP 
response.

•  (iii) Finally, synchronous summation of the events across all trials is performed, to provide 
estimates of the locality of BAEP components.

In sub-process (i), an event is assigned to the point where a pair of maxima enclose a minimum 

such that the amplitude differences between the maxima and the enclosed minimum are larger 

than an arbitrary threshold value. This threshold value is termed the peak discrimination factor, or 

PD F (not to be confused with the probability density function). The method of event extraction 

used in this analysis is similar to that implemented prior to the calculation of Turning Points 

Spectra of interference pattern EMGs (Lago and Jones, 1983), which was described in Sec.[2.3.4] 

and simulated on the SPC (Sec.[3.4]). The difference lies in making certain that an event is 

assigned only at points where there is maximal separation, in amplitude terms and with respect to 

the chosen PDF value, between the pair of maxima and the enclosed minimum.

The sequence of N  digitised data points following the m*  ̂ stimulus is do, d i, ... , dN-l =  {dn}m. 

The stimulus is delivered M times giving N  x M data points in total. A  turning point is defined as a 

change in sign of the gradient, where a traversal from positive to negative gradient indicates a 

maximum and the converse indicates a minimum. The maxima dnu/i and dnu/ii which enclose a 

minimum dmn/j and precede the minimum dmn^, must satisfy all of the following conditions:

I dtnx/i - dmn/j I ^  P D F .....................................................................................Eq.[8.2]

I dmx/ii ■ dmn/j | >  P D F  .................................................................................Eq.[8.3]

I dmx/ii - dmn/jj | >  PDF .............................................................................Eq.[8.4]

where the indices satisfy: mx/i <  mn/j <  mx/ii <  mn/jj

such that a significant event can be assigned to the maximum dmx/i occurring at the index value 

(sampled point) mx/i. A  significant event is also assigned to the m inim um  dmn/j occurring at the 

index value mn/j. Note that the true latency of events, is the index value, multiplied by the 

sampling interval, and that this will be assumed to be understood from here onwards.
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Event extraction commences with a default maximum dmx/0 and a default minimum dmn/o being set 

to the largest polarised integer values the computer can hold, thereby ensuring that Eq.[8.2] is true 

at the start o f analysis in the current sequence. Then a candidate minimum dmn/j is compared with 

the minumum that was found immediately prior to it, and the lower-amplitude minimum of the two 

is assigned to dmn/j* The lower minimum is used in the PDF comparison with the candidate 

maximum dmx/ii as in Eq.[8.3]. When this condition succeeds, a minimum dmn/jj is found that 

makes Eq.[8.4] true, confirming that significant events occur at times mx/i and mn/j. During this 

latter phase of analysis, any maxima found along the waveform are compared with the maximum 

dmx/ii, and the higher-amplitude maximum of the two is assigned to dmx/ii* The updating procedure 

conceptually slides the 1V2 wave template, described by Eqs.[8*2-8.4], backwards in time by 1 wave, 

and then the search cycle repeats to obtain another pattern of peaks that fit the template and 

conditions just described. Implicit in this one wave backward s lid e , is that Eq.[8.2] is automatically 

satisfied in all the subsequent search cycles. In this way, valid events represent those peaks 

enclosing the deepest troughs with respect to the chosen PDF value.

The strength of performing peak detection in the manner described above is demonstrated in 

Fig.[8.2], which shows an uncharacteristic BAEP waveform that contains large amounts of high 

frequency noise and spike artifacts. Peaks and troughs have been found successfully in both the 

smoothed and unsmoothed versions of the same potential. The smoothed BAEP was produced by 

two convolutions with a 3-point, unit area, triangular window. It has fewer turning points detected 

in it, since the convolution process has diminished the amplitude of some of the original noisy 

turning points.

Eq.[8.1] can be rewritten to reflect the fact that the data sequence {dn}m contains both maxima 

mx, and minima mn events:

{E x }  =  {Ex/m x} +  {Ex/m n}

{E s }  =  {E s/m x} +  {E s/m n}

{E n }  =  {En/m x} +  {E n/m n}

{Ex/m x} +  {Ex/m n} =

{E s/m x} +  {E s/m n} +  {En/m x} +  {En/m n} ...............................................Eq.[8.5]

A  more realistic model of the event detection sub-process, requires the incorporation of an event 

detection error term, so that Eq.[8.1] now becomes:

{Ex} =  { E s }  +  { E n }  - { E e r r } ........................................................................Eq.[8.6]

where: {E err} — {Eerr/mx} +  {Eerr/mn}

The objectives of event extraction are:
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(a) BAEP data which contains a few spikes and high frequency noise around the peaks.

(b) A smoothed version of the above data.

Fig. [8.2] Locations of p eaks and troughs a s  found with the peak detection  
algorithm. In both (a) and (b), the sam e PDF value of 30  ordinates has been  

u sed . The maximum peak-to-peak deflection of the two traces is 
approximately 220 ordinates.



•  to reduce {En} to zero, and
•  to maximise the term ({Es} - {Eerr}) by a judicious choice of PDF value.

If these objectives can be achieved, then {Ex} will contain nearly all of the signal-related events in 

{d n }m .

Sub-process (ii), simply applies sub-process (i) to all the individual trials in the averaged BAEP  

response, and simultaneously invokes sub-process (iii).

In sub-process (iii), a 1 x N  integer array B[N] =  bo, b i, ... , bN-l, is maintained, where the bn 

represent accumulator bins for the number of occurrences of significant events (both maxima and 

minima) at times n across the ensemble of M signal sequences. To enable an improvement in the 

registration of stimulus-related events only, and not noise-related events, the elements bn in the 

array B[N] are decremented at points where significant event-minima occur, and incremented at 

points where significemt event-maxima occur. This method of summing events, simulates avera^ng 

of significant events across all the responses, apart from the omission of the formal division by N. 

Therefore, event-marima are labelled with ’ 4-1 \ event-minima with and all other points in 

{dn}m are labelled with ’O’.

The polarised labelling and summation process, assumes that low counts will occur in B[N] when 

noisy epochs of data are temporally synchronised across a large set of trials. W e note that, with 

noisy data, there should be an equal probability of finding temporally synchronous event-maxima 

and event-minima across trials.

The accumulator bin count or event bin is formally described by:

M
bn =  S  {E x}m  

m = l

where: Ex =
1 at Event Maxima

-1 at Event Minima
0 Elsewhere

and, {E x} =  B[N] = {bn}, for n =  1, 2 , . . . ,  N .......................................... Eq.[8.7]
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8.4 Data Simulations and Some Intermediate Results

Several programs were written to simulate data having the general characteristics of BAEPs. 

These programs are included in Appendix [D2], and they were used extensively for the validation 

of event analysis and for the demonstration of results.

Four sets of noise data are used in conjunction with a single set of simulated signal data. The noise 

and signal data each contain 64 trials of 500 data points each. Two of the noise files contain real 

background EEG, recorded as described in Sec.[8.2], but without the use of any evoking stimulus 

and contralateral channel masking. The remaining two noise files contain simulated pink noise. 

Both of the the latter noise data files were produced by generating random deviates having poisson 

and gaussian amplitude distributions respectively, and then bandlimiting each of them in the 

frequency domain between 300 Hz and 1.5 kHz. The simulated signal is a 1 kHz, exponentially 

decaying, sine wave. The pre-stimulus period of this sine wave is clamped to zero, and the 

exponential decay begins in the post-stimulus period, decaying to 0%  at the end of the trial record.

The noise files are individually added to the signal file, to produce four simulated data sets. Prior 

to addition, the noise and signal data are normalised. After combination, the data is maximally 

scaled. The data so produced, allows one to test the event analysis algorithm with a deterministic 

signal, having similar noise characteristics to the BAEP. The use of an exponentially decaying sine 

wave, and pre-normalisation, enables investigations to be conducted at SNRs varying from 0 dB 

down to -28 dB within the post-stimulus period. This range of SNRs, is sufficient to cover the 

worst case SNR expected in a BAEP, even at the lowest stimulus intensities.

Most of the illustrations presented from now on, wUl be in a similar format to that shown in 

Fig. [8.3]. The upper window contains the grand averaged response of 64, zero-mean, single trials 

or small sub-averages (GAV), and the lower window contains the corresponding event bin (BIN). 

Only post-stimulus period data are shown, which consist of 250 sampled points acquired at 25 kHz. 

These 10ms epochs of data are delimited by the 1ms interval marks in each window. GAV  

amplitude values are provided in terms of absolute ordinates, without reflecting the scaling 

required to fit the data in the window. For real BAEP data, each GAV ordinate represents 

approximately 0.25nV. BIN amplitude values represent the actual values contained in the event 

bin.
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In all diagrams the BIN is displayed in two forms:

•  (a) Discrete vertical lines show the latency histograms of the positive half of the event bin.
This format was chosen so as to emphasise the correlation between features in the BIN  
and those in the GAV. Note, there no relation is implied between those peaks in the 
GAV and those peaks in the BIN that have the same numeric labels.

•  (b) A  smoothed version of the latency histogram is shown as the continuous line forming
an envelope over (a). This curve was produced on an empirical basis, in order to 
transform the latency histogram into smooth segments that can be partitioned easily in the 
computer, using the same peak detection algorithm that was used to create the histogram 
initially.

Several smoothing functions were tried in (b), and the best performance was achieved with two 

passes of a three point moving average followed by a convolution with a three point triangular 

window. During the early stages of the algorithm development, it was determined that the widths 

of the smoothing functions should be as small as possible, so as not to artificially distort the 

inherent structure of (a).

Figs.[8.4(a) - 8.4(c)] show a selection of event bins that have been generated from one of the above 

simulated data sets at different settings of PDF. The noise data file used in this example contains 

single trials of spontaneous background EEG. These diagrams serve to illustrate all of the points 

that have been discussed in the last section. The structuring in the BIN becomes more 

pronounced in the vicinity of GAV peaks as the PDF value is reduced from 75%  to 25% of the 

maximum peak-to-peak deflection. The accuracy with which the BIN delimits GAV features 

(throughout the record), improves as the PDF value is reduced. Hence, the power to resolve 

events during the binning process increases at lower PDF values. The BIN structuring is also 

affected by the gradual change in SNR along the waveform. Peaks in the BIN are less pronounced 

as the SNR decreases. Nevertheless, Figs.[8.4(b) and 8.4(c)] show BIN peaks which are very 

nearly spaced at the 1ms intervals of the peaks in the GAV. Accurate segmentation of the G AV  

into component and non-component regions is hence likely to be successful at low PDF values and 

at SNRs as low as -20 dB (the SNR is 0 dB at 1ms [GAV peak ’O’], and -20 dB at 7ms [GAV peak 

’6’]).

The ability to segment the BAEP is the first step towards the automatic detection of its 

components, and the subsequent estimations of their latency variability. Fig.[8.4(d)] shows the 

superior results obtained for the segmentation by using a PDF value which has been chosen 

adaptively on a single trial basis. This method of PDF selection will be described in the next 

section.
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(a) PDF value = 75% of Maxpkpk.
P D F :361

Bvewt  B l n*

(b) PDF value = 50% of Maxpkpk.

3 H 5 b I B

(c) PDF value = 25% of Maxpkpk.
P D F 2 0

B v c n t  B i n s

(d) PDF value Is determined adaptively.

Fig. [8.4] The effect of the PDF value on the structuring that occu rs in the  
event bin (BIN). The PDF value per single trial varies from 75% of the  

maximum peak-to-peak deflection, to  on e that is determ ined adaptively.



Figs.[8.5(a) - 8.5(c)] display the same GAV data as in Fig.[8.4]. The BIN in this case is produced 

by modifying the event binning process, such that synchronous summation in the event bin occurs 

with event maxima only. That is, in Eq.[8.7], the event minima are labelled with ’0’ when detected, 

instead of This prevents cancellation of event-maxima by event-minima in the event bin B[N]. 

It can be seen from these results, that there is a degradation in BIN structuring compared to that 

obtained using bin cancellation in Fig.[8.4]. The BIN structure is worse in regions of low SNR, and 

the latency histograms take on a remarkably uniform distribution. McGUlem and Aunon (1977), 

have observed a similar distribution when random noise data was emalysed with their MMSE filter 

and peak detection algorithm (Sec. [7.2.2]).

At a later stage, the author gives a probabilistic model of the bin cancellation process in order to 

quantify its effectiveness in noise-event suppression. However, at this point a heuristic explanation 

is offered which requires the restatement of Eq.[8.5] in terms of the set of single event sequences 

{Eg}m that comprise the BIN sequence {Ex}:

M
W e know that: {E x} =  2  {Ex}m

m = 1

where: E% =
1 at Event Maxima

-1 at Event Minima
0 Elsewhere

M
Therefore, from X  = 2  (s -I- n)m =  S 4- N, we can rewrite Eq.[8.5] as:

m = 1

{Ex/mx} +  {Ex/mn} =

{Es/mx} +  {Es/mn} + {E n/ow} +  { E N /m n } .............................................Eq.[8.8]

The peak detection algorithm described previously, was designed to minimise the number of 

events detected in the term ({E^/mx} + {EN/mn}). If, however, the noise-events {EN/mx} and 

{E>j/mn} are erroneously detected within the single trials, then it is probable that the summation of 

the polarised numeric labels assigned to these events (’ ±  1’), will tend towards zero across all 

trials, as the number of trials tends towards infinity. If bin cancellation is not used, then the sum of 

the individual {En/mn}m in the term {EN/mn}, is not available to diminish the sum of the individual 

{Ei/mx}m in the term {En/ok}- This causes the event bin {E x} =  B[N], to accumulate values 

which become uniformly distributed in noisy epochs of data. Bin cancellation can, therefore, be 

thought of as a low pass event filter that is computationally very efficient.
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Some cancellation is also expected to occur between the terms {Es/mx} and {Es/mn}. The 

non-stationary assumption used for BAEP data, makes it reasonable to say that events in these 

terms will rarely occur within the same temporal space across trials, and if they do, then it will 

happen with negligible frequent^. Additionally, a physiological phenomenon exists that supports 

the statistical argument. It has long been known, that sensory stimulation will actually reduce, 

rather than increase, the spontaneous activity of the brain. This observation due to Berger (1929), 

follows from the fact that the alpha rhythm of the brain is at its maximum excitation only when one 

is completely relaxed. These background brainwaves, the major source o f noise in all ERPs, 

decrease in amplitude following tactile or auditory stimulation. A  similar reduction can be 

induced by voluntary movements or even mental arithmetic. Berger suggests that this is a 

generalised response of the brain correlating with attention. ERPs, therefore, actually suppress 

background EEG activity. So, the use of synchronous summation of events will be enhanced in the 

region o f the ERP components, since the temporal separation of true maxima and minima events 

will be less affected by EEG noise.

Comparing Fig.[8.4] and Fig.[8.5] again, we can conclude, that the use of a bin cancellation 

technique will provide better estimates of the locality of BAEP features when the data is 

contaminated with noise and the SNR is low.
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8.5 Adaptive Selection of Peak Discrimination Factor

A  deficiency in the peak detection method as it stands at this point in the discussion, is that it relies 

on some knowledge o f what value to assign to the PDF. The use of similar peak detection 

algorithms by both Parekh (1987) and Lago and Jones (1983), for EMG turning points spectral 

analysis, incorporated an empirical choice of the PDF value. Their PDF values were usually set to 

about 3% of the maximum peak-to-peak signal deflection, since this provided the sufficient and 

repeatable peak discrimination in the analysis and subsequent classifications of turning point 

spectra that they were seeking. Additionally, the high SNR obtainable, the random, noise-like 

nature, and perhaps, the fact that general characteristics of the EMG were being investigated in 

the frequency domain, made it unnecessary to be very strict with the choice of PDF value. The 

main difference between EMG signals and EPs in this context, is that in the former case the PDF  

is being used to reduce information content, and in the latter case the PDF is being used to 

maximise information content. It follows, therefore, that the choice of a PDF value must be dealt 

with carefully.

The BAEP has a particularly large noise content even after averaging. Fridman et al. (1982) have 

estimated that the SNR is at best 1:1 based upon an average of 200 trials. This suggests that 

contamination of the BAEP by EEG, EMG and movement artifact is quite substantial, and that a 

judicious choice of PDF for peak selection would be difficult to make. Simply standardising on 

one PDF value, for use across the entire ensemble of BAEPs, is unlikely to be successful in 

segmenting the averaged BAEP, and this was demonstrated in Fig,[8.4]. Too large a PDF value, 

will result in events being missed, and too low a PDF value, will cause extra noise events to be 

detected which do not cancel out in the available number of trials.

Event analysis incorporates a PDF value specification which is performed adaptively prior to the 

event binning process. An estimate of the noise in each sequence {dn}m is computed, and the 

value obtained is then used as the PDF. In this way we can compensate for transient changes 

affecting the assumed statistical stationarity of background EEG activity. This noise estimate does 

not lend itself to a calculation of the SNR, as it is not a measure of signal power. The estimate is 

calculated solely for its appropriateness to this analysis. Peak detection algorithms which 

incorporate an amplitude threshold criterion, require, as a rule of thumb, a threshold value that 

will be greater than the most common noise deflections, but less than the deflections associated 

with the peaks that are being sought. If this requirement can be achieved, then it should enable the 

inclusion of those fluctuations arising from true signal components, and the omission of those 

fluctuations arising from noise.
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85.1 Frequency Distributions of Single Response Deflections

Individual responses are processed by the specialised peak detection algorithm (sub-process (i)) 

described in Sec.[8.3]. The PDF value is set to zero at this point, so that all maxima and minima 

turning points are found. The distribution of amplitude differences between adjacent maxima and 

minima (max/min deltas), is determined using a discrete-valued histogram. The statistics o f this 

frequency distribution provide estimators for the characteristic noise deflections contained within 

the single responses. Histograms are computed for both the noise-only pre-stimulus record, and 

the post-stimulus record. The frequency distributions are different for all subjects, and different 

for all the individual responses in the same data set. The event binning process is then performed 

using PDF values obtained from this noise amplitude information. The two main processes now 

needed for event analysis are summarised in Fig,[8.6].

The response-specific PDF value, used in the event binning process, is determined from the mode 

of the post-stimulus frequency distribution. The author has found that there is no significant 

difference in results, when either the pre-stimulus or post-stimulus mode value is used. This result 

was expected, since the two distributions consistently have similar shape.

The amplitude differences in the two halves of the data sequence {dn}m  (i.e. over n =  [1, N/2], and 

n = [(N/2 + 1), N] ), thus provide another pair  of sequences, each being denoted by Ao, A i , ..., Ap-i 

= {Ap}m. Construction of the frequency distribution H[Ap]m from the sequence {Ap}m, requires 

a subjective choice of the optimal classwidth CW to be used. The choice o f this parameter 

depends on the amount of resolution required, and to a lesser degree on the sample size. Too high 

a resolution (many classes or small CW) will lead to multimodal distributions, and too low a 

resolution will tend to obscure the important information in the distribution. Dixon et al. (1983), 

suggest that in order to obtain a smooth histogram , the number of classes NC should be 

approximately equal to the square root of the sample size. The class width is then found by 

dividing the range of data by NC, i.e. :

Class Width. CW =   ™

The mode value of H[Ap]m, Amd, is then given by the end value of the class containing the highest 

number o f observations. The mean value is also calculated from the distribution:

-  NC f
A = 2  [ ( - ^ ) . ( C W / 2  -H C W . ( i - l ) ) ] .................................................Eq.[8.10]

i = 1 P
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where fi is the frequency o f occurrence of the observation in the i*̂  class, and P is the total number 

of observations. The ratio fi /  P is, therefore, the relative frequency in the i**̂  class. The maximum 

number of observations usually seen on either side of the stimulus, is in the range 50 to 100, NC is 

hence chosen to be about 10 (i.e. VPmax =  \/100), and accordingly an optimal CW for 

pre-stimulus and post-stimulus histograms can be calculated for each of the M response sequences 

{dn}0 to {dn}M-l.

The implementation of Eq,[8.9] produced reasonably good performance, in that structuring was 

observed in the BIN in most cases. This suggested that the PDF values were being optimally 

selected on a single response basis. Examination o f H[Ap]m, however, often showed that the effect 

of outlying observations (i.e. a large [Ap]max) reduced the resolution in H[Ap]m, and the mode 

class sometimes contained too high a percentage of the observations in {Ap}m. The solution to this 

problem was to double the number of classes for increased resolution, and to compute the CW on  

the grounds that high amplitude spikes (i.e. outliers) will be drawn from near the upper decile of 

the distribution describing the sequence {Ap}m- We assume that this distribution is normal, so the 

new range of data used in Eq.[8.9] is, the mean jji., plus one standard deviation a, (i.e. giving 

P(Ap < 0.84)). Eq.[8.9] is now modified to read:

Class Width, CW =  =  20 ..........................

Multimodality in H[Ap]m, due to the increased resolution, is rarely observed, although it is 

expected in situations of very low SNR.

Fig.[8.4(d)], shows how the use of the adaptive PDF value has resulted in a significant 

improvement in the correlation of BIN features with GAV features, compared to that obtained 

with a trial selection of PDF values, as in Figs.[8.4(a), (b), and (c)].

Fig.[8.5(d)] shows the high sensitivity obtained with the adaptive PDF value, resulting in an 

expected uniform BIN distribution in regions of low SNR when no bin cancellation is 

employed, (Sec.[8.4]).
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8.6 Spike Rejection and Adaptive Low Pass Filtering

The problems associated with large amplitude spikes and residual high frequency noise in the data 

have been described earlier with respect to averaging o f BAEP data. Unfortunately, reduction of 

the data into a sequence of turning  points is not immune from these artifacts, and erroneous spikes 

will be regarded as valid events during the binning process. To a certain degree, these spikes can 

be smoothed out of the original data by heavy filtering, but one would risk incomplete suppression 

of large spikes and lose fidelity in the BAEP components. The techniques described below, 

provide spike rejection during the event binning process, and soft filtering of the data which retains 

much of the response fidelity.

An extra class in H[Ap]m, Aspk, is defined to hold observations lying outside the interval 

( [^p]jx +  [Apja ), and is used to implement a spike-rejection criteria during event analysis. For 

example, the high frequency, large amplitude spikes in the data of Fig.[8.1(a)], can be rejected 

during the event binning process, by using the value of Aspk, and some knowledge of the 

distribution of latency intervals between maxima and minima turning points in {dn}m. The latency 

intervals in the two halves of the data sequence {dn}m (i.e. over n =  [l, N/2], and

n =  [ ( N / 2 + l ) , N ] ) ,  give apoir of sequences denoted by (At)o, (At)i (At)p-i =  {(At)p}m. The

desired histogram H[(At)p]m, is constructed in a similar manner to H[Ap]m. Spike rejection is 

performed by comparing all events, prior to binning, with the spike class value Aspk , and the 

latency interval mode class value (At)md. If the event is drawn from both classes simultaneously, 

then the event is rejected, because it is of high frequency and large amplitude.

H[(At)p]m contains information related to the characteristic frequencies that exist in the response 

sequence {dn}m- The timing information that is available, in terms of the number o f sampling 

points between commonly occurring fluctuations in the signal, is used to adaptively specify the 

width w of a simple, first-order, linear-phase, autoregressive moving average filter. The filter can 

be invoked prior to the event binning process. It is derived from the rectangular linear-phase filter 

of 2k 4- 2 equal weights (Taylor and MacFarlane, 1974), and has the transfer function:
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if k =  w/2 -1 , then by inverse z-transform:

Cn ~  C(n-l) +  [ d(n+w/2) - d(n-w/2) ]

and for unity gain at dc:

6a =  C(n-l) +  ( /̂w ) . [ d(n+w/2) - d(n-w/2) ] ................................................Eq.[8.12]

where: w =  2 . (At)md

Since (At)md approximates the most common intervals defined by the times of occurrence of 

adjacent maxima and minima, the factor 2 in ( w =  2 . (At)md ), makes w approximate the actual 

event intervals defined by the times of occurrence of adjacent minima. Since w is usually found to 

be between four and twelve sample points wide, the first transmission zero in the frequency 

response will lie between 2 kHz and 6 kHz. This range of frequencies is above the high cut-off of 

the input analogue filters and will ensure that residual high frequency power is attenuated. 

Zero-phase is restored by a unit leading shift of all data points in the filtered sequence {en}m.
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8.7 The EfTects of Sub-Averaging and Filtering on the Event Binning Process

The event analysis procedure seeks to provide a simple method to determine BAEP component 

latency variability using a small data set. It has already been said how useful latency variability 

information alone might be for the clinician. Nevertheless, in reality clinicians may view this 

information with some scepticism if it is not provided in conjunction with the traditional, and 

normally reliable, estimations of the averaged response. Performing an averaging procedure on a 

small set of single responses requires data of sufficiently high quality to yield an acceptable 

response estimate. In the case of scalp recorded BAEPS, the data is only likely to have sufficient 

signal power in responses obtained at the highest intensity levels. The main objective then, in the 

context of producing good, clinically acceptable, BAEP estimations, is to ensure that the SNR is 

increased before averaging.

The SNR in single responses can be improved by the filtering process described in the last section. 

Additionally, at the expense of an increase in the total number responses, we can improve the 

SNR by averaging within contiguous subsets of single responses. Increases in SNR result in 

improved estimations of the BAEP. However, because of the small number of trials being 

analysed, and because these trials might be either filtered or sub-averaged, it is possible that the 

bin cancellation assumptions of Eq.[8.8] will be violated. The effects of filtering or sub-averaging 

on bin cancellation are due to the attenuation of high frequency random noise fluctuations. 

Refering to Eq.[8.8], we recall that for bin cancellation to operate as a low pass event filter^ the 

term ({ E N /m x }  +  { E N /m n } )  should tend towards zero as the number of responses tends towards 

infinity, because the noise-events are random and uncorrelated between trials. If the filtering and 

sub-averaging operations adversely affect the noise-event distribution in both the temporal and the 

spatial dimensions, then as far as the peak binning process is concerned, it is likely that the error in 

the term ( { E n / itix} +  { E N /m n } )  wUl increase.

If we model the detection of noise-events across trials by a discrete random binomial process, then 

it will be possible to predict the error in event-counts for different probabilities of event detection. 

The author wUl discuss this probability model later in Sec.[8.8]. At this point we note that there 

exists a trade-off between providing clean BAEP averages and ensuring that bin cancellation is 

maximised for adequate BIN structuring when small numbers of single responses are being 

analysed.
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8.7.1 Event Binning with Sub-Averaged Responses

As before, we assume that the single response is Xm =  (s +  n)m, where the signal s is 

time-invariant, and the noise n is additive, statistically stationary, and uncorrelated with either s or 

the stimulus. The individual component latency variabilities across all will be entirely due to 

the variance of n in Xm. In reality, the components in s exhibit a degree of variability, so the 

measured variance will be due to both s and n in Xm. If we create small sub-averages 

% = Z (s  +  n)i, consisting of i consecutive single responses, and make the reasonable assumption 

that all the s in the sub-averages [xi]m are time-invariant provided i is sufficiently small, then the 

contribution to the error in measured latency variance due to n, can be reduced by the number of 

responses i per sub-average. The use of sub-averages in event analysis will, therefore, yield a 

maximum likelihood estimation of the latency variability.

The results shown in Fig.[8.7] were obtained by performing the event binning process as illustrated 

in Fig.[8.6]. The different sets of data consisted of sub-averages generated from single BAEP 

responses recorded ipsilaterally at a stimulus intensity of 60 dB from a normal adult male. Each 

set of data consisted of 64 sub-averages, and the number of single responses per sub-average was 

varied by powers of two from set to set. A s the size of the sub-averages increases, so does the total 

number of responses in the GAV. This is reflected in the improved quality of the G AV as we 

progress from Fig.[8.7(a)] to Fig.[8.7(d)]. In Fig.[8.7(a)] there is residual high frequency noise and 

a complex wave IV/V component in the GAV at peak ’3’. Fig.[8.7(d)] contains hardly any residual 

noise and exhibits separation of wave IV at GAV peak ’3’ and wave V  at GAV peak ’4’.

In all cases the structuring that exists in the BIN in the vicinity of GAV components is evident. 

Fig.[8.7(a)] shows very good BIN structuring, despite the fact that the sub-averages contain only 

one response each. There is a broad BIN peak in the vicinity of the inflection in the GAV between 

GAV peak ’3’ and G AV peak ’4’, corresponding to the underlying wave V in the wave IV/V  

complex. This BIN peak becomes more prominent as the sub-average size increases. The small 

variability in wave V, which results in a point of inflection at low response counts, is revealed by the 

bifid BIN peaks (’7’ and ’8’) in Fig.[8.7(d)], despite the good wave V representation in the GAV. 

On serial examination of Figs.[8.7(a) - 8.7(d)], one is able to observe the developments o f the bifid 

BIN peak and wave V. In this data, a close coupling between waves IV and V is suggested, first by 

the complex component at low response counts, and second by the simultaneous occurrence of 

bifid BIN peaks at higher response counts. This hypothesis can be tested with an intelligent 

averaging method described later.
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The BIN structuring is slightly better in Fig.[8.7(a)] than it is in Fig.[8.7(b)], and thereafter it 

improves significantly. In Fig. [8.7(a)], it would seem that the bin cancellation process has 

successfully produced BIN segmentation. However, the increased activity in the BIN of 

Fig.[8.7(b)], suggests that the random distribution of polarised noise-events in Eq.[8.5] (i.e. 

{En/mx} and {En/mn}) has been altered, effectively increasing the error in the event bin {E x}. 

The return to improved BIN segmentation in Fig.[8.7(c)] and Fig.[8.7(d)] is almost certainly due to 

the higher SNR and the low pass gaussian filtering obtained through making larger sub-averages. 

Therefore, in this latter case, the advantages of the low frequency event filtering have been  

superseded by the increase in SNR.

Figs.[8.8(a) - 8.8(d)] illustrate the frequency distributions H[Ap]m, of amplitude differences 

between adjacent maxima and minima, calculated as described in Sec,[8.5.1] for the adaptive 

selection of PDF values. The same data sets as in Fig.[8.7] were used. H[Ap]m changes 

progressively from approximately normal to Poisson as the size of the sub-average increases. This 

behaviour supports the explanations given above for the effects of sub-averaging on BIN 

segmentation. We can see, as was previously noted in Sec.[8.5.1], that the two H[Ap]m produced 

from each side of the stimulus have very similar shape. Hence, either of the mode values [Amd]m 

of H[Ap]m, can be used to approximate the response-specific PDF values.

The following points are given in summary of what has been said so far in this section:

•  The random nature of additive noise means that the benefits of bin cancellation are most 
apparent when single response or low SNR data is being analysed.

•  The use o f sub-averages, results in a trade-off between obtaining good BIN segmentation 
using a small number of responses, and the provision of good quality averaged BAEPs 
which normally requires a large number of responses.

•  The interest in obtaining latency variability estimates, means that the size of the 
sub-averages must be both small enough to preserve signal variability information, and 
large enough to offset adverse effects on bin cancellation.

The use of ERPs for real-time monitoring of the central nervous system in intensive care units and 

during surgical operations, means that automated analysis procedures must be optimised for 

speed. Very recently, the author has made a short investigation into another form of sub-averaging 

which generates combinatorial averages of single responses from small sets of the data. These 

combinatorial averages retain some of the advantages of both bin cancellation and small 

sub-averages, without actually having to increase the toted number of single responses when the 

size o f the sub-average is increased.
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Combinatorial averaging is simply a careful re-structuring of the order in which the original 

ensemble of data is combined. If, for example, we want to analyse an ensemble o f 64 responses 

and specify a sub-average size of four, then a data set of 65 responses is acquired and divided into 

13 subsets of five responses each. Five sub-averages are produced from the five possible 

combinations of four single responses within each subset. This results in a total of 65 sub-averages, 

64 of which wUl be analysed. These sub-averages have an improved SNR because they contain 

more responses, but the SNR of their grand average will not be different to that achievable by 

averaging the original ensemble of single responses. This local improvement in SNR indicates that 

the BIN structuring (and GAV segmentation) will be better than that obtainable with no 

sub-averaging.

Figs.[8.9(a) - 8.9(d)] shows the results of combinatorial averaging using the same data set as in 

Fig.[8.7(a)] (i.e. 64 single responses). All GAVs in Fig.[8.9] are the same as expected, but the BIN 

structures show marked differences as the combinatorial sub-average sizes increase. The broad 

peak in the BIN of Fig.[8.7(a)] at wave V is no longer present in Figs.[8.9(b) - 8.9(d)]. These 

instead, now show a pronounced peak in the vicinity o f the GAV inflection. It is difficult to predict 

where the benefits of higher SNR start to replace the benefits of bin cancellation. Given the small 

amount of work done in this one area, the author is only in a position to guess where this optimal 

point lies. Examination of both BIN representations (discrete and smoothed) shows that good 

BIN structure relies on the dense clustering of discrete BIN values. This characteristic is present 

in Fig.[8.9(c)] and the clustering starts to weaken in Fig.[8.9(d)]. The optimal point, therefore, 

probably lies between sub-average sizes of four and eight responses, in which the noise variance 

will be attenuated by between 25% and 12.5% respectively.

As was found with the normal sub-averaging process, when the sub-average size is small, the noise 

variance will be attenuated less, helping bin cancellation. The signal can be considered invariant 

within the sub-average, so we can expect an unbiassed latency variability estimate. When the 

sub-average size is large, the noise variance will be attenuated more, which is detrimental to bin 

cancellation. The signal can no longer be considered invariant within the sub-average, so we can 

expect a biased latency variability estimate, despite the increase in SNR per sub-average.

Fig.[8.10] shows the frequency distributions H[Ap]m corresponding to the combinatorially 

averaged data. W e can see how the distributions remain normal longer than was the case in 

Fig.[8.8] as the sub-average size increases. This averaging method is not fully evaluated, though 

there is strong evidence that it will prove to be useful in the analysis of low intensity BAEPs due to 

the retention of benefits arising from both sub-averaging and bin cancellation. The important
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Fig.[8.10] The effect of increasing the sub-average size on the distributions 
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point about this form of averaging, is that all the assumptions for event analysis are preserved, i.e. 

the author has been careful not to obscure latency variability information by keeping sub-averages 

small, and the noise is still randomly distributed.

8.72 Event Binning with Filtered Single, and Sub-Averaged, Responses

The detailed discussion on sub-averaging given above has, hopefully, provided the reader with a 

clear understanding of how the SNR in sub-averages influences BIN structure. Adaptive low pass 

filtering was discussed in Sec.[8.6], and this procedure is useful for achieving improved SNRs in 

the ensemble of single responses and sub-averages prior to event analysis.

The results given in Figs.[8.11 - 8.14] correspond to the filtered respresentations o f the data sets 

used in Figs.[8.7 - 8.10]. In general there is an improvement in both the quality of the GAV and 

the features in the BIN. In all cases the progress of structuring in the BINs follows a similar 

pattern to that of their unfiltered counterparts. The H[Ap]m, however, behave quite differently, in 

that none contain normal distributions of adjacent maxima and minima amplitude differences, but 

are more Poisson-like. This suggests that the benefits of bin cancellation are of lesser importance 

with filtered data than with unfUtered data, and that the major benefit is obtained through an 

increase in the SNR,

Although there is no dramatic improvement in the BIN structures of Figs.[8.11 and 8.13] over 

Figs.[8.7 and 8.9], we have achieved enhanced estimations of the averaged responses, albeit at the 

expense of another computational process. Since the parameters for the adaptive filtering are 

obtained through the application of generic event analysis functions, the integration of adaptive 

filtering into the kernel processes outlined by Fig.[8.6] was straight-forward in programming terms. 

There is no major disadvantage in the use of the adaptive filter, so it would be entirely up to the 

user of the suite of event analysis programs to decide for or against its invocation.

One is unable to predict the exact (non-frequency dependent) effects that any filtering process will 

have on amplitude variations in individual responses. This further increases the difficulty of 

making a judicious choice of PDF value. Hence, it is another argument for the use o f an adaptive 

PDF estimation procedure.
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Fig. [8.11] Results obtained with filtered representations of the data sets  
u sed  in Fig. [8.7]. BIN structuring is improved due to a reduction in much of 
the distracting noise at the single trial level. The appearance of the GAV is

much better than in Fig. [8.7].
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Fig. [8.13] Results obtained with filtered representations of the data se ts  
used in Fig.[8.9]. BIN structuring is Improved and the appearance of the 

GAV is much better than in Fig. [8.9].
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Fig. [8.14] Results obtained with filtered representations of the data se ts  
used in Fig. [8.10]. The filtering procedure has altered the frequency  

distributions H[Ap]m in a similar way to that in Fig.[8.10].



8.8 A Model of the Synchronous Summation of Noise Events

The last section has emphasised the importance of the bin cancellation process for BIN structuring 

when single responses or small sub-averages are being analysed. In addition, filtering can be used 

to enhance both the BIN and the GAV. The author has also mentioned the advantages which can 

be gained from a reducion in the total number of trials required for an interpretation of the BAEP. 

From a commercial point of view, one can argue that providing trial reduction in conjunction with 

latency variability information, is the immediate task that must be addressed in BAEP research. 

For the first time then, it might be possible to seriously consider the use of BAEPs (and other 

EPs), for real-time monitoring of the central nervous system.

The fast generation of averages depends on both the stimulus repetition rate and the total number 

of responses acquired. In most circumstances, it is better to use low stimulus repetition rates 

where one can observe all the wave components in the BAEP (Sec.[7.4]). It follows that the total 

number of responses used is the main issue that must be considered when a fast averaging 

procedure is designed.

Although an automatic fast averaging procedure has not yet been implemented by the author, the 

modelling of bin cancellation with noise events has produced an insight into how this can be 

achieved with the existing kernel programs. As it stands, event analysis generates probability 

values for the events that are detected. The remainder of this chapter will make it clear to the 

reader how these probability values are calculated. For the time being, it is sufficient to say that all 

detected events, within and across trials, occupy a two dimensional space which is used to ascertain 

this probability. This local event-probabUity p, can be used to provide criteria for stopping data 

acquisition during fast averaging.

The two event analysis processes depicted in Fig.[8 .6] can be implemented as a single process, and 

for each iteration of this super - process  ̂ the value of p can be re-calculated. We restate Eq.[8 .6 ] 

which is:

{E x} =  (E sI  4- {E n } - {Eerr} 

and reiterate the objectives of event extraction which are:

•  to reduce {En} to zero, and
•  to maximise the term ({E s}  - {Eerr}) by adaptive PDF value estimation.
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With a small trial size, the sum of terms {En}m  across M responses may contribute to the error in 

the event bin B[N]. Certainly, if p is very low, then the numbers of {En/mn}m and {En/mx}m found 

in {E n}m  will be small, and their relative proportions are not likely to differ significantly, therefore 

resulting in an error. Determination of the probability of having an error, on the basis of the value 

p, will in turn allow the analysis to be driven in real-time, and terminated when an acceptable value 

of p is reached.

The acceptable value of p depends on an acceptable error contribution from {En}m . When this 

value of p is reached, then one can assume confidently, that the BIN structuring is adequate and 

that the BIN may exhibit an acceptably small error in its event counts. At this point, the analysis 

should to be in a reasonably good position to proceed with the latency variability estimations. The 

idea of dynamically monitoring the quality of the results from the analysis should prove to be very 

useful for knowledge based interpretation of the BAEP in an extended version of the EPAXIS 

expert system, since the results will contain the maximum amount of quantitative information for 

the expert system to reason with.

The probability model for bin cancellation with noise events utilises the generation of pairs of 

independent discrete random binomial processes. A  pair of binomial processes represent a series 

of noise events [En/mx] and [En/mn], which are assumed to be drawn from the same temporal 

location in their corresponding event sequences {En/mn}m and {En/mx}m across M independent 

trials (i.e. they are synchronised). Furthermore, we assume that an event will always occur in each 

trial, and, therefore, we are subject to the constraint that the total number of the maxima and 

minima events does not exceed the total number of trials M. We know that with optimal bin 

cancellation, the sum of the polarised labels attached to all of the [En/mx] and [En/mn] should give a 

zero value in {Ex} when there are no signal-related events {Es}; see Eq.[8 .8]. In order to 

simulate an error-count p in the event bin after M trials, it is only necessary that the total number 

of occurrences, of both [En/mx] and [En/mn], differs by p.

The discrete binomial probability P(X = m )\i of obtaining m events in M trials, at an event 

probability p, is given by:

P(X = m)M =

where ^  C m is the binomial coefficient = *
m !. (M - m) !

The discrete error probability P(X = P)m of obtaining an error of p in M trials is calculated for

both the positive and negative errors p = 0, ± 1 , ......, ±  MaxErr (10), at several values of p up to

0.5. For each value of p, the trial size M is varied as M = 4, 8 ,1 2 , ......, MaxTrials (128). For each
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of these values of M, a partial error probability P(X = p)m is calculated for each of the

consecutive trials m = 0 ,1 , ........M/2. These represent the probability associated with just one of

the possible ways in which an error of p can be generated in M trials. P(X = p)m is given by:

P(X = p)m = P(X = m)M . [ P(X = m + P)m + P(X = m-p)M ] ,  for M-p <m  < p ,

P(X = p)m = P(X =  m)M • P(X = m + P)m , for m < M-p , and

P(X = p)m = P(X =  m)M • P(X = m-p)M, for m > p.

The total error probability P(X = P)m for all the different ways of generating an error of p at one

value of M is then given by:

M/2
P(X = P)m — S P(X = p ) m ..................................................................Eq.[8.13]

m = 0

A plot of P(X = P)m versus M, is just one of the family of curves of error probability for all values 

of p. Another representation of the information contained in this family of curves is the 

cumulative error probability. In order to generate this family of curves, the values P(X < P)m for 

all trials M and p are calculated from the P(X =  P)m values after computing Eq.[8.13]:

MaxErr
P(X < P)m = 1.0 - 2  P(X = P)m ......................................................Eq.[8.14]

p = p

This gives the probability of obtaining an error of less than p in M trials at a particular event 

probability value p. P(X < P)m is only an esitmate, since MaxErr < < oo. The simulation results 

and their corresponding graphs are included Appendix [D3]. The simulation programmes are 

available in Appendix [D2]. An example of one family of curves for P(X =  P)m is given in 

Fig.[8.15] for p = 0.1. This shows that the probability of obtaining small error counts is high when 

the trial size is small. As the trial size approaches 100, the curves at all values of p converge 

rapidly to a low error probability value. The bin cancellation error actually rises from M = 4 to 

about M = 40 for p = [1 to 5], before attaining a very shallow exponential decay beyond M = 40. 

This would seem to suggest that, without the aid of filtering and/or averaging to improve the SNR 

of single responses, reliance on bin cancellation for producing structure in the BIN is feasible only 

with a critical trial size of about 40. We must remember, however, that the latter statement is only 

valid for an event probability p of 0 .1, and that the critical trial size must be increased at lower 

values of p.

Refering to Fig.[8.15], the efficacy of fast averaging can be predicted when a value of p is reached 

by mapping from the trial number on the abscissa to the error probabilities on the ordinate at 

various values of p. Alternatively, we could first establish an acceptable error count (e.g. five), and
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then run the event anlysis procedure over a block of, say, 64 trials. If the dynamically computed 

value of p is greater than or equal to 0 .1, then we can be reasonably confident that there is a low 

probability (less than 0.07) of obtaining an error of exactly five bin counts or events. Fig.[8.16], 

which shows the cumulative probability P(X < P)m, reveals that there is a high probability 

(greater than 0,85) of obtaining at least an error of up to five events, and conversely a low 

probability of obtaining an error greater than five events.

We have seen from the above how it may be possible to implement a fast averaging procedure by 

using a dynamic check on the parameter p. The only change necessary for its implementation into 

event analysis, is to unify processes [A] and [B] in Fig.[8 .6 ]. When sub-averaging and/or filtering 

are used, the criteria for stopping the averaging can be relaxed because of the increased SNR of 

the data.

The remainder of the discussion on event analysis will consider how latency variability estimates 

and the value of parameter p are obtained. Finally, the latency variability information will be used 

to generate enhanced averages of the BAEP through intelligent trial selection.
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8.9 Latency Variability and Component Trajectories

During the event binning process, a two dimensional map of the events occurring within and across 

the single responses is maintained. This map, T[M,N] is represented in the computer as an M x N  

bit array, whose elements tm,n represent markers for the events in the response sequences. A bit in 

this map is set to 1, only when event-maxima {Emx/m}m are found. The row index m and column 

index n in tm,n, correspond respectively to the response number and the time (sample point) at 

which an event-maximum has occurred. T[M,N] is called the trajectory map for reasons which will 

become obvious later, and it is updated continuously during process [A] in Fig.[8 .6].

The reasons for the care taken to ensure that a good BIN structure was obtainable, become clearer 

at this stage of event analysis. Imagine a bit mapped (pixel) image of T[M,N], and consider only 

the post-stimulus portion T[M,N/2]. The space occupied by T[M,N/2], in which maxima-events are 

set to 1, will resemble a peppered sheet of paper. If this were to be placed above the BIN of any of 

the example diagrams presented so far, i.e. pasted into the GAV window, then the minimum 

points in the BIN features will delimit several vertical segments in the space occupied by T[M,N/2]. 

These vertical segments will contain different proportions of the lit pixels depending on the 

individual widths of the delineating BIN features. The space that these vertical segments occupy is 

denoted by T[M,XN], or local trajectory space. The region bounded by the start of the first 

(leftmost) segment and the end of the last (rightmost) segment is denoted by T[M,'yN], or global 

trajectory space, where 7  is always less than 1/2. The remaining space in T[M,7 N], is delimited by 

the points between BIN features, and is called the inter-trajectory space T[M,uN]. In general 

X. 4- I =  7 , and, furthermore because the delimitate points in the BIN are the adjacent minima, i 

must be zero.

With Figs.[8.17 and 8.18], the author is not attempting to describe any EP-type dependent features, 

so we break from the normal, and use a pattern reversal visual evoked potential (PRVEP) data set 

(left eye, fuU-field, 56' check size, maximum contrast, T5 - Fz electrode derivation). The responses 

were inverted before analysis to obtain a BIN corresponding to the event-minima, thereby 

indicating where the PlOO component is located (at the GAV label ’ •  ’ ). The use of a PRVEP 

also serves to demonstrate the generality of event analysis, except for the change in time scale 

required (i.e. in the case of the PRVEP, from 10ms to 500ms).

Fig.[8.17(a)] will help to familiarise the reader with the concepts of the trajectory map outlined 

above. This diagram shows the partitioning of the GAV window by the minimum points in the BIN 

features. Fig.[8.18(a)] is a filtered version of the seune data set. The global trajectory space
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occupies a distance C - A  = -yN, and the distance that a single vertical segment spans in local 

trajectory space is B - A, The sum total of these vertical segment spans is XN. In these examples 

there is no inter-trajectory space, so l = 0 .

The regions bounded by the segments in local trajectory space contain significant GAV features, 

some of which might be of physiological importance. Each region also contains a population of 

latency markers, which were determined at the single response level, for the event-maxima that are 

part of the GAV feature contained in the region. The recognition of individual members of this 

local population of event-maxima, is reflected in the corresponding discrete BIN values. Each 

smoothed BIN feature can be viewed as an approximation to the distribution of the latencies in the 

local population of event-maxima. The peak in the smoothed BIN feature, therefore, represents 

the modal latency value of the local population of event-maxima. The mean latency of this local 

population, similarly, represents the mean latency value of the event-maxima which give rise to the 

corresponding GAV feature. It follows then, that the variance associated with each local 

population of event-maxima wiU approximate the variance of the corresponding GAV feature. 

This variance value is used as the estimate of component latency variability.

The effects of outlier observations on the mean latency estimate is minimised by performing an 

iterative procedure which converges to an unbiased mean estimate of the local population. This 

procedure first involves making an initial estimate of the standard deviation of the latency or, and 

the mean latency jx, of the local population. The latency intervals (e.g. B - A in Figs.[8.17(a) and 

8.18(a)]), are then reset to jx ± 1.65a so as to enclose 95% of the population of event-maxima, 

assuming that they are normally distributed (c.f. spike rejection in Sec.[8 .6 ]). This procedure is 

iterated through 10 cycles. The cycle count was determined through extensive tests with many data 

sets, and with iteration cycles reaching 50 in some cases. It was found that convergence to the local 

population mean and standard deviation could be achieved with cycle counts greater than seven. 

After this iterative process, the distributions of the reduced local populations are examined for any 

skew, and the latency intervals are adjusted to compensate for the original assumption of 

normality.

The resulting estimates for BIN segmentation are given in Figs.[8.17(b) and 8.18(b)] for the 

unfiltered and filtered PRVEP data respectively. In both these cases, the local trajectory space 

has been greatly compressed, and there is now an inter-trajectory space T[M,lN]. The distance 

that a single vertical segment spans in inter-trajectory space is C - B, and in local trajectory space 

this is B - A. The global trajectory space spans the distance D - A. The effectiveness of the 

iterative segmentation process is exemplified by examining the prior and post bounds of BIN peak 

*4’ from Figs.[8.17(a) and 8.17(b)] respectively. We can see the common effect where prior bounds 

adjust to locate onto the most dense cluster of discrete BIN values. Further evidence of its

8-28



effectiveness is provided by counting the number of events in local and inter-trajectory space as the 

size of sub-averages increases and/or Gltering is used. With the data sets of Fig.[8.9 and 8.13] (i.e. 

averaged and filtered data respectively), it was found that the ratio of the number of event-maxima 

found in local trajectory space to the number found in inter-trajectory space increased by nearly 

400%. This means that the iterative segmentation process delimits local populations of events that 

are related to the components in the GAV, and that these events are not due to noise, since they 

persist with sub-averaging and filtering.

Having obtained the optimal bounds within T[M,XM], it is possible to plot the trajectory of the 

components in the single responses from one trial to the next using the latency values of the 

event-maxima in the segments of T[M,XM]. This will provide the user with a graphical 

representation of where the components occur after the application of the stimulus and show how 

they progress across trials.

Fig.[8.19] illustrates the trajectory mapping obtained with the simulated data set described in 

Sec.[8.4]. We recall that this data set consisted of an invariant-signal file (i.e. in short: 64 trials of a 

1 kHz, exponentially decaying, sine wave), combined additively with four different noise files to 

produce four ensembles of simulated responses. In Figs.[8.19(a) and 8.19(b)], where both the 

noise data are real, sponataneous, EEG records, the trajectories up to five milliseconds (i.e. at 

BIN peak '4' and a SNR of -14 dB in the GAV), contain high proportions of active periods and few 

quiet periods. Beyond this, as the SNR decreases, the trajectories become more variable and 

contain higher proportions of quiet periods. The detection and/or mis-detection of event-maxima 

is reflected in the activity of trajectories, and the omission of event-maxima is reflected in the quiet 

phases of the trajectories. In Figs.[8.19(c) and 8.19(d)], where the noise data are bandlimited, 

random. Poisson noise and random, gaussian noise respectively, the trajectories are highly variable 

and contain long quiet periods. This behaviour raises some questions about the accuracy of 

measurements of latency variability using the descriptive statistics of the trajectories, since, with 

the invariant underlying signal, the measured latency variability should be zero in all cases.

To a certain degree, the measured latency variability is driven by the additive noise characteristics, 

and it is important to determine the amount of error that is introduced into the measurement. The 

author has investigated this problem using the data from the simulations which were described in 

Sec.[8.4]. In addition, two more sets of data were generated, each, as before, consisting of four 

ensembles of simulated responses. These last two data sets were generated by adding the four 

individual noise files in turn to the signal file. However, prior to the addition, the single trials in 

the signal file were temporally shifted such that an artificial and pre determined latency variability 

could be introduced into the signal peaks. In both data sets the mean signal latency was zero. In 

one of them, the induced standard deviation (Sd) in signal latency was 0.04ms, and in the other it
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com ponent latency variability recovery experiments. In each  ca se , the 

simulated signal is invariant and com bined with different noise data. The 
data set show n here is the sam e as that show n in Fig. [8.4].



was 0.08ms. Hence, in all, the three data sets consisted of data whose underlying signals had 

induced latency distributions N(0,0) (i.e. an invariant signal), N(0,0.0016), and N(0,0.0064) 

respectively.

These data sets were passed through the event analysis procedures and the measured latency 

variability estimates were obtained for aU the detected peaks. For each data set the measured 

latency variability of a peak was plotted against the SNR (and actual latency) at that peak. The 

three graphs obtained are reproduced in Figs.[8.20 - 8.22]. The errors in the recovery of the mean 

signal latency and the Sd of the signal latency are both < 0.08ms for £EG  noise and < 0.16ms for 

the Poisson and gaussian noise, up to -10 dB. Beyond -10 dB the errors increase by approximately 

50% with relatively worse errors occurring with Poisson and gaussian noise compared to those 

with EEG noise. The error values can be interpreted in terms of sampling points by dividing them 

by 0.04ms, i.e. the reciprocal of the sampling frequency (25 kHz). A complete set of results, 

including the numerical and graphical outputs of event analysis, is included in Appendix [D4].

McGillem et al. (1985) have derived an expression for the amount of error that additive noise 

introduces into latency measurements. Their approach was to compute the standard deviation of 

single trial peak latency measurements for an invariant signal plus random gaussian noise model. 

Latency measurements were made as was described in Sec.[7.2.2]. The resulting expression for the 

standard deviation of the latency (SDL) at a signal peak is as follows;

..............................................................................^".[8.15]

where R is the radius of curvature of the peak in sec^ (i.e. a measure of its sharpness - the smaller 

it is the narrower the peak), fg is the sampling frequency and it is assumed that this is at the 

Nyquist rate for the noise. For a typical BAEP, a single component might correspond to a loop of 

a 1 kHz sinusoid (fo = 1 kHz). The corresponding radius of curvature R = (l/2Trfo)  ̂ =  

2.53 X  lO"* sec^, and for a sampling frequen<^ of 25 kHz, the standard deviation of the latent^ 

would be:

0.43 .2.53 X1Q-® . 25000 0.27
VSNR “  VSNR

8-30



The value of the latency measurement error, as predicted by the expression above, would be much 

greater than that obtained in the experiments that have just been described for SNRs as low as 

-10 dB. Therefore, the careful application of adaptive PDF values in the selection of peaks, and 

the iterative component location procedures seem to work very well together when used to extract 

latency variability measures.

It is not known what effects a reduction in sampling frequency and sub-averaging and/or filtering 

will have on the latency variability estimates. However, if Eq.[8.15] is used as a guideline, then one 

can confidently predict that the outcome will be favourable, in that the latency variability estimates 

will be improved due to a reduction in the error through (a) an increase in SNR, and (b) a 

reduction in fg. It is expected that changes in the analogue filter settings will affect the accuracy of 

the latency variability recovery due to the inclusion/exclusion of high frequency activity. In 

Figs.[8.20 - 8.22], the poorer estimates of latency variability obtained with the data containing 

Poisson and gaussian noise, are paradigmatic of the effects of noise bandwidth on the definition of 

the signal peaks (cf. R in Eq.[8.15]). In this respect pre-whitening the data may improve the 

estimate, provided no additional filtering is used, because the definition of peaks and bin 

cancellation will be enhanced, and the estimated PDF values will be lowered for increased 

sensitivity.

In the author’s opinion, the latency statistics obtained with event analysis are sufficiently accurate 

to be used for assessing the latency variability associated with real BAEP signals. Since the SNR in 

other ERPs is generally much higher than in BAEPs, latency variability estimates can be 

determined in these cases also.
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8.10 Significance Testing of BAEP Components

In this section the author will clarify the relationship between the various trajectory spaces and fast 

averaging. The local event-probability p, which connects the concepts of trajectory spaces and fast 

averaging, is described first. Following this, it is shown how p can be used in determining the 

significance of those trajectories associated with BAEP components. Extraction of the significant 

components (i.e. trajectories) enables one to reduce the number of candidate trajectories 

competing for definite assignment to individual components. This will be important in the 

enhancements that need to be incorporated into the prototype expert system (EPAXIS) for the 

automatic selection of BAEP components and their interpretation. The statistical properties 

associated with event-maxima in significant trajectories, provide the means of re-examination of 

the ensemble of single responses in order to create homogenous sets of single responses containing 

specific components and combinations of components. From an EP/ERP research point of view, 

this presents us with new and considerable possibilities to investigate the relationships between 

components.

Once the limits of global trajectory space T[M,yN] have been determined with the help of BIN 

features, we can calculate the probability of an event-maximum occurring anywhere within this 

space. This global event-probability pg is given by:

total number of event-maxima found in T[M,yN] 
total number of event-maxima possible in T[M,yN] = M . yN

A similar calculation is performed for the local event-probability pi (previously denoted by p) in 

local trajectory space T[M,XN], and for the inter event-probability pi in inter-trajectory space 

T[M,uN]. When the distribution of event-maxima in T[M,yN] is uniform, it is expected that 

pi = Pi. This is a situation that is most likely to occur with single responses exhibiting white noise 

characteristics. In the presence of non-stationary signal activity, it is expected that pi will be less 

than pi, due to a relative increase in the total number of signal-related event-maxima found in 

T[M,XNj. Achieving higher values for pi, as the number of responses being analysed increases, is 

indicative of the presence of signal-related activity. Therefore, as described in Sec.[8 .8], pi can be 

used as a stopping criterion in fast averaging.

In order to test whether or not a trajectory is significant, we need to determine if the sample of 

event-maxima in the segments of T[M,XN] is drawn from the same population of event-maxima in 

T[M,yN] and/or T[M,iN]. The true distributions of events in the trajectory spaces are not really 

known. In the presence of non-stationary activity it is assumed that: (a) the distribution of events
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in T[M,iN] is uniform, (b) the distribution of events in the segments of T[M,XN] is binomial (cf. the 

model of bin-cancellation described in Sec.[8 .8 ]), and (c) the distribution of events in T[M,yN] is 

lies somewhere between (a) and (b). Without having to make any assumptions about the 

distributions of events, the significance of trajectories can be determined using a \  tests for 

goodness of fit of the individual segment distributions in T[M,XN] to the overall distributions in 

either of, or each of T[M,yN], T[M,XN], or T[M,tN] (i.e. using pg, pi, or pi respectively). The 

trajectories can then be classified (graded) according to the degree of goodness of fit to these 

distributions.

To decide at the significance level a whether the trajectory events constitute a sample from a 

population with an arbitrary distribution f(x), we first compute the expected number of 

observations that would fall in each category of the sample as predicted by f(x). To compare the 

observed frequencies oi, for the î  ̂ category, with expected (theoretical) frequencies ei, we 

compute the x statistic over the r categories:

i = 1 Ci

A  trajectory sample is comprised of two categories r[l] and r[2], where r[l] is success [oi,ei], i.e. 

containing those trajectory events that have been found, and r[2] is failure [o2,e2], i.e. containing 

those trajectory events that have not been found or, in fact, non-existent. For category r[l], the 

observed frequency oi of events is obtained by simply counting the number of trajectory events. 

The expected frequency ei in r[l] is computed by multiplying the width of the segment in the local 

trajectory by pe =  pg, pi, or pi, depending upon which distribution is being fitted (i.e. ei = width 

of T[M,\N] segment x pe). For category r[2], 02 and e2 are computed by subtracting 01 and ei 

from the total number of trials being analysed M. Therefore, after simplification, the statistic 

for a trajectory in a segment of T[M,XN] is given by:

2 ^ (01 - ei)^ ^ (01 - ei)2 
 ̂ ei M - ei

The null hypothesis, that the trajectory events are drawn from the distribution f(x), is rejected at 

OL = 90% significance level, if x exceeds x̂ -9,1 = 2.71 for one degree of freedom v = 1. The x 

probability value P(%̂  | v) is numerically computed for the trajectories during event analysis using 

the incomplete gamma function provided in Press et al. (1988).
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The results tables in Appendix [D4] show the x statistics for the data sets that were used to 

produce Figs.[8.20 - 822]. The values for x and P(%̂  | v) in these tables were calculated using the 

local event-probability pi so as to determine the trajectories with the highest grade. The values for 

X and P(x^ | v) which are computed using pg and pi are not yet available in event analysis. They 

can, however, be calculated very easily using the probability and span values which are available 

from the analysis (see result tables in Appendix [D4]).

In conjunction with the scheme proposed for dynamic data-quality monitoring for fast averages 

(Sec.[8 .8]), this trajectory grading concept will have implications for the enhancements that are 

being incorporated into the EPAXIS expert system. The grading scheme is actually another form 

of measuring the quality of the data.

The next section discusses a method of generating enhanced averages of the BAEP by intelligent 

trial selection. The use of the word intelligent is deliberate, in order to emphasise the connection 

between event analysis and the EPAXIS expert system. The designs of both systems were 

complementary to one another. It is the author’s intention that EPAXIS will automatically 

perform the decision process of trajectory selection and subsequent scoring of the BAEP, using 

the significance values for the trajectories, and BIN and GAV information, etc. as are output by 

event analysis. For the purposes of the following discussion on intelligent avera^ng, it is not 

important that EPAXIS and event analysis are functionally interfaced. The decision making 

intended for EPAXIS at this stage of event analysis has been performed manually.
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8.11 Enhanced Averaging by Intelligent Trial Selection

The information, contained in the trajectories, which relates to the latency of events, is vital for 

enhanced averaging. We have seen how trajectories can be graded for quality and then manually 

selected (or automatically selected with EPAXIS) to be representative of specific components in 

the averaged BAEP. For each of the five major components in the BAEP, the corresponding 

trajectory contains information on:

•  (a) the mean latency of the component,
•  (b) the variance of the component,
•  (c) the latency of each of the detected event-maxima that constitute the component, and
•  (d) which trials in the ensemble of responses contain an event-maximum related to a 

specific component.

Item (d) is perhaps the most useful for enhanced averaging, since it enables one to selectively 

re-average the ensemble of responses. This is done by averaging only those trials that have a valid 

event in a trajectory. Since the five major trajectories are component-specific, the five new 

averages of the BAEP which can be produced, will each serve to enhance their own source 

component. An enhancement can be achieved because, only those trials with events are included, 

and more importantly, only those trials that contain noise-events and/or events due to spikes, are 

omitted. As the author shall demonstrate shortly, this simple procedure has proved to be 

surprisingly effective.

The five component-specific averages are called the source averages, and using their trajectories, 

the analysis has been extended to produce derived averages, which comprises an homogeneous set 

of trials containing pre determined combinations of component-specific trajectories and their 

events. These derived averages allow for the investigation of the relationships that may exist 

between components.

In order to generate the above source and derived averages, the event analysis program first maps 

the events contained within the five pre-selected, component-specific, trajectories into the first five 

columns of an M x 13 bit array, C[M,13] (where M is the total number of trials). Bits in C[M,13] 

are set to T’ in the five source columns corresponding to each of the component-specific 

trajectories, and in the M rows corresponding to the trial numbers that contain events in the 

trajectories. Second, the homogenous sets of trials that result in the derived averages are 

generated in the remaining eight derived columns in C[M,13]. The first five of the derived columns 

are generated by performing a bit-wise ’and’ operation on selected combinations of source

8-35



columns. This operation produces the intersection-sets of homogeneous trials. The remaining 

three derived columns are generated by performing a bit-wise ’or’ operation on selected 

combinations of source columns, and gives the union-sets of homogeneous trials.

The combinations of BAEP components chosen for the derived columns in C[M,13] are formally 

specified as follows:

•  The pre-selected component-specific trajectories Tt are:

Tt = {ei, e2,  , eM-l} where t = 0 ,1 ,  , 5 and em = 1 or 0,
and the overall source set S = { Ti, T2,  ,T5}.

•  The intersection sets li are:

11 = Ti n  T3,
12 = Ti n  Ts,
13 = T3 n  Ts,
14 = T2 n  T4,
Is = Ti n  T3 n  Ts,
and the overall intersect set I = {Ii, I2, ..... , Is}.

•  The union sets Yu are:

Yi =  Ti U l3  U Ts,
Y2 = T2 U T4,
Y3 = Ti U T2 U T3 U T4 U Ts,
and the overall union set U = {Yi, Y2, Y3}.

•  The universal combination set C = {S, I, U}, which is represented in the computer 
as the bit mapped array C[M,13].

The trajectory combinations in I and U were specified on the basis of what has been stated, about 

the manifestation of certain components in the presence of others, in numerous publications (e.g. 

Jewett, 1970; Picton, 1988). In particular, there is much quoted of the normal values for waves I, 

III and V, and their respective inter-peak latencies. This is because they have consistent 

representations in the averaged waveform at all stimulation intensity levels and stimulus repetition 

rates. Additionally, a normal data study (conducted by Robinson and Robinson of Medelec Ltd, 

Woking, Surrey, 1988) has also consistently shown high correlations between these waves and also 

between waves II and IV.
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Apart from the intelligent averaging described above, it is also feasible to compute a form of 

latency corrected average (LCA) using the mean latencies of events in the component-specific 

trajectories. Since the total number of responses being analysed is small, it should be 

advantageous to temporally align events, that fall within the bounds of a component-specific 

trajectory, with the mean latency prior to re-averaging. The procedure used in this investigation 

does not splice-out segments of the LCA corresponding to each component-specific trajectory and 

then attempt to fit a curve to the segments (cf. LCA described in Sec. [7.2]). Instead, five grand 

LCAs are generated, which have each been, in-turn, corrected to the mean latency of one of the 

five component-specific trajectories. From each of these grand LCAs, a source LCA is produced 

using trials chosen from S as for the five source averages mentioned earlier. Selective re-averaging 

has to be performed several times using trials chosen from Ii or Yi to generate each one of the 

derived LCAs. For these cases, to extract the corrected form of each component, re-averaging is 

performed however many times there are trajectories in the individual Ii or Yi respectively. For 

example, if the derived LCA for Ii was being generated, and the column vector for Ii in the 

combination map showed 10 trials containing the combination of trajectories ( Ti D T3 ), then the 

resultant LCA would be computed from the same 10 trials taken from both grand LCAs for Ti and 

T3. This means that the derived LCA for Ii would eventually contain a total of 20 trials.

The latency alignment in LCA will exaggerate the contributions of trajectory events to the 

morphology of the corresponding components in the averaged BAEP. The peak of a latency 

corrected component will, in most cases, be found to exist at the mean latency of the trajectory 

used for the correction. Generally, one would attempt to select the trajectories corresponding to 

each of the five major components in the BAEP, so that the intersect and union sets of trials would 

be meaningful. To extend event analysis for intelligent averaging with other EPs would simply be a 

case of redefining the combinations of interest in I and U.

Some illustrative results for intelligent averaging and event analysis are given in the case studies 

that follow in the next section.
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8.12 Event Analysis Case Studies

A complete set of results from event analysis of BAEPs can be overwhelming, especially if both 

ipsilateral and contralateral channels are being investigated. The case studies that are presented 

here will attempt to provide a global overview of the full event analysis procedure using 

contralateral channel data only. A small, but representative set of graphical and statistical output 

will be interspersed with short descriptions of the objectives, so that the reader may see how the 

event analysis programs can be used to find information in the BAEP.

8.12.1 Case Study A 

Background Information;

•  Data set:
Name - lOxmb.lO; Channel - contralateral; Stimulus intensity - 75 dBSL; Sex - male.

•  Data specification:
16 responses / sub-average; 64 unfiltered sub-averages; 1024 responses in total.

The diagrams in Fig.[8.23] show the general results obtained from the preliminary stages of event 

analysis. The reader should be familiar \\ith their formats and meaning. Fig.[8.23(d)] shows the 

frequency distribution of latency intervals between adjacent maximum and minimum events, 

H[(At)p]m, which is used for spike rejection in, and adaptive low pass filtering of the ensemble of 

trials (Sec.[8.6]). The information in the event bins of Fig.[8.23(b)] suggests that significant activity 

exists in the GAV (Fig.[8.23(a)]) at latencies in the vicinity of BIN peaks ’1’, ’2’, ’3’, ’5’, and ’T. The 

trajectories in Fig.[8.23(a)] which correspond to these BIN peaks bisect the major components of 

the averaged BAEP.

The number of trajectories present in the latency interval occupied by the major BAEP 

components is low in comparison to the number of features of interest in the BAEP. This 

behaviour is expected, since the trials being analysed consist of small sub-averages (Sec.[8.7]), and 

the stimulation intensity is high which also serves to increase the SNR of the 1024 individual single 

responses. In this case, the benefits of bin cancellation were most likely to have been superseded 

by the benefits of having an increased SNR (Sec.[8.7]).

Wave I in Fig.[8.23(a)], at about 1.5ms, is broad and has a ragged-top consisting of multiple peaks. 

This is reflected in the bifid BIN peaks ’O' and ’1’. It would be a relatively simple matter to score 

(or label) this BAEP using information from the well-structured BIN in conjunction with normal 

values for the latency of components (given in Appendix [D5]). However, to gain a greater
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understanding of the activity that produced the complicated wave I component, one must resort to 

an examination of the BAEP at the single-response or single sub-average level (Sec.[7.1]). We will 

use intelligent averaging to aid an investigation of the BAEP at this lower level.

The statistics for this data set, which were generated at the preliminary stages of event analysis, are 

shown below m Table [8,1] (see Appendix [D4] for an explanation of the attributes in the table):

Event Probabilities:

Max GPks possible (uniform) : 12800 

Total GPks found ; 684 

Global Probability of Fk : 0.05

Max LPks possible (uniform) : 7424 

Total LPks found : 493 

Local Probability of Pk : 0.07

Max InterPks poss. (uniform) : 5376 

Total InterPks found : 191 

Inter Probability of Pk : 0.04

Item N« GPkAmpl GPkLat BPkAmpl BPkLat Ma SD a E ChiSq ChSqP BinomP %Swps CC span
0 . 162 1.72 1558 1.44 1.42 0.07 27 30 0.48 0.49 0.00 42.19 0.90 7
1 . 217 2.80 1683 1.72 1.76 0.09 23 34 7.59 0.01 0.00 35.94 0.88 8
2 . 230 3.96 3686 2.96 2.92 0.09 43 34 5.08 0.02 0.00 67.19 0.93 8
3 . 689 4.96 3641 3.92 3.90 0.12 47 47 0.00 0.94 0.00 73.44 0.89 11
4 . 392 5.92 1023 4.40 4.40 0.07 20 26 1.97 0.16 0.00 31.25 0.95 6

5 . 57 6.88 3858 4.96 5.00 0.09 37 34 0A6 0.45 0.00 57.81 0.93 8
6 .-372 7.68 1220 5.44 5.46 0.08 26 30 0.88 0.35 0.00 40.63 0.93 7
7 .-450 8.32 2475 5.88 5.95 0.08 35 30 1.73 0.19 0.00 54.69 0.85 7
8 . 208 9.48 2152 6.32 6.27 0.08 28 26 0.41 0.52 0.00 43.75 0.90 6
9 . 0 0.00 2947 6.76 6.82 0.10 40 34 2.26 0.13 0.00 62J0 0.93 8
10 0 0.00 2258 7.28 7.32 0.11 32 38 2M 0.11 0.00 50.00 0.94 9
11 0 0.00 2282 7.84 7.87 0.09 32 34 0.25 0.62 0.00 50.00 0.94 8
12 . 0 0.00 2177 8.24 8.30 0.08 31 30 0.10 0.75 0.00 48.44 0.89 7
13 . 0 0.00 2240 8.88 8.85 0.12 40 43 0.44 031 0.00 6230 0.80 10
14 . 0 0.00 2453 9.16 9.16 0.06 32 26 2.75 0.10 0.00 50.00 0.89 6

Table [8.1]

The number of events (peaks) found in local trajectory space T[M,\N] (493) is much higher than 

was found in inter-trajectory space T[M,iN] (191). This indicates that there should be some 

non-stationary (i.e. signal-related) activity present. The local probability ^  of finding an event in 

T[M,XN] is 0.07, and from the bin cancellation simulation results in Appendix [D3] one can infer 

that the chance of obtaining an error of greater than five counts at one sampling point in the event
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bin is less than 5%  (using P(X < 5)64 at p = 0.06). If the chance of an error was much higher, then 

it would be necessary to recompute the analysis with the inclusion of an additional ensemble of 

trials. With this particular data set, the error probability value P(X < 5)64 is not strictly valid 

and/or representative of the bin cancellation process. This is because the probability distribution 

of the noise has been affected by the sub-averaging process (Sec.[8.8]). Nevertheless, it was 

beneficial to mention just how P(X < p)\i is intended to be used when single-response data is 

being analysed with a fast averaging paradigm in mind.

To proceed with the generation of intelligent averages, the individual Ti must be selected after 

consideration of the x values, the percentage of trials that contain an event, and above all, the 

mean latency values with respect to the standard normal values given in Appendix [D5]. If we 

manually assign the trajectories Ti corresponding to BIN peaks ’2’, ’3’, *5% and ’T to the overall 

source set S, then the resulting combination set C will have a bit mapped representation C[M,13] 

as shown in Fig.[8.24]. The fav-source (fast average source) traces in both Figs.[8.24(a) and 

8.24(b)] are the source averages computed from the individual Ti. The intersect traces in 

Fig.[8.24(a)] are the derived averages computed from the intersect sets Ii. In Fig.[8.24(b)], the 

union traces are the derived averages computed from the union sets Yi. For comparisons, the 

average of the source averages and the conventional BAEP average are also provided. All the 

averages are delineated at the mean latency values of the selected trajectories. The numeric labels 

attached to the traces have the format - Column vector number in C[M,13] which was used (trace 

number) : Combination formula | Number of trials contained in the average. An example of the 

latter for a trace in the intersect set is 9 : 024 | 24, which should be read as - column vector 9 (or 

trace 9) : from combination of trajectories 2 and 4 | contains 24 trials.

Trace 2 in Fig,[8.24], as expected, enhances wave 2, but it has no representation of the rightmost 

part of wave I which was selected in trace 1. This trace contains the leftmost part of the bifid wave 

I which was indicated by BIN peak ’0’ in Fig.[8.23(b)]. There is a marked showing of wave IV or a 

possible wave IV/V complex with a very weak showing of a wave V inflection. This is unusual, 

since there is a relatively high percentage of trials in the average (67%). By comparison, trace 1, 

which has just over half as many trials (36%), shows clear representations of all the waves.

In trace 4, wave II is very prominent and wave I is not present at all, even though the average 

contains 57% of the trials. When any of the waves I, III, or V are being enhanced, there appears to 

be a good representation of all other waves. When either waves II or IV are being enhanced, there 

appears to be a good representation of the other wave only. These phenomena have been 

repeatedly observed in other BAEPs. Trace 9 clearly supports the observation of an exclusive 

wave n  and IV correlation. Traces 6, 7, and 8 show very good BAEPs, obtained from low numbers 

of trials, because of the enhancements included from either of waves I, III, or V. The BAEP in
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Fig. [8.27] Combination map and LCAs as obtained by assignment of the t i

for BIN peaks 'O', '2', '3', '5', and '7' in Fig.[8.23(b)] to the overall source set
S and corresponding grand LCAs.



trace 10 is obtained from only 20% of the available trials, and it is has a much better morphology 

than the conventional raw average. Wave I is clearly defined and the strong negativity expected 

after wave V is also evident.

The difference in ensemble size between traces 12 and 13 is only six trials. These traces contain 

88% and 98% of the available trials respectively, however, the waveforms are quite dissimilar. 

They both emphasise the waves II and IV, and the waves I, HI, and V  phenomena mentioned 

above.

Fig.[8.25] shows the latency corrected averages for this data set derived from grand LCAs using 

the lcafav-source trajectory information. They show neither significant improvements over the 

averages in Fig.[8.24], nor have they introduced any distortion. Examination of the standard 

deviations for the respective trajectories in Table [8.1] shows that trajectory five will cause a 

maximum latency correction in the ensemble of trials, since it has the highest variability. For 70% 

of these trials, the latency shift will be less than three sampling points, so the effects o f latency 

correction wUl not be dramatic.

The traces in Figs.[8.26 and 8.27] show the fav-source and derived averages, and the lcafav-source 

and derived averages respectively for the data set in Fig.[8.23(a)]. The difference in this case, is 

that the trajectory corresponding to Bin peak 'O' is used to generate traces 1, 6, 7, 10, 11, and 13 

(i.e. all those traces that have trajectory Ti in their combination set). On examination o f the 

complete set of traces in both Figs.[8.26 and 8.27] which are generated using Ti and not T5, it can 

be seen that their wave V  representations are very small compared to their counterparts in 

Figs.[8.24 and 8.25]. This is not what is expected, given that waves I and V are highly correlated in 

the BAEP. All traces that are generated using T5 help to pull out the rightmost peak in the bifid 

wave I component, which corresponds to the trajectory selected previously. One can strongly 

postulate therefore, that the leftmost peak in the bifid wave I component does not arise from the 

same polysynaptic chain in brainstem pathways as the rightmost peak.

8.12.2 Case Study B 

Background Information;

•  Data set:
Name - 3xmb.20; Channel - contralateral; Stimulus intensity - 65 dBSL; Sex - male.

•  Data specification:
16 responses /  sub-average; 64 filtered sub-averages; 1024 responses in total.
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In this case study, the GAV peak in Fig,[8.28(a)] corresponding to BIN peak ’5’ in Fig.[8.28(b)] is a 

wave rV/V complex. The GAV component is broad and has prominent shoulders on each of its 

sides. These shoulders are reflected in the BIN structure by small peaks on either side of BIN  

peak ’5’. All the other major components are noticeably represented in the BIN, though there is 

some erratic behaviour between waves II and III which tends to distort them. Wave I in the G AV  

is swamped by the presence of large stimulus-related artifacts. With intelligent averaging we hope 

to determine the precise locations o f the peaks in the wave IV/V complex.

The statistics for this data set are given below in Table [8.2]:

Event Probabilities:

Max GPks possible (uniform) : 13824 

Total GPks found : 462 

Global Probability of Pk : 0.03

Max LPks possible (uniform) : 7616 

Total LPks found : 348 

Local Probability of Pk : 0.05

Max InterPks poss. (uniform) : 6208 

Total InterPks found : 114 

Inter Probability of Pk : 0.02

Item N® GPkAmpl GPkLat BPkAmpl BPkLat Mn SD. a E ChiSq ChSqP BinomP %Swps CC Span
0 . 212 2.36 2774 1.44 1.36 0.12 25 29 1.13 0.29 0.00 39.06 1.00 10

1 . 220 3.76 5596 2.32 2.36 0.14 41 35 2.20 0.14 0.00 64.06 0.98 12

2 . 771 5.44 2348 3.04 2.93 0.10 20 23 0.78 0.38 0.00 31.25 1.00 8

3 . 199 6.32 1623 3.36 3.40 0.07 17 18 0.02 0.88 0.00 26.56 1.00 6

4 . . 505 7.04 6115 3.80 3.84 0.07 31 18 14.21 0.00 0.00 48.44 1.00 6

5 . -270 8.28 3324 5.36 5.31 0.13 33 32 0.04 0.84 0.00 51.56 1.00 11

6 . 0 0.00 1986 6.28 6.30 0.14 25 35 6.43 0.01 0.00 39.06 1.00 12

7 0 0.00 3825 7.08 7.02 0.12 30 32 0.29 0.59 0.00 46.88 1.00 11

8 . . 0 0.00 2564 7.36 7.34 0.06 15 15 0.01 0.91 0.00 23.44 1.00 5

9 . . 0 0.00 1654 8.28 8.17 0.16 32 38 2.35 0.13 0.00 50.00 0.97 13

10 . . 0 0.00 3569 8.76 8.78 0.08 25 20 1.47 0.22 0.00 39.06 1.00 7

11 . . 0 0.00 2680 9.48 9.26 0.16 34 35 0.08 0.78 0.00 53.13 0.97 12

12 0 0.00 3624 9.72 9.70 0.07 20 18 0.47 0.49 0.00 31.25 1.00 6

Table [8.2]
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Fig.[8.28] General results obtained from preliminary stages of event analysis.



To continue with the author’s convention of assigning the five trajectories in the source set S to the 

major BAEP components, it will be necessary to omit assigning T4 since a wave IV does not exist in 

this case. Therefore, the trajectories Ti, T2, T3, and Ts corresponding to BIN peaks ’O’, *1’, ’4’, and 

*5’ only win be used.

In Fig.[8.29] the source and intersect traces that are computed from T4 are obviously not available. 

Trace 2 shows a distinct wave IV component, despite there being a complex wave IV/V in the 

GAV. A  note was made in case study A  of the high degree of correlation that exists between 

waves II and IV. The separation between waves IV and V  in trace 2 is only about 0.5ms. This can 

result in an apparent fusing of these potentials during averaging when either has an associated 

variability that causes their peaks to overlap. The small separation of waves in the complex is 

confirmed by trace 3, where the high correlation between waves III and V has caused an 

enhancement of wave V, and consequently a resolution of the complex.

The traces that enhance wave I, either directly through a combination formula containing Ti, or 

indirectly through a correlation with wave I, show little or no artifactual activity. The average of 

the fav-source averages (sum) contains cleaner wave I and wave II components than the raw 

average. This average is a form of weighted averaging, since some trials will be included more 

times than others, depending on the number of occurrences in the source set S. Favour is given to 

those trials with highly correlated components in the Ti contained in S.

The LCAs for the data set in Fig.[8.28] are given in Fig. [8.30]. There is perhaps a very slight 

improvement in the sharpness of wave I and the resolution of the wave IV/V complex in these 

traces, but no other advantages over the averages in Fig, [8.29] are obvious.

8.123 Case Study C 

Background Information;

•  Data set;
Name - comb4.dat; Channel - contralateral; Stimulus intensity - 65 dBSL; Sex - male.

•  Data specification:
4 responses /  sub-average; 64 filtered sub-averages; 64 responses in total. *
( * The sub-averages are combinatoriaUy averaged)

The data set shown in Fig.[8.31] is produced from combinatoriaUy sub-averaged data as described 

in Sec.[8.7.1], The GAV in Fig.[8.31(b)] and the BIN in Fig.[8.31(c)] are the same as in 

Fig.[8.13(c)]. Since the total number of trials in this GAV is smaU (64), wave V  at about 6.1ms is 

not yet represented by an obvious peak. The wave V  shoulder in the GAV waveform emerges as a 

distinct peak after continued averaging (see Fig.[8.11(d)]). The task of assigning a latency label to

8-43



if

I
N
T
E
L C
L 0
I M
6 B
E I
M M
T A

T
A I
V 0
E M
R
A M
G A
I P
N
G
JL
II

Fi le: 3XMB. 20
= 1 i i= : T i i : =1 =

n i l i n  = =T TT : : T 1 : ; : T T T= = 11 n i l ; 1 = = =
t I t : : : =1 =: = : : : = T =

= = = : i f i 1 :!=:: =T T t ! : : : : : : t T t= : : T : : = T =T = i :1 i i 1 ::=.: == i T : : n  =
1 = 1 := 1 1 1 ; 1 = = == = = ;= = = = : = = = =: T : :T : : : : T T T: T : := 7 i i : : = = =

: : : i : : : = == : : j. : : = T =
n i l i n i l
T : : : : : = = =

i =Z :T ; i T ; : = = =i T t i= i i T i i =7 =
I E 3 H 
G I H

5 b 1 B 3 1011IEI3 
5

1:081

2 :0 0 2

3:003

4: 004

5:005

P''
: : :

n
l \ s

6: 013
16

7: 015 
14

8: 035 
15

9:024
0

10:135

(a) Fav-source traces [1-5] and intersect traces [6-10].

tt

I
N
T
E
L C
L 0
I M
G B
E I
M M
T A

T
A I
V 0
E N
R
A M
G A
I P
N
G

#

Fi le: 3XMB. 20
= 1 ; ;= i T : i I =1 =
1 = 1 :Z l l l i 1Z = =TTT: : T : : : T T T
= =  1 :n i l : 1 = = =
= 11 : ; i =Z == T = :
= = T : I 4 : I 11=4  =
77 4 : : : : : i i =7 =: T T := : : T : : = T =

1 i : 1 i i =Z =
11 : := i t i : i 4ZE
z îi  : i 1 Ë 4 Ë
= = = != = = = : 4 E 4 =T T T I4 7 7 7 : T T T
7 = 7 i4 7 : : : i E t E
I = ; ; : : : : ; I ; EE: T z := : : j.
ZZ Z i1 Z 11 : I Z Z Z
t ZE :4 4 4 4 i 4 E Z E: = L. :T : : : : : = = =
! =Z := : : 7 ; ; EEE
: 7= : = i : T i : =7 == = := = = = := = .: =
1 E 3 H 5 b 1 B 3 I 0 I I 1213

1 : 001
25

2 : 002  
41F

A
V

3: 003 
31S

0
U
R
C
E 4: 004

5:005
33

11:135
53

U
N
I
0
N

12:024 
41

13:1-5 
58

S
U
M

R
A
W

D I H

(b) Fav-source traces [1-5], union traces [11-13], sum of traces 1-5, and conventional
average.

Fig.[8.29] Combination map and enhanced averages as obtained by
assignment of the ti for BIN peaks ’O’, ’T, ’4 ’, ’?’, and ’5 ’ in Fig.[8.28(b)] to

the overall source set S.
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this shoulder is easily accomplished when the BIN information is used for guidance. Without it, 

the process of scoring this BAEP is open to some subjectivity. In addition, the GAV peaks around 

1.5ms and 2.5ms are too broad to be regarded as good estimations of the wave I and wave II BAEP  

components. In a situation such as this, an experienced clinician might attempt to score the 

BAEP, although it is more likely that several more trials would be averaged to hopefully obtain the 

quality of average shown in Fig.[8.11(d)] (512 trials) so as to remove any need for subjectivity.

If real-time monitoring of patients using BAEPs is to be achieved in the future, we must attempt to 

generate good estimations of the components using a small number of responses. The intelligent 

averaging proposed in this section has shown some promise in this respect, and it is further 

demonstrated that the components of this GAV can be extracted from the small number of 

available responses. The statistics for this data set are given below in Table [8.3]:

Event Probabilities:

Max GPks possible (uniform) : 13440 

Total GPks found : 476 

Global Probability of Pk ; 0.04

Max LPks possible (uniform) : 8000 

Total LPks found ; 415 

Local Probability of Pk : 0.05

Max InterPks poss. (uniform) : 5440 

Total InterPks found : 61 

Inter Probability of Pk : 0.01

GPkAmpl GPkLat BPkAmpl BFkLat Mn SD. Û £ ChiSq ChSqP BinomP %Swps £C  Span
0 . 10847 1.60 2645 1.08 1.16 0.12 31 33 0.30 0J8 0.00 48.44 1.00 10

1 8005 2.68 3833 1.64 1.65 0.06 27 17 8.80 0.00 0.00 42.19 1.00 5
2 9966 3.64 2075 2.28 2.24 0.09 23 27 0.82 0.37 0.00 35.94 1.00 8

3 5295 5.16 3690 2.72 2.62 0.13 37 37 0.01 0.90 0.00 57.81 0.97 11
4 3621 9.12 798 3.08 3.03 0.03 11 7 3.19 0.07 0.00 17.19 1.00 2
5 . 779 9.44 5328 3.60 3.63 0.10 42 30 9.22 0.00 0.00 65.63 1.00 9
6 . 0 0.00 1418 4.64 4.65 0.04 18 13 2.12 0.15 0.00 28.13 1.00 4
7 . 0 0.00 2869 5.04 5.14 0.13 34 37 0.40 0.52 0.00 53.13 1.00 11
8 . 0 0.00 4545 6.08 5.95 0.17 39 40 0.05 0.83 0.00 60.94 1.00 12
9 . 0 0.00 1557 6.80 6.71 0.14 38 40 0.23 0.64 0.00 59.38 0.97 12

10 . 0 0.00 1787 7.24 7.25 0.05 11 17 2J5 0.11 0.00 17.19 1.00 5

11 . 0 0.00 2708 152 7.52 0.07 19 20 0.06 0.80 0.00 29.69 1.00 6

12 . 0 0.00 1481 8.04 8.02 0.11 23 30 2.97 0.08 0.00 35.94 0.96 9
13 . 0 0.00 3226 %52 8.59 0.16 42 43 0.10 0.76 0.00 65.63 0.91 13
14 . 0 0.00 1324 9.20 9.19 0.10 21 27 1.99 0.16 0.00 32.81 1.00 8

Table [83]
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(d) Frequency distribution H[(At)p]m.

Fig. [8.31] General results obtained from preliminary stages of event analysis.
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Fig. [8.32] Combination map and enhanced averages as obtained by
assignment of the t i  for BIN peaks ’1’, ’S’, ’5 ’, ’7 ’, and ’8 ’ in Fig. [8.31(c)] to

the overall source set S.
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The distribution of events that have been found for this data set are shown in Fig.[8.31(a)]. There 

is a definite clustering of the events in the vicinity of the main components. A  broad component 

(e.g. waves I, II, and IV) will have a correspondingly wide cluster of events and a sharp component 

will have a correspondingly narrow cluster of events (e.g. wave II and V). Broad components (and 

shoulders) appear in the average of small sized ensembles, when the underlying activity is either 

highly variable, consists of tightly-coupled bifid components, or contains few representations o f the 

component. The wave V  shoulder is an example of the presence of high variability in the 

underlying activity (standard deviation is 0.17ms). In Fig.[8.31(a)], this component, unusually, also 

shows large periods of non-activity between stimulus applications. Waves I and II are examples of 

bifid components.

Table [8.3] shows that the majority of events (87%) lie within local trajectory space which is most 

likely due to the low pass filtering used (Sec.[8.6]). Therefore, it follows that most of the 

trajectories should contain an event in a high percentage of the trials. The observed number of 

events for trajectories corresponding to BIN peaks T ’, ’3’, ’5’, and 'T confirms this expectation. 

Selecting these trajectories for the calculation of the intelligent and LCA averages results in the 

traces given in Figs.[8.32 and 8.33].

The intersect traces that are generated with Ts show marked enhancements of the wave V  

component. Again, as we have seen from the other case studies, wave II is clearly distinguised in 

the presence of wave IV, and there is a high degree of co-existance between waves I, HI, and V. 

Trace 10 in Fig.[8.32], which is generated from only nine sub-averages, shows a very good BAEP in 

which all components are visible, including the bifid peaks that waves I and II contain. In 

Fig.[8.33], the sum of the lcafav-source averages (sum) is similar to the conventional average. 

Wave V, which was previously a broad shoulder, now exists as a small peak due to the latency 

alignment of its constituent events. The latency at which this wave V peak occurs is about 0.01ms 

earlier than the wave V  peak in the fav-source average of trace 5 in Fig,[8.32J. It is evident 

therefore, that the subjectivity that might be involved in scoring the conventional average can be 

removed with a global examination of the averages produced by these forms of enhanced 

averaging.
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8.13 Discussion

ERPs are used as non-invasive indicators of human brain function in both clinical and research 

applications. These electromagnetic signals directly reflect some aspects of the neural activity 

associated with the specific brain mechanisms that underlie sensorimotor and cognitive processing. 

Scalp recorded ERPs, however, provide an incomplete and distorted view of intracranial neural 

processes (Vaughan and Arezzo, 1988). These limitations are due both to the inability of some 

neural generator sites to produce electric fields that can be recorded at a distance on the scalp, 

and to the summation of different neural generator activities at the scalp.

Neurones that constitute a generator site exhibit some transmembrane ionic charge separation 

when depolarised through electrically excitable membranes or through chemically mediated 

synaptic efiects. This charge separation initiates transmembrane current flows along the existing 

voltage gradient. The transmembrane current flow associated with the excitatory post synaptic 

potential (EPSP) depolarisation creates an extracellular negativity or current sink  ̂ flanked by 

relative increases in extracellular positivity or current sources. At the same time, extracellular 

current flows down the potential gradient created by the sink, at the site of active depolarisation, 

and the sources along the neural membrane extending outward from the sink.

Electrically depolarised membranes trigger action potentials that propagate along the axon and 

through its branches to the axon terminals. Some of this axonal current passes across the neural 

membrane in order to complete the circuit of current flow. The extracellular sink associated with 

this propagated depolarisation moves along the axon, flanked by sources that precede and follow  

the region of depolarisation.

Thus, the current sources and current sinks associated with the generator sites of ERPs are either 

stationary, in the case of EPSP induced excitations, or travelling, in the case of propagated action 

potentials. The spatial geometry of the stationary current sources and current sinks will affect the 

field potential recorded outside of the active neural tissue. If there is anatomical symmetry in 

adjacent activated neurones, then the sources and sinks will cancel one another, so that no 

significant extracellular current would flow beyond the dendritic field of the individual neurone. 

This concept of source-sink cancellation can be applied to groups of symmetrically activated 

neurones or generator sites which will have sharply localized extracellular field potentials. If there 

is an unequal distribution of sources and sinks in any dimension, then a potential field will be 

generated beyond the region of active tissue, and it will be measurable at the scalp. Unequal 

distributions of sources and sinks can be represented by a paired source and sink, which gives rise 

to the dipolar model of field potential generation. ERPs of cortical origin principally reflect

8-46



graded EPSPs that sum due to a common orientation of the active cellular elements. They have 

complex variations in magnitude, polarity and spatial extent over time as the intracortical patterns 

of sources and sinks change in strength and location. In contrast the fields set up by action 

potentials travelling along fibre tracts in subcortical structures (e.g. in the brainstem), obtain their 

complexity from the traversal of complex pathways with a number of synaptic relays and changes in 

orientation. The surface manifestation of potential fields generated within subcortical pathways 

and from cortical generators are therefore more complex than has generally been appreciated 

(Vaughan and Arezzo, 1988).

The identification of the anatomical generators of ERP components is essential for clinical 

applications in which ERPs are employed to aid in the localization of brain pathology. Very 

simply put, identification begins by mapping the surface ERP topography, and then, in conjunction 

with knowledge of the cellular anatomy of active structures, provides a basis for identifying the 

specific generators. Given any surface potential distribution, there are an infinite number of 

possible intracranial generator configurations, however constraints are imposed by known features 

of brain anatomy and physiology. The use of dipolar models o f ERP generation can then be used  

to approximate an observed ERP distribution (Scherg and Von Crammon, 1985). For this form of 

modelling, the topographic data must be reliable and include all the major maxima, minima and 

points of inflection. It is in this latter respect, that the author believes the enhanced averages 

produced by event analysis can complement and extend the data obtained from such quantitative 

models of the electrogenesis of ERPs.

The methodology for event analysis described in this chapter has demonstrated how simple 

constructs can be combined to enhance features in BAEPs and other signals under the class of 

event related potentials. The stimulus-locked feature of BAEP components, and previous 

experience with turning points analysis in interference pattern EMG (Sec.[2.3.4]), has formed the 

the basis for a representation of the BAEP as a sequence of events. Decomposition of the BAEP  

into event sequences throughout a series of stimulus-locked trials, means that at least one 

population of events will result for each component, if and only if that component is non-stationary 

and detectable. Analysis of these populations of events gives a set of sample statistics that provide 

component latency variability information and the ability to select the best trials from the ensemble 

for re-averaging, so as to enhance pre-selected components.

The problems of poor SNR were overcome by adaptively estimating the peak detection threshold 

value from one trial to the next, by sub-averaging and filtering, and by a process of event 

cancellation in the event accumulator bins. The use o f these methods has been described in detail 

and some simulations were performed to determine their effectiveness. Combinations o f these 

techniques can be used to analyse BAEPs using small numbers of responses. Results have been
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given for 1024 and 64 trial BAEPs at 65 dBSL stimulus intensity which have demonstrated the 

ability to perform controlled dissections of the signal to extract information that is hidden by a 

conventional averaging process.

Control over a signal dissection is aided by the statistics that are generated during the analysis. 

Significant trajectories, corresponding to the major BAEP components, are chosen on the basis of 

their x probability values, the percentage of trials that contain an event, their mean latency values, 

and the structuring in the event bin. The significant trajectories are used to generate a 

trials-combination map which drives the construction of new enhanced averages from trials in the 

original ensemble.

In general, global consideration of all the enhanced averages provides more information than is 

available from the conventional average alone. The unfavourable effects of including a few low 

quality responses into the conventional average has been demonstrated. Conversely, it has been  

shown that there are significant advantages to be gained when responses that do not contain events 

are excluded from the average, and that this trial exclusion process can be performed on an 

automatic basis using event analysis and intelligent averaging. Selection of the correct trajectories 

for the computation of the enhanced averages is necessary to obtain any improvement of normal 

features. However, one can also select trajectories that do not correspond to normal features in 

the BAEP. This essentially serves to hypothesise that an underlying, and significant, component 

does exist in the region occupied by the trajectory. The hypothesis is tested by examination of the 

resulting averages, and severe distortion of previously observable normal (and/or well-formed) 

features will reject the hypothesis that a significant component does exist. The selection of 

statistically significant trajectories (p =  0.05, Sec,[8.10]) and/or trajectories containing greater 

than 40% of the available trials, appear to result in reliable enhancements to the components in 

the BAEP.

The results given in Sec.[8.12], suggest that BAEP generators are locked, in that strong 

synchronisation exists between certain generator sites and not others, e.g. between the generator 

sites for waves II and IV, and between the generator sites for waves I, III, and V. It is known that 

the BAEP components mainly reflect synchronised action potentials in afferent fibre tracts, and 

that these potentials are not representative of serial activation of the ascending pathways. The 

bifid components are possibly due to the different axonal conduction velocities in different afferent 

pathways. Compound action potentials in the separate pathways will become temporally 

dispersed, and this dispersion will be further complicated by the repeated firing of neurones within 

the sensory pathways following a single auditory stimulus. In addition, particularly in the auditory 

system, there are parallel bilateral projections that synapse within or bypass each relay nucleus 

(Stockard et al., 1978; Scherg and Von Crammon, 1985). So the simultaneity o f surface and depth
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potentials may be entirely due to chance, since the complexity of the intracranial signals and the 

shifts in timing of their peaks along their intracranial course leads to opportunities for 

synchronisation of the surface and depth recorded peaks that do not reflect activity within the 

same generator (Vaughan and Arezzo, 1988).

The effects of habituation and facilitation are not expected to contribute to this observed complex 

behaviour, since the process of acquiring the largest ensemble of responses (1024 trials) only lasts 

for 3 V2 minutes with the recording protocol used for these experiments (Sec.[8.2]).

The knowledge required to allocate a trajectory to a BAEP component is procedural in most cases. 

Sometimes, a deeper, more complex knowledge is required to arbitrate between multiple and 

equally likely trajectories. In order to effect this arbitration, additional channels of data may have 

to be examined. Following this, it would be necessary to score the data based on decisions made 

about the quality of the new, enhanced averages, and also to justify these decisions. These 

decision-making processes are difficult to specify and then encapsulate in a procedural paradigm. 

The EPAXIS prototype expert system is a first attempt to address this problem using techniques 

derived from the field of artificial intelligence. In the future, as more information becomes 

available (e.g. from multiple channels), the experience gained with EPAXIS should be used to 

intelligently contain the new problems that will arise with regard to the management of 

information and its comprehensive and comprehensible presentation to the user. The latter will no 

doubt involve the use of intelligent graphical interfaces that can be created in a small 

microcomputer-based environment. The graphical interfaces currently available for small 

computers, can be given an intelligence by embedding them into a knowledge-based environment 

that supervises and plans the presentation of graphic information (results and reports) based on a 

priori task specifications. In the author’s opinion, the implementation of this type of concept (i.e. 

reasoning with graphical objects) is necessary if the benefits of event analysis are to be extended 

into the multiple channel and/or real-time monitoring regime.

Apart from the direct applicability of event analysis to other EP and ERP data, it should be 

possible to investigate data having similar characteristics derived from other areas of 

electrophysiology and engineering. For example, the basic ideas of coherent averaging followed by 

component variability analysis and improved waveform estimation can be employed in the 

extraction of the motor unit action potential jitter in single fibre EMG. From the engineering 

domain, fault diagnosis using data from vibration tests on rotating machinery (e.g. gearboxes), and 

intermittent fault analysis in the process industry are the most obvious application areas for event 

analysis.
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A  paper has recently been published (Sehmi et al., 1988, in Appendix [D6]) which describes the 

event binning processes summarised in Fig. [8.6].
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Chapter Nine 

Discussion and Conclusions

The research work described in this thesis has resulted in several new approaches to the 

investigation of neurophysiological data. The data of interest represent examples from two 

important classes of signal that are commonly encountered in neurophysiology and engineering. 

The characteristics of these signals differ significantly, though the techniques used by the author 

for their analysis have not differed to the same extent. The first class of signal, to which the EMG  

belongs, exhibits noise-like characteristics that have important implications when the dynamics of 

muscle are being modelled. EPs are drawn from the second class of signal which display 

non-stationary deterministic characteristics. Simulation experiments conducted by the author with 

spectral analysis of EMG turning points (Lago, 1979), provided a conceptual basis for the analysis 

of the (very different) EP signal.

Turning Points Spectral Analysis (TPSA) of the EMG was simulated on the small computer 

system (SPC) that was the subject of chapter three. The SPC is a multi processor computer 

designed for flexible digital signal processing which incorporates ease of use and portability. The 

objectives for this computer were met by using a modular approach to the design o f both hardware 

and software components. The author’s involvement was mainly concerned with the design and 

specification of the software that allows for much of the flexibility that the SPC exhibits. Branching 

menus and built-in programmable interfaces between the host and slave processors allow the 

applications developer to re-configure the SPC rapidly for various, simple, data acquisition and 

analysis tasks. The signal acquisition rates are fast enough to cope with the majority of bioelectric 

signals to make the SPC a suitable machine for intra-operative data collection and on-line analysis. 

The on-line analysis capability of the SPC is achieved by a background tasking philosophy 

programmed into the host kernel programs. Background analysis tasks obtain data via a 

dual-plane memory which is symmetrically mapped into the address spaces of both the host and 

slave processors. The SPC development was taken to completion recently, at which point several 

applications in bioelectric signal analysis had been implemented successfully.

Apart from the four A D C  inputs that the SPC contains, a pair of DAC outputs can be used to 

provide control signals to peripheral equipment (e.g. x-y plotter, EP stimulator). The SPC can, 

therefore, act as an intelligent host by providing pre-programmed control signals that adapt to 

changes in the status o f measured input signals or in response to analyses performed on input 

signals. Examples for the use of the latter are transducer calibration and compensation during 

data acquisition tasks.
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The noise-like features of EMG have been described in chapter two and their adverse effects in 

dynamic EMG-force modelling were shown to be of importance when specifying the model and its 

parameters. This identified the need to improve the quality o f EMG and force data when 

EM G-force measurements were performed. The approach taken by the author to address this 

general problem has been to provide computer-controllable forcing protocols that, as far as 

possible, relieve the patient from the simultaneous pursuit and generation of dynamic force 

patterns in isometric dynamic loading experiments. Techniques from electromagnetic suspension 

theory were applied to solve this problem. Chapters four and five have described in detail how the 

highly non-linear force-airgap characteristic of an electromagnet can be manipulated in a negative 

flux-feedback control system to give isometric, dynamic control over muscle loadings of upto 250N. 

Small deviations from isometric conditions through patient movements are compensated by the 

control system for the electromagnet. The electromagnet feedback control signal is a direct 

measure of the delivered force, and it can therefore be used as the force output. In this sense, the 

system also behaves like a force transducer. The wide bandwidth of the system will allow 

numerous computer controllable forcing strategies to be adopted for EMG-force modelling 

experiments. The computer system described in chapter three is a very suitable vehicle to host the 

intelligent control process for this muscle load, and in addition, it could be used to simultaneously 

acquire the actual force and EMG signals during an experiment.

The loading system can be improved by changing the magnetic circuit as suggested in chapter five. 

Additionally, the mode of interaction with the device could be made simpler. This can be done by 

changing the position of the magnet in relation to the electronics housing so that the subject does 

not have to reach-out for the main assembly when interacting with the system. An ideal situation 

would be one in which the main assembly was remote from the drive electronics. A  special 

frame-like structure could be constructed to hold the main assembly, within which the subject 

(possibly seated) competes against applied force variations. The major disadvantage of the muscle 

load is its expense. This can be reduced considerably by incorporating the new magnet design 

suggested in chapter five and by lowering the maximum load specification. As a result o f this the 

magnet dimensions and power dissipation can be reduced, thereby enabling the use o f cheaper 

power transistors and simpler drive and control electronics.

Common to the simulation program that was implemented on the SPC and the analysis procedure 

developed for EP signals, is a data reduction process that converts the digitised signals to a 

sequence of events. For EP data, this reduction process has the advantage of being tolerant to 

large noise-induced artifacts. In EMG analysis by the TPSA method, this has the additional 

advantage of providing information on the mean firing rate of the population o f active motor units 

that give rise to the interference pattern (Lago and Jones, 1977, 1983). The original EMG  

reduction process applied to EP data has been extended to incorporate both positive and negative
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events in the time-series. Since EPs are assumed to be non-stationary, derministic signals, the 

bipolar event sequence can be synchronously summated across the ensemble of responses in a way 

analogous to the coherent time-averaging estimation process. This coherent summation o f events 

results in a bipolar latency histogram which effectively delimits those regions in the averaged 

response that contain stimulus-locked activity.

U se of the latter delimiting information and the concept o f a component trajectory, has enabled 

the author to extract EP component latency variability estimators which have proved to be 

accurate to within ± 2  sampling points (i.e. ±  0.08ms at 25 kHz sampling frequency) at

signal-to-noise ratios as low as -lOdB. More research work needs to be done to investigate the 

effects of changes in sampling rate on the extraction o f these latency variability estimates. The 

component variability data is used to extract homogenous sets of trials from the original ensemble 

of responses that contain various combinations of components. The combinations of components 

that are selected depend on the type of EP that is being analysed and the statistics describing the 

component trajectories. The examples given in the thesis are specific to the BAEP. It has been  

shown that simple re-averaging of the trials contained in the homogenous sets can lead to a 

marked enhancement of underlying activity in the BAEP.

The results of experiments using real BAEP data are described in detail in chapter eight. Several 

conclusions can be made about this approach to EP analysis:

•  (a) Resolution of the wave IV/V complex component is possible in situations where either
wave IV or V  exist as points of inflection in the complex.

•  (b) Latency corrected averaging can be used to assist in the resolution of tightly coupled
wave IV/V complex components.

•  (c) It is possible to extract both wavelets in bifid components.
•  (d) Event analysis highlights significant relationships between different components.
•  (e) A  priori knowledge of the correlation between components can be used to enhance

the one, which is not clearly defined in the averaged response and/or the trajectory map, 
with a trajectory selection on the other.

•  (f) The combination map provides a global overview of the trials that contain activations
of the selected components. In the future, it may be feasible to use the combination map 
to perform a topographical correlation of events in multiple channel cognitive EP analysis. 
Given the recording geometry and the underlying brain anatomy regarding possible 
generator sites, an intelligent cluster analysis could be performed to extract the most likely 
groups of events from all combination maps that are related. In this respect, an inductive 
learning algorithm (Shepherd, 1985) may be applicable because of its ability to perform 
generalisations that will cope with the possiblity of having noise-related events in the 
combination map. The induced pattern recognition rules could then be used as part of a 
rule-based system that also encapsulates the relevant anatomical knowledge.
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•  (g) It is common to find significant periods of non-activity in the combination map (even 
when sub-averages are used), which strongly suggests that the underlying neural 
generators do not contribute to the scalp-recorded field potential at every stimulus 
delivery.

•  (h) The observation of silent periods means that there is little hope in achieving an EP 
estimation from a single stimulus (Madhavan et al., 1985). This will almost certainly be an 
impossibility with BAEPs due to the extremely low signal-to-noise ratios present in single 
trials. Several trials would have to be averaged to ensure registration of all components in 
the BAEP.

•  (i) Event analysis can achieve high performance with a greatly reduced number of 
responses (up to 32 times lower against a conventional average using 2048 trials).

The selection of trajectories to represent the five most important components in the BAEP, 

requires a deep understanding of BAEP morphology and the underlying neuroanatomy of the 

brainstem pathways when meaningful interpretations are to be made from the resulting enhanced 

averages. Selection of trajectories is expected to be even more complicated in situations where 

pathology is evident. Symbolic representations of the parameters describing the trajectories, 

coupled with a shallow morphological knowledge of the normal BAEP have been used to build an 

expert system that will select those trajectories that are the most likely candidates for components. 

The expert system, called EPAXIS, incorporates reasoning with uncertainty using the theory of 

fuzzy logic, for which details were discussed in chapter seven.

More recently, the ideas behind EPAXIS have been used by Robinson and the author to 

implement a structured decision table for trajectory selection in a spreadsheet programming 

environment (Microsoft EXCEL). This pseudo-expert program takes as input compatible 

information files that are generated by the event analysis suite of programs.

It is quite clear that there is a large amount of information available from event analysis. Most of 

this information is contained in the morphology of the enhanced averages and the statistics for the 

trajectories. Sensible interpretations of this information rely on the special knowledge of the user 

who can use the suite of programs to dissect EPs at the single trial level. The process of exploring 

the multiple dimensions occupied by the parameters that are user-specified (currently there are 

five, each of which can usually have up to 10 possible values) can become unmanageable. Event 

analysis therefore needs extensions for pattern recognition incorporating heuristic search for 

features in the average using the event bin data and trajectory statistics. If we look at the expert 

system methodology as a means of coping with complexity in signal processing situations that 

require interpretation, management, planning, etc., then the methodology becomes more than just 

an increasing interest in computer science, it becomes essential.
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This research has established, in theory and in practice, relationships between EMG analysis and 

controllable muscle loading, and between EP analysis and knowledge-based systems. A  common 

factor in the work has been the integration o f several analysis and control paradigms which are 

centred around small-computer technology. The integration of the analysis components is aided 

by the programming concepts and software structures that are used, and careful design of the 

user-machine interfaces. This has led to a high level of user controllability and ease of supervision 

during analysis procedures. The resulting environments provide valuable assistance in both 

clinical and research-orientated EMG and EP investigations.

The SPC is currently being used intra-operatively for jet ventilation studies in anaesthesia. The 

magnetic loading device is being used extensively in EMG-force modelling at the University of 

Leicester, and the event analysis suite of programs is being implemented on the next generation of 

EMG/EP machines at M edelec Ltd (Woking, Surrey, England). Four publications have been  

produced as a direct result of this research initiative. All of these papers are included in the 

Appendices.
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In troduction
^significant p rob lem  w ith  m o s t d ig ita l signal p rocessing  
systems so far in tro d u ced  is the  rig id ity  of the user in te r­
active format ad o p ted . As a resu lt o f  th is an  in o rd in a te  
amount of tim e is req u ired  to  co n su lt the  system . T h is 

signal p rocessing  in s tru m en t has been designed  for 
either by no n ex p erts  o r in s itu a tio n s  w here the  u ser is 

unable to pay m uch  a tte n tio n  to  th e  in s tru m en t (for 
example in an  o p e ra tin g  theatre). T he signal p rocessing  
computer (SPC) is a friendly  m enu-d riven  system  p re se n t­
ing the user w ith  a  page o f o p tio n s  o n  th e  screen, a llow ing  
entry of analysis p a ram ete rs , p a tien t d a ta  etc. in a  conve- 

manner th ro u g h  dep ressio n  o f  the  a p p ro p r ia te  soft 
key. The relabelling  o f these  b u tto n s  an d  the  use of 
branching m enus allow s the u ser to  p ro g ress  th ro u g h  a 
agnal acquisition, p rocessing  an d  d isp lay  o f resu lts  w ith  
k  prior know ledge th a t all o p tio n s  have  been con sid e red  
previously in the la b o ra to ry  d u rin g  the  p ro g ra m  w riting  

Furtherm ore, the  in s tru m en t exists as a single tr a n s ­
portable unit, co n ta in in g  the d isp lay  w ith  its soft keys, a 
5|in disk drive an d  v a rio u s d a ta  a cq u is itio n  a n d  p ro ­
fessing cards. T he sm all n u m b e r o f  b u tto n s  used  to  co n tro l 
k  instrument d ispenses w ith  the  need fo r a n  a lp h a n u ­
meric keyboard, a lth o u g h  th is can  be co n n ec ted  if 
lequired.

2 Instrument requirement and specification
The first field o f in s tru m e n t ap p lic a tio n  w as ch o sen  to  

be medical signal acq u is itio n  an d  p rocessing , p a rticu la rly  
of blood flow and  p ressu re  d u rin g  su rgery . In  th is ap p lic a ­
tion, derived from  B u t l e r  et al. (1980) a n d  L a w  et al. 
(1983). the surgeon co u ld  be p resen ted  w ith  flow , p ressu re  
orECG displays, o r  v ascu la r im p ed an ce  m o d u lu s  o r  phase  
characteristics. An ap p lica tio n  a re a  co n sid e red  la te r  is for 
fature use in an  e lec tro m o g rap h y  o u tp a t ie n t clinic. T h is  
application is illu s tra ted  by Fig. 5 an d  is derived  from

fist received 26th March and in final form 15th Ju ly  1985.

IG. Hailstone is n o w  with W est Glamorgan Health Authority, N. B. 
Jones, A. S. Sehm i and S. Kabay are n o w  with the U niversity o f  
jxester. and J. D. W atson is n o w  with  Eurotherm International.

^pondence sh ou ld  b e  a d dressed  to  Prof N. B. J on es. Depart- 
mtof Engineering. The University, Leicester LEI 7RH, UK.

L a g o  an d  J o n e s  (1983). C o n seq u en tly , the  in itia l req u ire ­
m en t p laced  u p o n  the in s tru m en t w as a c ap ab ility  to  
sam p le  u p  to  th ree  ch an n e ls  of signal in p u t (nam ely  flow, 
p ressu re  an d  E G G ) a t sam p lin g  frequencies o f u p  to  2 kH z. 
T o  p rov ide  for the  e lec tro m y o g rap h ic  ap p lica tio n  a rea  an d  
m an y  o th e r  m edical, b io log ica l an d  in d u s tria l ap p lica tio n s , 
the p resen t system  fac ilita tes acq u is itio n  o f u p  to  fou r 
m u ltip lexed  ch an n e ls  (8 o r  12 bits) a t a n o m in a l sam p ling  
frequency  o f 3-3 kH z, the  m ax im u m  for a single ch an n e l 
being  10 kH z. A p a rt from  ease o f use an d  safety in a c lin i­
cal e n v iro n m en t, the  in s tru m en t sh o u ld  be p o rtab le , inex­
pensive an d  p ro d u ce  a v isual d isp lay  o f co m p u ted  resu lts  
ra th e r  th a n  nu m eric  tab u la tio n .

T hese  req u irem en ts  w ere derived  from  the c u rre n t an d  
p ro p o sed  research  w ork  a t  the  un iversities o f Sussex an d  
L eicester. B earing  in m ind  th a t  o th e r  uses fo r the  m ach ine  
a re  env isaged  besides th a t  a lread y  m en tio n ed , the  in s tru ­
m en t is am en ab le  to  ex p an sio n  u sing  com m ercia l b o a rd s  
con figu red  to  the s ta n d a rd  S-100 bus. It w as a lso  specified 
th a t  p ro g ram m in g  o f the  m ach in e  co u ld  be d o n e  locally  o r 
rem o te ly  in a  high-level lan g u ag e  such  as F o r tra n  o r  in 
a ssem b ler via any  C P /M  co m p a tib le  d ev e lo p m en t facility. 
T h e  full in s tru m en t specification  is listed  in th e  A ppend ix .

3 Hardware organisation
T h e  specifications o u tlin ed  have been tra n s la te d  in to  the  

h a rd w a re  show n  in Fig. 1, w hich  p o rtra y s  th e  fro n t panel

S I F M B E ; 1 9 8 6
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Fig. 1 Front panel o f the signal processing computer 
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instrument. Its principal features are four input 
innels, for example, flow, pressure, ECG or other data, 
floppy disk drive (FDC) for transferring programs 

i/or d a ta  to and from the remote research computers in 
(labo ra to ry , a monitor and eight button keys. Fig. 2 is a 
ematic diagram of the system as a whole.

h o st / \
see. 64k RAM

fJARROGATE 
I j PU Z -80B .

16k disk 
eont roller

•Q-g -o -g
video 

monitor
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signal
in p u ts

SAC

DPM

local
b us

SAP

sa te llite

X Y 
plotter outpu ts

(2 S ig n a l processing computer hardware \ 7

The h o s t processor is a standard single-card computer 
co rpo rating  a 6 MHz Z80B microprocessor, 64 kbytes of 
AM an d  three each of serial and parallel ports and 
tiers. A  Matrox ALT-512 graphics board provides 
6x 256 resolution on a 5%in display monitor. An RS232 
BiDector allows a VDU and terminal to be connected if 
qtiired fo r  local program developments and debug facili- 
son th e  machine itself. It is not proposed that this 
y d  be u s e d  in clinical situations. The 16 kbyte FDC  
ODlrols d isk  1/0. The front end or slave processor board 

e u p  of 6 MHz Z80B microprocessor, 24 kbytes of 
IM and  8 kbytes of PROM three parallel ports and 
fee timers. This card controls signal acquisition of up to 
mrchannels of input data and xy plotter outputs for hard 

of re s u l ts .  Signal acquisition is performed using a 
Éware programmable analogue/digital convertor (ADC) 
É  a u to m a t ic  offset and gain facility. This dual processor 
rangement allows for signal acquisition on the front end 
id signal processing on the host. To facilitate the direct 

r o f  acquired/processed data to/from the host 
3 th e  slave processor, the dual plane memory 
I  is u s e d . This feature provides data throughput at 

#  faster rates than are obtainable through direct stan- 
ffddata b u s  utilisation techniques such as I/O and direct 
imory acc e ss  (DMA). The dual plane memory is mapped

into both the host’s and the front-end processor’s memory 
spaces, occupying a 16 kbyte block in each. This arrange­
ment allows data being acquired by the slave to be loaded 
into its half of the DPM through its local bus while the 
host concurrently performs data manipulation on its half 
of the DPM across the S-100 bus. Thus parallel processing 
can be achieved without bus contention problems. ‘Phan- 
toming’ is used to switch out the pre-existed memory over­
laid in the host computer. The dual-plane memory 
provides 32 kbytes of store in two 16 kbyte blocks which 
may be swapped between the memory maps of the two 
processors by means of one I/O instruction from the host. 
The transition time is approximately 17 s, thus enabling 
acquisition and processing of data requiring more than a 
16 kbyte buffer space to be implemented in real time. 
DMA techniques having the same memory bandwidth 
would take typically 7-8 ms. Fig. 3 illustrates the idea pre­
sented above.

Programs to be run on the slave processor can be down­
loaded via disk to the host DPM memory space and then 
transferred to the slave by issuing a memory plane swap 
under program control.

64k

48k

32 k

100H
0

DOS

64k ----------------

ex p a n d a b le

DPM

16k

8k

resid en t
p ro g s
and

d a ta

DPM

lo c a l  RAM

PROMRST&INT VECTORS
0

Fig. 3 Dual plane memory

4 Software organisation
Today instrumentation in almost every field is becoming 

increasingly smart or intelligent. This is primarily because 
the incorporation of a microprocessor, and its associated 
software, allows more complex configuration and analysis 
to be performed than in an instrument designed conven­
tionally. There is little doubt that, through the use of suit­
able software and the associated interface hardware, 
instrument ergonomics can be high in terms of user friend­
liness.

The software driving the SPC can be divided into three 
major modules:

(i) Host resident kernel program: this suite of macros 
and dedicated subroutines provides the nucleus of 
user-configurable programs to run on the SPC for the 
purpose desired. The kernel provides any number of 
pages in a menu. With each page is a reserved RETN 
key function used to access the previous menu page 
and seven programmer definable key functions, one of 
which provides up to three pages of HELP informa­
tion. These are used to describe in detail the conse­
quences of the remaining key functions which might 
be, for example, used to set various analysis param­
eters. This branching structure allows for numerous 
levels of depth in the tree Just by specifying the macros 
during the program writing stage. A simple three-level 
structure is shown in Fig. 4.

The kernel program also handles the protocol with 
the acquisition processor.

(ii) A host resident graphics utilities package provides an 
adequate facility to display computed results in a 
visual format. This is attractive to the examiner, e.g. 
surgeon or doctor, and has the advantage of being

M e d i c a l  &  B i o l o g i c a l  E n g i n e e r i n g  &  C o m p u t i n g  M a y  1 9 8 6



able to convey tren d s o r  p a tte rn s  in co m p u ted  resu lts  
more readily th a n  a list o f  figures, 

ml The m onitoring p ro g ram  ex isting  in the fron t end  p ro ­
cessor p rov ides p ro to co l h an d lin g  w ith  the  host 
through w hich v arious fu n c tio n s m ay be set o r slave 
processor s ta tu s  de te rm in ed . T he  se ttab le  func tions 
include the sam p ling  frequency , A D C  gain  an d  offset, 
DPM plane sw aps, p lo ttin g  tim e base, signal a cq u is i­
tion in itiation  an d  te rm in a tio n , an d  in p u t specifi­
cation.

RETN TO OS

By co m b in in g  these m odu les as  an  in teg ra ted  w hole 
d u rin g  th e  p ro g ra m  w riting  stage, m ost m edical an d  b io ­
logical signal acq u is itio n  a n d  ana ly s is  p ackages can  be 
assem bled  w ith  ease. T h is will p ro v id e  a co m p le te  m enu  
d riven  system  th a t is ad eq u a te ly  user friendly  an d  flexible. 
P ro g ram s used to  p ro v id e  key functions in the  kernel can  
be w ritten  in a h igh  level lan g u ag e  for d o u b le  prec ision  
n u m b er c ru n ch in g  in F F T s  an d  m a trix  o p e ra tio n s . W here 
speed is im p o rta n t, assem b ler p ro g ram s can  be used.
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ENTER DISPLAY RAW OR SIGNAL ACQUISITION
PinSNT OBTAnS FROCIBSED SIGNAIS CONTROL

(STAHT^'STOP)

S£T ANALYSIS 
PARAUETIR3

NO FUNCTION

RETN TO LEVEL 1 i
LEVEL 2

RETN
1

r p m r p C H 1
4 3  2 1

1x1 1 ^

NO FUNCTION

HELP —
PROVIDES 

HELP ENFO

/ t  5 \

LEVEL 3
\  4 Three-level host resident kernel program

X SFRQ
 ̂ X

SET SET SET
Y X SAMPLING

FREQUENCY

□ □ a n
□ □ □ □

Stem#: i *^
Previe# »##ie H  
Provie# e:##:##  
Return Tô CIMKS "

Aetic»

Returm
F u r th e r  Im Fem etiem  "

PRESS key f o r  r e q u ire d  func tion

>TflT] IDI .SÊI R U B

Fig. 5 Examples o f video display formats

PRESS key f o r  r e q u ire d  fu n c tio n

• ^ E E E U E U H E xam ple  o f the  v ideo  d isp lay  fo rm ats  th a t  can  be 
ach ieved  a re  show n  in Figs. 5a, b a n d  c.
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Appendix
University o f  Sussex signal processing computer specification 

Hardware:

processor
mem ory
peripheral
interfaces
timers

display size 
display resolution
system bus
disk drive

analogue inputs 
analogue outputs 
sam pling frequency 
single channel (max.)

four channels (max.)

d ata  buffer size 

Software: 
operating  system 
languages 

resident code

main processor

Z80B 
64 kbytes 
3 X serial 
3 X 8 bit parallel
3 X 16 bit

5 jin  diagonal 
256 X 256 pixels
SlOO (2 spare card slots)

5 jin  D SD D  390 kbytes 
form atted (up to  3 
drives can be added)
4 channels 12 o r 8 bits
2 channels 12 bits

12 5 kH z (8 bits)
(10 0 kH z (12 bits)
7 0 kH z (8 bits)
3 3 kH z (12 bits)
16 kbytes

acquisition
processor
Z80B 
32 kbytes

3 X 8 bit parallel 
3 X 16 bit

C D O S (a superset o f C P /M )
Ratfor, F o rtran  IV, Basic, Z80 assem bler
graphics primitives 
signal acquisition 
m enu co-ordination 
m ain/acquisition processor protocols

M e d i c a l  &  B i o l o g i c a l  E n g i n e e r i n g  &  C o m p u t i n g  M a y  1 9 8 6
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MAGLOAD: Design Calculations
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Design Calculations for MAGLOAD

The following notation is used in the electromagnet design which refers to the digram in this 

appendix:

a - Pole face area (m^ )
Aw - Window area (m^ )
B - Electromagnet flux density (T)
F - Force produced by electromagnet (N)
4 - Forcing ratio 
I - Steady state load current (A) 
i - Instantaneous load current (A)
1 - Mean turn length (m)
L - Inductance of coil windings (H)
N - Number of turns 
NI - Ampere-turns 
P - Power dissipation (W)
R - Resistance of cod (U)
5 - Reluctance of airgap 
Vp - Supply voltage (V)
Vi - Load voltage (V)
X  - Airgap distance (m)
(juo - Permeability of free space 
p - Resistivity of coil windings (m) 
b - Coil wire cross section area (m^)
T - Coil time constant (Sec)

The force F for a single pole is given by:

F =
B^a
2g,o

Therefore, the force per unit area F/a is:

F B^
2|Xo

(B1.1)



At at flux density of 0.65 T, the force per unit area is 168.11 kN/m^. For the specified 500N forcing 

required (i.e. 250N per pole face with a U-shaped magnet) the pole face area a is calculated to be 

14.87cm^ (3.85^ cm^ )

The mean turn length 1 given a window area Aw of 4 x 4 cm^ is therefore 23.4cm. The 

ampere-turns NI at the nominal airgap % of 2cm is:

NI =  =  20690At
(xo 4tt X10

The power dissipation P that can be expected is:

(NI)2 P 1 (20690)2 X 1.78 X 10"̂  x 23.4 x 10 ^
^ =  =  - — -----16x10^---------------------=

This power dissipation is obviously unmanageable without some forced cooling, so power 

reduction is achieved by doubling the poleface area and doubling the window dimensions.

From F =
B^a
2)JLo

Twice a implies twice the force F. Since F « (NI)^ and we require the same force level with twice 

the poleface area 2a, the ampere-turns NT must be reduced by \ /2 .  As a result of this, the original 

power dissipation will be reduced by 50%. The factor of 4 increase in the window area reduces the 

power dissipation by a further factor of 4. The increase in magnet dimensions, however, causes the 

mean turn length to go up by 25% of the original which results in a 25% increase in power 

dissipation. The overall reduction in power dissipation is, therefore: 0.5 x 0.25 x 1.25 =  0.156.

The adjusted parameter values for the magnet are:

NI = 20690 / (V 2 ) = 14630 At 
1 =  23.4 X 1.25 =  29.25 cm 
Aw = (2 X 4)2 =  64 cm2
a = 2 X 14.87 =  5.452 cm2 standard 2 in2 section was used =  5.2o2 cm2  ̂

p _  (14630)^X 1.78X10^ x 29.25x lO'  ̂ ^  17 4  j j w

(B IJ)



When the magnet coils are wound, the circular cross-sectional area of the wire means that the fuU 

window area will not be filled. Approximately 60% of the available window area will be occupied 

by a perfectly wound coil. Errors in maintaining the alignment of adjacent windings increases the 

unoccupied window area. H ence a packing factor of 0.5 is introduced which means the actual 

power dissipation will be approximately twice the calculated value. So P becomes aproximately 

350 W.

To obtain a high bandwidth for the control system through voltage forcing we consider the 

behaviour of the magnet in relation to the supply voltage as follows (Whorlow, 1978):

The total force is given by:

..................................................................................... Eq.[Bl.l]

Therefore:

dP 2N^ |xo a di
dt ’ dt

Combining Eq.[5.5] and Eq.[5.10]:

. I - T — .......................................................................... Eq[B1.2]

dF 2 N 2 p a a I  (V p-IR ) 2N^ x̂o a . (I  ̂R) . (V p /R  -1 )  
dt ~  4^2 ' L “  4%^L

Since L =  N  /  S, S =  2 x  /  jxo a, P =  I R, and Vi =  IR

d F / dt =  ( P / x ) .  (V p/  Vi - 1 ) .....................................................................Eq.[B1.3]

The quantity Vp / Vi describes the voltage forcing ratio  ̂ in the positive direction when the drive 

transistor amplifier is turned on.  ̂is the ratio of the supply voltage to the steady state voltage drop 

across the resistive part of the magnet when a quiescent current I is being maintained with the full 

supply across the magnet. When the drive transistor amplifier is turned off this current still flows 

due to the inductance o f the coils and is recirculated through the power supply by the freewheeling 

diode. By virtue of this recirculated current flow, a voltage Vi will exist across the resistive part of 

the magnet and provides the negative voltage forcing of current through the coils since the 

inductive voltage drop is now in a direction opposite to that of the resistive voltage drop. The 

difference between Vp and V] determines the rate at which the decaying inductive current falls

(B13)



when the drive transistor is off. The more Vi approaches Vp, the less decay there will be in the

inductive current; consequently there will be a lower current ripple. Values o f Vi less than one

half of the supply voltage result in inadequate forcing and the ripple current increases.

This can be shown easily:

L d i / d t  =  (Vp-Vi)  ......................................................................................Eq.[B1.4]

This equation represents the forcing of current in the magnet in the positive direction. In the 

negative direction :

L d i / d t  =  V i ...................................................................................................Eq.[B1.5]

Hence for equal positive and negative forcing we equate Eq.[B1.4] and Eq.[B1.5] and it emerges 

that:

 ̂ = V p /V i  =  2 ...............................................................................................Eq.[B1.6]

If  ̂ is required less than 2 then the circuit of Fig.[5.10(a)] is adequate. Otherwise the equal 

positive and negative voltage forcing circuit of Fig.[5.10(b)] must be implemented (Hodkinson, 

1975). This circuit is more complex to drive however, requiring the use of an invertor amplifier to 

drive the topmost PNP transistor when an NPN type can not meet power requirements.

The required value of  ̂ is obtained by first defining the quantity dF /  dt. This represents the 

slewing rate of force generated by the magnet-amplifier combination and is related to the forced 

current variations in the magnet. To demonstrate the selection of a slewing rate of force, we refer 

to Fig.[5.7] and assume we are operating at the nominal airgap of 20mm and at a force of ION. A  

movement of 10mm, to 30mm, caused by the patient would make it necessary for the magnet to 

produce the equivalent of approximately 30N at 20mm. The period of growth for this force must 

be quicker than the time taken for an average isometric twitch response to rise and decay. Thus, 

taking 20ms as a reasonable response time for the build-up of magnetic force, we find that:

d F / d t  =  (200 /  20 x lO'^) = lO k N s '^ ........................................................ Eq.[B1.7]

By substituting the power dissipation value of 350W and nominal airgap of 20mm in Eq.[B1.3],  ̂is 

found to be approximately 1.5. Hence, it follows, that at the maximum specified force of 500N and 

nominal airgap of 20mm, a single-ended amplifier as in Fig.[5.10(a)] is sufficient for the current 

variations needed in this apphcation.

(B1.4)



The time constant of the magnet t  =  A w  /  Spl. From the reluctance S =  2r /  goa, the equation for 

the power dissipation P = (NI)2pl/Aw, and E q,[B l.l], it can be shown that there is a relationship 

P t  =  2Fx . A t a maximum force level of 500N, airgap of 20mm, and power dissipation of 350 W, 

this gives t  =  57,2 ms. The actual power disspation is an approximation so the time constant will 

be lower than the worst case of 57.2 ms.

Several iterations of the following calculation were necessary to arrive at a satisfactory choice for 

the power supply voltage and the coil wire gauge. Only the final iteration is given here:

If v/e start with 22 SWG (0.028 in /  0.07 cm diameter) enamelled wire then the cross-sectional area 

b will be 3.9 x 10'  ̂m .̂ Using the exact packing factor of 0.6, N  can be estimated from:

N = 0.6 X Aw /  b =  9846 turns in total

From NI =  14630, the steady state load current will be 1.5 A. Vi is therefore 235V, given a power 

dissipation of 350 W. This implies that the supply voltage of approximately 360V is needed tb 

provide a voltage forcing ratio  ̂o f 1.5.

Connecting the coils in parallel results in an adjustment o f 1 to 3A and V| to 120V for 

approximately the same power dissipation (i.e. related to ampere-turns). The power dissipation 

must be kept constant to maintain both the coil time constant and the designed force. After the 

coils were wound, it was found that the number of turns actually achieved was 3100 per coil. 

Therefore, there is a further reduction by a factor of 3100/4923 =  0.63 in the amount o f window 

area Aw used by the coils. To maintain the ampere-turns, I must be increased to 3/0.063 =  4.8A. 

The load voltage per coil Vi is thus 73V and the required supply voltage Vp is thus llOV. These 

voltage and current values are used to assist in the selection of a drive transistor.

The resistance Rc of the coil windings can be approximated from:

N p  (1x0.63) 3100 X 1.78 X10*® x (29.25x 10'2x 0.63)
------------ b  ------------------------------------------------------------

and because the coils are in parallel R =  Rc /  2 =  13 ft. 

The reluctance of the airgap S is:

(B13)



Therefore, at the nominal airgap, the inductance of the coils L =  /  S =  0.75H. The time

constant of the coil can be checked by using t =  L/R =  57.7 ms.

A s a way of checking the behaviour of the magnet against the design equations (i.e. to see if 

saturation and flux leakage is being avoided) several flux measurements were taken. The 

maximum force that will be produced at the design flux density of 0.65T is:

F =  0.65^x0052^ ^  909.1N
4tt X10

The flux density expected for 500N is {0.65 x \/(5 0 0  /  909.1)} =  0.48T. The expected 

ampere-turns is:

NI = ^  = 15279 =  3100 XI
)xo 4tt X 10

The load current I is therefore expected to be be measured at 4.93A. From the results given in 

Fig. [5.7], I is 5.3A. The error is about 4.3% which is acceptable, and we can assume that flux 

leakage is minimal and that saturation is being avoided. The use of the equation MI =  2Bx/p.o is 

therefore valid.

(B1.6)
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MAGLOAD: Tabulated Results



MAGSOLP.XLS

MAGLOAD: S t a t i c  Open Loop C h a r a c t e r i s t i c s  u s ing  C a n t i l e v e r  | |
and Weights Holder Arrangement. Mass of C a n t i l e v e r  and Weights Holder,  Me = 4 .3K gf.

1 "  1 1 1 1 " 1  ■ 1
Suspended Mass, Ms (5Kg to  50Kg). T h e re fo re ,  C o rrec te d  Magnet Coil C u rre n t ,  Im i s :

1 |lm=CMs/(Ms+Mc))**1/2 x I
Where I i s  t h e  measured Magnet Coil C u rre n t .

1 ■" 1 1 1 ■■■■ ■
The Following R e s u l t s  P rov ide  th e  Force Vs C urren t  a t  C onstan t AirGap C h a r a c t e r i s t i c .

Ai rGap
Ms/Kg x/mm I/A Im/A

50 5 1.4 1.34
10 2 .9 2 .78
20 5 .6 5 .37

25 5 1.2 1.11
10 2.1 1.94
15 2 .9 2.68
20 3 .8 3.51
25 4 .9 4 .53
30 6.1 5.63

15 5 0 .9 0 .79
10 1 .7 1.5
15 2 .4 2.12
20 3 .2 2.82
25 4 3 .53
30 5 4.41
35 5 .9 5 .2

10 5 0 .8 0 .67
10 1.5 1.25
15 2 1 .67
20 2 .7 2 .26
25 3 .4 2 .84
30 4.1 3.43
35 4 .9 4.1

5 5 0 .8 0 .59
10 1.3 0.95
15 1 .7 1.25
20 2 .2 1 .6
25 2 .6 1.91
30 3 .3 2.42
35 4 2.93

0 5 0 .6 0 .6
10 1 1
15 1 .2 1 .2
20 1.5 1.5
25 1 .8 1.8
30 2 .2 2 .2
35 2 .5 2 .5

Page 1



MAGSCLP.XLS

MAGLOAD: S t a t i c  Closed-Loop Force Vs A irga p D is ta n c e  C h a r a c t e r i s t i c .
1 .......  1 1 ■■

Load C e l l  C a l i b r a t i o n :  0.45mV/Kgf.
Measurements of Force tak en  w ith  P u l l  Rod a t  255mm above p iv o t  p o in t .  Values a r e  th e n
t r a n s l a t e d  to  400mm. (Note: R eac t ion  p l a t e  i s  200mm below p iv o t  p o i n t ) .

1 1 1 1
Load S e t t i n g  = IKgf a t  15mm Nominal A irgap .
* 1 1 2 3 4 5 6 7
A irgap  D i s t .  X/mm 5 10 15 20 25 30 35
Magnet C u rren t  I/A 0 .2 0 .4 0 .6 1 1 .3 1.35 1 .6
Load C e l l  Volts/mV 0 .42 0.45 0.45 0 .44 0.43 0 .42 0.33
Force a t  255mm/Kgf 1.5 1.57 1 .57 1.56 1.55 1.5 1.2
Force a t  400mm/Kgf 0 .9 7 1 1 1 0 .99 0 .9 7 0 .7 7

I
Load S e t t i n g  = 2Kgf a t  15mm Nominal A irgap .
#  1 1 2 3 4 5 6 7
A irgap  D i s t .  X/mm 5 10 15 20 25 30 35
Magnet C u rren t  I/A 0.2 0.5 0 .8 1.3 1 .6 1 .7 2.1
Load C e l l  Volts/mV 0.89 0 .96 1 0.95 0 .95 0 .9 0 .8
Force a t  255mm/Kgf 2 .8 3.1 3 .14 3.1 3.1 2 .8 2.5
Force a t  400mm/Kgf 1.79 1.98 2 1 .98 1.98 1 .79 1 .59

1
Load S e t t i n g  = 3Kgf a t  15mm Nominal A irgap .
# ■ 1 1 2 3 4 5 6 7
A irgap  D i s t .  X/mm 5 10 15 20 25 30 35
Magnet C u rren t  I/A 0 .3 0 .6 1 1 .7 2.1 2 .4 2 .6
Load C e ll  Volts/mV 1.41 1.5 1.55 1.5 1.48 1.35 1 .2
Force a t  255mm/Kgf 4 .3 4 .6 4.71 4 .6 4 .6 4 .1 3 .7
Force a t  400mm/Kgf 2.75 2 .93 3 2 .93 2 .93 2.61 2 .36

1
Load S e t t i n g  = 4Kgf a t  15mm Nominal A irgap .
# 1 1 2 3 4 5 6 7
A irgap  D i s t .  X/mm 5 10 15 20 25 30 35
Magnet C u rren t  I/A 0 .4 0 .7 1.2 1 .9 2 .4 2 .6 2 .9
Load C e ll  Volts/mV 1.95 2.05 2.1 2 2 1 .9 1.75
F orce a t  255mm/Kgf 5 .8 6.1 6 .27 6.1 6.1 5 . 7 5 .3
Force a t  400mm/Kgf 3 .7 3 .89 4 3 .8 9 3 .89 3 .6 3 3 .3 8. ....

Load S e t t i n g  = 5Kgf a t  15mm Nominal A irgap .
# 1 1 2 3 4 5 6 7
A irgap  D i s t .  X/mm 5 10 15 20 25 30 35
Magnet C u rren t  I/A 0 .6 1.1 1.6 2 .4 3 3 .2 3 .7
Load C e ll  Volts/mV 2 .6 2 .6 2 .65 2 .65 2 .6 2 .4 2.33
Force a t  255mm/Kgf 7 .7 7 .7 7.84 7 .84 7 .7 7.1 6 .9
Force a t  400mm/Kgf 4.91 4.91 5 5 4.91 4 .5 3 4 .4. 1
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MAGSCLP.XLS

Load S e t t i n g  = 6Kgf a t  15mm Nominal A irgap .
# 1 1 2 3 4 5 6 7
A irgap  D i s t .  X/mm 5 10 15 20 25 30 35
Magnet C u rren t  I /A 0 .7 1.1 1 .8 2 .7 3.1 3 .7 3 .8
Load C e ll  Volts/mV 2.95 3.1 3 .2 3 .15 3 .15 3.1 3
Force a t  255mm/Kgf 8 .8 9 .2 9.41 9 .3 9 .3 9 .2 8 .8
Force a t  400mm/Kgf 5.61 5 .8 7 6 5 .93 5 .93 5 .8 7 5.61

. . . .

Load S e t t i n g  = TiCgf a t  15mm Nominal A irgap .
# 1 1 2 3 4 5 6 7
A irgap  D i s t .  X/mm 5 10 15 20 25 30 35
Magnet C u rren t  I/A 0 .8 1 .2 1 .9 2 .8 3 .5 3 .9 4 .3
Load C e ll  Volts/mV 3 .6 3 .7 3 .75 3 .75 3 . 7 3 .6 3.1
Force a t  255mm/Kgf 10.6 10.9 10.98 10.98 10.9 10.6 9 .2
Force a t  400mm/Kgf 6 .7 7 6 .95 7 7 6 .95 6 .7 7 5 .87

1
Load S e t t i n g  = 8Kgf a t  15mm Nominal A irgap .
# 1 1 2 3 4 5 6 7
A irgap  D i s t .  X/mm 5 10 15 20 25 30 35
Magnet C u rren t  I/A 0 .9 1.4 2 3 3 .7 3 .9 4 .3
Load C e ll  Volts/mV 4 .2 4 .2 7 4 .3 4 .3 4 .3 4 .2 3 .6
Force a t  255mm/Kgf 12.3 12.55 12.55 12.55 12.55 12.3 10.6
Force a t  400mm/Kgf 7.84 8 8 8 8 7 .84 6 .7 8

...

Load S e t t i n g  = 9Kgf a t  15mm Nominal A irgap .
# 1 1 2 3 4 5 6 7
A irgap  D i s t .  X/mm 5 10 15 20 25 30 35
Magnet C u rren t  I/A 0.95 1.35 1 .7 2.95 3 .6 4 4 .4
Load C e ll  Volts/mV 4 .7 4.75 4.85 4 .83 4 .8 4 .75 4 .4
Force a t  255mm/Kgf 13.8 13.9 14.12 14.12 14 13.9 12.9
Force a t  400mm/Kgf 8 .8 8 .8 6 9 9 8 .93 8 .8 6 8 .22

1
Load S e t t i n g  = lOKgf a t  15mm Nominal Airgai3.
# 1 1 2 3 4 5 6 7
A irgap  D i s t .  X/mm 5 10 15 20 25 30 35
Magnet C u rren t  I/A 1 1 .6 2 3 .2 4 4.35 4 .6
Load C e ll  Volts/mV 5.35 5.35 5 .4 5.35 5 .3 5 4 .3
Force a t  255mm/Kgf 15.59 15.59 15.67 15.59 15.49 14.69 12.55
Force a t  400mm/Kgf 9 .88 9 .8 8 10 9 .8 8 9 .82 9.31 8

1
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ijP?IS P r e v i o u s  s t u d i e s  a r e  b r i e f l y  d e s c r i b e d  i n  w h i c h  t h e  d y n a m i c  r e l a t i o n s h i p  b e t w e e n  e mg  a n d  

île f o r c e  i s  e s t i m a t e d  f o r  i s o m e t r i c  c o n t r a c t i o n s .  T h e  n e e d  t o  d e s i g n  s u i t a b l e  e x p e r i m e n t a l  

iwcols a n d  a n a l y s i s  a l g o r i t h m s  i s  d i s c u s s e d  a n d  t h e  n e e d  f o r  c a r e f u l  c o n t r o l  o f  t h e  f o r c e  p a t t e r n  

i asi sed.  E x i s t i n g  m e t h o d s  a r e  c o n s i d e r e d  a n d  a  n e w  s o l u t i o n  p r o p o s e d .  T h e  n e w  m u s c l e  l o a d  

iforce t r a n s d u c e r  b a s e d  o n  a  c o n t r o l l e d  e l e c t r o m a g n e t  i s  d e s c r i b e d .  T h e  a d v a n t a g e s  a n d  d i s -  

-ffltages o f  t h e  u s e  o f  t h e s e  m a c h i n e s  i n  e r a g - f o r c e  e s t i m a t i o n  e x p e r i m e n t s  a r e  d i s c u s s e d .

'a EMG-force measuring system for assessing 
Mscle condition

PRODUCTION

a ss e ss men t  o f  n e u r o  m u s c u l a r  c o n d i t i o n s  i n  

;tsraen b y  s t a t i c  t e s t i n g  i s  o f  l i m i t e d  v a l u e  

;e nos t  a t h l e t i c  e v e n t s  i n v o l v e  d y n a m i c  c o n ­

f i ons .  F a t i g u e  t e s t i n g  i s  i m p o r t a n t  b u t  

; not m o n i t o r  d y n a m i c  p e r f o r m a n c e  e i t h e r ,  

inpis t o  c h a r a c t e r i s e  t h e  d y n a m i c s  o f  m u s c l e  

Fiampered b y  t h e  d i f f i c u l t i e s  o f  d e f i n i n g  a  

lie e n o u g h  m o d e l  o f  s u f f i c i e n t  g e n e r a l i t y  a n d  

i n t e r p r e t i n g  t h e  r e s u l t s .

only a r e a  w h e r e  s i g n i f i c a n t  p r o g r e s s  h a s  b e e n  
f i n  t h i s  d i r e c t i o n  i s  f o r  i s o m e t r i c  c o n t r a c ­
ts as t h e r e  n o w  s e e m s  t o  b e  s o m e  t h e o r e t i c a l  

IS f o r  t h e  e x p e r i m e n t a l  m e t h o d s  u s e d  t h u s  

Mng s ome  i n s i g h t  i n t o  t h e  r e l i a b i l i t y  o f  t h e  

!el and t h e  i n t e r p r e t a t i o n  o f  i t s  p a r a m e t e r s .

two m a j o r  e f f e c t s  w h i c h  c a n  b e  o b s e r v e d  

ling t h e  v o l u n t a r y  d y n a m i c  c o n t r a c t i o n  o f  

i a t e d  m u s c l e  a r e  t h e  b u i l d  u p  o f  t h e  f o r c e  a n d  

the a s s o c i a t e d  e mg  s i g n a l .  B o t h  o f  t h e s e  
K t s  d e r i v e  f r o m  t h e  s a m e  c a u s e ,  t h e  

teasing r a o t o n e u r o n e  b o m b a r d m e n t .

is known t h a t  t h e  s t a t i c  r e l a t i o n s h i p  b e t w e e n  

tand f o r c e  i s  l i n e a r  f o r  m a n y ,  b u t  n o t  a l l ,  

i des  whe n  t h e  c o n t r a c t i o n  i s  i s o m e t r i c  a n d  

dace e l e c t r o d e s  a r e  u s e d  ( 1 )  ( 2 )  a n d  i t  h a s  

a p r o p o s e d  t h a t  a  l i n e a r  m o d e l  c a n  b e  u s e f u l l y  

sned a s  a  m e a n s  o f  c h a r a c t e r i s i n g  t h e  d y n a m i c  

a t i ons h i p  b e t w e e n  e mg  a n d  f o r c e .

[ e l e me n t a r y  f o r c e  w a v e  ( f o r c e  t w i t c h )  

aerated a s  t h e  r e s u l t  o f  a  s i n g l e  m o t o n e u r o n e  

lise l a s t s  s e v e r a l  h u n d r e d  m i l l i s e c o n d s  w h i l e  
c o r r e s p o n d i n g  c o m p o n e n t  o f  t h e  e m g  ( t h e  

!ior u n i t  a c t i o n  p o t e n t i a l )  i s  o v e r  i n  m u c h  

$5 than t e n  m i l l i s e c o n d s .  H e n c e ,  i f  a  l i n e a r  

ÈI can b e  a s s u m e d  t h e n  i t s  i m p u l s e  r e s p o n s e  

ill have t h e  c h a r a c t e r i s t i c s  o f  s o m e  " a v e r a g e "  

[ " r e p r e s e n t a t i v e "  f o r c e  t w i t c h .

is a l s o  k n o w n  t h a t  i f  t h e  m u s c l e  c h a n g e s  

ifth, p a r t i c u l a r l y  a t  v a r i a b l e  s p e e d  t h e n  

;ere n o n - l i n e a r i t i e s  a r e  e n c o u n t e r e d  ( 3 )  a n d  

IS s i m i l a r  l i n e a r  m o d e l s  c a n n o t  b e  p o s t u l a t e d  

describe c o n t r a c t i o n s  i n  n o n - i s o m e t r i c  

dicions .

T h e  u s e f u l n e s s  o f  a  l i n e a r  d y n a m i c a l  m o d e l  i n  

r e s e a r c h  i n t o  t h e  b i o m e c h a n i c s  o f  s p o r t  c a n  

t h e r e f o r e  b e  s a i d  t o  b e  s o m e w h a t  l i m i t e d .

H o w e v e r ,  t h e  p o t e n t i a l  v a l u e  o f  k n o w i n g  t h e  

d y n a m i c s  o f  f o r c e  b u i l d  u p  a n d  d e c a y  i n  a t h l e t e s  
i s  s u c h  t h a t  a  t h e o r e t i c a l l y  s o u n d  m e a n s  o f  
m o n i t o r i n g  c h a n g e s  i n  m u s c l e  c h a r a c t e r i s t i c s  

d u r i n g  t r a i n i n g  a n d  r e c o v e r y  f r o m  i n j u r y  i s  o f  

v a l u e  e v e n  i f  i t  i s  r e s t r i c t e d  t o  i s o m e t r i c  c o n ­

d i t i o n s .  T h i s  l i n e  o f  w o r k  i s  t h e r e f o r e  w o r t h  
p u r s u i n g .

T h i s  p a p e r  d e s c r i b e s  s o m e  e x p e r i m e n t s  w h i c h  h a v e  
b e e n  t r i e d  t o  a s s e s s  t h e  p r o b l e m s  o f  e s t i m a t i n g  

t h e  p a r a m e t e r s  o f  a p p r o p r i a t e  m o d e l s  r e l a t i n g  

f o r c e  t o  e mg  a n d  p r e s e n t s  a  n e w  m a c h i n e  o f  c o n ­

s i d e r a b l e  f l e x i b i l i t y  w h i c h  m a y  p r o v e  u s e f u l  f o r  

t h i s  a n d  f o r  o t h e r  r e l a t e d  i n v e s t i g a t i o n s .

2 PR E VI OUS  S T UDI E S

E x p e r i m e n t a l  s t u d i e s  i n  t h i s  a r e a  d a t e  b a c k  t o  

t h e  l a t e  1 9 6 0 ' s  w h e n  p a r a m e t e r  t r a c k i n g  o n  a n  

a n a l o g u e  c o m p u t e r  w a s  u s e d  t o  p r o d u c e  a  s e c o n d  

o r d e r  m o d e l  r e l a t i n g  t h e  r e c t i f i e d  e mg  t o  f o r c e  

f o r  t h e  h u m a n  t r i c e p s  ( 4 ) .  No  a c c o u n t  w a s  t a k e n  

o f  n o i s e ,  n o r  o f  t h e  c h o i c e  o f  m o d e l l i n g  

a l g o r i t h m .  I t  w a s  s h o w n  i n  1 9 7 1  t h a t  a  s e c o n d  

o r d e r  m o d e l  o f  t h e  s o l e u s  m u s c l e  g a v e  g o o d  

r e s u l t s ,  b u t  a g a i n  t h e  m o d e l  w a s  a s s u m e d  t o  b e  

o v e r d a m p e d  a  p r i o r i  a n d  t h e  e f f e c t  o f  t h e  n o i s e  

a n d  m o d e l l i n g  a l g o r i t h m  i g n o r e d  ( 5 ) .  I n  1 9 7 6  

a n d  1 9 7 8  t w o  a t t e m p t s  a t  u s i n g  t h e  r e c t i f i e d  e mg  

a s  a  f o r c e  p r e d i c t o r  w e r e  r e p o r t e d  ( 6 , 7 ) .  T h e  

f i r s t  i n c l u d e d  s o m e  d e g r e e  o f  n o n - l i n e a r i t y .

T h e  s e c o n d  u s e d  a  l i n e a r  s e c o n d  o r d e r  o v e r d a m p e d  

m o d e l  a g a i n ,  b u t  i n  t h i s  c a s e  t h e  r e s u l t s  

d i f f e r e d  s i g n i f i c a n t l y  f r o m  p r e v i o u s  w o r k  o n  t h e  

s a m e  m u s c l e  u s i n g  a  d i f f e r e n t  f o r c e  p a t t e r n .

E x p e r i m e n t s  b y  t h e  a u t h o r s  o n  t h e  h u m a n  d e l t o i d  
m u s c l e  t o  h e l p  c l a r i f y  t h e  d i f f i c u l t i e s  h a v e  

s h o w n  t h a t  i f  a n  o v e r d a m p e d  s e c o n d  o r d e r  m o d e l  i s  

a s s u m e d  t h e n  t h e  m o d e l  p a r a m e t e r s  a r e  v e r y  

d e p e n d e n t  o n  t h e  f o r c e  p a t t e r n  i f  a n  r m s  

m o d e l l i n g  t e c h n i q u e  i s  u s e d .

F u r t h e r  p i l o t  s t u d i e s  h a v e  d e m o n s t r a t e d  t h a t  t h e  

d e s i g n  o f  e x p e r i m e n t s ,  t h e  m o d e l l i n g  a l g o r i t h m s  

a n d  t h e  a s s u m p t i o n s  r e g a r d i n g  t h e  n a t u r e  o f  t h e  

n o i s e  a r e  c r u c i a l  f a c t o r s  i n  d e f i n i n g  t h e  p o l e s



t h e  m o d e l  ( 8 )  ( 9 ) .  A n  a l g o r i t h m  i n c o r p o r -  
Lng a  m o d u l a t i o n  i n s t e a d  o f  a n  a d d i t i v e  n o i s e  
l e i  h a s  b e e n  s h o w n  t o  g i v e  a n  o v e r d a m p e d  s y s t e m  
e x p e c t e d  e v e n  w h e n  t h e  p o l e s  a r e  u n c o n s t r a i n e d

P).

1985 o t h e r  w o r k e r s  r e p o r t e d  s t u d i e s  o n  h u m a n  
b i a l i s  a n t e r i o r  u s i n g  a u t o - r e g r e s s i v e  m o v i n g  
e r a g e  m o d e l s  ( I I ) .  A n  a t t e m p t  t o  h a v e  t h e  
t i e n t  f o l l o w  a  p s e u d o - r a n d o m  b i n a r y  f o r c e  
t t e r n  w a s  m a d e  b u t  a b a n d o n e d  b e c a u s e  o f  d i f f i -  
I t y  i n  f o l l o w i n g  t h e  r e q u i r e d  p a t t e r n .  A n  
p u l s e  f o l l o w e d  b y  a  s i n e  w a v e  w a s  t h e n  u s e d .
0  r e s u l t s  o b t a i n e d  w e r e  o f t e n  u n r e a l i s t i c  
o m p l e x  p o l e s )  a n d  c o n t a i n e d  a  p u r e  t i m e  d e l a y  
i c h  w a s  a t  v a r i a n c e  w i t h  m u c h  o f  t h e  p r e v i o u s  
r k .

s e a r c h  t o  d a t e  i n d i c a t e s  t h a t  i f  a n  a p p r o p r i a t e  
i s e  m o d e l  i s  a s s u m e d  a n d  t h e  i d e n t i f i c a t i o n  
g o r i t h m  d e s i g n e d  t o  a c c o u n t  f o r  i t  c o r r e c t l y  
en i t  i s  p o s s i b l e  t o  g r e a t l y  r e d u c e  t h e  d é p e n d ­
r e  o f  t h e  m o d e l  o n  t h e  f o r c e  p a t t e r n .  M o s t  
r k e r s  a g r e e  t h a t  a  s e c o n d  o r d e r  m o d e l  i s  
p r o p r i a t e  a n d  t h a t  i t s  i m p u l s e  r e s p o n s e  i s  

e l a t e d  t o  t h e  m u s c l e  t w i t c h  r e s p o n s e .  No  
t u d i e s  s o  f a r  r e p o r t e d  h a v e  h o w e v e r  d e m o n s t r a t e d  
hat  a  l i n e a r  e m g - f o r c e  m o d e l  c a n  b e  m a d e  t o t a l l y  
n d e p e n d e n t  o f  t h e  f o r c e  p a t t e r n .

he r e a s o n s  f o r  t h e  r e s i d u a l  d e p e n d e n c e  o f  t h e  
o d e l  o n  t h e  f o r c e  p a t t e r n  d e m a n d e d  a r e  s t i l l  
o n j e c t u r a l .  H o w e v e r ,  t h e  p r o b l e m s  o f  e m g - f o r c e  

l o n - l i n e a r i t y , w h i c h  c a n  b e  m a n i f e s t e d  a s  c o m -  
j l i c a t e d  n o i s e  m o d e l s ,  i s  a  l i k e l y  c a u s e .  A n  
pxample  i s  s h o w n  i n  f i g .  1 w h e r e  b u r s t s  o f  e m g  
tan b e  s e e n  w h e n  t h e  f o r c e  h a s  d r o p p e d  t o  a l m o s t  
k e r o .  ( T h e  d e t a i l s  o f  t h e  e m g  a r e  i n t e r p r e t e d  
|as n o i s e  a s  f a r  a s  t h e  i d e n t i f i c a t i o n  a l g o r i t h m  
i s  c o n c e r n e d ) .

A l l  t h e s e  t e c h n i q u e s  o f  m u s c l e  l o a d i n g  s u f f e r  
f r o m  t h r e e  m a j o r  d r a w b a c k s .  F i r s t l y ,  a n d  m o s t  
i m p o r t a n t l y ,  i s  t h a t  t h e  l o a d i n g  l e v e l  r e m a i n s  
w i t h i n  t h e  s u b j e c t ' s  c o n t r o l .  T h e  s u c c e s s  o f  
t h e  p r o c e d u r e  d e p e n d s  o n  t h e  a b i l i t y  o f  t h e  
s u b j e c t  t o  c o n c e n t r a t e  a n d  t o  c o n t r a c t  a n d  r e l a x  
h i s  m u s c l e s  i n  a  c o n t r o l l e d  m a n n e r  a t  t h e  r e q u e s t  
o f  t h e  e x a m i n e r  w h i l e  m a i n t a i n i n g  a n  i s o m e t r i c  
s i t u a t i o n .  T o  s o m e  e x t e n t  t h i s  i s  n o n  o b j e c t i v e .

S e c o n d l y ,  b e c a u s e  t e s t s  n e e d  t o  b e  c a r r i e d  o u t  
u n d e r  c o n d i t i o n s  o f  h i g h  f o r c e  l e v e l s ,  t h e  
s u b j e c t  o f t e n  c a n n o t  m a i n t a i n  a  s p r i n g  o r  l o a d  
c e l l  a t  a  c o n s t a n t  c o m p r e s s e d  l e n g t h .  A t  l a r g e  
s t a t i c  l o a d i n g  l e v e l s  m a i n t a i n i n g  a  s t a n d a r d  
w e i g h t  m o t i o n l e s s  t o  m i n i m i s e  i n e r t i a l  f o r c e s  
a l s o  b e c o m e s  d i f f i c u l t . F o r  d y n a m i c  m e a s u r e m e n t  
o n  m u s c l e s ,  s p r i n g s  a n d  w e i g h t s  a r e  e v e n  m o r e  
d i f f i c u l t  t o  c o n t r o l .

F i n a l l y ,  w h e n  d y n a m i c  v a r i a t i o n s  i n  t h e  l o a d  a r e  
r e q u i r e d ,  t h e y . m u s t  b e  r e p e a t a b l e  d u r i n g  a n d  
b e t w e e n  I n d i v i d u a l  t e s t s .  T h i s  c a n n o t  b e  
a c h i e v e d  w i t h  c o n f i d e n c e  u s i n g  a n y  o f  t h e  c u r r e n t  
m e t h o d s .  T h e  l i m i t a t i o n s  c a n  c a u s e  d i s c r e p a n c i e s  
w h e n  a t t e m p t i n g  t o  c o m p a r e  i n d i v i d u a l  s u b j e c t  d a t a  
f r o m  s e p a r a t e  t r i a l s  a n d  m u s c l e  t e s t i n g  p r o ­
c e d u r e s  d u e  t o  t h e  n o n - s t a n d a r d i s a t i o n  o f  i n v e s t i ­
g a t i v e  p r o t o c o l .

I t  i s  t h e r e f o r e  n e c e s s a r y  t o  h a v e  a  s y s t e m  w h e r e :

i  s t a t i c  l e v e l s  a n d  d y n a m i c  c h a n g e s  i n  m u s c l e  
l o a d i n g  a r e  u n d e r  t h e  c o n t r o l  o f  t h e  e x a m i n e r ,

i i  t h e  l o a d  r e m a i n s  c o n s t a n t ,  i f  r e q u i r e d ,  i r r e s ­
p e c t i v e  o f  s m a l l  p a t i e n t  m o v e m e n t s ,

i i i  s t a t i c  a n d  d y n a m i c  i n  l o a d i n g s  a r e  r e p e a t a b l e ,  
a n d

F u r t h e r  d e v e l o p m e n t  o f  t h i s  t e c h n i q u e  t o w a r d s  
a p p l i c a t i o n  i n  s p o r t s  m e d i c i n e  a s  a  m e a n s  o f  
m e a s u r i n g  t h e  d y n a m i c  p e r f o r m a n c e  o f  m u s c l e  t h u s  
s t i l l  r e q u i r e s  t h e  a c c u r a t e  c o n t r o l  a n d  
m o n i t o r i n g  o f  t h e  m u s c l e  l o a d  a n d  h e n c e ,  i n  
i s o m e t r i c  c o n d i t i o n s ,  t h e  m u s c l e  f o r c e .

3 METHODS OF MUSCLE LOADI NG AND FORCE 
MEASUREMENT

Host a s s e s s m e n t  o f  m u s c l e s  c u r r e n t l y  u s e d  i n v o l v e  
s t a t i c  i s o t o n i c  a n d  i s o m e t r i c  t e s t s  t o  m e a s u r e  
b a s i c  s t r e n g t h .  T h e  d y n a m i c  t e s t s  a l r e a d y  
r e f e r r e d  t o  a r e  s t i l l  a t  t h e  e x p e r i m e n t a l  s t a g e .  
L o a d i n g  m e t h o d s  s h o u l d  t h e r e f o r e  t a k e  a c c o u n t  o f  
the r e q u i r e m e n t  f o r  s t a t i c  t e s t i n g  a s  w e l l  a s  
a l l o w  f o r  d y n a m i c  m e a s u r e m e n t s .

Common m e t h o d s  p r e s e n t l y  u s e d  t o  a c h i e v e  s t a t i c  
l o a d i n g  i n c l u d e  a  s e t  o f  s t a n d a r d  w e i g h t s ,  c o m ­
p r e s s i b l e  l o a d  c e l l s ,  a n d  s p r i n g s .  I n  t h e  c a s e  
of l o a d  c e l l s  a n d  s p r i n g s  t h e  p a t i e n t  u n d e r  t e s t  
has t o  p r o d u c e  t h e  c o r r e c t  a m o u n t  o f  s t a t i c  o r  
d y n a mi c  f o r c i n g  b y  c o m p r e s s i n g  t h e  l o a d  c e l l  o r  
p u l l i n g  t h e  s p r i n g .  T h e  a m o u n t  o f  f o r c e  
p r o d u c e d  i s  m o n i t o r e d  u s i n g  s t r a i n  g a u g e  t r a n s ­
d u c e r s  a n d / o r  c a l i b r a t e d  m e t e r s .  S e v e r a l  
w o r k e r s  h a v e  u s e d  e l a b o r a t e  t e c h n i q u e s  w h e r e  c o n ­
t r a c t i o n s  a r e  p e r f o r m e d  i s o m e t r i c a l l y  a g a i n s t  a  
load  c e l l  a n d  t h e  s u b j e c t  i s  a s k e d  t o  d y n a m i c a l l y  
ma t ch  a  f o r c e  p a t t e r n  w h i c h  i s  v i s u a l l y  p r e s e n t e d  
(1 1 ) ( 1 2  ) A p p r o p r i a t e  a p p a r a t u s  i s
used  t o  s t a b i l i s e  a n d  s u p p o r t  t h e  j o i n t s .

i v  a  v i r t u a l l y  c o n s t a n t  m u s c l e  l e n g t h  c a n  b e
m a i n t a i n e d  d u r i n g  d y n a m i c  l o a d i n g  u s i n g  s o m e  
f o r m  o f  f e e d b a c k ,  u s u a l l y  v i s u a l ,  v i a  t h e  
s u b j e c t ,  b a s e d  o n  t h e s e  c o n s t a n t  l e n g t h  
r e q u i r e m e n t s  o n l y .  T h a t  i s ,  t h e  s u b j e c t  i s  
n o t  a s k e d  t o  f o l l o w  a  m o v i n g  f o r c e  t a r g e t  b u t  
t o  m a i n t a i n  a  c o n s t a n t  p o s i t i o n  t a r g e t .

4  THE MAGNETIC S U S P E N S I O N  BASED CONTROLLABLE 
MUSCLE LOAD

A u s e f u l  l o a d i n g  d e v i c e  w i l l  p r o d u c e  a  r e l a t i o n ­
s h i p  b e t w e e n  f o r c e  a n d  m u s c l e  l e n g t h  t h a t  i s  
c o n s t a n t  o v e r  a  r a n g e  o f  m u s c l e  l e n g t h  v a r i a t i o n .  
T o  p r o v i d e  t h i s  c h a r a c t e r i s t i c  a n d  i n  a d d i t i o n  
p r o v i d e  d y n a m i c  l o a d i n g ,  t h e  c o n t r o l  o f  a  d . c .  
e l e c t r o m a g n e t  i s  p r o p o s e d .  T h e  f a m i l i a r  o p e n -  
l o o p  i n v e r s e  s q u a r e  l a w  c h a r a c t e r i s t i c  o f  t h e  
s o l e n o i d  ( e l e c t r o m a g n e t )  i s  r e s h a p e d  o v e r  a  
l i m i t e d  a i r g a p  d i s t a n c e  u s i n g  c l o s e d - l o o p  f o r c e  
f e e d b a c k .  T h e  f l u c t u a t i o n s  i n  t h e  a i r g a p  l e n g t h  
a b o u t  i t s  n o m i n a l  v a l u e  a r e  r e l a t e d  t o  t h e  
v a r i a t i o n s  i n  c o n t r a c t i n g  m u s c l e  l e n g t h .  T h e s e  
a i r g a p  f l u c t u a t i o n s  a r e  m a d e  a v a i l a b l e  v i s u a l l y  
t o  t h e  s u b j e c t  w h o  w i l l  b e  r e q u i r e d  t o  m a i n t a i n  
t h e m  a t  a  m i n i m u m .  T h e r e f o r e ,  t h e  m u s c l e  l e n g t h  
i s  h e l d  a p p r o x i m a t e l y  c o n s t a n t .  I f  t h e  m u s c l e  
l e n g t h  c h a n g e s ,  a n d  i n  t u r n  a l t e r s  t h e  a i r g a p  
d i s t a n c e ,  t h e  e l e c t r o m a g n e t  c o n t r o l  s y s t e m  
a d j u s t s  t o  k e e p  t h e  f o r c e  c o n s t a n t  t h r o u g h o u t  t h e  
a v a i l a b l e  a i r g a p .

T h e  e l e c t r o m a g n e t  i n  t h e  p r o t o t y p e  i s  c a p a b l e  o f  
p r o v i d i n g  2 5 0 N  f o r c e  a t  a  n o m i n a l  a i r g a p  o f  2 0 m m .



I  provide t h i s  c o m f o r t a b l y  a n d  w i t h i n  a c c e p t a b l e  
wr d i s s i p a t i o n  l e v e l s ,  a  U - s h a p e d  m a g n e t  

e o f  p r o v i d i n g  u p  t o  5 0 0 N  a t  t h i s  a i r g a p  
s d e s i g n e d .  An  i m p o r t a n t  f a c t o r  c o n t r i b u t i n g  
the e f f i c i e n c y  o f  t h e  s y s t e m  i s  t h e  p o w e r  

ip l if ie r  d e s i g n .  H e r e ,  c o n s i d e r a t i o n s  o f  
ircing v o l t a g e  c a p a b i l i t y  i n  r e l a t i o n  t o  t h e  

t i n d u c t a n c e  a n d  i n  t u r n  i t s  t i m e  c o n s t a n t  
itoiie i m p o r t a n t  i n  o r d e r  t o  m a i n t a i n  a n  
[equate b a n d w i d t h  o f  t h e  c o n t r o l  s y s t e m .

St e l e c t r o n i c s  t o  d r i v e  t h e  m a g n e t  u s e  t h e  
linciple o f  P u l s e  W i d t h  M o d u l a t i o n .  B y  v a r y i n g  
ie r a t i o  o f  t h e  O N- OF F  t i m e  o f  t h e  d r i v e  t r a n -  
stor a m p l i f i e r  a  d e s i r e d  a v e r a g e  c u r r e n t  i n  t h e  
p e t  c a n  b e  m a i n t a i n e d .  A s  a  r e s u l t ,  a  
sired a v e r a g e  f o r c e  i s  p r o d u c e d  b y  t h e  m a g n e t ,  
ie f o r c e  n e e d e d  a t  t h e  n o m i n a l  a i r g a p  c a n  b e  s e t  
a d j u s t i n g  t h i s  O N / O F F  r a t i o .  I n s t a n t a n e o u s  

inges i n  a i r g a p ,  a n d  h e n c e  i n s t a n t a n e o u s  f o r c e ,  
isult i n  t h i s  O N- OF F  r a t i o  b e i n g  a l t e r e d  v i a  a  
fedback l o o p  t o  k e e p  t h e  f o r c e  c o n s t a n t  a n d  
îiial t o  t h e  d e m a n d e d  l e v e l .  T h e  c o n t r o l l i n g  
itedback s i g n a l  c a n  b e  d e r i v e d  f r o m  a n y  t r a n s -  
jcable p a r a m e t e r  p r o p o r t i o n a l  t o  f o r c e .  I n  
:is d e s i g n  a  m e a s u r e  o f  f l u x  d e n s i t y  i n  t h e  
irgap o f  t h e  e l e c t r o m a g n e t  w a s  u s e d .  T h i s  w a s  
acted  u s i n g  a  H a l l  e f f e c t  t r a n s d u c e r  m o u n t e d  

;;a p o l e  f a c e  o f  t h e  e l e c t r o m a g n e t .  F i g .  2 
sows a s c h e m a t i c  d i a g r a m  o f  t h e  c o n t r o l  s c h e m e  
sployed.

le m a g ne t  o p e r a t e s  a t  0 . 6 5  w b / m  p r o d u c i n g  t h e  
signed m a x i m u m  f o r c i n g  l e v e l  o f  2 5 0 N  w i t h  a  
rrent o f  a p p r o x i m a t e l y  4 . 5 A  a t  t h e  n o m i n a l  a i r -  
p d i s t a n c e  o f  2 0 m m . T h e  c h o i c e  o f  0 . 6 5  w b / m  

ssures t h a t  t h e  m i l d  s t e e l  m a g n e t i c  c i r c u i t  
îiiains i n  t h e  l i n e a r  r e g i o n  o f  t h e  m a g n e t i s a t i o n  
mvG f o r  a n y  t r a n s i e n t  c h a n g e s  i n  c o i l  c u r r e n t  

h en c e  f l u x  d e n s i t y .  P o w e r  d i s s i p a t i o n  i n  
k  m a g n e t  i s  a l s o  r e d u c e d  a t  a  l o w e r  f l u x  
ensity. T h i s  i s  a t  t h e  e x p e n s e  o f  i n c r e a s e d  
î j n e t i c  c i r c u i t  d i m e n s i o n s  a n d  a  c o m p r o m i s e  h a d  

be r e a c h e d .  F i g . 3 s h o w s  t h e  r e s u l t s  o b t a i n e d  
l oad i ng  f o r c e  a g a i n s t  a i r g a p  d i s t a n c e  a t  t e n  

‘tree l e v e l s  i n  t h e  c l o s e d - l o o p  c o n f i g u r a t i o n .
|ili8 n o n - l i n e a r i t y  a t  l a r g e  a i r g a p s  i s  m a i n l y  d u e  

l eakage  f l u x  a n d  g e o m e t r i c  m i s a l i g n m e n t  o f  
pole f a c e s  a n d  r e a c t i o n  p l a t e  t h r o u g h  t h e  

nai lable a i r g a p .  M i n o r  p o s i t i v e  p o s i t i o n  a n d  
mrent f e e d b a c k  l o o p s  o f  l o w  g a i n  c a n  b e  a d d e d  
;oboost t h e  r e s p o n s e  i n  t h i s  r e g i o n .  T h i s  
(suit c o n s t i t u t e s  t h e  s t a t i c  p e r f o r m a n c e  o f  t h e  
a g n e t - a m p l i f i e r  c o n f i g u r a t i o n .  T h e  h i g h
agree o f  l i n e a r i t y  h a s  b e e n  a c h i e v e d  b y  p a y i n g  
lose a t t e n t i o n  t o  t h e  d y n a m i c  d e s i g n  
m s i d e r a t i o n s .

e e l e c t r o m a g n e t  i s  p a r t  o f  a  c l o s e d - l o o p  
ntrol s y s t e m  w h i c h  i s  r e q u i r e d  t o  a d j u s t  i t s  
r rent s o  a s  t o  m a i n t a i n  t h e  f l u x  d e n s i t y  a t  t h e  
signed o p e r a t i n g  p o i n t . T o  o b t a i n  b a n d w i d t h s  
o p e r a t i o n  l a r g e r  t h a n  t h a t  d i c t a t e d  b y  t h e  

gnet ic  c i r c u i t  t i m e  c o n s t a n t ,  t h e  a m p l i f i e r  
sign b e c o m e s  i m p o r t a n t .  L a r g e r  b a n d w i d t h s  a r e  
[y p o s s i b l e  b e c a u s e  o f  t h e  c a p a b i l i t y  o f  
cing c u r r e n t  v a r i a t i o n s  t h r o u g h  t h e  c o i l s  o f  
e l e c t r o m a g n e t .  A r a t e  o f  c h a n g e  o f  f o r c e  o f  

3,'sec  h a s  b e e n  a c h i e v e d .  T h e  f o r m e r  f i g u r e  
c a l c u l a t e d  f r o m  t h e  e l e c t r o m a g n e t  s t a t i c  l o a d  

r a c t e r i s t i c s  a s s u m i n g  t h a t  a  c h a n g e  i n  a i r g a p  
20mm i s  m a c h e d  b y  a  c h a n g e  i n  f o r c e  b y  t h e  
c t r o m a g n e t  o f  2 0 0 N  i n  2 0 m s .  T h e  c h o i c e  o f  
s i s  t o  e n s u r e  t h a t  t h e  b u i l d - u p  o f  f o r c e  i s  
cker t h a n  t h e  f a s t e s t  a v e r a g e  i s o m e t r i c  t w i t c h

r e s p o n s e  i n  h u m a n  m u s c l e .  T h i s  i s  t h e  r e g i o n  o f  
2 5 m s  f o r  a  g r o u p  o f  v e r y  f a s t  m o t o r  u n i t s  i n  t h e  
m u s c l e  a n d  i t  c a n  r i s e  t o  a s  m u c h  a s  1 0 0 m s  w i t h  
s l o w e r  m o t o r  u n i t s .

F i g .  4 s h o w s  t h e  f r e q u e n c y  r e s p o n s e  o f  t h e  s y s t e m  
a n d  t h e  c o h e r e n c e  f u n c t i o n  r e l a t i n g  t h e  t e s t  s i g ­
n a l  t o  t h e  o u t p u t .  T h e  i n p u t  i s  a  v o l t a g e  
c o m p r i s i n g  a  d . c  r e f e r e n c e  c o r r e s p o n d i n g  t o  a  
d e m a n d e d  f o r c e  o f  SON m o d u l a t e d  b y  b a n d l i m i t e d  
w h i t e  n o i s e .  T h e  o u t p u t  i s  t h e  f e e d b a c k  s i g n a l  
t a k e n  f r o m  t h e  f l u x  t r a n s d u c e r  m o u n t e d  i n  a  p o l e  
f a c e  o f  t h e  e l e c t r o m a g n e t .  T h e  r e l a t i o n s h i p  i s  
t h e r e f o r e  b e t w e e n  t h e  d e m a n d e d  a n d  d e l i v e r e d  
f o r c e s  i n  t h e  s y s t e m .  T h e  p h a s e  p l o t  i s  s e e n  t o  
b e  a l m o s t  l i n e a r  a n d  r o l l s - o f f  a t  - 2 . 2 5 ° / H z  
t o  - 4 5 ®  a t  2 0 H z .  T h e  m a g n i t u d e  p l o t  e x h i b i t s  
s o m e  m i n o r  r e s o n a n c e s  o f  u n k n o w n  o r i g i n .  T h e  
c o h e r e n c e  r a m a i n s  v e r y  h i g h  t h r o u g h o u t  t h e  
f r e q u e n c y  r a n g e  b u t  g o e s  t o  z e r o  a t  5 0 H z  ( n o t  
s h o w n )  b e f o r e  r e t u r n i n g  t o  a  h i g h  v a l u e  a n d  
r e m a i n i n g  a b o v e  0 . 7 5  u p  t o  l O O H z .

T h e  s y s t e m  d e s c r i b e d  h a s  b e e n  d e s i g n e d  f o r  
t e s t i n g  l a r g e  m u s c l e s  s u c h  a s  t h e  b i c e p s  a n d  t h e  
q u a d r i c e p s  a n d  h a s  b e e n  m a d e  g e o m e t r i c a l l y  
a d j u s t a b l e  t o  a c c o m m o d a t e  n o t  o n l y  d i f f e r e n t  
m u s c l e s  b u t  d i f f e r e n t  s u b j e c t s  a s  w e l l .  Two 
v i e w s  o f  t h e  d e v i c e  a r e  s h o w n  i n  f i g . 5 .

A s m a l l e r  d e v i c e  i n v o l v i n g  s i m i l a r  p r i n c i p l e s  h a s  
b e e n  d e s i g n e d  f o r  t e s t i n g  m u s c l e s  o f  t h e  h a n d  a n d  
o t h e r  s m a l l  m u s c l e s .

I t  i s  t h o u g h t  t h a t  t h i s  t y p e  o f  t e s t i n g  m a c h i n e  
u s e d  e i t h e r  i n  i t s  s t a t i c  o r  d y n a m i c  m o d e s  w o u l d  
a l s o  h a v e  m e d i c a l  a n d  p h y s i o l o g i c a l  a p p l i c a t i o n s .

T h e  i m p o r t a n t  a d v a n t a g e  o f  t h e  s y s t e m  i n  t h e  
p r e s e n t  c o n t e x t  i s  t h a t  t h e  s u b j e c t  o n l y  n e e d s  t o  
m a i n t a i n  a  c r u d e  a p p r o x i m a t i o n  t o  c o n s t a n t  l e n g t h  
u s i n g  v i s u a l  f e e d b a c k .  T h e  f o r c e  f l u c t u a t i o n s  
a r e  i n  t h e  c o n t r o l  o f  t h e  o p e r a t o r  o r  o f  a  
c o m p u t e r .  F u r t h e r m o r e ,  t h e  d e v i c e  a l s o  a c t s  a s  
a  f o r c e  t r a n s d u c e r e  a s  t h e  f l u x  d e n s i t y  i n  t h e  
a i r g a p  i s  m e a s u r e d  f o r  t h e  p u r p o s e s  o f  c o n t r o l  
a n d  t h i s  s i g n a l  i s  a n  o b j e c t i v e  m e a s u r e  o f  f o r c e  
a n d  i t s  r e l a t i o n s h i p  t o  t h e  d e m a n d e d  f o r c e  i s  
k n o w n  v i a  t h e  t r a n s f e r  J u n c t i o n  o f  t h e  s y s t e m .  
T h i s  t r a n s f e r  f u n c t i o n  _s s e e n  t o  b e  s a t i s f a c t o r y  
f o r  t h e  p u r p o s e .  T h e  m a c h i n e  i s  v e r y  w e l l  
s u i t e d  t o  c o m p u t e r  c o n t r o l l e d  e x p e r i m e n t a t i o n .
T h e  m a i n  d i s a d v a n t a g e  o f  t h e  m a c h i n e  a t  p r e s e n t  
i s  i t s  e x p e n s e .

5  CONCLUSIONS

T h e  t e s t i n g  o f  h u m a n  m u s c l e  a s  a  m e a n s  o f  
a s s e s s i n g  t r a i n i n g  o r  t r e a t m e n t  i s  o f  s i g n i f i ­
c a n c e  i n  s p o r t .  I f  t h e  t e s t i n g  i s  l i m i t e d  t o  
s t a t i c  m e a s u r e m e n t s  o r  c r u d e  d y n a m i c s  i n v o l v i n g  
c o n s i d e r a b l e  u n c e r t a i n t y  d u e  t o  t h e  s u b s t a n t i a l  
s u b j e c t i v e  e l e m e n t  p r e s e n t  t h e n  t h e  t e s t i n g  i s  
o f  l i m i t e d  v a l u e .

A r e v i e w  o f  t h e  l i t e r a t u r e  a n d  s o m e  p i l o t  s t u d i e s  
b y  t h e  a u t h o r s  h a v e  s h o w n  t h a t  i s o m e t r i c  e m g -  
f o r c e  m o d e l l i n g  o f f e r s  t h e  p o s s i b i l i t y  o f  a  
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ABSTRACT

Neuroelectric data assessment by human experts involves a complex process of data 
reduction and pattern recognition. This paper presents research in the development of a 
knowledge-based system for assisting an expert in the interpretation of a particular type 
of neuroelectric data, namely evoked potential (EP) data. This work constitutes part of a 
larger research effort currently being conducted by the University of Leicester and 
Medelec Ltd. The machine analysis consists of two main phases. Firstly, signal 
processing techniques are used to locate the major peaks (ie. 'components' or ’waves')

' in an averaged EP signal. This method is based on statistically estimating noise 
; characteristics (Sehmi, 1987) suitable for detecting significant deflections in each EP 
I signal, then constructing a histogram of deflections at each sampling interval summed 
S over all individual signals. Peaks in this histogram correlate significantly with major 
j peaks in the corresponding averaged EP.
I
I
* The peak-finding algorithm provides input to the second phase of the analysis for 
; labelling the peaks, performed by a knowledge-based system written in Prolog. The
j system comprises of some 50 rules that are driven by an interpreter that will allow for
Î reasoning with uncertainty, using a method based on Zadah's (1965) theory of fuzzy 
I sets. The system utilises a 'fuzzy model' of the EP containing both declarative and 

procedural knowledge. The declarative part contains a description of temporal 
relationships between significant EP components, and the procedural part defines demon 
procedures for computing values for EP attributes and certainty factors.
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1 In tr o d u c tio n

The assessment of neuroelectric data by human experts is based upon complex processes of data 

reduction, feature extraction and evaluation, some of which are apparently subjective. The task 

of evaluating the data falls largely on the human expert A greater part o f the data reduction and 

some of the feature extraction processes are performed in dedicated computing machinery.

Our intention is to score and interpret EPs automatically. Clinical interpretation is a more 

ambitious goal that would have to use additional patient specific observations that are currently 

not available. Applications o f a peak detection algorithm to analyse:

[1] Short Latency Auditory Brainstem Potentials (Baeps),

[2] Pattern Reversal Visual EPs (Prveps), and

[3] Somatosensory EPs (Sseps),

have shown that underlying activity, not discernable by simple visual observation of the 
averaged EPs, can be extracted from the results. This information can be used to accurately 

locate true peaks in the averaged EP in conjunction with a simulation of the subjective 
methods of peak location which a human expert might use.

1.1 Solution Outline

Experienced clinicians working in the field o f EP have a mental template of what to expect their 

data to look like on their CRT screens. The data is matched against this mental template and 

reduced to a sequence of latency and interval labels. The EP data interpretation by human experts 

relies on focussing first on the most prominent features in the data (i. e. islands o f activity 

such as the largest peaks and troughs, the sharpest peaks, the broadest peaks, and 'the peak in 

the middle o f the screen'). Secondly, tentative labels are assigned to these peaks. Subsequent 
labelling o f features is made with respect to the current decisions until the complete waveform 

is scored. Sometimes, intermediate decisions are discarded, and new reference features are 

selected.

To simulate this complex process a declarative model o f expert reasoning is encoded as a 

collection o f  production rules. By allowing the attachment o f certainty factors to the rule 

clauses, it is possible to weight the decisions being made on the data. This declarative model 

interacts with a procedural model of the data, which comprises o f fuzzy membership functions 

describing each significant component of the data. The interaction between these models is 

achieved by a series o f demon functions that contain algorithms for computing values for 

attributes and certainty factors, used in the reasoning process.

A common problem with the interpretation o f data using a knowledge-based approach is the 

reduction o f the raw data to a form that is usable by the reasoning modules. The technique
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chosen depends largely on the type of information that is to be extracted during the reasoning 
process. We are interested in accurately labelling the major components in EPs and hence our 

data reduction method attempts to obtain peak information.

To provide input to the knowledge-based system, a non-linear adaptive algorithm has been 

developed to analyse the raw EP data. The algorithm statistically estimates certain noise 

characteristics in the single responses that constitute the averaged EP. These noise estimators 

are then used to detect all significant deflections (activity) in the individual responses. A 

histogram is then constructed from activity at each sampling interval. The peaks in this 

histogram have been found to correlate significantly with the major peaks (i. e. components' or 

'waves') in the corresponding averaged EP. This then provides a good starting point for data 

input to knowledge-based system which will then attempt to assign labels to the corresponding 

deflections in the averaged EP response.

The following sections o f this document will describe:

[1] the application domain,
[2] the data reduction algorithm,

[3] the procedural model used to describe the data,
[4] the declarative model (or knowledge base) used to describe the expert decision making 

process and,
[5] the expert system interpreter and the propagation of certainty values.
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2 T h e A p p lica tio n  D om ain

In order to test the knowledge-based paradigm of signal interpretation we shall use the Baep 

signal. This is perhaps the most complex of the EPs that have been mentioned. The Baep 

single responses are of low amplitude and signal to noise ratio. However, the data reduction 

algorithm performs well even under these circumstances. Hence, it should be possible to 

combine this informadon in the reasoning process to label Baep components accurately.

Below is a brief description of how EPs in general are obtained with an indication o f the 

features of interest in Baeps for this study.

2.1 Evoked Potentials (EPs)

The application o f sensory stimuli to the peripheral nervous system will, under normal 

circumstances, result in changes to the on-going activity o f the central nervous system. These 

variations are known as evoked potentials (EPs). Some EPs can often be seen as a wave or 

group of waves in the electroencephalogram (EEG). Most EPs however, are indistinguishable 

in routine EEG recordings because of their inordinately low amplitudes (0.1 to 2 microvolts) 
and the interference of background cerebral electrical activity and electromyographic (EMG) 
artifacts (Chiappa and Ropper 1982).

By exploiting the non-stationary time locked nature of an evoked potential with its related 
stimulus and assuming that background EEG activity is a stationary random noise process, 
simple synchronous signal averaging can be used to extract the EP. The features of the electric 

potentials (waves) in the averaged EP brought out in this way are used in the assessment of 
neurological condition as each wave is generated by a specific anatomical structure within the 

nervous system. The presence or absence of the appropriate EP waves and their latencies are the 

primary characteristics used in clinical interpretation.

Several methods have been developed over the past decade to study the EP. Of these, pattem- 

shift visual, brainstem auditory, and short-latency somatosensory EPs have come into routine 

clinical use and are now well established as valuable clinical tools. EPs are used to reveal the 

presence o f clinically unsuspected lesions in the sensory system when demyelinating disease is 

suspected because of indications in another area o f the central nervous system. This is 

particularly relevant to

[1] the diagnosis o f multiple sclerosis,
[2] determination o f the anatomical distribution of a disease process, 

and,
[3] to monitoring continuously the integrity o f a pathway that cannot be examined clinically 

because of anaesthesia (Chiappa, 1982; Halliday, 1982; Colon et. a l . , 1983).
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Therefore, EPs are often used in patients with multiple sclerosis, nervous system tumors, 
trauma, stroke, in intra-operative monitoring procedures, and in intensive care environments, as 
well as in infants whose sensory systems cannot be accurately assessed. These tests provide 

sensitive, quantitative information complementing standard clinical neurologic examination.

Baeps

Evoked potential studies o f the auditory system have proved extremely useful in the 

understanding of the physiological mechanisms of hearing in man. As a result o f this they add 

to the diagnostic reportoire of the clinician for neurological and audiological investigation.

The Baep is best obtained with a high intensity click stimulus, and within the following 10 

msec, could contain up to seven components labelled I-VII, according to Jewett’s (1970) 
classification. There is considerable evidence that at least the first five components correspond 

to the successive activation o f peripheral and pontomedullary (cochlea, spiral ganglion, and 

eighth nerve), pontine (cochlear nucleus, superior olivary nucleus, and lateral lemniscus tracts 
and nuclei), and midbrain (inferior colliculus) portions of the brainstem pathway (Stockard et. 

al., 1978). This is shown in the diagram of Fig. [2.1], when these acoustic nerve and brainstem 

potentials are volume-conducted to recording electrodes at the vertex (electrode, Cz) and mastoid 

(electrode. Ai).

The components I-V in the Baep are those that are o f most interest in audiological 
investigation as their variability under normal circumstances is low (about 300|isecs). It is 

quite possible though that the consistency of underlying activity is reflected in a distorted 

manner in the averaged response. This arises through a combination o f averaging and the low 

signal to noise ratio of Baep single responses. The components (mainly the later ones above 4 

msecs) then appear to be highly variable and/or fused. It is also possible that these components 

exist not as peaks, but as inflections on the rising or falling edges o f  a neighbouring 

component. This distortion in the Baep makes the task o f assigning unique labels, I-V, 
difficult. Very often a clinician will have to perform multiple tests to gather evidence for the 

location of particular Baep components. The problem is magnified when the intensity of 

stimulus, and hence the amplitude of the responses, is reduced.

The data reduction algorithm described in the next section helps overcome these difficulties. It 
provides the type of data that can be used in an expert system for resolving possible 

ambiguities in the component labelling procedure.
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Fig. [2.1] Diagram of normal latencies at 60 dBSI for components I through 
VH. Lesions at different levels of the auditory pathway tend to produce 
response abnormalities in the components, although the affected 
component(s) does not specify the precise generator(s) of the response (taken 
from STOCKARD et al, 1977)
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3 M ea su re m en ts  o f  B a ep s fro m  th e A n a ly s is  o f  S in g le  
R e sp o n se  D ata

The usual averaging process to extract the Baep waveform from an ensemble o f individual 

responses assumes that the time-locked signal s(t) repeats itself faithfully for each delivery of 

stimulus and that the mean value of the background EEG noise n(t) will tend towards zero. If all 
o f this were true, then averaging would be the optimal data analysis technique to implement 

prior to detection o f significant components in the Baep. This, however, cannot be the case as 

there is considerable variability among responses (Aunon et al, 1981; Brazier, 1964) due to the 

effects o f habituation, fatigue, and neuromuscular artifact. Distraction from the stimulus is a 

factor that may affect evoked potentials other than the Baep. In the averaged evoked potential the 

major features are due to components common to all the individual responses, and as such will 

obscure any subtle variations in the excitability of the central nervous system. The information 

contained in these variations could be as important as the gross information contained in the 

average. A procedure written in the C language is described for peak detection in the Baep. The 
individual responses to auditory stimuli are processed by a specialised peak detection algorithm. 

Estimates of the characteristic noise deflections contained within these responses are obtained 

from statistics of a frequency distribution of the amplitude differences between adjacent maxima 
and minima found in a noise-only' pre-stimulus run. These characteristic noise amplitudes are 

different for all subjects and different for all the individual responses in the same data set. With 

this noise amplitude information a second pass is made over the individual responses to 
determine the location of significant component peaks in the averaged response.

3.1 Outline of the Peak Binning Algorithm

The procedure relies on detecting the times o f occurrence o f significant events within the 

constituent sweeps of the Baep signal. These are defined as a pair o f  maxima enclosing a 
minimum such that the amplitude differences between the maxima and the enclosed minimum 

are larger than an arbitrary threshold value. This threshold value is termed the peak 

discrimination factor (PDF). The method of extraction o f events in this analysis is similar to 

that used prior to the calculation of Turning Points Spectra of interference pattern EMGs (Lago 

and Jones, 1983). The difference lies in the attention paid to ensuring that an accepted event 

represents the maximum o f highest amplitude and that the enclosed minimum is the deepest 
trough with respect to the chosen (peak discrimination factor or peak amplitude threshold level) 

PDF value. The sequence of N measured data points following the ith stimulus is dO, d l , . . . ,  

dN-1 = {dk}i. The stimulus is delivered M times giving N x M data points in all. A turning 

point is defined as a change in slope; positive to negative slopes indicate maxima and the 

converse indicate minima. Maxima dmx/j, dmx/j+1, enclosing a minimum dmn/1 have to 

satisfy all the following conditions:

I dmx/j - dmn/11 > P D F  Eq. [3.1]
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|dmx/j+l - dmn/l| >P D F  Eq. [3.2]

ldmx/j+1 - dmn/l+ll > P D F  Eq. [3.3]

such that a significant event is assigned to the maximum dmx/j at time mx/j (the real latency is 

the index value multiplied by the sampling interval and is assumed understood from here 

onwards). The algorithm commences with the maximum dmx/j set to the largest possible 

positive integer value the computer can hold ensuring that Eq. [3.1] is true at the start of 

analysis in the current sequence. Then the candidate minimum dmn/1 is compared with the 

minimum that was found immediately prior to this to retain the lower o f the two. This is used 

in the PDF comparison with candidate maximum dmx/j+1 in Eq. [3.2]. As soon as this 

condition succeeds then a minimum dmn/1+1 is found that makes Eq. [3.3] true thus confirming 

a significant event occurs at time mx/j. During this latter phase o f analysis, any maxima found 

along the waveform are compared with the maximum dmx/j+1 to retain the higher o f the two. 

The updating procedure in effect 'slides' this 1 ̂ /2 wave template backwards by one wave and 
repeats the search for another pattern that fits the conditional tests just described. Implicit in 

this procedure is that the first condition automatically succeeds for all subsequent cycles. In this 

way accepted events represent those maxima enclosing the deepest troughs with respect to the 
chosen PDF value. In practice this method of peak detection is robust even with very noisy 

data.

It is apparent that this method relies on some knowledge o f what value to assign to the PDF. 

Parekh (1987) and Lago and Jones (1983) have used similar peak detection algorithms in the 
analysis of turning point spectra of interference pattern EMG. Their choice of PDF value was 
largely empirical and was usually set to 3% of the maximum peak-to-peak deflection o f the 

data, as this provided an adequate resolution for the subsequent classifications they were looking 
for.

The Baep has a high noise content (Fridman et. al., 1982) and a judicious choice o f PDF value 

would be difficult to arrive at in the way it was above with EMG signals. The Peak Binning 
algorithm (Sehmi, 1987) assigns PDF values adaptively before analysing the single responses 

(or sub-averages of single responses) that make up a Baep. This is done by making an estimate 

of the 'noise' in the sequence {d^}i. In this way any transient changes affecting the assumed 

statistical stationarity o f background EEG activity can be partially compensated for.

The PDF assignment is determined from the 'modal' value o f the histogram computed from the 

amplitude differences between adjacent maxima and minima in a noise only pre-stimulus data 

sequence. The method assumes that the noise is additive to the signal in the post stimulus data 

sequence. This is not entirely true as the background EEG activity is suppressed (Berger, 1969) 

with sensory stimulation. This in fact helps the algorithm perform more efficiently.
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The detection of positive peaks in the single responses lead to positive assignments in an 
accumulator or bin. An inverse assignment on negative peaks helps in the segmentation of the 
bin around majcr components in the Baep. Following the analysis of all single responses in the 

Baep, the bin is separated into positive and negative sequences. The positive bin sequence is 

convolved with a latency corrected 3-point backward moving average ( twice), and further with a 
3-point unit area triangular window (twice). The convolution process removes small baseline 

fluctuations produced in the second moment computation whilst preserving resolution, and 

maximising pardoning in the region of the major components in the corresponding Baep 

averaged response. Fig. [3.1] shows an averaged Baep response and the ccwresponding smoothed 

bin clearly indicating those islands of activity occurring in the averaged response. It should 

now be possible to use the bin information to find  and label the major components in the 

averaged Baep response, whether they exist as true turning points or as points of inflection.

This data is written to files in the form of Prolog-readable terms. The structure of these terms 
have the following general format:

data(PeakType, NumberOfPeaks, ListOfPeaks).
ListOfPeaks -  [ P o s l / A m p l l , , PosN/AmplN].

^  1139 PBF: US

naxJbia: 9 010»)

Fig. [3.1] An averaged Baep response in the upper window and the 
cooresponding smoothed bin histogram in the lower window. The peaks in 
the bin histogram correlate well with the major activity in the Baep. It is 
evident that activity not observable in the Baep is reflected in the 
fluctuations ocurring in the bin.
(Because the algorithm attempts to disregard noise in the single responses y 
we assume that these fluctuations reflect activity obscured through the
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averaging process)

4 A  F u z z y  M od el D escr ip tio n  for  B aep  In terp reta tio n

The Baep (and most neuroelectric data) can be highly contaminated with unwanted noise. This 

noise and the small variability in the times of occurrence o f wave components in the single 

responses, almost always leads to a contaminated and distorted averaged response. It is however 

possible to extract general characteristics from the averaged response, only because our visual 

and mental faculties collaborate so well. Experts are able to perform correlations, selective 

filterings, weight assignments and generalisations quite naturally in order to identify and label 
wave components in a Baep.

The data reduction algorithm, described in section 3, makes it possible for a machine to get first 
estimates on where Baep components exist by examining peaks in the bin. The next problem 

we face is to resolve conflicts between multiple bin peaks that can cluster together in the 

immediate vicinity o f one Baep component. This can be due to noise contamination that has 

not been completely removed with the data reduction method. It is also plausible to suggest that 

multiple peaks in the bin (especially in and around the later Baep components) are due to the 

activation o f generator sites from the contralateral channel reflecting their activity in the 

recorded ipsüateral channel.

These problems have led to the specification of a fuzzy  model describing Baeps. The model 
comprises two parts, namely the procedural and declarative conqx)nents. The models employ 

techniques allowing uncertain descriptions of the data reduction output and the patterns o f Baep 

components in the averaged response.
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4.1 The Fuzzy Procedural Model (Data Base)

T h e  fu n d a m e n ta l  p r im itiv e  fo r  in fo rm a tio n  m o d e llin g  in an e x p e r t sy s te m  are  p ro p o s itio n a l 

s ta te m e n ts  o f  the  fo rm : 'an a t t ib u te  o f  a n  o b je c t  h a s  a  p a r t c u la r  va lu e ' .  T h is  is re p re se n te d  in 

P ro lo g  as th e  sy m b o lic  stru c tu re :

O b jec t A ttr ib u te  V a lu e

W e m a y  e x p re ss  th a t 'a  c o m p o n e n t  w a v e  o f  the B a e p  o c c u r s  a t  p o s i t io n  X '  by  w ritin g :

W a v e  p o sit io n  is X

A s so o n  as W a v e  d o e s  n o t o c c u r  e x a c t ly  a t X  th e n  w e  h a v e  in t ro d u c e d  an  a m o u n t  o f

im p re c is io n , w h e re  X  d o e s  n o t ex ac tly  re d u c e  to  o n e  e le m e n t in th e  d o m a in  U ,„  (u n iv e rse
W a v e

o f  d is c o u rse )  o f  the  v a r ia b le  W a v e . X  is then  th e  se t o f  m u tu a lly  e x c lu s iv e  p o ss ib le  v a lu e s  fo r

Wave.

In the  im p re c is e  p ro p o s itio n  ab o v e , the  se t X  m ay  n o t h av e  c le a r  b o u n d a rie s . T h e n  X  is w h a t 

Z ad eh  (1 9 6 5 ) has n a m e d  a fu z z y  se t an d  W a v e  p o s i t i o n j s  X  is sa id  to  be  a fu z z y  p ro p o s itio n . 

A  fu z z y  se t X  say , is d e sc r ib e d  by  m e a n s  o f  a  m e m b e rsh ip  fu n c t io n  T h is  is a fu n c tio n  

m a p p in g  f ro m  the  d o m a in  \ ^ \ \ /a v e  th s  in te rv a l [0 ,1 ]. 1 re p re se n ts  fu ll m e m b e rsh ip  an d  0  

n o n -m e m b e rsh ip  and  in te rm ed ia te s  re p re se n t p a rtia l m em b ersh ip .

T h e  fu z z y  se t (x% ) o f  v a lu e s  w h ic h  b in  p e a k s  (%) c a n  tak e  fo r  a w av e  c o m p o n e n t ( W a v e )  in 

th e  d o m a in  o f  B a e p  w a v e s  ( U \V a v e ^  is g iv e n  u n iq u e ly  b y  th e  fu z z y  m e m b e rsh ip  fu n c t io n  

(p.%). T h e  m e m b e rsh ip  fu n c tio n  fo r  th e  d o m a in  U y ^ a v e  (o u r  o n ly  d o m a in )  is sh o w n  in  F ig . 

[4 .1 ]. T h is  is te rm e d  f u z z  f u n c t i o n  an d  e n a b le s  a ss ig n m e n ts  o f  re lia b ili ty  or  f u z z  to  th e  re su lts  

o f  the d a ta  red u c tio n  a lg o rith m  an d  th e  p eaks in the  av e rag ed  B aep  re sp o n se

Fuzz
Fuzz Function

Bin
Segment

Time

[4.1] M apping  o f  Bin Peaks onto the Fuzz Function to obtain Peak

R e lia b i l i ty  m ea su res .
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Referring to Fig. [4.1], peaks in the bin segment shown, have their fuzz computed by a simple 

interpolation through a mapping o f their times o f occurrence onto the fuzz function. For 

example, the bin peak at 'B' maps to a fu zz  o f 1.0 indicating full membership o f X  in 

^W ave 'A' maps to à fuzz of 0,8 indicating partial membership of % in Xiy/ave-

Zadeh calls the possibility distribution and its identification can be subjective as the

definition o f can be subjective. The importance o f this distribution is the order it imparts

on the domain Hy/ave it should contain all possible values o f Wave. In this application, 
\i.X has been estimated from a linear approximation to the normal statistical distribution o f the 

individual components in the Baep. This can be altered dynamically in the system since the 

model descriptions are generic. The flexibility that this imparts is important in maintaining the 

separation between the components in the expert system as a whole and its adaptability to other 

EP domains.

Fig. [4.2] illustrates the complete fuzzy procedural model for the Baep. The fuzz functions are 

located along the time axis at the normal mean values (initially) for each component wave of 

interest

Time/msecs

Averaged 
y  Baep Response

Fuzzy
Functions

a.Sd b.Sd c.Sd dSd

Fuzz 

1.0 _J

Sd = Normal Sd of Wave 

Anchor = Norm Mean of Wave 

[a, b, c, d] = Fuzz Function Modifiers 

[P, Q, R, S] = Fuzz Function Descriptor
Time

Anchor

Fig. [4.2] A Fuzzy Procedural Model for Brainstem EPs.
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Prolog descriptions for each wave are constructed via the execution of the declarative model 

(explained later) when and where required. The generic Prolog structures for a fuzzy function (or 
window) are:

fuzzw indow (W aveN um ber, Anchor, [P, Q , R, S]>. 
m odifs[W aveNum ber, [a, b, c, d]>. 

current shift(W aveN um ber, Shift).

where [P, Q, R, S] are defined in terms of the modifiers [a, b, c, d]. These are set to constants, 

but conceptually they can be functions of time that modulate their respective fuzz function 

regions. The current shift is used to relocate the anchor point for the fuzzy function along the 

time axis.

This structure means that the fuzzy functions can adopt any suitable form and location. The 
description adopted for the prototype system is simple. The modifiers for each wave are: [0, 1, 

2, 1], resulting in fuzzy function descriptions: [0, Sd, 2*Sd, Sd]. Hence, the total width of each 

fuzzy function is 4 standard deviations. The extent of the spread either side of the anchor point 
(normal mean latency value for the component wave) corresponds to the 99% confidence limits 

(note that the distribution of latencies for Baep components is assymettric).

We have seen how the results o f the data reduction algorithm can be assigned reliability 

measures. To reason with these 'tagged data effectively requires that the declarative model and 

the inference machine (rule interpreter) are compatible at the higher level.
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4.2 The Fuzzy Declarative Model (Knowledge Base)

This model attempts to capture the expert decision making processes used to interpret (label) a 

Baep. The fuzzy procedural model described in the previous section makes it possible to 

formulate propositions of the form:

Object Attribute Fuzzy Value

Fuzzy Value = Value + Fuzz

Furthermore we can formulate the consequence o f fuzzy propositions by using rules or 

productions:

if: Object Attribute Fuzzy Value
then: ObjectX AttributeX ValueX

The value ValueX of object ObjectX  is concluded with the fuzziness Fuzz (in FuzzyValue) 
of object Object.

The certainty with which a proposition holds can be expressed with a propositional attachment 
called the certainty factor, cf. Therefore we can write:

if: ObjectX AttributeX FuzzyValueX cf CF
then: ObjectY AttributeY ValueY

The value ValueY of object ObjectY  is concluded with a combination o f the fuzziness FuzzX 

o f object ObjectX  and the c f attachment CF:[0.0, 1.0]. This in effect allows the modeller to 
express the reliability or confidence with which a proposition is being made when the object 

value is completely true. If the object value is fuzzy, then this is reflected nevertheless through 
a combination of fuzzy and certainty values.

The production 'if contralateral recording is available then contra_wave_V position is X  

represents knowledge that is applicable only if the antecedent is true. However we would like to 

express the influence of the antecedent on the consequent when the antecedent is false. To 

prevent the automatic assertion o f the consequent with a low certainty value in the absence of a 
contralateral recording, another extension to our existing formalism is required. In this case we 

must assign a weighting to evidence for truth and to evidence for falsehood:

-14



if: ObjectX AttributeX FuzzyValueX cf CF wt (W tT, W tF)

then ObjectY AttributeY ValueY

T h e  c o m b in e d  fu zz y  va lue  for o b je c t  O b je c tX  is ca lc u la ted  in tw o stages:

[1] Fuzz = FuzzX  * CF

I n t r o d u c in g  the  c la u s e  w e ig h ts  {W tT ,  W tF )  w e  o b ta in  a to ta l  r e l ia b i l i ty  fo r  the  a n te c e d e n t  

p ro p o s i t io n  in the  p ro d u c t io n  ru le .  T h is  is te rm ed  the f u z z y  re l ia b i l i ty  f a c t o r  (FRF}\

[2] FR F =
W tF + Fuzz(W tT - W tF) 

m ax(W tT, W tF)

T h e  v a lu e  V a l u e Y  o f  o b je c t  O b j e c t Y  is c o n c l u d e d  w i th  th e  f u z z i n e s s  F R F  o f  o b j e c t

O b jec tX .

Fuzzy Clause Wt 
(FRF)

Truth Wt.

Falsehood Wt.

Rule C f

Falsehood WL used when C f = 0.
Truth Wt. used when Cf = 1.0.
Y = Falsehood WL + X.(Truth W t - Falsity W t.).

F ig . [4.3] V ariation  o f  F R F  w ith  rule certa in ty  factor  (or  
com b ined  Fuzz).

F ig  [4 .3] i l lu s t r a t e s  th e  v a r ia t io n  o f  th e  c la u s e  w e i g h t  (F R F )  w i th  th e  c e r t a in t y  f a c to r  

a t t a c h m e n t  (o r  c o m b i n e d  fu z z y  va lu e )  o f  th e  ru le  p ro p o s i t io n .  T h e  c o n t r ib u t io n  o f  t ru th  an d  

fa l s e h o o d  on  th e  d e c la ra t iv e  in t e rp re ta t io n  o f  an a n te c e d e n t  p ro p o s i t i o n  (a n d  h o w  m u c h  this 

c o n t r ib u t e s  to th e  a s s e r t io n  o f  c o n s e q u e n t  p ro p o s i t i o n s ) ,  is d e t e r m i n e d  b y  th e  t r u th  a n d  

fa l s e h o o d  w e ig h ts .  A d ju s tm e n ts  o f  th e se  w e ig h ts  is e q u iv a le n t  to an  a d ju s tm e n t  o f  the s lo p e  o f  

the  l ine in  F ig .  [4 .3] .  T h e  s te e p e r  the  p o s i t iv e  s lope ,  the  h ig h e r  is th e  c o n t r ib u t io n  o f  t ru th  o f  

an teced en ts  in the  a sse r tion  o f  c o n seq u en ts ,  an d  the less fa l seh o o d  d e trac ts .  N e g a t iv e  s lopes  have  

the sam e  e f fe c t  as n eg a t io n  o f  the  a n te c e d e n t  p ro p o s i t io n s .  U se  o f  w e ig h ts  in th is  m a n n e r  is n o t
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recom m ended as it obscures the declarative content o f  the rules.

Rules containing conjunctions of antecedents get their individual FRFs combined before the 
assertion of a consequent

ClauseW tA = W tFA + FuzzA(W tTA - W tFA)
ClauseW tB = WtFB + FuzzB(W tTB - W tFAB) 
e t c . . .

ClauseW tA + ClauseWTB + .... + ....
FRF = ........................................................................................................................

max(W tTA, W tFB) + max(W tTA, W tFB) + .... + ....

If consequent have certainty factor attachments then the FRF calculated as above is combined 

with this as in stage [1] above.

These ideas are employed in a structured declarative model (knowledge base of rules) with a rich 

syntax. The grammar for the rules is summarised below in BNF:

R u le  G ram m ar

rule ::= <term> :: if <antecedent>

then <consequent>.

antecedent ::= <antecedent> && <antecedent>
I <antecedent> or <antecedent>
I <antecedent> cf <number>

I <antecedent> wt <weightT, weightF>
I <antecedent> cf <number> wt <weightT, weightF>

I <term>

consequent ::= <consequent> && <consequent>.

I <consequent> c f <number>.
I <term>.

term ::= any Prolog term

num ber ::= [floa t : (0.0, 1.0)]

w eightT , w eightF  ::= [f lo a t : (0.0, 5 .0)]
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Knowledge Base Structure

The rules contained in the knowledge base are structured into:

Control (meta) rules

These are rules that direct the search through the knowledge base when driven by the inference 

engine or rule interpreter. Our task requires some direction as to which Baep waves to look for 

in the absence of others. Examples are:

rulel? ::

if
channel = ipsi 
&& wave_I = found 

&& wave II = found 

&& waveJII = found 
&& wave IV  = found 

&& w ave_y = found 

then
alljpeaks = found, 

rule 18 ::

i f
channel = contra 
&& wave l l  = found 

&& waveJfll = found 

&& wave IV  = found 

&& w ave_y = found 
then

all_peaks = found.

Descriptive rules

These are rule which produce qualitative descriptions for the Baep. They are generally higher 

level abstractions of the characterising rules below. Through backward chaining via the rule 

interpreter these rules activate the characterising rules. Descriptive rules are useful for two 

reasons. Firstly, they provide clear derclarative semantics of what is being performed in the 

interpretation task which is useful in the debugging phase (notably understandable 

explanations). Secondly, the abstraction allows for increased generality and therfore application 

of the same rules in similar domains. Examples of these rules are:
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rule02 ::

i f
Wave list_of_pks_is ListOfPks+(bin_pks)

<&.& Wave best_pk_is PosfFuzz+(ListOfPks) 
then

Wave position_is Pos c f Fuzz. 

ruleO? ::

if
Wave fuzz_window_is FuzzWindow
&& Wave pks are ListOfPks-h(PksTypeF'uzzWindow)
then

Wave has_pks_of_type PksType+(ListOfPks). 

rule09 ::

if
Wave stats_of_are Stats

&& Wave modifiers_are Modifs

&& Wave is_described_by WaveModel+(StatsModifs)
then
Wave model_of_is WaveModel.

Characterising rules

The knowledge base can be considered as an AND/OR graph with its leaves being the 
conjunction o f antecedents in these characterising rules. Specificity is handled here entirely. 

They are the interface with the data through procedural mappings that activate demons. These 

rules return the appropriate Prolog data structures which are examined and the results of which 

are propagated upwards from this level mechanisms. Examples o f these rules are:

rulel 0 ::

if
Wave mean is Mean 

&& Wave sd is Sd 

then

Wave stats_of_are (Mean,Sd).

rule35 ::

if
channel = ipsi
&& w a v e j  position is PosWave_I cf Fuzz 

&& (
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wave I is_expected_at EPos_I+Tol_I-h(wave_III)
or

w a v e !  is_expected_at EPos_I-f-Tol_I+(wavejy)

)

&& $(Dijf is PosWave_[-EPos_I)
&& $(D iff=<  Tol l)  

then
pos_wave_I_at = PosWave_I.

The corresponding demon procedure mappings are performed through a predicate defined as

externall2:

external(Wave expected at PosAndTol+(RefWaveJiefPos), 

external(Wave mean_is X, normjnean(Wave, _  ,[XJ)). 
external(Wave sd isX , norm_sd(Wave, _  ,[X])).

The next section will go on to describe very briefly the top level interpreter used in this system.
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5 T h e E P A X IS  In terp reter

This interpreter shell is backward chaining and provides uncertain inference and explanation 

capabilities on the declarative model described in the previous section. It also provides the 

interfacing with the procedural model through invocation of the user-defined demon-procedures. 

The interpreter executes the declarative model (i.e. knowledge base) in much the same way as 

Prolog executes  the interpreter itself. Hence, it is possible to pass goals to Prolog for 
execution. This is neccessary for mathematical constructs and interfacing to other languages. An 

important specification for this implementation has been separation of aU EPAXIS modules. In 

this respect the same interpreter can be used to execute knowledge bases that will be defined in 

the future for labelling different EPs.

The structure used in the shell derives from the work of Shapiro (1983) and Niblett (1984). The 
implementation of uncertain reasoning is a variant of that described by Lebailly et. al. (1987). 

The scheme below shows the basic structure of the EPAXIS interpreter:

% Top call 

soIve(X)
solve(X, Fuzz, []).

% Is goal known 

solve(X, Fuzz, _ ) :-
known(X cf Fuzz),
I ^

% Is goal solvable using a procedural call 
solve(X, Fuzz, _ ) :-

external(X, Demon),

! ,
execute demon(Demon, Fuzz).

% Is goal solvable using a rule 

solve(X, Fuzz, Stack)
Rule :: if Conds then Goal,
satisfy(Conds, CondsFuzz, [Goal+Rule|Stack]),
conclude(Goal, CondsFuzz, Fuzz).

% Ask user fo r  solution 

solve(X, Fuzz, _ ) :- 
askable(X ),
t• 9
certain(Fuzz).

SatisJy/3 attempts to solve the antecedent propositions by recursively invoking solve/3 with 

each proposition in turn. A successful goal will cause satisfyiS to calculate its fuzzy value
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(F R F )  and  ev e n tu a l ly  a co m b in e d  fuzzy  value  (C o n d sF u zz )  fo r all p ro p o s i t io ns .  C o n c lu d e lS  

w ill  tlien asser t  the con c lu s ion  w ith  the fuzzy value  o f  the antecedents.

In the case  w hen  goals  are already kno w n  (i.e. they have been proved already) and the an tecedent 

p ropos i t ion  has a cer ta in ty  factor a t tachm ent,  a simple p roduc t  o f  fuzzy values p e r fo rm ed  before 

the ca lc u la t io n  o f  the F R F. A s im ila r  m ul tip lica tive  p rocess  is p e r fo rm e d  if the a sser tion  o f  a 

p a r t icu la r  c o n s e q u e n t  has a p receden t .  This  la tter p rocess  allows the accu m u la t io n  o f  ev id ence  

for som e  items to s treng then  or w eak en  ev idence  for others dynam ically .
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6 R e s u l t s

T h e  results  o f  a co n su l ta t io n  are g iven  in A ppend ix  [A]. This  dem o n s tra te s  the ru d im e n ta ry  

ex p la n a t io n  fac i l i ty  p ro v id ed .  O f  g rea te r  in terest is ho w  the objec ts  and  va lues  in the generic  

ru les  have  b e c o m e  unif ied  w ith  d a ta  s tructures  extracted  from the raw  B ae p  data .  This  has been 

p e r fo rm ed  using the procedura l a ttachm ents  in teracting with the procedural model.

7 C o n c l u s i o n

T h e  use  o f  an e x p e r t  sys tem s a p p ro ach  to au tom atic  co m p o n en t  label l ing  in e v o k e d  po ten tia ls  

has dem o n s tra ted  several points:

[IJ T h e  use o f  a h igh  level language  (such as P ro log) has p rovided fo r  rap id  p ro to typ in g  even  in 

a c o m p le x  d o m a in .  T h is  can  be a tt r ibu ted  to the ease with w hich  abst rac t ion  and  sepa ra t ion  o f  

concep ts  is done .

[2] It sho u ld  be poss ib le  to g en e ra te  's ia n d  a lo n e ' know ledge  bases for o th e r  E P s using the one  

in terpre ter  shell deve loped  for this Baep  dom ain .

[3 j T he  use o f  a m odel o f  uncerta in ty  for data description provides the sortœ  o f  ex press ive  po w er  

n eed ed  for reaso n ing  in this noisy  dom ain .

[4] T h e  au thors  pe rso na l  exp e r ie n c e  w as that it is easier to modify  the in te rp re te r  than it w as to 

m o d i fy  the  k n o w le d g e  base . In itia l p ro b le m s  w ere  co n c e rn e d  w ith  d e f in in g  a use fu l  ru le  

descr ip t ion  lan g u a g e  and des ign ing  a useful s tructure in w hich  to fit the rules.

[5] T h ere  is a t r ad e -o ff  be tw een  the character is ing  and descriptive rules. T h e y  co u ld  really  m erge  

toge ther ,  bu t  this w o u ld  be to the de tr im en t  o f  decla ra tive  unders tand ing .  It is en t i re ly  up  to the 

ru le  w r i t e r  (k n o w le d g e  e n g in e e r )  h o w  fa r  to pu rsu e  this s ep a ra t io n .  F o r  d e b u g g in g  a n d  

e x p la n a t io n s  it is a task  w o r th  pu rsu ing .  I f  e x p lana t ion s  a n d  m a in ta in en ce  are u n im p o r ta n t ,  

then  a final v e rs io n  can  co n ta in  a co n d en sed  ru le  set for faster rule ex ecu t io n .  T h is  is h o w e v e r  

un like ly .
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(a p p en d ix )

/f Wt enter the Prolog System and load the expert system (EPAXIS):

?- [makefile].

Jr To start the consultation we enter the query:

?- gotop(X).

% This activates the top level goal ^solve(baep_pksJound =  X, Fuzz, [])\

% A question is asked.

What channel is this recording taken from (ipsi/contra) ['w hy.’ to see why) ? > why.

% We have typed in *why* for an explanation.
% This is listed simply from an examination 
% of the current goal stack.

In  order to find the value of baep_pks_found,
I ' m  try in g  ru le  ru lel2T ,
This concludes about baep_pks_found.
To prove the con d ition s o f ru le  ru lel2T ,
I need to  know the value o f la b e llin g .

In order to f in d  the value of la b e llin g ,
I ’m trying rule rule 13.
This concludes about labelling.
To prove the conditions of rule rule 13,
1 need to know the value of normal interp.

In order to find the value of normaljnterp,
I'm try in g  ru le  ru le lB .
This concludes about norm al_interp.
To prove the con d ition s o f ru le  ru le lS ,
I need to  know the value o f a l l .p e a k s .

In order to  fin d  the value of a ll_ p ea k s,
I ’m trying rule rule 17.
This concludes about aU_peaks.
To prove the conditions of rule rulel?, 

need to know the value of channel.
To find the value of channel, I ’m asking you!

I After exp lanation  the q uestion  i s  prompted again.

That channel i s  th is  recording taken from ( ip s i/c o n tr a )  [ ’why.’ to  see why] ? > ip s i .

lo more questions and the system attem pts to so lv e  the top le v e l  goa l.

I The goal i s  su c c e ssfu l a f te r  examining the Baep data 
% using the fuzzy models described  in  the report.

I The reply  from the system is :
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The goal [baep_pks_found=yes] has been proved
The explanation fo r  baep_pks_found=yes i s  as fo llo w s :

rulel2T  : :
if

lab e llin g= su ccessfu l
then
baep_pks_f ound=yes.

llie can ask ’how’ cer ta in  con clu sions were reached.
% e.g. by en tering  ’ labelling=X. ’

hich fa c t  would you l ik e  to  query ( ’end.’ to  end)
( e g . ’peak_5_found=magic.’) > labelling=X .

I This i s  how

rulelS  : :
if

normal. interp=yes
then
la b e llin g = su ccessfu l.

Ï Again we have the option  to query

Mch fa c t  would you l ik e  to  query ( ’end.* to  end)
(eg. 'peak_5_found=magic. ’) —> normal_interp=X.

rulelS :: 
if

all_peaks=found
then
normaHnterp=yes.

% Etc.......

Which fact would you like to query ('end. ’ to end)
(eg. ‘peak_5_found=magic.’) > all_peaks=X.

rulel?  : :
if

channel=ipsi 
tit wave_I=found 
kk wave_II=found 
kk wave_III=found 
kk wave_IV=found 
kk wave_V=found 

then
all_peaks=f ound.

hich fa c t  would you l ik e  to  query ( ’end.’ to end)
(eg. 'peak_5_found=magic . ’ ) —> channel=ipsi.
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annel=ipsi because you told me so!
hich fact would you like to query ( ’end, ’ to end)

(eg. ‘peak_5Jound=m agic.’) -> wave_I=X.

ile36T ::

)os_wave_I_at=284
ien
fave_I=found,

lich fact would you l ik e  to query ( ’end.’ to end)
(eg. *peak_5_found=magic . ’ ) —> pos_wave_I_at=X.

ile35 ::

:hannel=ipsi
k&: w avej positionjs 284

( w aveJ is expected at 2 8 5 .0 + 14.0+wave_III
Dr

wave I is expected_at 285.0+14.0+wave V

$ ( -1 .0  is 284-285 .0) 
k k  $(ab s(-1 .0 ,1 .0 ))

$(1 .0=<14.0)
hen
pos_wave_I_at=284.

 ̂ We have asked to see how ’w a v e j positionjs X ’ has been 
 ̂ found. Because this comes from the activation of a generic 
 ̂ rule, we have been given lots of other information.

?hich fact would you like to query ( ’en d .’ to end)
(eg. ‘peak_5_found=magic. ’ ) > wave.I p o s itio n _ is  X.

wave.IV p o sitio n  has been found in  the averaged Baep response 
(grand.pks) with a certa in ty  of 0 .57 . This was determined from the fuzzy  
procedural model of the Baep.

uleOl : : 
f
wave.IV l i s t . o f . p k s . i s [388/414/0.571423]+grand_pks 
k& wave.IV b e s t .p k .is  3 8 8 /0 .571428+[388/414/0.571428] 
hen
wave.IV p o s it io n .is  388 cf 0.571428.

And so on for peak p o sitio n s .
This data provides the component la b e ls  and 
is  of great importance for the future work 
as a l i s t  of optional peaks i s  a lso  attached.

lileOl : : 
f
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wave.V liB t_of_pk8_is[388/414/1 .0 ,411/ -43/0.857142,406/ -108/0.142857]+grand_pks 
kk wave.V best_pk_i8 388/1 .0+[388/414/1.0,411/ -43/0.857142,406/ -108/0.142857]

then
wave.V position_i8  388 c f 1 .0 .

ruleOl : :
if
wave.II l i s t .o f .p k s _ i s [320/ -234 /1 .0 ,326 / -300 /1 .0 ]+grand_pk8 
kk wave.II b e s t .p k .is  320/1.0+[320/ -234 /1 .0 ,326 / -300/1.0]

then
wave.II p o s it io n .is  320 c f 1 .0 .

luleOl : :
if
wave.III l i s t . o f .p k s . i s [345/ -105 /1 .0 ,347 / -9 0 /1 .0 ,3 5 8 / -340 /1 .0]+grand.pks 
fet wave.III b est.p k .i8  345/1.0+[345/ -105 /1 .0 ,347 / -9 0 /1 .0 ,3 5 8 / -340/1 .0]

then
wave.III p o 8 itio n .is  345 c f  1 .0 .

r u le d  : : 
if
wave.I l i s t . o f .p k s . i s [284/ -177 /1 .0 ,286 / -1 8 2 /1 .0]+grand_pks 
kk wave.I b est_p k .is 284/1.0+[284/ -177 /1 .0 ,286 / -182/1.0]

then
wave.I p o s it io n .is  284 c f 1 .0 .

% This i s  another generic rule which we query about.

Mch fact would you l ik e  to query (*end. ' to end)
(eg. 'peak_5.found=magic. ’) —> wavej list_pf_pksjs X.

rnle06
if

waveJV has_pks_of_type bin_pks+
[370/10/1.0,376/15/1.0,390/15/0.857142,385/11/0.142857]

then

waveJV list_ofj)ks_is[370/10/1.0,376/15/l.0,390/15/0.857142,385/ll/0.142857]+bmj>k8.

nile06 ::
if

waveJV has_pks_of_type grand_pks+[388/414/0.571428]
then

waveJV list_ofj>ks_is[388/414/0.571428]+grand_pks.

Etc.

% The ru les are gradually  ch ain ing  hack to  the p o in t w here 
% the w ave m odels are m a d e .

Which fact would you like to query ( ’end. ’ to end)
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(eg. ‘peak_5_found=magic.’) > wave.I h as.pk s.of.type X.

rule 07 : : 
if
wave.IV fuzz.window.is[wave.IV,3 6 3 .0 /0 .0 ,3 6 3 .0 /1 .0 ,3 8 4 .0 /1 .0 ,3 9 1 .0 /0 .0 ]  
kk wave.IV pks.are[370/10/1.0,376/15/1.0.390/15/0.857142,385/11/0.142857]+

(bin_pks, [wave.IV,3 6 3 .0 /0 .0 ,3 6 3 .0 /1 .0 ,3 8 4 .0 /1 .0 ,3 9 1 .0 /0 .0 ] )
then
wave.IV has.p k s.o f.typ e bin.pks+

[370/10/1 .0 ,376/15/1 .0 ,390/15/0 .857142,385/11/0 .142857].

XU Etc. m

X This i s  the point where we can query about the model.

Vhich fact would you l ik e  to query ( ’end.* to end)
(eg. *peak.5.found=magic.’) —> wavej fuzz_windowJs X.

% The fu z zy  w in d o w  is  crea ted  fro m  here onw ards

ruleOB ::
if
waveJV current_8hiftjs 0
k k  waveJV model_of_i8[waveJV,363.0,363.0,384.0,391.0]
k k  waveJV windowJs[wavejv,363.0/0.0,363.0/1.0,384.0/1.0,391.0/0.0]+

([waveJV,363.0,363.0,384.0,391.0|,0)
then
waveJV fuzz_window_i8[waveJV,363.0/0.0,363.0/1.0,384.0/1.0,391.0/0.0]. 

m  E tc . % % %

% The m odel m aking  rule is  qu eried .

Which fact would you like to query ('end. ’ to end)
(eg. ‘peak_5Jound=magic.’) > wave.I window.is X.

X The reply i s  that th is  was ca lcu lated  using fuzzwindow/4.
X This i s  an example of the activa tion  of a demon through 
X a procedural attachment to  our declarative model of ru les .

wave.I window.is [wave.I,2 8 2 .0 /0 .0 ,2 8 2 .0 /1 .0 ,2 9 7 .0 /1 .0 ,3 0 2 .0 /0 .0 ]  +
([wave.I,282 .0 ,282 .0 ,297 .0 ,302 .0 ] ,0)
was calculated using fuzzwindow(wave.I,[wave.I,282 .0 ,282 .0 ,297 .0 ,302 .0 ].

0 , [w ave.I,2 8 2 .0 /0 .0 ,2 8 2 .0 /1 .0 ,2 9 7 .0 /1 .0 ,3 0 2 .0 /0 .0 ])

X Ve end the consultation  at th is  point.

Mch fact would you lik e  to query ('end.* to end)
(eg. *peak.5.found=magic.') —> end.

% A listin g  o f  w h a t has been d e te rm in e d  g lobally is  p r in ted .

This is what is known in the working memory ;
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iown( (baep_pks_found=yes)cf 0.999988,[rulel2T]). 
iown((labellmg=successful)cf 0.99999,[rulelS]). 
iown((normal_interp=yes)cf 0.999992,[rulel5]). 
iown((all_peak8=found)cf 0.999994,[rulel7]).
10 wn( ( wave_V=found) cf 1.0, [rule47T ] ).
iown((po8_wave_V_at=388)cf 1.0,[rule45|).
iown($(0.0=<15.0)cf 1.0, [calculated]).
iown($(abs(0.0,0.0))cf 1.0, [calculated]).
iown($(0.0 is 388—388.0)cf 1.0,[calculated]).
iown(wave_V is_expected_at 388.0+15.0+wave_I cf 1.0,[rule05]).
iown(wave_V expected_at 388.0+15.0+ (w avej ' ,  ’ 284)cf 1.0,[calculated]).
iown( ( wave J  V=found) cf 1.0, [rule44T ] ).
lown((po8_waveJV_at=370)cf 1.0,[rule43j).
aown($(3.0=<17.0)cf 1.0,[calculated]).
aown($(abs(3.0,3.0))cf 1.0, [calculated]).
nown($(3.0 is 370—367.0)cf 1.0,[calculated]).
aown(waveJV position_is 370 cf 1.0,[rule02]).

E tc . (A p p ro x . 100 i t e m s )  % % %

nown(wavej model_ofjs[wavej,282.0,282.0,297.0,302.0]cf 1.0,[rule09]). 
nown(wavej is_described_by[wavej,282.0,282.0,297.0,302.0]+

((287.Ô 5 .0)" ','[0 ,l,2 ,l])cf 1.0,[calculated]).
:nown(waveJ modifiers_are[0,l,2,l]cf 1.0,[calculated]).
:nown(waveJ stats_of_are (287.0 *, ' 5.0)cf 1.0,[rulel0]). 
mown (w avej sd js  5.0 cf 1.0, [calculated]), 
mown (w avej m eanjs 287.0 cf 1.0,[calculated]). 
mown(wavej current_sliift_is 0 cf 1.0,[calculated]), 
mown ( ( channel= ipsi) cf 1.0, [ told] ).

% g o to p (X )  re tu rn s  ’y e s ’ a s  th e  a n sw e r  to  
% the goal ’s o lv e fb a e p jp k sJ o u n d  = X , F u zz , [J)’.

X =  yes

I ? -

% N o rm a l e x it to  th e  P ro lo g  s y s te m .
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Appendix [D3]

Event Analysis; Results for Bin Cancellation Simulations



BCANDP.X15

Probability (P(X=bela)M) of Bin Cancellation Error (beta) for Increasing Numbers of
Trials (M) a t Different Event Probabilities p.

p=0.010
M 4 16 32 48 64 80 96 112 128
P(X=0)M 0.926 0.763 0.638 0.571 0.532 0.506 0.488 0.472 0.457
P(X=1)M 0.0373 0.12 0.187 0.229 0.257 0.278 0.293 0.305 0.313
P(X-2)M 0 0.00901 0.0284 0.0506 0.0729 0.0942 0.114 0.132 0.148
P(X=3)M 0 0.000423 0.00282 0.00756 0.0143 0.0226 0.032 0.0421 0.0526
P(X=4)M 0 1.38E-05 0.000204 0.00084 0.00212 0.00416 0.00697 0.0105 0.0148
P(X-5)M 0 3.35E-07 1.15E-05 7.35E-05 0.000251 0.000614 0.00123 0.00214 0.0034

p=0.020
M 4 16 32 48 64 80 96 112 128
P(X=0)M 0.862 0.638 0.533 0.49 0.459 0.432 0.405 0.381 0.359
P(X=1)M 0.0696 0.188 0.258 0.295 0.315 0.324 0.324 0.32 0.312
P(X=2)M 0 0.0278 0.0725 0.114 0.148 0.176 0.196 0.209 0.217
P(X=3)M 0 0.0026 0.0139 0.0315 0.0521 0.0731 0.0926 0.11 0.124
P(X=4)M 0 0.000171 0.00198 0.00669 0.0143 0.0243 0.0357 0.0475 0.0589
P(X=5)M 0 8.3E-06 0.00022 0.00114 0.00322 0.00669 0.0115 0.0174 0.024

p=0.040
M 4 16 32 48 64 80 96 112 128
P(X=0)M 0.762 0.536 0.464 0.409 0.363 0.326 0.298 0.275 0.257
P(X-1)M 0.121 0.26 0.318 0.327 0.315 0.295 0.276 0.259 0.244
P(X=2)M 0 0.0717 0.148 0.196 0.218 0.224 0.221 0.215 0.208
P(X=3)M 0 0.013 0.051 0.0918 0.123 0.143 0.153 0.158 0.159
P(X=4)M 0 0.00169 0.0135 0.0346 0.0579 0.078 0.093 0.103 0.11
P(X=5)M 0 0.000164 0.00288 0.0108 0.0231 0.0368 0.0496 0.0604 0.069

p=0.060
M 4 16 32 48 64 80 96 112 128
P(X=0)M 0.689 0.498 0.413 0.346 0.3 0.268 0.244 0.226 0.211
P(X=1)M 0.159 0.3 0.33 0.308 0.278 0.253 0.233 0.217 0.204
P(X=2)M 0 0.113 0.197 0.223 0.222 0.212 0.202 0.192 0.183
P(X=3)M 0 0.0293 0.0909 0.134 0.153 0.159 0.159 0.157 0.154
P(X=4)M 0 0.00555 0.0335 0.0674 0.0921 0.107 0.114 0.118 0.12
P(X=5)M 0 0.000798 0.0101 0.0289 0.0485 0.064 0.0749 0.0824 0.0875

p=0.080
M 4 16 32 48 64 80 96 112 128
P(X=0)M 0.638 0.473 0.369 0.303 0.262 0.234 0.213 0.197 0.185
P(X=1)M 0.187 0.324 0.32 0.28 0.248 0.224 0.206 0.191 0.18
P(X=2)M 0 0.148 0.22 0.223 0.21 0.197 0.185 0.174 0.166
P(X=3)M 0 0.0486 0.122 0.153 0.16 0.158 0.154 0.15 0.145
P(X=4)M 0 0.0119 0.0556 0.0912 0.109 0.117 0.12 0.121 0.12
P(X=5)M 0 0.00223 0.0211 0.0474 0.0671 0.0794 0.0869 0.0915 0.0943
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p=0.100
M 4 16 32 48 64 80 96 112 128
P(X=0)M 0.603 0.448 0.335 0.273 0.236 0.211 0.193 0.178 0.167
P(X=1)M 0.205 0.336 0.303 0.257 0.226 0.204 0.187 0.174 0.163
P(X=2)M 0 0.177 0.227 0.215 0.198 0.183 0.171 0.161 0.153
P(X=3)M 0 0.0686 0.142 0.159 0.159 0.154 0.148 0.142 0.137
P(X=4)M 0 0.0202 0.0748 0.105 0.117 0.12 0.121 0.119 0.117
P(X=5)M 0 0.00463 0.0335 0.0619 0.0785 0.0877 0.0927 0.0953 0.0964

p-0.200
M 4 16 32 48 64 80 96 112 128
P(X=0)M 0.527 0.352 0.249 0.204 0.176 0.158 0.144 0.133 0.125
P(X=1)M 0.231 0.317 0.238 0.197 0.172 0.155 0.142 0.131 0.123
P(X=2)M 0 0.232 0.205 0.179 0.16 0.146 0.135 0.126 0.119
P(X=3]M 0 0.138 0.161 0.152 0.142 0.132 0.124 0.118 0.112
P(X=4)M 0 0.0667 0.114 0.121 0.119 0.115 0.111 0.107 0.103
P(X=5)M 0 0.0254 0.0734 0.0902 0.0957 0.0968 0.0958 0.094 0.0919

p=0.300
M 4 16 32 48 64 80 96 112 128
P(X=0)M 0.466 0.303 0.217 0.177 0.154 0.138 0.126 0.116 0.109
P(X=])M 0.208 0.278 0.209 0.173 0.151 0.135 0.124 0.115 0.108
P(X=2)M 0 0.216 0.187 0.161 0.143 0.13 0.119 0.111 0.105
P(X-3)M 0 0.14 0.155 0.142 0.13 0.12 0.112 0.106 0.1
P(X=4)M 0 0.0739 0.119 0.119 0.114 0.108 0.103 0.0981 0.0937
P(X=5)M 0 0.0301 0.0842 0.0956 0.0967 0.0949 0.0922 0.0892 0.0862

p=0.400
M 4 16 32 48 64 80 96 112 128
P(X=0)M 0.375 0.248 0.192 0.162 0.142 0.128 0.117 0.109 0.102
P(X=1)M 0.164 0.21 0.179 0.156 0.139 0.126 0.116 0.107 0.101
P(X=2)M 0 0.148 0.154 0.143 0.131 0.121 0.112 0.104 0.0983
P(X=3)M 0 0.0854 0.122 0.125 0.119 0.112 0.106 0.0996 0.0943
P(X=4)M 0 0.039 0.0881 0.103 0.104 0.102 0.0974 0.0931 0.089
P(X=5)M 0 0.0136 0.0575 0.0801 0.088 0.0893 0.0879 0.0854 0.0826

p=0.500
M 4 16 32 48 64 80 96 112 128
P(X=0)M 0.27 0.14 0.0993 0.0812 0.0704 0.063 0.0575 0.0533 0.0498
P(X=])M 0.109 0.0974 0.0779 0.067 0.0597 0.0545 0.0505 0.0472 0.0446
P(X=2)M 0 0.0553 0.0551 0.0515 0.0481 0.0452 0.0428 0.0407 0.0388
P(X=3)M 0 0.0251 0.0351 0.037 0.0368 0.036 0.035 0.034 0.033
P(X=4)M 0 0.00892 0.0199 0.0247 0.0267 0.0275 0.0276 0.0275 0.0273
P(X=5)M 0 0.00238 0.0101 0.0153 0.0183 0.02 0.0211 0.0216 0.0219

P age 2



CHART010.XLC

Probability (P(X=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers of
Trials (M) at p=0.01.

Curves for beta = 0 to 5 - Top to Bottom
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CHART020.XLC

P(X=beta)M

Probability (P(X=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers of
Trials (M) at p=0.02.

Curves for beta = 0 to 5 - Top to Bottom
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CHART040.XLC

Probability (P(X=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers of
Trials (M) at p=0.04.

Curves for beta = 0 to 5 - Top to Bottom
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CHART060.XLC

Probability (P(X=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers of
Trials (M) at p=0.06.

P(X=beta)M

Curves for beta = 0 to 5 - Top to Bottom
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CHART080.XLC

PCX=beta)M

Probability (P(X=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers of
Trials (M) at p=0.08.

Curves for beta = 0 to 5 - Top to Bottom
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CHARTIOO.XLC

Probability (P(X=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers of
Trials (M) at p=0.10.

P(X=beta)M

Curves for beta = 0 to 5 - Top to Bottom
0.7

0 .6

0.5

0.4

0.3

0.2

0.1

0
14012010020 800 40 60

Number of Trials (M)

Page 1



CHART200.XLC

0 . 6

Probability (P(X=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers of
Trials (M) at p=Q.2Q.

Curves for beta = 0 to 5 - Top to Bottom
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CHART300.XLC

Probability (P(X=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers of
Trials (M) at p=0.30.

Curves for beta = 0 to 5 - Top to Bottom
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C H A R T 4 0 0 . X L C

P robability (P(X=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers of
Trials (M) at p=0.40.

Curves for beta = 0 to 5 - Top to Bottom
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CHART500.XLC

Probability (P(X=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers of
Trials (M) at p=0.50.

Curves for beta = 0 to 5 - Top to Bottom
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BCAXCPXLS

Prcbabilily (P(X<=belajM) of Bin Cancellalicr. Error (bcla) for Increasing Numbers of 1
Trials (M) al Diffcrenl Event Probabililies p. j 1

i : 1 I : ! i :
P=C.C1C ! 1 i 1
M 1 4j 161 32; 481 64 80 96l 112 128
P(X< = C)M 1 0.963' 0.8711 0.7811 0.7121 0.653 0.601 0.552; 0.508 0.467
P(X<=!jM i 1| 0.991 0.9691 0.941 0.91 1 0.878 0.846 0.813 0.78
P(X<=2)M 1 1 l: C.9 9 7 I 0.992 0.983 1 0.973 0.96 0.945 0.928
P(X<=3)M 1 11 l | 0.999 0.998 { 0.995 0.992 0.987 0.981
P(X< = 4)M , 11 1 ! 1 | 1 11 0.999 0.999 0.997 0.996
P(X<=5)Ml P II 11 1 li 1 1 1 0.999

I : , I , !
! 1 1 ; i

M 1 ^ t | Ml 96 112 128
P(X<=G).Ui 0.92' CT6I: 0.6531 0.553! O.T66i 0.395| 0.336 0.289 0.252
P(X<=1)M; l' 0.9691 0.911' C.847| 0.781 0.7181 0.661 0.609 0.564
P(X<=2)M| I' 0.9971 C.9ei| 0.96! 0.93, 0.894j 0.856 0.818 0.781
P(X<=3)\l| 1 ll 0.9981 0.9921 0.982| 0.967! 0.919 0.928 0.905
P(X =4)Mi 1 l! l! 0.999; 0.996 0.99 Ij 0.984 0.975 0.964
P(.X<=5).VI li ll ]i ]' 0.999 0.9981 0.996 0.993 0.988

; ■ : 1 ' 1 i i
p=o.oio ‘ ! 1 1
M i 4 16 32 48. 64 80 96 112 128
P(X<=OI.V| 0.8791 0.653 0.466 0.335 0.252 0.2 0.169 0.148 0.135
P(X<=1)M 1 0.913 0.784 0.663 0.567 0.496 0.444 0.407 0.379
P(X<=2)M 1 0.985 0.932 0.859 0.785 0.719 0.665 0.622 0.586
P(X< = 3)M 1 0.998 0.983 0.951 0.908 0.862 0.819 0.78 0.746
P(X< = 4)M 1 1 0.997 0.986 0.966 0.94 0.911 0.883 0.856
P(X<=5)M 1 1 0.999 0.996 0.989 0.977 0.961 0.943 0.925

p=0.060
M 4 16 32 48 64 80 96 112 128
P(X<- = 0)M 0.841 0.552 0.335 0.223 0.169 0.142 0.126 0.117 0.112
P(X<=])M 1 0.851 0.665 0.531 0.447 0.395 0.359 0.334 0.316
P(X<=2)M 1 0.964 0.862 0.754 0.669 0.607 0.561 0.526 0.499
P(X<=3)M 1 0.994 0.953 0.888 0.822 0.766 0.72 0.683 0.653
P(X< = 4)M 1 0.999 0.987 0.956 0.915 0.873 0.835 0.801 0.773
P(X<=5)W 1 1 0.997 0.985 0.963 0.937 0.91 0.884 0.86

p=0.G80 1
M 4j 16 32 48 64 80 96 112 128
P(X<=0)M 0.8131 0.465 0.252 0.17 0.136 0.121 0.112 0.109 0.108
P(X<=1)M 1 0.789 0.572 0.45 0.384 0.345 0.318 0.3 0.288
P(X<=2)M 1 0.937 0.792 0.673 0.595 0.541 0.503 0.474 0.453
P(X<=3).ll 1 0.986 0.914 0.826 0.754 0.699 0.657 0.624 0.598
P(X-;-4)M 1 0.997 0.97 0.918 0.863 0.816 0.777 0.745 0.718
P(X<=5)M 1 1 0.991 0.965 0.931 0.896 0.864 0.836 0.812

1 _  _  J
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p=0.100
M 4 16 32 48 64 80 96 112 128
P(X<=0)M 0.795 0.392 0.201 0.143 0.121 0.112 0.108 0.109 0.112
P(X<=1)M 1 0.729 0.504 0.401 0.347 0.315 0.295 0.282 0.275
P(X<=2)M 1 0.906 0.731 0.616 0.545 0.499 0.466 0.444 0.428
P(X<=3)M 1 0.974 0.873 0.775 0.704 0.652 0.614 0.586 0.565

P(X<=4)M 1 0.994 0.948 0.88 0.821 0.773 0.735 0.705 0.682
P(X<=5)M 1 0.999 0.981 0.942 0.899 0.86 0.828 0.8 0.778

p=0.200
M 4 16 32 48 64 80 96 112 128

P(X<=0)M 0.769 0.212 0.127 0.109 0.108 0.117 0.13 0.146 0.163
P(X<=1)M 1 0.529 0.364 0.306 0.28 0.271 0.272 0.277 0.286
P(X<=2)M 1 0.761 0.569 0.485 0.44 0.417 0.406 0.403 0.405
P(X<=3)M 1 0.9 0.73 0.637 0.582 0.549 0.531 0.521 0.516

P(X<=4)M 1 0.966 0.844 0.758 0.701 0.665 0.642 0.627 0.619
P(X<=5)M 1 0.992 0.917 0.848 0.797 0.761 0.738 0.721 0.711

p=0.300
M 4 16 32 48 64 80 96 112 128
P(X<=0)M 0.792 0.252 0.129 0.11 0.119 0.138 0.161 0.184 0.206
P(X<=1)M 1 0.53 0.338 0.283 0.27 0.274 0.285 0.299 0.314

P(X<=2)M 1 0.746 0.525 0.443 0.413 0.404 0.404 0.41 0.419
P(X<=3)M 1 0.886 0.68 0.586 0.543 0.524 0.517 0.516 0.519
P(X<=4)M 1 0.96 0.799 0.705 0.657 0.632 0.62 0.614 0.613
P(X<=5)M 1 0.99 0.883 0.801 0.754 0.727 0.712 0.703 0.699

p=0.400
M 4 16 32 48 64 80 96 112 128

P(X<=0)M 0.836 0.5 0.335 0.245 0.203 0.193 0.201 0.217 0.236
P(X<=1)M 1 0.71 0.514 0.401 0.342 0.319 0.316 0.324 0,337

P(X<=2)M 1 0.858 0.669 0.544 0.473 0.44 0.428 0.428 0.435

P(X<=3)M 1 0.944 0.791 0.669 0.593 0.552 0.533 0.528 0.53

P(X<=4)M 1 0.983 0.879 0.772 0.697 0.653 0.631 0.621 0.619
P(X<=5)M 1 0.996 0.937 0.852 0.785 0.743 0.719 0.707 0.701

p=0.500
M 4 16 32 48 64 80 96 112 128

P(X<=0)M 0.891 0.81 0.795 0.788 0.784 0.782 0.781 0.782 0.783
P(X<=1)M 1 0.908 0.873 0.855 0.843 0.836 0.832 0.829 0.827

P(X<=2)M 1 0.963 0.928 0.906 0.892 0.882 0.875 0.87 0.866

P(X<=3)M 1 0.988 0.963 0.943 0.928 0.918 0.91 0.903 0.899

P(X<=4)M 1 0.997 0.983 0.968 0.955 0.945 0.937 0.931 0.926

P(X<=5)M 1 1 0.993 0.983 0.973 0.965 0.958 0.953 0.948

P a g e  2



CHRTC010.XLC

Probability (P(X<=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers
of Trials (M) at p=0.01.

Curves for beta <= 0 to 5 - Bottom to Top
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CHRTC020.XLC

Probability (P(X<=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers
of Trials (M) at p=0.02.

Curves for beta <= 0 to 5 - Bottom to Top
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CHRTC040.XLC

Probability (P(X<=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers
of Trials (M) at p=0.04.

P(X<=beta)M

Curves for beta <= 0 to 5 - Bottom to Top
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CHRTC060.XLC

Probability (P(X<=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers
of Trials (M) at p=0.06.

P(X<=beta)M

Curves for beta <= 0 to 5 - Bottom to Top
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CHRTC080.XLC

P(X<=beta)M

Probability (P(X<=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers
of Trials (M) at p=0.08.

Curves for beta <= 0 to 5 - Bottom to Top
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CHRTC100.XLC

P(X<=beta)M

Probability (P(X<=beta)H) of Bin Cancellation Error (beta) for Increasing Numbers
of Trials (M) at p=0.10.

Curves for beta <= 0 to 5 - Bottom to Top
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CH R T C 2 0 0 . X L C

Probability (P(X<=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers
of Trials (M) at p=0.20.

Curves for beta <= 0 to 5 - Bottom to Top
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CHRTC300.XLC

P(X<=beta)M

Probability (P(X<=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers
of Trials (M> at p=0.30.

Curves for beta <= 0 to 5 - Bottom to Top
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CHRTC400.XLC

P(X<=beta)M

Probability (P(X<=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers
of Trials (M) at p=0.40.

Curves for beta <= 0 to 5 - Bottom to Top
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CHRTC500.XLC

Probability (P(X<=beta)M) of Bin Cancellation Error (beta) for Increasing Numbers
of Trials (M) at p=0.50.

P(X<=beta)M

Curves for beta <= 0 to 5 - Bottom to Top
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Appendix [D4]

Event Analysis: Results for Latency Variability Recovery Experiments



Attnbpte Definitions for Eyent Analysis Result Tables

Item N®
Index number equivalent to the number of trajectories or BIN/GAV peaks 

GPkAmpl
Amplitude of peak in the GAV (1 unit = 25 nV)

GPkLat
Latency of peak in the GAV (ms)

BPkAmpI
Amplitude of smoothed peak in the BIN (arbitrary units)

BPkLat
Latency of smoothed peak in the BIN (ms)

Mo
Mean latency value of events in a trajectory (ms)

SD
Standard deviation of latency of events in a trajectory (ms)

O

Total number of observed events (after compression) in a trajectory
E

Total number of expected events in a trajectory = (Span x Local event probability) 
ChiSq

X statistic = (O - E)  ̂/ E 
ChSqP

Probability of x statistic with one degree of freedom 
BinomP

Binomial probability of finding an event in a trajectory 
%Swps

Percentage of trials containing an event in a trajectory
CC

Compression coefficient = 1.0 - { (Actual Number of Observed Events - O) / Actual 
Number of Observed Events }.

Span
Width of the region occupied by a trajectory after iterative convergence to the mean 
latency of 95% of the population of trajectory events.



SNRTESTS.X:

1:1 EVENT ANALYSIS RESULTS FOR NOISE DATA FILES ' I ! 1
! 1

i , : <
|1A | Event Probabilities: Noise File VIN'I.EEG Image Data Set Name GVINl.EEG | !

Max GPks possible (u n ifo rm ) : 12925 i 1 : 1
Total GPks found : 68-f i ; 1 1 !
Global Probability of Pk ' 0,05 | i 1 1

i 1 1 , ■ ' 1 1 1
Max LPks possible (un iform ) : 9128 ! ^ 1 1 j
Total LPks found : 512 ! , ! 1
Local Probability of Pk : 0,06

1 ! I ' l l
Max In te rPks poss, f in ifo rm ) ■ 4500 1 ' ! !
T o ta lIn te rP k s  found : 172 ; | 1 1
In te r Probability of Pk : 0 04 i ! ! i i i

1 ' 1 ■ t ■■ ■ 1
1 1 1 : ' I 1 1

I
ItemNum GPkAmpi {GPkLat 3PkAm.pl i BPkLat ' Mn SD lO IE ChiSq ChSqP BinomP %Swps CC Span

0 -4111 0,92 66511 1,52} 1,33 0.061 29 20 5 66 0.02 0 45.31 0,88
; -4411 1,45 101721 2,2S| 2.17 0 .11| 35 32 0.47 0.4.9 0 54.69 0,91 8
21 55751 1 5! 5663 2.64 2,93 0.11 33 32 0,03 0.85 0 51.56 0.89 8
3 36961 5,2 5639 3.25 3 33 0.07! 27| 24 0 53 0 4 7 0 42.19 0,97 6
4: - 11149! 6 3 2 5191 3.5 3.621 0.1 l i  32 36 1.17 0.28 0 50 0.39 9
5 163841 8.63 8030 4 I 4 l |  0.151 44 52 7 4 5 0.01 0 68.75 0,85 13
6 67321 924 IO8 O9 I 4.561 4 58 0.07! 36 28 3.64 0.05 0 56.25 0,84 7
7, 0 : 0 5509 5 32: 523 0.13 42 44 0,4 0.52 0 65.63 0,74 11
9 I Ol 0 7079 5,72 5.66 0.15 39 48 7 45 0.01 0 60,94 0,81 12
9

10 
11

0 0 5925 6,4 6.31 0.09 22 24 0 32 0 57 0 34.38 0.88 6
c 0 40101 6 64 6.94 0.11 32 36 1.17 0 2 8 0 50 0.89 9
0 0 7009 7,58 7.55 0.13 38 40 0.36 0.55 0 59,38 0.95 10

12 01 0 5529 8 7.96 0.07 32 24 4.05 0,04 0 50 0.97 6
13 0 ! 0 8468 8.76 8.7 0.08 35 28 2,91 0,09 0 54,69 081 7
14 01 0 10480 9,2 9.12 0.12 35 40 1.89 0.17 0 54,69 0.92 10

1
|1 3 ] Event Probabilities: Noise File V1N2.EEG Image Data Set Name GVIN2 EEC

1 I I
Max GPks possible (uniformi) : 12672
Total GPks found : 572
Global Probability of Pk : 0,05

1 i
Max LPks possible (un iform ) 8640
Total LPks found : 450
;>ocal Probability of Pk . 0,05

! 1
Max In te rPks poss. (un iform ) : 4032
Total In te rPks found : 122
In te r Probability of Pk 0,03

ItemiNum GPkAmpl GPkLat BPkAmpI BPkLat Mn SD 0 E ChiSq ChSqP BinomP 7,Swps CC Span
0 -2 2 40 2.2 8503 0.96 1.02 0.13 28 37 4.8 0.03 0 43.75 0.88 11
1 -2441 2 4 9 12312 1.89 1,81 008 29 20 4.65 0.03 0 43,75 0,97 6
2 396 3.32 7952 248 2 4 9 0.07 25 20 1.82 0.18 0 39.06 1 6
3 -274 3,76 8445 2,8 2,82 0.08 25 23 0.19 0.67 0 39.06 093 7
4 2608 4 5 2 10752 3,32 3.35 0.15 37 40 0.6 0.44 0 57.81 0 7 7 12
5 4972 5,88 5362 4 04 3,95 0.11 25 30 1.57 0.21 0 39.06 0,86 9
6 4391 62 12358 4,28 4,3 0.08 25 23 0.19 0.67 0 39.06 0.93 7
7 5446 7,52 4585 4 72 4.68 0.14 34 40 2.4 0.12 0 53.13 0.83 12
8 13765 9,24 10548 5.48 5,43 0.11 29 30 0.06 0,8 0 45.31 0.88 9
9 0 0 7044 5,8 5.75 0.05 20 13 4 21 0,04 0 31.25 0,91 4

10 0 0 7057 6,16 6,28 0,14 41 40 0.07 0.8 0 64 06 0,85 12
11 0 0 7579 7.12 7,02 0,14 33 37 0,86 0 3 5 0 51.56 0,82 11
12 0 0 12505 7,4 7,41 0.11 36 30 2,26 0.13 0 56.25 0,86 9
13 0 ! 0 11346 776 7 87 0.15 31 40 5,4 0 0 2 0 48.44 0,84 12
14 ol 0 91191 8.56 8.56 0.1 29 27 0.35 055 0 45.31 0.97 8

1 i

Pigf 1
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|! C | Event Probabilities: Noise File P013LDAT Image Data Set Name GP013LD.AT |
! I 1 i i Î !

Max GPks possible (uniformi) : 12288 : j j 1
Total GPks found ' 147 1 j | : j
Global Probability of Pk 0.01 1 i i ! 1

1 ! ! ! ! 1 I
Max LPks possible (un iform ; : 7040 1 j ! 1
Total LPks found : 125 ! 1 1 1
Local Probability  of Pk 0 02 1 ! 1 1 1

; 1 1 !
Max In te rP ks poss. (uniform ) : 5248 !
Total Inte.^Pks found 22 1 ; 1
In te r Probability of Pk : 0.00 1 ! ! ■ 1 "

! ! 1 1
1 1 ! ' !

iie.m.N urn ^ k .A m p l iGPkuat I BPkAmpI BPxLat i.Mn ISO |0 E ChiSq ChSqP BinomP %Swps CC Span
Oi 72891 1,81 7454 1.761 1.79 0 04; 5 2 0.12 0,73 0 7,91 1 2
li  5439! 3 241 86201 2,441 2 38 Oi l }  9 9 0 0,97 0 14,06 8
2! 3993! 4 04 6477' 3.28' 3.03 0 23i 19 19 0,05 0.82 0 29.69 16
3j 87591 5.16 4979 4.081 4 21 0.251 15 23 4 07 0.04 0 2344 26
4 4337 6,12 9257j 5 1 6 | 5.07! 0.2:1 19 20 0.15 0 7 0 29.69 : 18
5| 15276! 6,92 121101 6,321 6,371 0,14 15 13 0.62 0.43 0 23,441 1 11
6: 15131 7 8 163941 6 96l 6.851 0.12 19 10 8 96 0 0 29.69 9
7| -11621 8 14 9139! 7.68| 7,76' 0,1 10 8 0.6 044 0 15.63
8| 152191 9.241 8092! 9,96| 9,06l 0.22 14 22 4.03 0.04 0 21.93 19

1 1 i I 1 ’ 1 1
| : 0 |  Event Probabilities: Noise File G.AS3LD.AT image Data Set Name GG.ASBLD.AT

1 ; i : ' ! 1 !
Max GPks possible (j.n iform ) 14083 ! ' ! !

Total GPks found ■ 192 1 !
Global Probability of Pk 0.01 1 1

1 1
Max IP ks possible (uniform ) : 9536
Total LPks found : ISO
Local Probability of Pk ■ 0.02_ . .  . _

Max In terPks poss. (uniform ) : 4544
Total In te rP k s found : 12
In te r Probability of Pk : 0.00

ItemNum GPkAmpl GPkLat BPkAmpI BPkl^t Mn SD 0 E ChiSq ChSqP BinomP %Swps CC Span
0 16165 084 16384 1 0,96 0,1 16 10 4.89 0.03 0 25 1 8
1 5705 1 64 7172 1,48 1.56 0 1 8 11 17 2.81 0 0 9 0 17.19 1 14
2 2239 3.6 15431 2.24 228 0.07 14 7 7.09 0.01 0 21.88 1 6
3 9035 4,4 8829 2.88 2.89 0.06 8 6 0.7 0.4 0 12.5 I 5
4 16384 5.2 12133 3.2 342 0.22 22 21 0.15 0.7 0 34,38 1 17
5 8952 7,04 10138 4,56 4 4 0,16 14 16 0.25 062 0 21.88 1 13
6 6686 7,88 8154 5,52 5,29 0,23 20 23 0.59 0.44 0 3 1 25 1 19
7 2700 8.76 7080 592 6.12 0,21 14 19 2.1 0,15 0 21.98 1 16
8 5954 9.56 10237 696 6 83 0,16 14 16 0.25 0.62 0 21.88 1 13
9 0 0 8921 7.32 7,39 0.12 12 11 0.14 071 0 18.75 I 9

10 0 0 10138 8,44 8.5 0 2 2 20 22 0.21 0.65 0 31.25 1 18
11 0 0 9069 944 9.35 0,15 15 13 0,28 0.6 0 23.44 1 11

1



(a) Spontaneous EEG (1 response/sub-average)
GUI M2.EEC Maxpkpk:64 PDF: 2

(b) Spontaneous EEG (2 responses/sub-average)
Grand Av GPOIBL.DAT Maxpkpk:768

Ev e n t  B in s

(c) Band-limited random Poisson noise
Grand Av GGASBL.DAT Maxpkpk:601

Ev e n t  B ins

(d) Band-limited random gaussian noise

Trajectory maps obtained for the noise data sets used in the com ponent 
latency variability recovery experiments.
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|2l EVENT ANALYSIS RESULTS FOR FIXED LATENCY SIGNAL 4 NOISE DATA FILES

|2A] Event Probabilities; Noise File VINl.EEC Image Data Set Name GEEGI.FIX
1 1 1

Mai GPks possible (uniform) : 13888
Total GPks found : 727
Global Probability of Pk : 0.05. .

Mai IPks possible (uniform) : 4884
Total l?ks found : 455
Local ProbabDity of Pk : 0.09. . .

Mai InterPks poss. (uniform) : 9024
Total InterPks found : 272
Inter Probability of Pk : 0.03

ItemNum GPkAmpl GPkLat BPkAmpI BPkLat Mn SD 0 E ChiSq ChSqP BinomP %S*ps CC Span
0 16384 1 16384 1 1 0.03 59 12 227.2 0 0 92.19 1 2
1 7975 2 14405 2 2 0.04 59 24 61.98 0 0 92.19 0.98 4
2 2996 3 9303 3 3 0.06 52 36 16.4 0 0 81.25 0.93 6
3 1893 4.04 4408 4 3.95 0.13 49 64 3.52 0.06 0 76.56 0.86 11
4 1361 5 4214 5.08 5.04 0.07 39 36 0.6 0.44 0 60.94 0.85 6
5 1081 6 2282 6.04 6.12 0.12 39 60 112.68 0 0 60.94 0.8 10
6 -1335 7.08 2071 7.12 7.04 0.07 27 36 5.05 0.02 0 42.19 0,87 6
7 120 8.16 1256 7.72 7.71 0.11 29 54 72.67 0 0 45.31 0.88 9
8 1548 9.44 2308 8.24 8.24 0.12 38 60 123.74 0 0 59.38 0.93 10
9 0 0 2606 8.72 8.72 0.07 32 36 0.98 0.32 0 50 0,91 6

10 0 0 2175 9.52 9.52 0.07 32 36 0.98 0.32 0 50 0.78 6

2Bl Event Probabilities: Noise File V1N2.EEG Image Data Set Name GEEG2.FD(
1  T  1

Mai GPks possible (uniform) : 14272
Total GPks found : 597
Global Probability of Pk : 0.04

J J
Mai IPks possible (uniform) : 6144
Total IPks found : 461
Local Probability of Pk : 0.08

...1  ■■ ■ T
Mai InterPks poss. (uniform) : 8128
Total InterPks found : 136
Inter Probability of Pk : 0.02

ItemNum GPkAmpl GPkLat BPkAmpI BPkLat Mn SD 0 E ChiSq ChSqP BinomP %S*ps CC Span
0 16384 1 16384 1 0.99 0.03 57 10 275.19 0 0 89.06 1 2
1 5214 2 13636 2 2 0.04 56 19 100.69 0 0 87.5 0.98 4
2 3364 3 9294 2.96 2.98 0.08 53 34 23.55 0 0 82.81 0.98 7
3 1978 4 4778 3.92 3.98 0,1 44 43 0.04 0.83 0 68.75 0.9 9
4 717 5.04 3949 5 5 0.14 39 58 60.43 0 0 60.94 0.85 12
5 355 6.12 919 5.68 5.61 0.08 17 34 17.3 .0 0 26.56 0.85 7
6 273 7 2658 6.2 6.14 0.11 27 43 18.74 0 0 42.19 0.96 9
7 742 8.24 1108 6.56 6.53 0.06 19 24 1.67 0.2 0 29.69 0.95 5
8 -30 9.36 2120 6.96 7.07 0.12 35 48 14.14 0 0 54.69 0.9 10
9 0 0 2114 8.28 8.21 0.11 34 43 6.06 0.01 0 53.13 0.81 9

10 0 0 1411 8.8 8.86 0.1 25 38 11.72 0 0 39.06 0.93 8
11 0 0 1726 9.32 9.34 0.08 24 34 5.79 0.02 0 37.5 0.89 7
12 0 0 2687 9.8 9.74 0.08 31 34 0.43 0.51 0 48.44 0.86 7

Page 3
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1 1 r
Uhi fiPks Dossifale (uniform) : 13760

I I
Max IPks possible (uniform) : 5504

Max InterPks poss. (uniform) : 8256

GPkAmpl GPkLat BPkAmpI BPkLat Mn SD 0 E ChiSq ChSqP BinomP SSwps CC Span

0 16384 1 16384 0.96 0.98 0.03 21 5 52.84 0 0 32.81 1 3

1 8558 2 11627 2.08 2.07 0.03 15 3 2.21 0.14 0 23.44 1 2
2 3302 2.96 5907 3.16 3.07 0.11 15 14 0.14 0.71 0 23.44 1 8

3 3052 4 7074 4.08 4.08 0.06 12 10 0.32 0.57 0 18.75 1 6

4 1466 4.92 2621 5.12 5.1 0.2 15 28 10.02 0 0 23.44 1 16

5 1978 5.96 3838 6.12 5.97 0.16 17 21 0.95 0.33 0 26.56 1 12

6 682 6.88 2756 7.04 6.88 0.17 14 22 4.82 0.03 0 21.88 1 13

7 2283 7.68 6079 7.72 7.66 0.11 18 15 0.54 0.46 0 28.13 1 9

8 -628 9.2 3286 8.72 8.88 0.2 17 28 7.07 0.01 0 26.56 1 16

9 0 0 2644 9.52 9.51 0.02 4 2 0.08 0.77 0.06 6.25 1 1

[2Ill Fvenl Probabilitie3: Noise Fill GASBLDAT Image Data Set Name GGAS.FIX
1 1 1

Uhx GPks DDSsible (uniform) ; 13824

Global Probability of Pk : 0.01
1 1

tiai IPks Dossible (uniform) : 5952
Total IPks found : 161

1 1
2

GPkLat BPkAmpI BPkLat Mn SD 0 E ChiSq ChSqP BinomP XSwps CC Span

0 16384 1 16384 0.96 0.98 0.05 30 9 60.86 0 0 46.88 5

1 7107 2 7460 2.04 2.03 0.07 18 10 6.66 0.01 0 28.13 6

2 4542 3 5523 3.04 3.07 0.06 13 7 5.98 0.01 0 20.31 4

3 1344 3.96 4234 4 4 0.07 13 10 0.78 0.38 0 20.31 6

4 1444 5.08 3820 4.92 5.12 0.16 18 23 1.39 0.24 0 28.13 13

5 2339 5.96 2871 5.96 6.03 0.21 21 29 4.47 0.03 0 32.81 17

6 895 7.84 3032 7 7.01 0.07 9 10 0.22 0.64 0 14.06 6

7 516 8.68 2670 7.68 7.62 0.13 15 19 1.22 0.27 0 23.44 11

8 0 0 1844 9.56 9.03 0.3 24 43 26.53 0 0 37.5 0.96 25



P D F :20G ra nd  Av G E E G I.F IX  M a x p k p k :7 2 2

(a) Signal + Spontaneous EEG (1 response/sub-average)
G r a n d  Av GEEG2.F1X f l a x p k p k : 7 5 5 P D F : 14

E v n n t  B i n s

(b) Signal + Spontaneous EEG (2 responses/sub-average)
p d f : 96GPOl FIX

(c) Signal + Poisson noise
P D F : 102M a x p h p k : 6 76G r a n d  Av

Event Bl

(d) Signai + gaussian noise

Trajectory maps obtained for one of the data sets used in the component 
iatency variability recovery experiments. In each case, the simulated signal 

is invariant and combined with different noise data.



SNOO.XLC

SNR (*dB) and Latency (ms)

00 03 07 10 14 17 20 00 03 07 10 14 17 20 00 03 07 10 14 17 20 00 03 07 10 14 17 20
.0 .5 .1 .5 .0 .7 .9 .0 .5 .1 .5 .0 .7 .9 .0 .5 .1 .5 .0 .7 .9 .0 .5 .1 .5 .0 .7 .9
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0.4 
0.32 
0.24 
0.16

T (ms) 0.08 
0

-0.08 
-0.16 
-0.24

Error in recovery of mean signal latency T (+/- ISd) in noise vs SNR. Signal latency distribution 
N(0,0) and noise files are spontaneous EEG, Poisson, and gaussian.

EEG2.FIXEEG1.FIX GAS.FIXPC .F X

I I
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SNRTESTS.X15

|3l EVENT ANALYSIS RESULTS FOR INDUCED UTENCY VARIANCE SIGNAL SD = 0.04ms) + NOISE DATA FILES

fSAl Event Probabilities: Noise File VlNl.EEG Image Data Set Name GEEG1.004
. 1  1 1

Max GPks possible (uniform) ; 14208
Total GPks found : 707
Global Probability of Pk ; 0.05

1 1
Max IPks possible (uniform) : 6976
Total IPks found : 555
Local Probability of Pk : 0.08

1 1
Max InterPks poss. (uniform) : 7232
Total InterPks found : 152
Inter Probability of Pk : 0.02

ItemNum GPkAmpl GPkLat BPkAmpI BPkLat Mn SD 0 E ChiSq ChSqP BinomP %Swps CC Span
0 16384 1 16384 1 1 0.04 60 20 113.12 0 0 93.75 1 4
1 7060 2 14647 2 2,01 0.05 57 20 96.65 0 0 89.06 1 4
2 3658 3 10566 3 3 0.07 52 31 28.81 0 0 81.25 0.96 6
3 2232 4 6668 3.96 4.03 0.12 50 51 0.08 0.78 0 78.13 0.89 10
4 1295 5.04 3572 4.96 4.99 0.12 44 51 4.6 0.03 0 68.75 0.9 10
5 -897 5.68 1912 5.72 5.78 0.08 29 36 2.79 0.09 0 45.31 0.97 7
6 244 8.08 1550 6.2 6.26 0.1 28 46 24.42 0 0 43.75 0.9 9
7 1165 8.68 1610 6.88 6.78 0.12 33 51 30.84 0 0 51.56 0.85 10
8 462 9.24 1924 7.6 7.57 0.12 35 51 24.34 0 0 54.69 0.88 10
9 0 0 2276 8 8 0.09 39 41 0.2 0.65 0 60.94 0.95 8

10 0 0 985 8.4 8.37 0.06 19 25 2.72 0.1 0 29.69 0.9 5
11 0 0 3464 8.76 8.76 0.07 33 31 0.38 0.54 0 51.56 0.89 6
12 0 0 2530 9.2 9.2 0.16 42 64 7.56 0.01 0 65.63 0.78 14
13 0 0 4119 9.68 9.69 0.07 34 31 0.75 0.39 0 53.13 0.81 6

L
[3B] Event Probabilities; Noise File VIN3.EEG Image Data Set Name GEEG2.004

J 1 1
Max GPks possible (uniform) : 14272
Total GPks found : 569
Global ProbabDity of Pk : 0.04

■ 1 1
Max IPks possible (uniform) ; 5824
Total IPks found : 431
lx)C8l Probability of Pk ; 0.07

) )
Max Inteifks poss. (uniform) : 8448
Total InterPks found ; 138
Inter Probability of Pk : 0.02

ItemNum GPkAmpl GPkLat BPkAmpI BPkLat Mn SD 0 E ChiSq ChSqP BinomP %Swps CC Span
0 16384 1 16384 1 1 0.04 59 19 120.3 0 0 92.19 1 4
1 7952 2 13473 2 2.02 0.06 54 24 61.62 0 0 84.38 1 5
2 4271 3 11891 3 3 0.07 52 28 35.2 0 0 81.25 1 6
3 1724 4 7083 3.96 3.98 0.08 39 33 2.14 0.14 0 60.94 0.98 7
4 1049 6 3380 4.96 4.9 0.1 32 43 7.93 0 0 50 0.82 9
5 480 5.92 2092 5.8 5.81 0.08 23 33 6.45 0.01 0 35.94 0.96 7
6 474 7.52 2202 6.2 6.21 0.13 34 52 33.81 0 0 53.13 0.87 11
7 1409 9.28 1604 6.8 6.9 0.09 21 33 9.24 0 0 32.81 1 7
8 0 0 2342 7.64 7.49 0.13 31 52 45.95 0 0 48.44 0.84 11
9 0 0 2005 8.04 8.07 0.07 17 28 8.25 0 0 26.56 1 6

10 0 0 1970 8.56 8.6 0.08 21 28 3.48 0.06 0 32.81 0.91 6
11 0 0 3166 9.08 9.18 0.1 35 43 4.09 0.04 0 54.69 0.92 9
12 0 0 2168 9.4 9.78 0.04 13 14 0.13 0.72 0 20.31 1 3
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SNRTESTS.X15

|3C] Event Probabilities: Noise File POIBLDAT Image Data Set Name GP0I.004
1 1 1

Max GPks possible (uniform) : 13376
Total GPks found : 186
Global Probability of Pk : 0.01

~ ]  1
Max IPks possible (uniform) : 7744
Total IPks found : 168
Local Probability of Pk : 0.02

I 1
Max InterPks poss. (uniform) : 5632
Total InterPks found : 20
Inter Probability of Pk ; 0.00

ItemNum GPkAmpl GPkLat BPkAmpI BPkLat Mn SO 0 E ChiSq ChSqP BinomP %S*ps CC Span
0 16384 1 16384 1 0.99 0.06 28 8 53.39 0 0 43.76 6
1 8256 2 12378 1.96 1.95 0.06 20 7 27.55 0 0 31.25 5
2 3759 3.04 4239 2.92 3.06 0.17 15 19 1.46 0.23 0 23.44 14
3 2385 4.04 2318 3.84 4.03 0.25 14 25 7.93 0 0 21.88 18
4 1855 5.08 4186 5.16 4.96 0.21 27 25 0.26 0.61 0 42.19 18
5 728 6.08 3012 6.08 6.21 0.19 11 21 6.87 0.01 0 17.19 15
6 2006 6.92 5794 6.96 6.87 0.18 23 21 0.34 0.56 0 35.94 15
7 55 7.84 3346 7.92 8.06 0.28 21 29 4.19 0.04 0 32.81 0.95 21
8 -694 8.44 1813 9.16 9.05 0.12 9 12 1.22 0.27 0 14.06 1 9

[3D] Event Probabilities: Noise File GASBLDAT Image Data Set Name GGAS.004
1 1 1

Max GPks possible (uniform) : 12928
Total GPks found ; 194
Global Probability of Pk : 0.02

"1 I
Max IPks possible (uniform) : 6400
Total IPks found : 160
Local Probability of Pk : 0.03

.....~ [  ' “ T
Max InterPks poss. (uniform) : 6528
Total InterPks found : 34
Inter Probability of Pk : 0.01

ItemNum GPkAmpl GPkLat BPkAmpI BPkLat Mn SD 0 E ChiSq ChSqP BinomP %Swps CC Span
0 16384 1 16384 0.96 0.98 0.05 25 8 41.29 0 0 39.06 1 5
1 7688 2 11009 2 2.05 0.1 24 14 8.26 0 0 37.5 1 9
2 3721 3 5735 2.92 2.96 0.09 14 11 0.85 0.36 0 21.88 1 7
3 753 4.04 3658 3.96 3.92 0.15 17 19 0.36 0.55 0 26.56 1 12
4 2091 5.12 4404 5.24 5.24 0.19 20 26 2.04 0.15 0 31.25 1 16
5 173 6 4214 5.92 6.06 0.21 20 27 3.31 0.07 0 31.25 1 17
6 876 7.04 5703 6.96 7.05 0.18 23 24 0.07 0.8 0 35.94 1 15
7 545 7.92 1912 8.44 8.6 0.24 17 30 11.25 0 0 26.56 1 19
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p d f : 17

(a) Signal +  Spontaneous EEG (1 response/sub-average)
PDF 17

(b) Signal +  Spontaneous EEG (2 responses/sub-average)
GPOl.884

(c) Signal +  Poisson noise

(d) Signal + gaussian noise

Trajectory maps obtained for one of the data sets used in the component 
latency variability recovery experiments. In each case, the simulated signal 

has been supplied with an artificial latency variability (N(0,0.0016)) and then it 
is combined with different noise data.



SN04.XLC

SNR (-dB) and Latency (ms)

00 03 07 10 14 17 20 00 03 07 10 14 17 20 00 03 07 10 14 17 20 00 03 07 10 14 17 20
.0 .5 .1 .5 .0 .7 .9 .0 .5 .1 .5 .0 .7 .9 .0 .5 .1 .5 .0 .7 .9 .0 .5 .1 .5 .0 .7 .9
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

T (ms)

0.56
0.48
0.4
0.32
0.24
0.16
0.08

0
-0.08
-0.16
-0.24
-0.32
-0.4

EEG2. GAS.004POI.OO

I

Error in recovery of mean signal latency T (+/- isd) in noise vs SNR. Signal latency distribution 
N(0,0.0016) and noise files are spontaneous EEG, Poisson, and gaussian.
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SNRTESTS.X15

Hi EVENT ANALYSIS RESULTS FOR INDUCED LATENCY VARIANCE SIGNAL (SD = O.OSms) 4 NOISE DATA FIIZS

Ha] Event Probabilities: Noise Pile VINl.EEC Image Data Set Name GEEG1.008
1 1 1

Max GPks possible (uniform) : 14400
Total GPks found : 687
Global Probability of Pk : 0.05_ j-.

Max IPks possible (uniform) ; 8064
Total IPks found : 533
Local Probability of Pk ; 0.07

1 1
Max InterPks poss. (uniform) : 6336
Total InterPks found : 155
Inter Probability of Pk : 0.03

ItemNum GPkAmpl GPkLat BPkAmpI BPkLat Mn SD 0 E ChiSq ChSqP BinomP ZSvps CC Span
0 16384 0.96 16384 1 0.98 0.1 55 38 18.73 0 0 85.94 0.98 9
1 6196 3 15174 3.04 3.01 0.1 49 34 14.53 0 0 76.56 1 8
3 3364 3 15374 3.96 3.96 0.07 40 35 14.05 0 0 63.5 0.95 6
3 3364 4 11374 3.93 4 0.15 50 51 0.04 0.84 0 78.13 0.88 13
4 1533 5.04 4773 4.76 4.77 0.13 40 48 3.26 0.07 0 63.5 0.8 11
5 431 8.08 4480 5.38 5.31 0.11 35 38 0.58 0.45 0 54.69 0.95 9
6 1937 8.68 5063 5.88 5.74 0.13 38 46 5.6 0.03 0 59.38 0.93 11
7 838 9.34 3480 6.38 6.78 0.13 33 46 16.38 0 0 50 0.89 11
8 1417 9.64 3804 7.64 7.55 0,13 35 43 3.63 0.06 0 54.69 0.9 10
9 0 0 5088 8 8 0.09 35 34 0.09 0.76 0 54.69 0.93 8

10 0 0 2741 8.36 8.37 0.06 17 31 1.19 0.37 0 36.56 1 5
11 0 0 6931 8.76 8.75 0.08 34 30 1.34 0.37 0 53.13 0.89 7
13 0 0 6409 9.3 9.17 0.16 40 55 38.37 0 0 63.5 0.87 13
13 0 0 8565 9.68 9.69 0.07 33 35 3.9 0.09 0 50 0.8 6

4B] Event Probabilities: Noise Pile V1N3.EEG Image Data Set Name GEEG3.008
1 1 1

Max GPks possible (uniform) : 14464
Total GPks found : 546
Global Probability of Pk : 0.04

1 1
Max IPks possible (uniform) ; 6464
Total LPks found : 374
Local Probability of Pk : 0.06

1 1
Max InterPks poss. (uniform) : 8000
Total Inteifks found : 173
Inter Probability of Pk : 0.03

ItemNum GPkAmpl GPkLat BPkAmpI BPkLat Mn SD 0 E ChiSq ChSqP BinomP ÏSwps CC Span
0 16047 0.96 16384 1 0.96 0.1 49 30 33.6 0 0 76.56 1 8
1 7350 3 14397 3 3.03 0.1 43 33 5.86 0.03 0 67.19 1 9
3 4157 3 14693 3.04 3.96 0.13 48 37 7.71 0.01 0 75 1 10
3 1513 3.96 10578 3.88 3.95 0.14 40 44 1.45 0.33 0 63.5 0.98 12
4 1193 4.93 5533 4.76 4.88 0.13 37 37 6.45 0.01 0 43.19 0.84 10
5 643 5.88 5353 6.2 6.19 0.13 33 41 5.15 0.03 0 50 0.91 11
6 -349 6.96 3034 6.8 6.85 0.07 17 33 1.88 0.17 0 36.56 0.94 6
7 980 7.53 5840 7.4 7.49 0.14 33 41 5.15 0.03 0 50 0.84 11
8 3334 9.38 5184 8.56 8.59 0.07 30 19 0.17 0.68 0 31.35 0.95 5
9 0 0 7440 9.13 9.15 0.1 36 33 0.45 0.5 0 56.35 0.95 9

10 0 0 5189 9.44 9.64 0.13 30 37 3.17 0.08 0 46.88 0.83 10
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SNRTESTS XLS

l t d  Event Probabilities: Nr>;se File G.AS3LDAT Data Set Nsrre GPOi.008 ! |
" " T  1 1 I 1  ■■ i 1 1 1 1

Max GPks possible (uniforrr.) : 139G2 1 l ' i i
Total GPks found : 166 i l l 1
Global Probability  of Pk ; 0 01 1.. t_. 1 !

1 i ■■"I - 1
Max LPks possib le (un iform ) : 7680 i |
Total LPks found : 137 j 1 1
i/'Cal Probability  of Pk : 0,02 | 1 > i

1 i 1 i 1 1 !
Max In te rP ks poss (uniform ) : 6272 i 1 j 1

Total In te rP k s found 29 1 I
in te r Probability  of Pk : 0.00 1 ! 1

i I ! ! j
I

ItemNum GPkAmpl GPkLat BPkAmpI BPkLat Mn SD 0 E CbiSq ChSqP BinomP %S.P3 CC Span
0 16334 0.96 16354 1 0.99 0.12 27 11 25 89 0 0 4 2 1 9 10
I 3153 1.96 10399 1.96 1.99 0.12 13 11 0.27 0.61 0 20.31 10
2 35.34 3.04 6689 2.88 3.02 0.13 15 17 0.36 0.55 0 23.44 15
3i 2594 4 04 4646 4.36 4.15 0 24 11 19 5.23 0 02 0 17.19 17
4| 2430 5.08 6752 5 2 5.02 0.2 18 18 0.01 0.94 0 28.13 16
51 956, 6.08 43441 6 0S 6.05 0 2 2 9 IS 6 5 8 0.01 0 14.06 16
6i 304Oj 6 92 113.35! 6.96 6 38 0.12 21 11 9.79 0 0 32.31 ID
71 180[ 7.8 3806 7 8 8 27 0 21 16 19 0.86 0.35 0 25 17
8i -8 8 2 , 8 44 5155 9.161 9.3 0.14 7 10 1.24 0.26 0 10.941 1 9

1 i ’ [
1 to ] Event P robabilities Noise File GASBu D.AT Image Data Set Name GG.AS.008

i 1
Max GPks possible I'uniform'i ; 14016 1 j 1 j
Total GPks found : 198 1
Global Probability  of Pk . 0.01

1 1
Max LPks possible (un iform ) : 6464
Total IP ks found . 137
Local Probability  of Pk . 0 02

1 1
Max In te rP k s poss. (un iform ) ■ 7552
Total In te rPks found : 61
In te r Probability  of Pk : 0.01

ItemNum GPkAmpl GPkLat BPkAmpI BPkLat Mn SD 0 E ChiSq ChSq? BinomP %Swp3 CC Span
0 16384 0 9 6 16384 0.96 0 94 0.08 26 8 44 9! 0 0 40.63 1 6
1 6993 2 8400 1.92 2 0 3 0,14 23 15 5.7 0.02 0 35.94 1 11
2 3376 3 4997 2.96 308 0.11 14 11 1.1 0.29 0 21 88 1 8
3 317 4 24 2626 4.2 4 18 0.09 8 9 0.28 0.6 0 12.5 1 7
4 2732 5.16 3676 .5.2 5.18 023 20 26 2.16 0.14 0 31.25 I 19
5 100 5.96 4238 6.96 6.83 0.15 16 18 0.21 0.65 0 25 1 13
6 1265 7.08 2775 8 783 0,36 23 41 21.12 0 0 35.94 0.92 30
7 852 7.92 3988 9.36 941 0.09 7 9 0,77 0.38 0 10.94 1 7
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P D F :10

E v e n t  B in s

(a) Signal + Spontaneous EEG (1 response/sub-average)
C r a n d  Av C I E C 2 .9 0 8  M a%pkp k:55 B

( M o d n )

(b) Signal +  Spontaneous EEG (2 responses/sub-average)

E v e n t  B in s

(c) Signal +  Poisson noise
PDF 52G r a n d  Av

(d) Signal +  gaussian noise

Trajectory maps obtained for one of the data sets used in the component 
latency variability recovery experiments. In each case, the simulated signal 

has been supplied with an artificial latency variability (N (0,0.0064)) and then it 
is combined with different noise data.



S N 0 8 . X L C

SNR (-dB) and Latency (ms)

T (ms)

00 03 07 10 14 17 20 00 03 07 10 14 17 20 00 03 07 10 14 17 20 00 03 07 10 14 17 20
.0 .5 .1 .5 .0 .7 .9 .0 .5 .1 .5 .0 .7 .9 .0 .5 .1 .5 .0 .7 .9 .0 .5 .1 .5 .0 .7 .9
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0.56
0.48
0.4

0.32
0.24
0.16
0.08

0
-0.08
-0.16
-0.24
-0.32
-0.4

E E G 1 .008 GAS.008EEG2.008 P C I .008

■ I f

■

Error in recovery of mean signal latency T (+/- iSd) in noise vs SNR. Signal latency distribution 
N(0,0.0064) and noise files are spontaneous EEG, Poisson, and gaussian.
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Normal Latency Values for Short Latency BAEPs
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NORMVALS.XLS

Normal Latency Values for the Brainstem Auditory Evoked Potential (BAEP) / ms
1 1 1 1

(Monaural Stimulation, Ipsilaterally. Ai - Cz)
1

Intensity Level dBSl
Wave # 75 65 55 45 35 25 15 5

I 1.40 1.60 1.80 2.20 2.70 2.90
II 2.60 2.80 3.00 3.30 3.60 3.80
III 3.70 3.80 3.90 4.30 4.70 5.10 5.90 5.60
IV 4.60 4.80 5.00 5.40 5.80 6.60
IV/V 5.20 5.20 5.60 5.90 6.40 7.00 7.70 7.80
V 5.40 5.50 5.80 6.00 6.60 7.10 7.70 8.10
VI 6.90 7.10 7.50 7.80 8.40 9.20 9.50
VII 8.70 9.00 9.00 9.60

Sd 0.20 0.20 0.20 0.30 0.30 0.40 0.40 0.40
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NEW DEVELOPMENTS IN COMPUTER APPLICATIONS IN NEUROLOGY

A S Sehmi, University of Leicester,

N L Robinson, A J Charles, Medelec Ltd,

P M Robinson, University of Surrey.

1 Introduction

Clinical neurophysiology is concerned with making diagnostic inferences about diseases of the 

nervous system, A  major procedure which is used in this process is the recording and analysis of 

the activity of the brain. This activity takes the form of electrical impulses which underlie the basic 

communication mechanisms of the central nervous system. It is frequently required that the 

activity of a specific part of the brain be assessed, and this is achieved by causing the structure 

under test to be activated by sensory stimulation. The resulting activity will then be synchronised 

in time with the sensory stimulus. Analysis of this activity is usually hampered by the fact that the 

size of the signal generated in response to sensory stimulation is very much smaller than the size of 

the other brain (EEG) and muscle (EMG) activity. The EEG and EMG are present all of the 

time and represent the major noise sources in any recording. In the past, the problems associated 

with distracting noise have been addressed by the use of coherent averaging techniques which 

enhance the signed to noise ratio (SNR). In this paper we shall discuss the use of some new 

approaches to signal estimation which provide additional information of clinical importance and 

has proved to be more effective than conventional averaging.

2 Evoked Potentials as a Measure of Brain Activity

Very simply, the brain can be considered to consist of a series of elements in which the basic unit is 

a neuron. Information is transmitted along the neurons in the form of digitally encoded electrical 

impulses. Communication between two basic units is effected through chemical release at the first 

unit and molecular recognition at the second. Molecular recognition results in the generation of a 

new electrical impulse which is then relayed via the cable network propagating from the second 

unit. When the brain acts as a system, populations of units act in unison, and it is unusual for units 

to function independently. The synchronous activation of substantial numbers of neurons 

generates a significant electrical field. As an electrical impulse moves through the specific 

population of neurons, which are themselves confined to discrete anatomical loci, the fluctuations, 

in the electrical field associated with impulse transmission, give rise to a change in the cortical 

surface potential. This change is measured as a potential difference between monitoring electrodes 

placed over a site anatomically close to the activity, and a remote reference site.
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During the course of any sensory stimulation experiment, more than one anatomical structure in 

the depths of the brain are activated within the territory of the recording electrode geometry. This 

is reflected in the recordings of complex waveforms which may include activity from both serially 

and concurrently activated structures, which in turn, may or may not be activated in synchrony. In 

these recordings, known as evoked potentials, the activities of separate anatomical structures are 

described as individual components of the waveform. It is generally accepted that, provided 

exactly the same stimulus is applied repeatedly, the neuronal responses should be the same, i.e. 

the resulting signals are non-stationary and deterministic. A  major limitation of this interpretation 

is the implicit assumption that the status of the neurons is constant across stimulation trials. This 

constraint limits the scope of investigation severely, and precludes investigation of one of the most 

important features of brain activity, namely the brain’s ability to habituate to some forms of 

stimulus and to facilitate others. These types of change are known to be among the most sensitive 

to the disease process and, therefore, warrant the examination of new techniques which are less 

limited in their assumptions.

The complexity of evoked potentials poses significant signal processing problems. Solutions to 

these problems are of immediate clinical importance. It is possible that the approach described in 

this paper will have wider application to signals with similar characteristics derived from related 

areas in electrophysiology (e.g. in cognitive evoked potentials), and to signals derived from 

engineering (e.g. in fault monitoring and communications).

3 The Nature of the Analysis Problem

The aim of the clinical neurophysiologist is to gain the maximum amount of information about the 

effectiveness of signal transmission within the brain. These signals take the form of electrical 

impulses which, when recorded remotely from the scalp, are represented as maximum and/or 

minimum deflections in a time series voltage record.

Approaching the estimation problem from a signal processing viewpoint, a number of features in 

the data need to be considered:

•  1) It is often difficult to accurately predict the precise characteristics of the signal since
these can change substantially with onset and progression of disease.

•  2) The signal itself should not be treated as entirely deterministic, as trial-to-trial changes 
are known to occur and these changes may carry important clinical information.

•  3) There is no substantial difference between the frequen<y content of the noise and that 
of the signal.

•  4) The signal to noise ratio is often very low ( <  -20dB).
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The main approach to 1, 3 and 4 has been signal averaging, however this has precluded the 

possibility of estimating behaviour in 2. We have developed a new technique called Event 

Analysis which allows all of the above points to be considered.

4 Recording Procedure

An ensemble of scalp-recorded potentials is amplified and then digitised using a Medelec Mystro 

MS25 connected to a CED 1401 analogue to digital conversion system. Each trial in the ensemble 

consists of the time series related to a single sensory stimulus. During the course of an experiment, 

up to 1024 trials may be acquired. The electrode placements, sampling rate, and analogue filters 

are adjusted depending on the type of evoked potentied recording which is being undertaken, and 

they are set according to the standard protocols. In simulation experiments, analagous data 

formats are used to allow simple mapping from simulation trials to experimental trials. For the 

purposes of this discussion, results will be limited to signals recorded following auditory 

stimulation, the corresponding evoked potential being known as the Brainstem Auditory Evoked 

Response (BAER). Fig.[l] shows the setup used for the acquisition of data. Elementary BAER 

characteristics and some clinical applications are described in the appendix.

5 Event Analysis

The data used in this analysis can be described by an additive noise model. The measured single 

response x, obtained after the delivery of one sensory stimulus, is the sum of a non-stationary signal 

s plus random noise n. The response is interpreted during analysis in terms of an additive 

combination of a signal event sequence {Es} and a noise event sequence {Eo}. The measured 

event sequence {Ex} is then given by:

{Ex} =  {E s} +  {En}

An event is assigned at a turning point where a pair of maxima are interleaved with a pair of 

minima, such that the amplitude differences between the adjacent turning points are greater than a 

threshold value

5.1 Estimation of Peak Threshold

Separate peak threshold values are determined for each of the single responses in the data. The 

threshold value (or peak discrimination factor, PDF) is, therefore, adaptive on a trial-to-trial basis, 

and its computation is based on the assumption that the signal and noise are combined additively. 

This additive model predicts that, at points where signal and noise occur together, the resulting 

activity will be greater in amplitude than when the noise occurs alone. The amplitude deflections 

between turning points are calculated and a frequency distribution is constructed. The
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proportional contribution of the noise-related deflections in the histogram bins is assumed to be 

high because of the low SNR of the single response data, and hence the modal class value will 

represent a measure for the noise-related amplitude deflections. The threshold used for the 

reduction of the individual responses to an event sequence {Ex}, is set to the upper value of the 

modal bin. The event sequence is thus limited to those turning points which fulfil the requirement 

that they are bounded by turning points with amplitude separation greater than the calculated 

threshold. Although, as is expected, this process will cause a rejection of some events which may 

be related to the true signal, it allows for adaptation to changing noise levels and protects the 

anlaysis from being biased towards the highest amplitude events. This bias is a major defect of 

conventional averaging, except in very large ensembles of data.

52  Estimation of Signal Component Locations

The event sequence at this stage consists of both true signal events and noise events extracted from 

a series of independent trials. The events are labelled either positive or negative depending on 

whether they resulted from a maximum or a minimum defelection. Signal-related events will be 

confined to a discrete time interval, and noise-related events will be randomly distributed. 

Polarised event-latency histograms are obtained from a synchronous summation of the bipolar 

events across all of the independent single responses (i.e. histograms of the number of times of 

occurrence of events at a time measured with respect to the onset of stimulus delivery). Modelling 

of this synchronous summation process has been performed to determine its effectiveness in the 

cancellation of noise-events Results from this simulation show that there is an error in 

cancellation if the noise is wideband and stationary, and the number of trials is low. However, the 

error can be reduced by digital filtering and/or creating small sub-averages from the single 

responses prior to event analysis.

The positive half of the latency histogram is smoothed and its minima locations provide 

segmentation of the corresponding ensemble of single responses into component and 

non-component intervals. The unbiassed mean latencies of these segments are determined by a 

convergent iterative procedure which uses the segment boundaries as initial values. Only those 

events in the ensemble that lie within the resulting latency intervals (usually described as trajectory 

events) are used in subsequent analysis. It is possible that some single responses will not yield a 

trajectory event. A  summary of the event analysis procedure is shown in Fig.[2].

It will be clear that, throughout the procedure, the tendency has been to discard outlier data which 

is likely to contaminate results rather than to increase the size of the data set until the weighting of 

outliers is reduced. This has resulted in the ability to analyse signals using substantially smaller 

numbers of trials (64-128 trials for BAERs at 60 dB stimulus intensity), whilst retaining estimates 

of the underlying signal characteristics. Using the latencies of trajectory events, it is possible to
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produce descriptive statistics for the signal components and to derive enhanced signal waveforms 

using latency corrected averaging This is performed by temporally aligning all events within a 

component interval by applying shifts to selected data trials which are then conventionally 

averaged. Trajectory events also enable one to extract and enhance specific components and/or 

combinations of components. These procedures have been implemented and in conjunction 

with correlation analysis, they will allow for the investigation of relationships between different 

components, since some temporal synchronisation between trajectory events will exist across an 

ensemble of single responses and also within single responses.

S3  Results of Simulation Experiments

In order to assess the effectiveness of the approach described above, a number of experiments 

have been performed using data simulations where both the SNR and latency variability of the 

signal can be controlled. The simulations have shown that it is possible to reliably estimate the 

latency variability of components to within two sampling points at a SNR as low as -15 dB. 

Examples of results from event analysis performed on a simulated BAER data set are shown in 

Figs.[3 and 4]. The data shown in Fig.[4] consists of 64 trials of an exponentially decaying, 1 kHz 

sine wave, which has been additively combined with spontaneous EEG. Prior to the combination, 

both the signal and the noise are normalised, so that the simulation experiments will reflect the 

performance of event analysis across a wide range of signal to noise ratios (i.e. 0 dB at 1ms to 

-21 dB at 7ms).

Following encouraging results obtained from single channel BAER recordings it is intended to 

extend event analysis into the multi-channel recording regime. This will help to enhance the 

understanding of neuronal communication mechanisms in the brain, by analysing data containing 

temporal information which has been obtained spatially over the scalp.
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E vent Bina

(a) PDF value = 75% of Maxpkpk.
Cr«n<l Av Ct EQl . Tl X  Ma%fkpk:722

(b) PDF value = 50% of Maxpkpk.
C E E C l.n X  M»K»kpk:722 P D F : 181

E v e n t  Bin*

(c) PDF value = 25% of Maxpkpk.
Cr«n<l Av C I E C I . F I X  M.Mpkpk 72Z

(d) PDF value is determined adaptively.

Fig.[4] The effect of the PDF value on the structuring that occurs in the 
event bin (BIN). The PDF value per single trial varies from 75% of the 

maximum peak-to-peak deflection, to one that is determined adaptively
(taken from Ref. 1).



APPENDIX

Brainstem Auditory Evoked Response
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Medelec

CLINICAL APPLICATIONS
rainstem Auditory Evoked Response

eoOnV lOms

cessment of the integrity of the auditory neural pathway can 
performed by recording, using scalp electrodes, the far field 
lentials produced in the auditory nerve and brainstem.

ictrode Placement
!he signal is produced at bothAiand 
oth electrodes nnay be considered 
ve. This may be confirmed by 
ording from Ai and Cz independently 
jrred to a remote (non-cephalic) 
ording site. The full signal may then 
obtained by addition of the two 
:es. The signal arising from Ai may 
)be investigated by recording both 
laterally and contralaterally (Ai - Cz 
IA2 - Cz) Subtraction of these traces 
- Cz) minus (A2 - Cz) would then 
w the signal on Ai.

ctrodes should be non-polarisable 
Ag/AgCI EEG type, 
ctrical contact is made using either 
ctrode jelly or bentonite paste, 
ctrode resistances should be 
3cked to be less than 6k 0 .

G r e e n

A s  o r  W r i s t

N e u t r a l

A c t i v e

imulation
tnaural Clicks
ck Polarity - rarefaction
ration - 0.1 ms
oetition Rate - < 10Hz
ensity- >60dB HL
ER may also be recorded following
le pip stimulation when some
quency discrimination may be
3 s ib le .

Acquisition
Recording Sensitivity->20pV/div* 
Filter: Low Frequency cut off-<300Hz 

High frequency cut o ff-> 3kHz
* Recording sensitivity may have to be 
adjusted to take account of muscle 
activity. In general it is best to use the 
highest sensitivity which does not 
cause the averager to overload.

Averaging
Analysis time — 10 ms 
Sweeps —  1024 
Post Average
Display Sensitivity — 200nV

Effect of filters on recording 
BAER
It should always be borne in mind that 
filtering, although often extracting a 
signal from the background noise, may 
alter the waveform recorded. In 
extreme cases alteration of wave 
latency of 1 /8 - %Hz of the signal 
frequency may occur. In the case of 
BAER this may amount to + 250 /vs in 
latency. Filtering may also affect the 
relative amplitude of waves. These 
factors make it important to 
standardise recording parameters for 
all tests.

Identification of Waves

eoonV lOM

V\^ves I, III, V are the most con­
sistently observed.

Wave I
Thought to arise from activity in the 
V lllth nerve. This potential is 
generated as a negativity at Ai and its 
identity can often be confirmed by 
comparing the recording from the 
vertex to contralateral ear, when this 
wave will be considerably reduced.

Wave III
Proposed to reflect activity in Pons. 
This potential also arises largely as a 
negativity at Ai and will therefore be 
reduced by recording from the vertex 
to the contralateral ear.

Wave V
Arising, it is thought, from activity in 
the midbrain, this potential is often the 
most reliable. Waves IV and V are 
often fused, hence wave V may well 
not be the fifth vertex positivity. A 
more characteristic feature is that it 
typically consists of a vertex positivity 
followed by a long, sharp negative 
potential.

S u p e r io r  C o ll ic u lu s

C o c h le a r  N u c le i
M e d ic a l
G e n ic u la te  B o d y  

In ferio r C o ll ic u lu s  

L a te ra l L e m n is c u s

A u d ito ry  N e rv e O livary  N u c le u s



CLINICAL APPLICATIONS

Multiple Sclerosis
BAERs are of most use when a non 
brainstem structure has a pathological 
profile since the tests then documents 
a second locus. It is not unusual to find 
patients w ith normal results from one 
ear and abnormal results from the 
other.
The most common change in BAER 
seen in MS is an increase in the l-V 
latency very often coupled with 
reduction in the amplitude of wave V.

Typical trace obtained from a patient 
w ith MS showing reduction in wave V 
amplitude.

In an extreme case waves II, III. IV are 
almost absent but waves I and V are 
preserved.

Acoustic Neuromas
These usually develop in the internal 
auditory canal and can compress the 
eighth nerve, resulting in the complete 
abolition of all waves or an increase in 
the interpeak latency of early waves.

Acoustic neuroma associated with 
hearing loss abolishing all waves after 
component I.

Wave I has normal latency but all other 
waves are abnormal.

Brainstem Tumours
Tumours intrinsic to the brainstem can 
increase the interpeak latency of the 
brainstem waves 111 and V or the waves 
subsequent to wave II mav be 
abolished. In the case of multi-level 
tumours the position is considerably 
more involved and all waves except 
wave I may be absent.

A pontine tumour resulting in 
increased interpeak latency of waves 
III and IV.

A rostral pons-midbrain tumour 
resulting in diminished waves IV and V.

Objective Hearing 
Assessm ent
BAER can be used as a non-invasive 
measure of hearing threshold in both 
infants and adults; wave V being the 
most resilient component for this 
application.
Other applications include intra­
operative monitoring and assessment 
of patient status in intensive care and 
coma.
Also it is used to monitor development 
of auditory function in the very young.

Non-pathological factors 
affecting peak latencies
AGE
This is of particular importance with 
premature infants where wave V 
latency may be a useful parameter in 
assessing developmental age.

10

WAVE

LATENCY

M O N T H S Y E A R S
A G E

With patients over 50 years normal 
values also need to be increased.

SEX
Females have slightly shorter latencies

STIMULUS INTENSITY

Other factors influencing latency are 
temperature and repetition rate.
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