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A classification of toral and planar attractors
and substitution tiling spaces

Sheila Margaret McCann

Abstract We focus on dynamical systems which are one-dimensional expand-
ing attractors with a local product structure of an arc times a Cantor set. We
define a class of Denjoy continua and show that each one of the class is homeo-
morphic to an orientable DA attractor with four complementary domains which
in turn is homeomorphic to a tiling space consisting of aperiodic substitution
tilings. The planar attractors are non-orientable as is the Plykin attractor in
the 2-sphere which we describe.

We classify these attractors and tiling spaces up to homeomorphism and the
symmetries of the underlying spaces up to isomorphism. The criterion for
homeomorphism is the irrational slope of the expanding eigenvector of the
defining matrix from whence the attractor was formed whilst the criterion for
isomorphism is the matrix itself. We find that the permutation groups arising
from the 4 ‘special points’ which serve as the repelling set of an attractor are
isomorphic to subgroups of S4. Restricted to these 4 special points, we show
that the isotopy class group of the self-homeomorphisms of an attractor, and
likewise those of a tiling space, is isomorphic to Z⊕ Z2.
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Introduction

The ultimate results of this thesis are due in no small part to serendipity, a

word attributed to Walpole1 to describe folklore heroes who made “discoveries

. . . of things they were not in quest of” (see for example [13]); in a mathematical

context could be added the criterion for an unexpected result to be a “prepared

mind” [49]. Suffice to say that our intended path took a diversion.

The main theme of this thesis is the construction and classification of one-

dimensional hyperbolic expanding attractors with four complementary domains

and their homeomorphic substitution tiling spaces. Before giving a synopsis of

each chapter we describe here the content of our research which we consider to

be original. To that end we prepare the ground in chapter 5 by constructing

an attractor Λ (Def. 5.7) with one complementary domain. To do so we use the

hyperbolic toral automorphism C (1.10), known as Arnold’s2 Cat map [6], as an

example of an Anosov3 diffeomorphism (Def. 5.3) on which we apply surgery

first introduced in 1967 by Smale4 in his paper [51]. This yields a ‘derived

from Anosov’ (DA) diffeomorphism f (5.2) and its attractor Λ. By considering

the torus T2 as a 2-fold branched covering of the 2-sphere S2 together with

a DA map fΠ (5.4), the Plykin5 attractor ΛΠ ⊆ S2 has four complementary

domains. Plykin first conceived his attractor directly on S2 in his 1974 paper

1Horace Walpole (1717 - 1797) English art historian, man of letters, antiquarian and Whig
politician.

2Vladimir Igorevich Arnold (1937 - 2010) Russian mathematician.
3Dmitri Victorovich Anosov (1936 - ) Russian mathematician.
4Stephen Smale (1930 - ) American mathematician.
5Romen Vasilievich Plykin (1935 - 2011) Russian mathematician.
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[42]. In chapter 6 we use Yi’s algorithm [57] to lift the Plykin attractor’s

planar projection ΛP to Λ̃P ⊆ T2. The dynamics of a self-homeomorphism

of Λ̃P are modelled by the induced orientation-preserving self-map g̃∗ (6.11)

of the branched 1-manifold M̃∗ which gives the presentation of a Williams’

solenoid [54], Σ̃∗ = lim
←−

(M̃∗, g̃∗) with shift map σ̃∗. In order to reduce M̃∗ to

an elementary branched 1-manifold consisting of a wedge of circles with a single

branch point, we devise an original method which bypasses the need for using

Williams’ Lemma 5.3 and his §5.5 Four models for reduction both given in [54].

We find that by simply iterating the map (6.11) and locating the returns to

one of the four branch points of M̃∗ chosen to be the origin, this gives the

information to form what Barge and Diamond call a rose [7] such that the

rose K∗ is equipped with a self-map r∗ (6.12) (Def. 6.14). The maps g̃∗ and r∗

commute (Prop. 6.25). An elementary presentation of a Williams’ solenoid is

then Ω = lim
←−

(K∗, r∗) with shift map ω, defined on page 115. From recognising

the pattern of letters appearing as words in the rose map we form a proper

substitution map and hence a tiling space Tω2 homeomorphic to Λ̃P (Theorem

6.32).

In chapter 7 we create a novel method to construct a toral attractor Aα

(Def. 7.8) with four complementary domains. To develop and illustrate the

method we use six examples of Anosov diffeomorphisms, each of the form F

(Def. 7.1), chosen merely by reason of the defining matrix M belonging to one of

the six equivalence classes whose union forms a group M =
⋃̇5

i=0M̄i (Def 7.11),

isomorphic to the quotient group GL(2,Z/2Z) (Theorem 7.13). In summary

the ingredients of our method involve a sequence of operations which uses a

secondary Markov6 partition P̈ which is a finer version of a standard partition

P ; a 2θ-space M̈ still with two branch points but having double the number of

edges than that of a θ-space which we used to represent an attractor with one

6Andrey A. Markov (1856 - 1922) Russian mathematician.
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complementary domain. The self-map ϑ̈ : M̈ → M̈ is derived from the linear

transformation M : R2 → R2, induced by the DA map f (7.7) which yields Aα

(Lemma 7.20). Iterating the map ϑ̈ locates the five distinct return words to

the chosen origin then using these return words we can generate the rose map

r : K̈ → K̈ which is the elementary presentation of a solenoid Ω̈ (Def. 7.24).

Then once again the patterns of letters which occur in the words of a rose map

provide the mappings for a proper substitution ω̈ (Def. 7.28) which then leads

to a tiling space Tα(ω̈) (Def. 7.29) where Aα
∼= Tα(ω̈) (Lemma 7.31).

The classification of spaces appears in chapter 8. Up to homeomorphism the

main result is Theorem 8.4. This states that attractors Aα and Aβ are homeo-

morphic if and only if the quadratic irrational slopes α and β of the expanding

eigenvectors of the matrices associated to the attractors are equivalent. The

equivalence of the slopes is determined by the continued fraction expansions

of α and β as explained on page 146. Involved in the proof of Theorem 8.4

is the Denjoy7 continuum DB
α , defined on page 142, such that B serves as the

repelling set of points which shapes an attractor Aα. Furthermore, by reason

of an attractor’s matrix M permuting the points of set B, M remains the key

criterion for the classification of spaces up to isomorphism. In particular, the

permutation group of the points of set B is isomorphic to either the symmetric

group A4 or D4 (Lemma 8.11), the symmetry group S(Aα) is isomorphic to

either the rotation subgroup Sr(T ) of a regular tetrahedron or to that of a

square D4 (Theorem 8.15), while the class subgroup of a self-homeomorphism

K0(Aα) is isomorphic to Z ⊕ Z2 (Corollary 8.7). Similar results hold for a

non-orientable attractor PAα and a tiling space Tα(ω̈).

Chapter 1. Broadly speaking a dynamical system has an initial state which

evolves over discrete or continuous time according to some rule. Such

a system can range from celestial mechanics to population growth, the

7Arnaud Denjoy (1884 - 1974) French mathematician.
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latter often modelled by a logistic map of the quadratic family fk(x) =

kx(1− x). We introduce the notion of symbolic dynamics first in the

context of shift spaces (Def. 1.1, 1.2) then with respect to a β-expansion

(Def. 1.3) whose symbolic alphabet {0, 1} contributes to the plotting of

the Rauzy8 fractal Tβ (Def. 1.13). The term fractal was first introduced

by Mandelbrot9 in his 1975 Essay [33]. In his subsequent publication

[34] he writes “A fractal is by definition a set for which the Hausdorff10

Besicovitch11 dimension strictly exceeds the topological dimension”. (We

raise the question of dimension in our conclusions of chapter 9.) As yet

the term fractal evades a consistent definition, being dependent upon an

individual author. However, relevant to this thesis in which Cantor12 sets

are prominent, Mandelbrot cites the original Cantor set as a fractal since

its non-integer dimension is log2/log3 ≈ 0.6309 > 0 while its topological

dimension is 0. The Rauzy fractal can also be described as the attractor

of an iterated function system (Prop. 1.15). With regards to the term

attractor, a simple description which suits our introduction is given by

Devaney in [20] where “an attractor is an invariant set to which all nearby

orbits converge”. The dynamical systems which we present display such

behaviour so in the words of Mandelbrot we could describe our work as

that of “fractal attractors”. The notion of an attractor is partnered with

that of a repeller which as the word implies admits opposing behaviour

to that of an attractor.

A symbolic sequence is equipped with a natural shift map and we show

that a Sturmian13 shift space (Σα, S) is topologically conjugate to the

closure of a rotation sequence (Rα, ρα) (Theorem 1.28). The Fibonacci

8Gérard Rauzy (1938 - 2009) French mathematician.
9Benoit B. Mandelbrot (1924 - 2010) Polish mathematician.

10Felix Hausdorff (1868 - 1942) German mathematician.
11Abram Samoilovitch Besicovitch (1891 - 1970) Ukrainian mathematician.
12Georg Cantor (1845 - 1918) German mathematician.
13Jacques C. F. Sturm (1803 - 1855) French mathematician.
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map ϕ (1.7) and the Cat map γ (1.9) are examples of Sturmian sub-

stitutions which have incidence matrices (Def. 1.34) Mϕ = [1 1
1 0] and

A = [2 1
1 1] respectively. Informally an incidence matrix shows the frequency

that a letter occurs in a word under the first iteration of its substitution

map. The matrices Mϕ and A also serve to define the hyperbolic toral

automorphisms Fϕ (1.8) and C (1.10) respectively. These maps play a

significant role throughout this thesis.

Mandelbrot gives an example tiling in [34] using Gosper islands derived

from a hexagon to cover the plane with self-similar tiles. He comments

that most tiles cannot be subdivided into equal tiles similar to the whole

but that some fractal tiles allow subdivision into different number of

parts. The Rauzy fractal is an example of the latter type since the

central tile subdivides into three self-similar tiles with a scale factor of

|α| ≈ | − 0.4 + 0.6i|. In contrast, our work continues by concentrating on

one-dimensional tilings (Def. 1.40) and in particular one-dimensional

substitution tilings which are aperiodic (Def. 2.12), loosely meaning

that the tiling has no translational symmetry.

Chapter 2. The circle dynamics described here involve a Denjoy map Dα

(2.2) which is a non-transititve C1 orientation-preserving diffeomorphism

of the circle with an irrational rotation number lying in the unit interval.

This map is the consequence of a construction often referred to in texts

as the ‘Denjoy example’ [14] [32]. The construction yields a set Cα and

by the topological conjugacy of (Cα, Dα�Cα ) to (Σα, S) (Theorem 2.11)

we prove that Cα and the Sturmian subshift Σα are minimal and indeed

Cantor sets (Remark 2.24). The Denjoy minimal set Cα plays a key role

in the next and future chapters.

Chapter 3. Informally a suspension (Def. 3.2) construction turns a map into

a flow. By this process we embed the Denjoy map and hence its mini-

15



mal map in a torus which crucially leads to a Denjoy continuum Dα

(Def. 3.9). We prove that the suspension of a symbolic full shift space

AZ and a full tiling space TP support flows which are topologically

conjugate (Prop. 3.15). We supply an illustrated Example 3.16 of these

flows.

Chapter 4. The Plykin attractor formulated in detail in §5.2 requires some

knowledge of a branched covering (Def. 4.1) so we describe such a struc-

ture in this chapter. In particular we consider a genus 2 surface T2]T2 as

a 2-fold branched covering of a torus T2. The space T2]T2 is given both

a combinatorial representation in the plane and a Euclidean14 represen-

tation in R3. Then we compare a covering flow (Prop. 4.11) on T2]T2

projected to a linear flow on T2, with supporting diagrams.

Chapter 5. Smale states in Theorem (3.3) of [51] that an Anosov diffeo-

morphism (Def. 5.3) of a compact manifold M is structurally stable

(Def. 5.1). His horseshoe map with infinitely many periodic orbits is

also structurally stable. The Smale solenoid is another example of a

structurally stable attractor but is defined in a solid torus. The term

solenoid is applied to a large class of spaces described as an inverse

limit (Def. 6.3) with which we will have many dealings. In the 1950s,

Williams gave the first example of an expansive homeomorphism on a

compact connected metric space, that is the shift on the dyadic solenoid

Σ2. These ideas have strong links to the development of our work which

begins in this chapter with the construction of a DA diffeomorphism

(Def. 5.6) and its DA attractor (Def. 5.7). The DA attractor Λ is home-

omorphic to Dα (Remark 5.9). Then by realising the sphere as a quotient

of the torus we describe the Plykin attractor ΛΠ and its projection ΛP

in the plane.

14Euclid of Alexandria (c. 325 BC - 265 BC) Greek mathematician.
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Chapter 6. Theorem 6.20 : The attractor Λ ⊆ T2 is homeomorphic to the

tiling space Tγ ⊆ T2.

Theorem 6.32 : The lifted Plykin attractor Λ̃P ⊆ T2 is homeomorphic to

the tiling space Tω2 ⊆ T2.

These two theorems arise in part from the coordination of several con-

structs from dynamical systems begun in the 1998 paper [3] of Anderson

and Putnam. They showed that a substitution tiling homeomorphism is

topologically conjugate to the shift on an inverse limit, deemed equiv-

alent to one of Williams’ generalised solenoids of [52], and that for a

one-dimensional space the underlying structure is that of a branched

1-manifold (Def. 6.9). In order to differentiate between two different

styles of representation of a branched 1-manifold, we call our first exam-

ple a complex (Def. 6.2) Kγ after Barge and Diamond in their paper [8].

Then by comparison we call the branched 1-manifold M0, derived from

a Markov partition (Def. 6.8), a θ-space as given in [48]. By using

a Williams’ construction which he explains in [54] we show that both

our spaces reduce to an equivalent elementary branched 1-manifold

(Def. 6.11), called a rose in the vocabulary of Barge and Diamond [7].

From the rose we extract equivalent proper substitutions (Def. 6.15)

leading to Theorem 6.20, stated above.

The branched 1-manifold M∗ in §6.2 represents the Plykin attractor

which is non-orientable so cannot be homeomorphic to a substitution

tiling space. But by using Yi’s algorithm described in [57] we construct

an orientable double cover representation M̃∗. Then by using the self-

map on M̃∗ and combinatorics we are able to identify five distinct first

returns to a branch point in M̃∗ nominated as the origin. The solenoid

Σ̃∗ associated to M̃∗, the suspension Wc of the first return map and the

solenoid Ω associated to the rose K∗ are mutually homeomorphic spaces

17



(Remark 6.29). The consequence of this together with the construction

of a proper substitution yield Theorem 6.32, stated above.

We feel it pertinent to paraphrase here Robinson’s comment in [48] that

in 1974 Plykin proved that if a hyperbolic attractor Λ in the plane with

an attracting region N is not just a periodic orbit, then N must have at

least three holes removed; but on the surface of a sphere four holes need

to be removed. The latter describes our situation.

Chapter 7. On page 124 we define set B which consists of the 4 special

points in the torus which serve as a repelling set for the attractors with

four fundamental domains. We prepare the classification criteria which

evolve from the defining matrix M of a hyperbolic toral automorphism F

(Def. 7.1). In particular M ∈ GL(2,Z), the general linear group, where

M has non-negative entries and so by the Perron15-Frobenius16 Theorem

(see for example Theorem 1.9.11 in [32]), M has a largest positive simple

PF eigenvalue λ with an eigenvector vu of strictly positive components.

In our context vu is expanding and its slope α is a quadratic irrational.

We consider two subgroups of GL(2,Z), namely G ∼= Z ⊕ Z2 (Theorem

7.6) and the quotient group M ∼= GL(2,Z/2Z) which partitions GL(2,Z)

into six matrix types (Def. 7.11) according to the parity of the matrix

entries (Theorem 7.13). Then through commentary, supporting diagrams

and tables of data we develop our construction method for building a

toral attractor (Lemma 7.20) and its homeomorphic tiling space (Lemma

7.31). The algorithm on page 144 summarises this original method.

Chapter 8. This chapter describes our main results for a classification of

attractors and tiling spaces. The continued fraction expansion

of the slope α distinguishes homeomorphic attractors (Theorem 8.4).

15Oskar Perron (1880 - 1975) German mathematician.
16Ferdinand Georg Frobenius (1849 - 1917) German mathematician.

18



The isotopy class (Def. 8.6) of an attractor’s self-homeomorphism cor-

responds to an element of Z⊕Z2 (Corollary 8.7). Determined by matrix

type, the permutation groups arising from the repelling set are found

to be isomorphic to subgroups of S4 (Lemma 8.11) whilst the ‘sym-

metries’ of the asymptotic path-components of the attractors produce

groups which are isomorphic to subgroups of a regular tetrahedron or of

a square (Theorems 8.15 and 8.18). Companion classifications are given

for a substitution tiling space (Theorems 8.19 and 8.24). The chapter

closes by classifying specific spaces which have already been discussed in

the document.

Chapter 9. In this concluding chapter we interpret significant features of our

research and suggest three further lines of enquiry which would be inter-

esting to pursue. The construction of the attractors can be summarised by

the algorithm to which we refer and which is listed precisely on page 144.

We note that no arithmetical computation is required other than finding

the images of the Markov partition under the linear transformation M .

The remaining operations are combinatorial in nature. With regard to

classification, the matrix M persists in importance in that it determines

the group structure of our spaces up to isomorphism and the slope of the

matrix eigenvector classifies the spaces up to homeomorphism.

The research in this thesis has concentrated on attractors emanating from

set B consisting of four special points in the torus. Thus we feel it would

be of interest to question what happens if we choose a different set of

four points in the torus. Also, since our planar attractors can be lifted to

the torus it would be of interest to see if we have accounted for all such

attractors and if not, what lifts are possible. These questions are listed as

1. and 2. respectively. Question 3. raises the issue of Hausdorff dimension

and whether this property could be exploited to classify attractors.
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Chapter 1

Symbolic dynamics

This chapter introduces the notion of symbolic dynamics and coding. These

serve to model an abstract dynamical system such as sequences in a shift space

or a more concrete system such as tilings in a one-dimensional substitution tiling

space whereas the digits of a radix β-expansion contribute to the plotting of

the Rauzy fractal in the plane. The letters in a symbolic alphabet may or may

not have numerical significance.

Throughout the document, N is the set of positive integers and N0 = N ∪ {0}.

The definitions in §1.1 are adapted from [11], [14], [23] and [35].

1.1 Shift spaces

Definition 1.1. Over a finite alphabet A = {a1, . . . , an} let the full two-sided

shift space be AZ = {(ui)i∈Z |ui ∈ A, ∀ i ∈ Z}, endowed with the shift map S

(1.1).

Definition 1.2. Over a finite alphabet A = {a1, . . . , an} let the full one-sided

shift space be AN0 = {(ui)i∈N0 |ui ∈ A,∀ i ∈ N0}, endowed with the shift map

S (1.1).
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For a one-sided or two-sided sequence u = (ui), let a shift map be defined by

S : AZ → AZ, S((ui)) = (ui+1), ∀ i ∈ Z. (1.1)

The space (AZ, S) is a compact invertible dynamical system whereas the space

(AN0 , S) is non-invertible since for a one-sided sequence, the leftmost symbol

disappears under the shift and every point has n pre-images [14].

Let a metric on a shift space be defined by

d : AZ ×AZ → R, (1.2)

d(u, v) :=


2−k if u 6= v, k = inf{i ∈ N0, ui 6= vi or u−i 6= v−i},

0 if u = v.

The metric induces the product topology on AZ and AN0 . In the product

topology, periodic points are dense, and there are dense orbits. A closed shift-

invariant subset of a full shift is called a subshift. The closure of a subshift

X := {Sn((ui)i∈Z) |n ∈ Z} ⊆ AZ is periodic if ∃u = (ui) ∈ X and an integer

k such that X = {u, S(u), . . . , Sk(u) = u}. Otherwise it is aperiodic (almost-

periodic). Let a word be a finite sequence of letters from an alphabet A. Let F

be a collection of words over A which we call forbidden words. A shift of finite

type is a shift space X that can be described by some finite set F of forbidden

word(s). That is, no word belonging to F occurs in a sequence u ∈ X.

The content and definitions of §1.1.1 and §1.1.2 have been sourced predomi-

nantly from [11].

1.1.1 β-expansion

Let the floor and ceiling functions be floor(x) = bxc, the largest integer not

greater than x and ceiling(x) = dxe, the smallest integer not less than x.
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Definition 1.3. [11] Let β > 1 be a real number. A β-expansion of a real

number x ∈ [0, 1] is the sequence (xi)i≥1 with values in Aβ = {0, 1, . . . , dβe−1 =

m} produced by the β-transformation

Tβ : x 7→ βx (mod 1), ui = bβT i−1
β (x)c, ∀ i ≥ 1, so x =

∑
i≥1

uiβ
−i.

We denote the β-expansion of 1 by dβ(1) = (ti)i≥1.

Definition 1.4. A number β such that dβ(1) is ultimately periodic is called a

Parry1 number. If dβ(1) is finite then β is called a simple Parry number.

For a simple Parry number we omit the ending zeros when writing dβ(1).

Definition 1.5. [11] Suppose β is a Parry number. Let d∗β(1) = dβ(1) if dβ(1)

is infinite and d∗β(1) = (t1 . . . tn−1(tn − 1))∞ if dβ(1) = t1 . . . tn−1tn is finite

(tn 6= 0).

Definition 1.6. Let AN
β = {(ui)i∈N |ui ∈ Aβ, ∀i ∈ N} be endowed with a

one-sided β-shift S : AN
β → AN

β , S((ui)) = (ui+1), ∀i ∈ N.

It suits to let d̄ be a metric on AN
β similarly defined as in (1.2), but with

i ≥ 1. Now consider two sequences v and w with v 6= w. We say that v is

lexicographically less than w whenever for k ≥ 1, the first pair of non-matching

digits has index k such that vk <lex wk.

Definition 1.7. Let Uβ = {(ui)i∈N |ui ∈ Aβ | ∀k ≥ 1, (ui)i≥k <lex d
∗
β(1)} be the

shift invariant set of β-expansions.

Definition 1.8. Let Uβ = {(ui) ∈ AN
β | ∀k ≥ 1, (ui)i≥k ≤lex d

∗
β(1)} denote the

closure of Uβ.

1William (Bill) Parry, FRS (1934 - 2006) British mathematician.
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Proposition 1.9. (yi)i≥1 ∈ Uβ ⇔ ∀j ∈ N, (yi)i≥j ≤lex d
∗
β(1).

Proof. Let (yi) ∈ Uβ then ∃ ∀n ∈ N a point (xni ) ∈ Uβ such that d̄((yi), (x
n
i )) <

1
2n

. If for k ∈ N, (yi)i≥k ≤lex d
∗
β(1) is false then (yi)i≥k >lex d

∗
β(1). Let us write

d∗β(1) = (ti)i≥1. For j ≥ k, let n be the first index j such that yk+n 6= t1+n then

yk+n > t1+n, and yk+j = t1+j for 0 ≤ j < n. But d̄((yi), (x
n
i )) < 1

2n
⇒ yi = xi

for i = 1, . . . , n giving xni = t1+n for 1 ≤ i < k + n. This leads to the

contradiction (xni )i≥k >lex d
∗
β(1). Thus (yi)i≥k 6>lex d

∗
β(1), (yi)i≥k ≤lex d

∗
β(1).

Conversely, suppose (yi)i≥j ≤lex d∗β(1). If ∀j ∈ N+, (yi)i≥j <lex d∗β(1), then

(yi)i≥j ∈ Uβ ⊂ Uβ by definition. Otherwise, y = y1y2 . . . yj−1t1t2 . . . and for

k < j, (yi)i≥k <lex d
∗
β(1). For m ∈ N, let (xmi ) = y1y2 . . . yj−1t1t2 . . . tm0 . . . then

for n ≥ m,Sn(xmi ) = 0 . . .. But ti ≥ 1 for at least one i = q > m since (ti) does

not have a tail of zeros. Therefore Sn(xmi )i≥q <lex (ti) = d∗β(1)⇒ Sn(xmi ) ∈ Uβ.

Since Uβ is shift-invariant ⇒ (xmi ) ∈ Uβ, ∀m ∈ N.

Definition 1.10. [11] An algebraic integer β > 1 is a Pisot2-Vijayaraghavan3,

or Pisot number, if all its algebraic conjugates α satisfy |α| < 1.

In homage to the Fibonacci4 polynomial X2 −X − 1, the so called Tribonacci

polynomial X3−X2−X−1 is the characteristic polynomial of its real root β ≈

1.8 > 1 whose complex conjugate roots α and α both have modulus less than 1.

This classifies β as a Pisot number, which is also a Parry number. Furthermore,

1 = 1/β + 1/β2 + 1/β3 so dβ(1) = 111 and d∗β(1) = (110)∞. So let Uβ be a

subshift over the alphabet Aβ = {0, 1} then let L := {(ui)i∈N |ui ∈ {0, 1} | ∀k ≥

1, (ui)i≥k <lex d
∗
β(1)} and T := {(ui)i∈N | ∀i ∈ N, ui ∈ {0, 1}, uiui+1ui+2 = 0}.

2Charles Pisot (1910 - 1984) French mathematician.
3Tirukkannapuram Vijayaraghavan (1902 - 1955) Indian mathematician.
4Leonardo Pisano (1170 - 1250) Italian mathematician.
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Proposition 1.11. The sets T and L are equivalent descriptions for Uβ.

Proof. Suppose (ui) ∈ L. Assume (ui) /∈ T so ∃ k0 ∈ N such that

uk0uk0+1uk0+2 = 1. By hypothesis, (ui) ∈ L so (ui)i≥k0 ≤lex (ti) = (110110). So

(uk0uk0+1uk0+2uk0+3 . . .) = (111uk0+3 . . .) ≤lex (110110), which is false. There-

fore (ui) ∈ T ⇒ L ⊂ T . Conversely, let (ui) ∈ T . Suppose ∃ k ∈ N such

that (ui)i≥k >
lex (110110). Let l = min{j ≥ k|uj 6= tl−k+2}. By hypothesis,

(ui)i≥k >
lex (110110)⇒ ul > tl−k+1. Thus ul = 1 and tl−k+1 = 0⇒ l− k + 1 ≥

3⇒ l ≥ k+ 2. So ul−1ul−2 = tl−ktl−k−1 = 11 giving ul = ul−1 = ul−2 = 1. This

contradicts (ui) ∈ T . Thus (ui)i≥k ≤lex (ti) = (110110) and T ⊂ L. Therefore

L = T and the two descriptions for Uβ are equivalent.

Remark 1.12. Uβ is a subshift of finite type with forbidden word F = {111}

when β is the Pisot root of the Tribonacci polynomial.

1.1.2 The Rauzy fractal

The Rauzy fractal is introduced in his paper [47].

Definition 1.13. The Tribonacci polynomial has a real root β > 1. Let α

be one of the two complex conjugate roots, |α| < 1. Then the Rauzy fractal

(central tile) is a compact subset of C defined by

Tβ =
{∑

i≥0

uiα
i | ∀i ∈ N0, ui ∈ {0, 1} | uiui+1ui+2 = 0

}
.

Define a set A := {(ui) ∈ {0, 1}N0 | ∀i ∈ N0, uiui+1ui+2 = 0} which is compact

since A ⊂ AN0 . Let the β-shift map be S : {0, 1}N0 → {0, 1}N0 , (ui) 7→ (ui+1),

∀i ≥ 0 then define B := {Sn((ui)i∈N0) |n ∈ N0} ⊆ A which is dense in A. Let

a continuous plot function be defined for fixed α ∈ C, |α| < 1, by

f : A→ Tβ, f((ui)) =
∑
i≥0

uiα
i. (1.3)
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Figure 1.1: The Rauzy fractal, Tβ.

For n = 0, . . . , k− 1 and α ≈ −0.4 + 0.6i, f
(
Sn((ui)i∈N0)

)
generates the Rauzy

fractal of Figure 1.1. This shows the division of the central tile into its three

coloured basic tiles according to the first three digits of the sequence (ui).

That is, f(u0u1u2) generates f(011) = 0 + α + α2 which leads to Tβ(1) (blue);

f(101) = 1 + 0 + α2 which leads to Tβ(2) (red); and f(110) = 1 + α+ 0 which

leads to Tβ(3) (green). Applying f with respect to the conjugate root α reflects

the plotted image in the horizontal axis.

Note. We used [55] to plot Tβ. To avoid a null output from our Mathematica

program for terms with large i in f , we modified the plot function to read

f ∗((uj)) =
∑19

j=0 uj α
j, where j = i (mod 20), i ≥ 0. This led to a map

f ∗(Sm((uj))), for m = 0, . . . , k−1 where k = |ui|
20

. This was a sufficient number

of terms to produce the fractal image of Figure 1.1.
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The central tile as attractor

As seen in Figure 1.1, Tβ = Tβ(1) ∪ Tβ(2) ∪ Tβ(3), where the basic tiles are

determined by the leading digits in the β-expansion. If we now consider the

central tile as an attractor with contracting scale factor |α| < 1 (Def. 1.14)

then we have the following computations by using the images of the function

f found above:

α
(
(0 +α+α2) + (1 + 0 +α2) + (1 +α+ 0)

)
gives the terms {0, α, α2, α3} where

the first three terms correspond to Tβ(1);

1 + α(0 + α + α2) gives the terms {1, 0, α2, α3} where the first three terms

correspond to Tβ(2);

1 + α(1 + 0 + α2) gives the terms {1, α, 0, α3} where the first three terms

correspond to Tβ(3).

It follows from these results that


Tβ(1) = α(Tβ(1) ∪ Tβ(2) ∪ Tβ(3)),

Tβ(2) = α(Tβ(1)) + 1,

Tβ(3) = α(Tβ(2)) + 1.

This suggests that we can define a family of contracting similarities {Λ1,Λ2}

called an iterated function system (IFS) as follows:

Definition 1.14. For z ∈ Tβ =
⋃3
n=1 Tβ(n) and |α| < 1 let

Λ1,Λ2 : R2 → R2, Λ1(z) = αz, Λ2(z) = αz + 1.

Then Λ1(z) = z′ ∈ Tβ(1) and Λ2(z) =


z′ ∈ Tβ(2) if z ∈ Tβ(1),

z′ ∈ Tβ(3) if z ∈ Tβ(2).
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Proposition 1.15. The set Tβ is the unique attractor of the IFS {Λ1,Λ2}.

Proof. By Definition 1.14, Tβ =
⋃2
i=1 Λi(Tβ) so Tβ is invariant under {Λ1,Λ2}.

Now Tβ is a non-empty compact subset of R2 and each similarity Λ1,Λ2 has a

contraction ratio of |α| < 1 on R2. Thus, by the uniqueness of the invariant

set, Tβ is the unique attractor for the IFS (see for example Theorem 9.1 in

[21]).

The definitions in §1.1.3 and §1.1.4 follow those of chapter 6 in [23].

1.1.3 The Sturmian family

Definition 1.16. Let u be a sequence over a finite alphabet then the complexity

function of u is pu(n) which, to each n ∈ N, associates the number of distinct

words of length n that occur in u.

Definition 1.17. [23] A sequence is called Sturmian if pu(n) = n+ 1.

Definition 1.18. Let the set of one-sided Sturmian sequences be

Σ+ = {(ui)i∈N0 | ui ∈ {0, 1}, ∀ i ∈ N0}

and the set of bi-infinite Sturmian sequences be

Σ = {(ui)i∈Z | ui ∈ {0, 1},∀ i ∈ Z}.

Definition 1.19. A Sturmian sequence is of type 0 if 1 is isolated so that 11

does not occur in any word. A type 1 sequence is one in which 0 is isolated.

Remark 1.20. Denote the length of a finite word u by |u| and the number

of times letter a ∈ A appears in u as |u|a. Define the frequency of the letter

1 occurring in the positive semi-orbit of u ∈ Σα as the limit of |u0u1...un−1|1
n
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as n tends to infinity. Since Sturmian sequences are balanced, that is ||v|1 −

|w|1| ≤ 1 for subwords v, w of equal length in u, then limn→∞
|u0u1...un−1|1

n
=

limn→∞
|u−n+1...u−1u0|1

n
, this limit being well defined and irrational (see for exam-

ple Prop. 6.1.10 in [23]). Call this limit α.

Definition 1.21. Denote the orbit closure of (ui) ∈ Σ under the shift map as

Σα = {Sn((ui)i∈Z) | n ∈ Z}.

Proposition 1.22. The closure Σα is invariant under the shift map S.

Proof. Let (ui)i∈Z, uiui+1 6= 11,∀i ∈ Z, be a type 0 sequence in Σ. Let (wi)i∈Z =

S((ui)i∈Z) then ∀i ∈ Z, (wi) = (ui+1) ⇒ wiwi+1 6= 11 so (wi) is of type 0 and

(wi) ∈ Σ since (ui+1) ∈ Σ. Similarly, if uiui+1 6= 00,∀i ∈ Z, then (ui) is a type

1 sequence in Σ and then so too is (wi) ∈ Σ. It is known that the closure of a

shift-invariant set is also shift-invariant. Thus S(Σα) ⊆ Σα.

The invertible Sturmian dynamical system (Σα, S) ⊆ (AZ, S).

1.1.4 Rotating sequences

For α ∈ [0, 1]−Q let an anticlockwise rotation of the circle be defined by

Rα : R/Z→ R/Z, Rα([x]) = [x+ α], (1.4)

where [·] denotes modulo 1. For all [x] ∈ R/Z and irrational α, the orbit

{Rn
α([x]) | n ∈ Z} is dense in R/Z. With slight abuse of terminology, let a

partition of R/Z be given by P := {[0, α], [α, 1]} = {J0, J1}, with respect to

limit α (Remark 1.20).

Definition 1.23. The coding κ, relative to P, is defined over the union of two

sets:
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1. For [x] ∈ R/Z− {Rn
α([0]) | n ∈ Z}, κ([x]) = (xn)n∈Z ∈ {0, 1}Z, where

∀n ∈ Z, xn =


0 if Rn

α([x]) ∈ J0,

1 if Rn
α([x]) ∈ J1.

2. For [x] ∈ {Rn
α([0]) | n ∈ Z},

(i) if Rn
α([0]) ∈ (J0 ∪ J1) \ (J0 ∩ J1) then code as in 1, otherwise

(ii) when Rn
α([0]) ∈ J0 ∩ J1 assign two codes to each point of intersection

as follows:

for some n ∈ Z, at [0] set xan = 1 and xbn = 0 and then at [α] set xan+1 = 0

and xbn+1 = 1. Denote the resulting coded sequences as κ([x]a) = (xan)n∈Z

and κ([x]b) = (xbn)n∈Z where (xan)n∈Z, (x
b
n)n∈Z ∈ {0, 1}Z.

For all [x] in the orbit {Rn([0]) | n ∈ Z}, if Rn([x]) ∈ (J0 ∪ J1) \ (J0 ∩ J1) then

the code assigned to xn is unique. However each [x] carries two positions of am-

biguity in the coding of its itinerary, namely when its orbit lands consecutively

on the common endpoints J0∩J1 = [0] and J0∩J1 = [α] in either order. At this

time, to each position, we assign two codes such that the sequence complies

with existing constraints. This event happens when ∃n ≥ 0 in the positive

semi-orbit with Rn
α([x]) = [0] ⇒ Rn+1

α ([x]) = [α] and when in the negative

semi-orbit ∃n < 0 with Rn
α([x]) = [α] ⇒ Rn−1

α ([x]) = [0]. Significantly, the

coding of an orbit {Rn
α([x])} generates a rotation sequence, defined below.

Example 1.24. Coding the orbit {Rn
α([0])} = {. . . , [x]−1, [0], [α], [x]2, . . .} by

κ gives (xan) = . . . 0 · 100 . . . and (xbn) = . . . 0 · 010 . . ., as seen in Figure 1.2.

Denote the integer part of x by its floor bxc := sup{n ∈ Z | n ≤ x}.

Definition 1.25. A rotation sequence is a sequence u with α ∈ [0, 1]−Q and

ι ∈ R such that un = b(n + 1)α + ιc − bnα + ιc, ∀n ∈ Z. We call α the angle

of the rotation sequence and ι the initial point.
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Figure 1.2: Coded rotations.

Proposition 1.26. A rotation sequence (un)n∈Z is such that un ∈ {0, 1},∀n ∈

Z.

Proof. Consider

un = b(n+ 1)α + ιc − bnα + ιc

= sup{p ∈ Z | p ≤ (n+ 1)α + ι} − sup{q ∈ Z | q ≤ nα + ι}

⇒ |p− q| ≤ (n+ 1)α + ι− (nα + ι) ≤ α

⇒ |p− q| ∈ {0, 1}.

Given α ∈ [0, 1] − Q, let the set of α-rotation sequences be defined by Rα :=

{(un)n∈Z | un = b(n+ 1)α+ ιc− bnα+ ιc, ∀n ∈ Z, ι ∈ R}. Then define a map

ρα : Rα → Rα, ρα((un)) = (un+1),∀n ∈ Z. (1.5)

Definition 1.27. Let Rα = {ρkα((un)n∈Z) | k ∈ Z} denote the orbit closure of

(un)n∈Z ∈ Rα.
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Then (Rα, ρα) ⊆ AZ over alphabet A = {0, 1}. The construction of coding

κ shares the properties of a Sturmian sequence. Since parameter α describes

the frequency of a letter in a sequence v ∈ Σα, the partition P will determine

the type of Sturmian sequence generated by the orbit of a point [x] ∈ R/Z

under a rotation Rα. It follows that when length l(J1) < l(J0) or l(J1) > l(J0)

the Sturmian will be a type 0 or type 1 sequence respectively. The connection

between a rotation sequence and a Sturmian shift sequence is made explicit in

the following theorem.

Theorem 1.28. For u ∈ Rα, with fixed α ∈ [0, 1] − Q, there exists v ∈ Σα

such that u = v.

We give a proof that a rotation sequence is a Sturmian sequence. For a proof

of the converse, see for example Theorem 6.4.22 in [23].

Proof. Consider a sequence (xn)n∈N0 obtained from the coding κ in following

the positive semi-orbit of Rn
α([0]), n ≥ 0. Partitioning of the circle into two

intervals J0 and J1 imposes a cardinality of two on an alphabet A, let it be

{0, 1}. The letter xn ∈ A identifies which interval contains Rn
α([0]); or knowing

which interval Rn
α([0]) belongs to determines the letter xn. However, when

Rn
α([0]) ∈ J0 ∩ J1, xn is an arbitrary letter belonging to A. Now the first n

letters of the sequence gives the itinerary of [0] for its first n iterates under the

rotation. Similarly, for any subword w of length m in (xn), its letters will give

the position of each iterate m of w with respect to partition P . Observe that

the first iteration Rα([0]) divides the circle into two subintervals and yields two

choices for a subword of length one x0 = 0 or x0 = 1. The second iteration

R2
α([0]) divides the circle into three subintervals and yields three choices which

are, depending on the value of α, a subword of length two x0x1 = 00 or 01 or

10 alternatively the three choices are x0x1 = 11 or 10 or 01. That is, after n

iterations Rn
α([0]) divides the circle into n+1 subintervals yielding n+1 choices
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for a subword of length n. This means that there can be no more than n + 1

different words of length n in the coding of a semi-orbit under Rn
α. Iterating

along the negative semi-orbit will likewise produce a subword of length |n| for

n < 0 in Rn
α([0]). Thus over the whole orbit of Rn

α([0]), κ will code a maximum

of n + 1 unique words of length n. That is, for a bi-infinite rotation sequence

x = (xi)i∈Z ∈ Rα it has complexity px(n) = n + 1, n ∈ N, over an alphabet of

two symbols. Hence by definition x is Sturmian.

Definition 1.29. [14] Let f : X → X and g : Y → Y be topological dynamical

systems. A topological semi-conjugacy from g to f is a surjective continuous

map h : Y → X such that f ◦ h = h ◦ g. If h is a homeomorphism, it is called

a topological conjugacy and f and g are said to be topologically conjugate.

Remark 1.30. A topological conjugacy follows from Theorem 1.28. That is

(Rα, ρα) ∼= (Σα, S).

The content and definitions in §1.2 and §1.3 are adapted from [7] and the books

[23], [50].

1.2 Substitutions

Definition 1.31. With a finite alphabet A = {a1, . . . , an} and A∗ = {non-

empty set of finite words over A} define a substitution map σ : A → A∗ where

to each a ∈ A, σ(a) ∈ A∗.

The map extends naturally to σ : A∗ → A∗ and σ(u v) = σ(u)σ(v) for

u, v ∈ A∗ which extends to bi-infinite words AZ by concatenation. Namely, for

{wi}i∈Z ⊆ A∗, σ(· · ·w−2w−1. w0w1 · · · ) = · · ·σ(w−2)σ(w−1). σ(w0)σ(w1) · · · .

Endowed with the metric (1.2), (A∗ ∪ AZ, d) is a metric space.

Definition 1.32. A substitution σ is irreducible if for any a, b ∈ A there is

n(a, b) ∈ N such that σn(a,b)(a) contains b.
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Definition 1.33. A substitution σ is primitive if ∃n ∈ N such that for every

a, b ∈ A the letter a occurs in σn(b).

Denote the length of a finite word u by |u| and the number of times letter a ∈ A

appears in u as |u|a.

Definition 1.34. An n × n incidence matrix Mσ associated with substitution

σ with card(A) = n is given by

a, b ∈ A, [Mσ]a,b = |σ(b)|a.

Definition 1.35. An n × n matrix M is irreducible if for each i, j ∃ k =

k(i, j) > 0 such that [Mk]i,j > 0, where [Mk]i,j denotes the (i, j)th entry of the

kth power of M .

Definition 1.36. An n × n matrix M is aperiodic if ∃ k > 0 such that

∀ i, j, [Mk]i,j > 0.

Matrices which are both irreducible and aperiodic are primitive. A substitution

is primitive if its incidence matrix is primitive. Primitivity ensures that there

exists a periodic point (ai)i≥0 ∈ AN0 such that σn((ai)) = (ai)i≥0 is fixed for

some iterate n ∈ N and similarly in AZ there exists a bi-infinite periodic point

(ai)i∈Z ∈ AZ such that σm((ai)) = (ai)i∈Z is fixed for some iterate m ∈ N.

Further, if σ(a) = a . . . and |σn(a)| → ∞ as n→∞ then σ∞(a) is a fixed point

of σ.

Let the Tribonacci substitution be defined over A = {0, 1, 2} by

τ : A → A∗, 0 7→ 01, 1 7→ 02, 2 7→ 0. (1.6)

Under its forward semi-orbit τ∞(0) is the unique fixed point of the primitive

substitution τ . Since τ is defined over a three letter alphabet it cannot be

Sturmian.
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Definition 1.37. A substitution σ is Sturmian if the image by σ of any Stur-

mian sequence is a Sturmian sequence.

Let the Fibonacci substitution be defined over A = {0, 1} by

ϕ : A → A∗, 0 7→ 01, 1 7→ 0. (1.7)

Proposition 1.38. The Fibonacci substitution ϕ is Sturmian.

Proof. The substitution is defined over a two letter alphabet. The words

ϕ(01) = 010 and ϕ(10) = 001 are of equal length and differ only in their second

and third indices, with 10 replaced by 01. Conversely, let v = v0 . . . vj ∈ A∗,

j ∈ N, and suppose that words u,w ∈ A∗ are such that |u| = |w| where for

i ∈ N, i > j, u = vuiui+1 = v10 and w = vwiwi+1 = v01. Then the pre-image

vj = ui−1 = 0 = wi−1 where 010 = ϕ(01) and 001 = ϕ(10). Thus ϕ is Sturmian

(Prop. 6.7.8 in [23]).

Let u be a one-sided Fibonnaci Sturmian sequence of type 0. Since ϕ(0) = 0 1

and the length |ϕn(0)| → ∞ as n → ∞ then u = ϕ∞(0) is the unique fixed

point of ϕ under its forward semi-orbit. Its two pre-images 01.u and 10.u are

fixed points of period 2 of the substitution.

Denote the incidence matrix of the Fibonacci substitution ϕ by Mϕ =

1 1

1 0

.

The determinant det(Mϕ) = −1 so ϕ is unimodular and orientation-reversing.

The Perron-Frobenius eigenvalue of Mϕ is the golden ratio µ = 1
2
(1 +

√
5)

with left eigenvector vu = [µ, 1] while µ̄ = 1
2
(1 −

√
5) = − 1

µ
with eigenvector

vs = [−1, µ]. Since µ > 1 is an algebraic integer with |µ̄| < 1, ϕ is a Pisot

type substitution. Furthermore, since neither eigenvalue has modulus 1, the

linear transformation Mϕ : R2 → R2 induces a hyperbolic toral automorphism

defined in (1.8).
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Define the torus T2 := R/Z×R/Z and let [̄··] denote an equivalence class in T2.

Fϕ : T2 → T2, Fϕ

 ¯x
y


 = Mϕ

x
y

. (1.8)

Let the Cat substitution be defined over A = {0, 1} by

γ : A → A∗, 0 7→ 010, 1 7→ 01. (1.9)

The substitution γ is also of Pisot type and is Sturmian since γ(0) = ϕ2(0) =

010 and γ(1) = ϕ2(1) = 01. Let the incidence matrix be A =

2 1

1 1

 = M2
ϕ,

det(A) = 1, PF eigenvalue µ2 = 1
2
(3 +

√
5) > 1, vu = [µ, 1] and 0 < µ−2 =

1
2
(3−

√
5) < 1, vs = [−1, µ]. Then A induces the Cat map defined by

C : T2 → T2, C

 ¯x
y


 = A

x
y

. (1.10)

1.3 One-dimensional tilings

Definition 1.39. A tile T ⊂ R is a closed interval.

Let a finite collection of prototiles be P = {P1, . . . , Pn}, n ∈ N.

Definition 1.40. A tiling T is made up of prototiles from P where T = {Ti}i∈Z

with ∪i∈ZTi = R and where each tile is a translate of some prototile P ∈ P

satisfying the following conditions: when i 6= j either Ti ∩ Tj = ∅ or otherwise

it is a point. Taking a natural ordering, we place Ti to the left of Tj when i < j

and let 0 ∈ T0 \ T1.

Definition 1.41. Let TP be the full tiling space of all possible tilings of R by

prototiles from the set P.
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Define the tiling metric by

d : TP × TP → R, (1.11)

d(T, T ′) := inf
(
{1} ∪ {ε > 0 | T + v and T ′ + v′ agree on B1/ε(0)

for some |v|, |v′| < ε/2}
)
,

where Br(0) is the open ball of radius r around the origin. We say that two

tilings are ‘ε-close’ if, after a small translation less than or equal to ε, the tilings

agree on a ball of radius r = 1/ε around the origin. The tiling topology induced

by d on TP is compact and metric. By the continuous R-action on a tiling T

define a flow

φ : R× TP → TP , φ(t, T ) = T − t. (1.12)

Definition 1.42. The orbit of a tiling T is the set O(T ) = {T − t | t ∈ R} of

translates of T .

Definition 1.43. A tiling space T of T ∈ TP is the orbit closure O(T ).

1.3.1 Substitution tilings

A substitution rule σ induces an inflation map on a tiling, characterised by

expansion and translation. Our description follows that of [7]. Take a primitive

substitution σ : A → A∗, where card(A) = j, matrix Mσ has a PF eigenvalue

λσ with left eigenvector vσ = [v1, . . . , vj]. Let a tiling T be made from a set of

prototiles P and let the length [0, vj] of each Pj ∈ P be equal to the entry

vj in vσ, that is |Pj| = vj. For aj ∈ A, if σ(aj) = aj1aj2 . . . ajn ∈ A∗ then

λσvj =
∑n

i=1 vji . So the length |λσPj| =
∑n

i=1 |Pji | and λσPj is tiled by {Ti}ni=1

where Ti = Pji +
∑i−1

k=1 vjk . This process of inflating, substituting and suitably

translating each Ti extends to the map (1.13) which takes a tiling T = {Ti}i∈Z

of R by prototiles to a new tiling T ′ = Fσ(T ) of R by prototiles.
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Definition 1.44. Define Tσ to be the substitution tiling space arising from a

substitution σ.

Then for w = w1 . . . wn ∈ A∗ and t ∈ R define the inflation and substitution

homeomorphism [7] by

Fσ : Tσ → Tσ, Pw+t = {Pw1 +t, Pw2 +t+|Pw1|, . . . , Pwn+t+Σi<n|Pwi |}. (1.13)

Then Fσ(Pi + t) = Pσ(i) + λσt and Fσ({Pki + ti}i∈Z) =
⋃
i∈Z(Pσ(ki) + λσti)

where Pk ∈P and i is the position of Pk in the tiling T . Let the inflation and

substitution homeomorphism of the Cat substitution (1.9) be defined by

Fγ : Tγ → Tγ, (1.14)

Fγ(0 + t) = Pγ(0) + µ2t

= P010 + µ2t

= {P0 + µ2t, P1 + µ2t+ |P0|, P0 + µ2t+ |P0|+ |P1|}

= {0 + µ2t,1 + µ2t+ µ,0 + µ2t+ µ+ 1},

Fγ(1 + t) = Pγ(1) + µ2t

= P01 + µ2t

= {P0 + µ2t, P1 + µ2t+ |P0|}

= {0 + µ2t,1 + µ2t+ µ}.

We return to the Cat substitution tiling in §6.1.1.
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Chapter 2

Circle dynamics

In this chapter we consider the Denjoy construction which is unique in that

it realises a non-transitive C1 orientation-preserving homeomorphism of the

circle without periodic points. The construction realises a cantor minimal set

Cα which we show is homeomorphic to a Sturmian shift space Σα and whose

maps are topologically conjugate (Theorem 2.11).

2.1 Disconnecting the circle

Ternary to binary

Consider the middle third Cantor set C :=
{∑∞

i=1
xi
3i
| ∀i ∈ N, xi ∈ {0, 2}

}
. Let

f : C → [0, 1], f(x) =
∞∑
i=1

xi/2

2i
∈ [0, 1]. (2.1)

The function f transforms a ternary sequence into a binary sequence. For ex-

ample, f(· · · 02 · · · ) = · · · 01 · · · and f(· · · 20 · · · ) = · · · 10 · · · and significantly

· · · 01 · · · = · · · 10 · · · . For 0 < x < 1, f is a two-to-one mapping but is one-to-

one on the extreme endpoints 0 and 1. In Figure 2.1 we see how f ‘closes up’

a deleted interval on level E1.
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Figure 2.1: f(E1).

2.1.1 The Denjoy map

Construction of the Denjoy homeomorphism (2.2). We follow in part

the descriptions given on pp 4-5 of §15 [37] and the proof of Theorem 7.2.3 in

[14]. Let S1 := R/Z and consider again the rotation (1.4) with a fixed α. Set

[x0] = [0] then insert at each point [nα] of Rn
α([0]) an interval In = [an, bn], of

length ln = bn−an, n ∈ Z. These lengths ln > 0 must satisfy
∑∞
−∞ ln ≤ 1 so to

simplify the construction, let us choose lengths ln > 0,
∑

n∈Z ln = 1 such that

ln is decreasing as n → ±∞. Since the inserted intervals take the same order

as that of the orbit {Rn
α([0]) |n ∈ Z} we have no choice about the order of the

orbit of any point but we do have a choice about the spacing between points

in the orbit. Additional constraints ensure that the intervals In are pairwise

disjoint and the details of these constraints can be read on page 162 of [14].

Now define the endpoints of the required intervals In = [an, bn] by

an =
∑

{k∈Z|Rkα([0])∈[0,Rnα([0])]}

lk, bn = an + ln.

Since
∑

n∈Z ln = 1, the union of these intervals covers a set of measure 1 in

[0, 1], and is therefore dense [14]. Denote this modified circle by Sα. Figure 2.2

is not to scale but (i) illustrates the idea of the construction while (ii) conveys

the formation of the set Cα which is defined later on page 43 (Def. 2.7). (The

intervals In are analogous to the interstices of the middle third Cantor set C.)
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b−1
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Sα

(i) inserted intervals

(ii) empty interiors

Figure 2.2: Modified circles.

Definition 2.1. A homeomorphism f : X → X is said to be topologically

transitive if there exists a point x ∈ X such that its orbit {fn(x) |n ∈ Z} is

dense in X.

The above construction equips Sα with a non-transitive orientation-preserving

homeomorphism of the circle without periodic points which we define as the

Denjoy map,

Dα : Sα → Sα, Dα(x) =


Rα(x) if x /∈ ∪n∈ZIn,

hn(x) if x ∈ In,
(2.2)

where for all n ∈ Z, hn : In → In+1 is an o-p homeomorphism.

Remark 2.2. If we want Dα to be a C1 diffeomorphism the lengths of the

intervals must be chosen so that lim|n|→∞l(In+1)/l(In) = 1. In addition each
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homeomorphism hn needs to be a diffeomorphism with derivative equal to +1

at the endpoints of an interval, with derivative converging uniformly to +1 as

|n| → ∞ (see [37] for details).

Quotient maps

Consider the intervals {In}n∈Z ⊂ Sα. Let an equivalence relation on Sα be

given by x ∼ y if x = y or x ∼ y ⇔ ∃n ∈ Z such that x, y ∈ In. Let x̃ denote

the ∼-class of x then define a quotient map

p : Sα → S̃α, p(x) = x̃, (2.3)

where S̃α := {In | n ∈ Z} ∪ {{x} | x ∈ Sα − ∪n∈ZIn} is the set of equivalence

classes which partition Sα. That is, S̃α is one-point sets {x̃} representing {In}

together with points of S1. Let q be defined piecewise by

q : Sα → R/Z, q(x) =


[x] if x /∈ ∪n∈ZIn,

Rn
α([0]) if x ∈ In, for some n ∈ Z.

(2.4)

Proposition 2.3. The map q is continuous.

Proof. The collection of classes of open intervals (a, b) ∈ R/Z is a basis for a

topology on R/Z. There are two cases to consider: (i) q(x) = [x] ∈ (a, b) such

that q−1((a, b)) 3 x, x /∈ ∪n∈ZIn. Now the complement of {Rn
α([0])} is dense

in R/Z so ∃ y ∈ q−1((a, b))∩ In with y 6= x and y 6= Rn
α([0]) for any n ∈ Z then

q−1((a, b)) is open in Sα; (ii) q(x) = Rn
α([0]) ∈ (a, b)⇒ q−1((a, b)) 3 x, x ∈ In0

for n0 ∈ Z. Then by the density of {Rn
α([0])}, ∃ y ∈ In0 such that x 6= y and

q−1((a, b)) ⊂ In0 is open in In0 . Thus by (i) and (ii), the pre-image of every

open basis element of R/Z is open in Sα. Hence q is continuous.
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Define a map by

r : S̃α → R/Z, r(x̃) =


[x] if x̃ /∈ ∪n∈ZIn,

Rn
α([0]) if x̃ = In, for some n ∈ Z.

(2.5)

Proposition 2.4. The quotient space S̃α is homeomorphic to R/Z via the

homeomorphism r : S̃α → R/Z.

Proof. The compact metric space Sα is mapped continuously onto the compact

metric space R/Z by q (Prop. 2.3). By the construction of (2.3), S̃α is a quotient

space of Sα. Let S̃α = {q−1([y]) | [y] ∈ R/Z} then S̃α is homeomorphic to R/Z

(see for example Theorem 3.21 in [39]). Thus r is a homeomorphism.

Remark 2.5.

Sα

p

��

q

!!C
CC

CC
CC

C

S̃α
r // R/Z

Since r is a homeomorphism it confirms that q is a quotient map and that the

maps commute r ◦ p = q (see for example Corollary 22.3 (a) in [38]).

Factor maps

Proposition 2.6. The two dynamical systems Dα : Sα → Sα and Rα : R/Z→

R/Z are semi-conjugate (Def. 1.29) and ∀x ∈ Sα, q ◦Dα(x) = Rα ◦ q(x).

Sα

q

��

Dα // Sα

q

��
R/Z Rα // R/Z

Proof. The map q is a continuous surjection. Now consider the composite

Rα ◦ q and take a point x /∈ ∪n∈ZIn then Rα ◦ q(x) = Rα([x]) = [x + α]
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whilst q ◦ Dα(x) = q(Rα(x)) = [x + α]. Next suppose point x ∈ In0 for some

n0 ∈ Z then Rα ◦ q(x) = Rα(Rn0
α ([0])) = Rn0+1

α ([0]). In the other direction, q ◦

Dα(x) = q◦hn0(x) = q(Rn0+1
α (0)) where Rn0+1

α (0) ∈ In0+1. Then q(Rn0+1
α (0)) =

Rn0+1
α ([0]). Thus the semi-conjugacy follows.

Definition 2.7. Let Cα = Sα −
⋃
n∈Z Int(In) be the Denjoy minimal set and

let the collection of endpoints of the intervals {In} be E = {{an, bn} | n ∈ Z}.

In §2.1.2 we show that Cα is a Cantor set but presently note that Cα contains

infinitely many points from the original circle S1 plus a collection E of two

element sets, where an endpoint of each set has a countably infinite orbit.

Furthermore, the closed set Cα ⊂ Sα so that Cα is compact and the map q is

continuous which implies that q(Cα) is compact and hence closed in R/Z. Now

let Dα�Cα be the restriction of Dα to Cα and define a homeomorphism,

Dα�Cα : Cα → Cα, Dα�Cα (x) =


Rα(x) if x /∈ {an, bn},

~n(x) otherwise,

(2.6)

where for all n ∈ Z, ~n : an → an+1 and bn → bn+1.

Proposition 2.8. The set Cα is invariant under Dα�Cα and thus Dα�Cα is

well-defined.

Proof. Let x ∈ Cα and let y = Dα�Cα (x). IfD−1
α�Cα

(y) /∈ {an, bn} thenDα�Cα (x) =

Rα(x) = y /∈ {an, bn}. However, if D−1
α�Cα

(y) ∈ {an, bn} ⇒ x = an or x = bn for

some n ∈ Z. Then ~n(an) = an+1 ⇒ y = an+1 or ~n(bn) = bn+1 ⇒ y = bn+1

where {an+1, bn+1} ⊂ E. Thus Dα�Cα (Cα) ⊆ Cα.

Recall the map (2.4) and let its restricted map be defined by

q�Cα : Sα�Cα → R/Z, q�Cα (x) =


[x] if x /∈ {an, bn},

Rn
α([0]) otherwise.

(2.7)
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Proposition 2.9. The map q�Cα semi-conjugates Dα�Cα to Rα and ∀x ∈ Cα,

q�Cα ◦Dα�Cα (x) = Rα ◦ q�Cα (x).

Sα�Cα
q�Cα

��

Dα�Cα // Sα�Cα
q�Cα
��

R/Z Rα // R/Z

Proof. The map Dα�Cα and the set Sα�Cα are respectively mere restrictions

of a predefined map and a set. As such, and by similar reasoning to the

proof of Proposition 2.6, ∀x ∈ Cα ⊂ Sα, q�Cα ◦ Dα�Cα (x) = Rα ◦ q�Cα (x).

We now show that q�Cα maps Cα onto R/Z. If y 6= Rn
α([0]) for any n ∈ Z then

q−1
�Cα

(y) = x ∈ Sα −
⋃
n∈Z Int(In)− E ⊂ Cα. But if y = Rn

α([0]) for some n ∈ Z

then q−1
�Cα

(y) = x = an or x = bn where {an, bn} ⊂ E. Thus ∀ y ∈ R/Z, ∃x ∈ Cα

such that q�Cα (x) = y. Hence q�Cα with domain Cα remains surjective.

Towards conjugacy

Loosely speaking the map Dα�Cα behaves like a rotation on the restricted circle

space Sα�Cα . We have seen that for points not in an interval, Dα�Cα rotates them

as ‘normal’. More particularly, for a pair of interval endpoints, Dα�Cα carries

their individual orbits around the circle in the manner of a rotation but, being a

pair, when they land on an ambiguous point of the circle partition, they pick up

the duplicate coding assigned by κ then continue on their separate itineraries.

Consequently, we may treat the orbit of an endpoint in Cα as mimicking the

shift orbit of a point in a Sturmian sequence: both systems iterate the two

specially coded points [0] and [α]. These ideas are made precise in Lemma 2.10

and Theorem 2.11.

Recall the initial point ι ∈ R of a rotation sequence (un)n∈Z ∈ Rα with map

(1.5). By the map (2.7) either q−1
�Cα

([ι]) = x /∈ {an, bn} or q−1
�Cα

([ι]) = x ∈

{an, bn}.
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Let a homeomorphism be defined by

q̄ : Cα → Rα, q̄(x) =



ι if x /∈ {an, bn},

otherwise

ιan if x = an,

ιbn if x = bn,

(2.8)

where we let ι, ιan , ιbn be the initial points of (un)n∈Z, (u
an
n )n∈Z, (u

bn
n )n∈Z ∈

{0, 1}Z respectively.

Lemma 2.10. The dynamical systems (Cα, Dα�Cα ) and (Rα, ρα) are topologi-

cally conjugate such that the maps commute q̄ ◦Dα�Cα = ρα ◦ q̄.

Cα

q̄
��

Dα�Cα // Cα

q̄
��

Rα

ρα //Rα

Proof. Firstly q̄ is a homeomorphism because

(i) surjection: this follows from q�Cα (Cα)� R/Z since q̄(Cα)→ Rα ⊆ R/Z.

(ii) injection : for x, y /∈ E, if q̄(x) = q̄(y) then ι = ι′ ⇒ x = y; for x, y ∈ E, if

q̄(x) = q̄(y) then q̄(an) = q̄(a′n) and q̄(bn) = q̄(b′n) since x and y are the chosen

representatives of their respective ∼-class of an ∼ bn and a′n ∼ b′n. But by

definition, q̄(an) = ιan and q̄(a′n) = ιa
′
n ⇒ ιan = ιa

′
n . Similarly, ιbn = ιb

′
n . Thus

x = y.

(iii) continuity: q̄ only reassigns each image point of q�Cα to have a particular

significance in its codomain, in other words q̄ identifies a unique point in R/Z

to be regarded as the initial point of a rotation sequence in Rα. As such q̄ is

still a quotient map and so is continuous. Both Cα and Rα are compact in a

metric space and thus (q̄)−1 is also continuous.
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Next consider commutativity: Let (un)n∈Z ∈ Rα. For x /∈ {an, bn}, ρα ◦ q̄(x) =

ρα(ι) = ρα(u0) = u1 while q̄ ◦ Dα�Cα (x) = q̄(Rα(x)) = q̄(x + α) = ι + α. But

b(n+ 1)α+ (ι+α)c− bnα+ (ι+α)c = b(n+ 2)α+ ιc− b(n+ 1)α+ ιc = un+1.

So if un = u0 ⇒ q̄ ◦Dα�Cα (x) = u1. For x ∈ {an, bn}, ρα ◦ q̄(x) = ρα(q̄(an)) =

ρα(ιan) = ρα(uan0 ) = uan1 , similarly ρα(q̄(bn)) = ubn1 . In the other direction we

have q̄ ◦ Dα�Cα (x) = q̄(~n(x)) where q̄(~n(an)) = q̄(an+1) = ιan+1 = uan1 and

similarly q̄(~n(bn)) = ubn1 . Hence q̄ conjugates the maps as shown.

The conjugacies (Rα, ρα) ∼= (Σα, S) (Remark 1.30) and (Cα, Dα�Cα ) ∼= (Rα, ρα)

(Lemma 2.10) yield the next theorem.

Theorem 2.11. The dynamical systems (Cα, Dα�Cα ) and (Σα, S) are topologi-

cally conjugate.

2.1.2 Minimal Cantor sets

We set out to prove that the Sturmian subshift Σα is minimal. With respect

to shift spaces, [35] writes that there are many equivalent characterisations of

minimality. For instance, a minimal shift contains no proper subshift; every

orbit is dense in a minimal shift; minimal shifts display almost-periodic be-

haviour. The route that we take is to prove that Cα is minimal and then by

conjugacy that Σα is minimal. This implies that any point in Σα will show

almost-periodic behaviour. We close the section with the conclusion that Σα

and Cα are both Cantor sets.

Definition 2.12. [26] A point x ∈ (X, d) is almost-periodic under a continuous

map f provided that to each ε > 0 there corresponds an N ∈ N with the

property that in every set of consecutive Ns there appears n ∈ Z such that

d(x, fn(x)) < ε.

An equivalent but alternative definition of almost-periodic appears on page 49.
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Definition 2.13. A homeomorphism f : X → X is minimal if the orbit of

every point x ∈ X is dense in X or equivalently, if f has no proper closed

invariant sets. A closed invariant set is minimal if it contains no proper closed

invariant subsets or equivalently, if it is the orbit closure of any of its points.

Lemma 2.14. Let X be a compact metric space and let f : X → X be a

continuous map. If x ∈ X is almost-periodic under f then the orbit closure

of x is minimal. Conversely, if X is minimal under f then each x ∈ X is

almost-periodic.

Proof. See for example Lemmas 3 and 4 in [26].

Corollary 2.15. A point [x] ∈ R/Z is almost-periodic under an irrational

rotation of the circle, Rα (1.4).

Proof. Each [x] ∈ R/Z has a dense orbit under Rα so by definition Rα is

minimal. Thus a point [x] ∈ R/Z is almost-periodic under Rα (Lemma 2.14).

In light of the following analysis, it is useful to recall Cα = Sα −
⋃
n∈Z Int(In);

E = {{an, bn} | n ∈ Z} the collection of endpoints of the intervals {In} ⊆ Sα;

the maps q (2.4), Dα�Cα (2.6) and q�Cα (2.7).

Lemma 2.16. For any interval I in Sα with I ∩ Cα 6= ∅, there exists an open

interval J ⊆ I in Sα such that q−1(q(J)) = J . (Fig. 2.3)

Proof. With aI < bI define I := (aI , bI) to be an interval in Sα such that

I∩Cα 6= ∅. Let x ∈ Cα and choose this point x to lie in I but where x /∈ {an, bn}.

This is possible since E is a countably infinite collection of sets which leaves

an uncountably infinite choice of points in Cα.

47



Sα R/Z

(
)

(
)

q

( )J = q−1(N)

[0]

xbI
aII

[x]

( )
[x]

) (

( )
Rmα ([0]) Rnα([0])

q(aI) q(bI)q(I)

( )
Ja Jb

( )( )N

Figure 2.3: A representation of Lemma 2.16.
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Let i : Cα ↪→ Sα be the inclusion map so q�Cα (x) = q ◦ i(x) = q(x). Then

mapping into R/Z gives q(aI) 6= q(x) and q(bI) 6= q(x) which means that

q(aI) 6= q(bI) because I∩Cα 6= ∅. That is, I is not a proper subset of any In, n ∈

Z, in Sα. Moreover, q preserves order so q(aI) < q(x) = [x] < q(bI) which splits

into two intervals ([q(aI), x]) and ([x, q(bI)]) where ([q(aI), q(bI)]) = [q(I)].

Now let these two non-empty open intervals in R/Z be Ja := ([q(aI), x]) and

Jb := ([x, q(bI)]). By the minimality of Rα, ∃m ∈ Z such that Rm
α ([0]) ∈ Ja and

∃n ∈ Z such that Rn
α([0]) ∈ Jb. Thus there exists an open interval containing

[x], call it N , such that N lies between the two aforesaid iterates [mα] and

[nα] and where this N ⊆ [q(I)]. Finally define J := q−1(N) then J ⊆ I and

q−1(q(J)) = J .
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Proposition 2.17. The set Cα is minimal.

Proof. Let I be an open interval such that I ∩Cα 6= ∅. We show that ∀x ∈ Cα,

the orbit {Dn
α�Cα

(x) |n ∈ Z} is dense in Cα. That is, for any x ∈ Cα, ∃n ∈ Z

such that Dn
α�Cα

(x) ∈ I. Next there exists a J belonging to a basis for Cα by

Lemma 2.16. Now for x ∈ Cα, either x /∈ {an, bn} ⇒ q�Cα (x) = [x] ∈ R/Z

or else x ∈ {an, bn} ⇒ q�Cα (x) = Rn
α([0]) for some n ∈ Z. In either case, by

the minimality of Rα, ∃n0 ∈ Z such that Rn0
α (q�Cα (x)) ∈ [q(J)] which is open

in R/Z. Now the semi-conjugacy of Proposition 2.9 gives q�Cα (Dn0
α�Cα

(x)) =

Rn0
α (q�Cα (x)) ⇒ q�Cα (Dn0

α�Cα
(x)) ∈ q�Cα (J) ⇒ Dn0

α�Cα
(x) ∈ q−1

�Cα
(q�Cα (J)) = J ⊆

I. Hence Cα is minimal.

Remark 2.18. The conjugacy (Cα, Dα�Cα ) ∼= (Σα, S) then implies that Σα is

minimal.

Remark 2.19. Since Σα is minimal, a point u ∈ (Σα, S) is almost-periodic

(Lemma 2.14).

Definition 2.12 may be expressed otherwise, by saying that a point x belonging

to a subshift X is almost-periodic if and only if every allowed finite subword of

x appears in x with bounded gaps (see for example [35]). We use this approach

to prove the next proposition.

A set A is perfect if A is closed and every point of A is a limit point of A.

Proposition 2.20. The Sturmian subshift Σα is perfect.

Proof. Let u = (ui)i∈Z ∈ Σα then u is almost-periodic but not periodic. Given

ε > 0, let 1/2k+1 < ε for k ∈ N0. By almost-periodicity let w = u−k . . . uk

appear again in u at position u−k+l . . . uk+l for some l 6= 0. Then d(Sl(u), u) ≤

1/2k+1 < ε. Now by shift invariance Sl(u) ∈ Σα with Sl(u) 6= u. So u is a limit

point of Σα and thus Σα is perfect.
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Definition 2.21. A totally disconnected space is a space X where for every

two points x1, x2 ∈ X there exist disjoint open sets O1, O2 ⊂ X, containing

x1, x2 respectively, whose union is X.

Proposition 2.22. The space AZ is totally disconnected.

Proof. Let AZ have a finite alphabet A of N distinct letters. Let D be a non-

empty subset of AZ with points (ui)i∈Z 6= (vi)i∈Z ∈ D and where uk 6= vk for

some k ∈ Z. So D contains more than one point. Let Ua = {(xi) |xk = a, a ∈

A} then
⋃N
n=1 Uan = AZ and Ua1 ∩Ua2 6= ∅ ⇔ a1 = a2. Now (ui) ∈ Ua1 ⇒ uk =

a1 and (vi) ∈ Ua2 ⇒ vk = a2, a1 6= a2. Further, Ua1 ∩D 6= ∅ and Ua2 ∩D 6= ∅

so Ua1 and Ua2 are pairwise disjoint in D. Thus D is disconnected. Since D

is arbitrary and the only connected subsets of AZ are points, AZ is totally

disconnected.

Remark 2.23. Since Σα ⊆ AZ = {0, 1}Z, Σα is totally disconnected.

Remark 2.24. Every perfect, totally disconnected, compact metric space is a

Cantor set (see for example Theorem A.1.38 in [28]). Thus Σα is a Cantor set

and by conjugacy so too is Cα.
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Chapter 3

Flows and suspensions

Following the construction of an orientable attractor which is homeomorphic

to a solenoid in §6.2, the proof of Proposition 6.24 appeals to the fact that a

solenoid and a suspension are homeomorphic spaces. This is one good reason

for explaining in this chapter the suspension construction and how it induces

a flow and a first return map. Additionally, in §3.3 by suspending the Denjoy

minimal map we realise a Denjoy continuum and in §3.4 we find a conjugacy

between the suspension flow of a full shift space and a tiling space (Prop. 3.15).

3.1 A toral linear flow

Let a metric on R2 be given by d′((x, y), (x0, y0)) := max{|x − x0|, |y − y0|}.

For (x0, y0) ∈ R2 and ε > 0 denote the set of open ε-balls centred at (x0, y0) as

Bε((x0, y0)) =
{

(x, y) ∈ R2 | d′
(
(x, y), (x0, y0)

)
< ε
}

. Now consider a covering

map p2 : R2 → R2/Z2, p2

(
Bε((x0, y0))

)
= Bε((x0, y0)) where Bε((x0, y0)) ={

(x, y) ∈ T2 | d∗
(
(x, y), (x0, y0)

)
< ε
}

. Then let a metric on T2 be

d∗
(
(x, y), (x0, y0)

)
:= min{d((u, v), (u0, v0)) | (u, v) ∈ (x, y), (u0, v0) ∈ (x0, y0)}.
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Fix α ∈ [0, 1]−Q and define a linear flow by

φα : R× T2 → T2, φα

t,
x
y


 = t

α
1

+

x
y

 =

x+ αt

y + t

. (3.1)

Proposition 3.1. The flow φtα is (i) continuous and (ii) well-defined.

Proof. (i) Given ε > 0 choose ε < 1/2 and take 0 < δ < ε. Let (u, v) ∈

(x, y) and (u0, v0) ∈ (x0, y0) then Bε(φ
t
α(u0, v0)) = Bε((u0 + αt, v0 + t)). Now

(φtα)−1
(
Bε((u0 +αt, v0 + t))

)
= Bε((u0 +αt, v0 + t))− (αt, t) = Bε((u0, v0)). But

this ε-ball contains someBδ((u0, v0)) such that φtα
(
Bδ((u0, v0))

)
= Bδ((u0, v0))+

(αt, t) = Bδ((u0 + αt, v0 + t)) ⊂ Bε

(
φtα((u0, y0))

)
. Thus φtα is continuous.

(ii) If

x
y

 ,
x0

y0

 ∈ R2 determine the same point in T2 then

x
y

 =

x0

y0

 +

m
n

 =

x0 +m

y0 + n

 for some m,n ∈ Z. Now φtα

x
y

 =

x+ αt

y + t

 and

φtα

x0

y0

 = φtα


x0 +m

y0 + n


 =

x0 +m+ αt

y0 + n+ t

 =

x+ αt

y + t

. That is, φtα

is independent of the chosen point and thus is well-defined.

3.2 The suspension construction

Informally, suspension is a construction which turns a map into a flow and

when the term suspension is used it implies that a flow exists.

Definition 3.2. Let X be a simple closed curve homeomorphic to S1 endowed

with a homeomorphism h : X → X. On X × [0, 1] define the relation ∼

where (x, 1) is identified with (h(x), 0). Let the quotient space be Xc(h) =

X× [0, 1]/∼ = X×R/≈ where the equivalence relation (x, s) ≈ (y, t)⇔ ∃n ∈ Z

such that y = hn(x) and s− t = n.
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Throughout this chapter the notation ˜(· · · , · · · ) indicates the equivalence class

of the quotient space. Let a suspension flow of h : X → X be defined by

φ̄ : R× (X × R/≈)→ X × R/≈, φ̄(t, (̃x, s)) = ˜(x, s+ t). (3.2)

Theorem 3.3. Let h : S1 → S1 be an orientation-preserving homeomorphism

then the suspension Xc(h) is homeomorphic to the torus T2.

We verify this theorem via the next lemma and proposition.

Let a point in S1 × [0, 1] have unique parametric coordinates ([x] + t(h([x])−

[x]), t), 0 ≤ t ≤ 1, where [x] = x modulo 1. Now define H̃ by

H̃ : S1 × [0, 1]→ S1 × [0, 1], H̃
(
([x] + t(h([x])− [x]), t)

)
= ([x], t). (3.3)

Lemma 3.4. The map H̃ is a homeomorphism.

Proof. Let l and l′ be two line segments in S1 × [0, 1] which join points ([x], 0)

to (h([x]), 1) and ([x], 0) to ([x], 1) respectively. Then for 0 ≤ t ≤ 1, a point on

l satisfies ([x] + t(h([x]) − [x]), t) while a point on l′ satisfies ([x], t). Now H̃,

which sends l onto l′, is

(i) injective: for 0 ≤ s, t ≤ 1, let two points on l be p = ([u] + t(h([u])− [u]), t)

and q = ([v] + s(h([v])− [v]), s) such that H̃(p) = H̃(q)⇒ ([u], t) = ([v], s)⇒

p = q;

(ii) surjective: let q = ([v], s) be an arbitrary point on l′ in the codomain

S1 × [0, 1]. Let H̃(([u] + t(h([u])− [u]), t)) = ([u], t) = ([v], s) then there exists

a point p such that H̃(p) = q;

(iii) H̃ is continuous and since S1×[0, 1] is compact in a metric space, the inverse

H̃−1 is continuous. Thus by (i), (ii) and (iii) H̃ is a homeomorphism.
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Now consider two quotient maps where ∀ [x] ∈ S1, qc̃ : S1× [0, 1]→ T2 = S1×

[0, 1]/∼ identifies ([x], 0) ∼ ([x], 1) and qc : S1 × [0, 1] → Xc(h) = S1 × [0, 1]/∼

identifies ([x], 0) ∼ (h([x]), 1).

Proposition 3.5. (i) H̃ respects the quotient maps qc and qc̃ and (ii) the

uniquely determined map H is a homeomorphism satisfying qc̃ ◦ H̃ = H ◦ qc.

S1 × [0, 1]

qc

��

H̃ //

f
N

N
N

''N
N

N

S1 × [0, 1]

qc̃

��
Xc(h) H // T2

Proof. (i) Let f : S1 × [0, 1] → T2 be the composite function qc̃ ◦ H̃. Since

qc̃ is a closed continuous surjective map of the homeomorphism H̃, f is closed

continuous and surjective and hence is a quotient map by definition.

(ii) Let Xc(h) =
{
f−1
(
{([x], t)}

)
| ([x], t) ∈ T2

}
be the collection of subsets

of S1 × [0, 1] where Xc(h) takes the quotient topology. Then f induces a

homeomorphism H (see for example Corollary 22.3 in [38]). Now for parameter

0 ≤ t ≤ 1 let a point be ([x] + t(h([x])− [x]), t) ∈ Xc(h) then define H by

H : Xc(h)→ T2, H
( ˜([x] + t(h([x])− [x]), t)

)
= (̃[x], t). (3.4)

To show the commutativity qc̃ ◦ H̃ = H ◦ qc let p = ([x] + t(h([x])− [x]), t) and

consider qc̃ ◦ H̃(p) = qc̃
(
([x], t)

)
which identifies ([x], 0) ∼ ([x], 1). Whereas

for H ◦ qc(p) first apply qc which identifies ([x], 0) ∼ (h([x]), 1) then map

H
(
(̃[x], 0)

)
= (̃[x], 0) and H

( ˜(h([x]), 1)
)

= (̃[x], 1)⇒ ([x], 0) ∼ ([x], 1).

Thus Lemma 3.4 and Proposition 3.5 yield Theorem 3.3.
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Now let a suspension flow on the torus be defined by

φ : R× T2 → T2, φt
(
H
(
([̃x], s)

))
= H

(
( ˜[x], s+ t)

)
. (3.5)

Proposition 3.6. The dynamical systems (Xc(h), φ̄t) and (T2, φt) are topolog-

ically conjugate such that the maps commute H ◦ φ̄t = φt ◦H, ∀ t ∈ R.

Xc(h)

H
��

φ̄t // Xc(h)

H
��

T2
φt // T2

Proof. The homeomorphism H conjugates the flow on Xc(h) as follows:

H ◦ φ̄t(̃[x], s) = H
(
( ˜[x], s+ t)

)
whilst φt ◦H

(
([̃x], s)

)
= H

(
( ˜[x], s+ t)

)
.

The following corollary follows from Theorem 3.3.

Corollary 3.7. The toral linear flow φtα is conjugate to the suspension flow of

the circle rotation Rα on the torus T2.

Let the unit square in Figure 3.1 represent the quotient space S1
c (Rα) which

is homeomorphic to T2. Informally the sketch imitates the flow φtα carrying a

point ([x], 0) up to ([x], 1) which is then identified with (Rα([x]), 0). Thereafter

the flow continues in a similar fashion.

Let A := X×{0} ⊂ X×R/≈ be a cross-section for the flow ψ : R×X×R/≈ →

X × R/≈ such that ψt(x̃, s) = a ∈ A, ∀(x̃, s) ∈ X × R/≈ and t ∈ R+. Now let

t0 > 0 be the minimum time for a to return to A under the flow then define

the first return map by

ρ : A→ A, ρ(a) = ψt0(a). (3.6)

The return map Rα to the cross-section S1×{0} of the flow φtα has a constant

return time of 1.
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d
([x], 0)

([x], 1)
•

•
(Rα([x]), 0) = ([x+ α], 0)

6

6

...

Figure 3.1: The suspension flow φtα.

3.3 Embedding the Denjoy map

Definition 3.8. An embedding of the topological space X in the topological

space Y is a continuous injective function f : X → Y which is a homeomor-

phism onto its image and where f(X) takes the subspace topology from Y .

Recall the Denjoy map (2.2) then let the quotient space Sαc(Dα) be similarly

derived as in Definition 3.2. Now (2.2) is an o-p homeomorphism and Sα is

homeomorphic to S1 (see for example page 689 in [36]). Thus we have an

embedding

Ĥ : Sαc(Dα)→ T2, Ĥ
( ˜(Dt

α(u), t)
)

= (̃u, t), 0 ≤ t ≤ 1, (3.7)

from which we may define the Denjoy suspension flow

φ̂α : R× T2 → T2, φ̂tα

(
Ĥ
(
(̃u, s)

))
= Ĥ

( ˜(u, s+ t)
)
, (3.8)

Definition 3.9. The suspension of the Denjoy minimal map Dα�Cα (2.6) is

known as a Denjoy continuum which we denote by Dα.
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3.4 Shift and tiling spaces

Definition 3.10. Consider a full shift space AZ with finite A = {a1, . . . , an}.

Let a symbolic cylinder be [a] = {(ui)i∈Z ∈ AZ | u0 = a ∈ A}. Then AZ =

[a1]∪̇[a2]∪̇ . . . ∪̇[an] is a partition of AZ into a disjoint union of n clopen sets.

Definition 3.11. Consider a full tiling space TP made from a finite set of pro-

totiles P = {P1, . . . , Pn}. Let a tiling cylinder be [P ] = {(Ti)i∈Z ∈ TP | T0 =

P ∈P, such that the origin lies at the left hand end of T0}.

Definition 3.12. Let card(A) = card(P) = N and let each aj ∈ A be matched

to Pj ∈P, 1 ≤ j ≤ N . Then define a map

τ : AZ → TP , τ((ui)) = (Ti), ∀ i ∈ Z, (3.9)

such that the origin 0 lies at the left hand end of tile T0 and where Ti is a

translate of the prototile matched with ui. It follows that [aj] is identified with

[Pj]. Now assign each pair of cylinders to have equal length l[aj] = l[Pj] = lj ∈

(0,∞).

In order to cater for the suspension of a map involving cylinders with different

lengths, we define a ceiling function c which takes the form

c : AZ → (0,∞), c((ui)i∈Z) = lj, if and only if (ui)i∈Z ∈ [aj], (3.10)

where lj ∈ (0,∞) is the fixed length of the cylinder [aj], 1 ≤ j ≤ n.

Definition 3.13 (Symbolic quotient space). Consider the shift map S : AZ →

AZ. Let (ui)i∈Z ∈ AZ, A = {a1, . . . , an}, and let ((ui), s) ∈ [aj]× [0, lj]⇒ u0 =

aj ∈ A for some 1 ≤ j ≤ n. Then
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• In the positive semi-orbit, t ≥ 0, let ∼ denote the equivalence relation

which identifies the point
(
(ui), c((ui))

)
with

(
S((ui)), 0

)
⇔ s+ t = l[u0],

s ∈ [0, lj]. That is, ((ui), lj) ∼ ((ui+1), 0) ∈ ([u1], 0);

• in the negative semi-orbit, t ≤ 0, let ∼ denote the equivalence relation

which identifies the point
(
(ui), c((ui))

)
with

(
S−1((ui)), 0

)
⇔ s + |t| =

l[u0], s ∈ [0, lj]. That is, ((ui), lj) ∼ ((ui−1), 0) ∈ ([u−1], 0).

Then define AZ
c :=

(
[a1]× [0, l1]∪̇[a2]× [0, l2]∪̇ . . . ∪̇[an]× [0, ln]

)
/∼.

Definition 3.14 (Symbolic flow). Let (ui)i∈Z ∈ AZ. We treat separately the

positive and negative trajectories of a suspension flow Φt. So consider

• the positive trajectory, t ≥ 0. Set 0 ≤ s < l[u0] ⇒ ((ui), s) ∈ [u0] ×

[0, l[u0]] then choose a unique integer n ∈ N0 such that 0 < s + t −∑n
i=0 l[ui] ≤ l[un+1]. Then let the positive semi-flow be

Φ : R+ ∪ {0} × AZ
c → AZ

c , Φt
(
(̃ui), s

)
= ( ˜(ui+(n+1)), s+),

where (ui+(n+1)) ∈ [un+1] and 0 ≤ s+ = s+ t−
∑n

i=0 l[ui];

• the negative trajectory, t ≤ 0. Set 0 ≤ s < l[u0] ⇒ ((ui), s) ∈ [u0] ×

[0, l[u0]] then choose a unique integer n ∈ N0 such that 0 < |s + t +∑−1
i=−n l[ui]| ≤ l[u−(n+1)]. Then let the negative semi-flow be

Φ : R− ∪ {0} × AZ
c → AZ

c , Φt
(
(̃ui), s)

)
= ( ˜(ui−(n+1)), s−),

where (ui−(n+1)) ∈ [u−(n+1)] and 0 ≤ s− = l[u−(n+1)]−|t+s+
∑−1

i=−n l[ui]|.

Let (ui)i∈Z ∈ AZ and (Ti)i∈Z ∈ TP satisfy Definition 3.12 and set lj = c((ui))

with 0 ≤ s < l[u0]. Then define an o-p homeomorphism by

τc : AZ
c → TP , τc

( ˜(ui)i∈Z, s
)

= φs
(
τ
(
(ui)i∈Z

))
. (3.11)
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Proposition 3.15. Induced by τc, Φ : R×AZ
c → AZ

c is topologically conjugate

to φ : R× TP → TP such that the maps commute τc ◦ Φt = φt ◦ τc , ∀ t ∈ R.

AZ
c

τc

��

Φt // AZ
c

τc

��
TP

φt // TP

Proof. By construction the map (3.9) bestows a one-to-one correspondence

between a symbolic sequence (ui)i∈Z ∈ AZ and a tiling (Ti)i∈Z ∈ TP so (3.9)

is a bijection. For all t ∈ R the flow (1.12) is a homeomorphism in the tiling

space TP . Thus the composite map τc is a homeomorphism. With respect

to commutativity, consider firstly the positive trajectory of a point (ui)i∈Z ∈

AZ
c . That is for t ≥ 0 and ∀ i ∈ Z, τc ◦ Φ

(
(̃ui), s

)
= τc

( ˜(ui+(n+1)), s+
)

=

φs+(τ((ui+(n+1)))) = φs+
(
(Ti+(n+1))

)
= (Ti+(n+1))−s+, whereas φt◦τc

(
(̃ui), s

)
=

φt ◦ φs
(
τ((ui))

)
= φt+s

(
(Ti)

)
= (Ti)− (t+ s) = (Ti+(n+1))− s+ since 0 ≤ s+ =

s + t −
∑n

i=0 l[ui]. Now for the negative trajectory where t ≤ 0 and ∀ i ∈ Z,

τc ◦ Φ
(
(̃ui), s

)
= τc

( ˜(ui−(n+1)), s−
)

= φs−(τ((ui−(n+1)))) = φs−
(
(Ti+(n+1))

)
=

(Ti+(n+1)) − s−, whereas φt ◦ τc
(
(̃ui), s

)
= φt ◦ φs

(
τ((ui))

)
= φt+s

(
(Ti)

)
=

(Ti)− |t+ s| = (Ti−(n+1))− s− since 0 ≤ s− = l[u−(n+1)]− |t+ s+
∑−1

i=−n l[ui]|.

Thus τc commutes the flows which are hence topologically conjugate.

Example 3.16. Consider a full shift {a, b}Z with a particular point (ui) =

. . . u−1 . u0u1u2u3 . . . = . . . b . abba . . .. Consider a full tiling space TP whose

tiling (Ti)i∈Z consists of prototiles from P = {a = [0, 1],b = [0, 1/2]} such

that (Ti) = . . . T−1 . T0T1T2T3 . . . = b . abba . . ., with the origin positioned at

the left hand end of T0. Use (3.9) to put the symbolic cylinders [a] = {(ui) ∈

{a, b}Z |u0 = a} and [b] = {(ui) ∈ {a, b}Z |u0 = b} in correspondence with the

tiling cylinders [a] and [b]. Then for both cylinder sets, the lengths are l1 = 1

and l2 = 1/2. Now let ((̃ui), 0) ∈ AZ
c and t = 9

4
, say, then consider Φ

(
(̃ui), 0

)
.

With s = 0 and u0 = a ⇒ (ui) ∈ [a] then 0 ≤ s+ = 9
4
−
∑n

i=0 l[ui] ⇒
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∑n
i=0 l[ui] = l[u0] + l[u1] + l[u2] = 2⇒ n = 2 and s+ = 1

4
. Thus Φ

9
4

(
(̃ui), 0

)
=

( ˜(ui+3), 1
4
) ∈ [a]×[0, 1]. Next by (3.11), ∀ i ∈ Z, τc

(
(̃ui), 0

)
= φ0

(
τ((ui))

)
= (Ti)

then φ
9
4

(
(Ti)

)
= (Ti)− 9

4
= (Ti+3)− 1

4
where the image tiling (Ti+3)− 1

4
∈ [a].

We can imagine the symbolic flow as being represented by Figure 3.2 (i) while

the corresponding tiling flow produces the pattern in 3.2 (ii), the cylinders

being colour coded as shown.

[a]
[b]((̃ui), 0) ( ˜(ui+3), 0)

( ˜(ui+1), 0) ( ˜(ui+2), 0)−

−

1

−

−
1
2

AZ
c

| | | |
0 (Ti) (Ti+1) (Ti+2) (Ti+3)

TP

l

(i)

(ii)

Figure 3.2: Flows over time t = 9
4

(cf. Ex.3.16).
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Definition 3.17. Two maps are flow equivalent if there is a homeomorphism

between their suspensions taking trajectories of one to trajectories of the other

and preserving orientation.

In our context of one-dimensional tilings we can say that a simple tiling of R

is a tiling for which there are only a finite number of tile types (prototiles) up

to translation and each tile is an interval.

Definition 3.18. [50] A homeomorphism between (simple) tiling spaces is a

continuous map f : TP → TP′ that is 1-1 and onto.

Since TP is compact, f−1 is automatically continuous, so Definition 3.18 agrees

with the usual topological definition of homeomorphism. Let card(P) =

card(P ′) = N and let the tilings T ∈ TP and T ′ ∈ TP′ . Now τ : AZ →

TP ⇒ (Ti) = τ((ui)), ∀i ∈ Z, so let τ ′ : AZ → TP′ ⇒ (T ′i ) = τ ′((u′i)), ∀i ∈ Z.

Then define

τ̄ : TP → TP′ , τ̄((Ti)) = (T ′i ), ∀i ∈ Z, (3.12)

where τ̄ = τ ′ ◦ τ̄ ◦ τ−1.

Proposition 3.19. The tiling spaces TP and TP′ are topologically conjugate

such that φ
′t = τ̄ ◦ φt ◦ τ̄−1, ∀ t ∈ R.

TP

τ̄
��

φt // TP

τ̄
��

TP′
φ
′t
// TP′

Proof. Let cylinder sets [Pj] ⊆ TP and [P ′j ] ⊆ TP′ have lengths lj and l′j

respectively. We consider two cases.

(i) Suppose that lj = l′j for all 1 ≤ j ≤ N . Let ((Ti), s) ∈ TP× [0, l[T0]] then for

t ≥ 0, τ̄ ◦ φt
(
(Ti), s

)
= τ̄((Ti+(n+1)), s

+) = (T ′i+(n+1), s
+) while φ

′t ◦ τ̄((Ti), s) =

φ
′t
(
(T ′i ), s

)
= ((T ′i+(n+1), s

+). For t ≤ 0, τ̄ commutes the flows accordingly.
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(ii) Suppose that lj 6= l′j for any 1 ≤ j ≤ N . Then let us scale all cylinders in

each of the two tiling spaces to have unit lengths. Let a scaling function be

defined by ρ : [P ] × [0,∞] → [P ] × [0, 1], ((Ti), s) 7→ ((Ti), s.(l[Ti])
−1), 0 ≤

s ≤ l[Ti]. Now let ((Ti), s) ∈ TP × [0, l[T0]] and by examining its semi-orbit

under the flow φt scaled by ρ we reach the following definition. For t ≥ 0, set

0 ≤ s < l[T0]⇒ ((Ti), s) ∈ [T0]× [0, l[T0]]. Next choose a unique integer n ∈ N0

such that 0 < s.(l[T0])−1 + t−(n+1) ≤ 1. Then φt◦ρ((Ti), s) = ((Ti+(n+1)), s
+)

where 0 ≤ s+ = s.(l[T0])−1 + t − (n + 1). For t ≤ 0 the negative semi-orbit

may be derived in a similar way. Identically, let ((T ′i ), s) ∈ TP′ × [0, l[T ′0]] then

its semi-orbit for t ≥ 0 satisfies φ
′t ◦ ρ((T ′i ), s) = ((T ′i+(n+1)), s

+) with the same

conditions on its parameters as those given for (Ti) ∈ TP , since ρ scales each

cylinder set in both spaces to be of unit length and (3.12) is a bijection between

TP and TP′ . Moreover the map τ̄ will commute the ‘scaled’ flows similarly as

described in (i).

Since τ̄ conjugates the homeomorphisms τ ′ and τ , τ̄ is a homeomorphism.

Therefore by (i) and (ii), the tiling spaces TP and TP′ are flow equivalent and

TP and TP′ are homeomorphic tiling spaces whose flows conjugate over τ̄ .

Definition 3.20. [50] A factor map between tiling spaces is a map that com-

mutes with the action of the translation group. A topological conjugacy between

tiling spaces is a homeomorphism that is also a factor map.

Remark 3.21. There is not necessarily a conjugacy between two tiling spaces

TP and TP′ since it is not always possible to rescale time such that their flows

are conjugate. For example, consider two tilings T ∈ TP and T ′ ∈ TP′ with

prototile sets P = {P1 = [0, 1], P2 = [0, 1]} and P ′ = {P ′1 = [0, 1], P ′2 =

[0, 1/2]} respectively. However, if the tiling spaces are derived from a Pisot

substitution such as the Fibonacci substitution (1.7) then it is possible to realise

a conjugacy between their flows after rescaling time [17].
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Remark 3.22. We know that the Cat substitution γ is Pisot (Def. 1.10) since

its PF eigenvalue µ2 > 1 is an algebraic integer with a conjugate eigenvalue

|µ−2| < 1 and its minimal subshift is Sturmian Σα=1/µ (see page 35). Its tiling

space is Tγ. Thus (i) Tγ embeds in an orientable surface and (ii) Tγ embeds in

a torus (Theorem 5 in [29]).
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Chapter 4

Branched covering spaces

In preparation for constructing a Plykin attractor via the torus, treated as

a 2-fold branched covering of the sphere, and the emergence in the following

chapters of branched 1-manifolds as representations of attractors, we define

and discuss branched coverings herewith. A branched covering is distinguished

from an unbranched covering by the following definition.

Definition 4.1. [4] Let X̃ and X be complex manifolds. Consider a k-fold,

k ∈ N, covering map p : X̃ → X, where x ∈ X has a neighbourhood U 3 x such

that the complete inverse image of disjoint neighbourhoods is p−1(U) =
⋃k
i=1 Vi.

Then p is called a branched covering if, for any point x ∈ X, the restriction p|Vi

is topologically conjugate to some mapping δk : z 7→ zk, z ∈ C. That is, there

exist homeomorphisms h : U → C and hi : Vi 7→ C such that δk ◦hi|Vi = h◦p|Vi.

The deficiency k−1 in the number of covering points of a branch point x0 ∈ X

is called the order of the branch point.

Our particular interest lies in 2-fold coverings of the standard torus. For this

purpose we consider representations of a genus 2 surface, the double torus, in

two ways. Firstly by a polygon in R2 with combinatorial edge equations and

secondly by a geometric representation in Euclidean 3-space. The next section

consists of necessary definitions.
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4.1 Combinatorial definitions of a surface

We base these definitions on [12].

Definition 4.2. Define the set ∆ = {(x, y) ∈ R2 |x2 + y2 ≤ 1} where the

disc ∆ is a polygon with n ∈ N sides and n evenly spaced vertices labelled

P1 = (1, 0), P2, . . . , Pn, which divide the circumference of ∆ into directed edges

labelled a1, a2, . . . , an (Fig. 4.1). An edge labelled a−1
i takes the reverse direction

to that of edge ai.

P1

P2

P3

Pn

a1

a2

an

Figure 4.1: Disc ∆.

Definition 4.3. Let f : ∆ → Π be an orientation-preserving homeomorphism

which defines an n-sided topological polygon (Π, f) in a Euclidean space which,

for i = 1, 2, . . . , n, consists of vertices labelled Qi = f(Pi) and curved or straight

edges bi = f(ai). An edge equation for (Π, f) takes the form b1b2 . . . bn = 1.

In order to allow for edge identifications we relax the condition that f is a

homeomorphism and modify the definition to be

Definition 4.4. A continuous mapping f̄ of the disc ∆ onto a set Π defines a

singular topological polygon (Π, f̄) if f̄ satisfies the following conditions:

1. Every point in Π is f̄(P ) for some point P ∈ ∆.

2. If P is an interior point of ∆ and Q is any other point in ∆, then f̄(Q) 6=

f̄(P ).
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3. If aj, 1 ≤ j ≤ n, is an edge of ∆ then either (i) for every non-vertex

point P of aj, there is no other point Q in ∆ such that f̄(Q) = f̄(P ); or

(ii) for every point P of aj, other than Pj or Pj+1, there is a unique point

P ′(6= P ) in ∆ such that f̄(P ′) = f̄(P ). Furthermore, as P moves from

Pj to Pj+1, P ′ moves along an edge ak, k 6= j, either from Pk to Pk+1 or

from Pk+1 to Pk. (Note that Pn+1 = P1).

From now on polygon will mean singular topological polygon.

Definition 4.5. A set of points in a Euclidean space is a surface if the set can

be subdivided into a finite number of polygons such that

1. Polygons intersect only in edges and vertices.

2. Polygons have common vertices only to the extent required by the common

edges.

3. No curve is used more than twice as a polygonal edge.

4. The polygons cannot be divided into two sets of polygons with no edge in

common.

Definition 4.5 requires that a surface is closed which means that it is a compact

connected Hausdorff space in which each point has a neighbourhood homeo-

morphic to the plane.

Definition 4.6. A combinatorial representation of a surface is a system of edge

equations such that (a) no letter appears more than twice; (b) if the system is

divided into two sets of equations, there is at least one letter that appears in an

equation of each set.

Note: aba−1b−1 = 1 and efe−1f−1 = 1 6⇒ aba−1b−1 = efe−1f−1 necessarily.
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4.2 2-fold branched coverings of T2

A planar representation of T2]T2

Define S ′2 := T2]T2 ⊂ R2 to be a double torus. We construct S ′2 by the fol-

lowing surgery. Let polygonal discs P and Q represent two 2-tori with edge

equations aba−1b−1 = 1 and cdc−1d−1 = 1 respectively. Now remove two discs

with boundaries x = XZ from Q and y = ZY from P , which results in re-

spective edge equations for Qo : aba−1b−1x−1 = 1 and for Po : cdc−1d−1y = 1

(Fig. 4.2(i)). Identifying the two disc boundaries x and y forms a genus 2 sur-

face. Moreover, when x = y then the latter edge equation becomes cdc−1d−1x =

1 ⇒ cdc−1d−1 = x−1 ⇒ aba−1b−1cdc−1d−1 = 1 which is a single edge equation

(Fig. 4.2(ii)).

Consider S ′2 in R2. Let B̃ = (0, 0) be the centre of symmetry of S ′2 with

Ã = (0, y) and Ã′ = (0,−y) where the line segment ÃA
′

represents the com-

mon loop x, with basepoint Ã = Ã′, joining the two tori with discs removed.

Define a linear transformation by R′ : R2 → R2, R′(x, y) = (−x,−y). Then B̃

is a fixed point of R′ as is Ã = Ã′ = R′(Ã). The rotation R′ maps the bound-

ary cdc−1d−1x onto aba−1b−1x−1, which we write as acbda−1c−1b−1d−1x−1x =

acbda−1c−1b−1d−1. Then the map π′ identifies a ∼ c and b ∼ d giving 2 copies

of the edge equation aba−1b−1 = 1. That is, two copies of T2.

Definition 4.7. The space S ′2 is a 2-fold branched covering of the torus T2,

with branch points A and B, induced by a quotient map π′ : S ′2 → S ′2/∼, where

the equivalence relation x ∼ y⇔ ∃n ∈ Z such that y = (R′)n(x).

Then S ′2/∼
∼= T2 as a surface in R2.
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Po

Qo

dd

c

c

a

a

b b

y

x

Z

Y

X

(i) Remove a disc x from torus Q to give Qo and a disc y from torus P to give Po

Qo ∼ Po

Po

dd

c

c

b ∼ db ∼ d

a ∼ c

a ∼ c

y x

Ã

Ã′
B̃

S ′2

(ii) Edges identified after a rotation through angle π.

Figure 4.2: S ′2 = T2]T2 covers T2.
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Proposition 4.8. T2]T2 is not homeomorphic to T2.

Proof. We show that the fundamental group π1(T2]T2) is distinct from π1(T2).

Let a, b, c, d be four loops with a common basepoint x and boundary loop

labelled γ. The fundamental group of γ is a free group on four generators, that

is, π1(γ, x) = 〈a, b, c, d〉 ∼= Z ∗ Z ∗ Z ∗ Z. Let the region R have a boundary

labelled aba−1b−1cdc−1d−1 representing T2]T2. Let discs D ⊂ U ⊂ R with

U \D 3 x and let V = R \D such that γ ⊂ U ∩ V . Now remove the interior

of D and deform retract V onto the boundary of R. Let the inclusion map

i : U ∩ V ↪→ R ⇒ i(γ) = aba−1b−1cdc−1d−1 then by the Seifert1-van Kampen2

theorem,

π1(T2]T2, x) ∼=
π1(U, x) ∗ π1(V, x)

N [i∗π1(U ∩ V, x)]
∼=
e ∗ π1(V, x)

N [i∗(γ)]
∼=
〈a, b, c, d〉
N [i∗(γ)]

,

where N is the least normal subgroup containing the element aba−1b−1cdc−1d−1.

Thus the fundamental group of the double torus is

π1(T2]T2, x) = 〈a, b, c, d | aba−1b−1cdc−1d−1 = e〉.

Now π1(T2) ∼= Z2 6∼= π1(T2]T2) and since homeomorphic spaces have isomorphic

groups, T2]T2 is not homeomorphic to T2.

A representation of T2]T2 in R3

Define S2 := T2]T2 ⊂ R3 (Fig. 4.3). By surgery analogous to the polygonal

surgery described above remove a (shaded) disc from each 2-torus then identify

the boundaries of each disc. Now in R3 position Ã = (0, 0, z) and B̃ = (0, 0, 0)

then rotate S2 about the z-axis through an angle π by a linear transformation

R : R3 → R3, R(x, y, z) = (−x,−y, z). Then Ã and B̃ are fixed points of R.

1Herbert Karl Johannes Seifert (1907 - 1996) German mathematician.
2Egbert Rudolf van Kampen (1908 - 1942) Belgian mathematician.
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↓

→ ←

S2 Ã

B̃
↓π

‘zip’
S2/≈

A

B

Figure 4.3: S2 = T2]T2 covers T2.

Definition 4.9. The space S2 = T2]T2 is a 2-fold branched covering of T2,

with branch points A and B, induced by a quotient map π : S2 → S2/≈, where

the equivalence relation x ≈ y⇔ ∃n ∈ Z such that y = Rn(x).

Then S2/≈ ∼= T2 as a surface in R3.

For a k-fold covering X̃ the Euler3 characteristic e(X̃) := k ·e(X)−δ where the

total deficiency δ is the sum of the orders of the branch points in X̃. In both

cases π−1(x) and (π′)−1(x) each have two pre-images in S2 and S ′2 respectively

with the exceptions of a single pre-image π−1(A) = Ã and π−1(B) = B̃ in S2

and (π′)−1(A) = Ã(= Ã′) and (π′)−1(B) = B̃ in S ′2. So A and B are branch

points of order 1. Thus e(T2]T2) = k · e(T2)− δ = −2 is satisfied.

Remark 4.10. There exists a natural homeomorphism h : S2 → S ′2 which

conjugates the rotations h ◦R = R′ ◦ h.

We give a heuristic argument in justification of Remark 4.10. Consider S2 em-

bedded symmetrically in R3. Let a non-branch point of S2 be p̃+ = (x, y, z)

with its counterpart p̃− = (x, y,−z). Then let (x, y, 0) be their common repre-

sentative point, considered as a projection onto the horizontal xy plane through

3Leonhard Euler (1707 - 1783) Swiss mathematician and physicist.
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the origin and denoted by p̃ = (x, y). So R(p̃+) and R(p̃−) is represented by

R(x, y, 0) = (−x,−y, 0), that is p̃ = (x, y) 7→ (−x,−y). Let p̃′ = (x, y) ∈ S ′2
then R′(x, y) = (−x,−y). The fixed points Ã, B̃ ∈ S2 and Ã′, B̃′ ∈ S ′2 concur

in both spaces. Now by the construction of T2]T2 it is possible to assign a

one-one correspondence between p̃ ∼ p̃′, Ã ∼ Ã′ and B̃ ∼ B̃′, from which the

fixed angle rotations R and R′ transform their respective points in an equivalent

manner. So we may deduce that the rotations on each surface are topologically

conjugate.

4.3 A covering flow

Proposition 4.11. Let φt, t ∈ R, be a smooth flow on a closed orientable

surface X and let V ⊆ R2 be its associated vector field. Then on a 2-fold

branched covering of X, the flow φ̃t, t ∈ R, with vector field V∗ ⊆ R2 is a

covering flow for φt.

Proof. Consider the branched covering p : X̃ → X. Let the set of branch

points {xi ∈ X | i ∈ N} be fixed points of φt then denote the restricted flow on

the set X \ {xi} by φ̊t with its associated vector field V̊. Since p|X̃\p−1({xi}) :

X̃ \ p−1({xi})→ X \ {xi} is an unbranched covering, there is a vector field V̊∗

on X̃ \p−1({xi}) which covers V̊ (see for example [4]). At the points p−1({xi}),

map the vector field to the zero vector, that is V̊∗ = 0. Then since the branch

points {xi} are designated as fixed points of φt, the vector field V∗ on the cover

X̃ is continuous and covers V, by the definition of a branched covering. Thus

the flow φ̃t determined by V∗ is a covering flow for φt.
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We work with the planar definition of the surfaces, S ′2 = T2]T2 ⊂ R2 and

S ′2/∼
∼= T2. Fix α ∈ [0, 1]−Q and define a smooth flow by

Φα : R× S ′2/∼ → S ′2/∼, with associated vector field V

x
y

 =

α
1

 . (4.1)

Now for t ∈ R let the flow Φ̊t
α on S ′2/∼ \ {A,B} have the associated vector field

V̊ then at (π′)−1({A,B}) ∈ S ′2 set V̊∗ = 0. Then by Proposition 4.11 define a

covering flow for (4.1) by

Φ̃α : R× S ′2 → S ′2, with vector field V∗. (4.2)

Now Φ̃t
α is defined by the solution set of a pair of simultaneous first-order

autonomous equations ẋ = x and ẏ = −y while Φt
α satisfies the solution set of

the paired equations ẋ = x2 + y2 and ẏ = 0. Consequently, Φ̃t
α is a family of

hyperbolic integral curves, xy = constant in R2, along which the points move

with time t. The flow has a single fixed point at B̃ = (0, 0) to which the points

on the x-axis (y-axis) approach asymptotically for t < 0 (t > 0). Now define a

complex valued function by

δ2 : C→ C, z 7→ z2. (4.3)

This function projects Φ̃t
α onto Φt

α in real space by R2 → R2,

x
y

 7→
x2 − y2

2xy

,

which is the solution set of the system ẋ = x2 + y2, ẏ = 0. This set forms a

family of horizontal lines y = constant such that ∀ (x, y) ∈ R2 − (0, 0), x→∞

as t → ∞. For points on the x-axis, when x < 0, (x, 0) → (0, 0) as t → ∞

whilst for x > 0, x → ∞ as t → ∞. The sole fixed point B̃ = (0, 0) of the

hyperbolic solution set is an unstable saddle point whilst the family of solution

curves y = constant has a stable fixed point at B = (0, 0). Having two branch

72



points in the covering space, the covering flow Φ̃t
α has exactly two saddle points

on T2]T2, one at (π′)−1(A) and the other at (π′)−1(B). We lift the linear flow

Φt
α of S ′2/∼ to the hyperbolic flow Φ̃t

α of the covering space S ′2 then examine

the nature of the flow on the quotient space S ′2/∼.

Figure 4.4. Sketch (i) shows directed linear flow line segments of OA(x)

(green) and OB(x) (blue). For the sake of clarity in (ii) only blue lifted flow

line segments of (π′)−1(OB(x)) are shown where the +,− indices act only to

distinguish the two ‘branches’ of the hyperbolic system. Then in (iii) the blue

segments of the lifted and rotated flow lines which either leave or limit to

B̃ are shown. Sketch (iv) with green and blue two-headed arrows indicate

superposition of the two branches of the flow sourced and limiting to A and

B respectively, identified under the quotient map yielding a linear flow on the

2-fold torus.

In general consider a flow φt on X. For x ∈ X, an orbit O(x) = {φt(x) | t ∈ R}

partitions X into equivalence classes which we shall call congruent orbits. Thus,

congruent orbits written O(x) ≡ O(y) ⇔ x ≡ y ⇒ y = φt(x) for some t ∈ R.

Furthermore, each point x ∈ X lies in exactly one congruent orbit and no two

congruent orbits intersect. In the present context of our branched covering, let

forward orbits be OA(x) := {Φt
α(x) | t > 0, x 6= A} and OB(x) := {Φt

α(x) | t >

0, x 6= B}. Then OA(x) ∩ OB(x) = ∅ and likewise the complete inverses

(π′)−1(OA(x)) ∩ (π′)−1(OB(x)) = ∅. In general, each trajectory l belonging to

a congruent orbit, and hence a flow, has the same tangent vector vp at a point

p ∈ O(x). Call the associated vector field V the generator of the flow. Then

given a smooth vector field V on R2 there exists a congruence of orbits in R2

such that V is the generator for the corresponding flow. The existence of one

of these constructions: a vector field, flow, congruence, assures the existence of

the other two (see for example [19]).
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Figure 4.4: Lifted and projected flowlines.
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Definition 4.12. A flow φt on a closed orientable surface X is transitive if

and only if φt has a trajectory that is dense in X.

Any trajectory l of Φt
α different from that of a fixed point is dense in S ′2/∼

and so a trajectory lA of a point from OA(x) or lB of a point from OB(x) is

dense in S ′2/∼. Consequently, as for example stated in [4], the complete inverse

(π′)−1(lA), consisting of two trajectories l̃Ã1
and l̃Ã2

of Φ̃t
α is dense in S ′2; as is

(π′)−1(lB) with trajectories l̃B̃1
and l̃B̃2

. However, consider the sufficiency of a

single trajectory cited in the following proposition.

Proposition 4.13. A single trajectory l̃ of Φ̃t
α is dense in the covering space

S ′2 and thus the flow Φ̃t
α is transitive.

Proof. Let l ⊂ S ′2/∼ and l̃ ⊂ S ′2 be respective trajectories of the flow Φt
α and

its covering flow Φ̃t
α; l is not a trajectory of a fixed point A or B. The closure

¯̃l is compact, connected and invariant and so π′(¯̃l) is compact, connected and

invariant. It follows that π′(¯̃l) = S ′2/∼ then l = π′(l̃) ⇒ l̄ = S ′2/∼. Let an

open invariant set be U := S ′2 −
¯̃l ⇒ π′(U) is open and invariant which then

implies that π′(U) = S ′2/∼. The boundary of U is ∂U = Ū ∩ ¯̃l ⊆ ¯̃l. Let x be

a limit point of l̄. Call (π′)−1
i=1,2(x) = pi=1,2 and set p1 ∈ ∂U . Now for ε > 0,

Bε(p1) ∩ U − {p1} 6= ∅ ⇒ ∃ y ∈ U, y 6= p1, y /∈ l̃. Since p1 is also a limit point

of l̃ this contradicts l̃ being closed. Thus U : 6= S ′2 −
¯̃l⇒ ¯̃l = S ′2. In the context

of the flow, if limt→∞ Φ̃t
α(z) = p1 ∈ Ū ⇒ ∃ t0 < t such that Φ̃t0

α (z) ∈ U . So

part of the trajectory of z lies in U which our argument shows is impossible.

In conclusion, ¯̃l = S ′2 ⇒
¯̃l is dense in S ′2. Hence the flow Φ̃t

α is transitive.
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Proposition 4.14. The function δ2 (4.3) induces a bijective continuous map

h′ : S ′2/∼ → T2 which is a homeomorphism. The maps satisfy h′ ◦ π′ = δ2.

S ′2

π′

��

δ2

!!D
DD

DD
DD

DD

S ′2/∼
h′ // T2

Proof. By definition, π′ is a quotient map. Let Ũ ⊂ S ′2 be an open neighbour-

hood of the branch point B̃ = (0, 0). Let other points p̃, q̃ ∈ Ũ with p̃ ∈ P0,

q̃ ∈ Q0 and |p̃− B̃| = |q̃ − B̃| in the Euclidean metric. Now π′(Ũ) = U ⊂ S ′2/∼

and π′(B̃) = B. Let s ∈ U denote the identification point π′(p̃) ∼ π′(q̃) then

|s−B| = |p̃− B̃| by the isometry R′.

Consider S ′2 as a surface with polar coordinates (r, θ) ∈ R2. The function δ2 :

S ′2 → T2 is a surjective map which is continuous everywhere since δ2(z0) = z2
0

and limz 7→z0 z
2 = z2

0 . Let U be open in T2 if and only if δ−1
2 (U) = Ũ is open in S ′2,

then δ2 is a quotient map. We show that δ2 is constant on each set (π′)−1({s}),

s ∈ S ′2/∼. Firstly, take the branch point, δ2((π′)−1(B)) = (0, 0) = B. Next, if

one of the two pre-images of s ∈ U is p̃ = (r, θ)⇒ q̃ = (r, θ + π) which means

that δ2(p̃) = (r2, 2θ) ≡ (r2, 2(θ + π)) = δ2(q̃), modulo 2π. Then the constancy

of δ2 on each pre-image of π′ follows. Hence h′ is a homeomorphism (see for

example Corollary 22.3 in [38]).

Remark 4.15. Proposition 4.14 confirms π′ : S ′2 → S ′2/∼ as a 2-fold branched

covering complying with Definition 4.1. In other words, a double torus T2]T2

is a 2-fold branched covering of T2.
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Chapter 5

Hyperbolic attractors

This chapter begins a key topic in the thesis. In §5.1.2 we define and construct

a toral hyperbolic attractor Λ with one complementary domain. In §5.2 we

extend the process to define and construct the Plykin attractor ΛΠ with four

complementary domains. The minimal Denjoy flow Dα (Def. 3.9) is homeomor-

phic to the attractor Λ (Remark 5.9) which in turn is homeomorphic to the

tiling space Tγ (Theorem 6.20) where Tγ is the tiling space derived from the

Cat substitution γ (1.9).

A diffeomorphism is a one-to-one differentiable mapping with a diferentiable in-

verse. Let M be a closed smooth manifold then in the Cr topology, Diffr(M) :=

{f : M →M | f is a Cr diffeomorphism}.

Definition 5.1. [20] The map f ∈ Diffr(M) is structurally stable if there is

a neighbourhood U of f , U ⊂ Diffr(M), such that ∀ g ∈ U , g is topologically

conjugate to f .

Definition 5.2. [28] A stable manifold is defined W s(x) = {z ∈M |d(fnz, fnx)}

→ 0 as n→∞. An unstable manifold is defined W u(x) = {z ∈M | d(fnz, fnx)}

→ 0 as n→ −∞.
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Definition 5.3. [40] A diffeomorphism f on a manifold M is Anosov if

1. The tangent bundle TM = Es ⊕ Eu. (The tangent subspaces Es and

Eu span the whole tangent space and they are respectively tangents to the

stable(unstable) manifolds.)

2. Es(u) are invariant: ∀ p ∈M , ∀v ∈ Es(u)
p , Dfp(v) ∈ Es(u)

f(p).

3. ∃ 0 < λ < 1 such that (for some Riemannian1 metric on M), ∀ p ∈ M ,

‖Dfp(v)‖ ≤ λ‖v‖, ∀v ∈ Es, and ‖Df−1
p (v)‖ ≤ λ‖v‖, ∀v ∈ Eu.

Definition 5.4. [20] A fixed point p of f is hyperbolic if Dfp : TpM → TpM

has no eigenvalues of modulus 1, where TpM denotes the set of tangent vectors

to M at p. If p is periodic of period n, then p is hyperbolic if Dfnp has no

eigenvalues of modulus 1.

Definition 5.5. [28] A point p ∈ M is non-wandering if for every neighbour-

hood U 3 p and for every n0 ∈ N, ∃n ∈ Z such that |n| > n0 and fn(U)∩U 6= ∅.

5.1 The DA construction

Recall the hyperbolic toral Cat map C (1.10) with the matrix A =

2 1

1 1


which we can now identify as an Anosov diffeomorphism and any Anosov dif-

feomorphism is structurally stable (see for example Theorem (3.3) in [51]).

Thus C is structurally stable. By perturbing such a diffeomorphism one may

construct a derived from Anosov (DA) diffeomorphism. This technique was

first demonstrated by Smale who applied a type of surgery to a 2-torus which

can be read on pages 788 -789 of his paper [51]. For our purposes we take

guidance from [48] and [32] and apply a similar technique to the map C in T2

resulting in the DA diffeomorphism (5.2).

1Georg Friedrich Bernhard Riemann (1826 - 1866) German mathematician.
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5.1.1 A DA diffeomorphism

y

U
x0

(i) Let each small square be a
fundamental domain of T2.

y

x
p0

U

r0
2

r0

(a, b)

z

p1

p2

eu

es

(ii) Enlarged view of the neighbourhood U .

Figure 5.1: Constructing a DA diffeomorphism.

Figure 5.1 illustrates the following analysis. Let p0 be a fixed point of C

corresponding to 0 in R2. Let U be a relatively small neighbourhood of p0

in which (a, b) are the coordinates with respect to the diagonalisation A =

1
µ2+1

[
µ −1
1 µ

] [
µ2 0
0 µ−2

] [
µ 1
−1 µ

]
. Let eu and es be the normalized orthogonal eigen-

vectors in the unstable and stable direction corresponding to the eigenvalues

µ2 and µ−2 respectively. Thus any point (aeu, 0) lies in the expanding unstable

manifold of [0] while the point (0, bes) lies in the contracting stable manifold

of [0] and then C(a, b) = (µ2a, µ−2b) on U . Let z = (a, b) and |z| its length.

For r0 > 0 let the ball Br0(p0) ⊂ U . Let a C∞ bump function be defined by

δ : R2 → [0, 1], δ(z) =


0 if |z| ≥ r0

1 if |z| ≤ r0
2
,

(5.1)

with δ′(z) < 0 if r0
2
< δ(z) < r0. Consider the paired differential equations

ȧ = 0 and ḃ = b δ(z). Let φt be the flow of these differential equations then
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φt(a, b) = (a, φtb(a, b)). So at the point p0, a is constant and ḃ = b⇒ b = p0e
t.

The derivative of the flow at p0 with respect to the basis {eu, es} is Dφtp0
=1 0

0 et

.

Definition 5.6. [48] For a fixed τ > 0, define the map

f : T2 → T2, f = φτ ◦ C, (5.2)

such that eτµ−2 > 1, where µ−2 is the stable eigenvalue of the matrix A which

determines C. The map f is a DA diffeomorphism.

Note that the derivative of f at p0 isDfp0 = Dφτp0
DCp0 =

1 0

0 eτ

µ2 0

0 µ−2

 =

µ2 0

0 eτµ−2

 making p0 a source. Outside of U we have f�T2\U
= C�T2\U

.

5.1.2 A DA attractor

Definition 5.7. For a compact set M , N ⊂ M is a basin of attraction for

f : M →M if f(N) ⊂ Int(N); and Λ ⊂M is an attractor if Λ =
⋂
n∈N f

n(N)

for some basin N .

p0

p1

p2

f(V )

V

Figure 5.2: Developing a DA attractor.
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Figure 5.2 illustrates the following analysis. The DA map (5.2) has three fixed

points. As previously demonstrated f(p0) = p0 is a source. Outside of U ,

f preserves the stable manifold W s(0) while Df preserves the stable tangent

subspace Es for C. Thus there must be two fixed points p1,p2 ∈ W s(0), lying

one on either side of p0. Then p1 and p2 are saddle points which lie at the

intersection of stable and unstable manifolds.

Now let U ⊃ V be a small open neighbourhood of p0 with p1,p2 /∈ V such

that f(V ) ⊃ V . Then V ⊂ W u =
⋃
n∈N f

n(V ) which makes V a basin of

repulsion. Let its complement N := T2 \ V be a basin of attraction for f with

expanding attractor Λ :=
⋂
n∈N f

n(N) of topological dimension one. Moreover,

the restricted map f�Λ is transitive whose periodic points are dense in Λ (see

for example Theorem 8.1 in [48]) and since W u(p0) is an open dense set in T2,

Λ has an empty interior (Def. 5.8).

Definition 5.8. [38] Let A be a subset of a space X. A has empty interior

if every point of A is a limit point of the complement of A, that is, if the

complement of A is dense in X.

Remark 5.9. [53] The attractor Λ and the Denjoy continuum Dα are homeo-

morphic.

Informally we can compare Λ and Dα in the following manner. The unstable

manifold W u(p0) of f is a ‘split open’ version of the unstable manifold W u(0)

of C such that the pair of forward(backward) components of W u(p0) approach

each other asymptotically. This ‘splitting open’ is analogous to ‘inserting in-

tervals’ into S1 during the Denjoy construction. That is, the set W u(p0) cor-

responds to
⋃
n∈Z Int(In) while their complements form Λ and Dα respectively.

In §6.1.2 we illustrate the construction of Λ through a series of diagrams. But

for now our task is to construct the Plykin attractor, see §5.2.
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5.2 The Plykin attractor

We describe below a construction of the Plykin attractor ΛΠ, so named after

R. V. Plykin who first introduced his attractor directly on the 2-sphere [42].

Our approach is to realise the torus as a 2-fold branched covering of the sphere

with four branch points. At each branch point we apply the DA construction

of §5.1.

So to begin the process let an involution be defined by

i : T2 → T2, i

 ¯x
y


 =

¯−x
−y

, (mod 1). (5.3)

Label the four points

{
b0 =

¯0

0

, b1 =

¯0

1
2

, b2 =

¯1
2

1
2

, b3 =

¯1
2

0

} ⊂ T2.

Proposition 5.10. The involution satisfies i(i(x̄)) = x̄, ∀ x̄ ∈ T2. Each bj ∈

T2, j = 0, . . . , 3, is fixed by i.

Proof. Let x̄ =

¯x
y

 ∈ T2 then i(x̄) =

¯−x
−y

, i(i(x̄)) = i

 ¯−x
−y


 =

¯x
y

 =

x̄. Let ε, δ ∈ {0, 1/2} and let

ε
δ

 ∈ R2 then

ε
δ

 =

−ε
−δ

 (mod 1). So for

¯ε
δ

 ∈ T2, i

 ¯ε
δ


 =

¯−ε
−δ

 =

¯ε
δ

. Thus i(bj) = bj, j = 0, . . . , 3.

Let

¯x
y

 ∼ ¯1− x

1− y

 be the equivalence relation ∼ which is induced by i on T2.

Definition 5.11. The torus T2 is a 2-fold branched covering of the 2-sphere S2,

with branch points bj, j = 0, . . . , 3, induced by a quotient map Π : T2 → T2/i,

where i is the involution defined above.
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1
2

1

1

Π

Figure 5.3: A sketch of T2/i.

Then T2/i ∼= S2. Observe that the construction satisfies the Euler characteristic

e(T2) = k ·e(S2)−δ = 2·2−4 = 0 and is illustrated in Figure 5.3. A comparable

illustration of the construction is given in §3.3 of [4]. Now consider the DA map

(5.2) which is i-invariant since C is orientation-preserving and on T2, i behaves

like the rotation R′ on S ′2. Further, A3bj = bj ⇒ C3(bj) = bj, ∀ 0 ≤ j ≤ 3.

Thus C3 preserves the four fixed points of i. Now repeat the construction of the

DA diffeomorphism described in §5.1.1 but substitute C3 for C which endows

(5.4) with four fixed repelling points. So let the DA diffeomorphism induced

by the covering map Π be defined by

fΠ : S2 → S2, fΠ = φτ ◦ C3, (5.4)

such that for a fixed τ > 0, eτµ−6 > 1. To form an attractor, repeat the

process of §5.1.2 at each of the four points by setting p0j to correspond with bj,

0 ≤ j ≤ 3. Put simultaneously p0j , 0 ≤ j ≤ 3, in its small open neighbourhood

Vj ⊂ (T2 \ Λ)/i, Vj ∩ Vk = ∅, j 6= k. Then for 0 ≤ j ≤ 3, Vj ⊂ W u(p0j)

and W u(p0j) =
⋃
n∈N f

n
Π(Vj) so that

⋃̇3

j=0Vj ⊂
⋃
n∈N f

n
Π(
⋃̇3

j=0Vj) is a set of

four basins of repulsion for fΠ. Let its complement be NΠ := (T2 \
⋃̇3

j=0Vj)/i
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which defines an attracting region for fΠ. Then ΛΠ :=
⋂
n∈N f

n
Π(NΠ) defines

the Plykin attractor.

Figure 5.4 is a template of a regular tetrahedron which serves as a Euclidean

representation for the Plykin attractor ΛΠ. The faces, embossed with the (com-

puter generated) orbits induced by the four repelling fixed points, can be cut

and pasted to form a tangible model of ΛΠ. Explanatory details and a picture

of one face are given in [18]. On page 165 of this document we conclude that

the symmetry of a regular tetrahedron reflects the structural symmetry of the

Plykin attractor, made precise in Theorem 8.18.

Figure 5.4: A Plykin template.
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Chapter 6

Substitution tiling spaces on a

torus

We loosely say that a torus has n hole(s) when a hyperbolic attractor on the

torus has a basin of attraction resulting from a DA diffeomorphism with n

repelling fixed point(s). So this extensive chapter divides naturally into two

parts, §6.1 and §6.2, which consider tori with one and four holes respectively.

In §6.1.1 we use known methods to analyse the construction of the attractor Λ

with one complementary domain. We introduce branched 1-manifolds which in

§6.1.3 we reduce to elementary branched 1-manifolds which represent solenoids

as inverse limit spaces, for example Σ2 = lim
←−

(M2, g2). This results in the

substitution tiling space Tγ which is homeomorphic to Λ (Theorem 6.20).

On page 113 of §6.2.1, after lifting the planar Plykin attractor ΛP to the torus,

we create a combinatorial method to derive an elementary branched 1-manifold

K∗, called a rose, and the solenoid Ω = lim
←−

(K∗, r∗). Ultimately we show that

the lifted Plykin attractor Λ̃Π is homeomorphic to the tiling space Tω2 (Theorem

6.32).
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6.1 A torus with one hole

6.1.1 The Cat complex

We describe the construction of a complex K by a method outlined in [8]. Con-

sider a substitution tiling induced by σ : A → A∗ (see §1.3.1). The PF eigen-

value λσ and left eigenvector vσ = [v1, . . . , vj] determines 0 < ε = min{ va
2λσ
}a∈A

then a complex K = Kσ has three main ingredients :

• a collection of 1-cells representing the letters of A. We call a ∈ A a tile

which has length l(a) = va = [0, vi] where vi, 1 ≤ i ≤ j, is a component

in the eigenvector vσ. Let a cell ea := [ε, va − ε]× {a} be called the core

of a tile where l(ea) = l(a)− 2ε.

• a collection of 1-cells representing the allowed transitions between letters.

Let the language L = Lσ be the set of finite allowed words in σ then for

words of length two ab ∈ L let a cell eab := [−ε, ε]× {ab} be called a tab

with length l(eab) = 2ε. Call the midpoint of eab the vertex a.b.

• identifications. For all a, b ∈ A, (va − ε, a) ∼ (−ε, ab) and (ε, b) ∼ (ε, ab).

The diagram in Example 6.1 below and Figure 6.1 may clarify the composition

of these three ingredients.

Example 6.1. Recall the Cat substitution (1.9): γ(0) = 010 and γ(1) =

01, A = {0, 1}, j = 2. The word 11 is not in Lγ. A typical subword is

. . . 0100101 . . . which gives the annotated diagram below (not to scale):

0.1

↓

vertex

↓
1.0

↓
0.0

| | | | | | || | | | | | |e0 e1 e0 e0 e1 e0 e1

core

tab
e01

−ε, ε

tile

0
tile

1
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Definition 6.2. The complex K =
[ (⋃

a∈A ea
)
∪
(⋃

ab∈L eab
) ]
/ ∼ and its

subcomplex Ks =
⋃
ab∈L eab/ ∼.

The calculations associated to the complex Kγ, derived from the substitution

γ, with subcomplex Ks (dashed), (Fig. 6.1) are the following. The eigenvalue

µ2 has left eigenvector vu = [µ, 1] so let l(0) = v0 = µ and l(1) = v1 = 1

then ε = min
{

µ
2µ2 ,

1
2µ2

}
= 1

2µ2 . The cores: e0 = [ 1
2µ2 , µ − 1

2µ2 ] × {0} and e1 =

[ 1
2µ2 , 1− 1

2µ2 ]×{1}. The tabs: e00 = [− 1
2µ2 ,

1
2µ2 ]×{00}, e01 = [− 1

2µ2 ,
1

2µ2 ]×{01}

and e10 = [− 1
2µ2 ,

1
2µ2 ]×{10}. The identifications: firstly, the right end point of

a core is identified with the left end point of a tab: (µ − 1
2µ2 , 0) ∼ (− 1

2µ2 , 00),

(µ − 1
2µ2 , 0) ∼ (− 1

2µ2 , 01), (1 − 1
2µ2 , 1) ∼ (− 1

2µ2 , 10); then the left end point

of a core is identified with the right end point of a tab: ( 1
2µ2 , 0) ∼ ( 1

2µ2 , 00),

( 1
2µ2 , 0) ∼ ( 1

2µ2 , 10), ( 1
2µ2 , 1) ∼ ( 1

2µ2 , 01).

| |

| |

e01

e0

e10

e1e00

Figure 6.1: The Cat complex Kγ.

Definition 6.3. Let g : K → K, KN = Π∞i=1K, then the inverse limit space is

given by

K∞ = lim
←−
{(K, g)} = {(xi) ∈ KN | ∀i ∈ N, g(xi+1) = xi}.

Definition 6.4. Let the shift be σ : K∞ → K∞, (xi) 7→ (yi); yi = xi+1, that

is (x1, x2, . . .) 7→ (x2, x3, . . .). Then the inverse σ−1 : K∞ → K∞, (xi) 7→

(yi); yi = xi−1 and for i ≥ 2, y1 = g(y2) = g(x1). That is (x1, x2, . . .) 7→

(g(x1), x1, x2, . . .).
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The shift σ is a homeomorphism because K∞ is compact and since σ is con-

tinuous on its coordinates, σ−1 is continuous. Denote a solenoid as the inverse

limit Σ = K
g← K

g← K
g← . . . and the shift map σ : Σ → Σ then with the

terminology of [54] call g : K → K a presentation of (Σ, σ). We call g a bonding

map of the inverse limit.

From tiling space to complex

Consider a substitution tiling derived from the Cat substitution γ, T = {Ti}i∈Z ∈

Tγ, t ∈ R and a, b, c ∈ A, such that 0 ∈ T0 = [0, va] − t, T−1 = [0, vb] − t − vb,

and T1 = [0, vc]− t+ va. Then let a continuous surjection p be defined by

p : Tγ → Kγ, p(T ) =


[(t, a)] if ε ≤ t ≤ va − ε,

[(t, ba)] if 0 ≤ t ≤ ε,

[(t− va, ac)] if va − ε ≤ t ≤ va.

(6.1)

Now set T to be the fixed tiling where the origin 0 ∈ T0 \ T−1 is at the vertex

0.0 ⇒ t = 0. Then T0 = [0, v0] = [0, µ], T−1 = [0, v0] − v0 = [0, µ] − µ and

T1 = [0, v1] + v0 = [0, 1] + µ. We now relabel the cells of Kγ with the set

E = {a, . . . , h}, defined below, in order to distinguish the dashed negative and

positive tabs and the two core tiles: b is blue and e is red (Fig. 6.2).

b e

c d

g f

0.0

1.0

0.1

h

a

Figure 6.2: Labelled cells of Kγ.
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In accordance with the definition of p(T ) the cells are defined by

a := {[(t, 00)] | 0 ≤ t ≤ ε} e := {[(t, 1)] | ε ≤ t ≤ v1 − ε}

b := {[(t, 0)] | ε ≤ t ≤ v0 − ε} f := {[(t− v1, 10)] | v1 − ε ≤ t ≤ v1}

c := {[(t− v0, 01)] | v0 − ε ≤ t ≤ v0} g := {[(t, 10)] | 0 ≤ t ≤ ε}

d := {[(t, 01)] | 0 ≤ t ≤ ε} h := {[(t− v0, 00)] | v0 − ε ≤ t ≤ v0}

The self-map c (6.2) is a piecewise linear map determined by the parameter

0 ≤ t ≤ va, a ∈ A, and the scale factor µ2 > 0 so that ε = 1
2µ2 (see Ex. 6.1).

Cell h a b c d e f g b

Lower cell
limit, t

−ε 0 ε µ− ε µ µ+ ε µ+ 1− ε µ+ 1 µ+ 1 + ε

c(t) = µ2t −1
2

0 1
2

µ3 − 1
2

µ3 µ3 + 1
2

µ3 + µ2 − 1
2

µ3 + µ2 µ3 + µ2 + 1
2

Table 6.1: Values for the plot c(t).

æ æ æ æ æ æ æ æ æ

b h a b c d e f g b h a b c d e f g b

0 2 4 6 8
t

Figure 6.3: A plot of c(t) = µ2t.

The mappings for (6.2) are derived from the values shown in Table 6.1. But

in defining the map c we remark that for i, i′ ∈ E , c(i) is not necessarily onto

the first or last cell of its image block i . . . i′ which is clearly seen in Figure 6.3
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which is a plot c(t) = µ2t using [55]. So we use the notation io and oi to indicate

partial transition through a cell. A ‘complete’ cell i = iooi, i ∈ E .

c : Kγ → Kγ,



a 7→ abo e 7→ obcdeo

b 7→ obcdefgbo f 7→ oef

c 7→ obh g 7→ gbo

d 7→ abo h 7→ obh

(6.2)

We repeat Figure 6.2 in Figure 6.4 for ease of comparison. The image cells of

(i) are shown in (ii) (not to scale) where for example the original blue core cell

b of (i) is replaced by a representation of its image c(b) = obcdefgbo which is

blue, dashed, red, dashed, blue. The two fixed points of map c are 0.0 = h ∩ a

and 1.0 = f ∩ g while c(0.1) = c(c ∩ d) = (0.0).

(i)

b e

c d

g f

0.0

1.0

0.1

h

a

7→
c

(ii)

b

b b

e

e

a

h

f g h a

c

d

g f

c

d
0.0

0.1

1.0 0.0

0.1

1.0

Figure 6.4: The mapping of cells by c : Kγ → Kγ.

Consider the Cat tiling homeomorphism Fγ (1.13) where p◦Fγ = c◦p as shown

in the commuting diagram below. Let T ∈ Tγ then significantly the tiling orbit

t.T = 0.T so Fγ(0.T ) = 0.T = T which means that T is fixed by Fγ.

Tγ
p

��

Tγ
Fγoo

p

��
Kγ Kγ

coo

Let the fixed point at the tiling origin be denoted by x0 = 0.0 then it follows
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that Fγ(x0) = x0 ⇒ c(p(x0)) = p(x0). The map c : Kγ → Kγ is a presentation

of the inverse limit space Γ0 = Kγ
c← Kγ

c← Kγ
c← . . . and the shift map

γ : Γ0 → Γ0 where γ−1(x1, x2, . . .) = (c(x1), x1, x2, . . .).

Remark 6.5. Γ0 = lim
←−

(Kγ, c) ∼= Tγ (see for example Lemma 2 in [8]).

6.1.2 The Cat branched 1-manifold

Definition 6.6. A homeomorphism h : (X, d)→ (X, d) is expansive if ∃ δ > 0

such that ∀x, y ∈ X (x 6= y)∃n ∈ Z such that d(hn(x), hn(y)) > δ.

Remark 6.7. The restriction of a diffeomorphism to a hyperbolic set is expan-

sive (see for example Corollary 10.1.10 in [28]).

A Markov partition

Definition 6.8. [35] Let (M,φ) be an invertible dynamical system. A topo-

logical partition P = {P0, P1, . . . , Pr−1} of M gives a symbolic representation

of (M,φ) if for every x in the shift space XP,φ the intersection
⋂∞
n=0 D̄n(x)

consists of exactly one point, where D̄n(x) are the closures of the sets Dn(x) =⋂n
k=−n φ

−k(Pxk) ⊆ M . We call P a Markov partition for (M,φ) if P gives a

symbolic representation of (M,φ) and furthermore XP,φ is a shift of finite type.

Let P be a Markov partition (Fig. 6.5) which gives a symbolic representation

of the invertible dynamical system (1.10). Steps in the construction of P are

shown in Figure 6.6 and for the commentary we follow [35]. Firstly consider

the natural quotient map q : R2 → T2, q((s, t)) = (s, t) + Z2. Let Ri = {R1 =

A,R2,= B,R3 = C} be a set of three open rectangles in the plane such that

the closures R̄i of q(Ri), i = 1, 2, 3, cover the torus. The boundaries of the

Ri, i = 1, 2, 3, consist of segments parallel to the contracting and expanding

eigenvectors of the matrix A, vs = [−1, µ] and vu = [µ, 1] respectively. That is,
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the sides of the rectangles run along leaves of the stable and unstable foliations

of the torus. As Ri covers T2 it forms a topological partition of the torus so

that we may denote T2 as the union of the closed rectangles
⋃3
i=1 R̄i with the

edges identified using q. The colour coding of Figure 6.6 shows coloured line

segments to represent the stable leaves of the foliation and orthogonal black

line segments to represent the unstable leaves.

A A

A A

B B

C

C

O

Figure 6.5: A Markov partition P over 4 fundamental domains of T2.

The intersection property of P requires that C(Ri) ∩ Rj, i, j = 1, 2, 3, is a

single connected strip parallel to vu which cuts completely through Rj in the

unstable direction and does not contain an expanding boundary segment of

Rj. We derive the images of C(Ri), i = 1, 2, 3, by using its matrix A as a

linear transformation A : R2 → R2 and computing A(Ri) for each i = 1, 2, 3.

These planar images with good intersections are shown in Figure 6.7. Note

that since the eigenvalue µ−2 < 1, a segment S contained in the stable foliation

satisfiesA(S) ⊂ S while a segment U contained in the unstable foliation satisfies

A(U) ⊃ U due to the eigenvalue µ2 > 1.
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R2

C

B

B

AA

O

vu = [µ, 1]

vs = [−1, µ]

↓ q(i)

T2

C

B

A

O

(ii)

Figure 6.6: Topological discs in the plane and on the torus.

93



R2

A(B)

B

C

B A(C)

C

A

C

A(C)

C

A

C

A(B)

B

B

C

B

A(A)

O

Figure 6.7: The image of P in R2.

c1

c2

B

B
B

C

C

AA

split

split
split

p1

p2

c1

c2

c1
c2

Figure 6.8: Splitting open the unstable manifold.
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C

A

B

O

f(A)

f(B)

f(C)

T2

split

c1

c2

Figure 6.9: The attractor Λ =
⋂
n∈N f

n(N).
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A geometric and topological model of the attractor Λ

In Figure 5.2 we saw how the repelling action of the source p0, induced by the

DA diffeomorphism f (5.2), ‘split open’ the unstable manifold of the origin.

Now observe Figure 6.8 which takes an extract from the partition P and repli-

cates the repelling effect of the map f to form a pair of (forward) asymptotic

path-components labelled c1 and c2 of the attractor Λ.

The next diagram of the series Figure 6.9 is modelled on Figure 6.6. This

Figure 6.9 illustrates the hyperbolic structure of the map f which simultane-

ously stretches the discs A,B and C across the leaves of the stable foliation

while contracting these leaves in the stable direction. Also seen is f(N) ⊂ N

illustrating the attracting set Λ.

Definition 6.9. Let M be a branched 1-manifold consisting of a finite set

E = {e1, . . . , ek} of 1-cells and a finite set of vertices V and where each e ∈ E

joins vi, vj ∈ V such that i 6= j for at least one pair of vertices.

Any two points on the same leaf of the foliation of T2 behave identically under

iteration by f which also preserves the fixed points p1 and p2. So in order

to describe the dynamics of f globally, consider the behaviour of the leaves

under f . To that end let the equivalence relation ∼ identify q with p if q lies in

the component compp(W
s(p, f) \ V ) then q ∼ p collapses the stable manifold

of p to a point, leaving the expanding direction intact. Let q : N → M0

denote the quotient map and denote the quotient space by the branched 1-

manifold M0 := {compp(W
s(p, f) \ V )/∼ | p ∈ N} (Fig. 6.10 (iii)). Note that

M0 contains the unstable manifolds of pi=1,2 in the complement of V .
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C

B

AO

(i)

 

C

A

B

(ii)

 
C

A

B

x0y0

(iii) M0

Figure 6.10: The Cat branched 1-manifold M0.

In Figure 6.10, (i) is a skeleton of the expanding leaves of the foliation which

reduces to diagram (ii) which in turn leads to a θ-space in (iii). Let this θ-

space beM0 whose induced symbolic map (6.3) will model the dynamics of f .

Label the set of 1-cells E = {A,B,C} ⊂ M0 and let the two branch points be

x0, y0 ∈M0 which correspond to p1,p2 ∈ T2. Then define

g0 :M0 →M0,


A 7→ B,

B 7→ BCB,

C 7→ CAC.

(6.3)

Set the length of the three 1-cells ek ∈ E to be |A| = 1 and |C| = µ, which

are the components of the eigenvector vu, and set |B| = µ2. Then these

assigned values are consistent with the map g0, with a stretch factor of µ2,

whilst satisfying the Fibonacci relation µ2 − µ − 1 = 0. That is g0(|A|) =

µ2 = |B|; g0(|B|) = µ4 = (1 + µ)2 = µ2 + µ + µ2 = |B| + |C| + |B| and

g0(|C|) = µ3 = µ(1 + µ) = µ + 1 + µ = |C| + |A| + |C|. The two points x0
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and y0 are fixed by g0. Note that the language of two-letter words in g0 is

{AC,BC,CA,CB}. Set the origin of M0 to be x0 at the vertex C.B such

that x0 ∈ B \ C. Let p̄ : Λ → M0 be the restriction of q to Λ. Then by the

parameterisation detailed above, the calculated values in Table 6.2 generate

the plot g0(t) = µ2t (Fig. 6.11).

Cell B C B C A C

Lower cell
limit, t

0 µ2 µ2 + µ 2µ2 + µ 2µ2 + 2µ 2µ2 + 2µ+ 1

= 1 + µ = 1 + 2µ = 2 + 3µ = 2 + 4µ = 3 + 4µ

g0(t) = µ2t 0 µ4 µ4 + µ3 2µ4 + µ3 2µ4 + 2µ3 2µ4 + 2µ3 + µ2

= 2 + 3µ = 3 + 5µ = 5 + 8µ = 6 + 10µ = 7 + 11µ

Table 6.2: Values for the plot g0(t).

æ æ æ æ æ æ

B C B C A C B C B C A C B

0 5 10 15 20 25
t

Figure 6.11: A plot of g0(t) = µ2(t).

The maps satisfy p̄ ◦ f = g0 ◦ p̄ shown in the commuting diagram below.

Λ

p̄

��

Λ
foo

p̄

��
M0 M0

g0oo

98



The map g0 :M0 →M0 is a presentation of the inverse limit space Σ0 =M0
g0←

M0
g0← M0

g0← . . . and the shift map σ0 : Σ0 → Σ0 where σ−1
0 (x1, x2, . . .) =

(g0(x1), x1, x2, . . .).

Remark 6.10. Σ0 = lim
←−

(M0, g0) ∼= Λ.

6.1.3 Elementary branched 1-manifolds

Definition 6.11. [54] An elementary branched 1-manifoldM is one which is

topologically a wedge of circles with a single vertex b and where the 1-cells form

1-cycles which may or may not be orientable.

Definition 6.12. [32] An immersion of a manifold M into a manifold N is a

differentiable map f : M → V onto a subset of N whose differential is injective

everywhere.

Let K be a compact branched 1-manifold and g : K → K an immersion

then Axioms 1, 2, 3◦ (referred to below) and listed by Williams in [54], serve

as hypotheses for his Theorem 5.2 which states the existence of an elementary

branched 1-manifold. In this section we construct two elementary branched 1-

manifolds: K3 derived from the complex Kγ andM2 derived from the branched

1-manifoldM0. We recall that Kγ is derived from the Cat substitution map γ

whileM2 is derived from the Cat toral map C where both maps are associated

to the matrix A = [2 1
1 1]. Our construction follows the strategy given in the

proof of Lemma 5.3 in [54].

From Kγ to K3.

To validate the construction, we show that the presentation c : Kγ → Kγ of

(Γ0, γ) satisfies Axioms 1, 2 and 3◦ of [54]:

1. The map c is an expansion with stretch factor µ2.
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2. Let Ω(c) denote the non-wandering set of c and let point p ∈ U ⊂ Kγ. The

map c is induced by the primitive substitution map γ. By the periodic property

of primitivity, ∀n0 ∈ N, ∃n ∈ Z, |n| > n0 such that cn(p) ∈ U ⇒ cn(U)∩U 6= ∅.

Thus Ω(c) = Kγ.

3◦ (equivalent to the flattening axiom 2 in [57]). Denote the branch points of

Kγ by b1 = a∩ b∩ g and b2 = h∩ b∩ c and let b1, b2 lie in open neighbourhoods

U1, U2 respectively. Observe that ∀n ∈ Z, n 6= 0 and i = 1, 2, cn(bi) ∈ cn(Ui)

which is homeomorphic to an open interval (−δ, δ).

I1

I0

I2

a

h
b e

c d

g f
x1

x0

x2

· · ·

Kγ embedded circles

(i) (ii) (iii)

x0 ∼ x1 ∼ x2 = b

b

K1

b1

b2

a2a1

h1 h2

b  

K3

k0

k1 k3

k2

b

Figure 6.12: Stages of the construction from Kγ to K3.

The construction of K3 is illustrated with a sequence of topological diagrams

in Figure 6.12. Let a set of three open 1-cells in Kγ be I0 ⊂ h ∪ a, I1 ⊂ b

and I2 ⊂ c ∪ d ∪ e ∪ f ∪ g. Then there exist three embedded circles labelled

(i), (ii) and (iii) in Kγ, each of which contains some Ii, i = 0, 1, 2, namely

(i) h ∪ a ∪ b ⊃ I0 ∪ I1, (ii) a ∪ h ∪ c ∪ d ∪ e ∪ f ∪ g ⊃ I0 ∪ I2 and (iii)

b ∪ c ∪ d ∪ e ∪ f ∪ g ⊃ I1 ∪ I2. It follows that for n = 2, cn(Ii) ⊃ I0, i = 0, 1, 2.

Choose the fixed point x0 = 0.0 ∈ I0 with period s = 1 and let m = ns = 2

then c2(x0) = x0 and for each i = 0, 1, 2, x0 ∈ c2(Ii) so that c−2(x0) ∩ Ii 6= ∅.

That is, each embedded circle in Kγ contains a point of c−2(x0).
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Next let two further points be x1 = 1
µ
∈ b and x2 = µ = c.d. Then c2(x1) =

c(x2) = x0 = 0.0, that is [( 1
µ
, 0)] 7→ [(µ, 01)] 7→ [(µ3, 00)] while c2(x2) = c(x0) =

x0, that is [(µ, 01)] 7→ [(µ3, 00)] 7→ [(µ5, 00)]. Further, each circle (i), (ii) and

(iii) intersects the set {x0, x1, x2}. Now identify the points x0, x1, x2 to a single

point b which forms a new complex K1 with b a point of high ramification.

Denote the induced map on K1 by c1 which satisfies Axioms 1, 2, 3 for all points

in K1 with the exception of the point b. At this point, c1 satisfies Axioms 1, 2

but only the weaker Axiom 3◦ since it takes more than one iteration of c1 to

become ‘locally flat’ at b. Now we have reached the result that each embedded

circle of K1 contains b.

To complete the construction we need to remove the original two branch points

of Kγ which remain and are labelled b1 and b2 (see diagram K1). To do so

we use twice the ‘move’ number (2) in §5.5 of [54]. This opens up the stem

a = [b, a1] ∩ [b, a2] which removes the branch point b1 to form a new complex

K2 then repeating the move on the stem h = [b, h1]∩ [b, h2] removes b2. This is

the sought after elementary branched 1-manifold K3 which is a wedge of four

circles labelled k0, . . . , k3 with a common vertex b. In forming the sequence of

complexes, c : Kγ → Kγ passes to a shift equivalent ci : Ki → Ki thereafter to

a shift equivalent ci+1 : Ki+1 → Ki+1, i = 1, 2.

Definition 6.13. [54] If g : M →M satisfies Axioms 1, 2, 3◦, g is called an

elementary presentation of the solenoid M g← M g← M g← . . . and the shift

map σ.

The map c3 : K3 → K3 is an elementary presentation of the connected solenoid

with shift map (Γ3, γ̃
2) (Theorem 5.2 in [54]).

101



From M0 to M2.

Firstly we verify that the presentation g0 : M0 → M0 of (Σ0, σ0) satisfies

Axioms 1, 2 and 3◦ of [54].

1. The map g0 is expansive with stretch factor µ2. (The quotient space M0

retains only the expanding direction of the unstable manifolds.)

2. Let Ω(g0) denote the non-wandering set of g0. The map g0 models the

dynamics of the DA map f which by definition admits a non-wandering domain.

Thus Ω(g0) =M0.

3◦ (equivalent to the flattening axiom 2 in [57]). Consider the branch points

x0, y0 = A ∩ C ∩ B ∈ M0 and let x0, y0 lie in open neighbourhoods Ux, Uy

respectively. Observe that ∀n ∈ Z, n 6= 0, gn0 (A ∩ C ∩ B) 6= A ∩ C ∩ B thus

∀n ∈ Z, n 6= 0, gn0 (x0) ∈ gn0 (Ux), g
n
0 (y0) ∈ gn0 (Uy) such that gn0 (Ux), g

n
0 (Uy) are

homeomorphic to an open interval (−δ, δ).

Let three open 1-cells in the θ-space M0 be I0 ⊂ C ∪ B, I1 ⊂ A and I2 ⊂ B.

Then form three embedded circles in M0, (i) B ∪ C ⊃ I0 (ii) A ∪ C ⊃ I1 and

(iii) A ∪ B ⊃ I1 ∪ I2. Observe that for n = 2, g2
0(BC) ⊃ I0 , g2

0(A) ⊃ I0 and

g2
0(B) ⊃ I0 so that g2

0(Ii) ⊃ I0, i = 0, 1, 2. Now put the fixed point x0 = [(0, B)]

with period s = 1 in I0, then m = ns = 2. It follows that g2
0(x0) = x0 and that

for i = 0, 1, 2, x0 ∈ g2
0(Ii)⇒ g2

0(x0) ∩ Ii 6= ∅. Thus each embedded circle in M0

contains a point of g−2
0 (x0).

Next, let x1 = 1
µ
∈ A and x2 = µ ∈ B then g2

0(x1) = g0(x2) = C.B since

[( 1
µ
, A)] 7→ [(µ,B)] 7→ [(µ3, CB)] and g2

0(x2) = g0(x0) = (x0). So g2
0(xi=1,2) = x0

and each embedded circle intersects {x0, x1, x2}. Identify the points x0, x1, x2

to a single point b then M1 is a new branched 1-manifold with two remaining

branch points x0 ∼ b and y0. The shift g1 satisfies Axioms 1, 2, 3 while g1(b)

satisfies Axioms 1, 2, 3◦. Then each embedded circle of M1 contains b.
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Finally, label two points either side of y0 as y1 and y2. Then use the ‘move’

number (2) in [54] to open up the stem y = [b, y1] ∩ [b, y2] which removes

the branch point y0. The branch point b remains the single vertex of the

wedge of circles labelled m0, . . . ,m3 which forms the elementary branched 1-

manifold M2 (Fig. 6.13). The map gi+1 :Mi+1 →Mi+1 is shift equivalent to

gi :Mi →Mi, 0 ≤ i ≤ 2.

M2

m0

m1 m3

m2

b

Figure 6.13: The elementary branched 1-manifold M2.

The map g2 : M2 → M2 is an elementary presentation of the connected

solenoid with shift map (Σ2, σ
2
0) (Theorem 5.2 in [54]).

6.1.4 Rose maps

Recall from §1.2 a primitive substitution σ with card(A) = j, Mσ with PF

eigenvalue λσ and left eigenvector [v1, . . . , vj] then from §1.3 its tiling space Tσ

with associated prototiles Pj from set P where length |Pj| = vj.

Definition 6.14. [7] Let K be an elementary branched 1-manifold , also called

a rose, which consists of a wedge of j oriented circles k0, . . . , kj−1 called petals,

each with a circumference kj−1 = vj. Then let rσ : K → K be a rose map which

is a linear expansion with stretch factor λσ and which adheres to the ordered

pattern of the substitution σ.
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Let the map c3 : K3 → K3 now be denoted by rγ2 : K3 → K3 in order to

distinguish it as belonging to the family of rose maps. The petals k0, . . . , k3 are

those of the rose K3 and a, . . . , h ∈ E ⊂ Kγ. Then k0 ⊂ a ∪ b, k1 ⊂ b ∪ c ∪ h,

k2 ⊂ d∪e and k3 ⊂ e∪f ∪g∪b. The petals have circumferences |k0| = |k2| = 1
µ

and |k1| = |k3| = 1. It follows that
∑3

j=0 |kj| = 2µ = |K3|. Table 6.3 shows the

values used to derive the map (6.4) and by inspection of the table, we see that

for the branch point b = 0.0 ∈ K3, rγ2(kj), j = 0, . . . , 3 always returns to b.

Petal k0 k1 k2 k3

t ∈ [kj , kj+1]

[
0, 1

µ

] [
1
µ
, 1 + 1

µ

] [
1 + 1

µ
, 1 + 2

µ

] [
1 + 2

µ
, 2 + 2

µ

]

rγ2(t) = µ4t [0, µ3] [µ3, µ4 + µ3] [µ4 + µ3, µ4 + 2µ3] [µ4 + 2µ3, 2µ4 + 2µ3]

= [0, 2µ+ 1] = [2µ+ 1, 5µ+ 3] = [5µ+ 3, 7µ+ 4] = [7µ+ 4, 10µ+ 6]

origin b = 0.0 =[0.0,0.0] =[0.0,0.0] =[0.0,0.0] =[0.0,0.0]

Table 6.3: Values for the rose map rγ2 .

rγ2 : K3 → K3,



k0 7→ k0k1k2k3k1,

k1 7→ k0k1k2k3k1k2k3k1

k2 7→ k0k1k2k3k1,

k3 7→ k0k1k2k3k1k2k3k1.

(6.4)

That is, rγ2(k0) = rγ2(k2) and rγ2(k1) = rγ2(k3).

Definition 6.15. [8] For a substitution σ : A → A∗ with precisely one periodic,

hence fixed bi-infinite word, σ is called proper if and only if there are b, e ∈ A

such that for all sufficiently large n and all i ∈ A, σn(i) = b . . . e.

Let a proper substitution γ̃2 be defined over A = {0, 1, 2, 3} which is the set of

subscripts of ki ∈ K3. Then ∀ i ∈ A let the word γ̃2(i) have the same pattern

as rγ2(ki) in K3.

104



γ̃2 : A → A∗,



0 7→ 01231

1 7→ 01231231

2 7→ 01231

3 7→ 01231231.

(6.5)

Then γ̃2(0) = γ̃2(2) and γ̃2(1) = γ̃2(3). The incidence matrixMγ̃2 =


1 1 1 1

2 3 2 3

1 2 1 2

1 2 1 2


has PF eigenvalue µ4 with left eigenvector

[
1
µ
, 1, 1

µ
, 1
]
.

Definition 6.16. [3] Consider two tilings T, T ′ ∈ (Tσ, Fσ). Forcing the border

means that there is a fixed positive integer N such that for any tile T̄ contained

in T and T ′, FN
σ (T ) and FN

σ (T ′) coincide on all T̄ and on all tiles that meet

FN
σ (T̄ ).

Remark 6.17. Since γ̃2 is proper the substitution forces the border [8]. Thus

the tiling space Tγ̃2 is homeomorphic to lim
←−

(K3, rγ2) (Theorem 4.3 in [3]). We

know from Remark 6.5 that lim
←−

(Kγ, c) is homeomorphic to Tγ. Although γ is not

proper, lim
←−

(Kγ, c) is homeomorphic to a quotient of Tγ, namely lim
←−

(K3, rγ2).

Thus Tγ̃2
∼= Tγ (Theorem 3.10 in [7]).

Consider again the elementary presentation g2 : M2 → M2 which we now

define by a rose map rσ2
0

in (6.6) derived from the following criteria. Let the

petals of M2 have circumferences |m0| = |m2| = 1
µ

and |m1| = |m3| = 1. The

expanding map (6.3) gives g2
0(B) = BCBCACBCB so position the origin at

the fixed point b ∼ x0 = C.B, that is at the branch point b ∈ M2. Now apply

the stretch factor µ4 to the circumference of each petal leading to the entries

in Table 6.4.
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Petal m0 m1 m2 m3

t ∈ [mj ,mj+1]

[
0, 1

µ

] [
1
µ
, 1 + 1

µ

] [
1 + 1

µ
, 1 + 2

µ

] [
1 + 2

µ
, 2 + 2

µ

]

rσ2
0
(t) = µ4t [0, µ3] [µ3, µ4 + µ3] [µ4 + µ3, µ4 + 2µ3] [µ4 + 2µ3, 2µ4 + 2µ3]

= [0, 2µ+ 1] = [2µ+ 1, 5µ+ 3] = [5µ+ 3, 7µ+ 4] = [7µ+ 4, 10µ+ 6]

origin b = C.B = [C.B,C.B] = [C.B,C.B] = [C.B,C.B] = [C.B,C.B]

Table 6.4: Values for the rose map rσ2
0
.

Observe that the returns to the origin b = C.B are identically spaced to the

returns to the origin 0.0 under the map rγ2 shown in Table 6.3.

rσ2
0

:M2 →M2,



m0 7→ m0m1m2m3m1,

m1 7→ m0m1m2m3m1m2m3m1,

m2 7→ m0m1m2m3m1,

m3 7→ m0m1m2m3m1m2m3m1.

(6.6)

That is, rσ2
0
(m0) = rσ2

0
(m2) and rσ2

0
(m1) = rσ2

0
(m3).

Similar to forming the proper substitution (6.5), let a proper substitution be

defined over A = {0, 1, 2, 3} by

σ2
0 : A → A∗,



0 7→ 01231

1 7→ 01231231

2 7→ 01231

3 7→ 01231231.

(6.7)

Then σ2
0(0) = σ2

0(2) and σ2
0(1) = σ2

0(3).

Since the substitutions σ2
0 and γ̃2 have identical definitions, Mσ2

0
= Mγ̃2 .
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6.1.5 An attracting tiling space

Define a homeomorphism

ρ : K3 →M2, ρ(kj) = mj, 0 ≤ j ≤ 3. (6.8)

Proposition 6.18. The rose maps rγ2 : K3 → K3 and rσ2
0

: M2 → M2 are

topologically conjugate such that the maps commute ρ ◦ rγ2 = rσ2
0
◦ ρ.

K3

ρ

��

rγ2
// K3

ρ

��
M2

r
σ2

0 //M2

Proof. Let kj ∈ K3, 0 ≤ j ≤ 3, be an oriented petal parametrised by its

circumference with the origin at the single vertex b ∈ K3. A petal mj ∈

M2, 0 ≤ j ≤ 3, has identical properties. By construction, ∀ j, |kj| = |mj|.

So the continuous bijection ρ : K3 → M2 in a compact metric space has a

continuous inverse and is therefore a homeomorphism. Thus K3 and M2 are

isomorphic roses with corresponding proper substitutions γ̃2 and σ2
0 over A.

With respect to commutativity, consider kj ∈ K3, j = 0, 2, where ρ ◦ rγ2(kj) =

ρ(k0k1k2k3k1) = m0m1m2m3m1 while rσ2
0
◦ ρ(kj) = rσ2

0
(mj) = m0m1m2m3m1.

Then for j = 1, 3, ρ ◦ rγ2(kj) = ρ(k0k1k2k3k1k2k3k1) = m0m1m2m3m1m2m3m1

while rσ2
0
◦ ρ(kj) = rσ2

0
(mj) = m0m1m2m3m1m2m3m1. Thus ρ conjugates the

rose maps as given.

Proposition 6.19. The inverse limits lim
←−

(Kγ, c) and lim
←−

(M0, g0) are homeo-

morphic spaces.

Proof. Consider two sequences defined by

Ks := Kγ
c← Kγ

c← Kγ
c← . . . and K ′s := Kγ

c2← Kγ
c2← Kγ

c2← . . .
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and recall the shift γ−1((xi)) = (c(xi), xi), i ≥ 1, associated to the bond-

ing map c. Let hK be a homeomorphism defined by hK : lim
←−

(Ks, c) →

lim
←−

(K ′s, c
2), hK((x1, x2, x3, . . .)) = (x1, x3, x5, . . .) then h−1

K ((y1, y2, y3, . . .)) =

(y1, c(y2), y2, c(y3), y3, . . .). So lim
←−

(K ′s, c
2) is homeomorphic to lim

←−
(Kγ, c). Sim-

ilarly, define the sequences

Ms :=M0
g0←M0

g0←M0
g0← . . . and M′

s :=M0

g2
0←M0

g2
0←M0

g2
0← . . .

where the shift σ−1
0 ((xi)) = (g0(xi), xi), i ≥ 1, is relative to the bonding map g0.

Then let hM : lim
←−

(Ms, g0) → lim
←−

(M′
s, g

2
0) realise a homeomorphism between

lim
←−

(Ms, g0) and lim
←−

(M′
s, g

2
0). Now from the conjugacy of Proposition 6.18,

lim
←−

(K ′s, c
2) is homeomorphic to lim

←−
(M′

s, g
2
0) and so in conclusion lim

←−
(Kγ, c) is

homeomorphic to lim
←−

(M0, g0).

Theorem 6.20. The attractor Λ ⊆ T2 is homeomorphic to the tiling space

Tγ ⊆ T2.

Proof. Let the symbol ∼= signify homeomorphic spaces. By Remarks 6.10 and

6.5 respectively, lim
←−

(M0, g0) ∼= Λ and lim
←−

(Kγ, c) ∼= Tγ. Then by Proposition

6.19, lim
←−

(M0, g0) ∼= lim
←−

(Kγ, c)⇒ Λ ∼= Tγ.

Remark 6.21. It was concluded in Remark 6.17 that lim
←−

(K3, rγ2) ∼= Tγ̃2
∼= Tγ.

So we may say that topological conjugacy is achieved between the DA map f 2

yielding the attractor Λ and the inflation and substitution homeomorphism of

the tiling space Tγ̃2 when the bonding maps on their inverse limit spaces are

defined as g2
0 and c2 respectively.
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6.2 A torus with four holes

The Plykin attractor on a plane

Recall the Plykin attractor ΛΠ on S2. A stereographic projection of the sphere

onto the plane sends the repelling fixed point (0, 0) ∈ T2 to infinity such that

the map obtained from fΠ is a diffeomorphism of the plane for which infinity

is repelling. Denote this diffeomorphism by P whose period 3 repelling orbit

forms a basin of repulsion. Let R ⊂ R2 be a foliated region with 3 open holes

and where the leaves are segments of the stable manifolds. Let P : R → R

be a contracting map on the leaves then P (R) ⊂ R is a basin of attraction

for the Plykin attractor ΛP :=
⋂
n∈N P

n(R) in the plane (see for example [20]

and [48] for detailed diagrams). Now form equivalence classes determined by

∼ which identifies q ∼ p if q ∈ comp(W s(p) ∩ R). This collapses each leaf to

a point and the resulting quotient spaceM∗ = R/ ∼ is a branched 1-manifold

for P (Fig. 6.14). Denote the 1-cells by E = {a, b, c, d} and label the two branch

points b1 and b2.

b1
b2

a

b

d
c

Figure 6.14: The branched 1-manifold M∗.
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Similar to that given in [20] define an expanding map g∗ but let ei ∈ E follow

the direction of the arrow while e−1
i takes the reverse direction to that of ei,

g∗ :M∗ →M∗,



a 7→ b,

b 7→ bdcd−1b−1,

c 7→ a,

d 7→ dc−1d−1.

(6.9)

Let Σ∗ := M∗
g∗← M∗

g∗← M∗
g∗← . . . with shift map σ∗ : Σ∗ → Σ∗ then

ΛP
∼= lim
←−

(M∗, g∗). Since the map g∗ is not orientation-preserving it cannot

represent a substitution map.

6.2.1 Lifting the Plykin attractor

By using the algorithm and covering map presented in [57], we construct an

orientable double cover M̃∗ of M∗ represented by the branched 1-manifold of

Figure 6.15. For this purpose let the edges Ei,1, Ei,2 be the liftings of ei in M̃∗

such that Ei,1 corresponds to ei ∈ E and that Ei,2 corresponds to e−1
i . Then let

the map p be defined by a 2 : 1 local homeomorphism, t ∈ [0, 1],

p : M̃∗ →M∗,


Ei,1(t) 7→ ei(t),

Ei,2(t) 7→ ei(1− t).
(6.10)

Let E denote an oriented edge, or arc, of M̃∗ which comprises the set Ẽ =

{Ai, Bi, Ci, Di | i = 1, 2}. The four branch points are labelled pi, qi, i = 1, 2.
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p1

p2

q1

q2

A1A2B1B2 C1 C2

D2

D1

Figure 6.15: The branched 1-manifold M̃∗.

Let the lift of (6.9) be defined by

g̃∗ : M̃∗ → M̃∗,



A1 7→ B1, A2 7→ B2,

B1 7→ B1D1C1D2B2, B2 7→ B1D1C2D2B2,

C1 7→ A1, C2 7→ A2,

D1 7→ D1C2D2, D2 7→ D1C1D2.

(6.11)

Let the matrices M1 and M2 be such that for i, j ∈ E , [M1]i,j = |g∗(j)|i when

g∗(j) has positive index and [M2]i,j = |g∗(j)|i when g∗(j) has negative index.

M1 =


0 0 1 0

1 1 0 0

0 1 0 0

0 1 0 1


, M2 =


0 0 0 0

0 1 0 0

0 0 0 1

0 1 0 1


.

Then the matrices M = M1 + M2 and M̃ =

M1 M2

M2 M1

 (Prop. 3.9 in [57]).
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That is,

M =


0 0 1 0

1 2 0 0

0 1 0 1

0 2 0 2


, M̃ =

A1

B1

C1

D1

A2

B2

C2

D2



0 0 1 0 0 0 0 0

1 1 0 0 0 1 0 0

0 1 0 0 0 0 0 1

0 1 0 1 0 1 0 1

0 0 0 0 0 0 1 0

0 1 0 0 1 1 0 0

0 0 0 1 0 1 0 0

0 1 0 1 0 1 0 1



.

The incidence matrix M̃ of the branched 1-manifold M̃∗ is such that an

entry i, j gives the number of times the ith edge of M̃∗ is covered by the

jth edge of M̃∗ under the map g̃∗ (as in Def. 1.34). The matrix M̃ has

rank 6, zero determinant and its PF eigenvalue µ2 admits a left eigenvector

[µ, µ3, 1/µ, 1, µ, µ3, 1/µ, 1]. The map g̃∗ is a well-defined o-p continuous map

such that p ◦ g̃∗ = g∗ ◦ p (Prop. 3.3 in [57]). Furthermore Proposition 3.6 (2)

in [57] allows the following definition.

Definition 6.22. The map g̃∗ : M̃∗ → M̃∗ is an orientable presentation of

the solenoid Σ̃∗ = M̃∗
g̃∗← M̃∗

g̃∗← M̃∗
g̃∗← . . . and the shift map σ̃∗ : Σ̃∗ → Σ̃∗

where σ̃−1
∗ (x1, x2, . . .) = (g̃∗(x1), x1, x2, . . .).

Remark 6.23. The attractor ΛP in the plane does not support a flow. But

significantly, since Σ̃∗ is orientable, it does support a flow φt∗ without rest points

(Theorems 1.4 in [24], 11 in [1]).
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Constructing a rose by combinatorics

We describe a word in a branched 1-manifold X as a sequence e0 . . . en of

oriented edges of X such that the final vertex of ei equals the initial vertex of

ei+1, for i = 0, . . . , n−1. We may call a closed word which starts and finishes at

the same vertex a loop, or in a rose a petal, or just a word if the meaning is clear.

In M̃∗ let a loop w := D1 . . . B2 be a word which starts with the edge D1 and

finishes with the first occurrence of B2 inclusive. Now position the origin at the

branch point p2 = B2 ∩ D1 ∈ M̃∗ then iterate g̃5
∗(D1) = D1C2D2 . . . D1C1D2.

Locate the successive first returns to p2 which occur on the fifth iterate. This

produces a set W of 5 distinct words in M̃∗ listed below.

W :=



w0 = D1C2D2A2D1C1D2B2,

w1 = D1C2D2A1D1C1D2B1D1C2D2B2,

w2 = D1C2D2A2D1C1D2B1D1C2D2A1D1C1D2B1D1C1D2B2,

w3 = D1C2D2A2D1C1D2B1D1C2D2B2,

w4 = D1C2D2A1D1C1D2B1D1C1D2B2


.

Proposition 6.24. The solenoid Σ̃∗ is homeomorphic to the suspension Wc

(defined in the proof).

Proof. Consider the first projection p∗1 : Σ̃∗ → M̃∗. Then for the branch

point p2 ∈ M̃∗, C := p−1
∗1 (p2) is a Cantor set cross-section of the flow φt∗ on

Σ̃∗. This set C admits the partition into clopen sets p−1
∗1 (B2 ∩D1) ∪̇ p−1

∗1 (B1 ∩

D1) ∪̇ p−1
∗1 (A1 ∩D1) ∪̇ p−1

∗1 (A2 ∩D1). For arcs α1, α2 of M̃∗ that intersect in p2,

let

α̃1 ∩ α̃2 := {x ∈ C | for sufficiently small ε > 0 and all 0 < t < ε,

p∗1(φ−t∗ (x)) ∈ α1 and p∗1(φt∗(x)) ∈ α2}.
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Note that α̃1 ∩ α̃2 need not be identical to α̃2 ∩ α̃1. Then B̃2 ∩ D̃1 is a clopen

subset of C and Σ̃∗ is homeomorphic to the suspension Wc of the first return

map ρ∗ of φt∗ to B̃2∩ D̃1 (Theorems 3.3 in [24], 17 in [1]). Further, B̃2∩ D̃1 can

be partitioned by 5 clopen subsets. For 0 ≤ j ≤ 4,

[wj] := {x ∈ B̃2 ∩ D̃1 | t ≥ 0, p∗1(φt∗(x)) follows the sequence of arcs

described by wj in W}.

Call [wj] a ‘cylinder’ and assign it to have length lj.

Having found the set W of 5 loops, we may represent the elementary branched

1-manifold K∗ as a rose of 5 petals labelled k0, . . . , k4 with a single branch point

b (Fig. 6.16).

k0k1

k2

k3

k4

b

Figure 6.16: The elementary branched 1-manifold K∗.

Let K∗ be endowed with an expanding map r∗ defined by

r∗ : K∗ → K∗,



k0 7→ k0k1,

k1 7→ k2k3,

k2 7→ k0k4k2k1,

k3 7→ k0k4k3,

k4 7→ k2k1.

(6.12)
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The incidence matrix Mr∗ =



1 0 1 1 0

1 0 1 0 1

0 1 1 0 1

0 1 0 1 0

0 0 1 1 0


has determinant 1, rank 5, and

PF eigenvalue µ2 with left eigenvector [1/µ, 1, µ, 1, 1]. By the construction of

K∗ we recognise that there exists a map h defined by

h : K∗ → M̃∗, h(kj) = wj, 0 ≤ j ≤ 4. (6.13)

Proposition 6.25. The maps commute h◦r∗ = g̃∗ ◦h; the map h is surjective.

Proof. Consider the petal k0 ∈ K∗ so that

h ◦ r∗(k0) = h(k0k1) = h(k0)h(k1)

= w0w1

= D1C2D2A2D1C1D2B2D1C2D2A1D1C1D2B1D1C2D2B2

whilst g̃∗ ◦ h(k0) = g̃∗(w0)

= g̃∗(D1C2D2A2D1C1D2B2)

= D1C2D2A2D1C1D2B2D1C2D2A1D1C1D2B1D1C2D2B2.

It is easily shown that g̃∗(w1) = w2w3, g̃∗(w2) = w0w4w2w1, g̃∗(w3) = w0w4w3

and g̃∗(w4) = w2w1. So that h ◦ r∗(k1) = h(k2k3) = w2w3 = g̃∗(w1) = g̃∗ ◦ h(k1)

and the maps commute similarly for each k2, k3, k4 ∈ K∗. Thus for each

k ∈ K∗, h ◦ r∗ = g̃∗ ◦ h. Now by inspection, for each edge E ∈ M̃∗, ∃ k ∈ K∗

such that E ⊂ h(k). So h is surjective.

Define the solenoid Ω := lim
←−

(K∗, r∗) with shift map ω : Ω → Ω, ω((xi)) =

(xi+1), ∀ i ∈ N.
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Proposition 6.26. The map h induces a continuous surjection ĥ : lim
←−

(K∗, r∗)→

lim
←−

(M̃∗, g̃∗).

K∗

h
��

K∗

h
��

r∗oo K∗

h
��

r∗oo . . .r∗oo

M̃∗ M̃∗
g̃∗oo M̃∗

g̃∗oo . . .g̃∗oo

Proof. We know that ∀ i ∈ N, K∗i = K∗ is a compact metric space and that

∀ i ∈ N, M̃∗i = M̃∗ is a compact metric space. Then r∗i : K∗(i+1) → K∗i is r∗

and g̃∗i : M̃∗(i+1) → M̃∗i is g̃∗. The maps commute as in the ladder diagram

above and the projection h into each factor hi : K∗i → M̃∗i is continuous

∀ i ∈ N. So with lim
←−

(K∗, r∗) considered as a subspace of Πi∈Nlim
←−

(K∗, r∗) in the

product topology, the map ĥ : lim
←−

(K∗, r∗) → lim
←−

(M̃∗, g̃∗), ĥ((xi)) = (hi(xi)),

is well-defined and continuous. Let (yi) ∈ Σ̃∗. For each n ∈ N, let Ω(n) :=

{(xi) ∈ Ω |h(xn) = yn}. By the surjection h, ∀n ∈ N, Ω(n) 6= ∅. Then by

the commutativity of h ◦ r∗ = g̃∗ ◦ h, ∀n ∈ N, Ω(n) ⊇ Ω(n + 1) which is

true by induction: let (xi) = x1x2x3 . . . ∈ Ω(2) then ∀ i ∈ N, r∗(xi+1) = xi.

That is, under the shift ω : Ω → Ω, ω−1(x1x2x3 . . .) = (r∗(x1)x1x2x3 . . .) ∈

Ω(1). So the inclusion is true for n = 1. Suppose it is true for n = j, then

Ω(j) ⊇ Ω(j + 1). So let (xi+j) = x1+jx2+jx3+j . . . ∈ Ω(j + 2), ∀ i, j ∈ N, then

w−1(x1+jx2+jx3+j . . .) = (r∗(x1+j)x1+jx2+jx3+j . . .) ∈ Ω(j + 1) ⇒ Ω(j + 1) ⊇

Ω(j+2). Thus inductively Ω(n) ⊇ Ω(n+1) is true ∀n ∈ N. Since Ω is compact,⋂
n∈N Ω(n) 6= ∅. So any (xi) ∈

⋂
n∈N Ω(n) satisfies ĥ((xi)) = (yi). Thus ĥ is

surjective.

Three homeomorphic spaces

Consider the setting shown in Figure 6.17 where F = {p−1
∗ (B̃2∩D̃1)} represents

all the fibres of the origin p2 = B̃2 ∩ D̃1. Measured from the point b we choose

to make the circumference of a petal equal to the length of the corresponding
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[w0]

[w1]

[w2]

[w3]

[w4]

F

↓ q1 ↘ q2

b ←−r∗ b

Figure 6.17: A schematic view of suspension cylinders projecting onto roses.

‘cylinder’. That is for 0 ≤ j ≤ 4, kj ⊂ K∗, let l(kj) = lj = l[wj], [wj] ⊂

M̃∗. For some 0 ≤ j ≤ 4 let (x, s) ∈ [wj] × [0, lj] ⊂ Wc then define an

o-p homeomorphism ε : Wc → Σ̃∗, (x, s) 7→ xi, i ∈ N, followed by a linear

projection defined by

q : Σ̃∗ → K∗, q(xi) = (s, kj) = yi. (6.14)

Next let q̂ be defined by

q̂ : Σ̃∗ → Ω, q̂
(
(xi)

)
=
(
yi, r

−1
∗ (yi), . . .

)
=
(
q(xi), q(σ̃∗(xi)), . . .

)
. (6.15)

Proposition 6.27. The map q̂ is a continuous and well-defined projection

which commutes the shift maps q̂ ◦ σ̃∗ = ω ◦ q̂.
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Σ̃∗

q̂

��

σ̃∗ // Σ̃∗

q̂

��
Ω

ω // Ω

Proof. For each i ∈ N, qi(xl) = yi is a continuous onto projection from Σ̃∗ to

K∗i. The shift σ̃∗ is a homeomorphism. Thus for each i ∈ N, qi ◦ σ̃∗(xl) =

qi(xl+1) = yi+1 is continuous and onto with yi+1 ∈ K∗i+1. Now let (yi) =(
q(xi), q(σ̃∗(xi)), . . .

)
= (y1, y2, . . .) and assume that (yi) ∈ Ω, then yi ∈ K∗

such that r∗(yi+1) = yi. So ω−1((yi)) = ω−1((y1, y2, . . .)) = (r∗(y1), y1, y2, . . .).

That is, ω−1
(
(q(xi), q(σ̃∗(xi)), . . .)

)
= (r∗ ◦ q(xi), r∗ ◦ q(σ̃∗(xi)), . . .) = (r∗ ◦

q(xi), r∗ ◦ q(xi+1), . . .) = (r∗(yi), r∗(yi+1), . . .) = (r∗(yi), yi, . . .) which indeed is

an element of Ω, ∀i ∈ N. So q̂ is well-defined and maps continuously onto each

coordinate in the inverse limit space Ω.

Consider commutativity and let (xi)i∈N ∈ Σ̃∗ then

q̂ ◦ σ̃∗((xi)) = q̂((xi+1))

=
(
q(xi+1), q(σ̃∗(xi+1)), . . .

)
=

(
q(xi+1), q(xi+2), . . .

)
= (yi+1, yi+2, . . .).

Whereas

ω ◦ q̂((xi)) = ω
(
(q(xi), q(σ̃∗(xi)), . . .)

)
= ω

(
(q(xi), q(xi+1), . . .)

)
= ω

(
(yi, yi+1, . . .)

)
= (yi+1, yi+2, . . .).

Thus q̂ ◦ σ̃∗ = ω ◦ q̂.
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Let idΣ̃∗
: Σ̃∗ → Σ̃∗ and idΩ : Ω → Ω be the identity maps of the respective

spaces.

Proposition 6.28. The composites ĥ ◦ q̂ = idΣ̃∗
and q̂ ◦ ĥ = idΩ. The two

solenoids are homeomorphic, Σ̃∗ ∼= Ω.

Σ̃∗

idΣ̃∗ ��?
??

??
??

q̂ // Ω

ĥ
��

idΩ

��>
>>

>>
>>

>

Σ̃∗
q̂ // Ω

Proof. Let (xi)i∈N ∈ Σ̃∗ then ĥ ◦ q̂((xi)) = ĥ
(
(q(xi), q(σ̃∗(xi)), . . .)

)
=

ĥ
(
(yi, yi+1, . . .)

)
= (xi, xi+1, . . .) ⇒ ĥ ◦ q̂ = idΣ̃∗

. Now consider q̂ ◦ ĥ for which

the surjection ĥ ⇒ q̂ ◦ ĥ((yi)) = q̂((xi)) for some (yi)i∈N ∈ Ω. Then q̂
(
(xi)

)
=(

q(xi), q(σ̃∗(xi)), . . .
)

=
(
q(xi), q(xi+1), . . .

)
= (yi, yi+1, . . .) ⇒ q̂ ◦ ĥ = idΩ. It

follows that ĥ = q̂−1 is a left inverse in Σ̃∗ and that q̂ = ĥ−1 is a left inverse in

Ω. Now each inverse is continuous by dint of ĥ being a continuous surjection

and q̂ being a continuous projection. Thus ĥ and q̂ are homeomorphisms which

give the said homeomorphic spaces.

Remark 6.29. As a result of Propositions 6.24 and 6.28 the suspension and

the two solenoids are mutually homeomorphic, that is Wc
∼= Σ̃∗ ∼= Ω.

6.2.2 A ‘Plykin tiling’ on the torus

Let a proper substitution ω2 be defined over A = {0, 1, 2, 3, 4} such that it

maps letters to words in the same pattern as that generated by two iterations
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of the rose map (6.12). That is,

ω2 : A → A∗,



0 7→ 0123,

1 7→ 0421043,

2 7→ 0121042123,

3 7→ 0121043,

4 7→ 042123.

(6.16)

Then Mω2 =



1 2 2 2 1

1 1 3 2 1

1 1 3 1 2

1 1 1 1 1

0 2 1 1 1


which has determinant 1 and rank 5. The matrix

is primitive since all its entries [Mω2 ]i,j > 0. The PF eigenvalue µ4 has a

left eigenvector vω2 = [1/µ, 1, µ, 1, 1]. Now let Tω2 be a tiling space where

a tiling T ∈ Tω2 is built from the set of prototiles P = {0, 1, 2, 3, 4} such

that their designated lengths are the components of vω2 , namely |0| = 1/µ,

|1| = |3| = |4| = 1 and |2| = µ. Let Fω2 : Tω2 → Tω2 be the inflation and

substitution homeomorphism with stretch factor µ4 then the translates Fω2

satisfy the Fibonacci relation. Consider the tiling T ∈ Tω2 which is fixed under

the substitution ω2 with origin 0 ∈ T0 \ T−1 at the branch point b ∈ K∗. In

line with Definition 6.14, the circumferences of the petals in K∗ are |k0| = 1/µ,

|k1| = |k3| = |k4| = 1, |k2| = µ and the rose map r2
∗ has a stretch factor µ4. For

t ∈ R, let p̄ be a continuous surjection defined by

p̄ : Tω2 → K∗, p̄(T ) =


[(t, kj)] if 0 ≤ t ≤ |kj|,

[(t, kjkj+1)] if t = |kj|,

[(t, kj+1)] if |kj| ≤ t ≤ |kj+1|.

(6.17)
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Tω2

p̄

��

Tω2

Fω2oo

p̄

��
K∗ K∗

r2
∗oo

Since T is fixed the maps commute Fω2(p2) = p2 ⇒ r2
∗(p2) = p̄(p2).

Remark 6.30. Since r2
∗ is a map of the rose K∗ associated to the proper sub-

stitution ω2, lim
←−

(K∗, r
2
∗)
∼= Tω2. But lim

←−
(K∗, r

2
∗)
∼= lim
←−

(K∗, r∗) = Ω⇒ Ω ∼= Tω2.

Recall §5.2 wherein the Plykin attractor ΛΠ on the sphere was ‘born’, induced

by the commuting maps

T2

Π
��

f // T2

Π
��

S2
fΠ // S2

and recall the attractor on the plane ΛP =
⋂
n∈N P

n(R). Denote the DA map

f̃Π : T2 → T2 as a lift of the Plykin map fΠ. Let Di, i = 1, . . . , 4, be the four

disjoint discs in T2 then define the lifted Plykin attractor on the torus to be

Λ̃P :=
⋂
n∈N(f̃Π)n(ÑΠ), ÑΠ := T2 \

⋃̇4

i=1Di.

Remark 6.31. To calculate the Čech1 (co)homology of Ω ∼= Tω2
∼= lim
←−

(K∗, r
2
∗),

we exploit the continuity of Čech (co)homology. Thus, Ȟ1(lim
←−

(K∗, r
2
∗))
∼=

lim
←−

(H1(K∗), r
2
∗)
∼= Z5 and similarly Ȟ1(lim

←−
(K∗, r

2
∗))
∼= lim
−→

(H1(K∗), r
2
∗)
∼= Z5.

We note that this concurs with the incidence matrix Mω2 having rank 5 and

det(Mω2) = 1.

Theorem 6.32. The lifted Plykin attractor Λ̃P ⊆ T2 is homeomorphic to the

tiling space Tω2 ⊆ T2.

Proof. The solenoid Σ∗ = lim
←−

(M∗, g∗) ∼= ΛP ⇒ Σ̃∗ = lim
←−

(M̃∗, g̃∗) ∼= Λ̃P . Then

Σ̃∗ ∼= Ω ∼= Tω2 . Thus Λ̃P
∼= Tω2 .

1Eduard Čech (1893 - 1960) Czech mathematician.
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Chapter 7

Towards classification

In order to capture the classification of attractors and tiling spaces formulated

in chapter 8, we need to prepare criteria. Be it the attractor’s parameter α

or the ‘type’ of the attractor’s source matrix, both these criteria stem from a

hyperbolic toral automorphism. So in §7.1 we give core definitions and describe

two matrix subgroups of GL(2,Z). In §7.2 we develop our construction method,

summarised in the algorithm of §7.3.1, for these two hyperbolic spaces.

7.1 Core definitions and criteria

Definition 7.1. Let F : T2 → T2, F

 ¯x
y


 = M

x
y

, be a hyperbolic

toral automorphism determined by a matrix M ∈ GL(2,Z). Let the Perron-

Frobenius eigenvalue of M be λ with expanding eigenvector vu =

1

α

 whose

slope α is irrational. Let λs be the stable eigenvalue of M .

We quote the following proposition without proof which is given for example

in Lemma 2.7 of [24].
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Proposition 7.2. An irrational number α is quadratic if and only if

1

α

 is

an eigenvector of a matrix M in GL(2,Z) with M 6= ±

1 0

0 1

.

Define G :=

g ∈ GL(2,Z) |

1

α

 is an eigenvector of g

.

Lemma 7.3. G is a subgroup of GL(2,Z).

Proof. Let λ1, λ2 be eigenvalues of g1, g2 ∈ G . Then g2g1

1

α

 = g2

λ1

1

α

 =

λ2λ1

1

α

 = g

1

α

 for some g ∈ G with eigenvalue λ = λ2λ1. The identity

e =

1 0

0 1

 ∈ G has eigenvalue 1 with eigenvector

x
y

 =

1

α

. Then ∀g ∈ G

with eigenvalue λ, ge

1

α

 = g

1

α

 = λ

1

α

 = e

λ
1

α

 = eg

1

α

. Let

g ∈ G have an eigenvalue λ then

1

α

 = g−1g

1

α

 = g−1λ

1

α

 = λg−1

1

α

⇒
g−1

1

α

 = λ−1

1

α

. Thus G is a subgroup of GL(2,Z).

Lemma 7.4. Let λ be an eigenvalue of g ∈ G . Then ν : G → (R − {0}, ·),

ν(g) = λ, defines a group homomorphism from matrix to scalar multiplication.

Proof. Let λ1, λ2 be eigenvalues of g1, g2 ∈ G . Then ν(g1)ν(g2) = λ1λ2 =

ν(g1g2), ∀g1g2 ∈ G .
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Lemma 7.5. The homomorphism ν is injective.

Proof. Let λ1, λ2 be eigenvalues of g1, g2 ∈ G where g1 =

a1 b1

c1 d1

, g2 =

a2 b2

c2 d2

 and suppose that ν(g1) = ν(g2)⇒ λ1 = λ2. Then since both matrices

admit an eigenvector

1

α

, a1 + αb1 = λ1, a2 + αb2 = λ2 ⇒ a1 = a2, b1 = b2.

Whereas c1 + αd1 = αλ1, c2 + αd2 = αλ2 ⇒ c1 = c2, d1 = d2. So g1 = g2, and

ν is injective.

Theorem 7.6. The group G is isomorphic to the direct sum Z⊕ Z2.

Proof. Let τ denote the trace of a matrix g. The characteristic equation of

g ∈ G , χg = 0, yields an eigenvalue λ =
τ ±
√
τ 2 ± 4

2
⇒ τ ≥ 3⇔ g ∈ SL(2,Z).

Now let τ →∞⇒ λ→ 0 (not possible in this context) or λ→ 2τ/2 = τ . Then

the ratio between terms τ, τ + 1, . . ., is τ+1
τ

= 1 + 1
τ
→ 1 as τ → ∞. So there

is a bounded gap between terms. Thus ν(G ) ∩ (R+ − {0}, ·) is a discrete and

hence cyclic subgroup of (R+ − {0}, ·). Consider the topological isomorphism

log : (R+ − {0}, ·) → (R,+) which maps a discrete subgroup of (R+ − {0}, ·)

to a discrete subgroup of (R,+) which in turn is isomorphic to (Z,+). Also〈0 1

1 0

〉 =


0 1

1 0

 ,
1 0

0 1

 ∼= (Z2,+). Hence G ∼= Z⊕ Z2.

Recall the involution i (5.3) which fixes the 4 special points of T2. Let these

points form the set

B :=

b0 =

0

0

 ,b1 =

0

1
2

 ,b2 =

1
2

1
2

 ,b3 =

1
2

0

 ,

where for ease we now suppress the equivalence class ‘bar’ over b ∈ R2/Z2.
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Lemma 7.7. Any toral automorphism FM : T2 → T2 defined by a matrix

M ∈ GL(2,Z) will induce a permutation on the 4 special points of T2 such that

FM : B → B.

Proof. By definition ∀ 0 ≤ j ≤ 3, bj ∈ B is such that bj =

ε1
ε2

, εi ∈ {0, 1/2}.

Let M ∈ GL(2,Z) then M

ε1
ε2

 =

δ1

δ2

, εi, δi ∈ {0, 1/2}mod 1. That is,

FM : B → B.

The set B serves as a repelling set of the attractors defined below.

Definition 7.8. Fix the quadratic irrational α then let Aα ⊆ T2 be an ori-

entable hyperbolic toral attractor with 4 complementary domains arising from

the points of set B.

Remark 7.9. Then Aα is homeomorphic to any other attractor Aα with pa-

rameter α.

Recall the quotient map Π : T2 → T2/i ∼= S2 (Def. 5.11).

Definition 7.10. Given any Aα, let the map Π yield a non-orientable Plykin

attractor PAα ⊆ S2; since PAα may be projected to R2 let PAα also be known

as a planar attractor.

Let

F := {Aα |α is a quadratic irrational};

PF := {PAα |α is a quadratic irrational}.

When a space Aα ∈ F or PAα ∈ PF is the attractor of a map determined by a

matrix M we call M the source matrix.
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Observe that further to Lemma 7.7, in general a matrix M ∈ GL(2,Z) is such

that it is the parity of the entries in M which determines the image point of

bj ∈ B, 0 ≤ j ≤ 3. In light of this consider the epimorphism

par : GL(2,Z)� GL(2,Z/2Z), M 7→M/2Z. (7.1)

Let {0̄, 1̄} represent the equivalence classes of {2Z, 2Z + 1} under addition

modulo 2.

Definition 7.11. Let M be a group under matrix multiplication, where M =⋃̇5

i=0M̄i is a union of equivalence classes, each one of which we shall call a

matrix type.

M̄0 =

0 1

1 1

, M̄1 =

1 0

1 1

, M̄2 =

0 1

1 0

,
M̄3 =

1 1

0 1

, M̄4 =

1 1

1 0

, M̄5 =

1 0

0 1

 = Ī .

Lemma 7.12. A matrix M ∈ GL(2,Z) if and only if M ∈M.

Proof. If M ∈ GL(2,Z), det(M) = ±1 ∈ 1̄. Let M ∈ M̄i ⊂ M, 0 ≤ i ≤ 5,

then det(M) ∈ 1̄ ⇒ M ∈ GL(2,Z). Conversely assume M ∈ GL(2,Z) then

det(M) ∈ 1̄⇒M ∈ M̄i for some M̄i ⊂M. Thus M ∈ GL(2,Z)⇔M ∈M.

Theorem 7.13. The group M is such that M =
⋃̇5

i=0M̄i is a partition of

GL(2,Z) into 6 equivalence classes.

Proof. The kernel, ker(par) = {M ∈ GL(2,Z) | par(M) = Ī}. By the first

isomorphism theorem GL(2,Z)/ker(par) ∼= GL(2,Z/2Z) ∼= M. Thus M is a

quotient group which partitions GL(2,Z) into 6 equivalence classes.
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7.2 Construction of spaces

7.2.1 Six hyperbolic toral automorphisms

We choose the six maps below so as to give one example of each type of matrix

M̄i ∈M, 0 ≤ i ≤ 5. Their properties help to develop our analysis of attractors.

C (= F0) : T2 → T2, x 7→ Ax, A =

2 1

1 1

 ≡
0 1

1 1

 = M̄0, (1.10)

F1 : T2 → T2, x 7→M1x, M1 =

3 2

1 1

 ≡
1 0

1 1

 = M̄1, (7.2)

F2 : T2 → T2, x 7→M2x, M2 =

2 7

1 4

 ≡
0 1

1 0

 = M̄2, (7.3)

F3 : T2 → T2, x 7→M3x, M3 =

3 1

2 1

 ≡
1 1

0 1

 = M̄3, (7.4)

Fϕ(= F4) : T2 → T2, x 7→Mϕx, Mϕ =

1 1

1 0

 ≡
1 1

1 0

 = M̄4, (1.8)

F5 : T2 → T2, x 7→M5x, M5 =

3 4

2 3

 ≡
1 0

0 1

 = M̄5 = Ī . (7.5)

See Table 7.1 for more details of the four maps Fi, 0 ≤ i ≤ 3.
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Toral map C (= F0) F1

Matrix
[

2 1
1 1

] [
3 2
1 1

]
Type M̄0 =[0 1

1 1] M̄1 = [1 0
1 1]

Eigenvalues 1
2
(3±

√
5) 2±

√
3

Eigenvectors [µ1 ] ,
[−1
µ

] [
1+
√

3
1

]
,
[

1−
√

3
1

]
Slope α0 = µ−1 = −1+

√
5

2
α1 = −1+

√
3

2

Fixed points b0 =
[

0
0

]
, b0 =

[
0
0

]
, b1 =

[
0
1
2

]
Periodic points b1 7→ b2 7→ b3 7→ b1 b2 7→ b3 7→ b2

Toral map F2 F3

Matrix
[

2 7
1 4

] [
3 1
2 1

]
Type M̄2 = [0 1

1 0] M̄3 = [1 1
0 1]

Eigenvalues 3± 2
√

2 2±
√

3

Eigenvectors

[
−1+2

√
2

1

]
,
[
−1−2

√
2

1

] [
1+
√
3

2
1

]
,

[
1−
√
3

2
1

]
Slope α2 = 1+2

√
2

7
α3 = −1 +

√
3

Fixed points b0 =
[

0
0

]
, b2 =

[1
2
1
2

]
b0 =

[
0
0

]
, b3 =

[1
2
0

]
Periodic points b1 7→ b3 7→ b1 b1 7→ b2 7→ b1

Table 7.1: Parameters of 4 hyperbolic toral automorphisms.
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7.2.2 Markov partitions

Given Definition 7.1 such that all entries aij in M take the same sign then there

exists a Markov generator R∗ for F , the members of which are parallelograms

(Theorem 8.4 in [2]). We shall call an ‘original’ Markov partition, as described

on page 91, a principal partition P and a finer subdivided Markov partition its

secondary partition denoted by P̈ . For each toral map (1.10), (7.2), (7.3) and

(7.4) we choose to partition the fundamental domain of T2 into 3 parallelograms

Ri, i = 1, 2, 3, labelled A,B,C such that Ri ∩Ri = ∅ unless Ri ∩Ri = O ∈ T2.

In a secondary partition the stable leaves of a foliation of T2 are bisected by

a line segment parallel to the unstable leaves of the foliation, thereby for each

i = 1, 2, 3 dividing Ri into two congruent parallelograms labelled naturally as

Ril , l = 1, 2. The bisector of Ri passes through exactly one periodic point

bj ∈ Ri, i, j = 1, 2, 3.

The principal partition P for the Cat map (1.10) is repeated here in Figure 7.1

for ease of comparison with its secondary partition P̈ . Figures 7.2 to 7.4 show

the principal and secondary partitions Pi and P̈i for the maps (7.2), (7.3) and

(7.4) respectively. The fixed points are shown in red.

A A

A A

B B

C

C

O O

C1

C1

C1

C1

C2

C2 C2

C2

B1 B1

B1 B1

B2 B2

B2B2

A1 A1

A1A1

A2 A2

A2 A2

Figure 7.1: Principal and secondary partitions P and P̈ .
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C

C

A A

A A

B B

O

C2 C2

C2C2

C1C1
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Figure 7.2: Principal and secondary partitions P1 and P̈1.
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Figure 7.3: Principal and secondary partitions P2 and P̈2.
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Figure 7.4: Principal and secondary partitions P3 and P̈3.
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An observation (Fig. 7.3). In the partition P2, let p be an expanding eigen-

line segment through O; let q and s be line segments parallel to the contracting

eigenline through points (1, 0) and (0, 1) respectively. Let p ∩ q = (xpq, ypq)

and p∩ s = (xps, yps) be coordinates of intersection then xpq < xps. This forces

parallelogram A of P2 in this particular case to straddle two of our chosen

representative fundamental domains of T2. However, choosing a fundamen-

tal domain consisting of A ∪ B ∪ C such that all boundaries are parallel or

orthogonal to the eigenlines will overcome this.

7.2.3 A 2θ-space

A1

B1

C1y1 x1

Ṁ

A2

B2

C2y2 x2

Ṁ

B2

B1

C2

A2

A1

C1

XY

M̈ 

Figure 7.5: From a θ-space to a 2θ-space.

Recall the DA diffeomorphism f (5.2) and the θ-space map g0 (6.3). For con-

sistency of notation in this setting we now denote the map f as f0 = φτ ◦ C.

Then for a map Fi, 0 ≤ i ≤ 3, and matrix Mi with stable eigenvalue λs, let a

DA diffeomorphism be defined by

fi : T2 → T2, fi = φτ ◦ Fi, (7.6)

such that for a fixed τ > 0, eτλs > 1. Then with edges labelled E1 = A, E2 = B,
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E3 = C, let Ṁ denote a generic θ-space derived from a DA diffeomorphism

fi, 0 ≤ i ≤ 3. For each 0 ≤ i ≤ 3, let ϑ̇i : Ṁ → Ṁ be an expanding map

with stretch factor equal to the PF eigenvalue of the matrix Mi which defines

Fi. The mapping of an edge ϑ̇i(Ek) ∈ Ṁ is listed in Table 7.2 or 7.3. In

tandem with making a finer partitition of a Markov partition, we can derive

from Ṁ a new generic branched 1-manifold, called a 2θ-space denoted by M̈

(Fig. 7.5). To do so take two disjoint copies of Ṁ then identify the labelled

branch points xi, yi, i = 1, 2, as X = x1 ∼ x2 and Y = y1 ∼ y2. Then M̈

comprises a set of six oriented edges {Al, Bl, Cl | l = 1, 2}. The image element

ϑ̈i(Ekl), 0 ≤ i ≤ 3, k = 1, 2, 3, l = 1, 2, is found by inspection of the linear

transformationMi : R2 → R2, 0 ≤ i ≤ 3. The definition of a map ϑ̈i : M̈ → M̈,

0 ≤ i ≤ 3, is given in Table 7.2 or 7.3.

7.2.4 Solenoids and suspensions

Definition 7.14. Associated to each DA map fi, 0 ≤ i ≤ 3, let a solenoid be

defined by Σ̈i = lim
←−

(M̈, ϑ̈i) with shift map σ̈i : Σ̈i → Σ̈i, σ̈i((xj)) = (xj+1),

∀ j ∈ N.

Remark 7.15. For i = 0, 2, Σ̈i, is orientable. For i = 1, 3, ϑ̈i is orientation-

reversing. However, by inspection of the 2θ-space M̈, the C edges enter X and

the A and B edges leave X in a coherently chosen orientation so Σ̈i, i = 1, 3,

can be deemed orientable. Thus we may conclude that each solenoid Σ̈i, 0 ≤

i ≤ 3, supports a flow φti without rest points (Theorems 1.4 [24], 11 [1]).

We repeat the combinatorial process of §6.2.1. We set the origin at C2∩B1 ∈ M̈

for each map since for 0 ≤ i ≤ 3, ϑ̈i(C2) = C1 . . . C2 and ϑ̈i(B1) = B1 . . . B2.

Then for some n ∈ N iterate ϑ̈ni and record the sequence of edges which appear

on each map’s return to the origin. This produces sets, each consisting of five

words, Ẅi := {wm | wm = B1 . . . C2, 0 ≤ m ≤ 4}, listed in Table 7.2 or 7.3.
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DA Map f(= f0) f1

θ map g0 :M0 7→ M0 (ϑ̇0 : Ṁ → Ṁ) ϑ̇1 : Ṁ 7→ Ṁ

A 7→ B A 7→ B

B 7→ BCB B 7→ BCACB

C 7→ CAC C 7→ CACAC

2θ map ϑ̈0 : M̈ → M̈ ϑ̈1 : M̈ → M̈

A1 7→ B1 A1 7→ B1

B1 7→ B1C2B2 B1 7→ B1C1A1C2B2

C1 7→ C1A2C2 C1 7→ C1A2C1A1C2

A2 7→ B2 A2 7→ B2

B2 7→ B1C1B2 B2 7→ B1C1A2C2B2

C2 7→ C1A1C2 C2 7→ C1A2C2A1C2

Origin C2 ∩B1 C2 ∩B1

Words Ẅ0 : Ẅ1 :

w0 B1C2B2C1A1C2 B1C1A1C2B2C1A2C1A1C2

w1 B1C1B2C1A2C2 B1C1A2C2A1C2

w2 B1C1A1C2 B1C1A2C2B2C1A2C1A1C2B2C1A2C1A1C2

w3 B1C2B2C1A2C2 B1C1A1C2B2C1A2C1A1C2B2C1A2C2A1C2

w4 B1C1B2C1A2C2B2C1A1C2 B1C1A2C2B2C1A2C1A1C2B2C1A2C2A1C2

Table 7.2: Self-maps of a 2θ-space and ‘return map’ words.
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DA Map f2 f3

θ map ϑ̇2 : Ṁ 7→ Ṁ ϑ̇3 : Ṁ 7→ Ṁ

A 7→ CBCBCBC A 7→ BCB

B 7→ BAB B 7→ BCBCB

C 7→ CBCBCBCBC C 7→ CAC

2θ map ϑ̈2 : M̈ → M̈ ϑ̈3 : M̈ → M̈

A1 7→ C1B2C1B1C2B1C2 A1 7→ B1C2B2

B1 7→ B1A1B2 B1 7→ B1C2B1C1B2

C1 7→ C1B2C1B2C1B1C2B1C2 C1 7→ C1A2C2

A2 7→ C1B2C1B2C2B1C2 A2 7→ B1C1B2

B2 7→ B1A2B2 B2 7→ B1C2B2C1B2

C2 7→ C1B2C1B2C2B1C2B1C2 C2 7→ C1A1C2

Origin C2 ∩B1 C2 ∩B1

Words Ẅ2 : Ẅ3 :

w0 B1A1B2C1B2C1B2C2 B1C2

w1 B1C2 B1C1B2C1A1C2

w2 B1A2B2C1B2C1B2C1B1C2 B1C1B2C1A2C2

w3 B1A2B2C1B2C1B2C2 B1C2B2C1B2C1A2C2

w4 B1A1B2C1B2C1B1C2 B1C2B2C1A1C2

Table 7.3: Self-maps of a 2θ-space and ‘return map’ words.
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An observation. There are two choices for the origin of each map ϑ̈i, 0 ≤

i ≤ 3. Consider the origin B2 ∩ C1 ∈ M̈ where ϑ̈i(B2) = B1 . . . B2 and

ϑ̈i(C1) = C1 . . . C2. Iterations of ϑ̈i again produce five distinct words, albeit

different from those emanating from the alternative origin but of the same

structure (not shown). The words B2C1 or C2C1 do not occur in any ϑ̈ni (B1) or

ϑ̈ni (C1), n ∈ N, 0 ≤ i ≤ 3, so neither B2∩B1 nor C2∩C1 can serve as an origin

in M̈. Having exactly two choices of origin corresponds to two fixed points of

the DA map (7.6), that is the two saddle points p1, p2 ∈ Aαi , 0 ≤ i ≤ 3.

Remark 7.16. Similarly to Proposition 6.24 we may deduce that for 0 ≤ i ≤ 3,

each solenoid Σ̈i is homeomorphic to the respective suspension Ẅic of the first

return map ρi of the flow φti to C̃2 ∩ B̃1. For the first projection pi1 : Σ̈i → M̈,

0 ≤ i ≤ 3, 5 clopen subsets can be described by ‘cylinders’. For 0 ≤ m ≤ 4,

0 ≤ i ≤ 3,

[wm] := {x ∈ C̃2 ∩ B̃1 | t ≥ 0, pi1(φti(x)) follows the sequence of arcs

described by wm in Ẅi}.

The next Figure 7.6 shows 4 ‘split open’ unstable manifolds in the attractor

Aα0 :=
⋂
n∈N f

n
0 (N).
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Figure 7.6: The attractor Aα0 =
⋂
n∈N f

n
0 (N).
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7.2.5 Roses

k0k1

k2

k3

k4

b

Figure 7.7: A rose K̈ with 5 petals.

Each set of words Ẅi, 0 ≤ i ≤ 3, may be represented by a generic elementary

branched 1-manifold denoted by K̈ (Fig. 7.7). Each rose has 5 petals k0, . . . , k4

and a single branch point b. Let K̈ be endowed with an expanding map ri,

0 ≤ i ≤ 3 with images ri(k0), . . . , ri(k4) where the stretch factor bestowed on

ri is determined by the PF eigenvalue of the matrix Mri (Tables 7.4 and 7.5).

Toral map C (= F0) F1

Rose map r0 : K̈ → K̈ r1 : K̈ → K̈

k0 7→ k0k1k2 k0 7→ k0k1k2k1

k1 7→ k3k4 k1 7→ k3k1

k2 7→ k3k2 k2 7→ k3k2k1k2k1

k3 7→ k0k4 k3 7→ k0k1k2k1k4k1

k4 7→ k3k4k1k2 k4 7→ k3k2k1k4k1

Matrix Mr0 =



1 0 0 1 0

1 0 0 0 1

1 0 1 0 1

0 1 1 0 1

0 1 0 1 1


Mr1 =



1 0 0 1 0

2 1 2 3 2

1 0 2 1 1

0 1 1 0 1

0 0 0 1 1


det; rank 1; 5 −1; 5

PF e.value µ2 = 1
2
(3 +

√
5) 2 +

√
3

Table 7.4: The rose maps r0, r1 : K̈ → K̈ and their matrices.
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Toral map F2 F3

Rose map r2 : K̈ → K̈ r3 : K̈ → K̈

k0 7→ k0k1k2k1k2k1k3k1k1 k0 7→ k0k1

k1 7→ k0k1k1 k1 7→ k0k2k3k4

k2 7→ k4k1k2k1k2k1k2k1k0k1k1 k2 7→ k0k2k3k1

k3 7→ k4k1k2k1k2k1k3k1k1 k3 7→ k0k1k3k3k1

k4 7→ k0k1k2k1k2k1k0k1k1 k4 7→ k0k1k3k4

Matrix Mr2 =



1 1 1 0 2

5 2 6 5 5

2 0 3 2 2

1 0 0 1 0

0 0 1 1 0


Mr3 =



1 1 1 1 1

1 0 1 2 1

0 1 1 0 0

0 1 1 2 1

0 1 0 0 1


det; rank 1; 5 −1; 5

PF e.value 3 + 2
√

2 2 +
√

3

Table 7.5: The rose maps r2, r3 : K̈ → K̈ and their matrices.

Definition 7.17. Associated to each DA map fi, 0 ≤ i ≤ 3, let Ω̈i = lim
←−

(K̈, ri)

with shift map ω̈i : Ω̈i → Ω̈i, ω̈i((xj)) = (xj+1), ∀ j ∈ N, then (K̈, ri) is an

elementary presentation of Ω̈i and ω̈i.

Remark 7.18. We invoke Propositions 6.24 and 6.28 to conclude that for

0 ≤ i ≤ 3 the suspensions and the solenoids are homeomorphic, that is Ẅic
∼=

Σ̈i
∼= Ω̈i.

7.2.6 Proper substitutions

Definition 7.19. Associated to each rose map ri, 0 ≤ i ≤ 3, let a proper

substitution be defined over A = {0, 1, 2, 3, 4}, ω̈i : A → A∗, 0 ≤ i ≤ 3 such

that each ω̈i maps letters to words in the pattern generated by r2
i respectively.

See Table 7.6 for the substitution maps and Table 7.7 for their matrices.
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Map C (= F0) F1

ω̈0 : A → A∗ ω̈1 : A → A∗

0 7→ 0123432 0 7→ 0121313212131

1 7→ 043412 1 7→ 01214131

2 7→ 0432 2 7→ 01214132121313212131

3 7→ 0123412 3 7→ 01213132121313214131

4 7→ 0434123432 4 7→ 01214132121313214131

Map F2

ω̈2 : A → A∗

0 7→ 0121213110114121212101101141212121011011412121311011011

1 7→ 012121311011011

2 7→ 012121011011412121210110114121212101101141212121011011012121311011011

3 7→ 0121210110114121212101101141212121011011412121311011011

4 7→ 0121213110114121212101101141212121011011012121311011011

Map F3

ω̈3 : A → A∗

0 7→ 010234

1 7→ 010231013310134

2 7→ 010231013310234

3 7→ 01023401331013310234

4 7→ 010234013310134

Table 7.6: Proper substitutions over A = {0, 1, 2, 3, 4}.
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Map C (= F0) F1 F2 F3

Matrix Mω̈0 = Mω̈1 = Mω̈2 = Mω̈3 =

1 1 1 1 1

1 1 0 2 1

2 1 1 2 2

2 1 1 1 3

1 2 1 1 3





1 1 1 1 1

6 4 9 9 9

3 1 5 4 4

3 1 4 5 4

0 1 1 1 2





8 3 12 9 9

32 9 40 32 32

10 2 13 10 10

2 1 1 1 2

3 0 3 3 2





2 4 4 5 4

1 5 4 5 4

1 1 2 2 1

1 4 4 6 4

1 1 1 2 2



det; rank 1; 5 1; 5 1; 5 1; 5

e.value µ4 = 1
2 (7 + 3

√
5) 7 + 4

√
3 17 + 12

√
2 7 + 4

√
3

e.vector
[
1
µ ,

1
µ ,

1
µ2 ,

1
µ , 1
] [

3−
√
3

2 ,
−1+

√
3

2 , 1, 1, 1
] [

1,
−1+2

√
2

7 , 6+2
√
2

7 , 1, 1
] [−1+

√
3

2
, 1, 1, 1+

√
3

2
, 1

]

Characteristic polynomial χMω̈0
= 1− 7x+ x2 − x3 + 7x4 − x5

χMω̈1
= 1− 17x+ 46x2 − 46x3 + 17x4 − x5

χMω̈2
= 1− 33x− 34x2 + 34x3 + 33x4 − x5

χMω̈3
= 1− 17x+ 46x2 − 46x3 + 17x4 − x5

Table 7.7: Matrix parameters of the proper substitutions in Table 7.6.
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7.3 The general case

Given a map FM from Definition 7.1 let a DA diffeomorphism be defined by

f : T2 → T2, f = φτ ◦ F n
M , (7.7)

such that for a fixed τ > 0, eτλns > 1, n ∈ N, where λns is a stable eigenvalue

and ∀bj ∈ B, 0 ≤ j ≤ 3, F n
M(bj) = bj.

Lemma 7.20. Any DA map f yields a toral attractor Aα ∈ F.

Proof. Without loss of generality and dropping the subscript M , let Fi be a

hyperbolic toral map which satisfies Definition 7.1 then its matrix M ∈ M̄i

for some 0 ≤ i ≤ 4, say i = k. Since M̄3
0 = M̄2

1 = M̄2
2 = M̄2

3 = M̄3
4 = Ī,

Fm
k (bj) = bj, 0 ≤ j ≤ 3, for an appropriate iterate m ∈ N. By definition

Fm
k has an eigenvector vu =

 1

αk

 for which αk is a quadratic irrational. Now

consider the DA map fk = φτ ◦ Fm
k then similar to the process adopted in

§5.1.2, an attractor with 4 complementary domains arises thus: ∀ 0 ≤ j ≤ 3 set

a source p0j to correspond to a fixed point bj of Fm
k then let p0j ∈ Vj ⇒ Vj ⊂

W u(p0j) which results in the union of four repelling sets
⋃
n∈N f

n
k(
⋃̇3

j=0Vj). Let

N := T2\
⋃̇3

j=0Vj define an attracting region for fk then Aαk :=
⋂
n∈N f

n
k(N) ∈ F.

Since fk is defined by a non-trivial matrix M ∈ M̄k where
⋃̇4

k=0M̄k∪̇M̄5 exhausts

all possible matrix types the lemma holds.

Remark 7.21. A DA map may also be derived from a hyperbolic toral auto-

morphism with a periodic orbit(s) (see Def. 5.4).

Definition 7.22. Let (M̈, ϑ̈) be a presentation of a solenoid Σ̈ = lim
←−

(M̈, ϑ̈)

with shift map σ̈ : Σ̈→ Σ̈, σ̈((xi)) = (xi+1), ∀ i ∈ N.
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Definition 7.23. Let Ẅc be a suspension of the return map of a flow φt on Σ̈

restricted to 5 clopen subsets, derived from M̈, of a Cantor set cross-section of

the flow.

Definition 7.24. Let (K̈, r) be an elementary presentation of a solenoid Ω̈ =

lim
←−

(K̈, r) with shift map ω̈ : Ω̈→ Ω̈, ω̈((xi)) = (xi+1), ∀ i ∈ N.

Similar to Remark 6.29, in the general case we propose the following.

Proposition 7.25. The suspension Ẅc and the solenoids Σ̈ and Ω̈ are mutually

homeomorphic.

Proof. By invoking a general argument of Proposition 6.24, we deduce that Σ̈

is homeomorphic to Ẅc and again by Proposition 6.28 we deduce that Σ̈ is

homeomorphic to Ω̈. Thus Ẅc
∼= Σ̈ ∼= Ω̈.

Recall Dα of Definition 3.9 on page 56.

Definition 7.26. Let a Denjoy continuum DS
α be one which is associated to

a set S = {si | i ∈ N} of points in the disjoint trajectories of a linear flow

(3.1) which has i sources si ∈ T2 \ DS
α. Let the characteristic of DS

α be denoted

χ̊(DS
α) = card(S).

In particular DB
α is associated to the set B ⊂ T2 defined on page 124 and α is

a quadratic irrational. Then χ̊(DB
α ) = 4.

Proposition 7.27. Fix α then the spaces are homeomorphic Aα
∼= DB

α
∼= Σ̈.

Proof. Recall the attractor Λ derived from C. The slope α = µ−1. Since the

DA attractor Λ is homeomorphic to Dα it follows that Aα0 =
⋂
n∈N f

n
0 (N) is

homeomorphic to DB
α . By construction, the 5 clopen subsets of Ẅc induce 4

complementary domains so Ẅc and DB
α are homeomorphic. Now Ẅc is home-

omorphic to Σ̈ (Prop.7.25). Thus the spaces are mutually homeomorphic.
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Definition 7.28. Let ω̈ : A → A∗ be a proper substitution over A with

card(A) = 5. Let ω̈ be derived from a rose K̈ with a set of petals K and

card(K) = 5. For all i ∈ A, ki ∈ K, let ω̈(i) ∈ A∗ take the same pattern of

letters as r2(ki) of the rose map r2 : K̈ → K̈.

Definition 7.29. With α fixed by the toral map F , let Tα(ω̈) be a one-dimensional

substitution tiling space derived from a proper substitution ω̈.

Let an inflation and substitution homeomorphism be Fα(ω̈) : Tα(ω̈) → Tα(ω̈) and

let a continuous surjection be p̈ : Tα(ω̈) → K̈. Define each map similarly to

(1.13) and (6.1) respectively.

Remark 7.30. Deduce from Remark 6.17: when a rose map, in our case r2, is

associated to a proper substitution ω̈ and the tiling space Tα(ω̈) is derived from

ω̈, then Tα(ω̈) is homeomorphic to Ω̈ = lim
←−

(K̈, r).

Lemma 7.31. A one-dimensional substitution tiling space Tα(ω̈) is homeomor-

phic to an orientable hyperbolic toral attractor Aα where α is equal in both

spaces.

Proof. We know that Σ̈ ∼= Ω̈ (Prop. 7.25), Ω̈ ∼= Tα(ω̈) (Rem. 7.30) and Σ̈ ∼= Aα

(Prop. 7.27). Thus Tα(ω̈)
∼= Aα.

7.3.1 An algorithm

We give here the ‘bare bones’ of our method for constructing directly on the

torus an attractor with four complementary domains and its homeomorphic

tiling space. Because of its mechanical nature, we call it an algorithm:
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Take a hyperbolic matrix M ∈ GL(2,Z);

Form a Markov partition P then a secondary partition P̈ ;

Form a branched 1-manifold M̈ - a 2θ-space;

Derive a self-map ϑ̈ : M̈ → M̈ using M : R2 → R2;

The solenoid Σ̈ = lim
←−

(M̈, ϑ̈) represents an attractor Aα.

Choose an origin in M̈;

Iterate ϑ̈ and record the 5 return words;

Form an elementary branched 1-manifold K̈ - a rose of 5 petals;

Derive a rose map r : K̈ → K̈ using ϑ̈(word sequence);

The solenoid Ω̈ = lim
←−

(K̈, r);

Derive a proper substitution ω̈ : A → A∗ using r2;

Then Ω̈ is homeomorphic to a tiling space Tα(ω̈) which is homeo-

morphic to Aα (Lemma 7.31).

Note that by restricting the algorithm to a Markov partition P with appropriate

follow-on we may construct a toral attractor with one complementary domain

and its homeomorphic tiling space.
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Chapter 8

Classification of spaces

This chapter holds the main results of the thesis. We classify attractors and

tiling spaces up to homeomorphism, Theorems 8.4 and 8.19 respectively, and

establish the class group of these spaces to be isomorphic to Z⊕Z2, Corollaries

8.7 and 8.22 respectively. Furthermore, the structures of the attractors and the

tiling spaces are shown to be isomorphic to the permutation groups A4 or D4

and to the symmetry group of a square or the rotational symmetry group of a

regular tetrahedron Sr(T ).

8.1 Classifying attractors

8.1.1 Homeomorphic attractors

Definition 8.1. [27] If x and y are two numbers such that x =
ay + b
cy + d

, where

a, b, c, d are integers such that ad− bc = ±1, then x is said to be equivalent to

y, (which we write as x ≡ y).
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The classification of attractors in Theorem 8.4 appeals to the equivalence of

quadratic surds by way of their continued fraction expansion. So consider the

continued fraction expansion of a real number x ∈ (0, 1) expressed as

x = a0 + 1/(a1 + 1/(a2 + 1/(· · ·+ 1/(ak−1 + 1/xk))))

for each k, where a0, . . . , ak−1 are integers but xk is not. For irrational x,

the unique expansion is infinite and converges to x as k → ∞. We may also

express x in terms of its sequence of partial quotients, x = [a0, a1, . . .]. Two

irrational numbers x = [a0, a1, . . . , ai, ai+1, . . .] and y = [b0, b1, . . . , bj, bj+1, . . .]

are equivalent (Def. 8.1) if and only if their tails [ai, ai+1, . . .] = [bj, bj+1, . . .]

agree (Theorem 175 in [27]). . A periodic continued fraction is an infinite

continued fraction in which ∀ i ≥ j0, ai = ai+k for a fixed positive k. When α is

a quadratic surd, α exhibits a periodic continued fraction expansion (Theorem

177 in [27]).

Definition 8.2. [5] Let f, g : X → Y be maps. Then f is homotopic to g if

there exists a map F : X× I → Y such that F (x, 0) = f(x) and F (x, 1) = g(x)

for all points x ∈ X.

Remark 8.3. Using a method involving inverse limits, the authors of [10]

classify Denjoy continua by stating in Theorem 4.6 that for irrationals α and

β, Dα and Dβ are homeomorphic if and only if α and β are equivalent. Our

focus is on Denjoy continua with 4 ‘blown-up’ orbits and so the outline below is

more suited to our classification of attractors with four complementary domains.

Recall the quotient map q (2.4) in the Denjoy construction and the embedding

Ĥ (3.7) of the suspension Sαc(Dα) of the Denjoy map. Now suspend q, Ĥ ′ :

Sαc(q) → R/Z × R/Z, from which we realise a quotient map q̂ : Sαc(Dα) →

R/Z × R/Z. We know that Sαc(Dα) is homeomorphic to the torus via the

homeomorphism Ĥ. Then we obtain a quotient map qα := q̂ ◦ Ĥ−1 where q̂ is
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defined in (8.1),

Sαc(Dα)

Ĥ
��

q̂ // R/Z× R/Z

id
��

R/Z× R/Z qα // R/Z× R/Z

q̂ : Sαc(Dα)→ R/Z× R/Z, q̂
(
˜(x1, x2)

)
=
(
q(x1), x2

)
. (8.1)

Explanatory preamble to Theorem 8.4. Let irrationals α, β parameterise

Denjoy continua Dα,Dβ each of which has a single ‘blown-up’ orbit. We know

from work done by [24] that a map h1 : Dα → Dβ can be extended to a map

on the torus h̃1 : T2 → T2. In order to equip T2 with the map (8.1) which is

well-defined we homotope h̃1 to a map h̃′1 : T2 → T2 (this notion is conveyed in

Figure 8.1 with respect to the homotopy of h̃ to h̃′). This produces commuting

maps h̄′1 ◦ qα(x) = qβ ◦ h̃′1(x), ∀x ∈ T2.

Now consider Figure 8.1 relating to Denjoy continua DB
α and DB

β . For a pre-

cise argument on Denjoy continua with one or finitely many orbits see [15],

in particular the homeomorphism of Theorem 6.6, ΣI(Dα) ∼= ΣI(Dβ), where

ΣI(Dα) denotes the minimal set on the inverse limit space with bonding maps

defined by the identity matrix I. Now Aα
∼= DB

α so given a homeomorphism

h : Aα → Aβ, h̃ : T2 → T2 can be homotoped to h̃′ : T2 → T2 leading to

commuting maps h̄ ◦ qα = qβ ◦ h̃′. That is, h̄ maps an α-foliation Fα deter-

mined by the decomposition


1

α

 t+ x | t ∈ R, x ∈ R2

 to the β-foliation Fβ

determined by


1

β

 t+ x | t ∈ R, x ∈ R2

. Then by Theorem 2.12 in [30], h̄

is homotopic to a toral automorphism, say FA : T2 → T2 with defining matrix

A ∈ GL(2,Z), where α and β are equivalent such that A maps an α-linear
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Aα
∼= DB

α DB
β
∼= Aβ

h

T2 T2

h̃

h̃ can be homotoped to h̃′

T2 T2

h̃′

T2T2

h̄

qα qβ

h̄ is homotopic to an automorphism of T2

Figure 8.1: Supporting diagrams for preamble.
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foliation to the β-linear foliation. Conversely, if α and β are equivalent irra-

tionals calculated from matrix A of FA then the α- and β-linear foliations admit

toral flows which are topologically equivalent. A reverse argument to that just

outlined yields homeomorphic Denjoy continua DB
α
∼= DB

β , hence homeomor-

phic attractors Aα
∼= Aβ, if the irrational slopes α and β are equivalent. More

formally, consider the next theorem.

Theorem 8.4. (i) Let two orientable hyperbolic attractors Aα,Aβ ∈ F then Aα

and Aβ are homeomorphic if and only if α and β are equivalent.

(ii) Let two non-orientable Plykin attractors PAα, PAβ ∈ PF then PAα and

PAβ are homeomorphic if and only if α and β are equivalent.

Proof. (i) Taking the argument described in the preamble above says that if

DB
α
∼= DB

β ⇒ α ≡ β. Let Aα,Aβ ∈ F. We know that Aα
∼= DB

α and Aβ
∼= DB

β

which means that when DB
α and DB

β are homeomorphic then so too are Aα and

Aβ. It follows that homeomorphic attractors Aα
∼= Aβ ⇒ α ≡ β. Conversely,

if α ≡ β then by Theorem 2.12 in [30] ∃A =

a b

c d

 ∈ GL(2,Z) (Def. 8.1)

such that FA : T2 → T2 maps the α-linear foliation to the β-linear foliation.

Then FA will permute the elements of B (see Lemma 7.7). In so doing, FA

induces a topological equivalence between the toral flows associated to the α-

and β-linear foliations which endows a homeomorphism between the attractors.

That is α ≡ β ⇒ Aα
∼= Aβ. Hence Aα

∼= Aβ ⇔ α ≡ β.

(ii) Let PAα, PAβ ∈ PF be one-dimensional non-orientable expanding attrac-

tors of diffeomorphisms h1 and h2 respectively on a 2-dimensional manifold M .

Then by Plykin’s Theorem 2.2 in [45], the lifts h̃1 and h̃2 induce orientable ex-

panding attractors Aα and Aβ respectively on a double cover M̃ , in our case T2.

Now suppose that PAα and PAβ are homeomorphic then the lifted attractors

Aα and Aβ are homeomorphic and thus by Theorem 8.4(i), α ≡ β.
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Conversely, if α ≡ β consider again the map FA : T2 → T2 defined by a matrix

A which maps the α-foliation to the β-foliation (see preamble). As discussed in

(i) above, FA permutes the points of set B inducing a topological equivalence

of flows. Recall the quotient map Π of Definition 5.11. Let x ∈ T2, then

FA(±x) = ±FA(x) and g = Π ◦FA : T2 → S2 is constant on Π−1({y}), y ∈ S2,

such that g induces a self-homeomorphism h : S2 → S2 (see Corollary 22.3 in

[38]). So h ◦ Π = Π ◦ FA.

T2

g

  A
AA

AA
AA

A

Π
��

FA // T2

Π
��

S2
h // S2

It follows that α ≡ β ⇒ Aα
∼= Aβ ⊆ T2 projects to PAα

∼= PAβ ⊆ S2.

8.1.2 Class groups

Our Theorem 7.6 on page 124 and its Corollary 8.7 below appeal to a result in

[24] that the class group of a Denjoy continuum Dα is either Z2 or Z⊕ Z2. In

our case the class group is Z⊕ Z2 which applies to DB
α and Aα.

Definition 8.5. If hi : X → Y (i = (0, 1)) are homeomorphisms, an isotopy

joining h1 to h2 is a continuous map H : X×[0, 1]→ Y such that H0 = h0, H1 =

h1 and ∀ t ∈ [0, 1], ht : X → Y is a homeomorphism where ht(x) := H(x, t).

The four pairs of asymptotic path-components of Aα can be permuted and it

is these induced permutations which determine the isotopy classes of the self-

homeomorphisms of Aα. In §8.1.3 we calculate the permutation groups which

arise and in particular Lemma 8.11 acknowledges the role of the matrix type

M̄ ∈M in the permutations of set B.
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Definition 8.6. Let C1,C2 ⊆ Aα be the pair of asymptotic path-components

derived from the point b0 ∈ B ⊂ T2. Let the restricted class group of all

self-homeomorphisms be H0(Aα) = {h : Aα → Aα | h(Ci) = Ci, i = 1, 2}. For

h ∈ H0, let [h] denote the isotopy class of h, then under composition of maps

[h1] ◦ [h2] = [h1 ◦ h2], let the restricted subgroup be K0(Aα) = {[h] | h ∈ H0}.

It is valid to restrict considerations to K0(Aα) since the subgroups Kj(Aα),

0 ≤ j ≤ 3, associated to points bj, 0 ≤ j ≤ 3, respectively are isomorphic.

Corollary 8.7. The subgroup K0(Aα) is isomorphic to Z⊕ Z2.

Proof. Given h : Aα → Aα, the map h̄ : T2 → T2 is homotopic to a toral

automorphism defined by a matrix M ∈ M. Recall the isomorphic groups

G ∼= Z ⊕ Z2 (Theorem 7.6) where M ∈ G . Then by injectivity, the matrix

M = ν−1(λ) is unique and belongs to some type M̄i, 0 ≤ i ≤ 5, say i = t. It

follows that for k ∈ Z, Mk corresponds to (k, 0) ∈ Z⊕ Z2. Also the involution

i : T2 → T2 does not affect the matrix type so that for −I =

−1 0

0 −1

,

−IM = −MI ∈ M̄t then −Mk = −IMk which corresponds to (k, 1) ∈ Z⊕Z2.

Hence K0(Aα) ∼= Z⊕ Z2.

The standard algebraic groups which occur in §8.1.3, 8.1.4 are found in [31].

8.1.3 Permutation subgroups of S4

Theorem 8.8. The group M is isomorphic to the symmetric group S3.

Proof. Using the index set of the points {b1≤j≤3} ⊂ B let the permutations

on {1, 2, 3} form the symmetric group S3 = {(123), (23), (13), (12), (132), e}.

Neither M nor S3 is Abelian1, both have order 6 and each group has 4 self-

inverses. Thus the groups are isomorphic M ∼= S3.

1Niels Henrik Abel (1802 - 1829) Norwegian mathematician.
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Let the isomorphism be defined by

ιM : M→ S3,



M̄0 → (123)

M̄1 → (23)

M̄2 → (13)

M̄3 → (12)

M̄4 → (132)

M̄5 = Ī → e.

(8.2)

Recall that (abc) is the cycle a → b → c → a and (ab) is a → b → a

which leaves (c) fixed. These cycles are deemed even and odd permutations

respectively. Calculate the conjugate θ(12)θ−1 for each θ ∈ S3. For example

(123)(12)(132) = (123)(13) = (23) then the three conjugacy classes in S3 are

{(23), (13), (12)}, {(123), (132)} and {e} as expected which are equivalent to

those of M namely {M̄1, M̄2, M̄3}, {M̄0, M̄4} and {M̄5}. Denote a generator by

〈·〉 then the proper cyclic subgroups of M are 〈M̄0〉 = 〈M̄4〉 = {M̄0, M̄4, M̄5};

〈M̄1〉 = {M̄1, M̄5}; 〈M̄2〉 = {M̄2, M̄5} and 〈M̄3〉 = {M̄3, M̄5}.

Definition 8.9. Let K be a translation group acting on the set B such that

∀ k ∈ K and ∀ b ∈ B, k + b ∈ B, addition modulo 1.

Now assign permutations on the index set of all 4 points ofB, namely {0, 1, 2, 3},

according to the group action of K so that b0 = e, b1 = (01)(23), b2 = (02)(13)

and b3 = (03)(12). Then K := Z2⊕Z2
∼= V4, the Klein2 4-group. Now compose

the elements of S3 with K to give the 24 permutations of the symmetric group

S4. We want to distinguish which matrix type M̄ ∈M yields which subgroup(s)

of S4 so with slight abuse we show the elements of M rather than those of S3

in our calculations, knowing that S3
∼= M. We suppress the binary operation ◦

2Felix Klein (1849 - 1925) German mathematician.
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and use juxtaposition M̄ibj, 0 ≤ i ≤ 5, 0 ≤ j ≤ 3, for composition of elements

to which we assign the labels {p0, . . . , p23}. In Table 8.1 we block the elements

of S4 according to their cyclic order. In Table 8.2 we summarise the subgroups

of S4 which occur; A4 denotes the alternating group of even permutations on

four elements and D4 denotes the dihedral group of the symmetries of a square.

Definition 8.10. Define the set A =
⋃
i=0,4(M̄i∪K) and D =

⋃
i=1,2,3(M̄i∪K).

Denote the permutation subgroup of S4 arising from set A by B and those

arising from set D by the permutation subgroups B1, B2, B3.

Lemma 8.11. The type of matrix M̄i ⊂M, 0 ≤ i ≤ 5, determines the permuta-

tions of the points in B. In particular set A leads to the subgroup B isomorphic

to A4 while set D leads to isomorphic subgroups Bi ∼= D4, i = 1, 2, 3.

Proof. The alternating group A4 is the smallest subgroup of S4 which owns all

the elements arising from set A. Since M̄0 and M̄4 are inverses, 〈p10, p4, p5〉 =

〈p13, p4, p5〉 = B ∼= A4. The smallest subgroups which own elements arising from

set D are generated by 〈p1, p4, p5〉 = B1, 〈p2, p4, p5〉 = B2 and 〈p3, p4, p5〉 = B3.

Then for i = 1, 2, 3 each group Bi ∼= D4 by the isomorphism ιi to be given

in (8.4) on page 158. Since A4 is not isomorphic to D4 the permutations of

{M̄0, M̄4} ∪ K are not symmetrically congruent to those of {M̄i} ∪ K for any

i = 1, 2, 3. Thus the type of matrix M ∈ M determines the symmetry of the

permutations on {b0≤j≤3} ⊂ T2 according to the stated classification.
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identity: M̄5b0 = Īe = p0 = eĪ = b0M̄5

Cyclic elements of order 2

p1 : M̄1e = (23) = eM̄1 p4 : Ī b1 = (01)(23) = b1Ī p7 : M̄1b1 = (01) = b1M̄1

p2 : M̄2e = (13) = eM̄2 p5 : Ī b2 = (02)(13) = b2Ī p8 : M̄2b2 = (02) = b2M̄2

p3 : M̄3e = (12) = eM̄3 p6 : Ī b3 = (03)(12) = b3Ī p9 : M̄3b3 = (03) = b3M̄3

Cyclic elements of order 3

p10 : M̄0e = (123) = eM̄0 p13 : M̄4e = (132) = eM̄4

p11 : M̄0b1 = (021) = b2M̄0 p14 : M̄0b2 = (032) = b3M̄0 p16 : M̄0b3 = (013) = b1M̄0

p12 : M̄4b1 = (031) = b3M̄4 p15 : M̄4b2 = (012) = b1M̄4 p17 : M̄4b3 = (023) = b2M̄4

Cyclic elements of order 4

p18 : M̄1b2 = (0312) = b3M̄1 p21 : M̄1b3 = (0213) = b2M̄1

p19 : M̄2b1 = (0321) = b3M̄2 p22 : M̄2b3 = (0123) = b1M̄2

p20 : M̄3b1 = (0231) = b2M̄3 p23 : M̄3b2 = (0132) = b1M̄3

Table 8.1: The composition of S4.
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Isomorphic

Group Generator Subgroup Order Group

M 〈p1, p2〉 {Ī , p1, p2, p3, p10, p13} 6 S3

(K,+) 〈p4, p5〉 {e, p4, p5, p6} 4 V4

Iso.

Union Generator Subgroup Order Group

M̄0 ∪K 〈p10, p4, p5〉

q B

M̄4 ∪K 〈p13, p4, p5〉 = {p0, p4, p5, p6, p10, p11, p12, p13, p14, p15, p16, p17} 12 A4

M̄1 ∪K 〈p1, p4, p5〉 B1 = {p0, p4, p5, p6, p1, p7, p18, p21} 8 D4

M̄2 ∪K 〈p2, p4, p5〉 B2 = {p0, p4, p5, p6, p2, p8, p19, p22} 8 D4

M̄3 ∪K 〈p3, p4, p5〉 B3 = {p0, p4, p5, p6, p3, p9, p20, p23} 8 D4

Table 8.2: Subgroups of S4.
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8.1.4 Symmetry groups

Definition 8.12. For all x ∈ T2 let an action ∗ of the group A4 or D4 on T2

be given by p ∗ x, ∀p ∈ A4 or p ∗ x, ∀p ∈ D4.

When A4 acts on B the orbit of b ∈ B is A4(b) = {p ∗ b ∈ A4 | p ∈ A4} and

similarly the orbit D4(b) = {p ∗ b ∈ D4 | p ∈ D4}. Informally the number of

orbits for a group action on a set measures the symmetry in the set, the fewer

the orbits the greater the symmetry. So we may deduce that the attractors

sourced from matrices belonging to set D show greater symmetry than those

sourced from matrices of set A. This turns out to be the case.

Orientable attractors

Definition 8.13. For Aα ∈ F, let S(Aα) be the set of permutations of the

asymptotic path-components emanating from set B which are induced by the

self-homeomorphisms of Aα. Then define S(Aα) to be the symmetry group

under composition.

Let V4 be the set of vertices of a regular tetrahedron T ⊂ R3. For each

j = 0, . . . , 3 put bj ∈ B in correspondence with a vertex vj ∈ V4. Then

let Sr(T ) = {e, r1.π, r2.π, r3.π, r0. 4π
3
, r0. 2π

3
, r1. 4π

3
, r1. 2π

3
, r2. 4π

3
, r2. 2π

3
, r3. 4π

3
, r3. 2π

3
} be

the set of rotation symmetries of T where e is the identity, ri.π is a rotation

through π about an axis from the midpoint of an edge i = 1, 2, 3 to its opposite

edge of T and rv.nπ
3

is a rotation through 2π
3

or 4π
3

about an axis from a vertex

vj ∈ V4, j = 0, . . . , 3, to the centre of the opposite face of T .

Definition 8.14. Let Sr(T ) be the rotation symmetry group of a regular tetra-

hedron T .

Recall the alternating group A4 which is a group of even permutations on 4

symbols such that A4 is orientation-preserving and known to be isomorphic to
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the group Sr(T ). Since the permutation subgroup B and A4 are isomorphic,

it follows that B is isomorphic to Sr(T ) via the map ι defined by

ι : B→ Sr(T ),



e 7→ e, p13 7→ r0. 2π
3
, p10 7→ r0. 4π

3
,

p4 7→ r1.π, p14 7→ r1. 2π
3
, p17 7→ r1. 4π

3
,

p5 7→ r2.π, p12 7→ r2. 2π
3
, p16 7→ r2. 4π

3
,

p6 7→ r3.π, p11 7→ r3. 2π
3
, p15 7→ r3. 4π

3
.

(8.3)

Let V� be the set of vertices of a square S ⊂ R2. For each j = 0, . . . , 3 put

bj ∈ B in correspondence with a vertex vj ∈ V�. Then let the set of symmetries

of S be {e, rπ
2
, rπ, r 3π

2
, q0, qπ

4
, qπ

2
, q 3π

4
} where e is the identity, rθ is a rotation

through angle θ anticlockwise about the centre of S and qψ is a reflection in

a diagonal through the centre of S at an angle ψ to the positive x-axis. Then

D4 is the symmetry group of the square S .

Theorem 8.15. The symmetry group S(Aα) is isomorphic to either the rota-

tion symmetry group of a regular tetrahedron Sr(T ) or to the symmetry group

of a square D4. The criterion is the type of the source matrix M : if M ∈ M̄i,

i = 0, 4, then S(Aα) ∼= Sr(T ); if M ∈ M̄i, i = 1, 2, 3, then S(Aα) ∼= D4.

Proof. Let M be the unique source matrix of an attractor Aα ∈ F which is the

complement of the repelling set B. Now the points of B are put in correspon-

dence with the vertex sets V4 ⊂ T or V� ⊂ S which are equipped with group

actions Sr(T ) and D4 respectively. This creates the following classification. If

M ∈ M̄i, i = 0, 4, then M̄i ⊂ A and B ∼= Sr(T ) by the map (8.3) whilst if

M ∈ M̄i, i = 1, 2, 3, M̄i ⊂ D and each Bi ∼= D4 by the three isomorphisms

given in (8.4) respectively. Thus S(Aα) is isomorphic to either Sr(T ) or to D4

according to the matrix type of M .
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Define the isomorphisms ι1, ι2, ι3 to be given by

ι1 : B1 → D4,



e 7→ e,

p4 7→ q0,

p5 7→ rπ,

p6 7→ qπ
2
,

p1 7→ qπ
4
,

p7 7→ q 3π
4
,

p18 7→ r 3π
2
,

p21 7→ rπ
2
.

ι2 : B2 → D4,



e 7→ e,

p4 7→ q0,

p5 7→ rπ,

p6 7→ qπ
2
,

p2 7→ qπ
4
,

p8 7→ q 3π
4
,

p19 7→ r 3π
2
,

p22 7→ rπ
2
.

ι3 : B3 → D4,



e 7→ e,

p4 7→ q0,

p5 7→ rπ,

p6 7→ qπ
2
,

p3 7→ qπ
4
,

p9 7→ q 3π
4
,

p20 7→ r 3π
2
,

p23 7→ rπ
2
.

(8.4)

Non-orientable attractors

Definition 8.16. Let S(T ) be the full set of symmetries of T . Then define

S(T ) to be the symmetry group.

Definition 8.17. For PAα ∈ PF, let S(PAα) be the set of permutations of the

asymptotic path-components emanating from set B which are induced by the

self-homeomorphisms of PAα. Then define S(PAα) to be the symmetry group

under composition.

Theorem 8.18. The symmetry group S(PAα) is isomorphic to a subgroup of

S(T ). In particular, if for FM , M ∈ M̄0 ∪̇ M̄4 then S(PAα) ∼= Sr(T ) while if

M ∈ M̄i, i = 1, 2, 3, then S(PAα) ∼= D4.

Proof. The groups S4 and S(T ) are isomorphic via the isomorphism (8.5)

and we know by the classification of Lemma 8.11 which subgroups of S4 arise

from which matrix M ∈ M̄ ⊂ M. So consider again the map g = Π ◦ FM

(see proof Theorem 8.4 (ii)) with M ∈ M̄i for some i = 0, . . . , 4. Now the

induced map on the sphere preserves the corresponding transverse foliations
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on the torus which result from the linear transformation M : R2 → R2. We

know that a matrix M ∈ M̄i, i = 1, 2, leads to the permutation subgroup

B ∼= A4 and a matrix M ∈ M̄i, i = 1, 2, 3, leads to the permutation subgroup

Bi, i = 1, 2, 3, respectively. Now A4
∼= Sr(T ) so B ∼= Sr(T ) ⊂ S(T ) and

∀ i = 1, 2, 3, Bi ∼= D4 ⊂ S(T ). Thus any attractor PAα will have a symmetry

group S(PAα) which is isomorphic to a subgroup of S(T ) as detailed in the

theorem.

We feel it is of interest to describe the symmetry of these spaces from a ge-

ometric perspective. When the group of symmetries act on the 4 vertices of

a regular tetrahedron the orbit of each face has 4 elements (rotations). The

stabilizer subgroup of any face f in T is {q ∈ S(T ) |q ∗ f = f} which has

order 6 (reflections). So in total there are 4 × 6 = 24 elements. Recall the

assignment of set B to the vertex set V4 then let an isomorphism be defined

by

ι4 : S4 → S(T ),



B 7→ Sr(T ),

{p1, p2, p3} 7→ {q1, q2, q3},

{p7, p8, p9} 7→ {q7, q8, q9},

{p18, . . . , p23} 7→ {t18, . . . t23},

(8.5)

where q is a reflection and t is a composite reflection-rotation. Note that the q

and t elements are images of the odd permutations of S4.

The o-r involution i : T2 → T2 is geometrically a reflection fixing set B then

g(B) = B′ ⊂ S2 where the four pairs of asymptotic path-components are being

permuted as for the four points in B′. Furthermore if M ∈ M̄0 the period 3

cycle of b1,b2,b3 will now be anti-clockwise and clockwise if M ∈ M̄4. Since

M ∈ M̄0 ∪̇ M̄4 leads to B ∼= Sr(T ) let the even permutations of B ⊂ S4 map

to the set of rotations now labelled by {r}. Whereas M ∈ M̄i, i = 1, 2, 3, leads

to Bi ∼= D4. So let the odd permutations in S4 of cycle length 2 map to the 6
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reflections labelled ‘i’ and those of cycle length 4 map to the reflection-rotation

elements labelled ‘ir’. Then define two isomorphisms ῑ and ι̃ by

ῑ : S4 → S(G),



B 7→ {r},

{p1, p2, p3} 7→ {i1, i2, i3},

{p7, p8, p9} 7→ {i7, i8, i9},

{p18, . . . , p23} 7→ {ir18, . . . ir23},

(8.6)

ι̃ : S(G)→ S(T ),



{r} 7→ Sr(T ),

{i1, i2, i3} 7→ {q1, q2, q3},

{i7, i8, i9} 7→ {q7, q8, q9},

{ir18, . . . , ir23} 7→ {t18, . . . t23}.

(8.7)

Clearly, ι4 = ι̃ ◦ ῑ. It follows that S(PAα) is isomorphic to a subgroup of S(T )

according to the matrix M associated to PAα, as previously found.

8.2 Classifying tiling spaces

Let β be fixed by a toral map F ′ and let ω̈′ be a proper substitution such that

the tiling space Tβ(ω̈′) complies with Definition 7.29.

Theorem 8.19. The two tiling spaces Tα(ω̈) and Tβ(ω̈′) are homeomorphic if

and only if α and β are equivalent.

Proof. The attractors Aα,Aβ ∈ F are such that Aα
∼= Aβ ⇔ α ≡ β (Theorem

8.4(i)). But Aα
∼= Tα(ω̈) and Aβ

∼= Tβ(ω̈′) (Lemma 7.31). Thus Tα(ω̈)
∼= Tβ(ω̈′) ⇔

α ≡ β.
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Lemma 8.20. For a fixed α, the symmetry and class groups of the tiling space

Tα(ω̈) admit the same classification criteria as for the orientable attractor Aα.

Proof. By Lemma 7.31, Tα(ω̈) is homeomorphic to Aα and homeomorphic spaces

have isomorphic group structures.

Lemma 8.20 justifies the statements given below in Corollary 8.22 and Theorem

8.24 which are of the same form as Corollary 8.7 and Theorem 8.15 respectively.

Definition 8.21. Let T1, T2 ⊆ Tα(ω̈) be the pair of asymptotic path-components

derived from the point b0 ∈ B ⊂ T2. Let the restricted group of all self-

homeomorphisms be H0(Tα(ω̈)) = {Fα(ω̈) : Tα(ω̈) → Tα(ω̈) |Fα(ω̈)(Ti) = Ti, i =

1, 2}. Under composition of maps let the restricted subgroup be T0(Tα(ω̈)) =

{[Fα(ω̈)] |Fα(ω̈) ∈ H0}.

Corollary 8.22. The subgroup T0(Tα(ω̈)) is isomorphic to Z⊕ Z2.

Definition 8.23. Let S(Tα(ω̈)) be the set of permutations of the pairs of asymp-

totic tilings of Tα(ω̈) emanating from set B which are induced by the self-

homeomorphisms of Tα(ω̈). Then define S(Tα(ω̈)) to be the symmetry group

under composition.

Theorem 8.24. The symmetry group S(Tα(ω̈)) is isomorphic to either the rota-

tion symmetry group of a regular tetrahedron Sr(T ) or to the symmetry group

of a square D4. The criterion is the type of the source matrix M : if M ∈ M̄i,

i = 0, 4, then S(Tα(ω̈)) ∼= Sr(T ); if M ∈ M̄i, i = 1, 2, 3, then S(Tα(ω̈)) ∼= D4.

8.3 Classification of examples

See pages 127 and 128 for details of the maps and their matrices referred to

below. We exploit Theorem 175 of Hardy and Wright, page 146, to deduce the

equivalence of the eigenvector slopes found in the examples below.
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Orientable attractors and tiling spaces

Matrix types M̄0 and M̄4. Consider the lifted Plykin attractor Λ̃P and

the attractor Aα0 of the Cat diffeomorphism which share the source matrix

A =

2 1

1 1

 ∈ M̄0. The attractor Aα4 of the Fibonacci diffeomorphism comes

from the matrix Mϕ =

1 1

1 0

 ∈ M̄4. Now the matrix A and Mϕ have equal

expanding eigenvectors with slopes α0 = α4 = 1/µ = −1+
√

5
2

, with continued

fraction expansion [0; 1, 1, 1, . . .] = [0; 1̇], so α0 ≡ α4. Thus the three attractors

are homeomorphic (Theorem 8.4(i)). We also know that Λ̃P is homeomorphic

to Tω2 (Theorem 6.32) so in fact all six spaces are homeomorphic Λ̃P
∼= Aα0

∼=

Aα4
∼= Tω2

∼= Tα0(ω̈0)
∼= Tα4(ω̈4) (Lemma 7.31). The permutation subgroup of

each space is B ∼= A4 (Lemma 8.11) while their isomorphic symmetry groups

S(Λ̃P ) ∼= S(Aα0) ∼= S(Aα4) ∼= S(Tω2) ∼= S(Tα0(ω̈0)) ∼= S(Tα4(ω̈4)) have the

structure of Sr(T ) (Theorems 8.15, 8.24).

Given a space Aα ∈ F with K0(Aα) ∼= Z⊕ Z2 and corresponding source matrix

M , Aα is homeomorphic to the attractor associated to any map corresponding

to Mk (k ∈ Z). These maps corresponding to Mk,Mk′ (k, k′ ∈ Z) are typically

not topologically conjugate although their attractors are homeomorphic. For

example, Aα0 and Aα4 are homeomorphic but the underlying DA maps for

which they are attractors are not topologically conjugate since, as detailed

above, Aα0 has source matrix A and Aα4 has source matrix Mϕ, with A = M2
ϕ.

So we see that the maps for which these spaces are attractors correspond to

different elements of Z ⊕ Z2. Similar reasoning applies to a space Tα(ω̈) with

T0(Tα(ω̈)) ∼= Z⊕ Z2 and corresponding source matrix M .

162



Remark 8.25. We know that the tiling spaces Tω2 and Tα0(ω̈0) are derived from

the primitive and aperiodic substitutions (6.16) and ω̈0 respectively. Since the

tiling spaces are homeomorphic there exist positive integers m and n such that

their corresponding inflation and substitution homeomorphisms Fm
ω2 and F n

α0(ω̈0)

are topologically conjugate (Theorem 2.1 in [9]).

Proposition 8.26. There exists a topological conjugacy between the self-

homeomorphisms h̃ : Λ̃P → Λ̃P and h : Aα0 → Aα0.

Λ̃P

H

��

h̃ // Λ̃P

H

��

Tω2

g̃

OO

f
��

Fm
ω2 // Tω2

g̃

OO

f
��

Tα0(ω̈0)

g

��

Fn
α0(ω̈0)// Tα0(ω̈0)

g

��
Aα0

h // Aα0

Proof. We know that the spaces Tω2 , Tα0(ω̈0), Λ̃P and Aα0 are mutually home-

omorphic. Let the maps H, f, g, g̃ be homeomorphisms between the spaces as

shown in the commuting diagram above. By Remark 8.25, let fixed m,n ∈ N

induce a conjugacy F n
α0(ω̈0)◦f = f◦Fm

ω2 then (g−1hg)◦f = f◦(g̃−1h̃g̃)⇒ hg◦f =

gf ◦ (g̃−1h̃g̃)⇒ hg = gf ◦ (g̃−1h̃g̃) ◦ f−1 ⇒ h = (gf g̃−1) ◦ h̃ ◦ (g̃f−1g−1)⇒ h =

(gf g̃−1)◦ h̃◦ (gf g̃−1)−1. That is h = H ◦ h̃◦H−1 is a topological conjugacy.

By the topological conjugacy of Proposition 8.26, [h̃], [h], and similarly the

tiling homeomorphisms [F n
α0(ω̈0)], [Fm

ω2 ], correspond to isomorphic elements of

Z⊕ Z2.
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Matrix types M̄1, M̄2 and M̄3. Observe the continued fraction expansions

of the eigenvector slopes

α1 =
−1 +

√
3

2
= [0; 2, 1, 2, 1, 2, 1, 2, 1, 2, . . .] = [0; 2, 1̇, 2̇],

α2 =
1 + 2

√
2

7
= [0; 1, 1, 4, 1, 4, 1, 4, 1, 4, . . .] = [0; 1, 1̇, 4̇],

α3 = −1 +
√

3 = [0; 1, 2, 1, 2, 1, 2, 1, 2, 1, . . .] = [0; 1̇, 2̇],

corresponding to the matrices M1,M2,M3 respectively. Since α1 ≡ α3 the

attractor Aα1 is homeomorphic to Aα3 whereas the attractor Aα2 is not home-

omorphic to either Aα1 or Aα3 since α2 6≡ α1, α2 6≡ α3 (Theorem 8.4(i)).

Although our chosen example matrix M2 ∈ M̄2 leads to Aα2 not being home-

omorphic to the other two attractors with source matrices belonging to M̄1

and M̄3, there is no obstruction to matrices from types M̄1 and M̄2 realising

homeomorphic attractors as the following examples illustrate.

Let P =

 9 2

23 5

 ∈ M̄1 and Q =

8 7

7 6

 ∈ M̄2. The eigenvector slopes are

αP = −2+5
√

2
2

= [2; 1̇, 1, 6̇] and αQ = −1+5
√

2
7

= [0; 1, 6, 1̇, 1, 6̇] so αP ≡ αQ. Thus

the attractors AαP and AαQ with source matrices P and Q are homeomorphic.

The tiling spaces which are homeomorphic to each other succumb to the same

criteria as given for the attractors above but in particular, Aαi
∼= Tαj(ω̈j) when

i = j, i, j = 1, 2, 3, P,Q (Lemma 7.31). The permutation subgroups of the

attractors and tiling spaces mentioned in this paragraph are B1
∼= B2

∼= B3

(Lemma 8.11) and their isomorphic symmetry groups are S(Aαi)
∼= S(Tαi(ω̈i)) ∼=

D4, i = 1, 2, 3, P,Q (Theorems 8.15, 8.24).
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Non-orientable attractors

The classification of the non-orientable attractors mimics that of the orientable

attractors by virtue of the matrix type used in their construction. Specifically

we appeal to Theorem 8.4 (ii) to deduce that the Plykin attractor ΛΠ, PAα0

and PAα4 are mutually homeomorphic. Whereas PAα2 is not homeomorphic to

either PAα1 or PAα3 which are homeomorphic to each other. However, PAαP

is homeomorphic to PAαQ .

The symmetry groups of the Plykin attractor S(ΛΠ), S(PAα0) and S(PAα4)

are isomorphic to Sr(T ) while each symmetry group S(PAαi), i = 1, 2, 3, P,Q,

is isomorphic to D4. (Theorem 8.18).

The classification of self-maps of the non-orientable attractors also replicates

those for the orientable attractors in their correspondence to elements of Z⊕Z2

(Corollary 8.7).

Remark 8.27. The above results demonstrate the implication that homeomor-

phic spaces yield isomorphic groups but that isomorphic groups do not neces-

sarily yield homeomorphic spaces.

Remark 8.28. The symmetry groups are topological invariants. An attractor

Aα ∈ F whose symmetry group is isomorphic to B ∼= A4 cannot be homeomor-

phic to an attractor Aβ ∈ F whose symmetry group is isomorphic to one of

B1,B2,B3 all of which are isomorphic to D4. This means that a source matrix

Mα ∈ M̄0∪̇M̄4 will not yield an attractor Aα which is homeomorphic to an

attractor Aβ sourced from a matrix Mβ ∈ M̄1∪̇M̄2∪̇M̄3.
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Chapter 9

Conclusions

Much of chapters 1 to 4 consisted of background and preparatory material. In

chapter 5 we described the construction of an orientable expanding hyperbolic

toral attractor, from which evolved the non-orientable Plykin attractor on the

sphere. Chapter 6 introduced a solenoid as an inverse limit space aligned to

a branched 1-manifold. Then began a description of the ‘mechanics’ needed

to build attractors which had one or four complementary domains. Through

development of an original construction method in chapter 7, useful criteria

were formulated in chapter 8 for the classification of attractors and tiling spaces

which was the culmination and main result of this current research.

one complementary domain. Two attractors were derived from branched

1-manifolds of differing design, one from the Cat substitution map γ

using the method of Barge and Diamond [8] and the other from taking

a geometric perspective of the Cat map C, its Markov partition P and

a method described for example by Robinson [48]. In both cases we

knew the source matrix, whose expanding eigenvalue provided the scale

factor for the dynamics and whose eigenvector provided the lengths of

the 1-cells for the branched 1-manifolds. From this information we found

the self-maps of the branched 1-manifolds. A Williams’ construction [54]

166



on each branched 1-manifold produced identically structured elementary

branched 1-manifolds of roses with four petals where again the self-maps

were found by calculation. A proper substitution delivered a substitution

tiling space Tγ homeomorphic to the initial attractor Λ (Theorem 6.20).

four complementary domains. In order to lift the Plykin planar attractor

ΛP to the torus we used Yi’s construction [57] to produce an orientable

double cover equipped with an inverse limit presentation. However in

trying to form its rose we had no matrix parameters to work with -

combinatorics was the solution. This iterative method located five returns

to a nominated origin from which we could build a rose. Each distinct

combinatorial sequence provided the ‘word’ (whose letters were 1-cells)

to be assigned to one of the five petals. These words gave the information

needed to derive a self-map of the rose over an ‘alphabet’ of five petals

then a proper substitution and a tiling space Tω2 homeomorphic to the

lifted attractor Λ̃P with four complementary domains (Theorem 6.32).

the algorithm. Our algorithm given on page 144 will take any hyperbolic

toral automorphism with matrix M and produce an orientable attractor

homeomorphic to a tiling space. The process includes a Markov principal

partition P , its finer secondary partition P̈ , and the linear transformation

of M which provides the self-map of a 2θ-space. Then as previously,

combinatorial first returns to the origin of the 2θ-space assign the ‘words’

to the five petals of a generic rose K̈. From here, a proper substitution

ω̈ leads easily to Tα(ω̈) which is homeomorphic to Aα (Lemma 7.31).

The advantages of our process are that it avoids the need for arithmetical

calculation, it avoids the need of Yi’s ‘lifting map’ [57] to an orientable

branched 1-manifold and it avoids a Williams’ construction [54] which

may produce superfluous petals in the rose, as happened for K3 andM2

(Figs. 6.12 and 6.13).
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the classification. Since our algorithm relied heavily on the matrix M of a

hyperbolic toral map, we focussed on this defining component M . In

chapter 8 we found that this was provident since the properties of M

became the main criteria for classifying an attractor Aα ∈ F or PAα ∈ PF

and indeed for a tiling space Tα(ω̈). Classification of attractors and tiling

spaces was determined up to homeomorphism and up to isomorphism of

symmetry and class groups. The groups in question turned out to be

the symmetric subgroup A4 ⊂ S4, the symmetry group of the square

D4 ⊂ S4, and the tetrahedral subgroup Sr(T ) ⊂ S(T ) while the self-

homeomorphisms of our spaces corresponded to elements of Z⊕Z2. The

tetrahedral symmetry correlates nicely with the template of the Plykin

attractor in Figure 5.4 on page 84.

Further questions

1. What happens if the 4 ‘blown up’ orbits are positioned at points in the

torus other than at the 4 special points of set B ⊂ T2? Does this yield

an attractor? If so, of what description, can it be classified and by what

criteria? Can it be embedded in the plane?

2. Do planar attractors in the set PF exhaust all those which can be lifted to

T2? Are there planar attractors not in set PF but with 4 complementary

domains which can be lifted to a 2-fold covering surface not of genus 1?

3. Given a toral DA attractor of topological dimension one, induced by a

particular bump function, what is the Hausdorff measure and dimension

of the attractor? In fractal geometry, two attractors would be deemed

‘the same’ if there is a bi-Lipschitz mapping between them since the

Hausdorff dimension is invariant under a bi-Lipschitz1 transformation (see

for example Corollary 2.4 in [21]).

1Rudolf O. S. Lipschitz (1832 - 1903) German mathematician.
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