

DESIGN PATTERNS TO SUPPORT THE MIGRATION BETWEEN

EVENT-TRIGGERED AND TIME-TRIGGERED SOFTWARE

ARCHITECTURES

Thesis submitted for the degree of
Doctor of Philosophy

at the University of Leicester

by
Farha Lakhani

Embedded Systems Research Group
Department of Engineering

University of Leicester
Leicester, UK

June 2013

Farha Lakhani

Design patterns to support the migration between event-triggered and
time-triggered software architectures

Abstract

There are two main architectures used to develop software for modern
embedded systems: these can be labelled as “event-triggered” (ET) and “time-
triggered” (TT). This thesis is concerned with the issues involved in migration
between these two architectures.

Although TT architectures are widely used in safety-critical applications (for
example, in aerospace and medical systems) they are less familiar to
developers of mainstream embedded systems. The work in this thesis began
from the premise that – for a broad class of systems that have been
implemented using an ET architecture – migration to a TT architecture would
improve reliability.

It may be tempting to assume that conversion between ET and TT designs will
simply involve converting all event-handling software routines into periodic
activities. However, the required changes to the software architecture are, in
many cases rather more profound. The main contribution of the work
presented in this thesis is to identify ways in which the significant effort
involved in migrating between existing ET architectures and “equivalent” (and
effective) TT architectures could be reduced. The research has taken an
innovative step in this regard by introducing the use of ‘Design patterns’ for
this purpose for the first time.

This thesis describes the development, experimental testing and preliminary
assessment of a novel set of design patterns. The thesis goes on to evaluate
the effectiveness of some of the key patterns in the development of some
representative systems. The pattern evaluation process involved both
controlled laboratory experiments on real-time applications, and
comprehensive feedback from experts in industry.

The results presented in this thesis suggest that pattern-based approaches
have the potential to simplify the migration process between ET and TT
architectures.

The thesis concludes by presenting suggestions for future work in this
important area.

Acknowledgements

This thesis is an accumulation of three years of work and this journey would
not have been possible for me without the support from a number of people I
met during this period.

Firstly, my research supervisor Professor Michael J. Pont deserves the
highest gratitude for providing his guidance, feedback and for his
encouragement throughout my research. I am highly indebted to him for
providing me the opportunity to present and defend my work at various events
during the research. Apart from technical guidance there was much for me to
learn from his professionalism, passion and zeal in his inspirational work
which I will always remember and appreciate.

Next, my heart-felt thanks to Dr. Kevin Byron for providing me his kind help
and support in the early stages of the research which enabled my research
flight take off at the right time and to be a pleasant experience. Also thanks
are due to PG tutor Dr. Fernando Schlindwein for his help and support.

I feel myself fortunate for having a highly competent and professional team of
people working around me during the course of my research. I take all these
people as stars lighting up the path and making the walk easier for me. I am
thankful to Dr. Anjali Das, Dr. Ayman Gendy, Azura, Dr. Devaraj Ayavoo,
Huiyan Wang, Dr. Imran Sheikh, Ioannis Kyriakopoulos, Dr. Kam Chan, Dr.
Keith Athaide, Mohammad Aamir, Dr. Musharraf Hanif, Peter Vidler, Dr. Susan
Kurian, Syed Aley Imran Rizvi, and Dr. Zemian Hughes.

A special thanks to Georgy Holden, Hooriyah Begg, Dr. Keith Athaide, Dr.
Kevin Byron and Dr. Susan Kurian for their help in proof reading my thesis and
for giving valuable feedback, and to Dr. Keith Athaide and Dr. Zemian Hughes
for helping in experimental work during the research.

I can never forget my lovely parents to whom I am always indebted for
everything they gave me and did for me. Compliments are due to my late
father for providing me support and inspiration throughout his life that
motivates me to achieve the best even today. Thanks to my mum for her
countless prayers for my success. I am also grateful to every member in my
family.

Thanks to my enduring friend Anila Soomro for all her love and support during
the last three years and for lifting up my morale from abroad.

Also, I would like to take this opportunity to thank my funding body - the Higher
Education Commission of Pakistan government and Bahria University.

Dedicated to my loving mother

and

to my very dear departed father

Mushtaq Ahmed Lakhani

i

TABLE OF CONTENTS

TABLE OF CONTENTS ... I

LIST OF FIGURES ... IV

LIST OF TABLES ... VIII

LIST OF PUBLICATIONS ... X

LIST OF ABBREVIATIONS, SYMBOLS AND UNITS XII

PART A: INTRODUCTION .. 1

CHAPTER 1. INTRODUCTION ... 2

1.1. Introduction to the problem .. 2

1.2. Description of the problem addressed in this thesis 5

1.3. Research contributions .. 8

1.4. Outline of the thesis ... 9

1.5. Conclusions ... 12

CHAPTER 2. MOTIVATING EXAMPLES .. 13

2.1. Introduction .. 13

2.2. The F-18 Mission Computer ... 13

2.3. Migration towards time-triggered image acquisition.................................... 16

2.4. Sony® cell processor ... 18

2.5. Discussion ... 19

2.6. Conclusion ... 21

CHAPTER 3. METHODOLOGY .. 23

3.1. Introduction .. 23

3.2. General approach to the investigation .. 23

3.3. Formulation of the research problem ... 25

3.4. Development of hypothesis and choosing the appropriate methodology 27

3.5. Implementation of the chosen methodology ... 34

3.6. Evaluation .. 34

3.7. Conclusion ... 36

PART B: LITERATURE REVIEW .. 38

CHAPTER 4. EVENT-TRIGGERED AND TIME-TRIGGERED
ARCHITECTURES .. 39

4.1. Introduction .. 39

4.2. Taxonomy of scheduling techniques .. 40

4.3. Software architectures for embedded applications 50

4.4. Event-triggered versus time-triggered architectures 57

4.5. Discussion ... 59

4.6. Conclusions ... 66

ii

CHAPTER 5. MIGRATION OF ARCHITECTURES IN EMBEDDED
APPLICATIONS .. 68

5.1. Introduction .. 68

5.2. Related terminology ... 69

5.3. The need for migration in embedded software ... 71

5.4. Dependencies between components in embedded software 74

5.5. Existing techniques in the literature .. 77

5.6. Conclusions ... 81

CHAPTER 6. DESIGN PATTERNS ... 83

6.1. Introduction .. 83

6.2. Design patterns in architecture .. 84

6.3. Design patterns beyond architecture .. 86

6.4. Patterns and embedded software development ... 88

6.5. Broader aspects of patterns ... 90

6.6. Pattern forms ... 95

6.7. Pattern languages .. 97

6.8. Pattern mining and refinement ... 99

6.9. Inadequacies of patterns .. 102

6.10. Conclusions .. 104

PART C: DEVELOPMENT OF PATTERNS FOR MIGRATION 105

CHAPTER 7. DERIVATION OF “PATTERNS FOR MIGRATION” 106

7.1. Introduction .. 106

7.2. Rationale for patterns to support migration .. 106

7.3. Choosing the appropriate architecture ... 109

7.4. Transforming an ET design to a TT design .. 110

7.5. Choosing the appropriate TT architecture .. 111

7.6. Handling events in TT designs ... 112

7.7. Handling problems with the co-operative design 113

7.8. Handling problems with the pre-emptive designs 116

7.9. Designing tasks for a TT design ... 116

7.10. Achieving a ‘Balanced’ TT design ... 117

7.11. Monitoring the TT design .. 119

7.12. Conclusion ... 120

CHAPTER 8. OVERVIEW OF THE PROPOSED PATTERNS 121

8.1. Introduction .. 121

8.2. Pattern categories in the PMES collection ... 122

8.3. PMES – towards a pattern language for migration 123

8.4. Patterns for migration ... 127

8.5. Conclusions ... 148

iii

CHAPTER 9. APPLYING THE PATTERNS TO REAL APPLICATIONS 149

9.1. Introduction .. 149

9.2. Hardware specifications and methodology ... 150

9.3. Example 1: Data Acquisition System ... 155

9.4. Example 2: FFT/ADC framework ... 170

9.5. Discussion ... 179

9.6. Conclusions ... 180

CHAPTER 10. ASSESSING THE PATTERNS: EMPIRICAL STUDIES ... 181

10.1. Introduction .. 181

10.2. Evaluation of design patterns – an overview ... 182

10.3. Related work .. 184

10.4. Preliminary evaluation of the PMES collection 192

10.5. Empirical studies for the evaluation of the PMES collection 194

10.6. Experiment planning ... 196

10.7. Experiment 1: Patterns for experienced developers 200

10.8. Experiment 2: Patterns versus alternative resources 208

10.9. Discussion .. 221

10.10. Conclusions .. 226

CHAPTER 11. ASSESSING THE PATTERNS: INDUSTRY FEEDBACK 227

11.1. Introduction .. 227

11.2. PMES usability in the industrial context .. 228

11.3. Aims of the evaluation .. 231

11.4. Practical constraints involved with industrial evaluation 231

11.5. Methodology ... 232

11.6. Results ... 240

11.7. Discussion .. 260

11.8. Conclusion ... 263

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 264

12.1. Reasons and motivation for the thesis work ... 264

12.2. A review of the contributions... 266

12.3. Research implications and shortcomings.. 269

12.4. Scope for future work ... 271

12.5. Final conclusions .. 273

PART D: APPENDICES .. 275

APPENDIX A: PATTERN FORMS .. 276

APPENDIX B: SPECIFICATIONS OF THE PMES COLLECTION.............. 281

APPENDIX C: DOCUMENTS RELATED TO EMPIRICAL STUDIES 328

APPENDIX D: DOCUMENTS RELATED TO INDUSTRIAL EVALUATION 344

PART E: REFERENCES ... 354

iv

 LIST OF FIGURES

Figure 1-1 Embedded systems market 2009-2015 (Source: BCC research) 4

Figure 2-1 Model of F-18 MC [adapted from (Shepard and Gagne, 1990)] 14

Figure 2-2 Layout of the vision-based distributed embedded control application [Adapted from
(Kubinger and Humenberger, 2004)] .. 17

Figure 3-1 Illustrating the different steps taken during the main phases of the research
process ... 25

Figure 4-1 An illustration of scheduler functions .. 41

Figure 4-2 Illustrating the execution of co-operative tasks where one waits until the other finish
execution .. 42

Figure 4-3 Schedule for the task set shown in Table 2-1 where ttick represents the system tick
and ‘h’ represents the major cycle for the system .. 43

Figure 4-4 Illustrating pre-emptive tasks where a higher priority task pre-empts the lower
priority task upon its arrival ... 45

Figure 4-5 Illustrating the interrupt handling mechanism in an embedded application [Adapted
from (Pont, 2001)] .. 51

Figure 4-6 Illustrating the process of task switching as various interrupts occur in a nested
interrupt based system ... 53

Figure 4-7 TTC schedule for the task set shown in Table 4-2 .. 55

Figure 4-8 Illustrating the operation of a TTH scheduler .. 56

Figure 4-9 Load generated by ET and TT solutions of the alarm monitoring system [adapted
from (Kopetz, 1997)] ... 63

Figure 5-1 An illustration of dependencies between different software components of a simple
embedded application ... 75

Figure 5-2 Dependency between different components in a complex control system 76

Figure 5-3 Three stage process for re-engineering legacy embedded applications [adapted
from (Madisetti, Jung et al, 1999)] .. 78

Figure 5-4 Design of the RTSC [Adapted from (Scheler and Schroder-Preikschat, 2010)] 79

Figure 6-1 Illustrating the concept of a design pattern ... 92

Figure 6-2 Illustrating an example structure of a pattern language .. 97

Figure 7-1 Illustrating the sequence of following patterns from the initial decision of migration
to choosing an appropriate TT design .. 112

v

Figure 7-2 Performance Analyzer in the Keil simulator showing the execution time of the
Display_Update() task = 47 ms with printf() function .. 115

Figure 7-3 Performance Analyzer in the Keil simulator showing the execution time of the
Display_Update task = 3ms using Buffered output technique .. 115

Figure 8-1 One-to-many relationship between abstract pattern, design patterns and PIEs .. 122

Figure 8-2 Association map for the PMES language ... 125

Figure 8-3 Illustrating the problem of a long task in TTC environment 130

Figure 8-4 An overview of the Buffered Output architecture .. 131

Figure 8-5 Illustrating the presence of release, execution and finishing jitter in different
instances of a task .. 133

Figure 8-6 Impact of variations in the duration of task Do_X() on the release jitter of task
Do_Y()... 136

Figure 8-7 Illustrating the use of the Sandwich Delay technique ... 137

Figure 8-8 Three tasks with same release time scheduled to run in a tick 137

Figure 8-9 Illustrating the change in system behaviour if the execution time of task A takes
longer than expected .. 138

Figure 8-10 Illustrating the Occurrences of timer interrupts when processor is in different
modes ... 143

Figure 8-11 Illustrating the operation of ‘Planned Pre-emption’ where processor is put to sleep
mode just before the system tick occurs .. 144

Figure 8-12 Illustrating a TTC based system running in normal conditions 147

Figure 8-13 Illustrating the TTC system when task A overruns.. 147

Figure 9-1 Prototype board for ARM 7 LPC2378STK [courtesy: (OLIMEX2378, 2012)] 151

Figure 9-2 A sample output shown using hyper terminal for the DAQ system 156

Figure 9-3 Illustrating possible interrupt arrivals during task execution 159

Figure 9-4 Illustrating the process of applying patterns for the conversion of ET design to TT
design ... 161

Figure 9-5 An excerpt from the pattern ‘TIME FOR TT?’ highlighted sections showing how the
pattern is applicable in the context of DAQ for migration from ET to TT design 162

Figure 9-6 An excerpt from pattern ‘EVENTS TO TIME’ with highlighted sections indicating the
relevance of the pattern in the context of getting a TT design for the DAQ 163

Figure 9-7 A possible sequence of patterns to follow in achieving a TT design for the DAQ
system... 164

vi

Figure 9-8 High level task representation of TT design for DAQ system 165

Figure 9-9 Comparison of CPU utilization, idle time and power consumption for ET and TT
design for DAQ system ... 167

Figure 9-10 Release jitter in the data sampling task of ET and TT designs for DAQ system 168

Figure 9-11 Memory and stack utilization of ET and TT design for DAQ system 169

Figure 9-12 A sample output shown using hyper terminal from the FFT/ADC framework 171

Figure 9-13 The ‘FFT Analyser’ frame work ... 171

Figure 9-14 One possible order of patterns to be followed which can lead to a TT design for
the FFT Analyser .. 175

Figure 9-15 Comparison of CPU utilization, idle time and power consumption by ET and TT
designs for the FFT Analyser ... 177

Figure 9-16 Comparison of memory utilization by the ET and TTH designs of the FFT
Analyser .. 177

Figure 10-1 Pattern life cycle [Adapted from (Petter et al, 2010)] .. 190

Figure 10-2 An overview of the SGM technique ... 195

Figure 10-3 Performance of groups (Experiment 1) ... 204

Figure 10-4 Time taken by each group to complete the exercise (Experiment 1).................. 207

Figure 10-5 Structural layout used for documenting patterns in the PMES collection 209

Figure 10-6 Performance of participants (Experiment 2) ... 214

Figure 10-7 Time taken by the participants to complete the exercise (Experiment 2) 216

Figure 10-8 Feedback from the participants regarding the difficulty level of the exercise 218

Figure 10-9 Feedback of the participants about the value of the material provided 219

Figure 10-10 Feedback about pattern names and solution (1-5) 1 = Lowest, 5 = Highest 221

Figure 10-11 Summary of results (Experiment 1) .. 223

Figure 10-12 Summary of results (Experiment 2) .. 225

Figure 11-1 A preview of the Google analytics report: An account created to monitor the
statistics on the visitors for the website www.pmescollection.weebly.com 236

Figure 11-2 Respondents area of expertise ... 241

Figure 11-3 Respondents current status in organisation .. 242

vii

Figure 11-4 Responses to the agreement that “software for future versions of systems will
rarely be created from scratch instead existing software will be adapted to match the new
requirements” .. 243

Figure 11-5 Responses to the usability of patterns for supporting the migration between
software architectures ... 245

Figure 11-6 Responses on the usability of patterns TIME FOR TT, EVENTS TO TIME and TT

SCHEDULER in real practice ... 246

Figure 11-7 Responses to the usefulness of the pattern BALANCED SYSTEM and associated
patterns ... 247

Figure 11-8 Responses about the usability of the pattern SYSTEM MONITOR and associated
patterns ... 248

Figure 11-9 Responses regarding the overall usability of patterns in achieving currently in use
industry standards .. 249

Figure 11-10 A snapshot taken from Nvivo software to show distribution of comments into
various nodes ... 251

Figure 11-11 Illustrating the number of coding references cover for each node 258

viii

LIST OF TABLES

Table 3-1 Summary of comparison between a design patterns repository and an expert
system... 33

Table 4-1 Task specifications for a system with non-pre-emptive cyclic executive scheduler . 43

Table 4-2 Task specifications for task set required to be scheduled with a co-operative
scheduler .. 54

Table 4-3 Task set specifications required to be scheduled with a hybrid scheduler 56

Table 4-4 Comparative view of event-triggered and time-triggered architectures 59

Table 6-1 Pattern forms .. 95

Table 7-1 Comparison between the 'PTTES’ collection and the ‘PMES' collection 108

Table 7-2 Jitter measurements for the Un-Balanced System... 118

Table 7-3 Jitter measurements for the Balanced System .. 118

Table 8-1 Thumbnails of patterns in the PMES language .. 126

Table 9-1 Specifications of the periodic tasks in ET design for DAQ system 157

Table 9-2 Performance measures for the ET design for DAQ system 158

Table 9-3 Task specifications of TTC design for DAQ system ... 165

Table 9-4 Comparison of ET and TT design for DAQ system .. 166

Table 9-5 Task specifications of the periodic task in the ET design for FFT Analyser........... 173

Table 9-6 Task specifications of TT design for FFT Analyser .. 175

Table 9-7 Performance measures of ET and TT design for FFT Analyser 176

Table 9-8 Jitter comparison for TTH and TTH-PP designs .. 178

Table 10-1 Criteria for evaluating patterns [Adapted from (Petter et al, 2010)] 191

Table 10-2 Difficulty levels of systems used in exercise for experiment 1 201

Table 10-3 Group structure for Experiment 1 ... 202

Table 10-4 Performance of groups (Experiment 1) .. 204

Table 10-5 Overall average performance of groups in the exercise 205

Table 10-6 Calculations for the difference in mean of PG and NPG groups 206

Table 10-7 Participants in the study ... 211

ix

Table 10-8 Details of the tasks given in the exercise (Experiment 2) 211

Table 10-9 Performance of students in Experiment 2 .. 214

Table 10-10 Overall average performance of PP and NPP (Experiment 2) 215

Table 10-11 Calculations for the differences of mean for experiment 2 217

Table 11-1 Distribution of comments under various nodes .. 257

x

LIST OF PUBLICATIONS

A number of papers were published during the course of the work described in
this thesis. These are listed below in reverse chronological order.

Directly-related publications

1. Lakhani, F. and Pont, M. J. (2012) “Empirical studies for the assessment of
the effectiveness of design patterns in migration between software
architectures of embedded applications”. Journal of Software Engineering
International Scholarly Research Network (ISRN), Volume 2012 Article ID:
259064 ISSN: 2090-7680 doi:10.5402/2012/259064

2. Lakhani, F. and Pont, M. J. (2012) “Applying design patterns to improve
the reliability of embedded applications through a process of architecture
migration”. Proceedings of the 9th IEEE International Conference on
Embedded Systems and Software (ICESS 2012), Liverpool, UK. IEEE
Computer Society: pp1563-1570

3. Lakhani, F., Wang, H. and Pont, M. J. (2011) “Supporting the migration

between event-triggered and time-triggered software architectures: A small
pattern collection intended for use by the developers of reliable embedded
systems”. Technical report ESRG 2011-09-01.

4. Lakhani, F., Pont, M.J. and Das, A. (2010) “Improving the reliability of

embedded systems as complexity increases: supporting the migration
between event-triggered and time-triggered software architectures”
Proceedings of the 15th Annual European Conference on Pattern
Languages of Programming EuroPLoP’10, Irsee, Germany. Published by
ACM New York, NY, USA. ISBN: 978-1-4503-0259-3

5. Lakhani, F. and Pont, M.J. (2010) “Using design patterns to support the
migration between different system architectures” Proceedings of the 5th
IEEE International Conference on Systems of Systems Engineering
(SoSE), June 2010, Loughborough, UK: pp1-6.

6. Lakhani, F. and Pont, M.J. (2010) “Code balancing as a philosophy for
change: Helping developers to migrate from event-triggered to time-
triggered architectures” Proceedings of the 2010 UK Electronics Forum, 30
June - 1 July 2010, Newcastle, UK, Published by Newcastle University.
ISBN: 978-0-7017-0232-8

7. Lakhani, F., Pont, M.J. and Das, A. (2009) “Towards a pattern language
which supports the migration of systems from an event-triggered pre-
emptive to a time-triggered co-operative software architecture”
Proceedings of the 14th Annual European Conference on Pattern
Languages of Programming EuroPLoP’09, Irsee, Germany, 8-12 July

xi

2009. Published by CEUR, volume 566, ISSN: 1613-0073: pp. F2-2 to F2-
25

8. Lakhani, F., Pont, M.J. and Das, A. (2009) “Can we support the migration
from event-triggered to time-triggered architectures using design patterns?”
Proceedings of the 5th UK Embedded Forum, Leicester, UK, pp. 62-67.
Published by Newcastle University. ISBN: 978-0-7017-0222-9.

Associated publications

9. Das, A., Lakhani, F., Gendy, A.K and Pont, M.J (2009). “Two simple

patterns to support the development of reliable real-time embedded
systems” 14th European Conference on Pattern Languages of Programs,
EuroPLoP’09 (Kloster Irsee, Germany, 8 – 12 July 2009)

Poster publications

10. Lakhani, F. and Pont, M.J. “Best practices for engineers to design safer

systems”, poster selected for presentation at the University of Leicester,
Festival of Post Graduate Research (Leicester, UK, June 2011).

11. Lakhani, F. and Pont, M.J. “’Building in’ safety in the electronic age”, poster

selected for presentation at the University of Leicester, Festival of Post
Graduate Research (Leicester, UK, June 2010).

12. Lakhani, F. and Pont, M.J. “Staying safe in a world full of silicon chips”,

poster selected for presentation at the University of Leicester, Festival of
Post graduate Research (Leicester, UK, June 2009).

xii

LIST OF ABBREVIATIONS, SYMBOLS AND UNITS

Abbreviations
ADC Analogue-to-Digital Converter
BCET Best-Case Execution Time
CAGR Compound Annual Growth Rate
CAN Controller Area Network
CCS Cruise-Control System
CDRH Center for Devices and Radiological Health
CPU Central Processing Unit
DAQ Data Acquisition
DM Deadline Monotonic
EDF Earliest Deadline First
ET Event-Triggered
FFT Fast Fourier Transform
GCD Greatest Common Divisor
GoF Gang of Four
GPIO General Purpose Input Output
LCM Least Common Multiple
LLF Least Laxity First
MC Mission Computer
NOP No Operation
NPG Non- Pattern Group
NPP Non-Pattern Participant
OED Oxford English Dictionary
OFP Operational Flight Program
PG Pattern Group
PIE Pattern Implementation Example
PLoP Pattern Languages of Programming
PMES Patterns for Migrating Embedded Systems
PP Pattern Participant
PTTES Patterns for Time-Triggered Embedded Systems
QWAN Quality Without A Name
RM Rate Monotonic
RTSC Real-Time System Compiler
SPE Synergistic Processor Element
TT Time-Triggered
TTC Time-Triggered Co-operative
TTCAN Time-Triggered Controller Area Network
TTH Time-Triggered Hybrid
TTP Time-Triggered Pre-emptive
UML Unified Modelling Language
WCET Worst-Case Execution Time

Symbols
ARJi Absolute release jitter observed for task i
Ci Execution time of Task i
CPUactive Processor busy time
CPUidle Processor idle time

xiii

Di Relative Deadline of task i
ICPU Average current consumption by the processor
IDD(DCDC)active Active mode DC-to-DC converter supply current
IDD(DCDC)pd Power-down mode DC-to-DC converter supply current
n Number of tasks
PCPU Average power consumption by the processor
pi Period of task i
ri Release time of task i
si Start time of task i
U Processor utilisation
VCPU Average voltage across the processor

Units
ms Milliseconds 10-3 seconds
µsecs Microseconds 10-6 seconds

1

PART A: INTRODUCTION

This thesis is divided into several parts and this first part provides an

introduction to the work presented as follows:

1. The overview of the embedded systems field and the description of the

research problem and contributions are described in CHAPTER 1.

2. CHAPTER 2 describes the motivating examples from the literature

which have provided the driving force to establish the research

problem.

3. CHAPTER 3 discusses the methodology adopted for the research.

Chapter 1. Introduction

2

CHAPTER 1. INTRODUCTION

1.1. Introduction to the problem

This thesis is concerned with the development and evaluation of novel

techniques that will help to improve the reliability of what are known as

“embedded systems”.

In the 1930-40s, computers were very large and expensive. Given this, it is

not surprising that Thomas Watson (1943) said: “I think there is a world market

for may be five computers.” The world market has changed beyond

recognition since that time. The huge computers of Watson’s time have now

been replaced by literally millions of much smaller “desktop”, “laptop” and

“handheld” computers powered by embedded processors.

While desktop computers perform multiple functions, an embedded system is

a special-purpose computer system which is designed to perform a small

number of dedicated functions for a specific application. More formally, “An

embedded system is an application that contains at least one programmable

computer (typically in the form of a microcontroller, a microprocessor or digital

signal processor chip) and which is used by individuals who are, in the main,

unaware that the system is computer based” (Pont, 2001).

Despite the ubiquitous nature of desktop and laptop computers, they represent

only the tip of the iceberg when it comes to estimating computer numbers. For

every processor used in a familiar desktop or laptop computer, around 100

processors are “embedded” in computer systems as widespread as aircraft,

Chapter 1. Introduction

3

automotive vehicles, medical equipment, children’s toys and DVD players

(Barr, 1999; Li and Yao, 2003). They are also part of many of the electrical

appliances used at home, for example, air-conditioners, irons, kettles,

microwaves, refrigerators and washing machines etc. Outside homes, these

processors work in automatic doors, CCTVs, escalators, intruder alarms, lifts,

traffic light signals, vending machines and many other devices. In most cases,

these embedded processors are a key part of the systems they inhabit, for

example, around a third of the cost of developing many new cars is spent on

the vehicle electronic and software systems (Bouyssounouse and Sifakis,

2005). The luxury 7-Series BMW and S-class Mercedes boast about 100

processors apiece (Turley, 2003) and these processors are in many cases

serving to provide either comfort or safety, for example window and engine

control and anti-braking systems in the cars.

Being in such widespread use, embedded processors have a huge

international market. According to a recent study by BCC research (Business

Communications Company – a publisher of technology market research

reports), the global market for embedded systems is expected to increase

from US$101.6 billion in 2009 to an estimated US$158.6 billion by the end of

2015, a compound annual growth rate (CAGR) of 7%. Embedded hardware

was worth US$108.8 billion in 2010 and is expected to grow at a CAGR of 7%

to reach US$152.4 billion in 2015. Embedded software generated US$4.2

billion in 2010 and is expected to increase to US$6.1 billion in 2015 (BCC,

2012). The growth statistics are shown in Figure 1-1.

Chapter 1. Introduction

4

Figure 1-1 Embedded systems market 2009-2015 (Source: BCC research)

The huge growth in demand for these systems and the great increase in their

complexity mean that reliability is a critical issue in the design of such

systems. This is important not just to meet the needs of businesses involved

in manufacturing reliable products, but also because people in developed

countries are reliant on many embedded designs in systems such as aircraft,

cars and medical equipment for their safety.

Although embedded applications are an essential (though mostly hidden) part

of everyday life, the process of developing safe and reliable applications

remains a highly challenging and complex aspect of the design and test

process. Developers and designers of embedded applications face huge

technical challenges such as meeting all the timing constraints, limited

memory space, and restrictions on power usage. Graaf et al (2003) have

argued that despite all the advancements such as application development

tools and techniques, existing software development techniques have failed to

address the challenges faced by the developers of embedded applications.

This argument is supported by the fact that firms producing such devices still

Chapter 1. Introduction

5

find it difficult to produce completely defect-free devices. For example, the

Centre for Devices and Radiological Health (CDRH) reported that in 2006,

21% of all medical device recalls were for software defects (Krasner, 2010).

1.2. Description of the problem addressed in this thesis

The main focus of the research presented in this thesis revolves around two

key software architectures used in developing modern embedded applications:

these are termed as “event-triggered” and “time-triggered”.

For many developers, event-triggered (or “ET”) architectures are more

familiar. ET designs involve creating systems which handle multiple

interrupts. For example, interrupts may arise from periodic timer overflows,

the arrival of messages on a serial communication bus, the pressing of a

switch, the completion of an analogue-to-digital conversion (ADC) and so on.

To create ET systems, the developer may write code to handle the various

events either directly: this will typically involve creating an “Interrupt Service

Routine” (ISR) to deal with each event. Alternatively, the event will be handled

slightly less directly through use of a real-time operating system.

The alternative to an event-triggered architecture is a time-triggered (“TT”)

architecture. When implementing TT systems, there is only one interrupt

enabled. This single interrupt is usually linked to a timer “Tick”, which might

occur (for example) every millisecond: this tick, in turn, drives all software

activity in the system.

Chapter 1. Introduction

6

Both ET and TT architectures have their own strengths and weaknesses. The

main strength of TT architecture is its ability to enable systems to be more

‘predictable’ (Nissanke, 1997; Pont, 2001; Kopetz and Bauer, 2002; Albert and

Bosch GmbH, 2004). Since highly predictable system behaviour is an

important design requirement for many embedded systems, TT software

architectures have become the subject of considerable attention. It has been

widely accepted that the TT architecture is a suitable candidate for many

safety-critical applications since they help to improve overall safety and

reliability (Allworth, 1981; Nissanke, 1997; Bate, 1998). For example, TT

architectures have been accepted as a generic solution for highly dependable1

systems such as X-by-Wire2 systems (Ayavoo, Pont et al., 2005; Ayavoo,

2006). However, even in more mundane domestic applications (e.g. an alarm

clock that fails to sound on time or a video recorder that operates

intermittently) where failure is relatively inconsequential, poor reliability can

have other impacts such as reduced sales etc. Besides being predictable in

nature, TT systems are also easy to validate, test and certify (Liu, 2000).

The published literature provides many examples of embedded applications

such as those discussed in (Shepard and Gagne, 1990; Kubinger and

Humenberger, 2004; Turley, 2009) for which the ET architecture is initially

preferred because of the perceived benefits they offer such as flexibility in

design and their ability to respond more quickly upon arrival of any internal or

1
 Dependability is a measure of whether a system can be relied upon to perform the desired

action. Kopetz (1997) and Hanmer (2007) define the different attributes of dependability such
as reliability, safety, availability and security.

2
 X-by-Wire systems are electronic systems without mechanical backup where the ‘X’ stands

for the safety related applications such as steering and braking. Some keywords in automotive
systems are “accelerate-by-wire”, “steer-by-wire” and “brake-by-wire”.

Chapter 1. Introduction

7

external events. Later in their life cycle these applications exhibit problems

related to reliability and therefore migrated to TT architecture.

It is therefore realised that to accomplish reliable software systems especially

where safety is a critical issue migration between software architectures

becomes crucial to achieve systems that are more predictable and safer.

However, it is also accepted by the expert’s community that migrating software

architectures in embedded applications offers various challenges. It may be

tempting to assume that conversion between ET and TT designs will simply

involve converting all event-handling software routines into periodic activities.

However, the required software changes are – in many cases – much more

profound. For example changes to one part of the software may affect other

inter-linked parts and so a thorough analysis of the migrating system is

necessary before making any substantial changes. The overall goal of the

work presented in this thesis is to identify ways in which the work involved in

migrating between existing ET architectures and “equivalent” and effective TT

architectures could be reduced.

 As the research is motivated by providing support during the process of

architecture migration, for this purpose research has explored the concept of

‘Design Patterns’. Design patterns emerged from the field of architecture and

gained popularity in diverse disciplines. Design patterns are well-documented,

time-tested solutions to classic design problems and capture significant

domain knowledge. In the field of embedded systems most of the previous

research work (Adams, Coplien et al., 1996; Bottomley, 1999; Pont, 2001;

Chapter 1. Introduction

8

Herzner, Kubinger et al., 2005; Cloutier and Verma, 2007; Eloranta, Koski et

al., 2009) focused on documenting patterns for system construction.

However, design patterns which could assist embedded system practitioners

in the process of migration of architecture has been somewhat neglected. The

research presented in this thesis aims to explore how this gap might be

bridged.

1.2.1. Research premise and goal

The work presented in this thesis began with the premise that – for many

embedded systems which are implemented using an ET architecture –

migration to a TT architecture would improve reliability.

From this starting point, it was accepted that altering the system architecture

would not be a trivial process and the core research goal was to explore

whether an appropriate set of 'design patterns' could be used to facilitate this

transition.

1.3. Research contributions

The research described in this thesis makes the following contributions:

 It has explored the need for migration from existing event-triggered

architectures to time-triggered architectures in order to improve system

reliability.

 It has explored the challenges involved in the migration process from

event-triggered to time-triggered architectures.

Chapter 1. Introduction

9

 This research has explored – for the first time – ways in which design

patterns can be used to support the migration between event-triggered

and time-triggered software architectures and resulted in the

development of a pattern language to support the migration process.

The pattern language is introduced by identifying links between

previously proposed patterns by peers and the new patterns proposed

during the course of this research.

 The research has also performed the rigorous assessment of the

pattern language as follows:

- By demonstrating the applicability of the proposed patterns on

real applications through laboratory experiments.

- By conducting controlled experiments with a target audience of

users.

- Through an industrial survey to obtain feedback from the

practitioners on how the proposed patterns could be useful in the

industrial context.

1.4. Outline of the thesis

This thesis is structured as follows.

 Part A – Introduction:

- CHAPTER 1 provides the relevant background information to the

research problem undertaken and describes the contributions

made by this research.

Chapter 1. Introduction

10

- CHAPTER 2 explains the motivating example systems from the

literature which helped in the formulation of the research

problem.

- CHAPTER 3 describes the research methodology adopted in

detail.

 Part B – Literature Review:

- CHAPTER 4 provides a discussion on the two main software

architectures (event-triggered and time-triggered) which is the

focus of this research. Related to this the chapter also explains

different scheduling schemes which constitute the software

architectures. The chapter also provides a comparison of the two

architectures as discussed in the published literature.

- CHAPTER 5 describes the problem of migration that embedded

applications face during their life cycle. This chapter presents

details on reasons for migration in embedded systems and

dependencies between components and the related work carried

out by previous researchers in the field.

- CHAPTER 6 introduces the concept of design patterns and their

historical background. It briefly discusses how this concept was

acknowledged by experts in diverse fields and their acceptance

and implementation. The chapter also discusses the process of

applying design patterns in building embedded applications, and

how and why they can assist the developers of embedded

applications.

 Part C – Development and evaluation of patterns for migration:

Chapter 1. Introduction

11

- CHAPTER 7 describes the derivation process for the patterns.

- CHAPTER 8 introduces a new collection of design patterns

proposed with the aim of helping developers in migrating from

event-triggered architectures to time-triggered architectures. It

also discusses new patterns that are introduced by this research.

- CHAPTER 9 demonstrates the use of the proposed pattern

collection with case studies and examples of how various

patterns can be applied during the migration process from event-

triggered design to a time-triggered design.

- CHAPTER 10 presents the evaluation process of the newly

proposed patterns and the empirical studies used in the process.

- CHAPTER 11 presents the evaluation of the patterns in the

industrial context. This is achieved using the web-based survey

with employees in the software industry and a website was also

developed for this purpose.

- CHAPTER 12 is dedicated to conclusions and the future

expansion of this research that could further enhance the initial

steps taken.

 Part D – Appendices: The appendices include supplementary

materials related to this thesis.

- Appendix A describes different pattern forms found in the

literature.

- Appendix B contains full specifications of the patterns that are

derived and documented during the research.

Chapter 1. Introduction

12

- Appendix C contains the exercises designed for use during the

empirical evaluation of the research.

- Appendix D contains the documents related to industrial

evaluation of the research.

- Appendix E provides the bibliographic references to all the

citations used.

1.5. Conclusions

This introductory chapter has provided a summary of the overall theme of the

work described in this thesis. The discussion regarding software architectures

indicated that several embedded applications may demand change in their

existing architecture during the course of their life cycle due to issues with

reliability and safety. This change in architecture offers various challenges to

the designers/developers of embedded applications which have often been

overlooked by previous research work in the field resulting in a lack of support

for the designers to tackle the situation. In order to solve this and overcome

some of the difficulties involved in the migration process this research

presents the novel idea of using design patterns. Based on these discussions

the main goal and key contributions made by this research were stated and

the layout of the thesis provided.

 The remainder of this thesis will describe the work undertaken by this

research.

Chapter 2. Motivating Examples

13

CHAPTER 2. MOTIVATING EXAMPLES

2.1. Introduction

As outlined in CHAPTER 1, the main objective of the work presented in this

thesis was to develop and assess techniques that will improve the reliability of

existing software applications through a process of architecture migration.

In order to explain the motivation for this work, this chapter summarises some

representative examples that have been found in the literature (Section 2.2 to

Section 2.4). Section 2.5 provides a discussion based on the examples

described and the relevant concerns of the research and conclusions are

given in Section 2.6.

2.2. The F-18 Mission Computer

The case study related to a F/A-18 aircraft has provided the motivation to

explore the need for migration between different software architectures for

complex embedded applications. The F/A-18 aircraft is also referred to as CF-

188 by the Canadian Forces and was manufactured by McDonnell Douglas

Corporation. The case study is presented in detail in (Shepard and Gagne,

1990).

Maintenance problems were reported for F/A-18 Mission Computer (MC)

Operational Flight Program (OFP) when some modifications were required in

the system.

Chapter 2. Motivating Examples

14

A block diagram representing the runtime scheduler for this system is shown

in Figure 2-1.

Figure 2-1 Model of F-18 MC [adapted from (Shepard and Gagne, 1990)]

The system model was based on a pre-emptive scheduling process (such a

process is described in more detail in Section 4.2.2: the details are not

relevant here). The model was based on a design that was required to run

periodic processes (grouped into four separate task rates of 20, 10, 5 and

1 Hz) as well as interrupt service routines (termed as demand routines by

authors) for bomb release, data link input, I/O completion, and I/O fault

recovery.

The relative priorities of the task rates is reflected in the structure of the ‘Task

Rate Queue’, implemented as a linked list. This queue contains one Task

Control Block (TCB) for each task rate. The TCB indicates the status of the

task rate (awake or asleep) and provides storage for control information

Chapter 2. Motivating Examples

15

related to that rate. The occurrence of interrupts pre-empts the currently

running tasks. Once the interrupt processing is finished, the pre-empted task

processing is resumed.

2.2.1. Problems with the existing model of the F-18 MC

The major problem reported with the system was failure to observe all the

timing constraints when new software components were added. With the

existing model it was also difficult to guarantee that any alterations in the

system did not alter the logical correctness of the system. Further, the testing

methodology was not comprehensive enough to satisfy all constraints. All

these factors highlighted the need for a scheduling methodology which would

enable verification of the timing constraints of the system before its operation

and easy testing of the system. In other words, predictable behaviour was the

main requirement of the modified system.

2.2.2. Migration to pre-runtime scheduling

Because of the problems with the existing model, it was decided to shift the

entire system to pre-runtime scheduling to make it possible to verify all the

timing constraints in advance. However, it was a big challenge to convert

such a complex system to pre-runtime scheduling. This involved an extensive

review of the complete OFP source code, a study of 2500 pages of technical

documentation and a review of 2400 software routines. Flow charts were

generated to understand the scheduling requirements of the OFP and all the

interrupt service routines were converted to periodic processes (this is

described as a ‘polling solution’). This resulted in a 95% reduction of the

interrupts being generated by the system. The schedules were generated to

Chapter 2. Motivating Examples

16

run all the tasks in the system along with their release times, execution times

and deadlines.

2.2.3. Performance improvement after migration

Shepard and Gagne (1990) have reported the following improvements in the

transformed pre-runtime model of the F-18 MC:

 As the major problem with the system is testing and verification after

adding new modules, migration to pre-runtime scheduling has made the

testing process far easier and less labour intensive.

 To guarantee reliable system behaviour in the case of complex embedded

applications it is important to predict maximum CPU load and I/O

processing capacities during the design stage. Transformation of the

system from pre-emptive scheduling to pre-runtime scheduling helped in

achieving this.

 As pre-runtime scheduling enable offline schedules to be made this helped

in facilitating the timing requirements for all the system processes in

advance.

 Pre-runtime scheduling also significantly reduced the number of context

switches in the system. With the previous model based on pre-emptive

scheduling approximately 1000 context switches were estimated per

second incurring significant overhead. Pre-runtime scheduling was helpful

in countering this problem.

2.3. Migration towards time-triggered image acquisition

The second example found in the literature that justified this research is a

case study based on replacing a time-triggered model for the existing event-

Chapter 2. Motivating Examples

17

triggered model for an image processing application (Kubinger and

Humenberger, 2004). For this application there was a preference for TT

architecture as the existing design based on ET architecture was observed to

have variations in the sampling time which increased the probability of data

(images) loss. Also the TT architecture can have fixed latency, low jitter

values and predictable behaviour. The researchers aimed to investigate the

interfacing issues between cameras and TT architectures and to achieve a

jitter-free and synchronized sequence of images. The objective was to achieve

a guaranteed behaviour of the camera such that the system must finish

processing of image ‘n’ when image ‘n+1’ arrives. Their proposed TT model

(distributed in nature) makes use of a TT bus (for example TTP/C, FlexRay or

TTCAN). The bus used the TDMA (Time Division Multiple Access) principle

and each message is assigned a periodic time slot which made it possible to

precisely control the triggering of the camera and acquisition and transfer of

the images from the camera to the node. The layout of the concept is shown

in Figure 2-2.

Figure 2-2 Layout of the vision-based distributed embedded control
application [Adapted from (Kubinger and Humenberger, 2004)]

They have demonstrated the application of their proposed approach using a

SONY FireWire-camera DFW-VL500 on a 400 Mbps FireWire bus. They also

presented the comparative results of ET and TT models. The results showed

Chapter 2. Motivating Examples

18

less latency values (highly varying) for the ET model and jitter3 values of

33.33ms. On the other hand, the TT model showed high but fixed values of

latency and jitter values in the microseconds range only.

2.4. Sony® cell processor

This example is quoted by Jim Turley in (Turley, 2009). He reported an

interesting case observed by the programmers of Sony Corporation published

in ‘Embedded use of the Cell processor’ (Kawamura, Yamazaki et al., 2008).

Half of the cell chip is dedicated to eight identical Synergistic Processor

Elements (SPEs) having their own instruction set unique to the cell. Each

SPE is a 128-bit single-instruction, multiple-data (SIMD) vector processing

machine and has its own 256K block of private RAM for executing code or

storing local data. The Linux distribution for the cell treats the SPEs as

virtualized resources; this resulted in the creation of more SPE threads than

there are SPEs. The overhead of this feature is that one SPE might be

swapped out while it is running. To avoid this, the Sony team “pinned” the

network stack to one SPE, effectively prohibiting Linux from swapping it out

and dedicating that SPE exclusively to network processing.

The problem observed with the system can best be illustrated by citing a

passage from (Turley, 2009). “Given the high packet rates Sony was hoping

for, frequent interrupts turned from being a necessity to being a problem. In

their experience, most network stacks are interrupt-driven, especially from the

3
 Jitter refers to the deviation from the ideal timing of an event and can have a serious impact

on system reliability. More details are explained in Chapter 6

Chapter 2. Motivating Examples

19

hardware interface when it needs servicing. As data rates climb, these

interrupts (and their attendant context switching) become so frequent that the

overhead overwhelms the actual task. The faster it works, the slower it goes.”

The solution reported in the article was based on the removal of interrupts

from the system. “To fix this, the team decided to switch from an interrupt-

driven to software polled design. They kept the same hardware components

but just tweaked the network driver to poll the chip at regular timer tick-

intervals. The resulting efficiency was dramatic.”

This example shows that an interrupt-driven architecture initially chosen to

make the system more responsive can ultimately jeopardise the whole system

in situations of high load. Finally a software based polling mechanism was

adopted to overcome the problem and was found to be very effective.

2.5. Discussion

In this chapter three examples from the literature are described that highlight

the need for migration of existing event-triggered and/or interrupt-driven

software architectures in embedded applications to time-triggered

architectures in order to improve system reliability.

The F-18 aircraft example discussed in Section 2.2 is an example of high

reliability high integrity embedded application for which all the necessary

issues were considered at the design time and so a priority based pre-emptive

task model was chosen. The selected architecture did not proved a wise

Chapter 2. Motivating Examples

20

choice in the later stages when the application required new software

components to be added. The testing of the application was another issue that

arose when alterations were made to the existing model. The aircraft was

then migrated to pre-runtime scheduling model which facilitated the testing

and verification process and showed improvement in system reliability along

with the reduced system overheads such as CPU and memory utilization.

The transformation process itself however was labour intensive involving

heavy technical documentation reviews in order to make necessary changes

in the code.

The second example discussed in Section 2.3 for the image processing

application also showed considerable improvement in jitter values (from the

millisecond range to the microsecond range) when transformed to time-

triggered architecture from its existing event-triggered design. The rationale for

the transformation was described as possible loss of data with the existing

model. The transformation process involved the use of a time-based

communication protocol and periodic scheduling of task at the design time

which itself involved a number of design decisions for optimised system

performance which are not considered in the study described by the authors.

The third example is a commercial product developed by the Sony

Corporation in which the migration from interrupt-driven architecture to polled-

input design helped to overcome the problems when the application was

subjected to peak load situations. However it is assumed that for commercially

Chapter 2. Motivating Examples

21

confidential reasons the example does not discuss how the challenge was

faced and what the major concerns were during the transformation process.

The examples discussed have provided the motivation to:

 Further explore the need of migration from event-triggered architectures

to time-triggered architectures in order to improve system reliability.

 Explore the possibilities of some kind of support which could assist the

developers in making better choices among a variety of possible time-

triggered architectures. This would enable developers to take better

informed decisions during the migration process from event-triggered

design to time-triggered designs.

2.6. Conclusion

This chapter has presented three examples from the literature to highlight the

requirements for changes in software architecture of an application later in its

life cycle. All of the three applications were designed with an architecture

where multiple interrupts are made active to handle any input data. The

examples have demonstrated that in such architectures the need to change

may arise for problems due to system performance and reliability in peak load

situations, when new components are added and where further testing or

verification processes are needed. In all the three examples the architecture

was transformed to remove multiple interrupts and so a time-based

architecture was chosen in which offline schedule plans can be enabled to

predict system behaviour in advance. These examples helped in building the

Chapter 2. Motivating Examples

22

overall argument for the research problem that proposed that migrating

applications to an architecture where single interrupt can handle all system

activities may help in improving system reliability.

The next chapter explains the overall research process and the choice of

methodology adopted to meet the challenges of this research.

Chapter 3. Methodology

23

CHAPTER 3. METHODOLOGY

3.1. Introduction

 A methodology in research refers to the theoretical argument and

investigative framework that researchers use in order to justify their research

methods and the design of their experimental investigations (Case and Light,

2011). This chapter describes the methodology adopted to conduct the

research presented in this thesis.

This chapter organized as follows. Section 3.2 presents a general overview of

the methodology adopted by the research, Section 3.3 discusses the rationale

behind the formulation of the research problem, and Section 3.4 describes the

steps involved in building the hypothesis and setting goals for the research in

order to test the hypothesis. Following this, Section 3.5 explains the research

work that involves derivation of design patterns and experimental work to test

and implement the patterns. Section 3.6 explains the methodology adopted to

evaluate the research and the chapter conclusions are presented in Section

3.7.

3.2. General approach to the investigation

In common with most research projects, the work presented in this thesis has

evolved in stages and each stage has been subject to several iterations. In a

wider sense the process of identifying a valid research problem, identifying a

proposed solution to a problem, developing the solution, and then testing and

verifying the solution, is identical to the process generally described as 'The

Chapter 3. Methodology

24

Scientific Method' first formulated over 400 years ago (Gower, 1997). The

Scientific Method of course also tacitly underpinned and guided the technical

work described in the thesis. The definition of the modern scientific method as

described in (Bock, 2001) is: “The Scientific method comprises four sequential

phases – Analysis, Hypothesis, Synthesis and Validation – which are applied

to a task iteratively and recursively to achieve the objective of the task.” A

research process is in fact similar to undertaking a journey in which a person

must decide where he/she wants to go and which route to take. The problem

is compounded in deciding which one is the best to follow if there is more than

one possibility to get to the destination. Similarly a research process is all

about deciding what to do, planning how to do it and then doing what is

considered as appropriate in the existing scenario.

The next few sections will describe how this research underwent several

stages from the initial point of formulation of the research problem, to setting

goals, choosing the appropriate methodology at each step during the

research, and evaluating the final outcome.

The process is described as phases of analysis, hypothesis, synthesis and

validation and each phase was broken down into further operational steps as

depicted in Figure 3-1.

Chapter 3. Methodology

25

Figure 3-1 Illustrating the different steps taken during the main phases of

the research process

3.3. Formulation of the research problem

The research was initiated with the literature review in order to gain a thorough

understanding of the domain of embedded systems design. In this initial

process both the wide ranging work undertaken by the previous research work

in the larger specialized community and in the local research group (ESRG at

Literature

Review

Learning
tools

Coding

Peer
review

Synthesis

Hypothesis

Analysis

Validation

Formulation
of research

problem

Investigation
of related

work

Setting
objective

Specification
of solution Setting goals

Define
factors

Implement
solution

Design
experiment

Conduct
experiments

Compute
performance

Draw
conclusion Documentation

Operational step

Intermediary steps

Main phase

Chapter 3. Methodology

26

University of Leicester) were reviewed. The underlying aim of the process is to

formulate a specific and valid research problem which can add new

knowledge to the existing body of knowledge in the domain and can be

acknowledged as a novel contribution. The research was focused more

towards embedded software development rather than hardware because this

played into the prior experience and interest of the author in desktop software

development. Following the literature review, group discussions in the

research group and personal interest it was agreed that the main direction of

the research should be aimed at bringing improvements into the reliability of

embedded software architectures. Whilst conducting investigations on this

topic at this early stage it was realised that many existing software

applications need to be modified and improved during their life cycle in order

to improve their reliability. Examples of such applications have already been

discussed in CHAPTER 2. For example the F-18 aircraft system discussed in

Section 2.2 went through an entire change in the scheduling policy from pre-

emptive to pre-runtime in order to improve reliability. The process to make

these changes in the architecture however was extremely tedious for those

who were involved in the process and alleviating this problem was seen as a

worthy research challenge that would contribute to the existing knowledge in,

and progress of, this field of interest. As part of this overall aim of finding

ways to make software architectural migration easier, other benefits of

improving the system reliability are realized, and another part of the research

was involved in evaluating these benefits. The research question then can

be articulated as: “Identifying the challenges involved during the migration

between different software architectures of complex embedded applications, in

Chapter 3. Methodology

27

order to improve reliability and to provide an appropriate solution to these

challenges”.

The research question was further condensed to two primary software

architectures as event-triggered (ET) and time-triggered (TT) as various other

architectures could be described as subset of these two architectures. Also in

the motivating examples described in CHAPTER 2 the existing design of the

applications was primarily ET which was transformed to TT in order to improve

system reliability and performance.

Having established ‘What to do’ with the formulation of the research question,

there was the next challenge of ‘How to do it’ in terms of a methodology.

3.4. Development of hypothesis and choosing the appropriate

methodology

Improving the reliability of embedded systems was central to the research so it

was important to investigate what factors contribute to the reliability of an

embedded system? In general software organisations focus on the following

factors in order to achieve reliable system design:

 Clear functional requirements: At the system application level the

functional requirements (i.e. logic) can be expressed by using semi-

formal methods such as control flow diagrams or logic/function block

diagrams (Liu, 2000).

Chapter 3. Methodology

28

 Clear temporal requirements: This includes correct specifications

related to task timings for example release time, start time and period

etc (Buttazzo, 1997).

 Choice of a programming language: The programming language should

be capable of being fully and unambiguously defined. The language

should be used with a specific coding standard and a restricted sub-set,

to minimize unsafe/unstructured use of the language (Barr, 1999).

 Choice of hardware platform: The hardware must be chosen wisely

considering cost performance ratio.

 Coding guidelines: When faced with the widespread (and increasing)

use of various programming languages for the production of embedded

code with safety-related constraints; it was felt that there was a need to

produce a set of standards to assist software developers. For example

the Motor Industry Software Reliability Association (MISRA) defined a

subset of the C language that can be used in critical systems (IEC,

2012).

 Code design/structure guidelines: To make embedded software code

portable, re-usable and maintainable the code must follow structure

guidelines so to imply clear portioning of functions and a visible

hierarchy of modules and interconnections (IEC, 2012).

 Choice of software architecture: For a reliable system design this is the

key component as it defines the major elements and subsystem of the

software how they are interconnected and how the required attributes

particularly safety integrity will be achieved (Bouyssounouse and

Sifakis, 2005).

Chapter 3. Methodology

29

 Team expertise/experience/training: Industrial projects are usually lead

by professionals with a high level of skills in the related area. However

the whole team might not be at the same level of expertise and so the

training requirements for less experienced individuals in the

organisation need to be considered.

The points mentioned above are usually adhered to in organisations during

the development phase of a product, and a great deal of time and effort is

invested in documenting the design and software engineering processes with

the aim to re-use the same processes in future projects. In general these

documents are text-based and capture information that can be helpful for re-

use of the design ideas in the future. These documents are regarded as

‘Intellectual Property’ (IP) in the organisation and often subjected to

copyright/patent or privacy rules and therefore are not freely accessible to

other people outside the organisation.

It can take many years for a novice software developer to acquire the tacit

knowledge and skills of an expert, and this is gained through working with a

variety of problems and applying best practice to solve them. By its very

nature tacit knowledge is not easy to record or articulate. It is in a sense in the

mind of the developer and in the complex system source code they have

developed, neither of which is readily accessible by others. Consequently

when skilled software developers leave an organisation they take this

knowledge with them and this places a heavy burden on the organisation in

terms of investment in training. If however there was a mechanism that could

help the organisation to capture this domain-specific design resources and

Chapter 3. Methodology

30

express them in a more explicit form accessible by all. This would greatly

assist an organisation to efficiently sustain the capabilities of the work-force

and reduce the costs of specialized training. It was with this challenge on

how to develop domain-specific design resources that the idea of ‘Design

Patterns’ emerged to as explained in the next section.

3.4.1. The ‘Design Pattern’ methodology

The concept of design patterns originated in the field of conventional (building)

architecture and provided the means to explicitly highlight the hidden key

design strategies and tactics to help new participants in the field. The patterns

also enabled knowledge to be shared among experts more effectively.

Though coming from ill-defined problems in the architecture of buildings,

patterns originally gained acceptance for well-defined problems in software

design such as patterns for object-oriented design methods (Gamma, Helm et

al., 1995), patterns for fault-tolerant software (Hanmer, 2007), and design

patterns for high availability systems (Kalinsky, 2002) . In this context the

principal contribution of design patterns is that they explicitly capture expert

knowledge and design trade-offs and thus support the sharing of architectural

knowledge among software developers. This means that a pattern language

(a collection of related patterns) may provide support to software developers

by addressing all the issues mentioned in Section 3.4 that contribute to the

design of embedded systems with improved reliability. This helped in

articulating the research goal as: “The use of design patterns to support the

migration between ET and TT software architectures for embedded systems”.

An early draft of this research objective was published in (Lakhani, Das et al.,

2009b) with the accompanying research question “Can we support the

Chapter 3. Methodology

31

migration from event-triggered to time-triggered architectures using design

patterns?”. Through the review process the peer community appreciated the

idea on the use of design patterns which helped in building the confidence that

there was novelty in the research problem.

The initial goal was set to derive patterns for migration from event-triggered

design to time-triggered co-operative (TTC) design, and identify problems that

are involved in this translation so that solutions could be explored and tested

for documenting the related patterns. Future goals were also set to find ways

in which pattern users could be offered more options for TT designs and their

related problems. It was also realised during the research that along with the

description of patterns for changing the architecture, it would be essential to

describe ways to attain optimised TT designs after migration. In conclusion

the goal was set to form a pattern language which can support practitioners in

the migration process from ET to TT designs and to attain optimised TT

design after migration.

3.4.2. Alternative approaches

One other possible way to tailor the research problem described in Section 3.3

could be the design of an automated tool-set such as an expert system which

can help in the migration process. An account of why this approach was not

adopted is presented below.

An expert system is a computer system that attempts to mimic human

expertise by applying inference methods to a specific body of knowledge

called a ‘domain’ (Darlington, 2000). Development of an expert system

Chapter 3. Methodology

32

involves the use of special expert system languages such as CLIPS (C

Language Integrated Production System) and special hardware designed to

facilitate the system. These systems have a competitive edge in the sense

that computer expertise (in the form of an expert system) is relatively easier to

transfer as compared to human expertise. This is because an expert system

could be copied to another PC on a different site or even downloaded to a

network of PCs, whereas human expertise is not reproducible in this way.

Human expertise is perishable in that people may switch job, retire etc.,

whereas expert systems are a way of retaining knowledge and can be

consistently available.

A repository of design patterns in an organisation can play an important role to

replace a loss of expertise or an expert system as patterns can help an

organisation to “back up” key skills from a team of expert designers and

provides a cheaper availability of the solution. Patterns provide solutions

documented by a domain expert and could be followed by an unlimited

number of experts working in the same domain. In this sense, patterns help to

promote creativity and enable different experts to obtain solutions with varying

dimensions. To quote from Vlissides (1997) “patterns are primarily food for the

brain”. Whilst expert system programs have the capabilities for learning that

transcend those available in a conventional program, these capabilities are

still very primitive compared with human learning. Humans are flexible, and

can easily adapt or integrate their expertise with the use of patterns in ways

that exceed the capabilities of computers.

Chapter 3. Methodology

33

On the other side, expert systems have the competitive edge on training

individuals to use patterns as the explanation capabilities of experts systems

are such that users can see a chain of reasoning underlying their decisions

and hence the users can gain a better understanding of the domain.

A summary of the comparison of the two approaches is presented in Table

3-1.

Table 3-1 Summary of comparison between a design patterns repository
and an expert system

Design patterns repository Expert system

Helps to promotes creativity.

Do not have the capability to stimulate

make creative responses as human

experts would in unusual circumstances.

Solutions provided can be adaptable Not adaptable.

Documented/followed by human experts

who can uses senses as sensors.

Based on technical knowledge and

generally uses symbols as input.

Provides best practice solutions which

experts have gained through experience.

Do not tend to learn from mistakes unless

user feedback and human maintenance

is part of it’s on- going development.

Provides a relatively low cost solution to

promote expertise within the

organisation.

Developing an expert system involves a

considerable amount of cost in the

purchase of relevant hardware and

software.

Based on the discussion above both design patterns and expert systems have

their own strengths and limitations however in the context of the research

problem described in Section 1.2 the design pattern methodology appeared as

more appropriate. This is because migration of the software architecture is not

limited to a certain set of rules, but actually depends on a number of

circumstances that are different for each application as discussed in the

different examples in CHAPTER 2. Therefore a designer might need to

Chapter 3. Methodology

34

introduce customisation in the given solution as per application requirement,

and a design patterns repository provides this flexibility.

3.5. Implementation of the chosen methodology

After the research problem was developed and the methodology was chosen

the research then focused on the implementation of solutions. In this phase

the patterns were derived, documented and implemented, and experiments

were designed and conducted to test and validate the patterns.

The work on the derivation of patterns incorporates literature survey,

discussions, code analysis and experimental work. This helped in the process

of identifying the problems involved in the migration process, seeking the

appropriate solutions, and testing the solutions through experiments. More

details about the derivation of each individual pattern are described in

CHAPTER 7. The newly documented patterns underwent the preliminary

formal evaluation process during this phase as part of their publication at

various PLoP (Pattern Languages of Programming) conferences. A detailed

evaluation of the research was conducted in the following phase and is

described in the next Section.

3.6. Evaluation

The evaluation phase is concerned with inspecting the validity of the research.

A detailed evaluation of the research was conducted in three different phases

and has applied both quantitative and qualitative approaches. As the patterns

Chapter 3. Methodology

35

proposed during the research are intended to support developers and

designers of embedded applications the ideal way to evaluate them is to test

their application in a real ‘live’ project which is undergoing the migration

process. Such experimental studies are categorised as ‘conducted in the

natural environment’ (Kumar, 2005). With this approach the study population

is exposed to an intervention in its own working environment of software

development. However within the remit of this research such an ‘on-site’

experimental study was not practical with commercial organisations due to the

long lead time in the development of new software, and confidentiality

concerns that could impact on the organisations’ Intellectual Property (IP)

rights. The research was also at an early stage, and this would be regarded as

too risky by organisations to invest time and effort in a process that had not

already demonstrated strategic potential for them. A better alternative for the

experimental design at this stage is a ‘controlled’ experiment. Here the

researcher (or someone else) introduces the training or educational

intervention or stimulus to study its effects in a controlled environment such as

a laboratory, a computer suite or training room. This approach is more suited

to academic research at an early stage where the potential benefits are still

unclear, and was chosen for the first phase of the validation.

Two phases of controlled experiments were conducted described separately

below.

In the first phase of evaluation experiments were conducted to demonstrate

the applicability of the patterns on real applications. Two commonly used but

Chapter 3. Methodology

36

non-trivial applications were chosen and the patterns were applied to enable

migration from their existing ET designs to TT designs. This evaluation phase

generated mainly the quantitative data to compare the performance of the two

designs. More details about these experiments are described in CHAPTER 9.

The second phase of evaluation involved user trials. During this phase

empirical studies with two different hypotheses were designed and conducted

involving MSc. students as subjects. The output of this evaluation phase was

quantitative and the details about these studies are described in CHAPTER

10.

In the final phase the research was evaluated in the industrial context. Here a

web-survey was conducted which offered the benefits of wide geographical

coverage of the target audience, a rapid response and faster and cheaper

data analysis. This phase has provided both quantitative and qualitative data

and further details about this evaluation process are explained in CHAPTER

11.

The controlled experiments conducted in the first two phases of the evaluation

have already passed through rigorous peer review and are published in

(Lakhani and Pont, 2012a) and (Lakhani and Pont, 2012b).

3.7. Conclusion

This chapter has described the methodologies adopted to conduct the

research described in this thesis. The various steps in each of the research

Chapter 3. Methodology

37

phases have been described and arguments provided for the chosen

approaches compared with alternatives. The following sections in the thesis

will describe the overall research process in detail.

38

PART B: LITERATURE REVIEW

This is a review of the background material related to the research presented

in this thesis. Three areas are of particular interest:

1. Software architectures for embedded systems and their comparisons

explained in CHAPTER 4.

2. Issues related to migration between different software architectures for

embedded systems explained in CHAPTER 5.

3. Design patterns and their journey from architecture to embedded

systems explained in CHAPTER 6.

Chapter 4. Event-triggered and time-triggered architectures

39

CHAPTER 4. EVENT-TRIGGERED AND TIME-
TRIGGERED ARCHITECTURES

4.1. Introduction

The nature of desktop computers is general-purpose i.e. they are used to

design a variety of applications from browsers and word processors to games

and inventory control applications involving huge databases. Embedded

system applications on the other hand are designed for some special purpose

to fulfill specific computing needs for that system. For example, a cruise

control system (CCS) designed for a car has completely different requirements

than an application designed to run a washing machine. Embedded

applications are further characterised by custom user interfaces built

according to the needs of each specific application. Because of the

uniqueness of each system, designing and developing embedded applications

is far more challenging than developing desktop applications. For instance

some high reliability systems such as aircrafts and automotive vehicles have

stringent real-time requirements (details about real-time are discussed in the

next section). Also, unlike most desktop applications, embedded applications

have resource constraints i.e. restrictions on use of memory space and power

consumption. Beside these limitations on the use of memory and power,

developers of embedded applications are required to incorporate timing

requirements along with the functional requirements of the applications (Graaf,

Lormans et al., 2003).

All embedded applications are designed and implemented as a collection of

tasks. This task set provides a suitable software abstraction of the embedded

Chapter 4. Event-triggered and time-triggered architectures

40

application being designed (Barr, 1999). To accomplish desirable system

behaviour, the triggering mechanism to activate these tasks (which determines

the underlying software architecture) and the scheduling order (to execute the

tasks in a certain order) are key design considerations. The appropriate

choice of these elements will have an effect on the overall system reliability.

Following this brief introduction, Section 4.2 is dedicated to providing details

about various scheduling schemes while designing real-time applications.

Section 4.3 presents details about the two primary software architectures used

when designing embedded applications – the time-triggered approach and the

event-triggered approach. Section 4.4 presents a comparison of the two

architectures. Finally a detailed discussion of the choice of an appropriate

scheduling scheme and software architecture is presented in Section 4.5 with

chapter conclusions in Section 4.6.

4.2. Taxonomy of scheduling techniques

Scheduling refers to decisions on the order and/or the execution time of a set

of tasks with certain known characteristics (Balarin, Lavagno et al., 1998). A

scheduler is a discrete component of a real-time embedded system that

makes (run-time) decisions about which of the available tasks (if any) should

be executed by the processor. A scheduler consists of hardware (e.g. a timer

and/or interrupt controller) and a small amount of software code. The

scheduler has two main roles (see Figure 4-1):

Chapter 4. Event-triggered and time-triggered architectures

41

1. Release control, i.e. deciding when tasks should be released (become

active).

2. Task dispatching, i.e. when multiple tasks are active the scheduler

needs to decide which tasks to execute at a given point in time.

Figure 4-1 An illustration of scheduler functions

A scheduler makes use of some form of algorithm (scheduling technique) to

solve these problems.

Scheduling of real-time tasks is an extensive topic and is widely discussed in

the literature. This section will discuss some of the identified scheduling

techniques which are related to this research.

4.2.1. Non pre-emptive or co-operative scheduling

As the name implies, this type of scheduling does not allow a currently running

task to be pre-empted by another task. This is why it is also termed as co-

operative, as the tasks are more ‘friendly’ and co-operative with each other. In

this type of scheduling, tasks once started are executed to completion without

Pending task
information

Other
interrupt
sources

Task Release

Control

Runtime Task
Dispatcher

Task 1

Task 2

Task 3
Timer

In a pure TT system these
sources are disabled

Chapter 4. Event-triggered and time-triggered architectures

42

being pre-empted (Pont, 2001). The shortcoming of co-operative scheduling

is its latency in response to important events: a higher priority task will have to

wait until the currently running task finishes execution (Labrosse, 2000). This

is because, the task which is currently using the processor is implicitly

assigned with the highest priority. Any other task must therefore wait until the

currently running task finishes execution and hand over the processor control

to the scheduler. The scheduler will hands over the control to next ready-to-

run task in the system. Figure 4-2 shows two tasks A and B scheduled to run

in a co-operative environment.

Figure 4-2 Illustrating the execution of co-operative tasks where one waits
until the other finish execution

Baker and Shaw (1988) described co-operative schedulers based on the

cyclic executive model (also called timeline scheduler). They defined a cyclic

executive as “a control structure or program for explicitly interleaving the

program execution of several periodic processes on a single CPU; the

interleaving time is done in a deterministic fashion so that execution time is

predictable.”

Chapter 4. Event-triggered and time-triggered architectures

43

A co-operative scheduler achieves its basic operation by setting up a periodic

timer interrupt to drive a schedule table every ‘ttick’ ms. An optimal value of ttick

is the greatest common divisor (GCD) of the task periods. The schedule

repeats itself over a major cycle ‘h’ which is defined as the least common

multiple (LCM) of the task periods (Liu, 2000). An example of a cyclic

schedule is shown in Table 4-1 with ttick = 25 ms and h = 100 ms. The timeline

of the system is shown in Figure 4-3.

Table 4-1 Task specifications for a system with non-pre-emptive cyclic
executive scheduler

Task ID WCET (ms) Period (ms) Deadline (ms)

A 10 25 25

B 10 50 50

C 7 100 100

Figure 4-3 Schedule for the task set shown in Table 2-1 where ttick
represents the system tick and ‘h’ represents the major cycle for the

system

The advantage of co-operative scheduling is its simple design and low context

switching4 overhead. According to Jeffay et al. (1991), non-pre-emptive

scheduling naturally guarantees exclusive access to shared resources and

data, thus eliminating both the need for synchronization and its associated

4
 It is the process of suspending the currently running task execution and starting a new one.

This process involves the storage and retrieval of information (related to tasks) from the
memory. Context switching takes up processor time, it is therefore regarded as an overhead
(Cooling, 2003).

Chapter 4. Event-triggered and time-triggered architectures

44

overhead . For such schedulers context switching only happens when the

task finishes its execution (Labrosse, 1999) and the new ready to run task

gets control of the processor. However, the major drawback of this approach

is that systems scheduled with non-pre-emptive schedulers allow single

tasking only i.e. only one task is active at a time.

4.2.2. Pre-emptive scheduling

Pre-emptive scheduling is priority-based and so it allows multi-tasking in the

system. In this type of scheduling, among a set of ready tasks, one is chosen

dynamically according to a priority order. Priorities may be seen as additional

information that helps in determining an execution policy that satisfies all the

constraints (Balarin, Lavagno et al., 1998). In this type of scheduling, when a

higher priority task becomes ready-to- run it can pre-empt the currently

running lower priority task thereby taking control of the CPU. Once the higher

priority task completes execution the pre-empted lower priority task is loaded

again to complete the remaining part of its execution. As a consequence the

context switching overhead is high but the main advantage is a better system

response (Labrosse, 2000) compared with co-operative scheduling where the

higher priority task can immediately take control of the processor. Figure 4-4

illustrates the operation of a system in which three pre-emptive tasks (A, B

and C) are scheduled to run with task C as the highest priority task. Task ‘A’

being the lowest priority is allowed to run once all the high priority tasks finish

execution.

Chapter 4. Event-triggered and time-triggered architectures

45

Figure 4-4 Illustrating pre-emptive tasks where a higher priority task pre-
empts the lower priority task upon its arrival

Please note that pre-emption allows the scheduler to temporarily suspend the

execution of a running task and allow another task to begin to execute. This

requires that the context of the running task is stored (in some form of data

structure) so the results of incomplete calculations are not lost. The context of

the new task needs to be retrieved and switched in. This is why the process

of context switching incurs overheads such as more processor time and

memory utilization because of the extra use of these resources.

Researchers in the field of embedded systems development have different

perspectives about pre-emption mechanisms and these mechanisms have

been discussed by both opponents and proponents. Advocates of pre-

emptive systems usually favor these systems because of their high

responsiveness. Jia Xu appeared to be a strong opponent of priority-

based/pre-emptive scheduling and opposed it because of the greater system

overhead and significant difficulties involved in analyzing and predicting the

system behaviour at runtime (Xu and Parnas, 1993; Xu and Parnas, 2000; Xu,

2003a; Xu, 2003b).

Chapter 4. Event-triggered and time-triggered architectures

46

4.2.3. Offline scheduling

This is also known as pre-runtime or static scheduling. For offline or pre-

runtime schedulers, scheduling decisions are taken at the design time and are

used in cases where a complete set of task parameters are known (or

calculated) in advance at the time of system design. Thus, offline schedulers

are based on pre-runtime analysis of the system (Xu and Parnas, 1993). The

entire plan of the system can be stored in a table and as a result the runtime

overhead of the schedule is low (Cottet, Delacroix et al., 2002). The main

advantage of the pre-runtime scheduling is the overall reduction in the

complexity of inspection and verification of timing properties of a system (Xu,

2003a). This is because the pre-runtime scheduling approach effectively

reduces the number of possible cases of the actual code’s timing behaviour by

structuring real-time software as a set of cooperating tasks and imposing

strong restrictions on the interactions between those tasks (Xu, 2003b). Due

to this benefit of predictability, offline schedulers became the choice of a

number of applications including flight control systems, process control

systems and space shuttle avionics system (Ramamritham and Stankovic,

1994). However, the systems designed using offline scheduling are quite

inflexible to environmental changes (Cottet, Delacroix et al., 2002).

4.2.4. Online scheduling

This is also referred to as runtime or dynamic scheduling in the literature (Liu,

2000; Sha, 2004). In this type of scheduling, decisions are taken at runtime

when a new task enters the system. In this case, no schedule is built at the

design time (Cottet, Delacroix et al., 2002). This approach is normally used in

systems:

Chapter 4. Event-triggered and time-triggered architectures

47

 In which it is likely that a task(s) can be added or removed at runtime.

 Systems that interact with evolving environments.

 These types of schedulers suffer from high runtime overheads (Liu, 2000).

4.2.5. Static priority scheduling

This type of scheduling is also described as fixed priority scheduling in the

literature (Leung and Whitehead, 1982). In this scheme, tasks priorities are

assigned before the scheduler starts its execution and those priorities remain

unchanged throughout the lifetime of the system. Examples of these types of

schedulers are Rate Monotonic (RM) and Deadline Monotonic (DM).

In the case of the RM scheduler, task priorities are assigned based on their

period; the shorter the period the higher will be the priority (Liu and Layland,

1973). In principle, RM is a pre-emptive algorithm which is based on fixed

priority assignment (Kopetz, 1997) . The RM algorithm was proved to be

optimal5 by Liu and Layland in 1973. They demonstrated that if it is possible

to schedule a task set using any fixed priority algorithm and meet all of its

timing constraints, then RM can achieve this as well. Their observations about

a RM scheduler are presented in Equation 4-1

U = ∑Ci/Pi ≤ n(2
1/n

– 1) Equation 4-1

Where:

U = CPU utilization factor

n = Number of tasks

Ci = Worst-case execution time of task Ti

5
 A schedule is feasible if all the tasks meet their deadlines. A scheduling algorithm is optimal

if it is able to produce a feasible schedule for any schedulable task set (Cottet et al. 2002).

Chapter 4. Event-triggered and time-triggered architectures

48

 Pi = Period of task Ti

They proved theoretically6 that with a RM scheduler every task can meet its

deadline if the total CPU utilization is less than or equal to 69% and under the

following assumptions:

 All tasks are periodic and independent of each other.

 The deadline of each task is equal to its period.

 The worst-case execution time of tasks is known.

 The context switching overhead can be ignored.

The main advantage of the RM algorithm is its flexibility during design and

maintenance phases (Locke, 1992; Bate, 1998). A variant of RM scheduling is

deadline monotonic (DM) also referred to as ‘Inverse deadline scheduling’

(Leung and Whitehead, 1982; Audsley, Burns et al., 1991). It weakens the

RM’s “period equals deadline” constraint by assuming that deadlines can be

shorter than task periods. In this type of scheduling, fixed priorities are

assigned to tasks based on their deadlines. Tasks with smaller deadlines are

assigned with higher priorities. DM is optimal in the sense that if there exists a

feasible fixed priority assignment schedule for a task set for which deadlines

are shorter than periods then DM is also feasible for that task set. The

utilization factor ‘U’ for DM is calculated in relation to a deadline rather than a

period and is shown in Equation 4-2.

U = ∑Ci/Di ≤ n (2
1/n

– 1) Equation 4-2

Where:

6
 A complete schedulability test of this algorithm is derived in (Liu and Layland, 1973)

Chapter 4. Event-triggered and time-triggered architectures

49

n = Number of tasks

Ci = Worst-case execution time of task Ti

 Di = Relative deadline of task Ti

DM scheduler provides the application designer with more flexible process

model and is particularly useful when the task deadline is shorter than the

period of the task (Audsley, Burns et al., 1991).

4.2.6. Dynamic priority scheduling

In this case, the priority of each task is dynamically assigned and can be

changed at runtime (Buttazzo, 1997; Buttazzo, 2005). Examples of dynamic

priority schedulers are Earliest Deadline First (EDF) and Least Laxity First

(LLF). In EDF, the priority of each task is dependent on its absolute deadline7,

the closer the deadline of a task is with respect to other tasks deadlines, the

higher will be the priority (Liu and Layland, 1973).

The laxity of a task is the maximum time a task can be delayed without

missing its deadline (Cheng, 2002). This is also referred to as slack time of a

task. Buttazzo has provided a simple equation to calculate the laxity of a task

in (Buttazzo, 1997) shown in Equation 4-3.

Laxity = Deadline - Arrival time - Execution time Equation 4-3

7
 A deadline can be measured from the start of the system power on, in which case it is called

an absolute deadline, alternatively it can be measured from the start of the task period in
which case it is a relative deadline.

Chapter 4. Event-triggered and time-triggered architectures

50

The LLF algorithm assigns highest priority to the task that has shortest laxity

or that needs to be executed most immediately.

4.3. Software architectures for embedded applications

Along with the choice of appropriate hardware, every embedded application is

designed with underlying software architecture. Therefore in building reliable

embedded systems software architecture is as important as its hardware

counterpart. Software architecture defines the overall structure of the system

in terms of components and an organisational principle that defines possible

interconnections between these components (Dechering, Groenboom et al.,

1999). In addition the software architecture prescribes a set of rules and

constraints governing the behaviour of components and their interactions

(Boassan, 1995). Douglass Locke in his paper (Locke, 1992) has defined the

principle design objective for the software architecture as: “The architecture

must be capable of providing a provable prediction of the ability of the

application design to meet all of its time constraints.”

In the light of these definitions software architecture for embedded

applications is described in terms of a task model which constitutes the

system and the strategy used in scheduling tasks. As discussed briefly in

Section 1.2, two main software architectures for designing embedded

applications are ET and TT. The subsequent sections in this chapter are

dedicated to a discussion on these two architectures in detail.

Chapter 4. Event-triggered and time-triggered architectures

51

4.3.1. Event-triggered (ET) architecture

A ‘trigger’ is defined as a control signal that initiates an action (or a task) in an

embedded computer system (Kopetz, 1997). This definition helps to draw a

clear line between ET and TT software architectures. In a system designed

with ET architecture, tasks are executed in response to the occurrence of

particular events (Nissanke, 1997) and the peculiarity of these events are that

their arrival times are not always known (or calculated) in advance. The

occurrence of events may either be predictable (statistically or otherwise) but

some events cannot be predicted deterministically. Therefore, Herman

Kopetz (a strong supporter of TT architecture) has used a term ‘chance

events’ (Kopetz, 1991) to describe these. Tasks in a purely ET design are of

an aperiodic nature. Most ET systems that are in use today are designed with

pure interrupt-driven and pre-emptive approaches. That is to say in such

applications the appropriate code is directly executed inside an interrupt

service routine (ISR) to handle the event raising the interrupt. A schematic

view of handling interrupts in the system is shown in Figure 4-5.

Figure 4-5 Illustrating the interrupt handling mechanism in an embedded
application [Adapted from (Pont, 2001)]

Chapter 4. Event-triggered and time-triggered architectures

52

Viewed from a high level perspective, interrupts provide a mechanism for

creating multi-tasking in applications, i.e. the application is allowed to handle

more than one task at a time using a single processor. The nature of ET

architecture necessitates the use of pre-emptive/priority-based and online

scheduling strategies in systems. Therefore, most of the systems (if not all)

designed with ET architectures use pre-emptive/priority based scheduling and

so their merits and demerits are associated with those scheduling techniques.

ET designs are considered more responsive, flexible and easier to design as

no prior knowledge related to task parameters is required at the design time.

The main advantage of these systems is their ability to quickly react to

asynchronous external events which are not known in advance (Albert and

Gerth, 2003) and so they show a better real-time performance. In addition ET

systems possess a higher flexibility and allow in many cases the adaptation to

the actual demand without a re-design of the complete system (Albert and

Bosch GmbH, 2004).

A pure ET design suffers from context switching overheads and

unpredictability because of the lack of a priori knowledge of the event’s arrival

times and the way they are handled in such systems. Also in such systems

the arrival of multiple (too many) interrupts at the same instant of time can

deteriorate the situation and techniques for minimising this are required. For

example, ‘Interrupt nesting’ is a mechanism which allows further interrupts to

occur while a currently running interrupt is in service (Sloss, Symes et al.,

2004). A three-level nested interrupt is shown in Figure 4-6.

Chapter 4. Event-triggered and time-triggered architectures

53

Figure 4-6 Illustrating the process of task switching as various interrupts
occur in a nested interrupt based system

However, depending upon the depth or level of nesting this situation could

lead to increase in system complexities. In such a case complexity means

that designers have to balance efficiency with safety and defensive coding

style that assumes problems will occur (Sloss, Symes et al., 2004). There

are two ways of looking at this feature and on the positive side this could make

the systems more responsive as the higher priority tasks will run immediately

as their associated interrupt arrives. On the other hand, this could increase

the complexity of the system because of nested pre-emption, context

switching overheads, and the possibility of malfunctioning due to stack

overflow and register corruption.

4.3.2. Time-triggered (TT) architectures

In systems designed with TT architectures, the triggering signal for tasks is,

‘time’. The invocation of tasks is dependent on a single timed signal which is

known (or calculated) in advance and is usually a periodic timer interrupt.

Thus, TT designs have only one interrupt enabled, all the other inputs to the

system are polled. The period of time marked by the timer interrupt is

Chapter 4. Event-triggered and time-triggered architectures

54

identified as the system tick interval (Pont, 2001). This type of solution suits

many control applications where the data messages exchanged in the system

are periodic (Kopetz, 1997). In a purely TT designed system tasks are

characterised by static or pre-runtime scheduling (Locke, 1992).

TT architectures can be adopted in various ways – for example – a simplest

TT design implemented with co-operative scheduling called time-triggered co-

operative (TTC) design is based on a cyclic executive model and its

implementation is discussed in detail in (Pont, 2001) . In a typical TTC design

a timer is set to generate interrupts on a periodic basis (with tick intervals of

around 1 ms being typical). In most cases, the tasks will be executed from a

“dispatcher” function, invoked after every tick. The dispatcher examines each

task in its list and executes any tasks which are due to run in this tick interval.

The scheduler then places the processor into an “idle” (power saving) mode

where it will remain until the next tick. As an example consider a set of three

tasks A, B and C with specifications shown in Table 4-2. Figure 4-7 is

portraying the TTC scheduler for the task set of Table 4-2.

Table 4-2 Task specifications for task set required to be scheduled with a
co-operative scheduler

Task ID Start time (ms) Period (ms)

A 0 2

B 0 1

C 0 1

Chapter 4. Event-triggered and time-triggered architectures

55

Figure 4-7 TTC schedule for the task set shown in Table 4-2

The TTC scheduler is an attractive option for designers of embedded

applications because of its simple design and highly predictable behaviour.

Being non pre-emptive in nature, tasks runs to completion once started which

eliminates the need to implement any shared resource access control

mechanism. Also, it involves low context switching overhead and low task

jitter.

However, the main drawbacks of the TTC scheduler are its fragility and lack of

flexibility when it becomes necessary to adopt changes in the system

requirements. In such a case the entire schedule needs to be reconstructed.

Another drawback is the poor responsiveness when the system has to handle

any long task as it will block any other tasks until it is finished and

consequently this may lead to the blocked tasks missing their deadlines

(Locke, 1992; Bate, 1998).

In applications in which TTC does not appear as an appropriate choice, other

options are available that allow pre-emption in the system. Under such

circumstances, the usual choice is a fully pre-emptive design, however some

previous studies have described ways in which support for a single TT pre-

Chapter 4. Event-triggered and time-triggered architectures

56

emptive task can be added to a TTC scheduler to form a “time-triggered

hybrid” or TTH scheduler (Pont, 2001). The TTH scheduler supports:

 A single pre-emptive task which can interrupt co-operative tasks.

 Any number of co-operatively scheduled tasks

 To understand the operation of a TTH scheduler consider the task set

presented in Table 4-3, for which the timeline is shown in Figure 4-8 (the

downward arrows are representing the system ticks).

Table 4-3 Task set specifications required to be scheduled with a hybrid
scheduler

Task ID

Task Type

Start time
(ms)

Execution time
(ms)

Period
(ms)

C Co-operative 0 3 5

P Pre-emptive 1 0.2 1

Figure 4-8 Illustrating the operation of a TTH scheduler

In many designs, the pre-emptive task will be used for periodic data

acquisition typically through an analogue-to-digital converter (ADC) or similar

device. Such a requirement is common in, for example, a wide range of

control systems (Buttazzo, 1997).

Chapter 4. Event-triggered and time-triggered architectures

57

TTC and TTH designs are not the only options for TT designs but there are

other possibilities to implement with fully pre-emptive architecture such as

time-triggered rate monotonic (TTRM) and time-triggered deadline monotonic

(TTDM) designs discussed in (Maaita, 2008).

The predictable nature of the TT approach makes it the usual choice for many

safety related applications such as fly-by-wire aircrafts and drive-by-wire

passenger cars (Ayavoo, Pont et al., 2005). As the schedule for such systems

is available offline, these systems can be tested exhaustively before their

actual implementation. This in-turn contributes to system reliability (Xu and

Parnas, 2000). On the other hand, TT systems are considered ‘difficult to

design’ or inflexible as adding new tasks in the system (in some cases) will

require changes to be made in the entire schedule.

4.4. Event-triggered versus time-triggered architectures

In the published literature, both ET and TT architectures have been widely

discussed and debated by opponents and advocates. For example research

presented in (Kopetz, 1991; Kopetz, 1993; Albert and Bosch GmbH, 2004;

Claesson and Suri, 2004; Obermaisser, 2005; Scarlett and Brennan, 2006;

Scheler and Schroder-Preikschat, 2006) has discussed the comparative

features of both of these architectures. A combined agreement of all such

studies is in favour of ET systems for responsiveness and flexibility in design

while TT systems are favoured for their predictable nature.

Chapter 4. Event-triggered and time-triggered architectures

58

To summarise – TT concepts potentially provide a higher dependability while

ET systems possess a higher flexibility (Albert and Bosch GmbH, 2004). It is

impossible to predict the concrete state of an ET system at a given point in

time, because only few assumptions on the occurrence of aperiodic and

sporadic events can be made, while this is much less problematic in TT

systems (Scheler and Schroder-Preikschat, 2006). The TT approach offers

considerably less flexibility compared to the ET method. Instead, the TT

approach offers highly predictable communication behaviour on account of its

static slotted access approach; predictability being a significant factor in its

usage for design of safe and reliable systems (Claesson and Suri, 2004). For

a distributed system where communication between different nodes is

required Scarlett and Brennan voiced their opinion that the TT approach has

been favoured in safety-critical systems because it can ensure that no

communication delays occur by assigning dedicated communication time

windows to specific nodes. The pure ET approaches have been unable to

guarantee communication delays and have thus not gained acceptance

(Scarlett and Brennan, 2006).

Testing of embedded applications before their actual implementation is an

important issue and explored by researchers in the field. TT systems are

inherently easier to test than ET systems. This is because, processes in TT

systems work in lockstep with time and requires rigid assumptions about the

behaviour of the environment while, ET systems react to events in the

environment as they occur (Birgisson, Mellin et al., 1999). Since no detailed

plans for the intended temporal behaviour of the tasks of an ET system exist, it

Chapter 4. Event-triggered and time-triggered architectures

59

is not possible to perform “constructive” performance testing at the task level

(Kopetz, 1993).

Table 4-4 provides a summarized view of the comparative features of ET and

TT architectures discussed in the section above.

Table 4-4 Comparative view of event-triggered and time-triggered
architectures

Characteristic ET Systems TT Systems

Design Easier Difficult

Testing Difficult Easier

Responsiveness High Low

Flexibility High Low

Predictability Low High

4.5. Discussion

In this chapter, a detailed discussion on software architectures for embedded

applications has been presented. In conjunction with this different scheduling

schemes discussed in the literature have also been described. Designing a

reliable system is mainly dependent on making the correct choices and taking

appropriate decisions about scheduling scheme and software architecture.

4.5.1. Selection of appropriate scheduling scheme

At a glance, it appears there are too many options available for the scheduling

of tasks in embedded applications such as co-operative, pre-emptive, offline,

online, static priority based scheduling, and dynamic priority based scheduling.

The fact is, they are not mutually exclusive and most of them are interrelated.

For example, pre-emptive scheduling is actually priority based (static or

Chapter 4. Event-triggered and time-triggered architectures

60

dynamic) and is online scheduling as most task parameters are revealed and

resolved at runtime. Co-operative or non-pre-emptive scheduling is offline or

pre-runtime scheduling as it involves designing a complete schedule at the

design time. At a higher level, there are two broad categories of scheduling:

Co-operative and Pre-emptive.

Commonly used schedulers with offline scheduling technique are based on

the cyclic executive model. Schedulers based on the cyclic executive model

can be an attractive option when designing real-time systems due to their

simplicity and predictable behaviour (Bate, 1998). Also the fact that no shared

resource-access control is required as the task runs to completion once

started and that there is no pre-emption is an added advantage (Locke, 1992).

The most serious concern shown by researchers about the cyclic executive

based models is their fragility i.e. small changes to the timing of a particular

task can mean that the developer has to make substantial changes (Shaw,

2001). The other main concern reported against co-operative scheduling and

the cyclic executive model is task overrun i.e. concerning tasks bearing

execution times longer than the length of the minor cycle. If a task is overrun

the problem may not even be detected and could seriously affect system

behaviour. Buttazzo has mentioned these problems in these words in

(Buttazzo, 2005) “Co-operative scheduling is fragile during overload

situations, since a task exceeding its predicted execution time could generate

(if not aborted) a domino effect on the subsequent tasks causing their

execution to exceed the minor cycle boundary”

Chapter 4. Event-triggered and time-triggered architectures

61

Priority-based or pre-emptive scheduling is considered a better approach

because of its ability to handle dynamic situations, but it costs in the form of

increasing system complexity. Because pre-emption is allowed shared

resource access handling has to be provided in the system. Without proper

resource access control, shared data structures could end up in an

inconsistent state (Kalinsky, 2001).

Developers and designers of embedded applications use techniques such as

semaphores to handle shared resource access but they must be implemented

carefully. Such systems are vulnerable to problems known as priority

inversion and deadlock. Priority inversion is a phenomenon in which a lower

priority task locking a shared resource forces a higher priority task to be

blocked as it waits for that resource to be released (Sha, Rajkumar et al.,

1990; Buttazzo, 1997; Cottet, Delacroix et al., 2002). A deadlock may occur if

a higher priority task is waiting for a resource held by a lower priority task,

while lower priority task is simultaneously waiting for a resource held by a

higher priority task. In such a case none of the tasks are able to proceed and

– as a result – a deadlock is formed. Both priority inversion and deadlock can

be solved by using protocols such as priority inheritance protocol (PIP) and

priority ceiling protocol (PCP) (Sha, Rajkumar et al., 1990).

Michael Barr a strong critic of the pre-emptive scheme has expressed his

views against pre-emption as ‘Perils of pre-emption’ (Barr, 2006). According

to him: “Several workarounds to priority inversion exist, but they always result

in wastage. For example, under the Priority Ceiling Protocol each shared

Chapter 4. Event-triggered and time-triggered architectures

62

resource has a priority at least as high as the highest-priority task that ever

uses it. Unfortunately, this popular workaround results in another violation of

the basic assumption of priority-based pre-emptive scheduling: A medium

priority task may NOT use the CPU because a low-priority task is running and

using a resource sometimes used by a high-priority task”

The above discussion highlights the fact that there is no silver bullet for

scheduling tasks in real-time applications. There is a price to pay for every

benefit so the perfect choice of the scheduling scheme depends on application

demands and requirements. Indeed, the choice of a scheduling technique is

often the result of a hard compromise between conflicting criteria! (Balarin,

Lavagno et al., 1998).

4.5.2. Selection of appropriate software architecture

It is the scheduling strategy which actually defines the underlying software

architecture of an embedded application. Two key software architectures

widely discussed in the literature are ET and TT. In Section 2.5 a detailed

discussion and comparison of ET and TT architectures has been presented. It

has been argued that ET architectures are preferred for their responsiveness,

flexibility and ease of design, while TT architectures are mainly preferred

because of their predictable nature. This feature is a significant advantage for

any kind of dependable system (Scheler and Schroder-Preikschat, 2010).

The question still remains that for any application, what is the criterion to

choose a perfect architecture? The question of choosing ET or TT

architecture has no clear answer and there are no rules defined for the

developers of embedded applications which they can follow without more in-

Chapter 4. Event-triggered and time-triggered architectures

63

depth investigation of the application requirements. The implications of

choosing either the TT or ET approaches are not particularly easy to assess,

especially within a complex system where the various design considerations

span contending trade-offs with flexibility, efficiency, predictability and

dependability (Claesson and Suri, 2004). In order to compare the

performance of an application both with ET and TT architectures, Kopetz has

demonstrated an example of an alarm monitoring system in (Kopetz, 1997).

The system has a distributed architecture consisting of ten interface nodes

connected to a controlled object and an alarm monitoring node that processes

the alarms and displays them to the operator. The system is implemented both

with ET and TT architectures. Figure 4-9 compares the performance of the ET

solution versus the TT solution.

Figure 4-9 Load generated by ET and TT solutions of the alarm monitoring
system [adapted from (Kopetz, 1997)]

The break-even point between the two implementations is at about 16 alarms

per 100 milliseconds, which is about 4% of the peak load. If less than 16

alarms occur within a time interval of 100 msec then the ET implementation

Chapter 4. Event-triggered and time-triggered architectures

64

generates less load on the system. If more than 16 alarms occur, then TT

implementation is more efficient.

This example clarifies the idea that systems based on ET architecture are not

always more responsive than systems based on TT architecture, as in high-

generated load situations or in worst-case scenarios the efficiency of ET

based system is not verified. Thus, when considering worst-case

requirements the TT approach is more resource efficient than the ET one.

However, when considering average-case requirements, TT is considerably

more resource hungry when compared to ET systems. Consequently, by

assessing a system according to its worst-case requirements (e.g. in hard

real-time systems) the TT approach tends to be less expensive than the ET

one (Almeida, Pedreiras et al., 2002). Thus selecting the appropriate

architecture is not that straightforward and involves trade-offs depending upon

the situation. As Albert and Bosch noted, “In general, reality is neither black

nor white but rather gray. Thus, it depends on the application whether a time-

triggered or an event-triggered behaviour is more suitable” (Albert and Bosch

GmbH, 2004).

4.5.3. Current trends

This Chapter has presented a detailed account of software architectures as

discussed in the literature and, it is worth investigating where the current state-

of-the-art of software architectures for modern embedded applications lies with

respect to system reliability. There isn’t a straight forward response to this as

modern embedded applications can be found in a huge variety of devices and

systems in almost all industrial and business sectors from games and home

Chapter 4. Event-triggered and time-triggered architectures

65

appliances to transportation and military applications. There is an equally

diverse variety of design requirements in these applications but reliability is

always a desirable feature for the customer. The tolerable degree of reliability

of course varies depending on the application but for safety-critical

applications which involve risks to human life, reliability is of paramount

importance.

To maintain a benchmark for the functional safety of devices the International

Electro-technical Commission (IEC) has introduced a set of standards for the

general market called IEC 61508. Because IEC 61508 is very general and as

the state of the industry cannot be reflected in a general standard, the specific

standards are described for different types of applications such as IEC 60730

for white goods, ISO 26262 (published recently in November 2011) for

automotive industry and DO-178 for aerospace. By the use of these

standards both systematic and random failures can be reduced and managed

to ensure system reliability and functional safety. For example for ensuring

functional safety of road vehicles, ISO 26262 has reserved a separate part

(Part 6) which is further divided into various sections on guidelines for

software architectural design. The standard does not favour or oppose any

specific software architecture but has defined guidelines to follow to get safe

and reliable systems. Some of the principles defined for the software

architectural design are: hierarchical structure of software components,

restricted size of software components, restricted coupling between

components, appropriate scheduling properties and restricted use of

interrupts. Some mechanisms are defined for error detection and error

Chapter 4. Event-triggered and time-triggered architectures

66

handling at the software architectural level. For example the recommended

error detection mechanisms are: detection of data errors, external monitoring

facility and control flow monitoring. Mechanisms defined for error handling

are: static recovery mechanism and graceful degradation. There is strong

emphasis on testing and verification of the software architectural design and

methods recommended are informal verification by walkthrough or inspection

of the design, semi-formal verification by simulating dynamic parts of the

design or by the proto type generation or animation, formal verification which

involves rigorous mathematical models, control flow and data flow analysis for

the system.

In order to achieve systems which are safety complaint and certified by these

standards the competitors in the automotive industry are inclined towards

adhering ISO 26262 guidelines. As already mentioned above, there is no

single architecture which is recommended or rejected by ISO 26262 it is still to

be decided by the software designers and developers which architecture has

the ability to follow the guidelines.

4.6. Conclusions

This chapter has explored software architectures and their related background

discussed in the literature. It described the real-time task model, scheduling

schemes and their relevance with designing software architectures. It has

also presented a detailed comparison of ET and TT architectures and

highlighted the ambiguities involved in deciding about the appropriate choice

Chapter 4. Event-triggered and time-triggered architectures

67

of scheduling scheme and software architecture for a particular application.

These difficulties sometimes appear as a demand in the change in the current

architecture of an application and designers often have to face the challenge

of migration in software architectures. The next chapter will discuss and

review some real examples of applications quoted in literature that faced the

issue of migration due to problems with their existing architectures.

Chapter 5. Migration of architectures in embedded applications

68

CHAPTER 5. MIGRATION OF ARCHITECTURES IN
EMBEDDED APPLICATIONS

5.1. Introduction

As mentioned in Section 1.2, the main objective of this research is to improve

the reliability of existing applications by making them more predictable.

CHAPTER 4 described how software architectures initially chosen for

designing an application play a vital role in system reliability. In spite of taking

very careful decisions about choosing the architecture during an application

design, designers/developers of embedded applications may have to face

unexpected consequences of the application in use afterwards. Software

architecture usually demands some modifications at a later stage of its life

cycle or in some cases radical alteration becomes crucial because it is not

easy to simulate all the conditions of usage of the software at design time.

Therefore sometimes an application may have to pass through a process of

architecture migration in order to improve reliability. This chapter is dedicated

for a discussion on the issues that arise when migration in embedded

applications is required. Section 5.2 presents a general discussion on the

migration of embedded applications and how this process has been defined by

different researchers in the field. In connection with this, Section 5.3 will

shadow light on various characteristics and drivers of migration in embedded

software development. Section 5.4 presents a discussion on dependencies

between different components in embedded software and how change to one

part may affect the other part(s). Section 5.5 presents a discussion on few

existing techniques found in literature to deal with the migration process and

chapter conclusions are presented in Section 5.6.

Chapter 5. Migration of architectures in embedded applications

69

5.2. Related terminology

In some cases, applications initially designed with a specific architecture even

with the consideration of all the issues/trade-offs related to that architecture

may prove to be an incorrect choice later on at some point in their life cycle. It

is quite possible that application requirements may change with respect to

time. In such situations, it becomes crucial to make necessary changes in the

existing design or sometimes completely alter the application architecture. To

explain this situation, researchers in the field have used different terminologies

such as ‘Re-engineering’ (Chikofsky and Cross, 1990; Madisetti, Jung et al.,

1999; Park, Ryu et al., 2006), ‘Change and Customisation’ (Eckert, Clarkson

et al., 2004) , and ‘Migration’ (Scheler and Schroder-Preikschat, 2010). This

section will look at what different researchers mean by their described

terminologies and how they are related.

According to the definition provided in Chikofsky and Cross (1990) “The re-

engineering generally includes some form of reverse engineering followed by

some form of forward engineering or re-structuring. This may include

modifications with respect to new requirements not met by the original

system.” According to Park et al. (2006), “Re-engineering problem is defined

as a sequence of activities involving reverse engineering, system alteration,

and forward engineering.” In this process, reverse engineering captures an

understanding of the behaviour and structure of the system, alteration

modifies the current structure and forward engineering aims to incorporate

new functionalities in the system.

Chapter 5. Migration of architectures in embedded applications

70

Eckert et al (2004) has discussed the change and customisation process for

complex engineering domains used in aerospace. They have categorised

change process as ‘Emergent change’ and ‘Initiated change’. The emergent

change caused by the state of the design where problems occurring across

the whole design and throughout the product life cycle can lead to changes.

The initiated change arises from an outside source typically a new

requirement from customers, certification bodies or manufacturers.

In the context of research presented in this thesis ‘Migration’ specifically refers

to the transitioning of existing software architecture of an embedded

application from ET design to TT design.

At a higher level, migration issues related to embedded applications have

been identified previously in the literature focusing on legacy embedded

applications (Madisetti, Jung et al., 1999; Mosley, 2006), complex engineering

systems (Eckert, Clarkson et al., 2004), applications related to control systems

(Hebert, 2007) and military applications (Oest, 2008). All the previous

research work and experts in the field agree that migration brings new

challenges for developers and designers of embedded applications.

According to Park et al. (2006) “Performance re-engineering problem for an

embedded system poses serious challenges to developers.” Because of the

complexities involved in the process migration requires detailed and careful

planning beforehand. According to Hebert (2007) “Breaking a large migration

project into smaller and more manageable phases reduces risk and down-

time.” Oest (2008) is of the opinion that “Migrating complex embedded

Chapter 5. Migration of architectures in embedded applications

71

software – particularly in applications requiring real-time response and a high

degree of safety criticality – can be a costly, time consuming, and risky

process requiring code changes, re-testing, and even re-certifying.”

All the above statements reflect a common agreement that introducing change

in the existing design/architecture of embedded applications offer new

challenges and this research aimed to explore ways to facilitate the designers

in facing the big challenge.

5.3. The need for migration in embedded software

This section will focus on the issues which drive the developers of embedded

applications to migrate their applications from the existing platform to a new

one.

The previous section illustrated the complexities involved in the process and

this can often be a deterrent to developer of embedded software who as a

result may wish to avoid the process. However, in cases where reliability and

safety in systems are two primary goals, migration is the best solution. Though

achieving reliable and safer systems is indirectly linked to many other factors

such as system upgradability, desired functionality, system performance in

normal and in peak load situations etc. Consideration about these factors

needs to be the part of decision-making about whether is it the time to migrate

the application. The main drivers for software migration are explained in

Sections 5.3.1 to 5.3.4 below.

Chapter 5. Migration of architectures in embedded applications

72

5.3.1. Hardware modifications

Several hardware modifications in systems can lead to migration in embedded

software. This may include either hardware upgrades to avoid obsolescence

or hardware enhancement if the application demands improvement in

performance.

Mostly the safety-critical embedded systems such as those use in aerospace

and defense (missiles etc.) bears longer life cycles. This leaves a possibility

for individual components used inside such systems becomes obsolete years

before the system itself expires and therefore leads to a migration. An

embedded application in its entirety works with the co-ordination of various

hardware and software components the upgradability of individual

components in the underlying embedded target hardware also calls for

migration. This is because the real-time operating system (RTOS) or more

primitive runtime support that was available on the old hardware may not

match the requirements of the upgraded system. As chief operating officer of

DDC-I Inc. Ole N. Oest (2008) observes the possible triggers of migration as:

when the host computer becomes obsolete, development tools that were

originally used are no longer supported, change in peripherals or changes in

bus protocols, augmentation of new system functionality, certification

requirements imposed on the system and expertise in the application tools or

languages is lost.

Migration is also possible for porting the application to more enhanced

hardware. For example, Matassa (2011) has reported porting software from

Chapter 5. Migration of architectures in embedded applications

73

PowerPC (PPC) to Intel® architecture. The main drivers for this migration are

described as established performance of Intel architecture, its ability to meet

time-to-market constraints and availability of development tools that help to

implement, debug and tune the software performance. The major steps as

described in the migration between Power PC and Intel are to make the code

compatible to the target hardware and optimise the code for performance to

run on Intel® architecture core. Similarly, some applications are

recommended to port from 8051 microcontroller to ARM CortexTM-M

processors for their higher performance (speed up to 135MHz), more memory,

tool support, efficient interrupt handling and better debug facilities (ARM,

2012).

Another aspect that is considered while migrating embedded applications is to

move the architecture from single-processor systems to multi-core designs.

5.3.2. Requirements to meet certification standards

With the introduction of standards such as DO-17B/C for airborne systems,

and ISO26262 - a functional safety standard in the automotive sectors - many

developers are required to re-assess existing designs and begin a process of

design migration in order to improve system reliability and thereby meet

certification requirements. Such a migration process can present many

challenges for an organisation, not least because long-established (and

possibly rather informal) working practices can be seen to be under threat.

Chapter 5. Migration of architectures in embedded applications

74

5.3.3. System expansion in later stages of the life-cycle

Expansion in system functionality is often required at later stages of a system

life cycle. If the initially designed architecture is not provided with enough

room for future expansions could be a main driving force in migrating

embedded applications. The example of F-18 Mission Computer (Shepard

and Gagne, 1990) discussed in Section 2.2 leads to a complete change in the

underlying software architecture when the system was not able to observe all

the timing constraints upon adding new software components.

5.3.4. Incorrect system functionality

Incorrect system functionality or poor system performance observed at later

stages in a system life cycle can also lead to changes in the underlying

architecture. A practical example is that of a Sony cell processor discussed in

Section 2.4 designed to run video games. This showed an extremely slow

response in situations of high load (Turley, 2009) and was migrated from

interrupt-driven to a software polled design. The image data lost was

observed for an image acquisition embedded control application (Kubinger

and Humenberger, 2004) discussed in Section 2.3. In both cases change in

the software design of the application was ultimately required for the

performance improvement.

5.4. Dependencies between components in embedded

software

Many components in an embedded system are interlinked and changes to one

part propagate changes to the other interlinked parts of the system. At the

Chapter 5. Migration of architectures in embedded applications

75

simplest level a well-structured application code in an embedded application is

divided into several parts such as system, scheduler, device drivers and

application related tasks. All these parts are tightly interlinked and provide

data for each other for proper functionality of the application as shown

schematically in Figure 5-1.

Figure 5-1 An illustration of dependencies between different software
components of a simple embedded application

This division into parts is essential to make the code portable and reusable

across the different applications which run on the same hardware platform.

These include code files for system initialisation such as setting up the

oscillator frequency, Phase-Lock Loop (PLL settings), the memory map and

interrupt mapping for the system. For a more complex application the system

functionality can further be divided into various sub systems as shown in

Figure 5-2.

Tasks

Scheduler
System

System header files

Port Initialisation

System Wrappers

Implementation code

ADC_Sample

Switch_1

ADC_Translate
e

Display

Elaps_time

Switch_2

Device Drivers

Chapter 5. Migration of architectures in embedded applications

76

Figure 5-2 Dependency between different components in a complex control
system

For example for an Acoustic Cruise Control System (ACCS) which is designed

with several sub-systems where different tasks need to communicate to

provide a desired functionality. To provide a complete system functionality

different sub systems are also required to communicate, for example a

sampler calculates the vehicle speed and then send it to the actuator node

where a Proportional Integral and Derivative (PID) algorithm is used to

calculate the throttle position.

Scheduler
System

System header files

Port Initialisation

System Wrappers

Implementation code

Device Drivers

Task A

Task E

Task B

Task F

Task C Task D

Task W
A

Task X

Task Y Task Z

Task I Task J

Task K

Sub-Sys A

Sub-Sys B
Sub-Sys C

Acoustic Cruise Control System

Chapter 5. Migration of architectures in embedded applications

77

In such a complex system changes made to any sub-system can potentially

affect the overall communication between the tasks and other sub-systems

which are dependent on the sub-system being changed. It is quite possible

that some parts of the system remains unchanged for example ‘Device

Drivers’ once designed are always available to use independent of any

changes in the underlying software architecture while others have the

tendency to absorb or proliferate the change. For example Eckert et al (2004)

has classified different parts of a system with regards to change propagation

as Constants (unaffected by change), Absorbers (absorb more change than

cause), Carriers (equally absorb as much as they cause) and Multipliers

(generate more change than they absorb).

5.5. Existing techniques in the literature

This section provides brief details of some of the existing techniques found in

the literature for meeting the challenges of software migration.

5.5.1. Re-engineering of legacy embedded applications

VP Technologies, Inc. (VPT) a company based in Georgia, USA, deals in the

business of re-engineering and has developed a technique for re-engineering

legacy embedded applications8 (Madisetti, Jung et al., 1999). Their technique

8
 Legacy systems are hardware and software systems that require upgrading for reasons such

as hardware obsolescence, change in requirements of functionality, better form in terms of

size, weight, power and volume and decreased maintenance and life-cycle support costs.

Another reason is the availability of superior algorithms, architectures and technologies that

meet the system specifications at lower costs (Madisetti et al, 1999).

Chapter 5. Migration of architectures in embedded applications

78

is based on virtual prototyping9 accompanied by their tools and libraries and

simulation/synthesis models. Their approach is based on evaluating the cost

and benefits of re-engineering while performing hardware/software co-

simulation. Their proposed re-engineering process is divided into three stages

(see Figure 5-3).

Figure 5-3 Three stage process for re-engineering legacy embedded

applications [adapted from (Madisetti, Jung et al, 1999)]

Stage 1 focuses on design intent abstraction (or reverse engineering) to

develop an executable virtual prototype of the legacy system in a language

such as VHDL (VHSIC Hardware Description Language) or UML (Unified

Modeling Language). Stage 2 involves decision making about the right

architectural design and test specifications while Stage 3 completes the

detailed software design, system integration and testing.

This technique is useful but has limitations in the sense that being based on

virtual prototyping it is highly tool specific and the tool suite is supported for

9
 It is a technique involving Computer Aided Design (CAD) and Computer Aided Engineering

(CAE) software to validate a design before committing to make a physical prototype (Source:

Wikipedia).

Chapter 5. Migration of architectures in embedded applications

79

specific hardware only for example, processors Mil-Std-1750, the ADSP

Sharc, and the TI-62.

5.5.2. Real-Time System Compiler (RTSC)

The latest research on the migration of software architectures in embedded

applications has been undertaken at Friedrich-Alexander University Erlangen-

Nuremberg. RTSC (Scheler and Schroder-Preikschat, 2010) is a recent

development and is a compiler based tool developed to ease the automated

migration from ET systems to TT systems. The design of the RTSC is based

on four main components (see Figure 5-4): Front-End, Analyser/Composer,

Checker and Back-end.

Figure 5-4 Design of the RTSC [Adapted from (Scheler and Schroder-
Preikschat, 2010)]

To describe real-time systems Scheler and Schroder (2006) has introduced a

representation called the ‘Atomic Basic Block’ (ABB). An ABB is a section of

Chapter 5. Migration of architectures in embedded applications

80

the control flow that ensures the consistency of the data that is affected within

this ABB (Scheler and Schroder-Preikschat, 2006). Primarily, ABBs are

arranged in three different graphs: a control flow and data flow graph to

represent the flow of control and data between ABBs respectively, and a

mutual exclusion graph which is undirected and represent mutual exclusion

constraints among ABBs.

To transform the system, the basic structure of the source and target real-time

systems are stored in task databases (Task DBs). These databases describe

the source and the target real-time systems as collection of ABBs. Both

source and target databases contain all the specifications for the system to be

translated and are provided as inputs to the RTSC. The Front-End is the

compiler front-end (which is programming language specific and OS-

dependent) that transforms the source implementation into the ABB

representation. These ABB graphs are then handed over to the

Analyser/Composer component of the tool. This component analyses the

requirements of the target and performs necessary steps such as calculation

of hyper-period, WCET-analysis and scheduling in order to map the directed

non-cyclic ABB graphs provided by the front-end onto a TT execution

environment. If required at the end, a Checker verifies that certain temporal

constraints recommended in the target Task DB are accomplished. Finally,

the Back-end generates the code that can be executed by the targeted RTOS.

 Limitations of the RTSC

Although the RTSC is a good attempt to automate the complex migration

process, it works only within certain boundaries. Being a compiler based tool

Chapter 5. Migration of architectures in embedded applications

81

it is able to handle only a certain type of real-time systems having a specific

structure. In the author’s words, “it is not very promising to support arbitrary

applications and we demand for real-time applications having a specific

structure” (Scheler, Mitzlaff et al., 2007). The front-end of the tool is

programming language specific and is based on certain assumptions as

described by the authors “our front-end still suffers some restrictions and thus,

implicitly relies on some assumptions…Furthermore, we expect the application

itself and the OS API to be well-formed”(Scheler and Schroder-Preikschat,

2010). By ‘well-formed’ they are referring to their assumptions at the

application level (for example, the same instance of a semaphore is not re-

used for a different purpose at a different location). On the OS level their

assumption is that the same system call is not used for different purposes too.

For practical applications, such restrictions are quite difficult to follow

especially in a resource-constrained environment which imposes restrictions

on memory and power consumption.

5.6. Conclusions

This chapter has aimed to clarify and define the concept of migration and

present the views of experts on the challenges related to migration. It has also

discussed the reasons for migration and the dependency between different

components used to design an embedded application. The chapter has also

introduced the work carried out by previous research work on the migration of

embedded applications. It was evident in studying the migration by

developers of a variety of embedded applications from interrupt-driven to time-

Chapter 5. Migration of architectures in embedded applications

82

driven architectures (examples described in CHAPTER 2), that there was

neither the support nor the tools available to enable a unified approach to

meet these challenges. There is clearly a case for a 'best-practice' approach

to rectify this situation and address the migration issues. This would minimise

any mistakes and avoid repeatedly re-inventing methods that could become

part of a generic toolkit that would streamline the migration process. The

concept of design patterns originated from this need to capture such 'best

practice' expertise and the next chapter will provide a detailed account of their

development.

Chapter 6. Design patterns

83

CHAPTER 6. DESIGN PATTERNS

6.1. Introduction

The terms “design pattern” and “pattern” are often used interchangeably.

According to the definition provided in the Oxford English Dictionary (OED)

available online at (OED, 2012) a pattern is “…Something shaped or

designed to serve as a model from which a thing is to be made; a design, an

outline, an original”. This definition highlights the fact that patterns can be of

use in many disciplines which involves creativity and design and so a great

deal of research has been done on patterns over the last few years. The

concept of patterns in this research has its roots in architectural and more

widely the use of patterns has received global recognition in software

engineering. By now patterns have applications in many diverse disciplines

e.g. pedagogy, telecommunication and enterprise development. One of the

reasons for their wide appeal is the benefits of “reusability”. In general,

patterns are structured documents written by experts to provide tested and

proven solutions to commonly occurring problems in a particular context. The

power of such documentation is that knowledge and experience is not

confined only in the heads of experts but is captured in a way that can be

easily accessible and shared. This chapter will present a detailed account on

patterns and is organised as follows: Section 6.2 will present an account on

the historical background of patterns. The adoption of patterns into diverse

disciplines is discussed in Section 6.3 whereas a discussion on pattern

applications in embedded software development is presented in Section 6.4.

Section 6.5 describes broader aspects of patterns with pattern goals and their

limitations with a brief overview of anti-patterns and Section 6.6 is about

Chapter 6. Design patterns

84

different forms used to document patterns. Section 6.7 presents an account of

pattern languages and Section 6.8 presents the details on the pattern mining

process. Section 6.9 discusses perceived inadequacies of patterns with a

final section on the conclusions of this chapter in Section 6.10.

6.2. Design patterns in architecture

The concept of abstracting general patterns from a field or discipline in which

there is a wide variety of final, apparently differentiated, designs or artefacts,

emerged from the work of the Austrian born architect Christopher Alexander.

He introduced the concept of patterns during the 1960s and 1970s, when he

was a Professor of Architecture at the University of California, Berkley. After

obtaining a Bachelor’s degree in architecture and a Master’s degree in

mathematics from Cambridge University, he moved to the United States

where he obtained a PhD in architecture from Harvard University. His

doctorate thesis, ‘Notes on the Synthesis of Form’ was published as a book

in 1964 (Alexander, 1964).

Alexander and his colleagues (well-known architects, Sarah Ishikawa and

Murray Silverstein) published three pioneering texts between 1975 and 1979

(Alexander, Silverstein et al., 1975; Alexander, Ishikawa et al., 1977;

Alexander, 1979) that laid the foundation of the use of patterns in the field of

architecture. They produced a “pattern language” (Alexander, Ishikawa et al.,

1977) to encapsulate practical solutions for designing and building at any

scale. The pattern language identified common problems of civil and

Chapter 6. Design patterns

85

architectural design, from how cities should be laid out to the location of

windows and doors in a room. The aim was to improve the methodology of

architecture and urban planning. Additionally he aimed to conserve the

knowledge and experience of architects into a collection of ‘patterns’ that

Alexander believed could “provide a complete working alternative to present

ideas about architecture, building and planning” (Alexander, 1979). In pattern

language, Alexander and his colleagues proposed 250 innovative and

coherent design patterns for designing and building homes, towns and cities

etc. The various patterns in the pattern language can be combined in different

ways to build a ‘customised’ solution.

To demonstrate that his proposed patterns works in the real world Alexander

outlined a collection of patterns to govern the architecture of a farmhouse

(Alexander, Ishikawa et al., 1977). The names of some of the patterns are:

 NORTH SOUTH AXIS

 TWO FLOORS

 WEST FACING ENTRANCE

 BEDROOMS IN FRONT

 GARDEN TO THE SOUTH

 BALCONY TOWARDS THE GARDEN

As one reads through the listed patterns, a visual picture begins to develop in

the mind’s eye, creating an image of the farmhouse and the site on which it

will rest from nothing more than a written or spoken list (Cloutier and Verma,

2007).

Chapter 6. Design patterns

86

Over the years, Alexander and his associates have applied their pattern

language to the design and build of a number of buildings all over the world

but his most notable works include: low cost housing in Mexicali in Mexico,

University of Oregon in USA, Julian Street Inn (a homeless shelter) in San

Jose, California, Eishin School Campus near Tokyo and The West Dean

Visitors Centre in Sussex, England.

6.3. Design patterns beyond architecture

It is interesting to observe that over the last several years, Alexander’s idea for

architecture and designs have had far more impact in fields other than

architecture. This includes a diversity of fields from organisational

management to poetry, but in particular – and in the context of this research –

in the world of computer software design. To quote Richard Gabriel, a

prominent advocate of the software pattern approach: “Chris (Alexander) is a

revered cult figure.” (Eakin, 2003).

The adoption of patterns by the software community has been influenced by

the need in this community to reuse software. Software developers have a

strong tendency to reuse designs that have worked well for them in the past

and, as they gain more experience, their repertoire of design experience

grows and they become more proficient. However, this design reuse is

usually restricted to personal experience and there is usually little sharing of

design knowledge among developers (Beck, Coplien et al., 1996). Ganssle

(1992) remarks: “It’s ludicrous the way we software people re-invent the wheel

Chapter 6. Design patterns

87

with every project.” The advent of design patterns offered an opportunity to

overcome the inefficiencies and wasted resources of re-invention and to share

the collective experience of the software community.

The actual use of patterns in the field of software can be traced back to Kent

Beck and Ward Cunningham. In 1987, they introduced a small pattern

language (Cunningham, 1987) comprising of five patterns aimed at helping

new programmers to design windows-based GUI applications using the

Smalltalk programming language. In 1991, Jim Coplien published a

catalogue of C++ idioms10 as a book, “Advanced C++ programming styles and

idioms”. Later, in 1995 Erich Gamma and his colleagues Richard Helm,

Ralph Johnson and John Vlissides now well known in this field as ‘The Gang

of Four (GoF)’ published a set of general-purpose reusable object-oriented

design patterns as a book (Gamma, Helm et al., 1995). This is considered the

most influential book on software design patterns published to date.

Even though patterns were initially applied mainly in object-oriented software

design, they have now been applied in a number of other software engineering

fields. Organisational patterns stem from studying recurring structures of

relationships within organisations which contribute towards their success.

Examples include the pattern language by Cain, Coplien and Harrison (Cain,

Coplien et al., 1996) who documented ‘best practices’ for productive software

development, and the collection of patterns for introducing new ideas into an

10

The authors of the book ‘Patter-Oriented Software Architecture (POSA)’ (Buschmann,
Meunier et al., 1996) have classified patterns into three levels. Idioms are at the lowest level
and discuss implementation of certain aspects of the components of a software system using
features of a programming language.

Chapter 6. Design patterns

88

organisation by Manns and Rising (Manns and Rising, 2004). Pedagogical

patterns capture expert knowledge in the field of teaching and learning and

seek to foster best practices in teaching. Some examples of published

patterns in pedagogy are (Bergin, 2000) and (Fricke and Vlter, 2000).

Patterns for telecommunication systems focus on improving the two unique

characteristics of software-reliability and human factors. Examples include the

works of Adams et al. (1996) , Rising (2001) and Hanmer (2007) that covers

patterns and pattern languages for use in areas such as telecommunications,

distributed systems, middleware etc.

Patterns have also been successfully applied in interaction designs (Borchers,

1999), the software development process (Ambler, 1998), cognition (Gardner,

Rush et al., 1998) and software configuration management (Berczuk and

Appleton, 2003).

6.4. Patterns and embedded software development

Embedded software development is more challenging compared with desktop

applications because they are characterised by resource constraints such as

limited memory, limited power consumption and timing constraints.

Furthermore, unlike most desktop applications, embedded applications run on

specific hardware with special purpose RTOS (real-time operating system),

schedulers, programming languages or network protocols such as CAN etc.

Another major difference is in the cross development environment. Desktop

applications are usually developed on the same platform for which they are

Chapter 6. Design patterns

89

designed for, whereas embedded applications are built and tested in

simulated environments and the generated executable are then transferred

onto the target processor.

As patterns have the ability to capture domain specific information for the

benefit of practitioners, they can play a vital role in reducing the complexities

involved in embedded software development. A summary of some of the

previously introduced pattern collections for embedded software development

is as follows:

 A pattern language for designing simple embedded applications was

introduced by Mark Bottomley (Bottomley, 1999) and is based on a

framework named ‘The Carousel’. The basis of this framework is the

famous super loop architecture which can allow designers to design

simple applications without the use of any complex control software or

operating system to run the system tasks.

 A huge collection of patterns for designing time-triggered embedded

systems (called ‘PTTES’ collection) is developed by Michael Pont

(Pont, 2001). This language is intended to support the development of

reliable embedded systems and the particular focus of the collection is

on systems with time-triggered architectures. Work began on these

patterns in 1996 (Pont, Li et al., 1998), and they have since been used

in a range of industrial systems (TTE, 2012) numerous university

research projects (Kurian and Pont, 2005; Short and Pont, 2005;

Phatrapornnant and Pont, 2006; Bautista-Quintero and Pont, 2008;

Hughes and Pont, 2008; Gendy and Pont, 2008a) as well as in

Chapter 6. Design patterns

90

undergraduate and postgraduate teaching on many courses offered at

The University of Leicester.

 A system of patterns for reliable communication in hard real-time

systems called “Triple-T (Time-Triggered Transmission)” is proposed by

Wolfgang Herzner and colleagues (Herzner, Kubinger et al., 2005).

This pattern collection is focusing on reliable communication with

guaranteed transmission times for hard real-time systems. Triple-T is a

system of five patterns, which together establish a base for the

development of distributed safety-critical real-time systems.

 A pattern language for distributed machine control system by Eloranta

and colleagues (Eloranta, Koski et al., 2010) emerged when they found

some architectural patterns during their visits to four sites in the Finnish

machine industry to find design patterns to this domain. This pattern

language included patterns for messaging, fault tolerance, redundancy

and system configuration.

Other well-known examples of pattern languages in various domains of

interest to control engineers are: patterns for concurrent and networked

objects (Schmidt, Stal et al., 2000), communication patterns (Rising, 2001)

and patterns for fault tolerant software by Bob Hanmer (Hanmer, 2007).

6.5. Broader aspects of patterns

Alexander’s idea of capturing design experience through patterns has been

widely accepted and built upon by the research community especially in the

field of software engineering. Different experts provide their own views about

patterns and some of these are summarized below.

Chapter 6. Design patterns

91

According to Richard Gabriel, patterns are a means to capture common sense

and abstractions that are not easily captured otherwise (Gabriel, 1996). Brad

Appleton has a different point of view about patterns, for him, a pattern is a

named nugget of instructive information that captures the essential structure

and insight of a successful family of proven solutions to a recurring problem

that arises within a certain context and system of forces (Appleton, 2000).

Authors of the most famous collection of design patterns for object-oriented

software design called GoF consider patterns as a way of documenting and

sharing ‘best practices’, solutions that have successfully worked for

experienced designers (Gamma, Helm et al., 1995). To Linda Rising, patterns

are artefacts that have been discovered in more than one existing system

(Rising, 1998).

Patterns emerge from lessons learned in the practice of a particular discipline.

Domain experts accumulate these lessons and season them with knowledge

earned through a study of the domain’s theoretical base. These experts are

then able to shape and re-shape patterns which can be re-used in the domain.

Together these activities constitute the development of a pattern (Petter,

Khazanchi et al., 2010).

The essence of a pattern can be viewed in terms of the existence of a problem

and its solution as shown in Figure 6-1.

Chapter 6. Design patterns

92

Figure 6-1 Illustrating the concept of a design pattern

The problem is usually elaborated in terms of its context and the applicable

design forces11 which provide a basis for the solution. The role of the solution

is to resolve the design forces in such a way that it generates benefits, some

consequences and follow on problems which lead to the applicability of other

patterns.

It is interesting to compare patterns with other approaches of learning such as

algorithms and heuristics. An algorithm provides a method for solving a

problem using operations from a given set of basic operations (addition,

subtraction, multiplication and division), which produces the answer in a finite

number of such operations (Gear, 1973). This definition implies that an

algorithm converges, that is it always reaches the answer (i.e. the optimal

solution) in a finite number of steps. For the purpose of deriving a solution an

algorithm may be applied to a set of mathematical relationships or

11

 A force provides a concrete scenario which serves as motivation for the pattern (Appleton,
2000).

Context & Forces

Problem

Solution

Benefits Consequences
Related patterns

and Solutions

Chapter 6. Design patterns

93

mathematical statements that relates to the various components of a system.

These relationships are basically the representation of knowledge of how a

particular system works while design patterns do not have any such

restrictions.

Heuristic rules are those that are developed through intuition, experience and

judgment. Heuristics are a representation of guidelines through which a

system may be operated and unlike relationships they do not represent the

knowledge of the design. Also, heuristics do not necessarily give the best or

optimal solution (unlike algorithms). Heuristic rules evolve over years of

experience but unlike design patterns they are usually far more private and

personal and not available in the public domain.

It is important to note that patterns are not intended to degrade the design

individuality but rather support it. It is because a pattern provides a generic

solution for a recurring problem: a solution that can be implemented in many

ways without necessarily being twice the same (Cool, 1998). The process of

adapting or applying the pattern enables customisation at different stages

during the software development so it’s not a case of ‘One size fits all’ with

patterns.

Software practitioners were quick to learn from the pedagogical interest of

patterns i.e. ‘to learn from experience’. It is because codifying good design

practice helps to distil and to disseminate experience, thereby helping others

Chapter 6. Design patterns

94

avoid frequently encountered development traps and pitfalls (Jezequel, Train

et al., 2000) .

6.5.1. Limitations of patterns

Patterns do not have the capability for addressing all re-use issues, nor will

they single-handedly solve all the crises encountered during software

development. Patterns do not also turn novices into instant expert designers,

and the following are quotes on patterns and how they should be viewed by

some of the experts in this field:

 Patterns are not recipes which say “Do this, and everything will be fine!”

(Fricke and Vlter, 2000).

 A pattern is not a programming language construct or idiom (Richard

Gabriel).

 Patterns will not eliminate the need for intelligence and taste (Paul

Chisholm in (Hanmer, 2009)).

 A pattern is not a silver bullet (Rising, 1999).

6.5.2. Anti-patterns

The term anti-pattern was coined by Andrew Koening in 1995. As the name

implies, anti-patterns are negative forms of patterns. If patterns are described

as best solutions to recurring problems, anti-patterns are bad solutions to the

same recurring problems. Koening claimed that anti-patterns may well be

more valuable than ‘real’ patterns simply because knowing what doesn’t work

(and why) can be incredibly useful (Rising, 1998). Another view of an anti-

pattern is that it “describes how to get out of a bad solution, and then how to

proceed from there to a good solution” (Appleton, 2000). Jim Coplien explains

Chapter 6. Design patterns

95

further: “Anti-patterns don’t provide a resolution force as patterns do, and they

are dangerous as teaching tools: good pedagogy builds on positive examples

that students can remember, rather than negative examples. Anti-patterns

might be good diagnostic tools to understand system problems” (Coplien,

2000).

6.6. Pattern forms

Patterns are structured documents, so their layout and constituent

components are important in the sense that they are the means to provide

information in a way which is easier to grasp and understand by its user.

Different authors have their own ways of documenting patterns. However,

certain pattern forms have become more established than others. Some well-

known pattern forms are presented in Table 6-1.

Table 6-1 Pattern forms

Pattern form Description

Alexandrian form
This layout is used by Alexander in (Alexander, Ishikawa et
al., 1977).

GoF form
Layout used to write the famous Gang of Four patterns
(Gamma, Helm et al., 1995).

Coplien form This layout is followed by James Coplien.

POSA form
This layout is used to write Patterns of Software Architecture
(Buschmann, Meunier et al., 1996).

PTTES form
This layout is used by Michael Pont for writing Patterns for
Time-Triggered Embedded Systems (PTTES) collection.

Please note that the complete templates for each of these pattern forms are

presented in Appendix A.

Chapter 6. Design patterns

96

6.6.1. Elements of a pattern

Even though there are different pattern forms, they all share certain key

elements which are listed as follows:

 Name: Patterns names are intended to concisely capture the idea

behind the problem and solution being addressed by the pattern. For

example the pattern HEART BEAT LED is a pattern for checking whether

a system is active.

 Problem-Solution pair: This constitutes the core of the pattern. A

successful pattern is one which conveys the solution effectively and

which others can reuse in their designs.

 Context: This describes the settings in which the problem is found.

This part should answer the question, “When can I apply this pattern?”

 Forces: Forces define the problem (Harrison, 2006). A strong forces

section in a pattern will enable the reader to judge whether the solution

is good and whether it fits the problem statement.

 Examples: One or more sample applications of the pattern,

supplemented by implementation.

 Resulting context: No pattern is perfect. Every pattern has some

shortcomings. This section describes the effects of applying the pattern.

 Related patterns: This section mentions other patterns that solve

similar problems. These may be predecessor patterns whose

application leads to this pattern, successor patterns whose application

follows this pattern, alternative patterns that describe a different

solution to the same problem but under different forces and constraints

(Appleton, 2000).

Chapter 6. Design patterns

97

6.7. Pattern languages

Though reflecting different views about patterns, all researchers and experts

share a common opinion that patterns should not exist in isolation, they should

ideally form a part of a pattern ‘collection’. “No pattern is an island”

(Buschmann, Meunier et al., 1996). In the words of Alexander et al. (1977):

“In short, no pattern is an isolated entity. Each pattern can exist in the world,

only to the extent that is supported by other patterns: the larger patterns in

which it is embedded, the patterns of the same size that surround it, and the

smaller patterns which are embedded in it.”

A pattern language is a set of inter-related patterns (see Figure 6-2), where

one can use the individual patterns to solve small problems or one can use the

language as a whole to solve a much bigger problem. The collection of

patterns comprising the ‘language’ forms a kind of ‘vocabulary’ for

understanding and communicating ideas.

Figure 6-2 Illustrating an example structure of a pattern language

Just as the relationships between words – through meaning and grammar –

form a useful ‘language’, similarly, organising patterns in a structure so that

Chapter 6. Design patterns

98

they have logical relationships with each other leads to the formation of a

pattern language. Organising patterns in a pattern language gives the

designers a ‘map’ to complete the structure they are designing or building. In

a pattern language, the patterns are organised such that they guide the reader

from large-scale patterns to smaller-scale patterns. The smaller patterns help

to complete the larger patterns. The pattern language has the structure of a

network that includes various rules and guidelines to explain when and how to

apply the constituent patterns to solve a problem that is too large for an

individual pattern to solve. According to Bob Hanmer “Patterns generally

adhere to the model of small nuggets of information that work together rather

than trying to ‘Resolve the world’ in one pattern, so the solution of one pattern

flows into the problem of the next” (Hanmer, 2007).

6.7.1. Completeness of a pattern language

A pattern language is a group of patterns that completely covers a problem

space. A language can be complete in two ways: Functionally and

Morphologically (Hanmer, 2003). A pattern language is functionally complete

meaning that when a pattern in the language introduces some new force that

is un-resolved there is some other pattern within the language that resolves

the force. The new force must be resolved within the language rather than

some stray pattern that is outside the language. Morphological completeness

means that the patterns in the language fit together to form a complete

structure without any gaps.

Chapter 6. Design patterns

99

6.7.2. Pattern languages versus text books

Pattern documentation is usually in the form of books that have been

specifically written to address a particular domain. For example Alexander et

al (1977) for building architecture, Gamma, Helm et al (1995) for object-

oriented software development, Pont (2001) for designing time-triggered

embedded applications and Hanmer (2007) for fault tolerant software design.

It is instructive in terms of assessing pattern books to compare them with

conventional domain specific text books. Regular text books actually

complement the pattern books as they provide a theoretical basis to

understand the domain. When the reader is able to implement a basic system

then he/she may turn to a pattern book to learn about some proven solutions

to the common problems that they have to solve. A reader would not get

much theory in a pattern book but only the proven solutions to commonly

occurring problems. Conversely a text book does not provide details for how

to solve the problems or work through the details.

6.8. Pattern mining and refinement

It is interesting to ask how pattern authors discover a pattern and how they

document it so that they can effectively convey their design ideas. There is

therefore, a need to look for or discover patterns before documentation.

Pattern mining is the process of discovering new patterns prior to

documentation. Brad Appleton calls this process reverse-architecting

(Appleton, 2000). David DeLano (1998) talks about several metaphors that

were proposed such as hunting, fishing, harvesting, paleontology or

Chapter 6. Design patterns

100

archaeology and mining to describe the process of discovering and

documenting patterns (DeLano, 1998). Fishing, hunting and harvesting

‘almost’ describe the process of pattern discovery and documentation, but

they nevertheless fall short. Fishing and hunting implies too much randomness

while harvesting is discarded as patterns are not grown or created but are

present in the artefacts that already exist. Paleontology or archaeology no

doubt provides a reasonably correct description of the process if patterns are

considered as fossils or buried relics. The archaeologists or paleontologists

then have to dig through all the mass separating the ‘good’ from the ‘bad’, and

once discovered, the relics have to be carefully cleaned. Finally, once all the

‘pieces’ have been retrieved and cleaned; they are re-assembled for ‘public

viewing’. The primary objections that could be raised to the use of these

metaphors are that patterns are meant for everyday use; however, the

discoveries of palaeontologists or archaeologists are generally displayed in a

museum.

Consequently, the pattern community decided to settle for the mining

metaphor when describing the pattern discovery process. DeLano in (Rising,

1998) remarks: “Mining engineers tend to know where to excavate for the

minerals they seek. What they find is not always of high quality, just as

patterns vary in usefulness. The mined elements do not need to be removed

as gingerly as a fossil or artefact. The elements must be further processed

before they become useful. After refinement – cutting, polishing, smelting,

moulding – we are left with a useful product. Often the result is one of lasting

Chapter 6. Design patterns

101

beauty or resilience. As for vocabulary, we are pattern miners participating in

pattern mining”.

Numerous international conferences on the Pattern Languages of

Programming ‘PLoP’ such as EuroPLoP (Europe) , ChilliPLoP (USA) ,

KoalaPLoP (Australia), SugarLoafPLoP (Brazil), MensorePLoP (Japan) are

organised by the patterns community every year as a forum to discuss the

latest patterns and pattern languages. As part of the refinement process,

pattern languages and individual patterns are critically reviewed by experts at

PLoP events. This process is called shepherding. The shepherding process

begins when a paper is initially submitted to a PLoP conference. The author

improves the paper (generally following the advice of the reviewer called the

‘shepherd’) and sends the corrected version back to the shepherd. This

process of revision between the shepherd and the sheep (the author) is

repeated three or four times. The review process is more intensive during the

conference. These reviews take place at a Writer’s Workshop introduced by

Richard Gabriel at the first PLoP conference in 1994. In a Writer’s Workshop

a group of people periodically get together and read and critique manuscripts

by fellow workshop participants. This feedback allows the participants to

improve their patterns and make them more publishable. Thus, from the

commencement of an idea that is conceived in the mind a pattern undergoes a

rigorous amelioration process that seeks to refine it to a standard of quality

that makes it understandable and acceptable by the peer community.

Chapter 6. Design patterns

102

6.9. Inadequacies of patterns

In common with other technologies patterns have certain limitations. The

most important question that has been raised by critics about the effectiveness

of patterns is related to their standardization. Patterns have no formal

standards and different authors write patterns differently. They are semi-

formal descriptions that describe a problem and its solution. Depending upon

their effectiveness patterns can become classics, remains limited to specialist

areas, or just elapsed and forgotten. The success of a pattern is heavily

dependent on the name of the pattern and the nature of the information it

contained (Schmidt, 1995). Patterns which are too long and flooded with

information may lose the focus and core of the solution. On the other hand,

keeping a pattern too short might compromise the quality of information

provided, and will force the use of other related information sources to

understand the design problem (Agerbo and Cornils, 1998; Vokac, 2004).

In projects which involve collaborative team work, for effective use of the

patterns it is important to provide an introduction and training to the whole

team on the pattern collection of interest (Unger and Tichy, 2000). This is

important when patterns are used to enhance the vocabulary of practitioners.

Technically intensive communications needs to be supported but it may cost

extra time in the training of team members.

Another argument that goes against patterns concerns programming language

dependency. Most pattern collections tend to be dependent on the language

used such as C, C++ or Java. This dependency sometimes restricts the use

Chapter 6. Design patterns

103

of the pattern to certain platforms only. Finally it might not be appropriate to

use the pattern in every situation specifically if the solution is obvious. Some

critics observe that design patterns are over-hyped (Cline, 1996). To compare

patterns with simple solutions, Lutz Prechelt and colleagues have conducted

an experiment and concluded that using design patterns can be useful, neutral

or harmful depending on the circumstance of use (Prechelt, Unger et al.,

2001). Some critics have undermined patterns, for example according to

Vokac, “A pattern is not a rigorous recipe (unlike some modeling standards

such as UML) to be followed but it is more than just a loose

suggestion”(Vokac, 2004). This is however difficult to accept, as UML does

not provide recipe like instructions but patterns do.

Despite the disadvantages mentioned above, the fact remains that for

increasingly complex design problems patterns can provide support by

offering a way to reuse proven and tested solutions and thus help to “avoid re-

inventing the wheel”. The interest in patterns have grown over last few years

as evidenced by the number of conferences and meetings held every year all

over the world since 1994. Expanding from United States and Europe the

recent development of such events are AsianPLoP 2011 in Tokyo and

GuruPLoP 2013 in India. It is relatively early days for this novel approach and

there has been sufficient successful application of patterns recently in various

fields such as formalization techniques (Taibi, 2007), web application design

(Millett, 2010) and mobile application design (Neil, 2012), etc. It is therefore

reasonable to assume they will grow in importance in the coming years.

Chapter 6. Design patterns

104

6.10. Conclusions

This chapter has aimed to describe the essential concepts related to design

patterns. It started with a discussion on the historical background with a brief

account of the aims and objectives behind the idea of introducing quality in

patterns and some discussion on pattern goals and boundaries. The chapter

continued by discussing the adoption and appreciation of patterns in diverse

disciplines which are completely different from the field in which pattern

concept originated. CHAPTER 6 also presents a brief account of different

pattern forms in use, the concept of pattern language and the process of

discovering, documenting and refining patterns.

Realising the strength of this established methodology of patterns, it

concluded that patterns have the capability to offer a good framework for

capturing and sharing practice related to the complex process of the migration

of architecture for embedded applications discussed in Chapter 5.

Subsequent chapters in the next section will explain how this research has

explored and utilised the capacity of patterns for migration between software

architectures used in embedded applications.

105

PART C: DEVELOPMENT OF PATTERNS FOR
MIGRATION

This part of the thesis presents the main body of the work carried out during

the course of the research period.

The main topics are as follows:

1. Derivation of new design patterns (CHAPTER 7).

2. An overview of the newly documented patterns and formation of a

pattern language (CHAPTER 8).

3. Demonstrations of design patterns applied to real design problems

(CHAPTER 9).

4. Evaluation of the efficacy of the pattern language through controlled

experiments (CHAPTER 10).

5. Evaluation of the patterns in the industrial context (CHAPTER 11).

Chapter 7. Derivation of patterns for migration

106

CHAPTER 7. DERIVATION OF “PATTERNS FOR
MIGRATION”

7.1. Introduction

The focus of this chapter is on explicating the process of pattern mining and

the derivation of the patterns in the newly proposed pattern language called

PMES (Patterns for Migration of Embedded Systems) developed during the

research. In the present state there are 23 patterns in the pattern language

out of which 13 are completely new patterns that were documented during the

research. These patterns were developed and evolved in stages throughout

the research. This chapter describes the driving forces behind the creation of

new patterns and their associations with existing patterns in the current

context. The chapter begins with Section 7.2 which gives the rationale and

goals for the patterns to support the migration process. The chapter then

proceeds with a discussion on how the patterns were derived. In this regard

Section 7.3 to Section 7.11 presents the bases for proposing each of the

patterns, and the experimental evidence in some cases demonstrating the

usefulness of the pattern. Chapter conclusions are presented in Section 7.12.

7.2. Rationale for patterns to support migration

CHAPTER 2 in this thesis presented the three example applications recorded

in the literature that have passed through the process of migration from ET to

TT design. The chapter concluded that there is a lack of support in the

standard approach of changing the underlying software architecture which

could guide the developers in the field. CHAPTER 6 discusses the appealing

features of patterns that have led experts in diverse disciplines to introduce

Chapter 7. Derivation of patterns for migration

107

patterns in their own field of expertise. In conjunction with this Section 6.4

mentions various examples of pattern collections that were proposed for

embedded software development. All of the examples cited in the literature

such as (Schmidt, 1995; Bottomley, 1999; Pont, 2001; Rising, 2001; Herzner,

Kubinger et al., 2005; Hanmer, 2007; Eloranta, Koski et al., 2010) indicate that

in the field of embedded systems, most of the previous research work are

focused on documenting patterns for system construction. However, design

patterns which could assist embedded system practitioners in the process of

migration of architecture has been somewhat neglected. The research

presented in this thesis aimed to address this lack of support by introducing a

collection of techniques bundled and documented in the form of a pattern

collection.

Collectively the underlying goals of the pattern collection are:

 To provide sufficient understanding of the challenges involved in

migrating from an event-triggered to a time-triggered design, and to

help in decision-making on which of the two designs is appropriate in a

particular situation.

 To help the practitioners in choosing the appropriate time-triggered

architecture for migration.

 To assist in handling the problems in the achieved time-triggered

design such as long task problems in co-operative design and shared

resources access in pre-emptive designs.

 To provide techniques for further optimising a completed time-triggered

design.

Chapter 7. Derivation of patterns for migration

108

7.2.1. Patterns for new designs versus patterns for migration

It was noted in Section 7.2 that most of the earlier research studies on design

patterns in embedded systems are related to system construction rather than

system alteration.

For reference, a comparison between the previously-developed “PTTES”

collection (Pont, 2001) and the PMES collection developed in this thesis is

given in Table 7-1.

Table 7-1 Comparison between the 'PTTES’ collection and the ‘PMES'
collection

PTTES Collection PMES Collection

PTTES is intended to support time-

triggered system designs from

scratch.

PMES is intended to support migration

of existing systems from E-T to T-T

designs.

PTTES describes how to develop

new systems using a single interrupt.

PMES describes how to convert

existing “multiple interrupt” designs into

“single interrupt” systems.

PTTES has addressed system

design for single-processor as well

as multi-processor designs from

scratch.

PMES collection has only addressed

the conversion of single-processor

designs at this stage.

Please note that the PMES collection has borrowed some patterns from the

PTTES collection such as CO-OPERATIVE SCHEDULER, HYBRID SCHEDULER,

LOOP TIMEOUT and WATCHDOG. In addition, the PMES collection has also

introduced some new patterns such as CHOOSING TASK PARAMETERS,

Chapter 7. Derivation of patterns for migration

109

BUFFERED OUTPUT, POLLED INPUT, BALANCED SYSTEM, SINGLE PATH DELAY, TAKE

A NAP, SYSTEM MONITORS and TASK GUARDIAN: some of these patterns may

also be applicable with the PTTES collection.

7.3. Choosing the appropriate architecture

As mentioned in Chapter 5 migrating embedded applications involved taking

decisions at various stages which impact on decisions further downstream in

the design. These decisions need to be taken with due consideration because

a wrong choice at any stage can cascade further problems later in the design,

indeed the fore-most design decision is choosing an alternative architecture

against the existing architecture of the application. Pertinent to the focus of

this research ‘Migration from event-triggered to time-triggered architecture’, it

was realised that it is vital for the user to know if the time-triggered paradigm is

an appropriate choice for their application. If it is, this research has provided

grounds for a pattern (TIME FOR TT) which could guide the user about a range

of applications for which a TT design can be proven as an appropriate choice.

The underlying aim with this pattern was to help the users to gain confidence

in their choice of moving to a time-triggered design against an existing event-

triggered design. The literature was explored extensively before documenting

the pattern to list the general category of embedded applications for which

either an event-triggered design or a time-triggered design can be proven as

the right choice.

Chapter 7. Derivation of patterns for migration

110

7.4. Transforming an ET design to a TT design

The evolution of the range of design patterns was based on an understanding,

informed by real examples, of the sequence of steps a developer would need

to follow once he/she had decided to switch to a TT design. After this first step

it is important to think about the major architectural changes that are required

to effect the overall migration. The emergence of the idea of the pattern

EVENTS TO TIME is based on a need for architectural changes required for

transforming an interrupt-driven (with multiple interrupts active in a system) to

a time-driven (with single interrupt) design. The motivating example of the F-

18 aircraft discussed in Section 2.2 mentioned the transformation of the pre-

emptive design to a pre-runtime design involving the conversion of interrupt

service routines to processes; however it does not mention how the

transformation was achieved. It therefore became necessary to explore

techniques which could be easily adapted to solve similar problems. In the

initial stages of the research the pattern solution was restricted to the provision

of a solution of transforming to a co-operative design only as discussed in

EVENTS TO TIME (TTC) (Lakhani, Das et al., 2009a; Lakhani and Pont, 2010a).

The derivation of the pattern involved analysing various interrupt-driven

designs discussed in the literature (Shepard and Gagne, 1990; Pont, 2002;

Sloss, Symes et al., 2004; Obermaisser, 2005) and through discussion within

the research group among peers by viewing blogs and discussion forums

where developers describe and exchange their designs. A generic prototype

for both ET and a TT design is then developed and the steps involved in

transformation are documented. In the later stages of the research the pattern

Chapter 7. Derivation of patterns for migration

111

is made more generic for a variety of TT designs as discussed in (Lakhani,

Wang et al., 2011).

7.5. Choosing the appropriate TT architecture

As discussed in Section 4.3 that there are various choices in the design of an

application with a TT architecture. It is important therefore for a designer to be

aware of the various options available in a TT design, and the details

associated with each design so that they can think about various trade-offs

involved in making the appropriate choice for their application. The pattern TT

SCHEDULER is derived with this consideration in mind and documentation is

provided on the overview and working mechanisms of co-operative and pre-

emptive designs, and the strengths and weaknesses associated with each of

the designs. This documentation also includes a link to previously documented

patterns in (Pont, 2001) as the complete implementation details for CO-

OPERATIVE SCHEDULER and HYBRID SCHEDULER are provided there and the

implementation details for the PRE-EMPTIVE SCHEDULER as discussed in

(Maaita, 2008). If the users wish they can follow the same implementations as

described in Pont (2001) or they can implement their own design with the

working mechanisms discussed in TT SCHEDULER.

Following the decision to move from an ET design to a TT design there are

three patterns (as shown in Figure 7-1) provided that discuss all the finer

details that a pattern user needs to know when moving from an ET design to

an appropriate TT design which could best match their candidate application.

Chapter 7. Derivation of patterns for migration

112

Figure 7-1 Illustrating the sequence of following patterns from the initial
decision of migration to choosing an appropriate TT design

7.6. Handling events in TT designs

In the transformed design after migration the basic requirement is to obtain a

replica for the handling of events in a TT design such that the same

functionality of the system can be achieved with the single interrupt active in

the system. For example in the motivating example of the Sony cell processor

discussed in Section 2.4 the major problem encountered was frequent

interrupts in the system at high data rates, and so a software polling

mechanism was chosen to overcome the high overheads in the system. It

was therefore apparent that a technique which could describe how this

conversion can be achieved would significantly help in handling all internal

and external inputs in the system. This realisation led towards the derivation of

the pattern POLLED INPUT. As part of the pattern mining process which is

required for documenting a new pattern code listings provided in various

books for example (Ganssle, 1992; Barr, 1999; Pont, 2002) identified that

explained the use of a switch interface in the design. It was realised that most

EVENTS TO TIME

CO-OPERATIVE SCHEDULER HYBRID SCHEDULER PRE-EMPTIVE SCHEDULER

TIME FOR TT

TT SCHEDULER

Discuss architectural
details

Discuss implementation details

Chapter 7. Derivation of patterns for migration

113

of the experts use the same technique of designing a task that keeps track of

the arrival of inputs on a GPIO and describe this as a polling mechanism.

However, the periodicity of this task is chosen depending upon the application

requirements. It was observed that setting a period which is at least the

equivalent of minimum inter-arrival time of the task would make sense for any

application, and so the pattern is documented with information gained during

the pattern mining process. For the pattern POLLED INPUT a pattern

implementation example (PIE) with the name of SWITCH INTERFACE is also

provided for the 8051 family of microcontrollers and is described in (Lakhani,

Das et al., 2009a). This was introduced to provide platform specific

implementation details of the pattern. PIEs are further explained in Section 8.2

in this thesis.

7.7. Handling problems with the co-operative design

Co-operative designs as discussed in CHAPTER 4 are based on cyclic

executive model also known as timeline scheduler. One of the drawbacks of

co-operative designs is that any long task in the system could incur long time

delays as the task pre-emption is not allowed, and the waiting task will be

delayed until the long task relinquishes the system resources. Many

embedded applications are required to display messages on the user interface

for example an LCD screen that displays the change in temperature in say a

temperature monitoring application. Another way for displaying messages ay

is in the use of the printf() function. Though simple in use printf() calls a library

of functions at its back-end and takes approximately 1ms per character of

Chapter 7. Derivation of patterns for migration

114

execution time which can be problematic. This is because the display task

can take as long as the length of the message (number of characters), for

example a display message of 40 characters can take 40ms of execution time

which could lead to unnecessary delays in the co-operative based system

designs. Instead of discouraging the use of co-operative designs it was

desirable to devise a method which could replace the printf() function.

As most of the microcontrollers are provided with a UART (Universal

Asynchronous Receiver Transmitter) which can transfer data using the RS-

232 protocol it was found useful to make use of a UART buffer to hold data

and transfer it in bulk once.

A small testing application was created to compare this technique with the

printf() function and a considerable time difference was observed. For

example for a simple display task to print a string “Migration from event-

triggered to time-triggered” was designed using the use of a buffer technique

(details described in CHAPTER 8) and the use of printf() function. The

execution times of both the tasks were measured using the Performance

Analyser in the Keil µvision simulator for the 8051 microcontroller. The use of

the buffer technique showed a reduction of 94% of execution time from 47ms

to 3ms.

The results are shown in Figure 7-2 and Figure 7-3.

Chapter 7. Derivation of patterns for migration

115

Figure 7-2 Performance Analyzer in the Keil simulator showing the
execution time of the Display_Update() task = 47 ms with printf() function

Figure 7-3 Performance Analyzer in the Keil simulator showing the
execution time of the Display_Update task = 3ms using Buffered output

technique

Other tests with different applications were performed where the number of

characters on display may change depending on user input. In that case the

buffered technique was found even more useful as it kept the minimum and

maximum times nearly same in contrast to printf() which showed high

variations depending upon the length of characters in the display message.

Since the display task is a commonly required task for a huge range of

embedded applications the results provides strong grounds for the pattern

Chapter 7. Derivation of patterns for migration

116

BUFFERED OUTPUT to resolve the long task problem associated with co-

operative designs.

7.8. Handling problems with the pre-emptive designs

In moving from ET design, to TT design if the co-operative design does not

appear to be a wise choice the developers have two options for selecting a

pre-emptive design. These are: a hybrid design with the option of having only

a single pre-emptive task in the system, or a fully pre-emptive design. The

main problem with the pre-emptive designs is in the handling of shared

resources as discussed in Section 4.4. Patterns for handling shared resource

access have been explored previously in the Embedded Systems Research

Group (ESRG) and published in (Wang, Pont et al., 2007) . Because of their

applicability in the current context it was found useful to associate these

patterns here in solving the problems that the HYBRID SCHEDULER and the PRE-

EMPTIVE SCHEDULER can face. The collection contains one abstract pattern

CRITICAL SECTION, and four patterns DISABLE TIMER INTERRUPT, RESOURCE

LOCK, PRIORITY CEILING PROTOCOL, and IMPROVED PRIORITY CEILING PROTOCOL.

7.9. Designing tasks for a TT design

Section 4.5 has discussed how TT architectures are more difficult to design

than ET designs. This is because choosing task parameters such as ‘offset’

and ‘period’ can affect the overall system performance, for example choosing

an incorrect value of offsets may result in missing a deadline and so can

compromise the overall system reliability. Similarly selecting the correct task

Chapter 7. Derivation of patterns for migration

117

order is also important otherwise un-expected jitter values in the system might

be very harmful. This was observed whilst carrying out various experiments

(for examples please see the pattern CHOOSING TASK PARAMETERS in Appendix

B). It was decided therefore that a pattern which can help in selecting the

appropriate task parameters could be useful. The pattern CHOOSING TASK

PARAMETERS fulfill this function such that a stable system is achieved with all

the tasks meet their deadlines with fixed and lower values of jitter.

7.10. Achieving a ‘Balanced’ TT design

After a basic framework of patterns was achieved in moving from ET to TT

designs (for both the co-operative and the pre-emptive designs) the research

focused on making TT designs truly reliable as achieving reliability is the key

requirement in the migration process. Whilst carrying out experimental work

on several simple embedded applications as part of this research, it was

observed that many applications designed using TT architecture showed

variations in their task timings. In the example discussed in Section 2.3 it was

reported that the TT design was not completely jitter free but has jitter values

in the microseconds range compared to milliseconds in ET design. Further

investigation and a literature review revealed the fact that these variations may

arise due to the hardware features. For example variations in the oscillator

frequency (Kirner and Puschner, 2003) or in the software with the use of

branch statements (if-else, switch-case etc.) in the code (Puschner and Burns,

2002). These studies resulted in the emergence of the abstract pattern

BALANCED SYSTEM which is documented with the aim that developers should

Chapter 7. Derivation of patterns for migration

118

be well-informed of all the penalties that may result from the jitter present in

the system.

Experimental evidence for jitter variations was obtained using the SANDWICH

DELAY technique for the ARM7 platform for two dummy tasks in a system in

which an additional timer was used to sandwich a task. Results showed

considerable improvement in jitter values for execution times from 8µsec down

to 1µsec and for period from 14µsec to 3µsec for task A in the system. This

improvement results in precise timings of the period for task B in the system

with the reduction of jitter values from 16µsec to 3µsec. A comparison of the

results is shown in Table 7-2 and Table 7-3 and these results were also

reported in (Lakhani and Pont, 2010b).

Table 7-2 Jitter measurements for the Un-Balanced System

All
measurement

are in µsec

Task A Task B

Execution
time

Period

Execution
time

Period

Minimum 56 99993 25 99992

Maximum 64 100007 26 100007

Difference 8 14 1 16

Average 56 100000 25 100000

Table 7-3 Jitter measurements for the Balanced System

All
measurement

are in µsec

Task A Task B

Execution
time

Period

Execution
time

Period

Minimum 222 99999 25 99999

Maximum 223 100002 26 100000

Difference 1 3 1 3

Average 222 100000 25 100000

Chapter 7. Derivation of patterns for migration

119

7.11. Monitoring the TT design

No design is completely 100% fault-free even if designed with due care and

this leaves a possibility of fault occurrence in the system at runtime which

could have a dangerous impact on system reliability. Such faults may occur

due to hardware problems such as incorrect initialization of the hardware or

software, mismanagements such as incorrect initialization of variables, or task

overruns in the system. If the possible occurrence of such problems is not

considered during the system design it may lead to serious consequences

especially in applications such as automotive vehicles or aircrafts and could

result loss of invaluable human lives or other assets. It is therefore essential

to introduce some monitoring components in such systems to ensure their

correct functionality while running. The safety standards introduced by the

automotive industry called ISO 26262 for the guaranteed safety of automotive

vehicles also emphasises the use of such techniques while designing

software. This opened up further requirements in this research for introducing

the abstract pattern SYSTEM MONITORS designed to ensure that the system will

not ‘hang’ and will keep on functioning despite unfavourable conditions. The

relevant patterns found in the PTTES collection are LOOP TIMEOUT and

WATCHDOG. A new pattern TASK GUARDIAN was also developed and

documented which had the function of avoiding any complications that could

happen as a result of task overrun in the system.

Chapter 7. Derivation of patterns for migration

120

7.12. Conclusion

This chapter has described the mining and development process for the new

patterns that is one part of this research. The aim in the beginning was to

identify problems that occur in changing the underlying architecture from ET

design to TT design and what important decisions a designer of the embedded

application has to take. To achieve this required a great deal of observational

and experimental work that resulted in the development of new patterns and

the documentation required to implement these patterns in real systems. It

was also realised during the later survey work that the developers’ community

should also be made aware of the limitations associated with each TT design

so that patterns are documented to achieve an optimised TT design after

migration.

Chapter 8. Overview of the patterns

121

CHAPTER 8. OVERVIEW OF THE PROPOSED
PATTERNS

8.1. Introduction

As briefly discussed in Section 1.2.1 on the goals of the research presented in

this thesis, in many embedded applications a change in architecture becomes

necessary when initially defined standards are not achieved in practice.

CHAPTER 2 introduced examples of real applications such as F-18 MC

(Shepard and Gagne, 1990) and Sony cell processor (Turley, 2009) that

illustrate this. The process of migration in embedded systems architecture is

complex and offers various challenges to the designers and developers of

embedded applications. Recognising the lack of availability of a set of

guidelines to tackle this situation, the research set out to find ways to meet the

challenges of migration in a more robust and coherent way based on the

application of design patterns. CHAPTER 6 introduced design patterns and

presents the expert’s opinion on the potential benefits of using patterns to

solve complex design problems. The focus of this chapter is on introducing

and explaining the newly proposed pattern collection. Section 8.2 discusses

the categories that are used to describe the patterns introduced in the PMES

and Section 8.3 has introduced the PMES language. Section 8.4 has briefly

introduced each of the patterns individually and conclusions are presented in

Section 8.5. Please note that the work described in this chapter have been

published in (Lakhani, Das et al., 2009a; Lakhani, Das et al., 2010c; Lakhani,

Wang et al., 2011).

Chapter 8. Overview of the patterns

122

8.2. Pattern categories in the PMES collection

The patterns that were derived or associated were categorised as either

abstract patterns or concrete patterns. This division of patterns in a pattern

language has been introduced previously (Kurian and Pont, 2005; Kurian and

Pont 2006) to re-structure the PTTES language. An abstract pattern is meant

to identify a class of design problems for which one or more design patterns

are available in the collection. Abstract patterns do not directly tell the user

how to construct a piece of hardware or software; instead, they assist a

developer in deciding whether or not the use of a particular design solution

(e.g. a hardware component or a software algorithm) would be an appropriate

way of solving a particular design challenge. The information contained in the

design pattern outlines the solution that is required to be implemented once

the major architectural issues (discussed in the abstract pattern) surrounding

the design problem are solved. In other words, by using one of the design

patterns, the problem that is tackled by an abstract pattern can be solved. This

implies the existence of one-to-many relationship between the abstract pattern

and the design pattern as shown in Figure 8-1.

Figure 8-1 One-to-many relationship between abstract pattern, design
patterns and PIEs

Abstract Pattern

Design Pattern 1 Design Pattern 2 Design Pattern N

PIE 1 PIE N PIE 1 PIE N PIE 1 PIE N

Chapter 8. Overview of the patterns

123

The third element in the proposed re-structuring is the ‘Pattern Implementation

Example’ or PIE. This was introduced to provide platform specific

implementation details for a solution presented in a design pattern. This is

particularly useful in the field of embedded systems where there are

differences in hardware platforms (e.g. 8-bit, 16-bit, 32-bit and 64-bit) and

programming languages (e.g. C, C++, Assembly etc) so a single pattern can

have multiple PIEs.

8.3. PMES – towards a pattern language for migration

This research presents a new pattern language called PMES (Patterns for

Migration of Embedded Systems). A full specification for each individual

pattern is included in Appendix B in this thesis. The pattern language is still in

the development stage and is not fully complete. In Section 6.7.1 two aspects

of the completeness of a pattern language are described as ‘functional’ and

‘morphological’. When patterns are applied they introduce new requirements

and so other patterns within the language should be able to meet those

requirements for functional completeness. In this regard PMES is functionally

complete as patterns are provided to resolve the follow on problems

generated by applying preceding patterns. For example the pattern EVENTS

TO TIME suggest changes at the architectural level which are required in

migrating from ET to TT design, and generate a requirement of choosing the

appropriate TT design for a particular problem. This is resolved by the pattern

TT SCHEDULER which raises the question of implementing the design, and

supported patterns are provided in the language as CO-OPERATIVE SCHEDULER,

Chapter 8. Overview of the patterns

124

HYBRID SCHEDULER and PRE-EMPTIVE SCHEDULER. Each of these designs

generates different requirements such as in case of co-operative design the

main problem is handling of long tasks and so a supportive pattern is provided

as BUFFERED OUTPUT. However, the language is incomplete morphologically

as there are gaps pertaining to multiprocessor designs and communication

protocols. Figure 8-2 shows the pattern association map and Table 8-1 gives

the pattern thumbnails.

Chapter 8. Overview of the patterns

125

Figure 8-2 Association map for the PMES language

BUFFERED OUTPUT

EVENTS TO TIME TIME FOR TT

TT SCHEDULER

CO-OPERATIVE

SCHEDULER HYBRID SCHEDULER
PRE-EMPTIVE

SCHEDULER

POLLED INPUT

CHOOSING TASK

PARAMETERS

CRITICAL SECTION

IMPROVED PRIORITY

CEILING PROTOCOL

RESOURCE LOCK

DISABLE TIMER

INTERRUPT

PRIORITY INHERITANCE

PROTOCOL

BALANCED SYSTEM

SANDWICH DELAY TAKE A NAP

SINGLE PATH
DELAY

PLANNED
PRE-EMPTION

SYSTEM MONITORS

LOOP TIMEOUT WATCHDOG

TASK GUARDIAN

PATTERNS FOR OPTIMISATION

Abstract pattern

Pattern

New patterns documented
during the research

Chapter 8. Overview of the patterns

126

Table 8-1 Thumbnails of patterns in the PMES language

Pattern Name Description
P

a
tt

e
rn

s
 f

o
r

M
ig

ra
ti

o
n

TIME FOR TT Discusses when it is appropriate to use TT architecture

EVENTS TO TIME
Discusses what changes are required to be done at
high level when changing the system from ET to TT
design.

TT SCHEDULER
Discusses what a TT scheduler is and its possible
types. Also discuss what type of TT scheduler is
appropriate in different situations.

CO-OPERATIVE

SCHEDULER
Discusses the implementation of time-triggered co-
operative scheduler.

HYBRID SCHEDULER
Discusses the implementation of time-triggered hybrid
scheduler

PRE-EMPTIVE

SCHEDULER
Discusses the implementation of time-triggered pre-
emptive scheduler.

CHOOSING TASK

PARAMETERS
Discusses the appropriate choice of task parameters
such as offset and order of task execution.

BUFFERED OUTPUT
Discusses how to deal with long task problem when
working with co-operative scheduler.

POLLED INPUT
Discusses how to deal with external events in time-
triggered environment.

CRITICAL SECTION
Discusses how to avoid conflicts over shared resources
during the execution of critical sections.

RESOURCE LOCK
Discusses the implementation of resource lock in
embedded system.

DISABLE TIMER

INTERRUPT
Discusses implementing the simplest way of safe
access to shared resources.

PRIORITY INHERITANCE

PROTOCOL

Discusses the implementation of access to shared
resources with mutual exclusion and without priority
inversion.

IMPROVED PRIORITY

CEILING PROTOCOL

Discusses the implementation of access to shared
resources with mutual exclusion avoiding priority
inversion, deadlock and blocking chains.

P
a

tt
e

rn
s
 f

o
r

O
p

ti
m

is
a
ti

o
n

BALANCED SYSTEM
Discusses he types of jitter encountered in TT
architectures and how to design systems with minimum
levels of jitter.

SANDWICH DELAY Discusses a technique to reduce period jitter in tasks.

SINGLE PATH DELAY Discusses a technique to reduce tasks execution jitter

TAKE A NAP
Discusses a technique to reduce tasks execution jitter
with minimum power consumption.

PLANNED PRE-EMPTION
Discusses a technique to reduce tick jitter in TTH
designs.

SYSTEM MONITORS
Discusses the idea of implementing monitors in the
system which keep track of system state and take
necessary actions in case of any errors.

LOOP TIMEOUT
Discusses the implementation of a software technique
to reset systems in case of any unexpected error.

WATCHDOG
Discusses the implementation of a hardware technique
to reset systems in case of any unexpected error that
could hang the system.

TASK GUARDIAN
Discusses the shutdown mechanism of tasks when task
overrun happens.

Chapter 8. Overview of the patterns

127

8.4. Patterns for migration

It is important to note that the PMES collection has evolved in stages over

time during the course of this research. Various patterns in the collection has

been passed through the rigorous review and refinement process for patterns

includes ‘Shepherding ’ and ‘Writer’s Workshop’ mentioned in Section 6.8. The

first part of the collection (containing patterns EVENTS TO TIME, BUFFERED

OUTPUT and POLLED INPUT) published in (Lakhani, Das et al., 2009a) has PIEs

RS-232 DATA TRANSFER as the implementation example for pattern BUFFERED

OUTPUT and the implementation example SWITCH INTERFACE for pattern

POLLED INPUT. In the second stage pattern BALANCED SYSTEM and associated

patterns SANDWICH DELAY, SINGLE PATH, TAKE A NAP AND PLANNED PRE-EMPTION

are published in (Lakhani, Das et al., 2010c).

The patterns CO-OPERATIVE SCHEDULER, HYBRID SCHEDULER, LOOP TIMEOUT

and WATCHDOG are part of another set of patterns - the PTTES pattern

collection (Pont, 2001). The Patterns including CRITICAL SECTION, RESOURCE

LOCK, DISABLE TIMER INTERRUPT, PRIORITY INHERITANCE PROTOCOL and

IMPROVED PRIORITY CEILING PROTOCOL have been previously published in

(Wang, Pont et al., 2007). Although the details about these patterns are not

discussed here they are included in the PMES because of their relevance to

the tasks at hand.

The format used to document patterns for the PMES is same as that of

PTTES. The format used by the PTTES has already been discussed in

Section 6.6 with more details available in Appendix A.

Chapter 8. Overview of the patterns

128

This section will present a brief overview of each individual newly documented

pattern in the PMES pattern collection.

8.4.1. Time for TT

This is the first abstract pattern in the collection and its aim to guide

developers to decide about whether migration to the TT architecture is an

appropriate choice for their application. Being an abstract pattern, it discusses

the architectural issues with both ET and TT architecture and provides

numerous examples of real applications which are true candidates for TT.

This helps the pattern users judge whether TT approach is a perfect match for

their application, or they should stick to existing ET design.

8.4.2. Events to Time

The second abstract pattern in the hierarchy is EVENTS TO TIME and this helps

in determining an answer to the question: what architectural changes in the ET

design will be required? The background section of the pattern describes the

structural elements of an ET or TT design. The solution then discusses the

steps involved in the migration process. Examples of such steps are shown

below:

1. Converting multiple interrupts to a single interrupt. Here it is suggested

that the rest of the interrupts should be converted to flags so that they

can be polled. The polling mechanism is described in the pattern

POLLED INPUT.

2. Conversion of ISRs into tasks.

3. Determination of the appropriate TT architecture (discussed in TT

SCHEDULER)

Chapter 8. Overview of the patterns

129

4. Determination of the tick interval (i.e. how frequently the single interrupt

in the TT design will be set to occur).

It has also exemplifies a possible ET design and its equivalent proto type TTC

design.

8.4.3. TT Scheduler12

As the pattern EVENTS TO TIME has discussed the necessary steps in moving

from event-triggered design to a time-triggered design, the pattern TT

SCHEDULER discusses possible TT solutions and situations in which a

particular TT design is appropriate. Being abstract in nature this pattern does

not provide implementation details for any of the TT architecture but guides

the user which TT architecture (co-operative or pre-emptive) provides a better

solution for a particular situation. The abstract pattern then leads to three

specific design patterns CO-OPERATIVE SCHEDULER, HYBRID SCHEDULER and

PRE-EMPTIVE SCHEDULER. Section 4.3.2 has already discussed the working

mechanisms of these TT schedulers. Complete implementation details along

with the source code for these patterns can be found in the PTTES collection

(Pont, 2001).

8.4.4. Choosing Task Parameters

As already discussed in Section 4.4, it is widely accepted in the embedded

systems research community that TT architectures are predictable but difficult

to design. One important concern in designing such systems is choosing the

12

 It is worth mentioning here that pattern TT SCHEDULER has been previously introduced in
(Pont, Kurian et al., 2008) . While conducting empirical studies during this research (discussed
in Chapter 10) it was felt that this pattern is loaded with lot of information and could be
decomposed into two different patterns. This resulted in the decomposition of the original TT

SCHEDULER pattern into two different patterns for the PMES collection called TIME FOR TT and
TT SCHEDULER.

Chapter 8. Overview of the patterns

130

correct task parameters such as the offset and the order of execution so that

all the tasks can meet their deadlines. The CHOOSING TASK PARAMETERS

pattern provides guidelines along with some examples for choosing the correct

task offsets and order of execution.

8.4.5. Buffered Output

A key challenge that developers face with TTC design is keeping task

execution times short and predictable. For example transferring large

amounts of data from one part of the system to another (e.g. transfer of sensor

data in a monitoring system) can take some time. In systems where pre-

emption is allowed this activity can be treated as a low-priority task and

allowed to run as required. In time-triggered co-operative systems however a

long task of this nature will “block” the system (see Figure 8-3). Tasks which

are scheduled to run in the next ticks (tick 2 and tick 3) therefore will be

missed.

Figure 8-3 Illustrating the problem of a long task in TTC environment

One solution to this problem is described in the BUFFERED OUTPUT pattern.

This pattern involves:

 A software buffer.

Chapter 8. Overview of the patterns

131

 A small set of functions used by the tasks in the system to write data to

the buffer.

 A periodic task which checks the buffer and sends a block of data to the

receiving device when required.

An overview of the use of BUFFERED OUTPUT is shown in Figure 8-4.

Figure 8-4 An overview of the Buffered Output architecture

The CPU requirements for the pattern BUFFERED OUTPUT are very limited and

the technique is generic and highly portable but reasonable care is required to

be taken at the design stage to obtain the benefits out of this architecture.

For example, if a message takes 0.15ms to transmit, the data transmission

task (to check the buffer) should be scheduled at an interval > 0.15ms.

8.4.6. Polled Input

This pattern is introduced to deal with any external inputs that may arise as a

result of an event for example pressing a switch, completion of an analogue to

digital conversion, arrival of a message on a CAN bus and so on. A POLLED

INPUT should meet the following specifications.

Chapter 8. Overview of the patterns

132

 The interrupt associated with the event should be disabled (only one

interrupt associated with the timer responsible for generating system

“ticks” should be enabled.

 A periodic task which polls for the occurrence of the event (that is,

checks the event flag).

 The period of the above task should be set to a value equal to the

minimum inter-arrival13 time of the event to be polled.

This pattern is useful for reading switch inputs and scanning keypad interfaces

which are very common requirements in embedded applications.

8.4.7. Balanced System

BALANCED SYSTEM is an abstract pattern and is introduced to achieve

optimisation of systems after migrating to time-triggered designs. Though

more predictable in nature compared with event-triggered systems, time-

triggered systems are still susceptible to jitter. Choosing the correct time-

triggered architecture does not fully guarantee system predictability as there

are a number of other factors which could make a time-triggered system

unpredictable and it is important to know these in advance. These include

release time, execution time, finish time and deadline. The prior knowledge of

these parameters plays an important role in guaranteeing the overall

predictability of the system. However, systems those run in practice generally

show considerable variations or jitter. To understand the concept of jitter more

clearly, consider the different instances of a task (Task A) in Figure 8-5, where

‘r’ is the release time, ‘s’ is the start time and ‘f’ refers to finish time of the task.

13

 This is previously explained in Section 2.3 for sporadic task as minimum time difference
between the release times of any two consecutive instances of the same task.

Chapter 8. Overview of the patterns

133

Figure 8-5 Illustrating the presence of release, execution and finishing jitter

in different instances of a task

For tasks in TT systems, the release time can be considered as the point at

which one would ideally expect a task to start its execution. In actual practice

this is delayed due to factors such as the scheduler overhead and the variable

interrupt response times (Liu, 2000; Maaita and Pont, 2005). The actual start

time of a task is always deviated from its (pre-determined) release time so

tasks always suffer from release jitter - see unequal values of x1,x2 and x3

in Figure 8-5.

In real-time systems one important parameter is the upper bound of the

execution time for a task, previously defined in Section 3.3.1 as the worst-case

execution time (WCET). Unfortunately, determining the WCET of tasks is

rarely straightforward (Puschner, 2002; Puschner and Burns, 2002; Puschner,

2003). This is because the program code of a task may contain conditional

branches and/or loops and each may take different times to execute (Liu,

2000). The decision between one branch and the other during task execution

is dependent on the input data. This makes predicting a branch prior to

execution a very difficult task. All these factors lead to variable execution time

Chapter 8. Overview of the patterns

134

of a task and this is known as execution jitter (see unequal values of y1,y2

and y3 in Figure 8-4). The cascading effects of release and execution jitter

will result in the deviation of task finish time, shown as z1, z2 and z3.

Ideally, a predictable system should be jitter free. Considering Figure 8-5 once

again, it can be stated that in a jitter free system:

 Equation 8-1

 Equation 8-2

 Equation 8-3

Some hardware features such as variations in the frequencies of the oscillator

and use of cache memories (Kirner and Puschner, 2003) also contribute to

jitter in tasks.

For some applications, such as data, speech or music playback for example

these variations may make no measurable difference to the system. However,

for applications in real-time control systems which involve sampling,

computation and actuation, such delays in operations are very risky for the

overall performance of the system. The presence of jitter can have a

degrading impact on the performance of real-time systems or can even lead to

critical failure (Marti, 2002). A BALANCED SYSTEM is more robust against the

presence of various types of jitters in the system and results in more

predictable timing behaviour of the system. The various ways of achieving a

balanced system are SANDWICH DELAY, SINGLE PATH DELAY, TAKE A NAP and

PLANNED PRE-EMPTION.

Chapter 8. Overview of the patterns

135

8.4.8. Sandwich Delay

In embedded applications there is a high possibility that two tasks are required

to run one after the other. In such a situation variable execution time of the

task could affect the release time of the other task running just after it.

Suppose a system is executing two functions periodically using a timer ISR, as

outlined in Listing 8-1. Please note that the programming language used in all

code listings is ‘C’ language.

// ISR invoked by timer every 10ms

void Timer_ISR (void)

{

Do_X(); //WCET approx 4.0ms

Do_Y(); //WCET approx 4.0ms

}

Listing 8-1 System executing two functions using timer ISR

According to the Listing 8-1, function Do_X() will be executed every 10ms.

Similarly, function Do_Y() will be executed every 10 ms, after Do_X()

completes. For many resource-constrained applications (for example, control

systems) this architecture may be appropriate. However, in some cases, the

risk of jitter in the start times of function Do_Y() may cause problems. Such

jitter will arise if there is any variation in the duration of function Do_X(). In

Figure 8-6, the jitter is reflected in differences between the values of ty1 and

ty2 (for example).

Chapter 8. Overview of the patterns

136

Figure 8-6 Impact of variations in the duration of task Do_X() on the release
jitter of task Do_Y()

A SANDWICH DELAY can be used to solve this type of problem. More

specifically, it provides a simple but highly effective means of ensuring that a

particular piece of code always takes the same period of time to execute: this

is done using two timer operations to “sandwich” the activity which it is

required to perform. Please refer to code segment in Listing 8-2.

// ISR invoked by timer overflow every 10ms

void Timer_ISR(void)

{

Set_Sandwich_Timer_overflow(5);

Do_X();

Wait_Sandwich_Timer_Overflow();

Do_Y();

}

Listing 8-2 Pseudo code for Sandwich Delay

The timer is set to overflow after 5ms (a period slightly longer than the WCET

of Do_X()). This timer starts before the execution of Do_X() starts – after the

function is complete – Do_Y() will wait for the timer to reach 5ms value. In this

Chapter 8. Overview of the patterns

137

way, it can be ensure that as long as Do_X() does not exceed a duration of 5

ms – Do_Y() runs with minimum jitter as shown in Figure 8-7.

Figure 8-7 Illustrating the use of the Sandwich Delay technique

Sandwich delays are effectively found useful for pre-emptive designs for

example TTH designs to control the execution jitter of pre-emptive tasks.

8.4.9. Single Path Delay

Variable execution times of tasks can lead to unpredictable behaviour in

systems. To understand this more clearly, consider a system running tasks A,

B and C (with equal release time = 0) as shown in Figure 8-8.

Figure 8-8 Three tasks with same release time scheduled to run in a tick

If for any reason, task A takes a longer time than its estimated WCET, there

will be consequences for it. For example: (a) task C will run before task B if it

has higher priority than task B (b) task B not being able to finish with the tick

could lead to problems in the system. The situation is depicted in Figure 8-9.

Chapter 8. Overview of the patterns

138

Figure 8-9 Illustrating the change in system behaviour if the execution time
of task A takes longer than expected

The point to be noted here is that if task A varies in duration it will affect the

overall system behaviour. Tasks involving loops and decision structures (for

example, ‘if-else’, ‘switch’, etc.) are more likely to have variable execution

times. If such tasks can be balanced, more stable and predictable system

behaviour can be achieved.

The single-path programming approach was introduced by Peter Puschner

(Puschner, 2003). The aim of this approach is to ensure that blocks of code

involving loops or decision structures will have a single execution path and

therefore a fixed execution time. SINGLE PATH DELAY can be achieved by

replacing input-data dependencies in the control flow by predicated code

instead of branch code. Thus, the instructions are associated with predicates

and are executed if the predicate evaluates to 'true'. In other case (if the

instruction evaluates to 'false'), the microprocessor replaces the instruction

with a NOP (no-operation) instruction. This result in a higher but fixed

execution time compared to the traditional programming approach.

Chapter 8. Overview of the patterns

139

As an example of a single-path consider the code Listing 8-3 in which SINGLE

PATH DELAY approach is applied to a code snippet involving if-else statement.

Temporary variables temp1 and temp2 are used to hold results of

expressions expr1 and expr2 respectively. The conditional move

instruction movt copies the value of temp1 to the variable result if the test

condition evaluates to true, otherwise the processor performs a No

Operation (NOP) instruction. On the other hand, if the test condition

evaluates to false, movf will copy the value of temp2 to result otherwise NOP

instruction will be executed. As a result, the translation basically generates a

sequential code as shown in Listing 8-3 (the right hand side code segment).

Listing 8-3 Sequential code generated from a branching statement using if-
else conversion [Adapted from (Puschner,2003)]

The main drawback of this approach is that it is limited to hardware which

supports “conditional move” or similar instructions. It is likely to increase the

power consumption because the CPU will always execute the single-path

if (cond)

{

 result = expr1;

}

else

{

 result = expr2;

}

 temp1 = expr1;

 temp2 = expr2;

 test cond;

 movt result,temp1;

 movf result,temp2;

Chapter 8. Overview of the patterns

140

code for a fixed (maximum) period. During this time, the processor will be in

“full power” mode.

8.4.10. Take a Nap

This pattern is introduced to overcome the limitations posed by the pattern

SANDWICH DELAY and the pattern SINGLE PATH DELAY. In systems where

power consumption is a concern, neither of the two patterns discussed

previously is an attractive solution because in both the cases to achieve

BALANCED SYSTEM the CPU operates at “full power” mode at all times. TAKE A

NAP provides a solution to achieve BALANCED SYSTEM with reduced power

consumption and is based on the technique discussed in (Gendy and Pont,

2007). It works by putting the control flow statement within a SANDWICH

DELAY. This will ensure that the particular piece of code will always have

constant execution time. For example, consider the code segment in Listing

8-4.

for (i = 0; i< x; i++)

{

 // body of the loop

}

Listing 8-4 A simple for loop

The execution time of the loop is dependent on the value of the variable x. Let

MAX be equal to the maximum number of iterations the loop can execute. Let

Time(x) be equal to the time spent in executing x iterations. The value of

Time(x) may be measured using hardware timers. Therefore, the time spent

Chapter 8. Overview of the patterns

141

in performing (MAX – x) iterations may be calculated using the value of

Time(x) as given in Equation 8-4.

 Time(MAX – x) = (MAX – x) * Time(x)/x Equation 8-4

Once the loop executes x number of times, the processor is put to sleep for a

duration equal to Time (MAX – x). A timer interrupt may be generated when

the hardware timer count reaches the value Time(MAX - x)and this can be

used to awaken the processor. Using this technique, code segment in Listing

5-5 is ensured to always (irrespective of the value of x) have a constant

execution time equal to the value of Time(MAX) (i.e. the time spent in

executing MAX number of iterations of the for loop). Thus, in addition to

enabling a power-saving mode of the processor, the resulting ‘balanced’ code

with the SANDWICH DELAY incorporated, provides an additional layer of

predictability to the real-time system. The balanced version of the loop in

Listing 8-4 may be written as shown in Listing 8-5.

 // Start the timer

Timer_Start();

for (i = 0; i< x; i++)

{

// body of the loop

}

// Stop the timer

Timer_Stop();

// Store timer count value after x iterations

Chapter 8. Overview of the patterns

142

Time(x) = Timer_Count_Value;

// Determine value of Time(MAX – x)

Time(MAX – x) = ((MAX-x) * Time(x))/x;

// Reset the timer

Timer_Reset();

// Timer interrupt to occur after Time(MAX–x)

Set_Interrupt(Time(MAX-x)+“safety margin”);

// Put processor to sleep

Processor_Sleep();

Listing 8-5 Balancing the section of a code with reduced power
consumption [Adapted from (Gendy and Pont, 2007)]

It must be noted that the 'for' loop in the code segment above must run at least

once for the value of Time(MAX - x) to be determined. Furthermore, a

small ‘safety margin’ has been added to the calculated time to ensure that

there is sufficient time for the processor to enter sleep mode even when the

loop is executed for the maximum number of iterations.

8.4.11. Planned Pre-emption

This pattern is used to achieve a BALANCED SYSTEM specifically with TTH

schedulers. A hybrid scheduler provides limited multi-tasking capabilities to

the system. Such systems could exhibit unpredictable behaviour for the

following two reasons (Maaita and Pont, 2005):

Chapter 8. Overview of the patterns

143

1. Existence of unbalanced code branches in the timer ISR which leads to

variable ISR execution times. This in turn leads to unpredictable

scheduler behaviour represented by the appearance of task starting

jitter.

2. The existence of CPU instructions with different execution times (i.e. in

terms of CPU cycles required to execute the instruction).

This leads to variable timer interrupt response times as each of the periodic

timer interrupts which take place throughout the life cycle of the application

can occur while the CPU is in one of the two different states. The CPU may

either be running in sleep (idle) mode, or while it is running an instruction and

where the interrupt is only serviced once the currently executing instruction is

finished shown in Figure 8-10.

Figure 8-10 Illustrating the Occurrences of timer interrupts when processor
is in different modes

The possible occurrences of timer interrupts could lead to variable timer ISR

response time which translates to task release jitter. In TTH design this

Chapter 8. Overview of the patterns

144

release jitter has the largest impact on tasks which are regularly executed

after a timer tick has occurred and is, therefore, referred to as “tick jitter”.

Keeping the processor in the same state as all interrupts take place would

likely reduce the tick jitter (Maaita and Pont, 2005). PLANNED PRE-EMPTION

makes use of another hardware timer to put the processor to power saving

mode or ‘sleep mode’ before the scheduler timer interrupt occurs thus keeping

the processor in the same state every time. This will eliminate the jitter as the

time required to leave the sleep mode and resume normal execution is a static

value (Martin, 2005). Figure 8-11 illustrates the operation of PLANNED PRE-

EMPTION.

Figure 8-11 Illustrating the operation of ‘Planned Pre-emption’ where
processor is put to sleep mode just before the system tick occurs

Implementation of PLANNED PRE-EMPTION is shown in Listing 8-6. The extra

timer used to put the processor to sleep mode is named as “PP-timer” being

use for PLANNED PRE-EMPTION. To set the overflow value of the PP-timer it is

Chapter 8. Overview of the patterns

145

important to know the WCET in advance so that the processor can have

enough time to go to sleep mode before the scheduler timer interrupt occurs.

PLANNED PRE-EMPTION will reduce the tick jitter as the time required to leave

the sleep mode and pursue normal execution is a static value (Kopetz and

Bauer, 2002).

 while(1)

 {

 // Dispatch Co-op tasks

 C_Dispatch();

 }

 void C_Dispatch(void)

 {

 // Go through the task array

 // Execute Co-operative tasks as required.

 // The scheduler may then enter idle mode

 Sleep();

 }

 void P_Dispatch_ISR(void)

 {

 // Start idle timer

 ITimer();

 //Dispatch pre-emptive task

 P_Task();

 }

 // Idle timer ISR

Chapter 8. Overview of the patterns

146

 void Idle_Timer_ISR(void)

 {

 Sleep();

 }

Listing 8-6 TTH Scheduler with Planned-Pre-emption

8.4.12. System Monitors

SYSTEM MONITORS is an abstract pattern that represents techniques which are

intended to keep an eye on system functionality to make sure that system is

working normal or as expected. They act like guards for the system. In the

event of unexpected occurrences for example, incorrect initialization of some

peripheral or variables, the system will not produce the results as expected

and the application can possibly hang for an infinite time. In such a situation

the implementation of SYSTEM MONITORS can prevent the system from hanging

in any unstable states. SYSTEM MONITORS can be implemented with the use of

hardware such as timers (see pattern WATCHDOG (Pont, 2001)) or software

(see pattern LOOP TIMEOUT (Pont, 2001)). This research has introduced a new

pattern called TASK GUARDIAN described next.

8.4.13. Task Guardian

This pattern is based on a technique proposed by Hughes and Pont (2008) to

handle task overruns in TTC systems. Despite many advantages, a pure TTC

architecture has a failure mode which has the potential to greatly impair

system performance: this failure mode relates to the possibility of task

overruns (see Figure 8-12 and Figure 8-13).

Chapter 8. Overview of the patterns

147

Figure 8-12 Illustrating a TTC based system running in normal conditions

Figure 8-12 illustrates a TTC design running two tasks, A and B. Task A runs

every 1ms and Task B runs every 5ms. This system operates as required,

since the duration of Task A never exceeds 0.4ms. Now consider Figure 8-13

which illustrates the problems that result when Task A overruns. In this case,

it is assumed that the duration of Task A increases to approximately 5.5ms.

The co-operative nature of the scheduling in this architecture means that this

task overrun has very serious consequences (Hughes and Pont, 2008).

Figure 8-13 Illustrating the TTC system when task A overruns

TASK GUARDIAN suggests the shutdown mechanism for a task which is found

to be overrun of execution longer than expected. In summary, the Update ISR

in the TTC scheduler detects the task overrun, and returns control to the

End_Task (a function designed to provide a shutdown mechanism for an

overrun task). End_Task will be responsible for unwinding the stack, as

required, and as far as possible normal program operation will continue.

Chapter 8. Overview of the patterns

148

8.5. Conclusions

This chapter has introduced a new pattern collection intended to support the

developers of embedded applications in the migration process from event-

triggered design to time-triggered designs. It has discussed the rationale for

proposing the pattern collection and described some of the new patterns in the

collection. However, there are still a number of questions that need to be

addressed before general application and the deployment of the pattern

collection with guaranteed performance can be envisaged. These questions

concern the efficacy of the patterns and their usefulness, their practical use in

real embedded applications and how and why practitioners can benefit from

them. The next three chapters of this thesis will explore these questions

further and provide answers to them.

Chapter 9. Applying the patterns to real applications

149

CHAPTER 9. APPLYING THE PATTERNS TO REAL
APPLICATIONS

9.1. Introduction

The research presented in this thesis was initiated with the belief that for many

embedded applications, migration from event-triggered (ET) to time-triggered

(TT) architecture improves reliability (see Section 1.2). In support of this belief

three motivating examples from the literature are described in CHAPTER 2,

and CHAPTER 5 discussed many issues that spawn the migration of

embedded applications. The examples quoted in CHAPTER 2 demonstrate

that the paramount goal of migration is achieving reliability in systems. High

reliability is the most important criterion for safety-related embedded systems

operating in unpredictable environments such as military applications,

automobiles and air-craft. However, even in more mundane domestic

applications, for example an alarm clock that fails to sound on time or a video

recorder that operates intermittently, where failure is relatively

inconsequential, poor reliability can have other impacts such as reduced sales

etc. (Pont, 2001)

 The aim of the work described in this chapter is two-fold:

 To investigate the impact of migration (from ET design to TT design) on

system reliability with empirical results and comparison of the

performance of both the designs.

 To identify the applicability of various patterns in the PMES collection at

different stages of the migration process.

To achieve these goals, two examples of non-trivial embedded applications

are employed. This chapter aims to demonstrate the application of patterns

Chapter 9. Applying the patterns to real applications

150

for real applications in the conversion process from ET design to TT design.

Section 9.2 describes the hardware platform specifications and the

methodology adopted for various calculations for the experiments described in

this chapter. Section 9.3 and 9.4 describes each of the example application in

detail along with the process of applying the patterns in the PMES collection to

achieve TT designs, and how they helped in improving the reliability. Section

9.5 presents a brief discussion on the results obtained and conclusions are

presented in Section 9.6. Please note that the work described in this chapter

have been published in (Lakhani and Pont, 2012a).

9.2. Hardware specifications and methodology

For the case studies discussed in this chapter, two different examples of

embedded applications with different requirements were chosen. In each

case study, the existing design of the application and its flaws are analysed.

After migration to the TT architecture a comparison of results between the ET

and the TT architectures is presented. Specifications for the hardware

platform used for both the case studies are described as follows.

9.2.1. Hardware platform

Both the case studies are conducted on an NXP LPC2378-STK

microcontroller mounted on an OLIMEX prototyping board (see Figure 9-1).

Such prototyping boards are commonly used during research and

development case studies as they provide the neatest and well-managed

circuits with processor and all the necessary peripherals connected, well-

marked and often labeled. Usually on such boards all the required circuits are

Chapter 9. Applying the patterns to real applications

151

self-integrated and well-connected which saves time compared with circuits

with unmanageable bulky wire connections. The prototyping boards are

designed to facilitate experimental work by engineers/developers as all the

required components are held fast and do not roll-off or get disturbed by

movement.

The LPC2378 microcontroller is based on 16/32bit ARM7TDMI-S CPU running

at up to 72 MHz with 512 KB of flash memory and four on-chip timers. This

hardware is chosen because of its wide applicability in industry and is

designed for applications commonly used in industrial control, medical

systems, protocol conversion and communications. Further details of the

hardware can be found in the hardware data sheet available online at

(OLIMEX2378, 2012).

Figure 9-1 Prototype board for ARM 7 LPC2378STK [courtesy:
(OLIMEX2378, 2012)]

Push Buttons

GPIO Panel

Microphone Input

Variable

Potentiometer

Chapter 9. Applying the patterns to real applications

152

9.2.2. Measurements approach and methodology

In order to investigate the system performance, measurements were taken of

CPU utilization, memory utilization and power consumption. Jitter

measurements were also taken to analyse the system reliability.

Memory utilization (Stack and RAM) is measured using the RapidiTTy ®tool

set (RapidiTTy, 2009). In RapidiTTy, the code and data memory are simply

parsed from the memory map that the linker spits out. RapidiTTy calculates

the stack usage by parsing the listing file, finding all the stack allocations in

each function and then building up a call tree for all the functions in the

application. This information is then combined up the call tree to find the

maximum stack usage at every stage.

To measure experimentally, the system active time ‘CPUactive’, the execution

time ‘C’ of all the tasks and ISRs is calculated. For this purpose, a general

purpose input/output (GPIO) pin on the GPIO panel on board (highlighted in

Figure 9-1) is used. The pin is made high at the start of each task/ISR and

low at the end. The pulse width of this time span is then measured using a

National Instruments data acquisition card ‘NI-PCI-6035E’ in conjunction with

LabVIEW 10.0 software (NI, 2012). The sampling rate of the acquisition card

used is 100 KHz which is not high enough to get exact and precise results

however it is good enough to provide a trend of results. More accurate results

can be obtained by using a data acquisition card of higher sampling rate.

Chapter 9. Applying the patterns to real applications

153

Note that the total time spent by the CPU, ‘CPUtotal’ is the timing window

assumed to perform calculations for these experiments (the assumed timing

window = 300,000 system ticks where 1system tick = 1ms).

The active time for the processor ‘CPUactive’ is the time it spends in executing

all the tasks in the system and is calculated using Equation 9-1.

 CPUactive = ∑Ci + Scheduler overhead Equation 9-1

The scheduler overhead in Equation 9-1 is added to get the precise active

time. It is the time span which is spent by the CPU in switching from one task

to another. It is measured separately by setting a GPIO pin high when the

timer ISR controlling the periodic tasks in the system is called and by setting it

to low before it goes to sleep mode.

The time spent by the processor in idle mode ‘CPUidle’ is calculated by

subtracting the time for which it stayed active from the assumed timing window

and is presented in Equation 9-2.

 CPUidle = CPUtotal – CPUactive Equation 9-2

The percentage of CPU utilization is calculated using Equation 9-3

 %CPU Utilization = (CPUactive/CPUtotal) *100 Equation 9-3

For measurements of power consumption, the average current consumption

‘ICPU’ by the ARM processor is calculated using Equation 9-4 below:

 ICPU = [(CPUactive*IDD(DCDC)active) + (CPUidle * IDD(DCDC)pd)]/CPUtotal

 Equation 9-4

Chapter 9. Applying the patterns to real applications

154

In the above equation, IDD(DCDC)act is the active mode DC-to-DC converter

supply current (3.3V) with all peripherals enabled and the CCLK operating at

72MHz. IDD(DCDC)pd is the power-down mode DC-to-DC converter supply

current (3.3V) for the ARM7 processor. Typical values of these parameters

given in the datasheet of hardware are 125mA and 113µA respectively.

Using these parameters the average power consumption by the processor

‘PCPU’ is calculated as shown in Equation 9-5.

PCPU = ICPU * VCPU Equation 9-5

where ‘VCPU’ = 3.3V (voltage across the processor).

In Section 8.4.7 as part of the discussion on the pattern BALANCED SYSTEM, the

concept of ‘release jitter’ has been introduced. It is the deviation of the actual

start times of the task from their release times (Tindell, Burns et al., 1994; Bril,

Steffens et al., 2004). Release jitter can be expressed in relative or absolute

values (Buttazzo, 1997). Relative release jitter is defined as the maximum

deviation in the start time of two consecutive instances and absolute release

jitter is the maximum deviation of the start time in all instances.

According to (Baurah, Buttazo et al., 1999) the absolute jitter of task Ti can be

defined as

 Absjitter(Ti) = max (Pi(max) - Pi, Pi – Pi(min)) Equation 9-6

where:

Pi = the time interval between successive completions (or invocations) of task

Ti

Chapter 9. Applying the patterns to real applications

155

Pi(max) = the maximum time interval between successive completions (or

invocations) of task Ti

Pi(min) = the minimum time interval between successive completions (or

invocations) of task Ti

Release jitter is measured experimentally by making a pin high at the

beginning of the timer ISR and making it low just before the task starts. A

Labview script is then used to measure the maximum and minimum values of

release jitter using Equation 9-6.

9.3. Example 1: Data Acquisition System

9.3.1. System functionality

Generally abbreviated with the acronym ‘DAQ’, the data acquisition system is

a widespread control application and is used to measure temperature,

pressure, fluid flow and light intensity etc. One of the main activities in such

systems is the conversion of analogue signals to digital values. The

application discussed here takes data samples from an analogue-to-digital

converter (ADC) every 5 milliseconds and translates the sampled value to an

appropriate string of characters. By pressing the push button ‘BUT1’ (user

request) available on the board (highlighted in Figure 6-1), the application

displays the translated ADC value on the hyper terminal. The user is allowed

to change the input to the ADC using the variable potentiometer available on

the board (see Figure 9-1) and thereby enabling to view the different values of

the sampled data. In addition, the application also displays an elapsed time

Chapter 9. Applying the patterns to real applications

156

value since the microcontroller was last reset by pressing the push button

‘BUT2’. In normal conditions when there is no user request the application will

keep on displaying “Press a Button” message on the windows

‘HyperTerminal’.

A sample output of the application is shown in Figure 9-2.

Figure 9-2 A sample output shown using hyper terminal for the DAQ
system

9.3.2. Even-triggered design

The existing design of this application is based on the ET architecture with

loose TT operation. Such hybrid designs are common in control applications

(Short, Pont et al., 2008). Some of the tasks in the system which require

continuous update (for example, ADC data sampling and displaying the

message ‘Press a Button’ continuously on the hyper terminal) are periodic in

nature. Task specifications of the periodic tasks in the system are shown in

Chapter 9. Applying the patterns to real applications

157

Table 9-1. Other than the periodic tasks, what follows are the active interrupts

in the system.

 TIMER 0, to control all the periodic tasks shown in Table 9-1. The

overflow value of this timer interrupt is set as 1ms which is basically the

‘tick interval’ for the periodic tasks.

 EINT3, External interrupt 3 which is invoked when the user presses

‘BUT 1’ to display ADC data on to the hyper terminal.

 EINT0, External interrupt 0 which is invoked when the user presses

‘BUT2’ to display elapsed time value.

Table 9-1 Specifications of the periodic tasks in ET design for DAQ system

Task ID Task Description
Period
(ms)

ADC_Sample
Reads the voltage from a particular ADC
channel.

5

ADC_Translate_Update
Translates the ADC data to an appropriate
string of characters.

10

Elapse_Time_Update
Calculates the elapsed time since the
microcontroller was last reset.

1000

HT_Display_Update

Displays appropriate data on the hyper
terminal when the user press a button
otherwise it displays the message ‘Press a
Button’

1000

Flashing_LED
Periodic flashing of an LED to indicate that
system is alive.

1000

In the application discussed in this case study, the interrupt ‘TIMER 0’ is

handled by the ‘FIQ’ (Fast Interrupt Request) category, while the external

interrupts ‘EINT 0’ and ‘EINT 3’ are handled using the ‘IRQ’ (Interrupt

Request) category.

On the ARM processor, interrupts are divided into two levels: FIQ or IRQ. FIQ

is a higher priority interrupt than IRQ. While assigning interrupts, a standard

Chapter 9. Applying the patterns to real applications

158

practice is, FIQs are normally reserved for a single interrupt source that

requires a fast response time while IRQs are normally used to handle general

purpose interrupts (Sloss, Symes et al., 2004).

9.3.2.1 Performance measures for the event-triggered design

Performance measures listed in Equation 9-1 to Equation 9-6 are measured

for the ET design and are tabularized in Table 9-2.

 Table 9-2 Performance measures for the ET design for DAQ system

Parameters Values

CPU utilization 67.86%

Idle time 32.14%

Jitter (NBP)14 0.05µsecs

Jitter (VBP)15 0.3,1.25,1.45,1.75µsecs

Power consumption 0.258watts

Stack 3616 bytes

RAM 6554 bytes

Please note that the jitter measurements are taken for the ADC sampling task

only, this is because the task ADC_Sample is responsible for acquiring data in

the system (runs every 5ms) and the accuracy of the data displayed is

dependent on the accuracy of the sampling task. During the experiment, it

was interesting to note that the release jitter in the ADC_Sample task showed

variations with the increase in number of external interrupt calls. As the

number of external interrupts increased in a timed window increasing values of

jitter were observed.

14

 Jitter in the absence of any button press call or ‘No Button Press’
15

 Jitter with ‘Varied Button Press’ calls. This reflects the situation in which the user can press
the button randomly any number of times.

Chapter 9. Applying the patterns to real applications

159

It is also important to mention here that in reality, calculating the exact CPU

utilization for ET system is nearly impossible because of the aperiodicity of

events. However, for the present case study equal number of external

interrupts are considered in the defined timing window (300,000 ticks) for both

(ET and TT) designs to ensure a fair comparison between the two designs.

9.3.2.2 Reasons for variations in the release jitter

ET designs are considered to be more responsive because of the rapid

handling of external interrupts as they arrive. This feature sometimes could

appear as a problem instead of providing benefits to the system as observed

in the experiment discussed in this case study. This can be more clearly

explained by considering the situation as depicted in Figure 9-3. As the timer

generates the system tick, it runs the FIQ handler and then dispatches the

ready tasks. Once all the tasks have finished execution, the system goes into

the sleep mode.

Figure 9-3 Illustrating possible interrupt arrivals during task execution

In the situation when any external event arrives three possible situations are

considered here:

1. Interrupt arrives while the FIQ is running.

2. Interrupt arrives when the system is running a task.

3. Interrupt arrives when the system is in sleep mode.

Chapter 9. Applying the patterns to real applications

160

As mentioned in Section 9.3.1, external interrupts are handled using the IRQ

therefore in case of situation (1) above the IRQ handler will have to wait for

execution until the high priority FIQ finishes execution. In the case of situation

(2) the IRQ handler will start executing immediately as it arrives and will

interrupt the currently running task. Apparently, scenario (3) looks simple as

the processor is in idle mode and the IRQ can start its execution at the same

instant. However, there is a possibility that the FIQ happens while the IRQ has

not finished execution. As a consequence, the IRQ handler execution will be

interrupted by the FIQ handler as the FIQ has a higher priority by default. All

the situations explained above lead to variations in task timings and are

manifested as variable jitter values for the sampling task. Variations in the

release jitter of the ADC_Sample task leads to unpredictability and make the

system unreliable. This is because it can lead to jitter during the period of

other tasks and inaccurate values of data will then be displayed. This implies

that the existing architecture is not reliable and so needs to be migrated to a

more predictable and reliable design.

9.3.3. Migration to a time-triggered design

Before converting the DAQ system to a TT design, certain issues are required

to be resolved such as: Is it appropriate to convert this system to a pure TT

solution with a single interrupt controlling all the tasks in the system? If yes,

which TT architecture can best match the application requirements and how

are the external inputs going to be handled in a pure TT solution. The next

section will describe the process of applying patterns and how the PMES

collection can help in this migration process.

Chapter 9. Applying the patterns to real applications

161

9.3.3.1 Applying patterns in the PMES collection

The problems associated with the ET design of the system have been

identified and now it is worth looking at the pattern language map and

thumbnails in order to select appropriate patterns. A pattern language

represents a collection of patterns that work together. It is therefore important

for the user to know how they can work together to solve a specific design

problem. Generally in a pattern language, each pattern builds upon a pattern

that came previously or another way of looking at this that each previous

pattern creates the context for the following patterns. The dependency of

patterns is shown through a pattern language map to represent how the

patterns build upon and relate to each other. The textual description of the

language provided and the names and the contents of each individual pattern

itself can also help the user to visualize the process embedded in the patterns

in order to help in applying them i.e. when, how and in which order? Figure

9-4 illustrates the process of applying patterns in the conversion of ET design

to TT design.

Figure 9-4 Illustrating the process of applying patterns for the conversion
of ET design to TT design

TT design
ET design

1. Identification of problems in the

existing design

2. Selecting appropriate patterns

that solve the problem.

3. Refine the design by

implementing the solution given

in the patterns.

Chapter 9. Applying the patterns to real applications

162

The different pattern forms adopted for pattern description can play an

important role in pattern selection. For example most pattern forms have a

section called ‘context’ which provides:

1. A description of the scope of the pattern in which it is applicable.

2. Gives information on earlier and later patterns that must be

implemented before the current pattern can be implemented

successfully to solve the problem completely. For example consider

an excerpt from pattern TIME FOR TT and its highlighted sections in

Figure 9-5.

Figure 9-5 An excerpt from the pattern ‘TIME FOR TT?’ highlighted sections
showing how the pattern is applicable in the context of DAQ for migration

from ET to TT design

TIME FOR TT

Context

 You already have at least a design or prototype for your system based on some form of
Event-triggered architecture.

 You are in the process of creating or upgrading an embedded system, based on a single
processor.

 Reliable system operation is a key design requirement.

Problem

Should you use a TT architecture in your system?

Solution

Some systems are obvious candidates for TT architectures. These systems involve periodic
data sampling or data playback, or other periodic activities.
Some simple examples:

 Data acquisition and sensing systems (for example, environmental systems for temperature

monitoring) usually involve making data samples on a periodic basis. Some cases (high-frequency

systems) may involve making millions of samples per second: other cases (e.g. temperature

monitoring at a weather station) may involve making one sample per hour.

 …….

It is important to appreciate that – in many of these cases - use of a TT solution allows the
system to perform the above periodic activities and also perform other functions (such as
reading switches, updating displays, receiving data over serial communication links, performing
calculations, etc) without interfering in any way with the processing outlined in the above
examples. It is the ability to perform multiple tasks and still guarantee that critical tasks will
always execute as required that makes a TT solution so attractive to developers of high-
integrity, safety-related and safety-critical systems.

……………….

Related patterns and alternative solutions
See patterns EVENTS TO TIME and TT SCHEDULER

Chapter 9. Applying the patterns to real applications

163

The highlighted sections indicate that as the reader reads through the pattern

he/she is guided by how the pattern is applicable in the current context and

what patterns are to follow next. As indicated in the Figure 9-5 above the

next patterns to consider are EVENTS TO TIME and TT SCHEDULER. Now

consider an excerpt from pattern EVENTS TO TIME in Figure 9-6:

Figure 9-6 An excerpt from pattern ‘EVENTS TO TIME’ with highlighted
sections indicating the relevance of the pattern in the context of getting a

TT design for the DAQ

For the application discussed in this case study, CO-OPERATIVE SCHEDULER

(discussed previously as TTC scheduler in Section 4.3.2) provides a good TT

EVENTS TO TIME

Context

 ………….

 Because predictable and highly-reliable system operation is a key design requirement,
you have opted to employ a “time-triggered system architecture in your system, if this
proves practical.

Problem

How can you convert event triggered / pre-emptive designs and code (and mindsets) to
allow effective use of a TT SCHEDULER as the basis of your embedded system?

Solution

Here’s what you need to do to migrate to a TT design:

 You need to ensure that only a single – periodic - timer interrupt is enabled (all other
interrupt sources will be converted to flags, which will be polled as required).

 You have to determine an appropriate “tick interval” for your system (that is, you need
to determine how frequently the timer interrupt need to take place).

 You have to convert any ET (event-triggered) ISRs into periodic tasks and add these
to the schedule.

You need to decide which TT architecture will best suite your application requirements.
Pattern TT SCHEDULER provides comprehensive details.

Related patterns and alternative solutions

The pattern TT SCHEDULER provides relevant background information and the situations in
which it may be appropriate to use a TT scheduler in your application. Look into the
patterns CHOOSING TASK PARAMETERS and POLLED INPUT for making your task compatible
with TT design.

Chapter 9. Applying the patterns to real applications

164

solution. Before selecting the architecture, it is also important to know about

the WCET of the tasks as it helps determining if the system will involve any

level of pre-emption? As per the system specifications of DAQ, there is no

long task in the system and so there is no requirement of task pre-emption,

which makes it easier to decide on CO-OPERATIVE SCHEDULER as the

architecture of choice. Therefore one possible sequence of patterns to follow

in converting DAQ from ET design to TT design is depicted in Figure 9-7.

Figure 9-7 A possible sequence of patterns to follow in achieving a TT
design for the DAQ system

An equivalent time-triggered design is achieved with a single timer interrupt

controlling all the tasks. Tasks communicate with each other using global

variables. A high level representation of the system at task level is shown in

Figure 9-8 and task specifications are shown in Table 9-3.

TIME FOR

TTPATTERNS FOR

MIGRATION
EVENTS TO

TIMEBALANCED

SYSTEM
TT

SCHEDULERSAND

WICH DELAY
CO-OPERATIVE

SCHEDULER

POLLED INPUT
CHOOSING TASK

PARAMETERSTAKE A

NAP

What architectural changes are required to get a TT design for

DAQ?WATCHDOG

Is DAQ a true candidate for TT?

How to implement the chosen TT design?

Choosing task offset/order?

Which TT design is appropriate for DAQ?

Handling Inputs?

Chapter 9. Applying the patterns to real applications

165

Figure 9-8 High level task representation of TT design for DAQ system

Table 9-3 Task specifications of TTC design for DAQ system

Task ID Task Description
Delay
(ms)

Period
(ms)

ADC_Sample Reads the voltage from a particular ADC
channel.

0 5

ADC_Translate Translates the ADC data to an
appropriate string of characters.

2 10

Push_Button1 Polling task for button 1 to display ADC
data

2 10

Push_Button2 Polling task for button 2 to display
Elapsed time.

2 10

HT_Display Displays the appropriate data on hyper
terminal when the user presses a button
otherwise display the message ‘Press a
Button’.

6 1000

Elapse_Time Calculates the elapsed time since the
microcontroller was last reset.

8 1000

Flashing_LED Periodic flashing of an LED to indicate
that the system is alive.

10 1000

9.3.4. ET versus TT design

Performance measures listed in Equation 9-1to 9-6 are calculated both for the

ET design and the TT design. Results obtained for both ET and TT designs

are compared in Table 9-4. A graphical comparison and an analysis of results

will be presented in this section.

Chapter 9. Applying the patterns to real applications

166

Table 9-4 Comparison of ET and TT design for DAQ system

Parameters ET design TT design

CPU utilization 67.86% 72.12%

Idle time 32.14% 27.88%

Jitter (NBP) 0.05µsecs 0.05µsecs

Jitter (VBP) 0.3,1.25,1.45,1.75µsecs 0.05µsecs

Power consumption 0.258 watts 0.297 watts

Stack 3616 bytes 1544 bytes

RAM 6554 bytes 4260 bytes

 CPU Utilization comparison: The TT system showed 4.26% higher

CPU utilization than the equivalent ET design. This is due to the

inclusion of polling tasks scheduled to run every 10ms for the button

press instead of the interrupt service routines which runs only when the

external input arrives. These results are consistent with the example of

alarm monitoring system discussed in Section 4.5 where it has been

argued that the resource utilization of an ET system will be better than

that of an equivalent TT system under low or average load conditions.

This application was not tested for high load conditions as this was not

within the scope of the aims and objectives of the study.

 Power consumption comparison: The ultimate result of using extra

CPU resources results in more power consumption for the TT design as

compared with the ET design. The TT design consumed 0.039 watts

more power which is not too high in comparison. However, the results

for CPU usage and power consumption for this application are more

favourable to ET design.

Chapter 9. Applying the patterns to real applications

167

The results for CPU utilization and power consumption measurements are

shown in Figure 9-9.

Figure 9-9 Comparison of CPU utilization, idle time and power consumption
for ET and TT design for DAQ system

 Jitter Comparison: Comparison of variations in the release jitter of the

sampling task showed results in favour of the TT design. The value of

release jitter for the TT design remains fixed (0.05µsecs) no matter how

many number of external inputs there were (see Figure 9-10). This is

because the interrupts triggered by button press are replaced with

polling tasks for each of the button presses. The periods of the polling

tasks were set at the design time and these tasks always run at their

pre-determined times unlike the unknown arrival and execution of

Chapter 9. Applying the patterns to real applications

168

interrupts discussed in Section 9.3.2. This helped in achieving more

stable and predictable behaviour of the system.

Figure 9-10 Release jitter in the data sampling task of ET and TT designs
for DAQ system

 Memory usage comparison: Results showed higher memory

utilization for the ET design as compared to the TT design shown in

Figure 9-11. One of the main overheads associated with interrupt-

driven systems is context switching which in turn requires memory

space. As in the ET design multiple interrupts were made active, and

each interrupt handler maintains its own stack space thereby reserving

more memory. For handling interrupts on the ARM processor a vector

table (a set of ARM instructions) is maintained that manipulates the

program counter (PC). The instructions in the vector table direct the

PC to jump to a specific location where the interrupt handler resides.

When an interrupt occurs, a value or index of the table is calculated.

The content of the table at this index (or offset) reflects the address of a

service routine. The PC is initialized with this vector address and the

Chapter 9. Applying the patterns to real applications

169

execution begins at this location. Stack space is normally reserved at

the design time with due care in order to avoid any stack overflow

during the program execution. Reserving a separate stack is a better

approach in the sense that if a single task is corrupted it could damage

the whole stack.

Figure 9-11 Memory and stack utilization of ET and TT design for DAQ
system

All these complexities involved in managing interrupts leads to higher memory

utilization for interrupt-driven systems.

Chapter 9. Applying the patterns to real applications

170

9.4. Example 2: FFT/ADC framework

9.4.1. System functionality

The aim of this case study is to demonstrate the use of other TT architectures

where TTC does not seem to provide an appropriate solution in migrating from

ET to TT designs. The system discussed in this case study is based on two

main activities:

 Data sampling using analogue-to-digital converter (ADC)

 Time-frequency conversion using the Fast Fourier Transform (FFT).

These two activities are commonly found in many embedded applications

used for fault diagnosis and condition-monitoring. One of the requirements of

such applications is to perform data sampling at high frequency (for example

in some cases the system may require sampling data every 1 millisecond).

The FFT processing is a long task typically requiring 256 or 512 data samples.

This takes several milliseconds to complete it is though required to run less

frequently (i.e. calling this task every 50 ticks for this system would be enough

to perform FFT on a bunch of data samples).

The ‘FFT Analyser’ samples the generated signal, carries out a Fast Fourier

Transform on the sampled data and finally outputs the first harmonic

frequency to the hyper terminal when a user presses a push button available

on the board. The rest of the time, the system keeps on displaying a message

‘FFT Analyser’. A sample output is shown in Figure 9-12.

Chapter 9. Applying the patterns to real applications

171

Figure 9-12 A sample output shown using hyper terminal from the FFT/ADC
framework

9.4.2. Experimental setup

In the present case study the generic ADC/FFT framework is implemented as

shown in Figure 9-13. The main application is running on an ARM7 NXP

LPC2378-STK board and in addition to this, another Altera DE2-70 board is

used which is pre-programmed as a function generator to generate

frequencies in the range of 1 KHz.

Figure 9-13 The ‘FFT Analyser’ frame work

 The Altera DE2-70 development and education board is an excellent vehicle

for learning about digital logic using FPGAs. However, for this study it is only

Chapter 9. Applying the patterns to real applications

172

used as a replacement of a function generator to generate signals of variable

frequencies and for ease of use. More information about this development

board is available online at (ALTERA, 2012).

One of the output lines ‘LINE OUT’ on the Altera board is connected with the

microphone input (highlighted in Figure 8-1) of the LPC2378 board. The

sampling task can access the microphone input by making use of the standard

ADC driver16. On the LPC2378 development board the microphone input is

connected to the ADC device 0, channel 2 and can therefore be accessed with

the ADC device channel. A serial cable is connected between the PC and the

ARM board to transmit data via an RS-232 link. Such a framework is

commonly used in medical devices. An example of this is in an ECG machine

for monitoring electrocardiograms in patients as they perform a series of

exercises. In an industrial setting this framework is used for condition-

monitoring of machinery in a factory (Schlindwein, Smith et al., 1988).

9.4.3. Event-triggered pre-emptive design

The existing design of this system is based on a fully pre-emptive architecture

(unlike the previous case study) in which all the tasks are pre-emptive in

nature and are assigned with a priority at the design time. A task with higher

priority which is ready to run can pre-empt a currently running task with lower

priority. The tasks are periodic and controlled by a pre-emptive scheduler.

The details on task specifications are shown in Table 9-5. Please note that

16

 RapidiTTy® set of tools (RapidiTTy, 2009) are used to develop implementation for these
case studies. The standard driver for ADC is built-in the tool.

Chapter 9. Applying the patterns to real applications

173

task priorities are defined in descending order with 4 being highest and 1 is

the lowest in the present case.

In addition to the pre-emptive tasks, an external interrupt (EINT3) triggers on

the button press ‘BUT 1’ (available on LPC2378 board) to display the first

harmonic frequency.

Table 9-5 Task specifications of the periodic task in the ET design for FFT
Analyser

Task ID Description Priority
Period
(ms)

ADC_Sample Sampling task which samples data. 4 1

FFT_Converter

Processing task running every 50ms

which perform FFT of the sampled

data to select the first harmonic

frequency.

3 50

HRT_Display

Display task which prints first

harmonic frequency on hyper

terminal.

2 500

Flashing_LED
Periodic flashing of an LED to

indicate that system is alive.
1 500

Problems associated with external interrupts have already been discussed in

the previous case study. Generally speaking because pre-emptive

architectures require task context switching, fully pre-emptive designs

generally have both larger CPU overheads and RAM/ROM requirements than

“equivalent” co-operative schedulers (Pont, 2001; Short, Pont et al., 2008). As

a consequence, it has also been argued that the timing properties of software

code in non-pre-emptive designs are both easier to inspect and verify than the

pre-emptive code. In addition, the increase in both CPU and inter-task

communication overheads in a pre-emptive design will typically result in an

increase in CPU utilization when a given system specification is implemented.

Chapter 9. Applying the patterns to real applications

174

In the light of the above facts, there are strong grounds to migrate the

‘FFT/ADC framework to a suitable TT architecture.

9.4.4. Obtaining time-triggered design using patterns

It was previously stated in this thesis that the ideal choice is the TTC design

when the decision has been made to switch to the TT architecture, but in

certain circumstances it might not be possible to achieve the system

requirements using the TTC design. As Jean Labrosse (2000) commented:

“The main drawback of this strategy is its latency to responding to important

events: a higher priority task will have to wait until the currently running task

finishes its execution”(Labrosse, 2000). The current application is an example

of this case as the sampling task is required to run every 1ms.

For the present case study it is clear that the FFT task (a long task) cannot be

neatly decomposed into a sequence of shorter tasks and therefore it is not

possible to employ a pure TTC architecture. The reason is that the FFT task

will block the high priority ADC sampling task which has to run every 1 ms.

The next immediate choice is a time-triggered hybrid (TTH) design which is

guided by the patterns EVENTS TO TIME and TT SCHEDULER. The beauty of the

TTH design is that it maintains the core co-operative design and allows the

addition of a limited degree of pre-emption that is essential to meet the

requirements of the application. This architecture is easy to implement and

can operate with high reliability along with a controlled degree of pre-emption.

In the time-triggered implementation of this application, a single pre-emptive

task is the ADC data sampling task. All the other tasks are made co-

Chapter 9. Applying the patterns to real applications

175

operative. The event triggered/interrupt driven button press call is translated

into a periodic task using the pattern ‘POLLED INPUT’. The order of patterns

which can lead to a TT design of the FFT Analyser is shown in Figure 9-14.

The tasks are then designed accordingly shown in Table 9-6.

Figure 9-14 One possible order of patterns to be followed which can lead to
a TT design for the FFT Analyser

Table 9-6 Task specifications of TT design for FFT Analyser

Task ID Task Description Task type
1. Period

(ms)

ADC_Sample The sampling task which
samples data at a rate of 1KHz.

Pre-emptive 1

FFT_Converter The processing task running
every 50ms which performs
FFT of the sampled data to
select the first harmonic
frequency.

Co-operative 50

HRT_Display The display task which prints
the first harmonic frequency on
the hyper terminal

Co-operative 500

Push_Button1 The polling task for the push
button

Co-operative 25

Flashing_LED Periodic flashing of an LED to
indicate that the system is
alive.

Co-operative 500

TIME FOR TT

EVENTS TO TIME

TT SCHEDULER

HYBRID

SCHEDULER

POLLED INPUT
CHOOSING TASK

PARAMETERS

What architectural changes are required to get a TT design?

Is FFT Analyser a true candidate for TT?

How to implement the chosen design?

Choosing task offset/order?

Which TT design is appropriate?

Handling Inputs?

BALANCED

SYSTEM

Any possible
optimisation for the
TT design?

PLANNED PRE-
EMPTION

Optimised TTH design?

Chapter 9. Applying the patterns to real applications

176

9.4.5. Comparative analysis of ET and TT designs

Measurements for CPU utilization, power and memory consumption are taken

for both the designs and are tabulated in Table 9-7.

Table 9-7 Performance measures of ET and TT design for FFT Analyser

Parameters ET design TT design

2. CPU utilization (%) 73.85 65.32

3. Power consumption (watts) 0.3047 0.2695

4. RAM (bytes) 6881 3616

5. Stack (bytes) 4260 1056

 It is important to mention again that to make a fair comparison equal numbers

of external inputs are considered for both ET and TT designs. Unlike the

previous case study, the ET design showed more CPU utilization because of

the fully pre-emptive design.

The frequent pre-emption in the system incurs frequent context switching and

so more CPU cycles were involved. In the TT design the level of pre-emption

is reduced a great deal by making only a single task pre-emptive resulting in

improved CPU utilization. Results for the power consumption clearly indicate

less power usage in the TT design and these results are presented in Figure

9-15.

Chapter 9. Applying the patterns to real applications

177

Figure 9-15 Comparison of CPU utilization, idle time and power

consumption by ET and TT designs for the FFT Analyser

Also the TT design proved to be a better choice from the memory utilization

point of view as shown in Figure 9-16.

Figure 9-16 Comparison of memory utilization by the ET and TTH designs
of the FFT Analyser

Chapter 9. Applying the patterns to real applications

178

9.4.6. Optimisation of the TTH design

The results presented in the previous section is an indication that the TTH

architecture may serve as a cost effective replacement for a fully pre-emptive

design, however this architecture is still susceptible to jitter (Cottet and David,

1999). Similarly Jerri discussed the detrimental impact of jitter on applications

such as spectrum analysis and filtering (Jerri, 1977). In control systems, jitter

can greatly degrade the performance by varying the sampling period which

leads to inaccuracy of results and data in the system.

In the PMES pattern collection, the pattern BALANCED SYSTEM provides ways

to achieve optimised TT designs by reducing the levels of jitter wherever

possible and the pattern PLANNED PRE-EMPTION has specifically addressed this

issue in TTH based designs. In order to achieve the optimised TTH design for

the FFT Analyser, PLANNED PRE-EMPTION technique is implemented as

described in Section 8.4.11 and Listing 8-6 by using another timer called the

‘idle timer’ which places the processor into sleep mode just before the pre-

emptive task starts (as shown in Figure 8-11). The optimised TTH design is

named as TTH-PP (Time-Triggered Hybrid with Planned Pre-emption). Jitter

values are measured for the sampling task in the TTH and the TTH-PP

designs. Considerable improvements were observed in the TTH-PP design

the results of which are shown in Table 9-8.

Table 9-8 Jitter comparison for TTH and TTH-PP designs

 TTH TTH-PP

Jitter(µsecs) 1.5 0.1

Chapter 9. Applying the patterns to real applications

179

9.5. Discussion

This chapter has demonstrated the effect of migrating existing applications

based on the ET and/or pre-emptive designs to the TT designs. The

demonstration process comprises two case studies of non-trivial embedded

applications which are in common use. The examples demonstrate which

aspects of the migration to the TT architecture can be of benefit to these

applications. Example 1 showed the detrimental impact of migration to a

purely time-driven application resulting in more CPU utilization and power

consumption compared with the ET design. In contrast, the TT architecture

provides more stability in the system by keeping the jitter values constant in all

situations as compared to the ET design in which the number of external

inputs causes variations in jitter. By looking at the difference of CPU utilization

and power consumption between ET and TT designs it appeared that the TT

design lead to 4.26% more of CPU utilization and 0.039 watts more power

consumption. In other words these values represent the trade-off for a more

predictable system.

Example 2 however showed a completely different scenario in which a

completely pre-emptive architecture which is based on an ET design was

migrated to a TT design by limiting the pre-emption to a single task only. The

TTH design employed in this case not only reduced the level of pre-emption

but also resulted in a reduction of CPU power and memory consumption.

Further optimisation of this was evident in reduced release jitter for the

sampling task in the system.

Chapter 9. Applying the patterns to real applications

180

Both the case studies demonstrate that the PMES collection introduced in

Chapter 8 can help in the migration process.

9.6. Conclusions

In conclusion the empirical results presented in the case studies in this

chapter are indicating that for some applications migration to the TT

architecture can help in improving the system reliability. As mentioned in the

research premise in Section 1.2.1 this research aims to evaluate the

effectiveness of patterns in the migration process and the case studies

presented in this chapter are part of this evaluation process. These studies

were conducted by the author herself and user trials involving a target group

of embedded application developers/designers are required to effectively

evaluate the proposed pattern collection. To this end the next chapter will

present the details of empirical studies that were conducted with the

involvement of subjects to investigate whether the PMES collection has the

potential to help the practitioners during the process of migrating architectures

for embedded applications.

Chapter 10. Assessing the patterns: Empirical studies

181

CHAPTER 10. ASSESSING THE PATTERNS:
EMPIRICAL STUDIES

10.1. Introduction

In CHAPTER 9, an effort was made to demonstrate the application of the

proposed ‘PMES’ pattern collection on real embedded applications where

migration to time-triggered designs makes sense. The results showed a

considerable improvement in the performance and reliability of the tested

applications after migrating to the time-triggered architecture. However, there

is still a need to obtain feedback on these patterns from the target users for

whom these patterns are documented – i.e. the developers and designers of

embedded applications. This chapter will describe the investigations aimed at

exploring whether or not the proposed pattern collection is providing the

intended support to the developers of embedded applications.

This chapter is organized as follows: Section 10.2 and Section 10.3 present a

literature review on different evaluation techniques adopted for design

patterns. In Section 10.4 an overview of the preliminary pattern evaluation

process employed in this project is presented. In Section 10.5 and 10.6

information is presented about the empirical studies conducted to evaluate the

patterns developed during the research project. Two different experiments

were designed and Section 10.7-10.8 describes each of these in detail.

Section 10.9 presents a discussion on the results obtained and the chapter

conclusions are presented in Section 10.10. Please note that the work

described in this chapter have been published in (Lakhani and Pont, 2012b).

Chapter 10. Assessing the patterns: Empirical studies

182

10.2. Evaluation of design patterns – an overview

Evaluation research can be described as an attempt to assess the worth or

value of some innovation, service or approach (Robson, 2002). Evaluation or

assessment is the means by which both quantitative and qualitative judgments

can be made on something that aims to provide improvement over existing

methods. There are many different approaches to evaluation, just as there

are many different types of artefact, yet the purpose of evaluation remains

consistent. It is almost meaningless to evaluate certain products without a

purpose or without criteria for assessment. The goal of the evaluation is to

answer questions such as, “Does the artefact or theory work?” and how useful

is the artefact or theory?” The most important benefit of evaluation activity is

that it offers feedback to the researcher in order to identify if the problem is

well understood, if the assumptions are appropriate, if the quality of the design

process is appropriate, and if further refinements are needed for the artefact

(Hevner, March et al., 2004).

New and existing patterns that have not been rigorously evaluated can raise

many questions (Petter, Khazanchi et al., 2010) about the value of the designs

such as – is there a measureable time and resource saving? Are the patterns

truly generic? Are they addressing the real problems faced by the practitioners

working in a certain domain? Are they representing the knowledge gained by

expert(s) in a way which is easily understandable and applicable?

Chapter 10. Assessing the patterns: Empirical studies

183

10.2.1. Validation of patterns

A pattern describes a solution to a commonly recurring problem and one of its

characteristic is that it has stood the test of time in a system that has seen

frequent revisions. This implies that code written in 1970’s that is still in use in

a large system that has had lots of revisions can be considered a “proven

solution”. There is an issue however on how may argue that how to validate a

“proven solution” as a pattern?

In the patterns community, it is an accepted ‘requirement’ that a pattern can

be truly called a pattern only if it has been applied to a real-world solution at

least three times. Brad Appleton (2000) calls this the “Patternity” test. To

quote Linda Rising: “A pattern is based on experience – it’s not just a ‘good

idea’ that someone thought of in the shower. Ideally there should be a section

in the pattern that describes ‘Known Uses’ – instances of actual use. Ideally

there should be three separate instances”(Brandberg, 2005).

This number three may well be arbitrary as some members of the pattern

community propose a ‘Rule of Two’: in the words of John Vlissides, “We had

one inviolable rule as we developed Design Patterns: we had to find two

existing examples of a problem and its solution before we would write a

pattern for it. This was a particularly important rule for us to follow, because

we were exploring unfamiliar territory, and we wanted to make sure what we

wrote was grounded in reality. We didn’t want to end up with a set of solutions

to problems no one had” (Vlissides, 1996). Clearly, testing a pattern in more

than one example of a problem is necessary, and the more examples tested

Chapter 10. Assessing the patterns: Empirical studies

184

the better. The Writer’s Workshop at PLoP conferences (discussed previously

in Section 6.8) is a testing ground for an early stage of pattern validation,

because during a workshop the readers of patterns cross-examine the pattern

authors by asking for example “Are you sure this is a pattern? What are your

examples?” or “This appears not to work well as it’s written. What forces are

missing?” Therefore to make a pattern valid the author has to make sure they

do a thorough job of understanding the context, where the solution is valid,

and the trade-offs involved in the solution. A well tested and well explained

pattern can help the users to decide if the solution described in the pattern is

valid and appropriate for their use? This is one way of assessing pattern

validity though to some extent the pattern user has to have some faith in the

pattern author.

All published patterns pass through a preliminary process of validation through

the process of ‘Shepherding’ and the ‘Writer’s Workshop’ and through the

pattern author’s own testing and experimentation process. For more rigorous

validation empirical studies involving the target subjects need to be conducted.

The next section will report on some of the studies of pattern validation found

in the literature.

10.3. Related work

There has been lot of work carried out on the creation of design patterns in a

wide range of diverse fields as discussed previously in Section 4.4 in this

thesis. There has been limited emphasis however on developing guidelines for

evaluating the validity of patterns (Khazanchi, Murphy et al., 2008). This

Chapter 10. Assessing the patterns: Empirical studies

185

section will discuss the earlier work on the evaluation of design patterns and

pattern languages.

Patterns for designing object-oriented software by GoF (Gamma, Helm et al.,

1995) have been the center of focus for many researchers since they were

introduced in the mid 90’s. Several studies have also been reported in the

literature on the evaluation of these patterns. For example, Lutz Prechelt and

Barbara Unger reported a series of experiments (Prechelt and Unger, 1998) to

test certain claims such as ‘design patterns improve communication from

developers to maintainers by carefully documenting pattern usage in the

code’. They also suggested that the unsuitable application of patterns may be

harmful and warned against using them in a random 'cook book' fashion; that

is to say that they need to be applied thoughtfully by applying common sense.

Again Lutz Prechelt along with other colleagues also reported other

experiments that concern the assessment of the usefulness of pattern

documentation in program maintenance (Prechelt, Unger et al., 2002). In their

study, seventy-four student participants were involved in testing the question:

‘Does it helps the maintainer if the design patterns in the program code are

documented explicitly compared to a well-commented program without explicit

reference to design patterns?’ These explicit comments are some additional

lines of comment called PCL (pattern comment lines) that describe the pattern

usage where applicable. They found that PCL in a program considerably

reduced the time required for a program change and helped in improving the

quality of the change.

Chapter 10. Assessing the patterns: Empirical studies

186

Chung and colleagues described the evaluation of a pattern language to help

designers of ubiquitous computing17 (Chung, Hong et al., 2004). Their

evaluation study was conducted in several rounds. In the first round, eighteen

designers divided into nine pairs were involved including professionals as well

as graduate students. All participants were given design tasks to solve

problems related to ubiquitous computing such as the design of a location

enhanced service to help customers in a shopping mall. Participants involved

in the study were divided into two major groups. One group was given the

proposed pattern collection to help them solve the exercises and the other

group was asked to solve the exercises based on their professional

experience and without making use of patterns. The exercises were assessed

by Human-Computer Interface (HCI) graduate students and the results

indicated that:

 Patterns helped novice designers.

 Patterns helped designers to solve problems in the domains for which

they were unfamiliar.

 Patterns helped designers communicate design ideas amongst

themselves.

 Patterns helped designers avoid some design problems.

 Patterns did not help with the privacy related issues for websites.

Based on their observations of the first round of evaluation the authors edited

the contents of their proposed patterns and conducted a second round of

evaluation. However in their second round they reported the participants still

17

 Ubiquitous computing is the use of technologies to accomplish both simple and complex
tasks throughout our work and personal lives. Ubiquitous computing systems are embedded
in the environment or carried on the body and adapt to the natural interactions of people.
Ubiquitous computing is not intended as a description of the ubiquity of computer devices
themselves; it’s a description of how computing fits in our lives ubiquitously (Begole, 2011).

Chapter 10. Assessing the patterns: Empirical studies

187

failed to take advantage of the privacy patterns because the privacy issue was

not emphasised in the higher level patterns sufficiently.

Another example of a pattern evaluation study is by Aras (2005) based on a

project for a scientific application for three-dimensional modeling. This

application called COMPUCELL3D (Aras, 2005) is a software framework for a

three-dimensional simulation of morphogenesis18. The evaluation

methodology adopted for this application did not involve any participants. It

consisted of a comparison of performance measures (speed and memory

consumption) and maintainability for different versions of COMPUCELL3D

designed with the use of a combination of design patterns described as

FACTORY, STRATEGY and SINGLETON (Gamma, Helm et al., 1995) and without

patterns (simple C Structures). Altogether, there were seven versions

designed, four with the use of patterns and three without design patterns

(Aras, Cicovski et al., 2005). The results obtained demonstrated that as the

application was re-factored to support additional functionality without using

design patterns there was performance degradation such as extra memory

utilization. The reason for this is that implementations with design patterns

avoid the need for some additional code (by instantiating the appropriate

algorithm at run time, which can be referenced throughout the simulation

unlike C structures).

Another interesting evaluation study reported by Ayavoo (Ayavoo, 2006)

related to a tool called ‘PTTES builder’ (Mwelwa, Pont et al., 2006) designed

18

 Morphogenesis is the structural development of an organism and its organs involving cell
differentiation growth and migration, bulk changes in tissue shape, secretion, and the
diffusion of extra cellular materials, for example proteins (Aras, 2005).

Chapter 10. Assessing the patterns: Empirical studies

188

to support an automated pattern-based code generation technique. An

example from this work is one of the series of studies conducted to test a

technique called ‘SGM’ (Small Group Methodology). SGM is used to conduct

empirical studies of software engineering with a small number of volunteer

participants with similar skills and well- matched academic backgrounds. This

study involved a comparison between two different development approaches

of a non-trivial embedded application called ‘CCS’ (Cruise Control System).

One used the PTTES builder and the other used a manual approach (i.e.

using a pattern collection in a reference book). Altogether eight participants

(split into four groups) were involved in the study. The results showed that the

groups that used the PTTES builder worked more efficiently and required less

effort to complete the design compared with groups that did not use the

PTTES builder tool.

Another recent research study concerning the evaluation of design patterns

for multi-core embedded systems is reported by Strebelow and Prehofer

(Strebelow and Prehofer, 2011). A multi-core processor is a single computing

component with two or more independent actual processors (called “cores”),

which are the units that read and execute program instructions (Source:

Wikipedia). The aim of this study was to evaluate four software design

patterns: Half-Sync/Half-Async, Leader/Follower, Proactor and Reactor

(Schmidt, Stal et al., 2000) in the design of efficient message processing for a

large number of input streams on several cores. The authors included a basic

multi-threading solution in the evaluation to compare patterns with simple but

commonly used solutions. For this study, they used a specific hardware – the

Chapter 10. Assessing the patterns: Empirical studies

189

Cavium Octeon cn5650 multicore system19 running applications designed with

pattern implementations. Each pattern implementation was run and the

throughput (in terms of messages per second) and average latency was

measured and compared with the designs implemented without the use of

patterns. Based on the results obtained they made the following conclusions:

The basic multi-threading solution performed best followed by

Leader/Followers and Half-Sync/Half-Async. The Proactor pattern showed

inefficiency in systems because of massive thread creation. The system

implemented using the patterns Half-Sync/Half-Async systems suffered

increased latency due to the inefficient event de-multiplexing. The main

conclusion of their evaluation study was ‘The use of design patterns does not

always provide the best solutions.’

One important observation from the example studies quoted above is that

there is no universally accepted evaluation criteria for design patterns. Aware

of the complex issues of evaluation, Khazanchi and colleagues have

suggested some general guidelines for evaluating patterns in the Information

Systems (IS) domain (Khazanchi, Murphy et al., 2008). They supported

Alexander’s idea of ‘Quality Without A Name’ (QWAN) to make patterns useful

and beneficial for the intended users – however they believe that – QWAN is

difficult to describe. They define a few general qualities associated with

patterns that could help to achieve QWAN and could provide guidance in

evaluating patterns. They name these qualities as plausibility, feasibility,

19

 This system is designated for embedded telecommunication devices as found in base
stations, routers etc. The Octeon provides 12cnMIPS cores operating at 800MHz. Each core
has 32/16 KB of L1 cache and all cores share a 2 MB L2 cache. More information is available
on www.caviumnetworks.com

http://www.caviumnetworks.com/

Chapter 10. Assessing the patterns: Empirical studies

190

effectiveness, pragmatic, empirical and predictive. Their research was further

expanded by Petter et al (2010) and resulted in a framework for the

evaluation of design patterns based on ‘Design science20’ . This proposed

framework is based on the belief that the evaluation of patterns should

continue throughout the life-cycle as a continuous activity which brings

improvement in the patterns from time to time as depicted in Figure 10-1.

Figure 10-1 Pattern life cycle [Adapted from (Petter et al, 2010)]

According to these authors, writing patterns of any form is susceptible to

human fallibility and biases. The evaluation of patterns however provides an

opportunity to test if a pattern is actually applicable and useful for the intended

users. The evaluation comprised deploying the pattern in the specific domain

for which it exists, and then carefully analyzing the results against intended

effects described in the pattern definition itself. The qualities previously

defined by Khazanchi and colleagues to achieve QWAN are now formally

20

 Design science research in information systems creates and evaluates IT (Information
Technology) artefacts intended to solve identified organisational problems (Hevner, March et
al., 2004).

Development

Evaluation

Deployment Use

Chapter 10. Assessing the patterns: Empirical studies

191

presented with their traditional definitions, and adapted definitions for patterns

are shown in Table 10-1.

Table 10-1 Criteria for evaluating patterns [Adapted from (Petter et al,
2010)]

Evaluation
Criteria

Traditional Definition Adapted Definition for Patterns

Plausible

The degree to which a concept
is more than just a belief
(Sproull, 1995; Khazanchi,
1996).

The pattern is sensible considering
the current understanding of the
domain (Alexander, 1979; Brown,
Malveau et al., 1998; Khazanchi
and Zigrus, 2007).

Effective

The degree to which a concept
describes the phenomenon
under study parsimoniously and
stimulates inquiry (Khazanchi,
1996).

The pattern is described in
language that is understandable.
Root causes of the problem are
identified and addressed by the
recommended solutions (Appleton,
2000).

Feasible
The degree to which a concept
is workable or operational
(Khazanchi, 1996).

The pattern can be operational or
implemented as described.

Predictive

The degree to which a concept
is capable of predicting
outcomes for given conditions
(Sproull, 1995; Khazanchi,
1996).

The pattern produces the expected
result or produces a result in the
intended direction (Coplien, 2007).

Reliable

The degree to which a concept
is certifiable by different
researchers using different
methods (Straub, 1989;
Khazanchi, 1996).

The pattern produces similar results
regardless of the implementer or
technique.

These guidelines are intended for pattern authors to write quality patterns and

are obviously useful; nevertheless the authors are unable to provide a strong

framework and methodology for conducting the evaluation process itself.

Thus, the lessons learned from this review of evaluation studies are:

 Evaluation studies are essential and incur additional cost and time.

 Evaluation studies are highly dependent on the characteristics of the

domain for which the patterns are designed.

Chapter 10. Assessing the patterns: Empirical studies

192

 Evaluation studies can be conducted with or without the involvement of

participants.

 Useful results can be obtained from a small number of participants.

 Participants involved in such studies can work individually or in groups.

 The task designed to be performed by participants may or may not

involve programming exercises.

 An evaluation study can span several rounds or be completed in a

single sitting.

In the light of these observations, evaluation studies for the PMES collection

were designed and these are discussed in the next section.

10.4. Preliminary evaluation of the PMES collection

There is a common understanding within the pattern community that feedback

on the use of the patterns in different applications is necessary to improve and

validate the patterns. Feedback can be provided by those that have

implemented the patterns or by experts that have read the patterns (Brown,

Malveau et al., 1998). On this latter point, it was previously mentioned in

Section 10.4 that most of the patterns in the proposed collection have already

passed through the rigorous process of ‘Shepherding’ and the ‘Writer’s

Workshop’ at various PLoP conferences. The pattern collection published

during the early stage of this research including the patterns EVENTS TO TIME,

BUFFERED OUTPUT and POLLED INPUT (Lakhani, Das et al., 2009a) has been

shepherded by Robert Hanmer for the conference EuroPLoP 2009. Robert

Hanmer is a renowned name in the pattern community and is the author of a

Chapter 10. Assessing the patterns: Empirical studies

193

book on patterns (Hanmer, 2007) and has published numerous papers on this

topic. The pattern collection published at a later stage including the patterns

BALANCED SYSTEM, SINGLE PATH DELAY, SANDWICH DELAY, TAKE A NAP and

PLANNED PRE-EMPTION (Lakhani, Das et al., 2010c) were shepherded by Jorge

L. Ortega-Arjona. Jorge authored two recent books on patterns (Ortega-

Arjona, 2009; Ortega-Arjona, 2010) and again is widely published in this field.

Patterns documented by fellow colleagues in the Embedded Systems

Research Group (ESRG) which are included in the PMES collection include

the patterns CRITICAL SECTION, RESOURCE LOCK, DISABLE TIMER INTERRUPT,

PRIORITY CEILING PROTOCOL, IMPROVED PRIORITY CEILING PROTOCOL (Wang,

Pont et al., 2007) and the pattern TT SCHEDULER (Pont, Kurian et al., 2008)

has also passed the same pattern refining process. Therefore, most of the

patterns have been assessed by experts, though a few still need further

testing such as the patterns CHOOSING TASK PARAMETERS, SYSTEM MONITORS

and TASK GUARDIAN. A major part of the evaluation still remains and that is

the feedback from a target user group. In order to fill this gap, empirical

studies with the involvement of end users are vital to prove the efficacy of the

proposed pattern collection. This chapter will provide the details of these

studies conducted during the research.

Chapter 10. Assessing the patterns: Empirical studies

194

10.5. Empirical studies for the evaluation of the PMES

collection

10.5.1. Methodological considerations and practical constraints

 In order to obtain the maximum possible benefits from the evaluation process

for the PMES collection the following practical considerations were necessary:

 Available funds to conduct the studies

 Available time to conduct the research

 Availability of the appropriate resources

The key ingredients in designing empirical studies for design patterns are: the

principal research approach (controlled experiment versus field study), the

background of the subjects (students versus professionals), the type of

software work investigated (design, development, individual or team work etc.)

and the methodology of the study (Prechelt and Unger, 1998). The proposed

collection of patterns for this study as stated earlier is intended to support

developers and designers of TT and ET based embedded applications. To

evaluate the patterns ideally they should be tested ‘in the field’ in real

embedded software development environments where real practitioners are

facing the migration challenge with some ‘live’ projects. However, because of

the practical considerations related to funds, time and resources (mentioned

above) under which these studies were designed such an ideal situation was

not practical within this study.

Given the relatively easy access to students in this research environment,

MSc (Engineering) and MSc (Computer Science) students at the University of

Chapter 10. Assessing the patterns: Empirical studies

195

Leicester were selected as subjects. Fortunately, as mentioned in Section

10.3 the ‘SGM’ technique of conducting empirical studies is quite effective with

small number of volunteer participants with well-matched backgrounds

(Ayavoo, 2006; Mwelwa, 2006). Therefore ‘SGM’ has been adapted for the

studies presented in this chapter. The core of the SGM has the following main

stages:

1. Study preparation

2. Experimental investigation

3. Analysis of results

Further actions within each stage are illustrated in Figure 10-2. The study

preparation includes the selection and management of subjects and the

preparation of the exercise used in the study to evaluate the artefact. During

the actual experiment, a test/assessment is conducted based on the exercise.

After the experiment the subjects are given questionnaires to obtain feedback

or they can be interviewed on an individual basis if required. In the analysis

stage, exercise sheets solved by the subjects are assessed and finally results

are analysed.

Figure 10-2 An overview of the SGM technique

Small Group Methodology

Study Preparation
- Selection of subjects
- Management of subjects
- Preparation of the exercise

Experiment
-Test conduction
-Questionnaires/Interviews

Analysis
-Assessment
-Results

Chapter 10. Assessing the patterns: Empirical studies

196

One way to improve the SGM would be to employ a “blind” approach

(Kitchenham, Pfleeger et al., 2002) to analyse the results. In this case, the

individual who assess/analyses the results from the study is kept unaware as

to which set of results have been subjected to a treatment. The results

obtained this way are fair and unbiased.

The SGM was employed in these studies to evaluate the PMES collection of

patterns described in CHAPTER 8. Some amendments were essential to

make the studies more robust and useful and these will be explained in the

experiments described in the following sections.

10.6. Experiment planning

10.6.1. Goals

The goal of the studies described here is to explore two specific hypotheses,

by means of empirical studies. These hypotheses are as follows:

1. Patterns in the PMES collection help experienced developers to choose

appropriate TT solutions during the migration process.

2. The PMES form helps the pattern users to apply the information

presented in a more effective way than “traditional” information sources.

10.6.2. Design of experiments

The key ingredients in designing empirical studies for design patterns are: the

principal research approach (controlled experiment versus field study), the

background of the subjects (students versus professionals), the type of

software work investigated (design, development, individual/team work etc)

Chapter 10. Assessing the patterns: Empirical studies

197

and the technical conduct of the study (Prechelt and Unger, 1998). The

proposed collection of patterns for this study as stated earlier is intended to

support developers and designers of TT and ET based embedded

applications. However, because of the practical considerations (mentioned in

Section 10.5.1) under which these studies were designed an ideal situation

where patterns can be tested with a ‘live’ industrial project was avoided as

industrial projects usually takes years to complete and companies have their

own reservations about sharing any information while a project is in process.

Given these limitations the next available option was to arrange for some

controlled laboratory experiments which could be managed conveniently and

these were chosen for the studies discussed here. However, the experiments

conducted were designed and planned according to the recommendations for

designing empirical studies in software engineering such as those described in

(Juristo and Moreno, 2001) which also provides useful input for further

research in the industrial context.

10.6.3. Selection of subjects

The next important thing was to decide on the subjects i.e. the class of users

for which such a collection can provide support. Again, ideally this should

include subjects from a broad cross-section of professionals from the

embedded software community such as software architects, system

developers and designers and programmers but the same issue of funding

and time constraints obviated this. An alternative is to use students as

subjects and studies for example (Carver, Jaccheri et al., 2003; Arisholm and

Sjoberg, 2004) highlighted the issues of using students as subjects rather than

professionals working in the industry. These issues relate to the benefits that

Chapter 10. Assessing the patterns: Empirical studies

198

researchers gain from empirical studies with students such as obtaining

preliminary evidence to confirm or refute hypotheses (why are students better

in this respect) and benefits to students such as getting better insights on

specific industrial problems. Interestingly, the studies encourage the use of

students as subjects particularly when some of the students had the same

level of skill as the professionals. Therefore many studies published in the

literature such as (Unger and Tichy, 2000; Prechelt, Unger et al., 2002;

Chung, Hong et al., 2004) used students as subjects for pattern evaluation.

Within the limited funding constraints it was not possible to involve a huge

number of participants in the study as it is customary to pay participants for

their time in being subjects for research and the accepted rate was £20.00 per

participant. Therefore, for the studies reported in this chapter, it was

necessary to select a small “balanced” group of subjects with equal

background and capabilities. This is also recommended in previous studies

such as Jazequel, Train et al (2000) and Gear (1973). To do this, an account

was taken of the subject’s prior experience and the courses they had

undertaken. Moreover, given the relatively easy access to students in this

research environment, MSc (Engineering) and MSc (Computer Science)

students at the University of Leicester were selected as subjects.

10.6.4. Task design and assessment methodology

For empirical studies of software engineering there are several dimensions in

which the task performed by the experimental subjects may differ: it may be a

design or implementation task, from scratch or in maintenance, may be done

alone or by a team, it may target programs of different size and from different

domains, and it may employ different types of design patterns (Prechelt and

Chapter 10. Assessing the patterns: Empirical studies

199

Unger, 1998). For the studies reported here tasks were designed such that

the usability of patterns can be assessed to their maximum. Two aspects were

considered in the study:

1. The uniqueness of the design problem that pattern has addressed

2. The pattern form.

It was decided not to use any tasks involved coding, rather the exercises

designed were completely analytical and the aim was to test how patterns in

the PMES collection can help designers in taking the appropriate decisions

during the migration process.

For a fair and unbiased assessment of the exercises the “blind” methodology

discussed in (Kitchenham, Pfleeger et al., 2002) was adopted. In this case a

neutral person or a third party which has no direct involvement in the research

is hired for the assessment. In this case the third party who analyses the

results is kept unaware as to which sets of results have been subjected to a

treatment. For the studies discussed in this paper, some senior members of

the research group helped in this regard by offering their time for grading the

exercises solved by the subjects. The assessors were acting as a third party

and were not told about the aims of the study, neither were they told about

which exercise sheets were solved with or without using patterns. After the

results had been obtained, the data analysis was done by the experimenter

himself.

The next two sections provide full details about the experiments.

Chapter 10. Assessing the patterns: Empirical studies

200

10.7. Experiment 1: Patterns for experienced developers

10.7.1. Aims and motives

Experienced developers of embedded systems are usually adept in designing

applications from scratch. They are also usually confident about the systems

which they have designed with the architectures and tools at their disposal.

However, it can be quite a challenge for experienced developers to transform

an existing architecture to another especially when they are not too familiar

with the architecture that they wish to transform. This first experiment was

designed with this aforementioned situation in mind and investigated the

following hypothesis:

Hypothesis H1: Patterns in the PMES collection can help experienced

developers to choose appropriate TT solutions during the migration process.

10.7.2. Preparation of the exercise

An exercise was prepared based on the details of three different embedded

applications that were designed in the ET architecture and needed to be

migrated to the TT architecture. The exercise was completely analytical with

no coding requirements and the applications given in the exercise are

summarised below:

 Traffic Control System (TCS): An application based on the controller

for the traffic lights and pedestrian crossing lights used at a typical

crossroads in the UK.

Chapter 10. Assessing the patterns: Empirical studies

201

 Fast Fourier Transform on ADC samples (FFT/ADC): This

application is based on two main activities: data sampling using ADC

and time-frequency conversion using a Fast-Fourier Transform (FFT).

 Data Acquisition System (DAQ): A control application used to sample

data from an analogue-to-digital converter (ADC). It translates the

sampled value to an appropriate string of characters and displays this

value and the elapsed time since the microcontroller was last reset, on

to the screen on user request.

The author herself has already worked on the design and development of all

the above applications and was fully aware of the design constraints involved

in each application. All the applications differed in their design; difficulty level

and complexity. Here complexity is measured in terms of the number of lines

of code (LOC) in each system (see Table 10-2). The reason for choosing

systems of varied complexity is to test the usability of patterns more broadly.

Table 10-2 Difficulty levels of systems used in exercise for experiment 1

Application
Lines of

Code
Complexity

TCS 3400 high

ADC/FFT 1509 Medium

DAQ 600 Low

10.7.3. Management of subjects

For this experiment, it was decided to involve MSc(Engineering) students who

had already taken a 10 week, one-semester module in Programming

Embedded Systems (PES-I), and were doing the extended module PES-II

Chapter 10. Assessing the patterns: Empirical studies

202

during this study. Therefore, the subjects involved in this experiment had

sound intermediary knowledge and prior experience of design and

programming embedded applications. An email was circulated to the group of

students enrolled on the PES-II module inviting them to participate in the

research study. The subjects were not told about the actual theme and

purpose of the study to keep the results unbiased, and this also helped to

eliminate the possibility of the subjects’ behaviour being influenced by

knowledge of the experimenter’s expectation. This is known as the

Hawthorne Effect in the literature (Kitchenham, Pfleeger et al., 2002; Berry

and Tichy, 2003). The test subjects then were only informed of the study’s

objectives and motives at the end of the experiment.

From a list of fifteen volunteers, eight subjects were selected for the study

who’s mark history in PES-I was in 90-70% range. The participants were

organised as PG (Pattern Group i.e. the group members were given the

PMES pattern collection during the exercise) and NPG (Non-Pattern Group

i.e. the group members were not given with the PMES pattern collection

during the exercise). The top scoring members for the PES-1 module were put

in pairs PG1 and NPG1 and the four who scored around the 70% mark were

also put in pairs PG2 and NPG2 as shown in Table 10-3.

Table 10-3 Group structure for Experiment 1

Group ID Members Patterns Marks in PES-I

PG1 2 √
in 90% range

NPG1 2 ×

PG2 2 √
in 70% range

NPG2 2 ×

Chapter 10. Assessing the patterns: Empirical studies

203

The NPG were expected to use their prior experience in embedded system

design to solve the exercises during the study and the PG groups were

provided with the PMES collection of patterns.

The experiment was conducted in the Electrical Teaching Laboratory (ETL) of

the Engineering Department in the University of Leicester. All of the groups

were called to attend the study on the same day and were seated far apart

from each other (to reduce the possibility of interaction among groups during

the study). During the study, all the groups were constantly under

observation (by the author herself) to make sure that they were completely

focused on the study and not wasting time as the measurement time to

complete the task was vital data for this study. This observation was as

unobtrusive as possible so that those being observed were not distracted from

the task at hand as noted by Seaman (1999) in her paper on empirical studies

of Software Engineering. Each of the paired groups was asked to take strict

notice of the start time and the finish time they spent on each system. There

was no time limit restriction to finish the exercise and the groups were free to

spend as much time as they wanted. The exercise sheets were collected

back when all groups had completed the tasks and were forwarded to the

assessors.

10.7.4. Data analysis

For the purpose of data analysis, two variables were important for this study:

the performance of the subjects and the time spent on finishing the exercise.

Chapter 10. Assessing the patterns: Empirical studies

204

After the assessment was done the performance of each group was calculated

using Equation 10-1.

 Performance = (marks obtained/maximum marks) * 100 Equation 10-1

The results obtained for each individual task in the exercise for each of the

group are summarised in Table 10-4 and plotted in Figure 10-3.

Table 10-4 Performance of groups (Experiment 1)

Groups TCS DAQ FFT/ADC

PG1 66% 100% 75%

NPG1 40% 100% 75%

PG2 90% 100% 95%

NPG2 50% 75% 60%

Figure 10-3 Performance of groups (Experiment 1)

Chapter 10. Assessing the patterns: Empirical studies

205

The results reveal some interesting facts. For example, in the case of the

DAQ application there is not much difference in the performance between

groups PG and NPG except for NPG2 and even they obtained a high score of

more than 70%. This suggests that patterns did not have a significant impact

in helping the subjects working on systems with lower complexity (see Table

10-4). On the other hand there is a considerable difference in the results for

PG and NPG groups for the TCS system which is at the highest level of

complexity, indicating that patterns helped the subjects in understanding more

complex architectures. Further the overall average performance of each group

in the exercise is calculated and is shown in Table 10-5 in column ‘Average’.

To further compare the mean or average performance are again calculated

overall for PG groups and NPG groups and is shown in column ‘Overall

Average’.

Table 10-5 Overall average performance of groups in the exercise

Groups TCS DAQ FFT/ADC Average
Overall

Average

PG1 66% 100% 75% 80.33%
87.66%

PG2 90% 100% 95% 95%

NPG1 40% 100% 75% 71.66%
66.66%

NPG2 50% 75% 60% 61.66%

Results shown in Table 10-5 indicate the performance benefits of using

patterns in both PG groups. Overall the pattern user groups performed better

than the groups that worked without patterns.

Regarding the validity of the statistical hypotheses in software engineering

experiments Juristo and Moreno (2001) has described some decision rules.

Chapter 10. Assessing the patterns: Empirical studies

206

According to them the differences between the mean of the sample data can

help in accepting or rejecting a hypothesis and analysing the significance of it.

A hypothesis is normally rejected if the differences between the mean (for two

alternatives) is either zero or a value less than 5%. Alternatively, higher values

of the difference between the mean indicates that the hypothesis is acceptable

and proves the validity and significance of the stated hypothesis. For the

validity of the hypothesis H1 the mean of the performance of PG and NPG

groups and the difference in mean is calculated and is shown in Table 10-6.

Table 10-6 Calculations for the difference in mean of PG and NPG groups

 PG NPG

Performance of groups(%)
80 72

95 62

Sum ∑PG = 175 ∑NPG = 134

Mean PG’ = 87.5 NPG’ = 67

Difference of mean PG’ – NPG’ = 20.5

The high value of the difference of the mean indicated that hypothesis H1 is

acceptable for the experiment described above.

In order to further analyse the results the overall time spent (in minutes) is

plotted graphically and shown in Figure 10-4.

Chapter 10. Assessing the patterns: Empirical studies

207

Figure 10-4 Time taken by each group to complete the exercise
(Experiment 1)

For the time measurements, the total time spent by the groups on the whole

exercise was determined from the recorded start and finishing times spent on

each application.

It is quite interesting to note that the PG2 group overall spent more time than

PG1. This was because this group needed to spend more time familiarising

themselves with the information provided in the patterns (as noted by the

observer during the experiment). Interestingly the performance of PG1 (the

90% scorers in the PES-1 module) and PG2 (the 70% scorers in the PES-1

module) PG2 performed extremely well in the exercise as shown in Table 10-

4. This implies that expert knowledge and availability of patterns is not

enough, but lesser expertise plus a more thorough study of patterns can be

very productive. Further work would be needed with more groups however to

verify this and identify if there were other variables present.

Chapter 10. Assessing the patterns: Empirical studies

208

10.8. Experiment 2: Patterns versus alternative resources

10.8.1. Aims and motives

At one level, a pattern is simply a structured document which formalises the

relationship between a non-trivial problem and a non-obvious solution. It is

implicit in much of the work on design patterns that this “pattern form” offers

advantages over traditional ways of representing this type of information (for

example, in a textbook). Different authors have their own ways of

documenting patterns. However, certain pattern forms have become more

established than others. For example the Alexandrian form used by

Alexander in (Alexander, Ishikawa et al., 1977), the GoF form use to write

software patterns for object-oriented software by (Gamma, Helm et al., 1995),

the POSA form use to write Patterns for Software Architecture (Buschmann,

Meunier et al., 1996) and the PTTES format use by Michael Pont to write

Patterns for Time-triggered Embedded Systems (Pont, 2001). For the PMES

collection we have followed the PTTES form because of its relevancy to the

context of the experimental investigations. All the patterns in the PMES

collection have information organised in the layout shown in Figure 10-5.

Chapter 10. Assessing the patterns: Empirical studies

209

Figure 10-5 Structural layout used for documenting patterns in the PMES

collection

For this experiment the specific hypothesis under test was the following:

Hypothesis H2: The PMES form helps the pattern user to apply the

information presented in a more effective way than “traditional” information

sources.

PATTERN NAME

Context

This describes the situation for which the pattern is applicable.

Problem

This is the statement and description of the problem for which the pattern is

documented.

Solution

This describes the core of the solution to the problem.

Related patterns and alternative solutions

This section contains information regarding related patterns that may be affected

by the application of the solution described in the pattern and other possible

alternative solutions.

Reliability and safety issues

This gives reliability information specific to the pattern.

Examples

This includes relevant code examples.

Overall strengths and weaknesses

 Positive effects

 Negative effects

References

Chapter 10. Assessing the patterns: Empirical studies

210

10.8.2. Management of subjects

One of the potential users of the proposed pattern collection are new

graduates of Computer Science who are about to start their career in the area

of embedded systems development. Graduates in Computer Science have

already taken essential courses in software development/programming and

have a general set of skills which are attractive to companies working in the

business of embedded systems. In applying and extending their skills to new

engineering problems in a professional environment, such graduates would

rely on resources such as books, manuals, research papers, and other on-

line material to complement their learnt knowledge and tacit skills to help solve

the problems.

For the selection of subjects in this experiment, an email was sent to the group

of the MSc (Computer Science) students of The University of Leicester. Out

of the list of volunteers 10 high performing students were chosen whose

academic performance was comparable and most of them were distinction

holders in their previous semesters. In order to fill in any knowledge gaps the

participants may have had on embedded systems, an introductory tutorial was

prepared (by the author herself) and emailed to all the participants a week

before the study. The introductory tutorial covered the essential concepts of

embedded systems and the terms that would be used in the exercise.

For this experiment participants worked individually instead of in groups. The

reason for this choice was to avoid differences in the ways the supplementary

material would have been used and digested. Out of the ten candidates, five

individuals were randomly selected to work with patterns and were given the

Chapter 10. Assessing the patterns: Empirical studies

211

labels PP1 to PP5 (PP refers to pattern-participant), and the five that worked

without patterns were given the labels NPP1 to NPP5 (NPP refers to non-

pattern participant). This distribution is shown in Table 10-7.

Table 10-7 Participants in the study

Pattern Participants PP1 PP2 PP3 PP4 PP5

Non-Pattern Participants NPP1 NPP2 NPP3 NPP4 NPP5

10.8.3. Preparation of the exercise

For this study an exercise was prepared based on smaller tasks with the
aim of testing the hypothesis H2. There were 4 different tasks in the

exercise and each was designed to test a different pattern with a
consideration that the relevant information must be available through other

supplementary resources provided to the non-pattern participants to
compare results. For example, Task 2 in the given exercise was related to

a programming technique which can allow programmers to make the
worst-case execution time (WCET) of a task equal to the best-case

execution time (BCET) in order to improve code predictability. In the newly
proposed PMES collection, the pattern SINGLE PATH DELAY under the

umbrella of the abstract pattern BALANCED SYSTEM has discussed this
technique. Originally, this technique is proposed by Peter Puschner and is

discussed in some of his papers (Puschner and Burns, 2002; Puschner,
2003) . More details about each task are presented in

Table 10-8.

Table 10-8 Details of the tasks given in the exercise (Experiment 2)

 Relevant Patterns Relevant resources

Task 1 EVENTS TO TIME (Kopetz, 1991; Kopetz, 1997; Albert and
Bosch GmbH, 2004; Scheler and
Schroder-Preikschat, 2006)

Task 2 SINGLE PATH DELAY
TAKE A NAP

(Puschner, 2002; Puschner and Burns,
2002; Puschner, 2003; Gendy and Pont,

Chapter 10. Assessing the patterns: Empirical studies

212

2007)

Task 3 LOOP TIMEOUT (Pont, 2002)

Task 4 CHOOSING TASK

PARAMETERS
(Gendy and Pont, 2008a; Gendy and
Pont, 2008b)

Please note that a copy of the complete exercise used in this study is included

in Appendix C.

10.8.4. Procedure

At the beginning of the experiment all the participants were given the exercise

and resources to help them to solve the exercise. The pattern-participants

(PP1 to PP5) were given the patterns in the PMES collection along with other

supplementary material i.e. the relevant research papers and books. The non-

pattern-participants (NPP1 to NPP5) were provided with the same relevant

research papers and books only (books and papers were the same as those

given to the pattern-participants). A pre-test assessment was carried out to

make sure that all subjects had gone through the introductory tutorial provided

before the study, and have a basic understanding of the embedded system

concepts required to solve the exercise. To ensure this all the subjects were

asked to write a short paragraph about their understanding on ET and TT

architectures.

After the pre-test, participants were given the actual exercise and relevant

research papers. Participants PP1 to PP5 were also given copies of the

PMES pattern collection and they were given the option to use them if they

wished. However, it was interesting to note during the study that all

participants who were provided with the pattern collection preferred to use

them against papers/books as their first choice. An obvious reason is the

Chapter 10. Assessing the patterns: Empirical studies

213

clearer and precise impression of a pattern as a training document compared

with its more general description in research papers and books. During the

study, as part of capturing the essential data in this study, all the participants

were asked to note down the start time and finish time for each task. On

completion of the exercise, subjects were asked to complete questionnaires

designed to obtain their feedback on the exercise. Different questionnaires

were designed for the PP and the NPP subjects.

After the pre-test, participants were given the actual exercise and relevant

research papers. Participants PP1 to PP5 were also given copies of the

PMES pattern collection and they were given the option to use them if they

wished. However, it was interesting to note during the study that all

participants who were provided with the pattern collection preferred to use

them rather than papers/books as their first choice. An obvious reason is the

clearer and precise impression of a pattern as a training document compared

with its more general description in research papers and books. During the

study, as part of capturing the essential data in this study, all the participants

were asked to note down the start time and finish time for each task. On

completion of the exercise, subjects were asked to complete questionnaires

designed to obtain their feedback on the exercise. Different questionnaires

were designed for the PP and the NPP subjects. Copies of questionnaires

given to both PP and NPP participants are included in appendix B.2.

10.8.5. Data analysis

For the data analysis, individual performance of the participants in the pre-
test, which is based on the tutorial and in the actual exercise, is calculated

using Equation 10-1 and the results are shown in

Chapter 10. Assessing the patterns: Empirical studies

214

Table 10-9 and Figure 10-6.

Table 10-9 Performance of students in Experiment 2

 PP1 PP2 PP3 PP4 PP5 NPP1 NPP2 NPP3 NPP4 NPP5

Pre-
test

60% 80% 60% 70% 80% 60% 80% 60% 60% 80%

Actual 67.5% 90% 70% 65% 70% 37.5% 27.5% 55% 17.5% 30%

Figure 10-6 Performance of participants (Experiment 2)

In the pre-test, participants scored between 60% and 80%. This score was

random between PP and NPP participants indicating the average knowledge

of basic embedded systems concepts among all the participants was nearly

equal. However, the results of the actual exercise show a clear difference in

performance of the participants who worked with patterns compared with

those who worked with other supplementary materials provided for them. The

Chapter 10. Assessing the patterns: Empirical studies

215

results shown in Figure 10-6 clearly indicate the difference of performance for

PP and NPP participants.

For further data analysis, the same methodology is adopted that was

discussed in Section 10.7.4 and the values of the overall average performance

of the participants worked with and without patterns are calculated and is

shown as ‘Average’ Table 10-10.

Table 10-10 Overall average performance of PP and NPP (Experiment 2)

 PP1 PP2 PP3 PP4 PP5 NPP1 NPP2 NPP3 NPP4 NPP5

 67.5% 90% 70% 65% 70% 37.5% 27.5% 55% 17.5% 30%

Average 72.5% 33.5%

The performance of all the PPs is higher than the mean of the overall result.

The total time taken by each participant to solve the complete exercise was

calculated and is shown in Figure 10-7.

Chapter 10. Assessing the patterns: Empirical studies

216

Figure 10-7 Time taken by the participants to complete the exercise
(Experiment 2)

The graph clearly indicates the difference in the time taken by the PP and

NPP participants to complete the exercise. Results indicated that the subjects

provided with the pattern based representation of the material generally

managed to absorb the knowledge and apply it more quickly than those who

have got the equivalent material in the form of research papers and books.

This implies that patterns also provide a way of representing information in a

way which is easier to digest and understand.

To investigate the acceptance level and significance of the hypothesis H2 the

differences of the mean are calculated as shown in Table 10-11.

Chapter 10. Assessing the patterns: Empirical studies

217

Table 10-11 Calculations for the differences of mean for experiment 2

 PP NPP

Performance of participants in (%)

67.5 37.5

90 27.5

70 55

65 17.5

70 30

Sum ∑PP = 362.5 ∑NPP = 167.5

Mean PP’ = 72.5 NPP’ = 33.5

Difference of mean PP’ – NPP’ = 39

The difference of mean is a high value indicated that the hypothesis H2 is

acceptable.

10.8.6. Feedback from the subjects

Some important results were also extracted from the questionnaires given to

all the participants at the end of the study. This section will discuss the results

obtained.

 Difficulty level of the exercise

In one of the questions the participants were asked: “How difficult did the

exercise appear to you given there was a requirement to give extra effort to

find the relevant information from the additional resource material

provided?”. A difficulty level (based on a Likert-type scale21) was defined

in the questionnaire going from 1 to 4 where 1 = Too Easy, 2 = Easy, 3 =

Difficult and 4 = Too Difficult. The results are depicted in Figure 10-8.

21

 A Likert scale is a psychometric scale commonly involved in research that employs
questionnaires. It is the most widely used approach to scaling responses in survey research.
The scale is named after its inventor, psychologist Rensis Likert (Source: Wikipedia).

Chapter 10. Assessing the patterns: Empirical studies

218

Figure 10-8 Feedback from the participants regarding the difficulty level of
the exercise

The results showed that for PP the overall exercise was easy to solve

compared with NPP who were struggling to find the relevant information from

books and research papers.

 Value of the material provided

To obtain feedback about the documents provided another question was

asked in the questionnaire: “Did you find the given documents helpful to solve

the tasks given in the exercise?” The results are shown below in Figure 10-9.

The participants were again given the following four options (1 to 4) where 1 =

Not helpful, 2 = A little bit helpful, 3 = Helpful and 4 = Very helpful, and invited

to select one.

Chapter 10. Assessing the patterns: Empirical studies

219

Figure 10-9 Feedback of the participants about the value of the material
provided

Participants who worked with patterns found these documents very helpful

(average rating = 3.6) while participants provided with other documents felt

they were only a little bit helpful (average rating = 2.4). These results also

reflected the significance of patterns as documents because of their structural

simplicity, and the distribution of information into clear sections of problem,

context and solution.

 Feedback about patterns

There are certain elements in a pattern which play an important role in the

success of a pattern indeed even the name of the pattern is an important

consideration. If the name encodes the patterns' meaning well, a designer

can more easily find a suitable pattern in an unfamiliar pattern language

(Coplien, 2000). In the PMES collection most of the pattern names are quite

simple such as TIME FOR TT, EVENTS TO TIME and TT SCHEDULER and they give

Chapter 10. Assessing the patterns: Empirical studies

220

a pretty clear indication of the purpose for which they are designed. Some

pattern names however are chosen to describe their function by analogy such

as SANDWICH DELAY, SINGLE PATH DELAY and TAKE A NAP and these names can

be problematic to inexperienced designers who may be unfamiliar with the

domain. Also, at the heart of a pattern is the solution described in it. It was felt

important to obtain feedback from individuals about the clarity of different

sections of each individual pattern in the given pattern collection used during

the study. Therefore, one of the questions asked in the questionnaire aimed to

rate the individual sections of each pattern. The participants were invited to

rate the names of the patterns and the solution described in terms of the

clarity they gave in representing the actual function of the patterns. The clarity

was quantified using a five point Likert scale from 1 to 5 where 1 = Lowest

and 5 = Highest.

 The pattern CHOOSING TASK PARAMETERS received the highest rating in terms

of the clarity of the name whilst TAKE A NAP is least understandable because it

requires one to unpack its analogical meaning.

For the clarity of the solution, the pattern EVENTS TO TIME appeared as the

most highly rated pattern (average 4.4) while CHOOSING TASK PARAMETERS as

lowest rated (average 3.2). This information provides useful feedback for

making improvements to patterns.

The results obtained are shown in Figure 10-10 gained from the participants’

feedback.

Chapter 10. Assessing the patterns: Empirical studies

221

Figure 10-10 Feedback about pattern names and solution (1-5) 1 = Lowest,
5 = Highest

Earlier in this thesis in Section 6.8 the idea of pattern 'Shepherding' was

described. This is a process of bringing improvements in a pattern through the

critical review of an expert. The results indicated that patterns that have

already passed through ‘Shepherding’ and have been assessed at ‘Writer’s

Workshops’ are better understood by users. For example the pattern

CHOOSING TASK PARAMETERS is documented in the later stages of the research

and has not passed through any PLoP conferences yet and this could be one

of the reasons for its lowest rating.

10.9. Discussion

As discussed at the beginning of this chapter, newly proposed patterns must

pass through a process of evaluation in order to assess their quality and

Chapter 10. Assessing the patterns: Empirical studies

222

efficacy for the domain they are designed for. In this regard, two different

empirical studies were conducted to assess the novel pattern collection

generated as an outcome of this research. The literature provides evidence

that evaluation studies for a pattern collection are highly dependent on the

characteristics of the application domain and practical constraints faced while

conducting such studies. In the light of such evidence, the studies presented

in this chapter were designed with the aim of gaining useful results within the

presence of constraints.

Experiment 1 discussed in this chapter was designed to test the usability of

the PMES collection for reasonably experienced designers/developers of

embedded applications. The results have shown that a team of experienced

embedded software designers can enhance their insights in software

development with the use of patterns during the migration process from ET to

TT designs for complex embedded applications. Groups that worked with

patterns exhibited better performance in the exercises given to them during

the study compared with those who were completely dependent on their

previous skills and experience. Figure 10-11 presents a summary of the

results that were obtained relating to Experiment 1.

Chapter 10. Assessing the patterns: Empirical studies

223

Figure 10-11 Summary of results (Experiment 1)

The graph indicates that:

 The performance of the PG groups is much better compared with the

NPG groups

 The performance of PG2 is even better than PG1 possibly because

PG2 spent more time on understanding the patterns.

 The time taken by PG2 and NPG1 is almost equal but the performance

difference of the two groups is higher with, PG2 producing a 20%

higher performance than NPG1 in the same time span.

Experiment 2 was designed to test the usability of patterns as documents

compared with other supplementary materials which inexperienced developers

of embedded applications refer to early in their career. The results showed

that patterns are a useful replacement to other supplementary materials such

as research papers, books, reference manuals etc. Patterns presented as

Chapter 10. Assessing the patterns: Empirical studies

224

structured and more concise documents proved to be a more digestible

source of information providing both quick access to the information required

and an overall time saving to completion of the exercises. It was observed

that participants provided with supplementary material other than patterns

experienced a greater difficulty in understanding the tasks. They also spent

more time completing them and showed a lower performance in the tasks.

To scrutinise this data further a difficulty index for each individual participant is

calculated and in defined in Equation 10-2.

Difficulty index = (Observed difficulty * time taken)/maximum absolute difficulty
 Equation 10-2

The maximum absolute difficulty (shown in Equation 10-3) is the product of the

maximum difficulty level (scale set from 1-4 where 4 = Too Difficult) and

maximum time taken by any of the participant to complete the exercise

(observed value = 140 minutes).

 Maximum absolute difficulty = maximum difficulty * maximum time
 Equation 10-3

The difficulty index for each participant was calculated and plotted against

performance in order to analyse the overall impact of using patterns during the

study. The results are shown in Figure 10-12. The trend of the results

suggests that individuals who worked with patterns during the study showed

much better performance in less time (lower values of difficulty index).

Chapter 10. Assessing the patterns: Empirical studies

225

Figure 10-12 Summary of results (Experiment 2)

On the other hand participants who used other supplementary material during

the exercise were unable to perform well and worked for a longer time (higher

values of difficulty index), as they had the extra demand of extracting related

information from the material provided.

In general, the results obtained from both the studies are useful because they

helped in the evaluation of the patterns based on the criteria given in Table

10-1. For example, the better performance of pattern users in both the studies

suggest that the proposed collection of patterns is ‘effective’ in the sense that

it helped the users to identify the root causes of the problems (given in

different tasks in the exercise) and to tackle them with the solution

recommended in the patterns.

Chapter 10. Assessing the patterns: Empirical studies

226

However, the studies conducted are not free from problems of interpretation -

the main one being the small sample size of the subjects. However they do

represent a first step towards ascertaining the benefits of applying patterns

during the migration of architecture for complex embedded applications.

10.10. Conclusions

In this chapter the primary goal was to investigate the efficacy of the proposed

pattern collection for the target users. Two empirical studies were designed to

simulate the situations in which experienced and inexperienced developers of

embedded applications could benefit from applying patterns during the

migration between event-triggered and time-triggered architectures. The

results discussed in the chapter suggest that the proposed pattern collection

has the potential – provided they are applied correctly – to provide the

intended support.

Chapter 11. Assessing the patterns: Industry feedback

227

CHAPTER 11. ASSESSING THE PATTERNS:
INDUSTRY FEEDBACK

11.1. Introduction

The design patterns that emerged as an outcome of this research were

developed with the intention of providing support to the developers of

embedded applications. As a first step in the evaluation of their usability for

real-time systems CHAPTER 9 described the application of the PMES

collection with two examples which are in widespread use in various industrial

applications. In the second stage of the evaluation process, two pilot empirical

studies were conducted involving students as subjects, to explain how the

proposed pattern collection can help in taking appropriate decisions while

working on real applications: these studies were discussed in CHAPTER 10.

 As the real stakeholders of the proposed pattern collection are the developers

and designers working in the industrial sector, it was decided to further

evaluate the patterns in this context: the details of this work are provided in

this chapter.

The chapter is organized as follows. Section 11.2 presents a discussion on the

usability of the PMES collection in the current industrial context and how and

why the proposed pattern collection could be of interest to working

professionals in the embedded market. Section 11.3 presents a brief account

of the aims of the evaluation process, and Section 11.4 discusses the practical

constraints involved in the evaluation process in the industrial context.

Section 11.5 describes the details regarding the methodology adopted for the

Chapter 11. Assessing the patterns: Industry feedback

228

process of evaluation with Section 11.6 providing a detailed account of the

results obtained with this process. Section 11.7 presents a discussion on the

overall results and comments obtained from the evaluation process and

conclusions are given in Section 11.8.

11.2. PMES usability in the industrial context

While discussing current trends about software architectures in Section 4.5.3 it

is mentioned that for the guaranteed safety of high integrity systems the

industry is backed up by international safety standards incorporated in IEC

61508 which is a benchmark standard for developing and validating safety-

related electronic systems. The standard is entitled: “Functional safety of

Electrical/Electronic/Programmable Electronic Safety related Systems

(E/E/PE)” (IEC, 2012). The rules defined in IEC 61508 are quite general and

are intended to define a basic functional safety standard applicable to all kinds

of industry. It is also mentioned that the automotive industry has adapted IEC

61508 to produce ISO 26262, a new benchmark standard for developing and

validating safety-related systems that are installed in passenger cars. The

vehicle production industry is now looking forward to design applications for

modern passenger cars which are ISO26262 compliant. The aerospace

industry has adapted the IEC 61508 and introduced the DO-178 standard for

the development of software for aircrafts.

The research aimed to explore ways of assisting developers and organisations

in situations where systems need to meet certification requirements. The

Chapter 11. Assessing the patterns: Industry feedback

229

particular goal was to avoid “reinventing the wheel” by helping people adapt

their existing designs to make them suitable for use in systems with what IEC

61508 referred to as “Safety Integrity Level” or SIL. The following sections will

describe how the PMES collection can help to achieve this aim.

11.2.1. Predictability in systems

The main reason to introduce predictability in systems is to make them safe

and reliable. According to the documentation for IEC 61508 Edition 2, the

definition of Safety is, ‘Freedom from unacceptable risk’. One possible way of

avoiding risks is to design/configure a software system such that it exhibits

predictable behaviour and allows one to determine in advance – before the

system begins executing – exactly what it will do at every moment of time

during which it is running. In other words, the architecture must allow testing

of the system in a convenient way to guarantee the safety and reliability of the

system. In the proposed PMES collection patterns TIME FOR TT and TT

SCHEDULER has discussed how one can make their system safe and

reliable and when and what TT architectures can perfectly match an

application requirements.

For example the safety process for automotive vehicles is described in various

parts in the documentation for ISO 26262 structure. Part 6 of the

documentation specifically refers to the development of the software aspect of

the product and section 6-7 of the standard is “Restricted use of interrupts” to

guarantee the fault free and safer systems. In the PMES collection the pattern

EVENTS TO TIME has described ways of transforming systems with restricted

use of interrupts.

Chapter 11. Assessing the patterns: Industry feedback

230

11.2.2. System requirements for safety-integrity

During a system design once the system architecture is specified and the

design begins the functional safety requirements begin to be refined into

specific design safety requirements. In order to achieve functional safety, one

of the main emphases of IEC 61508 and ISO 26262 is on risk assessment to

determine the steps necessary to reduce the risk of each hazard to an

acceptable level, usually through ‘safety integrity’ for an electronic system. IEC

61508 has defined Safety Integrity Levels ‘SIL’ to relate to the probability of a

dangerous failure. ISO 26262 has adapted these levels for the automotive

industry as ‘ASIL’ or Automotive Safety Integrity Levels; however these are not

defined as a probabilistic requirement.

In real practice the software safety requirements are particularly related to the

determination of WCET of tasks designed for the system. The accurate WCET

prediction matters as the variation in task timings could potentially leads to

system failure. In the PMES collection pattern BALANCED SYSTEM and its

associated patterns this issue has been discussed in detail and solutions

provided to possible hazards that can introduce variation in task timings.

11.2.3. System monitoring

Section 7.11 mentioned that it is almost impossible to design a systems which

is 100% fault-free even if designed with due care. At runtime systems are

susceptible to fault occurrences which in the worst case scenario could lead to

a loss of precious human lives and property. This places a responsibility on

designers to avoid any such fault occurrences both at the initial design stage

and while systems are in a running state. In the documentation for ISO

Chapter 11. Assessing the patterns: Industry feedback

231

26262, Part 6 Annex D is specifically focused on software elements’ freedom

from interference. These sources of interference could be due to hardware

problems, or software mismanagement such as task overruns. In the

optimisation patterns of the PMES collection pattern SYSTEM MONITOR and the

associated patterns discusses the possible run time error issues and how to

cater to them in advance.

11.3. Aims of the evaluation

The aim of this evaluation process is to get feedback from the real

stakeholders for whom this research is intended to support. The real

stakeholders include a complete team of professionals who are involved at

various stages in a complete project development. These include not only

developers and designers but system architects, project managers, test

engineers and technical mangers. The main objective of this evaluation is:

 To investigate that how the industry is looking at the challenges

around the migration between different software architectures

 To introduce the patterns in the PMES collection to the working

professionals and to get their opinion about how they can be useful

to them.

11.4. Practical constraints involved with industrial evaluation

The ideal way to evaluate the patterns in the industry would be to test and

implement the patterns with some ‘live’ industrial project passing through the

Chapter 11. Assessing the patterns: Industry feedback

232

process of migration. However there are certain factors that militate against

achieving these ideal conditions and these are listed below:

 Industrial projects usually span over long time durations.

 Confidentiality of the organisation.

 Individual developer’s personal issue such as it is a real challenge to

enquire the practitioners if they had ever faced such a situation in their

career.

 Ethical issues concerning research participants such as seeking

sensitive information and maintaining anonymity.

Given these practical constraints and ethical factors, a compromise has to be

struck on the kind of research that can be done in order to acquire as much

information about pattern usage as possible. In this case it was decided that

the best strategy was to use a questionnaire as described in the next section.

11.5. Methodology

The choice of the method to collect feedback is determined by the

requirements of the investigation to be undertaken and the constraints on the

client group with which the researcher is working. For example if the study

concerns issues that respondents may feel reluctant to discuss with an

investigator, a questionnaire may be the better choice than a face to face

interview as it ensures anonymity. The geographical distribution of the

potential respondents is also a factor certainly in terms of face to face

interviewing, though of course recent technologies such as Skype have

alleviated some of the constraints of physical location.

Chapter 11. Assessing the patterns: Industry feedback

233

In the context of this research a real challenge was to look for a methodology

through which the participants are introduced to the research goals, and the

pattern collection, and then are asked to provide their feedback on migration

challenges and the usability of the PMES collection. The target audiences for

this research are highly skilled and sophisticated personnel in the field of

embedded application development and it was important for such busy people

to offer some kind of benefit to them in order to engage them in this evaluation

research. It was felt that offering some new knowledge about patterns and

pattern use that they could apply in their work would be a suitable incentive to

enable a high level of co-operation.

Mindful of the practical constraints of this aspect of the research it was

decided to go for a web-based survey methodology to obtain the required

information on the value of the PMES collection to working professionals.

Web-based surveys have the potential for a global audience and are more

inclusive allowing a broader reach than phone or postal survey or direct

interviews (Archer 2003). Once setup, web-based surveys are easy to carry

out, making it easier to recruit large number of participants or to collect data

repeatedly. Since the data is captured directly in electronic format, it also

makes data analysis faster and cheaper than other survey methods.

11.5.1. Development of the website

Having decided that a web-based survey would be used to obtain feedback on

the PMES collection from industry, a website was designed for this purpose.

The website introduced the target audience to the research goals and

provided the survey questionnaire that was filled in on line. A free website

Chapter 11. Assessing the patterns: Industry feedback

234

hosting service was used and a free domain

http://www.pmescollection.weebly.com was registered.

The main subject of the website was chosen as ‘Reliable Embedded

Systems’. The website design was kept simple and the emphasis was on to

the natural flow with transitions between one page and the next. The home

page on the website provided an introduction to the research. The same page

then gave the website visitors a guided tour to help them browse the pages

that would be interest to themselves. There was a ‘Background’ section to

help place the research in. The real meat of the research is described in a

separate section called ‘PMES overview’ where the website visitor was

introduced to the PMES collection which allowed them to look at the pattern

association map, thumbnails, and where to the full specifications of the

patterns could be downloaded.

To obtain feedback on the PMES collection it was essential to highlight the

usability of the patterns in the collection so that the visitor will retain their

interest and maybe motivated to read further and to explore applications in the

current industrial context. This was discussed in a separate section called

‘PMES applications’ and where the various applications of the patterns (as

discussed in Section 11.2) were described and how they can help the user in

facing the industry challenges of developing systems designed according to

standards such as IEC 61508 and ISO 26262. As part of these discussions

the website visitors were given access to the individual patterns related to

each application to further illustrate their value.

http://www.pmescollection.weebly.com/

Chapter 11. Assessing the patterns: Industry feedback

235

After navigating the webpages and being exposed to the potential benefits

and real applications of the PMES pattern collection, the website visitors

were invited to provide their feedback through a short questionnaire (a direct

link was provided). In addition to questionnaire the visitors were provided with

a comments section and invited to provide their opinions about the patterns’

usability in an industrial context. The website also provided additional links

to enable related publications and documents on further applications to be

downloaded.

A Google analytics account was created to keep a record on the website

statistics for new visitors and returning visitors. A snapshot of the report from

the date the website was released to the date when the data reported here

was collected, is shown in Figure 11-1.

Chapter 11. Assessing the patterns: Industry feedback

236

Figure 11-1 A preview of the Google analytics report: An account created to
monitor the statistics on the visitors for the website

www.pmescollection.weebly.com

11.5.2. Development of the questionnaire

The main considerations in designing an effective questionnaire includes

reviewing the information requirements of the problem at hand, prioritizing a

list of potential research questions that will satisfy the information

requirements, determining the type of questions to be asked, and deciding

about the structure of questionnaire (Peterson, 2000). A well-designed

questionnaire can be used to yield three types of data that includes factual,

behavioral and attitudinal data (Dornyei and Taguchi, 2009). Other desired

features in developing useful questionnaires as noted by (Dillman, 2007) are

to make the questionnaire interesting as well as short and easy so to avoid

http://www.pmescollection.weebly.com/

Chapter 11. Assessing the patterns: Industry feedback

237

any inconvenience for the respondents. To respondents a feeling of being

asked for help, advice or assistance provides a sense of reward and can

motivate them to participate in the survey. In this case the questionnaire went

even further by providing the additional benefits of free information on the

PMES pattern collection

There are two common ways a survey question can be structured and these

are known as open-ended and closed-ended. An open-ended question is one

for which no answer choices are provided and respondents are free to provide

their own opinion about the topic asked in the question. These are particularly

useful for obtaining respondents’ feedback on general questions for which

answer categories are difficult to define, for example how they see a general

problem in the light of their own experience and expertise. At the same time

open-ended questions have the drawback that there is no interviewer to clarify

unclear answers and provide prompts to requests more details or explanation

(Dillman, 2007). The closed-ended questions can provide answer choices

(ordered or unordered) to the respondent. Ordered response categories are

useful for the researcher when he/she has a well-defined concept for which an

evaluative response is required, for example if something is useful or not

useful or the degree of usefulness such as excellent, good or bad. The

unordered categories are non-scalar response categories, for example in

order to get to know a respondent’s expertise in a particular field, a number of

options can be provided randomly.

Chapter 11. Assessing the patterns: Industry feedback

238

Considering the factors mentioned above a questionnaire was developed for

the evaluation of the PMES collection using the well-established Survey

Monkey web tool. A link to the questionnaire was provided on the website

designed for this purpose as mentioned in Section 11.5.2. The questionnaire

was kept short (only 10 questions altogether) and included open-ended as

well as close-ended (ordered/unordered) questions such that responses

obtained can be used to achieve the aims mentioned in Section 11.3. The first

two questions were close-ended (unordered) and were investigating the

respondents’ area of expertise and current position in the organisation. In the

open-ended question the respondent is then asked to provide his/her own

opinion about how the industry is coping with the problem of migration

between different architectures. As the respondent is expected to visit the

website and go through some of the patterns in the PMES collection he/she is

then asked several close-ended questions to provide feedback on patterns.

The last question was an optional request for the respondents’ email address.

In order to make sure that the respondent should not skip answering any

question (excluding the last one) all the questions were marked with an

‘Answer required’ check at the design time. In addition at the end of each

question an additional text box was provided for the respondent to add

anything different from that given in the choices for selection.

A copy of the questionnaire is attached in Appendix D.

Chapter 11. Assessing the patterns: Industry feedback

239

11.5.3. Approaching the targeted audience

The aim of this process was to evaluate the PMES collection in the industrial

context and the targeted audiences for the questionnaire were the embedded

system professionals working in industry specifically in the automotive,

avionics and control engineering sectors. With the aim of achieving the

maximum possible number of responses a link to the website was introduced

on the social network for professionals called ‘Linked In’.

The initial response to this shared link was encouraging as a few people from

the industry contacted the author and offered to provide their feedback. To

achieve more responses a method of personalized emails was adopted to

reach those people who are not very active on public forums. The e-mail

addresses were obtained from contacts in the research group. An initial target

was set to achieve at least 25 respondents in total (LinkedIn plus e-mail) to be

able to draw some useful results.

11.5.4. Interpreting results

Interpreting results from close-ended questions is relatively easier as the

options marked by all the respondent fall in the defined categories set by the

researcher. This can help to simplify the researcher’s work by counting the

number of options marked by the respondents and to provide statistical

results. However, analysing results from open-ended questions is more

challenging and requires techniques such as ‘text analysis’ to interpret results.

Text analysis is a research technique for making replicable and valid

inferences from texts to the context of their use (Krippendorff, 2004).This

involves establishing categories and then counting the number of instances

Chapter 11. Assessing the patterns: Industry feedback

240

when those categories are used in a particular item of text (Silverman, 2011).

This is usually achieved through creating nodes and coding to find some sort

of order and coherence within the dataset and to see how data relates to the

research question. Coding is a way of classifying data so that it can be

reviewed by category as well as source. A node within a coding scheme is a

representation of an idea, theme or category in data. Segments of data from

across the dataset are coded to these nodes. This enables to retrieve all the

data related to a node.

11.6. Results

Over a period of two months when the website first went live twenty-eight

people responded to the questionnaire and provided useful feedback on the

challenges of software architecture migration in the industry, and on some of

the proposed patterns in the PMES collection. The option of leaving the

contact details for respondents at the end of the questionnaire helped to

identify some of the organisations from which the participants were

associated. Useful feedback responses were received from professionals

from organisations based in Australia, India, Malaysia, Miami, Pakistan,

Singapore, Switzerland, Tunisia, UK and USA.

Once collected all the responses were analysed using the techniques

mentioned in Section 11.5.4 for both close-ended and open-ended questions

and the results are presented in the following sections.

Chapter 11. Assessing the patterns: Industry feedback

241

Please note that a summary of these results is also included in Appendix D.

11.6.1. Respondents’ area of expertise and professional status

In order to determine the credibility of the results obtained from responses to

the questionnaire, it is important to know something about the respondent’s

areas of expertise and their current status in the organisation. The first two

questions in the questionnaire were designed to elicit this information and it

was interesting to note that the respondents work in a variety of areas in

embedded systems development shown in Figure 11-2. .

Figure 11-2 Respondents area of expertise

Others in Figure 11-2 were technical manager, technical training leader and

planning and project controls manager.

Chapter 11. Assessing the patterns: Industry feedback

242

The majority of the respondents were software designers as indicated in

Figure 11-3. These results were encouraging as the research aimed to obtain

feedback from professionals in diverse fields of embedded software

development. Furthermore software designers’ views about the pattern

collection are the most useful as they are the people who have ‘hands on’

experience of software challenges. . Most of the respondents work in the field

of control engineering, the automotive industry and consumer applications

development and a few were in the aerospace sector. Fortunately these are

the application areas for which the proposed patterns are specifically targeted

which helps in building confidence on the feedback and comments received.

Figure 11-3 Respondents current status in organisation

Chapter 11. Assessing the patterns: Industry feedback

243

Other areas of expertise in Figure 11-3 were security sector,

telecommunications, building services, fire control panels, security panels and

medical devices.

11.6.2. Adapting existing software to match new requirements

It was essential to know the respondents’ opinion on whether, in order to meet

new system requirements, adapting the existing software architecture is

usually preferred, to building the systems from scratch. The respondents’

feedback is shown in Figure 11-4.

Figure 11-4 Responses to the agreement that “software for future versions
of systems will rarely be created from scratch instead existing software will

be adapted to match the new requirements”

This question was included in the questionnaire to identify the usual practices

that practitioners adopted when upgrading or enhancing a system’s

functionality. The majority of the people (around 72%) accepted that the

common practice is to make changes in the existing application rather than

building the system from scratch. This has highlighted the usefulness of

Chapter 11. Assessing the patterns: Industry feedback

244

patterns for re-design for less experienced people in industry. Such a

collection of patterns can help them to follow the best practices of experts with

the least possibility of errors, rather than re-inventing the wheel. One of the

participants gave the interesting comments below:

 “This is primarily a business decision. With the right skills, a team may

engage in adapting an existing solution to meet regulatory standards.

However, if a new hire is recruited to handle non-functional requirements, they

may suggest a completely new architecture if the present design does not

conform to certain specific industry standards. I would however expect the

new hire to be a specialist with knowledge of an already existing "safety"

framework into which the proprietary functional/business-specific design can

be incorporated. So in high probability either one of the frameworks will be

well-established.”

11.6.3. Feedback on patterns to support migration

To identify the importance and usability of the proposed pattern collection for

working professionals it was important to obtain their opinion about what they

think about the pattern collection which may help them in changing the

underlying software architecture at various stages. The respondents’

feedback was quite encouraging in this regard as the majority (68%)are in

favour of such support as shown in Figure 11-5 below.

Chapter 11. Assessing the patterns: Industry feedback

245

Figure 11-5 Responses to the usability of patterns for supporting the
migration between software architectures

Another question was specifically asked about the patterns TIME FOR TT,

EVENTS TO TIME and TT SCHEDULER that if the information provided in

these patterns is helpful enough for practitioners, if in real practice they need

to carry out the transformation from ET design to TT design. Altogether 71%

favoured the use of the patterns and 25% were not completely sure. One

interesting comment obtained is quoted below:

“Although patterns are a useful tool, there are many real life scenarios where

the hypothesis breaks down and they are not applicable anymore in their pure

form”.

The responses are shown in Figure 11-6.

Chapter 11. Assessing the patterns: Industry feedback

246

Figure 11-6 Responses on the usability of patterns TIME FOR TT, EVENTS TO

TIME and TT SCHEDULER in real practice

Nowadays the industry is actively focusing on standards for functional safety

integrity mentioned in the documentation for IEC 61508 and ISO 26262. With

this reference on the website the visitors are introduced to the pattern

BALANCED SYSTEM and associated patterns, and in the questionnaire it is

asked if they think that that the techniques discussed in these patterns if

implemented properly can help in achieving the systems’ safety integrity

requirements. Results of the responses obtained are shown in Figure 11-7.

Chapter 11. Assessing the patterns: Industry feedback

247

Figure 11-7 Responses to the usefulness of the pattern BALANCED SYSTEM
and associated patterns

Altogether 64% agreed that these techniques are useful to some extent while

29% fully favoured the techniques described in these patterns 7% were not in

agreement and one of these commented below:

“Success in controlling jitter is also affected by a combination of the estimation

of resources for the system and is not always easy to do in advance”.

 This is a valid comment as creating systems which are completely jitter free

are idealistic and cease to exist in reality as discussed in the background

section of the pattern BALANCED SYSTEM.

With regards to safety and reliability concerns the website visitors were

introduced to the pattern SYSTEM MONITOR and TASK GUARDIAN and are

asked to provide their feedback if they think that these techniques can help

them in achieving “fault-tolerant” systems. The responses obtained are

Chapter 11. Assessing the patterns: Industry feedback

248

encouraging and are shown in Figure 11-8. It was interesting to note that 29%

of respondents did not completely agreed with the idea while 57% thought that

the techniques are useful partially and 14% were of the opinion that these are

not useful at all. One respondent argued that:

“Our systems always have more than one processing unit so it might be really

hard to use this if the pattern is meant for a single processor system”

Figure 11-8 Responses about the usability of the pattern SYSTEM MONITOR
and associated patterns

Another respondent argued on the pattern TASK GUARDIAN that:

“What if the long task has the I/O in some intermediate state? Ending the task

with it in that state could be unsafe. I agree as system monitor is needed, it is

question of what it does when a fault is found”.

Chapter 11. Assessing the patterns: Industry feedback

249

One more critique commented that: “Monitors can become very complex and

be unable to detect certain failure conditions or fail themselves”.

These additional comments are helpful in realising the improvements needed

on this aspect of the work.

Finally respondents provided their feedback on the overall application of

patterns in achieving currently in use standards of reliable and safe systems.

Responses are shown in Figure 11-9.

Figure 11-9 Responses regarding the overall usability of patterns in

achieving currently in use industry standards

Again the recommendations for further support is higher in number as 61%

think that further assistance is necessary along with patterns while 25% are

Chapter 11. Assessing the patterns: Industry feedback

250

partially agreed and only 11% are full favour. One useful comment on this

question is:

“I think the patterns help the confidence in the initial design choice and

implementation but it would be misleading to say that using them would make

you compliant - there's so much paperwork (process) that is involved and

needs to be covered”.

Overall the comments and results obtained have provided a useful view of the

real stakeholders and a further discussion on these is presented in the next

section.

11.6.4. Industry and the challenge of migration

An open-ended question was included in the questionnaire to obtain the

feedback of respondents on how the industry is currently coping with the

problem of migration between different software architectures and what the

challenges are around it. All of the comments received from the respondents

are included in Appendix D. The comments received by most of the

respondents are useful and self-explanatory however it was important to apply

some text analysis techniques to conclude results from the textual data.

To interpret results from the submitted responses some of the text analysis

techniques mentioned in Section 11.5.4 are used to analyse the comments

provided by the respondents. In this regard the QSR NVIVO software tool is

used for the text analysis and original comments are distributed into different

nodes as shown in Figure 11-10.

Chapter 11. Assessing the patterns: Industry feedback

251

Figure 11-10 A snapshot taken from Nvivo software to show distribution of
comments into various nodes

Related to the research question and analysing the respondents’ comments

the main nodes are identified as:

 Unawareness

 Time to market

 Legacy systems

 Lack of support

 Lack of experience

 Industry standards

 Cost

 Agile methods

 Adapting architectures

Chapter 11. Assessing the patterns: Industry feedback

252

Child nodes are created under ‘Lack of Support’ and ‘Industry standards’

nodes. Detailed distribution of comments under each node/child node is

shown in Table 11-1 below:

Time to Market

Respondent 4

Most businesses are concerned with a quick as possible time to market.
Migration across software architectures raises this significantly. It can also
often be hard to convince others that a different way of thinking can benefit
them or the business as a whole.

Respondent 7

I think that people working in the industry (I am speaking about the
managers and big boss) tend to keep traditions. I think it is really a hard
task to convince big managers to change their way of work that have been
adopted for a number of projects (and years). Big managers have fear of
switching to other options as their main goal is reaching time to market.

Respondent 9

Thorough background knowledge of software architectures is required in
order for successful migration. Some companies are not willing to explore
on the new or different architectures due to several factors: [1] cost -
companies are not willing to buy new tools to support different architecture
[2]lack of manpower - developers need to quickly adapt to new architecture.
Due to current economic climate, companies are not willing to hire new
people to explore on the newer or different architecture. [3] time to market -
by adopting new architecture, time to market will be increased due to
learning curve that developers need to endure.

Respondent 24

Consider a company which is using event triggered architecture for last 10
years with well-trained staffs. It is bit difficult for them to migrate into TT
within a short period. Challenges they may have, 1) Cost 2) Short period 3)
Need to train current staffs or need to recruit experienced people.

Legacy codes

Respondent 2

Software architectures differ with each project and application and the
industry hasn't been able to come up with a standardised architecture to
deal with all applications. Legacy codes and tools are one of the biggest
challenges when it comes to migrating to different software architecture.

Chapter 11. Assessing the patterns: Industry feedback

253

Respondent 18

I have just been involved in writing a proposal where the architecture has

moved from co-operative to pre-emptive and now porting parts back to co-

operative (interim legacy support). There's no easy way to set about doing

this, especially as libraries expect pre-emptive threads. Generally the

industry knows that the CPU isn't getting faster and that multi

thread/process/processor is the way forward but that it is hard to do.

Functional languages are suggested but that has never really taken off.

Clever additions to the language are being tried, but it’s always going to be

hard - the emphasis is pre-emptive rather than co-operative or hybrid. I don't

see that changing soon.

Lack of support

Respondent 8
Coping badly

Respondent 15

Present ET architecture is familiar to us , TT arch implementation new and
no explanation on that and no support

Respondent 16

This migration requires expertise and good software development practices.
Sometimes, this migration might not be that straight forward at all and might
require scrapping the previous software design and developing it from
scratch. I think the industry needs to be more educated on this problem.

Respondent 18

I have just been involved in writing a proposal where the architecture has
moved from co-operative to pre-emptive and now porting parts back to co-
operative (interim legacy support). There's no easy way to set about doing
this, especially as libraries expect pre-emptive threads. Generally the
industry knows that the CPU isn't getting faster and that multi
thread/process/processor is the way forward but that it is hard to do.
Functional languages are suggested but that has never really taken off.
Clever additions to the language are being tried, but it’s always going to be
hard - the emphasis is pre-emptive rather than co-operative or hybrid. I don't
see that changing soon.

Respondent 28
It is a very mixed bag depending on the coders background. One big issue I
find is a lot of people new to writing embedded C starting learning to code
for PCs and so have never had to think about issues like CPU or memory
resources and lack the understanding of the electronics in the
microcontroller to debug issues. This can result in rather "heavy" and
unreliable code (littered with ISRs which can create unpredictable
behaviour).

Chapter 11. Assessing the patterns: Industry feedback

254

Lack of support: tools

Respondent 19

Migration is very poorly done due to lack of knowledge and lack of good
migration tools. The migration process itself is usually completely or partially
manual, and error prone.

Respondent 25

Industry is not ready to move from the classical ET architecture until and
unless some really excellent tools help them to migrate easily. Certainly
Patterns can be a help but need lot of automation in the process.

Lack of support: skilled manpower

Respondent 9

Thorough background knowledge of software architectures is required in

order for successful migration. Some companies are not willing to explore

on the new or different architectures due to several factors: [1] cost -

companies are not willing to buy new tools to support different architecture

[2]lack of manpower - developers need to quickly adapt to new architecture.

Due to current economic climate, companies are not willing to hire new

people to explore on the newer or different architecture. [3] time to market -

by adopting new architecture, time to market will be increased due to

learning curve that developers need to endure.

Lack of support: multicore and parallel hardware

Respondent 6

I don't see migration away from interrupts in telecom. The problems

associated with multi-core and parallel hardware need solution and

migration more urgently than event-driven system challenges.

Lack of support: methodology

Respondent 21

In my opinion, migrating software architecture from one to another requires
substantial effort and cost, and often relies on experience engineers to do it
manually. Companies are usually reluctant to invest such a large amount of
money to do the software architecture migration, unless a good profit return
is envisaged. Of course, a methodology that can simplify the migration
process is desirable; since it will maximise the profit margin if software
architecture migration is necessary.

Lack of support: documentation

Respondent 5
People of industry (not all) are unaware about it but it still requires some

Chapter 11. Assessing the patterns: Industry feedback

255

more clarification regarding TT and ET i.e. how to apply TT in the system?
How am I going to migrate? Do I really need to migrate? If my system is
running perfectly without any huddles why should I need to migrate?
(However all the comments may be useful/not-useful because I am not a
very highly experienced person I have 2 years of experience of automation
and control industry).

Respondent 14

Understanding "tribal knowledge" not captured in the formal documents of a
system.

Respondent 19

Migration is very poorly done due to lack of knowledge and lack of good
migration tools. The migration process itself is usually completely or partially
manual, and error prone.

Lack of support: automation

Respondent 25

Industry is not ready to move from the classical ET architecture until and

unless some really excellent tools help them to migrate easily. Certainly

Patterns can be a help but need lot of automation in the process.

Industry standards

Respondent 2

Software architectures differ with each project and application and the
industry hasn't been able to come up with a standardised architecture to
deal with all applications. Legacy codes and tools are one of the biggest
challenges when it comes to migrating to different software architecture.

Respondent 11

Plan migration and portability at design time by implementing firmware to be
compliant with recognized company or industry wide standards such as
AUTOSAR.

Respondent 13

Migration between software architectures is not easy in aerospace industry
because of the cost involved in rigorous verification to prove the new
changes are airworthy and getting the changes certified by authorities
(European Aviation Safety Agency EASA).

Industry standards: need to introduce new standards

Respondent 2

Software architectures differ with each project and application and the
industry hasn't been able to come up with a standardised architecture to
deal with all applications. Legacy codes and tools are one of the biggest
challenges when it comes to migrating to different software architecture.

Chapter 11. Assessing the patterns: Industry feedback

256

Cost

Respondent 9

Thorough background knowledge of software architectures is required in
order for successful migration. Some companies are not willing to explore
on the new or different architectures due to several factors: [1] cost -
companies are not willing to buy new tools to support different architecture
[2]lack of manpower - developers need to quickly adapt to new architecture.
Due to current economic climate, companies are not willing to hire new
people to explore on the newer or different architecture. [3] time to market -
by adopting new architecture, time to market will be increased due to
learning curve that developers need to endure.

Respondent 21

In my opinion, migrating software architecture from one to another requires
substantial effort and cost, and often relies on experience engineers to do it
manually. Companies are usually reluctant to invest such a large amount of
money to do the software architecture migration, unless a good profit return
is envisaged. Of course, a methodology that can simplify the migration
process is desirable; since it will maximise the profit margin if software
architecture migration is necessary.

Respondent 24

Consider a company which is using event triggered architecture for last 10
years with well-trained staffs. It is bit difficult for them to migrate into TT
within a short period. Challenges they may have, 1) Cost 2) Short period 3)
Need to train current staffs or need to recruit experienced people.

Agile methods

Respondent 12

The main challenge from my point of view is that the industry is very much
plan-driven and nowadays you have to respond to change more quickly. So
more agile approaches are needed to create the software. In many cases,
we use subcontractors and communicating the domain knowledge and the
architecture to them is troublesome. For me, it is not very important if the
system is time-triggered or event-triggered. Currently we are developing in
event-driven fashion and no plans to change that.

Respondent 27

I believe that industry is moving towards Agile Model Driven Development
(AMDD). (http://www.agilemodeling.com/essays/amdd.htm)

Adapting architectures

Respondent 1

Getting the whole organisation or team to buy into a migration
strategy/process is a big problem. It could be done in stages and within

http://www.agilemodeling.com/essays/amdd.htm

Chapter 11. Assessing the patterns: Industry feedback

257

smaller teams before the process is finally adopted by the whole
organisation

Respondent 4

Most businesses are concerned with a quick as possible time to market.
Migration across software architectures raises this significantly. It can also
often be hard to convince others that a different way of thinking can benefit
them or the business as a whole.

Respondent 17

Migration between software architectures is a time consuming task and
typically not interesting for engineers who are focused on implementing real
world solutions. With the need to integrate embedded systems with other
systems becoming more and necessary engineers are expected to know
many software architectures particularly those centred around the Internet.

Lack of experience

Respondent 5
People of industry (not all) are unaware about it but it still requires some
more clarification regarding TT and ET. i.e. how to apply TT in the system?
How am I going to migrate? Do I really need to migrate? If my system is
running perfectly without any huddles why should I need to migrate?
(However all the comments may be useful/not-useful because I am not a
very highly experienced person I have 2 years of experience of automation
and control industry).

Respondent 24

Consider a company which is using event triggered architecture for last 10
years with well-trained staffs. It is bit difficult for them to migrate into TT
within a short period. Challenges they may have, 1) Cost 2) Short period 3)
Need to train current staffs or need to recruit experienced people.

Respondent 28
It is a very mixed bag depending on the coders background. One big issue I
find is a lot of people new to writing embedded C starting learning to code
for PCs and so have never had to think about issues like CPU or memory
resources and lack the understanding of the electronics in the
microcontroller to debug issues. This can result in rather "heavy" and
unreliable code (littered with ISRs which can create unpredictable
behaviour).

Table 11-1 Distribution of comments under various nodes

From the comments mentioned above it is observed that currently people in

the industry are aware of the fact that migration between different software

Chapter 11. Assessing the patterns: Industry feedback

258

architectures is a huge challenge but at present there is no sophisticated way

adopted to cope with this challenge. However two of the respondents

(respondent 22 and 23) showed their unawareness about the issue.

With the help of Nvivo tool a graphical analysis of the text data is achieved

and the percentage cover by each node is given in Figure 11-11.

Figure 11-11 Illustrating the number of coding references cover for each
node

This coding analysis of text data obtained through respondent’s comments

has revealed some interesting results. As emphasized by the respondents

shown in Figure 11-11 ‘Lack of support’ appeared as the most important issue

during the migration process. Further this lack of support is more towards

Chapter 11. Assessing the patterns: Industry feedback

259

‘Lack of documentation’ and the ‘tool support’. The other areas where

practitioners feel that industry lack support are towards ‘Methodology’ which

should be adopted while migrating architectures, ‘Automation’ that must be

required during the various stages and support for ‘Multi-core and parallel

hardware’ designs.

The other main challenge indicated is the ‘Time to Market’. ‘Time to Market’ is

one of the most important design metrics and is considered as the time

required to develop a system to the point that it can be released and sold to

customers (Vahid and Givargis, 2002) . In this sense it is directly related to

business profit and reputation of the organisation. As the respondent 4 has

mentioned that migration across architectures may increase ‘time to market’

and managers at higher level always think in terms of gaining more profit for

the organisation. Exactly the same opinion is observed from the comments

provided by respondent 7 and respondent 9 and respondent 24. Overall it is

concluded that people in industry are reluctant to any change in existing

architectures unless required by the customer as migration might not be a

favourable decision in terms of organisation’s repute and business profit.

As ‘Time to Market’ is directly related to ‘Cost’ so the next important concern

shown by the practitioners is the involvement of ‘Cost’ for industrial projects

which are required to pass through the process of migration. The cost might

be in form of outsourcing manpower or tools required during the process and

therefore avoided unless a reasonable profit return is envisioned by a team of

experts in the organisation. Therefore ‘Adapting architectures’ is not favoured

Chapter 11. Assessing the patterns: Industry feedback

260

by the industry professionals because of the lack of support, high time to

market concern and cost involved in the process. However, certain

respondents talked about ‘Industry standards’ such as AUTOSAR (Automotive

Industry Open System architecture) which provides firmware to support

migration at design time. Respondent 7 from the aerospace industry has

mentioned his concerns about meeting the safety standards set by European

Aviation Safety Agency ‘EASA’ and making any changes would require

rigorous testing which in turn could incur cost overheads. It is also

emphasized that industry need to introduce new standards. Few respondents

(Respondent 12 and Respondent 27) mentioned about following agile

approaches to software development. This truly makes sense as agile

practices bring a number of business benefits as better project adaptability

and reaction to changes, reduced production cost and better performance

(Bozheva and Gallo, 2010)

11.7. Discussion

This chapter has described the evaluation of patterns in the industrial context

which is attempted to determine the current practices in dealing with the

migration process and the potential of the proposed pattern collection in real

practice. The overall results obtained through this process have provided

useful insights on the major issues that people in industry are mainly

concerned with. It is apparent that there is no standard approach to deal with

the issues however a commonality was observed on the issues themselves. A

majority of the respondents expressed concerns about cost considerations,

Chapter 11. Assessing the patterns: Industry feedback

261

time to market and expertise in adapting the software architectures for

applications.

The industry has appreciated the idea of the use of patterns in assisting the

working force of professionals to deal with the challenges of migration, but at

the same time recommended further support in addition to the documented

pattern collection. This further support would ideally be in the form of a

framework for migration which could lead to a tool support or an expert system

of migration which can intelligently help in taking the appropriate decisions.

However the cost involved in providing such support is an additional factor to

discuss at this stage.

The evaluation process also helped in obtaining useful comments for

improving or enhancing the pattern collection. The responses obtained have

also highlighted the need for patterns for multiprocessor instead of single-

processor applications as an increasing number of the application designs

nowadays make use of more than one processor. It is also apparent from the

survey that the optimisation section of the pattern collection needs to be

enhanced further with more information and deeper study. One engineer from

the aerospace industry mentioned that “the scheduler patterns are useful but

they need to be further classified as fixed-priority or non-fixed-priority along

with support for sporadic tasks”. With regards to achieving industry standards

for the aerospace industry one senior engineer mentioned that “the techniques

described are relevant and the pattern clearly explain the considerations,

however the target audience appear to be someone with limited experience of

Chapter 11. Assessing the patterns: Industry feedback

262

designing software to achieve DO-178b compliance”. These comments are

considered as fairly judgmental as the proposed pattern collection is not

functionally complete in its present state and needs further expansion for its

wider implications in the industrial context.

At this stage it is important to mention that design patterns previously

developed for creating new embedded applications based on time-triggered

architecture (Pont, 2001) have been used in a range of research projects

(Mwelwa, 2006; Kurian and Pont, 2007; Bautista-Quintero and Pont, 2008;

Hughes and Pont, 2008) however these patterns were not passed through a

rigorous evaluation process as described for the PMES collection in Chapter

9, 10 and 11. Also, most of the patterns have been subjected to preliminary

evaluation process at various PLoP conferences mentioned in Section 10.4.

As a matter of fact it is almost impossible to carry out a rigorous evaluation for

huge pattern collections such as Alexander’s pattern for architecture design

(Alexander, Ishikawa et al., 1977) , patterns for time-triggered embedded

system (Pont, 2001) and patterns for fault-tolerant design (Hanmer, 2007). For

such huge collections it is even not practical to carry out a preliminary

evaluation of patterns such as shepherding and writer’s workshop discussed

in Section 6.8 as it involves substantial amount of time and cost incur in

participation of such events. For enthusiastic pattern authors still remain the

option of testing patterns in more than one example of a problem and the

more examples tested the better.

Chapter 11. Assessing the patterns: Industry feedback

263

11.8. Conclusion

The evaluation process described in this chapter was designed to obtain

feedback from the community of working professionals in embedded

development on the issues of migration between software architectures. The

evaluation process also helped to gain some useful feedback on the proposed

collection of design patterns their usability, shortcomings and further

expansion and improvements. Overall the professional community has

appreciated the idea of the use of design patterns in migrating between

different software architectures for embedded applications as there is currently

no standard approach to follow in this field. The majority of the practitioners

have recommended for further support along with the documented patterns

and few have recommended further expansion in the current collection.

Chapter 12. Conclusions and future work

264

CHAPTER 12. CONCLUSIONS AND FUTURE WORK

12.1. Reasons and motivation for the thesis work

The work described in this thesis is concerned with improving the reliability of

complex embedded applications by introducing time-triggered designs into

their architectures in place of existing event-triggered designs.

It has been argued that time-triggered designs are the preferred choice for

many embedded applications and especially for high-integrity and safety

critical applications because of their predictable nature compared with event-

triggered designs. In spite of this, event-triggered designs are sometimes

preferred because of the flexibility they offer in their designs and the high

responsiveness in normal situations. Such a choice however may end up with

failure under peak load situations and unpredictable behaviour resulting in the

need for a complete or partial change in the design architecture. In such a

situation migration to time-triggered designs can contribute to higher reliability

and applications with more predictable behaviour. However, carrying out the

migration of architectures in complex embedded applications is not an easy

task and there are a number of issues which must be considered during and

after the migration process. One of the most important challenges is in finding

ways of supporting developers during the migration process which would

result in time-saving and improved efficiency in what is otherwise a rather

tedious process.

Design patterns provide the best practice solution to commonly recurring

problems in a particular domain. The outcomes of the research into the use of

Chapter 12. Conclusions and future work

265

design patterns in embedded software development have proven to be very

effective. However, most of the work to date in this field has addressed

system construction rather than migration that is to say in the process of

designing applications from scratch. The motivation for the research

described in this thesis is to address this gap in the re-design process in the

area of system migration.

To this end the work presented in this thesis aimed to overcome some of the

difficulties faced by the developers in the migration process of embedded

applications. This has been achieved by helping them in the choice of

appropriate time-triggered designs and overcoming further difficulties such as

the handling of long task problems in co-operative designs, and shared

resource access in pre-emptive designs. In addition this work has provided a

few generic patterns that aim to enable the designer to optimise the

accomplished time-triggered designs after migration.

To summarise, this thesis has identified the lack of a standard approach in the

use of design patterns in the process of migrating between the different

architectures of embedded applications. This research is therefore aimed to

provide support to the practitioners in this field by introducing a new pattern

language to assist in the migration process from event-triggered to time-

triggered designs. To the best of the author’s knowledge, this study

represents the first attempt to use design patterns for the purposes of such

complex system (architecture) migration.

Chapter 12. Conclusions and future work

266

12.2. A review of the contributions

This section reviews the key contributions of the research presented in this

thesis and discusses the extent to which the initial aims of the research were

achieved.

12.2.1. Migration from ET to TT designs

The work presented in this thesis started by giving a very brief introduction to

the world of embedded systems design and the commonly used software

architectures used to design embedded applications. CHAPTER 1 was

specifically focused on a description of the problem this research was

addressing during the course of the study. CHAPTER 2 then described three

example applications described in the literature which has provided the

inspiration for the work carried out during the research. The examples have

demonstrated how changes in the software architecture can bring

improvements in system performance and reliability. CHAPTER 3 has

described the overall methodology adopted to carry out the research.

CHAPTER 4 gave an overview of some of the possible scheduling schemes

and the two main software architectures that are the preferred choice for

developers when designing embedded applications. There followed a

discussion on the comparative features of both architectures and the trade-

offs involved within each architecture. It was shown that for systems which

are designed for worst-case requirements such as hard real-time systems, the

time-triggered architecture is a better choice if reliability is a major concern.

CHAPTER 5 has presented an account of the causes of migration in

Chapter 12. Conclusions and future work

267

embedded software, and dependencies between different software

components in embedded applications. CHAPTER 5 also provided a brief

coverage of some existing techniques described in the literature to carrying

out migration of software architecture in embedded applications.

12.2.2. Design patterns to support migration

CHAPTER 6 has introduced design patterns and their adoption in various

fields. It has also explored the notion that patterns have the potential to

provide support to developers of embedded applications in the complicated

process of migration under consideration.

As mentioned in Section 12.2.1, CHAPTER 2 explored example applications

which have passed through a migration of architecture during their life-cycle.

The examples demonstrated that migration in complex embedded applications

always incurs overheads in terms of time, effort and the cost required to make

the necessary changes. These overheads may reach seriously high values if

the designers/developers are not fully aware of the architectural design issues

that could arise during the application migration process. At this stage a set

of guidelines and a set of proven and tested techniques by experts can play a

vital role in assisting developers resulting in a saving of time, effort and cost.

CHAPTER 7 started by explaining the rationale for introducing the ‘PMES’

collection of design patterns which is the key contribution to this research.

The chapter then described the pattern mining process and how new patterns

for migration were derived and developed with logical grounds for each

individual pattern. CHAPTER 8 then introduced each of the newly

documented patterns. At the current stage, this collection contains 23

Chapter 12. Conclusions and future work

268

patterns that can help in the migration process initially by guiding the users

towards determining whether their application is the right candidate for time-

triggered designs.

12.2.3. Assessment of the ‘PMES’ collection

The central claim in this research is that the proposed pattern collection will

support developers of embedded applications in the process of migrating

applications. It is therefore important to investigate to what extent this claim is

justified. For this purpose a detailed assessment of the patterns is conducted

as described in CHAPTER 9, CHAPTER 10 and CHAPTER 11.

In the first stage, studies were carried out to evaluate the performance of

applications after transforming their existing event-triggered designs to time-

triggered design and the results are described in CHAPTER 9. These

transformations were carried out not only to demonstrate the improvement in

performance of the applications, but also to illustrate how, and at what stages

the various patterns in the PMES collection can help to achieve the

transformation.

In the second stage, two empirical studies were designed involving MSc.

students as subjects. The first study was designed to test the effectiveness of

patterns when employed by experienced developers/designers. The results

suggested that applications of patterns can help developers to take

appropriate decisions during the migration of complex embedded applications,

and to produce reliable systems after migration. The second study was

designed to demonstrate the usability of patterns for inexperienced

Chapter 12. Conclusions and future work

269

developers. The results suggest that patterns provide an effective way of

representing information which is easier to understand, digest and implement

when compared with other resources such as text books, research papers and

other supplementary material.

In the third stage the research was evaluated in the industrial context to obtain

feedback from real stakeholders. This is achieved by using a web-based

survey instead of interviewing in order to cover a wider audience from different

parts of the world. The feedback obtained as a result of this process provided

useful insights for making improvements, enhancing the current collection and

providing back up for further support.

12.3. Research implications and shortcomings

Patterns in the PMES collection are applicable to a wide range of systems.

For example, the advent of new industry standards such as ISO 26262 for the

functional safety of passenger cars presents many new challenges to

organisations in the automotive sector. Some of the principles defined for the

software architectural design in ISO 26262 are as follows:

 Hierarchical structure of software components

 Restricted size of software components

 Restricted coupling between components

 Appropriate scheduling properties

 Restricted use of interrupts.

Chapter 12. Conclusions and future work

270

Some mechanisms are also recommended for error detection and error

handling at the software architectural level. These issues are covered by

patterns in the collection. For example, appropriate scheduling properties are

discussed in the pattern TT SCHEDULER and restricted use of interrupts is

emphasize in the pattern EVENTS TO TIME. The pattern BALANCED SYSTEM is

focused on techniques to keep the execution time of the software components

fixed and restricted and the pattern SYSTEM MONITORS has discussed error

detection and correction techniques.

The detailed evaluation of the research has helped in identifying the wider

implications and shortcomings of the proposed pattern collection. The people

involved in the survey from industry indicated that migration between software

architectures is a difficult task, and there is no standard approach at present to

cope with the challenges it presents. Therefore it is contended that a collection

of design techniques documented as design patterns can be viewed as an aid

to the developers’ community especially for those who are less experienced.

It is indicated by the feedback obtained from the practitioners during the third

phase of the evaluation, that industry encouraged the use of design patterns

especially in companies where design/development resources are stretched

and hence documentation tends to be a much needed but neglected resource.

About 32% respondents agreed that such patterns are very useful, while 68%

suggested that they can be more useful with some kind of further support such

as an automated tool. Professionals in industry agreed that the patterns

provide an architectural insight into what needs to be addressed when

attempting to consider alternative architectures, and/or when shifting between

Chapter 12. Conclusions and future work

271

architectures, but at the same time asked for more practical knowledge to be

provided in the area to ascertain their sole use. It is clear from this work that

professionals in industry are seeking a set of excellent tools which could help

to automate the process of migration.

12.4. Scope for future work

There are number of areas of future development based on the research

described in this thesis and these are described below.

12.4.1. Multi-processor designs

The work presented in this thesis was focused on issues related to the

migration of embedded applications based on a single processor. This is a

limitation as embedded applications are becoming more complex and tend to

use multi-processor designs. Therefore, future work will need to be extended

to applications based on multi-processor designs. With this expansion there

is a lot of scope to explore patterns related to the handling of communication

between different nodes and messaging services.

12.4.2. Completeness of the pattern language

For single processor applications, the proposed collection of patterns has

gaps and is focused only on the core issues such as the selection of

appropriate schedulers in time-triggered designs, handling of long task

problems in co-operative designs and shared resource access in pre-emptive

designs. There are also number of other issues which could rise during the

migration process such as response time degradation in moving from event-

triggered to time-triggered designs which are not considered yet. Finally there

Chapter 12. Conclusions and future work

272

is a lot more scope pertaining to the expansion of the pattern language

morphologically in which patterns fit together to form a complete structure

without any gaps.

12.4.3. Exploration of implementation examples

Another interesting extension of the current work would be to explore and

document pattern implementation examples (PIEs) for all the newly proposed

patterns. This will further enhance the collection for a wide range of hardware

and software applications.

12.4.4. Formalising the pattern language

One more challenging direction for further expansion of this research is the

formalisation of the proposed pattern collection. Formal specification of

design patterns are not meant to replace the existing textual/graphical

description but rather to complement them to achieve well-defined semantics,

allow rigorous reasoning about them, and facilitate tool support (Taibi and Ling

Ngo, 2003). The formalisation strategies are either based on rigorous

mathematical formulae (Mikkonen, 1998; Eden, 2000; Mak, Choy et al., 2003;

Taibi and Taibi, 2006) or the use of the Unified Modeling Language (Kim,

France et al., 2002; Mapelsden, Hosking et al., 2002) to represent patterns or

pattern solutions. Therefore it is proposed that a notation for formalising the

pattern language and production rules can be helpful for an automated tool

generation for migration between software architectures.

12.4.5. Computer assisted tool support

In the present state, the patterns are in a documented form and so can only be

applied manually. An intelligent software tool that is capable of assisting the

Chapter 12. Conclusions and future work

273

users in choosing appropriate time-triggered designs in the migration process

is far more promising. Such a tool support would identify the constant and

variable elements of a pattern solution. The constant factors can provide the

template framework for example conversion from event-triggered to time-

triggered. The variable factors can be queried from the user to incorporate into

the code generation process. Also to further facilitate the process, the tool

may be able to provide packaged software components to use based on

design techniques discussed in some of the patterns for example BUFFERED

OUTPUT, POLLED INPUT and TASK GUARDIAN.

12.5. Final conclusions

Overall, the work described in this thesis has made three major contributions:

First, it presents the novel idea of using design patterns for managing the

complexities involved in migrating between different software architectures of

embedded applications. Second, it has introduced a new pattern language

(called PMES) to support the migration from event-triggered to time-triggered

architectures. Finally evidence has been presented that the proposed pattern

language can be applied to a range of applications and bears the potential to

assist designers and developers in the field. In this regard the feedback from

the industry is also very encouraging.

The migration between different architectures of embedded applications is

almost a research discipline in itself, and this research is at an early stage of a

novel and increasingly important branch of this discipline. Hopefully the work

Chapter 12. Conclusions and future work

274

described will provide the necessary inspiration for further research progress

in this critical area.

275

PART D: APPENDICES

- Appendix A: Pattern forms.

- Appendix B: Full specification of newly documented patterns in the

PMES collection

- Appendix C: Exercises used in empirical studies for the assessment of

the PMES collection

- Appendix D: Documents used in industrial evaluation of the PMES

collection

276

APPENDIX A: PATTERN FORMS

Alexandrian form

PATTERN NAME

A picture that shows a typical example of the architectural pattern.

Introductory paragraph that sets the context of the pattern

♦♦♦

Headline in bold that gives the essence of the problem (1-2 sentences)

Body of the problem (longest section of the pattern)

Solution in bold that is always stated in the form of an instruction

Diagram illustrating the solution graphically

♦♦♦

Resulting context (that connects the pattern to smaller patterns in the language that

are required to complete the pattern)

Modified Alexandrian form

PATTERN NAME

Introductory paragraph that sets the context of the pattern

♦♦♦

Headline in bold that gives the essence of the problem (1-2 sentences)

Body of the problem (longest section of the pattern)

Solution in bold that is always stated in the form of an instruction

Example of use

♦♦♦

Resulting context (that connects the pattern to smaller patterns in the language that

are required to complete the pattern)

277

GoF form

PATTERN NAME and CLASSIFICATION

PATTERN NAME: A concise name of the pattern. This needs to be carefully selected
because it will eventually become a component of the design vocabulary.

Classification: Creational, Structural, Behavioural

 Intent

A short statement about what the design pattern does/ the problem it addresses/ the
rationale behind the pattern

 Also Known as

Other names for the pattern (if any)

 Motivation

A scenario that illustrates a design problem and how the structures in the pattern
solve the problem

 Applicability

This section presents situations where the design pattern can be used

 Structure

A graphical representation of the classes in the design pattern

 Participants

The classes and/or objects participating in the design pattern (and their
responsibilities).

 Collaborations

This section describes how the participants mentioned in the previous section carry
out their responsibilities.

 Consequences

What are the pros and cons of using the pattern? How does the pattern supports this
objectives?

 Implementations

Hints and techniques for implementing the pattern

 Sample Code

Code fragments that illustrate how the pattern might be implemented.

 Known Uses

This section presents examples of the pattern encountered in real systems.

 Related Patterns

This section presents other patterns that are strongly related to the pattern, and the
important references between the patterns.

278

Coplien form (after James Coplien)22

PATTERN NAME

 Problem

Problem addressed by the pattern

 Context

Situations/settings where the pattern is applicable

 Forces

Addresses the issue: “What makes the pattern so difficult?”. Commonly a list of bullet
points.

 Solution

The solution to the problem – this is generally layered with the most general
interpretation at the highest level and providing more detail as one progresses
through the section.

 Resulting context

The pros and cons of the pattern.

 Rationale

This section describes how the pattern works, why it works and why it is “good”.

22

 Source: From James Coplien’s patterns listed in “A Generative Development – Process
Pattern Language” that appears in Rising, L. (editor), “The Patterns Handbook: Techniques,
Strategies and Application”, (Cambridge University Press, 1998)

279

POSA form23

PATTERN NAME
The name and a short summary of the pattern

 Also known as

Other names for the pattern, if any exist

 Example

A real-world example that demonstrates the existence of the problem and the need
for the pattern. This helps to explain the problem and related forces better.

 Context

Situations / settings where the pattern is applicable.

 Problem

Problem addressed by the pattern including a discussion of the related forces.

 Solution

Fundamental solution to the underlying problem.

 Structure

Discusses the structural aspects of the pattern

 Dynamics

Typical scenarios describing the run-time behaviour of the pattern.

 Implementation

These are guidelines for implementing the pattern.

 Example resolved

Further aspects for resolving the example not discussed in earlier sections are
presented here.

 Variants

Very brief descriptions of alternative solutions to the pattern.

 Known uses

Examples of the use of the pattern, taken from existing systems

 Consequences

Pros and cons of applying the pattern

 See also

References to related patterns

23

 This pattern template was first used by Buschmann et al. (1996) in their book Pattern-
Oriented Software Architecture (Volume 1) It is very similar to the structured and detailed style
of the GoF pattern template.

280

PTTES form

PATTERN NAME

 Context

Summarizes the situations where the pattern may be useful. This is normally in the
form of a bulleted list.

 Problem

Provides a brief summary of the problem addressed by the pattern.

 Background

Provides information that will help less experienced developers make full use of the
pattern.

 Solution

Describes one or more solutions to the problem addressed by the pattern. This may
include software designs, code listings and/ or hardware schematics

 Hardware resource implications

Every pattern provides and/or consumes hardware resources. This section helps to
balance the need for, and provision of, these resources.

 Reliability and safety implications

Many patterns have potential reliability and safety implications: such issues are
discussed in this section.

 Overall strengths and weaknesses

This section considers issues involved in porting the pattern to a different
microcontroller.

 Related patterns and alternative solutions

Discusses alternative solutions to problems and provides references to other, related
patterns that may be of interest.

 Examples

At least one example of the application of the pattern is given here.

 Further reading

Gives suggestions for sources for additional information that the reader may wish to
look at while (or after) reading the pattern

281

APPENDIX B: SPECIFICATIONS OF THE PMES
COLLECTION

282

TIME FOR TT
Abstract pattern

Context

 You already have at least a design or prototype for your system based on some

form of Event-triggered architecture.

 You are in the process of creating or upgrading an embedded system, based on a

single processor unit.

 Reliable system operation is a key design requirement.

Problem

Should you use a TT architecture in your system?

Solution

Some systems are obvious candidates for TT architectures. These systems involve
periodic data sampling or data playback, or other periodic activities.
Some simple examples:

 Data acquisition and sensing systems (for example, environmental systems
for temperature monitoring) usually involve making data samples on a periodic
basis. Some cases (high-frequency systems) may involve making millions of
samples per second: other cases (e.g. temperature monitoring at a weather
station) may involve making one sample per hour. Whatever the rate, a TT
architecture will usually be used in order to guarantee high-quality (“jitter free”)
data sampling at a known signal-to-noise ratio.

 Control systems (for example, primary flight control in an aircraft or helicopter,
cruise control in a passenger car, temperature control in an industrial furnace,
control of a hard disk in a computer). Such systems all involve three core –
periodic – activities: measuring some aspect of the system to be controlled
(e.g. the furnace temperature), calculating changes required to the control
system (e.g. calculating new gas burner settings) and applying the changes to
the control system (e.g. updating the settings on the gas burner). Use of a TT
architecture will ensure high-quality control without jitter in the input or output.

 Data output systems (for example, music players, video playback, head-up
displays) are required to generate output signals at precise times (for
example, “CD quality” sound will be played back at 44,400 samples per

second. Any jitter in the playback will result in degradation of the music
quality.

283

It is important to appreciate that – in many of these cases - use of a TT solution
allows the system to perform the above periodic activities and also perform other
functions (such as reading switches, updating displays, receiving data over serial
communication links, performing calculations, etc) without interfering in any way
with the processing outlined in the above examples. It is the ability to perform
multiple tasks and still guarantee that critical tasks will always execute as
required that makes a TT solution so attractive to developers of high-integrity, safety-
related and safety-critical systems.

Clearly, not all systems fall into the “periodic sampling / playback” category. In
particular, if your system must respond only to events which may occur at “random”
times, it may not be a good match for this architecture.

For example, consider a simple radio transmitter which is used to open your garage
doors a few times a week. We could use TT architecture to poll the switch on this
system every 20 ms (just in case the switch has been pressed). However, while such
a solution would undoubtedly work, it would be likely to have a shorter battery life
than a simple event-triggered design which operates in power down mode except
when the switch on the unit was pressed. As there are not likely to be safety
concerns with this system and the number of tasks is probably very small, an
ET solution will probably be more appropriate in this situation.

In between these two extremes there are many systems which involve both periodic
tasks and the handling of “random” events. Such designs are typically characterised
by the use of multiple interrupt service routines (ISRs). In these situations it may not
be practical (or necessary) to create a “pure TT” (single interrupt) solution. However,
it may well be practical to create a “more TT” solution which reduces the number of
interrupts to a level at which it becomes possible to predict the system behaviour
sufficiently accurately to meet the needs of the application.

Related patterns and alternative solutions

See patterns EVENTS TO TIME and TT SCHEDULER

Overall strengths and weaknesses

 Use of a TT architecture tends to result in a system with highly predictable
patterns of behaviour.

 Inappropriate system design using this approach can result in applications which
have a comparatively slow response to external events and / or shorter battery
life.

284

EVENTS TO TIME
Abstract pattern

Context

 You and / or your development team have programming or design experience
with “event-triggered and / or pre-emptive” (ET/P) system architectures: that is,
architectures which may involve use of a conventional real-time operating system
(RTOS) and / or multiple interrupt-service routines (linked to different interrupt
sources) and / or task pre-emption.

 You are in the process of creating or upgrading an embedded system, based on a
single processor.

 You already have at least a design or prototype for your system based on some
form of ET/P architecture.

 Because predictable and highly-reliable system operation is a key design
requirement, you have opted to employ a “time-triggered system architecture in
your system, if this proves practical.

Problem

How can you convert event triggered / pre-emptive designs and code (and mindsets)
to allow effective use of a TT SCHEDULER as the basis of your embedded system?

Background

If we were forced to sum up the difference between “embedded” and “desktop”
systems in a single word we’d say “interrupts”.

Event triggered behaviour in systems is usually achieved through the use of such
interrupts. The system is designed to handle interrupts associated with a range of
sources (e.g. switch inputs, CAN interface, RS-232, analogue inputs, etc). Each
interrupt source will have an associated priority. Each interrupt source will also
require the creation of a corresponding “interrupt service routine” (ISR): this can be
viewed as a short task which is triggered “immediately” when the corresponding
interrupt is generated.

Creating such (ET/P) systems is – on the surface at least – straightforward.
However, challenges often begin to arise (in non-trivial designs) at the testing stage.
It is generally impossible to determine what state the system will be in when any
interrupt occurs, which makes comprehensive testing almost impossible.

A time-triggered system also requires an understanding of interrupts, but the
operation is fundamentally different. At the heart of a TT system is a scheduler which
determines when the tasks in the system will be executed. In such a system, there is
only a single interrupt source (usually a periodic timer “tick”): is used to drive the
scheduler.

285

Solution

Here’s what you need to do to migrate to a TT design:

 You need to ensure that only a single – periodic - timer interrupt is enabled (all
other interrupt sources will be converted to flags, which will be polled as required).

 You have to determine an appropriate “tick interval” for your system (that is, you
need to determine how frequently the timer interrupt need to take place).

 You have to convert any ET (event-triggered) ISRs into periodic tasks and add
these to the schedule.

 You need to decide which TT architecture will best suite your application
requirements. Pattern TT SCHEDULER provides comprehensive details. To
summarise:

 Choose Co-operative architecture if your system requirements could be met
without any pre-emption involved. All the tasks in the system will be co-operative.
For details see pattern CO-OPERATIVE SCHEDULER

 Choose HYBRID SCHEDULER if limited pre-emption (only a single pre-emptive task)
can fulfil the requirements of the system. All the other tasks in the system will be
co-operative. Details about implementing such an architecture are documented in
pattern

 Choose PRE-EMPTIVE Scheduler for full pre-emption in the system

To illustrate part of the translation process, consider a simple ET system (Listing B-1)
running two interrupts, as a result two tasks X and Y will execute. These tasks are
invoked by separate interrupts and implemented by associated ISRs.

void X_ISR(void) interrupt IEIndex1

 {

 }

void Y_ISR(void) interrupt IEIndex2

 {

 }

void main(void)

 {

 X_init();

 Y_init();

 EA = 1 ; // Enable all interrupts

 while(1)

 {

 PCON |= 0x01;

 }

 }

Listing 1: Possible ET design

There are various possibilities to convert ET designs to TT designs with any of the
possible TT architectures listed in the solution. One possible design using CO-
OPERATIVE SCHEDULER is illustrated in Listing 2.

void main(void)

 {

286

 SCH_Init(); // Set up the scheduler and tasks

 X_Init();

 Y_Init();

 // Add tasks to scheduler

 SCH_Add_Task(X_Update(), 0, 100);

 SCH_Add_Task(Y_Update(), 20, 200);

 // Start the scheduler

 SCH_Start();

 while(1)

 {

 SCH_Dispatch_Tasks();

 }

 }

Listing 2: Possible TT design

Please note that X and Y are two separate tasks created in separate .c files with
their init and update functions.

Related patterns and alternative solutions

The PTTES collection

The PTTES collection (Pont, 2001) describes, in detail, a range of techniques which
can be used to implement embedded systems with TTC architecture. This book can
now be downloaded (free of charge) from the following WWW site:
http://www.tte-systems.com/books/pttes

TT Schedulers

The pattern TT SCHEDULER provides relevant background information and the
situations in which it may be appropriate to use a TT scheduler in your application.

Reliability and safety implications

When compared to pre-emptive schedulers, co-operative schedulers have a number
of desirable features, particularly for use in safety-related systems (Allworth, 1981;
Ward, 1991; Nissanke, 1997; Bate, 2000) .

For example, Nissanke (1997, p. 237) notes: “[Pre-emptive] schedules carry greater
runtime overheads because of the need for context switching––storage and retrieval
of partially computed results. [Co-operative] algorithms do not incur such overheads.
Other advantages of [co-operative] algorithms include their better understandability,
greater predictability, ease of testing and their inherent capability for guaranteeing
exclusive access to any shared resource or data”.

Allworth (1981, pp. 53–54) also notes: “Significant advantages are obtained when
using this [co-operative] technique. Since the processes are not interruptable, poor
synchronisation does not give rise to the problem of shared data. Shared subroutines
can be implemented without producing re-entrant code or implementing lock and
unlock mechanisms”.
Although not the main focus of this pattern, the advantages of a TT approach also
apply in distributed systems: see, for example, (Scarlett and Brennan, 2006).

http://www.tte-systems.com/books/pttes
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0N-4BWM353-1&_user=123215&_coverDate=05%2F31%2F2004&_rdoc=1&_fmt=full&_orig=search&_cdi=5651&_sort=d&_docanchor=&view=c&_acct=C000010181&_version=1&_urlVersion=0&_userid=123215&md5=f76db914fd7e9d695247a96856e7fe2e#bib3

287

Overall strengths and weaknesses

 Use of TT architecture tends to result in a system with highly predictable patterns

of behaviour.

 Inappropriate system design using this approach can result in applications which

have a comparatively slow response to external events.

Examples

For examples of systems which are true candidates for TT architecture see pattern
TIME FOR TT

References

Allworth, S. T. (1981). Introduction to Real-Time Software Design, Macmillan.
Bate, I. J. (2000). Introduction to Scheduling and Timing Analysis, The use of Ada in

Real-Time System. IEEE.

Nissanke, N. (1997). Real time Systems, Prentice Hall.
Scarlett, J. J. and R. W. Brennan (2006). Re-evaluating Event-Triggered and Time-

Triggered Systems. IEEE conference on Emerging technologies and factory
automation: 655-661.

288

TT SCHEDULER
Abstract pattern

Context

 You already have at least a design or prototype for your system based on some

form of ET/P architecture.

 You and / or your development team are using pattern EVENTS TO TIME

 You are in the process of creating or upgrading an embedded system, based on a

single processor.

Because predictable and highly-reliable system operation is a key design
requirement, you have opted to employ a “time-triggered” system architecture in your
system.

Problem

How will you decide which form of time-triggered scheduler should you use for your
application?

Background

TT schedulers that we can use can take two forms: Co-operative and Pre-emptive.
Both of these types of schedulers provide various options, some of these options are
given below:

1. Co-operative Schedulers

a. Super loop

b. TTC -ISR

c. TTC Dispatch

2. Pre-emptive Schedulers

a. Full Pre-emption

i. TTRM Scheduler

b. Limited Pre-emption

i. TTH Scheduler

In co-operative scheduling, tasks co-operate with each other and wait for their turn to
execute until the currently running task finishes execution.
In pre-emptive scheduling a task of higher priority which is ready to execute can pre-

empt a currently running task of lower priority.

289

Overview of TT Schedulers

TTC-SL Scheduler

The simplest way of implementing a TTC scheduler is by means of a “Super Loop” or
“endless loop” (e.g. Pont, 2001; Kurian and Pont, 2007). A possible implementation of

such a scheduler is illustrated in Listing 1.

int main(void)

{

 while(1)

 {

 TaskA();

 Delay_6ms();

 TaskB();

 Delay_6ms();

 TaskC();

 Delay_6ms();

 }

 // Should never reach here

 return 1;

}
Listing 1: TTC SuperLoop Scheduler

Applications based on a TTC-SL SCHEDULER have extremely small resource
requirements. Systems based on such a pattern (if used appropriately) can be both
reliable and safe, because the overall architecture is extremely simple and easy to
understand, and no aspect of the underlying hardware is hidden from the original
developer, or from the person who subsequently has to maintain the system.

TTC-ISR Scheduler

Unlike TTC-SL SCHEDULER, TTC-ISR SCHEDULER is suitable for use with systems
which have hard timing constraints. The basis of a TTC-ISR SCHEDULER is an
interrupt service routine (ISR) linked to the overflow of a hardware timer.

TTC Dispatch Scheduler

The implementation of a TTC-ISR SCHEDULER is highly system dependent. In
addition, the implementation requires a significant amount of hand coding (to control
the task timing), and there is no division between the “scheduler” code and the
“application” code.

The TTC scheduler implementation referred to here as a “TTC-Dispatch” scheduler
provides a more flexible alternative see Listing 2.

The type of TTC scheduler implementation discussed in this pattern is usually
implemented using a hardware timer, which is set to generate interrupts on a periodic
basis (with “tick intervals” of around 1 ms being typical). In most cases, the tasks will
be executed from a “dispatcher” (function), invoked after every scheduler tick. The
dispatcher examines each task in its list and executes (in priority order) any tasks
which are due to run in this tick interval (see Figure 1). The scheduler then places the
processor into an “idle” (power saving) mode, where it will remain until the next tick.

290

Figure 1: Tasks scheduled in a TTC design

Provided that an appropriate implementation is used, a time-triggered, co-operative
(TTC) architecture is a good match for a wide range of low-cost, resource-
constrained applications.

TTC architectures also demonstrate very low levels of task jitter (Locke, 1992) and
can maintain their low-jitter characteristics even when techniques such as dynamic
voltage scaling (DVS) are employed to reduce system power consumption.

void main(void)

 {

 // Set up the scheduler

 SCH_Init_T2();

 // Init tasks

 TaskA_Init();

 TaskB_Init();

 // Add tasks (10 ms ticks)

 // Parameters are filename, offset (ticks), period

(ticks)

 SCH_Add_Task(TaskA, 0, 3);

 SCH_Add_Task(TaskB, 1, 3);

 SCH_Add_Task(TaskC, 2, 3);

 // Start the scheduler

 SCH_Start();

 while(1)

 {

 SCH_Dispatch_Tasks();

 SCH_Go_To_Sleep();

 }

 }

Listing 2: TTC Implementation

TTRM architectures

Where a TTC architecture is not found to be suitable for use in a particular resource
constrained embedded systems, fixed-priority scheduling has been proposed as the
most attractive alternative (Audsley, Burns et al., 1991; Bate, 1998).

“Time-triggered rate monotonic” (TTRM) is a well-known fixed-priority scheduling
algorithm that was introduced by (Liu and Layland, 1973) in 1973. Technically,
TTRM is a pre-emptive scheduling algorithm which is based on a fixed priority
assignment (Kopetz, 1997) . In particular, the priorities are assigned to periodic tasks

291

accord to their occurrence rate or, in other words, priorities are inversely proportional
to their period, and they do not change through out of the operation (because their
periods are constant).

Figure 2: Illustrating TTRM architecture

To illustrate the use of TTRM scheduling, Figure 5 above shows how a set of periodic
tasks can be scheduled by this algorithm. Task T1 is executed periodically at the
fastest rate, every 10 ms, and is determined to be the highest priority in this
scheduling policy, while task T2 and T3, which are run every 20 and 40 ms
respectively, have lower priority levels according to their rates. A task scheduled by
the TTRM algorithm can be pre-empted by a higher priority task. As illustrated in
Figure 2, task T3 - which is running - is pre-empted by task T1 is at time 10: it carries
on after the completion of task T1.

TTH architectures

Where a TTC architecture is not found to be suitable for a particular system, use of a
TTRM design may not be necessary. For example, a single, time-triggered, pre-
empting task can be added to a TTC architecture, to give what we have called a
“time-triggered hybrid” (TTH) scheduler (Pont, 2001; Maaita and Pont, 2005) and
others have called a “multi-rate executive with interrupts” (Kalinsky, 2001).

Use of a TTH scheduler allows the system designer to create a static schedule made
up of (i) a collection of tasks which operate co-operatively and (ii) a single – short -
pre-empting task (see Figure 3) . In many of the systems employing a TTH
architecture, the pre-empting task will be used for periodic data acquisition, typically
through an analogue-to-digital converter or similar device. Such requirements are
common in, for example, control systems (Buttazzo, 2005) and applications which
involve data sampling and Fast-Fourier transforms (FFTs) or similar techniques:

292

Figure 3: Illustrating TTH design

Solution

Here are the guidelines about choosing appropriate TT architecture.

When to use TTC

Use TTC architecture where ever possible as first choice because of its simple and
efficient design. Of course, this architecture is not always appropriate. The main
problem is that long tasks will have an impact on the responsiveness of the system.
This concern is succinctly summarised by Allworth: “[The] main drawback with this
[co-operative] approach is that while the current process is running, the system is not
responsive to changes in the environment. Therefore, system processes must be
extremely brief if the real-time response [of the] system is not to be impaired.”
(Allworth, 1981).

We can express this concern slightly more formally by noting that if the system must
execute one of more tasks of duration X and also respond within an interval T to
external events (where T < X), a pure co-operative scheduler will not generally be
suitable. In more simple words duration of a task (execution time) must be less than
the tick interval of the system.

In practice, it is sometimes assumed that a TTC architecture is inappropriate because
some simple design options have been overlooked, see pattern BUFFERED OUTPUT

When to use TTH

For systems where TTC is not an appropriate choice, avoid jumping to fully pre-
emptive architectures as they incur higher overheads because of context switching
involved during task pre-emption. Check for TTH solution which provides a limited
level of pre-emption. For example, consider a wireless electrocardiogram (ECG)
system. An ECG is an electrical recording of the heart that is used for investigating
heart disease. In a hospital environment, ECGs normally have 12 leads (standard
leads, augmented limb leads and precordial leads) and can plot 250 sample-points
per second (at minimum). In the portable ECG system considered here, three
standard leads (Lead I, Lead II, and Lead III) were recorded at 500 Hz. The electrical
signal were sampled using a (12-bit) ADC and – after compression – the data were
passed to a “Bluetooth” module for transmission to a notebook PC, for analysis by a
clinician see (Phatrapornnant and Pont, 2006).

293

In one version of this system, we are required to perform the following tasks:

 Sample the data continuously at a rate of 500 Hz. Sampling takes less than 0.1
ms.

 When we have 10 samples (that is, every 20 ms), compress and transmit the
data, a process which takes a total of 6.7 ms.

In this case, we will assume that the compression task cannot be neatly decomposed
into a sequence of shorter tasks, and we therefore cannot employ a pure TTC
architecture. However, even if you cannot – cleanly - solve the long task / short
response time problem, then you can maintain the core co-operative scheduler, and
add only the limited degree of pre-emption that is required to meet the needs of your
application.

For example, in the case of our ECG system, we can use time-triggered hybrid
architecture. In this case, we allow a single pre-empting task to operate: in our ECG
system, this task will be used for data acquisition. This is a time-triggered task, and
such tasks will generally be implemented as a function call from the timer ISR which
is used to drive the core TTC scheduler. As we have discussed in detail elsewhere
(Pont, 2001: Chapter 17) this architecture is extremely easy to implement, and can
operate with very high reliability. As such it is one of a number of architectures,
based on a TTC scheduler, which are cooperatively based, but also provide a
controlled degree of pre-emption.

When to use TTRM

If both TTC and TTH architectures are not appropriate for your application and full
pre-emption is a necessary, then TTRM architecture may match your requirements.

Overall, it has been claimed that the main advantage of TTRM scheduling is flexibility
during design or maintenance phases, and that such flexibility can reduce the total
life cost of the system (Locke, 1992; Bate, 1998). The schedulability of the system
can be determined based on the total CPU utilisation of the task set: as a result -
when new functionalities are added to the system – it is only necessary to recalculate
the new utilisation values. In addition, unlike a TTC design, there is no need to break
up long individual tasks in order to meet the length limitations of the minor cycle. The
need to employ harmonic frequency relationships among periodic tasks is also
avoided. Finally, the scheduling behaviour can be predicted and analysed using a
task model proposed by Liu and Layland (1973).

However, the scheduling overheads of TTRM schedulers tend to be larger than those
of TTC schedulers because of the additional complexity associated with the context
switches when saving and restoring task state (Locke, 1992). This is a concern in
embedded systems with limited resources.

Locking mechanisms

If you use any architecture which involves pre-emption (TTH or TTRM), you need to
consider ways of preventing more than one task from accessing critical resources at
the same time. See Patterns CRITICAL SECTION for more details.

294

Overall strengths and weaknesses

 Use of a TT scheduler tends to result in a system with highly predictable
patterns of behaviour.

 Inappropriate system design using this approach can result in applications
which have a comparatively slow response to external events.

References

Albert, A. and R. Bosch GmbH (2004). Comparison of Event-Triggered and Time-
Triggered Concepts with regard to Distributed Control Systems. Embedded
World. Nurnberg: 235-252.

Allworth, S. T. (1981). Introduction to Real-Time Software Design, Macmillan.
Audsley, N. C., A. Burns, et al. (1991). Hard Real-time Scheduling: The Deadline

Monotonic Approach. Eight IEEE Workshop on Real-time operating Systems
and Softwares., Atlanta, USA.

Ayavoo, D. (2006). The Development of reliable X-by-Wire Systems: Assessing The
Effectiveness of a Simulation First Approach. Department of Engineering,
University of Leicester. PhD Thesis.

Ayavoo, D., M. J. Pont, et al. (2005). A Hardware-in-the-Loop' testbed representing
the operation of a cruise-control system in a passenger car. Proceedings of
the Second UK Embedded Forum. Birmingham, UK, University of Newcastle
upon Tyne.

Baker, T. P. and A. Shaw (1988). "The Cyclic Executive Model and Ada. "Real-Time
Systems Springer Netherlands 1(1): 7-25.

Bate, I. J. (1998). Scheduling and timing analysis for safety critical real-time systems.
Department of Computer Science, University of York. PhD Thesis.

Bate, I. J. (2000). Introduction to Scheduling and Timing Analysis, The use of Ada in
Real-Time System. IEEE.

Burns, A. and A. J. Wellings (1994). "HRT-HOOD: a structured design method for
hard real-time systems." Real-Time Systems 6(6): 73-114.

Burns, A. and B. Wellings (1997). Real-Time Systems and Programming Languages,
Addison Wesley.

Buttazzo C, G. (2003). Rate Monotonic vs EDF : Judgement Day. LNCS, Springer.
2855/2003: 67-83.

Buttazzo, C. G. (1997). Hard Real-Time Computing Systems Predictable Scheduling
Algorithms and Applications, Kluwer Academic Publishers.

295

BUFFERED OUTPUT
Design pattern

Context

 You are applying the pattern EVENTS TO TIME (TTC)

 You need to deal – cleanly – with a “long task” (that is, a task which may have an
execution time greater than your chosen tick interval.

 You need to send a significant amount of data between your processor / system
and an external device: the data transfer process will take some time.

Problem

How can you structure the data-transfer tasks in your application in a manner which
is compatible with TTC architecture?

Background

We illustrate the need for the present pattern with an example.

Suppose we wish to transfer data to a PC at a standard 9600 baud. Transmitting
each byte of data, plus stop and start bits, involves the transmission of 10 bits of
information (assuming a single stop bit is used). As a result, each byte takes
approximately 1 ms to transmit.

Now, suppose we wish to send this information to the PC:

Current core temperature is 36.678 degrees

If we use a standard function (such as some form of printf()) the task sending these
42 characters will take more than 40 milliseconds to complete. In a system
supporting task pre-emption, we may be able to treat this as a low-priority task and let
it run as required. This approach is not without difficulties (for example, if a high-
priority task requires access to the same communication interface while the low-
priority task is running). However, with appropriate system design we will be able to
make this operate correctly under most circumstances.

Now consider the equivalent TTC design. We can’t support task pre-emption and a
long data-transmission task (around 40 ms) is likely to cause significant problems.
More specifically, if this time is greater than the system tick interval (often 1 ms, rarely
greater than 10 ms) then this is likely to present a problem as shown in Figure 1. The
RS-232 task is a “long task” has duration greater than the system tick and so is
missing the next tick intervals.

296

Figure 1: A schematic representation of the problems caused by sending a

long character string on an embedded system. In this case, sending the
massage takes 42 ms while the System tick interval is 10 ms.

Perhaps the most obvious way of addressing this issue is to increase the baud rate;
however, this is not always possible, and - even with very high baud rates - long
messages or irregular bursts of data can still cause difficulties.

More generally, the underlying problem here is that the data transfer operation has a
duration which depends on the length of the string which we wish to submit. As such,
the worst-case execution time (WCET) of the data transfer task is highly variable
(and, in a general case, may vary depending on conditions at run time). In a TTC
design, we need to know all WCET data for all tasks at design time. We require a
different system design. As (Gergeleit and Nett, 2002) have noted “ Nearly all known
real-time scheduling approaches rely on the knowledge of WCETs for all tasks of the
system.” The known WCET of tasks will be helpful for developers in designing the
offline schedule and preventing task overrun.

Solution

Convert a long data-transfer task (which is called infrequently and may have a
variable duration) into a periodic task (which is called comparatively frequently and
which has a very short – and known – duration).

A BUFFERED OUTPUT consists of three key components:

 A buffer (usually just an array, implemented in software)

 A function (or small set of functions) which can be used by the tasks in your
system to write data to the array.

 A periodic (scheduled) task which checks the buffer and sends a block of data to
the receiving device (when there are data to send).

Figure 2 provides an overview of this system architecture. All data to be sent are first
moved to a software buffer (a very fast operation). The data is then shifted – one
block at a time – to the relevant hardware buffer in the microcontroller (e.g. 1 byte at
a time for a UART, 8 bytes at a time for CAN, etc): this software-to-hardware transfer
is carried out every 1ms (for example), using a (short) periodic task.

297

Figure 2: An overview of the BUFFERED OUTPUT architecture.

Hardware resource implications

In most cases, the CPU requirements for BUFFERED OUTPUT are very limited,
provided we take reasonable care at the design stage. For example, if we are
sending message over a CAN bus and we know that each message takes
approximately 0.15 ms to transmit; we should schedule the data transmission task to
check the buffer at an interval > 0.15 ms. If we do this, the process of copying data
from the software buffer to the (CAN) hardware will take very little time (usually a
small fraction of a millisecond).
For very small designs (e.g. 8-bit systems) the memory requirements for the software
buffer can prove significant. If you can’t add external memory in these
circumstances, you will need to use a small buffer and send data as frequently as
possible (but see the comment above).
In some cases, hardware support can help to reduce both memory requirements and
processor load. For example, if using UART-based data transmission, UARTs often
have 16-byte hardware buffers: if you have these available, it makes sense to employ
them.

Portability

This technique is generic and highly portable.

Reliability and Safety Issues

 Special care must be taken while defining buffer length, the data transfer should
not cause any buffer overflow.

 Applications that involve high amount of data transfer like video and DSP
applications or data acquisition systems the use of buffer might not be a viable
solution.

Overall strengths and weaknesses

 Use of buffered output is an easy solution for faster data transfer from a task

running in an embedded application

 One has to be very careful while defining the buffer length, inappropriate buffer

definitions may cause buffer overflow and data loss.

298

POLLED INPUT
Design pattern

Context

 You are applying the pattern EVENTS TO TIME

 You need to make your system responsive to external inputs through interface
like switches.

Problem

How do I build a time-triggered (TT) system which is equivalent of my event-triggered
(ET) system such that it can respond to all (external/internal) input interfaces?

Background

Designing a TT system requires more planning efforts. In a time-triggered co-
operative (TTC) design the possible occurrence and the execution times of all the
tasks needs to be known in advance. The designer has to plan a task schedule
which must execute all the tasks periodically at their allocated time intervals. This
effort makes the system more predictable. In contrast to this, in an event triggered
system the schedule executes the tasks dynamically as the events arrive thus no
guarantee that they meet any timeliness constraints. This is the reason that ET
designs are not recommended for safety critical applications. The event triggered
behaviour in systems is achieved through the use of interrupts. To support these
interrupts, Interrupt Service Routines (ISRs) are provided. Whenever an interrupt
occurs it stops the currently running task and ISR executes to respond to the
interrupt. This “context switching” is an overhead that sometimes raised serious
complications in systems.

The abstract pattern EVENTS TO TIME provides more relevant background information.

Solution

A POLLED INPUT should meet the following specification:

 It should include a periodic task which polls for the occurrence of the event.

 The period of the above task should be set to some value less than or equal

to minimum inter-arrival time24 of the event in question.

The interrupt associated with this event should not be enabled. In fact only one
interrupt associated with the timer responsible for generating system “ticks” should be
enabled.

24

 In ET systems the exact arrival time of events is not known so we assume a minimum
distance between the arrivals of two consecutive events.

299

Hardware resource implications

Different interfaces have different implications under various circumstances. Reading
a switch input imposes minimal loads on CPU and memory resources whereas
scanning the keypad interface imposes both a CPU and memory load.

Reliability and safety issues

One major concern here in migrating from event triggered to time triggered is to make
systems more predictable. Characteristic for the time triggered architecture is the
treatment of (physical) real time as a first order quantity (Kopetz and Bauer 2002) this
implies to the fact that time triggered systems must be very carefully designed, the
task activation rates must be fixed according to the system dynamics i.e. how
frequent an input needs to be polled.

Portability

This technique is generic and highly portable.

Overall strengths and weaknesses

 A flexible technique, programmer can easily do changes in code for example if
auto repeat is required

 It is simple and cheap to implement.

 Provides no protection against out of range inputs or electrostatic discharge
(ESD)

 More processor utilisation in polling for tasks

300

CHOOSING TASK PARAMETERS
Design pattern

Context

 You are in the process of creating or upgrading an embedded system, based

on a single processor.

 Because predictable and highly-reliable system operation is a key design

requirement, you have opted to employ a “time-triggered” system architecture

in your system, if this proves practical.

Problem

How can you choose your tasks parameters such as offset and task order to allow
effective use of a TT Scheduler as the basis of your embedded system?

Background

Whether a TTC or TTH implementation is used, a number of key scheduler/task
parameters must be determined (including the tick interval, task order, and initial
delay or phase of each task). Inappropriate choices may mean that a given task set
cannot be scheduled at all or inappropriate decisions may still lead to unnecessarily
high levels of task jitter. The following parameters are used to characterise each
task (Liu and Layland, 1973; Tindell, Burns et al., 1994; Buttazzo, 1997).

1. Period (Pi): is the time interval after which task Ti should be repeated, in other

words it is the length of time between every two invocations.

2. Offset (Oi): is the time, measured from the start of the system power on, after

which the first period of task Ti starts.

3. Release time (ri): is the time, measured from the start of the task period, after

which task Ti becomes ready to run.

4. Deadline (Di): is the time before which task Ti should be completed. Deadline can

be measured from the start of the system power on, in which case it is called

absolute deadline. Alternatively it can be measured from the start of the task

period, in which case it is called relative deadline

 These parameters are shown in Figure 1.

301

Figure 1: Illustrating task parameters

Another important parameter is the order of tasks in which they are added to the
schedule. Inappropriate choice of these parameters may lead to high values of jitter,

increased power consumption or a task set cannot be scheduled at all.

Solution

Choosing the correct offset

A task offset specifies when a task should start or more precisely it specifies the first
tick at which the first instance of a task is ready to run. For a task set given with
WCET, period and deadline start scheduling all the tasks with offset 0 if the sum of
execution times of all the tasks is less than or equal to the length of tick interval.
While assigning task offsets you can take care of the following situations.

For example, the tasks in Table 1 can be scheduled if a tick interval of 3 ms is used
and the tasks will meet their deadlines as well.

Table 1: Task specifications for a system in which task offsets are
appropriate (all the tasks will meet their deadlines)

Task WCET(ms) Deadline
(ms)

Period (ms) Offset
(ticks)

A 0.5 3 3 0

B 0.75 3 6 0

C 1.5 3 6 0

On the contrary, task set in Table 2 can be scheduled with a tick interval of 5ms but
Task C will missed its deadline as shown in Figure2.

Table 2: Task specifications for a system in which task offsets are in
appropriate (Task C will not be able to meet its deadline)

Task WCET(ms) Deadline
(ms)

Period (ms) Offset
(ticks)

A 1 5 5 0

B 1.5 5 10 0

C 3 5 10 0

Pi

302

Figure 2: Task C missed deadline because of incorrect offset

By changing the offset to 1, Task C will meet its deadline as shown in Figure 3.

Figure 3: Task C will meet deadline after changing offset to 1

Inappropriate assignment of task offsets can also increase the jitter value in task. For
example consider the task set given in Table 3. With the given set of parameters
Task C will run after Task A and Task B in some ticks and just after Task A in some
other ticks (see Figure 4). This kind of situation poses a kind of unpredictability in
system behaviour. This can be adjusted by keeping the jitter constant in Task C in all
ticks. Changing the offset of Task C can help to keep the jitter value constant in all
the ticks see Table 4 and Figure 5.

Table 3: Task offset that can cause varied jitter in Task C

Task WCET(ms) Deadline
(ms)

Period (ms) Offset
(ticks)

A 1 5 5 0

B 1.5 20 20 0

C 1 10 10 0

303

Figure 4: Illustrating Tasks shown in Table 3 above:

Table 4: Changing the offset of Task C to 1 can make the jitter constant for

all task instances

Task WCET(ms) Deadline
(ms)

Period (ms) Offset
(ticks)

A 1 5 5 0

B 1.5 20 20 0

C 1 10 10 1

Figure 5: Changing of task offset can keep the jitter constant

Choosing correct task order

Task order can also affect jitter. It is important to consider the task order for jitter
sensitive tasks. For example consider the schedule given in Table 5 and Figure 6.

304

Table 5: Example of incorrect order of task set which can cause varied jitter
in task C

Task WCET(ms) Deadline
(ms)

Period (ms) Offset
(ticks)

A 2 10 10 0

B 3 20 20 0

C 4 30 30 0

Figure 6: Task C showing variations in jitter because of incorrect task order

Changing the task order can keep the jitter constant in Task C. The new order of
tasks is shown in Table 6 and Figure 7.

Table 6: Rearrangement of the task order to keep the jitter constant in task
C

Task WCET(ms) Deadline
(ms)

Period (ms) Offset
(ticks)

A 2 10 10 0

C 4 30 30 0

B 3 20 20 0

305

Figure 7: Rearrangement of task order will make task C run after task A

every time

Reliability and safety implications

Inappropriate selection of task parameters can make the system unreliable

Overall strengths and weaknesses

 Uses of appropriate task parameters will result in stable system with all the tasks

meet their deadlines and reduced/constant values of jitter.

 Inappropriate system design using this approach can result in applications which

have a comparatively slow response to external events.

References
Liu, C. L. and J. W. Layland (1973). "Scheduling algorithms for multiprogramming in a
hard real-time environment." Journal of the ACM 20(1): 46-61.

Tindell, K. W., A. Burns, et al. (1994). "An extendible approach for analyzing fixed
priority hard real-time tasks." Real-Time Systems 6: 133-151.

Buttazzo, C. G. (1997). Hard Real-Time Computing Systems Predictable Scheduling
Algorithms and Applications, Kluwer Academic Publishers.

306

BALANCED SYSTEM
Abstract pattern

Context

 You are developing an embedded system.

 You have decided to move to or are already working with TT architectures.

 Predictable timing behaviour is the key requirement.

Problem

How can you ensure that your TT system has minimum possible jitter?

Background

To get a guaranteed predictable system, choice of appropriate architecture on top of
the application is extremely important. In applications which are based on an ET
architecture, tasks run sporadically in response to interrupts whereas in a TT system,
tasks are periodic. However, there is a single interrupt which generates “ticks” to
control the task periods.

To achieve certification standards it is advisable to avoid the use of arbitrary
interrupts in running the tasks because of the increased difficulty in attaining sufficient
test coverage. One particular reason is, arbitrary interruptions lead to a vast increase
in the potential paths within software when compared to code with no interruptions
(Bate, 1998).

From the predictability point of view, this would make TT architecture an appropriate
choice for a number of applications.

Only choosing TT architecture does not fully guarantee the system predictability as
there are a number of other factors which could make a TT system unpredictable.
The parameters of tasks which are running under a TT architecture such as release
time, execution time, finish time and deadline are required to be known in advance.
The prior knowledge of these parameters plays an important role in guaranteeing the
overall predictability of the system. However, systems those run in practice generally
show considerable variations in these parameters. These variations are termed as
jitter.

Jitter in tasks

To understand the concept of jitter more clearly, consider the different instances of a
task (Task A) as shown in Figure 4. For tasks in TT systems, release time can be
considered as the point at which we would ideally expect a task to start its execution.
In actual practice this is delayed due to factors such as scheduler overhead and
variable interrupt response times (Liu, 2000; Maaita and Pont, 2005). The actual
start time of a task is always deviated from its (pre-determined) release time and we
can say that tasks always suffer from release jitter - see unequal values of x1, x2 and
x3 in Figure 1.

307

Figure 1: Illustration of jitter in different calls of a periodic task

In real-time systems one important parameter is the upper bound of the execution
time for a task, known as worst case execution time (WCET). Unfortunately,
determining WCET of tasks is rarely straightforward (Puschner, 2002; Puschner,
2003). This is because the program code of a task may contain conditional branches
and / or loops and each may take different times to execute (Liu, 2000). The decision
between one branch and the other during task execution is dependent on the input
data. This makes predicting a branch prior to execution a very difficult task. All these
factors lead to variable execution time of a task and this is known as execution jitter
(see imbalanced values of y1, y2 and y3 in Figure 1). The cascading effects of
release and execution jitter will result in the deviation of task finish time, shown as z1,
z2 and z3 in Figure 1.

Ideally, a predictable system should be jitter free. Considering Figure 1 once again,
we can say that in a zero jitter system:

x1 = x2 = x3
y1 = y2 = y3
z1 = z2 = z3

Some hardware features such as variations in the frequencies of oscillator and use of
cache memories (Kirner and Puschner, 2003) also contribute to jitter in tasks.

For some applications, such as data, speech or music playback (for example) these
variations may make no measurable difference to the system. However, for
applications in real-time control systems which involve sampling, computation and
actuation, such delays in operations are very risky for the overall performance of the
system. The presence of jitter can have a degrading impact on the performance of

real-time systems or can even lead to critical failure (Martin, 2005).

Solution

A BALANCED SYSTEM is one which has minimum values for all types of jitters. One
way we can address the challenges discussed in the previous section is to tackle
them directly. For example, rather than hoping that we can predict the WCET (for
example, through static code analysis or measurement) we can set out from start to
ensure that our code is “balanced” and that the WCET and BCET (best case
execution time) are always fixed (and equal). Once we have balanced the code, it
becomes comparatively easy to determine (during system testing and during system
execution) whether the system tasks actually have a fixed execution time.

Related patterns

In a task, balancing can be required at different levels. For example, we may need to
balance the whole task or just sections (for example, areas with loops and conditional

308

code). In some cases, the goal may be to fix the timing of an activity in the task
relative to the start of the task (for example, we may wish to ensure that exactly 0.2
ms after the start of a task a sample is taken from a data source).

 SANDWICH DELAY provides a simple solution to balance a task through exclusive

use of a hardware timer.

 SINGLE PATH DELAY is a programming approach to ensure that blocks of code

involving loops or decision structures will have a single execution path.

 TAKE A NAP is an alternative to achieving balanced code for power constrained

systems.

 PLANNED PRE-EMPTION provides a way of achieving balancing for pre-emptive

systems.

Reliability and safety implications

Extra care is needed while selecting the tasks/sections of code to be balanced. This
is because balancing makes use of additional hardware and software. Devoting
resources unnecessarily to balance tasks which are not critical could lead to a fatal

rather than predictable system.

Overall strengths and weaknesses

 A BALANCED SYSTEM is more robust against the presence of various types of
jitters in the system.

 Results in a more predictable timing behaviour of the system.

 Requires (non-exclusive) access to some hardware resources, for example,
timers.

 Balancing a system requires extra effort in writing code for balancing which in
turn increases CPU utilisation.

References

Kirner, R. and P. Puschner (2003). Discussion of Misconceptions about WCET
Analysis. 3rd Euromicro International workshop on WCET Analysis.

Liu, J. W. S. (2000). Real-Time Systems, Prentice Hall.
Maaita, A. and M. J. Pont (2005). Using 'planned pre-emption' to reduce levels of task

Jitter in a time-triggered hybrid scheduler. Second UK Embedded Forum.
Birmingham, UK: 18-35.

Martin, T. (2005). The insider's guide to the Philips ARM7 Based microcontrollers,
Coventry, Hitex, UK, Ltd.

Puschner, P. (2002b). Is WCET Analysis a non-problem? Towards new Software and
Hardware architectures. 2nd International Workshop on Worst Case
Execution Time Analysis, Vienna, Austria.

Puschner, P. (2003). The single-path approach towards WCET-analysable software.
IEEE International Conference on Industrial Technology.

309

SANDWICH DELAY
Design pattern

Context

 You are using the pattern BALANCED SYSTEM.

 In your application you are running two activities, one after the other.

Problem

How can you ensure that the execution time of the tasks is always predictable so that
the release time of the two activities is known and fixed?

Background

Suppose we have a system executing two functions periodically using a timer ISR, as
outlined in Listing 1.

//Interrupt service Routine (ISR) invoked by timer overflow

every 10ms

void Timer_ISR (void)

{

 Do_X(); //WCET approx 4.0ms

 Do_Y(); //WCET approx 4.0ms

}

Listing 1: System executing two functions using timer ISR

According to Listing 1, function Do_X() will be executed every 10ms. Similarly,
function Do_Y() will be executed every 10 ms, after Do_X() completes. For many
resource-constrained applications (for example, control systems) this architecture
may be appropriate. However, in some cases, the risk of jitter in the start times of
function Do_Y() may cause problems. Such jitter will arise if there is any variation in
the duration of function Do_X(). In Figure 1, the jitter is reflected in differences
between the values of ty1 and ty2 (for example).

Figure 1: The impact of variations in the duration of Do_X() on the release jitter of

Do_Y()

Solution

A SANDWICH DELAY can be used to solve this type of problem. More specifically, a
SANDWICH DELAY provides a simple but highly effective means of ensuring that a

310

particular piece of code always takes the same period of time to execute: this is done
using two timer operations to “sandwich” the activity you need to perform. Please
refer to code segment in Listing 1.

//ISR invoked by timer overflow every 10ms

void Timer_ISR (void)

{

 /*Execute Do_X() in a ‘Sandwich Delay’ - BEGIN

 Set timer to overflow after 5 ms*/

 Set_Sandwich_Timer_overflow(5);

 Do_X(); //WCET approx. 4.0ms

 //Wait for timer to overflow

 Wait_Sandwich_Timer_Overflow();

 //Execute Do_X() in a ‘Sandwich Delay’ - END

 Do_Y(); //WCET approx 4.0ms

 }

Listing 1: Pseudo code for SANDWICH DELAY

The timer is set to overflow after 5 ms (a period slightly longer than the WCET of
Do_X()). We then start this timer before we run the function and - after the function is
complete - we wait for the timer to reach 5 ms value. In this way, we ensure that as
long as Do_X() does not exceed a duration of 5 ms – Do_Y() runs with minimum jitter
as shown in Figure 2.

Figure 2: Reducing the impact of variations in the durations of Do_X() on the release

jitter of Do_Y() through the use of SANDWICH DELAY

Sandwich delays are also found to be useful for systems involving pre-emption, for
example, TTH designs. In such designs controlling the execution jitter of a pre-
emptive task using a delay (slightly bigger than the WCET of the pre-emptive task)
showed considerable reduction in the period jitter of the co-operative task - see
Figure 3.

311

Figure 3: Reducing the impact of variations in the durations of pre-emptive task on the

release jitter of co-operative tasks through the use of SANDWICH DELAY in TTH
designs

Reliability and safety implications

Use of Sandwich Delay is generally straight forward, but there are three potential
issues of which you should be aware.

You need to know the duration WCET of the functions to be sandwiched. If you
underestimate this value, the timer will already have reached its overflow value when
your function(s) complete, and the level of jitter will not be reduced (indeed the
Sandwich Delay is likely to slightly increase the jitter in this case)
You must check the code carefully, because the “wait” function may never terminate
if the timer is incorrectly set up. In these circumstances a monitoring technique may
help to rescue the system. See patterns SYSTEM MONITORS, WATCHDOG, LOOP

TIMEOUT and TASK GUARDIAN.

You will rarely manage to remove all jitter using such an approach, because the
system cannot react instantly when the timer reaches its maximum value (at the
machine-code level, the code used to poll the timer flag is more complex than it may
appear, and the time taken to react to the flag change will vary slightly). A useful rule
of thumb is that jitter levels of around 1 microsecond will still be seen using a
SANDWICH DELAY.

Overall strengths and weaknesses

 A simple way of ensuring that the WCET of a block of code is highly predictable.

 Requires (non-exclusive) access to a timer.

 Will only rarely provide a “jitter free” solution: variations in code duration of

around 1 microsecond are representative.

312

SINGLE PATH
Design pattern

Context

 You are using the pattern BALANCED SYSTEM.

 You have decided to balance sections of code involving loops and decision

structures implemented within the application tasks.

Problem

How would you ensure that the execution time of your application code sections
involving loop and decision structures will remain fixed every time they run?

Background

Variable execution times of tasks can lead to unpredictable behaviour in systems.
To understand this more clearly, consider a system running tasks A, B and C as
shown in Figure 1.

Figure 1: Tasks scheduled to be run in a TT system

If for any reason, task A takes a longer time to run than expected, task C will run
before task B (if it has higher priority than task B) and task B will not be able to finish
within the system tick as shown in Figure 2.

Figure 2: Illustration of overall change in system behaviour if the execution time of task

A takes longer than expected

The point to be noted here is, if task A varies in duration it will affect the overall
system behaviour. Tasks involving loops and decision structures (e.g., ‘if-else’,
‘switch’, etc.) are more likely to have variable execution times. If such tasks can be
been balanced, we can achieve more stable and predictable system behaviour.

Solution

SINGLE PATH helps to achieve fixed execution time for tasks involving decision
structures and loop statements. The single-path programming approach was
introduced by Peter Puschner (Puschner, 2003) as part of his extensive research on
WCET analysis. According to single-path programming paradigm, programs that

313

involve loops and decision structures (e.g., ‘if-else’) will have a single execution path.
This could be achieved at the expense of higher but fixed and predictable execution
time as compared to traditional programming. Single-path can be achieved by
replacing input-data dependencies in the control flow by predicated code instead of
branched code. Thus, the instructions are associated with predicates and get
executed if the predicate evaluates to true. In other case (if instruction evaluates to
false), the microprocessor replaces the instruction with a NOP (no-operation)
instruction.

Translation of Conditionals

Consider a piece of code where the developer is using an if statement to check
whether or not a particular condition is true, as shown in the left hand side code
segment in Listing 3. If the condition being evaluated (cond) is true, the value of the
variable result is set to expr1 otherwise the value of result is set to expr2. As we
cannot be sure which of the two expressions (expr1 or expr2) will be calculated, or in
other words, which execution path the code will follow, it becomes difficult to predict
the execution time of the section of the task with the conditional statement.

Using SINGLE PATH DELAY, we assign temporary variables temp1 and temp2 for
storing the results of expr1 and expr2 respectively. The conditional move instruction
“movt” copies the value of temp1 to the variable result if the test condition evaluates
to true, otherwise processor performs a “no operation” (NOP) instruction. On the
other hand, if the test condition evaluates to false, “movf” will copy the value of temp2
to result otherwise NOP instruction will be executed. In this way the translation
basically generates a sequential code as shown in the right hand side code segment

in Listing 1.

Listing 1: Sequential code generated from a branching statement using if-conversion
[adapted from Puschner, 2003]

Translation of loops

Consider a while loop as shown in Listing 4 which executes a set of statements
based on two conditions being ‘true’ – a pre-condition, cond-old and a condition,
cond-new.

--precondition: cond-old

while cond-new do max expr times

{

stmts

}

Listing 2: Original while loop [adapted from Puschner, 2003a]

if(cond)

{

 result = expr1;

 }

else

{

 result = expr2;

}

temp1 = expr1;

temp2 = expr2;

test cond;

movt result, temp1;

movf result, temp2;

314

To translate this loop to have a single path of execution, a boolean variable finished
is introduced – this variable stores information as to whether the original loop has
executed the current iteration or has already terminated. The while loop shown in
Listing 9 above can be translated as follows (Puschner, 2003a): First the loop is
translated to a simple counting loop (e.g., a for loop) with the iteration count set to be
equal to the maximum iteration count of the original loop (in this case, expr). The
pre-condition, cond-old, is used to build a new branching statement inside the new
loop.

A new conditional statement that has been generated from the old loop condition
(cond-new) is transformed into a conditional assignment (using the newly introduced
boolean variable finished) with constant execution time. As a result, the entire loop
executes in constant time.
This new conditional statement is placed around the body of the original loop and
simulates the data dependent termination of the original loop in the newly generated
counting loop.

finished := false;

for i := 1 to expr do

begin

if not cond-new

then finished := true;

if cond-old and not finished

then stmts

end

Listing 3: while loop with a constant execution count [adapted from Puschner, 2003]

Overall strengths and weaknesses

 Helps to produce constant execution time for code sections involving loops and
conditional statements.

 Its use is limited to hardware which supports “conditional move” or similar
instructions.

 It is likely to increase the power consumption because the CPU will always
execute the single-path code for a fixed (maximum) period. During this time, the
processor will be in “full power” mode.

References

Puschner, P. (2003). The single-path approach towards WCET-analysable software.
IEEE International Conference on Industrial Technology.

315

TAKE A NAP
Design pattern

Context

 You are using the pattern BALANCED SYSTEM.

 You are using a system which is extremely power constrained.

Problem

How would you ensure the WCET of your application code sections involving loop
and decision structures remains constant with reduced power consumption?

Background

SANDWICH DELAY and SINGLE PATH DELAY provide ways to achieve fixed execution
time. In systems where power consumption is a concern, neither a SANDWICH DELAY
nor a SINGLE PATH DELAY is an attractive solution, because – to achieve balanced
code – we need to run the CPU at “full power” at all times. For such systems we
need to find out a way to achieve balanced code without any extra power
consumption.

Solution

For systems which are extremely resource constrained (especially power) TAKE A NAP
provides a way to achieve balanced code with reduced power consumption.

Create balanced code by putting the control flow statement within a ‘Sandwich Delay’
(see pattern SANDWICH DELAY). This will ensure that the particular piece of code will
always have a constant execution time. For example consider the code segment
given in Listing 1.

 for (i = 0; i < x; i++)

 {

 // body of the loop

 }

Listing 1: Simple For Loop

The execution time of the loop is dependent on the value of the variable x. Let MAX
be equal to the maximum number of iterations the loop can execute. Let Time(x) be
equal to the time spent in executing x iterations. The value of Time(x) may be
measured using hardware timers. Therefore, the time spent in performing (MAX – x)
iterations may be calculated using the value of Time(x) as follows:

 Time (MAX – x) = (MAX – x) * Time(x)/x (1)

Once the for loop executes x number of times, the processor is put to sleep for a
duration equal to Time (MAX – x). A timer interrupt may be generated when the
hardware timer count reaches the value Time(MAX - x)and this can be used to
awaken the processor. Using this technique, code segment in Listing 6 is ensured to

316

always – irrespective of the value of x – have a constant execution time equal to the
value of Time(MAX) (i.e. the time spent in executing MAX number of iterations of the
for loop). Thus, in addition to enabling a ‘power – saving mode of the processor, the
resulting ‘balanced’ code with the SANDWICH DELAY incorporated, provides an
additional layer of predictability to the real-time system.

The balanced version of the code segment in Listing 6 may be written as shown in
Listing 2.

//start the timer

Timer_Start();

for(i = 0; i < x; i++)

{

 //body of the loop

}

//stop the timer

Timer_Stop();

//Store timer count value after x iterations

Time(x) = Timer_Count_Value;

//Determine value of Time(MAX – x)

Time(MAX – x) = (MAX-x) * Time(x)/x;

//Reset the timer

Timer_Reset();

//Set the timer interrupt to occur after duration Time(MAX–x)

Set_Timer_Intterrupt(Time(MAX-x) + “safety margin”);

//Put processor to sleep

Processor_Sleep();

Listing 2: Balancing of sections with reduced power consumption

It must be noted that the for loop in code segment above must run at least once for
the value of Time(MAX - x) to be determined. Furthermore, a small ‘safety margin’
has been added to the calculated time to ensure that there is sufficient time for the
processor to enter sleep mode even when the loop is executed for the maximum
number of iterations.

TAKE A NAP may also be applied to other control flow and conditional branching
statements such as while, if-else and switch.

317

Overall strengths and weaknesses

 A simple technique for improving system reliability by providing an additional

layer of predictability is described here.

 Ensures fixed execution time for each task in the system along with reduced

power consumption.

 The maximum number of iterations of the control flow statement (i.e. the value of

MAX) must be known in advance.

 Requires access to a hardware timer.

318

PLANNED PRE-EMPTION
Design pattern

Context

 You are using the pattern BALANCED SYSTEM.

 Your system is based on a time-triggered scheduler – specifically on TTH

architecture.

Problem

How would you ensure the predictable scheduler behaviour in TTH designs?

Background

Some background material related to this pattern is already presented in the
introduction of this report (see section TTH design).

During normal operation of the systems using the TTH Scheduler architecture,
function main() runs an endless while loop (see Listing 1) from which the function
C_Dispatch() is called: this in turn launches the co-operative task(s) currently
scheduled to execute. Once these tasks are completed, C_Dispatch() calls Sleep(),
placing the processor into a suitable “idle” mode.

while(1)

 {

 C_Dispatch(); // Dispatch Co-op tasks

 }

void C_Dispatch(void)

 {

 // Go through the task array

 // Execute Co-operative tasks as required

 // The scheduler may enter idle mode at this point

 Sleep();

 }

void P_Dispatch_ISR(void)

 {

 P_Task();

 }

Listing 1: TTH Scheduler

319

A hybrid scheduler provides limited multi-tasking capabilities to the system. Such
systems could exhibit unpredictable behaviour because of two reasons (Maaita,
2008):

1. Existence of unbalanced code branches in the timer ISR which leads to
variable ISR execution times. This in turn leads to unpredictable scheduler
behaviour represented by the appearance of task starting jitter.

2. The existence of CPU instructions with different execution times (i.e. in terms
of CPU cycles required to execute the instruction). This leads to variable
timer interrupt response times as each of the periodic timer interrupt which
take place throughout the life cycle of the application can occur while the CPU
is in one of the two different states. The CPU may either be running in sleep
(idle) mode shown in Figure 1, or while it is running an instruction and where
the interrupt is only serviced once the currently executing instruction is
finished shown in Figure 2.

Figure 1: Timer Interrupt when CPU is in sleep mode

Figure 2: Timer Interrupt when CPU is in sleep mode

The possible occurrences of timer interrupts could lead to variable timer ISR
response times translate in to task release jitter. In TTH design this release jitter has

320

the largest impact on tasks which regularly execute after a timer tick has occurred
and is, therefore, referred to as “tick jitter”.

Solution

By keeping the processor in the same state as all interrupts takes place would likely
to reduce the tick jitter (Maaita and Pont, 2005). PLANNED PRE-EMPTION makes use
of another hardware timer to put the processor to power saving mode before the
scheduler timer interrupt occurs thus keeping the processor in the same state every
time. Power saving mode or sleep/idle mode is available in almost all embedded
processor for example ARM7 and 8051 family of processors.

We are naming the extra timer used for this purpose as “PP-timer” being use for
PLANNED PRE-EMPTION. To set the overflow value of the PP-timer it is important to
know the WCET in advance so that the processor can have enough time to go to
sleep mode before the scheduler timer interrupt occurs. PLANNED PRE-EMPTION will
reduce the tick jitter as the time required to leave the sleep mode and pursue normal
execution is a static value (Martin, 2005). Figure 3 and Listing 2 illustrates the
implementation of PLANNED PRE-EMPTION.

Figure 3: Operation of Planned pre-emption. All interrupts occur when the processor is

in sleep mode

 while(1)

{

C_Dispatch(); // Dispatch Co-op tasks

}

void C_Dispatch(void)

{

//Go through the task array

//Execute Co-operative tasks as required

//The scheduler may enter idle mode at this point

Sleep();

}

void P_Dispatch_ISR(void)

321

{

ITimer(); //Start idle timer

P_Task(); //Dispatch pre-emptive task

}

void Idle_Timer_ISR(void)

{

Sleep();

}

Listing 2: TTH-PP Scheduler

Reliability and safety implications

Designers have to be careful while using the second timer. The timer should
overflow after most of the interval between “pre-emptive ticks” has elapsed. A more
efficient implementation in terms of the hardware utilised is to use a second match
register on the original scheduler timer. For example, ARM7TDMI supports multiple

match registers per timer (UM10211, 2009) .

Overall strengths and weaknesses

 Produces a more predictable TTH system.

 Provides a simple way of getting non variable timer interrupt response times

which reduce the tick jitter.

 Makes use of additional hardware timer.

 Slight increase in memory requirements because of increased code size than
normal TTH scheduler.

References

Maaita, A. (2008). Techniques for enhancing the temporal predictability of real-time
embedded systems employing a time-triggered software architecture.
Department of Engineering, University of Leicester. PhD Thesis.

Maaita, A. and M. J. Pont (2005). Using 'planned pre-emption' to reduce levels of task
Jitter in a time-triggered hybrid scheduler. Second UK Embedded Forum.
Birmingham, UK: 18-35.

UM10211 (2009). LPC 23XX User manual Rev. 03.

322

SYSTEM MONITOR
Abstract pattern

Context

 You are in the process of creating or upgrading an embedded system, based on a
single processor.

 Because predictable and highly-reliable system operation is a key design
requirement, you have opted to employ a “time-triggered” system architecture in
your system.

Problem

How will you make sure that your system will not ‘hang’ and will keep on functioning
despite unfavourable conditions?

Background

If your application is to be reliable, you need to be able to guarantee that system
should be capable of handling situations which could possibly hang the system.
Some of such possibilities are:

 Incorrect initialisation of hardware peripherals or variables associated with
hardware for example ADC or DAC

 Hardware devices may subjected to an excessive input voltage and may not
work at all

 Task overrun in the system i.e. if a task exceeds its estimated execution time
it will disturb the entire schedule

Solution

In order to ensure system reliability, SYSTEM MONITORS can be implemented to keep
an eye on system functionality. They act like guards to be responsible to make sure
that system is working fine and can take appropriate actions if anything detected
unexpected with the system. Such SYSTEM MONITORS can be implemented with use
of hardware for example timers (see pattern WATCHDOG) or a separate software task
can be design for this purpose (see pattern TASK GUARDIAN) . Also, There are some
good programming practices which could help to avoid possibilities of hanging
system see pattern (LOOP TIMEOUT).

Related patterns and alternative solutions

 WATCHDOG

 LOOP TIMEOUT

 TASK GUARDIANS

323

Overall strengths and weaknesses

 System monitors provides a way of ensuring system reliability

 Require use of additional hardware or code to implement monitoring techniques.

 Implementing such techniques requires care

324

TASK GUARDIAN
Design pattern

Context

 You are using the pattern SYSTEM MONITORS.

 You application is based on simple TTC design

Problem

How would you ensure that the any task overrun in the system should be detected
and handled so that system can continue functioning properly?

Background

Despite many advantages, a pure TTC architecture has a failure mode which has the
potential to greatly impair system performance: this failure mode relates to the
possibility of task overruns (see Figure 1).

Figure 1: Illustrating the impact of task overrun on TTC based system

Figure 1(a) illustrates a TTCS design running two tasks, A and B. Task A runs every
millisecond and Task B runs every 5ms. This system operates as required, since the
duration of Task A never exceeds 0.4 ms. Figure 1(b) illustrates the problems that
result when Task A overruns: in this case, we assume that the duration of Task A
increases to approximately 5.5ms. The co-operative nature of the scheduling in this
architecture means that this task overrun has very serious consequences.

In practice, the situation may be even more extreme: in this example, if Task A never
completes, then Task B will never run again.

During normal operation of the TTC architecture described by (Pont, 2001), the first
function to be run (after the startup code) is Main. Main calls Dispatch which in turn
launches any tasks which are currently scheduled to execute. Once these tasks are
completed, Dispatch calls Sleep, placing the processor into a suitable “idle” mode. A
timer-based interrupt occurs every millisecond (in most implementations) which
wakes the processor up from the idle state and invokes the ISR Update. Update

325

identifies tasks which are due to be launched during the next execution of Dispatch.
The function calls return all the way back to Main, and Dispatch is called again. The
cycle thereby continues (Figure2).

Figure 2: Function call tree for TTC architecture (normal operation)

If a task overrun occurs, then - instead of Sleep being interrupted by the ISR - the
overrunning task is interrupted (Figure 3).

Figure 3: Function call tree for TTC architecture (task overrun)

If Task keeps running then - in the standard TTCS scheduler - it will be periodically
(very briefly) interrupted by Update. However, it cannot be shut down.

Solution

The TASK GUARDIAN approach is proposed in (Hughes and Pont 2004) implemented
mainly in a revised version of Update - is required to shut down any task which is
found to be executing when the Update ISR is invoked.
This will be carried out as follows (see Figure 4):

 The Update ISR will detect the task overrun.

 Update will return control to End_Task (rather than to the problematic task).
End_Task will be responsible for unwinding the stack, as required, to locate
the return address to Dispatch.
Control will then be returned to Dispatch, and - as far as possible - normal
program operation will continue.

Figure 4: Task Guardian mechanism

326

Detection of task overrun

In order for the update task function to know that an overrun has occurred and take
appropriate action, a simple and reliable method is required to detect overruns.
Modifying the code in Dispatch, where the tasks are launched, enables this to be
achieved.

Using a variable such as 'Taskover' the task ID can be stored before the task is
executed (Listing 15). When the task complete, 'Taskover' is assigned a value of
255, a reserved ID to indicate successful task completion.

Taskover = Index //Store task ID

(*SCH_tasks_G[Index].pTask)(); //Run the task

Taskover = 255; //Task completed

Listing 1: Detection of task overrun in dispatch

Returning from update

If a task overrun has occurred then Update must alter its return address so that -
instead of returning to the overrunning task - it returns to End_Task (see Figure 43).

Please note that the End_Task function is required because Update is an FIQ (Fast
Interrupt Request) ISR which - in the ARM architecture used here - has a separate
stack and hence a different set of frames: unlike Update, End_Task runs in User
mode and therefore has access to the stack and frames used by the overrunning
task. It is the job of End_Task to back-trace and rewind the function calls until the
return address to Dispatch is located. The end task function then returns control to
Dispatch. Update must determine how the return address is stored and check if the
address lies outside the critical code labels, indicating that the task has not returned
before setting the 'taskover' variable. The original Update return address is stored so
that End_Task can determine where the task overruns. The Update return address is
then replaced with the start address of End_Task.

Shutting down the task

Having detected a task overrun in Update and changed the return address, control is
transferred to End_Task which must shut down the overrunning task.
End_Task determines whether the overrunning task was a leaf function or a function
containing sub functions (with frames in the stack). The frame pointer (fp) register is
compared with the saved fp register value in Dispatch: if these values are equal, this
indicates that the overrunning task is a leaf function. If the values are different then
the function calls are back traced (using the ATPCS standard) until the frame-stored
fp register is equal to the fp register value saved in Dispatch. The current processor
fp register is then made equal to the stored fp register.

End_Task is then able to check if any registers contents were stored on the stack
when the task was called. The store instruction is found by looking at the contents of
the address referred to by the frame pointer (which identifies the first line of code in
the function). By subtracting 12 from this address, locating it and comparing the
contents with the instruction number for a block transfer function, a store instruction
can be identified.

The store block transfer instruction is then decoded to recover important settings
(such as the names of registers which were stored on the stack and whether the
stack is ascending or descending). The required bits of the store instruction are

327

modified to convert it to a load instruction. The new instruction is then pointed to by
the address in r13, which is loaded into the program counter. The microprocessor
then runs this instruction from RAM: this initiates the return sequence to Dispatch
with the saved registers restored. Note that all the important registers are stored
before and after the task is called to add an extra level of security from register
corruption.

If the overrunning task is a leaf function then the end task function simply returns
where the r14 (link) register, which contains the return address of the dispatch task
function, is loaded into the PC (program counter) register.
When a task is to be shut down a flag is set in Update so that Dispatch will loop

through the task array again: this avoids the possibility of a tick offset error.

Overall strengths and weaknesses

 Task guardians provides a way of detecting and handling task overrun in the

system

 Addition of task guardians adds to the complexity of the code.

 Controlling the transfer of control from Update to End_Task requires care

References

Hughes, Z. M. and M. J. Pont (2004). Design and test of a task guardian for use in
TTCS embedded systems. UK Embedded Forum, Published by University of
Newcastle.

328

APPENDIX C: DOCUMENTS RELATED TO
EMPIRICAL STUDIES

329

Exercise for Experiment 1

Important Instructions:

 You are given with example embedded applications designed with event-

triggered and/or pre-emptive architectures. Your job as a system designer is

to convert these applications to time-triggered design

 You are not required to implement any system programmatically BUT you are

required to analyse each system design and answer the questions given at

the end of each exercise.

 In each of the system you should consider that highly predictable behaviour is

the key design requirement and every system has hard timing constraints

(highly precise timing is a requirement)

Please answer your questions as clear as possible

System A: Traffic Light System

You are quite familiar with the Traffic light system in the UK. As an embedded
system developer you are asked to work on a project which is about improving the
software architecture of controller for the traffic lights and pedestrian crossing lights
used at a typical crossroads in the UK:
 UML state diagram of this system is given below:

Figure 1: State diagram for the Traffic Control System in UK

As you can see in the photo above, crossroads can have traffic lights in each of the
four directions and pedestrian crossing lights on all four sides. A pedestrian crossing
light consists of two images — a green walking man and a red standing man — which
tell a pedestrian if it is safe to cross. In addition, there is a button used to indicate a
pedestrian’s desire to cross and a ‘wait’ signal, showing that the button has been
pressed:

330

Figure 2: Pedestrian crossing for the Traffic Control System in UK

Under normal operation, these traffic lights will cycle through the usual states shown
earlier, with one light always in the red state. The light currently not in the red state
must transition all the way to red before the second set may leave the red state.
When a pedestrian presses the button the ‘wait’ indicator will light up. When the
system reaches one of the states where both lights have transitioned to red, the
pedestrian crossing light will transition to green. At this point, the wait indicator
should turn off and pedestrians are given time to cross. As a warning to both drivers
and pedestrians, returning to normal operation after a crossing will involve a state
where the amber traffic and green pedestrian lights both flash for a period of time.

The current implementation of this system is based on a real time operating system
called FreeRTOS (an open source for embedded applications). The overall
architecture of the system is pre-emptive. There are following tasks in the system with
the following specifications.

Table1: Task specifications for System A

Task Name Priority Delay/Period Execution Time Pre-emptive

Heartbeat 3 50ms 50 µsec Y

Button test 2 10ms 75µsec Y

Update Lights 1 500ms 18ms Y

Figure 3: Output for System A on LCD

331

The system is simulated graphically using the LCD of LPC-2378 development
boards. The LCD is a shared resource25 and is handled it accordingly with API
available in the FreeRTOS for use with critical sections.

Because of the overheads in the system are high it is decided to port to the entire
system to a more reliable architecture which incur lower overheads as much as
possible.

As a system designer you are asked to resolve the following issues.

1. What type of scheduler is your choice for converting this system to time-

triggered architecture?

2. How will you incorporate shared resource protection in your proposed

system? Explain

3. What are the pros and cons of the architecture you chose?

4. Once you achieve “time driven architecture you are required to achieve an

optimized/balanced time driven system with jitter reductions wherever

possible

5. Can you implement any of the monitoring techniques to keep an eye on the

system that it should not hang? Briefly discuss your technique

System B: Data Acquisition System

You are given with a simple embedded system called DAQ implemented on ARM7
LPC2378STK. This system takes readings from an analogue-to-digital (ADC)
converter available on board translates the value to an appropriate string of
characters and transmits the resulting information to the on board LCD controller
when a user press BUT1 on the board. In addition, it can also display an elapsed time
on LCD since the microcontroller was rest last when a user press BUT2.

The system has hybrid design (event + time triggered) because it is running aperiodic
as well as periodic tasks.

There are three interrupts working in the system. There is a TIMER0 interrupt which
is controlling all the periodic tasks in the system and update all the tasks every one
second. In addition, there are two external interrupts (EINT0 and EINT3) working in
the system too. Each of the external interrupt is called when a user presses a button
to see ADC value or the elapsed time value on the LCD screen. For each of the
interrupts their interrupt service routines (ISR) are defined to handle these interrupts

25

 A shared resource is one which is accessed by more than one task at the same time.
Shared resources includes areas of memory (two tasks needs to access the same global
variable) or hardware such as ADC. The code which accesses such shared resources are
referred to as a “critical section”

332

Table 2: Task specifications for System B

Task name Period (ms) Execution
time (µsec)

Pre-emptive

ADC_Sample 5 62 N

ADC_Translate 500 68 N

 ADC_Display 500 325 N

 Inter-arrival
time26

Execution
time

ISR_EINT3 2000 200 Y

ISR_EINT0 2000 250 Y

As a system designer you are asked to migrate this system to a fully time-triggered
design

1. As a first step what changes will you think about in the system?

2. What type of scheduler is your choice for converting this system to time-

triggered architecture?

3. What value of tick interval will you choose for your system?

4. What are the pros and cons of the architecture you chose?

5. Once you achieve “time driven architecture you are required to achieve an

optimized time driven system with jitter reductions wherever possible i.e. how

can you achieve a balanced system?

6. Can you implement any monitoring techniques, which could keep an eye on

the system so that it should not hang in case of any unexpected errors

 System C: FFT Analyser

FFT Analyser is based on two main activities (1) data sampling using analogue-to-
digital converter (ADC) and (2) time-frequency conversion using Fast Fourier
Transform (FFT). Such a setup is common in medical devices for example ECG
machines. This simple embedded application samples the generated signal (at 1
KHz), carry out a Fast Fourier Transform on the sampled data and finally output the
first harmonic frequency to the hyper-terminal using RS-232 if a user pressed a push
button available on the board. Otherwise the system keeps on displaying “FFT
Analyser” on hyper-terminal.

Current implementation of this system is completely event-triggered and pre-emptive
with all the tasks in the system are pre-emptive and button press is an event-
triggered task.

26

 Inter-arrival time is the minimum expected time for an interrupt to occur

333

Table 3: Task specifications for System C

Task name Period (ms) Priority Execution time

ADC_Sample 1 4 (highest) 62µsec

FFT_Convert 50 3 18ms

LCD_Display 500 2 270 µsec

Flashing_LED 500 2 27 µsec

UART_Transmit 10 1(lowest) 82 µsec

3. Inter-arrival
time27

4. ISR_EINT3 2000ms 200 µsec

As a system designer you are asked to translate this system to a fully time-triggered
design.

1. What type of scheduler is your choice for converting this system to time-

triggered architecture?

2. Are there any flaws in your chosen design? How can you overcome them?

3. Can you further optimize your system to make it more safe? If yes, please

explain how?

27

 Inter-arrival time is the minimum expected time for an interrupt to occur

334

Exercise for Experiment 2

Instructions:

 Solve all the exercises given below.

 Please record the start time and finish time for each question.

 Please try to write short but clear answers. To help you solve this exercise

you are provided with related research papers and other materials, you can

make use of them.

 Please provide references of given documents (if you will use any of them) in

your answers.

Start time:
Task 1:

You are given with an embedded application design running three different tasks A, B
and C. Each of the tasks invoke when an event happens. Examples of some events
are pressing a switch, arrival of a character ready to be displayed and completion of
some analogue to digital conversion. Prototype of the systems is given in Listing 1
below: Please note that to serve each of the interrupts a separate interrupt service
routine is provided to get the desired functionality. Such a design is called an event-
triggered design.

void main(void)

{

/* Initialization of tasks*/

 A_init();

 B_init();

 C_init();

 EA = 1 ; // Enable all interrupts

while(1)

{

 PCON |= 0x01; //Put the processor in idle mode

 }

 }

/*Definition of Interrupt Service Routines*/

void A_ISR(void) interrupt IEIndex

{

 //code to get the desired functionality

}

void B_ISR(void) interrupt IEIndex

335

{

 //code to get the desired functionality

}

void C_ISR(void) interrupt IEIndex

{

 //code to get the desired functionality

}

Listing 1: Prototype for the ET system

You are now required to convert this system to a time-triggered design.

i. List at least two necessary changes will you do in your system?
ii. Rewrite the given system prototype reflecting a time-triggered design.

Finish time:

Task 2:

Start time:
(a) Time-triggered systems which are designed with due care are still susceptible

to jitter. The presence of jitter can make the system unreliable. Assuming

yourself as a system designer list at least two techniques (with brief details)

you will employ during system design to handle different situations to make

your system more reliable and less vulnerable to jitter.

Finish time:

Start time:
(b) Some people argue that there are benefits in system design where best case

execution time (BCET) of tasks is similar or identical to worst case execution

time (WCET) of the tasks. Assuming that creation of code in this format is a

requirement for your organisation, rewrite the code segment given below to

meet these requirements.

if (x >= 10)

{

 z = 0;

 }

 else

 {

 z = 1;

 }

Finish time:

336

Start time:
(c) For the above question (b) do you think that the approach you have adopted

to make BCET=WCET could affect power constrained systems?

i. YES

ii. NO

Finish time:

Start time:

(d) If your answer is YES could you suggest any changes in your proposed

technique

Finish time:

Start time:
Task 3:

One serious issue in a reliable system design is task overrun. A task overrun occurs
when a task is unable to finish within its estimated execution time as shown in Figure
1 below:

Figure 1: Task overrun in the system

This can raise serious problems for real-time systems which must react within precise
time-constraints. Task overrun can essentially ‘hang’ the entire system (until reset)
waiting for some specific operation to be completed.

In this exercise you are given with a code snippet which is prone to such a situation.
One of the tasks in your application is responsible for analogue to digital conversion
(ADC) and includes the following code

//wait until AD conversion finishes

 While((ADCON & ADCI) == 0);

This code is potentially unreliable because there are circumstances in which this
application could hang. For example, if the ADC device is not properly initialized OR

337

if it has been subjected to an excessive input voltage, the expression written above
might not be safe.

What necessary changes you can make in the code given above to make it more

reliable. Please rewrite code with your suggested changes.

Finish time:

Start time:
Task 4:

For the task set given below you need to choose appropriate offset such that all task
should meet their deadlines (as Task C is missing its deadline with current
parameters Shown in Figure below). Redesign task set (change values as you think
appropriate to meet all task deadline).

Table 1: Task parameters that leads to missed deadline

Task WCET(ms) Deadline
(ms)

Period
(ms)

Offset (ticks)

A 2 10 5 0

B 3 10 10 0

C 4 10 10 0

Figure 2: Timeline for tasks shown in Table 1

Table 2: Task parameters which should prevent missing deadline

Task WCET(ms) Deadline (ms) Period (ms) Offset
(ticks)

A 2 10 5

B 3 10 10

C 4 10 10

Do you think changing task order can affect the jitter in the system? If yes, please
rearrange the task order. Make a new table with new order of tasks and if possible
draw timeline as well.

Finish time:

338

Questionnaire for Pattern Participants

 How difficult did the exercise appear to you given there was a requirement to give
extra effort to find the relevant information from the additional resource material
provided ?.

1. Too easy
2. Easy
3. Difficult
4. Too difficult

 Did you find the given documents helpful to solve the tasks given in the exercise?
Mark a separate number(BW 1 and 4 given below) for each exercise in the table
below:

1. Not Helpful
2. A little bit helpful
3. Helpful
4. Very helpful

Exercise 1 Exercise 2 Exercise 3 Exercise 4

 a)
a)
b)
c)

d)

 Was it easy to find related information from the patterns given to you? Mark a

separate number (BW 1 and 4 given below) for each exercise in the table

below:

1. Too easy
2. Easy
3. Difficult
4. Too difficult

Exercise 1 Exercise 2 Exercise 3 Exercise 4

 a)
b)
c)
d)

 What do you think that language used in patterns , was it

1. Too Easy
2. Easy
3. Difficult
4. Too Difficult

5.

 If you are asked to rate the level of difficulty (for individual exercise) to find

relevant information from patterns given to you (1-4, 1= least difficult 4 = most

339

difficult) what would be your answer? Just write a number between 1 and 4. If you

think there is no information available mark 0 in front of that exercise.

Exercise 1 Exercise 2 Exercise 3 Exercise 4

 a)
b)
c)
d)

 In your opinion to what degree the name of a pattern helped you in guessing
what it is about or to which problem it is referring to: (answer between 1 and 4 1=
lowest and 4 = highest)

 1 2 3 4

Exercise 1

Exercise 2

Exercise 3

Exercise 4

 Write down the name of the patterns which you chose to solve each of the

following exercises

Exercise 1 Exercise 2 Exercise 3 Exercise 4

 a)
b)
c)
d)

 Do you think that the patterns are described in a language that is understandable
and the root causes of the problem are identified and addressed by the solution

1. YES
2. NO

 As a computer scientist, do you feel that the given set of patterns can be
operational or implementable (in any programming language you know) as
described?

1. YES
2. NO

 In the table below can you please rate the overall pattern collection given to you

(1-5, 1 = lowest and 5=highest) for the criteria given in each column

Patterns useful for
given exercise

Patterns are useful for
Design Task

Patterns are
useful for other
projects

340

 In the table below can you please rate the individual patterns (1-5, 1=lowest and

5=highest) for the criteria given in each column

 Pattern useful
for given
exercise

Easy to
Understand

Patterns are
useful for

other projects

EVENTS TO TIME

BALANCED SYSTEM

SINGLE PATH

TAKE A NAP

LOOP TIMEOUT

CONFIGURING TASK

PARAMETERS

 In the table below can you please rate the individual sections of individual

patterns (1-5, 1=lowest and 5=highest) for their clarity

 Name Context Problem Solution

EVENTS TO TIME

BALANCED SYSTEM

SINGLE PATH

TAKE A NAP

LOOP TIMEOUT

CONFIGURING TASK

PARAMETERS

 Your overall experience of this exercise? Choose one of the option below:

1. Not interesting

2. Least Interesting

3. Interesting

4. Very Interesting

 Please give your suggestions about making pattern collection more useful

 Did you refer to any of the materials other than patterns (research

papers/books) provided to you?

1. YES

2. NO

 If YES did you find them more useful than patterns?

1. YES

341

2. NO

 In your opinion why a pattern collection is a better choice than research

papers/books in real practice to solve problems like the one you were given with.

342

 Questionnaire for Non-Pattern Participants

 How difficult did the exercise appear to you given there was a requirement to give
extra effort to find the relevant information from the additional resource material
provided?

1. Too easy
2. Easy
3. Difficult
4. Too difficult

 Did you find the given documents helpful to solve the tasks given in the exercise?
Mark a separate number(BW 1 and 4 given below) for each exercise in the table
below:

1. Not Helpful

2. A little bit helpful

3. Helpful

4. Very helpful

Task 1 Task 2 Task 3 Task 4

 Was it easy to find related information from the papers/materials given to you?
Mark a separate number(BW 1 and 4 given below) for each exercise in the table
below:

1. Too easy

2. Easy

3. Difficult

4. Too difficult

Task 1 Task 2 Task 3 Task 4

 What do you think about the language used in given research papers , was it

1. Too Easy

2. Easy

3. Difficult

4. Too Difficult

 If you are asked to rate the level of difficulty (for individual exercise) to find

relevant information from papers/materials available (1-4, 1= least difficult 4 =

343

most difficult) what would be your answer? Just write a number between 1 and 4.

If you think there is no information available mark 0 in front of that exercise.

Task 1 Task 2 Task 3 Task 4

 In your opinion to what degree the title of research papers helped you in guessing
what it is about or to which problem it is referring to: (answer between 1 and 4 1=
lowest and 4 = highest)

 1 2 3 4

Task 1

Task 2

Task 3

Task 4

 Your overall experience of this exercise? Choose one of the options below:

o Not interesting

o Least Interesting

o Interesting

o Very Interesting

 Any other comments

344

APPENDIX D: DOCUMENTS RELATED TO
INDUSTRIAL EVALUATION

345

Questionnaire

1. What defines your area of expertise? *

What defines your area of expertise? Aerospace industry

Automotive industry

Control Engineering

Consumer appliances development

Military applications development
Other (please specify)

2. What defines your current status in the organisation?*

What defines your current status in the organisation? System Engineer

Hardware Designer

Software Designer

Programmer

Testing Engineer

Project Manager
Other (please specify)

3. In your opinion how the industry is coping with the problem of
migration between different software architectures and what are the
main challenges around this? *

4. Do you agree that software for future versions of systems will very
rarely be created from scratch instead existing software will be adapted
to match the new requirements such as "Safety Integrity Levels"? *

 Yes

No

May be

Other (please specify)

5. What is your opinion about a system of documented patterns which
could guide the designers/developers of embedded applications at
various stages during the process of changing the underlying software

346

architecture (such as some of those which you reviewed during the site
tour) is *

 Very useful

Useful with further support

Rarely useful

Not useful
Other (please specify)

6. Do you think that the information provided in the patterns "TIME FOR
TT?", "TT SCHEDULER" and "EVENTS TO TIME" which you reviewed
during the site tour are really useful for users to help them decide if TT
(or ET) architecture is appropriate for their application and to carry out
the transformation? *

Yes

No

May be
Any more comments (please specify)

7. As you reviewed the pattern "BALANCED SYSTEM" and associated
patterns, do you think that the techniques described in these patterns
can help in achieving system safety-integrity requirements? *

 Yes

Yes, to some extent

No, not all
Any more comments (please specify)

8. Do you think that the techniques described in the pattern "System
Monitor" can help in achieving fault tolerant systems? *

Yes

Yes, to some extent

No, not all
Other (please specify)

9. As you have reviewed the patterns during the site tour do you think
that if applied carefully the techniques described in them can help in

347

making systems safe and reliable and can lead to ISO26262 or DO-17B
complaint? *

Yes
Yes, but further assistance is required.
May be
No, not at all

10. If you would like to leave your email with us please write it below:

Done

348

Summary of Results

1. What defines your area of expertise?

Options Response % Response count

Aerospace industry 17.9% 5

Automotive industry 32.1% 9

Control Engineering 46.4% 13

Consumer appliances development 35.7% 10

Military application development 10.7% 3

Others 6

 Answered question 28

2. What defines your current status in organisation you are working?

Options Response % Response count

System Engineer 32.1% 9

Hardware designer 32.1% 9

Software designer 64.3% 18

Programmer 17.9% 5

Testing Engineer 7.1% 2

Project Manager 17.9% 5

Others 4

 Answered question 28

4. Do you agree that software for future versions of systems will very rarely be
created from scratch instead existing software will be adapted to match the new
requirements such as "Safety Integrity Levels"?

Options Response % Response
count

Yes 71.4% 20

No 7.1% 2

May be 21.4% 6

 Answered question 28

5. What is your opinion about a system of documented patterns which could guide
the designers/developers of embedded applications at various stages during the
process of changing the underlying software architecture (such as some of those
which you reviewed during the site tour) is

Options Response % Response count

Very useful 32.1% 9

Useful with further support 67.9% 19

Rarely useful 0.0% 0

Not useful 0.0% 0

 Answered question 28

349

6. Do you think that the information provided in the patterns "TIME FOR TT?", "TT
SCHEDULER" and "EVENTS TO TIME" which you reviewed during the site tour
are really useful for users to help them decide if TT (or ET) architecture is
appropriate for their application and to carry out the transformation?

Options Response % Response count

Yes 71.4% 20

No 3.6% 1

May be 25.0% 7

 Answered question 28

7. As you reviewed the pattern "BALANCED SYSTEM" and associated patterns, do
you think that the techniques described in these patterns can help in achieving
system safety-integrity requirements?

Options Response % Response count

Yes 28.6% 8

Yes to some extent 64.3% 18

No not at all 7.1% 2

 Answered question 28

8. Do you think that the techniques described in the pattern "System Monitor" can
help in achieving fault tolerant systems?

Options Response % Response count

Yes 28.6% 8

Yes to some extent 57.1% 16

No not at all 14.3% 4

 Answered question 28

9. As you have reviewed the patterns during the site tour do you think that if applied
carefully the techniques described in them can help in making systems safe and
reliable and can lead to ISO26262 or DO-17B complaint?

Options Response % Response count

Yes 10.7% 3

Yes but further assistance is required 60.7% 17

May be 25.0% 7

No, not at all 3.6% 1

 Answered question 28

350

Original Responses to Question 3

Respondent 1

Getting the whole organisation or team to buy into a migration strategy/process is a
big problem. It could be done in stages and within smaller teams before the process
is finally adopted by the whole organisation

Respondent 2

Software architectures differ with each project and application and the industry hasn't
been able to come up with a standardised architecture to deal with all applications.
Legacy codes and tools are one of the biggest challenges when it comes to migrating
to different software architecture.

Respondent 3

I think most of the software architectures are tailored for specific needs and there is
rarely any migration to different architecture which creates significant change with the
system.

Respondent 4

Most businesses are concerned with a quick as possible time to market. Migration
across software architectures raises this significantly. It can also often be hard to
convince others that a different way of thinking can benefit them or the business as a
whole.

Respondent 5
People of industry (not all) are unaware about it but it still requires some more
clarification regarding TT and ET. i.e. how to apply TT in the system? How am I going
to migrate? Do I really need to migrate? If my system is running perfectly without any
huddles why should I need to migrate? (However all the comments may be
useful/not-useful because I am not a very highly experienced person I have 2 years
of experience of automation and control industry).

Respondent 6

I don't see migration away from interrupts in telecom. The problems associated with
multi-core and parallel hardware need solution and migration more urgently than
event-driven system challenges.

Respondent 7

I think that people working in the industry (I am speaking about the managers and big
boss) tend to keep traditions. I think it is really a hard task to convince big managers
to change their way of work that have been adopted for a number of projects (and
years). Big managers have fear of switching to other options as their main goal is
reaching time to market.

Respondent 8
Coping badly

Respondent 9

Thorough background knowledge of software architectures is required in order for
successful migration. Some companies are not willing to explore on the new or

351

different architectures due to several factors: [1] cost - companies are not willing to
buy new tools to support different architecture [2]lack of manpower - developers need
to quickly adapt to new architecture. Due to current economic climate, companies are
not willing to hire new people to explore on the newer or different architecture. [3]
time to market - by adopting new architecture, time to market will be increased due to
learning curve that developers need to endure.

Respondent 10

Every company has its own strategy.

Respondent 11

Plan migration and portability at design time by implementing firmware to be
compliant with recognized company or industry wide standards such as AUTOSAR.

Respondent 12

The main challenge from my point of view is that the industry is very much plan-
driven and nowadays you have to respond to change more quickly. So more agile
approaches are needed to create the software. In many cases, we use
subcontractors and communicating the domain knowledge and the architecture to
them is troublesome. For me, it is not very important if the system is time-triggered or
event-triggered. Currently we are developing in event-driven fashion and no plans to
change that.

Respondent 13

Migration between software architectures is not easy in aerospace industry because
of the cost involved in rigorous verification to prove the new changes are airworthy
and getting the changes certified by authorities (European Aviation Safety Agency
EASA).

Respondent 14

Understanding "tribal knowledge" not captured in the formal documents of a system.

Respondent 15

Present ET architecture is familiar to us , TT arch implementation new and no
explanation on that and no support

Respondent 16

This migration requires expertise and good software development practices.
Sometimes, this migration might not be that straight forward at all and might require
scrapping the previous software design and developing it from scratch. I think the
industry needs to be more educated on this problem.

Respondent 17

Migration between software architectures is a time consuming task and
typically not interesting for engineers who are focused on implementing real
world solutions. With the need to integrate embedded systems with other
systems becoming more and necessary engineers are expected to know
many software architectures particularly those centred around the Internet.

352

Respondent 18

I have just been involved in writing a proposal where the architecture has
moved from co-operative to pre-emptive and now porting parts back to co-
operative (interim legacy support). There's no easy way to set about doing
this, especially as libraries expect pre-emptive threads. Generally the industry
knows that the CPU isn't getting faster and that multi
thread/process/processor is the way forward but that it is hard to do.
Functional languages are suggested but that has never really taken off. Clever
additions to the language are being tried, but it’s always going to be hard - the
emphasis is pre-emptive rather than co-operative or hybrid. I don't see that
changing soon.

Respondent 19

Migration is very poorly done due to lack of knowledge and lack of good
migration tools. The migration process itself is usually completely or partially
manual, and error prone.

Respondent 20

For small systems, ET is widely used. For more complex systems, a RTOS is
an easy solution.

Respondent 21

In my opinion, migrating software architecture from one to another requires
substantial effort and cost, and often relies on experience engineers to do it
manually. Companies are usually reluctant to invest such a large amount of
money to do the software architecture migration, unless a good profit return is
envisaged. Of course, a methodology that can simplify the migration process
is desirable; since it will maximise the profit margin if software architecture
migration is necessary.

Respondent 22

I really don’t know the answer to this.

Respondent 23

Software architecture migration involves several challenges like resource
constraints, hardware availability and dependency and I am not sure how
industry is coping.

Respondent 24

Consider a company which is using event triggered architecture for last 10
years with well-trained staffs. It is bit difficult for them to migrate into TT within
a short period. Challenges they may have, 1) Cost 2) Short period 3) Need to
train current staffs or need to recruit experienced people.

Respondent 25

Industry is not ready to move from the classical ET architecture until and

unless some really excellent tools help them to migrate easily. Certainly

Patterns can be a help but need lot of automation in the process.

353

Respondent 26

At work currently we design from scratch for new processor architecture or
new software architecture. Our control software design is primarily based on a
time-triggered approach. However, user interface applications tend to be
predominantly event-based. The challenge is usually in integrating these two
approaches where they meet or need to interface.

Respondent 27

I believe that industry is moving towards Agile Model Driven Development
(AMDD). (http://www.agilemodeling.com/essays/amdd.htm)

Respondent 28

It is a very mixed bag depending on the coders background. One big issue I

find is a lot of people new to writing embedded C starting learning to code for

PCs and so have never had to think about issues like CPU or memory

resources and lack the understanding of the electronics in the microcontroller

to debug issues. This can result in rather "heavy" and unreliable code (littered

with ISRs which can create unpredictable behaviour).

http://www.agilemodeling.com/essays/amdd.htm

354

PART E: REFERENCES

To acknowledge the efforts of all those who contributed to the completion of

this research, references are provided and it has been considered that the

accuracy of these references should be provided to the best of knowledge.

355

Adams, M., J. Coplien, et al. (1996). Fault-tolerant telecommunication system
patterns. Pattern Languages of Program Design 2. Boston , MA, USA,
Addison-Wesley 549-562.

Agerbo, E. and A. Cornils (1998). How to preserve the benefits of design patterns.
Proceedings of the 13th ACM SIGPLAN Conference on object-oriented
programming, systems, languages and applications, ACM 134-143.

Albert, A. and R. Bosch GmbH (2004). Comparison of event-triggered and time-
triggered concepts with regard to distributed control systems. Proceedings of
the Embedded World 2004. Nurnberg: 235-252.

Albert, A. and W. Gerth (2003). Evaluation and Comparison of Real-time
Performance of CAN and TTCAN. Proceedings of the 9th International CAN in
Automation Conference. Munich, Germany: 05-01 to 05-08.

Alexander, C. (1964). Notes on the synthesis of form, Harvard University Press.
Alexander, C. (1979). The timeless way of building, Oxford University Press.
Alexander, C., S. Ishikawa, et al. (1977). A pattern language, Oxford University

Press.
Alexander, C., M. Silverstein, et al. (1975). The oregon experiment, Oxford University

Press.
Allworth, S. T. (1981). Introduction to real-time software design, Macmillan.
Almeida, L., P. Pedreiras, et al. (2002). "The FTT-CAN protocol: Why and how." IEEE

Transactions on Industrial Electronics 49(6): 1189 - 1201
ALTERA. (2012). "DE2-70 Development and Education board." Retrieved March

2012, from http://www.altera.com/education/univ/materials/boards/de2-
70/unv-de2-70-board.html. .

Ambler, S. W. (1998). Process patterns, Cambridge University Press.
Appleton, B. (2000). "Patterns and software: Essential concepts and terminology."

Retrieved 16th June 2011, from
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html#FurtherInfo.

Aras, K. (2005). Empirical analysis of design patterns - A case study in
COMPUCELL3D. Masters Thesis, University of Notre Dame.

Aras, K., T. Cicovski, et al. (2005). Empirical evaluation of design patterns in scientific
application, Technical Report TR-2005-08, Department of Computer Science
and Engineering, University of Notre Dame.

Arisholm, E. and D. I. K. Sjoberg (2004). "Evaluating the effect of a delegated versus
centralized control style on the maintainability of object-oriented software."
IEEE Transactions on Software Engineering 30(8): 521-534.

ARM (2012). Migrating from 8051 to Cortex Microcontrollers Application Note 237.
Audsley, N. C., A. Burns, et al. (1991). Real-time scheduling: The deadline monotonic

approach. Proceedings of the 8th IEEE Workshop on Real-time operating
Systems and Softwares, Atlanta, USA 133-137.

Ayavoo, D. (2006). The development of reliable X-by-Wire systems: Assessing the
effectiveness of a simulation first approach. University of Leicester.

Ayavoo, D., M. J. Pont, et al. (2005). A Hardware-in-the-Loop testbed representing
the operation of a cruise-control system in a passenger car. Proceedings of
the 2nd UK Embedded Forum. Birmingham, UK, Published by University of
Newcastle upon Tyne: 60-89.

Baker, T. P. and A. C. Shaw (1988). "The cyclic executive model and Ada." Real-time
Systems Springer Netherlands 1(1): 7-25.

Balarin, F., L. Lavagno, et al. (1998). "Scheduling for embedded real-time systems."
IEEE Design and Test of Computers: 71-79.

Barr, M. (1999). Programming embedded systems in C and C++, O'Reilly &
Associates.

Barr, M. (2006) "Multitasking alternative and the perils of pre-emption." Embedded
Systems Design, Issue January 2006.

http://www.altera.com/education/univ/materials/boards/de2-70/unv-de2-70-board.html
http://www.altera.com/education/univ/materials/boards/de2-70/unv-de2-70-board.html
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html#FurtherInfo

356

Bate, I. J. (1998). Scheduling and timing analysis for safety-critical real-time systems.
PhD Thesis, University of York.

Bate, I. J. (2000). "Introduction to scheduling and timing analysis." The use of Ada in
real-time system 6.

Baurah, S. K., G. C. Buttazo, et al. (1999). Scheduling periodic task systems to
minimize output jitter. Proceedings of the 6th International Conference on
Real-time Computing Systems and Applications, RTCSA. Hong Kong: 62-69.

Bautista-Quintero, R. and M. J. Pont (2008). "Implementation of H-infinity control
algorithms for sensor-constrained mechatronic systems using low cost
microcontrollers." IEEE Transactions on Industrial Informatics 16(4): 175-184.

BCC. (2012). "BCC research report number IFT016D. ." Embedded systems
technologies and market Retrieved September

2012, from http://www.bccresearch.com/report/embedded-systems-technologies-
markets-ift016d.html.

Beck, K., J. O. Coplien, et al. (1996). Industrial experience with design patterns.
Proceedings of 8th International Conference on Software Engineering, Berlin,
Germany 103-114.

Begole, B. (2011). Section Title: Background and capabilities of ubiquitous
computing. Ubiquitous Computing for Business, Pearson Education Ltd.

Berczuk, S. P. and B. Appleton (2003). Software configuration management patterns:
Effective teamwork, practical integration, Addison-Wesley Professional.

Bergin, J. (2000). Fourteen pedagogical patterns. Proceedings of the 5th European
Conference on Pattern Languages of Programming. 11.

Berry, D. M. and W. F. Tichy (2003). "Comments on formal methods application: An
empirical tale of software development." IEEE Transaction on Software
Engineering 29(6): 567-571.

Birgisson, R., J. Mellin, et al. (1999). Bounds on test effort for event-triggered real-
time systems. Proceedings of the 6th International conference on Real-time
Computing Systems and Applications (RTCSA) 212-215.

Boassan, M. (1995). "The artistry of software architecture." IEEE Software 12(6): 13-
16.

Bock, P. (2001). Getting it right: R&D Methods in Science and Engineering, Academic
Press.

Borchers, J. O. (1999). Designing interactive music systems: A pattern approach.
Proceedings of the 8th International Conference on Human Computer
Interaction: Ergonomics and User Interfaces. 1: 276-280.

Bottomley, M. (1999). A pattern language for simple embedded systems.
Proceedings of the Pattern Languages of Programming PLOP '99. Chicago,
USA.

Bouyssounouse, B. and J. Sifakis (2005). "Current design practice and needs in
selected industrial sectors." Embedded System Design: Lecture Notes in
Computer Science 3436: 15-38.

Bozheva, T. and M. E. Gallo (2010). Framework of Agile Patterns. Proceedings of the
5th Workshop "From code centric to model centric: Evaluating the
effectiveness of MDD (C2M:EEMDD)". Paris, France.

Brandberg, G. (2005). "Less Fear, More Patterns (Interview with Linda Rising and
Mary Lynn Manns)." Retrieved 7th December 2010, from
www.cs.unca.edu/~manns/interview.pdf.

Bril, R. J., E. F. Steffens, et al. (2004). "Best-case response times and jitter analysis
of real-time tasks." Journal of Scheduling 7: 133-147.

Brown, W., R. Malveau, et al. (1998). "The software patterns criteria: Proposed
definitions for evaluating software pattern quality." Retrieved July 19th, 2011,
from http://www.antipatterns.com/orig/whatisapattern/.

Buschmann, F., R. Meunier, et al. (1996). Pattern oriented software architecture.
Chichester, UK, John Wiley.

http://www.bccresearch.com/report/embedded-systems-technologies-markets-ift016d.html
http://www.bccresearch.com/report/embedded-systems-technologies-markets-ift016d.html
http://www.cs.unca.edu/~manns/interview.pdf
http://www.antipatterns.com/orig/whatisapattern/

357

Buttazzo, C. G. (1997). Hard real-time computing systems predictable scheduling
algorithms and applications, Kluwer Academic Publishers.

Buttazzo, G. C. (2005). "Rate Monotonic vs. EDF : Judgement day." Real-time
Systems 29(1): 5-26.

Cain, B. G., J. O. Coplien, et al. (1996). "Social patterns in productive software
development organisations." Annals of Software Engineering 2(1): 259-286.

Carver, J., L. Jaccheri, et al. (2003). Issues in using students in empirical studies in
software engineering education. Proceedings of the 9th International
Symposium on Software Metrics 239-249.

Case, J. M. and G. Light (2011). "Emerging methodologies in engineering education
research." Journal of Engineering education 100(1): 186-210.

Cheng, A. M. (2002). Real-time systems, scheduling analysis and verifications, John
Wiley a& Sons.

Chikofsky, E. and J. Cross (1990). "Reverse engineering and design recovery: A
taxonomy." IEEE Software 7(1): 13-18.

Chung, E. S., J. I. Hong, et al. (2004). Development and evaluation of emerging
design patterns for ubiquitous computing. Proceedings of the 5th Conference
on designing interactive systems: processes, practices, methods and
techniques, ACM, New York.

Claesson, v. and N. Suri (2004). TTET: Event-triggered channels on a time-triggered
base. Proceedings of the 9th IEEE International Conference on Engineering of
Complex Computer Systems 39-46.

Cline, M. (1996). "The pros and cons of adopting and applying design patterns in the
real world." Communications of the ACM 39(10): 47-49.

Cloutier, R. J. and D. Verma (2007). "Applying the concept of patterns to systems
architecture." Journal of Systems Engineering 10(2): 138-154.

Cool, W. (1998). Personal Communication, Hillside Inc. Meeting. Vancouver,
Canada.

Coplien, J. O. (2000). Software patterns, Copyright 1996 AT&T, Copyright 2000,
Lucent Technologies, Bell Labs Innovations

Coplien, J. O. (2007). ""A pattern definition: Software patterns"." Retrieved
December 2011, from http://hillside.net/component/content/article/50-
patterns/222-design-pattern-definition.

Cottet, F. and L. David (1999). A solution to the time jitter removal in deadline based
scheduling of real-time applications. Proceedings of the 5th IEEE Real-time
Technology and Applications Symposium. Vancouver, Canada.

Cottet, F., J. Delacroix, et al. (2002). Scheduling in real-time systems, John Wiley &
Sons.

Cunningham, W. (1987). The CHECKS pattern language of information integrity,
Addison Wesley.

Darlington, K. (2000). The Essence of Expert Systems. Essex, England., Prentice
Hall.

Dechering, P., E. Groenboom, et al. (1999). Formalization of a software architecture
for embedded systems: A process algebra for SPLICE. Proceedings of the
32nd Annual Hawaii International Conference on System Sciences.

DeLano, D. E. (1998). Section title: Patterns Mining. The patterns handbook:
Techniques, strategies, and applications. L. Rising, Cambridge University
Press.

Dillman, D. A. (2007). Mail and Internet Surveys: The tailored design method, John
Wiley and Sons.

Dornyei, Z. and T. Taguchi (2009). Questionnaires In Second Language Research:
Construction, Administration, And Processing, Taylor & Francis.

Eakin, E. (2003). Architecture's irascible reformer. The New York Times.
Eckert, C., P. J. Clarkson, et al. (2004). "Change and customisation in complex

engineering domains." Research in Engineering Design 15(1): 1-21.

http://hillside.net/component/content/article/50-patterns/222-design-pattern-definition
http://hillside.net/component/content/article/50-patterns/222-design-pattern-definition

358

Eden, A. H. (2000). Precise specification of design patterns and tool support in their
application. Tel Aviv University.

Eloranta, V. P., J. Koski, et al. (2009). Software architecture patterns for distributed
embedded control systems. 14th European Conference on Pattern Languages
of Programming, EuroPLoP 2009. A. Kelly and M. Weiss. Irsee, Germany,
CEUR Workshop Proceedings. 566.

Eloranta, V. P., J. Koski, et al. (2010). A pattern language for distributed machine
control system, Tampere University of Technology, Department of Software
Systems. Report 9.

Fricke, A. and M. Vlter (2000). Seminars: A pedagogical pattern language about
teaching seminars effectively. Proceedings of the 5th European Conference on
Pattern Languages of Programs.

Gabriel, R. (1996). Patterns of software, Oxford University Press.
Gamma, E., R. Helm, et al. (1995). Design patterns: Elements of reusable object-

oriented software, Addison Wesley.
Ganssle, J. (1992). The art of programming embedded systems. San Diego,

Academia Press.
Gardner, K. M., A. Rush, et al. (1998). Cognitive patterns, Cambridge University

Press.
Gear, C. W. (1973). Introduction to Computer Science. Chicago, SRA.
Gendy, A. K. and M. J. Pont (2007). Towards a generic "Single Path Programming"

solution with reduced power consumption. Proceedings of the International
Design Engineering Technical Conferences & Computers and Information in
Engineering Conference IDETC/CIE 2007. Las Vegas, Nevada, USA: 65-71.

Gendy, A. K. and M. J. Pont (2008a). Automating the process of selecting an
appropriate scheduling algorithm and configuring the scheduler
implementation for time-triggered embedded systems. Computer Safety,
Reliability and Security, Lecture Notes in Computer Science. M. Harrison.
Newcastle upon Tyne, UK, Springer Berlin / Heidelberg.

Gendy, A. K. and M. J. Pont (2008b). "Automatically configuring time-triggered
schedulers for use with resource-constrained, single-processor embedded
systems." IEEE Transactions on Industrial Informatics 4(1): 37-46.

Gergeleit, M. and E. Nett (2002). Scheduling transient overload with the TAFT
scheduler. Fall meeting of GI/ITG specialized group of operating systems.

Gower, B. (1997). Scientific Method: An historical and philosophical introduction.
Chesham, Buckinghamshire, Ponting-Green Publishing Services.

Graaf, B., M. Lormans, et al. (2003). "Embedded software engineering: The state of
the practice." IEEE Software 20(6): 61-69.

Hanmer, R. (2003). Pattern Languages. Naperville, Illinois, USA., Lucent
Technologies.

Hanmer, R. (2007). Patterns for fault-tolerant software, John Wiley & Sons, Ltd.
Hanmer, R., Ed. (2009). Software patterns for reusable design.
Harrison, N. B. (2006). The language of shepherding: A pattern language for

shepherds and sheep. Pattern Languages of Program Design 5. Boston,
Addison-Wesley.

Hebert, D. (2007). "Best practices in control system migration." Retrieved 21st July
2011, from http://www.controlglobal.com/articles/2007/006.html.

Herzner, W., W. Kubinger, et al. (2005). "Triple-T (Time-Triggered Transmission)" A
system of patterns for reliable communication in hard real-time systems.
Proceedings of the 5th European Conference on Pattern Languages of
Programming EuroPLoP 2005. Irsee, Germany.

Hevner, A., S. March, et al. (2004). "Design science in information systems research."
MIS Quarterly 28(5): 75-105.

http://www.controlglobal.com/articles/2007/006.html

359

Hughes, Z. M. and M. J. Pont (2004). Design and test of a task guardian for use in
TTCS embedded systems. Proceedings of the 1st UK Embedded Forum,
Published by University of Newcastle: 16-25.

Hughes, Z. M. and M. J. Pont (2008). "Reducing the impact of task overruns in
resource-constrained embedded systems in which a time-triggered software
architecture is employed." Trans Institute of Measurement and Control 30(5):
427-450.

IEC. (2012). "International Electrotechnical Commission, Functional Safety and IEC
61508." Retrieved August 2012, from http://www.iec.ch/functionalsafety/.

Jeffay, K., D. Stanat, et al. (1991). On non pre-emptive scheduling of periodic and
sporadic tasks. 12th IEEE Symposium of Real-time Systems. San Antonio,
Texas, IEEE Computer Society Press: 129-139.

Jerri, A. J. (1977). "The shannon sampling theorem: Its various extensions and
applications A tutorial review." Proceedings of the IEEE 65(11): 1565-1596.

Jezequel, J.-M., M. Train, et al. (2000). Design Patterns and Contracts, Addison-
Wesley.

Juristo, N. and A. M. Moreno (2001). Basics of Software Engineering
Experimentation, Kluwer Academic Publishers.

Kalinsky, D. (2001). Context Switch. Embedded Systems Programming.
Kalinsky, D. (2002). Design patterns for high availability. Whitepaper/Advanced

Course Reading Assignment, D. Kalinsky Associates.
Kawamura, Y., T. Yamazaki, et al. (2008). Network processing on an SPE core in cell

broadband engineTM. Proceedings of the 16th IEEE Symposium on High
Performance Interconnects: 119-128.

Khazanchi, D. (1996). A philosophical framework for the validation of information
systems concepts. Proceedings of the Americas Conference on Information
Systems. Phoenix, AZ: 755-757.

Khazanchi, D., J. D. Murphy, et al. (2008). Guidelines for evaluating patterns in the IS
domain. Proceedings of the MWAIS 2008

Khazanchi, D. and I. Zigrus (2007). A systematic method for discovering effective
patterns of virtual project management.

Kim, D., R. France, et al. (2002). Using Role-Based Modeling Language (RBML) to
characterize model families. Proceedings of the 8th International Conference
on Engineering of Complex Computer Systems, IEEE Computer Society: 107-
116.

Kirner, R. and P. Puschner (2003). Discussion of misconceptions about WCET
analysis. Proceedings of the 3rd Euromicro International workshop on WCET
Analysis: 61-64.

Kitchenham, B. A., S. L. Pfleeger, et al. (2002). "Preliminary guidelines for empirical
research in software engineering." IEEE Transactions on Software
Engineering 28(8): 721-734.

Kopetz, H. (1991). Event-triggered versus time-triggered real-time systems.
Proceedings of the Workshop on Operating Systems of the 90s and Beyond
87-101.

Kopetz, H. (1993). "Should responsive systems be event-triggered or time-triggered?"
IEICE Transactions on Information and Systems E-76-D(11): 1325-1332.

Kopetz, H. (1997). Real-time systems design principles for distributed embedded
applications, Kluwer Academic Publishers.

Kopetz, H. and G. Bauer (2002). The time-triggered architecture. IEEE Special Issue
on Modelling and Design of Embedded Software 112-126.

Krasner, J. (2010). "Critical issues confronting medical device manufacturers, their
CEOs, CFOs, managers and developers, EMF guide for medical device
developers." Retrieved November, 2011, from
http://www.researchandmarkets.com/reports/1226357/critical_issues_confront
ing_medical_device.

http://www.iec.ch/functionalsafety/
http://www.researchandmarkets.com/reports/1226357/critical_issues_confronting_medical_device
http://www.researchandmarkets.com/reports/1226357/critical_issues_confronting_medical_device

360

Krippendorff, K. (2004). Content Analysis An Introduction to Its Methodology, Sage
Publicatioons.

Kubinger, W. and M. Humenberger (2004). Concept of time-triggered image
acquisition for embedded control applications. Proceedings of the 10th IEEE
Real-Time and Embedded Technology and Applications Symposium,
Toronto, Canada.

Kumar, R. (2005). Research Methodology: A step-by-step guide for beginners, Sage
Publications Ltd.

Kurian, S. and M. J. Pont (2005). Building reliable embedded systems using abstract
patterns, patterns, and pattern implementation examples. Proceedings of the
2nd UK Embedded Forum, Birmingham, UK, Published by University of
Newcastle upon Tyne 36-59.

Kurian, S. and M. J. Pont (2006). Restructuring a pattern language which supports
time-triggered co-operative software architectures in resource-constrained
embedded systems. Proceedings of the 11th European Conference on Pattern
Languages of Programs (EuroPLoP 2006). Germany.

Kurian, S. and M. J. Pont (2007). "Maintenance and evolution of resource constrained
embedded systems created using design patterns." Journal of Systems and
Software 80(1): 32-41.

Labrosse, J. (1999). MicroC/OS-II: The real-time kernel, CMP Books.
Labrosse, J. (2000). Embedded systems building blocks, CMP Books.
Lakhani, F., A. Das, et al. (2009a). Towards a pattern language which supports

migration of system from event-triggered pre-emptive to time-triggered co-
operative software architectures. Proceedings of the 14th European
Conference on Pattern Languages of Programs (EuroPLoP 2009), Irsee,
Germany, Published by CEUR F2-1 to F2-25.

Lakhani, F., A. Das, et al. (2009b). Can we support migration from event-triggered to
time-triggered architectures using design patterns? Proceedings of the 5th UK
Embedded Forum. Leicester, UK, Published by University of Newcastle upon
Tyne: 62-73.

Lakhani, F., A. Das, et al. (2010c). Improving the reliability of embedded systems as
complexity increases: supporting the migration between event-triggered and
time-triggered software architectures. Proceedings of the 15th European
Conference on Pattern Languages of Programming (EuroPLoP'10). Irsee,
Germany, ACM Press: 22:21 - 22:17.

Lakhani, F. and M. J. Pont (2010a). Using design patterns to support migration
between different system architectures. Proceedings of the 5th IEEE
International Conference on Systems of Systems Engineering (SoSE).
Loughborough, UK: 1-6.

Lakhani, F. and M. J. Pont (2010b). "Code balancing” as a philosophy for change:
Helping developers to migrate from event-triggered to time-triggered
architectures. Proceedings of the first UK Electronic Forum. New Castle, UK,
Published by Newcastle University.

Lakhani, F. and M. J. Pont (2012a). Applying design patterns to improve the reliability
of embedded systems through a process of architecture migration.
Proceedings of the 9th IEEE International Conference on Embedded Systems
and Software (ICESS 2012). Liverpool, UK., IEEE Computer Society: 1563 -
1570.

Lakhani, F. and M. J. Pont (2012b). "Empirical studies for the assessment of the
effectiveness of design patterns in migration between software architectures
of embedded applications." ISRN, Journal of Software Engineering.

Lakhani, F., H. Wang, et al. (2011). Supporting the migration between 'event-
triggered' and 'time-triggered' software architectures: A small pattern
collection intended for use by the developers of reliable embedded systems.
Technical Report ESRG 2011-09-01, University of Leicester.

361

Leung, J. Y. T. and J. Whitehead (1982). "On the complexity of fixed-priority
scheduling of periodic, real-time tasks." Performance Evaluation 2(4): 237-
250.

Li, Q. and C. Yao (2003). Real-time concepts for embedded systems, CMP Books.
Liu, C. L. and J. W. Layland (1973). "Scheduling algorithms for multiprogramming in a

hard real-time environment." Journal of the ACM 20(1): 46-61.
Liu, J. (2000). Real-time systems, Prentice Hall.
Locke, D. (1992). "Software architectures for hard real-time applications: Cyclic

executives vs. fixed priority executives." Real-time Systems 4(1): 37-53.
Maaita, A. (2008). Techniques for enhancing the temporal predictability of real-time

embedded systems employing a time-triggered software architecture. PhD
Thesis, University of Leicester.

Maaita, A. and M. J. Pont (2005). Using 'Planned Pre-emption' to reduce levels of
task jitter in a time-triggered hybrid scheduler. Proceedings of the 2nd UK
Embedded Forum. Birmingham, UK: 18-35.

Madisetti, V. J., Y. K. Jung, et al. (1999). "Re-engineering legacy embedded
systems." IEEE Design and Test of Computers 16(2): 38-47.

Mak, J. K. H., S. T. Choy, et al. (2003). Precise specification to compound patterns
with ExLePUS. Proceedings of the 27th Annual International Conference on
Computer Software and Applications 440-445.

Manns, M. L. and L. Rising (2004). Fearless change: Patterns for introducing new
ideas, Addison Wesley.

Mapelsden, D., J. Hosking, et al. (2002). Design pattern modeling and instantiation
using DPML. Proceedings of the 40th International Conference on Tools
Pacific: Objects for internet, mobile and embedded applications. Sydney
Australia, Australian Computer Society, Inc.

Marti, P. (2002). Analysis and design of real-time control systems with varying control
timing constraints, Technical University of Catalonia.

Martin, T. (2005). The insider's guide to the Philips ARM7 based microcontrollers,
Coventry, Hitex, UK, Ltd.

Matassa, L. M. (2011). Power PC to Intel architecture migration, Intel Corporation.
Mikkonen, T. (1998). Formalizing design patterns. Proceedings of the 20th

International conference on Software engineering. Kyoto, Japan, IEEE
Computer Society.

Millett, S. (2010). Professional ASP.Net Design Patterns, Wiley Publishing Inc.
Mosley, D. (2006). When to migrate legacy embedded applications. Proceedings of

the International Conference on Ada, SIGAda'06, ACM. 26.
Mwelwa, C. (2006). Development and assessment of a tool to support pattern-based

code-generation of time-triggered embedded systems. PhD Thesis,
University of Leicester.

Mwelwa, C., M. J. Pont, et al. (2006). Rapid software development for reliable
embedded systems using a pattern-based code generation tool. Society of
Automotive Engineers (SAE) World Congress. Detroit, Michigan, USA.

Neil, T. (2012). Mobile Design Pattern Gallery, O'Reilly Media Inc.
NI. (2012). "National Instruments." Retrieved March 2012, from

http://www.ni.com/labview/release-archive/2010/.
Nissanke, N. (1997). Real-time systems, Prentice Hall.
Obermaisser, R. (2005). Event-triggered and time-triggered control paradigms,

Springer.
OED. (2012). "Oxford English Dictionary." Retrieved April 2012, from

http://www.oed.com.
Oest, O. N. (2008). "Migrating complex embedded systems." Military Embedded

Systems Retrieved 30th July 2011, from http://www.mil-
embedded.com/articles/id/?3375.

http://www.ni.com/labview/release-archive/2010/
http://www.oed.com/
http://www.mil-embedded.com/articles/id/?3375
http://www.mil-embedded.com/articles/id/?3375

362

OLIMEX2378. (2012). Retrieved May 2012, from http://www.olimex.com/dev/lpc-
2378stk.html.

Ortega-Arjona, J. L. (2009). Architectural patterns for parallel programming: Models
for performance estimation, VDM Verlag.

Ortega-Arjona, J. L. (2010). Patterns for parallel software design, John Wiley and
Sons.

Park, J., M. Ryu, et al. (2006). "Rapid performance re-engineering of distributed
embedded systems via latency analysis and k-level diagonal search." Journal
of Parallel and Distributed Computing 66: 19-31.

Peterson, R. A. (2000). Constructing Effective Questionnaires, Sage Publications Inc.
Petter, S., D. Khazanchi, et al. (2010). "A design science based evaluation framework

for patterns." ACM SIGMIS Database 41(3).
Phatrapornnant, T. and M. J. Pont (2006). "Reducing jitter in embedded systems

employing a time-triggered software architecture and dynamic voltage
scaling." IEEE Transactions on Computers 55(2): 113-124.

Pont, M. J. (2001). Patterns for Time-Triggered Embedded Systems, ACM press.
Pont, M. J. (2002). Embedded C, Addison-Wesley.
Pont, M. J., S. Kurian, et al. (2008). Selecting an appropriate scheduler for use with

time-triggered embedded systems. Proceedings of the 12th European
Conference on Pattern Languages of Programs, Irsee, Germany,
Universitätsverlag Konstanz.

Pont, M. J., Y. Li, et al. (1998). The design of embedded systems using software
patterns. Proceedings of Condition Monitoring. Swansea, UK: 221-236.

Prechelt, L. and B. Unger (1998). A series of controlled experiments on design
patterns: Methodology and results. Proceedings of Softwaretechnik '98
(Softwaretechnik-Trends) 53-60.

Prechelt, L., B. Unger, et al. (2002). "Two controlled experiments assessing the
usefulness of design pattern documentation in program maintenance." IEEE
Transactions on Software Engineering 28(6).

Prechelt, L., B. Unger, et al. (2001). "A controlled experiment in maintenance,
comparing design patterns to simpler solutions." IEEE Transactions on
Software Engineering 27(12): 1134-1144.

Puschner, P. (2002). Is WCET analysis a non-problem? Towards new software and
hardware architectures. 2nd International Workshop on Worst Case Execution
Time Analysis, Vienna, Austria.

Puschner, P. (2003). The single-path approach towards WCET-analysable software.
IEEE International Conference on Industrial Technology 699-704.

Puschner, P. and A. Burns (2002). Writing Temporally Predictable Code.
Proceedings of the 7th International Workshop on Object-Oriented Real-time
Dependable Systems: 85-91.

Ramamritham, K. and J. Stankovic (1994). Scheduling algorithms and operating
systems support for real-time systems. Proceedings of the IEEE 55-67.

RapidiTTy. (2009). "RapidiTTY tool set for Rapid development of embedded
systems." Retrieved June 2012, from http://www.tte-systems.com/products.

Rising, L., Ed. (1998). The patterns handbook: Techniques, strategies and
applications, Cambridge University Press.

Rising, L. (1999). Patterns: A way to reuse expertise. IEEE Communications
Magazine.

Rising, L., Ed. (2001). Design patterns in communication software, Cambridge
University Press.

Robson, C. (2002). Real world research: A resource for social scientist and
practitioner, Blackwell Publishers.

Scarlett, J. J. and R. W. Brennan (2006). Re-evaluating event-triggered and time-
triggered systems. Proceedings of the IEEE Conference on Emerging
Technologies and Factory Automation: 655-661.

http://www.olimex.com/dev/lpc-2378stk.html
http://www.olimex.com/dev/lpc-2378stk.html
http://www.tte-systems.com/products

363

Scheler, F., M. Mitzlaff, et al. (2007). Towards a Real-time Systems Compiler.
Proceedings of the 5th International Workshop on Intelligent Solutions in
Embedded Systems (WISES 07): 62-75.

Scheler, F. and W. Schroder-Preikschat (2006). Time-triggered versus Event-
triggered: A matter of Configuration? Proceedings of the MMB GI/ITG
Workshop on Non-Functional Properties of Embedded Systems, Nuremberg,
Berlin VDE Verlag.

Scheler, F. and W. Schroder-Preikschat (2010). The RTSC: Leveraging the migration
from event-triggered to time-triggered systems. Proceedings of the13th IEEE
International Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing: 34-41.

Schlindwein, F. S., M. J. Smith, et al. (1988). "Spectral analysis of doppler signals
and computations of the normalized first moment in real-time using a digital
signal processor." Medical and Biological Engineering & Computing 26: 228-
232.

Schmidt, D. (1995). "Using design patterns to develop reusable object-oriented
communication software." Communication ACM 38(10): 65-74.

Schmidt, D., M. Stal, et al. (2000). Pattern-oriented software architecture Volume 2:
Patterns for concurrent and networked objects, John Wiley and Sons.

Seaman, C. B. (1999). "Qualitative methods in empirical studies of software
engineering." IEEE Transactions on Software Engineering 25(4): 557-572.

Sha, L. (2004). "Real-time scheduling theory: A historical perspective." Real-time
Systems 28(2): 101-155.

Sha, L., R. Rajkumar, et al. (1990). "Priority inheritance protocols: An approach to
real-time synchronization " IEEE Transactions on Computers 39(9): 1175-
1185.

Shaw, A. C. (2001). Real-time systems and software, John Wiley & Sons Inc.
Shepard, T. and M. Gagne (1990). A model of F18 Mission Computer software for

pre run-time scheduling. Proceeding of the 10th International Conference on
Distributed Computing Systems. Paris, France: 62-69.

Short, M. and M. J. Pont (2005). 'Hardware in the Loop' simulation of embedded
automotive control systems. Proceedings of the IEEE International
Conference on Intelligent Transportation Systems (IEEEITSC 2005): 426-431.

Short, M., M. J. Pont, et al. (2008). "Assessment of performance and dependability in
embedded control systems: Methodology and case study." Control
Engineering Practice 16: 1293-1307.

Short, M., M. J. Pont, et al. (2008). Exploring the impact of task pre-emption on
dependability in time-triggered embedded systems: A pilot study. Proceedings
of the Real-time Systems - Euromicro Conference on, ECRTS, 2008, IEEE:
83-91.

Silverman, D. (2011). Interpreting Qualitative Data, Sage Publications.
Sloss, A. N., D. Symes, et al. (2004). ARM system developer's guide: Designing and

optimizing system software, Morgan Kaufmann.
Sproull, N. L. (1995). Handbook of research methods: A guide for practitioners and

students in the social sciences, (2nd edition), The Scarecrow Press, Inc.
Straub, D. W. (1989). Validating instruments in MIS research. MIS Quarterly. 13: 146-

169.
Strebelow, R. and C. Prehofer (2011). Work in Progress: Evaluation of parallel design

patterns for message processing systems on embedded multi-core systems.
Proceedings of the 1st workshop on Systems for Future Multi-core
Architectures EuroSys 2011, Slazburg, Austria.

Taibi, T. (2007). Design Pattern formalization techniques, IGI Publishing.
Taibi, T. and D. C. Ling Ngo (2003). "Formal specification of design patterns - A

balanced approach." Journal of Object Technology 2(4): 127-140.

364

Taibi, T. and F. Taibi (2006). Formal specification of design patterns and their
instances. Proceedings of the IEEE International Conference on Computer
Systems and Applications, IEEE Computer Society: 33-36.

Tindell, K. W., A. Burns, et al. (1994). "An extendible approach for analyzing fixed
priority hard real-time tasks." Real-Time Systems 6: 133-151.

TTE. (2012). "TTE Systems Ltd." Retrieved April 2012, from http://www.tte-
systems.com/technology.

Turley, J. (2003) "Motoring with microprocessors." EE Times.
Turley, J. (2009). Gaming the system -- High-end networking on the cell processor.

Embedded.com.
UM10211 (2009). LPC 23XX User manual Rev. 03.
Unger, B. and W. F. Tichy (2000). Do design patterns improve communication? An

experiment with pair design. Proceedings of the International Workshop on
Empirical Studies of Software Maintenance.

Vahid, F. and T. Givargis (2002). Embedded System Design: A Unified
Hardware/Software Introduction, John Wiley & Sons, Inc.

Vlissides, J. (1996). Seven Habits of Successful Pattern Writers, C++ Report,
November/December 1996.

Vlissides, J. (1997). "Patterns: The top ten misconceptions." Retrieved 22nd June
2012.

Vokac, M. (2004). On the practical use of software design patterns. PhD Thesis,
University of Oslo, Norway.

Wang, H., M. J. Pont, et al. (2007). Patterns which help to avoid conflicts over shared
resources in time-triggered embedded systems which employ a pre-emptive
scheduler. Proceedings of the 12th European Conference on Pattern
Languages of Programs (EuroPLoP 2007). Irsee, Germany.

Ward, N. J. (1991). "The static analysis of safety-critical avionics control system" in
air transport safety. Proceedings of the Safety and Reliability Spring
Conference.

Xu, J. (2003a). "On inspection and verification of software with timing requirements."
IEEE Transactions on Software Engineering 29(8): 705-720.

Xu, J. (2003b). "Making software timing properties easier to inspect and verify." IEEE
Software 20(4): 34-41.

Xu, J. and D. Parnas (1993). "On satisfying timing constraints in hard real-time
systems." IEEE Transactions on Software Engineering 19(1): 70-84.

Xu, J. and D. Parnas (2000). "Priority scheduling versus pre run-time scheduling."
The International Journal of Time-Critical Computing Systems 18(1): 7-23.

http://www.tte-systems.com/technology
http://www.tte-systems.com/technology

