
The WAM arm: modelling,

control and its application in a

HMI based on gaze tracking

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Zaira Pineda Rico

Department of Engineering

University of Leicester

2014



A tree too big to embrace

is born from a slender shoot

A nine-story tower

rises from a pile of earth

A thousand mile journey

begins with a single step
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Abstract

In this thesis we describe the design and implementation of a Human Machine

Interface (HMI) based on gaze tracking proposed to control robot prostheses. Robot

manipulators hold a strong similarity with arm prosthetics, we used a 7 degrees

of freedom (DOF) whole arm manipulator to test our HMI in the execution of

reaching and grasping tasks. We showed that the interface worked under different

control strategies using several velocity profiles. The system was tested by ten

subjects with encouraging results. We analysed the performance of the 7-DOF

robot manipulator in order to determine the suitability of its application in the

development of this project. The original setup of the manipulator worked under

joint Proportional and Derivative (PD) control but considering the results of the

initial analysis of the system we proposed two alternative control strategies aimed

to improve the performance of the manipulator: a feedforward friction compensation

technique and joint Proportional Integral and Derivative control (PID). We created

a dynamic model of the 7-DOF manipulator in Simmechanics in order to have a

better understanding of the system. The friction phenomena of the manipulator

was identified, represented through a fitted model and included in the system’s

model with the aim of incrementing its accuracy with respect to the real system.

The characteristics of the model made it suitable to test and to design control

strategies for motion and friction compensation in MATLAB/Simulink. The model

of the system was validated using data from the real robot arm and it was used

later to tune the PID controllers of the joints of the 7-DOF manipulator using

Iterative Feedback Tuning (IFT). Both experimental data and model simulations

ii



were used for the tuning procedure considering two different approaches. The data

obtained from the friction identification process was used to implement a module for

feedforward friction compensation over the pre-configured joint PD control of the

manipulator. The responses of the system when using joint PID control and joint

PD control with gravity and friction compensation were compared in the execution

of motion tasks.
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Chapter 1

Introduction

1.1 Motivation

Several years have passed since researchers started to speculate about the advances

in the development of the Brain-Machine Interfaces (BMI) and their implications

in the future of neuroprosthetics (Nicolelis, 2001). The advances in technology have

led to the development of new generations of electrodes and recording equipment,

powerful computers and math-friendly programming languages that allow the

implementation of new methods of signal processing used to control mechanical

manipulators for the implementation of tasks in virtual or real-time contexts (Parag

and Turner, 2008). In addition, research in neuroscience has helped to construct a

new platform for the development of Brain-Computer Interfaces (BCI’s) that work

as prosthetic devices connected to the brain. This type of devices are aimed to help

paralised people to regain movement or to compensate for organs or body functions

that have been damaged as a consequence of illness, accidents, etcetera.

Although recent technological advances have been a key point in the development

of different types of BCI, the concept is not new. The brain coordinates all the

functions on the human body and relies on electrical activity to create a web of

communication among neurons. These electrical activity can be recorded using

electrodes. This recording is known as electroencephalogram (EEG). Single neuron
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recordings in human have been documented since the 1960’s when a recording

in a patient for diagnostic and therapeutic brain surgery was published. From

1960 onwards single cell recordings were used in the design and implementation of

BCI’s in humans considering a variety of coding methods (Schwartz et al., 2001;

Taylor et al., 2002, 2003). The subject is implanted with microelectrodes in the

motor cortex and the registered single cell activity is processed using adaptive

learning algorithms. This technique has proven to be effective in different BCI

implementations in monkeys (Schwartz, 2004; Schwartz et al., 2006; Velliste et al.,

2008) and in people with tetraplegia for controlling a cursor on a computer screen

(Hochberg et al., 2006; Simeral et al., 2009; Kim et al., 2011) or for moving a

robotic arm (Hochberg et al., 2012).

However, the invasive characteristics of the method may bring complications for

the patient. Also, after the patient is implanted with the electrodes it has to be

trained in order to be able to control its neuronal firing rates. The training period

varies among patients and can take from weeks to months. There are subjects that

are not able to successfully accomplish the training process.

In this thesis we propose the use of gaze tracking to control the position of a robot

prosthetic device. Eye movements have been experimentally studied since the nine-

teen century (Yarbus, 1967; Wade and Tatler, 2005), which led to the development of

devices and methods to scan eye movements. Among these methods we can mention

the scleral search coil tracker, electrooculography (EOG) and different implementa-

tions of optic methods, which are based on the reflections of a beam of light onto the

corneal surface. Electrooculography and eye tracking based on corneal reflections

are popular methods used in Human Computer Interfaces (HCI). Eye tracking has

been widely used in the past to implement HCI’s designed to aid paralised people in

the realisation of several tasks by controlling a cursor on a computer screen. These

type of developments have been under study since 1989 through the implementa-

2



tion of various human computer interaction devices (Hutchinson et al., 1989; Jacob,

1991). HCI based on eye movements take advantage not only of gaze tracking but

intentional blinking as control signals. For example, gaze tracking might be used

as a directional reference in two dimensions while blinking patterns may work as

binary signals. Using the measurable characteristics of eye movements it is possible

to generate a set of control signals for the implementation of a more sophisticated

HCI, like a prosthetic arm based on eye movements.

Commercial gaze tracking devices are non invasive, which reduce the health risks

that invasive methods bring to patients undergoing surgery due to the implantation

of electrodes, such as swelling, superficial skin infections, infections along lead

wires, intracranial infections, bleeding, etc. There is also the possibility that the

implanted electrode might move with respect to the surrounding tissue, that the

tissue might affect the sensors or that the electrode might be rejected by the body

(Wolpaw and Wolpaw, 2012).

The user does not require extensive training to use the gaze tracker, however it has

to be aware of some considerations to make while wearing the device. It only takes

from 10 to 20 minutes for the eye tracker to be fully operational in the user.

As mentioned, gaze tracking has been used before to control cursors in two

dimensions using computer screens. We intend to use gaze tracking in a similar

implementation but removing completely the use of the computer screen. This will

give a more natural feeling to the use of the gaze tracking control although it will

increase the complexity for the user. In this type of implementation the subject will

have to rely in mental plots of the surrounding space since its eyes will be moving

frequently. Also, the subject will have to be fully conscious about the relationship

between their visual space and the gaze tracker visual space at all times. The

design must consider a resting time when the subject can hold the manipulator’s

control on pause since making fixations for long periods is tiring for the muscles in
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charge of the eye movements, bringing pain to the user.

Prosthetic arms in paralysed people help them to regain certain degree of inde-

pendence. The principal objective of robotic superior limbs is to reproduce the

movement of the arm by successfully accomplish grasping tasks with smooth and

natural motions. Due to the use of gaze tracking has shown high potential for

position control of cursors we expect to obtain a reliable system that allows to

control the robot arm in several reaching and grasping tasks similar to those

executed in past BCI implementations. We want to test the functionality of the

system in different subjects in order to analyse the performance and the pertinence

of the HMI. According to the results obtained in the experiments we will discuss

about the suitability of designing a 3D gaze tracking control able to compete with

similar BCI implementations.

If we consider that the physical similarities and performance requirements between

the robot manipulator and the artificial prosthetic for the superior limb, most of

the control schemes used in manipulators may be adapted to be used by prosthetic

arms (Orin, 1980). This is why a robot manipulator can be considered as a good

representation of the human arm and might be used as a platform to develop control

strategies that can be used in prototypes of future artificial prosthetics. However,

the design of suitable control strategies involves the consideration of mathematical

representations of the system, such as kinematics and dynamics models. Mathemat-

ical modelling is fundamental in the designing process depending of the objectives

of the implementation, the constraints of the task to be executed, and the desired

robot’s performance. The difficulty in obtaining these models varies according to

the complexity of the kinematics of the mechanical structure and the number of

degrees of freedom (DOF) (Khalil and Dombre, 2002). This thesis will also present

the implementation of two alternative control strategies in the WAM arm proposed
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with the aim of identifying a suitable technique that can be used to control de

manipulator for future neuroprosthetic applications.

1.2 Contributions

The main contributions of this work are listed briefly:

• A dynamic model of the 7-DOF Barret WAM arm implemented in SimMech-

anics that includes the identification of friction using experimental data.

• The implementation of a friction compensation module in the joint controllers

of the manipulator.

• The application of an iterative tuning technique that was originally designed

for linear systems in a real non linear system using both real and simulated

data.

• The design and implementation of a non invasive HMI based on gaze track-

ing that was successfully tested in several subjects in reaching and grasping

tasks similar to those accomplished by paralysed patients through invasive

BCI applications.

1.3 Publications

• Dynamic model of a 7-DOF Whole Arm Manipulator and validation from ex-

perimental data. Zaira Pineda Rico, Andrea Lecchini-Visintini, Rodrigo Quian

Quiroga. International Conference on Informatics in Control, Automation and

Robotics (ICINCO). 2012. 217-222.

• Iterative feedback tuning for the joint controllers of a 7-DOF whole arm manip-

ulator. Zaira Pineda Rico, Andrea Lecchini-Visintini, Rodrigo Quian Quiroga.

IEEE 51st Annual Conference on Decision and Control (CDC). 2012. 544-549.
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1.4 Literature Review

1.4.1 Robot modelling and Robot Control

Robot manipulators have been used in the industry since the 1950s. Through

the years several control schemes have been developed in order to fulfil the user’s

expectations in the realisation of particular tasks. In general, the mechanical

structure of a robot manipulator consist of a sequence of rigid bodies called links

that are interconnected by either rotating or translating mechanisms that work

as articulations (or joints). The last link usually holds an end-effector, whose

architecture makes it suitable to grasp objects (Siciliano et al., 2009). The specific

configuration of the links and joints trace the requirements to be considered in the

design of the control scheme used to move the manipulator.

A robot manipulator is a mechanical structure that can be commanded to accom-

plish a desired task and its motion involves a complex system composed by sensors

and motors. The control computer that works as an interface between the user

and the manipulator holds the controller of the system. The complexity of the

controller varies according to the manipulator’s architecture, its degrees of freedom

and the task to be executed. The effectiveness of the controller will depend on

the kinematics and dynamics considerations taken by the designer. In most cases

these considerations are based on the behaviour that mathematical models of the

manipulator exhibit to different types of stimulus (Khalil and Dombre, 2002).

The use of mathematical modelling in robotics has supported the design of several

types of robots like animal inspired robots, wheeled mobile robots, human-like

biped robots and manipulators with as few as two degrees of freedom, to more

complex configurations with more than six degrees of freedom. In the particular

case of robot manipulators that hold similarities with an artificial prosthetic arm,
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many models and parameter identification methods have been developed according

to the arm physical configuration, which depends entirely on the fabricator’s target

market. This is the case of the Mitsubishi PA-10 robot arm (Kennedy and Desai,

2004; Bompos et al., 2007; Lightcap and Banks, 2007) and the PUMA 560 robot

arm (Armstrong et al., 1986; Neuman and Murray, 1987; Izadbakhsh, 2009), and

systems to prototype such as the Hyundai Robot Hardware in the Loop Simulation

(Yeon et al., 2005), whose particular structure allowed them to reach popularity

not only in the industry but in research laboratories around the world, where they

are employed for experimental verification and design. Moreover, some popular

configurations as the Stanford and the Scara manipulators, have been properly

analysed with the purpose of illustrating different methodologies for robot modelling

and kinematic analysis (Spong et al., 2006).

Recently, Whole Arm Manipulators (WAM) caught the researchers’ attention

because of their human-like kinematics and near-zero joint friction (Barrett Tech-

nology Inc, 2008b). These characteristics facilitate the design of controllers and

provide efficiency in obtaining more accurate data for the identification of the robot

parameters. In the case of the Whole Arm Manipulators, as for other manipulators

with a serial link configuration, according to the desired characteristics of the

controller behaviour the mathematical and dynamics equations can be calculated

using recursive methods such as Euler-Lagrange, Newton-Euler or a combination of

both (Sousa et al., 2009). Most of the mathematical models that have supported

the design of controllers for a Whole Arm Manipulator (WAM) are based in the

computation of multi-links serial robot’s mathematical equations. These equations

are obtained using the Newton-Euler recursive method to find the Coriolis, cent-

rifugal and inertial forces observed when the end-effector is in motion, and use

the Jacobian approach for mapping in order to minimise singularity conditions

that increase the computation load of the control algorithm (Lau and Wai, 2002).
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This methodology involves both operational and joint forces. In order to avoid

significant computation time, some authors have found in MATLAB/SimMechanics

a comfortable tool to design mechanical systems used for experimental verification

(Yeon et al., 2005).

The computation of the dynamic model of a robot manipulator plays an important

role in the simulation of motion, the analysis of the manipulator’s structure and

the design of optimal control algorithms. The performance of robot manipulators

with multiple links is always compromised due to the gravity force affecting the

dynamics of the system, among other non linearities such as friction force and

inertial forces. Frequently, the minimisation of the error in the execution of tasks

will demand the implementation of a suitable controller able to deal with the effects

of gravity, or the addition of a gravity compensation module to the control scheme.

The most common control strategies used in robot manipulators are the joint

Proportional Derivative (PD) control and the Proportional Integral and Derivative

control. PD controllers are simple to implement and their parameters are relatively

easy to find, but they are not able to compensate for the effects of the gravity force.

Hence, modules for gravity compensation have to be included in the control loop

in order to eliminate the offset error in the response of the system (Kelly et al.,

2005). On the other hand, the integral component of the PID controller is able to

neutralise the influence of gravity during the execution of tasks. PID control is the

most popular strategy implemented in the industry for robot control (Spong et al.,

2006).

Gravity compensation is an important issue in robot control, however is the exist-

ence of other disturbances what represent a real challenge when designing control

strategies for robot manipulators. Friction force in the joints of the manipulator,
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for example, will never guarantee a zero error in the output response of the

controllers. Commonly, the effects of friction must be cancelled separately through

the implementation of a compensation strategy. The most recommendable action

to succeed on the later is to identify the actual friction phenomena manifested in

the system and use this data to create a mathematical model that can serve as a

reference.

Olsen and Petersen (Olsen and Petersen, 2001) presented a method to find the

model parameters of a robot in order to support the design of model-based robot

controllers. They also proposed the computation of the model parameters of friction

using experimental methods for two links of the Mitsubishi PA-10 robot. Kostic

and colleagues (Kostic et al., 2004) showed the importance of accurate friction

modelling in model based nonlinear control. Their work summarise a procedure to

improve the performance of an RRR-Robotic arm and validated their results with

a writing task. Other contribution to the model of the Mitsubishi PA-10 robot is

presented in (Bompos et al., 2007), where the authors describe the full identification

of the model parameters, the estimation of the stiffness of the joints and a new

nonlinear friction model for the joints of the manipulator. The verification of the

model is made through an end effector trajectory tracking task.

There are several models used in friction research. Armstrong and colleagues

published a survey where all the theory behind friction phenomena is explained and

proposed an integrated friction model based on seven parameters that include the

pre-sliding displacement, the Coulomb friction, the viscous friction, the Stribeck

curve friction and the friction level at breakaway (Armstrong-Helouvry et al., 1994).

Canudas de Wit and colleagues proposed a dynamic model that considered the

contact surfaces as contact between bristles (Canudas de Wit et al., 1995) and

illustrated the procedure of identification of friction phenomena to validate the
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model using experimental data (Canudas de Wit and Lischinsky, 1997). Hensen and

colleagues presented two grey-box models and validated them using experimental

data obtained from a rotating arm (Hensen et al., 2000).

In some cases the influence of friction does not affect significantly the performance

of the system, so a compensation technique might not be required. In other

cases the control strategy might be effective enough to compensate the error

caused by the non linearities brought by the friction phenomena in the joints of

the manipulator. For example, a PID control is capable of dealing with friction

when all its parameters are conveniently selected (Lewis et al., 2004). However,

tuning the parameters of the PID is not an easy task and frequently requires the

implementation of techniques based on iterative methods that use experimental

data (Hamamoto et al., 2003; Hildebrand et al., 2005). Iterative techniques allow

to select the control parameters according to the actual performance of the system

affected by disturbances.

In 1994 Hjlmarsson and colleagues proposed and iterative model-free method for

tuning control parameters, which proved to be efficient in simulations of a linear

control scheme. The method uses a minimising criterion based on the computation

of the Hessian using the Newton method and the gradient of the tracking error

(Hjalmarsson et al., 1994). Using a similar minimising criterion, Sjöberg and Agarwal

presented a repetitive method for non linear systems that computes the gradient of

the error following a series of experiments where the input signal changes slightly

with respect to a principal reference signal (Sjoberg and Agarwal, 1996). A similar

method was described by De Bruyne and colleagues in (De Bruyne et al., 1997). The

technique proposed by Hjalmarsson proved to be also effective in non linear systems,

although its implementation worked only under limited conditions (Hjalmarsson,

1998, 2002). Considering a different approach, Hamamoto and colleagues presented a
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method to tune the controllers of a two-mass spring system. The method suggest the

separate tuning of the feedback and feedforward controllers and compute the Hessian

using a quasi Newton method (Hamamoto et al., 2003). Sjöberg and colleagues

extended their work in (Sjorberg et al., 2003) and developed a complete algorithm

for the controller optimisation of nonlinear systems following a series of experiments

where the reference signal is changing according to a variable parameter. They

used these data to compute the gradient of the error. The method was tested only

through simulated systems.

The iterative feedback tuning methods previously described were designed to tune

the parameters of the controllers without depending on the mathematical model of

the system. However, these methods might be suitable to implement on an accurate

mathematical model of the system that includes non linearities such as the inertia

and the friction forces. The described works about modelling of robot manipulators

indicate that it is suitable to implement an accurate dynamic model of the system

using its inertial information and using a friction identification technique to measure

the friction phenomena that affects its performance.

1.4.2 Human computer interaction based on eye movements

There are several methods to scan eye movements; however, Electrooculography

(EOG) and gaze tracking are the most popular techniques for the development of

Human Computer Interaction devices (HCI). The eye movements commonly used

as control signals include saccades, fixations and intentional blinking.

Electrooculography allows to measure blinks and the movement of the eyes by

positioning skin electrodes near to the eyes in order to register the resting potential

of the retina (Wade and Tatler, 2005). This method is widely used in ophthalmo-

logic diagnosis and has been popular in the development of HCI due to its non

invasive nature. Some of the most relevant developments in EOG based HCI are
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summarised below.

In 1990 LaCourse and Hludik Jr. developed a communication tool that consisted

in a visual interface in a computer screen displaying several targets. Each of the

targets could be selected by making a fixation on its presentation on the screen. The

authors imply that the system is prompt to control output drivers and mechanical

or electrical devices (LaCourse and Hludik, 1990). In 1998 Tecce and colleagues

developed a cursor that represented a moving fixation point on a computer display

(Tecce et al., 1998), the cursor helped to spell complete sentences using an alphabet

matrix displayed on the screen. In 2002 Barea and colleagues implemented a

system that controlled the direction of an electric wheelchair by using a cursor

to select different commands on a on-board computer (Barea et al., 2002). In

2007 Borghetti and colleagues developed a low cost and easy-to-use HCI based

on EOG signals. Their system gave a platform to help the user to communicate

and to control external devices (Borghetti et al., 2007). Other developments of

devices that measure eye movements have been designed considering their future

implementations in HCI’s and HMI’s. For example, in 2010 Deng and colleagues

developed a new eye movement tracker using EOG signals that achieved more

than 90% of accuracy (Deng et al., 2010). The same year Bulling and colleagues

proposed a method to analyse eye movements using repetitive patterns for eye

based activity recognition (EAR) (Bulling et al., 2010). In 2012 proposed a new eye

control method based on wavelet transform and neural networks with and error of

less than 2 degrees (Barea et al., 2012). According to the authors, the systems are

prompt to be used in the design of computer interfaces controlled by eye movements.

Although EOG based HCI has kept researchers interested through the past years,

optic based eye tracking devices have been highly developed for commercial

purposes. The optic methods for eye tracking use the reflection properties of
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the cornea to measure the rotation of the eye with respect to a reference. A

beam of light, usually infra red (IR), is projected onto the eye from a fixed

source. When the eye moves the position of the light relative to the cornea

will change giving a point of reference to register eye rotations. The principle

of corneal reflection can be implemented in head mounted devices that use two

cameras to record simultaneously the user’s front scene and the eye with the

reflection of the IR light on the cornea. These devices known as gaze trackers

synchronize the images of the scene camera with the eye image to find the gaze point.

There have been several advances in eye/gaze tracking based human computer

interfaces. In 1989 Hutchinson and colleagues implemented a prosthetic device

that consisted in a stand-alone workstation with an interface that displayed an

option menu, where the options of the menu were activated by fixation. The

team used a near-infrared/camera assembly to measure the gaze point (Hutchinson

et al., 1989). In 2005 Noureddin and colleagues proposed the use of two cameras

for gaze tracking. The system considered not only the corneal reflection but it

recognised the pupil in real time using image processing techniques. This set up

was able to compute the gaze position in the presence of head motion and was

designed for HCI implementations (Noureddin et al., 2005). In 2008 Sesin and

colleagues proposed a system for gaze tracking to control a mouse cursor. They

used neural networks (ANN) that required a short training session to reduce the

sporadic motion of the eye (saccades) (Sesin et al., 2008b,a). Similarly, Varona

and colleagues developed an interface that recognised gestures to move a mouse

cursor (Varona et al., 2007). In 2009 De Santis and Iacoviello developed an eye

tracking procedure based on pupil detection in real time, using several levels of

segmentations between successive frames of a camera pointing to the face (De Satis

and Iacoviello, 2009). The system was specifically designed to be used by disabled

people in computer interfaces. Also in 2009, Tall and colleagues presented an
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interface using on screen buttons to control the direction and speed of a remote

vehicle. The set up included a mouse-pointing low-cost webcam eye tracker and

two commercial eye tracking systems (Tall et al., 2009). In 2011 Rantanen and

colleagues designed a head mounted gaze tracker with facial movement detection.

The device was wireless and it was suggested to act as an input for HCI using the

the gaze as a pointer and facial gestures for selection (Rantanen et al., 2011). Arai

and Mardiyanto used a head mounted gaze tracking system to control an interface

for phoning, reading e-book/e-comic/e-learning and that allowed internet browsing

and TV information extraction (Arai and Mardiyanto, 2011). In 2012 Krolak and

Strumillo implemented a system for eye blink detection using image processing

methods matching based eye tracking and eye blink detection. They constructed

an interface with a screen mouse, virtual keyboard, internet browsing and a panel

with short-cuts to user-selected computer programs (Krolak and Strumillo, 2012).

Other novel implementations are presented in (Reale et al., 2011) and (Zhao et al.,

2012). Reale and colleagues designed an HCI that includes not only gaze tracking as

control signal, but the use of gestures, head pose, hand pointing and mouth motions.

The authors also developed a new calibration approach to find the three dimensional

(3D) eyeball location, eyeball radius, and fovea position. On the other hand, Zhao

and colleagues developed a game system based on head pose to control a virtual

robot walking in a virtual maze environment.

1.5 Organisation of the thesis

This thesis is organised in seven chapters.

Chapter 1 is an introduction to the contents of the thesis. It describes the motiv-

ation behind this work and gives a summary of past research that encouraged the

techniques used in the development of this project.

Chapter 2 contains the theoretical background found in the literature that helped
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to sustain the implemented methods and materials.

Chapter 3 describes the dynamic model of the 7 degrees of freedom (DOF) robot

manipulator and its validation using experimental data.

Chapter 4 presents a feed-forward friction compensation technique that was imple-

mented on the Proportional and Derivative (PD) joint control with gravity compens-

ation that was configured in the 7-DOF manipulator.

Chapter 5 explains the tuning process of the 7 Proportional Integral and Derivative

(PID) controllers parameters from the joints of the robot manipulator.

Chapter 6 follows the design and implementation of a Human Machine Interface

based on gaze tracking and its application to control a robot manipulator.

Chapter 7 contains the general conclusions derived from this work and offers the

insights of proposals for future work.
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Chapter 2

Theoretical Background

Technological advances have led to the development of several types of prosthetic

devices designed to aid paralysed people. These devices are designed to compensate

for failures that the user organs or limbs may have, offering a comfortable and

natural feeling. In order to achieve the later, the control of these devices is usually

based on bio signals. Among the prostheses based on bio signals we can mention

neural prostheses, myoeletric prostheses and robotic prostheses.

Myolectric prostheses use muscles electric activity to control mechanical devices

in order to execute a task, for example the rotation of a wrist, the flexion of an

elbow or the grasp of a hand. Neural prostheses are devices based on brain activity

that are capable to compensate for neural damage that affects motor, sensory or

cognitive processes. There are several types of neural prostheses: visual prostheses,

auditory implants, cognitive prostheses and motor implants. Visual prostheses

stimulate neurons in the visual system in order create an image in the brain.

Auditory implants such as cochlear implants, auditory brain stem implants and

auditory midbrain implants, stimulate auditory nerves aiding the sound processing

in the brain. Cognitive prostheses are used to replicate brain functions that are

originally executed by tissue that has been damaged. Motor implants are aimed for

conscious control of movement of mechanical limbs, or robotic prosthetics. Robotic

prosthetics are built as complete systems that include sensors, controllers and
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actuators to control sophisticated mechanical structures such as robotic arms.

When a computer is used to process neural activity in order to control a device,

the system is known as Brain Computer Interface (BCI). There are several develop-

ments that have helped to encourage the research in the field of BCI. Braingate, for

example, is a very sophisticated system that consist in an array of microelectrodes

that can be implanted in the brain to record signals, and uses a decoder to find

useful commands to control external devices such as a computer, a wheelchair,

or a prosthetic robotic limb (BrainGate). In most cases, the development of the

interfaces intended to control prosthetic robotic limbs is made using commercial

robotic arms which anatomy is similar to the human arm. The DLR Light Weight

Robot developed by the Institute of Robotics and Mechatronics in the German

Aerospace Center, and the DEKA which belongs to a project sponsored by the

Defense Advanced Research Projects Agency and the U.S. Army Research Office

are popular devices that fit this description. There are also computer interfaces

that use eye movements as control signals, although these are mainly used for

communication, web browsing, control of applications and control of peripheral

devices.

Robotic arms, also known as robot manipulators, follow diverse trajectories in order

to complete a desired task. The accurate motion of the mechanical structure relies

on forces applied to the joints of the manipulator using controllers. There are

several linear and non linear control techniques used to control the joints of robot

manipulators, considering the system as either a single-input/single-output (SISO)

or a Multi-input/Multi-output (MIMO) system.

When the robot manipulator is considered as a SISO system, each link is controlled

independently and the coupling effects are regarded as disturbances (Spong et al.,

2006). If the disturbances are constant a compensator may be applied. Among the
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most used compensators in robotics are the Proportional Derivative (PD) and Pro-

portional Integral and Derivative (PID). When the joint trajectory is time varying,

the compensator may be supported by adding a feedforward path to the output

of the compensator. If the mathematical model of the system is known, a dynam-

ical system based on such a model (observer) can be used to compensate for the

disturbances using an estimation of the full state of the system.

When the manipulator is considered as a MIMO system the control problem is

non linear. The control techniques are then thought to cancel the non linearities

based on the dynamic model of the manipulator, in most cases. Common strategies

used to compensate non linearities in MIMO systems are PD control with gravity

compensation, inverse dynamics control, robust control and adaptive control.

Inverse dynamics control is based on the exact cancellation of non linearities using

a non linear state feedback. If a perfect compensation can not be reached we can

consider robust control and adaptive control. The implementation of robust control

depends on an estimation of the uncertainties and the tolerance of the mechanical

structure in order to establish control inputs. Adaptive control uses an on line

estimation of the dynamic model making on line adaptations that compensate for

the external disturbances.

PID control is a control strategy widely used in the industry due to the fact that

the integral component of the controller can achieve zero steady state error, while

keeping the gains small. This type of controller has robust performance under several

operating conditions and its design is simple due to it is based on a small number

of parameters.

However, non linear phenomena may appear when the integral term accumulates a

significant error that breaks the feedback loop. This may happen due to the actuator

limitations and can be avoided by limiting the controller output or by using external

reset feedback. Tuning a PID controller is not an easy task, the designer must rely on
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specific methods in order to find the proper values of the parameters. In most cases

the initial tuning is made though computer simulation considering the mathematical

model of the system. Once the controller is implemented, on-line tuning is used to

adjust the parameters through the execution of several experiments.

The basic rules for PID tuning are the Ziegler-Nichols rules. These rules apply

under different conditions. If the plant dynamics are not known accurately, the

method uses the transient response of the plant to a unit step input and the values

of the parameters are chosen according to the output. In a second version of the

method, the proportional gain is changed until it reaches a critical value Ku, at this

time the output exhibits sustained oscillations with period P , the parameters are

chosen considering the values of Ku and P (Ogata, 2010). Other common method

to tune the controller using the transient response of the plant to a unit step input

is the relay feedback auto tuning. In this method a relay is connected in a feedback

loop with the plant, since the amplitude of the oscillation and the relay output are

proportional, the relay amplitude may be auto adjusted to reduce the oscillations.

It is possible to tune the parameters of PID controllers even if the dynamics of

the system are complete unknown using Iterative Feedback Tuning (IFT). This

method is based on the behaviour of the controller undergoing several experiments,

and allows a closer analysis of the performance of the controller when executing a

desired task. The method uses the collected data with a gradient based minimisation

criterion in order to find the control parameters iteratively. Although the method

was originally designed for linear systems it has been successfully applied to non

linear systems. This type of tuning is limited to the execution of specific tasks

and requires a series of experiments that in some manipulators are not suitable to

perform.
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2.1 Modelling in Robotics

From the mechanics viewpoint, a manipulator can be represented as a sequence

of rigid bodies (links) interconnected by means of articulations (joints). Each of

these links symbolise an important element of the manipulator’s architecture: a

positioning arm, a wrist used to give dexterity and the end-effector that performs

the desired task. At the same time, the mobility of the manipulator’s structure

depends on the type of articulation that interconnects the links, which can be either

prismatic or revolute. A prismatic joint produces a relative translational motion

between two links, whereas a revolute joint produces a relative rotational motion

between the two links (Siciliano et al., 2009). The characteristics of links and joints

altogether set the workspace of the manipulator.

The mechanical structure described previously is connected to internal and external

sensors that provide the computer, which holds the system’s controller, with motion

information (Spong et al., 2006). All this information about displacement, velocity

and acceleration of the links is used to determine the controller behaviour, which

objective is to manipulate the mechanical structure with proficiency so that the

desired task can be executed successfully.

There are two mathematical analyses needed for the controller in order to position

the manipulator in a required location: the kinematic and the dynamic study. The

kinematic analysis tells the controller where to move whilst the dynamics reveals

how to get there (Asada and Slotine, 1986). Consecuently, two mathematical

models have to be developed to understand and effectively control the behaviour

of the manipulator by measuring related data from the sensors: the end-effector

position, the forces of the actuators, the velocities and the accelerations of the

joints. The mentioned models will be subsequently explained.
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2.1.1 Kinematic Modelling

There are two different kinematic problems that can be solved in order to identify the

end-effector position and orientation according to the provided information about

the joints. If the joint variables (angles and translations) are given, the position of

the end-effector can be calculated by solving the forward kinematics problem; else

if only the position of the end-effector is known, the values of the joint variables can

be determined through the inverse kinematic problem.

Direct Kinematics

Each link of the structure can be numbered from 0 to n, letting the base link to be

numbered as 0. At the same time it is convenient to attach a coordinate frame to

each link. Specifically, frame oixiyizi is the frame attached to link i, to represent

the position and orientation of the end-effector using consecutive homogeneous

transformations from the last frame, back to the base frame o0x0y0z0, referred to as

the inertial frame (Asada and Slotine, 1986; Spong et al., 2006).

To compute the position and orientation of the end-effector, the characteristics of

each joint and the length of the links must be given, since each movement of the

end-effector is completely related to the joints displacement. Assuming that each

joint has a single degree of freedom, a robot manipulator with n joints will have

n + 1 links. Each joint has an associated variable (namely qi) that can be an angle

(revolute joint) or displacement (prismatic joint)

qi =

{

θi if joint is revolute

di if joint is prismatic
(2.1)

A simple procedure to assign an attached coordinate frame to each link of the manip-

ulator is the Denavit-Hartenberg (DH)1 convention. The DH convention is widely

used to describe the position and orientation of frame i relative to frame (i − 1)

1The Denavit-Hartenberg convention is explained in detail in Appendix A.
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using the 4× 4 matrix

Ai−1
i =



















cosθi −sinθicosαi sinθisinαi aicosθi

sinθi cosθicosαi −cosθisinαi aisinθi

0 sinαi cosαi di

0 0 0 1



















(2.2)

where the first three (3 × 1) column vectors contain the direction cosines of the

coordinate axes of frame i, whilst the last (3 × 1) column vector represents the

position of the origin of frame i (Asada and Slotine, 1986).

The position of the end-effector with respect to the inertial frame is described by the

position vector of the origin and the unit vectors of a frame attached to the body.

It can be expressed by the homogeneous transformation matrix

T 0
n =







n0
n(q) s0n(q) a0n(q) p0n

0 0 0 1






(2.3)

where q is the (n× 1) vector of joint variables, nn, sn, an are the unit vectors of the

frame attached to the end-effector, and pn is the position vector of the origin of the

n frame with respect to the origin of the base frame (Siciliano et al., 2009). The

transformation matrix is obtained considering the n DH matrices that describe the

position and orientation of each link and which, being calculated consecutively, give

the end-effector position relative to the base frame as

T 0
n = A0

1(q1)A
1
2(q2)...A

n−1
n (qn) (2.4)

Inverse Kinematics

Solving the inverse kinematic problem is more complicated than finding a solution

for the direct kinematic problem. This is because the equations involved in the
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inverse kinematic problem are strongly related to the robot configuration. There are

several methods to solve the inverse kinematic problem: the geometric method, the

homogeneous transformation matrix based method and the kinematic decoupling

method. One of the difficulties to face when solving the inverse kinematic problem

is that the solution is not unique. In order to facilitate the calculation of the

variables that satisfy the inverse kinematic problem is recommendable to examine

the robot’s configuration. The geometric method is recommended for manipulators

with few degrees of freedom. The homogeneous transformation matrix based

method may be used in more complex configurations. However, implementing

this method involves a careful analysis of the set of equations that conform the

direct kinematic model of the system. Finally, the kinematic decoupling method is

usually used to calculate the position of the wrist by taking advantage of the results

obtained when one of the other two methods has been applied to the positioning

system of the arm (Barrientos et al., 1997).

If the direct kinematic model is known, using Equation 2.4 and taking the initial

position as a reference, it can be shown that

(A0
1(q1))

−1T 0
n = A1

2(q2)A
2
3(q3)...A

n−1
n (qn)

(A1
2(q2))

−1(A0
1(q1))

−1T 0
n = A2

3(q3)...A
n−1
n (qn)

(An−2
n−1(qn−1))

−1...(A1
2(q2))

−1(A0
1(q1))

−1T 0
n = An−1

n (qn)

(2.5)

Once all the relations have been identified, an algorithm can be developed to com-

pute the values of each of the joint variables.

2.1.2 Dynamic Modelling

The computation of the dynamic model of a robot manipulator plays an important

role in the simulation of motion, the analysis of the manipulator’s structure and

the design of control algorithms. Simulating the manipulator’s motion allows the
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testing of control strategies and motion planning techniques without even having a

physical system.

Two of the most used methods for the derivation of the equations of motion of a ma-

nipulator in the joint space are the Euler-Lagrange equations and the recursive Euler

Formulation. The Euler-Lagrange equations are derived from Newton’s second law

of motion, considering the Lagrangian of the system that represents the associated

force with the set of joint variables. The Lagrangian for a system with n DOF is

d

dt

∂L

∂q̇k
−

∂L

∂qk
= τk; k = 1, ..., n (2.6)

where τk is the force associated with the joint variable qk. Given that the links of

the robot manipulator are considered as interconnected rigid bodies, the motions

of these bodies are related kinematically and the kinematic analysis of the system

can be compared to that of the rigid body with a general three dimensional motion

using relative motion analysis 2 (Meriam and Kraige, 2007). At the same time,

assuming that the mass of the body is concentrated in its center of mass, the

potential energy due to gravity can be easily calculated (Spong et al., 2006).

The Newton-Euler formulation is based on a balance of all the forces acting on

every link of the manipulator (Siciliano et al., 2009). The total torque in each

link can be computed using a recursive analysis of velocities, accelerations and

propagating forces, taking advantage of pre-established coordinate systems of

reference (attached frames) that can be chosen using the Denavit-Hartenberg

convention for simplicity. Therefore, a recursive algorithm can be used to compute

the forces associated to each joint variable with respect to a defined inertial frame

3.

2Relative motion analysis refers to the measurement of displacement, velocity and acceleration
of an object with respect to a moving reference.

3The Newton-Euler recursive algorithm is reviewed in Appendix B.
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In general, the dynamic model equation for a robot manipulator is written in the

form

B(q)q̈ + C(q, q̇)q̇ +G(q) + F = τ (2.7)

where B(q) is the inertial matrix, C(q, q̇)q̇ is the Coriolis-Centrifugal matrix, G(q)

is the gravity vector and F is the vector of friction, which is usually obtained using

a fitted friction model.

Direct Dynamics and Inverse Dynamics

There are two types of problems that can be solved through the computation of

the dynamic model: the direct dynamics and the inverse dynamics problem. The

solution of the direct dynamics problem determines the value of the position, velocity

and acceleration joint variables for the given applied torques, whilst in the inverse

dynamics problem the torque is calculated using the given joint position, velocity

and acceleration. Either the Direct Dynamics problem and the Inverse Dynamics

problem are desirable to be solved using numerical methods.

2.1.3 Friction Modelling

It is recommendable to include a friction model in a mechanical system model when

designing a proper controller. Since the non linearity of friction may affect the

performance of the controller, the use of a suitable friction model permits an ad-

equate compensation. There are many models of friction employed when modelling

position controlled mechanism. These models include several components like the

sliding friction (or Coulomb friction), the breakdown friction (or stiction) and the

viscous friction. An usual form to represent a friction model is expressed as

F = FC + (FS − FC)e
−|v/vσ |

δσ

+ Fvv (2.8)
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where vσ represent the Stribeck velocity 4, FC is the Coulomb friction level, FS is

the level of the stiction force and Fvv is the viscous friction (Olsson et al., 1998;

Johnson and Lorenz, 1992).

In most cases, if the manipulator is expected to displace at medium or medium-high

velocities, the friction can be modelled considering the effects of the viscous friction

and the Coulomb friction only. This simplified representation of friction is known

as classic friction model

F = Fcsign(q̇(t)) + σ2q̇(t) (2.9)

where Fc is the parameter for Coulomb friction, σ2 is the viscous damping coefficient

and q̇(t) is the velocity of the link. The value of the parameters for the classic

friction model can be obtained from experimental data through the execution of

joint rotations at different constant velocities as explained hereafter.

2.2 Control Theory in Manipulators

Proportional Derivative (PD) Control with Gravity compensation and Proportional

Integral and Derivative (PID) Control are widely used strategies in robot control.

PD controllers use the derivative of the error to correct the control signal of the

system increasing its stability while the PID controllers take advantage of the

integral action to remove the steady state error (Ogata, 2010). The influence of

gravity on a mechanical system can be computed using its geometric configuration.

In most cases, when the system is in motion this type of computation would be

difficult to execute on line and therefore the desired joint positions given by the

reference trajectory have to be used (Kelly et al., 2005). The computed value might

4Stribeck noticed that the change from static friction to Coulomb friction can be expressed as
a continuous function of the velocity. The range of velocity in which the Stribeck effect is effective
is called Stribeck velocity (Olsson et al., 1998).
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be added to the control loop as a gravity compensation module in order to improve

the performance of the controller.

2.2.1 Proportional Derivative Joint Control with Gravity

Compensation

The joint Proportional Derivative control with gravity compensation is expressed

in Equation 2.10, where the control joint torque τc(t) is given as the sum of the

difference between the reference and measured position q̃(t), known as position er-

ror, multiplied by a constant proportional gain KP , the derivative of the error ˙̃q(t)

multiplied by a derivative gain KD and the compensation for gravity g(q), which is

a function of the joint position.

τc(t) = KP q̃(t) +KD
˙̃q(t) + g(q(t)) (2.10)

The diagram in Figure 2.1 shows the configuration of a joint PD controller with

gravity compensation, as implemented in the WAM arm used in the development of

this thesis. This control strategy successfully cancels the effects of gravity but it does

not compensate the friction phenomena manifested in the joints of the manipulator.

Then, the response error when executing a desired joint rotation is always nonzero.

2.2.2 Proportional Integral and Derivative Joint Control

As previously mentioned, every joint of the 7 DOF manipulator has been configured

by the manufacturer with a PD controller and gravity compensation. Neverthe-

less, the system may be configured to perform under joint PID control by properly

adjusting the gains of the joint controllers. PID control may be considered as an

extended PD control which, apart from being dependent of the position error and
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Figure 2.1: Configuration of the joint PD control with gravity compensation. qr(t) is the
reference trajectory, P represents the manipulator, g is the gravity compensation as a
function of the joint position q(t), KD and KP are the derivative and proportional gains,
respectively.

the derivative of the error, it considers the accumulation of the past errors through

an integral term
∫ t

0
q̃(λ)dλ. The actuating torque is expressed as

τc = KP q̃(t) +KD
˙̃q(t) +KI

∫ t

0

q̃(λ)dλ (2.11)

where q̃(t) is the position error, ˙̃q(t) is the derivative of the error and KP , KD and

KI are the proportional, derivative and integral gains respectively. The values for

KP , KD and KI are usually adjusted using different techniques according to the

complexity of the process plant (Johnson and Moradi, 2005). Figure 2.2 shows the

configuration of a joint PID controller.
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Figure 2.2: Configuration of the joint PID control. r(t) is the reference trajectory, P
represents the manipulator, KD, KI and KP are the derivative, integral and proportional
gains, respectively.
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2.2.3 Iterative Feedback Tuning

Iterative feedback tuning is a technique used in iterative control design to find

suitable controller parameters through experimental data. The method consists

in the realisation of several experiments where the reference signal is changing. The

obtained data is then used to construct a minimising criterion based on the error ỹ(ρ)

of the output response. The method relies on the assumption that some disturbance

v affects the performance of the system

ỹ(ρ) = y(ρ)− yr (2.12)

where yr is the desired system response to a reference signal r, y(ρ) is the actual

response as a function of ρ, which is the vector that contains the controller paramet-

ers. A control objective function J(ρ) can be subsequently defined as a quadratic

function of the expected value of the error ỹ(ρ) with respect to the disturbance v of

the system

J(ρ) =
1

2N

N
∑

t=1

E[ỹ(ρ)2] (2.13)

Whenever the condition of optimality J ′(ρ) = 0 is met, the value of the parameter

ρ, according to ρ∗ = arg minρJ(ρ), can be calculated iteratively by means of

ρi+1 = ρi − γiR
−1
i

[∂J(ρi)

∂ρ

]

(2.14)

where R−1
i is a positive definite matrix, γi is the iteration step and

[

∂J(ρi)
∂ρ

]

is an

estimate of the first derivative of the objective function.

The iterative feedback tuning technique is fully documented by Hjalmarsson in

(Hjalmarsson, 2002). The value of γi in Equation 2.14 represents the size of the

iteration step and it is variable through the tuning process. Generally this value

is equal to 1 for the first iterations and becomes smaller as the instability point
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is nearly reached. The rest of the parameters that shape Equation 2.14 are not

straightforwardly found and its computation relies on experimental data.

Estimation of the gradient

The gradient of a function gives the direction of its rate of change. Considering

Equation 2.13 the gradient of the objective function can be expressed as

∂J(ρ)

∂ρ
=

1

N

N
∑

t=1

E
[

ỹ(ρ)
∂ỹ(ρ)

∂ρ

]

(2.15)

The value of ỹ(ρ) can be obtained with the execution of a closed loop experiment

as the one shown in Figure 2.3.

C( )r_+

l .Iy( )r
P +

+
lIr

lIv

Figure 2.3: Closed loop experiment designed to find the value of ỹ(ρ). C(ρ) represents the
controller of the system as function of the current parameters contained in ρ, P represents
the plant, r is the reference signal and y(ρ) is the response of the system affected by a
disturbance v.

The approximation of ∂ỹ(ρ)
∂ρ

requires the execution of a second experiment. The signal

acquired in the previous experiment (let it be known as y1(ρ)) subtracted from the

reference signal r, endows the closed loop system of shown in Figure 2.3 and the

output response is then filtered as shown in Figure 2.4. The following configuration

was proposed by Hjalmarsson and colleagues in (Hjalmarsson et al., 1994).

Approximation of the Hessian

The matrix Ri in Equation 2.14 indicates the update direction for the estimation of

the controller parameters in each iteration i and it is usually stated as the Hessian
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Figure 2.4: Closed loop experiment designed to find ỹ′(ρ), let ỹ1(ρ) be the output of the
experiment described in Figure 2.3. C(ρ) is the controller of the system, P is the plant
and C ′(ρ) is the derivative of the controller with respect to its parameters.

matrix of the objective function. The Hessian is a matrix formed with the second

partial derivatives of a function of many variables, expressing its local curvature. A

common choice for the approximation of the Hessian is to use the Gauss-Newton

method

Ri =
1

N

N
∑

t=1

([∂ỹ(ρi)

∂ρ

][∂ỹ(ρi)

∂ρ

]T)

(2.16)

where N is the number of samples, i represents the current iteration and ρ is the

vector that contains the control parameters. The value of ∂ỹ(ρi)
∂ρ

for every iteration is

obtained through the execution of both closed loop experiments described in Figure

2.3 and Figure 2.4.

A different technique to approximate the Hessian based on Broyden-Fletcher-

Goldfarb-Shanno (BFGS) method for solving non linear optimisation problems has

been proposed in (Hamamoto et al., 2003). In this technique the Hessian is approx-

imated for each iteration i as a function of a previous estimation using

Bk+1 = Bk +
zkz

T
k

zTk sk
−

Bksks
T
kBk

sTkBksk
(2.17)

Regarding to the equation, the Hessian Ri = Bk+1, sk = ρk+1 − ρk and zk =

J ′(ρk+1) − J ′(ρk). The matrix B0 must be initialised for the first iteration using a

positive definite matrix, an identity matrix is a common choice so that B0 = I. For

every iteration Bk+1 is positive definite if Bk is positive definite and zTk sk > 0. If

the condition zTk sk > 0 is not satisfied then Bk+1 = Bk.
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2.3 Gaze Tracking Theory

The eye processes visible light in order to generate visual information in the retina

that is sent to the visual cortex of the brain through the optic nerve. The mayor

features of the eye involved in the generation of visual information are shown in

Figure 2.5 (Drake et al., 2010). The outer layer of the eye is a strong tissue known

as sclera which is transparent in the front so that allows the refraction of the light

in the cornea. The refracted light passes through the pupil to the retina where the

image is created. The amount of light reaching the retina depends on the size of

the pupil which is controlled by the iris (Tovee, 1996).

Cornea

Anterior
chambers

Iris

Retina

Optic
nerve

Sclera

Lens

Pupil

Figure 2.5: Simplified diagram of the structure of the eye (Drake et al., 2010).

The acquisition of visual signals involve a complex type of eye scanning, which

execution depends on three dimensional rotations of the eye, performed by six

specific muscles attached to the ocular globe. The location of the muscles is shown

in Figure 2.6, the rectus muscles are in charge of the lateral and vertical motion

while the oblique muscles execute longitudinal movements.

Every muscle has a main function when executing a specific type of eye rotation

although they might have a minor participation in other actions:
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Figure 2.6: Top view of the eye. Six muscles are responsible for the three dimensional
movement of the eyeball used in visual scanning (Snell and Lemp, 1998).

• Depression: Inferior rectus, Superior oblique.

• Elevation: Superior rectus, Inferior oblique.

• Extorsion: Inferior oblique, Inferior rectus.

• Intorsion: Superior oblique, Superior rectus.

• Abduction: Lateral rectus, Superior oblique, Inferior oblique.

• Adduction: Medial rectus, Superior rectus, Inferior rectus.

The process of visual scanning involves multiple voluntary and involuntary eye

movements known as saccades. A voluntary saccade occurs when a subject moves

its eyes to fixate the gaze in a specific object or point in space. However during

the fixation process the eyes also execute rapid involuntary movements called

involuntary saccades, and the axes of the eye present an irregular slow movement

(drift) in addition to a high frequency oscillatory movement (tremor) that generates

a noisy recording (Yarbus, 1967).

Gaze trackers are devices frequently used to measure the position of the gaze in

a certain scene while dealing with the saccadic noisy signal. These devices are

designed to take advantage of the physical characteristics of the eye in order to

measure movement and rely on signal processing techniques to filter the signal so an
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accurate approximation of the gaze may be computed. Some of the techniques used

to filter the signal are finite-impulse response (FIR) filters, least square optimal

filters altogether with FIR filtering, Kalman filtering and artificial neural networks

(Spakov, 2012).

Most recent gaze tracker systems are head mounted and, as explained in Section

1.4.2, they involve different techniques in eye tracking to measure the gaze. The

system used in the development of this work was a gaze tracker based on corneal

reflection and pupil detection designed by Applied Science Laboratories (ASL). The

Mobile Eye from ASL is a head mounted device that can be used in real time gaze

tracking implementations. The acquisition system consist in a pair of glasses with a

mounted set up of two cameras and an infra red (IR) light module. A diagram of the

acquisition system is presented in Figure 2.7. The frontal camera records the front

scene of the user while the lower camera records the image of the eye through an

attached mirror. Beams of IR light are projected onto the cornea and are used as a

reference point of the position of the eye with respect to the head, while the pupil is

identified using the image of the eye. The angle of rotation of the eye can be found

by finding the relationship between the corneal reflection and the pupil position.

This information is then transposed on the scene view from the frontal camera and

the gaze point is computed frame by frame (Applied Science Laboratories, 2008).
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Figure 2.7: Diagram of the gaze tracking acquisition system. During the eye tracking
process an infra red (IR) light is projected onto the cornea and it is used as a reference
point to compute the position of the pupil when the eye rotates. The gaze point is finally
calculated by translating the eye tracking information into the image of the scene given
by the frontal camera.
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Chapter 3

Dynamic model of a 7-DOF Whole

Arm Manipulator

3.1 Introduction

Robot manipulators can be considered as a good representation of the human arm.

This characteristic makes them suitable to be used as a platform to develop control

strategies that could be implemented in prototypes for future artificial prosthetics.

Following our objective of designing a HMI to control a robot arm in reaching and

grasping tasks, as it was mention in Chapter 1, we decided to analyse the perform-

ance of the manipulator used in the development of this thesis. The manipulator

was a 7 degrees of freedom (DOF) whole arm manipulator (WAM) that was con-

figured with joint PD control and gravity compensation. The full description of the

system can be found in Section 3.2. We made an analysis of performance based

on the identification of the joint position errors presented during the execution of

joint rotations, the final position error and the smoothness of the motion during

the execution of trajectories. As a result of the analysis we noted that the joint

position errors, although very small, never reached a zero value and that some tra-

jectories were not as smooth as others. We proposed to configure the WAM arm to

work under joint PID control in order to evaluate if the performance of the manip-
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ulator improved. However, tuning the parameters of the joint controllers was not a

straightforward process considering the non linearity of the system and the number

of degrees of freedom of the manipulator. Under the circumstances we opted for

creating a mathematical model that could represent the system accurately in order

to facilitate the tuning process.

The computation of the dynamic model of a robot manipulator plays an important

role in the simulation of motion, the analysis of the manipulator’s structure and the

design of optimal control algorithms. Also, the inclusion of the effects of friction

in a mechanical system model helps to improve the performance of the controller

to be implemented in the real system (Kostic et al., 2004; Indri, 2006). In most

cases these mathematical models are implemented using high level computing

languages such as MATLAB (Corke, 1996), C/C++ or Fortran. However, MAT-

LAB/SimMechanics offers a good platform for experimental verification avoiding

significant computation time. The capability of this tool for analysing the dynamics

of mechanical systems yields to suitable results when the model of the system uses

joints with individual primitives, and when all the manipulator’s inertial parameters

are known (MathWorks, 2011).

This chapter describes the design of the dynamic model of the 7-DOF WAM arm

from Barrett Technology Inc. In order to implement the model we took advantage

of the characteristics of Simmechanics as a platform suitable to simulate mechanical

systems subject to constrains. The inertial characteristics of the model, the joint

control strategy and the joint trajectories are based on the set up of the WAM arm.
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3.2 The real system

3.2.1 Description of the system

The system is a 7 degrees of freedom (DOF) whole arm manipulator (WAM) from

Barrett Technology Inc. It is a joint torque controlled manipulator equipped with

configurable PD/PID control and gravity compensation. The information related to

the joints configuration, joint motor drives, body part masses, centre of gravity and

inertia matrix is provided by the manufacturer in the WAM ARM User’s Manual

(Barrett Technology Inc, 2008a). The WAM arm was working under the C language

based controls library Btclient. This software did not have the ability to control the

BH8-280 hand in conjunction with the WAM arm. During the development of the

works described in Chapter 5 we actualised the software to a C++ based controls

library called Libbarrett which was fully compatible to control the BH8-280 hand.

With Btclient the system worked under joint PD control and gravity compensation

and with Libbarrett the system worked under PID control and gravity compensation.

Z4
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J1,J3
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X0,X1,X2

Z1

J2

Zbase

Xbase

Xtool

Ztool
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J5,J7
Z6,Z7

Z5
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Figure 3.1: WAM 7-DOF Denavit-Hartenberg architecture with attached frames as shown
in Barrett Technology Inc (2008a).
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Figure 3.2: The Barret 7-DOF Whole Arm Manipulator with the BH8-series BarrettHand.

Figure 3.1 shows the configuration and attached frames of the 7-DOF system with

a grasper. All the joints of the manipulator are 1 DOF revolute joints. An image

of the real system is shown in Figure 3.2, consisting in a Barret 7-DOF WAM arm

with an attached BH8-series BarrettHand.

For the development of the model the 7-DOF manipulator was configured with

joint PD control and gravity compensation given by Equation (3.1), where the joint

torque τ is expressed as the sum of the difference between the reference and measured

position, namely position error q̃, multiplied by a constant proportional gain KP ,

the derivative of the error ˙̃q multiplied by a respective derivative gain KD and the

compensation for gravity g, which is a function of the joint position.

τ = KP q̃ +KD
˙̃q + g (3.1)

3.2.2 Performance of the system

An initial analysis of the system was made in order to evaluate the performance

of the WAM arm in the execution of joint rotations. We considered two sets of
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experiments. The first set consisted in rotating every joint of the manipulator one

at a time. In the second set of experiments all the joints of the manipulator were

rotated together. In both sets of experiments the joints of the manipulator were

rotated 0.5 radian at a velocity of 0.083 rad/sec. This angle of rotation was chosen

so that it could be executed by all the joints of the manipulator, according to the

kinematics of the mechanical structure. During the experiments we registered all

the joints reference trajectories and the joint positions. The information gathered

was used to compute the existing error between the desired reference position and

the actual joint position. The joint position errors helped to analyse the behaviour

of the joint controllers in the execution of the joint rotations.

At the end of each set of experiments, a relative percentage error of the final position

of the joint was measured using

RPE =

∣

∣

∣

∣

Joint Position Error

Desired Joint Position

∣

∣

∣

∣

× 100% (3.2)

The RPE was used to measure how accurate the joint motion was in reaching the

desired end position. We also observed the registers of the actual joint trajectories

since they showed the quality of the manipulator’s motion during the task, giving

that an irregular trajectory was equivalent to a shaky motion of the joint.

The results of the experiments were as follows. Figure 3.3 shows the registers

of the reference trajectories and the joint positions obtained in the first set of

experiments. It is difficult to have a fair appreciation of the position error in the

plots corresponding to Joint 1, Joint 2, Joint 3, Joint 4 and Joint 5 since the

differences between the reference trajectory and the position error are very small.

The position error of Joint 6 and Joint 7 are more evident in the plots. It can be

noticed that the trajectory of Joint 7 is not as smooth as the trajectory of the rest

of the joints, this was translated into a shaky motion of the joint when executing

the experiment. Figure 3.4 shows the position errors occurring in every joint of the
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manipulator during the first set of experiments. It can be noticed in these plots

that Joint 6 and Joint 7 present the largest position errors of approximately 0.017

and 0.027 rad, while the position errors of Joint 1, Joint 2, Joint 3, Joint 4 and

Joint 5 are within an approximate range of 0.002 and 0.007 rad.

The relative percentage errors (RPE) of the joints of the manipulator computed

using Equation 3.2 resulted as follows: Joint 1 had a RPE of 1.0876%, Joint 2 had

a RPE of 0.2342%, Joint 3 had a RPE of 0.8666%, Joint 4 had a RPE of 0.2912%,

Joint 5 had a RPE of 1.3592%, Joint 6 had a RPE of 3.2848% and Joint 7 had a

RPE of 5.4132% .

Figure 3.5 shows the registers of the reference trajectories and the joint positions

obtained in the second set of experiments. As in the case of the first set of

experiments, it is difficult to have a fair appreciation of the position error in the

plots corresponding to Joint 1, Joint 2, Joint 3, Joint 4 and Joint 5 since they are

very small. Figure 3.6 shows the plots of the position errors obtained during the

execution of the joint rotations. Joint 6 and Joint 7 had the largest position errors

with an approximate values of 0.013 and 0.017 rad, while the position errors of

Joint 1, Joint 2, Joint 3, Joint 4 and Joint 5 are within an approximate range of

0.001 and 0.006 rad.

The relative percentage errors (RPE) of all the joints of the manipulator obtained

during the second set of experiments resulted as follows: Joint 1 had a RPE of

1.0656%, Joint 2 had a RPE of 0.2016%, Joint 3 had a RPE of 0.1732%, Joint 4 had

a RPE of 0.2400%, Joint 5 had a RPE of 0.3884%, Joint 6 had a RPE of 2.6214%

and Joint 7 had a RPE of 3.6664%.

After analysing the performance of the system under PD control and gravity com-

pensation in the execution of joint rotations we noticed that Joint 2, Joint 3, Joint

4, Joint 5, Joint 6 and Joint 7 presented the largest end position error during the
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Figure 3.3: Joint trajectories of the 7 joints of the manipulator when executing a rotation
of 0.5 rad. The rotations were executed by every joint one at a time.
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0.5 rad. The rotations were executed by every joint one at a time.
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Figure 3.5: Joint trajectories of the 7 joints of the manipulator when executing a rotation
of 0.5 rad. The rotations were executed all together.
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Figure 3.6: Position errors of the 7 joints of the manipulator when executing a rotation of
0.5 rad. The rotations were executed all together.
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first set of experiments, when rotating each joint at a time, having a RPE of 0.079%,

0.849%, 0.057%, 1.268%, 1.622% and 4.771%, respectively. Joint 1 presented a

larger error during the execution of the second set of experiments, when all the joints

were rotated together, having a RPE of 1.120%. It is evident that the performance

of the manipulator is good in general. However, due to the manipulator is intended

to be used in neuroprosthetic applications, we are looking to reduce the motion

errors as much as possible. Also, in the case of Joint 6 and Joint 7 we looked

forward for obtaining smoother rotations that were able to reduce the shaky motion

seen during the experiments.

As mentioned, the manipulator was intended to be used in future applications of

neuroprosthetics. In some of these applications high accuracy is imperative so we

proposed to use Proportional Integral Derivative (PID) control in the WAM arm

with the aim of reducing the RPE to less than 1% in all the joints of the manipulator.

In robot vision applications, for example, the system relies on a camera to find the

position of objects and uses the computation of the object’s centre of mass in order

to define a grasping strategy, so a high level of accuracy in the end positioning

of the manipulator is needed. Our second objective was to obtain smoother joint

trajectories during the execution of tasks.

3.3 The Model of the system

Considering the previous description of the real system, the 7-DOF WAM model

consisted of four blocks:

• Seven modules that compute the joint reference trajectories.

• The dynamic model of the system.

• Fitted friction models for each joint of the manipulator.

• Joint PD controllers configured and tuned as those implemented in the real

system.
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The dynamic model of the manipulator is based on the configuration and physical

characteristics of the real system; the parameters of the friction model are determ-

ined through the identification of the joint frictions whilst the joint trajectory and

joint controller are emulations of those existent on the real system.

3.3.1 Trajectory Generation

The reference signal used to perform every joint rotation is a linear segment parabolic

blend (LSPB) trajectory defined as follows: up to a time tc the trajectory is parabolic

with linear velocity, at tc the trajectory changes to linear with constant velocity and

zero acceleration and finally, after a time (tf−tc) the trajectory changes to parabolic

again and the velocity decreases linearly until reaching zero. The motion produced

when applying this velocity profile to any joint is translated in a rotation from the

initial joint position qi of the manipulator to qf radian. Equation (3.3) defines the

described trajectory, where qi is the initial position, qf is the final position reached

in a time tf , q̇c = q̈ctc is the value of the constant velocity exhibited from time tc to

time (tf − tc) and q̈c is the value of the desired constant acceleration.

q(t) =



















qi +
1
2 q̈ct

2 0 ≤ t ≤ tc

1
2(qf + qi − q̇ctf ) + q̇ct tc < t ≤ tf − tc

qf −
1
2 q̈c(tf − t)2 tf − tc < t ≤ tf



















(3.3)

An example of the trajectory given by Equation (3.3) can be seen in Figure 3.7

where a rotation of 0.5 rad is performed.

In order to generate the LSPB joint trajectory, the real system sets the value of the

time of change tc as 1, and the velocity q̇c and acceleration q̈c are calculated using

Equation (3.4) and Equation (3.5), taking into account the measured values of the

initial and the final joint position qi and qf . In simulations, the joint trajectory
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Figure 3.7: Example of a trapezoidal velocity profile when the values of the variables are
set as follows qi = −0.55, qf = −0.05 rads, q̈c = 0.083 rads/s, tf = 7s and tc = 1.

is emulated by the model considering the experimental values of the initial joint

position qi, the final joint position qf and the execution time tf . The value of tc is

set as 1 and the velocity and acceleration are also calculated using Equation (3.4)

and Equation (3.5). Finally, taking all the parameters previously estimated, the

joint trajectory is generated using Equation (3.3).

q̇c =
4(qf − qi)

t2f − (−2(tc − 0.5tf))2
(3.4)

q̈c = q̇c (3.5)

3.3.2 The Dynamic Model

The dynamic model of the WAM Arm was designed and simulated using

MATLAB/SimMechanics, and most of the inertial data provided by the man-

ufacturer had to be adapted according to the inertial reference system. The

MATLAB/SimMechanics toolbox is a block diagram modelling environment like

Simulink, created by MATLAB, to design and simulate mechanical systems. The
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toolbox contains several modules that represent particular bodies and which inertial

properties can be specified by the user. A great advantage of using SimMechanics

in modelling mechanical systems is that the toolbox is prompt to be used with

Simulink so that control routines can be added with ease in order to analyse the

behaviour of the system’s dynamics under motion constraints.

According to the Barrett WAM arm datasheet the system has zero backlash and

near-zero friction. First, we designed the model of the whole arm manipulator

without considering the friction affecting the joints and later we compared the per-

formance of the WAM arm with the performance of the model in the execution of

joint rotations. As those used for the initial analysis of performance of the WAM

arm described in Section 3.2.2, two sets of experiments were made. The first set

consisted in rotating every joint of the manipulator one at a time. In the second set

of experiments all the joints of the manipulator were rotated together. In both sets

of experiments the joints of the manipulator were rotated 0.5 radian at a velocity of

0.083 rad/sec.

Figure 3.8 shows the registers of the reference trajectories and the joint positions

obtained in the first set of experiments. According to the plots, the model traject-

ories were close to the reference trajectories, meaning that the model had smaller

position errors compared to the real system. The plots of the joint position errors

shown in Figure 3.9 support the later, the values of the model position errors did not

approach the values corresponding to the real system position errors. The registers

of the reference trajectories, the joint positions and the computation of the joint

position errors obtained during the second set of experiments are shown in Figure

3.10 and Figure 3.11. The results are similar to those obtained during the first set of

experiments, the model trajectories were closer to the reference trajectories rather

than the real joint positions and the values of the model position errors did not

approach the values corresponding to the real system position errors.
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Figure 3.8: Joint trajectories of the 7-DOF manipulator when executing a rotation of 0.5
rad. The graphs show the response of the real system compared with the response of the
model. The joint rotations were executed one joint at a time.
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Figure 3.9: Position error of the 7-DOF manipulator when executing a rotation of 0.5 rad.
The graphs show the response of the real system compared with the response of the model.
The joint rotations were executed one joint at a time.
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Figure 3.10: Joint trajectories of the 7-DOF manipulator when executing a rotation of 0.5
rad. The graphs show the response of the real system compared with the response of the
model. The joint rotations were executed all together.
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Figure 3.11: Position error of the 7-DOF manipulator when executing a rotation of 0.5
rad. The graphs show the response of the real system compared with the response of the
model. The joint rotations were executed all together.
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Since there are clear differences when comparing the performance of the model

without friction against the performance of the real system, we decided to consider

the friction forces affecting the joints of the manipulator in order to increase the

accuracy of the model with respect to the real manipulator.

3.3.3 The model with Friction

The classic model of friction is a good representation of friction when the system

moves at medium low and medium high velocities. The classic friction model in-

cludes two parameters: the Coulomb friction parameter Fc and the viscous friction

parameter σ2. There is a simple method to find the value of the parameters using

real data. The method is based on several experiments were the joints of the ma-

nipulator are rotated at several velocities, positive and negative. Considering the

torque necessary to perform the desired rotation, a torque versus velocity plot is

constructed, this plot is known as friction velocity map. The process of friction

identification is fully explained in Chapter 4. The classic friction model is expressed

mathematically as

F = Fcsign(q̇(t)) + σ2q̇(t) (3.6)

where q̇(t) is the velocity.

The parameters used to construct the friction model for each joint of the 7-DOF

whole arm manipulator are listed in Table 4.1. The friction models were added

to the model of the whole arm manipulator and its performance was compared to

the performance of the WAM arm in the execution of joint rotations, following the

same methodology described in Section 3.2.2 and Section 3.3.2.

Two sets of experiments were made, the first set consisted in rotating every joint

of the manipulator one at a time and the second set of experiments consisted in

rotating all the joints of the manipulator together. In both sets of experiments
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the joints of the manipulator were rotated 0.5 radian at a velocity of 0.083 rad/sec.

Figure 3.12 shows the registers of the reference trajectories and the joint positions

obtained in the first set of experiments, when every joint of the manipulator was

rotated individually. The model trajectories of Joint 1, Joint 2, Joint 3 and Joint 4

were very close to the real trajectory but since the position errors were very small

this similarity was not evident in the plots. In the plots of Joint 5, Joint 6 and Joint

7 the model-real system similarity was more evident since the position errors in this

joints were a bit larger. Figure 3.13 shows the joint position errors. The values of

the model errors approached the values corresponding to the real system errors in

all the joints of the manipulator while executing the joint rotations.

Figure 3.14 shows the registers of the reference trajectories and the joint positions

obtained in the second set of experiments, when all the joints were rotated together.

It is difficult to see the accuracy of the model versus the real system in the plots

of Joint 1, Joint 2, Joint 3, Joint 4 and Joint 5. The joint trajectories obtained in

Joint 6 and Joint 7 are evidently similar to the joint trajectories of the real system.

Figure 3.15 shows the computed position errors. The position errors of the model

are similar to the position errors of the real system in Joint 1, Joint 2, Joint 4, Joint

5, Joint 6 and Joint 7, but larger in the case of Joint 3.

3.4 Results

Several joint rotational motion experiments were performed with the aim of eval-

uating the accuracy of the model with respect to the real manipulator. First, we

programmed the real system to execute the desired rotation while keeping record-

ings of the joint reference trajectory and the joint positions. We took the recorded

data to compute the position error. Subsequently, we emulated the joints reference

trajectory of the real system in the model and we ran a simulation of the joints

rotation while keeping a record of the joints position error. The response of the
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Figure 3.12: Joint trajectories of the 7-DOF manipulator when executing a rotation of 0.5
rad. The graphs show the response of the real system compared with the response of the
model with friction. The joint rotations were executed one at a time.
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Figure 3.13: Position errors of the 7-DOF manipulator when executing a rotation of 0.5
rad. The graphs show the response of the real system compared with the response of the
model with friction. The joint rotations were executed one at a time.
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Figure 3.14: Joint trajectories of the 7-DOF manipulator when executing a rotation of 0.5
rad. The graphs show the response of the real system compared with the response of the
model with friction. The joint rotations were executed all together.
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Figure 3.15: Position error of the 7-DOF manipulator when executing a rotation of 0.5
rad. The graphs show the response of the real system compared with the response of the
model with friction. The joint rotations were executed all together
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model was compared to the response of the system considering the value of the

position errors. The position error was chosen as a performance measurement in

order to have a closer comparison of the response of both the real manipulator and

the model when executing the exact same trajectory since, as seen in the initial

performance evaluation of the system, the joint positions were very close to the

reference.

The real system uses joint PD controllers with gravity compensation, and therefore,

throughout the simulations joint PD controllers were implemented in the model

of the system and zero gravity was assumed. The joint rotation used in all the

experiments consisted in a rotation of 0.5 rad at a velocity of 0.083 rad/sec.

A total of eight experiments, divided in two sets, were performed. During the first

set of experiments every link of the manipulator was rotated one at a time, giving a

total of seven simulations. In the second set only one experiment was performed, in

which all the joints were rotated at the same time, hence only one simulation was

needed. The second set of experiments was made to evaluate reliability, because

in real applications the manipulator operates in Cartesian space and all the joints

rotate at the same time.

The Barrett WAM arm datasheet states that the friction in the joints of the manipu-

lator is nearly zero. We implemented a model of the system that did not considered

the friction affecting the joints of the manipulator. The graphs in Figure 3.8 and

Figure 3.9, show a comparison of the position error obtained in the first set of simula-

tions. The plots show that the performance of the model is not a fair representation

of the real system, since the joint positions measured in the model are more similar

to the reference trajectory than to the joint positions of the real system, and the

position errors in the real system are larger than those observed in the model.

Similar results were obtained during the second set of simulations as shown in Figure

3.10 and Figure 3.11.
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Since the performance of the model without friction was not accurate with respect

to the real system, we included classic friction models for all the joints of the manip-

ulator. The plots in Figures 3.12 and 3.13 show a comparison of the position error

obtained in the first set of simulations. The real and simulated joint position errors

are very similar in Joints 1, Joint 2, Joint 4 and Joint 5 so that we could think of

the real signal as a noisy representation of the simulated signal. This peculiarity is

expected since the measurements taken from the real manipulator are exposed to

several sources of noise such as transducer noise and sensor errors. The real position

error in Joint 3 is a bit larger that the one obtained in the simulation. Opposite

to Joint 3, the real position error in Joint 6 is slightly smaller in comparison with

the simulated position error. In the case of Joint 7, the simulated position error

is similar to the real position error during the first 4 seconds, after that the real

position error increments progressively while the simulated position error remains

constant and decreases during the last second of the Joint rotation.

The evaluation of the joint position error obtained during both the real and simu-

lated system helped to prove the veracity of the model with friction joint per joint

and to show that the response of this model was accurate.

Figure 3.14 and Figure 3.15 show the results of the second set of simulations. The

position error of Joint 1, Joint 2 and Joint 5 are the same for both the real and the

simulated systems. In Joint 3, the simulated position error is larger that the real

position error. In Joint 4, the real position error is slightly larger that the simulated

position error during most part of the joint rotation, and they are almost equal at

the end of the rotation. Similarly, in joint 6, the end value of the simulated position

error and the real position error are almost the same but they are different during

the execution of the joint trajectory. The results obtained when rotating Joint 7 are

the opposite of the last two cases, during the fist 6 seconds of rotation the values of

the real and simulated position error are very similar but change in the last second

of the trajectory.
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3.5 Conclusions

This chapter described the dynamic model of a 7-DOF whole arm manipulator with

friction implemented in SimMechanics. After performing a motion analysis in the

WAM arm we found that the performance of the manipulator is good in general,

since the joint position errors are very small when the manipulator is executing

motion tasks. However, due to the manipulator is intended to be used in neuropros-

thetic applications, we are looking to reduce the motion errors as much as possible

and to obtain smoother rotations able to reduce the shaky motion seen during the

execution of the experiments. We proposed to use joint PID control to improve the

performance of the manipulator. In order to facilitate the tuning process of the seven

PID controllers parameters we created a mathematical model of the WAM arm. We

took advantage of the mechanical tools available in SimMechanics and its prompt-

ness to interact with Simulink to develop a platform to simulate the performance

of the real robot manipulator using its dynamic model. The platform included the

seven PD/PID controllers, configured exactly as in the real system, used to rotate

the joints of the robot arm. The platform also included seven modules that were

capable to emulate perfectly the joint reference trajectories used by the real system

to feed the joint controllers when executing joint rotations. Although the WAM

arm datasheet mentions that the joints of the robot manipulator have almost zero

friction, in Section 3.3.2 we observed that the implementation of a model without

considering friction was not accurate with respect to the real system. Then, the

friction phenomena manifested in each joint of the real manipulator was identified

through the execution of several joint rotations at different velocities, in order to

find the parameters of the joint friction models using a least-squares minimisation

method (this technique is explained in Chapter 4). The mathematical representation

of the friction phenomena was added to the dynamic model of the robot manipu-

lator. We compared the performance of the model with friction with the WAM arm

in the execution of a motion task. Considering that the real joint trajectory was
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completely emulated in the simulations, a close comparison of the performance of

the manipulator during simulation with respect to experimental data was possible.

The later allowed to test the veracity of the model throughout a set of simulations.

In Section 4.4 we showed that the response of the model of the WAM arm with the

inclusion of friction was very close to the response of the real system, despite of the

disturbances at which the real system is exposed, such as non linearities caused by

the joint motors and the inertia of the system. Other sources of disturbance to be

considered are the joint actuators and the scheme used for gravity compensation.

The presented dynamic model with friction is prompt to be used as a reference in

the design and implementation of different joint control strategies and friction com-

pensation modules for the WAM arm. The platform may be useful to analyse the

suitability of the implementations in simulations without compromising the safety

of the system.
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Chapter 4

Feedforward Friction

Compensation in the 7-DOF

WAM Arm

4.1 Introduction

In this Chapter we present the implementation of a feedforward compensation

technique applied to the joint PD control scheme of the 7-DOF WAM arm.

While implementing the mathematical representation of the WAM arm described

in Chapter 3, we used a technique to identify the friction phenomena in the

manipulator with the aim of obtaining its mathematical model. Since the friction

models were pretty accurate with respect to the measured friction phenomena we

proposed to implement a feedforward compensation technique, with the objective

of improving the performance of the manipulator by reducing the joint position

errors and to smooth the motion of the manipulator when performing trajectories.

The implementation of the friction compensation module in the joints of the WAM

arm would help to analyse the influence of friction force in the accuracy of the

joints when executing a motion task.

Friction phenomena in robot manipulators may affect the accuracy of the system
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in position control and when moving the manipulator at very low velocities. In

control applications, friction compensation may be useful to improve the transient

performance and to reduce the steady-state tracking errors, ensuring a smooth

control signal (Kermani et al., 2005, 2007). Friction may be described as a function

of velocity and other external factors using non linear models.

There are several models used in friction research. Armstrong and colleagues

published a survey where all the theory behind friction phenomena is explained.

They proposed an integrated friction model based on seven parameters that include

the pre-sliding displacement, Columb, viscous and Stribeck curve friction and

friction level at breakaway (Armstrong-Helouvry et al., 1994). Canudas de Wit and

colleagues proposed a dynamic model considering the contact surfaces as contact

between bristles (Canudas de Wit et al., 1995) and illustrated the procedure of

identification of friction phenomena to validate the model using experimental data

(Canudas de Wit and Lischinsky, 1997). Hensen and colleagues presented two

grey-box models and validated the models using experimental data obtained from

a rotating arm (Hensen et al., 2000).

The identification of friction phenomena in a manipulator can be achieved by

performing motion experiments where the joints of the manipulator are moved at

several constant velocities. The data gathered from the experiments is fitted to a

friction model using a least squares minimisation method (Borsotto et al., 2009;

Calvalho-Bittencourt and Gunnarsson, 2009).

4.2 Friction Identification

Friction force is inherent of the velocity of the joint and it is frequently represented

by a mathematical model that includes the sliding friction (or Coulomb friction),

the breakdown friction (or stiction) and the viscous friction. In most cases if the

manipulator is expected to displace at medium or medium-high velocities, the fric-

65



tion can be modelled considering the effects of the viscous friction and the Coulomb

friction only. This simplified representation of friction is known as classic friction

model

F = Fcsign(q̇(t)) + σ2q̇(t) (4.1)

where Fc in the parameter for Coulomb friction, σ2 is the viscous damping

coefficient and q̇(t) is the velocity of the link. The value of the parameters for

the classic friction model can be obtained from experimental data through the

execution of joint rotations at different constant velocities.

The procedure for the identification of the classic friction model parameters for each

joint of the 7-DOF WAM arm followed several steps. First a closed loop PD con-

trol with gravity compensation was used to move the link following a trapezoidal

velocity profile at different positive and negative velocities. During the experiments

we kept registers of the joint position and the joint torques, in addition with the

corresponding sampling time. The data were used to compute the velocity of the

link in each experiment. Afterwards, the values of torque and velocity during the

constant velocity stage of the trajectory were averaged and used to construct the

friction velocity map, which is basically a torque versus velocity plot. Finally, the

parameters of the friction model were estimated to fit the friction velocity map by

applying a least-squares minimisation method (Johnson and Lorenz, 1992; Canu-

das de Wit et al., 1995; Canudas de Wit and Lischinsky, 1997; Olsson et al., 1998)

using

n
∑

i=1

[F (vi)− F̂ (vi)]
2 (4.2)

where F (vi) is the measured torque (i.e. the friction force) at certain constant

velocity vi, and F̂ (vi) is the value estimated by the friction model expressed in

Equation 4.2.
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Figure 4.1: Register of position and torque in the Barret WAM when rotating joint 1 by
0.5 rad.

Figure 4.1 shows an example of the measured position and torque in the manipulator

when rotating Joint 1. The data segment in the inset of the figure corresponds to

the linear change in the position which is used to compute the joint velocity. The

averages of the computed velocity vi and measured torque F (vi), respectively, yield

to ordered pairs [F (vi), vi] that shape the friction velocity map.

As mentioned, the construction of the friction velocity map is based on the data

gathered when the joint of the manipulator is rotated using both positive and neg-

ative velocities. Figure 4.2 and Figure 4.3 show the positive velocity profiles used in

the friction identification of Joint 1, the respective joint torque was used together

with the velocity value to determine the set of points that construct the positive

stage of the friction velocity map. Similarly, Figure 4.4 and Figure 4.5 show the

negative velocity profiles used in the friction identification of Joint 1 and the joint

torques that construct the negative stage of the friction velocity map. The velocity

experiments were conducted for every joint of the manipulator in order to model

the friction phenomena in the WAM arm. Figure 4.6 shows the the velocity maps

of all the joints of the WAM arm.
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Figure 4.2: Positive velocity profiles used to create the friction velocity map of Joint 1.
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Figure 4.3: Positive velocity profiles used to create the friction velocity map of Joint 1.
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Figure 4.4: Negative velocity profiles used to create the friction velocity map of Joint 1.
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Figure 4.5: Negative velocity profiles used to create the friction velocity map of Joint 1.
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Figure 4.6: Friction velocity maps corresponding to each joint of the 7-DOF manipulator.
The measured data was obtained after rotating each joint of the manipulator at different
constant velocities whilst the estimated value was computed using a fitted classic friction
model.

Table 4.1 summarises the parameters that shape the friction model for all the joints

of the 7-DOF WAM Arm. The measured friction suited accurately the shape of the

classic friction model.

In general, the estimation of friction is very accurate for all the joints, and it is

suitable enough to be considered for future implementations of friction compensation

techniques in the joints of the WAM arm. Therefore, the estimated friction could

be used as part of the feed-forward compensation block.

Joint Coulomb friction Viscous friction
Fc σ2

(V + /V−) (V + /V−)
1 4.4748/ 4.3609 1.3348/ 0.8266
2 2.6385/ 3.5643 3.5572/-2.3951
3 1.7399/ 2.3529 0.3944/ 1.2075
4 1.5414/ 0.7342 -2.7045/-1.0969
5 0.2798/ 0.1172 -0.1972/ 1.4670
6 0.4834/ 0.4417 0.8291/ 0.1836
7 0.0538/ 0.1370 1.0689/ 0.7954

Table 4.1: Friction model parameters. V + /V− are positive and negative velocities
respectively.
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4.3 Feed-forward friction compensation

Feed-forward compensation of systems consists in a control scheme working in

parallel with the actual controller of the system. It is a desirable option for

compensating relatively known disturbances due to the fact that it can be tuned

individually without affecting the stability of the on system controller (Golnaraghi

and Kuo, 2010; Belanger, 1995; Seborg et al., 2004).

For the present project we designed the feed-forward compensation as a control

scheme worked in parallel with the joint PD controllers with gravity compensation

originally configured in the WAM arm. The configuration that we used is shown in

Figure 4.7 and consists in a feed-forward compensation block Cf(s) added to the

joint PD control configuration shown in Figure 2.3. This configuration was easy

to implement in software and its response depended on the reference signal only.

The function that defined the compensation block Cf(s) is explained as follows. If

each link of the manipulator is considered as a single mass in motion, the feed-

forward scheme must ensure that the force needed to execute the desired rotation

is generated (Su and Zheng, 2009). Then, the actuating force τff (t) necessary to

rotate the joint may be expressed as the sum of the mass m of the link multiplied

by its reference acceleration q̈r(t), the viscous damping coefficient σ2 multiplied by

the reference velocity q̇r(t) and the friction force as function of the velocity:

τff (t) = mq̈r(t) + σ2q̇r(t) + Fc(q̇r(t)) (4.3)

where Fc is the Coulomb friction that affects the joint. Mathematically, the friction

and gravity compensated joint PD control is defined as the sum of the contribu-

tions of the control actuating force τc(t) and the compensation torque τff (t). The
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actuating joint torque τ(t) is

τ(t) = τc(t) + τff (t) (4.4)

After the implementation of the friction compensation module we tested the system

in the execution of a motion task, and we compared the results with the performance

of the system without friction compensation.

ir
_+

liq (t) liq(t)

P+

lu(t)

KP

K sD

+
+

Iig( )q(t)

+
ie(t)

+

C (s)f

Figure 4.7: Diagram of the PD control with gravity compensation, augmented with a
feed-forward compensation block expressed as Cf (s).

4.4 Results

The aim of implementing a friction compensation module in the joints of the WAM

arm was to analyse the influence of friction force in the accuracy of the joints

when executing a motion task. The task consisted in a joint rotation of 0.5 radian

at a velocity of 0.083 rad/s. This rotation was executed for all the joints of the

manipulator one at a time. The motion task is the same that was used in Chapter 3

to analyse the performance of the WAM arm under PD control. We chose the same

task in order to have a point of comparison among the two control techniques: a)

PD control with gravity compensation and b) PD control with feed-forward friction

compensation and gravity compensation.

The joint reference trajectory and the joint positions were recorded in all the
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experiments in order to compute the joint position errors during the execution of

the trajectory and a relative percentage error (RPE) for the final position of the

joint and the actual joint trajectories of the manipulator, as described in Section

3.2.2.

The feed-forward friction compensation scheme (as described in Section 4.3) was

implemented over the on-system joint PD control with gravity compensation.

Figure 4.8 shows the registers of the reference trajectories and the joint positions

during the motion task. By observing the trajectories alone it is difficult to have a

fair appreciation of the position errors of Joint 1, Joint 2, Joint 3, Joint 4 and Joint

5 since they are very small, contrary to Joint 6 and to Joint 7 were the position

errors are more evident. If we compare these plots with those in Figure 3.3 we can

notice how the trajectory becomes smoother after the compensation.

Figure 4.9 shows the comparison of the manipulator’s response to the task con-

sidering the position errors. Each plot displays the position errors for every joint

when executing its respective rotation. The steady state position errors in Joint

1 decreased when the friction compensation module was added to the PD control

with gravity compensation. In Joint 2, the steady state position errors did not

change significantly when the the friction compensation module was added to the

PD control with gravity compensation. In Joint 3, the friction compensation in-

creased slightly the steady state position error in comparison with the response of

the system when using the PD controller and gravity compensation alone. The per-

formance of the controllers implemented in Joint 4 was similar to the performance

of the controllers implemented in Joint 2, the steady state position errors remain

almost the same after adding the friction compensation module to the PD control

with gravity compensation. In Joint 5, the steady state position errors decreased

when the friction compensation module was added to the PD control with gravity

compensation. In Joint 6, the friction compensation increased slightly the transient
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state position errors in comparison with the response of the system when using the

PD controller and gravity compensation alone. But the steady state position errors

were smaller. Finally, in the case of Joint 7 the friction compensation module helped

to reduce the position errors considerably in both the transient and the steady state,

in comparison with the controller without compensation.

Finally, for a better comparison of the performance of the manipulator with and

without the module for friction compensation, the computation of the relative per-

centage error of the final position of the joint was measured using Equation 3.2.

When using PD control without friction compensation the RPE in Joint 1 was 1.0876

%, in Joint 2 was 0.2342%, in Joint 3 was 0.8666%, in Joint 4 was 0.2912%, in Joint

5 was 1.3592%, in Joint 6 was 3.2848% and in Joint 7 the RPE was 5.4132%. The

value of the RPE when the manipulator worked under PD control with feed-forward

friction compensation was 1.1198% in Joint 1, in Joint 2 was 0.2244%, in Joint 3 was

0.8988%, in Joint 4 was 0.4398%, in Joint 5 was 1.2426%, in Joint 6 was 1.7974%

and in Joint 7 the RPE was 7.2360%. Therefore, considering the final position error,

the feed-forward friction compensation module improved the performance of the ma-

nipulator in Joint 2, Joint 5 and Joint 6. The final position error slightly increased

in Joint 1, Joint 3, Joint 4 and Joint 7.

4.5 Conclusions

In this chapter we described the implementation of a friction compensation

module proposed to improve the performance of the WAM arm. The aim of the

implementation was to reduce the position errors occurring during the execution of

joint rotations, to reduce the end position error and to smooth the joint trajectories.

First, the friction phenomena manifested in each joint of the real manipulator was

identified through the execution of several joint rotations at different velocities,

in order to construct velocity maps. The velocity maps were used to find the

parameters of classic friction models using a least-squares minimisation method.
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Later, the mathematical representation of the friction was used to implement a

feed-forward control scheme over the PD controllers with gravity compensation

pre-configured in the WAM arm.

We also compared the performance of the WAM arm in a motion task under the two

different control strategies: PD control with gravity compensation and PD control

with feed-forward friction compensation and gravity compensation. We analysed

the results obtained in the motion task and we found that the implementation of

the friction compensation module in the joint controllers improved the performance

of the manipulator during the execution of the task by reducing the position errors

in six out of the seven joints of the WAM arm. In Joint 3 the compensation slightly

increased the errors.

We found the relative percentage error of the final position of the joint using Equa-

tion 3.2. The reduction in the end position error was not important considering

that the RPE was reduced in only three out of the seven joints of the manipulator.

However, the friction compensation module did help to smooth the trajectories of

the joints while executing rotations.
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Figure 4.8: Joint trajectories of the 7 joints of the manipulator when executing a rotation
of 0.5 rad. The rotations were executed by every joint one at a time. The system worked
with joint PD control with gravity compensation augmented with a feed-forward friction
compensation module.
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Figure 4.9: Joint position errors of the 7-DOF whole arm manipulator using different
control strategies to execute rotations of the joints. The rotations were executed by every
joint one at a time. The system was initially configured with joint PD control and grav-
ity compensation and it was later augmented with a feed-forward friction compensation
module.
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Chapter 5

Iterative feedback tuning in the

7-DOF WAM arm

5.1 Introduction

In a controlled robotic system, gravity compensation with joint Proportional In-

tegral and Derivative (PID) control eliminates the offset error in the response of

the system caused for the influence of gravity (Kelly et al., 2005). However, the

existence of other disturbances such as friction will not guarantee a zero error in

the output response and the effects of friction must be cancelled separately through

the implementation of a compensation strategy. In some cases the influence of fric-

tion does not affect significantly the performance of the system, so a compensation

technique might not be required. PID control strategy is capable of dealing with

friction when all its parameters are conveniently selected (Lewis et al., 2004). How-

ever, tuning the PID controller parameters might not be a straightforward process.

A suitable method for PID controller tuning based on the use of experimental data

is the Iterative Feedback Tuning (IFT) (Hamamoto et al., 2003; Hildebrand et al.,

2005). The reliability of this method is based on the fact that the response of the

system is recorded and used later to estimate a gradient direction for the value of

the parameters through several iterations, according to the standard of a determ-
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ined performance measure. IFT is a model-free tuning method, however, when the

experiments to obtain the gradient are difficult to implement on the system, the use

of a model to conduct this procedure seems suitable.

The theory behind IFT was developed for discrete-time linear time-invariant (LTI)

systems but its implementation has been proven to be effective on systems with non

linearities (Hjalmarsson, 1998; Gunnarsson et al., 2003; Radac et al., 2011; Sjorberg

et al., 2003). Based on the later, in order to improve the performance of the 7-DOF

WAM arm, we proposed to use the IFT technique to tune the parameters of the

PID controllers. In our implementation of the method we used an accurate model

to conduct part of the experiments since some of them were difficult to implement

on the real system.

During the tuning process we used the response of the real system to estimate the

performance measure, while the gradient direction for the parameters was computed

using a mathematical model of the system.

As mentioned in Section 3.2.2 we were looking to reduce the end position error to less

than 1% in all the joints of the manipulator and to obtain smoother joint trajectories

during the execution of tasks. The integral component of the PID control allowed

to reduce the steady-state error while the implementation the IFT technique based

on the use of experimental data allowed to tune the controllers taking into account

all the disturbances acting on the joints during the execution of the trajectories.

After the tuning process ended, we used the results to make a comparison of the

performance of the manipulator under three different control strategies: PD control

with gravity compensation, PD control with gravity compensation and feedforward

friction compensation, and PID control.
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5.2 IFT in the joint PID controllers of the WAM

arm

As previously mentioned, the 7-DOF WAM arm manipulator was configured by the

manufacturer with joint PD control and gravity compensation. However, the sys-

tem can be configured to perform under joint PID control by properly adjusting

the gains of the joint controllers. Despite of the system being non linear, it is pos-

sible to iteratively estimate the controller parameters by applying an IFT technique

(Hjalmarsson, 2002).

In Section 2.2.3 we described that the IFT technique is based on the realisation

of several experiments where the reference signal is changing. The collected data

is used to construct a minimising criterion based on the error ỹ(ρ) of the output

response.

ỹ(ρ) = y(ρ)− yr (5.1)

The variable ρ is a (3 × 1) vector that contains the controller parameters ρ =

[KP KD KI ]
T . The objective function is defined as a (3× 1) vector J(ρ)

J(ρ) =
1

2N

N
∑

t=1

E[ỹ(ρ)2] (5.1)

The objective function is used to calculate iteratively the values of ρ according to

ρi+1 = ρi − γiR
−1
i

[∂J(ρi)

∂ρ

]

(5.1)

Here R−1
i is a (3×3) positive definite matrix. The value of R−1

i indicates the update

direction of the parameter in the next iteration. The value of γi gives the iteration

step and
[

∂J(ρi)
∂ρ

]

is an estimate of the first derivative of the objective function, known

as gradient. The gradient is a (3× 1) vector.

The IFT tuning technique was originally developed to tune the parameters of PID
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controllers without the need of having a mathematical representation of the system,

using a set of experiments based on an closed loop configuration. The data obtained

during the experiments were used to estimate the gradient of the objective function

J(ρ) and to compute iteratively the controller parameters. However, since some of

the experiments were difficult to execute in the WAM arm, we used an accurate

model of the system implemented in SimMechanics (described in Chapter 3) to per-

form part of the experiments. Then, we used data from the response of the real

system to estimate the performance measure, while the gradient direction for the

parameters was computed using the mathematical model of the robot arm.

The IFT algorithm for controllers with one degree of freedom proposed by Hjalmar-

soon to tune the PID controller of every joint of the manipulator independently

follows the next steps:

1. Perform a rotation in the real system according to the closed loop configuration

described in Figure 2.3 and record the reference trajectory r and the joint

positions y(ρ). Compute ỹ(ρ) = r − y(ρ) and define a variable ỹ1(ρ) = ỹ(ρ).

The value of ỹ1(ρ) represents the joint position error obtained during the first

experiment.

2. Perform a second experiment considering the closed loop configuration de-

scribed in Figure 2.3 applying ỹ1(ρ) as reference signal and define a variable

y2(ρ) = y(ρ). y2(ρ) contains the values of the joint positions recorded during

the second experiment.

3. Compute ∂C(ρ)
∂ρ

for all the elements in ρ and filter y2(ρ) in order to obtain ∂ỹ(ρ)
∂ρ

as shown in the diagram of Figure 2.4.

4. Estimate the gradient of the objective function with Equation 2.15.

5. Calculate the Hessian of the objective function using the value of the gradient

and update the controller parameters for the next iteration.
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As mentioned previously, we implemented the IFT method using both real and

simulated data. The first experiment consisted in rotating a joint of the real manip-

ulator while recording the reference joint trajectory and the actual joint positions.

The second experiment was made on the model of the manipulator using the data

collected during the first experiment while recording the joint positions. The steps

followed to implement the IFT technique on the controllers of the WAM arm were:

• Perform step 1 of the IFT algorithm for controllers with 1-DOF in the real

manipulator and use the reference joint trajectory and the measured joint

positions y(ρ) to estimate the position error ỹ1(ρ).

• Use ỹ1(ρ) to perform step 2 of the IFT algorithm for controllers with 1-DOF

in the model, and use the values of the joint positions to define y2(ρ).

• Perform step 3, 4 and 5 of the IFT algorithm for controllers with 1-DOF.

Since the WAM arm is a non linear system we considered to use a Broyden-Fletcher-

Goldfarb-Shanno (BFGS) as an alternative algorithm to compute the Hessian as

proposed by Hamamoto and colleagues in (Hamamoto et al., 2003). BFGS algorithm

is an iterative method for solving non linear optimisation problems. The Hessian is

approximated using updates specified by gradient (or an approximation) evaluations.

We used two methods to approximate the Hessian, a method based on the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm and the Newton-Gauss method. We

implemented both methods separately in order to observe the performance of each

method in simulations. Both methods were useful to approximate the Hessian,

however we noticed that the BFGS method gave more accurate results in the earlier

iterations while the Newton-Gauss method was more accurate near the minimum.

Hence, for the implementation of the IFT algorithm, the computation of the Hessian

was made using a combination of both methods. The BFGS method was used first

to reduce the objective function using a fix step size of γ = 0.5. Once the objective

function was near to the minimum, the Newton-Gauss method was implemented
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Joint Objective function J(ρ)
Initial BFGS Newton-Gauss
PID iteration 1 iteration 2 iteration 3 iteration 4 iteration 5

1 0.0715 0.0321 0.0296
2 0.5837 0.6142 0.5933
3 0.2343 0.0105 0.0132
4 1.5818 0.6169 0.5765 0.5235 0.4753 0.4585
5 0.3137 0.1705
6 0.3511 0.1352
7 2.0517 0.9095 0.8613

Table 5.1: Objective function J(ρ) for the seven joint controllers of the manipulator at
different iterations.

with step sizes of γ = 0.5 and γ = 0.1. The values of gamma were varied according

to the response of the system during simulations.

The value of the objective function J(ρ) in Equation (2.13) was estimated using the

response of the real manipulator, allowing a fair perspective of the performance of the

controller in each iteration. During the experiments, every joint of the manipulator

was rotated 0.5 radian at a velocity of 0.083 rad/s, one at a time. If we consider that

the system uses a trapezoidal velocity profile, at velocities from 0 to 0.083 rad/s the

value of the friction force affecting each joint of the manipulator does not change

largely and it remains approximately the value of Fc for all the trajectory. Refer

to Figure 4.6 to observe the friction velocity maps of all the joints of the 7-DOF

WAM arm. Each rotation lasted approximately 7.3 seconds. The sampling period

of the data measured in the real system was of 0.01 seconds. The objective function

was initially estimated using PID parameters proposed intuitively. This is, for the

proportional and derivative gain we used the values of the PD controller parameters

pre-configured in the joints of the WAM arm, and for the integral gain we used the

value of the derivative gain divided by 10.
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5.3 Results

Table 5.1 summarises the IFT process according to the value of the objective

function obtained for each joint controller of the manipulator at each iteration.

The value of the objective function was considered using 4 digits. In all cases the

gradient of the objective function was first computed using the BFGS method,

once the value of the objective function stopped decreasing, or it started increasing,

the method to compute the gradient changed from the BFGS method to the

Newton-Gauss method. We stopped the iterations when the objective function

stopped decreasing (considering a 4 digit precision) or it started increasing. In Joint

1 only two iterations were made, one using the BFGS method and one using the

Newton-Gauss method. In Joint 2, we made two iterations using the Newton-Gauss

method, since the value of the objective function were negative when using the

BFGS method; however, according to the value of the objective function, the first

choice of parameters had the best performance. In Joint 3 we made one iteration

using the BFGS method and one iteration using the newton-Gauss method, but

according to the value of the objective function, only the first iteration was needed.

In Joint 4 we made five iterations, one iteration using BFGS method and 4 iterations

using the Newton-Gauss method. In the case of Joints 5 and 6, only one iteration

was needed using the BFGS method. Joint 7 used two iterations, one obtained

with the BFGS method and one obtained with the Newton-Gauss method. A total

of 15 iterations were needed in order to tune the controllers of the whole system.

Considering that two experiments had to be executed in each iteration, one in the

real system and one through simulation, a total of 30 experiments were performed

in order to tune the parameters of the seven joint controllers of the WAM arm.

For a visual reference of the tuning process, refer to Figure 5.1. The graphs show the

position error of the seven joints of the manipulator at different iterations, during

the first 3 seconds of the rotation used in the experiments. In Joint 1, the posi-
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tion error obtained when using the parameters of the controller chosen intuitively

showed an oscillation that disappear after the first iteration, making the response

of the controller more stable. The position error was also reduced to values close to

zero after the second iteration. In the case of Joint 2, the values chosen intuitively

for the controller parameters were the best fit according to the value of the object-

ive function. The later is hard to notice by eye in the plots of the position error

obtained between iterations. In Joint 3, the plots of the position error show clearly

how the performance of the system improves when using the parameters obtained

in the first iteration, but deteriorates at the second iteration. Five iterations were

made in Joint 4 but, since the reduction of the objective function occurred very slow

after the second iteration, the plots only include the second and the last iteration.

These two plots show clearly the reduction in the position error after using the it-

erative method. In Joint 5 the improvement of the controller performance is not

that clear. However, the value of the objective function J(ρ) in Table 5.1 confirms

that the position error was reduced after the first iteration. In Joint 6 only one

iteration was needed to tune the parameters of the controller. Finally, in the plots

of the position error of Joint 7, show the improvement in the performance of the

joint controllers through the tuning process with the value of the error decreasing

iteration by iteration.

As seen in Figure 5.1, the improvement of the system performance during the tuning

process is quite evident through the joint position error plots in most of the cases.

However, in the particular case of the controllers of Joints 2 and 5, a better per-

spective of the improvement of the controller may be obtained by referring to the

values of the objective function J(ρ) summarised in Table 5.1.

5.4 Discussion

After successfully tuning the parameters of the PID controllers we decided to

compare the performance of the manipulator in the execution of a motion task,
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Figure 5.1: Joint position error of the 7-DOF whole arm manipulator with joint PID
control. The response error is shown for different iterations of the controllers parameters
estimated using IFT.

under three control strategies a) PD control with gravity compensation, b) PD

control with feedforward friction compensation and gravity compensation, c) PID

control. The WAM arm was configured originally under joint PD control and gravity

compensation. The implementation of the joint PD control and gravity compensa-

tion and feedforward friction compensation technique is fully explained in Chapter 4.

The task consisted in a joint rotation of 0.5 rad at a velocity of 0.083 rad/s. This

rotation was executed for all the joints of the manipulator one at a time. The

motion task is the same that was used to analyse the performance of the WAM arm

under PD control in Chapter 2. We chose the same task in order to have a point of

comparison among the three control techniques. The joint reference trajectory and

the joint position of the manipulator were recorded in order to find the joint position

errors generated when using each control strategy. The joint reference trajectory and

the joint positions were recorded in all the experiments in order to compute the joint

position errors during the execution of the trajectory and a relative percentage error

(RPE) for the final position of the joint and the actual joint trajectories of the

manipulator, as described in Section 3.2.2.
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The performance of the PID joint controllers is shown in Figure 5.2. The plots are

the registers of the reference trajectories and the joint positions during the motion

task described earlier. We can notice that the joint trajectory is very close to the

reference trajectory in all the joints of the manipulator, meaning that the joint

position errors are very small. If we compare these plots with those in Figure 3.3

and Figure 4.8 we can notice that all the joint trajectories obtained when using PID

control are smoother and more accurate with respect to the reference trajectory than

those obtained when using PD control with gravity compensation and PD control

with feedforward friction compensation and gravity compensation.

Figure 5.3 shows the comparison of the manipulator’s response to the motion task

considering the plots of the joint position errors. The steady state position errors

in Joint 1 decreased when the friction compensation module was added to the

PD control with gravity compensation; however, the lowest steady state position

errors were obtained with the PID controller. The transient state position error

was also smaller with the PID control. In Joint 2, the steady state position errors

did not change significantly when the the friction compensation module was added

to the PD control with gravity compensation. The lowest steady state position

errors were obtained with the PID controller, although the transient state position

errors were larger that those obtained when using the other two control strategies.

In Joint 3, the friction compensation increased slightly the steady state position

error in comparison with the response of the system when using the PD controller

and gravity compensation alone. Opposite to the PID controller, in which case

even the transient state position errors were smaller. The performance of the

controllers implemented in Joint 4 was similar to the performance of the controllers

implemented in Joint 2, the steady state position errors remain almost the same

after adding the friction compensation module to the PD control with gravity

compensation. The lowest steady state position errors were registered with the

PID controller, but the transient state position errors were larger. In Joint 5, the
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steady state position errors decreased when the friction compensation module was

added to the PD control with gravity compensation, but decreased the most with

the PID controller. The transient state position errors were also smaller with the

PID control. Although small oscillations were present during the linear stage of the

joint trajectory, these oscillations did not compromise the stability of the system.

In Joint 6, the friction compensation increased slightly the transient state position

errors in comparison with the response of the system when using the PD controller

and gravity compensation alone. But the steady state position errors were smaller.

The position errors in both the transient and the steady state were smaller when

using the PID controller among the three control strategies implemented in the

joint. Finally, in the case of Joint 7 the friction compensation module helped to

reduce the position errors considerably in both the transient and the steady state,

in comparison with the controller without compensation. The transient state errors

obtained with the PID controller were the same as those obtained when the friction

compensation module was added to the PD controller with gravity compensation.

However, the steady state position errors obtained with the PID controller were

smaller.

The relative percentage error (RPE) of the final position of the joint was measured

using Equation 3.2. When using PID control the value of the RPE in Joint 1 was

0.0003%, in Joint 2 was 0.0%, in Joint 3 was 0.0004%, in Joint 4 was 0.0003%, in

Joint 5 was 0.0003%, in Joint 6 was 0.0003% and in Joint 7 was 0.0007%. When

using PD control with feed-forward friction compensation the value of the RPE in

Joint 1 was 1.1198%, in Joint 2 was 0.2244%, in Joint 3 was 0.8988%, in Joint 4 was

0.4398%, in Joint 5 was 1.2426%, in Joint 6 was 1.7974%, in Joint 7 was 7.2360%.

In comparison with the performance of the manipulator under PD control without

friction compensation the RPE in Joint 1 was 1.0876 %, in Joint 2 was 0.2342%, in

Joint 3 was 0.8666%, in Joint 4 was 0.2912%, in Joint 5 was 1.3592%, in Joint 6
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was 3.2848%, in Joint 7 was 5.4132%. Considering the final position error, the use

of joint PID control improved the performance of the manipulator in every joint of

the manipulator when executing a motion task.

5.5 Conclusions

In this chapter we described the implementation of an Iterative Feedback Tuning

technique to tune the parameters of the 7-DOF WAM arm joint PID controllers.

The Iterative Feedback Tuning technique used experimental data to estimate the

gradient direction for each parameter, as described in (Hjalmarsson, 2002). However,

since some experiments were difficult to execute in the real system, we used a model

of the system to implement part of the iterative technique. Then, we used both

experimental data and model simulations in the tuning process and we considered

two different approaches for the approximation of the gradient: a Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm and the Newton-Gauss method. The BFGS

based method was used to approach the minimum of the performance measurement

using a fixed step size, while the Newton-Gauss method was used to get closer to the

minimum using two different step sizes. The estimates of the parameters obtained

through the tuning process were used to configure the joints of the WAM arm to

work under PID controllers, as shown in Section 5.3. The implementation of the

PID controllers allowed to perform motion tasks in the manipulator without the

need to activate the gravity compensation module pre-configured in the WAM arm.

We also compared the performance of the WAM arm in a motion task under the

three different control strategies: PD control with gravity compensation, PD control

with gravity compensation and feed-forward friction compensation, and PID control.

According to the results obtained in the motion task, and using the performance of

the WAM arm under the pre-configured PD control with gravity compensation as

the standard for comparison, the use of joint PID controllers improved the most the

performance of the system. This is, the addition of the feed-forward scheme used
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for friction compensation to the PD control with gravity compensation, did help

to reduce the position errors in all the joints of the manipulator, except of Joint

3, where the compensation slightly increased the errors. However, the reduction in

the position error was not important in most of the joints that showed improvement,

except for Joint 6 where the the value of the position error was reduced to almost half.

The results obtained when using joint PID controllers without gravity compensation

showed how the steady state position errors in all the joints of the manipulator

dropped to values very close to zero, reducing the end position error to less that

0.007%. Also, the joint trajectories obtained with PID control were smoother than

the ones obtained with PD control and gravity compensation and with PD control

with friction compensation and gravity compensation. The response of the WAM

arm under PID control during the motion task, also helped to support the results

obtained during the iterative process that we used to tune the parameters of the

joint controllers.
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Figure 5.2: Joint trajectories of the 7 joints of the manipulator using joint PID control.
Each joint is executing a rotation of 0.5 rad at a velocity of 0.083 rad/s, one joint at a
time.
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joint PD control with gravity compensation and feed-forward friction compensation, joint
PID control
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Chapter 6

Human Machine Interface based

on Gaze Tracking used to control

a robot manipulator

6.1 Introduction

In this chapter we describe a Human Machine Interface (HMI) that allows the

user to control the direction of a robot manipulator in order to grasp objects

located on a table. The user wears a head mounted gaze tracking device that

sends data to a computer that measures the gaze point with respect to a scene.

Human

Sensors

Actuators

Cognition

Machine

ProcessingActuators

Sensors

Interaction

Eyes
Robot

Manipulator

Gaze tracking
device

Eyes

Robot
manipulator’s

computer

Vision
(Brain)

Figure 6.1: Structure of the proposed human machine interface used to control the position
of a robot manipulator through gaze tracking.
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The gaze point is then sent to another computer that holds the controls of the

robot manipulator where it is processed and used to move the manipulator in

real time. The elements that conform the HMI are described in the diagram of

Figure 6.1. The cognition process takes place in the brain through the visual

system and the eyes are both the human’s sensor and actuator. Among the

elements of the machine the gaze tracker is the sensor, the robot manipulator is

the actuator and the robot manipulator’s computer serves as the machine processor.

The machine is a device composed by two main elements: the head mounted gaze

tracker and the robot manipulator. Both devices interact as shown in Figure 6.2,

the head mounted device measures the position of the eyes and sends this data to a

laptop where the gaze point is computed. This value is sent through the serial port

to the robot manipulator’s computer where the data is processed and converted

to control signals that are used to perform two main actions: give directions of

movement or give a grasping instruction.

The user is able to control the position of the robot manipulator in a bidimensional

space (workspace) considering its visual space, as given by the eye tracker’s frontal

camera. The subject must place its head in a position where the workspace is fully

covered by the visual space and has to move the eyes in order to give directions to the

manipulator while keeping a mental plot of the position of the object. The system

allows the user to glimpse in order to find the actual position of the manipulator

and the object during the execution of reaching and grasping tasks.

6.1.1 The Robot Manipulator

The robot manipulator is a 7 degrees of freedom (DOF) WAM arm from Barrett

Technologies (refer to Section 3.2 for a more complete description of the system),

with a three finger grasper BH-280 barrett hand. The manipulator is allowed to

move in a two dimensional space (XY plane) limited by the kinematics of the arm
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Figure 6.2: Diagram of the HMI based on gaze tracking. The elements of the system
are a head mounted with laptop gaze tracking device, a robot manipulator and the robot
manipulator’s computer.

with the palm of the hand facing the XY plane. The orientation of the hand allows

grasping objects from above. An image of the arm workspace with the arm in its

initial working pose is shown in Figure 6.3. When the system is moving the hand

preserves the palm-facing-table orientation with moderate directional rotations.

6.1.2 The Eye Tracking System

The eye tracking system is a head mounted device from Applied Science Laborator-

ies (ASL). The system, the Mobile Eye, uses corneal reflections and pupil detection

to compute the gaze by superimposing images from two cameras that record the

eye and the scene simultaneously.

Three infra red lights are projected onto the eye and their reflections are used

as reference point to find the angle and distance of the pupil while rotating the

eye. The angles are synchronised with the images of the scene camera in order to
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Figure 6.3: Initial pose of the robot arm; its XY working space is limited by the kinematics
of the manipulator.

compute the gaze point in real time (Applied Science Laboratories, 2008).

The mobile eye system has the option to send the gaze point as a ordered pair

through the serial port at a rate of 30 Hz. The coordinates are given in pixels

referenced to the images of the scene which have a size of 768×576 pixels. When

the information regarding to the corneal reflections or the pupil is not reachable,

eye-closing for example, the ordinate pair (-2000,-2000) is given. In Figure 6.4 a

plot of 50 seconds of raw data as it is sent to the serial port is shown. The figure

displays separately the horizontal and vertical position of the gaze, the occurrence of

saccades, blinking and corrupted data all along the recording are noticeable in this

plots. For example, by looking into the first 12 seconds of data: blinking is present

in seconds 4 and 10, there is an horizontal long saccade at second 9 and corrupted

data can be seen right before the 10th second. Blinking and corrupted data may be

easily filtered from the data segment by removing the ordinate pairs (-2000,-2000)

and any value that is out of the space limits (768,576).
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Figure 6.4: Gaze tracking raw data as it is being sent through the serial port of the mobile
eye. The negative value -2000 represents blinking.

6.2 Interfacing the Gaze Tracking system with

the WAM robot arm

The communication between the gaze tracking device and the robot manipulator

is made through the serial ports of the gaze tracker laptop and the manipulator’s

computer. The diagram in Figure 6.5 represents the main data processing steps

all the way since the acquisition of the gaze point, to the final execution of the

user’s instructions through the manipulator. Data processing, such as filtering and

blinking detection, and the control strategy were programmed in Python. Python

is a programming language composed by standard libraries and special packages

used in several applications, such as scientific and numeric computing, software de-

velopment, desktop GUI’s, Networks programming, Internet applications and game

developing (Python, 2013). This language can integrate with other objects and runs

on Windows and Linux, which makes it perfect to interact with the WAM arm due

to the fact that its development platform is written in C++ language and that it

runs under a Linux based operating system.
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Figure 6.5: Main flow diagram showing the data process from the acquisition of the gaze
point to the final execution of the user’s instructions to control the manipulator.

6.2.1 Control signals

The HMI based on gaze tracking uses the gaze point and eye blinking as control

signals. The gaze point determines the robot manipulator’s direction of movement

while intentional blinking indicates the execution of a grasping action. As explained

in a previous section, the raw data vector from the gaze tracker contains continuous

information of the measured gaze point, represented as an ordinate pair, altogether

with blinking information seen as a (-2000,-2000) value. Then, the vector containing

the raw data needs to be filtered first in order to separate the two control signals

(Figure 6.6).

Only voluntary blinks are used as control signal. A blink is considered voluntary

if its length is more than 0.7 seconds (Krolak and Strumillo, 2012). Since the

data rate of the gaze tracking system is an approximating of 1 sample every 0.033

seconds, a voluntary blink will consist in a count of 22 samples of continuous

blinking data (-2000,-2000).

After removing the blinking data from the raw data vector a continuous vector con-

taining only the gaze point is generated.
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Figure 6.6: Gaze tracking raw data presentation as it is being sent through the serial port
of the mobile eye. The blinking action is represented in the data vector with a numerical
value of (-2000,-2000), while the gaze point is referred as a ordinate pair given in pixels
according to the scene image.

Figure 6.7 shows 5 seconds of data containing the gaze point of a subject fixating

in a location referenced to the scene image. The graphs in a) and b) show the indi-

vidual coordinates X and Y versus time, the irregular shape of the signals indicates

the presence of the involuntary saccadic movement of the eye that appear during

the fixation process. Between second 3 and 4 there is large discontinuity in the sig-

nals, this discontinuity corresponds to the ordinate pair (-2000,-2000) that indicates

blinking, or intentional eyes closing. For this particular set of data, the discontinuity

represents blinking, but it is possible to identify if the eyes closure was involuntary

or intentional in any set of data by measuring the duration of the discontinuity. The

data showed in c) is the Cartesian plot of the gaze point after removing blinking.

This type of graph is more suitable to visualise the fixation point with respect to the

scene image and to appreciate the influence of the involuntary saccadic movement

during the fixation. If we look at the X and Y plots, large involuntary saccades are

present between 0.5-1.3 seconds and 2.5-3.0 seconds. Due to the saccadic noise, the

data obtained from the gaze tracking device may need further filtering. In the next

section several filtering techniques are proposed in order to smooth the signal.
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Figure 6.7: Gaze tracking raw data presentation as it is being sent through the serial port
of the mobile eye.
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6.2.2 Eye control strategies

Two main strategies are proposed to control the direction of movement of the

robot manipulator using the gaze point. The first one is a directional control that

instructs the manipulator to follow five commands considering the position of the

gaze in the XY plane: stop, right, left, up, down; and one instruction to control the

grasp. The grasp control is used to open and to close the grasp and it is based on

the user’s intentional blinking. The conditions and methods used to determine the

control commands are explained in Section 6.3. The general flow diagram of the

four directional strategy is described in Figure 6.8. The arm is fixed in an initial

position with the hand open. Once the control receives an instruction the system

responds by moving the arm or by closing or opening the hand. The instruction

for grasping works for both opening and closing the hand, so the system has to

determine first the present state of the hand in order to execute the grasping order

accordingly: if the hand was open and the control received the grasping order,

the hand will close, but the hand will open at the occurrence of a grasping order

if it had being closed previously. The four directional control allows the user to

control the velocity of the manipulator through the implementation of a velocity

profile that is also based on the position of the gaze point in the XY plane. The

characteristics of the velocity profile will be fully explained in Section 6.3.2.

The second control strategy is a vectorial control that considers the gaze point as a

vector referenced to the origin of the XY plane and which angle of direction will be

used to guide the manipulator. The angle of direction goes from 0 to 360 degrees

allowing diagonal motion, in addition to the vertical and horizontal motion offered by

the four directional strategy. The vectorial control considers the magnitude and the

direction of the gaze point vector to instruct the robot to stop or to give the direction

that it has to follow; and uses intentional blinking as a condition to grasp, or release

an object through the grasping command. The functioning of the grasping action
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Figure 6.8: Flow diagram of the four directional control strategy. The strategy allows to
change the position of the manipulator using vertical and horizontal steps and to grasp
or to release objects. Seven commands can be sent to the robot arm: a stop order, four
directions (right, left, up, down), grasp open, grasp close and motion velocity.

to open and to close the hand works the same as described for the four directional

control. As seen in the general flow diagram of the vectorial control shown in Figure

6.9, the commands available to control the manipulator are stop, angle of direction,

open the grasp or close the grasp accordingly. The vector directional control also

allows to control the velocity of the manipulator through the implementation of a

velocity profile that is based on the magnitude of the gaze point vector, as explained

in Section 6.4.2.

A full description on the design and implementation of the two control strategies is

given in Section 6.3 and Section 6.4.

6.3 Four directional control

The directional control instructs the manipulator to follow six commands: stop,

right, left, up, down, open grasp or close grasp. The assignation of commands are

made according to the position of the gaze point in the Cartesian space marked

by the view scene image. The scene image can be considered as a Cartesian XYgt

plane with size 768×576 pixels, with the origin of the axes located at the upper

104



Begin

Get instruction

Grasping
?

Follow
instruction

Stop
Angle of direction
(0-360 )
Velocity

Hand open
?

Open hand

Close hand
Yes

No No

Yes

o

Figure 6.9: Flow diagram of the vectorial control strategy. Using this strategy it is possible
to change the position of the manipulator through the execution of vertical, horizontal and
diagonal steps by giving the angle of direction for the desired movement; and to grasp or
release objects. Five commands are used in this strategy: the stop order, angle of direction
(from 0 to 360 degrees), grasp open, grasp close and motion velocity.

left corner of the plane. In order to have a more versatile space, the gaze point

is translated from the XYgt space to another XY space with the origin located at

(384,288)gt as shown in Figure 6.10.

Using the new Cartesian arrangement two important measurements are considered

in the design of the control strategy: the x ratio, the y ratio. The values of the x

ratio and the y ratio are used to identify the proportional distance of the gaze point

with respect to the axes. The signs of the x ratio and the y ratio help to determine

the direction of the vector drawn from the origin to the gaze point with respect

to the origin. The arrangement of the conditions used to generate the direction

instructions is explained in Table 6.1. Considering these conditions the XY plane is

divided in five zones as shown in Figure 6.11.
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Figure 6.10: Map of translation from XYgt space as given by the gaze tracking system
to reference the gaze point, to the Cartesian XY space used in the design of the control
strategies. The diagram shows the relevant measurements used in the Four Directional
Control.

Instruction Conditions
Right x ratio > y ratio & x ratio > 0
Left x ratio > y ratio & x ratio < 0
Up x ratio < y ratio & y ratio > 0
Down x ratio < y ratio & y ratio < 0
Stop x ratio < 0.28 & y ratio < 0.26

Table 6.1: Generation of the direction instruction according to the position of the gaze
point in the XY Cartesian space used in the four directional control

(0,384)(-384,0)

(0,288)

(-288,0)

Down

Up

RightLeft Stop

Figure 6.11: Map of instructions in the XY plane according to the conditions given in
Table 6.1.
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6.3.1 Filtering

The signal also needs to be filtered in order to compensate for the saccadic noise.

For the design of the control strategy the signal is preferred to be as smooth and

stable as possible, but no too slow so it allows a real time interaction. Two filtering

techniques were implemented: a simple moving average filtering and a weighted

moving average filtering.

Moving average (MA) filtering is a simple solution in digital applications, it works

as a low pass filter by cutting high frequencies while keeping a sharp step response

(Analog Devices Inc., 2013). The output of the filter y is the computation of the

mean of the previous M values of the signal x

y[i] =
1

M

0
∑

j=−(M−1)

x[i+ j] i = 1, 2..n (6.1)

where M can be considered as a time window of variable size. A different version

of the moving average filter is the weighted moving average (WMA) filter where the

output y is the computation of the mean of the previous M values multiplied by a

constant variable:

y[i] =
M(M + 1)

2

0
∑

j=−(M−1)

(M + j)x[i+ j] i = 1, 2..n (6.2)

We considered three different time windows to filter the gaze point data: 150 ms,

300 ms and 500 ms, using both simple moving average and weighted moving average

filtering. In order to analyse the effects of filtering for the three different time

windows we took 5 seconds of data of a subject performing a fixation. Figure 6.12

and Figure 6.13 show the results of filtering the data segment using moving average.

Plots a) and b) show the gaze point expressed in its X and Y coordinates, the signal

obtained after filtering with the three different time windows is a delayed lowpass

filtered version of the original signal. For both MA and WMA filters, when using

107



the 500 ms window, the signal is slower and the amplitude of the large saccades

is noticeable reduced in comparison to the response of the signal when using the

150 ms and 300 ms windows. Plots c), d), e) and f) show the effect of lowpass

filtering the gaze point in the cartesian space. The non filtered original signal is

scattered around the fixation point but after filtering, a more continuous pattern

was developed. MA filter with windows of 150 ms and 300 ms performed similar to

WMA filter with 150 ms and 300 ms, respectively. MA filter with a 500 ms window

had the most drastic smoothing effect and also presented the largest delay among

the filtering strategies implemented.

6.3.2 Velocity profiles

The position of the gaze point with respect to the Cartesian space XY was used to

design the velocity profiles. According to this, the space is divided in several regions

that represent the velocity value. Using the gaze point the user is able to change the

velocity of the robot manipulator when executing a task. Three different velocity

profiles were implemented: Single Velocity profile, Dual Velocity profile and Cubic

Velocity profile.

Single Velocity profile

The Single Velocity profile allows to move the manipulator at a constant velocity

only. The speed is slow so the user can easily make small corrections in the position

of the hand with accuracy specially when grasping an object. As seen in Figure 6.14,

for this strategy the XY plane is divided only in two regions: constant velocity and

stop.

Dual Velocity profile

The Double Velocity profile consist in dividing the XY plane in three regions. One

region is assigned to stop and the other two are slow velocity and fast velocity. Fast
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Figure 6.12: Response of a simple moving average filter when applied to the gaze point
signal using different time windows. a) and b) show the X and Y coordinates of the gaze
point during filtering. c), d), e) and f) show the gaze point in the XY Cartesian space.
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Figure 6.13: Response of a weighted moving average filter when applied to the gaze point
signal using different time windows. a) and b) show the X and Y coordinates of the gaze
point during filtering. c), d), e) and f) show the gaze point in the XY Cartesian space.
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Figure 6.14: Single Velocity profile. The gaze point can fall only in two regions being one
of them the Stop instruction. The size of each region is given in pixels.

velocity (V2) may be used to get close to the object while Slow velocity (V1) helps

to position the hand more accurately. The Fast velocity is 2.5 times faster than the

Slow velocity and it is activated far from the center of the XY plane, as explained

in Figure 6.15. If we divided the positive X axis in the XY plane: the Stop region

is located within 0 to 100 pixels, V1 is between 100 and 200 pixels, and V2 goes

from 200 to 384 pixels. The positive Y axis is divided similarly, with the Stop region

located within 0 to 75 pixels, the V1 is between 75 and 150 pixels, and V2 is between

150 to 288. Along the axes, Stop and V1 have the same length and V2 is slightly

larger. This is because in practice, the user will have a tendency to maintain the

gaze close to the Stop region when aiming for small adjustments in the position of

the arm, so a bigger Slow region is not needed.

Cubic Velocity profile

The Cubic Velocity profile is shaped with the quantisation of a cubic function. The

first design was chosen so that the velocity of the manipulator would change consid-

ering: slow increments near the stop region, linear increments in the mid area, a slow

increments to the maximum speed and vice versa. During the first implementation

of the cubic velocity profile we noticed that it was not convenient for the manipu-

lator to keep changing velocities that often so we decided to enlarge the quantisation
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Figure 6.15: Double Velocity profile. The slow velocity V1 is activated in the area close
to the stop region while the fast velocity V2 is located far from the center. The size of
each region is given in pixels.

step size resulting in a velocity control that increased almost linearly. Figure 6.16

shows the quantisation of the cubic function (Equation (6.3.2)) used to divide the

positive X axis of the XY plane in several velocity regions. The resulting Stop area

of 50 pixels was too small, so we disposed from the region assigned to velocity 2 to

enlarge it, velocity 2 is too slow anyway to move the robot arm. Then, the velocity

arrangement in the positive X axis in pixels is as follows: Stop is between 0 to 100,

V1 is between 101 to 161, V2 is between 162 to 215, V3 is between 216 to 269, V4 is

between 270 to 323 and V5 is between 324 to 384. Similarly, the positive Y axis was

divided as follows: Stop is between 0 to 75, V1 is between 76 to 125, V2 is between

126 to 161, V3 is between 162 to 197, V4 is between 198 to 233 and V5 is between

234 to 288. The resulting set of velocities let the velocities XY plane looking as

shown in Figure 6.18. The regions assigned to the slow velocity V1 and fast velocity

V5 are slightly larger than the regions given to the velocities in between. V2 is larger

due to the arrangement used to enlarge the Stop region and in the case of V5, this

happened due to the shape of the cubic function.

y = −1.7× 10−7x3 + 9.7× 10−5x2 + 7.8× 10−3x− 0.011 (6.2)
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Figure 6.16: The Cubic Velocity profile is based on the quantisation of a cubic function.
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6.3.3 Experiments

The experiments were conducted on one single subject in order to find the suitability

of the filtering techniques and the velocity profiles, analysing the implications that

their implementation have in the real time response of the HMI based on gazed

tracking. The setup for all the experiments consists in the subject wearing the head

mounted gaze tracking positioned at the side of a table where the robot manipulator

is fixed. The workspace for the experiments was a delimited area of the robot’s

kinematic workspace within the table, as shown in Figure 6.18. The workspace was

marked to create fixed spots to be used as reference positions to place an object

that the user intended to grasp during the experiments. The marked positions are

shown in Figure 6.19.

For each experiment an object is placed in one of the 8 numbered marked positions,

from 1 to 8, where the user tries to grasp it in 10 attempts for each position, giving a

total of 80 trials per experiment. At the beginning of each trial the arm is positioned

with the palm of the hand facing to the table right over the cross marked in the

workspace, as shown in Figure 6.20. When the object is grasped it is considered a

hit and we measured the time that took to grasp the object from the starting point

(execution time).

The performance was measured in terms of the average number of hits and the

average execution time.

Filtering

Five experiments were conducted in order to test each of the filtering techniques

proposed for the four directional control: a) no filtering, b) MA with a window

of 150 ms, c) MA with a window of 300 ms, c) MA with a window of 500 ms,

d) WMA with a window of 150 ms and e) WMA with a window of 300 ms. The

implementation of WMA with a window of 500 ms made the response of the system
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Figure 6.19: Workspace showing the eight numbered marked positions used in the exper-
iments. The plain circles are used in a different setup of experiments, as explained later
on, and the cross indicates the manipulator’s initial position.
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(a) (b)

Figure 6.20: a) Orientation of the hand while moving the robot manipulator in order to
grasp the object from above. b) The target object used in the experiments.

too slow and therefore it did not meet the conditions to work in real time. For all the

experiments the system was programmed to work under the Single Velocity profile.

The results of the experiments are listed in Table 6.2 and Table 6.3. Table 6.2 shows

the percentage of hits obtained according to the filtering technique used in each

experiment. The highest percentages of hits were obtained with the moving average

filter with a 300 ms window, having 93.7% of hits; the moving average filter with a

500 ms window, had 90.0% of hits; and the the weighted moving average with the

150 ms window, had 92.5% of hits. The lowest rates of hits were obtained when the

signal was not filtered, resulting in 87.5% of hits; the moving average filter with a

150 ms window, had 85.0% of hits; and the weighted moving average filter of 300

ms, had 88.7% of hits.

Table 6.3 shows the execution time obtained according to the filtering technique used

in each experiment. The shortest execution times were obtained with the moving

average filter with a 300 ms window, having an average of 18.17 seconds time; the

moving average with a 500 ms window had an average of 18.79 seconds time; and

the weighted moving average with a 300 ms window had an average of 16.22 seconds
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Percentage of Hits
MA WMA

Location No filtering 150 ms 300 ms 500 ms 150 ms 300 ms
P1 90 80 90 90 100 90
P2 70 80 90 90 90 80
P3 100 90 90 90 90 90
P4 100 90 100 100 100 100
P5 80 90 100 80 100 70
P6 80 90 100 100 70 100
P7 80 90 90 90 90 90
P8 100 90 90 80 100 90

Average 87.5 87.5 93.7 90 92.5 88.7
SEM 11.64 4.62 5.17 7.55 10.35 9.91

Table 6.2: Performance of the system using different techniques to filter the gaze point
signal. The test experiment consisted in placing an object in 8 different positions where the
subject tried to grasp it, in 10 attempts for each position. The table shows the percentage
of hits when executing the experiment without filtering the signal, when using moving
average filters with time windows of 150 ms, 300 ms and 500 ms, and using weighted
moving average filters with time windows of 150 ms and 300 ms.

time. The longest execution times were obtained when the signal was not filtered,

with an average of 22.8 seconds time; the moving average filter with a 150 ms window

had an average of 19.53 seconds time; and the weighted moving average filter of 150

ms had an average of 21.67 seconds time.

Velocity profiles

Three experiments were conducted in order to test each of the velocity profiles

proposed for the four directional control: a) Single Velocity profile, b) Dual Velocity

profile and c) Cubic Velocity profile.

The results of the experiments are listed in Table 6.4, the highest percentage of hits

was obtained with the Single Velocity profile having 93% of hits. The Cubic Velocity

profile had 81% of hits. The lowest percentage of hits was obtained when using the

Dual Velocity profile, with 78% of hits. The shortest execution times corresponded

to the Cubic Velocity profile, with an average time of 15.2 seconds. The Single

Velocity profile had an average execution time of 18.4 seconds. The Dual Velocity

profile had the largest execution time, with an average of 19.4 seconds time.
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Execution Time
MA WMA

Location No filtering 150 ms 300 ms 500 ms 150 ms 300 ms
P1 16.7 12.8 11.3 12.2 16.4 14.2
P2 27.2 28.6 22.6 20.8 25.7 20.5
P3 26.3 22.0 22.8 22.3 26.3 19.5
P4 18.0 11.8 8.4 10.9 12.0 9.3
P5 26.1 18.4 16.8 17.5 23.9 17.8
P6 23.5 22.6 21.5 21.0 27.8 20.3
P7 27.1 24.8 26.3 26.7 26.4 28.0
P8 17.3 14.8 15.4 18.7 14.7 16.8

Average 22.8 19.53 18.17 18.79 21.67 16.22
SEM 4.65 6.02 6.21 5.22 6.23 5.40

Table 6.3: Performance of the system using the four directional control with different
techniques to filter the gaze point signal. The test experiment consisted in placing an
object in 8 different positions where the subject tried to grasp it, in 10 attempts for each
position. The table shows the execution time of the experiment when the signal is not
filtered, when using moving average filters with time windows of 150 ms, 300 ms and 500
ms, and using weighted moving average filters with time windows of 150 ms and 300 ms.

Velocity Profiles
Percentage of Hits Execution Time

Location Single Dual Cubic Single Dual Cubic
P1 100 100 90 11.6 13.2 10.6
P2 90 90 80 21.7 22.1 19.1
P3 100 80 90 22.1 27.1 19.3
P4 100 70 100 8.1 14.8 7.8
P5 70 40 60 18.2 23.7 19.5
P6 90 70 70 22.6 18.0 15.7
P7 100 80 70 25.8 20.0 18.5
P8 100 100 90 17.4 16.4 11.4

Average 93.7 78.7 81.2 18.4 19.4 15.2
SEM 10.60 19.59 13.56 5.98 4.72 4.65

Table 6.4: Performance of the system using the four directional control with different
velocity profiles. The test experiment consisted in placing an object in 8 different positions
where the subject tried to grasp it, in 10 attempts for each position. The table shows the
percentage of hits and the execution time of the experiments.
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ANOVA
Sum of df Mean F Sig.
Squares Square

Hits Between Groups 0.0275 5 0.0055 0.74 0.5984
Within Groups 0.3125 42 0.00744
Total 0.34 47

Execution Between Groups 147.63 5 29.5265 0.92 0.4763
Time Within Groups 1344.95 42 32.0226

Total 1492.58 47

Table 6.5: Results of the one way analysis of variance (ANOVA) of the percentage of hits
and execution time obtained with the implementation of different filters for the gaze point.

Summary

The results of the experiments during the initial optimisation of the HMI based

on gaze tracking were used to perform an analysis of variance (ANOVA) in order

to decide which filter was more suitable to implement in the Four Directional

Control. A one way analysis of variance of the results is shown in Table 6.5. The

results of the analysis on the percentage of hits was not significant, F(5,42)= 0.74,

p= 0.5984. Moving average with a 300 ms window had the highest percentage of

hits (Mean=0.973, SD=0.05), and the lowest percentage of hits was obtained when

the gaze point was not filtered (Mean=0.875, SD=0.11). The results of the analysis

on the execution time were also not significant, F(5,42)= 0.92, p= 0.4763. Weighted

moving average with a 300 ms window had the best execution time (Mean=16.22,

SD=5.40), while moving average with a 300 ms window had the second best execu-

tion time (Mean=18.17, SD=5.22). The longest execution time was obtained when

the gaze point was not filtered (Mean=22.8, SD=4.65). Moving average with a 300

ms window was implemented to filter the gaze point in the Four Directional Control.

The results obtained when testing the three velocity profiles proposed for the Four

Directional Control were also used to perform an analysis of variance (ANOVA), as

shown in Table 6.6. The results of the analysis on the percentage of hits was not

significant, F(2,21)= 2.28, p= 0.1272. The higher percentage of hits was obtained

when using the Single Velocity profile (Mean=0.93, SD=0.1), while the subject had
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ANOVA
Sum of df Mean F Sig.
Squares Square

Hits Between Groups 0.10333 2 0.05167 2.28 0.1272
Within Groups 0.47625 21 0.02268
Total 0.57958 23

Execution Between Groups 76.323 2 38.1617 1.44 0.2604
Time Within Groups 558.326 21 26.587

Total 634.65 23

Table 6.6: Results of the one way analysis of variance (ANOVA) of the percentage of
hits and execution time obtained with the implementation of the three different velocity
profiles proposed for the Four Directional Control.

the lowest rate of hits when using the Dual Velocity profile (Mean=0.78, SD=0.19).

The results of the analysis on the execution time were also not significant, F(2,21)=

1.44, p= 0.2604. The best execution time was obtained when using the Cubic

Velocity profile (Mean=15.2, SD=4.65) and the poorest execution time was obtained

with the Dual Velocity profile (Mean=19.4, SD=4.72).

6.4 Vector directional control

The gaze point in the Vector directional control is considered as a vector referenced

to the origin of the XY plane, as shown in Figure 6.21. The angle of direction of

the gaze point vector is translated onto the robot manipulator’s space on a way that

the user is able to guide the end effector position using horizontal motion, vertical

motion, diagonals and curves. The magnitude of the vector can be considered to

generate three different velocity profiles, as described later.

6.4.1 Filtering

The implementation of the Vector directional control requires a more sophisticated

filtering strategy than the ones suggested for the four directional control due to

the saccadic movement of the eye, which causes instability in the direction of the

gaze point vector, thus affecting the desired motion instruction. We proposed a
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Figure 6.21: Relevant measurements used in the Vector Directional Control expressed in
the XY Cartesian space.

Kalman filter as a filter strategy for the Vector directional control due to its ability

of smoothing the input signal while predicting future incomes. Kalman filters work

as predictor-corrector estimators using a specific set of equations based on the cov-

ariance of the error and a previous measurement of the variable to estimate (Welch

and Bishop, 2013). For a given controlled process represented as a linear system

xk = Axk−1 +Buk + wk−1

zk = Hxk + vk

the process noise wk and measurement noise vk have respective covariances of values

Q and R.

The estimating process of a discrete Kalman filter is according to the diagram in

Figure 6.22, the filter is fed with initial values of the variable to estimate x̂k and

the error covariance Pk, this information is used to make a prediction that is later

corrected through a measurement zk. The value of the error covariance is updated

and used to feedback the filter.
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Figure 6.22: Diagram of operation of the discrete Kalman filter, the filter takes initial
conditions in order to make a prediction of the signal and uses a measurement value to
correct the prediction in order to update the process (Welch and Bishop, 2013).

The implementation of the Kalman filter with small process noise covariances works

as a low pass filter, helping to smooth the noisy signal due to the saccadic movement

of the eye. The filter was implemented for two different values of the process noise

covariance Q=0.001 and Q=0.0001. Figure 6.23 shows the results of filtering 1.6

seconds of the angle of direction given by the gaze point vector when the subject is

fixating. The plot in a) is the cartesian representation of the gaze point in the XY

plane. The angle of direction of the gaze point vector is shown in b). Kalman filter

with noise covariance Q=0.001 removes the noise in the signal while Kalman filter

with noise covariance Q=0.0001, not only removes the noise but makes the signal

slower.

6.4.2 Velocity profiles

Three different velocity profiles were implemented on the Vector directional strategy:

Single Velocity profile, Dual Velocity profile and Cubic Velocity profile. The mag-

nitude of the gaze point vector was used as reference in the assignation of the velocity

value. According to the profile, the larger the magnitude of the vector the fastest

the manipulator would move. The theory behind the velocity profiles is the same

as explained in Section 6.3.2, only that the regions are now defined by concentric

circles instead of rectangles. Figure 6.24 shows the velocity regions assigned for the
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Figure 6.23: a) Gaze point in the XY plane and b) its angle of direction. The angle
of direction is filtered through a Kalman filter using a process noise covariance value of
Q=0.001 and Q=0.0001.

Single Velocity profile based on the XY plane, Figure 6.25 shows the velocity regions

assigned for the Double Velocity profile, and Figure 6.26 shows the velocity regions

assigned for the Cubic Velocity profile.

Stop

150 px

Figure 6.24: Single Velocity profile. The gaze point can fall only in two regions being one
of them the Stop instruction.

6.4.3 Experiments

As for the Four Directional Control, several experiments were conducted on one

single subject in order to find the suitability of the filtering techniques and the

velocity profiles proposed for the Vector Directional Control. The setup used in the

experiments is the same as described in Section 6.3.3.
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Figure 6.25: Double Velocity profile. The slow velocity V1 is activated in the area close
to the stop region while the fast velocity V2 is located far from the center. V2 is 2.5 times
V1.
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Figure 6.26: The Cubic Velocity profile is based on the quantisation of a cubic function.
The profile offers five incremental velocities starting from the center towards the limits of
the space.
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Kalman Filtering
Percentage of Hits Execution Time

Location Q=0.001 Q=0.0001 Q=0.001 Q=0.0001
P1 100 80 8.7 14.2
P2 80 100 19.6 21.8
P3 100 60 18.2 26.0
P4 100 90 9.2 12.1
P5 70 60 16.0 24.5
P6 100 100 17.8 15.7
P7 100 100 24.5 20.6
P8 90 90 10.7 11.6

Average 92.5 85 14.2 16.8
SEM 11.64 16.90 5.60 5.63

Table 6.7: Performance of the system with vector directional control using Kalman filters
with covariance noise of Q=0.001 and Q=0.0001, respectively, to filter the direction of
the gaze point vector. The test experiment consisted in placing an object in 8 different
positions where the subject tried to grasp it, in 10 attempts for each position. The table
shows the percentage of hits and the execution time of the experiments, obtained when
using the Single Velocity profile.

Filtering

Two experiments were conducted: a) Kalman filter with noise covariance Q=0.001

and b) Kalman filter with noise covariance Q=0.0001. The implementation of the

filter with less than Q=0.0001 made the response of the system too slow and there-

fore it did not meet the conditions to work with the system in real time. On the

other hand, the system could not be tested without filtering due to the instability

of the control signal.

In all the experiments the system was programmed to work under the Single Velo-

city profile. The results of the experiments are shown in Table 6.7. Kalman filter

with noise covariance Q=0.001 obtained the highest percentage of hits and also the

shortest execution time with an average time of 14.2 seconds. Kalman filter with

noise covariance of Q=0.0001 obtained 86% of hits with an average execution time

of 16.8 seconds.

Velocity profiles

Three experiments were performed to test the velocity profiles proposed for the

vector directional control: a) Single Velocity profile, b) Dual Velocity profile and c)
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Velocity Profiles
Percentage of Hits Execution Time

Location Single Dual Cubic Single Dual Cubic
P1 100 90 90 8.7 9.6 7.1
P2 80 90 70 19.6 16.0 14.1
P3 100 100 100 18.2 14.8 13.5
P4 100 90 100 9.2 9.0 6.5
P5 70 90 60 16.0 12.7 11.8
P6 100 80 100 17.8 11.3 13.9
P7 100 100 100 24.5 15.5 14.4
P8 90 90 90 10.7 10.4 12.6

Average 92.5 91.2 88.7 15.6 12.4 11.7
SEM 11.64 6.40 15.52 5.60 2.75 3.26

Table 6.8: Performance of the system using the vector directional control with different
velocity profiles. The test experiment consisted in placing an object in 8 different positions
where the subject tried to grasp it, in 10 attempts for each position. The table shows the
percentage of hits and the execution time of the experiments.

Cubic Velocity profile.

The results of the experiments are listed in Table 6.8, the highest percentage of

hits was obtained when using the Single Velocity profile, having 92%; the Dual

Velocity profile had 91% of hits, while the Dual Velocity profile had the lowest

percentage of hits, with 88%. The shortest execution times corresponded to the

Cubic Velocity profile with an average of 11.7 seconds time. The Single Velocity

profile had an average execution time of 15.6 seconds, while the Dual Velocity profile

had an average execution time of 12.4 seconds.

Summary

According to the results of the experiments using the Vector Directional Control,

Kalman filtering with a process noise covariance of Q=0.001 had the highest

percentage of hits (Mean=0.92, SD=0.11), against (Mean=0.86, SD=0.16) ob-

tained when using a Kalman filter with process noise covariance Q=0.0001. We

proposed a Kalman filter with Q=0.001 to be implemented in order to filter

the gaze point in the Vector Directional Control. Considering the execution

time, the subject was faster when using Kalman filter with process noise covari-

ance Q=0.001 (Mean=14.2, SD=5.60) in comparison with the time obtained when
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ANOVA
Sum of df Mean F Sig.
Squares Square

Hits Between Groups 0.00583 2 0.00292 0.21 0.8127
Within Groups 0.2925 21 0.01393
Total 0.29833 23

Execution Between Groups 67.623 2 33.8117 2.07 0.1509
Time Within Groups 342.716 21 16.3198

Total 410.34 23

Table 6.9: Results of the one way analysis of variance (ANOVA) of the percentage of
hits and execution time obtained with the implementation of the three different velocity
profiles proposed for the Vector directional control.

using Kalman filter with process noise covariance Q=0.0001 (Mean=16.8, SD=5.63).

The results obtained when testing the three velocity profiles proposed for the Vector

Directional Control were used to perform an analysis of variance (ANOVA). The

results of the analysis are shown in Table 6.9. On the implementation of different

velocity profiles, the results of the percentage of hits were not significant, F(2,21)=

0.21, p= 0.8127. The higher percentage of hits was obtained when using the Single

Velocity profile (Mean=0.92, SD=0.11), while the subject had the lowest rate of

hits when using the Cubic Velocity profile (Mean=0.88, SD=0.15). The results of

the analysis on the execution time were also not significant, F(2,21)= 2.07, p=

0.1509. The best execution time was obtained when using the Cubic Velocity profile

(Mean=11.7, SD=3.26) and the poorest execution time was obtained with the Single

Velocity profile (Mean=15.6, SD=5.60).

6.5 Performance of the System on different sub-

jects

The performance of the HMI based on gaze tracking was tested through the execu-

tion of 6 experiments in 9 different subjects. The objective of testing the system in

different subjects was to analyse the suitability of using the two proposed controls:

the Four Directional Control and the Vector Directional Control. Also, the perform-
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ance of the subjects during the experiments allowed to test the implementation of

the three velocity profiles under each control strategy.

6.5.1 Experiments

The workspace used in the experiments with the subjects is shown in Figure 6.27.

The workspace was modified considering that the subjects were completely naive to

the HMI based on gaze tracking and some of the positions used in the experiments

performed during the optimisation stage were quite challenging. Specially those

positions that were too close to the kinematic limits of the manipulator or those

that fell out of the visual space of the subject, like the position marked as 2 which

view was obstructed by the base of the manipulator.

For each experiment the object was placed in one of the 8 numbered marked

positions, from 1 to 8, and the user tried to grasp it in one attempt, giving a total

of 8 trials per experiment. The subject was positioned at the left side of the robot

manipulator.

1

2

3
4

5

6

7 8

Figure 6.27: Workspace showing the eight numbered positions marked by white circles
that were used in the experiments. The numbered squares were part of the setup used in
the initial optimisation of the system and the cross marked the initial position of the arm.
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The order and description of the control strategy used in each of the six experiments

as executed by the subjects were:

1. Four directional control with single velocity profile

2. Four directional control with dual velocity profile

3. Four directional control with cubic velocity profile

4. Vector directional control with single velocity profile

5. Vector directional control with dual velocity profile

6. Vector directional control with velocity velocity profile

6.5.2 Results

The results of the experiments are listed in Table 6.10. Subject 1 had its highest

percentage of hits of 75% when using the Four Directional Control with Dual

Velocity profile, and obtained its shortest execution time of 13 seconds when

using the Four Directional Control with Cubic Velocity profile. Subject 2 had

its highest percentage of hits of 87% when using the Four Directional Control

with Dual Velocity profile, and obtained its shortest execution time of 13 seconds

when using the Vector Directional Control with Cubic Velocity profile. Subject

3 had its highest percentage of hits of 62% when using the Vector Directional

Control with Dual Velocity profile, and obtained its shortest execution time of 17.3

seconds when using the Vector Directional Control with Cubic Velocity profile.

Subject 4 had its highest percentage of hits of 75% when using the Four Directional

Control with Cubic Velocity profile, and obtained its shortest execution time

of 13.7 seconds when using the Vector Directional Control with Cubic Velocity

profile. Subject 5 had its highest percentage of hits of 87% when using the Four

Directional Control with Single Velocity profile and with Dual Velocity profile, and

obtained its shortest execution time of 13 seconds when using the Four Directional

Control with Dual Velocity profile. Subject 6 had its highest percentage of hits of

75% when using the Four Directional Control with Dual Velocity profile and the
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Vector Directional Control with Single Velocity profile, and obtained its shortest

execution time of 17.2 seconds when using the Vector Directional Control with

Dual Velocity profile. Subject 7 had its highest percentage of hits of 75% when

using the Four Directional Control with Dual Velocity profile and the Cubic

Velocity profile, and obtained its shortest execution time of 13.3 seconds when

using the Four Directional Control with Cubic Velocity profile. Subject 8 had

its highest percentage of hits of 75% when using the Four Directional Control

with Dual Velocity profile and the Vector Directional Control with Single Velocity

profile, and obtained its shortest execution time of 19 seconds when using the

Four Directional Control with Cubic Velocity profile. Subject 9 was not able

to complete any experiment that involved velocity control and could only move

the arm when the system worked under the single velocity profile. For subject

9, the highest percentage of hits of 62% was obtained when using the Vector

Directional Control with Single Velocity profile, and had its shortest execution time

of 27.3 seconds when using the Four Directional Control with Single Velocity profile.

Figure 6.28 shows a plot with the mean of the results of the experiments considering

all the subjects. According to the graphs, the highest percentage of hits was

obtained when the subjects used the Four Directional Control with the Double

Velocity profile, while the lowest rate of success happened when using the Vector

Directional Control with Cubic Velocity profile. The mean of the results also shows

that the longest execution time was obtained when using the Four Directional

Control and the Vector Directional Control with Single Velocity profile, and the

shortest execution times occurred with the Vector Directional Control configured

with Dual Velocity profile and Cubic Velocity profile.

If we considered the median of the results of the experiments shown in Figure

6.29, the highest percentage of hits was obtained when the subjects used the

Four Directional Control with the Double Velocity profile, while the lowest rate of

130



success happened when using the Vector Directional Control with Cubic Velocity

profile and the Four Directional Control with Single Velocity profile. The median

of the execution time shows that the subjects took more time when using the Four

Directional Control with Single Velocity profile, while the shortest execution times

occurred with the Vector Directional Control configured with Dual Velocity profile

and Cubic Velocity profile.

A one way analysis of variance of the results of the experiments on subjects is shown

in Table 6.11. The results of the analysis on the percentage of hits was significant,

F(5,42)= 2.86, p= 0.0262. Four Directional Control with Dual Velocity profile had

the highest percentage of hits (Mean=0.71, SD=0.18). The second best strategy was

the Four Directional Control with Cubic Velocity profile. Vector directional control

with Cubic Velocity profile showed the poorest performance (Mean=0.48, SD=0.14).

The results of the analysis on the execution time were not significant, F(5,42)=

2.24, p= 0.068. Vector directional control with Dual Velocity profile had the best

execution time (Mean=18.0, SD=4.02). The second best rate was obtained with the

Vector directional control with Cubic Velocity profile (Mean=20.4, SD=9.48). Four

directional control with Single Velocity profile presented the longest execution time

(Mean=29.6, SD=6.64).

6.6 Discussion

The HMI based on gaze tracking was successfully used by nine subjects to control

a robot manipulator. The users were able to accomplish desired tasks such as

reaching and grasping objects in one single session, testing two different control

strategies with three velocity profiles. The proficiency in using each control strategy

varied among subjects. Most of them were able to achieve more than 50% of hits

using two or more strategies, except for subject 7 and subject 9. Subject 9 could
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Subject Percentage of Hits Execution Time
E1 E2 E3 E4 E5 E6 E1 E2 E3 E4 E5 E6

1 37 75 62 37 50 25 27.3 25.3 13.0 18.6 15.7 16.5
2 32 87 75 75 25 62 28.8 25.2 24.6 22.3 11.0 10.0
3 50 37 37 50 62 37 26.7 18.0 17.6 17.5 23.8 17.3
4 50 50 75 50 62 50 42.5 35.5 39.3 17.5 16.6 13.7
5 87 87 62 50 25 62 30.7 17.1 25.2 55.7 17.5 39.2
6 37 75 62 75 50 62 38.0 17.3 26.6 38.6 17.2 21.4
7 62 75 75 62 62 50 24.6 16.1 13.3 21.0 20.6 16.2
8 50 87 75 87 62 37 21.2 25.1 19.0 37.5 22.0 29.3
9 37 - - 62 - - 27.3 - - 31.8 - -

Average 49.1 71.6 65.3 60.8 49.7 48.1 29.6 22.4 23.6 28.9 18.0 20.4
SEM 17.09 18.55 13.14 15.84 16.14 13.97 6.64 6.63 8.63 13.07 4.02 9.48

Table 6.10: Results of the experiments used to test the control strategies on different
subjects. The rate of success and the execution time were computed for each subject and
for all the experiments.
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Figure 6.28: Computation of the mean of the percentage of hits and the execution time
obtained in the six experiments used to test the control strategies on different subjects.
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Figure 6.29: Computation of the median of the percentage of hits and the execution time
obtained in the six experiments used to test the control strategies on different subjects.
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ANOVA
Sum of df Mean F Sig.
Squares Square

Hits Between Groups 0.37364 5 0.07473 2.86 0.0262
Within Groups 1.09915 42 0.02617
Total 1.47279 47

Execution Between Groups 873.44 5 174.687 2.24 0.068
Time Within Groups 3277.04 42 78.025

Total 4150.47 47

Table 6.11: Results of the one way analysis of variance (ANOVA) of the percentage of hits
and execution time obtained in the six experiments used to test the control strategies on
different subjects.

only execute the reaching and grasping tasks in the experiments that did not involve

velocity control, but still registered a percentage of hits of 62% using the Vector

Directional Control with Single Velocity profile. The highest percentage of hits of

Subject 1 was 75% with the Four Directional Control and Dual Velocity profile.

Subject 2 had 87% of hits with the Four Directional Control and Dual Velocity

profile. Subject 3 had 62% of hits using the Vector Directional Control with Cubic

Velocity profile. Subject 4 had 75% of hits with Four Directional Control and Cubic

Velocity profile. Subject 5, 6, 7 and 8 reached their highest percentage of hits with

two different strategies. Subject 5 registered 87% of hits using the Four Directional

Control with Single and Dual Velocity profiles, respectively. Subject 6 had 75% of

hits with the Four Directional Control and Dual Velocity profile and the Vector

Directional Control with Single Velocity profile. Subject 7 had 75% of hits using

the Four Directional Control with Single and Dual Velocity profiles. Subject 8 had

87% of hits using the Four Directional Control and Dual Velocity profile and the

Vector Directional Control with Single Velocity profile.

Considering the average of the results, the highest percentage of hits was 71%,

obtained when using the Four Directional Control with Dual Velocity profile. The

Vector Directional Control with Cubic Velocity profile registered the lowest average

percentage of hits with 48%.

The results obtained in the experiments with subjects put our HMI based on gaze

tracking under consideration to be compared to past implementations of interfaces
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based on brain activity, or Brain Computer Interfaces (BCI), that controlled robot

manipulators in the execution of similar reaching and grasping tasks.

For example, Velliste and colleagues (Velliste et al., 2008) used cortical activity

patterns on monkeys to control a robot arm in a self feeding task. They used

intracortical microelectrode arrays implanted in the motor cortex of the monkeys.

The monkeys underwent several training sessions to operate the robot arm and to

learn the self-feeding task. After the initial training period the monkeys executed

the self-feeding task continuously for several days. One of the monkeys performed

the task for 2 days with a success rate of 61%, while the other monkey executed a

simpler version of the task for 13 days with a success rate of 78%.

In a similar implementation on people with tetraplegia Hochberg and colleagues

presented in (Hochberg et al., 2012) a neural interface-system based control of a

robotic arm. The patients were implanted with a 96-channel microelectrode array

used to record neural activity in the motor cortex and had sessions on a near-weekly

basis to learn how to control a computer cursor. The participants were asked to

control two different right handed robot arms to reach and grasp objects in three

dimensional movements. One of the subjects obtained success rates of 21.3% and

46.2%, using each of the robot arms in four sessions. The other subject grasped the

object 62% of the times in one session.

It might seems unfair to compare the performance of the HMI based on gaze

tracking to control a robot manipulator presented in this work with the BCI imple-

mentations mentioned above, since there are remarkable differences in the setup of

the systems. For instance, our HMI is used to control the robot manipulator using

two dimensional movements while Velliste and Hochberg presented controls for

three dimensional motion. However, the merit of our implementation resides in the

fact that the system is completely not invasive which means that the user would
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not have to undergo any surgery for sensor’s implantation, reducing the health risks

that accompany the surgery itself, open wounds treatment, foreign object rejection,

etcetera.

As mentioned, the successful control of cortical neural prosthetics involve long

periods of training and the use of complex algorithms. The initial period of training

for the presented HMI based on gaze tracking takes advantage of the user’s own

understanding of the eye movements and their relation with the directional control

strategy implemented on the system. In our experience with subjects during the

validation process, a simple description of how the gaze tracking system works is

enough for the subject to understand the concept of the visual space given by the

scene image and how it is used to reference the control strategy. This step takes

less than half an hour even in subjects who are completely naive to the eye/gaze

tracking concept.

The HMI based on gaze tracking presented in this work seems suitable to be used

as an alternative to control a robot manipulator and to be considered for future

implementations of prosthetics intended to aid paralysed people. The present system

is completely prompt to be extended in order to implement a three dimensional

motion control able to fulfil the necessities of the patients. Three dimensional motion

may be accomplished by taking advantage of blinking sequences using them as binary

control signals, or by introducing the concept of depth on the gaze point signal

processing when designing the directional control strategy.
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6.7 Conclusions

In this chapter we described a Human Machine Interface (HMI) based on gaze track-

ing to control the direction of movement of a robot manipulator. The interface allows

the user to open and to close a robotic hand attached to the end effector of the ma-

nipulator using intentional blinking. The initial optimisation of the Human Machine

Interface based on gaze tracking was made through the results obtained after sev-

eral experiments based on the execution of a reaching and grasping task, performed

by one single subject. We evaluated the performance of the system according to

the percentage of hits obtained in the task and the execution time. After the first

optimisation was complete we tested the interface in 9 different subjects. The setup

of the experiments used in the initial optimisation was explained in Section 6.3.3.

The test experiment consisted in placing an object in 8 different positions where the

subject tried to grasp it.

Two different control strategies based on the location of the gaze point were pro-

posed: a Four directional Control and a Vector directional control.

The signal from the gaze tracker had to be pre-filtered in order to remove the noise

generated by the non intentional saccadic movement of the eye and to smooth the

signal, we proposed and tested several filters according to the control strategy. For

the Four Directional Control we tested: moving average filters with windows of 150

ms, 300 ms and 500 ms; and weighted moving average filters with windows of 150 ms

and 300 ms. The suitability of the filters was evaluated in the execution of a reaching

and grasping task during the initial optimisation of the HMI. The highest percentage

of hits and the second best execution time record were reached when using a moving

average filter with a 300 ms windows. According to this, a moving average filter

with a 300 ms window was implemented in the Four Directional Control. For the

Vector Directional Control we tested a Kalman filter with two different values for

the process noise covariance Q=0.001 and Q=0.0001. The performance of the filters

was also evaluated in the execution of reaching and grasping tasks during the initial
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optimisation of the HMI. A Kalman filter with process noise covariance of Q=0.001

showed to be the most suitable to be implemented in the Vector Directional Control,

obtaining both the highest percentage of hits and the shortest execution time.

The control strategies also allowed to control the velocity of the manipulator under

three different velocity profiles: a Single Velocity profile, a Dual Velocity profile and

a Cubic Velocity profile. During the initial optimisation, a subject performed several

reaching and grasping tasks in order to test the velocity profiles under the two con-

trol strategies. The subject had the highest percentage of hits when using the Four

Directional Control with Single Velocity profile, and carried out the task faster when

using the Vector Directional Control with Cubic Velocity profile. On the other hand,

Vector Directional Control with Dual Velocity profile had the poorest performance,

obtaining the lowest percentage of hits; while Vector Directional Control with Dual

Velocity profile registered the longest execution time. Regarding to the performance

of the subject when testing the control strategies with different velocity profiles, the

results obtained in the initial optimisation differed from the results obtained when

other subjects performed the same tasks.

The HMI based on gaze tracking was tested by nine different subjects in the ex-

ecution of a reaching and grasping task using the two proposed control strategies

under the three velocity profiles, respectively. The results of the experiments were

analysed in Section 6.5.2. A one way analysis of variance was significant for the per-

centage of hits, but not significant for the execution time. According to the mean

and median plots of the percentage of hits, the Four Directional Control with Dual

Velocity profile performed better. But the Vector Directional Control with Dual and

Cubic Velocity profile helped the user to execute the task faster. On the other hand,

Vector Directional Control with Cubic Velocity profile had the poorest performance,

while Vector Directional Control with Single Velocity profile registered the longest

execution time.
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Chapter 7

General conclusions and future

work

In this thesis we presented the development of a human machine interface (HMI)

based on gaze tracking that was used to control a 7 degrees of freedom (DOF)

WAM arm manipulator in several reaching and grasping tasks. We analysed the

performance of the manipulator in order to determine its suitability for the HMI

implementation. We proposed two alternative control schemes for the manipulator

and we compared the performance of the WAM arm under three different control

strategies. The conclusions related to this work are presented in Section 7.1. The

results obtained during the development of this thesis encouraged us to suggest some

implementations for future work that are presented in Section 7.2.

7.1 Conclusions

.

A robot manipulator can be considered as a good representation of the human arm

and might be used as a platform to develop control strategies that can be used

in prototypes of future artificial prosthetics. Considering this, in Chapter 2 we

analysed the performance of the 7 DOF Wam arm from Barrett Technologies in
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order to determine its accuracy in the execution of specific trajectories. The system

was configured to work with joint Proportional Derivative (PD) control and gravity

compensation. We used three performance measurements: the joint position errors

during the execution of the trajectory, a relative percentage error (RPE) for the

final position of the joint and the actual joint trajectories of the manipulator. The

joint position errors obtained during the execution of the joint trajectory helped

to analyse the behaviour of the joint controllers in the execution of the joint

rotation. The RPE was used to measure how accurate the joint motion was in

reaching the desired end position. The actual joint trajectory showed the quality

of the manipulator’s motion during the task giving that an irregular trajectory was

equivalent to a shaky motion of the joint.

After analysing the system in the execution of joint rotations of 0.5 rad at a velocity

of 0.083 rad/sec, we found that during the execution of the task the joint position

errors were less than 0.02 rad; the RPE varied among joints, from less than 1% to

up to an approximate of 7%. The motion of the manipulator was slightly shaky,

which was appreciable in the joint trajectory plots where it could be noticed that

the curves were not completely smooth.

Since the manipulator was intended to be used in future applications of neuropros-

thetics, we proposed to use Proportional Integral and Derivative (PID) control

in the WAM arm with the aim of reducing the RPE to less than 1% in all the

joints of the manipulator. Our second objective was to obtain smoother joint

trajectories during the execution of tasks. However, tuning the parameters of

the PID controllers was not a straightforward process since the system was non

linear and due to the number of the manipulator’s degrees of freedom. In order to

have a better understanding of the dynamics of the manipulator we worked on a

mathematical model of the system that included friction. The mathematical model

was implemented in MATLAB/Simmechanics. Mathematical modelling is funda-

mental in the designing process depending of the objectives of the implementation,
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the constraints of the task to be executed, and the desired robot’s performance.

The difficulty in obtaining these models varies according to the complexity of

the kinematics of the mechanical structure and the number of degrees of freedom

(DOF) (Khalil and Dombre, 2002). According to the Barrett WAM arm datasheet

the system has zero backlash and near-zero friction. The initial design of the model

did not include friction, but after running some simulations and comparing the

behaviour of the model with respect to the real system we concluded that this model

was not accurate enough. We proceeded to identify the friction phenomena in the

joints of the manipulator with the aim of finding a mathematical representation

that could be added to the WAM arm model. The model of the WAM arm included:

seven joint PD/PID controllers configured as in the real system, seven modules

used to emulate the joint reference trajectory as computed in the real system,

and the mathematical models of the friction manifested in all the joints of the

manipulator. The accuracy of the model was evaluated according to the results

obtained in the execution of several joint rotations performed by both the model

and the real system. We used the position errors registered in the experiments

to compare the performance of the model and the WAM arm. Considering that

in practice the real system is affected by many external disturbances such as:

non linearities due to the joint motors, the joint actuators, and the inertia of the

system; the results of the experiments showed that the response of the model was

a fair representation of the performance of the real system. Since the model was

implemented in SimMechanics/Simulink, we were able to implement a platform for

simulations that was useful in future applications. For example, the accuracy of the

model allowed us to implement an iterative method for estimating the parameters

of the PID controllers of the seven joints of the manipulator described in Chapter

5.

The friction identification was achieved by performing motion experiments where
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the joints of the manipulator were moved at several constant velocities. During the

experiments, the joint torques and the velocities were registered and they were used

later to construct friction velocity maps. The friction velocity maps helped to find

the parameters of the classic friction model by fitting the data using a least squares

minimisation method. The classic friction model is a good representation of friction

when the system works from medium to medium-high velocities, which was the

case in our objective applications. The classic friction model suited satisfactorily

the friction phenomena in the joints of the WAM arm. Considering this, we

implemented a feedforward scheme to be added to the joint PD controllers of the

manipulator as an alternative to improve the performance of the manipulator. The

control scheme for friction compensation helped to reduce the position error in six

out of the seven joints; the RPE was reduced in three out of the seven joints of the

manipulator; and all the joint trajectories were smoother than those observed when

using the joint PD control scheme without the friction compensation module. The

friction identification process and the implementation of the feedforward friction

compensation are described in Chapter 4.

The implementation of joint PID control in the WAM arm involved a tuning process

based on an Iterative Feedback Tuning (IFT) technique for linear systems proposed

by Hjalmarsson. The technique had been implemented with positive results in

simulated non linear systems (Hjalmarsson, 1998, 2002). In Chapter 5 we showed

a different implementation of the Iterative Feedback Tuning in a real non linear

system using both real and simulated data. The IFT technique used experimental

data to find the gradient direction of the estimation of the controller parameters in

each iteration. However, since some of the experiments could not be executed in

the WAM arm, we used the model of the system described in Chapter 3 to perform

part of the iterative process. We also used two different approaches to approximate

the gradient: a Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and the
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Newton-Gauss method. The process of estimation of the controller parameters was

completed after 15 iterations, which consisted in the execution of 30 experiments,

for all the joints of the manipulator. After tuning the joint PID controllers we

analysed the performance of the WAM arm in the execution of a motion task. The

PID control helped to reduce the position error in all the joints of the manipulator

to values very close to zero; the RPE was reduced to less than 0.007%; and the joint

trajectories were smoother than those obtained when using the joint PD control

scheme without the friction compensation module.

Chapter 5 also includes a discussion section where we compared the performance of

the WAM arm under the three different control strategies described in this thesis:

PD control with gravity compensation, PD control with gravity compensation

and feedforward friction compensation, and PID control. According to the results,

out of the two alternative control strategies that were tested on the WAM arm,

PID control improved the performance of the manipulator by reducing the joint

position errors during the rotation task, obtaining the lowest RPE and executing

the smoothest trajectories.

In Chapter 6 we described a Human Machine Interface based on gaze tracking used

to control the position a robot manipulator in a 2D space. The system used the

gaze point to give directions of movement to the robot arm and used intentional

blinking to open and close a robotic hand attached to the end effector of the

manipulator, in order to grasp objects.

The gaze tracking system used in the project consisted in a head mounted device

that measures the gaze point of the user with respect to a scene view, given by a

camera positioned in the front of the head. The manipulator was a 7 DOF WAM

arm form Barrett technologies. We filtered the gaze point signal using different

filtering techniques in order to feed two different control strategies that worked
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in real time: a Four directional Control and a Vector Directional control. The

Four Directional Control was used to move the robot manipulator using vertical

and horizontal steps. The Vector Directional Control considered the gaze point

as a vector, which angle of direction was translated into the manipulator’s space,

allowing the robot arm to move with vertical, horizontal and diagonal steps.

The two control strategies also included an implementation of velocity control. We

proposed and tested three different velocity profiles in the execution of reaching

and grasping tasks: A Single Velocity profile, a Dual Velocity profile and a Cubic

Velocity profile.

We performed an initial optimisation of the system that helped us to find the

suitability of a gaze point filtering technique and to test the coherence of the

velocity profiles. The experiments used in the optimisation process consisted

in placing an object on a table in 8 different locations where a subject tried to

grasp it. The manipulator was placed in an initial position at the beginning

of the reaching and grasping task and came back to the initial position after

the user closed the grasp three times using intentional blinking. We measured

the percentage of hits and the execution time in each experiment. During the

optimisation stage all the experiments were conducted using a single velocity profile.

Based on the results of the optimisation process, the technique implemented in

the system to filter the gaze point for the Four Directional Control was a moving

average filter with a 300 ms window. The filtering technique implemented in

the system in the Vector Directional Control was a Kalman filter with process

noise covariance of Q=0.001. The optimisation process of the system is described

in Section 6.3.3 and Section 6.4.3. After the initial optimisation we tested the

system in 9 different subjects in reaching and grasping tasks using the two control

strategies working under the three velocity profiles, respectively. All the subjects

were able to complete the tasks using both of the proposed control strategies, even

when the subjects were completely naive to the system at the beginning of the
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experiments. The proficiency in using each velocity profile varied according to

the user as described in Section 6.5.2. The strategy with the highest average rate

of hits was the Four Directional Control with Dual Velocity profile, with 71% of hits.

The results of the experiments allowed us to consider the use of gaze tracking

as an alternative to control robotic prosthetics intended to aid paralysed people.

Our system was able to perform reaching and grasping tasks similar to those

accomplished with motor neuroprosthetics implemented in monkeys (Velliste et al.,

2008) and in people with tetraplegia (Hochberg et al., 2012), without the need

to undergo surgery or having several training sessions. It took an average of 15

minutes for the eye tracker to be fully operational in the user, this time included

the introduction of the devices to the user and the explanation of how the system

worked. Most of the subjects took an extra 5 minutes time to practice before

starting the first experiment. The subjects did not have problems in understanding

the relation of their visual space with the gaze tracker visual space and they were

able to successfully rely in mental plots of the surrounding space and the location

of the object while moving the eyes to control the manipulator. At the beginning

of the experiments the users slightly struggle to find the correct position of the

eyes that allowed to pause the manipulator’s control using the Stop region but they

were able to master it during the practice time or within the execution of the first

experiment, respectively. All the experiments in the subjects were made in one

session that lasted an approximate of 2 hours time. At the end of the experiments

most of the subjects grow tired of making fixations for this period of time. Despite

of the later, the HMI based on gaze tracking described in this work exhibited a

good performance in a real application and it was successfully tested in different

subjects. The signal processing behind the design of the control strategies was

computationally cheap and easy to implement.
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The results presented in this work showed that it is suitable to use a HMI based on

gaze tracking in the execution of reaching and grasping tasks with a high percentage

of success. However, further experiments have to be conducted in order to establish

which combination of control strategy and velocity profile is the best out of the ones

proposed.

7.2 Future work

The friction phenomena affecting the WAM arm did not compromise the stability

of the system during the implementation of the IFT technique described in Chapter

5. However, a better response can be expected if we completely compensate for the

non linearities of the system.

The aim of the future work proposed in this thesis is to find a method able to work

in parallel with the IFT tuning that can help to compensate for the friction affecting

the system without a previous friction identification process.

After some consideration we propose the implementation of an observer.

Observers are helpful when estimating unknown states of a dynamic system. They

consist in the implementation of the mathematical model of the system and its

addition to the operational process by working in parallel with the real system.

When the model is accurate with respect to the real system the behaviour of both

is expected to be exactly the same. However, this expectation is not likely to occur

due to all the external disturbances that affect a process in practice.

In order to design an observer a measurable variable in the real system needs to

be found first. This variable will be used for the observer as a correction factor in

the estimation of the future states. Figure 7.1 shows the general scheme of a state

estimator. In the block diagram the measurement variable is the output of the pro-

cess y, the state variable is x and the control signal is u. The observer estimates the

output variable ye through the mathematical model of the system. The difference
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between y and ye is used then to update the estimate of a future state (Ogata, 2010).

Figure 7.1: General scheme of a state estimator. The variable x is the state of the system
driven by signal u and C represents the sensor for the output y. The values of xe and ye
are the estimated state and output, respectively.

In regards to the HMI based on gaze tracking presented in Chapter 6, we showed

that the system exhibited good performance when it was tested by 9 different

subjects in reaching and grasping tasks. However, further experiments need to

be conducted and several analyses need to be considered in order to improve the

performance of the system.

First, we suggest to analyse the robot manipulator’s trajectory when it approaches

the object, in order to determine the suitability to implement a strategy to predict

the grasping point. During the experiments the subjects had to rely in mental

plots of the surrounding space and the location of the object while moving the eyes

to control the position of the manipulator. If a prediction technique is used to

find the location of the object based on the fixations of the user while controlling

the position of the robot arm, we expect an improvement in the hit rates and a

reduction of the execution time.

We also need to find the best combination of control strategy and velocity profile
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so further experiments with subjects are needed. In order to accomplish that, the

subjects will need to undergo an initial training in the use of all the strategies and

velocity profiles proposed in this work. After the training process, the subjects would

perform a series of grasping and reaching tasks using various combination of control

strategy and velocity profile presented randomly, in several trials. The data obtained

from the experiments will be useful to find the best performance considering each

strategy based on the percentage of hits and the execution time. The design of

the HMI should consider to add control signals that can be used to automatically

start the control of the manipulator such as those used to stop the control (using

intentional blinking three times), since so far the control starts only with the help

of a supervisor that activates the control for safety reasons.

The current implementation of the HMI based on gaze tracking allows to control the

robot manipulator in a two dimensional space. However the future implementation

of three dimensional motion is completely feasible, we propose several approaches

that can be considered:

• Binary coding using blinking to switch between two planar spaces XY and XZ.

• The use of image signal processing to find the depth considering the gaze point

and the scene image given by the gaze tracking system.

• The use of eye tracking techniques to find the three-dimensional angle of rota-

tion of the eye to compute the depth.
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Appendix A

Denavit-Hartenberg Convention

The Denavit-Hartenberg convention is a systematic method that helps to establish

a body attached frame to each link of an articulated chain (Verma and Gor, 2010).

The Denavit-Hartenberg convention is widely used to find the relationship between

the joints of the robot manipulator and the position of the end-effector (Spong et al.,

2006) using four specific transformations:

1. Rotation about zi−1 axis by an angle θi.

2. Translation along zi−1 axis by distance di.

3. Translation along xi−1 axis by distance ai.

4. Rotation about xi−1 axis by an angle αi.

where θi, ai, di and αi are the Denavit-Hartenberg parameters of link i. Defining

the parameters:

• ai: distance measured along xi axis from the point of intersection of xi axis

with zi−1 to the origin of frame i.

• αi: angle between zi−1 and zi axes measured about xi axis in the right hand

sense.
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• di: distance measured along zi−1 axis from the origin of frame (i − 1) to the

intersection of xi-axis with zi−1 axis.

• θi: angle between xi−1 and xi axes measured about the zi−1 axis in the right-

hand sense.

the assignation of the coordinate systems for each link that builds the articulated

chains can be established following the algorithm mentioned by Barrientos et al.

(1997).

• Assign a number to each link of the chain from 1 to n, using 0 for the fixed

base of the robot.

• Assign a number to each joint starting with 1 (corresponding to the first degree

o freedom) and ending with n.

• Identify the rotation axis for revolute joints, and the displacement axis for

prismatic joints.

• For the i joint from 0 to (n− 1), place the zi axis over the (i+ 1) joint axis.

• Place the origin of the base of the system x0y0z0 over the z0 axis.

• For the i joint from 1 to (n− 1), place the system xiyizi in the intersection of

the zi axis with the common normal line of zi−1 and zi. If the axes are parallel

then the system must be placed in the (i+ 1) joint.

• Place xi over the common normal line of zi−1 and zi.
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Appendix B

Newton-Euler Recursive

Algorithm

The Newton-Euler recursive algorithm as mentioned by Siciliano et al. (2009) refers

all vectors to the current frame on a generic link i, using the following parameters:

• mi mass of the link.

• Īi inertia tensor of link i.

• ri−1,Ci
vector from origin of frame (i− 1) to centre of mass Ci of link i.

• ri,Ci
vector from origin of frame (i) to centre of mass Ci of link i.

• ri−1,i vector from origin of frame (i− 1) to origin of frame i.

• ṗCi
linear velocity of centre of mass Ci of link i.

• ṗi linear velocity of origin of frame i.

• ωi angular velocity of link i.

• p̈Ci
linear acceleration of centre of mass Ci of link i.

• p̈i linear acceleration of origin of frame i.
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• ω̇i angular acceleration of link i.

• g0 gravity acceleration.

• fi force exerted by link (i− 1) on link i.

• −fi+1 force exerted by link (i+ 1) on link i.

• µi force exerted by link (i− 1) on link i with respect to origin of frame (i− 1).

• −µi+1 force exerted by link (i+ 1) on link i with respect to origin of frame i.

the recursive algorithm can be listed as

ωi
i = (Ri−1

i )Tωi−1
i−1 For a prismatic joint

= (Ri−1
i )T (ωi−1

i−1 + θ̇iz0) For a revolute joint

ω̇i
i = (Ri−1

i )T ω̇i−1
i−1 For a prismatic joint

= (Ri−1
i )T (ω̇i−1

i−1 + θ̈iz0) + θ̇iω
i−1
i−1 × z0 For a revolute joint

p̈ii = (Ri−1
i )T (p̈i−1

i−1 + d̈iz0) + 2ḋiω
i
i × (Ri−1

i )T z0

+ω̇i
i × rii−1,i + ωi

i × (ωi
i × rii−1,i) For a prismatic joint

= (Ri−1
i )T p̈i−1

i−1 + ω̇i
i × rii−1,i + ωi

i × (ωi
i × rii−1,i) For a revolute joint

p̈iCi
= p̈ii + ω̇i

i × rii,Ci
+ ωi

i × (ωi
i × rii,Ci

)

f i
i = Ri

i+1f
i+1
i+1 +mip̈

i
Ci

µi
i = −f i

i × (rii−1,i + rii,Ci
) +Ri

i+1µ
i+1
i+1 +Ri

i+1f
i+1
i+1 × rii,Ci

+ Ī ii ω̇
i
i + ωi

i × (Ī iiω
i
i)

τi = (f i
i )

T (Ri−1
i )T z0 For a prismatic joint

= (µi
i)
T (Ri−1

i )T z0 For a revolute joint

where z0 is a unit vector z0 = [0 0 0]T ; ω0
0, p̈

0
0 − g00 and ω̇0

0 are the initial conditions;

fn+1
n+1 and µn+1

n+1 are the terminal conditions; and quantities Īi and rii,Ci
are constant.
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