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INTRODUCTT ON

The arithmetic of the transfinite ordinal numbers is usually devel oped
semantically from a set theory. An ordinal number is the order type of a well
ordered set. The functions on ordinal numbers result from combining these
sets in different ways. In order to avoid the dependence of this
arithmetic on the axioms of set theory a syntactic development is given
here of part of this arithmetic. The arithmetic of the ordinal numbers
less than o“ is developed as a multisuccessor arithmetic.

The first attempt at a syntactic formalisation of the arithmetic of the
natural numbers was made by Dedekind from what have become known as
Peano's Postulates. Here the notion of a successor function which
increases a number by 1 is accepted as primitive. It seems interesting to
examine the system which would result from generalising the arithmetic
of the natural numbers by accepting as primitive more than one successor
function. Starting from O a greater variety of numbers could be
defined. By placing certainr estrictions on the results of combining
those successor functions a number of different systems can be developed.
One such system has been studied extensively by Vuékovfc and Partis.

Here the results of applying the stccessor functions in different orders
are identified. The resulting system is a generalisation of the arithmetic

of the natural numbers which preserves many of its properties such as the

-1 -



commutativity of addition and multiplication. A multisuccessor arithmetic
with a different restriction on the successor functions is studied here.
The successor functions dominate one another in the sense that the
application of a particular successor function followed by another
successor function, higher in the hierarchy, has the same effect as the
application of only the second successor function. As with Vuckovié's
system this multisuccessor arithmetic will be developed formally as an
equation calculus. The axioms will be primitive recursive function
definitions together with two axioms involving the combination of
successor functions. Four rules of inference will be given dfor deducing
equations from other equations. This system can be readily interpreted
as ordinal arithmetic for ordinals less than ww. As with Vudkovié's system
it is a generalisation of the primitive recursive arithmetic of the natural
numbers .

In Chapter I the arithmetic of the system is formally developed.
The chapter is divided into numbered sections and the results in each
section are numbered using & decimal notation. Some of the functions used
are indexed by the natural numbers. It is necessary to appeal to certain
results and methods of the arithmetic of the natural numbers when
manipulating these indices. The arithmetic of the natural numbers,which is
used,is accepted and not formally developed. It has already been

developed by Goodstein in an equation calculus which could be regarded as

a restriction of the. system presented here with only the index 0 allowed.



In certain cases the hypotheses of the schemata in the system are
only applicable when the indices of functions in the hypotheses are 0.
These schemata are then applied to give the limited conclusion of equality
between two functions only when their variables are restricted to the
natural numbers.

In Chapter II it is shown that there is a (1,1) correspondence between
the primitive recursive functions in this multisuccessor system and the
primitive recursive functions of the natural numbers which corresponds to
a certain (1,1) coding of the ordinals in this system into the natural
numbers ,

A proof of the consistency of the system developed here is given in
Chapter ITII. This proof follows the same lines as that given by Goodstein
for his equation calculus formalisation of the primitive recursive

arithmetic of the natural numbers.



CHAPTER I

THE ARITHMETIC OF THE ORDINAL NUMBERS LESS THAN o .

1. All functions in this system are developed from certain initial
functions. These are:
(1) the identity function I(x) = x which always takes a value
equal to the value of its argument.
(ii) the zero function N(x) = O which always takes a value equal
to zero.
(iii) a countably infinite number of successor functions
Sos S1y Sgy eee o
The identity and the zero function are used implicitly in the system.
The function S, behaves in the same way as the function S in the
arithmetic of the natural numbers, it increases a number by 1. The
functions Spu (for g > 0) increase a number to the smllest multiple
of wu greater than that number. Therefore Sp0 is interpreted as o
with «° being understood to be 1.

The successor functions are restricted by +two axioma. These are:

A Suszsu for u>vw

B Sas LN Sq = Sa' s.b' LK ] Sq'

with a< b «ee q and a'<b'< ... q' if and only if



a=a'y, b=b', ..., a=4¢4"'.
Axiom A is what causes this system to differ from the multisuccessor
arithmetic developed by Vu;kov{; and Partis. Instead of axiom A they
give the axiom Susv = SvSu o The resulting arithmetic is quite different
and possesses many properties such as commutativity of addition and
multiplication which are not found in ordinal arithmetic. Nor is their
system totally ordered as is this system. Axiom B enables inequality
between two different ordinals to be proved.
2. A function F(x,y) is defined by primitive recursion from previously
defined functions a(x) and bu(x,y,z) in the following way

F(x,0) = a(x)

F(x,8,3) =D, (x,5,F(x,5))
The second equality stands for an infinite number of equations, one for
each value of the finite index g. The functions yu(x,y,z) must be
related by the following identity imposed by axiom A for this to
constitute a proper definition by primitive recursion.
c bu(x,Svy, bv(x,y,z)) = b“(x,y,z) for v< pe
Functions are also defined from previously defined functions by
substitution. Starting from the initial functions the class of all
functions which can be derived by substitution and primitive recursion

will be called the primitive recursive functions.



3. The rules of inference are the following schemata

F(x) = G(x
Sba FéA; = GéA;

A=23B
Sba F(A) = F(B
T A=3B

A=C

B=2C

and the primitive recursive uniqueness rule

F(pr)

F(x)

Hﬁ(x, F(x)) for all y

5% (0)

F, G, Hp are primitive recursive functions and A, B, C primitive
recursive terms. The class of primitive recursive terms is the smallest
class containing O, all symbols for variables and F(t) if F is a
primitive recursive function and t is a term. The function th is
defined by the following primitive recursion.

H® ¢

U ¢

t
Hu(x, H* t)



It is not necessary to stipulate that the functions H‘J satisfy the
consistency condition C for this is already guaranteed by F(x)
being a primitive recursive function.

A number of auxiliary schemata; will now be proved. First the
following result is proved.
3. X=X
From the defining equations for addition (which follow) x + 0 = x.
Teking A tobe x+ 0 and B and C to be x schema T gives the
result. Applying Sby to 3.1 gives A = A, Therefore taking C

as A, fromschema T the following schema 1is obtained.

X Sk
The following is a more useful form of U.
£(0) = g(0)
U, £(s x) = H (x,f(x))
H H for all u
g(s,x) = H (x,8(x))
£(x) = g(x)

U, is proved equivalent to U. First suppose U; holds and the hypotheses
of U hold.. By the definition of HX¥t, H°F(0) = F(0),

S x

HH FO) = H, (x, H*7(0)). Taking F(x) as f£(x) and g(x) as

H*F(0) the hypotheses of Uy are satisfied. Therefore



F(x) = g(x) = HF(0) which is the conclusion of U. Hence
Uy = T
Now suppose U holds and the hypotheses of U hold. Taking in turn
f(x) eand g(x) as F(x),U gives f(x) = fo(O) and g(x) = ng(O).
But £(0) = g(0). Therefore H-£(0) = H'g(0) by Sbs. Applying K
and T gives f(x) = g(x) which is the conslusion of Uj;. Hence
U= Uy.
Therefore U and U; are equivalent schemata.
A particuler instance of schema U, is frequently used and will
therefore be stated as a separate schema. I and J are indexing sets

of natural numbers. IU J =2 +the set of all natural numwbers, IN J =¢.

£(0) = g(0)
U, f(Sux) = g(Sux) for pel
f(Sux) = Muf(x)
for ped
g(8,x) = U g(x)
£(x) = g(x)

This follows from Ujy. For suppose the hypotheses of U, hold. Define

B (x,7)
£(s " x)

The conclusion of U, follows by Uj.

g.(Su,x) for py € I. Then g(Sux) =Hu(x,g(x)) and

Hu(x,f‘(x)) for ye I and Hu(x,y) =Mu(y) for u € J.



FUNCTION DEFINITIONS

A number of elementary functions are now introduced using primitive
recursion anl certain results in ordinal arithmetic concerning them
are proved.
4, Addition

This is defined by the following recursions.

a+0=a, a+ Sub = Su(a +b) for all g

It must be verified that the consistency condition C is satisfied.
This condition will clearly be satisfied if the result of replacing
Suz by Su'sv where y< p 1in the left hand side of the defining equati ons,
and applying this definition twice, yields an expression which can be
shown to be equal to the original expression on the right hand side of

the defining equation. Applying this procedure to the above definition

gives

a+S5Sb=5¢(a+8SD)
v 74 v

]

s“sv(a + D)

Su(a+b) by axiom A since wp< pu

Hence the definition of addition is consistent.
The following result is proved

LA O+ a=a



Proof, 0+ 0 =0 from the first equation in the definition of addition.

0+ S“a = Su(O + a) from the second equation in the definition of addition.

Teking f(a) = 0 +a, g(a)ma, X =2 and T=¢ Lthe result follows

u
2 Sa=a+
4 N w
Proof. a + wu = a + S‘IO
=3 +0)
u(a )
=S a
u

This result gives the intuitive interpretation which is to be placed on
the successor functions SIJ° The operation Sﬂ applied to an ordinal

results in addition of w“

on the right.
b3 (a+b)+c=a+ (b+ec)
i.e. addition is associative

Proof. (a+b)+0=a+hb

a +(b + 0)

it

(a +b) + Suc Su[(a +b) + c]

a+ (b + S“_c) a + Su(b + ¢)

Su[a + (b +¢)]

The result follows from Uz taking flc) = (a +b) + ¢, glc) =a+ (b +¢),

I=¢, J=2Z and M”(x) = Sﬂ(x).

- 10 -~



The associative law also holds for the arithmetic of the natural
numbers. However, as is well known, not all results in the arithmetic
of the natural numbers generalize to transfinite ordinal arithmetic.

In particular this arithmetic is not commutative with respect to addition
i.e. it is possible to choose prdinals such that a + b #b + a. As

an example consider 1 +w aml o + 1.

1 +w = S0 + S10

= 53(800 + 0)

= 81500

= 5,0 by axiom A
w+ 1 =830+ Sp0

= So(S10 + 0)

=S5050

S10 and S¢Si1 0 are not equal by axiom B.

5. The Degree Function

The indices of the successor functions SM always have finite values.
In order to make definitions involving these functions it is necessary to
use part of the arithmetic of the natural numbers in combining these indices
with other finite numbers. The function Max(m,n) in the arithmetic of
the natural numbers will be taken as defined and used in such a way.
The degree function is defined from this function by the following

recursion.

- 11 -



a(o)

"

0

Max (d(a),n)

d
(s,8)
The consistency condition is satisfied since

d(S“Sva)

Max(d(sv a) » l‘)
Max(Max(d(a) ,v) ,u)

Max(d(a),u) if gu>v.

[0}

Although the degree function is defined am ordinals it only takes values

among the natural numbers.

5.1 awh) = p
Proof . o = 5,0
a(s 0) = Max(a(0),p)
= Max(O,u)
= U

6. Multiplication

First a.a}u is defined by the equations

u=0

Sva.w” = wd(sva) tH

Oww

a.b is then defined by a.0 = 0

a.Sob = adb + a

u

a.Sub = a.b + a.u for >0

To prove thedefinition of a.b consistent it is first necessary to

prove two results.

- 12 -



6.1 Vool = o

v
Proof. W +

1]
c(/2
o
+
tm
o

i
.:VJ
()
<
o
+
o
SN’

i
tm

w

o

= SpO by axiom A

=w
6.2 a.0’ + a.t = a.f if pu>vw
Broof. \S;a.wv +$;a .w" = wd%)‘*v + wd("i‘)‘““
=wd(77?')+"‘ by 6.4 if u> v

=Sa .o
-( — [ ] ’
amd .l + o.wl %% ®

The consistency of the definition of multiplication can now be proved

since
aSSb=a,.S b+ a.of
“uwv v
= (a.b + a.0”) + a.of
=ad + (a.0” + aw?)
=ad + aw by 6.2 if u > v
6.3 0. =0
Proof . 0.0=0
0.Spa=0.a+ 0
= 0,.a
O.Sua = 0.a + 0.0 for pu> 0

-13 -



O.2a + 0

= 0.a

The result follows from Uy taking f(a) = O,a, g(a) =0,

and J =2, M 1is the identity function.

u
6 A " aJd =a
Proof. a.l = a.540
a.590 = a.0 + a
=0+ a
= a
6.5 10¥ =¥
Proof . 1.0" = 500, o
860 .u¥ = wMa;x(d(O) ,0) +p
=(du
6.6 1.a =a
Proof . 1.0 =0
18,8 =1.a+ 1.4
= 1.2 +o¥ by 6.5
= Su(1.a)
Sﬂa = Sp a

The result follows from Uz teking f(a) = 1.a, g(a) = a,

I=¢ and J=2Z2, M 1is S .
H B

-1 -



6.7 a.b+c) =ad + a.c

i.e. the left distributive law holds.

Proof. a.Jb+ 0) =a.d
ab + a0 =a.b + 0
= a.b
a.(b + S“c) = a.Su(b + c)

=a.b+c)+aw

adb + a.Suc adb + (a.c + awh)

(a.b + a.c) + awf by 4.3

The result follows by U, taking f(a) = a.b + ¢), gla) = a.b + a.c,
I=¢, J=2z and Mu(x) = x + a.t.
The right distributive law does not hold in ordinal arithmetic as
is shown by the following example.
(w + 1) .2 = SpS10.50500

SoS],O 300 + SOSIO

(50510.0 + S¢S5:0) + S¢S:0

(0 + S0S10) + S¢S:0

30310 + SgS;O

S0(S0S810 + $;0)

S0S51(50S810 + 0)

[l

S0515¢510

S0S515:0 by axiom A

- 15 =



W2 + 2 S510.59500 + SOSOO

(510.500 + S30) + SpSe0

[(510.0 + S30) + S10] + S4S00

(810 + 530) + SpS00

1}

S1(510 + 0) + SpSo0

$1510 + S¢Se0

]

S0 (51810 + 5,0)

S050(S15:0 + 0)

S0S0S1510

n

S0S1510 and SpSS3S;0 are not equal by axiém B.
Before proving the associativity of multiplication the following,

less general, result is proved.

6.8 a.b.0") = (ad).*
Proof. 2.(0.0") = a.0
=0
(a.0) .0 = 0"
=0

a.(va.w”)= a.wd(svb) tH
(a.va) W= (ad + a.w”) of

a(s,b) +

It is necessary to prove a.w = (ab + a.wv) o

- 16 -



a(s
(vb)+u

Ow =0
(00 + 00") " = (0.4 0) 0"
= O.wu

0
a(s v) +pu a(sya) + (8 b) +u
Sxa.w v =W g v

d(S a) + vy

A u

(SAa.b + Sha.wv) oW (SAa..b +w ) ow

= [Sd(SAa) + v(SAa..b)].w"

a(s

=

a(s,8) + L(8,ad)) +u

i Max(d(s,a.b),d(s,a) +v) +u

It remains to show

d(SAa) + d(va) +u = Max(d(SAa.b), d.(SAa) +v) +u

d(SAa) + d(svo) = d(SAa) +p

Max(d.(SA&',.O), d(SAa) + v)= Max(a(0), d(SAa) +v)

= Max(O,d(SA'&) + v)

= d(SAa.) + v

Max(d(S,2.54b), a(s,a)+ v) Max(d(SAa) + d(Sab), d(SAa) +v)

[t}

d(S)\a) + Max(d(sab) )

d(SAa) + d(svsab)
a(S a) + u
The result aww " = (adb + a.d) ¥

a(s b) +u
now follows by U, putting f(a) = aw VY , g(a) = (adb + a.wV) 0¥,

-17 -



The result 6.8 now follows from U, putting f£(b) = a.(b .wu),
g(®) = (a.b) .wu, I=2 and J =¢.
6.9 a.(bgc) = (a.b).c

i.e. multiplication is associative

Proof . a.b.0) = a.0
=0
(adb) 0 =0
a.(b ‘Su°) = aJb. + b.oH)

[

a.bec) + a.lb.o)

(ab).c + (a.b).o”

(a.b) 'Su c

[}

(ab)wc + a.(bw®) by 6.8
The result follows by Uz putting f£(c) = a.(b.c), g(c) = (a.b).c,
I=¢, J=2 and Mu(x) =x+a.lbaf).

Multiplication is not commutative for transfinite ordinals as it is
for natural numbers. This is shown by the following example.

Sp Sg Oww
wMax(d(SOO) ,0) +1

2w

SoSoO o =
- wMax(Max(d(O),O), 0) + 1

]

)

= 5,0



©+2 = 510.50500

I

1]

S10.560 + S;0

310.0 + S;O + 510

=0 + 810 + 810

= 570 + 5,0
= S;(S;0 + 0)
= 81810

S;0 and S3;5;0 are not equal by axiom B.

7. Exponentiation

Since this formalisation only concerns ordinals less than "

a realistic definition of exponentiation for transfinite exponents cannot
be given. The definition is therefore by a primitive recursion on the
exponent involving only the successor function Sy. This makes the definition
only effective for finite exponents. 0" is defined first by the recursion

0% =1

05oR _ g

(S"a)“ is then defined by the recursion

(Sua)" =1

(,)%% = (5,a)" (3, 2)

Since recursion only involves S, no consistency condition arises.

- 19 -



7. & =1

Proof. 0° - 1

1l
-

(s ua)°

The result follows by Uz taking f(a) =a°, g(a) =1, I =2 and

J=¢.

7.2 at = a

Proof . at = a>00
=a%,a
= 1.
= a

7.3 al*m _ gn_ gm

Proof. This will be proved first far a = 0 &nd then for 5,8 in

place of a.

Oﬂ"o = On
on.0° = 0"
= On

N+ ™ — So (nem)

i
o

o" Lo

I
<
=}

- 20 =



Hence 0"*M - " " by U; taking f(m) = O"*™, g(m) = 0", O",
I=1{0} and J = ¢ and restricting the hypotheses of the schema to
the case u = 0. Such a restriction ip the hypotheses will be allowed

when the variable involved in the recursion can only take finite values.

(Sva)mo - (Sv a)"

(s,2)".(s,2)° = (s a) .1
= (Sva)"
(Sva)"*so" - (Sva)s° (nem)

(Sv‘a)n-rm .(Sva)

(Sva)" .(Sva)"‘O mo = (Sva.)" [(Sva)m .Sva]

n m
[(s,a)" .(5,2)"].5 2
n+m n - : - n+m
Hence (Sva) = (sva.) .(Sva)‘" by U, taking f(m) = (Sva) ,
glm) = (5 2)".(5,af", I=¢ J=1{0} and Mo(x) =x, Sa and
restricting the hypotheses of the schema to the case p = 0. The

final result therefore holds by U, taking f(a) = a"™,

gla) =a@d", I=2 and J=¢.

7 4 gh.m - (a")m
Proof. a0 - 50
= 1



(an)o =1

a'*%m _ Jnem+n
="M g
(@™ = (M) .a"

The result follows by Uz taking f(m) = &, g(m) = (&")",
I=¢, J=1{0] and My(x) = x.d and restricting the hypothesks of
the schema to the case u = 0.

Up to now the expression @ has been used as a name for SHO.
It must be proved that this agrees with the exponentiation of w to
the finite index p. In order not to cause confusion in the proof of
this when o is considered as the name for SIJO it will be written

w&

L]

w =1
= SOO
=w9
PRCL N B
= Sno.(d

wMax(d(O)J n) + 1

n+1

W —

il

S

The result therefore follows by Uz taking f(n) =w", g(n) = 02,

- 22 -



I=1{0}], J=¢ and restricting the hypotheses of the schema to the
case H =0,

The identity a"»b" = (a.b)” which holds for the arithmetic of the
natural numbers does not hold when a and b can teke values awang the
transfinite ordinals. This is shown by the following example

0w+ 1)2 =030+ 1)S°S°0
w?.(0 + 1)S°0.(w + 1)

03w+ 1) +1)

1]

w2 (w+ Do+ (w+1)d
= W3+ 02 .0 + (0° +w?)

2
w"+w°+w

S22 Sz S40
w2 + w)?

w2 + w)s°s°o

(@l + 1))32

(w? + w)s°0.(w2‘+ ®)

@3+ 0). W? +w)

!

W2 +w)w® + W2 +0)w

I

W + W

Sg S4 O

Sg Sg S¢ 0 is not equal o S3 S¢ 0 by axiom B.

8. The Component Functions

These functions are denoted by Cu and are defined by the following

recirsions

- 23 -



cu(o) =0
Cu(Sva) = Cu(a) if u>v
cu(sua) = SoCu(a)
Cll(gva) =0 if u< v

These definitions obey the consistencg condition since

cu(svsxa) cu(sAa) if us> v

c”(a) if u>v>aA

c, (susAa) = So cu (SAa)

socu(a) if u> A

"

cu(svsAa) 0 if p< v

Since C  1is defined by primitive recursion from 0 and Sy it can
only take finite values. The intuitive interpretation of the component
functions will become apparent later.

9., The Sum Function

For a function f there will be a corresponding sum function denoted
by Zf. If f is a function of two arguments the summation will be
understood to be over the first argument. Therefore for the function
£(x,y), Z‘,f will be defined by the following recursion.

Zf(o,b) = £(0,b)

Ef(soa)b)

£(Soa,b) + Zf(a,b)

Z‘.f(Sua,b) 0 for u>0

This definition is easily seen to be consistent for

- 24 -



E,f(susva., b) =0 if u>p 20

In order that the function Zf can have transfinite ordinal numbers

for its arguments the éuccessor functions S“ for u> 0 havé Beep
included in the definition. This makes the definition somewhat artificial
when Ef is considered as representing a sum of values of f(a,b).

In the applications which are made of the sum function, however, the_
argument a will only take finite values. The a‘bove recursion clearly
does not give a definition of infinite sums of ordinal numbers. Indeed
no such consistent definition is possible in this system. This is shown
by the following argument. Suppose Zf(x) is a function which represents
the sun  £(0) + £(1) + ... + £(x). Clearly %.(0) = £(0).

Z.f(Sua) = Hu(a, Zf(a)) where Hu (x,y) is a primitive recursive function.

Case (i) Let f(x) =1 for all x.
Then Zwa) =2f(s10) = Hy(0, Zf(O)) = Hy(0,1) . The sum f£(6) + £(1) +
+ voe + (@) is equal (in intuitive ordinal arithmetic) to w + 1.
Case (ii) Let f be defined by the following recursion.

£(0)

f(su a)

1

1}

w for all u

Then Zf(w) =2f(s,o) = Hl(O,Zf(O)) = H;(0,1). The sum £(0) + £(1) +
+ eeo + £(®) is equal (in intuitive ordinal arithmetic) to w? +w.
But w +1 and w*+w are different ordinals and cannot both be equal

to HI(O’ 1) L
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In the definition of the sum function successive additions are
made on the left. Such a definition is clearly different from one in
which successive additions are made on the right, since addition is
not commutative. The former definition is given in order to simplify
an important application of this function.

10, Cantor's Normal Form Theorem

a = Zh(d(a) ,a) where h(m,a) =™, Cyp(a).

The first argument of h can only take values among the natural numbers.
%, 1is defined since d(a) is substituted for its first argument and
d(a) always takes finite values. Before this theorem is proved a

number of other results are required.

101 wv.Cv(a) + ot =M if v <y
Proof . w” .Cv(O) +o =0’ 0 +

=0 +wu

=mp

v H v Hoo
) .CU(S)“a) + 0 w .Cv(a) +w" if vy > A

v N v u
w L (Sva) + W ) .Sva(a) + W
W" € () + ") + ¥

I

1]

1]

v
W .Cv(a) +w

v .
w .Cv(s}‘a) + o= 0¥ 0 + oH if A> v

0O +w
=wu;

The result follows by Uz taking f(a) = w¥ .Cy(a) + wH,
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gla) =o', T=fiti> oy}, T=1{i:0<€ 1< v} and M, as the

A

identity function.

10.2 a+d = A.Ch(a) + w)" if A2 d(a)
PROOF . 0+ w)k = w’\
A
=W
A
Sva+w = SASva
= Ska if A > v
A
= a +

A A
w 'CA»(Sva) + @

A A
w .CA(a) +w

(a +wA') r o

o .SOCA(a) o

A
Sl\a+w

o 'C/\(SA.a) + w‘?L

(w)' .CA(a) + wA) +

Il

If »>A d(Sva)>/\.

The result follows by U, taking f(a) = a + w)‘, gla) = wA.CA(a) + w",

M =T for psA> A
I=¢, J=f{i:0€<i<A}, and M (x) =s=x==== . The restriction of

the values of yu in the hgpotheses of Uy limits the conclusion to the

cases where A 2> d(a).

10.3 Zh(/x,sua) = 0 where h(m,a) = wm Cp(a)ard A < p
PROCF . Zh(o,sua) = h(O,Sua)

.0 since u > 0
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=0

(]

Z,(Ser,8,2) = h(Ser,5 2) + 1, (1,8, 2)

SoA (s
) ‘CSOA(Sua) + Eh(A,Sua)

i

i

woor .0 +Zh()»-,sua) since SoA< u

0+ Zh()»,sua)
= Zh(A. ’Sl-l a)_

The result follows by Ujp taking f(A) = Zh()x,sua), g) =0,
I=¢, J={0} and M, the identity function.

A new function h'(x,y) = h(x +u + 1, y) is defined.
10.);. Zh(x,y) =Zh'(x_u -1, y) +Zh(p,y) if x> up.
PROCF . When x = 0 the result holds vacuously.

Z, (Sex,y) = n(Soxy) + I, (x,7)

Zh.(sox -4y - 1)y) +Zh(l-l:Y) =Zh|(x —U’y) +Zh(u’y)

=Zh'(so(x -u - 1):3’) "'Zh(ﬂ,Y)

Bt (So(x = w = 1),y) +2,,(x —pu =1, )
"'Zh(IJ’Y)

W' (Sox —p =1, 3) +Z,(x-p -1, )

+ Zh@ :yy

1}
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= h(Sex,y) +2,,(x -y =1, 3)

+ zh(ﬂ ,Y)

The result holds by U, taking f(x) = Zh(x,y),

g(x) =2, ,(x-p =1, 5) +2, 0,3, I=9¢,7={0] amd U(a) =

= h{Sox, y) + z,

10.5 Zh()\,a)+ P if u> A
PROOF. 2. (0,a) + o= n(0,a) + o
_— h

= Co(a) + 0)

= o since u> 0

Zh(SOA,a) + o = h(Sor,a) + 2 (A,a) + oM

“ So)»

=w (a) + o if SeA<

g
I

Csor

h(SoA, a) + o

The result follows by U, taking f(A) = Zh()\.,a) +of, () =
I=¢, J={0} and My(x) = h(Sor,a) + x.
10 .6 Zh,(A,S“a) =Zh‘()\,a)

PROOF .
Zh‘(o,sua) = h'(O,Sua) |
h(u+1, S a)

(s a)
(s a)

ll

p+1

;1+1

0]

h(u+1 »a)
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I

Zh,' (SOA,Su a)

1]

= w SoA+u+1

h'(0,a)

2,,(0,)

h‘(So)»,S”a) + Zh,(,\,sua)

h(Ser + u+t, Sua) + Zl;ﬂ()\,Sﬂa)

.CSoA-"'lH'" (S,J/a) + Zh' ()\- )Sﬂa)

- wsoA+u+1 o (a) + Z,h'()L,S#a.)

20 (Sor ,8)

The result follows by Uj
g@) =2,,0,a), IT=9,7

PROOF of Cantor's Normal

Coorsp+1
h(SeA+u+1, a) + Zh'(A,Sua)
h'(SgA,a) + Zye (A,S“a)
h*(SoA,2a) + Zh' (A ,a)

taking f(A) =Z‘,h,()u,sua),

= {0} and Mo(x) = h'(Spr,a) + x.

Form Theorem.

Let g(a) = Zh(d(a) ,a) vwhere h(m,a) = u".C (a).

g(0) =Z,(a(0),0)
- 2,(0,0)

= h(0,0)
= o oCo (O)

= ,0
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=0
g(Swa) = Zh(d(Sua), Sua)
= Zh(Max(d(a) ) ’Su a)
Case (1) p 2 d(e) |
g(Sua) =Zh(u ,Sua)
g(Soe) =2, (0,50a)

n(0,S0a)

It

wo .Co (So a)

-

= (do oSoC. (a)
For u> 0

8(s,9) =2, (Solu-1), 5,2)

h(Se(u-1), Sua.) +Zh(u-1, Sua)

n(u ,Sua) by 10.3

u
L (S a
) u(u)

@, 80 c,(a)

Hence for all u > d(a)

S K,
8( lla) w0 WS Cu (a)

u

u
w O (a) +w
(@)

a+ gH by 10.2
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Case (ii) wu< d(a)

g(su a) =1, (a(a) ,s”a)

=Z,,() -p -1, S a) + Zh(u,sua) by 10 4
Zh (O,S.a) = h(O,Soa)

= o° +Co (Soa)

= wo .Soco(a)

= ° ,Co(a) +

For u> 0
Zh(.“ ,Sua) = Zh(so (I-“1) )S#a)
= h(So(u-1), 8,a) +2; (u-1,5 a)
= h(/J,Sua) by 10.3
Ww
= oC S
w “( ua)
= o -SoCu(a)
=o' . (a) + o
U
Hence for all p

-’ H
Z.h(u,sua) =8 (a) +0

Therefore

g(S“a) = Zh|(d(a) -y - 1,Sua) + ot .Cu(a) + o
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2,(0,a) + &= n(0,a) +u°
= o Lo(a) + o
For p> 0
2,(,8) + o =3 (5 @-1) ) + o

h(So (u=1) ,a)' + Zh(u-1 ,a) + o

n(u,a) + o* by 10.5
]

it

M .C“(a) +

Hence for a1l p< d(a)

ot .Cu_(a) + = Zh(p ,a) + of

» Therefore
g(Sﬂa) = Zh,‘(d(a) -y -1, S”a) + Zh(u ,a) + o
=2, () —u -1, 8) +2, (,a) +o" by 106
=2, (a(a), a) + " by 104
= Sug(a)
Therefore
g(S”a) =S if p 2> d(a)
E(Su.a) = Syg(a) if p< d(a)

Taking the subtraction function 2 as defined on the natural

numbers

65,8 = [1 2 (aa) Zw))s,a+ (12 (12 (aa) 24))) s, 6e)
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the reéult follovs by ‘U teaking _
B (xy) = (12 (a(a) = )] 8pc+ [1 = (¢ = (a(a) ~u))]8,y
Since the d egree fhn.c':tion ana the componen‘t.,. func"cions‘ only tgke
values gmong the natural numbers Cantor's Normal Form Theorem shows
that any ordinal a in this system (i.e. less than «“) can be
expressed uniquely in the -form
a= wal a1 + («)a‘:3 g t .ee +:wak.ak
where a3,83, ..+ 8k are natural numbers and a3,X3, ..y, Xx is
a decreasing sequence of natural number/s.
Denote a preceg "&f by a string of n sugcessor functions
S by §u(n)a. ;u(o)a. Will be taken as a. The following result

u
is proved.

10.7 Ho=s (Mo
u
PROOF WHo=0
s“(o)o =0
w" Sl = wu q + w“
= Su (" .n)
S (Son)o - S (n+1)0
u u
- s s (@
Su®y

The result follows by UQ taking f(n) = s n, g(n) = S” (n)o’ ‘
I=¢,J={0} and My = S,
Hence if an ordinal a is given the above representation in
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Cantor's Normal Form a can also be expressed in the form

a = S(al)o + S(a2)0 vee S(ak)o
ay [+ & oKk

Using the defining equations for addition a can be expressed in the

form

= S(ak) S(akvl) e S(al) 0,
a Ak-1 ai

a

Hence Cantor's Normal Form Theorem gives a proof within the
system that any ordinal in the system can be uniquely expressed as
0 preceded by a string of successor functions if the indices of the
successor functions are in ascending order.

Computation with ordinals written in normal form (as done by, far
example, Sierpinski) can be performed algorithmically if the
expressions are converted into strings of successor functions and
successive applications made of axiom A and the defining equations
for the iappr'opriate‘ functions. Examples are given of an addition
and a multiplication carried out in this way.

So B0+ 50

S0(S05050515252530 + S30) def. of add.

1}

@+ o® 2 +w+ 3) + WP+ 1)

SO(S?GOSOSOSISQSQSSO + O)) " 1" "

Soszsososcslszsz SaO " 1" "

1}

50525255530 axiom A

w3+ o 3+ 1

1}
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(®+ 0.3) J(@®+ 1) = 515151520, SoSs0

313151330.530 + 53153153530 def. of mult.

$15;51520.0 + 515151520 &°

1]

+ SlS;SlSzO " " "

w® + 5153515450 " " "

Sg0 + S535:5:5,0

31(350 + 5151320) " " "

5181(850 + 31820) " " "

813181(350 + SQO) " " "

S1515152(Sg0 + 0)

31313152550 def. of add.

il

W+ ¥+ 0.3
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11. The Left Successor Functions

There is a countable infinity of these functions and they are
denoted by ‘1‘# and defined by the following recursions.
TO0O=S0
“u H

TS a=STa
[Ta7 vu

These definitions are consistent for

TuSVSAa = SvTu S)\a

Sv SATu a

STa if v > A
v i

[}

The following analogous result to axiom A 1is proved

At TT =T if g v
v u

PROQF TTO0 =TS0
- v i v

i i
w 7
w 3
o o
o’

<
5
(o]
=]

L

it

4}
®

o

]
H
o

TTS,a
v 4

>
1]

<

N

tlﬂ
[

i
[22]

T S.a

=
>
1}
>
=



The result follows by U, taking f(a) = ‘l‘vTua, gla) = Tua,

I=¢,J =% eand =5, .

11 .1 Ta=w + a
u
PROOF TO0O=9S8090
—_— u H
w.”+0=w“
TSa =STa
[T vou
W+ S a =5 (W a)
v v

The result follows by Us taking f(a) = T8, gla) =+ a, I=¢
and Mv = Sv . This result shows that the function Tﬂ is to be

H  on the left. The analogy between this

interpreted as addition by w
function and Su is clear.

Function definitions using Tu in place of i .

Suppose a(x) and bﬂ (x,y,2) are primitive recursive functions
and F(x,y) is a function satisfying the following equations
a(x)
F(x,2,5) = b, (x,5,F(x,5)) .

In addition the following condition holds on the functions bu o

F(x,0)

c' b (x,Tuy, b, (x,7,2)) = b, (x, y,2)ifv <up.

This condition is a consistency condition imposed by A'. Do these equations

define F(x,y) and necessitate its being primitive recursive? The
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answer to this question is in the affirmative. In the same way that
it follows from Cantor's Normal Form Theorem that any ordinal a can

be expressed in the form

S(ak)s(a(-l) ve S(al)o
ak 27" | [ &Y

it also follows that this ordinal can be expressed in the form

o = p(a2) plxa) | plexdg
al [+ 2. Ak

It therefore follows that by repeated applications of the above equations
which are satisfied by F(x,y) the value of F(x,y) can be calculated.
Hence these equations give a definition of F(x,y). The consistency
of this definition is guaranteed by the function by satisfying
condition C'. It remains to show that this definition makes F(x,y)
primitive recursive.
THEOREM. If a(x) and b#(x,y,z) a re primitive recursive functions
and F(x,y) a function which satisfies the equations

F(x,0) = a(x)

F(x,Tuy) = bu (x,y,F(x,y))
where the functions by satisfy the condition C' then F(x,y)
is primitive recursive.
PROOF . The function G“m(a,b,c) is introduced and defined by the
following recursion.

Gou (a,b,c) =C
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Ggo m(a,bac) = bu(a,wu.m + b, Gmu(a,b,c))

¢ and m are restricted to the matural numbers,
The following result is now proved.

F(a, w“ J + b)

I

G'mu (a:b :F(a:b)>

¢ (a,p,F(a,b)) = F(a,b)

F(a, W0 +b) = F(a,b)

Ggonl(a,b,F(a,b)) = bu(a,wp.m + b, 6"(a,b,F(a,b)))

E(a,wu Sem + b) = F(a,wp‘(‘] +m) + b) since m is finite

F(a, oMo (w#f,m + b))

i

F(a, T“(wu.m + b))

bu(a,wu.m +b, Pla, o"'ym + 1))

The result follows by V, taking f(m) = Grmu (a,b,F(a,b)),
g(m) = F(a, wu,m +b) and Hy(x,y) = bu(a,wu.x + b, y). The theorem
will now be proved by induction on the degree of the second argument
of F(x,y). Consider F(a, va).

If d(b) = 0 b is finite and Seb = Tob.
Therefore F(a,Sob) = F(a,Tob)

bo (asb ,F(a,b) )

i

For p> 0 va = SVO by axiom A
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=T0O0
v

Therefore F(a,va) F(a, TUO)

b, (,0,7(a,0)))

Hence for d(b) =0 F(a, va) is defined in terms of a, b and

F(a,()) by a primitive recursive function. If d(b) > O a(b) =n + 1,

then b = Zh(n + 1, b) where h(m,a) =" .Cu(a)
= h(n + 1, b) + Zh(n:b)
= o Cppn (v) + Zh(n,b)
sb= "o () +2, (0,0) + 0’
n+1
= 0w ,cn+1(b) + Sth(n,b)
. 2\ _ ah+l
F(a.vsvb)"‘ G'Cn+1 (b) (a:svzh(n,b) ’ F(aysvz'h(n’b) ))

Zh(n,b) is of degree n and therefore by the inductive assumption
F(a,Sth(n,b)) is defined in terms of a, Zh(n,b) and f(a,Zh(n,b))

by a primitive recursive function., Hence F(a,va) is defined in

terms of a,b and F(a;k) by a primitive recursive function.
The consistency of this definition is guaranteed by the consistency
Qquations C' satisfied by the functions by.

This theorem enables primitive recursive functions to be defined
by recursions using Tu, instead of Sll . For example addition could
be defined by the following equations

O+b="
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1.2 Tua+b='].‘u(a+b)
PROOF  The first equation has already been proved.
For the second equation
Ta+0=T
u u®
T (a+0=T a
u( )="1T,
Ta+Sb=S(Ta+hb)
M v v u

Tu(a + va) = TuSv(a + D)

= SVTI.I (a + b)

The result follows by Uy taking f£(b) = Tﬂa +b, g) = Tu(a +b),
I=¢,J=2 and N =5.

An analogous uniqueness rule to U; 1is now proved.

| £(0) = g(0)
Uy ! f(Tﬂ,a) = Hp (a,f(a))
g(Te) = H (a,g(e))

£(a) = g(a)

Taking bu(x,y,z) as Hu (y,2) in the proof of theorem 1

£(Soa) = Ho(a,f(a)) if #(a) =0

f(Spa) = H;(a,f(o)) if vy> 0

g(Soa) = Ho(a,s(a))

6(5,2) = K (8,£(0)) v

= 1 (2,6(0))
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£(5 ) = c,gc(le(l)) (o) (8,2 (a(a)-1,0), £(52, (a(a)-1,2)))
g(s ) = Gg<?)) () 82, (a(a)-1,2), &(5 2, (d(a)-1,2)))
d(a

For d(a) = 0 the conclusion of U;' holds by applying Uy with its
hypotheses restricted to u = 0. The general conclusion of Ul' therefore
holds by induction on the degree of a.

As with schema U; there is a particular instance of Ul' which is
frequently used I and J are indexing sets of natural numbers.

IvuJ=2, INnJ=4g.

£(0) = g(0)
f(TuJC) = g(Tpx) for puel
f(Tpx) = mwf‘(x) cor ue s
g(THX) = M“g(X‘)

£(x) = g(x)

The proof of this schema follows the proof of Ua.

The following result provides a further connection between Sp and Tll .

11.3 a+Tb=Sa+h
u u
FROOF a+Tub =a+ W+ D)

(a + ") + b
Sa+hb
u

i

This result is the generalisation in this system of the result a + Sb = Sa + b
proved by Goodstein and used in the proof of the commutativity of addition

in the arithmetic of the natural numbers. When this multisuccessor system is
restricted to the natural numbers the functions S, and T, become
identical. Therefore any identity in this system involving functions Tp

and SIJ becomes an identity in the aritimetic of the natural numbers by

substituting the symbol S for Tu and S# whenever they occur.
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12. Predecessor Functions

There are a countable infinity of these functions and they are
denoted by Pll . They are defined by primitive recursions which use the

functions Tﬂ instead of S“.

PO=20

w

P =P if
u’]?va “a if u>vw
PTas=a

[T,
PTa=Ta if u< v
uv v

These definitions are consistent. To prove consistency it will be
sufficient to adopt an analogous procedure to that adopted in the case
of successor functions SM' Replace Tv by TATv’ where A< v,

on the left hand side of the defining equations and apply the definition

twice. For the predecessor functions suppose

(1) u>vs>a

i

)
3

o

P# TATv a g J.v

1]
Las}
)

(1) pw=v s

PTa

Pu QATva



(i41) v > u> A

PT.Ta=PTa
U A dv
=T a
v
(iv) v>Ar =y
PT.Ta=PTTaea
uATY upv
=T a
v
(v) v>A>F
PuTATva = TATva
=T a
v
12 1 PP=P if pu>v
uv u
PROCF . PPO=PO0 =9
— [T8Y u
Case (1) u>v>A
PPT.a=PPa
U vA uv=
PT a=Pa
u-A u
Case (ii) pu>v =A
PPT.a=PPTa
g v A vy
=Pa
7}
PT a=Pa
HoA u
;{“ ""
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Case (iii) u > A >

<

Pqu?Aa = PuTAa
=Pa
u
PuT)ta = Plia

Case (iv) pu=A>v

FLF;Tka =P ?Ka
=P Ta
uu
= a
PLTAa = guTua
= a
Case (v) A>pu>v
PLPLTka = Pﬁ:ha
=TA8.
Pu?Ka = TAa

The result follows by Us taking f£(a) = PLP;&, gla) = %Ja,

I={itizv}, J={itic< v} anmd M, the identity function.

13. Subtraction

This is defined using the predecessor functions by the following

equations.



The definition is consistent for

il

a—~SSb=P(a=58h)
uv u v

P#Pv(a - b)

Pu(a‘-:-b) if 4> v

The subtraction defined here is not the only possible primitive recursive
subtraction. It does, however, behave in many ways as the inverse-: to
addition as is shown in the following results. In particular the
important key equation a + (b - a) =b + (a - b) holds with this

form of subtraction but does not with other subtractions. This
subtraction does, however, lack certain properties which are associated
with the function when defined on the natural numbers. For example

the identity (a + 1) l1=a does not hold as is shown by the

following example.

]

(w+1) 21=0D%0-%0

PoTa1T60

11}

T3To0
=w + 1
The definition pf‘ subtraction gives a connection between a
subtraction of Sllb and a subtraction of b. The following result

commects a subtraction of ’l‘ub and a subtraction of b.

13.1 a-Tb=Pa=b
u u

PROOF . a>T0=za<~80

PROOF p "
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P, (a 20

=Pa, .
u
Pa—-0 =Pa
7 i
a~TS8Sb =a-STh
Tt v u
= Pv(a - Thb)
Pa-Sb =P (Pa>h)
u v vy

The result follows by U taking f(b) = a = T, g(b) = Pa b,

I=1{¢}, J=2 and M =P .

13,2 Ta—-Tb=a=hb
u 7
PROCF . Ta<-Tb=PTawhb by 13.1
_— I u T,
=ai...b
13.3 (a + b)-: (a + c) =b—c¢c
PROOF (0+1b) 2(0+¢c)=b=c¢c

(Tua +b) = (Tua + c) ‘Th(a +b) = Th(a + c)

(a + b)=l (a + ¢) by 13.2

1]

The result follows by Uz taking f(a) = (a +b) = (a + c),
ga) =b e, T=2 and T=daud Mp=T.

As particular examples of 13.3 the following results are noted.

13 4 (a+Db) ~a=0
13.5 a=(a+b)=0
13.6 0>a=0
13.7 a-a=0
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The corresponding equation to 13.3, (b+a) = (c+a)=b ¢
does not hold as is shown by the foilowing example

@+ 1) 2 (2+1) = TyTe0 = SoSeSe0

PoPoPoT 1T o0

T1T¢0

w + 1

[t}

W =2=T0 2 5,50

= PoPoT 10

= T,0

=W
13,8 aZ(b+c)=(a=Db) ~c
PROOF . a<(b+0)=ab

(aib)Z0=ab

o

a — (v + Suc) = :S/.L(b + c)
(a-.- (b + c))
P, ((a 1) =)

(b +¢), glc) =(a=b) =g,

[
.S:'U

(a = 1p) - SIJC

The result follows by Ug taking f(c) = a

I=¢, J=272 and Mu=Pr‘.

u

13 .9 a.('l :-a) = 0

PROCF . 0.(120) = 0.1
=0

1
©
"

(12 Ta.(P T 0 =
Tua( ua) /"a(uo
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PT,0=PO0 if > 0
u° U “
=0

Hence T”a.(PuSOO Za)= Tﬂa.(O Za) for all u
= Ta.0 by 13.6
=0
The result follows by Uz taking f(a) = a.(1 = a), g(a) = 0,

I=2 ard J=¢o

13.10 (1 2a)a=0
PROOF . (120.0=0

127a)Ta=(PTe0=a).T a
( Ila) u (uo )#

The result follows by Uz' taking f(a) = (1 = a).a, gla) =0,
I=2 and J =¢.

14 Double Recursion

A function is said to be defined by double recursion from the

functions a(x), b(y) and C“ (x,y,2) using the left successor

functions Tﬂ if it satisfies the following equations
F(x, 0) = a(x)
F(O,T b(T
(0,T ¥) (T,)

F(T x,T ¥y
(ux:”y)

H

"

Cﬂ (X:Y:F (X’Y> )

where the functions C# satisfy the following consistency conditions
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]
imposed by A .

D Cv(Tux’Tuy} C”(X,yyz)) = Cu(x,y,z) for u > v

It might be supposed that the above equations are inadequate as a
definition of F(x,y) since there is no equation expressing
F(Tux, Tvy), for u #v, in terms of F(s,t) where either s 1is
smller than Tux or t is smaller than Tvy or both. Such an
equation can however, be deduced from the above equations using A'.
Consider F(Tuz, Tvy} where u #v. Suppose u > v, then
F(Tux, Tvy) = F(Tv'l’ux, Ty) =b (Tux, TV, F(Tux, ).
A similar argument zpplies if pu< v.

Definitions can be made by double recursions using the successor
furctions S  instead of Tu . Such definitions are not, however,
so simple since it is necessary to give separate equations giving
expressions for F(SNX’ Svy) when p >y end uyu =y and pu< v.
This necessitates complicated consistency conditions on the functions
in terms of which F(x,y) dis defined. No use will be made of
this latter type of definition and it will not,therefore,be discussed
further,

15. The Key Bquation.

The equation a + (b > a) =b + (a = b) holds in this system.

As in the systems of Goodstein and Vubkovié this equation assumes
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great importance since it enables a difference function [a,b]

to be defined which has value zero if and only if a and b are
equal. Goodstein proves this equation using a doubly recursive uniqueness
rule and later manages to give a rather more difficult proof using the
primitive recursive uniqueness rule. Vulkovil 's proof off the key
equation also uses a doubly recursive uniqueness rule. A proof using
the primitive recursive uniqueness rule was later found by Partis.

In the system given here a very simple proof of the key equation is
presented using a doubly recursive uniqueness rule. Besides simplicity
this proof has the virtue of showing intuitively that this equation
holds for ordinals less than ww. Such a proof cannot, however, be
admitted in the formal development of the system since a doubly recursive
uniqueness rule has not been given as one of the inference schema nor
has it yet been proved to be a valid schema. Once the key equation has
been accepted a doubly recursive uniqueness rule can be proved.

It would therefore seem that in this system as in that of Goodstein
there is a certain equivalence between the key equation and a doubly
recursive uniqueness rule. A formal proof of the key equation will be
given here using Cantor's Normal Form Theorem. A doubly recursive
uniqueness rule will be formally stated when it is proved. The proof
given now of the key equation simply shows that a + (b z a) and

b + (a z b) satisfy the same introductory equations when regarded as

doubly fecursive functions.
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Proof of a + (b pa a) =b + (a - b) using a doubly recursive unigueness

rule.
Let £(a,b) = a +(b > a), g(a,b) = b + (a 2 b).
f(a,B) = a + (0 = a)
=a+0
= a

g(a,0) = 0 + (a = O)

1]
o

f(O,Tﬂb) + (Tub 0)

=0+ThbDo
I

[

Tb -
u

0,T b Tho 0-Thbo
£(0,20) =Tb + (0 - T)

Tb+ 0
u

TDo
u

f(Tua,Tub) Tua + (Tub - Tpa)

Ta+(b=a
ua( )

1]

Tu[a + (b= a)]

i

Tug(a,b)

T a,T b Thb+ (Pa~Th»
g(l-la’ﬂ) u (ua H)

‘b)
b))

Tu'b + (a

il
le

Tu[b + (a

Tug(&,b)



PROOF of a + (b —~a) =b + (a —b) using Cantor's Normal Form Theorem.

By Cantor's Normal Form Theorem a and b can be expressed in the
following forms.

= S(ak)s(ak-l) vee S(al)o
QK Akl Q3

- TOE:;) Tizz) Téik) 0

_ (b)) o(bra) (b3)
b—Sﬁ" Sﬁb.:. “.Sﬂl 0

_ m(b1) (bg) (b)
=Tgy Tgg o ey 0

where a ,f8 , a , b are all natural numbers ak< Akw1<4 eee

< A1y L < Pre1< eee< Pf1 and at and by are non-zero.

b tas= Tﬁ(tlu) Té":z) Tﬁ(l:,‘) 02 Séik) SGE?::I) Séiu) 0
- Péik)Péi':';l) Péfﬂmézl)ﬂ:ﬁ(:?) T[gzl) 0
Case (1) a =1
b-a=0
a+ (b a)=a
Case (1i) B1 =Q1, B2 = Agy eeey flel:= Aiw1y, L =L

b1 = = az, esey bt,.l atpl’ bL< ai’

f
o
v
-
o’
N
|

1< i< Min(k,1)
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b2 a=plk)  plana)plao(bi)q (o) o),
ak atelr @i Bl Pier By

by successive applications of the defining equations for Pu.

(ak) (ai.+1) (&L—b[,) (bhl) (bt)
Pa ”.Pah-l P&B Tﬂhl oo Tﬁ', 0

O since at — by > 0 and aty> Bler > Pisz > oo > P

Hence a + (b = a) = a

1]

X2y eeey fler = Alw1r, L = ai

Case (iii) Bi1 =ai, B2

atu1, by > atg

1l

b]_ = al’ bg = az, es ey btpl
b= a o plak) . ple te1) p(a 1) (1) (biea) .”T(bt)o
ay Qier AL P Pisr B

_ o(ak) (ate1)n(by=at) ,(bie1) (by)
"Pock "'Pat,u TﬁL Tﬁt.+1 '"Tﬁ‘l. 0

_ m(br=ay)n(brae1) (be)
—Tﬁt Tﬁ'ul ".Tﬁl, 0

since by - ai> 0 amd Bi > @1 > luz > eer > Gk
LS s
Hence .
a+ (bla)s= sé:k) Sé?:.l) ... Sasai)o . Sﬂgbc) Sﬁ(zt-l-l) . Sé'zi,—at,)o

_ o(bt) o (b-1) (br-ar) o(ak) o(ak-1) (a1)
'Sﬁi sm_1 ‘"Sm so‘k smkd1 ...sallo
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_ o) (bo1) (bi-ay) (at) (& 12 (a1)
= sﬁL sﬁ _11 ...sm smL Spey | eeeSy 0

by axiom A since ak < Oke1< eeel i =1

séf‘%é&;ﬁ X "ngtt) ...sﬁ(fl)o

since a1 Bie1, at =1

i

B1, az S B2, eeey X1

ax bi-1 .

bl, aQ =m’ ccey ai,-l

=Db

I}

Case (lV) ﬁl 011,52 = U2y esey pb—-l =al,.1,ﬁi< at

b1 al,b.? = 3y eeey Diwl = 8lu1 o

e (&) (adn(by (by)
b~a-= Pa:k bR U Vel T M0

=Po((:k)...Pé:L)O
since ai > FL ® PBiel > oo > B
=0
Hence a+ (b - a) = a.

Case (v) 1 =a1,P3 =2, «oePi-135 Xi-x, At > AL

"

b =a, b2 =8, .o ble1 = 82

. (ax) (ay) (by) (b,)
b-a:Pai'k ...PmL TmL ...Tﬁf 0

(br) (bie1) (b,)
Too' oot ...Tﬁbb 0
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since 1 > X} > Alsl > eee > Ok
s{PUs-1) (o)

B i B
Hence
a+(b2a)s= sézk)sof:*_‘f) Saff“)o " Sﬁ(tb) (;’::1)“. Sét:»)
B O
s )gor) () J(ard G(ara) b(a]_)o

ﬁ(, ﬁ¢..1 Bt Sat-1 [ FPP

by axiom A since fi > AL > Alel > eoe > Ak

5{be) ((bon) (L) (bra) ()
v Spper vt Sy B¢_1 B

since a1 =P1, 02 =P2 s eeey Alul =fi-1
a1 =, 8 =M, «coy, 8lu1 = b1
=b.
Since the representations of a and b as strings of successor functions
as given are unique these five cases exhaust all possibilities. The value
of b+ (a b b) will now be considered for each of these cases.

Case (i) a =1

a-b=0
b +(a=b)= b
= a
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Case (ii)

Since the conditions in this case are the same as the conditions in

case (iii) if a and b are interchanged thevalue of b + (a < b)

will be the same as thevalue of a + (b 2 a) in case (iii) interchanged
i.e. a.

Case (iii)

Since the conditions in this case are the same as the conditions in

case (ii) if a dnd b are interchanged the value of b + (a = b)

will be the same as the value of a + (b — a) in case (ii) interchanged
i.e. b.

Case (iv)

Since the conditions in this case are the same as the conditions in case (v)
if a and b are interchangzed the value of b + (a i b) will be

the same as the value of a + (b = a) in case (v) interchanged i.. a.
Case (v)

Since the conditions in this case are the same as the conditions in case
(iv) if a and b are interchanged the value of b + (a et b) will be
sare as the value of a + (b = a) in case (iv) interchanged i.e. b.
Hence a + (b = a) and b + (a - b) are equal in all cases.

In fact they are always equal to either a or b. This fact will be

made use of later in the definition of ordering relations.
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16. The Difference Function.

This is defined by
‘I&:bl = (a - b) + (b = a).
The following schema is proved.

|a, B = 0

A=38

PROOF. B> A= [(A>~3B) + (B=4)]~ (4 =B)

|A,B] = (4 = B)

0= (A~ B) if the hypothesis holds

=0

Hence A =B = (A2B) + 0

(AZB) + (B4

= | 4,8|
=0
Therefore A+ (B = A) = A+ 0
= A
B+ (AZB) =B+0
=B
A+ (B-4) =B+ (A<B) by the key equation
Hence A =B

The implication in this schema clearly holds the other way round for
if A=B, (AZB)+ (B=-A4)=0+0=0, Therefore any equation

F =G is provable in this system if and only if the equation
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IF,GI = 0 1is also provable. In this sense these two equations may
be said to be equivalent. Any equation in this system may therefore
be replaced by an equivalent equation where the right hand side is zero.

17. Induction Schemata

If the proposition P 1is represented in this equation calculus
by the equation p{x) = 0 and the proposition Q by the equation
q(x) = 0 then the proposition P = ¢ will be defined by the equation
(1 2 p(x))q(x) = 0. This definition is justified since if p(x) = 0
then the equation gives q(x) = 0.,

The following induction schema

P(0), P(x) = P(gpx) for all u
P(x)

is represented in this system by the schema

plo) = 0, (1 = p(x))p(S,x) =0 for all u

I,
. P(x) = 0,
This is a valid schema in this system.
PROOF. Define q(x) by

q(0)

Q(%Ia)

1
q(a)(1 - p(a))

This definition is consistent for

a(s,5,2) = a(s a) (1 = p(5,a))

a(e) (1 2 p(a)) (1 £ p(5,2))
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1l

q(a){(1 = p(a)) = (1 = p(a))p(Sva)i

a(a)(1 = p(a)) by the hypothesis of the schema.

This holds whether v< u or not. Hence q(S“a) =1 by U, taking

f(a) = q(Sua), gla) =1, I=¢, J=2 and M as the identity function.

Therefore
q(a) (1 = p(a)) =1
a(e) (1 = p(a))p(a) =p(a) by 13.10
Hence p(a) = 0.

There is an analogoog schema to 11 using the left successor functions

p(0) =0, (1 = p(x))p(Tux) 0 for all u

p(x) = 0
PROOF. Define q(0) = 1
(T a) = q(a) (1 = p(a))

This definition is consistent for

q(TMa) (1= p(Tua))

q(TvT”a)

a(a) (1 2 p()) (1 2 p(z,0))

a(a3(1 2 p(@) > ala) (1 2 p(a))p(T,2)

g(a)(1 = p(a)) by the hypothesis of the schema.

Since this is true whether p< u or not q(Tpa) =1 by Ul

taking f(a) = q(Tua), gla) =1, I=¢, I =2 and M as the identity

function.
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Therefore

"
-

a(a)(1 = o(a)
a(a)(1 = p(a))p(a)

Hence ' P(a)

p(a) by 13.10

i}
o

T f(a,0) = 0, £(0,Tub) = 0,{f(a,b) = 0} » {£(T,a,T,b) = 0} for all u
2 ) plazy

f(a,b) = 0
Before proving this schema two less general schemata will be proved.

f@ﬂ):ojf@¢)=okﬁﬂ%agp)=o}mrd1u

f(c+a,c) =0

PROOF . Take p(c) = f(c + a, ¢). Then

p(0) = £(a,0)
=0 by the hypotheses of the schema
P = :
(Thc) f(Tuc + a,TLc)

= f(Tu(c + a),TLc)

0 by the hypothesés of the schema.

[t}

Hence (1 b p(c))p(TLc)

Therefore p(e) =0 by I4

Hence f(c + a,c) =0

f(a,0) = 0, f(o,qpb) =0, {f(a,b) = 0} » {f(qua,qub) = 0} for &ll u

flec, c+b) =0
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PROOF  Take p(c) = f(c, ¢ + b). Since £(a,0) = 0, £(0,0) = 0.

Also f(0, Thb) = 0. Therefore f(0,b) =0

i p(0) =0

P (Tu_c)

f’(T“c, Tuc + D)

f(TllC’ Tu(c + b))

Hence (1 = p(c))p(Tuc) 0 by the hypotheses of the schema

Therefore p(e) 0 by Ii

Hence f(c,c+b) 0

PROOF . of schema I5.

As in the proof of the key equation suppose

- slak) glaa) () |

Ak Ok-1 a1
_ o(by) (brea) (by)
b = S‘BL bﬁt,-l cee Sﬁl 0

In cases (i), (ii) and (iv) b+ (a=b) = a.

Therefore f(a,b) = (b + (a = b),b)

If the hypotheses of I, are satisfied so are the hypotheses of the first
of the above two schemata.

0

Hence £(o + (a = b), b)

Therefore ’ f(a,b) 0

In cases (iii) and (v) a+ (b 2a) =b
Therefore f(a,b) = f(a,a + (b = a))
If the hypotheses of I, are satisfied so are the hypotheses of the

second of the above two schemata.,

- 63 -



0

Hence f(a, a + (b z a))

Therefore f(a;b) ¢

The doubly recursive uniqueness rule is now stated and proved.

Vi f(a,0) = g(a,0)
f(O,Tub) = g(O,Tub)
f(T“a,Tyb) = Hu(a,b,f(a,b))
?(Tua,f[‘ub) = Hu(a,b,g(a,b))
£(a,b) = g(a,b)

PROOF. Define ¢(a,b) = |f(a,b), g(a,b)} . Prom the hypotheses of

Vi the following equations result.

¢(a,0) = 0
yt(o,'l‘ub) =0
l¥(a,p) = 0§ » {¢(T)a, Tb) = 0]
Therefore #(a,b) =0 by I,.
Hence f(a,b) = g(a,b)

18 A number of proofs which require the doubly recursive uniqueness rule

are now given
18.1 a.b=¢c) =ad < a.c

.

i.e. subtraction is distributive with respect to multiplication on the

left
PROOF a.b —0) = a.b
adb ~a.0 =adb ~0



]
fV]
.
o

a.(0 2 ‘l’uc)

a.O-’-a.Tc=O-.-a.Tc
H u
=0

a.(b b c)

(Tb -7
a(u uc)

a.(w‘u-a; b) = a.(w+ o)

a.Th - a.T ¢
u 1

(aaw” + ad) 2 (awH + a.c)

=adb =a.c
The result follows from V3 taking f(b,c) = a.(b = ¢c), g(b,ec) = a.b = ac

and Hu(x,y,z) = z. Subtraction is not, however, distributive with respect

to multiplication on the right as is shown by the follw ing example.

(22 1) w= (To10 = $0) W

POTOTOO’U
To 0w
S 0w

2. - 1.W

]
éjA
&
o
€

I
&
(o]
€

[t}
(]

18.2 (a = b) b - a)

a .0

PROOF (a.~0).(0 2 a)
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0T b

(o = Tub) .(Tub 20

=0

(a 2 1p).(b = a)

1]

Ta=Tb).Tb~T
(2o np) .oyt
The result follows from Vi taking f(a,b) = (a = Db).(b = a),

gla,b) = 0 and HH(X’ Yy 2) = Z.

18.3 (a=Dp) =(a=b) 2 (b 2a)

PROCF (a>0)2(02a)=(a>0) >0

=a=-20
0—-Tb =0
u
02T b)=(T b=—0)= 0= Th
( u)(u )
=0
Ta=-Tbh =a—D>

(a=1b) = (b -

l
©
p—

(Tua - Tub) - (Tub-Tua)
The result follows by Vi taking f(a,b) =a >,

g(a,b) = (a b b) 2> a) and Hu(x,y,z) = zZ.
[(a2c) +Db] < (c2a)

PROOF . (a+b)-0=a+hb

18 L (a +b) ~¢

[(a20)+b) = (02a) =(a+Db)=0
=a+b
(0 + b) -‘-'I‘uc =blTuc
[(0o = Tuc)+b]-'-(TuoiO) =b = T,0

Ta+b) =Te=T(a+Db) =Tec
(u ) U lu( ) y
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(a+b)lc

[(a2c) +b] = (c™a)

it

[(T#a L Tyc)+b] < (Tuc-'-Tua)

{]

The result follows by V, taking f(a,c) = (a + b) ~c,

gla,e) = [(a ~¢) +b] = (c = a) and B (x,y,2) = 2

19, The Absorption Laws.

19.1 b+a=a if da(b)< d(a)

PROOF .. If a 0 d(a) = 0 and the result holds vacuously.

I}

b+ Sp'a = Sp(a. + b)
The result holds by U, taking f(a) =b + a, g(a) =a, I =¢,

J =" and MNp as Sp.

15.2 a<~b=a if da(b)< a(a)
PROOF . a—-0=a
a.-'-Tb=Pa-'-b
u u

If u 2 d(a) the result holds vacuously. If pu< a(a) Pua = a. Hence

a-Tb=a=h5
u

The result follows by U, taking f(a) =a=b, g(a) =a, I=¢,
J =72 and Mll as the identity function.

20, The Order Relations

The relation a < b will be defined by the equation a + (b - a) =b.
This relation is reflexive, antisymmetric and transitive as is shown
by the following results.,

201 ag &
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PROOF

20.2

PROQF

But

Hence

20,3

PROOF

a=">
=~ a) =b by the hypotheses of the schema
< b) = a by the hypotheses of the schema
Za)=b+ (a=0)

a=Db

as ¢
a+ (b - a) = b by the hypotheses of the schema
b + (e - b) = ¢ by the hypotheses of the schema
a+(c>a)=a+[(b+(cZb)) =al
=a+ [(a+(d2a)+ (cip)) > al
=a+(b=a)+ (c=1)
=b+ (¢ =)
= c

It must be verified that this definition of the relation <

conresponds to the usual notion of ordering among the ordinals.

a and b are represented in Cantor's Normal Form by

a

xQ 24 o
wloa]_ +w208-2+ Ooo+wkoak

wﬁl.bl +wﬁ2.b2 + ...+w!8i'.b‘,
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a and b may then also be represented as the strings of successor
" functions given in the proof of the key equation. In this proof the
conditions iﬂ cases (i), (iii) and (v) clearly correspond to the
usual notion a << b, In eachibf these cases it has been proved |
a+(b>a)=>b, Converselyifa+(b22a)fb, a+(b2a)s= ;
again by the proof of the key equation. Hence b + (a = b) = a.
Therefore b éa and unless a =b a%b by the usual notion of ordinal
inequality. Hénce the definition of EE; here defined faithfully represents
the usually understood notion.

It follows from the defini?ion of =< and the key-equation that .the
expression o +‘(b 2 a) represents the maximum of a and b, This is
also the case in Goodstein's system for the natural numbers, In Vulkovil's
syétem the relation a + (b 2 a) = b partially orders the structure and
the expression a + (b 2 2) represents the least upper bound of a and
b when the structure is considered as a lattice. In both these systems
the equation a 2 (a 2 b) =b 2 (b2 a)holds. This is analogous to the
_key-equation. In Goodstein's system the exvression a £ (a £ b) represents
the minimum of & and b and the relation a = (a & b) = a provides
énother definition of a < b, In Vautkovié's system this relation is the
"sgmé.as the pértiai'order referred to above ahd the expression a = (; Zb)
represents the greatest lower bound when the structure is considered as a
laétice. Rather curiously in the system vresented here there is no such

obvious interpretation for the expression a & (a 2 b) and the relation

a>(atb)=a.
- 69 =



The equation a = (a =b) =b = (b = a) does not hold as is shown by
the following example.
w+1)2[+1) ~0]=(+1)

=W+ 1) = T,0

P1T,T40

= PoT1To0 ~ 0
= T1T°0

= o + 1

w=[w=@+1)]=w = [w = 508,0]

Z PoPyTy 0

i
e
1

=w—P°O

=w -0

This example also shows that a - (a = b) = a cannot represent the
relation a {b since (@ + 1) 2 [(w +1) *w]l=w +1 and o +1Zw.
The relation a< b is defined by the equation for Sea< b.

This relation is itreflexive, asymmetric and transitive as is shown by the

- following results

20 A a<¢/ a
~ PROCF . Suppose a< a. Then Soa< a. . Hence

S,a + (a = Spa) = Spa + Po(a = a)

Soa. + Poo

Soa

fl

If Sa=a Spa—a=0, Hence 0

S0 which is not true by axicm B,
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Therefore

205

PROCF

Hence

20 .6

PROOF

Hence

Sea + (b = Sea)

Sob + (a = Seb)

ad a.

a< b

b a

1]

= a

= a

= a

= a

a + So(1 + (b  S4a))

So(1 + (b = Soa))

So

0 =0 which is

a< b, b¢ ¢

a< cC.

a{ ¢
Soa + (b — Sea)
Sob + (¢ = Sgb)

Soa + (C - Soa)

1]

il

b by the hyposhesis

a+ (Sgb - a)

+

[So(Soa + (b = 50a)) = a]

[(a+ 1+ Se(b = Spa)) = a]

+

1 + So(b = Spa)

+

So(1 + (b = Sga))

+

a

1]

0

not true by axiom B. Therefore b¢f a

b by the hypotheses

¢ by the hypotheses

Soa + [(Sob + (c = Sob)) = Seal

Soa + [(S0(Spa + (b < Spa)) + (¢ = Sob)) = Soa]
Soa + [(Soa + So(b = Spa) + (c = Sgb)) = Seal
Soa + So(b = Spa) + (¢ = Sub)

So(Sea + (b = Spa)) + (c = Sub)

Seb + (c = Sob)

c
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It is not yet possible to show that the relation a< b is equivalent
to the relation (a< b or a =b) since the logical connective 'or™"
has not been defined in this system. It can, however, be shown that
both a =b and a<b imply the relation aiﬁ b. The first implication

follows from the reflexivity of <. The second implication is formally

stated as
a< b
PROOF . Soa + (b + Sga) = b by the hypothesis
a+ (b>a) =a+ [(Sea + (b X Spa)) = a]
=a+ [(a+1+ (bXSea))=al

=a+1+ (b= Sea)

Soa + (b ‘:' Soa)

=b
21. A number of results and schemata involving the equality and inequality
relations will now be proved. For convenience the notation A 3B will
be used for schemata instead of the previously used notation.
21 .1 b<e H a+bp<a+e
PROOF If b+ (c=-b) =c
(a+b) + ((a+c)=(a+0D))
If (a+ 1) + ((a+c)=(a+0))
[(a+b) + ((a+c)>(a+D))]a

Hence b + (¢ = b) =¢

]

a+ ¢

a + ¢

1l

(a+c)la

i
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The following result is a particular instance of this schema

21.2 al a+b
a+b=a+c | b=c
PROOF If a+b=a+c

(a+Db)a=(a+c)x~a
Hence b=c¢
The implication the other way is obvious
The following schema is a particular instance of this schema
21.3 a=a+b I~ b=0
24 At a+b< a+c || b e
PROOF If Sola+b) + [(a+c) 2Ss(a+b)]=a+c

(a+b+1)]Za=(a+c)-a

[(a+Db+1) + ((a+¢)

Hence b+4)+(cx(®+1)]=c
That is Sob + (¢ = Sgb) = ¢
If Seob + (¢ = Seb) = ¢

(a + Sob) + ((a+¢c) -~ (a+ Sgb)) =a+ ¢
Therefore Sofa + b) + ((a + ¢) = Sp(a +1b)) =a + ¢

The following is a particular instanze of this schema

21.5 0¢< b | a< a+b
21.6 bLe }— @< ac
PROOF If b+ (c<Db) =c¢c

a[lb + (e=1b)] = ac
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S—r
1l
®
)

ab + alc -

|
>
S—

{]
®
Q

ab + (ac -

The following result is a particular inStance of this schema

21.7 0< b |- a<ab
21.8 a2=0 I— a=0
PROOF If a® =0, a>a®=a
a.(1= &)= a
a =0
219 0< b, ab=0j)j—a=0
PROCF If 1+ (bZ1) =1
a[1+ (b 21)] =ab
=0
Hence a + (ab b a) =0
a + (ab Z a) = a+ (0 ~ a) by the hypothesis
= a
Therefore a=0
21.10 0< a,ab=0 F— 1b=0
PROOF If ab=20, baba = 0
Therefore (ba)3= 0
Hence ba = 0
Therefore b =0 by 21.9
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21 .11 0< a, abLack bp< e

PROOF If ab + (ac = ab) = ac

[ab + (ac —ab)] -~ ac = 0
al(b + (¢ 2 b)) 2 ¢] =0
Hence b+ b)) ¢ =0 by 21.10
ac — [ab + (ac — ab)] =0
ale 2 (b + (¢ = b)] =0
Hence c=(+(c=-1b) =0
Therefore Ib + (c Z b), c I =0
Hence b + (c = b) =c
21 .12 0< a,ab=ac bbb =c
PROOF ab = ac =0 by the hypotheses
a(b = ¢)= 0
Hence b-c=0 by 21.10
ac = ab = 0 by the hypotheses
a(ec = b)= 0
Hence c-b=0 by 21.10
Therefore lb,c | =0
Hence b=c

22. The Propositional Calculus

In the system presented here no appeal has been made to the rules of

logic. As with the primitive recursive arithmetic of the natural numbers
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certain rules of logic may be deduced from the arithmetic of the systen,
This is now demonstrated.
The propositional calculus can be developed from the primitive connectives

~ (negation), » (implication) and the following axiom' schemas
o ’ 3%

(1) P> (Q > P)
(2) (P> @Q->R)> ((P>¢q) > (P~>R))
(3) (~Q»~P)>» (~Q~>P) ~>0Q

The only rule of inference is Modus ponens.

In this equation calculus all propositions take the form of equations.
The propositions, the logic of which will be considered, will be
propositional functions f£(x) = g(x). Using the difference function
such propositional functions may be considered in the form p(x) = 0.
Implication between two propositions p(x) =0 and q(x) = 0 has
already been defined by the equation

(1 = p(x)) «ax) = 0.
The negation of a proposition p(x) = 0 is defined by the equation.

1 = p(x) =0

To show that the rules of the propositional calculus operate among

propositional functions it will be sufficient to show that the equations

- 76 -



corresponding to the above axioms hold and that modus ponens is a valid
schema in this system. The axioms will be proved with variables for the
propositional functions. The substitution schema Sby allows these

variables to be replaced by the predicates of propositional functions.

221 (12a)12p).a=0
PROOF (120.12p).0=0
(1= T”a) {1 2 1) T8 = (Pu'roo Za).(1 201) e

(0 2a).(1 ) .'I.‘ua
=0

(1 =~a)b)(1 2a)wc=0

a).(1 =1b).e)].(1
0).(1 2b).e)] (12 (1
(1 =01 =b)ec).(1 =Db)ec

22.2 12 (01

{e

BROOF [1 - ((4 0)Jb)(1 - 0).c

0 by 13.10

—
-
e

((1 = Tua) (i)l (12 T“a) b)) (12 Tua) .c

((prroo 2a).(1<bv)e)].(1 2 (PuToo 2 a).d) .(PMTOO Za).e

i
~
-
I

=0
22,3 (12 (1201 2p)).(12a)l.t
o)1 =a)]1>(1 =21 20)).al0=0

Tub) {1 2a)]r2(1 (1= Tub)).a].Tub

(1201 2bp)ald=0

|e

je

PROOF [1=2 (12 (1
1200
= (

=0 by 13.10

Modus ponens follows from the shcema

-—

2(12a).12a) .Tub

x=20

(1 2x).vy=0
y=20
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the validity of which follows by substituting 0 fpr lj( in the second
hypothesis giving y = 0.

As explained before it is not possible to give a realistic definition
of infinite sums in this system. Nor is it possiﬁle to give a realistic
définition of infinite products. It is not therefore possible to define
the bounded quantifiers Apx and Ei which are defined in Goodstein's
system. The logic of propositional functions which can be derived within
this system is therefore limited to propositional‘functions with free
variables.

. . . . W
25, BExtensions of the formalisation to ordinals greater than «

The ordinals less than «“ can be represented using successor {'unctions
indexed by the natural numbers. In the development of the arithmetic
it is necessary to use some of the arithmetic of the natural numbers used in
the indexing. By teking more successor functions and using indices extending
into transfinite ordinals it is possible to extend this formalidation to
ordinals greater than ww. It is necessary, however, to use some of the
arithmetic of the indexing transfinite ordinals. If the prededing
formalisation of ordinals less than «“ is accepted it is then possible
to consider successor functions indexed by such ordinals and to formalise
ordinal arithemtic for ordinals less than www. This procedure can of

course be repeated anl formalisations up to any ordinal less than the first

epsilon number produced.
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CHAPTER II

A REDUCTION OF THE PRIMITIVE RECURSIVE ARITHIKTIC OF THE ORDINALS LESS

MAN " TO THE FRIMITIVE RECURSIVE ARITHMETIC OF THE NATURAL NUMBERS.

When an ordinal less than ww is expressed in Cantor's Normal Form
the coefficients of the powers of w are natural numbers. Every such
ordinal may therefore be represented uniquely as a sequence of natural
numbers and conversely any sequence of natural numbers represents some
such ordinal in this coding. As is well known in the primitive recursive
arithmetic of the natural numbers there exist (1,1) mappings of the class
of sequences of natural numbers onto the class of natural numbers. It is
therefore possible to map the class of ordinals less than ww (1,1) onto
the class of natural numbers by considering the sequences which represent
them. This correspondence between the ordinals in the system and the natural
numbers defines a correspondence between functions on those ordinals and
functions on the natural numbers. The question naturally arises as to what
is the class of functions on the natural numbers which corresponds to the class
of primitive recursive functions in the multisuccessor system for the ordinals.
It is shown here that this class is the class of primitive recursive functions
on the natural numbers. Therefore the arithmetic described in the previous
chapter gould be derived from the primitive recursive arithmetic of the natwral
numbers using a suitable coding. Before this result is obtained a number

of subsidary results and definitions are required. Some of these results

relate to the primitive recursive arithmetic of the natural numbers and are
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derived in

Goodstein and Peter. .

THEOREN Any primitive recursive function in the single successor systen
for the natural numbers cen be extended to & primitive recursive function

in the mult

isuccessor system. The extension of f will be denoted by %,

PROCF . The theorem is true for the initisl functions I, N and S

by defining

These defin
restricted

Itwill

1#(0) = 0

I%(Sea) = 8 I*(a)

I*(S“a) =0 for u>20
N*+(a) =0

s*(0) =1

5*(Sea) = SoS*(a)

S*(Sua) = 0 for u>0

itions are clearly consistent and when I%*,N* and S¥* are
to the natural numbers they are the functions I, N and S.

now be shown that defining new functions by primitive recursion

and substitution preserves this property.

Suppose

functions

and that th

that f(x,y) is defined by primitive recursion from the
a(x) and b(x,y,z) so that

£(x,0) = a(x)

£(x,57) = b(x,y,f(x,y))

e theorem holds for a(x) and b(x,y,z). f*(x,y) can be

defined by the following recursion
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£%(x,0) = a*(x)
f*(x930y> = b*(x:y:f*(x:y))
f*(x,Suy) =0 for pu> 0

This definition is clearly consistent.

Suppose that f£(x1, Xa, e«ep, Xn) is defined by substitution from the
functions a(x1, Xz, eeey Xm) and bi(x1, Xz, e.ey Xp) for i=1,2, .o, m
so that

(X1, X2, eees Xn) = a(ba(X1,%X2, «ees Xn),b2(X1,X0, e0erXn),
ceey bm(Xl,Xg, ceey xn))
and that the theorem holds for a(x;,xz, co oy xm) and bL(XJ_,XQ, cooy xn) .
£%(X1,X2, eesy Xp) can be defined by
F*(X1,Xgy eeesXn) = % (D% (X1,X0, «e0pXp) yb%2 (X15,Xa, «eesXn) s
ceesy D¥(X1,Xa2, «.epxn))
The theorem therefore holds for all primitive recursive functions.
DEFINITION. A primitive recursive (1,1) mapping from the class of
sequences of natural numbers onto the class of natural numbers will be
defined by the following primitive recursive functions if they satisfy
the following conditions

ay for 0 i<k, k= 0,1,2 etc

1]

[jk(ao,al’ ecey ak)]t
=0 for k> 1i.

jD(a>((a)°’(a)1’ eoey (a)D(a)) = a

jk+1(ao,a1, seey Bk, O) = jk(ao’al: seey ak)

The function jk maps a sequence of k+#inumbers to a single number and the
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function ( )i picks out the (i + 1)st member of the sequence
corresponding to a number. The third condition means that any sequence
can be regarded as a sequence of numbers followed by an unlimited sequence
of zeros. D(a) is a primitive recursive function such that D(a) + 1
gives the number of terms in the sequence corresponding t a up to the
last non-zero term.

It is well known that primitive recursive functions satisfying these
conditions exist. For example if py, P1, ... are the successive prime
numbers the primitive recursive functions defining the follaving
correspondence satisfy the conditions.

(805815825 ++ep 8K)<—> Da° P17t +v. DK = 1

A (1,1) mapping from the ordinals to the natural numbers is defined

by the following function.

6) = 330) Co®)s C1@), wens Cyyy(a))

This function is clearly a primitive recursive function in the multisuccessor
system,

The inverse mapping from the natural numbers to the ordinals is defined
by the following function

H(x) = 2,,(0(x),x) where h(x,y) = v*.(y)_

This function is primitive recursive in the multisuccessor system.
DEFINITION. A function on the ordinals, which when restricted to the
natural numbers, always takes values among the natural numbers will be said

to be regular.
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THEOREM. The restriction of a primitive recursive regular function to

the natural numbers is a primitive recursive function in the single successor
system. The restriction of a function f will be denoted by f'.

FROOF . Suppose f(x,y) is a regular function and is defined by primitive
recursion from the primitive recursive functions a(x) and bu(x,y,z) by

£(x,0) = a(x)

1

f(x,Suy) bu(x, ¥, £(x,5))

bo(x,y,2) is not necessarily a regular function but bo(x,y,f(x,y)) takes
values among the natural numbers when 3 and y do since f(x,y) is
regular. Therefore bg may be replaced by Cgbe and the definitions
will remain unchanged for finite x anmd y. Although a(x) is
resuler it will be replaced by Coa(x). For convenience by, and a will
now denote these new Tegular functions. The restriction of f(x,y) can
now be defined in the single successor system by the following recursion.
£1(x,0) = ar(x)

£1(x,8y) = b’ (x,y,0'(x,¥))
It is necessary to verify that if F dis an initial function in the
multisuccessor systeﬁ the restriction of CoF is primitive recursive in

the single successor system. I and Nor will denote the identity

ord d

and zero functions in the multisuccessor system and IN and NNa the

at t

same functions in the single successor system.
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t

(CoTprg) = Tyae
\]
(C°N0rd) = NNat
r
(CoSo) =8
(COS#) oo NNat for u> 0.

Suppose f(X1, Xa, «eey Xp) is defined by substitution from
a(x1, X2, eeey Xn) and bi(xi, Xz, eeep Xp) for i=1,2, ..., m by
£(X13X2, ooy Xn) = a(ba(x1,X2, «eey Xn),b2(X1,%X2, «eep Xn),
ceey bm(X1,x2, cesey xn))
and that f(xi1, X3, ..., Xp) is regular. Define new functions
¢ and e{ by

a(I{XJ_’ Hx2, co ey H.Xm)

1]

C(X;, Xz, csey xm)

eit(X1, Xa, eeey Xn) = Gb(X1,Xa, eeey Xn)
Since G and H are inverse functions

(X2, Xa, eees Xn) = cle1(X1,Xa, eees Xn)s €2(X15Xa, eeey Xn),

ooy em(X1, X3y eeey Xn))

If a and by are primitive recursive functions so are € and ey.
Clearly et 1is regular. c¢ 1is not necessarily regular but when it takes
finite values it vwill be the same as the function Cpc. The function ¢
will therefore be now taken to stand for Cgc and the definition will be
unchanged. The restriction of f may therefore be defined by

f'(xl,x2: I XEY) Xn) = G'(el'(xl,xz: ccey xn): 62'(x1:x2: "':xn)’

se ey em'(XI:XB: se ey Xn))
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Hence if c¢' and et' are primitive recursive in the single successor
system so is f', It remains to show that if F 1is an initial function
in the multisuccessor system the restrictions of GC¢FH and GF are
primitive recursive in the single successor system.

(CoIy M (x) = (x)o

NNa‘t(x)

(C°N0rdH) 1(x)

(CoSoH) '(x) = 38[(x)e]

(CoSuH) 1(x) = NNat(x) for u> 0
(61,0 () = 300
(&N, ) '(x) = 30(0)

(6So) "(x) Jo (%)

(GSu)'(x) ju(0,0, eeey 1) for p > 0.

THAOREM . Given a primitive recursive (1,1) mapping from the class of
sequences of natural numbers onto the class of natural numbers a (1 ,1)
correspondence can be defined be tween the ordirals less than 0’ and

the naturel numbers. A (1,1) mapping cun be defined from the class of
primitive recursive functions in the multisuccessor system for those

ordinals onto the class of primitive recursive functions in the single
successor s&stem for the natural numbers which preserves this correspondence.
PROCF . Suppose F(x) is a primitive recursive function in the

multisuccessor system for the ordinals. Consider the function GFH(x).
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This is clearly regular anl primitive recursive. Define f(x) to be
the restriction of this function to the natural numbers. f(x) is
therefore primitive recursive in the single successor system and
preserves the correspondence between the ordinals less than ©* and
the natural numbers.

Suppose f (x) is a primitive recursive function in the single
successor system for the natural numbers. Then f(x) can be extended
to a primitive recursive function f*(x) in the multisuccessor system
for the ordinals. Define

F(x) = Hr=c(x)
F(x) 1is clearly primitive recursive in the multisuccessor system and
preserves the correspondence between the ordinals less than w* and the
natural numbers.
The generalisation of these results to functions of more than one

variable is obvious.
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CHAPTER III

THE CONSISTENCY OF THE FORMALISATION (* THE PRIMITIVE RECURSIVE

ARTTHLMETIC OF THE R DINALS LESS THAN w” .

In this chapter a meta-—-argument will be used to show that this
system is consistent in the following sense. If p = g 1is a provable
equation in this formalisation where p and q are ordinals then they
are the same ordinal.

DEFINITION. An equation F =G dis said t be verifiable only if F
and G are the same ordinal or the substitimtion of ordinals for the
variables in F and G always reduces F anml G +to the same ordinal.

It is therefore sufficient to show that only verifiable equations are
provable.

It will first be shown that, when the variables are replaced by
ordinals, the sign of any primitive recursive function is eliminable.
This is obviously true for the initial functions I(x) and N(x).

It is also true for the initial functions Su(x) since the appearance
of M4 in the name of ordinals such as w + 1 need only be regarded
as constituting part of the name for w + 1. A new symbolism could be
found in which such a sign did not appear. This property of the signs
being eliminable is peeserved under substitution. If f(x,y), e(x,y)
and h(x,y) are eliminable then for any given set of ordinals M,N
there are unique ordinals U, V, W such that the equations

¢(M,N) =U, h(4,N) =V and £(U,V) =W
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are provable. For the function ¢(x,y) defined by
¢ (x,y) = £(g(x,y), h(x,y))
the equation
¢(M,N) =W
is provable far one, and only one, W corresponding to the given pair
M,N. Hence ¢(x,y) is eliminable. This result clearly generalises
to substitutions involving functions of more than two variables,
The property is also preserved under primitive recursions. Suppose
f(x,y) is defined by the following equations
a(x)

bll (x’y’f(x’y) )

£(x,0)

f(x,Suy)
where the functions bll (x,y,2) obey the consistency condition C.
ay a

Consider two ordinals A and B. B can be expressed at Sa° S e. 8™ ¢
Ao *3 Am

where ®g< @14 «ee< ap and at are non-zero natural numbers,
If a(x) and bu(x,y,z) are eliminable there are ordinals. Vi, j such

that it cen be proved in turn that

a(A) = Vm,o: ba (A,O,Vm’o) = Vm,l ’ ba (A’Sa 0) Vm,l) = Vm,z, seey
m m m

b 38m _ , a
am(A’bam 0’ Vmpamal) - Vm)am" bam-l(A, Samnlsaz 0, Vm, s.m) = Vm...]_,l, ce oy

bao (AJB’VO,ao_I) = Vo’ ag *
Hence it can be proved that f£(A,B) = Vo,z,. It must be shown that

Vo,ao is unique. Suppose that this is not so and that it can also be
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proved that f (A,B) = Woooe f(A,B) can be evegluated in a number of
Lo}

L]

ways since

sPoghr | g%m g o 5 sPo gP1 P gBo=1g82 &m

® o0 0
C‘oa Xm %o Po 131 Bn ag a1 on

for any ,BL< ®o by axiom A, Suppose V0 a is derived from

<0
b by .aa=1.a a be D bnatg=—1
f(a, eees S METOTISTY [ 87MO Then mking f(4,5 °s ... S NS ©
( 13 ﬁ l3n0‘o L3} am) g 1 ’"Bo B1 ﬁn“o
x5 an _
s3... §%0) = Yo,
v =1 (4,82 g% mog v ) end
0,Ng % = T ap @3 am ’ 0,a0-1
b b an-1_.a a
W = b A,S°° sP1 .. sPn S 07"l ,..8 M0, Y
0,70 ( *Be .3 Bn @0 a1 am ° T0,80=1)
Y be=1.Db bpn.2g—1a.8a a,
-1=b, (4,5°97°8 ! ...8.Ns 0 's¥1,,,s°m
0,8 Bo ( *Bo B2 Banae a1 am ° “o0,a1-1,0,be-1
be-1.b bpodo—-1 b an
where Y = f(4,8.°7 '8t ... Ns0 ... 8, o
0;8-0-1 :O:b0—1 ( ﬁ Bl ﬁn Qo a )

Applying the condition € which holds between the functions bu since
Bo< oo

be-1.b b a -1.8 a
W A,8°7's;t ... 8" 8707 s ., 8 MO,Y
o,no ( Bo P2 ,8n g o3 am ’ 0,ap-1,0,bo-1

This condition can be applied repeatedly since f i< ag,

giving
W o=b (A, saf"'1 s ... M0, T
0,Ng Qg o Am 0,% -1,n,0
Y = (4,521 g1 som o)
0,a0~1,n,0 e a1 *°° Tanp
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Defining We,aq,—-1 @s Yb:a°—1,n,o it becomes necessary to prove that

Vosap—-1 and Wo,g,-4 are not equal. Proceeding as before it becomes

necessary to successively prove Vo,ao_g, coes Vo,05 V2, a3s oo Vmyo

not equal to Wosag=2, <e+s W0, 05 Wisays <o V0 o

But Vm,o = a(4) and Wh,o = a(A) eand since a(x) is eliminable

Vm,0 = Wh,m Therefore Vg,ap is unique and so f(x,y) is eliminable.
The substitution of an ordinal for x in the equation x = x yields

a verifiable equation. It is now shown that the rules of inference yield

verifiable equations from verifiable equations. Sby and T obviously

do so. For Sb, two cases must be considered. Firstly if A and B

are two ordinals and A =B is verifiable then A and B are the same

ordinal and F(A) = F(B) is verifiable. Secondly if A anl B are

functions then since A = B by hypothesis the result of substituting

the same ordinal for the free variables in A and B yields the same

ordinal and so substituting ordinals for the free variables in F(4)

and F(B) the same ordinal is obtained. Hence F(A) = F(B)' is verifiable.

Finally it must be shown that if the equation F = G 1is proved by
the primitive recursive uniqueness rule it must be a verifiable equation.

Suppose

n
1

F(xso) a—(x)) F(X,S# y) bﬂ (XstF(x,y))

G(x,0)

a(x) ’ G(x,SuY) vb# (X’Y:G(X,Y))

are all verifiable equations. Consider two ordinals A anff B such
that

- 90 -



where 0Gp < a1 < eeed ap amd ay are natural numbers. Let the

values of

N a,
F(4,0), F(4,5, 0), F(4,57 0), ..., F(a, Sen 0),

a,
F(A,8, _,San O)s +ees F(4,B) and

G(‘A,O), G(A’S O)’ G(AJSQ 0), cecey G’(A,Sam O),
&m Ay Am

¢(A,5 ,8°m 0), ..., G(A,B) be
a X

m=1
Vm,o ’ Vm,l, Vm,z, ec ey Vm,am’ Vn—l,l,--- Vo,ao

and Wm,05 M,1 Wn,2 eeey VW, aps o1, eee Vo, a,. It can be successively

proved that Vm,o = Wn,o since both are equal to a(A) and

Vm'l = bam(A,Samo’ Vm'o> = bam(A,Samo’ 'W'm' O) = V‘Fﬂnl
Vn,2 = bam (A,Szamo, Vi, 1)= L (A,S:mO, W, 1) = W, 3

Voay = bug(A5B5Vo,a9-1) = by, (4,B,W0,0,-1) = We,a,

Therefore the equation F = G 1is verifiable.
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Reprinted from The Computer Journal, Vol. 11, No. 2, August 1968

The synthesis of logical nets consisting of NOR units

By H. P. Williams*

This paper describes an algorithm for synthesising a logical net consisting of NOR units.
Starting with a logical function presented as a truth table the function is converted into a suc-
cession of NOR statements. A simplifying procedure is used which, while not always resulting

in the minimum number of NOR units, produces an economical solution.

Details are given of

how this algorithm can be programmed for automatic computation.

(First received November 1967)

In the construction of electronic and fluidic circuits it
is often necessary to construct a logical net to perform
some given logical function. These nets are often syn-
thesised from NOR units. The NOR unit acting on

two inputs, 4 and B, performs the function 4 \V B
written in Boolean algebra. This is a ‘universal function’
in the sense that any function in Boolean algebra can be
constructed by using successive applications of this
function only. Hence the advantage of using NOR
units in a logical net is that no other type of logical unit
is needed.

A logical net to perform some prescribed logical
function can usually be constructed in many different
ways.
such a net using as small a number of components as
possible, in this case NOR units. An algorithm is
described which, starting with a logical function pre-
sented as a truth table, converts the function to an
expression composed only of NOR statements. Simpli-
fications are performed which result in the use of an
economical number of NOR units. This algorithm has
been programmed for automatic computation.

Description of the algorithm

The method is based on successive applications of
operations described by Quine (1955). First the function
under consideration is presented as a truth table, The
truth table is always written in the way shown below
using O to signify ‘false’ and 1 to signify ‘true’. The
rows represent successive numbers written in binary
form. Table 1 gives an example of a function F of three
arguments 4, B, C.

Table 1
ABC F
000 1
001 O
010 O
011 0
100 0
101 O
110 1
111 1

* Department of Mathematics, The University, Leicester.

Clearly it will usually be desirable to construct
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Delete the rows of the truth table which
In the

Stage 1.
correspond to the function having value 1.
example these are rows 1, 7 and 8.

Stage 2. Simplify the remaining portion of the truth
table using the following three operations based on
those of Quine,

(i) If any two rows differ only in one column, in one
row the entry being 0 and in the other 1, delete
one of the rows and delete the entry in the other
row. In the example after performing this opera-
tion on rows 2 and 4 the result would be the single
row 0-1.

This operation is based on the logical equivalence,

X.¢vVX.6=¢
(ii) If one row completely contains another row except
for a difference in one column, where one entry
is 0 and the other entry is 1, delete this entry in
the longer row. For example in the following two
rows the first entry in the second row would be
deleted.
0-1
101
This operation is based on the logical equivalence
XVXé=XV¢
(iii) If one row completely contains another delete the

longer row. For example in the following two
rows the second row would be deleted.

0-1
001
This operation is based on the logical equivalence
XVX.¢=X

Each pair of rows is examined in turn and operations (i),
(ii) or (iii) performed if possible. If one of the opera-
tions is performed the comparison of all the rows is
repeated. After completion of this stage the function
can be represented as a negation of a disjunction of the
complete sum of prime implicants. In the example in
Table 1 the result is

A.CVA.By A.Bvy B.C
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Stage 3. Examine the resulting rows of the simplified
truth table for a row containing only a 1.

Case (i). If such a row exists the input represented
by the column of this single entry is an input to the last
NOR unit in the net. The logical function can now be
considered in the form

. TVve 3
where X is the input which has just been considered and
¢ is the rest of the function under the negation. The
function can also be written in the form

NOR (¥, ¢)

showing more clearly that X is an input to the last NOR
unit. The other input to this NOR unit must be a net
performing the logical function ¢. After deleting the
row of the simplified truth table containing the single
entry 1, if no rows of the truth table remain then this
NOR unit has no other inputs. If only one row remains
and this consists of only an entry 1, the column of this
entry gives the other input to the NOR unit. Other-
wise the remainder of the truth table is expanded into
the standard form. This can be done by comparing the
entries in each row of the remainder of the truth table
with the corresponding entries in each possible row of
the standard truth table. Where these corresponding
entries are equal the row of the standard truth table is
retained. For example if the remainder of the truth
~ table consisted of the single row — 0 -, on comparison

with the standard truth table shown in Table 1 it can be
seen that the second column in rows 1, 2, 5 and 6 is O.
Hence these rows are retained and the row —0- has
been expanded into the four rows:

000

0
1
1

[N Ne)

1
0
1

These rows are now deleted from the standard truth
table such as Table 1. The remaining truth table is
now simplified as in stage 2 and the whole procedure
repeated producing a logical net for the function ¢
which connects onto the last NOR unit.

Case (ii). If no row containing only a 1 exists then
none of the external inputs goes to the last NOR unit.
This is the case in the example where the function has
been expressed in the form

A.C\VA.BYy A.BV B.C

In this case the rows of the simplified truth table are
split up into two sections if possible so the function can
be considered in the form

¢V

or alternatively in the form

NOR (¢, #).
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The inputs to the last NOR unit must therefore be
logical nets representing the functions ¢ and . These
functions are considered separately. Each section is
therefore considered one at a time. The rows of the
first section are expanded as in case (i) above. These
rows are then deleted from the standard truth table
which is then simplified as in stage 2, and the whole
procedure is repeated producing a logical net for the
function ¢ which is connected to the last NOR unit.
The function ¢ is considered in a similar manner. If it
is not possible to split the rows of the simplified truth
table into two sections, i.e. we have only one row left,
one of the inputs to the last NOR unit is left blank and
this single row considered as the other section and
treated as before.

After repeating these procedures a sufficient number
of times the whole function is represented as a net of

‘ NOR units.

The example given above is now considered in detail.
After stage 1 and stage 2 have been performed for the
first time the resulting truth table is

0-1
01
10
-01

This shows that the function
form

can be represented in the

A.CVA.B\VA.BYB.C

Since no rows have only a 1 as entry NOR unit 1 as
shown in Fig. 1 has no external inputs. The inputs are
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logical nets representing the functions ¢ and ¢ where
p=A.CV 4.B
p=A.BV B.C
The function ¢ is represented by the first section of the
truth table which is
0-1
01 -

These rows are expanded to give the following rows

001
011
010

When these rows are deleted from the standard truth
table and the resulting truth table simplified the result is

-00
1 - -

This shows that NOR unit 2 has 4 as an input. The
first row of this truth table is expanded and the rows
deleted from the standard truth table. After simplifi-
cation the result is

-=-1

-1-

This shows that NOR unit 4 has two external inputs,
B and C, and that no more NOR units connect into
NOR unit 4.

The function i is now considered. This is represented
by the second section of the first truth table which is

10-
-01

When these rows are expanded and deleted from the
standard truth table, after simplification the following
truth table results:

0-0

-1-

This shows that NOR unit 3 has B as an input. The
first row of the truth table is expanded and deleted from
the standard truth table. After simplification the
following truth table results:

-1
1 - -

This shows that NOR unit 5 has two external inputs A4
and C, and that no more NOR units connect into NOR
* unit 5. The net is therefore completed.

It is clearly not often practical to synthesise logical
nets by performing these procedures manually. Using a
computer, however, the synthesis can be performed very
rapidly. The initial data for such a computation need
only be a number specifying the number of inputs being
considered (in the example this number is 3) and the
numbers of the rows of the standard truth table corre-
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sponding to the function being considered having value 1.
This algorithm has been programmed and details of this
are now given.

Programming the algorithm for computation

In order to compute a net it was found convenient to
consider a maximum net in which two NOR units
connect to each NOR unit in the net. This net is made
sufficiently large that any possible net would be a proper
part of it. Each NOR unit in the maximum net is
numbered in a standard way. This serves as a useful
framework. A cycle of the algorithm is performed for
each NOR unit in the final net. After the completion
of each cycle the computation moves on to consider a
NOR unit with a higher number, or if this particular
branch of the network has been completed it goes back
to a lower number on the branch and then ascends to a
higher number on another branch.

It is necessary to store certain numerical arrays. The
main arrays are now described.

(i) An array consisting of Os and 1s such as Table 1
where each row represents a successive number in
binary form. "For a computation of a net with n external
inputs this array would have dimensions n X 27 At
each cycle in the algorithm certain rows of this table
are ‘deleted’ by overwriting with other figures and the
remainder of the table simplified using the three
operations described.

(ii)) Each NOR unit in the net can be regarded as the
last NOR unit in some subnet performing a certain
logical function. Therefore, associated with each NOR
unit there must be a representation for this logical
function. This is done by means of an array listing the
numbers of the rows of the standard truth table which
correspond to the function having value 1. Since the
rows of the standard truth table are successive binary
numbers the numbers of the rows can easily be com-
puted. As there is a one-dimensional array associated
with the number of each NOR unit the total array is
two-dimensional.

(iii) There can be up to two external inputs to each
NOR unit. These external inputs are numbered. Asso-
ciating these two numbers with the number of each
NOR unit gives a two-dimensional array.

(iv) One of the dimensions of the array (ii) will vary
with the number of each NOR unit considered. Asso-
ciating this dimension with the number of each NOR
unit gives a one-dimensional array.

The program was written in FORTRAN IV and run
on an IBM 360 computer with a core storage of 64K.
It was found convenient to limit the program to syn-
thesising nets with up to 8 external inputs, i.e. dealing
with logical functions of up to 8 variables. Large
amounts of core storage would have been used if all the
arrays had been stored in core. Array (ii) was therefore
stored by writing each row of it as a record on a magnetic
disc. Since it was only necessary to read a record for
each NOR unit and to write up to two records for each
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NOR unit the extra time taken was small. To deal with
functions of many more than 8 variables would probably
have necessitated also writing array (i) on disc.

After compilation the amount of time taken for exe-
cution of the program was quite short, not being more
than ten minutes for a net with 8 external inputs, and
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ABSTRACT

A TTnrmalisation of the Arithmetic of IBransfinite Ordinals in a -;

Equation Calciaus.

This thesis presents a syntactic development of the arithmetic
of ordinal numbers less than This is done by means of an Equation
calculus where.all statements are given in the form of equations. There
are rules of inference for deriving; one equation from another. Certain
functions, including a countably infinite number of successor functions

, are taken as primitive. New functions are defined by substitution
and primitive recursion starting with the primitive functions. Such
definitions constitute some of the axioms of the system. The only other
axioms are two rules concerning the combination of successor functions.
Fundamental for this development is the axiom SN\S" = 8" forjL>".

in this system a multisuccessor arithmetic is developed in v/hich
it is possible to prove many of the familiar results concerning trans-
finite ordinal numbers. Jnpparticular the associativity of addition and

as well as multiplication being left dlstributive v/ith
respect to addition are proved. It is shown that each ordinal in the
system can be represented in Cantor's Normal Form. An ordinal subtraction
is defined and a number of results involving this are proved. It is shown '
that this subtraction is, in a number of respects, an inverse to addition.
In particular the key-equation a-V(b —a)= b4-(a b) is proved. As in
Professor Goodstein's formalisation of the .primitive recursive arithmetic
of the natural numbers this equation is important as it allows a difference
function laj"bl to be defined for which a zero value is equivalent to
equality of the arguments. Inequality relations are defined and some
results concerning them proved.

in Chapter II it is shown, using a suitable coding, that this
arithmetic can be reduced to the primitive recursive arithmetic of the

natural numbers.

Chapter IIl gives a meta-"proof of the consistency of the system.

Also submitted with this thesis is a paper "The Synthesis of

Logical Nets consisting of NOR units" v/hich is the result of work on a

logical problem which was done at the same time as work for the thesis.



