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Abstract

A Study on Space Structure Attitude Stabilization and Actuator
Degradation

Rihan Ahmed Irfan Ahmad

This thesis first addresses an important topic concerning space structure control
systems, namely, attitude stabilization and control, which is followed by a study on
subsystem interactions of general Multi Input Multi Output (MIMO) systems for better
performance and actuator fault tolerance.
A novel and simple output feedback stabilization approach is proposed for a space struc-
ture system characterized with kinematics and dynamics. The approach globally, asymp-
totically stabilizes the plant and the closed-loop stability is proved using Lyapunov
analysis. The simplicity and robustness of the designed controller are demonstrated by
investigating the closed-loop response after reducing the degree of freedom in control
structure. The stability of the closed-loop system is further analyzed and the perfor-
mance is compared with two other robust control approaches.
The study carries on to another space plant, a Large Space Telescope (LST). Its dynamic
model which is fitted with reaction wheels initially developed by NASA is analyzed and
the fully coupled dynamics are derived by taking into account the nonlinear coupling
phenomena and other terms neglected in their original (NASA) form. The dynamics
are combined with Quaternion based kinematics to form an intricate yet realistic LST
attitude model. The attitude of the nonlinear LST model is stabilized using a state feed-
back controller and the LST model is shown to track a time varying attitude reference.
Structure configuration is an imperative task in the design of MIMO control systems. In
order to make use of interactions between multiple channels so that the system can deal
with vulnerability due to actuator degradation, a novel interaction measure is proposed.
It is defined as Relative Dependency Index (RDI) and is based on H∞ norms. Such
a measurement is effective in understanding the influence of the jth input on the ith

output of a system. RDI based guidelines are outlined for configuring a system towards
coupling/decoupling. RDI is further extended to the Input Impact Index (i.i.i.) which
helps in determining how much an actuator degradation would affect the output of a
system. The validity of RDI and i.i.i. is illustrated by simulation results and tested on
the linearized spacecraft attitude model presented in the former part of the thesis.
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Chapter 1

Introduction

1.1 Overview

The motion of a rigid body in space such as a spacecraft can be distinctly divided into

two types namely, translational and rotational. The position and velocity of a space-

craft describe its translational motion. The rotational motion is specified in terms of

the spacecraft’s attitude and attitude motion. The attitude of a spacecraft is defined

as its orientation in space with respect to a reference system. The process of orienting

a spacecraft in a specified, predetermined direction is called as attitude control. It

consists of two areas namely, attitude stabilization, which is the process of maintain-

ing an existing orientation, and attitude maneuver control, which is the process of

controlling the reorientation of the spacecraft from one attitude to another [61]. This

thesis addresses the problem of attitude stabilization and control of nonlinear rigid space

structures. Attitude Determination and Control System (ADCS) is an impor-

tant subsystem in all types of spacecrafts. Some of the important operations of an ADCS

are as follows:

• Pointing of solar panels normal to the sun for the purpose of solar power generation.

• Pointing at selected ground targets accurately by an earth observing remote sens-

ing spacecraft.

1
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• Pointing of a space observing spacecraft away from earth with an additional re-

quirement to avoid pointing the sun.

• Pointing of directional antenna and transceiver for transmission and reception.

• Avoiding solar and atmospheric damage to sensitive components.

The key aspects of attitude control are pointing in the right direction, maintaining

the angular velocity and control inputs at the desired value. For example, attitude track-

ing would require that the spacecraft be oriented such that its sensor always points at a

moving target. Such a maneuver is accomplished through a control law that generates

control torques to re-orient the spacecraft to the desired attitude and angular velocity.

A spacecraft’s attitude is affected by disturbance torques that tend to perturb the space-

craft’s attitude. The major environmental torques that affect the attitude are as fol-

lows [61]:

• Aerodynamic torques caused by the rapid spacecraft motion through the tenuous

upper atmosphere.

• Gravity gradient torque due to the small difference in gravitational attraction from

one end of the spacecraft to the other.

• Magnetic torque due to the interaction between the spacecraft’s magnetic field and

the earth’s magnetic field.

• Solar radiation torque due to the electromagnetic radiation and particles radiating

outward from the sun.

In order to overcome such perturbations the spacecraft’s attitude is stabilized and con-

trolled using different techniques such as spin-stabilization where the spacecraft is ro-

tated about its axis. The angular momentum of a spin-stabilized spacecraft will remain

approximately fixed and its attitude is maintained as desired. A spacecraft is three-axis

stabilized when its three mutually perpendicular axes are controlled. In addition to
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the three-axis stabilization the control torques are also required to compensate for the

disturbance torques mentioned earlier which causes the spacecraft’s orientation to drift.

Hence the attitude control of a spacecraft involves the application of torques which can

be generated externally by thrusters, internally by means of momentum wheels, or by a

combination of both by using a wide variety of hardware and techniques. The choice of

hardware depends on the requirements for maneuverability, pointing accuracy, stability

and other mission requirements such as cost and lifetime. Sidi [47], has presented a

notable appendix on hardware specifications.

Common means of validating control laws are numerical simulations and implementa-

tions on mathematical models reflecting the attributes of the real system to be controlled.

The control concepts are effectively illustrated and verified by such simulations.

This thesis can be broadly divided into two parts, the former deals with attitude stabi-

lization and control of two rigid space structures comprised as follows:

1. Spacecraft attitude model defined using Euler’s equation of rotational dynamics

and kinematic differential equations given by Quaternions and Modified Rodrigues

parameters (MRP). This model is stabilized using an output feedback control law

and the stability is proved in the sense of Lyapunov.

2. A Large Space Telescope (LST) attitude model is formulated by deriving the

coupled nonlinear dynamics considering the coupling phenomena neglected in [44]

and combining it with Quaternion based kinematics. This model is stabilized with

a state feedback control law.

The latter part presents a systematic study of subsystem interactions of general

Multi-Input-Multi-Output (MIMO) systems to achieve better performance and actuator

fault tolerance. A simple and effective interaction index is proposed which helps in

understanding the effect of one input on an output of a multivariable system with the

objective of system structure configuration towards decoupling and prediction of channel

vulnerability to actuator faults and failures.
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In the next section a literature review is presented to familiarize oneself with the prior

work in spacecraft attitude control followed by the contribution and organization of this

thesis.

1.2 Literature Review

George Meyer [34], in 1971, was one of the first to present the problem of attitude con-

trol. He in [34], developed a general procedure for the design and analysis of three-axis,

large angle attitude control system. Properties of three dimensional rotations were used

to formulate a rigid spacecraft model. Error functions were used to assign numerical

values to attitude error. These functions were used to construct asymptotically stable

control laws. This method provided a useful alternative to Lyapunov analysis for deter-

mination of system stability, responsiveness, and sensitivity to disturbances, parameter

variations, and target attitude motion.

Slotine et al [51], proposed a new approach to accurate attitude tracking of rigid space-

crafts handling large loads of unknown mass properties in 1990. The method was based

on the construction of a physically motivated Lyapunov like function inspired from the

adaptive robot manipulator control algorithm. The authors made a comparison between

PD control law and an adaptive control law.

Salcudean [40], presented a new nonlinear angular velocity observer for rigid body mo-

tion in 1991. The observer structure was derived by exploiting the structure of the

dynamics of rigid body motion and the simplicity of the Euler Quaternion representa-

tion of rotation.

Wen et al [60], presented an attitude controller in 1991. The controller structure was of

the form of proportional and derivative feedback and a feed forward compensation. The

proportional term is either the vector Quaternion feedback or the vector Quaternion

and scalar Quaternion product. The research is an extension of the work done in [34].

Shuster [46], in 1993, made a survey of the different type of attitude representations.

The paper discussed in detail the advantages and disadvantages in the three-parameter
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as well as four parameter representations and the relationship between the various rep-

resentations of the attitude and their kinematic equations.

Lizarralde et al [32], in 1996, proposed a new attitude stabilization technique when the

angular velocity is not available. In contrast to the past observer based approach, a

passivity approach was used to derive a large class of filters for the error Quaternion

which replaced the angular velocity in the standard PD control law.

Ahmed et al [4], in 1998, addressed the problem of spacecraft tracking a desired trajec-

tory using adaptive feedback control. The algorithm assumes no knowledge of inertia

of the spacecraft and is thus unconditionally robust with respect to this parametric un-

certainty. Periodic commands are used to identify the inertia matrix.

Miroslav et al [30], in 1999, presented an approach for constructing optimal feedback

control laws for the regulation of a rotating rigid spacecraft. The inverse optimal con-

trol approach requires the knowledge of a control Lyapunov function and a stabilizing

control law is constructed using integrator backstepping. The resulting design includes

a penalty on the angular velocity, orientation and the control torque.

Wong et al [66], in 2001, addressed the problem of attitude tracking of uncertain space-

craft without angular velocity measurements. The adaptive control incorporated a veloc-

ity generating filter from attitude measurements. A high pass filter was used to generate

a pseudo velocity tracking error signal while a gradient type, adaptive law accounted for

the inertia uncertainty.

Sharma et al [45], in 2004, devised a nonlinear-optimal controller for the attitude track-

ing problem of spacecraft maneuvers through Hamilton-Jacobi formulation, applying

penalty on angular velocity and attitudinal kinematics resulting in closed-form expres-

sions for unknown Lyapunov parameters.

Gollu et al [19], in 2007 presented a Lyapunov based controller synthesis performed using

sum of squares technique for large angle attitude maneuvers. The rigid body attitude

was parameterized in terms of MRP’s.

Doruk [16], in 2009, linearized the nonlinear satellite model which uses MRP as the
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attitude representation mechanism based on Jacobian matrix linearization, around the

origin and the reference values of MRP. A linear quadratic regulation approach was de-

signed for attitude stabilization and it was shown that the closed-loop system converges

but there exists a tracking error which can be reduced by increasing the controller coef-

ficients.

Chen et al-a [15], in 2010, presented sliding mode control based on RBF neural network

using reaction wheels for attitude tracking. The controller is divided into two parts,

the former is the traditional sliding mode control, and the latter part is neural network

based and is used for estimating the plant’s uncertainties.

Hu et al [23], in 2011 improved the basic PSO algorithm and applied it to a flexible

satellite attitude controller for parameter optimization.

Chen et al-b [14], in 2011 applied the PSO algorithm to optimize the controller param-

eters presented in [15].

1.3 Contribution and Thesis Organization

1.3.1 Thesis Contribution

The thesis has attained the following objectives:

• A novel and simple output feedback stabilization approach is proposed for the

nonlinear spacecraft attitude model defined in terms of Euler’s equation of rota-

tional dynamics and the kinematic formulation using MRP and Euler’s symmetric

parameters (Quaternions).

• The output feedback approach is proved to be globally asymptotically stable with

the help of Lyapunov stability analysis and requires only the plant output as a

measurement. It is in contrast to the previously proposed approaches in literature

which require additional state measurements such as angular velocity.

• The proposed control law is shown to be robust because of its non-dependency on
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the spacecraft inertia and degree of freedom in the controller parameters selection.

This is illustrated by reducing the degree of freedom in the controller and proving

its global asymptotic stability in the sense of Lyapunov.

• A nonlinear attitude model of a LST fitted with reaction wheels as actuators is

analyzed and its nonlinear coupled dynamic equations are derived by taking into

account the nonlinear coupling terms, inertia tensors and the angular velocity

terms neglected in the original work [44].

• The derived nonlinear coupled dynamic system is combined with a Quaternion

based kinematic model to form a nonlinear attitude model of the LST system with

reaction wheels as actuators. A state feedback control law is shown to stabilize

the nonlinear LST attitude model and track a time varying attitude reference.

• A new measure of interaction known as Relative Dependency Index (RDI ) and

some guidelines are presented for stable open-loop MIMO systems. RDI is defined

in terms of H∞ norm of the individual subsystems and helps in understanding the

effect of one input on an output. RDI based guidelines are shown to configure

a MIMO system structure towards coupling and decoupling and the veracity of

this approach is verified using a performance measure defined in terms of Root

Mean Square Error (RMSE). The effectiveness of the approach is illustrated by

simulation results and the approach is compared with the existing measures.

• RDI is extended to the case of closed-loop MIMO systems. A similar performance

measure is used to verify the RDI based approach and its associated guidelines in

studying the subsystem interactions. Suitable examples are demonstrated.

• RDI is further extended to understand the tendency of fault and failure and the

influence of actuator input on system output by presenting an index known as

Input Impact Index (i.i.i.) based on RDI. The i.i.i. and its associated guidelines

are shown to predict the actuator fault/failure that would least and most affect the
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overall performance of open-loop stable and closed-loop systems. The effectiveness

of this approach is illustrated by examples.

• The research carried out has resulted in a few conference publications [9], [7], [5],

[8], [28], [6] & [29]. Some journal papers are currently under preparation.

1.3.2 Thesis Organization

The thesis is organized into six chapters including this chapter and four appendices. A

summary of each is given below:

• Chapter 1: This is the current chapter in which the concept of attitude is famil-

iarized and the importance of attitude control as a major subsystem in a spacecraft

is described. A literature review is presented describing the prior work in the field

of attitude stabilization and control.

• Chapter 2: This chapter covers the fundamentals of spacecraft attitude dynamics.

Different types of attitude representations to be used in the proposed work are

discussed. Their pros and cons are pointed out. Euler’s equation of rotational

dynamics are introduced. The nonlinear spacecraft attitude model comprising of

the dynamics and the kinematics is formulated using two different types of attitude

representations, namely, MRP and Quaternions. Nonzero equilibrium points are

found for the nonlinear attitude model and are then linearized at these operating

points based on Jacobian linearization.

• Chapter 3: In this chapter a novel and simple output feedback stabilization

approach is proposed for the nonlinear spacecraft attitude model presented in

chapter two. The approach is shown to globally asymptotically stabilize the non-

linear plant and the overall closed-loop stability is proved in the sense of Lyapunov.

Particle Swarm Optimization (PSO) algorithm is used as a tool to infer the best

controller parameters depending on an objective function which minimizes the ab-

solute value of the attitude error. Two robust controllers are synthesized namely,
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H∞ loop shaping and H∞ mixed sensitivity for the linearized spacecraft attitude

model presented in chapter two. The robust controllers are tested on the non-

linear attitude model and the simulation results are compared with the proposed

Lyapunov based output feedback approach.

The proposed output feedback control law is modified by reducing the degree of

freedom in the control structure. The overall closed-loop stability is proved with a

modified Lyapunov function which globally asymptotically stabilizes the nonlinear

plant. Simulation results are illustrated for attitude stabilization and time varying

attitude tracking of the nonlinear plant.

• Chapter 4: In this chapter a LST model developed by NASA [44] in 1973, fitted

with reaction wheels as actuators is described. The LST model is further developed

into a fully coupled nonlinear dynamic equation of the original model itself and

the reaction wheels (actuators), which are derived by taking into account the non-

linear coupling phenomena and the inertia terms neglected by [44]. The dynamic

equations are then combined with a Quaternion based kinematic formulation to

form a nonlinear LST attitude model. This model is globally asymptotically sta-

bilized using a state feedback control structure and is shown to track time varying

attitude.

• Chapter 5: In this chapter a systematic study of subsystem interactions for

MIMO systems is performed. The existing interaction measures required to de-

couple the structure configuration and their shortcomings are outlined. A new

approach for structure configuration of MIMO systems in open and closed-loop

systems is presented by proposing interaction indexes defined in terms of H∞

norm. The new interaction index helps in understanding the effect of one input

on an output of a multivariable system in open-loop stable and closed-loop sys-

tems. Additionally, it is also shown that the index identifies the least and most

vulnerable channel to an actuator degradation. Sufficient examples are illustrated

to show the effectiveness of the index and its guidelines which help in structure
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configuration of distillation column examples. The index is also shown to predict

the least and most vulnerable channel prone to actuator degradation for the lin-

earized spacecraft attitude model presented in chapter two and stabilized with an

output feedback controller proposed in chapter three.

• Chapter 6: In this chapter a summary of the achieved results is presented followed

by some thoughts on future research.

• Appendix-A: In this appendix the Jacobian linearization of nonlinear spacecraft

attitude model defined in terms of MRP’s and Euler’s equation of rotational dy-

namics is presented.

• Appendix-B: The Euler’s equation of rotational dynamics and the MRP’s based

kinematic differential equation are combined to form a second order nonlinear

equation of the Hamiltonian form.

• Appendix-C: The Euler’s equation of rotational dynamics and the Quaternion’s

based kinematic differential equation are combined to form a second order nonlin-

ear equation of the Hamiltonian form.



Chapter 2

Spacecraft Dynamics and

Kinematics

2.1 Introduction

The spacecraft is considered to be a rigid body, i.e. the distance between any two points

on the body is fixed all the time. The rigid body attitude can be described by two sets

of equations, namely, Kinematic equation and Dynamic equation [61] and [25]. They

are defined as follows.

1. Kinematic Equations of Motion: The study of motion irrespective of forces

that bring about motion. They are set of first order differential equations speci-

fying time evolution of attitude parameters. It relates the time derivatives of the

orientation angles to the angular velocity vector.

2. Kinetic or Dynamic Equations of Motion: The study of motion with respect

to forces that cause motion. The equation expresses time dependence of angular

velocity. This equation describes the time evolution of the angular velocity vector

due to torque. It is also known as the Euler’s equation of rotational dynamics.

The equations of motion of a rigid spacecraft deals with two frames of reference. The

first is the body axis system which is fixed to the body of the spacecraft and is constantly

11
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moving and the other is inertial axis system which is fixed to the center of the Earth.

A transformation is needed to transform the orientation between the body axis and the

inertial axis. Rigid body orientation has been studied by great scholars such as Euler,

Jacobi, Hamilton, Cayley, Klein, Rodrigues and Gibbs [42]. A detailed description of

the various attitude representations, their advantages, disadvantages and their respective

kinematic differential equations can be found in [46].

2.2 Direction Cosine Matrix
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Figure 2.1: Direction cosines between reference frames B and N

Direction Cosine Matrix (DCM) is one of the basic coordinate transformation that

maps the vectors from the body axis system to the inertial axis system. Let the two

reference frames N and B each be defined with sets of mutually perpendicular sets of

vectors given as follows:

N △
=


n1

n2

n3

 B △
=


b1

b2

b3

 (2.1)

The unit vectors of the frames N and B are shown in Fig. 2.1. Let α11, α12 and α13 be

the angles formed between the first body vector b1 and the three inertial axes namely,

n1, n2 and n3. The cosines of these angles are called the direction cosines of b1 relative

to the N frame. The unit vector b1 can be projected onto the frame N as follows:
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b1 = cos α11n1 + cos α12n2 + cos α13n3 (2.2)

Analogously, the direction cosines of b2 and b3 relative to n2 and n3 can be written

as follows:

b2 = cos α21n1 + cos α22n2 + cos α23n3

b3 = cos α31n1 + cos α32n2 + cos α33n3

(2.3)

In matrix form the reference frame B can be expressed in terms of reference frame

N as follows:

B △
=


cos α11 cos α12 cos α13

cos α21 cos α22 cos α23

cos α31 cos α32 cos α33

N ≡ [Crot]N (2.4)

where [Crot] is called the DCM.

2.3 Euler Angles
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Figure 2.2: Euler angle orientation

The attitude parameters are most commonly represented using Euler angles. They

describe the attitude of the reference frame B relative to the frame N by a sequence of

three principal rotations. One possible sequence is shown in Fig. 2.2 as follows:
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1. A rotation of angle ψ about the original n3 axis.

2. A rotation of angle θ about the intermediate n2 axis.

3. A rotation of angle ϕ about the transformed n1 axis.

This transformation is called a 3-2-1 attitude sequence or the yaw-pitch-roll convention

and is very common in aerospace applications. In this case the rotation matrix Crot

from B to N is given by:

Crot(ψ, θ, ϕ) =


cθ cψ cθ sψ −sθ

sϕ sθ cψ − cϕ sψ sϕ sθ sψ + cϕ cψ sϕ cθ

cϕ sθ cψ + sϕ sψ cϕ sθ sψ − sϕ cψ cϕ cθ

 (2.5)

where the short hand notation c = cos and s = sin. There are 12 possible sets of Euler

angle rotations. Six of them are called symmetric sets because the first and last axis of

rotation are the same. The other set of six rotations are called the asymmetric Euler

angles. They are also referred to as Cardan, Tait or Bryant angles [46].

Symmetric sets

1-2-1 1-3-1

2-3-2 2-1-2

3-1-3 3-2-3

Asymmetric sets

1-2-3 1-3-2

2-3-1 2-1-3

3-1-2 3-2-1

If the Euler angle set is symmetric, then singular orientation occurs at θ = 0 or 180◦

and for an asymmetric set there is a singular orientation at θ = ±90◦ [42]. The Euler

angles are a compact, three parameter attitude representation whose coordinates are

easy to visualize. The main drawback in Euler angles is that a reference frame is never

further than a 90◦ rotation away from a singular orientation [46]. Hence their use in

describing large rotations is limited. Euler angles based kinematic differential equations

are fairly nonlinear comprising of computationally intensive trigonometric functions and

their linearized form are only valid for a relatively small domain of rotations [42].

The kinematic differential equation of the (3-2-1) Euler angles is given by:
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
ψ̇

θ̇

ϕ̇

 =
1

cos θ


0 sin ϕ cos ϕ

0 cos ϕ cos θ −sin ϕ cos θ

cos θ sin ϕ sin θ cos ϕ sin θ




ω1

ω2

ω3

 (2.6)

where ω1, ω2 and ω3 are the angular velocities of the rigid body about the roll, pitch

and yaw axes in the body fixed frame.

2.4 Euler’s Theorem

One of the important contributions of Euler is the Euler’s theorem which tells us that

only one rotation is necessary in order to reorient from one frame to another. This is

formally stated as follows [61]:

Euler’s Theorem: The most general displacement of a rigid body with one point

fixed is a rotation about some axis.

Thus a single rotation about a fixed axis is sufficient to keep track of rotational

motion instead of three rotations about three angles. The axis of rotation is called

Euler axis or eigenaxis, denoted as Φ̂ and the angle of rotation is called as Euler angle

or eigenangle, denoted as k̂ where k̂ = [k1 k2 k3]
T . Each vector of frame B can be

expressed with respect to reference frame N in terms of k̂ and Φ̂ as follows [46]

B △
= [cos Φ̂[I3×3] + (1− cos Φ̂) k̂ k̂T − sin Φ̂ S(k̂)] N ≡ [C]N (2.7)

where I3×3 is an identity matrix with 3 rows and 3 columns, k̂ k̂T is the outer vector dot

product of the vector k̂ and S(k̂) is the skew-symmetric matrix representing the cross

product operation of k̂ as follows:

S(k̂) =


0 −k3 k2

k3 0 −k1

−k2 k1 0

 (2.8)

The eigenaxis and eigenangle can be computed from the DCM, C in (2.7) using the
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following relationship [42]:

Φ̂ = cos−1

[
1

2
(trace(C)− 1)

]
(2.9)

k̂ =


k1

k2

k3

 =
1

2 sin Φ̂


C2,3 − C3,2

C3,1 − C1,3

C1,2 − C2,1

 (2.10)

where Ci,j represents the i
th row and jth column element of C matrix.

2.5 Euler’s Symmetric Parameters

The Euler symmetric parameters also known as Quaternions are the preferred form of

attitude representation as they globally represent the spacecraft attitude without any

singularities. They provide a very convenient parametrization of attitude which is more

compact than the DCM as only four parameters, rather than nine, are needed and is

also superior to Euler angle parametrization which involves computationally intensive

trigonometric functions, requiring time consuming computer operations [61]. They are

defined in terms of the eigenaxis and eigenangle as follows:

βqo
△
= cos

(
Φ̂

2

)

βq1
△
= k1sin

(
Φ̂

2

)

βq2
△
= k2sin

(
Φ̂

2

)

βq3
△
= k3sin

(
Φ̂

2

)

(2.11)
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The Quaternions are not independent and satisfy the following constraint equation

β2
qo + β2

q1 + β2
q2 + β2

q3 = 1 (2.12)

The kinematic differential equation in terms of the Euler symmetric parameters is

given as follows [42] :



β̇qo

β̇q1

β̇q2

β̇q3


=



0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0





βqo

βq1

βq2

βq3


(2.13)

Alternatively (2.13) can also be written as follows:



β̇qo

β̇q1

β̇q2

β̇q3


=



βqo −βq1 −βq2 −βq3

βq1 βqo −βq3 βq2

βq2 βq3 βqo −βq1

βq3 −βq2 βq1 βqo





0

ω1

ω2

ω3


(2.14)

2.6 Classical Rodrigues Parameters

The classical Rodrigues parameter vector also known as the Gibbs vector is another set

of attitude parametrization which reduces the redundant Euler symmetric parameters

to a minimal three parameter set through the following transformation

σi
△
=
βqi
βqo

for i = 1, 2, 3 (2.15)

The Gibbs vector is defined in terms of the eigenaxis and eigenangle as follows:


σ1

σ2

σ3

 △
=


k1

k2

k3

 tan

(
Φ̂

2

)
(2.16)
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The kinematic differential equation in terms of the Gibbs vector is given by [42]


σ̇1

σ̇2

σ̇3

 =
1

2


1 + σ2

1 σ1σ2 − σ3 σ1σ3 + σ2

σ2σ1 + σ3 1 + σ2
2 σ2σ3 − σ1

σ3σ1 − σ2 σ3σ2 + σ1 1 + σ2
3




ω1

ω2

ω3

 (2.17)

The kinematic differential equation in terms of Gibbs vector has no trigonometric

functions as in the case of Euler angle approach. It is also a three parameter attitude

representation. Hence, the additional constraint of four parameters in quaternion’s is not

present. However, the Gibbs vector has a drawback that it is defined for any rotation

except for Φ̂ = ±180◦. Although it has more freedom of rotation in comparison to

Euler angles but a singularity is encountered whenever Φ̂ → ±180◦. This impediment

is overcome in the modified form of Gibbs vector and is presented in the next section.

2.7 Modified Rodrigues Parameters

The MRP are a recent form of attitude representation. They are defined in terms of the

eigenaxis and eigenangle as follows:


q1

q2

q3

 △
=


k1

k2

k3

 tan

(
Φ̂

4

)
(2.18)

The MRP’s reduce the redundant Euler symmetric parameters to a minimal three

parameter set through the following transformation

qi
△
=

βqi
1 + βqo

for i = 1, 2, 3 (2.19)

The MRP’s have a singularity at Φ̂ = ±360◦. Hence any rotation can be described

except a complete revolution back to the original orientation. It has twice the rotational

range of the Gibbs vector. The kinematic differential equation in terms of MRP’s is

given by [42]
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
q̇1

q̇2

q̇3

 =
1

4


1 + q21 − q22 − q23 2(q1q2 − q3) 2(q1q3 + q2)

2(q2q1 + q3) 1− q21 + q22 − q23 2(q2q3 − q1)

2(q3q1 − q2) 2(q3q2 + q1) 1− q21 − q22 + q23︸ ︷︷ ︸
T (q)




ω1

ω2

ω3


(2.20)

In addition to these, there exists other attitude parameterizations and will not be

discussed here. Interested readers can refer to [42] and [46].

2.8 Euler’s Equation of Rotational Dynamics

The Euler’s equation of rotational dynamics also known as the dynamic or kinetic equa-

tions are defined as follows:

Jω̇
△
= −ω × Jω + τ = −S(ω)Jω + τ (2.21)

where J is the spacecraft’s constant inertia matrix defined as follows:

J
△
=


J11 J12 J13

J21 J22 J23

J31 J32 J33

 (2.22)

ω = [ω1 ω2 ω3]
T is the angular velocity of the rigid spacecraft in body fixed

frame. S(ω) is the skew symmetric matrix representing the cross product operation of

the angular velocity vector given by

S(ω) =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.23)
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τ = [τ1 τ2 τ3]
T is the control torque input. The rigid body dynamics can be

further simplified by choosing a particular orientation of the body fixed frame relative

to the rigid body such that the products of inertia in (2.22) vanish. Such a frame is

called the principal body fixed frame [55]. The moment of inertia in this case will be

given as follows:

J
△
=


J11 0 0

0 J22 0

0 0 J33

 (2.24)

In (2.24) all non-diagonal elements will be zero. The Euler’s equation defined in

(2.21) for the principal moment of inertia is given by the following equations:

J11ω̇1 + (J33 − J22)ω2ω3 = τ1

J22ω̇2 + (J11 − J33)ω1ω3 = τ2

J33ω̇3 + (J22 − J11)ω1ω2 = τ3

(2.25)

If the spacecraft is assumed to be axis-symmetric, for instance, J11 = J22, then (2.25)

can be simplified as follows:

J11ω̇1 + (J33 − J22)ω2ω3 = τ1

J22ω̇2 + (J11 − J33)ω1ω3 = τ2

J33ω̇3 = τ3

(2.26)

2.9 Nonlinear Spacecraft Attitude Model

In this thesis, the nonlinear spacecraft attitude model is formulated using both MRP’s

and Quaternions. Both these attitude representations have some advantages and dis-

advantages over each other and the Euler angles approach. A few of these can be

summarized below

1. MRP’s have a singularity occurrence only at ±360◦, whereas, in Euler angles no

rotation is more than 90◦.
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2. Singularity can be completely avoided in Quaternions but it suffers from non-

minimal parameterizations.

3. Both MRP and Quaternions do not involve computationally intensive trigonomet-

ric functions as in the case of Euler angles.

2.9.1 MRP based Attitude Model

1

s1

s

Euler's Equations

T

1 2 3Initial , ,

T

1 2 3, ,

q1

2

3

1

2

3

1

2

3

Kinematics Equations

MRP

1

2

3

q

q

q

1

2

3

1

2

3

q

q

q

T

1 2 3Initial q , q , q

Figure 2.3: Nonlinear spacecraft attitude model with MRP

The kinematic differential equations in terms of MRP described in (2.20) and the

Euler’s equation of rotational dynamics described in (2.21) are cascaded to form the

nonlinear spacecraft attitude model as shown in Fig. 2.3.

2.9.2 Quaternion based Attitude Model

The kinematic differential equations in terms of Quaternions described in (2.14) and

the Euler’s equation of rotational dynamics described in (2.21) are cascaded to form the

nonlinear spacecraft attitude model as shown in Fig. 2.4.

2.10 Linearized Spacecraft Attitude Model

In this section the linearized spacecraft attitude model formulated in terms of MRP’s

and Euler’s equation of rotational dynamics is presented.
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Figure 2.4: Nonlinear spacecraft attitude model with quaternions

2.10.1 MRP based Linearized Attitude Model

The spacecraft attitude model described in section 2.9.1 is nonlinear and is linearized

based on Jacobian matrix linearization approach. The linearized plant approximates

the nonlinear model about a set of operating points which are the angular velocities

and the attitude respectively. The Jacobian matrix linearization is performed based on

non-zero equilibrium points of the nonlinear model. Non-zero equilibrium points are the

set of attitude and angular velocities such that the angular acceleration and the rate of

change of attitude is zero. These set of points are considered as the operating points

here. The characterization of equilibrium points for this class of systems is discussed

in detail in chapter 7 of [10]. The analysis of Jacobian matrix linearization of satellite

attitude dynamics with MRP’s as attitude representation is given in [16].

Mathematically, this can be written as follows

 ω̇

q̇

 = 0 (2.27)

such that ω, q, τ ̸= 0 in (2.20 & 2.21). The detailed Jacobian matrix linearization

of the nonlinear model is presented in Section A.1.1 of Appendix A. The linearized

spacecraft attitude model is given by
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 q̇

ω̇

 = Amrp

 q

ω

+Bmrp τ

q = Cmrp

 q

ω


(2.28)

where Amrp, Bmrp and Cmrp are found to be

Amrp =



−0.0656 −0.0595 −0.1955 0.2148 0.1227 −0.2206

0.0595 −0.0656 −0.0680 −0.2248 0.2248 −0.0938

0.1955 0.0680 −0.0656 0.1149 0.2104 0.1882

0 0 0 −0.0245 −0.0350 −0.0106

0 0 0 0.0194 −0.0104 0.0689

0 0 0 0.1055 −0.0142 0.0349


(2.29)

Bmrp =



0 0 0

0 0 0

0 0 0

0.0503 −0.0033 −0.0027

−0.0033 0.0595 −0.0054

−0.0027 −0.0054 0.0673


(2.30)

Cmrp =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 (2.31)

The rigid spacecraft inertia matrix is taken from [66] given as follows:
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J =


20 1.2 0.9

1.2 17 1.4

0.9 1.4 15

 (kgm2) (2.32)



Chapter 3

An Attitude Stabilization Approach

3.1 Introduction

In this chapter, a novel and simple approach to stabilize the nonlinear spacecraft attitude

model (plant) is proposed. The plant is a second order, nonlinear, MIMO system com-

posed of the kinematic differential equations in terms of MRP and the Euler’s equation

of rotational dynamics presented in Section 2.9 of Chapter 2. The plant is stabilized us-

ing an output feedback controller comprising of two loops (inner and outer) wherein the

angular velocity is not measured directly. The spacecraft’s attitude (plant output) ex-

pressed in terms of MRP’s is the only measurable state. The inner loop has a first order

controller and the outer loop has a proportional gain matrix. The control scheme inher-

its the simplicity and robustness of a PD (Proportional-Derivative) controller, but does

not require the measurement of attitude rates or use of differentiators, which makes the

approach more practically useful and acceptable by practising engineers. A Lyapunov

argument is used to show that the nonlinear plant can be globally stabilized using the

proposed output feedback control structure. The control law does not directly depend

on plant inertia matrix or its structure parameters (principal inertia matrix or inertia

matrix with all non-zero elements). The overall closed-loop gives robust stability and

zero tracking error performance. Particle swarm optimization is used as a tool to find the

best controller parameters with regard to an objective function which minimizes the ab-

25
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solute value of the attitude error. For the purpose of comparison, two robust controllers

are synthesized, namely, H∞ loop shaping and H∞ mixed sensitivity for the linearized

spacecraft attitude model presented in chapter two. The robust controllers are tested on

the nonlinear attitude model and the simulation results are compared with the proposed

output feedback approach, wherein the output feedback control law is modified by re-

ducing the degree of freedom in the control structure. Simulation results demonstrate

the effectiveness of the proposed approaches. The effectiveness of the output feedback

control structure is further demonstrated in a Quaternion formulation where the plant

is defined by Euler’s equation of rotational dynamics and Quaternion based kinematics.

The approach is shown to globally stabilize the plant based on Quaternions instead of

MRP’s in the sense of Lyapunov using a new candidate Lyapunov function. Simula-

tions are again showing good results on attitude stabilization and time varying attitude

acquisition.

3.2 Lyapunov Theory

The most important question for a control system is whether it is stable, because an

unstable control system is undesirable. A system can be qualitatively described as being

stable if it is in operation about a desired operating point and it would stay around that

point ever after [52]. Every control system, whether linear or nonlinear, involves a sta-

bility problem which should be carefully studied. The most useful and general approach

for studying the stability of nonlinear control systems is the theory introduced at the

end of the nineteenth century by the Russian Mathematician Alexsandr Mikhailovich

Lyapunov [53] and [52]. Lyapunov theory constitutes of two methods namely, a direct

method and an indirect method. The direct method deals with the energy concepts asso-

ciated with a mechanical system and states that a system is stable if its total mechanical

energy decreases with time. This method can be used in stability analysis of nonlinear

systems by the construction of a Lyapunov function and its first order derivative should

be negative definite for a system to be stable. Nonlinear controllers can be designed
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with the help of the direct method. For such an analysis, a Lyapunov function has to be

formulated and a control structure has to be designed such that the Lyapunov function

decreases with time. The major drawback in the direct method is the identification of

a suitable Lyapunov function. It is common practice to use the energy of the system

in constructing the Lyapunov function [51]. The Lyapunov’s stability theorem can be

stated as follows [50]

Theorem I: Lyapunov’s stability theorem: Given a positive definite function

V (x(t)) > 0 ∀ x(t) ̸= 0 and an autonomous system ẋ(t) = f(x(t)), then the system

dx

dt
= f(x(t)) is stable if

V̇ (x(t)) =
∂V

∂x
f(x(t)) < 0 ∀ x ̸= 0 ∀t (3.1)

3.3 Nonlinear Spacecraft Model Formulation

The Euler’s equation of rotational dynamics and the kinematic differential equations

using any one of the attitude representation such as Euler angles, Euler symmetric

parameters, Gibbs vector or MRP discussed in chapter 2 can be combined to form

a second order nonlinear dynamic equation known as the Hamiltonian form [52]. A

detailed derivation of such a formulation in terms of Euler’s dynamic equation and the

MRP’s can be found in Section B.1.1 of Appendix B. The second order nonlinear model

in terms of MRP is given by the following equation [66]:

J∗q̈ + C∗q̇ = P T τ (3.2)

where

J∗ △
= P TJP

C∗ △
= −J∗ṪP − P TS(JP q̇)P

(3.3)
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The inertia matrix J∗ is positive definite and symmetric, and can be bounded as

follows [66].

j1∥x∥2 ≤ xTJ∗(q)x ≤ j2(∥q∥)∥x∥2, ∀x ∈ R3 (3.4)

where j1 is a positive constant, and j2(∥ q ∥) is a positive non decreasing function. The

matrices J∗ and C∗ satisfy the following skew-symmetric relationship [51], [66] and [52]

xT
(
1

2
J̇∗ − C∗

)
x = 0 (3.5)

The derivation of (3.5) can be found in [17].

3.4 Motivation and Previous Work in Attitude Sta-

bilization

In literature, the rigid spacecraft attitude model has been stabilized using state feedback

wherein additional measurements such as rate of change of attitude is required [51], [52],

[62] and [56]. Additional requirement also includes measurement of the angular velocity

vector, [34], [4], [60] and [62]. In reality such requirements are not always available.

Hence it is a common practice to approximate the angular velocity vector through an

adhoc numerical differentiation of the attitude angles or with the design of angular

velocity observers, [40] and [32].

[51], [52], [62] and [56] have proposed state feedback control laws for stabilization of the

nonlinear attitude model comprising of the nonlinear kinematic and dynamic equations.

These approaches will be briefly discussed as they form the basis of the proposed work

to be presented in the forthcoming sections.
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3.4.1 Slotine and Benedetto Approach [51]

The spacecraft attitude model is defined using the Euler’s equation of rotational dynam-

ics and Gibbs vector stated in (2.21) and (2.17). The kinematic and dynamic equations

are formulated to form second order nonlinear equation given as

J∗(σ)σ̈ + C∗(σ, σ̇)σ̇ = [B(σ)]−T τa (3.6)

A PD control law is proposed by [51] to stabilize the second order nonlinear equation

in (3.6) given by

τa = −[B(σ)]T (kpσ̃ + kd ˙̃σ) (3.7)

where kp and kd are constant symmetric positive definite matrices. The stability is

proved by taking a Lyapunov candidate function of the form

V1(t) =
1

2

[
σ̇TJ∗σ̇ + σ̃Tkpσ̃

]
(3.8)

The time derivative of V1(t) is given as

V̇1(t) = −σ̇Tkdσ̇ ≤ 0 (3.9)

The drawback in this approach is the assumption that the system’s state vectors,

namely σ and ˙̃σ, are available or computable from measurements.

3.4.2 Slotine and Li Approach [52]

A similar approach is presented in chapter 9 of [52]. The control input is given by

τb = −kpσ̃ − kdσ̇ (3.10)

where kp and kd as before are constant symmetric positive definite matrices. The

stability is proved by taking a Lyapunov candidate function of the form
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V2(t) =
1

2

[
σ̇TJ∗σ̇ + σ̃Tkpσ̃

]
(3.11)

The time derivative of V2(t) is given as

V̇2(t) = −σ̇Tkdσ̇ ≤ 0 (3.12)

This approach also has the drawback of two measurement requirements namely σ

and σ̇.

3.4.3 Bong Wie Approach [62]

The spacecraft attitude model is defined by the Euler’s equation of rotational dynamics

and quaternions described in (2.21) and (2.14).

A state feedback control law is presented in chapter 7 of [62]. The control input is

given by

τc = −kaβq − kbω (3.13)

where ka and kb are constant symmetric positive definite matrices. [63] and [64] have

shown global asymptotic stability for selected control gain selections in (3.13). The

drawback of this stabilization approach is that the control law requires the measurement

of attitude and the angular velocity.

3.4.4 Tsiotras Approach [56]

The spacecraft attitude model given by the Euler’s equation of rotational dynamics and

MRP vector are given by

Jω̇ = −ω × Jω + τd

q̇ = T (q) ω
(3.14)

[56] presented a globally stabilizing feedback control law of the form
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τd = −kcω − kdq (3.15)

where, kc and kd are constant symmetric positive definite matrices.

The stability is proved by taking a Lyapunov candidate function of the form

V3(ω, q) =
1

2
ωTJω + 2 kd log(1 + qT q) (3.16)

The time derivative of V3(ω, q) is given as

V̇3(ω, q) = −ωTkcω (3.17)

This approach also requires the measurement of both the attitude and angular ve-

locity. A similar control law is presented in [57].

3.5 Problem Formulation

The objective of this chapter is to design an output feedback control structure such that

the nonlinear spacecraft attitude model described in terms of MRP and Euler’s equation

is stabilized and gives zero steady state error for a step input. It is assumed that the

spacecraft attitude is the only measurable quantity. Let q̃ represent the attitude error

i.e. q̃ = qd(t) − q(t), where qd(t) is the desired reference attitude and q(t) is the actual

attitude. The stabilization objective is accomplished if

lim
t→∞

q̃(t) = 0 (3.18)

3.6 Output Feedback Controller Design

The closed loop system for the proposed output feedback control structure is shown in

Fig. 3.1. The control approach is relatively simple. It involves two loops, namely an

inner and an outer loop. The outer loop has a negative feedback path and a feed-forward
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Figure 3.1: Attitude stabilization using output feedback

gain. The inner loop has a first order controller. This approach globally asymptotically

stabilizes the nonlinear model in closed-loop and the overall stability is proved in the

sense of Lyapunov. The control parameters can be any positive values as far as stability

is concerned. However, they can be selected accordingly based on a design requirement.

This will be illustrated by way of simulation results. The proposed control law is given

as follows:

τ
△
= T T (spq̃ − q∗) (3.19)

where

sp = diag(sp1, sp2, sp3) (3.20)

q∗ = diag(q∗1, q
∗
2, q

∗
3) (3.21)

q∗ is defined as follows, for i=1, 2, 3.

q∗i = sdi
αis

s+ αi

qi (3.22)

The design parameters in the control scheme are sp in (3.20) and sd and α are defined

as follows:

sd = diag(sd1, sd2, sd3) (3.23)
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α = diag(α1, α2, α3) (3.24)

dq t q t
+-

*q
ps psPlant

d d

d d

A B

C D

Figure 3.2: Closed-loop attitude stabilization in state space

The closed-loop system in state space for the output feedback controller is shown in

Fig. 3.2. The plant represents the nonlinear system described in section (2.9.1), where,

Plant = f(q, ω) + τ . The control signal is given as follows:

τ = spqd − q∗ (3.25)

where

u̇1 = Adu1 +Bdq

q∗ = Cdu1 +Ddq
(3.26)

Ad, Bd and Cd matrices are defined from (3.20, 3.23 & 3.24) as follows:

Ad = −α,Bd = sdα,Cd = diag(1, 1, 1), Dd = sp (3.27)

3.6.1 Stability Analysis

The control law described by (3.19) ensures the global asymptotic stability as delineated

by the following theorem.

Theorem II: For the nonlinear system given in (2.20 & 2.21), the control scheme in

(3.19) makes the closed-loop system stable and the tracking error q̃(t) in (3.18) converges

to zero.
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Proof : Consider the following positive function

V4(q
∗, q̇, q̃) =

1

2

[
q̇TJ∗q̇ + q̃T spq̃ + q∗T (sdα)

−1q∗
]

(3.28)

The positive definite function is composed of mechanical energy given by
1

2
[q̇TJ∗q̇] and

the three gains discussed in (3.20, 3.23 and 3.24). The time derivative of the positive

definite function in (3.28) can be written as follows:

V̇4 =
1

2
[q̇TJ∗q̈ + q̇T J̇∗q̇ + q̈TJ∗q̇] +

1

2
[q̃T sp ˙̃q

+ ˙̃qT spq̃] +
1

2

[
q∗T (sdα)

−1q̇∗ + q̇∗T (sdα)
−1q∗

]
(3.29)

V̇4 = q̇TJ∗q̈ +
1

2
q̇T J̇∗q̇ + ˙̃qT spq̃ + q∗T (sdα)

−1q̇∗ (3.30)

V̇4 = q̇T (−C∗q̇ + P T τ) +
1

2
q̇T J̇∗q̇ + ˙̃qT spq̃ + q∗T (sdα)

−1q̇∗ (3.31)

V̇4 = q̇T
(
1

2
J̇∗ − C∗

)
q̇ + q̇TP T τ + ˙̃qT spq̃ + q∗T (sdα)

−1q̇∗ (3.32)

By the property of skew symmetry from (3.5), (3.32) can be written as follows

V̇4 = q̇TP T τ + ˙̃qT spq̃ + q∗T (sdα)
−1q̇∗ (3.33)

Then substituting the control law from (3.19) in (3.33)

V̇4 = q̇TP TT T (spq̃ − q∗) + ˙̃qT spq̃ + q∗T (sdα)
−1q̇∗ (3.34)

V̇4 = q̇T spq̃ − q̇T q∗ + ˙̃qT spq̃ + q∗T (sdα)
−1q̇∗ (3.35)

From P TT T = I, ˙̃q = −q̇, we can get

V̇4 = −q̇T q∗ + q∗T (sdα)
−1q̇∗ (3.36)
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Substituting q̇∗i from (3.22) in (3.36) we get

V̇4 = −q̇T q∗ + q∗T (sdα)
−1(sdαq̇ − αq∗) (3.37)

V̇4 = −q∗T (sdα)−1αq∗ ≤ 0 (3.38)

It is critical to verify that the system does not get ”stuck” at a stage where V̇4 = 0

by invoking the invariant set theorem [52]. If V̇4 = 0 then it can be shown that V4 = 0

as follows:

When V̇4 = −q∗T (sdα)−1αq∗ = 0, then this implies that q∗ is identically zero (q∗ ≡ 0).

From (3.22), q∗i = sdiq̇i − 1
αi
q̇∗i and if q∗ ≡ 0 then q̇∗ = 0 so q̇ = 0. This is a regulator

problem, hence without loss of generality, the reference input qd can be assumed to be

zero, hence q is zero.

Therefore, q is a constant. If q̃ is a nonzero constant, then this implies that τ is also a

nonzero constant. Such a τ does not generate a constant output of the system. Hence

q̃ = 0. Therefore, V4 = 0, when V̇4 = 0.

Hence it can be stated that the nonlinear spacecraft attitude model can be globally

stabilized by the control law in (3.19). The advantage of using the proposed scheme is

that the plant stabilization is achieved by selecting a total of nine positive gains in the

feedback and feedforward path of the closed loop system wherein the feedback consists

of only the plant output.

3.6.2 Simulation Results

To demonstrate the application of the proposed scheme, the simulation results are il-

lustrated in this section. The mathematical model of the spacecraft attitude given by

(2.20 & 2.21) is simulated with (3.19) as the control input and the inertia matrices are

given by (2.32) and as follows
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hb =


200 1.2 0.9

1.2 150 1.4

0.9 1.4 100

 (kgm2) (3.39)

The initial conditions are taken from [42] given as follows:

q(0) = [−0.3 −0.4 0.2]T

ω(0) = [0.2 0.2 0.2]T rad/sec
(3.40)

The selection of the nine gains namely sp, sd and α to stabilize the nonlinear plant

can be any positive values as far as convergence is concerned, as shown in the Theorem

II in Section 3.6.1. Since there are no specific design requirements with respect to each

individual channel in this example, we choose for simplicity the same values for the

controllers on the three channels. We vary the parameter values over the range from 0

to 100. By trial and error, the following values are chosen to illustrate the results. All

of the four cases shown in Table 3.1 show satisfactory step responses in terms of rise

time, overshoot and settling time, though different in different channels and the four

case plots explain the effect of gain variation on the plant output. In addition to step

input the closed-loop system is excited with a ramp signal for a single channel. The

purpose of such an illustration is to visualize the inter-axis coupling and how a specific

output can be achieved in spite of the interactions from the other channels. The control

signal is limited to ±10Nm in all the cases.

Table 3.1: Controller gains, inertia matrix selection & channel excitation - Output
feedback approach

Case sp sd α Inertia matrix Channel Excitation

Case-I 1 2 1.5 J channels - 1, 2 & 3
Case-II 10 20 15 J channels - 1, 2 & 3
Case-III 20 100 50 J channel - 1
Case-IV 20 100 50 hb channel - 1

Figures (3.3 & 3.5) shows the step responses and errors for cases I and II and their
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Figure 3.3: Case-I step response and error

respective controller efforts are shown in Figs (3.4 & 3.6). In both these cases all the

three input channels are excited with the reference signal.

Fig. (3.7) shows the step responses and errors for case III and the respective controller

effort is shown in Fig. (3.8). Fig. (3.9) shows the step response and error of the closed

loop system with case III controller gains and increased inertia matrix i.e. (hb). The

required controller effort can be seen in Fig. 3.10. In both these cases (III & IV) the

first input channel alone is excited with the reference signal. Cases III and IV illustrates

the robustness of the proposed control law. It can be inferred that the step response of

the system is not affected for a certain amount of variation in the inertia and the control

law does not directly depend on the inertia matrix. In addition to the step response,

the closed-loop system is excited with a ramp signal of slope 0.01. Fig. (3.11) shows the

ramp response for case III and the required controller is shown in Fig. (3.12).

The nonlinear spacecraft attitude model and the inertia matrix discussed in (2.20,

2.21 & 2.32) is taken from [66], wherein the authors have synthesized an adaptive track-

ing control structure. The maximum control torque input in this case was bounded

between 4 and -2 Nm and zero steady state error was achieved in about 80 seconds.

In our case the steady state response is achieved in less time and it depends on the
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Figure 3.4: Case-I control torque input
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Figure 3.5: Case-II step response and error
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Figure 3.6: Case-II control torque input
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Figure 3.7: Case-III step response and error
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Figure 3.8: Case-III control torque input
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Figure 3.9: Case-IV step response and error
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Figure 3.10: Case-IV control torque input
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Figure 3.11: Case-III ramp response and error
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Figure 3.12: Case-III ramp excited control torque input

tuning of controller parameters. In the next subsection, the effectiveness, simplicity and

robustness is further demonstrated by reducing the degree of freedom in the control

structure and illustrate the stabilization capability by way of simulation results.

3.6.3 A Modified Approach to Lyapunov Based Output Feed-

back Control Law

In this section the output feedback control law proposed in Section 3.6 is modified by

reducing the control freedom in the selection of the controller gains. The modified control

law is shown to stabilize the nonlinear attitude model. Global asymptotic stability is

proved for the modified approach by a new candidate Lyapunov function. Similar cases

of simulations are performed as presented before in Table 3.1. It is illustrated by way

of simulations that the modified approach demonstrates very close results to the former

approach. In addition to stabilization, time varying attitude acquisition of the nonlinear

plant is also demonstrated using the modified output feedback approach.
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Figure 3.13: Attitude stabilization using modified output feedback

3.6.4 Modified Output Feedback Control Law

The closed loop system for the modified control structure is shown in Fig. 3.13 and the

modified control law is chosen to be as follows:

τm
△
= T T (υq̃ − q∗m) ≡ T Tυ{qd − diag

[(
1 +

β1s

s+ β1

)
,

(
1 +

β2s

s+ β2

)
,

(
1 +

β3s

s+ β3

)]
q}

(3.41)

where

υ = diag(υ1, υ2, υ3) (3.42)

q∗m = diag(q∗m1, q
∗
m2, q

∗
m3) (3.43)

q∗mi is defined as follows, for i=1,2,3.

q∗mi = υi
βis

s+ βi
qi (3.44)

q∗mis+ βiq
∗
mi = υiβisqi (3.45)

Taking inverse laplace transform of (3.45)

q∗mi = υiq̇i −
1

βi
q̇∗mi (3.46)
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The control law in (3.41) differs from the previously proposed approach in (3.19) in

terms of controller parameters. There are a total of nine tunable parameters in (3.19),

whereas, there are only six tunable parameters in (3.41) which are υ in (3.42) and β

defined as follows:

β = diag(β1, β2, β3) (3.47)

3.6.5 Stability Analysis

The control law described by (3.41) ensures the global asymptotic stability as delineated

by the following theorem.

Theorem III: For the nonlinear system given in (2.20 & 2.21), the control scheme in

(3.41) makes the closed-loop system stable and the tracking error q̃(t) in (3.18) converges

to zero.

Proof: Define the following non-negative function

V5(q̇, q̃, q
∗
m) =

1

2

[
q̇TJ∗q̇ + q̃Tυq̃ + q∗Tm (υβ)−1q∗m

]
(3.48)

Differentiating (3.48) with respect to time, we get

V̇5 =
1

2

[
q̇TJ∗q̈ + q̇T J̇∗q̇ + q̈TJ∗q̇

]
+

1

2
[q̃Tυ ˙̃q

+ ˙̃qTυq̃] +
1

2
[q∗Tm (υβ)−1q̇∗m + q̇∗Tm (υβ)−1q∗m] (3.49)

V̇5 = q̇TJ∗q̈ +
1

2
q̇T J̇∗q̇ + ˙̃qTυq̃ + q∗Tm (υβ)−1q̇∗m (3.50)

V̇5 = q̇T (−C∗q̇ + P T τm) +
1

2
q̇T J̇∗q̇ + ˙̃qTυq̃ + q∗T (υβ)−1q̇∗ (3.51)
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V̇5 = q̇T
[
1

2
J̇∗ − C∗

]
q̇ + q̇TP T τm + ˙̃qTυq̃ + q∗Tm (υβ)−1q̇∗m (3.52)

By the property of skew symmetry from (3.5) and substituting the control law from

(3.41), (3.52) can be written as follows

V̇5 = q̇TP TT T (υq̃ − q∗m) + ˙̃qTυq̃ + q∗Tm (υβ)−1q̇∗m (3.53)

V̇5 = q̇Tυq̃ − q̇T q∗m + ˙̃qTυq̃ + q∗Tm (υβ)−1q̇∗m (3.54)

P TT T = I, ˙̃q = −q̇

V̇5 = −q̇T q∗m + q∗T (υβ)−1q̇∗m (3.55)

Substituting q̇∗m from (3.46) in (3.55) we get

V̇5 = −q̇T q∗m + q∗Tm (υβ)−1(υβq̇ − βq∗m) (3.56)

V̇5 = −q∗Tm (υβ)−1βq∗m ≤ 0 (3.57)

The time derivative of the non-negative function is negative semi-definite for all

nonzero values of q∗m and υ by invoking the invariant set theorem [52]. This shows

that the nonlinear attitude model can be globally stabilized using the proposed control

structure by selection of just six gains which can be any positive values instead of nine

gains as discussed earlier. The stabilization results in the simulation results section

illustrate this fact more clearly.

3.6.6 Attitude Tracking System Design

The attitude tracking control system is shown in Fig. 3.14. The desired attitude is

expressed in terms of roll (ϕ), pitch (θ) and yaw (ψ) angles in degrees. The Euler angles

are transformed to the DCM using (3-2-1) Euler angle sequence wherein the z, y & x
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Figure 3.14: Attitude tracking control system

axis are rotated about an angle of ψ, θ & ϕ degrees. The resulting DCM is given by

the relationship stated in (2.5). The Euler eigenangle, Φ and Euler eigenaxis, k̂ are

calculated from the DCM using the relationships discussed in (2.9 & 2.10). The MRP’s,

qx, qy & qz are calculated from the Euler eigenangle, Φ and Euler eigenaxis, k̂ using the

relationship stated in (2.18).

The attitude model consisting of the Euler’s equations of rotational dynamics and

the MRP based kinematic differential equations described in (2.20 & 2.21) is modeled

in simulink as shown in Fig. 2.3. The attitude model consists of two integrators blocks.

The first block calculates the angular velocity vector, ω with initial conditions specified

in degrees/second. The second integrator calculates the attitude of the rigid body with
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initial attitude specified in terms of roll, pitch and yaw angles expressed in degrees. The

control torque is applied in the Euler’s equations block and the kinematics equations

block calculates the plant’s output. The output feedback controller schematic was shown

in Fig. 3.13 with the control law stated in (3.41). The regulated attitude from the

attitude model is transformed from MRP’s to roll, pitch and yaw angles using the inverse

transformations from MRP to Euler eigenaxis and eigenangle and DCM respectively.

3.6.7 Simulation Results

The following initial conditions taken from [7] are chosen for the simulations of the

attitude model given in (2.20 & 2.21) and the proposed control law given in (3.41).

ω(0) = [11.45 11.45 11.45]T rad/sec (3.58)

ϕ = 10◦

θ = 8◦ (3.59)

ψ = 5◦

The inertia matrices are given by (2.32) and (3.39). The selection of the six positive

gains namely, υ in (3.42) and β in (5.29) to stabilize the nonlinear plant can be any

positive values as far as convergence is concerned, as shown in Theorem III in Section

3.6.3. Since there are no specific design requirements with respect to each individual

channel in this example, we choose for simplicity the same values for the controllers on

the three channels. The controller parameters are varied over the range from 0 to 100.

By trial and error, the controller values shown in Table 3.2 are chosen to illustrate the

results. All the four cases shown in Table 3.2 show satisfactory step response in terms

of rise time, overshoot and settling time, though different in different channels and the

four case plots explain the effect of gain variation on the plant output. The model under



48 3.6 Output Feedback Controller Design

study is nonlinear and the output feedback controller gains in closed-loop are selected

on trial and error. A more formal approach could have been considered if the model

was linear. Particle swarm optimization algorithm is used as a tool to infer the optimal

controller gains based on a cost function which minimizes the absolute value of tracking

error and is discussed in the next section.

Table 3.2: Controller gains and inertia matrix selection - Modified output feedback
approach

Cases υ β Inertia Matrix

Case-I 1 2 J
Case-II 10 20 J
Case-III 50 100 J
Case-IV 50 100 hb

Fig. 3.15 shows the step response for case-I and the required controller effort is

shown in Fig. 3.16. Likewise the step responses for case-II and case-III are shown in

Figs. (3.17 & 3.19) and the required controller effort is shown in Figs. (3.18 & 3.20).

Fig. 3.21 shows the step response for case-IV which has same controller gains as in

case-III with a large variation in the inertia matrix from J to hb. The respective control

signal in case-IV is shown in Fig. 3.22. Case-IV step response shows the robustness

of the modified control law. The step response of the attitude model is satisfactory

even when the inertia matrix is varied to large diagonal values keeping the controller

parameters unchanged.

The desired attitude is selected to be time varying and is expressed in terms of Euler

angles as follows:

[ϕ1, θ1, ψ1 = 20◦, 15◦, 10◦]T for time t = (0− 200) sec

[ϕ2, θ2, ψ2 = 30◦, 25◦, 20◦]T for time t = (200− 400) sec

[ϕ3, θ3, ψ3 = 45◦, 35◦, 30◦]T for time t = (400− 600) sec

Figs. (3.23 & 3.24) show the case-III attitude tracking and the observed error. The

respective control signal is shown in Fig. 3.25. Figs. (3.26 & 3.27) show the attitude

tracking and the observed error for case-IV and the respective controller effort is shown

in Fig. 3.28



49 3.6 Output Feedback Controller Design

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

Time (Seconds)

q
x
,q

y
,q

z

q
x

q
y

q
z

Figure 3.15: Case-I attitude stabilization
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Figure 3.16: Case-I control torque input
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Figure 3.17: Case-II attitude stabilization
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Figure 3.18: Case-II control torque input



51 3.6 Output Feedback Controller Design

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (Seconds)

q
x
,q

y
,q

z

q
x

q
y

q
z

Figure 3.19: Case-III attitude stabilization
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Figure 3.20: Case-III control torque input
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Figure 3.21: Case-IV attitude stabilization
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Figure 3.22: Case-IV control torque input
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Figure 3.23: Case-III attitude tracking
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Figure 3.24: Case-III attitude tracking error
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Figure 3.25: Case-III attitude tracking control torque input
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Figure 3.26: Case-IV attitude tracking
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Figure 3.27: Case-IV attitude tracking error
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Figure 3.28: Case-IV attitude tracking control torque input
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3.7 Output Feedback Controller Tuning using PSO

In this section, a recently introduced evolutionary algorithm based optimal design ap-

proach is presented. The output feedback control law proposed in Section 3.6 involves

a total of nine parameters to be selected in the control law that drastically influences

the performance of the controlled system. The fact that there is no straightforward cor-

relation between these parameters and the performance of the system may impede its

utilization. In this section, the use of PSO algorithm as a tool to infer the best param-

eters is presented. The PSO optimization is performed in time domain using a simple

cost function which minimizes the absolute value of the tracking error while varying

the controller gains. Simulation results are illustrated to show the effectiveness of the

proposed approach.

PSO has been proposed and introduced in the literature not long ago [26]. This tech-

nique combines social psychology principles in socio-cognitive human agents and evolu-

tionary computations. PSO has been motivated by the behavior of organisms, such as

fish schooling and birds flocking. Generally, PSO is characterized as a simple concept,

easy to implement, and computationally efficient. Unlike the other heuristic techniques,

PSO has a flexible and well-balanced mechanism to enhance the global and local ex-

ploration abilities. Therefore, it has been extensively used in engineering as an efficient

optimization tool as in [3], where the author uses it in an electrical engineering context

to optimize the design of a power system stabilizer.

Similar to evolutionary algorithms, the PSO technique conducts searches using a pop-

ulation of particles, corresponding to individuals. Each particle represents a candidate

solution to the problem at hand. In a PSO system, particles change their positions by

flying around in a multidimensional search space until a relatively stationary position

has been encountered, or until a desired requirement is achieved. There are numerous

advantages of PSO over conventional methods including [3]:

• PSO inherently features parallel search which makes it less vulnerable to undesired

solutions known as local minima.



57 3.7 Output Feedback Controller Tuning using PSO

• PSO does not require the cost function to be differentiable, and thus extends

the optimization criteria formulation. Thanks to the relaxed performance index

that gives information for guiding the search, PSO is relieved from conventional

constraints resulting from conformity assumptions.

• PSO is a stochastic optimization method and thus utilizes probabilistic transition

rules in contrast with deterministic rules. Stochastic exploration and communi-

cation of the swarm is a clear advantage for searching complicated and uncertain

spaces.

• PSO has the ability to control the balance between global and local exploration

of the search space unlike the other heuristics like Genetic Algorithm (GA). This

alleviates premature convergence problems and enhances the search.

• PSO is computationally lighter than many evolutionary based optimization algo-

rithms like GA. It has even been implemented in some real-time applications for

process industry [38], [59] & [54].

• PSO has been used in parametric optimization of a flexible satellite controller

in [23]. Additionally, it has been used in the parametric design of a radial basis

function neural network based sliding mode controller for attitude tracking in [14]

and it was shown that PSO provided strong global search ability and convergent

performance.

• PSO gives consistent solutions regardless of the initial population selection. The

optimal solution being not affected by the initial guess is a desired practical feature.

3.7.1 Preliminary

Before stating the algorithm it is important to understand the jargon used in the liter-

ature. For the thesis to be self-content we can recall some definitions [3]:
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• A particle X(t) is a temporary candidate solution. It is a real vector of dimension

m where m is the number of parameters to be optimized. The jth particle can be

described as Xj(t) = [xj1, xj2 . . . xjm], where x’s are the optimized parameters and

xjk is the position of the jth particle with respect to the kth dimension (i.e., the

value of the kth ”optimized” parameter in the jth candidate solution).

• A population represents a set of n particles at time t (i.e. pop(t) =

[X1(t), X2(t) . . . Xn(t)]
T ).

• A swarm is a population of moving particles that tends to cluster together while

each particle seems to be moving in a random direction.

• Each particle is characterized by a velocity. The moving particles velocity V (t) is

a real vector of dimension m. At time t the jth particle velocity Vj(t) consists of

Vj(t) = [vj1(t), vj2(t) . . . vjm(t)], where vjk is the velocity of the jth particle with

respect to the kth dimension.

• The inertia weight w(t) is a parameter that controls the impact of the previous

velocities on the current velocity. Hence, it influences the trade off between the

global and local exploration abilities of the particles. For initial stages of the search

process, a large inertia weight to enhance the global exploration is recommended,

and for later stages, the inertia weight is reduced for better local exploration.

• The decrement function for decreasing the inertia weight given as w(t) = dw(t−1)

, where d is a decrement constant smaller than but close to 1, is used in this work.

• Individual best X∗(t), as a particle moves through the search space, it compares its

fitness value at the current position to the best fitness value it has ever attained

at any time up to the current time. The best position that is associated with

the best fitness encountered so far is called the individual best X∗(t). For each

particle in the swarm, X∗(t) can be determined and updated during the search. In

a minimization problem with objective function J , the individual best of the jth
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particle X∗
j (t) is determined so that J(X∗

j (t)) ≤ J(Xj(τ)),∀τ ≤ t. For simplicity,

define J∗
j = J(X∗

j (t)). For the jth particle, individual best can be expressed as

X∗
j (t) = [x∗j1, x

∗
j2 . . . x

∗
jm].

• The global best X∗∗(t) is the best position among all of the individual best

positions achieved so far. Hence, the global best can be determined such that

J(X∗∗
j (t)) ≤ J(X∗

j (t)), j = 1, 2 . . . n. For simplicity, define J∗∗ = J(X∗∗(t)).

• The stopping condition is the event that triggers the end of the optimization

process. For our case the search will terminate either if the number of iterations

since the last change of the best solution is greater than a prespecified number

or the number of iterations reaches the maximum allowable limit or when the

objective function is achieved.

The particle velocity in the kth dimension is limited by some maximum value, vmax
k .

This limit enhances the local exploration of the problem space. The maximum

velocity in the kth dimension is characterized by the range of the kth optimized

parameter and is given by:

vmax
k =

xmax
k − xmin

k

N
(3.60)

where N is a chosen number of intervals in the kth dimension.

3.7.2 PSO algorithm

In this section we can thus summarize the PSO algorithm [3]:

1. Initialization: at time t = 0 generate n random particles {Xj(0), j = 1, 2 . . . n},

where xjk(0) is generated by randomly selecting a value with uniform probability

over the kth optimized parameter search space [xmin
k , xmax

k ]. Similarly, it is possible

to generate randomly initial velocities of all particles {Vj(0), j = 1, 2 . . . n}, where

vjk(0) is generated by randomly selecting a value with uniform probability over the
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kth dimension [−vmax
k , vmax

k ]. Each particle in the initial population is evaluated

using the objective function J . For each particle, set X∗
j (0) = Xj(0) and J

∗
j = Jj,

j = 1, 2 . . . n. Search for the best value of the objective function Jbest. Once this is

found set the particle associated with Jbest as the global X∗∗(0) with an objective

function of J∗∗. Set the initial value of the inertia weight w(0).

2. Time increment: update time by t = t+ 1.

3. Weight update: Update the inertia weight according to w(t) = dw(t− 1).

4. Velocity update: Using the global best and individual best, the jth particle velocity

in the kth dimension is updated according to the following equation:

vjk(t) = w(t)vjk(t− 1)

+c1r1[x
∗
jk(t− 1)− xjk(t− 1)]

+c2r2[x
∗∗
jk(t− 1)− xjk(t− 1)]

(3.61)

where c1 and c2 are positive constants and r1 and r2 are uniformly distributed

random numbers in [0, 1]. Check the velocity limits. If the velocity violated its

limit, it must be set at its proper limit. It is worth mentioning that the second term

represents the cognitive part of PSO where the particle changes its velocity based

on its own thinking and memory. The third term represents the social part of PSO

where the particle changes its velocity based on the psychological adaptation of

knowledge.

5. Position update: Based on the updated velocities, each particle changes its position

according to the following equation:
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xjk(t) = vjk(t) + xjk(t− 1) (3.61)

6. Individual best update: each particle is evaluated according to updated position. If

Jj < J∗
j , j = 1, 2 . . . n then update individual best by X∗

j (t) = Xj(t) and J
∗
j = Jj,

otherwise go to the following step.

7. Global best update: Search for the minimum value Jmin among J∗
j , where min is

the index of the particle with minimum objective function value, i.e. . If Jmin < J∗∗

then update the global best as X∗∗ = Xmin(t), and J∗∗ = Jmin, otherwise go to

next step.

8. End check: If one of the stopping criteria is satisfied, then stop, else go to step 2.

The loss function intuitively suggested for optimizing the parameters sp, sd & α of the

controller is defined as follows:

min
sp,sd,α

J = min
sp,sd,α

∫ tf

0

| qd(t)− q(t) | dt (3.62)

where qd(t) is the reference signal and q(t) is the output signal.

3.7.3 Parameter Determination and Simulation Results

The PSO algorithm was run several times showing consistent results despite the random

choice of the initial solution. However, though minor fluctuations in the final value for

the loss function have been observed. Table 3.3 summarizes the parameters that were

finally selected for the PSO algorithm showing the particles (P), generations (G), inertia

weight (w0) and decreasing factor (d). It is common practice to start with relatively

large values for the inertia weight so as to enhance the exploration capability and then

to limit it in order to favor local search.



62 3.7 Output Feedback Controller Tuning using PSO

Table 3.3: Parameters for PSO algorithm

P G w0 d
30 100 0.8 0.8

The initial conditions were taken as
q1(0) = −0.3

q2(0) = −0.4

q3(0) = 0.2

 (3.63)


ω1(0) = 0.2

ω2(0) = 0.2

ω3(0) = 0.2

 rad/sec (3.64)

The inertia matrix for the spacecraft model is selected to be

h =


20 1.2 0.9

1.2 17 1.4

0.9 1.4 15

 kgm2 (3.65)

The optimal values of the controller parameters were found to be

sp = 42.5455, sd = 121.8785, & α = 61.7203 with an associated cost of J = 47.8649. Fig.

3.29 shows the learning curve of the PSO algorithm where we notice that convergence

is attained after 130 generations and that there is relatively minor cost difference after

100 iterations.

The gains in Table. 3.1 were selected by trial and error, ranging from very small

values shown in case-I to considerably large values as seen in case-III. However, from the

simulations results in Section 3.6.2 it can be inferred that the minimum time to achieve

zero steady state error was in case-III which was approximately 25 seconds whereas in

the case of PSO based tuning steady state is achieved in 12 seconds. Figs. (3.30 &

3.31) shows the step response and the respective error of the stabilized non-linear plant,
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Figure 3.29: Learning curve of PSO algorithm

Fig. 3.32 shows the respective angular velocity plot and Fig. 3.33 shows the required

controller effort for the plant stabilization. Figs. (3.30 & 3.32) show that the attitude

and the angular velocity plot start with their assumed initial conditions and reach a

steady state value in 12 seconds.

3.8 H∞ Controllers Design of Spacecraft Attitude

In this section, we analyze two robust control approaches namely H∞ Loop-shaping

and H∞ Mixed sensitivity approaches for controlling the spacecraft attitude and com-

pare their results to the proposed output feedback approach presented in Section 3.6.

The linearized spacecraft attitude model in terms of Euler’s equation and MRP’s was

presented in Section 2.10 of Chapter 2 given as

Gmrp =

 Amrp Bmrp

Cmrp Dmrp

 (3.66)

where Amrp, Bmrp Cmrp and Dmrp are stated in (2.29-2.31).
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Figure 3.30: Step response of the stabilized N.L. plant
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Figure 3.31: Step response error

3.8.1 H∞ Loop-Shaping Controller Design

The H∞ Loop Shaping Design Procedure (LSDP) was proposed by [33]. In this proce-

dure we shape the open loop response of the plant. Since, we are dealing with a MIMO
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Figure 3.32: Angular velocity plot

system, the singular values of the plant are preferred over the eigenvalues as they give

better information about the gains of the plant and the plant directions [50]. In the

loop-shaping procedure the plant is augmented with pre and post-compensators to give

a desired shape to the singular values of the open loop frequency response of the system.

The loop-shaping design procedure for the linearized plant stated in (3.66) is carried out

in the following steps.

1) Using a pre-compensator, W1 as depicted in Fig. 3.34 the singular values of the

nominal system, Gmrp are modified to give a desired loop-shape. We choose the desired

loop-shape such that the singular values of the open loop gain have a gain cross-over

frequency of 0.7 rad/second [47]. W1 is a MIMO stable minimum phase shaping pre-

filter. The shaped plant is Gs = GmrpW1.

2) A feedback controller, Ks is synthesized using normalized co-prime factorization of

the shaped plant, Gs to compute an optimal loop-shaping controller, KLS = W1Ks.

3) The synthesized controller, KLS is of 19th order and satisfies the desired loop shaping

requirement and is tested on the linear as well as the nonlinear system with a step input.

The simulation results are illustrated in Section 3.8.3.
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Figure 3.33: Control torque input
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Figure 3.34: H∞ Loop shaping controller design

3.8.2 H∞ Mixed Sensitivity Controller Design

dq t

q t 3W

+-
q t

STK

2W

mrpG

Ref

y

P

Figure 3.35: S/T Mixed sensitivity controller design
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In the H∞ mixed sensitivity approach an optimal controller, KST is synthesized

for the plant, Gmrp by adding weighting functions to the sensitivity transfer function,

S △
= (I + GmrpKST )

−1 and the complementary sensitivity transfer function, T △
= (I +

GmrpKST )
−1GmrpKST of the closed-loop system. These weights contain the design goals

and the extended plant is denoted by P as shown in Fig. 3.35. The weighting function

W2 has the control error q̃(t) = Sqd(t) as the input and, similarly the input to the

weighting function, W3 is the measurement q(t) = Tqd(t). The extended plant is given

as follows [50]:

P =


W2 −W2G

0 W3G

I −G

 (3.67)

The closed-loop transfer function of the extended plant is given as follows:

Ty,qd ,

 W2S

W3T

 (3.68)

This approach of using a combination of sensitivity, S and complementary sensitivity, T

is called a stacking approach and has the advantage of specifying a lower bound given

by W2S and an upper bound specified by W3T [50]. The mixed sensitivity approach

results in the following overall specifications:

∥N∥∞ = max
ω

σ̄(N(jω));N =

 W2S

W3T

 (3.69)

σ̄(N(jω)) is the maximum singular value at each frequency ω. The weighting functions

are chosen to be

W2 =
s
M

+ ωo

s+ ωoA
(3.70)
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W3 =
s+ ωo

M

As+ ωo

(3.71)

where

ωo = 0.70 rad/sec is the desired closed-loop bandwidth

A = 10−3 is the desired disturbance attenuation inside the bandwidth and

M = 1.5 is the desired bound on ∥S∥∞ and ∥T∥∞. The optimal controller, KST resulting

from (3.69) is of 12th order. The controller is tested on the linear and nonlinear system

and the simulation results are illustrated in Section 3.8.3.

3.8.3 Simulation Results

H∞ Loop Shaping Results

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

1.5

Time (Seconds)

q 1,q
2,q

3

q
1

q
2

q
3

0 10 20 30 40 50 60 70 80 90 100
-10

-5

0

5

10

Time (Seconds)

1,
2,

3

1

2

3

Figure 3.36: Channel-1 step response and control torque input of linear plant using
LSDP

The H∞ loop-shaping controller, KLS is designed such that the open-loop singular

value frequency response of the loop gain L
△
= GmrpKLS has a gain cross over frequency

of 0.7 rad/sec [47]. The synthesized controller KLS is of 19th order. The closed-loop

system is excited with a step input for channel-1 in order to visualize the inter-axis

coupling from other channels which are not excited with a reference signal. Fig. 3.36
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Figure 3.37: Channel-1 step response and control torque input of nonlinear plant using
LSDP

and 3.37 shows the closed-loop attitude stabilization and the required control signal for

the linear plant and the nonlinear plant using the LSDP based controller. In both the

cases the control signal is limited to ±50 Nm. The loop shaping accuracy, (γls) achieved

in this case was γls = 1.4772. γls ≥ 1 where γls = 1 for a perfect match. The inter-axis

coupling in closed-loop is considerably stronger which is evident from both the linear

and nonlinear responses of q2 and q3 which do not attain a steady state value of 0 till

60 seconds when their respective reference inputs are i.e. qd2 = qd3 = 0. The LSDP

results illustrate that both the linear as well as nonlinear plant can be stabilized with

this approach. The closed-loop poles in the case of the linear plant were found to be as

follows.

−4096.34± i53.15,−4098.90,−4097.71,−4093.08,−4094.28,−24.46,−9.04,

−4096± i0.4186,−4096,−4096± 0.005,−4095.99,

−0.065± i0.2153,−0.0272± 0.063,−0.0256± 0.0589,−0.0655,−0.053,−0.75,−0.75,−0.75

(3.72)

However, the order of the loop-shaping controller is much larger than the output

feedback controller.
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H∞ Mixed Sensitivity Results
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Figure 3.38: Channel-1 step response and control torque input of linear plant using
mixed sensitivity approach
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Figure 3.39: Channel-1 step response and control torque input of nonlinear plant using
mixed sensitivity approach

In the H∞ mixed sensitivity approach the designed controller, KST is of 12th order.

The closed-loop system is excited with a step input for channel-1 in order to visualize

the inter-axis coupling from other channels which are not excited with a reference signal.
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Fig. 3.38 and 3.39 shows the closed-loop attitude stabilization and the required control

signal for the linear plant and the nonlinear plant using the mixed sensitivity approach.

In both the cases the control signal is limited to ±50 Nm. The closed-loop H∞ norm

described in (3.69) is found to be ∥N∥∞ = 1.2645. The inter-axis coupling in closed-loop

is considerably stronger which is evident from both the linear and nonlinear responses

of q2 and q3 which do not attain a steady state value of 0 till 60 seconds when their

respective reference inputs are zero i.e. qd2 = qd3 = 0. The desired bound on S∞ and

T∞ was defined as M = 1.5 and was found to be S∞ = 1.062 and S∞ = 1.121. The

inter-axis coupling in closed-loop is considerably stronger and can be visualized from

both the linear and nonlinear responses of q2 and q3 which do not attain a steady state

value of 0 when their respective inputs are zero i.e. qd2 = qd3 = 0. Similiar to the case

of LSDP, the mixed sensitivity approach results illustrate that both the linear as well as

nonlinear plant can be stabilized with this approach. The closed-loop poles in the case

of the linear plant were found to be as follows.

−673.79,−658.81,−636.08,−292.13,−236.33,−188.79,−166.09,−18.03,−7.169,

−0.722,−0.697,−0.684,−0.0655± i0.2153,−0.0264±−0.0611,−0.0655,−0.053

(3.73)

However, the order of the mixed sensitivity controller is much larger than the output

feedback controller. The proposed output feedback controller shown to stabilize the

nonlinear plant given in (2.20-2.21) is tested on the linearized plant shown in (3.66).

The controller gains are selected based on the PSO optimization presented in Section

3.7. Fig. 3.40 shows the linearized plant step response and the required controller effort

with a saturation of ±50 Nm. It can be inferred that the output feedback approach

stabilizes both the linear and nonlinear plant in a very similar way whereas attitude

stabilization is comparatively poorer in the robust control approaches for the nonlinear

case. These are enunciated as follows:

The linear and nonlinear plant stabilization results based on loop-shaping and mixed
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Figure 3.40: Linearized plant step response and control torque input with saturation of
±50 Nm using output feedback control law

sensitivity approaches illustrate the following facts in comparison to the Lyapunov based

output feedback approach presented in Section 3.6.

1. Both loop-shaping and mixed sensitivity approaches stabilize the linearized plant

with a higher controller effort in comparison to the proposed output feedback

approach presented in Section 3.6.

2. The robust control techniques synthesized for the linearized plant show poor sta-

bilization results for the nonlinear case.

3. The output feedback approach shows good stabilization results for both the linear

as well as the nonlinear case.

4. The order of the output feedback controller is small compared to the higher order

controllers (Loop-shaping & mixed sensitivity) which also results in less controller

effort.

Therefore, the output feedback approach globally asymptotically stabilizes the non-

linear as well as the linearized spacecraft attitude model defined in terms of the Euler’s
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equation of rotational dynamics and MRP’s and shows satisfactory results in comparison

to the existing robust control approaches.

3.9 Output Feedback Control in Quaternion Formu-

lation

In this section the Quaternion based nonlinear spacecraft attitude model presented in

Section 2.9.2 is stabilized using the previously proposed output feedback control law.

The attitude defined in terms of Quaternions are assumed to be the only measurable

quantity and angular velocity is not measured. This approach is similar to the one

presented in Section 3.6. However Quaternion are used instead of MRP. The output

feedback control law is shown to globally stabilize the nonlinear Quaternion based atti-

tude model in the sense of Lyapunov by proposing a new candidate Lyapunov function.

Simulation results are illustrated to demonstrate the attitude stabilization and time

varying attitude acquisition of the nonlinear model.

3.9.1 Output Feedback Control Law
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Figure 3.41: Quaternion based attitude stabilization using output feedback

The closed-loop system for the output feedback control law in Quaternion formula-

tion is shown in Fig. 3.41 and the control law is given as follows:

τβq
△
= [B(βq)]

T (saβ̃q − β∗
q ) (3.74)
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where

sa = diag(sao, sa1, sa2, sa3) (3.75)

β∗
q = diag(β∗

qo, β
∗
q1, β

∗
q2, β

∗
q3) (3.76)

β∗
q is defined as follows, for i = o, 1, 2, 3.

β∗
qi = sbi

γis

s+ γi
(3.77)

β∗
qis+ γiβ

∗
qi = sbiγisβqi (3.78)

Taking inverse Laplace transforms of (3.78) we get

β̇∗
qi + γiβ

∗
qi = sbiγiβ̇qi (3.79)

β∗
qi = sbiβ̇qi −

1

γi
β̇∗
qi (3.80)

The design parameters in the control scheme are sa in (3.75) and sb and γ are defined

as follows:

sb = diag(sbo, sb1, sb2, sb3) (3.81)

γ = diag(γo, γ1, γ2, γ3) (3.82)

To facilitate the subsequent control formulation, the nonlinear spacecraft attitude

model defined in terms of Euler’s equation of rotational dynamics and the Quaternion

described in (2.14 & 2.21) are combined to form the following second order nonlinear

dynamic equation of the Hamiltonian form, [52]. The detailed derivation can be found



75 3.9 Output Feedback Control in Quaternion Formulation

in Section C.1.1 of Appendix C and can be stated as follows:

M∗β̈q +N∗β̇q = ξT τβq (3.83)

where

M∗ △
= ξTJξ

N∗ △
= −M∗Ḃξ − ξTS(Jξβ̇q)ξ

(3.84)

The nonlinear dynamic equation in (3.83) shares similar properties with the rigid-

link robot manipulator dynamics. Specifically, the inertia matrixM∗ is positive definite

and symmetric, and can be bounded as follows [66] & [52].

j1∥x∥2 ≤ xTM∗(βq)x ≤ j2(∥βq∥)∥x∥2,∀x ∈ R3 (3.85)

where j1 is a positive constant, and j2(∥ βq ∥) is a positive non decreasing function. The

matricesM∗ and N∗ satisfy the following skew-symmetric relationship [51], [66] and [52]

xT
(
1

2
Ṁ∗ −N∗

)
x = 0 (3.86)

The derivation of (3.86) can be found in [17].

3.9.2 Stability Analysis

The control law described by (3.74) ensures the global asymptotic stability as delineated

by the following theorem.

Theorem IV: For the nonlinear system given in (2.14 & 2.21), the control scheme

in (3.74) makes the closed-loop system stable and the attitude tracking error, β̃q(t) con-

verges to zero.

Proof: Consider the following positive function
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V6(β
∗
q , β̇q, β̃q) =

1

2

[
β̇T
q M

∗β̇q + β̃T
q saβ̃q + β∗T

q (sbγ)
−1β∗

q

]
(3.87)

The positive definite function, V6 is composed of the mechanical energy given by

1

2
[β̇T

q M
∗β̇q] and the gains discussed in (3.75, 3.81 & 3.82). The time derivative of the

function, V6 in (3.87) can be written as follows:

V̇6 =
1

2
[β̇T

q M
∗β̈q + β̇T

q Ṁ
∗β̇q + β̈T

q M
∗β̇q] +

1

2
[β̃T

q sa
˙̃βq

+ ˙̃βT
q saβ̃q] +

1

2

[
β∗T
q (sbγ)

−1β̇∗
q + β̇∗T

q (sbγ)
−1β∗

q

]
(3.88)

V̇6 = β̇T
q M

∗β̈q +
1

2
β̇T
q Ṁ

∗β̇q +
˙̃βT
q saβ̃q + β∗T

q (sbγ)
−1β̇∗

q (3.89)

V̇6 = β̇T
q (−N∗β̇q + ξT τβq) +

1

2
β̇T
q Ṁ

∗β̇q +
˙̃βT
q saβ̃q + β∗T

q (sbγ)
−1β̇∗

q (3.90)

V̇6 = β̇T
q

(
1

2
Ṁ∗ −N∗

)
β̇q + β̇T

q ξ
T τβq +

˙̃βq
T saβ̃q + β∗T

q (sbγ)
−1β̇∗

q (3.91)

By the property of skew symmetry from (3.86), (3.91) can be written as follows

V̇6 = β̇T
q ξ

T τβq +
˙̃βT
q saβ̃q + β∗T

q (sbγ)
−1β̇∗

q (3.92)

Then substituting the control signal from (3.74) in (3.92)

V̇6 = β̇T
q ξ

TBT (saβ̃q − β∗
q ) +

˙̃βT
q saβ̃q + β∗T

q (sbγ)
−1β̇∗

q (3.93)

V̇6 = β̇T
q saβ̃q − β̇T

q β
∗
q +

˙̃βT
q saβ̃q + β∗T

q (sbγ)
−1β̇∗

q (3.94)

From ξTBT = I, ˙̃βq = −β̇q, we can get

V̇6 = −β̇T
q β

∗
q + β∗T

q (sbγ)
−1β̇∗

q (3.95)
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Substituting β̇∗
qi from (3.80) in (3.95) we get

V̇6 = −β̇T
q β

∗
q + β∗T

q (sbγ)
−1(sbγβ̇q − γβ∗

q ) (3.96)

V̇6 = −β∗T
q (sbγ)

−1γβ∗
q ≤ 0 (3.97)

The time derivative of the positive definite function, V6 is negative semi-definite by

invoking the invariant set theorem [52]. Therefore, it can be stated that the Quaternion

based nonlinear spacecraft attitude model can be stabilized by the output feedback

control law in (3.74). The advantage of using this scheme is that the plant stabilization

can be achieved by selecting a total of twelve positive gains in the feedback and feed-

forward path of the closed loop system where the feedback consists of the plant output

alone.

3.9.3 Simulation Results

The demonstration of the proposed scheme is illustrated with simulation results pre-

sented in this section. The mathematical model of spacecraft attitude given by (2.14

& 2.22) is simulated with (3.74) as the control input and the inertia matrix is given by

(2.32). The initial conditions are taken from [7] and are described as follows


ω1(0) = 11.45

ω2(0) = 11.45

ω3(0) = 11.45

Deg/sec (3.98)


ϕ = 10

θ = 8

ψ = 5

Deg (3.99)
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which corresponds to the following quaternions.

βqo = 0.9931

βq1 = 0.08383

βq2 = 0.07322

βq3 = 0.03727

(3.100)

The reference attitude is selected to be time varying and is expressed in terms of

roll, (ϕ), pitch, (θ) and yaw, (ψ) angles as follows:

[ϕ1, θ1, ψ1 = 20◦, 15◦, 10◦]T for time t = (0− 100) sec

[ϕ2, θ2, ψ2 = 30◦, 25◦, 20◦]T for time t = (100− 200) sec

[ϕ3, θ3, ψ3 = 45◦, 35◦, 30◦]T for time t = (200− 300) sec

The selection of the twelve positive gains stated in (3.75, 3.81 & 3.82) can be any

positive values as far as convergence is concerned, as shown in Theorem IV in Section

3.9.2. Since there are no specific design requirements with respect to each individual

channel in this example, we choose for simplicity the same values for the controllers on

the four channels which are as follows:

sa = diag(42, 42, 42)

sb = diag(121, 121, 121)

γ = diag(61, 61, 61)

(3.101)

Fig. 3.42 shows the desired attitude (roll, pitch and yaw angles) namely, (ϕd, θd, ψd),

measured attitude namely, (ϕ, θ, ψ) and attitude tracking error namely (ϕe, θe, ψe). The

required controller effort is shown in Fig 3.43. The results illustrate the fact that the

output feedback controller shows good tracking results with a maximum control torque

of ±50 Nm. However the plot is scaled to ±10 Nm for clarity.
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Figure 3.42: Quaternion based time varying attitude tracking
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Figure 3.43: Quaternion based attitude tracking control torque
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3.10 Conclusions

In this chapter, we have addressed the issue of attitude stabilization and control of a

rigid spacecraft model. The nonlinear plant (attitude model) is defined using the Euler’s

equation of rotational dynamics and the kinematic differential equation represented by

MRP. A new globally asymptotically stabilizing output feedback control law was pro-

posed. The stability was proved by Lyapunov’s theorem with a new Lyapunov candidate

function. The proposed control scheme was shown to possess the robustness and sim-

plicity of a PD controller which does not require attitude rate measurements, angular

velocity measurements or direct use of differentiators as a necessary measurement in

control structure design discussed in the literature. Furthermore, the control scheme

does not require any information about the body principal moments of inertia and is

therefore robust with respect to system parametric uncertainty. This was shown by

case studies in which the inertia values are changed and still the closed-loop system is

stable, while keeping the controller gains fixed. The simulation results illustrated the

robust performance and zero tracking error of the overall closed loop demonstrating the

effectiveness of the proposed approach.

The control law involved the selection of nine parameters which drastically influence

the performance of the controlled system. Particle swarm optimization algorithm was

used as a tool to infer the best parameters using a cost function which minimized the

absolute value of the tracking error while varying the controller parameters. Then two

robust control approaches namely H∞ loop shaping and H∞ mixed sensitivity were used

to design controllers for the linearized attitude model. Simulations were performed on

the linear and nonlinear plants. The simulation results illustrated that both the robust

controllers take a longer time to stabilize the linearized plant and showed poor results

when tested on the nonlinear case. The order of the synthesized controllers were also

very large when compared with the proposed output feedback controller which illus-

trated good stabilization results for both the linear as well as the nonlinear case and

required comparatively lesser controller effort.
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A total of nine gains are required to be tuned in the output feedback control law. This

was reduced to six in a modified approach. Global asymptotic stability is proved for

the modified approach by a new candidate Lyapunov function and simulation results

are illustrated to signify its effectiveness. The modified approach demonstrated similar

results to the output feedback approach. In addition to nonlinear plant stabilization the

modified approach is also shown to achieve time varying attitude tracking expressed in

terms of roll, pitch and yaw angles.

A similar output feedback stabilization approach was then presented using Quaternion

formulation. As before the global asymptotic stability was proved using a candidate

Lyapunov function. Simulation results were shown to illustrate the effectiveness of the

proposed approach when Quaternion are used instead of MRP. The approach success-

fully achieved time varying attitude tracking with considerably lesser controller effort

and comparatively smaller controller order than the synthesized robust controllers with

only the attitude as an available measurement.

3.10.1 Extension to Chapter 4

The nonlinear spacecraft attitude model discussed in Section 2.9.2 of Chapter 2 in terms

of Euler’s equation of rotational dynamics and Euler’s parameters is further intensified

by including actuator (reaction wheel) dynamics, nonlinear coupling terms, inertia ten-

sors and the angular velocity terms neglected in the dynamics formulation in [44]. The

derived nonlinear coupled dynamic system is cascaded with a Quaternion based kine-

matic model as shown in Section 2.9.2 to form an intricate yet realistic Large Space

Telescope (LST) attitude model. A state feedback control structure is shown to sta-

bilize the attitude of the LST model and track and a time varying attitude reference

expressed in terms of roll, pitch and yaw angles.
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3.10.2 Extension to Chapter 5

The linearized spacecraft attitude model stated in Section 2.10 of Chapter 2 is analyzed

as a case study in predicting channel vulnerability to actuator degradations. The output

feedback control law proposed in this chapter is shown to stabilize the linearized attitude

model and the least/most vulnerable channel to an actuator degradation in the closed-

loop spacecraft system is predicted by proposing interaction indices namely, (RDI ) and

(i.i.i.).



Chapter 4

Attitude Stabilization and Control

of a Large Space Telescope Model

4.1 Introduction

In this chapter, a case study is presented on the attitude stabilization and control of a

LST model. The LST model was developed by the National Aeronautics and Space Ad-

ministration (NASA) under the direction of the George C. Marshall Space Flight Center

(MSFC), Huntsville, Alabama. It was designed as a general purpose facility, capable of

utilizing a wide range of scientific instruments expecting to contribute significantly to

studies relevant to the origin and structure of the universe, the study of energy processes

that occur in galactic nuclei, the study of early stages of stellar and solar systems, and

observation of such highly evolved objects as supernova remnants and white dwarfs. It

would weigh between 9,000 and 11,000 kg and have a length of 12 to 16 m and a diameter

of 3.6 to 4 m. The basic LST elements are shown in Fig. 4.1, taken from a NASA tech-

nical report [44], are the Optical Telescope Assembly (OTA), the Scientific Instruments

(SI), and the Support Systems Module (SSM). The most important optical element in

the OTA is a diffraction-limited primary mirror approximately 3 m in diameter. The

potential scientific instruments include a diffraction-limited camera, a low and a high

dispersion spectrographs. All support systems such as control actuators, electronics, the

83
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power unit, and the data transmission assembly are combined in the SSM. Solar panels

supply the electrical power to the LST. The spacecraft will orbit earth at an altitude of

600 to 800 km at an inclination of 28.5 degrees. Further details are given in [2].

The aim of this chapter is to derive the nonlinear fully coupled dynamic equations of

motion for the LST model by taking into account the nonlinear coupling terms, inertia

tensors and the angular velocity terms neglected in [44]. The derived nonlinear, coupled

dynamic system will be combined with a Quaternion based kinematic model to form a

nonlinear attitude model of the LST system with three reaction wheels as actuators.

A state feedback control law is designed in this chapter to stabilize and achieve

time varying attitude tracking. Simulation results are illustrated to demonstrate that

the state feedback control law is able to achieve time varying attitude tracking in the

presence of environmental disturbances (gravity gradient, magnetic, aerodynamic &

solar pressure) and actuator failures at specific intervals of time.

In Section 4.2 the LST model is described. The equations of motion are discussed in

Section 4.3. In Section 4.4, we derive the nonlinear fully coupled dynamic equations of

motion. The reaction wheels are discussed in Section 4.5. The attitude model design

and the control law description is given in Section 4.6. Simulation results are illustrated

in Section 4.7 and the chapter concludes in Section 4.8 with some remarks for possible

future research in this direction.

4.2 LST Model Description

The basic elements of LST are shown in Fig. 4.2 taken from [44] which primarily consists

of the OTA, SI and the SSM. The LST model has a nearly cylindrical, beam like shape.

The principal axes frame S, with its origin at the center of mass, is defined as follows [44]:

The xsaxis (roll-axis) corresponds to the telescope axis, the ys axis (pitch-axis) is located

along the solar wing axis and the zs axis (yaw-axis) completes the orthogonal frame.
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Figure 4.1: LST spacecraft configuration [44]

Figure 4.2: Basic elements of LST [44]

The LST is assumed to be a rigid body. The inertia matrix I of the LST is given by

I =


Ix 0 0

0 Iy 0

0 0 Iz

 (4.1)
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where Ix = 14, 656 kgm2, Iy = 91, 772 kgm2 and Iz = 95, 027 kgm2 in the on-orbit

configuration with extended light shield and solar wings. The corresponding mass totals

9,380 kg. Inside the SSM there are three symmetric reaction wheels mounted orthogo-

nally and parallel to the xs, ys and zs axes as shown in Fig. 4.3 wherein rw-1, rw-2 and

rw-3 are the reaction wheels. rw-1 is mounted parallel to the roll axis, rw-2 is mounted

parallel to the pitch axis about the solar arrays and rw-3 is mounted parallel to the yaw

axis. The reaction wheels have the following inertia tensors.

I1 =


I1x 0 0

0 I1y 0

0 0 I1y

 , I2 =


I2z 0 0

0 I2y 0

0 0 I2z

 , I3 =


I3x 0 0

0 I3x 0

0 0 I3z

 (4.2)

sx

solar arrays

sy

sz

solar arrays

rw
-1

rw-2

rw
-3

Figure 4.3: Reaction wheel configuration of LST model

The roll, pitch and yaw angles of the LST are denoted as ϕ, θ & ψ and are related

to their respective angular velocities as follows:


ωx = ϕ̇

ωy = θ̇

ωz = ψ̇

 (4.3)

where ωx, ωy and ωz are the angular velocities about the xs, ys and zs axes. Similarly the
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angular velocities of the three reaction wheels can be expressed in terms of components

as follows: 
ωxr

0

0

 ,


0

ωyr

0

 ,


0

0

ωzr

 (4.4)

The internal torque (control torque) produced by the reaction wheels can be written as

follows: 
M1x

M1y

M1z

 ,


M2x

M2y

M2z

 ,


M3x

M3y

M3z

 (4.5)

The external torques (disturbances) acting on the LST about its three orthogonal axes

are denoted as Mx,My & Mz. The dynamic equations of the LST model are presented

in section 4.3.

4.3 LST Model Equations of Motion

In this section the equations of motion for LST model and the three reaction wheels

serving as actuators are stated [48].

The dynamic equations for the LST model are as follows:

Ixω̇x + ωyωz(Iz − Iy) + I3zωzrωy − I2yωyrωz + I1xω̇xr =Mx (4.6)

Iyω̇y + ωxωz(Ix − Iz) + I1xωxrωz − I3zωzrωx + I2yω̇yr =My (4.7)

Izω̇z + ωxωy(Iy − Ix) + I2yωyrωx − I1xωxrωy + I3zω̇zr =Mz (4.8)

The dynamic equations for the reaction wheel mounted parallel to the xs axis are:

I1xω̇x + I1xω̇xr =M1x (4.9)
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I1yω̇y + (I1x − I1y)ωyωz + I1xωxrωz =M1y (4.10)

I1yω̇z + (I1y − I1x)ωxωy − I1xωxrωy =M1z (4.11)

The dynamic equations for the reaction wheel mounted parallel to the ys axis are:

I2zω̇x + (I2y − I2z)ωxωz + I2yωyrωx =M2x (4.12)

I2yω̇y + I2yω̇yr =M2y (4.13)

I2zω̇z + (I2z − I2y)ωyωz − I2yωyrωz =M2z (4.14)

The dynamic equations for the reaction wheel mounted parallel to the zs axis are:

I3xω̇x + (I3x − I3z)ωxωy + I3zωzrωy =M3x (4.15)

I3xω̇y + (I3z − I3x)ωxωz + I3zωzrωx =M3y (4.16)

I3zω̇z + I3zω̇zr =M3z (4.17)

For simplification, [48] and [44] assumed that the reaction wheels are small, so that

I1x ≪ Ix, I2y ≪ Iy, I3z ≪ Iz and they have one degree of freedom only. Then the

equations (4.6-4.17) can be simplified to

Ixω̇x + ωyωz(Iz − Iy) + I1xω̇xr =Mx (4.18)
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Iyω̇y + ωxωz(Ix − Iz) + I2yω̇yr =My (4.19)

Izω̇z + ωxωy(Iy − Ix) + I3zω̇zr =Mz (4.20)

I1xω̇x + I1xω̇xr =M1x (4.21)

I2yω̇y + I2yω̇yr =M2y (4.22)

I3zω̇z + I3zω̇zr =M3z (4.23)

Substituting (4.21 in 4.18), (4.22 in 4.19) & (4.23 in 4.20), we get the following three

equations describing the motions along the individual axes and their interconnections

[48]

Ixω̇x + ωyωz(Iz − Iy) = (Mx −M1x)

Iyω̇y + ωxωz(Ix − Iz) = (My −M2y)

Izω̇z + ωxωy(Iy − Ix) = (Mz −M3z)

(4.24)

(4.24) can be further simplified as follows:

ω̇x =
(Mx −M1x)− ωyωz(Iz − Iy)

Ix
(4.25)

ω̇y =
(My −M2y)− ωxωz(Ix − Iz)

Iy
(4.26)

ω̇z =
(Mz −M3z)− ωxωy(Iy − Ix)

Iz
(4.27)

The LST model discussed in this section is linear [44], [48] and it ignores the nonlinear
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coupling phenomena and may not be an entirely satisfactory description of the LST

model as stated by [48]. In the next section we derive the fully coupled equations of

motion for the LST model including the three reaction wheels. The nonlinear coupling

terms, inertia and the angular velocity terms neglected in (4.24) will be accounted in

the forthcoming derivation. The attitude of the coupled and decoupled LST model is

controlled. Single channel attitude stabilization is illustrated in order to visualize the

inter-axis coupling and is demonstrated in the simulation results section.

4.4 Derivation of Coupled Equations for LST Model

The LST model dynamics stated in (4.6-4.8) can be viewed as the dynamics about each

axis with the influence of reaction wheel dynamics about all the axes. This can be

expressed about each axis of the LST as follows:

Dynamics about xs axis + Reaction wheel dynamics about xs, ys and zs axes =

External torque about xs axis (Mx)

Dynamics about ys axis + Reaction wheel dynamics about xs, ys and zs axes = External

torque about ys axis (My)

Dynamics about zs axis + Reaction wheel dynamics about xs, ys and zs axes = External

torque about zs axis (Mz)

The reaction wheel dynamics about xs, ys and zs from (4.9, 4.14 & 4.15) can be re-

arranged and substituted in xs axis dynamic equation stated in (4.6). In a similar way,

the reaction wheel dynamics about xs, ys and zs from (4.10, 4.13 & 4.16) are re-arranged

and substituted in ys axis dynamic equation stated in (4.7) and the reaction wheel

dynamics about xs, ys and zs from (4.11, 4.12 & 4.17) are re-arranged and substituted

in zs axis dynamic equation stated in (4.8).

ω̇x(Ix−I3x−I1x)−ωxωy(I3x−I3z)+ωyωz(Iz−Iy−I2z+I2y)−I2zω̇z =Mx−M1x−M3x−M2z

(4.28)
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ω̇y(Iy−I1y+I3x−I2y)+ωxωz(Ix−Iz+I3z−I3x)−ωyωz(I1x−I1y) =My−M1y+M3y−M2y

(4.29)

−I2zω̇x+ω̇z(Iz−I1y−I3z)+ωxωy(Iy−Ix−I1y+I1x)−ωxωz(I2y−I2z) =Mz−M2x−M1z−M3z

(4.30)

Inter substitution of (4.28 & 4.30) and simplifying (4.28-4.30), we get the following:

ω̇x = −I−1
2z ∆

−1ωxωy(IzI3x − IzI3z − I1yI3x + I1yI3z − I3zI3x + I23z) +

−I−1
2z ∆

−1ωyωz(−I2z + IzIy + IzI2z − IzI2y + I1yIz − I1yIy)

−I−1
2z ∆

−1ωyωz(−I1yI2z + I1yI2y + I3zIz − I3zIy − I3zI2z + I3zI2y)

−I−1
2z ∆

−1Iz(Mx −M1x −M3x −M2z)

−I−1
2z ∆

−1I1y(−Mx +M1x +M3x +M2z)

−I−1
2z ∆

−1I3z(−Mx +M1x +M3x +M2z)

∆−1ωxωy(Iy − Ix − I1y + I1x)

∆−1ωxωz(−I2y + I2z)

∆−1(−Mz +M2x +M1z +M3z) (4.31)

ω̇y =
My −M1y +M3y −M2y − ωxωz(Ix − Iz + I3z − I3x) + ωyωz(I1x − I1y)

(Iy − I1y + I3x − I2y)
(4.32)
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ω̇z = −I−1
2z ∆

−1ωxωy(−IxIy + I2x + IxI1y − IxI1x + I3xIy − I3xIx)

−I−1
2z ∆

−1ωxωy(I3xI1y + I3xI1x + I1xIy − I1xIx − I1xI1y + I21x)

−I−1
2z ∆

−1ωxωz(IxI2y − IxI2z − I3xI2y + I3xI2z − I1xI2y + I1xI2z)

−I−1
2z ∆

−1Ix(Mz −M2x −M1z −M3z)

−I−1
2z ∆

−1I3x(−Mz +M2x +M1z +M3z)

−I−1
2z ∆

−1I1x(−Mz +M2x +M1z +M3z)

∆−1ωxωy(−I3x + I3z)

∆−1ωyωz(Iz − Iy − I2z + I2y)

∆−1(−Mx +M1x +M3x +M2z) (4.33)

where

∆ = I2z+I
−1
2z [−IzIx+IzI3x+IzI1x+I1yIx−I1yI3x−I1yI1x+I3zIx−I3zI3x−I3zI1x] (4.34)

(4.31-4.33) are the coupled nonlinear dynamic equations of the LST model with reaction

wheels as actuators in contrast to the linear decoupled equations described earlier in

(4.25-4.27).

4.5 LST Reaction Wheels

Reaction wheels are used as actuators when accurate and time optimal attitude control

is mandatory. In [47] it is stated that the choice of reaction wheel depends on the

performance to be achieved by the satellite’s attitude control system. Some of the

basic technical features required from a reaction wheel for the desired performance to

be achieved are maximum achievable torque, maximum momentum capacity, low torque
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Figure 4.4: Reaction wheel [1]

noise and low coulomb friction torques [47]. Some of the drawbacks of the reaction wheels

are relatively small effective torque and the possibility of reaction wheel saturation [43].

Fig. 4.4 shows a reaction wheel manufactured by SSBV Space and Ground Systems,

UK [1]. Let x, y & z be three mutually perpendicular axes, m be the mass in (kilogram),

h be the height and l = w be the length and width of the reaction wheel shown in Fig.

4.4. The reaction wheel rotates about its x− axis and its moment of inertia about x, y

& z axes can be calculated as follows:

I1x =
mr2

2

I1y = I1z =
1

12
(3r2 + h2)

(4.35)

where r = l
2
= w

2
. The technical specifications of the reaction wheel shown in Fig.

4.4 are given in appendix D. Its physical characteristics will be used in calculating the

moment of inertia of the reaction wheel for the LST model and are given as follows:

Mass = 1.550kg

Length=width = 102mm

height = 105mm

(4.36)

The axial and transverse inertias of the LST reaction wheel are calculated using the
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relationship stated in (4.35) and the physcial characteristics in (4.36) and are given as

follows:

I1x = 0.002 kgm2

I1y = I1z = 0.0016 kgm2
(4.37)

4.6 Attitude Stabilization and Tracking of LSTModel

Desired , ,

, ,  to DCM

State Feedback 

Controller

D.C.M. to , ,

x y z

Initial Conditions

, , , , ,

LST

Attitude Model

k̂,  

to Quaternions

Quaternions 

ˆto k,  

DCM to 

k̂,

k̂,  to DCM

Figure 4.5: LST model attitude tracking control system

In this section the derived nonlinear coupled dynamic equations of LST given in

(4.31-4.33) are cascaded with the kinematic differential equations in terms of Quaternion

formulation discussed in Section 2.5 of Chapter 2. The attitude tracking control system
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for the LST Model is shown in Fig. 4.5. The desired attitude is time varying and

is expressed in terms of roll, pitch and yaw angles in degrees. The Euler angles are

transformed to the DCM using (3-2-1) Euler angle sequence wherein the z, y & x axis

are rotated about an angle of ψ, θ & ϕ degrees. The resulting DCM is given by the

following relationship:

DCM =


cθ cψ cθ sψ −sθ

sϕ sθ cψ − cϕ sψ sϕ sθ sψ + cϕ cψ sϕ cθ

cϕ sθ cψ + sϕ sψ cϕ sθ sψ − sϕ cψ cϕ cθ

 (4.38)

where the notation c = cos and s = sin of the angles ϕ, θ & ψ. The Euler eigenangle, Φ

and Euler eigenaxis, k̂ is calculated from the DCM using the following relationship.

Φ = cos−1

(
1

2
(C11 + C22 + C33 − 1)

)
(4.39)

k̂ =


k1

k2

k3

 =
1

2sinΦ


C23 − C32

C31 − C13

C12 − C21

 (4.40)

where Ci,j is the ith row and jth column element of the DCM. The Quaternions, βq

are calculated from the Euler eigenangle, Φ and Euler eigenaxis, k̂ using the following

relationship.

βq =



βq1

βq2

βq3

βqo


=



k1sin(
Φ
2
)

k2sin(
Φ
2
)

k3sin(
Φ
2
)

cos(Φ
2
)


(4.41)

The kinematic differential equations of motion in terms of Quaternion’s was stated
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in (2.14) and is mentioned below [42]:



β̇qo

β̇q1

β̇q2

β̇q3


=



βqo −βq1 −βq2 −βq3

βq1 βqo −βq3 βq2

βq2 βq3 βqo −βq1

βq3 −βq2 βq1 βqo





0

ωx

ωy

ωz


(4.42)

where [ωx ωy ωz]
T is the angular velocity of the LST model in a body-fixed frame.

4.6.1 Attitude Model Design
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Figure 4.6: Attitude model design in simulink

The attitude model consisting of the Euler’s equations, (4.31-4.33) and the kinematic

equations, (4.42) is modeled in simulink as shown in Fig. 4.6. The attitude model

consists of two integrators blocks. The first block calculates the angular velocity vector,

ω with initial conditions specified in degrees/second. The second integrator calculates

the attitude of the LST model with initial attitude specified in terms of roll, pitch and

yaw angles expressed in degrees. The control torque is added in the Euler’s equations

block and the kinematics equations block calculates the plant output.
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Figure 4.7: LST model attitude stabilization

4.6.2 State Feedback Controller

A state feedback control structure is shown to stabilize the attitude of the formulated

nonlinear LST model as depicted in Fig. 4.7. The control law requires the angular

velocity vector and the attitude error vector in terms of Quaternions in computing the

control law. The angular velocity vector is given by

ω
△
=


ωx

ωy

ωz

 (4.43)

where ωx, ωy and ωz are the angular velocities about the xs, ys and zs axes of the LST

model. The attitude error Quaternion vector is computed using the current attitude

quaternions, (βq1, βq2, βq3, βqo) stated in (4.41) and the desired attitude quaternions

given by

βqc
△
=



βq1c

βq2c

βq3c

βqoc


(4.44)

The attitude error Quaternion vector is given in [62] as follows:
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

βq1e

βq2e

βq3e

βqoe


=



βqoc βq3c −βq2c −βq1c

−βq3c βqoc βq1c −βq2c

βq2c −βq1c βqoc −βq3c

βq1c βq2c βq3c β0c





βq1

βq2

βq3

βqo


(4.45)

The state feedback control law to stabilize the attitude of the nonlinear LST model

can be stated as follows:


M1x

M2y

M3z

 =


kx 0 0

0 ky 0

0 0 kz︸ ︷︷ ︸
k




βq1e

βq2e

βq3e

+


cx 0 0

0 cy 0

0 0 cz︸ ︷︷ ︸
c




ωx

ωy

ωz

 (4.46)

where the control law involves two feedback loops, namely, inner and outer. The

inner loop comprises of angular velocity feedback with a positive definite gain matrix c.

The outer loop feeds back the measured attitude in terms of quaternions. The attitude

error Quaternion vector computed in (4.45) is multiplied with a positive definite gain

matrix k.

4.7 Simulation Results

4.7.1 Initial Conditions

The following initial conditions stated in [42] are chosen for the simulation of the LST

attitude model given in (4.31-4.33 & 4.42) and the control law given in (4.46).


ωx = 11.45

ωy = 11.45

ωz = 11.45

Deg/sec (4.47)
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ϕ = 10◦

θ = 8◦

ψ = 5◦ (4.48)

The inertia matrix, (I) of the LST is given as follows [44]:

I =


14656 0 0

0 91772 0

0 0 95027

 (kgm2) (4.49)

The axial and transverse inertia of the reaction wheels discussed in section 4.5 were

calculated in (4.37) and are given as follows:

I1 =


0.002 0 0

0 0.0016 0

0 0 0.0016

 (4.50)

I2 =


0.0016 0 0

0 0.002 0

0 0 0.0016

 (4.51)

I3 =


0.0016 0 0

0 0.0016 0

0 0 0.002

 (4.52)

The external torques (disturbances) acting on the LST depend on the external en-

vironment in space. The maximum values of the respective external torques are given

in [2] and are mentioned below:

Gravity gradient 0.2200 N-m

Magnetic 0.0500 N-m
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Aerodynamic 0.0001 N-m

Solar pressure 0.0004 N-m

The total external disturbance acting on the LSTmodel is taken to beMx=My=Mz=0.2705

N-m.

4.7.2 Attitude Tracking

The desired attitude is selected in terms of Euler angles as follows:

ϕ = 20◦

θ = 15◦

ψ = 10◦ (4.53)

The selection of the two gain matrices namely, k & c in (4.46) has to be positive

definite and are selected by trial and error. We choose for simplicity the same values for

the controllers on the three channels to be as follows:

k = diag(50, 50, 50) 103 (4.54)

c = diag(80, 80, 80) 103 (4.55)

The transverse torques produced by the reaction wheels are very small when com-

pared to the axial torques i.e. M1y,M1z ≪ M1x, M2x,M2z ≪ M2y & M3x,M3y ≪ M3z

and are neglected in [44]. In this simulation, the transverse torques are taken into

consideration and are chosen to be 5% of the axial value as shown below:
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M1y =M1z = 5%M1x

M2x =M2z = 5%M2y

M3x =M3y = 5%M3z

(4.56)

Fig. 4.8 shows the attitude tracking of the coupled and decoupled LST model. The

required controller effort for both the models is shown in Fig. 4.9. The control signal

is limited to ±2000Nm. The attitude error Quaternions are shown in Fig. 4.10. The

attitude tracking, controller effort and the tracking error plots shows the small but

significant amount of coupling present in the coupled LST model. Fig. 4.8 shows the

overshoot in attitude tracking for the coupled model and is slightly higher than the

decoupled case. Fig. 4.9 illustrates a slightly higher controller effort for the coupled

LST compared to the decoupled case, although the control signal is bounded between

±2000Nm. In a similar manner the peak value of the tracking error is higher for the

coupled case when compared to the decoupled model and is evident from Fig. 4.10.

Fig. 4.11 shows the roll axis stabilization and control for the coupled and decoupled LST

model wherein the objective is to achieve attitude tracking about the roll axis i.e. (ϕ =

20◦). The pitch and yaw attitude remain the same as specified in the initial conditions

stated in (4.48). The purpose of such an illustration is to visualize the inter-axis coupling

and how a specific channel output is achieved in spite of the interactions from other

channels. The control signal is limited to ±2000Nm and the required controller effort

is shown in Fig. 4.12. The attitude error Quaternion in this case is shown in Fig.

4.13. Figs. 4.11-4.13 illustrate that there is a significant amount of coupling in the

LST model and is slightly more in the coupled case when compared with the decoupled

model. Although pitch and yaw reference is unchanged from their initial values, they

vary a lot before settling back to their initial values of θ = 8◦ and ψ = 5◦. Steady

state values for θ and ψ in the decoupled case is achieved at approximately 35 seconds

whereas in the coupled case steady state is achieved in 37 seconds. The peak value of

the second channel control signal (M2y), exceeds 1000 Nm in the coupled case while

in the decoupled case it is less than 1000 Nm. A similar response is observed for the
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Figure 4.8: Attitude tracking of coupled and decoupled LST model

negative peak value of the first channel control signal (M1x). Similarly, from Fig. 4.13

the error in coupled case takes a longer time to go zero while it is less in the decoupled

case. These facts explain the significance of the coupling terms involved in the coupled

model.

4.8 Conclusions and Future Work

In this chapter, a case study was presented on a LST model developed by NASA [2]

& [44]. The LST model considered by [44] is linear and decoupled. We have attempted

to derive a fully coupled nonlinear dynamic model fitted with three reaction wheels as

actuators. In doing so, we took into account the nonlinear coupling terms, the inertia

tensors and the angular velocity terms neglected in [44]. The derived LST model dy-

namic equation was cascaded with a Quaternion based kinematic model and simulated

using a state feedback control law proposed in [62] to achieve time varying attitude

tracking. Simulation results have been illustrated demonstrating the stabilization and

control of the coupled and decoupled LST model. Single channel attitude stabilization is
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Figure 4.9: Attitude tracking control torque input for coupled and decoupled LST model
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Figure 4.10: Attitude error quaternions of coupled and decoupled LST model
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Figure 4.11: Roll axis stabilization and control of coupled and decoupled LST model
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Figure 4.12: Roll axis stabilization control torque input for coupled and decoupled LST
model
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Figure 4.13: Roll axis stabilization error for coupled and decoupled LST model

illustrated in order to visualize the inter-axis coupling. It was verified from simulations

that the state feedback control law is able to achieve time varying attitude tracking in

the presence of environmental disturbances such as (gravity gradient, magnetic, aero-

dynamic & solar pressure) and actuator failures at specific intervals of time. The state

feedback control parameters have been selected at random in this case study. The use

of optimal algorithms to infer the best controller parameters can be a possible extension

in the future. A Lyapunov stability analysis can be performed which ensures global

asymptotic stability of the LST model using the state feedback approach.



Chapter 5

Study of MIMO Subsystem

Interactions for Better Performance

and Fault Tolerance

5.1 Introduction

A MIMO system comprises of more than one input and output and is generally cate-

gorized into two types, namely, decoupled and coupled. In a decoupled MIMO system,

an individual input mainly affects an individual output whereas in a coupled system

multiple inputs affects a single output. Coupled systems are more difficult to control in

comparison to decoupled systems because of the channel interactions. MIMO systems

can either be controlled by a centralized control structure or by a set of Single-Input-

Single-Output (SISO) decentralized controllers. Decentralized control is preferred over

the centralized control for the following reasons [39]:

• Decentralized control has a simple design and can be easily implemented.

• Each loop can be independently tuned with fewer tuning parameters compared to

centralized controllers.

106
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On the contrary, centralized controllers are more complex and lack integrity which is

a key property in decentralized control and ensures that the closed-loop system remains

stable as the subsystem controllers are brought in and out of service [50]. There are

two key steps involved in the successful design of a decentralized controller, namely,

loop configuration and controller tuning [27]. Loop configuration is defined as pairing

the manipulated variables and the controlled variables to achieve minimum interactions

among loops so that the resulting multivariable control system mostly resembles a collec-

tion of SISO counterparts and the subsequent controller tuning can be largely facilitated

by SISO design techniques [68]. Hence the main objective in selecting an appropriate

loop configuration is to result in a multivariable plant close to being diagonally dom-

inant. In order to have such a loop configuration, we need to have some information

about the subsystem interactions. The concept of Relative Gain Array (RGA) was first

introduced by Bristol in 1966 [11]. The RGA is an empirical measure of interaction and

has found widespread acceptance in the control community because of its simplicity. In

order to overcome its limitations many extensions and generalizations like, the Nieder-

linski Index (NI) [36], Dynamic Relative Gain Array (DRGA) [65], Effective Relative

Gain Array (ERGA) [68], Partial Relative Gain Array (PRGA) [21], Relative Interaction

Array (RIA) [69] and Effective Relative Energy Array (EREA) [35] have been proposed.

These generalized forms of RGA have outlined their set of rules which can be followed

to form a loop configuration resulting in the most decoupled system. As the decoupled

system would be least interactive, its controller design would be much easier when com-

pared to its most interactive counter part.

However, the choice of best loop configuration when an input channel is prone to actua-

tor degradation has not been explicitly addressed in the literature. While decentralized

control aims to decouple a MIMO system such that there are minimum interactions

among its subsystems by choosing an appropriate loop configuration depending on in-

teractive measures such as (RGA, NI, RIA, ERGA & EREA), the ”opposite” case can

prove to be useful when there are actuator degradations. In such a case the subsystem
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interactions can aid the degraded channel for a better performance of the whole system.

In this chapter such an actuator degradation problem is considered along the line of sys-

tem configuration. A new approach for structure configuration of MIMO systems in both

open and closed-loop is presented. A simple interaction measure based on H∞ norm of

the MIMO subsystems is defined namely, the (RDI ). The RDI helps in understanding

the effect of one input on an output. Simple guidelines are given which are effective

in configuring an open and closed-loop system towards coupling and decoupling. The

effectiveness of the RDI is verified by simulation results and a performance measure

given in terms of RMSE. The RDI is further extended to the (i.i.i.) which helps in

investigating how the overall system output would be affected by actuator degradation

which occurs on each individual input channels. Applications of RDI and i.i.i. are

analyzed and compared with the use of RGA, NI, RIA, ERGA & EREA in examples.

In literature, the concept of system configuration has been addressed by existing in-

teraction measures stated earlier and their effectiveness was mainly demonstrated by

examples on distillation columns. In this chapter, RDI and its associated guidelines are

tested on similar examples to verify the effectiveness of the approach and compare it

with existing interaction measures. i.i.i. has been shown to predict the channel vul-

nerability to actuator failure based on the inherent plant interaction for the spacecraft

attitude model discussed in chapter 3.

In the next section the existing interaction measures and their guidelines are first intro-

duced and their decoupling measures are illustrated with examples.

5.2 Existing Interaction Measures

In this section we give an overview of RGA. Some important properties, drawbacks

of RGA and its extensions to overcome the drawbacks are outlined. It is worthwhile

to mention that RGA and its subsequent analysis are transfer function based. The

extension of RGA based on the state space model can be found in [27].
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5.2.1 Relative Gain Array

Consider a multivariable system with ”n” inputs and ”n” outputs described by the

following transfer function matrix

G(s) =



g11(s) g12(s) . . . g1n(s)

g21(s) g22(s) . . . g2n(s)

. . . . . . . . . . . .

gn1(s) gn2(s) . . . gnn(s)


(5.1)

The relative gain for a selected pair of input-output variables is defined as the ratio of

the open loop dc-gain of that pair, with all other loops open, to their open loop gain

when all other loops in the system are closed

λi,j =
(∂yi/∂uj)all loops open

(∂yi/∂uj)all other loops closed except for loopyi−uj

(5.2)

where yi is the i
th controlled variable and uj is the j

th manipulated variable.

The RGA is then defined as follows:

Λ(G) = G⊗G−T =



λ11 λ12 . . . λ1n

λ21 λ22 . . . λ2n

. . . . . . . . . . . .

λn1 λn2 . . . λnn


(5.3)

where the operator ”⊗ ” is the Hadamard product and G−T represents the transpose of

the inverse of G.
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Example 5.2.1 Consider the following multivariable system [24]

G1(s) =



−2e−s

10s+ 1

1.5e−s

s+ 1

e−s

s+ 1

1.5e−s

s+ 1

e−s

s+ 1

−2e−s

10s+ 1

e−s

s+ 1

−2e−s

10s+ 1

1.5e−s

s+ 1


(5.4)

The corresponding RGA is

Λ(G1(s)) =


−0.9302 1.1860 0.7442

1.1860 0.7442 −0.9302

0.7442 −0.9302 1.1860

 (5.5)

The RGA matrix for the multivariable system in (5.4) is shown in (5.5). The RGA

possesses the following main properties [11]:

1. Summation of the rows and columns of the RGA are equal to unity

2. It is independent of input/output scaling

3. λi,j is independent of how the n-1 loops are paired

4. Any permutation of rows and columns in the system transfer function matrix G(s)

leads to the same permutation in the RGA

5. If the transfer function matrix G(s) is triangular or diagonal, the RGA will be an

identity matrix

5.2.2 Implications of RGA

The values of λij can cover all possible numbers from −∞ to +∞. They can be classified

into six different categories as follows:
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1. λi,j = 1

2. λi,j = 0

3. λi,j = ±∞

4. λi,j < 0

5. 0 < λi,j < 1

6. λi,j > 1

A discussion of each category with its properties and implications can be found in [31]

& [27]. The role of RGA as an indicator of sensitivity to uncertainty is dealt with in [50].

The most desirable value of λ is 1, which indicates that the open loop and the closed

loop gains in (5.2) are the same and there is no interaction from other subsystems. A

general square system with ”n” inputs and ”n” outputs will have n! loop configurations.

The system described in Example 5.2.1 will have six different loop configurations and

their respective RGA values are shown in Table 5.1

Table 5.1: Loop configurations and their respective RGA

Loop Configurations RGA

u1 − y1, u2 − y2, u3 − y3 diag(-0.9302, 0.7442, 1.1860)

u1 − y1, u2 − y3, u3 − y2 diag(-0.9302, -0.9302, -0.9302)

u1 − y2, u2 − y1, u3 − y3 diag(1.1860, 1.1860, 1.1860)

u1 − y2, u2 − y3, u3 − y1 diag(1.1860, -0.9302, 0.7442)

u1 − y3, u2 − y1, u3 − y2 diag(0.7442, 1.1860, -0.9302)

u1 − y3, u2 − y2, u3 − y1 diag(0.7442, 0.7442, 0.7442)

It can be observed from Table 5.1 that the possible choice of loop configurations which

are close to being decoupled are u1 − y2, u2 − y1, u3 − y3 and u1 − y3, u2 − y2, u3 − y1 as

they satisfy the RGA based pairing rule of closeness to 1. However, several pairs may
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satisfy the RGA guideline and one may run into ambiguity as in the present case. To

resolve this issue an intuitive measure of the overall interaction was suggested in [70]

given as follows:

min
∑

|λki,j − 1| (5.6)

where λki,j denotes the paired RGA elements corresponding to the kth loop configu-

ration. Therefore in the case of several pairing alternatives proposed by the RGA, the

overall measure given in (5.6) can be used for identifying the pairing with minimum

overall interaction. However, as the distance of the RGA elements from 1 does not

quantify the amount of interaction, this measure is found to be inadequate under some

circumstances and inherits the same limitations from the RGA [69] & [27]. The concept

of RIA was introduced to overcome these shortcomings in [69] and will be discussed

next.

5.2.3 Relative Interaction Array

The RIA is defined as follows [69]:

ϕi,j =
1

λij
− 1 (5.7)

and also

λi,j =
1

ϕij + 1
(5.8)

Hence in matrix form RIA can be defined as follows

Φ(G) =



ϕ11 ϕ12 . . . ϕ1n

ϕ21 ϕ22 . . . ϕ2n

. . . . . . . . . . . .

ϕn1 ϕn2 . . . ϕnn


(5.9)

The corresponding RIA matrix for the system described in (5.4) is given as follows
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Φ(G1(s)) =


−2.0750 −0.1568 0.3437

−0.1568 0.3437 −2.0750

0.3437 −2.0750 −0.1568

 (5.10)

The RIA matrix characterizes the following implications about loop interactions [69]:

1. ϕij = 0 implies that there is no interaction and λij = 1

2. ϕij > 0 implies that interaction acts in the same direction as the interaction free

system.

3. ϕij > 1 implies interaction dominates over interaction free system gain.

4. ϕij < 0 implies interaction acts in the reverse direction as interaction free system

gain.

5. ϕij < −1 implies reverse interaction dominates over interaction free system gain

5.2.4 Niederlinski Index

Integrity is an important and desirable feature of a decentralized control system which

ensures the closed-loop stability as the subsystem controllers are brought in and out

of service [11]. Niederlinski, [36], in 1971 introduced a theorem for solving the in-

tegrity problem which is stated as follows [18]: ”The closed loop system consisting of the

multivariable system in (5.1) and a multiloop control system is structurally monotonic

unstable if and only if”

NI
△
=
det[G(0)]
k∏

i=1

Gii(0)

< 0 (5.11)

where ’k’ is the total number of individual loops. The NI serves as an important stability

rule which states that the loop should be configured in such a way that the corresponding

NI is positive. In addition to the stability and integrity depending on its sign, NI has
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been extended to measure the overall interaction by its size [70], which states that the

loop should be configured in a such a way that the resulting NI is close to 1.

RGA-RIA-NI based pairing rules:

Based on the properties of RGA, RIA and NI the following points are crucial for a

decoupled loop configuration:

• Configure the system loop with corresponding RGA close to one, [11].

• RGA elements must be positive.

• Large RGA elements are not appropriate for loop configuration [49].

• NI must be positive and close to one, [18] & [70].

• Configure the system loop such that all the RIA elements are close to zero, [69].

• All the RIA elements should be greater than -1 and the elements close to -1 should

be avoided, [69].

For ease of notation the loop configurations will be denoted as follows:

u1 − y1, u2 − y2, u3 − y3 ≡ uy123

u1 − y1, u2 − y3, u3 − y2 ≡ uy132

u1 − y2, u2 − y1, u3 − y3 ≡ uy213

u1 − y2, u2 − y3, u3 − y1 ≡ uy231

u1 − y3, u2 − y1, u3 − y2 ≡ uy312

u1 − y3, u2 − y2, u3 − y1 ≡ uy321

The RIA and NI values for the six different loop configurations of the MIMO system

in (5.4) are shown in Table 5.2.

Following the RGA-RIA-NI based rules uy123, uy132, uy231 & uy312 are not recom-

mended and only two loop configurations, namely, uy213 & uy321 can be selected. Similar

to the RGA, two pairing candidates satisfy the pairing rules. In order to choose the best
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Table 5.2: Loop configurations and their respective RIA, NI & Φmin(G1(s))

Loop Configurations RIA NI Φmin(G)

uy123 diag(-2.0750, 0.3437, -0.1568) 1.7917 2.5755

uy132 diag(-2.0750, -2.0750, -2.0750) -0.6719 6.2250

uy213 diag(-0.1568, -0.1568, -0.1568) 1.5926 0.4704

uy231 diag(-0.1568, -2.0750, 0.3437) 1.7917 2.5755

uy312 diag(0.3437, -0.1568, -2.0750) 1.7917 2.5755

uy321 diag(0.3437, 0.3437, 0.3437) 5.3750 1.0311

pair for a decoupled loop configuration an overall interaction measure based on RIA is

proposed in [69] given as follows:

Φmin(G) = min
∑

|ϕk
ij| (5.12)

where ϕk
ij denotes the paired RIA elements corresponding to the kth loop configura-

tion. This interaction measure identifies the pairing with the minimum overall interac-

tion. (5.12) can also be expressed in terms of its respective RGA elements as follows.

min
∑

| 1
λkij

− 1| (5.13)

Hence the following statement can be added to the RGA-RIA-NI set of rules [69].

• Configure the system loop for which, Φmin(G) is minimum

From Table 5.2, it can be inferred that the loop configuration corresponding to uy213

is the most decoupled system as it has the least overall interaction based on RIA in

addition to satisfying the RGA-RIA-NI set of rules. The RIA and NI measures do not

provide much insight about the subsystem interactions than the RGA, although they

provide valuable alternative points. This is mainly due to the fact that RGA, RIA

and NI analyze the system at steady state, but otherwise the interactions may vary at
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different operating frequencies. To address this issue the concept of Dynamic Relative

Gain Array (DRGA) was introduced by Witcher & McAvoy [65] in 1977. It is basically

an extension of RGA [11] defined as follows:

DRGA(G) = G(jω)⊗G(jω)−T (5.14)

The DRGA is a computationally involved approach which overcomes the limitations

of the static RGA by considering the effects of the system dynamics. However, RGA

is independent of controller design, but these features are lost in DRGA which depends

on the controller structure [12] & [58]. To combine the advantages of both RGA and

DRGA and overcome their deficiencies the concept of ERGA was proposed by Xiong et

al in 2005 [68] and will be discussed in the following section.

5.2.5 Effective Relative Gain Array

ERGA is an extension of RGA, wherein two factors are considered namely, the steady

state gain and the response speed or the system bandwidth. ERGA utilizes both these

information in providing a measure of the subsystems interaction. The steady state gain

reflects the effect of the manipulated variable uj on the controlled variable yi and the

response speed accounts for the sensitivity of yi to uj indicating the interaction rejection

ability of the plant. The notable feature of ERGA is that it is controller independent and

suggests a loop configuration with minimal interaction within the interested frequency

range both statically and dynamically and is defined as follows [68]:

ζi,j =
ei,j
êi,j

(5.15)

where ei,j is the effective gain for a particular transfer function when all other loops

are open, given by
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ei,j = gi,j(0)︸ ︷︷ ︸
steady state gain

∫ ωB, i,j

0

|g0i,j(jω)|dω︸ ︷︷ ︸
response speed

(5.16)

where ωB, i,j for i, j = 1, 2, .., n are the bandwidth of the transfer function g0ij(jω).

The bandwidth of a transfer function are the frequencies from which the steady state

gain is attenuated more than 3 dB i.e.

gi,j(jωB, i,j) =
gi,j(0)√

2
(5.17)

To simplify the calculation the integration of eij is approximated by a rectangular area

and eij is given by [68]:

ei,j ≈ gi,j(0)ωB, i,j for i, j = 1, 2, ..., n (5.18)

êi,j is the effective gain between the controlled variable yi and the manipulated

variable uj when all other loops are closed.

In terms of matrix the effective gain can be expressed as follows:

E = G(0)⊗ Ω (5.19)

where

G(0) =



g11(0) g12(0) . . . g1n(0)

g21(0) g22(0) . . . g2n(0)

. . . . . . . . . . . .

gn1(0) gn2(0) . . . gnn(0)


(5.20)

and
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Ω =



ωB,11 ωB,12 . . . ωB,1n

ωB,21 ωB,22 . . . ωB,2n

. . . . . . . . . . . .

ωB,n1 ωB,n2 . . . ωB,nn


(5.21)

Finally, in terms of matrix the ERGA is given by

Υ(G) = E ⊗ E−T =



ζ11 ζ12 . . . ζ1n

ζ21 ζ22 . . . ζ11

. . . . . . . . . . . .

ζn1 ζn2 . . . ζnn


(5.22)

As both RGA and ERGA use relative gains, the properties and implications of RGA

discussed earlier can be extended to ERGA. Similar to the RGA-RIA-NI based pairing

rules the ERGA-NI based pairing rules can be summarized as follows [68]:

ERGA-NI based pairing rules

1. Configure the system loop with corresponding ERGA elements closest to one and

are positive.

2. Large ERGA elements should be avoided.

3. NI must be positive.

The corresponding ERGA matrix for the system described in (5.4) is given as follows:

Υ(G1(s)) =


0.0554 0.6977 0.2468

0.6977 0.2468 0.0554

0.2468 0.0554 0.6977

 (5.23)

From the above ERGA matrix for the system in (5.4), the loop configuration corre-

sponding to uy213 satisfies the ERGA-NI set of rules, primarily the rule of being closest

to 1 [68] and suggests uy213 as the most decoupled loop configuration. In the next section
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another measure of interaction called the Effective Relative Energy Array is discussed

which complements ERGA.

5.2.6 Effective Relative Energy Array

EREA is an extension of ERGA proposed by Naini et al [35] in 2009. Similar to the

case of ERGA both the steady state gain and response speed are utilized in calculating

subsystem interactions of a coupled system. The effective energy of a particular transfer

function is defined as follows [35]:

efi,j = |gi,j(0)|gi,j(0)ωB, i,j (5.24)

where ωB, i,j for i, j = 1, 2, .., n are the bandwidth of the transfer function g0i,j(jω). The

effective energy matrix is calculated as follows:

z = |G(0)| ⊗G(0)⊗ Ω (5.25)

where

|G(0)| =



|g11(0)| |g12(0)| . . . |g1n(0)|

|g21(0)| |g22(0)| . . . |g2n(0)|

. . . . . . . . . . . .

|gn1(0)| |gn2(0)| . . . |gnn(0)|


(5.26)

and Ω is the bandwidth matrix defined in (5.21)

In terms of matrix the EREA is given as follows

k(G) = z⊗z−T (5.27)

The EREA matrix also possesses the important property of rows and columns sum-

ming to one. Similar to the cases of RGA-RIA-NI and ERGA-NI, EREA-NI based loop

configuration rules have been proposed in [35] and are discussed below:
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EREA-NI based pairing rules

1. Configure the system loop with corresponding EREA elements closest to one and

are positive.

2. Large EREA elements should be avoided.

3. NI must be positive.

The corresponding EREA matrix for the system described in (5.4) is given as follows:

Υ(G1(s)) =


0.0556 0.8179 0.1264

0.8179 0.1264 0.0556

0.1264 0.0556 0.8179

 (5.28)

From the above EREA matrix for the system in (5.4), the loop configuration corre-

sponding to uy213 satisfies the EREA-NI set of rules, primarily the rule of being closest

to one [35] and suggests uy213 as the most decoupled loop configuration.

Therefore, ERGA and EREA pairing rules complement each other and in certain cases

EREA measure can provide valuable insight and suggest an acceptable loop configu-

ration while ERGA may guide us to an improper loop configuration. This has been

demonstrated with an example in [35].

Based on the existing interaction measures and their guidelines, one can configure a sys-

tem towards more coupling by following the ”counter” pairing rules of RGA, RIA, NI,

ERGA & EREA discussed before. In this case the input-output pair should be chosen

such that:

1. RGA, NI, ERGA & EREA are farthest from one or negative.

2. RIA is close to -1 or farthest from zero.
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Table 5.3: Existing interaction measures for G2(s)

RGA: Λ(G2(s)) =

 −0.2010 1.2024 −0.0014
1.5941 −0.3623 −0.2318
−0.3931 0.1599 1.2332


NIuy123 = −4.0544, NIuy132 = 21.8937, NIuy213 = 0.6757

NIuy231 = −3.6039, NIuy312 = 8.7575, NIuy321 = −8.6494

RIA: Φ(G2(s)) =

 −5.9759 −0.1683 −701.6000
−0.3727 −3.7604 −5.3140
−3.5439 5.2554 −0.1891


Φuy213 ≡ Φmin(G2(s)) = 0.7301

ERGA: Υ(G2(s)) =

 0.0053 0.6855 0.3092
−0.1257 0.3277 0.7980
1.1204 −0.0132 −0.1072



EREA: k(G2(s)) =

 0.0184 0.5852 0.3965
−1.8893 0.4302 2.4591
2.8709 −0.0154 −1.8556


Example 5.2.2 Consider a transfer function model, G2(s) given by [41]


y1

y2

y3

 = G2(s)


u1

u2

u3

 (5.29)

where

G2(s) =



0.4

(s+ 1)2
4(s+ 3)

(s+ 5)(s+ 2)

−2

s+ 4

2

(s+ 2)(s+ 1)

2

(s+ 2)2
1

(s+ 2)

6(−s+ 1)

(s+ 5)(s+ 4)

4

(s+ 3)2
8

(s+ 2)(s+ 5)


(5.30)

Table 5.3 shows the existing interaction measures for the MIMO system in (5.29).

The RGA-NI-RIA pairing rules suggest uy213 as being close to decoupled [27] & [41].
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The ERGA-EREA pairing rules suggest pairing uy231 but their corresponding NI is

negative. [41] have used the approach of Participation Matrix (PM) in suggesting uy213

as the most decoupled pair. The system structure towards coupling cannot be accurately

known from the existing measures following the ”opposite”rules and can be any one from

the six possible pairs. A system configured towards coupling and decoupling can be

accurately known by its simulation and assessing its response in terms of a performance

measure to be defined in the next section.

5.3 RMSE based Performance Measure

py

OL G

u

RMSE

my
M

+
-

u

Figure 5.1: RMSE based plant-model performance measure in open-loop

In this section a performance measure is defined which illustrates the decoupled

and coupled system configuration based on the simulation of the system and its model.

RMSE is used as a performance measure in identifying the system configured towards

decoupling and coupling. Fig. 5.1 shows the plant (G) and its model (M). Actuator

degradation is considered in this work. Hence, when there is no actuator degradation,

M = G in the simulation.

∆OL is the input effectiveness matrix given as follows:

∆OL =



δol1 0 0 0

0 δol2 0 0

0 0 . . . 0

0 0 0 δoln


(5.31)
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Table 5.4: RMSE for different system configurations and ∆OL for G2(s)

System configuration
RMSE ∆OL = diag[0 1 1] ∆OL = diag[1 0 1] ∆OL = diag[1 1 0]

euy123

0.3940
0.9875
0.2979

1.1918
0.4950
0.1467

0.4969
0.4962
0.7932

euy132

0.3940
0.9875
0.2979

0.4969
0.4962
0.7932

1.1918
0.4950
0.1467

euy213

1.1918
0.4950
0.1467

0.3940
0.9875
0.2979

0.4969
0.4962
0.7932

euy231

1.1918
0.4950
0.1467

0.4969
0.4962
0.7932

0.3940
0.9875
0.2979

euy312

0.4969
0.4962
0.7932

0.3940
0.9875
0.2979

1.1918
0.4950
0.1467

euy321

0.4969
0.4962
0.7932

1.1918
0.4950
0.1467

0.3940
0.9875
0.2979

yp = [yp1 yp2 . . . ypn]
T is the plant output and ym = [ym1 ym2 . . . ymn]

T is the

model output. RMSE between the plant and its model is given by the following relation:
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e1
△
=

1

N

√√√√ N∑
i=1

(yp1(i)− ym1(i))2

e2
△
=

1

N

√√√√ N∑
i=1

[yp2(i)− ym2(i)]2

...

en
△
=

1

N

√√√√ N∑
i=1

[ypn(i)− ymn(i)]2

e
△
= [e1, e2, . . . , en]

(5.32)

where N is the number of sampling points.

When a system structure is closer to decoupling an output will largely depend on its

respective input and be less affected from other inputs. A structure closer to coupling

is affected from other inputs as well as its respective input. The actuator effectiveness

array ∆OL in (5.31) is selected such that only one input is faulty. For a system structure

closer to decoupling the channel with faulty input will have the maximum error and the

structure closer to coupling will have the minimum error given in (5.32).

Table 5.4 shows the RMSE values for the six possible loop configurations of the

MIMO system described in (5.29) with the input effectiveness matrix defined in (5.31).

It can be observed from Table 5.4 that for the system structure uy213 the RMSE for a

channel is maximum in comparison to the other loop configurations, when its respective

input is zero i.e., for the input-output pair uy213, e1 = 1.1918 when u1 = 0, e2 = 0.9875

when u2 = 0 and e3 = 0.7932 when u3 = 0. Hence the RMSE based performance

measure confirms the system structure uy213 as the most decoupled configuration. It

should be recalled that the (RGA-NI-RIA) based pairing also recommends uy213 as the

most decoupled configuration, whereas (ERGA-EREA) based pairing recommends uy231

as more towards decoupling. In order to find the system structure towards coupling,
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we look for the channel with minimum RMSE value when its respective input is set

to zero from Table 5.4. In this case the RMSE will be minimum because the output

will depend more on other channel inputs rather than its corresponding input. The

system structure uy132 has the minimum RMSE namely, e1 = 0.3940, when u1 = 0

and e3 = 0.1467, when u3 = 0. Although e2 in uy132 is greater than e2 in uy132, i.e.

0.4962 > 0.4950 but the difference is negligible when compared to e3 in uy132 & uy123,

i.e. 0.1467 < 0.7932. Hence in comparison the RMSE is minimum for uy132 when ∆OL

is varied. This illustrates that uy132 is the most coupled configuration. However this

cannot be inferred from the existing measures using the ”counter”pairing rules discussed

previously.

5.4 H∞ Norm based Interaction Index

In this section, a new index called as Relative Dependency Index (RDI), and RDI Array

(RDIA), is introduced. The proposed index shows the relative dependency of an output

upon an input of an open and closed-loop MIMO system. It is efficient in providing

information in MIMO systems to help facilitate:

1. Decoupling in open-loop stable systems.

2. Decoupling in closed-loop systems.

3. Predicting channel vulnerability in case of actuator degradation for open and

closed-loop systems.

5.4.1 Decoupling in Open-loop Stable System

Relative Dependency Index: The RDI for the MIMO system G(s) in (5.1) is defined

as follows, for the pair of ith output and jth input:

fi,j
△
=

∥gi,j(s)∥∞
∥[gi,1(s) . . . gi,j−1(s) gi,j+1(s) . . . gi,n(s)]∥∞

(5.33)
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fi,j = ∞, if [gi,1(s) . . . gi,j−1(s) gi,j+1(s) . . . gi,n(s)] is a zero transfer function vector. fi,j

shows the relative dependency of the ith output upon the jth input of a MIMO system.

The constant matrix f(G)
△
= [fi,j], for i, j = 1, .., n is called RDIA of G(s) in (5.1). With

f(G), structure configuration of G(s) can be inferred. The following procedure can be

followed in studying the open-loop interactions of the system.

Near-decoupling configuration procedure of an open-loop system

1. Calculate the RDIA, f(G), for the MIMO system G(s).

2. Select the largest element of f(G) for the ith row, say fi,j.

3. Permute the ith output and the jth input to the first output and input, respectively.

4. Repeat the above steps over the bottom-right (n − 1) × (n − 1) sub-matrix of

permuted f(G).

Consider the MIMO system G2(s) in (5.29), an example taken from [41]. The RDIA

for G2(s) defined in (5.33) is given as follows:

RDIA : f(G2(s)) =


0.3077 1.8741 0.3953

1.4142 0.4472 0.4472

0.8406 0.1734 1.1687

 (5.34)

The RDIA for G2(s) in (5.34) shows the relative dependency of ith output upon the

jth input as follows:

1. y1 predominantly depends on u2 and less depends on u1.

2. y2 predominantly depends on u1 and less depends on both u2 and u3.

3. y3 predominantly depends on u3 and less depends on u2.

Therefore, the near decoupling configuration procedure suggests uy213 system struc-

ture more towards decoupling
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In order to verify the veracity of RDIA, it can be compared with the RMSE based

performance measure shown in Table 5.4. Since y1 largely depends on u2, the error e1

in euy123 will be maximum when u2 = 0, i.e. (1.1918 > 0.3940 & 0.4969). In a similar

manner from the RDIA, it is known that y2 largely depends on u1, so the error e2 in

euy123 will be maximum when u1 = 0, i.e. (0.9875 > 0.4950 & 0.4962) and as y3 mainly

depends on u3, the error e3 in euy123 will be maximum when u3 = 0, i.e. (0.7932 >

0.2979 & 0.1467). For the system configuration towards minimal input dependence, the

following can be inferred from Table 5.4:

1. As y1 minimally depends on u1 and the error e1 in euy123 will be minimum when

u1 = 0, i.e. (0.3940 < 1.1918 & 0.4969).

2. As y3 minimally depends on u2, so the error e3 in euy123 will be minimum when

u2 = 0, i.e. (0.1467 < 0.2979 & 0.7932).

Hence the RMSE based performance measure also shows that the system structure

uy213 is decoupled.

The existing interaction measures (RGA, NI, RIA, ERGA & EREA) and its asso-

ciated guidelines aiming to decouple a system or the ”counter” guidelines leading to a

coupled system structure are inconsistent in configuring the system structure and un-

derstanding the effect of jth input upon the ith output. The RDI and RDIA overcomes

these limitations and is efficient in studying the MIMO system interactions. This is

further demonstrated by the following examples.

Example 5.2.3 Consider the two-input-two-output linearized transfer function

model of a two product distillation column given in [20] as follows:

 yd

ye

 = G3(s)

 ud

ue

 (5.35)

where
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G3(s) =

 gdd(s) gde(s)

ged(s) gee(s)

 (5.36)

gdd(s) =
0.012441(s+ 0.2247)(s+ 0.07857)(s2 + 1.14s+ 2.355)(s2 + 12.24s+ 93.58)

(s+ 1.788)(s+ 0.2536)(s+ 0.07541)(s+ 0.005154)(s2 + 1.328s+ 3.138)

gde(s) =
0.013772(s− 32.12)(s+ 1.587)(s+ 0.2315)(s+ 0.09287)(s2 + 1.31s+ 3.162)

(s+ 1.788)(s+ 0.2536)(s+ 0.07541)(s+ 0.005154)(s2 + 1.328s+ 3.138)

ged(s) =
0.079012(s+ 0.2082)(s+ 0.07361)(s2 − 3.578s+ 4.237)(s2 − 2.374s+ 11.69)

(s+ 1.788)(s+ 0.2536)(s+ 0.07541)(s+ 0.005154)(s2 + 1.328s+ 3.138)

gee(s) =
0.0055124(s− 181.3)(s+ 1.229)(s+ 0.2169)(s+ 0.06691)(s2 + 1.328s+ 3.407)

(s+ 1.788)(s+ 0.2536)(s+ 0.07541)(s+ 0.005154)(s2 + 1.328s+ 3.138)
(5.37)

• yd: distillate

• ye: bottom product composition

• ud: reflux flow

• ue: boilup flow

The detailed nonlinear and linearized dynamic model of the distillation column can

be found in [20]. The distillation column given in (5.35) has two possible structure

configurations and for ease of notation will be denoted as follows:

ud − yd, ue − ye ≡ uyde

ud − ye, ue − yd ≡ uyed

(5.38)

Table 5.5 shows the existing interaction measures for the distillation column given

in (5.35). In order to configure the system towards decoupling based on (RGA, RIA,

ERGA & EREA), the corresponding interaction measures should be close to one and

large interaction elements have to be avoided [49], [68] & [35]. This would lead to
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Table 5.5: Existing interaction measures for G3(s)

RGA: Λ(G3(s)) =

(
36.8729 −35.8729
−35.8729 36.8729

)
NIuyde = 0.0271, NIuyed = −0.0279

RIA: Φ(G3(s)) =

(
−0.9729 −1.0279
−1.0279 −0.9729

)
Φuyde ≡ Φmin(G3(s)) = 1.9458

ERGA: Υ(G3(s)) =

(
34.1568 −33.1568
−33.1568 34.1568

)

EREA: k(G3(s)) =

(
17.9847 −16.9847
−16.9847 17.9847

)

a dubious situation as all the interaction measures have large elements for both the

diagonal (uyde) and off-diagonal (uyde) system structure in Table 5.5. However the NI

and RIA based system structure with minimum overall interaction given in (5.12) would

suggest uyde as decoupled and uyed as the coupled system structure. The RDIA for

G3(s) defined in (5.33) is given as follows:

RDIA : f(G3(s)) =

 1.0150 0.9852

0.9852 1.0126

 (5.39)

The RDIA based system interaction guidelines points out the following:

1. yd predominantly depends on ud and less depends on ue.

2. ye predominantly depends on ue and less depends on ud.

Therefore the RDIA based near decoupling configuration procedure suggests uyde as

more towards decoupling.

The RMSE based performance measure for G3(s) in (5.35) is shown in Table 5.6. yd

largely depends on ud and ye largely depends on ue. Therefore, the error e1 in euyde will

be maximum when ud = 0, i.e. (32.5251 > 31.5970) and the error e2 in euyde will be
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Table 5.6: RMSE for system configurations of G3(s)

System configuration
RMSE ∆OL = diag[0 1] ∆OL = diag[1 0]

euyde
32.5251
40.1171

31.5970
41.8090

euyed
31.5970
41.8090

32.5251
40.1171

maximum when ue = 0, i.e. (41.8090 > 40.1171). For the system configuration towards

minimal input dependence, the following can be inferred from Table 5.6:

1. As yd minimally depends on ue, the error e1 in euyde will be minimum when ue = 0,

i.e. (31.5970 < 32.5251).

2. As ye minimally depends on ud, the error e2 in euyde will be minimum when ud = 0,

i.e. (40.1171 < 41.8090).

Hence the RMSE based performance measure also shows that the system structure

uyde is decoupled.

Example 5.2.4 Consider a transfer function model for a pilot scale, binary distilla-

tion column used to separate ethanol and water given by [13]


ya

yb

yc

 = G4(s)


ua

ub

uc

 (5.40)
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where

G4(s) =



0.66e−2.6s

6.7s+ 1

−0.61e−3.5s

8.64s+ 1

−0.0049e−s

9.06s+ 1

1.11e−6.5s

3.25s+ 1

−2.36e−3s

5s+ 1

−0.012e−1.2s

7.09s+ 1

−33.68e−9.2s

8.15s+ 1

46.2e−9.4s

10.9s+ 1

0.87(11.61s+ 1)e−s

(3.89s+ 1)(18.8s+ 1)


(5.41)

where ya is the overhead mol fraction of ethanol, yb is the mol fraction of ethanol in

the side stream, and yc is temperature on Tray 19; ua is the overhead reflux flow rate,

ub is side stream draw-off rate, and uc is reboiler steam pressure. The detailed model

of the distillation column can be found in [37]. Table 5.7 shows the existing interaction

measures for the distillation column described in (5.40). The RGA, NI, RIA, ERGA and

EREA pairing rules suggest the system structure uy123 as being close to decoupled [27]

& [13]. The system structure towards coupling cannot be accurately known from the

existing measures following the ”opposite” rules described previously and would possibly

be any one from (uy132/uy213/uy231/uy312/uy321).

The RDIA for G4(s) defined in (5.33) is given as follows:

RDIA : f(G4(s)) =


1.0819 0.9242 0.0055

0.4703 2.1260 0.0046

0.7289 1.3713 0.0152

 (5.42)

The RDIA for G4(s) in 5.42 shows the relative dependency of ith output upon the

jth input as follows:

1. ya predominantly depends on ua and less depends on uc.

2. yb predominantly depends on ub and less depends on uc.

3. yc predominantly depends on ub and less depends on uc.
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Table 5.7: Existing interaction measures for G4(s)

RGA: Λ(G4(s)) =

 1.9454 −0.6737 −0.2718
−0.6643 1.8991 −0.2348
−0.2811 −0.2254 1.5065


NIuy123 = 0.3752, NIuy132 = −1.3896, NIuy213 = −0.8632

NIuy231 = 2.0625, NIuy312 = 2.0235, NIuy321 = −1.3055

RIA: Φ(G4(s)) =

 −0.4860 −2.4844 −4.6794
−2.5053 −0.4734 −5.2598
−4.5573 −5.4361 −0.3362


Φuy123 ≡ Φmin(G4) = 1.2956

ERGA: Υ(G4(s)) =

 2.3338 −1.1017 −0.2321
−0.8550 2.0366 −0.1816
−0.4788 0.0651 1.4138



EREA: k(G4(s)) =

 1.3507 −0.2851 −0.0657
−0.2621 1.3040 −0.0420
−0.0887 −0.0190 1.1076


Table 5.8: RMSE for system configurations uy123 and ∆OL for G4(s)

System configuration
RMSE ∆OL = diag[0 1 1] ∆OL = diag[1 0 1] ∆OL = diag[1 1 0]

euy123

0.6260
1.0503
30.5892

0.5699
2.2537
41.2788

0.0046
0.0114
0.8131

Table 5.8 shows the RMSE based performance measure for the system structure

uy123 for all possible values of ∆OL. From Table 5.8, it can be inferred that since

ya largely depends on ua, the error e1 in euy123 will be maximum when ua = 0, i.e.

(0.6260 > 0.5699 & 0.0046). In a similar manner from the RDIA in (5.42), it is known

that yb largely depends on ub, so the error e2 in euy123 will be maximum when ub = 0, i.e.

(2.2537 > 1.0503 & 0.0114) and as yc mainly depends on ub, the error e3 in euy123 will be

maximum when ub = 0, i.e. (41.2788 > 30.5892 & 0.8131). For the system configuration
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Figure 5.2: Multivariable output feedback control system

towards minimal input dependence, the following can be inferred from Table 5.8:

1. As ya minimally depends on uc and the error e1 in euy123 will be minimum when

uc = 0, i.e. (0.0046 < 0.6260 & 0.5699).

2. As yb minimally depends on uc, the error e2 in euy123 will be minimum when uc = 0,

i.e. (0.0114 < 1.0503 & 2.2537).

3. As yc minimally depends on uc, the error e3 in euy123 will be minimum when uc = 0,

i.e. (0.8131 < 30.5892 & 41.2788).

Therefore, the near decoupling configuration procedure suggests uy123 system struc-

ture more towards decoupling

5.4.2 Decoupling in Closed-loop System

The general block diagram of a multivariable output feedback control system is shown

in Fig. 5.2, where G is given by (5.1), K is the multivariable stabilizing controller which

can have a centralized or decentralized form. u is the control input, r is the reference

input and e is the error signal. y is the closed-loop system output given by:

y = [(In×n +GK)−1GK]r = Ḡr = [ḡi,j]r for i, j = 1, .., n (5.43)

where In×n
△
= Diag[1]n×n

Then

mi,j
△
=

∥ḡi,j(s)∥∞
∥[ḡi,1(s) . . . ḡi,j−1(s) ḡi,j+1(s) . . . ḡi,n(s)]∥∞

(5.44)
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mi,j = ∞, if [ḡi,1(s) . . . ḡi,j−1(s) ḡi,j+1(s) . . . ḡi,n(s)] is a zero transfer function. mi,j

shows the relative dependency of the ith output upon the jth input of a closed-loop

MIMO system. The constant matrix m(Ḡ)
△
= [mi,j], for i, j = 1, .., n is called the

RDIA of Ḡ(s) in (5.43). With m(Ḡ), structure configuration of Ḡ(s) can be inferred.

The following procedure can be followed in studying the closed-loop interactions of the

system.

Near-decoupling configuration procedure of a closed-loop system

1. Calculate the RDIA, m(Ḡ), for the closed-loop MIMO system Ḡ(s).

2. Select the largest element of m(Ḡ) for the ith row, say mi,j.

3. Permute the ith output and the jth input to the first output and input, respectively.

4. Repeat the above steps over the bottom-right (n − 1) × (n − 1) sub-matrix of

permuted m(Ḡ).

Example 5.2.5 Consider the methanol-water distillation column of Wood and Berry

(1973) [67] given by:

 xD(s)

xB(s)

 =

 P11(s) P12(s)

P21(s) P22(s)


︸ ︷︷ ︸

P (s)

 R(s)

S(s)

 (5.45)

where

P11(s) =
12.8e−s

16.7s+ 1
, P12(s) =

−18.9e−3s

21s+ 1

P21(s) =
6.6e−7s

10.9s+ 1
, P22(s) =

−19.4e−3s

14.4s+ 1

(5.46)

The detailed dynamic model of the distillation column can be found in [67] and will be

discussed briefly in this chapter.

• xD(s): overhead product composition

• xB(s): bottom product composition
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• P11(s): direct process transfer function (tf), relating overhead composition to re-

flux flow

• P12(s): interacting process tf, relating overhead composition to steam flow

• P21(s): interacting process tf, relating overhead composition to steam flow

• P22(s): direct process tf, relating bottom composition to steam flow

• R(s): reflux flow rate

• S(s): steam flow rate

[22] in 1997 proposed two multi-loop Proportional-Integral (PI) controllers used

to control the multivariable process P (s) in (5.45) based on gain and phase margin

specifications. The PI controller values were found to be [22]:

Gc1(s) = diag

[
0.57

(
1 +

1

20.70s

)
,−0.11

(
1 +

1

12.88s

)]
(5.47)

Gc2(s) = diag

[
0.38

(
1 +

1

21.64s

)
,−0.07

(
1 +

1

14.80s

)]
(5.48)

The closed-loop transfer function from the reference input to the system output for

the multivariable process P (s) in (5.45) with the PI controller Gc1(s) and Gc2(s) given

in (5.47) and (5.48) can be written as follows:

 xD

xB

 = P̃ci

 r1

r2

 (5.49)

where

P̃ci
△
= [(I + PGci)

−1]PGci for i = 1, 2 (5.50)

For ease of notation the closed-loop structure configuration of (5.49) will be denoted as

follows:
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r1 − xD, r2 − xB ≡ xrDB

r1 − xB, r2 − xD ≡ xrBD

The RDIA for P̃ci in (5.50) from (5.44) can be written as follows:

RDIA : m(P̃c1) =

 5.3104 0.1883

0.5586 1.7902



RDIA : m(P̃c2) =

 5.2735 0.1896

0.5259 1.9015


(5.51)

The RDIA for P̃c1 and P̃c2 in (5.51) shows the relative dependency of ith output upon

the jth input as follows:

1. For both P̃c1 and P̃c2, xD predominantly depends on r1 and xB depends on r2 and

2. xD minimally depends on r2 and xB minimally depends on r1.

The RDIA based procedure for the closed-loop system Pci in (5.49) suggests that

for both the controllers Gc1 and Gc2, xrDB is closed to being decoupled and xrBD is

close to being coupled. Similar to the case of open-loop, the veracity of RDIA for the

closed-loop systems is verified with a performance measure which suggests the decoupled

and coupled configuration based on the simulation of the closed-loop system and its

respective model.

RMSE based performance for closed-loop systems

Fig. 5.3 shows the multivariable process discussed in (5.45) with the PI controllers,

Gc1 and Gc2 in (5.47 & 5.48). PM = P is the model of the multivariable process. ∆CL

is the input effectiveness matrix given as follows:

∆CL =



δcl1 0 0 0

0 δcl2 0 0

0 0 . . . 0

0 0 0 δcln


(5.52)
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Figure 5.3: RMSE based plant-model performance measure in closed-loop

[xD xB]
T is the plant output and [xDM

xBM
]T is the model output. [r1 r2]

T

is the reference input. RMSE between the plant and its model is given by the following

relation:

eD
△
=

1

N

√√√√ N∑
i=1

(xD(i)− xDM
(i))2

eB
△
=

1

N

√√√√ N∑
i=1

(xB(i)− xBM
(i))2

(5.53)

where N is the number of sampling points.

As in the case of open-loop stable systems, the closed-loop system structure closer to

decoupling will be less affected from other channel inputs, whereas a coupled structure

is more influenced from other inputs. The input effectiveness array ∆CL in (5.52) is

selected such that one input is zero alternatively. For a closed-loop system structure

closer to decoupling the channel with no input will have the maximum error and the

structure closer to coupling will have the minimum error given in (5.53).

Tables (5.9 & 5.10) shows the RMSE values for the two loop configurations namely,

xrDB and xrBD for the multivariable process described in (5.45) with the input effec-

tiveness matrix defined in (5.52). It can be observed from tables (5.9 & 5.10) that for

the system structure xrDB, eD is maximum when r1 = 0, i.e. (0.9672 > 0.0271) and
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Table 5.9: RMSE for system configurations of P̃c1(s)

System configuration
RMSE ∆CL = diag[0 1] ∆CL = diag[1 0]

xrDB
eD = 0.9672
eB = 0.0314

eD = 0.0271
eB = 0.9344

xrBD
eD = 0.0271
eB = 0.9344

eD = 0.9672
eB = 0.0314

Table 5.10: RMSE for system configurations of P̃c2(s)

System configuration
RMSE ∆CL = diag[0 1] ∆CL = diag[1 0]

xrDB
eD = 0.9504
eB = 0.0563

eD = 0.0433
eB = 0.8857

xrBD
eD = 0.0433
eB = 0.8857

eD = 0.9504
eB = 0.0563

(0.9504 > 0.0433) as xD predominantly depends on r1 and similarly eB is maximum

when r2 = 0, i.e. (0.9344 > 0.0314) and (0.8857 > 0.0563) as xB predominantly de-

pends on r2. Hence this verifies that xrDB is close to being decoupled. In a similar way

eD is minimum when r2 = 0, i.e. (0.0271 < 0.9672) and (0.0433 < 0.9504) as xD mini-

mally depends on r2 and similarly eB is minimum when r1 = 0, i.e. (0.0314 < 0.9343)

and (0.0563 < 0.8857) as xB minimally depends on r1. Hence this shows that xrBD is

close to being coupled. A similar analysis based on the existing interaction measures

such as RGA, RIA, ERGA & EREA and their associated guidelines would give incon-

sistent results as they are based on open-loop stable systems and cannot be applied to

a multivariable system in closed-loop. This inadequacy is overcome in RDI and RDIA

which is a simple and useful interaction measure and enables one to study closed-loop

interactions of MIMO systems. The examples discussed so far illustrate the effective-
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ness of RDI applied to distillation columns with the flexibility of input-output pairing

or structure configuration. However this may not be possible in many dynamic systems.

In such a case, the RDI becomes a useful tool in investigating a channel vulnerability

to actuator faults and failures by identifying the least and most vulnerable channel to

actuator failures and is discussed in the next section.

5.4.3 Predicting Channel Vulnerability in Case of Actuator

Degradation for Open-loop Stable Systems

oy

f

G
or

+
- ou

ou

Figure 5.4: Open-loop stable MIMO system with actuator uncertainty

The general block diagram of an open-loop stable MIMO system with actuator un-

certainty is shown in Fig. 5.4, where G is a stable MIMO system given by (5.1). uo is

the system input with actuator uncertainty ∆f , incorporating the actuator degradation

as follows:

∆f =



δf11 0 0 0

0 δf22 0 0

0 0 . . . 0

0 0 0 δfnn


(5.54)

where 0 ≤ δfii ≤ 1. δfii = 0 and δfii = 1 implies no and maximum actuator fault in

the ith channel. ro is the reference input and yo is the open-loop stable system output

given by:

yo = G(I −∆f )ro (5.55)
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The transfer function from the output yo to the uncertain actuator input ũo can be

written as follows:

yo = Gũo = [p̃i,j]ũo for i, j = 1, .., n (5.56)

q̄i,j
△
=

∥p̃i,j(s)∥∞
∥[p̃i,1(s) . . . p̃i,j−1(s) p̃i,j+1(s) . . . p̃i,n(s)]∥∞

(5.57)

q̄i,j = ∞, if [p̃i,1(s) . . . p̃i,j−1(s) p̃i,j+1(s) . . . p̃i,n(s)] is a zero transfer function. q̄i,j

shows the relative dependency of the ith output upon the jth actuator input. The

constant matrix q̄(G)
△
= [q̄i,j], for i, j = 1, .., n is called the RDIA of G(s) in (5.55).

In the case of actuator degradation consideration, we don’t desire the system to be

decoupled, otherwise one of the outputs will be totally or majorly lost. Rather, we

want to spread out the dependency of the outputs over all the input channels. Hence,

when one actuator fails, the outputs would be affected, but hopefully the effect would

be reduced to minimum. In the scenario that one actuator is particularly vulnerable to

faults/failures, the problem is which input channel should be selected for this actuator.

For this purpose it is necessary to introduce another index, Input Impact Index (i.i.i.),

which reflects how each actuator input influences the system outputs and is naturally

based on RDI. Input impact index can be defined in different ways. The following is

one of them.

Input Impact Index: The i.i.i. of the jth input channel is defined as, for

j=1,...,n.

ρoj
△
= max

i=1,...,n
{q̄i,j} (5.58)

With such defined input impact index and following a minmax approach, the input

channel ϵo which would produce least impact on the system outputs in the case of

actuator degradation could be selected as
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ϵo
△
= argmin

{j=1,...,n}
{ρoj} (5.59)

The following procedure can be followed in studying the closed-loop interactions of

the system from actuator to the system output.

RDI-i.i.i. based procedure for studying open-loop stable system interac-

tions in case of actuator degradation

1. Calculate the RDIA, q(G), for the MIMO system G(s) from (5.57).

2. Select the i.i.i. for each input channel as defined in (5.58)

3. The degraded channel should be selected with the input channel whose i.i.i. is

minimum defined in (5.59)

4. In the case that more than one ρ′s reaching the minimum value, the second largest

RDI in each corresponding columns should be compared and the least one among

those is to be selected. And this procedure can be repeated accordingly.

5. If two columns of q̄(G) are same, then those two corresponding inputs will have

same impact on the system output.

Consider the transfer function model, G4(s) from example 5.2.4 for a pilot scale,

binary distillation column discussed in equations (5.40-5.41) taken from [13]. The RDIA

for G4(s) can be calculated from (5.57) and is given as follows:

RDIA : q̄(G4(s)) =


1.0819 0.9242 0.0055

0.4703 2.1260 0.0046

0.7289 1.3713 0.0152

 (5.60)

The i.i.i. for each input channel of G4(s) defined in (5.58) is given as follows:

ρo1 = 1.0819, ρo2 = 2.1260, ρo3 = 0.0152 (5.61)
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Then from (5.59), the input channel that would produce the least impact on the

system outputs in case of actuator degradation is given by the following equation.

ϵo
△
= argmin

{j=1,2,3}
{ρoj} (5.62)

It can be stated from (5.61-5.62) that the third input would produce the least impact

on the system output in case of actuator degradation. The accuracy of RDIA and i.i.i.

based procedure is verified with a performance measure based on the simulation of the

open-loop system and its model.

RMSE based performance measure in case of actuator degradation for

open-loop stable systems

gy

f

G
or

+
- ou

ou

P

+

-
py

RMSE

Figure 5.5: RMSE based performance measure in case of actuator degradation for open-
loop stable systems

Fig. 5.5 shows an open-loop stable plant (G) and its model (P ). ∆f is the actuator

uncertainty defined in (5.54). yg = [yg1 yg2 . . . ygn]
T is the plant output and yp =

[yp1 yp2 . . . ypn]
T is the model output. RMSE between the plant affected from

actuator degradation and its model (free from degradation) is given by the following

relation:

epg1
△
=

√
((yg1(i)− yp1(i))

2 + . . .+ ((ygn(i)− ypn(i))
2)

when ∆f = Diag[0.9, 0, 0, . . . , 0]n×n

(5.63)
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epg2
△
=

√
((yg1(i)− yp1(i))

2 + . . .+ ((ygn(i)− ypn(i))
2)

when ∆f = Diag[0, 0.9, 0, . . . , 0]n×n

(5.64)

epgn
△
=

√
((yg1(i)− yp1(i))

2 + . . .+ ((ygn(i)− ypn(i))
2)

when ∆f = Diag[0, 0, 0, . . . , 0.9]n×n

(5.65)

where N is the number of sampling points.

In (5.63), epg1 is the RMSE between the plant and its model when the first actuator

degrades by 90%. In a similar manner epgn in (5.65) is the RMSE between the plant and

its model when the ”nth” actuator degrades. Figs 5.6, 5.7 and 5.8 show the open-loop

step response when the first, second and third actuators degrade by 90% respectively.

The simulation is run for 200 seconds with a sampling time of 0.01 seconds and the

actuators degrade at 100 seconds. The RMSE plot when the actuators in channels 1, 2

and 3 degrade is shown in Fig. 5.9. It can be inferred that the error is minimum when

there is a degradation in channel-3 and the error is maximum when channel-2 actuator

degrades. The average values of epg1, epg2 and epg3 in (5.63-5.65) can be calculated as

follows

ep1
△
= mean(epg1)

ep2
△
= mean(epg2)

ep3
△
= mean(epg3)

(5.66)

The average values are found to be

ep1 = 0.4643

ep2 = 0.6155

ep3 = 0.0127

(5.67)

From (5.67), the average RMSE values in order of magnitude can be written as

follows, ep3 < ep1 < ep2 which also suggests that an actuator fault in channel-3 produces

a minimum impact on the overall open-loop system response and an actuator fault in
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Figure 5.6: System response with channel-1 actuator degradation
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Figure 5.7: System response with channel-2 actuator degradation

channel-2 leads to a maximum performance degradation. Hence the RDI-i.i.i. based

guidelines can be effectively used as a tool in predicting a channel vulnerability in case

of actuator degradation in open-loop stable systems. This approach can be extended to

closed-loop systems as well and will be addressed in the next section.
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Figure 5.8: System response with channel-3 actuator degradation
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Figure 5.10: Multivariable output feedback control system with actuator uncertainty

5.4.4 Predicting Channel Vulnerability in Case of Actuator

Degradation for Closed-loop Systems

The general block diagram of a multivariable output feedback control system with actu-

ator uncertainty is shown in Fig. 5.10, where G is the stable or unstable MIMO system

given by (5.1). K is the multivariable controller stabilizing G having a centralized or

decentralized form. u is the control input with actuator uncertainty ∆, incorporating

the actuator degradation as follows:

∆ =



δ11 0 0 0

0 δ22 0 0

0 0 . . . 0

0 0 0 δnn


(5.68)

where 0 ≤ δii ≤ 1. δii = 0 and δii = 1 implies no and maximum actuator fault in the

ith channel. r and e are the reference input and error signal. y is the closed-loop system

output given by:

y = (I +G(I −∆)K))−1G(I −∆)Kr (5.69)

The transfer function from the uncertain actuator input ˜̃u to the output y can be

written as follows:

y = [(I +GK)−1G]˜̃u = G̃˜̃u = [g̃i,j]˜̃u for i, j = 1, .., n (5.70)
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hi,j
△
=

∥g̃i,j(s)∥∞
∥[g̃i,1(s) . . . g̃i,j−1(s) g̃i,j+1(s) . . . g̃i,n(s)]∥∞

(5.71)

hi,j = ∞, if [g̃i,1(s) . . . g̃i,j−1(s) g̃i,j+1(s) . . . g̃i,n(s)] is a zero transfer function. hi,j

shows the relative dependency of the ith output upon the jth actuator input. The

constant matrix h(G̃)
△
= [hi,j], for i, j = 1, .., n is called the RDIA of G̃(s) in (5.70).

Similar to the case of open-loop stable systems considering the case of actuator

degradation, it is not desired that the system to be decoupled, otherwise one of the

outputs will be totally or majorly lost. Rather, we want to spread out the dependency

of the outputs over all the input channels. Hence, when one actuator fails, the outputs

would be affected, but hopefully the effect would be reduced to minimum. In the

scenario that one actuator is particularly vulnerable to faults/failures, the problem is

which input channel should be selected for this actuator. For this purpose the i.i.i.

introduced previously is extended to the case of closed-loop systems which reflects how

each actuator’s input influences the closed-loop system outputs and is naturally based

on RDI. Input impact index can be defined for closed-loop systems as follows:

Input Impact Index for closed-loop systems: For a closed-loop system

the i.i.i. of the jth input channel is defined as, for j=1,...,n.

ρj
△
= max

i=1,...,n
{hi,j} (5.72)

With such defined input impact index and following a min-max approach, the input

channel ϵ which would produce least impact on the system outputs in the case of actuator

degradation could be selected as

ϵ
△
= argmin

{j=1,...,n}
{ρj} (5.73)

The following procedure can be followed in studying the closed-loop interactions of

the system from actuator to the system output.

RDI-i.i.i. based procedure for studying closed-loop interactions in case
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of actuator degradation

1. Calculate the RDIA, h(G̃), for the MIMO system G̃(s) from (5.71).

2. Select the i.i.i. for each input channel as defined in (5.72)

3. The degraded channel should be selected with the input channel whose i.i.i. is

minimum defined in (5.73)

4. In the case that more than one ρ′s reaching the minimum value, the second largest

RDI in each corresponding columns should be compared and the least one among

those is to be selected. And this procedure can be repeated accordingly.

5. If two columns of h(G̃) are same, then those two corresponding inputs will have

same impact on the system output.

Example 5.2.6 Consider the linearized spacecraft attitude model in terms of Euler’s

equation of rotational dynamics and the MRP’s stated in (2.28-2.31). It was shown that

this model can be stabilized using the output feedback control law presented in (3.19)

of section 3.6 given as follows:

τ
△
= T T [K2(qd − q)−K3 q] (5.74)

In (5.74), T (q) is the Jacobian matrix stated in (2.20) and K2 and K3 are given as

follows: .

K2 = diag(20, 20, 20)

K3 = diag

[
100

(
50s

s+ 50

)
, 100

(
50s

s+ 50

)
, 100

(
50s

s+ 50

)]
(5.75)

In Fig. 5.11, Gmrp
△
=

 Amrp Bmrp

Cmrp Dmrp

 is the linearized spacecraft attitude

model described in (2.28-2.31), ∆ is the actuator uncertainty defined in (5.68), τ =
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2K +
- mrpG+

-
T
T+-

3K

dq q

Figure 5.11: Spacecraft attitude stabilization using output feedback

[τ1 τ2 τ3]
T is the control input described in (5.74) where K2 and K3 are the con-

troller gains and qd is the desired reference. The closed-loop transfer function from the

uncertain actuator input to the output from Fig. 5.11 can be written as follows:

q = −([I3×3 +GmrpT
T (K2 +K3)]

−1Gmrp) τ̃ = [G̃mrp] τ̃ (5.76)

The RDIA for G̃mrp in (5.76) from (5.71) can be written as follows:

RDIA : h(G̃mrp) =


9.1086 0.0617 0.0928

0.0516 10.4344 0.0808

0.0849 0.0594 9.7795

 (5.77)

The RDIA, h(G̃mrp) in (5.77) and the procedure for closed-loop interactions in case

of actuator degradations identifies the i.i.i. for each input channel of G̃mrp as follows:

ρ1 = 9.1086, ρ2 = 10.4344, ρ3 = 9.7795 (5.78)

Then from (5.73), the first input channel would produce the least impact on the

system outputs in the case of actuator degradation. It is worthwhile to mention that

the objective of i.i.i. and its procedure is not to configure the system structure (actuator-

plant pairing) like the open and closed-loop cases discussed previously, but to familiarize

a control engineer of the channels least and most prone to the actuator degradation
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(channel vulnerability). For example, we have three d.c. motors which are operating on

a coupled MIMO system and one of the d.c. motor is more likely to breakdown because

of its operational history and durability, then it should be connected to the channel

with least input impact i.e. channel corresponding to ϵ in (5.73). From the procedure

of RDIA and i.i.i., it can be inferred that in example 5.2.6, an actuator degradation

in the first channel would least affect the overall performance of the closed-loop system

and an actuator degradation in the second channel would produce the maximum effect

on the overall performance of the closed-loop system. Similar to the case of predicting

channel vulnerability in open-loop stable systems, we verify the effectiveness of RDIA

and i.i.i. based procedure with a performance measure based on the simulation of the

closed-loop system and its model.

RMSE based performance measure in case of actuator degradation for

closed-loop systems

2K +
- 2G

RMSE

+
-

+
-

T
T+-

3K

2K +

dq

- 2M
T
T+-

3K

q

mq

Figure 5.12: RMSE based performance measure in case of actuator degradation for
closed-loop systems

Fig. 5.12 shows the plant (G2) and its model (M2), discussed in (2.28-2.31) with the

output feedback control structure τ described in (5.74). ∆ is the actuator uncertainty

defined in (5.68). q is the plant output and qm = [qm1 qm2 qm3]
T is the model output.

RMSE between the plant affected from actuator degradation and its model (free from
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degradation) is given by the following relation:

z1
△
=

√
((q1(i)− qm1(i))

2 + (q2(i)− qm2(i))
2 + (q3(i)− qm3(i))

2)

when ∆ = Diag[0.9, 0, 0]

(5.79)

z2
△
=

√
((q1(i)− qm1(i))

2 + (q2(i)− qm2(i))
2 + (q3(i)− qm3(i))

2)

when ∆ = Diag[0, 0.9, 0]

(5.80)

z3
△
=

√
((q1(i)− qm1(i))

2 + (q2(i)− qm2(i))
2 + (q3(i)− qm3(i))

2)

when ∆ = Diag[0, 0, 0.9]

(5.81)

where N is the number of sampling points.

In (5.79), z1 is the RMSE between the plant and its model in closed-loop when the

first actuator degrades by 90%. In a similar manner (5.80) and (5.81) is the RMSE

between the plant and its model in closed-loop when the second and the third actuator

degrades by 90%. The simulation is run for 120 seconds with a sampling time of 0.01

seconds and the actuators are degraded at 30 seconds. Figs. 5.13, 5.14 and 5.15 show the

attitude stabilization (plant output) when the first, second and third channel actuators

degrade by 90% respectively.

Fig. 5.16 shows the RMSE plot when the actuators in channels 1, 2 and 3 degrade.

It can be inferred from Fig. 5.16 that the error is minimum when there is a degradation

in channel-1 and the error is maximum for a degradation in channel-2. The average

values of z1, z2 and z3 in (5.79, 5.80 & 5.81) can be calculated as follows:
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z(1)
△
= mean(z1)

z(2)
△
= mean(z2)

z(3)
△
= mean(z3)

(5.82)

The average values are found to be

z(1) = 0.0164

z(2) = 0.0599

z(3) = 0.0590

(5.83)

In order of magnitude z(1) < z(3) < z(2). The performance measure suggests that an

actuator fault in channel-1 least affects the overall performance and an actuator fault

in channel-2 causes the maximum performance degradation.

The following remarks can be stated as a result of the RDIA, i.i.i. and their performance

measure in terms of RMSE.

Remark I: The input channel corresponding to ϵ, defined in (5.73) has the least

impact on the system output. Thus, the system would be least affected from the actuator

degradation occurrence on that channel and its RMSE defined in (5.79-5.81) is minimum.

Remark II: The input channel corresponding to ν
△
= argmax

{j=1,...,n}
{ρj}, has the largest

impact on the system output. Thus, the system would be most affected from the actuator

degradation occurrence on that channel and its RMSE is maximum.

Remark III: The input impact index is defined for each input channel. Hence it is

also useful for non-square systems.

5.5 Conclusions

In this chapter, a new approach for structure configuration of MIMO systems in open

and closed-loop is presented. A simple interaction measure defined in terms of the H∞

norm of the individual subsystems known as RDI was introduced. The RDI was shown

to help understand the effect of one input on an output of a MIMO system for open-
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Figure 5.13: Attitude stabilization with channel-1 actuator degradation
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Figure 5.14: Attitude stabilization with channel-2 actuator degradation
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Figure 5.15: Attitude stabilization with channel-3 actuator degradation
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loop stable and closed-loop systems. Simple guidelines were presented in configuring

a system towards decoupling and RDI was shown to overcome the drawbacks of the

existing interaction measures such as RGA, RIA, ERGA and EREA and the ambiguity

associated with them was demonstrated with some examples. The RDI was extended

to i.i.i. in predicting the channel vulnerability in case of actuator degradation for open-

loop stable and closed-loop systems. RDI-i.i.i. based guidelines were shown to aid a

control engineer in identifying the least and most vulnerable channel to an actuator

degradation in open-loop stable and closed-loop systems. The effectiveness of RDI and

i.i.i. was illustrated by simulation results and verified using a performance measure

defined in terms of RMSE between the plant and its model. The linearized spacecraft

model stated in chapter 2 and the output feedback control law proposed in chapter 3

were used as an example in testing the RDI-i.i.i. based approach in predicting the

channel vulnerability to actuator degradations and this case study was verified using

the RMSE based performance measure.



Chapter 6

Conclusions

6.1 Accomplishments

This chapter concludes the thesis by summarizing important contributions and accen-

tuates some future avenues of research which may be pursued as a result of this work.

This thesis can be broadly classified into two parts, namely:

1. Attitude stabilization and control of nonlinear rigid space structures.

2. Study of MIMO subsystems interactions for better performance and

fault tolerance.

1. Attitude stabilization and control of nonlinear rigid space structures.

The concept of attitude stabilization and control has been extensively addressed

in the literature wherein the attitude control laws are synthesized based on more

than one measurement i.e. in addition to the attitude, angular velocity or its

rate is assumed measurable. In the event where the angular velocity or its rate

was not measurable the control law was designed to have a velocity generating

filter formulation which made the control structure very complex. The spacecraft

inertia was assumed to be known and if unknown periodic commands were used

for its identification. The literature presented in chapter one briefly discussed such
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techniques. In this thesis, attitude stabilization is achieved by synthesizing control

laws involving just one measurement which is the attitude.

The design problem dealt here is a challenging one, owing to the nonlinear behavior

of the plant involving both the kinematics and dynamics, attitude as the only

measurement available. This would lead one to think that the performance of the

designed controller would be questionable and would be inferior to the previously

mentioned control structures in literature. However, the approach developed and

presented in this thesis achieves its goal of attitude stabilization and control of

nonlinear rigid space structures with simple control design and robust performance

The main conclusions and contributions are now discussed.

(a) A novel and simple output feedback stabilization approach is proposed for the

nonlinear spacecraft attitude model defined by Euler’s equation of rotational

dynamics and the kinematics in terms of Modified Rodrigues parameters.

The control law is shown to globally asymptotically stabilize the nonlinear

plant and the overall closed-loop stability is proved in the sense of Lyapunov

by proposing a new candidate Lyapunov function. The control structure

involves two loops namely, inner and outer, requires only the plant output to

be measured, does not directly depend on the spacecraft inertia matrix and

is shown to be robust with respect to system parametric uncertainty which

is illustrated by simulation results.

(b) Particle swarm optimization algorithm is used as a tool to infer the optimal

controller parameters based on an objective function minimizing the absolute

value of the attitude error.

(c) The novelty and simplicity of the proposed output feedback control structure

is further demonstrated by comparing it with two robust control approaches

namely, loop-shaping and mixed sensitivity. The robust control approaches

stabilize the linearized plant with a higher control effort when compared

to the proposed output feedback approach. The output feedback controller
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demonstrates good stabilization results for both the linear and nonlinear plant

with limited control input, whereas the loop-shaping and mixed sensitivity

based approaches show poor stabilization results for the nonlinear plant with

a comparatively higher order of controller.

(d) The output feedback control law is modified by reducing the degree of freedom

in the control structure requiring the tuning of six gains instead of the orig-

inal nine gains. The overall closed-loop stability is proved with a Lyapunov

function proving the global asymptotic stability of the modified approach.

Simulation results are illustrated in order to demonstrate the attitude stabi-

lization and time varying attitude tracking of the nonlinear plant.

(e) The output feedback approach is demonstrated in a Quaternion formulation

where the nonlinear spacecraft attitude model is defined by Euler’s equation

of rotational dynamics and Quaternion based kinematics. The output feed-

back control law is shown to globally stabilize the nonlinear model in the

sense of Lyapunov by proposing a new candidate Lyapunov function. Sim-

ulation results are illustrated to demonstrate the attitude stabilization and

time varying attitude acquisition of the nonlinear model.

(f) A case study is presented on a LST model developed by NASA, [44] & [48].

Nonlinear fully coupled dynamic equations of motion of the LST model fit-

ted with reaction wheels are derived by taking into account the nonlinear

coupling terms, inertia tensors and the angular velocity terms neglected in

the original reference [44]. The derived nonlinear coupled dynamic system is

combined with a Quaternion based kinematic model to form a nonlinear atti-

tude model of the LST system with three reaction wheels as actuators. The

LST attitude model was stabilized with a state feedback control law and time

varying attitude tracking was achieved. Simulation results are illustrated to

demonstrate the stabilization and control of the coupled and decoupled LST

models. Single channel attitude stabilization is shown in order to visualize
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the inter-axis coupling.

2. Study of MIMO subsystems interactions for better performance and

fault tolerance.

Structure configuration is a principal task in the design of decentralized control

systems. The objective is to pair the manipulated and controlled variables such

that there is minimum interaction among the input-output channels of a MIMO

system. This has been addressed in the literature by means of various interaction

measures and their associated guidelines such as RGA, NI, RIA, ERGA and EREA.

These measures show inconsistency among each other in the loop configuration of

a system as they either depend on the dcgain of a system such as RGA, NI, RIA

or a limited bandwidth as in the case of ERGA and EREA. They cannot be used

in configuring an unstable system with a controller having a stable closed-loop

system. In order to overcome these drawbacks a simple yet effective interaction

measure and some guidelines were presented which are effective in structure con-

figuration for open and closed-loop systems and clarify the ambiguity associated

with the existing measures. The major conclusions and contributions are now

discussed.

(a) A new measure of interaction known as (RDI ) and some guidelines were

presented for the stable open-loop MIMO systems. RDI is defined in terms of

H∞ norm of the individual subsystems and helps in understanding the effect

of one input on an output. RDI based guidelines were shown to configure a

MIMO system structure towards decoupling and the veracity of this approach

was verified using a performance measure defined in terms of root mean square

error. The effectiveness of the approach was illustrated by simulation results

and the approach was compared with the existing measures.
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(b) RDI was extended to the case of closed-loop MIMO systems. A similar

performance measure was used to verify the RDI based approach and its as-

sociated guidelines in studying the subsystem interactions. Suitable examples

were demonstrated.

(c) RDI was extended to understand the vulnerability of fault and failure and

the influence of actuator input on the system output by presenting an index

known as i.i.i. based on RDI. The i.i.i. and its associated guidelines were

shown to identify the actuator fault/failure that would least and most affect

the overall performance of the open-loop stable and closed-loop systems. The

effectiveness of the approach was illustrated by examples.

The contributions of this thesis have been accepted as conference publications,

namely, [9], [7], [5], [8], [28], [6] and [29]. A few journal papers are currently under

preparation.

6.2 Suggestions for Future Work

The work presented in this thesis requires further research, in terms of both design and

implementation. These are discussed below.

• The output feedback attitude stabilization and control approach and its modified

form presented in chapter 3 can be further improved and investigated by including

actuator dynamics, environmental disturbances in the simulations model.

• Practical implementation of the output feedback control structure on a small scale

satellite.

• The use of optimal algorithms to infer the best controller parameters in the state

feedback control law stabilizing the LST attitude model in chapter 4.

• A Lyapunov stability analysis can be performed ensuring the global asymptotic

stability of the LST model using the state feedback approach.
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• In chapter 5, the interaction measures namely, RDI and i.i.i. can be further stud-

ied and the possibility of redesigning a control structure based on the subsystem

interactions due to the actuator faults and failures can be investigated.



Appendix A

Linearization of Spacecraft Attitude

Model based on Euler’s Equation of

Rotational Dynamics and MRP

A.1 Introduction

The aim of this appendix is to present the detailed Jacobian linearization of the nonlinear

spacecraft attitude model defined in terms of MRP’s and Euler’s equation of rotational

dynamics presented in Section 2.9 of Chapter 2.

A.1.1 Linearization

The kinematic differential equation in terms of MRP is stated in (2.20) and the Euler’s

equation of rotational dynamics is stated in (2.21). Let the inertia matrix and its inverse

in (2.21) given by the following:

J
△
=


J11 J12 J13

J21 J22 J23

J31 J32 J33

 J−1 △
=


a b c

d e f

g h i

 (A.1)
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Expanding (2.20) and (2.21), we get the following

f1
△
= q̇1 =

1

4

[
ω1(1 + q21 − q22 − q23)

]
+

1

2
[ω2(q1q2 − q3)] +

1

2
[ω3(q1q3 + q2)] (A.2)

f2
△
= q̇2 =

1

2
[ω1(q1q2 + q3)] +

1

4

[
ω2(1− q21 + q22 − q23)

]
+

1

2
[ω3(q2q3 − q1)] (A.3)

f3
△
= q̇3 =

1

2
[ω1(q1q3 − q2)] +

1

2
[ω2(q2q3 + q1)] +

1

4

[
ω3(1− q21 − q22 + q23)

]
(A.4)

f4
△
= ω̇1 =

a[ω3(J21ω1 + J22ω2 + J23ω3)− ω2(J31ω1 + J32ω2 + J33ω3)]

−b[ω3(J11ω1 + J12ω2 + J13ω3) + ω1(J31ω1 + J32ω2 + J33ω3)]

+c[ω2(J11ω1 + J12ω2 + J13ω3)− ω1(J21ω1 + J22ω2 + J23ω3)]

aτ1 + bτ2 + cτ3

(A.5)

f5
△
= ω̇2 =

d[ω3(J21ω1 + J22ω2 + J23ω3)− ω2(J31ω1 + J32ω2 + J33ω3)]

−e[ω3(J11ω1 + J12ω2 + J13ω3) + ω1(J31ω1 + J32ω2 + J33ω3)]

+f [ω2(J11ω1 + J12ω2 + J13ω3)− ω1(J21ω1 + J22ω2 + J23ω3)]

dτ1 + eτ2 + fτ3

(A.6)
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f6
△
= ω̇3 =

g[ω3(J21ω1 + J22ω2 + J23ω3)− ω2(J31ω1 + J32ω2 + J33ω3)]

−h[ω3(J11ω1 + J12ω2 + J13ω3) + ω1(J31ω1 + J32ω2 + J33ω3)]

+i[ω2(J11ω1 + J12ω2 + J13ω3)− ω1(J21ω1 + J22ω2 + J23ω3)]

gτ1 + hτ2 + iτ3

(A.7)

The linearized spacecraft attitude model can be stated as follows:

 q̇

ω̇

 = Amrp

 q

ω

+Bmrp τ

q = Cmrp

 q

ω


(A.8)

where Amrp, Bmrp and Cmrp are given as follows:

Amrp =



∂f1
∂q1

∂f1
∂q2

∂f1
∂q3

∂f1
∂ω1

∂f1
∂ω2

∂f1
∂ω3

∂f2
∂q1

∂f2
∂q2

∂f2
∂q3

∂f2
∂ω1

∂f2
∂ω2

∂f2
∂ω3

∂f3
∂q1

∂f3
∂q2

∂f3
∂q3

∂f3
∂ω1

∂f3
∂ω2

∂f3
∂ω3

∂f4
∂q1

∂f4
∂q2

∂f4
∂q3

∂f4
∂ω1

∂f4
∂ω2

∂f4
∂ω3

∂f5
∂q1

∂f5
∂q2

∂f5
∂q3

∂f5
∂ω1

∂f5
∂ω2

∂f5
∂ω3

∂f6
∂q1

∂f6
∂q2

∂f6
∂q3

∂f6
∂ω1

∂f6
∂ω2

∂f6
∂ω3



(A.9)
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Bmrp =



∂f1
∂τ1

∂f1
∂τ2

∂f1
∂τ3

∂f2
∂τ1

∂f2
∂τ2

∂f2
∂τ3

∂f3
∂τ1

∂f3
∂τ2

∂f3
∂τ3

∂f4
∂τ1

∂f4
∂τ2

∂f4
∂τ3

∂f5
∂τ1

∂f5
∂τ2

∂f5
∂τ3

∂f6
∂τ1

∂f6
∂τ2

∂f6
∂τ3



(A.10)

Cmrp =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 (A.11)

The elements of Amrp and Bmrp in (A.9 & A.10) from (A.2) to (A.7) are found to be

∂f1
∂q1

= 0.5(ω1q1 + ω2q2 + ω3q3) (A.12)

∂f1
∂q2

= 0.5(−ω1q2 + ω2q1 + ω3) (A.13)

∂f1
∂q3

= 0.5(−ω1q3 − ω2 + ω3q1) (A.14)

∂f1
∂ω1

= 0.25(1 + q21 − q22 − q23) (A.15)
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∂f1
∂ω2

= 0.5(q1q2 − q3) (A.16)

∂f1
∂ω3

= 0.5(q1q3 + q2) (A.17)

∂f2
∂q1

= 0.5(ω1q2 − ω2q1 − ω3) (A.18)

∂f2
∂q2

= 0.5(ω1q1 + ω2q2 + ω3q3) (A.19)

∂f2
∂q3

= 0.5(ω1 − ω2q3 + ω3q2) (A.20)

∂f2
∂ω1

= 0.5(q1q2 + q3) (A.21)

∂f2
∂ω2

= 0.25(1− q21 + q22 − q23) (A.22)

∂f2
∂ω3

= 0.5(q2q3 − q1) (A.23)

∂f3
∂q1

= 0.5(ω1q3 + ω2 − ω3q1) (A.24)

∂f3
∂q2

= 0.5(−ω1 + ω2q3 − ω3q2) (A.25)

∂f3
∂q3

= 0.5(ω1q1 + ω2q2 + ω3q3) (A.26)
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∂f3
∂ω1

= 0.5(q3q1 − q2) (A.27)

∂f3
∂ω2

= 0.5(q3q2 + q1) (A.28)

∂f3
∂ω3

= 0.25(1− q21 − q22 + q23) (A.29)

∂f4
∂q1

=
∂f4
∂q2

=
∂f4
∂q3

= 0 (A.30)

∂f4
∂ω1

= a(ω3J21−ω2J31)+b(−ω3J11+2ω1J31+ω2J32+ω3J33)+c(ω2J11−2ω1J21−ω2J22−ω3J23)

(A.31)

∂f4
∂ω2

= a(ω3J22−ω1J31−2ω2J32−ω3J33)+b(−ω3J12+ω1J32)+c(ω1J11+2ω2J12+ω3J13−ω1J22)

(A.32)

∂f4
∂ω3

= a(ω1J21+ω2J22+2ω3J23−ω2J33)+b(−ω1J11−ω2J12−2ω3J13+ω1J33)+c(ω2J13−ω1J23)

(A.33)

∂f5
∂q1

=
∂f5
∂q2

=
∂f5
∂q3

= 0 (A.34)

∂f5
∂ω1

= d(ω3J21−ω2J31)+e(−ω3J11+2ω1J31+ω2J32+ω3J33)+f(ω2J11−2ω1J21−ω2J22−ω3J23)

(A.35)
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∂f5
∂ω2

= d(ω3J22−ω1J31−2ω2J32−ω3J33)+e(−ω3J12+ω1J32)+f(ω1J11+2ω2J12+ω3J13−ω1J22)

(A.36)

∂f5
∂ω3

= d(ω1J21+ω2J22+2ω3J23−ω2J33)+e(−ω1J11−ω2J12−2ω3J13+ω1J33)+f(ω2J13−ω1J23)

(A.37)

∂f6
∂q1

=
∂f6
∂q2

=
∂f6
∂q3

= 0 (A.38)

∂f6
∂ω1

= g(ω3J21−ω2J31)+h(−ω3J11+2ω1J31+ω2J32+ω3J33)+i(ω2J11−2ω1J21−ω2J22−ω3J23)

(A.39)

∂f6
∂ω2

= g(ω3J22−ω1J31−2ω2J32−ω3J33)+h(−ω3J12+ω1J32)+i(ω1J11+2ω2J12+ω3J13−ω1J22)

(A.40)

∂f6
∂ω3

= g(ω1J21+ω2J22+2ω3J23−ω2J33)+h(−ω1J11−ω2J12−2ω3J13+ω1J33)+i(ω2J13−ω1J23)

(A.41)

Non-zero equilibrium points are found by solving the six nonlinear equations de-

scribing the spacecraft’s attitude stated in equations (A.2-A.7). The spacecraft’s inertia

matrix is given in (2.32) and is taken from [66]. The non-zero equilibrium points are

found to be as follows:
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q1 = 0.3042

q2 = −0.3354

q3 = −0.3475

ω1 = −0.2652

ω2 = 0.2652

ω3 = −0.1107

τ1 = 0.0415

τ2 = 0.1578

τ3 = 0.2785

(A.42)

The state space matrices Amrp and Bmrp in (A.9 & A.10) are then calculated using

the non-zero equilibrium points in (A.42) and are stated in (2.29 & 2.30)



Appendix B

Dynamic Formulation of Euler’s

Equation of Rotational Dynamics

and MRP

B.1 Introduction

The aim of this appendix is to combine the Euler’s equation of rotational dynamics and

the MRP based kinematic formulation presented in Section 2.9.1 of Chapter 2 and form

a second order nonlinear dynamic equation of the Hamiltonian form [52].

B.1.1 Dynamic Formulation

The Euler’s equation of rotational dynamics and the kinematic differential equation in

terms of MRP is given as follows:

Jω̇ = −ω × Jω + τ (B.1)

q̇ = [T (q)] ω (B.2)
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Differentiating the kinematic equations of motion in (B.2) with respect to time we

get

q̈ = Ṫ (q)ω + T (q)ω̇

q̈ = Ṫ (q)ω + T (q)J−1Jω̇ (B.3)

Substituting (B.2 & B.1) in (B.3) we get

q̈ = Ṫ (q)T−1(q)q̇ + T (q)J−1(Jω × ω + τ)

q̈ = Ṫ (q)T−1(q)q̇ + T (q)J−1Jω × ω + T (q)J−1τ

q̈ = Ṫ (q)T−1(q)q̇ + T (q)J−1JT−1(q)q̇ × T−1(q)q̇ + T (q)J−1τ (B.4)

Multiplying throughout by T−T (q)JT−1(q) we get

T−T (q)JT−1(q)q̈ = T−T (q)JT−1(q)Ṫ (q)T−1(q)q̇ +

T−T (q)JT−1(q)T (q)J−1JT−1(q)q̇ × T−1(q)q̇ +

T−T (q)JT−1(q)T (q)J−1τ (B.5)

Defining

P (q)
△
= T−1(q), P T (q)

△
= T−T (q), (B.6)

we get

P T (q)JP (q)q̈ = P T (q)JP (q)Ṫ (q)P (q)q̇ +

P T (q)JP (q)P−1(q)J−1JP (q)q̇ × P (q)q̇ +

P T (q)JP (q)P−1(q)J−1τ (B.7)
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P T (q)JP (q)q̈ = P T (q)JP (q)Ṫ (q)P (q)q̇ +

P T (q)JP (q)q̇ ×

P (q)q̇ + P T (q)τ (B.8)

J∗(q)q̈ − J∗(q)Ṫ (q)P (q)q̇ − P T (q)JP (q)q̇ × P (q)q̇ = P T (q)τ (B.9)

J∗(q)q̈ − J∗(q)Ṫ (q)P (q)q̇ − P TS(JP (q)q̇)P = P T (q)τ (B.10)

Hence the nonlinear dynamic model of spacecraft is given by the following equation

J∗(q)q̈ + C∗(q̇, q̈)q̇ = P T τ (B.11)

where

J∗(q)
△
= P T (q)JP (q)

C∗(q, q̇)
△
= −J∗(q)Ṫ (q)P (q)− P T (q)S(JP (q)q̇)P (q) (B.12)

For ease of notation we simplify J∗(q) = J∗, P (q) = P and C∗(q, q̇) = C∗



Appendix C

Dynamic Formulation of Euler’s

Equation of Rotational Dynamics

and Quaternions

C.1 Introduction

The aim of this appendix is to combine the Euler’s equation of rotational dynamics and

the Quaternion’s based kinematic formulation presented in Section 2.9.2 of Chapter 2

and form a second order nonlinear dynamic equation of the Hamiltonian form [52].

C.1.1 Dynamic Formulation

The Euler’s equation of rotational dynamics and the kinematic differential equation in

terms of Quaternion’s is given as follows:

Jω̇ = −ω × Jω + τ (C.1)

β̇q = [B(βq)] ω ≡ B ω (C.2)
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Differentiating the kinematic equations of motion in (C.2) with respect to time we

get

β̈q = Ḃω +Bω̇

β̈q = Ḃω +BJ−1Jω̇ (C.3)

Substituting (C.2 & C.1) in (C.3) we get

β̈q = ḂB−1β̇q +BJ−1(Jω × ω + τ)

β̈q = ḂB−1β̇q +BJ−1Jω × ω +BJ−1τ

β̈q = ḂB−1β̇q +BJ−1JB−1β̇q ×B−1β̇q +BJ−1τ (C.4)

Multiplying throughout by B−TJB−1 we get

B−TJB−1β̈q = B−TJB−1ḂB−1β̇q +

B−TJB−1BJ−1JB−1β̇q ×B−1β̇q +

B−TJB−1BJ−1τ (C.5)

Defining

ξ
△
= B−1, ξT

△
= B−T , (C.6)

we get

ξTJξβ̈q = ξTJξḂB−1β̇q +

ξTJξBJ−1JB−1β̇q ×B−1β̇q + ξTJξBJ−1τ (C.7)



175 C.1 Introduction

ξTJξβ̈q = ξTJξḂB−1β̇q + ξTJξβ̇q ×B−1β̇q + ξT τ (C.8)

M∗β̈q −M∗ḂB−1β̇q − ξTJξβ̇q ×B−1β̇q = ξT τ (C.9)

M∗β̈q −M∗Ḃξβ̇q − ξTS(Jξβ̇q)ξ = ξT τ (C.10)

Hence the nonlinear dynamic model of spacecraft is given by the following equation

M∗(βq)β̈q +N∗(β̇q, β̈q)β̇q = ξT τ (C.11)

where

M∗(βq)
△
= ξT (βq)Jξ(βq)

N∗(βq, β̇q)
△
= −M∗(βq)Ḃ(βq)ξ(βq)− ξT (βq)S(Jξ(βq)β̇q)ξ(βq) (C.12)

For ease of notation we simplify M∗(βq) =M∗, ξ(βq) = ξ and N∗(βq, β̇q) = N∗



Appendix D

Reaction Wheel Specifications

D.1 Introduction

The aim of this appendix is to give the technical details of the reaction wheel manu-

factured by SSBV Space and Ground Systems, UK [1]. The details mentioned in this

appendix are taken from the company’s web site. The physical characteristics mentioned

here are used in calculating the reaction wheel inertia of the LST model discussed in

chapter four.

D.1.1 Functional Characteristics

Max wheel torque: 20 mNm

Max wheel momentum: 0.65 Nms

Speed range: -9000 to +9000 rpm

Rotor moment of inertia: 1.0 x 10−3 kgm2

Speed control tracking error: <1 rpm

Current consumption: 40 mA / mNm
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D.1.2 Physical Characteristics

Mass: 1550g

Dimensions: 102 x 102 x 105 mm

Static unbalance: < 5 g mm

Operating temperature -30 to +60C

D.1.3 Current Consumption

0 rpm: 45 mA

100 rpm: 65 mA

4000 rpm: 165 mA

D.1.4 Interfaces

Power supply: 28V unregulated unregulated

Data: RS422
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