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The effect of the high latitude ionosphere on 
superresolution direction finding

Carmine Rizzo

Abstract

The direction-of-arrival of HF signals (9.292 MHz) propagated on a 2100 km 
South-to-North path in the high latitude ionosphere were investigated on three 
geomagnetically quiet days in January 1996. A simple Beam forming and some 
superresolution direction finding (SRDF) algorithms, Loaded Capon, Iterative 
Null Steering (INS) and MUSIC, were utilised to measure the azimuth, 
elevation and amplitude of this signal. The validity of the SRDF Spread 
Maximum Likelihood (SML) algorithm was tested. The array aperture and 
shape was changed by using 12 and 8 antenna arrays. The performance of the 
five algorithms was compared under a wide variety of propagation conditions.
The effect of the integration time and the time over which the estimates are 
averaged on the measurements has been evaluated. For a fixed integration time 
value, an increase in the time/average resulted in a decrease in the standard 
deviation of the bearing estimates for all algorithms and array geometries.
Simulations of enhanced ionisation structures (patches) drifting across the great 
circle path agreed well with the observed azimuth and elevation swings. The 
simulated trajectories were often consistent with the direction of the convection 
flow.
The behaviour of experimental observations was reproduced by two 
simulations. In the first, the effect of one signal spread in azimuth was studied. 
In the second, two spread signals were modelled with a variety of azimuth 
spreads, angular separation and relative amplitude. While Loaded Capon and 
INS were able to resolve the two spread signals at angular separations close to 
and above the signal spread, MUSIC succeeded for unspread signals only.
For Loaded Capon and INS secondary energy arose which closely tracked the 
stronger signal - a feature commonly observed in the data. The theory of the 
effect of non-zero bandwidth signals on the two largest eigenvalues of the 
covariance matrix (Zatman, 1998) has been applied to the case of an angular 
spread source and numerical results from this compared to simulations.
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1. INTRODUCTION

1.1 Introduction.

This chapter aims to introduce the ionosphere as a propagation medium for 
high frequency (HF) radio signals. The ionospheric regions are described, with 
emphasis on their importance for radiowave propagation. In particular, the 
problems related to the propagation of HF signals at high latitudes are 
discussed. A discussion is presented about the convection of plasma at high 
latitudes and the effects of large-scale electron density structures on HF 
direction finding. These structures can reflect HF signals causing large 
variations in bearing. The accuracy of direction finding (DF) systems estimates 
is typically of 0.1°, whereas the deviations of the directions of arrival of HF 
signals at the receiver can be as much as ±100° or more at high latitudes. It is 
then clear that the performance of DF systems at high latitudes are mainly 
limited by the propagation environment.

The ionospheric sounding method for investigating the propagation conditions 
is introduced.

A detailed description of ionospheric radiowave propagation can be found in 
many textbooks, in particular Davies (1990). For a review of auroral and polar 
cap ionospheric effects on radio propagation, the reader is referred to a paper 
by Hunsucker (1992).

1.2 The ionosphere.

The Earth's atmosphere consists of several distinct regions or layers with 
varying attributes, and is described by properties such as level of ionisation, 
pressure, density, temperature and composition (see, for example, Hargreaves, 
1992). The region of the atmosphere known as ionosphere is of interest for the 
work detailed in this thesis.

The ionosphere is regarded as the ionised part of the atmosphere, to be 
distinguished from the background neutral gas (Banks and Kockarts, 1973). For 
the purposes of radio communication, the ionosphere is defined as that part of 
the upper atmosphere where ionisation sufficient to affect the propagation of 
radiowaves exists (Davies, 1990). Solar radiation causes gases to dissociate 
above about 50 km. As a result, free electrons are produced in the atmosphere.

The ionosphere is divided into regions with an alphabetic nomenclature, 
introduced by Sir Edward Appleton (Silberstein, 1959). Some of the ionospheric 
regions are identified in Figure 1.2.1. The D region is the region of lowest 
altitude which is important in radio propagation because it absorbs energy
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from waves at MF, HF and VHF, and it reflects LF and VLF signals. The D 
region extends from 50 to 90 km and is produced by Lyman, a  and hard X- 
rays. The E region, covering the height interval 90 km to about 140 km, is 
produced by solar soft X-rays and by EUV (Lyman p  radiation at 1025.7 A and 
Lyman continuum at 910-980 A). Under certain conditions a thin layer of this 
region becomes exceptionally ionised and is then known as sporadic E (Es). 
Sporadic E is important because it can reflect VHF radiowaves up to 
frequencies of about 100 MHz, whilst the normal E layer can only reflect HF 
radiowaves. The F region (140 km and above) is very sensitive to solar 
radiation, and it is where the peak in electron density usually occurs. It is 
subdivided into the FI and F2 layers, which are produced by solar extreme 
ultraviolet light (EUV). The F region also reflects HF radiowaves. Frequencies 
up to the critical frequency are reflected at vertical incidence and higher 
frequencies at oblique incidence (see Section 1.3).

Above the F region peak of electron density is the topside ionosphere, and 
above that is the protonosphere or plasmasphere. The altitude of the base of the 
protonosphere (2000-3000 km) varies with latitude and between day and night. 
The ionosphere can, therefore, be considered as lying between about 50 and 
2000-3000 km.

The electron density depends then on the solar radiation and as such is subject 
to diurnal, seasonal and an 11-year solar cycle variation. With some exceptions 
the electron density is statistically higher in daytime than nighttime (Figure
1.2.2). For seasonal variations, the nighttime and daytime situations have to be 
distinguished. The nighttime F layer tends to be higher in summer than in 
winter, this tendency being accentuated at lower latitudes. The maximum 
electron density and the total electron content of the nighttime F region are 
greater in summer than in winter. The main feature of the daytime situation is 
that at middle latitudes, the peak density is considerably larger in winter than 
in summer; this being called the seasonal anomaly. In summer months, at 
middle latitudes, the F layer splits into the FI and F2 layers. Finally, the electron 
density follows the trend of the number of sunspots in the 11-year sunspot solar 
cycle, thus affecting the range of frequencies reflected from the ionosphere 
(Figure 1.2.3).

1.3 Propagation of HF signals through the ionosphere.

The ionosphere is widely used as a propagation medium for HF signals, i.e. 
those of frequencies 3-30 MHz. The propagation of radiowaves is affected by 
the presence of free electrons in the ionosphere. A transmitter sends a signal to 
the receiver at a given frequency, through a reflection by the ionosphere. If the
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transmitter and the receiver are not at the same site, the radiowave will 
propagate obliquely. The transmission and reflection of radio signals is better 
interpreted with some prior understanding of the radio refractive index of the 
ionosphere n, which is expressed by the Appleton formula (Ratcliffe, 1959). 
Ignoring the presence of the Earth's magnetic field and the presence of electron 
collisions, the refractive index is given by

N  is the electron density, e is the charge on an electron, £q is the permittivity of 
free space, m is the mass of an electron and (o = 2nf is the angular wave 
frequency.

From Equation 1.3.1 we can see that the square of the refractive index is less 
than unity, and therefore the same applies for n, as its value must be real. 
Furthermore, the refractive index decreases with increase of electron density 
and, for a fixed value of electron density, increases with increase of frequency.

Let us consider a radiowave incident at an angle  ̂ on a plane refracting layer 
(see Figure 1.3.1). The electron density increases as the wave penetrates into the 
layer, and the wave normal follows the Snell's law:

n0 sin ̂  = r\ sin ̂  (1.3.2)

where i0 is the angle between the wave normal and the perpendicular to the 
surfaces of constant refractive index n0, and ix and i\ are the corresponding 
values at the base of the layer.

The ionospheric medium can be regarded as a number of slabs, each of which 
has a uniform refractive index ...). Applying Snell's law to each
boundary, we have

n2= l - X  = l -  (— )2
f

(1.3.1)

where

£Qm(0

and

is the plasma frequency.
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WgSin̂  = nx sin ix 
r^sin^ =n2smi2 
n2sini2 = j^sintj (1.3.3)

Since the plasma frequency increases with height, n becomes smaller and the 
ray gradually bends until it becomes horizontal. Therefore, when the wave is 
reflected, i = 90°, so we have

nr =sin^ (1.3.4)

therefore, for vertical propagation (i.e. i0 = 0)

nr = 0 (1.3.5)

From Equations 1.3.1 and 1.3.5 we can infer that reflection occurs when the 
plasma frequency /#  equals the wave frequency / .  Hence, when the wave 
frequency exceeds the maximum plasma frequency (also known as critical or 
penetration frequency, see Section 1.6) of the region, the wave will penetrate the 
layer. Nevertheless the wave could be reflected by a further region, in which a 
higher electron density is present.

Equation 1.3.1 is not valid when the magnetic field cannot be neglected, in 
which case Equation 1.3.6 applies

n2=1------------------2X(I-X)-------------
2(1 -  X) -  Yr2 ± [Yt * + 4(1 -  X f  Yl2Y2

where

rT = eV m(0 and YL = ey mco

The subscripts T and L refer to the transverse and longitudinal components of 
the imposed magnetic field B , with reference to the direction of the wave 
normal, When the magnetic field effects are negligible (i.e. Y « 1), we obtain 
Equation 1.3.1.

The effect of the magnetic field is to split the incident wave into two waves, 
which are taken into account in Equation 1.3.6 by the ± sign. The wave with the 
positive sign in 1.3.6 is called the 'ordinary' wave, since it is reflected at the 
same height as it would be in the absence of the magnetic field. In the case of 
vertical propagation (n = 0) the positive sign gives

X r = \  (1.3.7)
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and the negative sign gives

X r = l - Y

for /  < f B e (the electron cyclotron frequency) or 

X r = l  + Y

(1.3.8)

(1.3.9)

The waves with the negative sign in 1.3.6 are called extraordinary waves. The 
ordinary and extraordinary waves travel different paths through the 
ionosphere.

Several theorems relate certain propagation characteristics of two waves, one 
reflected with oblique incidence and the other reflected with normal incidence, 
from the same true height: the "secant law', the 'Breit and Tuve's theorem' and 
the 'Martyn's equivalent path theorem'.

Figure 1.3.2 shows a ray incident on a plane ionosphere at an angle 0O. The 
secant law, given by the Equation 1.3.10, relates the frequency f ob of a wave 
reflected obliquely at a given real height to the frequency / v of a wave incident 
vertically and reflected at the same real height.

The frequency / v is called the 'equivalent vertical frequency’ corresponding to 
f o b . It is apparent from Equation 1.3.10 that the ionosphere can reflect signals at 
a higher frequency obliquely than it can at vertical incidence.

The secant law needs to be modified for distances greater than 500 km as effects 
due to the Earth's curvature become important. A correction factor k  is 
introduced in Equation 1.3.11 to compensate for this. The correction factor has 
values between 1.0 and 1.2, depending on the electron density profile and path 
length (Smith, 1939).

For a flat earth and a horizontally-stratified ionosphere with no magnetic field, 
Breit and Tuve's theorem states that the equivalent (or virtual) path for 
propagation between a transmitter T and a receiver R is given by the length of 
the equivalent triangle TAR (Figure 1.3.2). The time taken to traverse the actual 
(curved) path TBR is the same as that which would be taken to traverse the 
equivalent (triangular) path TAR in free space. Note that the true height of 
reflection (at B) is always less than the equivalent height at A and that both T 
and R must lie outside the ionosphere.

f o b  =  f v  sec0o (1.3.10)

f o b  =  V v  sec0o (1.3.11)
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Martyn's equivalent path theorem expresses the important relationship that the 
virtual height of reflection of an obliquely incident wave is the same as that of 
the equivalent vertical wave.

However, the ionosphere has a structure in constant evolution and is affected 
by various disturbances, which are often associated, either directly or indirectly, 
with events on the sun. These occurrences can affect the performance of HF 
systems, for example by changing the maximum usable frequency (MUF) of a 
transmission path (see Sections 1.4 and 1.6). The ionosphere cannot be regarded 
as a smooth reflecting surface, and thus it does not behave as a simple mirror 
for HF signals. Furthermore, its structure can cause the signal to be reflected 
more than once from a given layer and often from different layers before 
reaching the receiver. The various modes in Figure 1.3.3 are named by means of 
a symbolism referring to the number of intermediate ground reflections and to 
the relevant reflecting layers (Davies, 1990). The characteristics of the received 
signal differ for each mode, with the elevation being particularly affected. 
Furthermore, more than one mode can occur simultaneously. An example of 
two-moded propagation is illustrated in Figure 1.3.4. When the received signal 
results from more than one propagation path, it will have different delays and 
its characteristics will be affected (such as elevation, elevation spread, azimuth, 
azimuth spread, Doppler and Doppler spread), and it will also be affected by 
fading, which consists of a temporal variation in its amplitude. We can 
distinguish between interference and in-mode fading. Interference fading 
occurs when several propagating modes with different path lengths combine at 
the receiving antenna to give a resultant signal amplitude. In-mode fading 
occurs when a single mode comprises several signals reflected from nearby 
points in the ionosphere, which happens because the ionosphere is not a 
perfectly smooth reflecting surface. Fading can have a duration from a fraction 
of a second to several hours, depending on the causes that originated it.

Some of the causes of change of ionospheric conditions are ionospheric storms 
and sudden ionospheric disturbances. Ionospheric storms are associated with 
geomagnetic, auroral and magnetospheric storms. Ionospheric storms are the 
most disruptive disturbances on radio frequencies, in particular those occurring 
in the F2 region. This is because they last for several days and they extend into 
the highly populated middle latitudes, where most ionospheric radio 
communications are conducted. Ionospheric forecasts are therefore of high 
value to both civilian and military operators, who may face situations where the 
need of a communication medium is crucial. Sudden ionospheric disturbances 
also heavily affect radio communications in the HF band, but are less disruptive 
than ionospheric storms because they are relatively short lived, from a few
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minutes to several hours. For further information concerning the effect of solar 
disturbances on radio propagation, the reader is referred to the books by 
Gassman (1963), Agy (1970), Mitra (1974) and to the SESC Glossary of Solar- 
Terrestrial Terms (SESC 1988).

In order to take account of the effects of the ionospheric disturbances described 
above, a single ionospheric mode is often modelled as a single ray specularly 
reflected from a smooth ionosphere (specular component) surrounded by a 
cone of rays produced by the roughness of the ionosphere (scattered or 
diffracted component). This effect is known as coning and can be clearly seen in 
Figure 1.3.5. Ionospheric drifts, vertical movements and Travelling Ionospheric 
Disturbances (TIDs) (Davies, 1990) cause Doppler shifts on signals propagating 
through the ionosphere. For example, consider Figure 1.3.6, in which 
irregularities drift in an east to west direction. Because of this, positive Doppler 
shifts will be imposed on those scattered components to the east of the Great 
Circle Path (GCP) direction (i.e. the shortest path between the transmitter and 
the receiver), where the motion of the scatterers is in a direction tending to 
shorten the path. Negative Doppler shifts will be imposed on those scattered 
components to the west of the Great Circle Path direction, where the motion of 
the scatterers is in a direction that lengthens the path. Likewise, downward 
vertical plasma movements will cause positive Doppler shifts, upward 
movements will cause negative Doppler shifts.

1.4 The high latitude ionosphere.

At high latitudes the ionosphere may be in continuous sunlight or darkness for 
long periods, depending upon the season. In these circumstances the 
ionosphere will be typical of daytime or nighttime conditions, respectively. An 
example of ionosphere structure at high latitudes is shown in Figure 1.4.1. The 
shaded region indicates the position of the auroral oval (see also later in this 
section) for low magnetic activity. Inside the oval is the polar cap. The location 
of these regions varies considerably, and therefore the plot is derived on a 
statistical basis. The movements of the regions take place in a clockwise 
direction during the day. The average extension varies according to seasonal 
changes, whilst sudden alterations may occur because of sudden ionospheric 
disturbances like magnetic storms. Feldstein and Starkov (1967) demonstrated 
that the extension of the auroral oval is proportional to the intensity of magnetic 
storms.

Figure 1.4.2 shows an example of the location of the auroral oval at different 
values of the geomagnetic index KP, which quantifies the level of geomagnetic 
activity. The KP index is derived from observatory K indices for a given 13
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magnetic observatory network. Each K index is a 3 h range measure of the 
irregular ionospheric variations associated with magnetic field disturbances. 
Each observatory assigns an integer from 0 (very quiet) to 9 (very disturbed) to 
each of eight 3 h UT intervals (00:00-03:00, 03:00-06:00,..., 21:00-24:00). The K 
index from each observatory is then mapped to a common scale that is intended 
to eliminate diurnal, seasonal and observatory differences. This scale is usually 
represented as 0, 0+, 1-, 1..., 8+, 9-, 9, and the values are known as Ks 
(sometimes a 0-27 scale of integer numbers is used, in order to avoid the + and -  
tags). Finally these Kg are averaged over the network of observatories to give 
KP. The subscript 'p' means planetary, and therefore designates a global 
magnetic activity index. The index is unitless and is quasi-logarithmic. An 
equivalent index on linear scale, called AP is often used in the place of KP (US 
Department of Commerce, National Geophysical Data Center Web Site). For 
further details on this index the reader is referred to Parkinson (1983). The 
crucial importance of the level of geomagnetic activity in determining 
propagation conditions was stressed by Roesler and Bliss (1988). They 
concluded that ionospheric phenomena can either degrade or enhance the 
performance of radio propagation at high latitudes. The latter situation can 
even occur when the signal strength decreases, in the case that the noise 
decreases by a higher factor, this causing the signal to noise ratio to increase.

The high latitude ionosphere is a region subject to many disturbances, and the 
auroral oval region in particular. Therefore, if the reflection point occurs inside 
the auroral oval, the signal transmission may be highly affected. As seen in 
Section 1.3, many ionospheric disturbances affect HF propagation at any 
latitudes. Furthermore, at high latitudes other disturbances occur, such as polar 
cap absorption (PCA) and auroral absorption (AA) events, and strong fading. 
As a consequence, the overall ionospheric effects on radio propagation are more 
pronounced than at middle and low latitudes. This causes the ionospheric 
layers not to be well defined at high latitudes, and also very unstable. Therefore 
the high latitude ionosphere is often regarded as a rough reflecting surface for 
obliquely propagating HF radiowaves, its roughness being enhanced by the 
fluctuations discussed above. As a result of this roughness, signals can arrive at 
the receiver over a wide range of angles in both azimuth and elevation. 
Furthermore, ionospheric movements are more frequent and faster than at 
middle and low latitudes, thus the Doppler shift and Doppler spread imposed 
onto the signal are often larger at high latitudes.

Another important factor that affects the ionosphere structure at high latitudes 
is the magnetosphere, which derives from the interaction between the solar and 
geomagnetic fields, as in Figure 1.4.3. The Earth's magnetic field lines near the
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poles extend thousands of kilometres into space, where they connect with the 
interplanetary magnetic field (IMF), which is generated by the sun. In the upper 
atmosphere, protons ejected from the sun spiral down the magnetic field lines, 
where they interact with the atmosphere causing several effects, including 
northern and southern lights (i.e. visible aurorae). The region of open magnetic 
field lines is referred to as polar cap, which is effectively open to protons from 
the solar wind. In particular, a solar flare causes the migration of protons, 
which reach the Earth in 30 minutes to several hours. The collision between 
protons and atmospheric gases produces ionisation, which occurs over most of 
the polar cap and causes intense absorption of HF radio signals (polar cap 
absorption, PC A). The occurrence of PC A events is proportional to the sunspot 
number (Landmark, 1968).

The boundary region of open field lines surrounding the cap which connect 
with the IMF and the closed field lines is called auroral oval (mentioned earlier 
in this section). In the latitudes typical of the auroral oval, a localised 
phenomenon named auroral absorption (AA) takes place, which occurs only 
over a few hundred kilometres. Its intensity varies very rapidly and it is caused 
by precipitated electrons with different energies depending on the latitudes 
(Sharp and Johnson, 1968). These electrons cause regions of increased ionisation 
when they penetrate down the D layer. AA usually accompanies visible aurora, 
but the two are not always correlated in position.

At high latitudes the rate of fading tends to be higher than at middle latitudes 
(Vincent et al, 1968; Hunsucker and Bates, 1969). Goodman J.M. (1992) showed 
that fades are often associated with spread F conditions. In particular flutter 
fading, that is fades with periods of less than 1 second, often occurs on trans- 
auroral paths, where particle precipitation perturbs the ionosphere to produce F 
layer irregularities (Pike, 1971).

The average circulation of ionospheric plasma at high latitudes is referred to as 
'convection' (Lockwood, 1993). The convection controls the plasma distribution 
and its temporal variations, and therefore it affects the operation of HF systems, 
which make use of ionospheric reflections in order to obtain over-the-horizon 
propagation. In the E region, the plasma lifetime is of the order of a few 
seconds, during which free charges move distances typically less than one 
kilometre. As a result, plasma decays about at the same location where it was 
produced. However, in the F region the plasma lifetime is considerably higher, 
of the order of several hours, during which the plasma can travel over several 
thousand kilometres. Even though the plasma will move across regions of 
enhanced plasma production (the dayside and the auroral zones) and loss (the 
nightside), its density will change quite slowly, because of the long lifetime. The
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plasma spatial and temporal distribution in the F region will therefore be much 
more complex than in the E region, and will be controlled by the convection 
pattern. High density plasma in the polar cap (of particular interest for this 
thesis) is produced by photoionisation on the dayside and subsequently 
convected poleward, its motion strongly depending on the season (Lockwood, 
1991a). Density variations affect the operation of HF systems in a number of 
ways. For example, the MUF (see Section 1.6) of a point-to-point HF link can 
change dramatically, as it depends on the plasma density at the F layer peak 
(Blagoveshchenskij et al, 1992). Furthermore, horizontal gradients of the isotonic 
contours cause deviations of HF ray paths (Davies and Rush, 1985), thus 
causing errors in signal locations obtained by means of direction finding 
systems (Tedd et al, 1985).

The shape of the convection pattern is strongly dependent on the orientation of 
the IMF embedded with the solar wind flow (Richmond et al, 1988). Figure 1.4.4 
shows sketches of the polar cap convection flow for six orientations of the IMF: 
the northward direction along the Earth's magnetic dipole axis is given by the 
positive values of the Bz component of the field, the Bx component is sunward 
and By is duskward. The centre of the six frames represents the magnetic pole 
(A = 90°), and the flow patterns are as would be seen by an observer who is co- 
rotating with the Earth. The convection patterns in Figure 1.4.4 represent long­
term averages (Lockwood, 1991b). However, Hapgood et al (1991) have shown 
that the IMF is stable for more than two hours only 15% of the time, therefore 
steady convection will be relatively rare, and the convection pattern at any 
instant will be considerably different from those illustrated in Figure 1.4.4.

Associated with the convection flow are large-scale electron density structures 
(Lockwood and Carlson, 1992), which are common features in the polar cap F 
region ionosphere. These feature are known as patches, which occur during 
periods of southward directed IMF (Bz<0), and arcs, occurring with low 
geomagnetic activity and when the IMF is directed northward (Bz>0). Patches 
and arcs have somewhat different characteristics. Patches drift antisunward at 
speeds typically of a few kilometres per second, with electron density 
enhancements of up to a factor of 10 above the background electron density in 
the F-region ionosphere (Weber et al, 1984; Buchau et al, 1983). Arcs are Sun- 
Earth aligned plasma striations having an electron density factor of 2-3 above 
the background electron density in the F-region ionosphere (Carlson et al, 1984). 
Arcs drift from dawn to dusk (perpendicular to their alignment), their speed 
being typically a few hundreds metres per second, thus much lower than the 
speed of patches.
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1.5 The effect of drifting large-scale density structures on the 
direction of arrival of HF signals.

It is known that the performance of HF direction finding systems is related to 
the mode content of the incoming signal and the frequency of operation, both of 
which depend on the electron density distribution in the ionosphere, which can 
be highly variable at high latitudes (Davies, 1990). Therefore, the performance 
of direction finding systems can be very limited at high latitudes, where signals 
can arrive at the receiver with bearings displaced from the Great Circle Path by 
up to ±100° or more (Warrington et al, 1997a). Large deviations from the Great 
Circle direction for HF signals propagating within the polar cap can be caused 
by large-scale over-dense plasma structures, such as the commonly occurring 
patches and arcs, drifting across the polar cap (see Section 1.4).

The large deviations in bearing caused by these polar cap features have serious 
implications for the operation of position location systems operating within the 
HF band at high latitudes. It is important to emphasise that the accuracy of 
bearing measurements as an indication of the positioning of a target is usually 
limited by ionospheric propagation effects and not by the DF instrumental 
accuracy, which is typically of the order of 0.1°. The understanding of both the 
propagation environment and the associated behaviour of direction finding 
systems is of primary importance, to be able to identify and reject bearings 
generated or affected by the above mentioned structures. Measurements of 
bearing errors are shown in Table 1.5.1 (see next page), for ionospheric regions 
ranging from the polar cap to mid-latitudes. The magnitude of bearing errors 
within the polar cap in winter is of particular importance for this work, since 
the analysed data were collected on a polar cap path and in wintertime. From 
Table 1.5.1 it is evident that in the polar cap, at wintertime, the errors in bearing 
can be as much as ±100° and are caused by patches and arcs travelling across 
the polar cap. These generally occur during periods of quiet geomagnetic 
activity. However, bearings are very disturbed and scattered during 
geomagnetically active periods.

When the signal is reflected by patches and arcs, the directions of arrival are 
likely to cover the solid angles subtended by the moving features, and thus are 
not an accurate indicator of the transmitter direction. Some examples were 
shown by Warrington et al (1997b) for three high latitude paths (Figure 1.5.1). 
The receiver was at Alert, in the Canadian North West Territories, where a 
goniometric direction finding system was deployed. The signals were received 
from Halifax, Nova Scotia (4180 km), from Thule, Greenland (670 km) and from 
Iqaluit, North West Territories (2100 km). Bearing measurements taken on 18th 
November 1990 for the paths Halifax-Alert and Thule-Alert are illustrated in
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Figures 1.5.2 and 1.5.3 respectively, and measurements taken from 21st to 24th 
February 1994 for the Iqaluit-Alert (I-A) path in Figure 1.5.4. The I-A path is 
particularly relevant, since the data presented in this thesis were also collected 
on this path (see Section 3.2). These examples show very large, rapid bearing 
swings. The bearing deviations are not random, but exhibit a periodic structure, 
and the number of swings is greater in the pre-noon period than in the post- 
noon period. These swings were then attributed to reflections from large, 
drifting, electron-density structures such as patches and arcs. It is important to 
consider that although it is not possible to correct for the type of bearing errors 
caused by drifting electron-density structures, it is possible to predict the 
periods during which they occur. These predictions could be used to assign 
ionospherically based weighting factors to the individual line of bearing 
measurements to improve the accuracy of the target position estimate.

Table 1.5.1 Magnitude of HF DF bearing errors measured in the various 
ionospheric regions and the geophysical conditions during which these errors occur 
(Warrington et al, 1997a).

Region Magnitude of 
maximum 

bearing error

Cause Times of occurrence

Polar Cap ±100°
(Winter)

Travelling blobs and patches. 
Sun-aligned arcs

During magnetically quiet 
periods. For active times, 
bearings very disturbed and 
scattered.

±10°
(Summer)

Winter effects reduced due to 
enhanced MUFs

Irregularities comparable to 
ambient.

Auroral region ±100° Tilts associated with auroral 
oval. Signals often lost due to 
high absorption

Magnetically active.

<±5° For dayside propagation Magnetically quiet

Sub-auioral ±100° Tilts associated with both polar 
and equatorward walls of the 
sub-auroral trough. Path 
geometry relative to the trough 
is important

When f> MUF at night when 
trough forms. Times of 
occurrence depend on Ap.

<t5° For dayside propagation Mid-latitude conditions.

Mid-latitude ±2° Tilts due to TIDs and Sunrise/set 
terminator

TIDs any time. 
Dawn/Dusk

Data relevant to the I-A path have also been analysed by Dumas (1997), who 
presented some results from 23rd January 1996. The same data have been 
analysed in the work detailed in this thesis. In the data interval investigated by 
Dumas, the trace of the detected signal often showed large variations in
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bearings as much as 100° over 4.5 hours. This is shown in Figure 1.5.5, which 
illustrates the bearings of the received signal from about 05:15 to 09:45 UT on 
23rd January 1996. The azimuth angle of arrival varies from a minimum of about 
80° below the true bearing after 07:00 to a maximum of about 30° above the true 
bearing at about 09:30. Several swings in azimuth are clearly visible. The gaps 
correspond to the time intervals when no signal was present because the 
transmitter was off to allow sounder sequences along the propagation path. 
Dumas developed a simulation of the motion of patches, which indicated that 
these swings were a result of a series of successive patches of over-dense 
plasma drifting along approximately the same path. The speed of these 
structures ranged between 210 m /s and 1350 m /s in the data interval analysed 
by Dumas, and the direction of their motion was antisunward, as expected by 
patches. Dumas showed that the results of the simulation were in good 
agreement with those obtained from the experimental data, a result consistent 
with the signal being reflected by moving structures of over-dense plasma. 
Dumas presented evidence of multiple traces (Figure 1.5.6), most of them being 
closely separated, which he considered as caused by patches. When three traces 
were present at the same time (particularly apparent at around 06:10 and 
between 06:20 and 06:30) Dumas stated that three patches were contributing to 
the signal. However, although it is possible for drifting patches to cause large 
deviations from the true bearing of a received signal, it is not necessarily the 
case that multiple traces each represent a real signal or mode, particularly when 
they are closely separated. In fact, Dumas did not consider the effect of spread 
reflections from the ionosphere, which it is important to take into account, 
especially at high latitudes. Furthermore, Dumas processed the data with only 
one array geometry, i.e. the full 12-antenna array deployed at Alert (see Section
3.2). Multiple traces can arise from a single spread mode, the precise details 
depending on algorithm and array geometry (see Chapter 4 for experimental 
data and Chapters 5 and 6 for modelled data).

1.6 Ionospheric sounding.

The height at which a radio signal propagating through the ionosphere at a 
given frequency is reflected depends upon the electron density and the angle of 
incidence. Ionospheric disturbances affect the stability of the layers, in 
particular at high latitudes, where the layers are highly variable, and 
consequently the electron density of the ionospheric regions may often change 
by large amounts. Therefore, the first fundamental step in overcoming 
propagation problems is to gain a good knowledge of the ionospheric structure 
and propagation conditions along the transmission path.
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For this purpose a technique known as ionospheric sounding is performed. One 
such sounding method consists of transmitting a signal from the ground to the 
ionosphere, varying its frequency in a systematic way, and recording the time- 
delay of the reflected signal. The trace thereby obtained is called an ionogram. 
When the receiver and the transmitter are either both at the same site or located 
near to each other, the trace will show a vertical ionogram. Vertical reflection 
occurs when the plasma frequency f N equals the wave frequency /  (see Section
1.3). Two examples of vertical ionograms for a middle-latitude location are 
illustrated in Figures 1.6.1a and b.

Figure 1.6.1a shows a summer daytime ionogram with ordinary wave traces 
only. Reflections are from the E layer, the FI layer, and F2 layer at progressively 
higher heights and on progressively higher frequencies. Notice the group 
retardation near the critical (penetration) frequencies (see Section 1.3) f 0F \ and 
f 0F 2 . Group retardation occurs when the frequency of the signal approaches 
the peak of electron density of each ionospheric layer, which causes its speed to 
decrease. This leads to an increase of the delay, hence of the virtual height (but 
not of the real reflection height, see Section 1.3). Figure 1.6.1b illustrates an 
ionogram taken on a summer evening showing one-hop and two-hop echoes 
from the F layer. The signals are split into two separate modes, ordinary waves 
(O) and extraordinary waves (X) (see Section 1.3). The ordinary and 
extraordinary waves have critical frequencies f aF and f xF respectively. Again 
we can see the increase of the virtual height caused by retardation in 
underlying ionisation at the lower frequency end of the extraordinary trace (1 
hop, F layer).

Vertical and oblique ionograms enable the number of modes which are present 
on a particular frequency to be determined (Figure 1.6.1b), which may 
correspond to how many directions of arrival are detected by a direction 
finding system. Oblique ionograms differ from the vertical ones in that the 
transmitter and the receiver are deployed at two separate sites. Oblique 
sounding is used to infer the state of the ionosphere at the reflection point or 
points of an oblique propagation path, and is obtained by send a signal across a 
range of frequencies from the transmitter to the receiver. The trace of the delay 
as a function of frequency provides important information about the range of 
frequencies suitable for use over the signal path. If the two ends are time 
synchronised, the delay represents the absolute time of flight. Oblique 
ionograms provide information about the ionospheric layers and the presence 
of sporadic E ionisation, which can be utilised to determine possible modes of 
propagation. Furthermore, information about layer heights allows the 
calculation of the range of possible elevation angles of arrival. In general,
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oblique ionospheric sounding is of most use for direction finding systems 
operators when the propagation environment is difficult for radiowaves in the 
high frequency band, and the properties of the reflection points are different 
from what can be regarded as normal propagation conditions. However, 
usually oblique ionograms cannot be taken over the path of interest, except in 
research experiments where the position of the transmitter is known, such as 
for this work.

Oblique ionograms are also used to identify two important characteristics of a 
transmission path, the Operational Maximum Usable Frequency (OPMUF) and 
the Basic Maximum Usable Frequency (MUF), which are defined as follows. 
The OPMUF is the highest frequency that would permit acceptable operation of 
a radio service between given terminals, at a given time and under specified 
working conditions (such as antennas, transmitter power, class of emission, 
information rate, and required signal-to-noise ratio). The MUF is the highest 
frequency radiowave, which can propagate between given terminals, on a 
specified occasion, by ionospheric refraction alone (junction frequency). An 
example of the diurnal variation of both frequencies is depicted in Figure 1.6.2, 
which refers to a sub-auroral path. Commonly, the optimum working 
frequency will be around 85% of the OPMUF (Davies, 1990).

An oblique ionogram taken in middle latitudes is shown in Figure 1.6.3. The 
traces generated by one-hop, two-hop and three-hop F2 reflections are clearly 
visible. The one-hop F trace shows a low-angle trace (lower portion of the trace) 
and a high-angle trace (higher portion of the trace), which join at the junction 
frequency (JF). For the one-hop F trace, the basic MUF (or F-layer junction 
frequency, FJF) is the same as the maximum observed frequency (FMOF), i.e. 
the highest frequency on which the signal is shown by the ionogram, 
independently of the path traversed (which occurs via an F-layer reflection, in 
this circumstance). The high-angle two-hop trace shows splitting into ordinary 
and extraordinary traces near the junction frequency (2FJF).

High latitude ionograms often show the presence of features, which are 
regarded as patches or arcs of enhanced ionisation (see, for example, Rogers et 
al, 2001) (see Section 1.5). Figure 1.6.4 illustrates an example of oblique 
ionogram with such a feature. The trace is very spread between about 4 MHz 
and 8.5 MHz, which means that irregularities were present when the ionogram 
was taken. Furthermore, there are two features at frequencies between about 8.5 
MHz and 11 MHz, at relative delays of about 2.5 ms and 3.5 ms. These features 
are possibly caused by patches or arcs of enhanced ionisation, which can offer a 
favourable path to the signal, in particular in case of disturbed propagation 
environment. As a result, if this feature is located away from the GCP, the
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signal will arrive at the receiver at an azimuth angle different from the true 
bearing. This over-dense plasma feature will be also likely to spread the signal 
in azimuth and elevation, since its volume may offer a wide range of reflection 
points. Furthermore, its movements are likely to shorten or lengthen the 
propagation path, thus causing signal Doppler shift.

Oblique ionograms repeated at regular intervals can show the evolution of the 
propagation conditions over a certain path. For example, movements of the 
above-mentioned features around the GCP can be inferred by the interpretation 
of a sequence of ionograms. This can cause the signal to 'follow' the feature, 
thus resulting in a continuous variation of the direction of arrival of the signal 
at the receiver. Observations of this effect will be discussed in more detail in 
Chapters 3 and 4.

1.7 Summary.

The ionosphere is an ionised part of the atmosphere that can be used as a 
propagation medium for radio signals in the high frequency band. These can be 
reflected by the ionosphere, which allows operators to achieve beyond-line-of- 
sight communication. The frequencies at which signals can propagate are 
largely determined by the electron density profile of the ionosphere. At high 
latitudes, the ionosphere is subject to very strong disturbances, which cause the 
ionospheric layers to be highly variable. As a result, the high latutude 
ionosphere can be considered to be a rough reflecting surface for HF signals, 
and consequently the propagation can be heavily affected.

At high latitudes the electron density distribution in the ionosphere can often 
be affected by drifting large-scale over-dense plasma structures, such as patches 
and arcs (frequently reported in the scientific literature). Patches and arcs 
movements can cause large deviations to HF signals propagating within the 
polar cap, thus heavily affecting their direction of arrival. This occurrence 
severely limits the performance of HF DF systems, since their accuracy is 
typically of 0.1°, whereas the deviations of the directions of arrival of HF signals 
at the receiver can be as much as ±100° or more at high latitudes. Ionospheric 
sounding is used to investigate the propagation conditions and to infer the 
evolution of the ionospheric environment.

In the next chapter direction finding techniques will be described. 
Superresolution direction finding algorithms will be discussed, with emphasis 
on those utilised for this research. Measurements and results obtained with 
these algorithms are presented in Chapters 3 to 6.
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Fig. 1.3.1 Refraction of a radio wave in the ionosphere (Hargreaves, 1992).
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Fig. 1.3.6 Schematic diagram showing the presence of propagation along 
the great circle path (solid line) and via scattered components (dashed lines) 
from a rough ionospheric reflector in which the irregularity drift has an east to 
west component perpendicular to the direction of propagation (Warrington, 
1998).
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8.050 MHz, 18th November 1990 (Warrington et al, 1997b).
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Fig. 1.5.5 Bearings for the 23rd January 1996, Iqaluit to Alert transmission. 

A6a is the difference between the observed azim uth and the true azimuth, 

(Dumas, 1997).
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Fig. 1.5.6 An expanded view of the 23rd January 1996, Iqaluit to Alert 
transmission (Dumas, 1997).
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from Iqaluit to Alert on the 23rd January 1996 between 09:41 and 09:46 UT.



2. REVIEW OF DIRECTION FINDING TECHNIQUES 
AND SUPERRESOLUTION DIRECTION FINDING

ALGORITHMS

2.1 Introduction.

Fixed land-based stations are used to measure the direction of arrival of signals, 
usually transmitted from an unknown site (except for research and testing 
purposes). Researchers have focused their efforts on the testing and 
improvement of various types of direction finders, which are classified 
according to their size. Broadly, the bigger the size, the higher the resolving 
power of the direction finder. However, at the same time the cost of the site 
increases as its size. A compromise between low resolution and high cost is to 
adopt sites of average size of a few hundred metres, which can cover the HF 
band (3-30 MHz) (see next section). The advent of multichannel receivers and 
digital computers has opened new opportunities. The main challenge has 
become to enhance the performance of direction finders by means of modern 
signal processing techniques. Superresolution direction finding algorithms are 
currently widely used to achieve this aim, because they are remarkably better 
than conventional techniques in terms of resolving power (see Section 2.7). 
Those used for this work are presented.

In the last three decades, many researchers focused their efforts in the 
improvement of superresolution direction finding algorithms, and in the 
development of new ones. A review of the performance comparisons of various 
algorithms with both real and simulated data, in different propagation 
environments, is presented, with a special interest paid to the algorithms 
utilised in this research.

A comparison between the performances of four array configurations and two 
DF algorithms is discussed (Jenkins, 1997) in terms of visibility of a weaker 
point source signal in presence of a stronger spread source signal.

Theoretical studies by Zatman (1998) and Hayward (1997) are presented, that 
show that multiple traces can arise from one signal, under certain 
circumstances.

2.2 History of direction finding techniques.

The aim of this section is to review the history of land-based stations for 
direction finding and the relevant techniques. A direction finder would ideally 
be able to work over 360° of azimuth, 90° of elevation and a wide frequency 
range. When a fixed land-based transmitting station is used, the DOA and the
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frequency of the received signal can be compared to the expected ones. 
Direction finders capable of measuring both the azimuth and the elevation of a 
signal are referred to as three-dimensional direction finders (Adcock, 1959). 
Direction finders are defined according to their size. A wide-aperture direction 
finder (WADF) is defined in the British Standard (1971) as one "in which the 
arriving wavefront is sampled simultaneously (or nearly so) by an array of 
aerials extending over a distance comparable to or greater than one 
wavelength'. When the aperture is a few tenths of a wavelength, we have a 
narrow-aperture direction finder (NADF). A very wide-aperture direction 
finder (VWADF) is an antenna array with aperture of more than ten 
wavelengths. The system used to collect the data analysed in this research is a 
WADF.

The first direction finder used at the beginning of the 20th century was a simple 
vertical loop, rotated about a vertical axis. Adcock (1919) created a NADF that 
would be much less affected by polarisation errors than the loop. The Adcock 
was adopted and developed during the 1930s and, because of the potential 
applications of direction finders in a military environment, it was extensively 
used during the Second World War, which gave a strong stimulus to research. 
The sources of instrumental and site errors were identified and reduced (see, 
for example, Smith-Rose and Ross (1947)). Crampton (1947) realised a 
combination of two or more Adcocks to reduce site imperfections and wave- 
interference in larger systems.

A common type of WADF is the circularly disposed antenna array (CDAA). For 
this array geometry, two concentric rings are necessary to cover the whole 10:1 
ratio of the HF band from 3 MHz to 30 MHz, because a single ring maintains a 
satisfactory radiation pattern up to 4:1 frequency range. The outer ring is used 
for the lower part of the band and the inner ring is used for the upper part of 
the band. An example is shown in Figure 2.2.1. There are three main types of 
CDAA. The Wullenweber (Rindfleisch, 1956) forms the desired directional 
pattern by combining the outputs from a sector of the whole ring. A goniometer 
consisting of 24 elements is described by Hockley (1973). A capacitive switch 
works as a spinning goniometer, selecting which elements are to be used at any 
moment, which enables the Wullenweber to scan and direct the antenna beam. 
24 stator plates are connected to the 24 elements, whereas 8 rotor plates rotate 
to collect 8 signals from an arc of 8 elements at any moment (see Figure 2.2.2). 
In practise a smoother commutation is obtained by increasing the number of 
rotor plates. Either a sum or a difference pattern can be used to estimate the 
DOA of a signal. If, for example, A is the sum of four signals and B the sum of 
the four adjacent signals, the two outputs from the goniometer are a sum
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pattern (A+B) and a difference pattern (A-B), also known as rabbit-ears pattern 
(Figure 2.2.2). For those algorithms using the difference pattern, the azimuth of 
the arriving ray is given by the pointing angle of the goniometer where is a 
minimum signal between the two maxima of the rabbit-ears pattern. Other 
algorithms select the maximum of the sum pattern as the direction of arrival of 
the signal, corresponding to the direction of the minimum of the difference 
pattern. The second type of CDAA is the Doppler DF. Whale (1954) used this 
system, in which a single element is moved rapidly round the perimeter of a 
circle, thus imposing a frequency modulation on the signal. More usually, a 
simulated Doppler effect is obtained by smooth commutation round a ring of 
fixed elements. In the third type of CDAA the azimuth is calculated by phase 
comparison between successive pairs of elements (Earp and Godfrey, 1947). 
This system is also referred to as commutated antenna direction finder (CADF). 
These systems were often adopted after the Second World War, the 
Wullenweber being too expensive. However, it was soon realised that the 
performance of CADFs was poor when dealing with weak signals in 
comparison of strong interfering signals. Therefore interferometer systems were 
developed (Ross et al, 1951), which also had the advantage of providing 
information about the elevation angle. However, the Wullenweber proved to be 
the system giving the most precise measurements in terms of azimuth of the 
arriving signal. In the early seventies two research groups built two linear 
VWADFs. An array of 256 vertical elements over an aperture of 2.5 km 
belonging to Stanford University is described by Sweeney (1970). An array for 
the Communication Research Centre, Canada, is described by Rice (1971); this 
array has a 1.2 km main arm and a shorter crossarm for elevation 
measurements. Attempts to measure the elevation angle of the received signal 
were also made with the Wullenweber (see Jones et al, 1966). For this purpose 
an alternative is to deploy a separate vertical array (Gething et al, 1969).

The problems related to the dimensions of an array aperture are a limiting 
factor for the resolving power of DF systems (see next Section). An aperture of 
about 100 km is needed to achieve a resolution of 0.1°. This is clearly virtually 
impossible. The usual measure of an array aperture is not bigger than 300 m. 
An acceptable suppression of site errors can be achieved with an aperture of 1 
wavelength, whilst 4-5 wavelengths are necessary to effectively reduce the 
wave interference. This difference arises because site re-radiators produce 
unwanted signals well separated in azimuth, whereas wave interference 
involves closely separated modes, which could arise from the target signal 
being reflected, for example, by the E and F ionospheric layers.
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This research concerns with the ability of modem signal processing techniques 
to enhance the performance of WADFs in multiray wavefields, that is when 
rays can arrive at the receiver from unwanted transmitters and from re- 
radiating objects in the proximity of the DF array. A multiray scenario also 
occurs when the original signal propagates via two widely separated paths. The 
direction finder is said to have resolved the wavefield when it provides 
measurements, which allow the correct calculation of the ray parameters. 
Whereas goniometric systems can be capable of resolving two signals which are 
separated in azimuth more than the natural beamwidth, modern signal 
processing techniques can allow two signals which are separated in azimuth 
less than the natural beamwidth to be resolved.

In the last decades new techniques have increased dramatically the 
performance of direction finders. Multichannel receivers and the application of 
direction finding algorithms by means of digital computers have created 
modem techniques for signal processing. Elements of an antenna array, each 
connected to a receiver, simultaneously take successive measurements of 
amplitude and phase of the signal, thus providing a sequence of space samples 
of the wave-field, commonly called snapshots. The evolution of the wave-field 
pattern then provides information about the DOA of the incoming signal. An 
early approach to this technique, known as wavefront analysis, was made by 
Bain (1956).

As a preliminary assessment, computer simulations are extremely helpful in 
providing useful information about performances of different array 
configurations and digital signal processing schemes. The performance of a 
direction finding system has to be tested in complex multiray environments, 
but not when the propagation environment is disturbed such that the wave- 
field is virtually impossible to solve. On the other hand, simple single ray 
situations are not challenging, because any direction finder should be able to 
give a correct answer. The ability to discriminate between two or more signals 
is a key quality factor for direction finding algorithms. Cooper (1973) suggested 
that, when the wanted signal is the weaker of two received signals, the signal- 
to-noise ratio can be improved by a form of automatic DF system. Lim (1977) 
achieved this by placing a null in the direction of arrival of the unwanted 
signal. A null could be generated and steered electronically to any required 
direction in a circular array. Gabriel (1976), L.J. Griffiths (1977), J.W.R. Griffiths 
(1983) and Hudson (1981) studied the performance of adaptive arrays, in which 
the nulls are positioned automatically in the selected DOAs. The advent of 
these new DF techniques provided a new approach to a number of aspects of
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array design, especially those involving the control of nulls (Gething, 1973; 
Gething and Haseler, 1974; Cawsey, 1974).

2.3 Resolution techniques.

The resolving power of fixed land-based stations depends heavily on its 
dimension, the bigger the array size the higher the resolving power. The 
azimuthal resolution is determined by the natural beamwidth of the antenna 
array, which is given by

beamwidth = 2 sin-1 (— ) (2.3.1)
2 a

where A is the wavelength of the incoming signal and a is the aperture of the 
antenna array in the broadside direction (see, for example, Baden Fuller, 1993). 
The elevation angle resolution is higher with vertical arrays than with 
horizontal arrays, for physical reasons, and needs to be carefully evaluated for 
every single pattern (see Gething, 1991).

As an example, consider that we wish to resolve two modes separated by 1° in 
azimuth to an accuracy of 0.1°. A NADF with an aperture of a few tenths of a 
wavelength is incapable to resolve the two modes, whereas a VWADF with an 
aperture of a few tens of a wavelength can face this task, but is very expensive. 
WADFs lie between these two extremes. They have a higher resolving power 
than NADFs and are less expensive than VWADFs. In the last decades many 
researchers have focused their efforts in the attempt to enhance the resolving 
power of WADFs by means of modem signal processing techniques. In fact, the 
advent of multichannel receivers and digital computers has dramatically 
enhanced the performance of WADFs. The processor of the data collected by a 
multichannel receiver is typically a computer algorithm. The aim is to utilise a 
processor, which works perfectly in single-ray conditions and in the best 
possible way in a multiray environment.

There are four main types of DFs suitable for the measurement of the direction 
of arrival in the HF band.

• The circularly disposed antenna array, with a spinning goniometer and a 
single-channel receiver. It allows for azimuth measurements only.

• The crossed-arm interferometer, with a twin-channel receiver used as a 
phase meter, for measurements of both azimuth and elevation of the arriving 
signal. It is a system with multilobed radiation patterns, which can have several 
shapes, as described by Sherrill (1971). Elements are usually arranged in two or 
more straight arms, to form a cross, triangle or L-shape.
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• A vertically stacked array of horizontally polarised elements, for elevation 
measurements only. As an example, the elements may form an array of several 
equally spaced loops on a vertical tower.

• Any horizontally disposed set of n elements used with an n-channel 
receiver, for measurements of both azimuth and elevation. It might be arranged 
in a circle, in a crossed-arm form or in a more irregular shape. Regardless of its 
shape, it is different from a circularly disposed antenna array because the 
outputs of the elements are not combined in a beam-forming network to 
produce a directional radiation pattern. It also differs from a crossed-arm 
interferometer because the interferometer usually selects its elements in pairs. 
Instead, it records digitally the amplitudes and phases of the element voltages 
for subsequent analysis. It is a system of this type on which the data in this 
thesis were collected. The vertical array generally uses the same procedure.

The DF processors can be based on either amplitude comparison or on phase 
difference measurements. The amplitude comparison is used in radar 
monopulse systems, which compare the amplitudes from two antenna beams 
by means of a twin-channel receiver and oscilloscope display, as shown in 
Figure 2.3.1. In the simplest case, the antennas have identical radiation patterns 
and coincident phase centres. In this figure, as an example, the oscilloscope 
shows a straight line of inclination 45°. This means that the two signals are 
equal, suggesting that a single ray is received on the axis of symmetry.

It is important to consider that between two patterns there might be several 
intersections, therefore any displayed angle can correspond to more than one 
direction of arrival. Furthermore, the amplitude ratio (for a single ray) is a 
function of azimuth and elevation angle, which are impossible to determine 
without any additional measurements. The amplitude ratio is not affected by 
changes in the elevation angle on the boresight direction, so this system does 
not allow for discrimination between one mode and several modes in or very 
near this plane. As a result of the comparative sensitivity to azimuth changes 
and insensitivity to elevation changes near boresight, this system is at a clear 
disadvantage when the objective is ray resolution, whereas it can be an 
advantage when only the azimuth measurement is required.

The phase difference measurements are used in interferometers. In this system, 
shown in Figure 2.3.2, the phase centres of the elements of the directive arrays 
are separated by a distance d. The beam patterns are identical and point in the 
same direction. Let a and b be the output phasors for a single ray; these phasors 
will have the same amplitude but different phase by 0, where



and 9 is the angle between the ray and the line joining the phase centres. In this 
system, the twin-channel receiver and the oscilloscope are used as a phase 
meter by displaying (a+b) against (a-b) changed in phase by n/2.

As shown in Figure 2.3.3, the angle 0 is given by

0 = 2 / (2.3.3)

where yis the inclination of the line display on the oscilloscope. Ross et al (1951) 
demonstrated that the line becomes an ellipse when a and b have not the same 
amplitude, but the above relationship will still be valid, with yas the inclination 
of the major axis of the ellipse.

In this systems an error in the measurement of 9 can occur because various 
combinations of azimuth a  and elevation A can give the same value of 0 as 
shown by the equation

cos 0 = cos a  cos A (2.3.4)

Let us consider a linear array, i.e. one arm of an interferometer. An error in the 
determination of 9 can also result from an error in the measurement of 0, as can 
be seen in the equation

^  = _ ^ s i n 0  (2.3.5)
dd  X

The maximum accuracy can be obtained by making d$ /d9  as large as possible, 
to make sure that big changes in the value of <j> would result in small changes in 
the value of 9. Therefore, maximum instrumental accuracy can be obtained with 
d as large as possible, and 9 = n/2', whereas accuracy drops to zero when 9 = 0. 
It follows that the horizontal array has to be as large as possible and as close as 
possible to perpendicularity to the ray, to make accurate azimuth 
measurements. Whereas a vertical array is more desirable when elevation 
measurements are a priority.

As a comparison, we can say that in the amplitude-comparison system, using 
squinted beams with coincident phase centres, directive patterns of known 
shape are essential; whereas in the phase difference system, using parallel 
beams and separated phase centres, directivity is optional. More sophisticated 
systems combine the two methods.

2.4 Beam forming process.

The conventional beam steering method (simply named in this thesis as Beam 
algorithm) differs from the superresolution ones (see Section 2.6) in that the
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signals from the antennas are simply combined to form a natural beam in a 
specific look direction. The look direction is than scanned in both azimuth and 
elevation, and the direction(s) of strongest reception taken as the estimate(s) of 
the direction(s) of arrival. The performance of the Beam algorithm has been 
compared to that of some superresolution algorithms.

Summing the signals from each antenna can form a beam in the directional 
sensitivity pattern of an antenna array. The signals arriving at each antenna 
have different phases, because of the physical distance between the single 
antennas. Phase changes need therefore to be applied such that signal 
components from a specified direction have equal phases. To achieve this, 
either an RF beam forming network is utilised or the outputs of the individual 
receivers connected to each antenna are sampled and processed in a computer. 
The latter approach (an n-channel technique) is that taken in the work described 
in this thesis.

The beam forming process may be described mathematically by

s (a te) = a(a,e)H x or s(a,£) = x Ha(a ie) (2.4.1)

where

( a , e )  is the look direction (azimuth and elevation)

a(a,e )  is the steering vector (a column vector containing the
expected complex signal parameters for a constant 
amplitude signal incident onto the array from the specified 
look direction)

x is a column vector containing the signal samples

H indicates a Hermitian transpose.

Neglecting the individual directional sensitivity patterns of the elements and 
any constant factors, the power received in the direction (a,£)  is therefore 
given by

p(a,£)  = s(a ,£)2 (2.4.2)

which may be written as

p ( a , £) = a (a , £)H xxHa(a, £) (2.4.3)

For one or more sample sets, xxH can be replaced by the covariance matrix, R,  
such that

p ( a , £) = a(a , £)H Ra(a, e) (2.4.4)

2.8



where

r = — x x h
N

(2.4.5)

X is a matrix containing one or more instantaneous sample 
sets, one in each column

is the number of sample sets in X .N

The directional sensitivity pattern of the array will generally contain one or 
more side lobes, which may have significant amplitudes compared to the main 
lobe. This occurs when the main lobe and the side lobe directions are close in 
signal space, that is when the directions for which the steering vector of the 
main lobe direction and the steering vectors associated with the side lobe 
direction are similar.

2.5 Superresolution direction finding (SRDF) techniques.

Superresolution direction finding is a term applied to techniques, which are 
capable of resolving two simultaneous signals, whose angular separation is less 
than the natural beamwidth of the antenna array. Flexibility in array geometry, 
superior accuracy, multiple co-channel signal operation, robustness, and the 
requirement of only a few samples to provide accurate bearings are the main 
features of the superior performance by the SRDF algorithms with respect to 
the conventional ones (Schmidt, 1986).

The conventional techniques, reviewed earlier in this chapter, can only 
satisfactorily cope with a single signal and, for many reasons such as the 
increasing congestion of the electromagnetic spectrum and various 
disturbances, it cannot now be assumed that only one signal is present in a 
frequency channel. Broadly, the resolving power of conventional techniques 
could be improved by increasing the aperture of the antenna array. On the 
other hand, a compromise between cost and performances is necessary. SRDF 
techniques aim to enhance the resolving power of conventional techniques by 
means of the intelligent analysis using modem signal processing algorithms.

SRDF employs signal samples obtained simultaneously from a spaced aperture 
antenna array. The signals feed multiple coherent digital receivers, with 
resulting data processed in fast DSP (Digital Signal Processing). The advances 
in DSP hardware and the developments of SRDF algorithms are constantly 
increasing the performances of SRDF systems. The signal samples are used to 
obtain the covariance matrix (see previous section). The DF function of each 
SRDF algorithm will contain the relevant covariance matrix to produce the 
bearing estimates. The output of the estimator can be shown in different ways.
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The estimate of the direction of arrival of a signal, repeated for a given amount 
of time, will produce a trace in the case that a signal is detected at the receiver. 
The output of each estimate at a given instant is a graph of the angular 
spectrum, as shown in Figure 2.5.1, in which we consider a two-ray problem. In 
Figure 2.5.1a the two angles of arrival are given by the two maxima in the 
pattern. In Figure 2.5.1b the two arrival angles are the minima, which 
correspond conceptually to array nulls. These are not perfect nulls but minima, 
because of measurement errors; the reciprocal can be plotted to provide sharp 
cusps at the arrival angles, as in Figure 2.5.1c. Although the last form is 
favoured, the diagrams showing sharp cusps are not scientifically valid means 
of assessing the resolution of a spectral estimator, as pointed out by Kay and 
Demeure (1984). In fact, Figures 2.5.1a, b and c may be simple transforms of 
each other, with exactly the same resolution. Once the directions of arrival of 
the rays have been determined, the amplitude of each ray is calculated 
according to the SRDF algorithm in use.

A difficult case for many algorithms is when perfect coherence between two 
arriving signals occurs. Two signals are said to be coherent when the 
fluctuations with time of their amplitudes and phases are perfectly correlated. 
In this situation the two rays may not be resolved, particularly if they are 
closely spaced in arrival angle. Local reflections at the receiving site can 
produce a condition of coherence. When coherence occurs, the spectral 
estimator is likely to produce a peak at an intermediate angle between the two 
real angles of arrival. The peak will result as a weighted mean determined by 
the amplitude of the two rays (Gething, 1991).

As previously said, the SRDF algorithms have the common ability of resolving 
two signals, which are separated of an angle smaller than the natural beam of 
the antenna array. Although the resolution limit of these SRDF algorithms 
depends on several factors, among which the antenna array geometry and size, 
the direction of arrival, signal-to-noise ratio and relative power of the incoming 
signals, experimental results suggest that they generally show a resolving 
power which is a factor of 3-4 higher than the natural beam forming algorithm. 
However, the accuracy of the bearing estimates can be affected when two 
signals are close to one another in direction of arrival (see Chapter 6).

2.6 Superresolution direction finding (SRDF) algorithms.

One of the main limitations of conventional beamforming is the inability to 
resolve two closely separated incoming signals (the separation angle varying 
according to the antenna array and the DF algorithm in use), which is the 
consequence of the fact that the signal-to-noise ratio (SNR) is a limiting factor
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for the resolution of conventional arrays (Manikas et al, 1997). In fact, the lower 
the SNR, the higher the chances that the weaker signal is lost in the noise. This 
inability gave stimulus to the development of a new class of techniques, i.e. the 
superresolution algorithms (Mermoz, 1981).

The most important of these techniques can be grouped in three classes:

• the Maximum Likelihood Methods (MLMs),

• the Maximum Entropy Methods (MEMs),

• the eigenanalysis methods

2.6.1 The Maximum Likelihood Methods.

The MLMs are based on the assumption that a wave-field consists of a single 
wanted incoming signal plus distributed noise. The bearing estimates are 
obtained by maximising the MLM power spectrum (Johnson and Miner, 1986), 
that can be expressed as

where a is the steering vector, R is the sample covariance matrix (see Section 
2.4), the superscript H denotes the Hermitian transpose (this notation will be 
used throughout this section).

An Iterative Scanning Null Beam method was developed by Brandwood (1989),

sensor array in the whole region containing incoming signals. The position of 
the nulls could be adjusted subsequently. Ziskind and Wax (1988) introduced 
an iterative algorithm (called Alternating Projection, AP) applicable to multiple 
coherent incoming signals. The AP technique solves first for a single incoming 
signal, which leads to an update equation for the projection matrix, used to 
solve for the second strongest signal, and so on. A convergence to stable values 
can be obtained after about 4 or 5 iterations (Ziskind and Wax, 1988). For a 
generic array of p  sensors with arbitrary locations and directional 
characteristics, and for q incoming sources from locations 0l ...Oq, the estimate 
of location 0. at the (k +1) -th iteration, can be expressed as

(2.6.1.1)

based on positioning nulls on the strongest ray at each iterative scanning of the

9i = argmaxe
a H {e)(I -  P A f R j l  -  PAjajd)  
a(e)" (I -  P A f  (I -  PA,)a(8)

(2.6.1.2)

where a(6) is the steering vector corresponding to location 0; I is the identity 
matrix and At is a p X ( q - I )  matrix given by



A i = a 0i a
(„k
0m , a 0,+i L.. ,a

(*k\
O q

V J

and PA( is a projection operator onto the column space of Ar

Oh and Un (1989) suggested an iterative method, which reduced the 
computational burden of the AP algorithm, based on transforming Hermitian 
forms into inner vector products. By defining r) = (7 - /^ ) ,  with some 
manipulations Oh and Un obtained the following estimator

e " - 3i z n n x a H m R r ‘a(-0) r r n ift -argmax ^  ^  (2.61.3)

The algorithm proposed by Oh and Un reduces the computational burden by a 
factor of about p/2 at the price of a slight memory increase by a factor of 1/p. 
Thus the efficiency of this algorithm with respect to AP becomes more 
significant as p increases.

Another variant of MLM is the Adaptive Angular Response (AAR) algorithm, 
developed independently by Borgiotti and Kaplan (1979) and Lagunas- 
Hemandez and Gasull-Llampallas (1984), which measured the power density 
instead of the power in the spectrum. The output power of the array is 
normalised to a thermal noise term:

(26.1.4)
a K a

Borgiotti and Kaplan demonstrated the superresolution capabilities of AAR, 
although they did not compare its performance to previously existing 
algorithms. Lagunas-Hernandez and Gasull-Llampallas showed that the 
algorithm they developed (which they simply named Modified MLM) had a 
higher resolving power than MLM.

Gabriel (1980) obtained analogous results with his Thermal Noise Algorithm 
(TNA) to those obtained by Lagunas-Hernandez and Gasull-Llampallas with 
their Modified MLM. The TNA measures the thermal noise power and its 
power spectrum (Equation 2.6.1.5) is given by the denominator term of AAR:

Pm, = ~ 4 - r ;  (2.6.1.5)
a K a

Stoica and Sharman (1990) developed a Method of Direction Estimation 
(MODE), which combined the performance of MLMs in terms of their ability to 
detect highly correlated signals with the performance of MUSIC in terms of its 
lower computational cost. MODE satisfies the ML criterion by adjusting the
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taper coefficients obtained from eigenanalysis. The estimates are obtained by 
minimising the following

/,= 7> {(S *B )(B *B )'1(B *S)(A -af)} (2.6.1.6)

where S is the matrix of the eigenvectors associated with the incoming signals, 
a  denotes the Gaussian ditribution of the noise, I is the identity matrix, and 
A = diag{Xl,...,Xn}, A, being the eigenvalues of the covariance matrix R of the 
incoming signals plus noise. Stoica and Sharman pointed out that, while ML 
requires, in general, more than two iterations to converge, MODE is not 
intrinsically iterative, and therefore it has no convergence problems, even 
though one of the steps of MODE procedure may be iterated. Furthermore 
MODE does not require multidimensional search (unlike ML), this resulting in 
the computational advantage mentioned above.

Clarke (1991) and Mather (1991) developed the Incremental Multi Parameter 
(IMP) algorithm. By iteratively testing the SNR of the estimated number of 
incident signals, by means of the higher-rank spectrum estimator, IMP aims to 
obtain near-optimal high-discrimination performance. IMP spectrum estimator 
is given by

S N R m . ^ m  ) = K A e » ) ] ' X X "  ) (2.6.1.7)

At the first iteration M = 1 and the orthogonal-projection operator = IN {N -
dimensional identity matrix), where N  is the number of incoming signals. X  is 
the data matrix, and the generic orthogonal projection operator is defined as

i)a

where # denotes the pseudo-inverse operator and 0M_, are the bearing 
estimates at the ( M  -  l)-th iteration step.

Another algorithm based on the ML principles is the Direction Of arrival by 
Signal Elimination (DOSE), developed by Zatman et al (1993), which iteratively 
attempts to detect one signal while nulling the others. Although DOSE is 
capable of resolving multi-component wave-fields into separate modes, when 
two sources are close to one another, it might provide a direction of arrival, 
which corresponds to an average of the actual DOAs. At each iteration, the 
DOAs previously estimated are suppressed, and a new estimate is obtained 
until the peak of the last DOA searched for is below an initially set threshold. 
Therefore, the DOSE algorithm does not require an a priori knowledge of the 
number of incoming signals. An Iterative Null Steering (INS) algorithm

2.13



(Warrington, 1995), which is based on DOSE and IMP (see Section 2.7 for full 
mathematical details), and also includes a steering vector tuning procedure has 
been utilised for this research. Another SRDF algorithm used for this research is 
a development of Capon's Minimum Variance Estimator, by Featherstone et al 
(1997), which they called Loaded Capon (also detailed in Section 2.7).

All above mentioned algorithms model the incoming signal as a point source. 
However, the received signal can be highly spread in both azimuth and 
elevation, which is a usual occurrence at high latitudes (see Section 1.5). 
Goldberg and Messer (1998) addressed the problem of localising a single 
coherently scattered source, whose received signal components are fully 
correlated at each direction over which the scattering extends (see also Valaee et 
al, 1995). Goldberg and Messer assumed a Gaussian distributed source with 
additive Gaussian noise. They used the Cramer-Rao bound (CRB) to study the 
inherent limitations, in terms of lower accuracy, in the estimation of the mean 
bearing of a coherently scattered source when compared to the estimate of a 
point source at the same mean DOA.

Trump and Ottersen (1996) attempted to address the problem of estimating the 
DOA and the angular spread of a source surrounded by a large number of 
scatterers. They proposed two computationally less complex estimators than 
the ML, based on least-squares fits of the sample data covariance matrix to the 
theoretical covariance matrix derived from the assumed model. The modelled 
signal assumes a scattering situation by a reasonable spatial distribution 
function (they used the Gaussian) and the parameters of this distribution are 
estimated. In particular, Trump and Ottersen showed that the proposed 
optimally weighted least-squares criterion is asymptotically efficient, i.e. it 
achieves the minimum estimation error variance with increasing number of 
snapshots.

If we call a 2 the standard deviation of the distribution, the estimates of nominal 
DOA and angular spread for the weighted least-squares estimator are obtained 
as

M  = arg min Trace[(SR + G2l}W -  /] (2.6.1.8)

where S is the received signal power, R is the model covariance matrix, a  is 
the noise variance and W is a positive-definite weighting matrix, which can be 
replaced by a consistent estimate

A  A  — 1

W = R „
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where RN is the sample covariance matrix, obtained with N  samples, see 
Trump and Ottersen (1996) for full mathematical justification. This replacement 
would not affect the asymptotic properties of the estimator, i.e. when N  tends 
to infinity. Trump and Ottersen also proposed a less complex (non-weighted) 
form of the criterion function by choosing W = / , but also stated that a 
degradation in performance was to be expected. However, Trump and Ottersen 
made a number of assumptions for their model, among them that the angular 
spread <p is small so that cos(cp) and sin(<p) can be approximated by the first 
term in the Taylor series expansions. As we will see in the next chapters, the 
angular spread can be of several tens of degrees, in which case the 
approximation cannot be considered valid, and the model proposed by Trump 
and Ottersen would fail.

Raich et al (2000) introduced the concept of "partial coherence" to account for 
temporal correlation (as well as spatial correlation) for propagation channels 
formed between a source and an antenna array. They generalised the 
previously proposed distributed source models for DOA estimation to a 
parametric spatial-temporal model for what they called partially coherent 
distributed (PCD) sources. This model lies between the two extreme cases of 
incoherently distributed (ICD) sources (zero temporal channel correlation) and 
fully coherently distributed (FCD) sources (full temporal channel correlation). 
The PCD model is more likely to represent a realistic channel scenario. The 
inherent accuracy limitations for this model become more severe as temporal 
channel correlation increases. For the PCD channel model, the channel vector 
c(k), where k is the discrete time index, can be expressed as a superposition of 
weighted point source contributions over a continuum of directions

where f(6 ,k)  is defined as the angulo-temporal weighting function, which 
describes the temporal evolution of the scattered component arriving from each

characterises the ML estimators (caused by multidimensional searches over the 
parameter search space), Raich et al (2000) presented a concentrated ML 
estimator for PCD sources. The cost function for bearing estimates, involving a 
search over four parameters, is given by

(2.6.1.9)

e.

In order to address the problem of the computational complexity that

'i'pcD =  arg min
0O,A ,p,a

(2.6.1.10)
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where 60 and A denote the angular mean and angular standard deviation 
parameters respectively, p  = o 2J o 2n represents the signal power to noise power 
ratio, a  denotes the temporal correlation between two adjacent channel vector 
samples, K  and N  are the number of snapshot measurements and antenna 
array elements, and

Rt = o*X?Rc + <7% (2.6.1.11)

X? being a weighting factor for the temporal cross-correlation matrix Rc 
between the channel vectors. The described concentrated ML estimator is said 
to be optimum in that its performance asymptotically achieves that predicted 
by the CRB. Raich et al stated that work was being undertaken focusing on the 
development of more computationally efficient, suboptimal alternatives to the 
ML estimators.

A Spread Maximum Likelihood (SML), which models the signal as coming 
from a distributed source, was available at the times of this research and has 
been used for part of the results presented in Chapter 4. The SML code was 
written by Read (1999). SML has been chosen as representative of those 
superresolution algorithms which assume the incoming signal to be generated 
from a spread source. However, SML was still under development (Read, 1999) 
at the times of this research, and its operational characteristics are detailed in 
Section 2.7.

2.6.2 The Maximum Entropy Methods.

The MEMs, based on the work of Burg (1972, 1975), attempt to maximise 
(subject to some limitations) the entropy of the output from the processing 
algorithm. The reader is referred to Childers (1978) for a review of the early key 
papers. Unlike conventional filters, which aim to remove as much noise as 
possible from the input signal, the MEM algorithm attempts to make its output 
spectrum as noise-like and structureless as possible. In order to do so, it places 
nulls on all the signals in the input spectrum, and the transfer function of the 
filter is used to determine the characteristics of the removed signals. The MEM 
criterion is preferable when little or nothing is known about the signal 
characteristics, whereas more is known about the noise features (Johnson and 
Sherril, 1982). Several solutions have been proposed for a multidimensional 
analysis. In the solution provided in the papers by McClellan (1982) and Lang 
and McClellan (1982), the MEM estimates are given by the MEM spectrum, 
PMEM, that maximises the entropy H(P)



PMEM is expressed as a positive polinomial in the frequency-wavenumber 
domain K  over which power is assumed to be present (the above mentioned 
papers provide full mathematical details).

Nickel (1987) provided another calculation of the MEM spectral estimator. 
Nickel explained that the first and last columns of the covariance matrix, 
corresponding to the largest space interval between the sensors of an antenna 
array, give full benefit of its aperture. Nickel proposed an MEM spectral 
estimator by using the first column of the inverse of an estimate of lower order 
of the covariance matrix:

MEM

Ha R
\ \

(2.6.2.2)

where
f .- i \
R

V Ai  

R
V ) i

-1
is the (1,1) element of R and

_ - i

is the first column of R .

Maximum Entropy Methods have shown lower angular resolution than other 
estimators, and therefore no MEM has been utilised for this research.

2.6.3 The eigenanalysis methods.

The eigenanalysis methods (Schmidt, 1981) are based on the principle of 
searching for the best linear relationships among the sensor signals by 
decomposing the covariance matrix into its eigenvectors and eigenvalues. Such 
methods are sensitive to sampling and modelling errors and uncertainties. In 
fact, they are based on a precise knowledge of the array characteristics 
(geometry, sensor gain and phase, mutual coupling between elements, etc.). If 
these parameters are incorrectly applied, the eigenanalysis methods give poor 
results; therefore calibration with respect to array parameters is crucial in 
signal-subspace techniques (Fistas and Manikas, 1994).

Eigenanalysis methods have been developed for the study of adaptive arrays 
(Gabriel, 1976) from the 70s. Pisarenko (1972) developed a spectral estimator 
form from various weighted means of the eigenvalues of the covariance matrix 
and studied its characteristics, and also suggested (Pisarenko, 1973) a solution 
method based on the smallest eigenvalue, Amin, which gives the noise power. 
Pisarenko's method, applied to DOA estimates in the case of noise-free
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propagation environment and r incoming rays, produces a matrix of 
(r+l)X(r+l) elements, one eigenvector being orthogonal to the r ray vectors. 
The corresponding eigenvalue is zero in a noise-free environment and o 1 with 
noise, where a 2 is the variance of the noise distribution. The DOAs can be 
determined from the roots of a polynomial, whose coefficients are the elements 
of the eigenvector corresponding to A^, but with applicability limited to Amin 
having multiplicity one. However, a generalisation of Pisarenko's method was 
presented by Lang (1981) for Amin with multiplicity greater than one.

The importance of eigenanalysis for radio direction finding was recognised by 
Gething (1978), who highlighted the importance of distinguishing between 
signal and noise eigenvalues, and later by Ellis (1980), who gave a complete 
geometrical interpretation. Van Blaricum and Mitra (1978) discussed 
applications of the eigenanalysis method and, by using the known standard 
deviation of the noise, provided the basis for the determination of the 
maximum number of DOAs. Bienvenu and Kopp (1980, 1981) investigated 
some properties of the eigenanalysis solution (such as the distinction between 
signal and noise eigenvectors). Whereas Reddi (1979) used the signal subspace 
for the DOAs estimates, the Multiple Signal Classification (MUSIC) algorithm 
(Schmidt, 1979,1981,1986) uses the noise subspace (see Equation 2.7.1 for the 
mathematical expression of the MUSIC spectrum). MUSIC is the most well- 
known and widely-used eigenanalysis method for direction finding. Although 
many other eigenanalysis methods have shown interesting features, MUSIC can 
be regarded as the classical eigenanalysis algorithm, and as such it has been 
utilised for this research as a reference SRDF algorithm (detailed in Section 2.7).

As MUSIC performs poorly in case of fully correlated sources, a number of 
techniques have been developed to overcome this problem. However, some of 
them have the limitation to be applicable only to linear arrays of uniformly- 
spaced identical sensors, such as the technique called 'spatial smoothing' (see, 
for example, Pillai, 1989). However in this thesis we focus on algorithms 
applicable to any array geometry. A development from MUSIC capable of 
working with a generic array geometry is the Estimation of Signal Parameters 
via Rotational Invariance Techniques (ESPRIT) (Paulraj et al, 1986; Roy and 
Kailath, 1989). ESPRIT has significant advantages in computer speed with 
respect to MUSIC, and it can work without array calibration. However, to 
achieve this ESPRIT imposes a constraint on the structure of the antenna array, 
i.e. the N  elements have to be displaced in d = N /2  doublets. The elements of 
each doublet must have identical sensitivity patterns, and are translationally 
separated by a displacement vector A, which sets the reference direction. Thus
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this array corresponds to having two identical sub-arrays translated by d, 
which is the magnitude of A.

Let us consider n < d  incoming sources centred at frequency /  and with speed 
c. Let us call

the diagonal matrix of the phase delays between the doublet elements for the n 
wavefronts, where

0k being the DOA of the k-th signal. The diagonal elements of O are equal to 
the eigenvalues (yx y„) of the ESPRIT covariance matrix for the signal subspace 
(see Roy and Kailath, 1989, for full mathematical justification). The estimate of 
the DOA of the k -th signal is then given by

However, since the maximum number of incoming signals that can be detected 
is half the number of antennas, ESPRIT has the disadvantage of a much 
reduced maximum number of rays that can be resolved with respect to MUSIC, 
using the same array geometry and dimensions. Furthermore, ESPRIT (like 
MUSIC) shows difficulties in resolving coherent signals.

Manikas and Turner (1991) developed an Adaptive Signal Parameter 
Estimation and Classification Technique (ASPECT), which is capable of 
resolving correlated signals and can also be applied to an arbitrary array 
geometry. This algorithm uses an initial guess as to the number and the DOAs 
of incoming signals, since the actual number of the sources present in the signal 
environment cannot be known a priori. The number and DOAs of the incident 
signals are then estimated during the processing. However, any initial 
information about the incoming signals will speed up the process of 
convergence. As with MUSIC, a wrong estimate of the number of signals with 
ASPECT can lead to wrong estimates of the DOAs. The bearing estimates are 
obtained by minimising one of the three following ASPECT cost functions

O = diag{ eJiPl,.. .,ejq>n} (2.6.3.1)

(2.6.3.2)

(2.6.3.3)

'¥ = troee{PaP£PaPE) (2.6.3.4)

n

'p = p ^ = i (2.6.3.5)
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¥  = trace{P'PE) (2.63.6)

where E is the matrix whose columns are the eigenvector belonging to the 
signal subspace, P  and P 1 are the projection and the orthogonal-projection 
operators respectively, and n is the number of signals.

To address the problem of estimating the DOA of a spread source (see sub- 
Section 2.6.1), Lee S.R. et al (1996) proposed a parametric distributed source 
model, and Lee Y.U. et al (1997), proposed both a parametric and a non- 
parametric distributed source model. Lee Y.U. et al considered signals from 
different sources to be either correlated or uncorrelated, and signals within a 
source to be correlated. The shape of the distributed source is assumed to be 
known, and is represented in terms of the spatial harmonics. The output of an 
array is obtained by integrating the effect of the incoming plane wave signal 
over all directions weighted by the distribution source density. The parametric 
source model must satisfy the condition that the distributed source density of 
two closely-spaced combined sources located at any point between their centres 
is less than the source density of either one at its centre. The non-parametric 
source is assumed to be a general function defined by any azimuth-of-arrival 
(O<0<2;r). The aim with the non-parametric model is generalised to 
estimating the distributed source as opposed to the conventional DF problem of 
estimating the number and DOAs of point-like sources. Lee Y.U. et al used an 
eigenstructure-based method for the DOA estimation. The estimates of the 
DOA 0. and distribution parameter p t for the i-th distributed source are 
obtained by minimising the cost function

(2.63.7)

A

where G is an estimate of the noise subspace matrix and aplnp is the steering 
vector for the parametric/non-parametric model. Lee Y.U. et al (1997) displayed 
their results for a uniform linear array for sake of simplicity, and stated that 
these are also valid for a generic array geometry. However, they did not specify 
in what circumstances their model would fail for a generic array.

In the next section the SRDF algorithms utilised for this research will be 
described in detail.

2.7 MUSIC, Iterative Null Steering (INS), Loaded Capon and 
Spread Maximum Likelihood (SML) algorithms.

In this section the SRDF algorithms used in this research are introduced. These 
are the Loaded Capon, INS, MUSIC and SML algorithms. MUSIC and Capon
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(Capon, 1969,1970) are commonly used in operational environments, which is 
the reason why MUSIC and Loaded Capon chose for this research, MUSIC 
being a classic algorithm and Loaded Capon a recent development of the 
original MVE (Minimum Variance Estimator) Capon algorithm. INS has been 
utilised in order to test its validity at high latitudes in comparison to the other 
two SRDF algorithms, since it had been used successfully at mid-latitudes 
(Warrington, 1995) (see Section 2.8). SML, the most recent, has been utilised 
because it models the high latitude propagation environment more accurately 
than the other algorithms mentioned above, even though it has some 
limitations. The overall choice of these algorithms is driven by the fact that they 
are representative of different types of algorithms. It follows that a comparison 
of their performance is very useful since it allows us to infer the characteristics 
of the propagation environment, and therefore the behaviour of the algorithms 
in such an environment. The results should also be of great interest to DF 
operators at high latitudes, as we will see in the following chapters. The 
MATLAB programming language has been used to implement the five 
algorithms utilised in this research (Beam and the four superresolution ones 
named above).

M ultiple Signal Classification (MUSIC)

Hill (1990) and Gething (1991) provided an introduction to this algorithm, 
whereas for a full description the reader is referred to Schmidt (1986). It has 
been widely used for direction finding of uncorrelated signals within the HF 
and VHF bands.

MUSIC is based on the formation of a covariance matrix (Equation 2.4.5) from 
samples of the signal amplitude and phase at a number of spaced antennas 
followed by eigen-decomposition of the covariance matrix into terms associated 
with the incident signals and other terms associated with the noise components. 
The various signal components (propagation modes, co-channel signals and 
noise) must be uncorrelated over the interval when the data are collected. In 
fact, in the case of correlation between signal components, the accuracy is 
greatly reduced and the algorithm is unable to resolve them.

The Equation 2.7.1 shows the MUSIC function

f u (a,e) = ------ 7t~--------------------------------- (2.7.1)
a ( a , £ ) R Na ( a , £ )

where

\ N = r,Nn N

and

R m — E \ r E r - H
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En  is a matrix whose columns are the eigenvectors assumed to
be associated with the noise components.

In Equation 2.7.1 the directions of arrival correspond to minima in the 
denominator resulting in sharp peaks in the overall function.

The number of incident signals is unknown in all practical applications of the 
algorithm. It is therefore necessary to estimate this parameter before RN can be 
calculated. In simulation, the eigenvalues tend to belong to two separate 
groups, one with large values belonging to the signal components, the other 
with small values belonging to the noise components. The number of signal 
components can be therefore estimated from the number of the large 
eigenvalues. With real data, the division between the two groups becomes more 
blurred and, furthermore, the noise may swamp an eigenvalue associated with 
a small signal.

It is important to note that the eigenvalues are not a measure of the power of 
the individual signal components. Therefore a strong signal component may be 
associated with a relatively small eigenvalue. The estimates of the directions of 
arrival are likely to be erroneous if the number of signal components is wrongly 
estimated. Gething (1991) showed that large errors occur in the case of under­
estimation, reduced errors in case of mild over-estimation, whereas larger over­
estimation leads to additional peaks which may wrongly be interpreted as 
directions of arrival of a signal.

When the MUSIC algorithm is implemented, it is therefore necessary to set a 
threshold between the eigenvalues associated with the signal components and 
the eigenvalues associated with the noise components. The other parameter to 
set is the number of signals estimated. The position of the peaks in is
then determined. The number of the largest peaks is the same as the number of 
signals estimated. The positions of the largest peaks are associated with the true 
directions of arrival.

Iterative Null Steering (INS)

The INS algorithm (Warrington, 1995), which is based on IMP and DOSE, 
introduced in Section 2.6, operates iteratively by first estimating the direction of 
arrival of one signal from the peak of a scanned (in software) beam whilst 
suppressing all the other signal estimates through the projection of nulls. 
Initially, a single signal component is assumed and its direction of arrival is 
estimated as the direction of the maximum received power from the scanned 
beam. A null is then positioned in this direction and an estimate made of the 
direction of arrival of any second component. The second component is then 
nulled and a revised estimate made of the original direction and the process
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repeated until the estimated directions of both signal components remain 
stable. Both of these signal components are then nulled and if there is still 
significant energy being detected in the scanned beam, the number of signals 
searched for is increased by one and the iteration process repeated with all but 
one component being nulled at any time. The search terminates when the peak 
of the scanned beam (with the nulls imposed) is less than a pre-defined 
threshold or when a new estimate is identical to one of the nulled directions.

In order to compensate for system errors and the effect of noise, which can 
result in the failure to correctly null out incoming energy from a specified 
direction, a steering vector tuning procedure has been incorporated (Moyle and 
Warrington, 1997). Once the peak has been found by the beam scanning 
process, the associated steering vector is then adjusted ("tweaked") by 
successively modifying each element in turn by a small amount (±0.1dB and 
then ±0.1°) and recalculating the value of the peak with the modified steering 
vectors. The modified steering vector giving the largest peak is then used in 
further stages of the algorithm. The tweaking process is repeated until no 
further increases in the peak value occur (i.e. the algorithm adopts a "hill 
climbing" approach). The final modified steering vectors are then used in the 
nulling procedure to form deeper nulls when searching for other signal 
components.

A conditioning matrix, Q (given by Equation 2.7.2), based on a Gram-Schmidt 
projection can be applied to the signal data (Equation 2.7.3) to form nulls in 
specified directions (Hudson, 1981). Note that the signal-conditioning matrix is 
Hermitian (i.e. Q = QH) and that Q = Q2.

Q = I - A ( A HA)~l AH (2.7.2)

y = Qx or Y = QX (2.7.3)

where

A is a matrix whose columns are the steering vectors
corresponding to the required null directions, and

/  is the identity matrix.

The functions on which the IMP and DOSE algorithms are based may be 
written as

pK( a ,e ) = a(a’e)y Ha(a’£) (2.7.4)
a (a ,e )Q a (a ,e )

for snapshot data, or for more than one sample set by
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_ a(a,e)H He a(a,e) 
N ’ a(a,e)H Q a(a,e)

(2.7.5)

where

is the conditioned covariance matrix given by

Rc  = — YYh (2.7.6)
N  '

p N(a ,e )  represents the power received in the specified direction after nulls

in the denominator of Equations 2.7.4 and 2.7.5 represents the gain of the array 
in the specified look direction after the nulls have been imposed. It is included 
in these equations to correct for the influence of the signal conditioning at 
directions other than the nulled ones.

This algorithm may be regarded as an approximate maximum likelihood 
estimator in which the detected power (given by the Equations 2.7.4 or 2.7.5) is 
minimised by a suitable choice of steering vectors included in matrix A (see 
Equation 2.7.2). This differs from the true Maximum Likelihood Estimator 
(MLE) in which the function given in Equation 2.7.7 is minimised (the trace 
function is a matrix operator which returns the sum of the elements on the 
leading diagonal of the argument).

Loaded Capon

The original algorithm, named after its inventor Capon (1969), is based on a 
Minimum Variance Estimator (MVE) method. Capon created a high resolution 
algorithm which marked a decisive step forward with respect to the 
conventional algorithms, whose resolution was determined essentially by the 
natural beam pattern of the array of sensors. His experimental results showed 
an improvement in resolving power of about a factor of four. In this original 
algorithm the steering weights for a specific look direction were adjusted to 
maintain a constant processing gain in that direction but to minimise the total 
output power from the array, thus minimising contributions to the output 
power arising from noise and from signals arriving at other directions.

The covariance matrix of the Capon/MVE algorithm is given by

have been imposed on the directional sensitivity pattern of the array. The term

/  ='Trace (QR) (2.7.7)

(2.7.8)
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where K  is the number of samples and x{ is the f* complex data vector recorded 
by the receiving array.

The output power of the antenna array is given by

W a ’£ )= a(«,e)* / r V a ,e) ( 2 ' 7 9 )

An enhanced version of the Capon's original estimator has been used in the 
work of this thesis, which is named 'Loaded Capon' (Featherstone et al, 1997), 
which overcomes the possible errors in the estimate of the covariance matrix, 
which occur when using the MVE algorithm, in particular when relatively few 
data samples are available. A non-infinite sample support causes the spread of 
the eigenvalues of the noise subspace of the covariance method, thus degrading 
the performance of the MVE algorithm. This problem can be overcome by 
adding a constant to each eigenvalue, this constant being given by a fraction of 
the total power contained within the covariance matrix. The leading diagonal of 
the covariance matrix is then loaded by this constant and the amount of the 
noise subspace corrupting the output will thereby be lowered.

The possibility of successfully estimating the direction of arrival of a signal by 
means of only a few samples of the data set is a highly desirable feature, in 
particular in conditions of disturbed propagation. In fact, the possible sudden 
change in propagation conditions may affect the signal in a very short amount 
of time (see Section 4.3 for an investigation on the effect of the integration time 
on the observed bearing spread). The Loaded Capon algorithm operates 
successfully when using only a few samples of the data set to form a time 
averaged covariance matrix and this allows the signal to be tracked in 
conditions of disturbed propagation.

The covariance matrix of the Loaded Capon is

R = VAVH (2.7.10)

where

A = diag(X\X2... Â r)

and

V = [v1v2...viV]

Aj, A ^ ..., A# are the eigenvalues of R and 

v\, v2, ..., v/y are the corresponding eigenvectors.

The Matrix Inversion Lemma allows the covariance matrix to be rewritten, by a 
scaling factor of 1/Amjn, as follows
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R~l = I -  2  Vih —^ m L v.H
i=l h

(2.7.11)

where A^n is the smallest eigenvalue.

The Minimum Variance Estimator algorithm in Equation 2.7.9 can now be 
rewritten as

Each eigenvector will then contribute to the output in the proportion to 
(Aj -  Amjn)/A|-. When the number of samples used to form the covariance matrix 
is infinite, every eigenvector has an eigenvalue of Amin, in the noise subspace. 
The noise subspace will therefore make no contribution to the output, because

In the case when a finite number of samples are used, the eigenvalues are 
spread, i.e. Am+j > Am+2 >... > Amin, where m is the rank of the signal subspace. 
Besides, if the noise in data samples is not statistically independent, the noise 
eigenvalues may be smaller. In this case we have (Am+; -  Amin)/Am+/ * 0, 
because Am+; * Amjn. The output is therefore corrupted by the noise subspace.

The Loaded Capon method reduces the term (Am+/ -  Amin)/Am+i- by adding a 
constant to each eigenvalue, thus diagonally loading the covariance matrix. The 
practical effect is then to reduce how much the noise subspace corrupts the 
output. The effect on the signal subspace's contribution to the output is 
minimal, providing that the signal subspace eigenvalues are much larger than 
the loading level. Furthermore, the diagonal loading will help in the inversion 
of the covariance matrix, in the case that the spread of the eigenvalues 
originates an ill-conditioned covariance matrix. The modified covariance matrix 
Rl can be defined as

where I is the identity matrix and a  is the loading factor.

Spread Maximum Likelihood (SML)

Many DF algorithms assume that the incoming signal is generated by a point 
source, an assumption which would not provide optimum bearing estimates 
when the received signal is spread over a range of azimuth and elevation 
angles, which is a usual occurrence at high latitudes (see Chapter 3). This has 
given the stimulus to researchers, in the recent years, to develop new 
algorithms which can model the signal as arriving from a distributed source, as

1 (2.7.12)

m̂in )M*—0*

Rĵ  — /? + od (2.7.13)
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well as a point source. Read (1999) developed the SML algorithm to improve 
the sensitivity of DF systems to weak signals in the presence of stronger spread 
signals. Therefore, SML would be more suitable to the high latitudes, since it 
would model more realistically the propagation encountered there, which is the 
main property compared to the other algorithms utilised for this research.

SML assumes both signal and noise to be random processes. This is because, 
even though the signal is transmitted at known amplitude and phase, the often 
highly variable ionospheric environment tends to randomise both amplitude 
(eg. fading) and phases (eg. Doppler shifting), see Section 1.3. By assuming 
Gaussian random processes, the associated probability density function, valid 
for HF measurements (no dc component) is given by

r (  \  1 - t ra c e (x H C~lx \  x
/ (* 0>*1 Xk-i) = T Z  \ice (2.7.14)(rcdetCj

where xk (for k = 0 , . . . ,K - \ )  is the sample data vector measured by N  antennas 
at time instant tk, X  is the N x K  data matrix whose columns are the data 
vector, and C is the N x N  model covariance matrix describing the spatial 
correlation between the antennas. The estimates are obtained by choosing the 
covariance matrix C that maximises /(jc0,jc1,...,jcjr_1), which is equivalent to 
maximising the cost function

L = -ln(det C) -  trace(RC~l) (2.7.15)

where R is the data covariance matrix given by

R = — XX"
K

However, SML has the limitation to fail for angular spreads higher than 15° (see 
next section). Nevertheless, SML was available at the times of this research and 
has been utilised in order to compare its results (see Chapter 4) with those 
obtained by means of the other algorithms described in this section, which are 
substantially different.

2.8 Comparison between the SRDF algorithms utilised for this 
research.

In the last three decades, superresolution direction finding algorithms have 
been considerably improved, and new ones have been developed (e.g. Read, 
1999). Many researchers undertook comparisons between the performances of 
these algorithms applied to both real and simulated data, for direction finding 
of signals propagating at different latitudes and therefore in different
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ionospheric environments. For the reasons discussed in the previous two 
sections, the SRDF algorithms utilised for this research are MUSIC, INS (based 
on IMP and DOSE), Loaded Capon and SML (detailed in Section 2.7), and 
therefore, for the scope of this thesis, this section focuses on the comparison 
between them. It is worth bearing in mind that, of these algorithms, MUSIC and 
Capon are the 'classical ones', whereas INS and Loaded Capon are more recent 
developments of previously existing algorithms.

An important parameter in evaluating the performance of a direction finding 
algorithm is its ability to identify a target at the lowest possible value of signal- 
to-noise ratio. From this aspect, MUSIC was outperformed by IMP (Mather, 
1991). Making use of simulated data, IMP was shown to be capable of resolving 
two correlated signals at a signal to noise ratio 10-12dB lower than that required 
by MUSIC to resolve uncorrelated signals. Furthermore, Mather demonstrated 
the higher robustness of the IMP algorithm with respect to the MUSIC, since 
the results obtained with IMP were less affected by antenna calibration errors.

Zatman and Strangeways developed the DOSE algorithm, reported by Zatman 
et al (1993). They undertook analysis of data collected over three mid-latitude 
paths by means of a multichannel receiver, and compared the performances of 
DOSE and MUSIC. The results showed that DOSE was characterised by a much 
higher resolving power and robustness than MUSIC. The results obtained with 
DOSE were also compared to those obtained with interferometry techniques 
(see work reported earlier by Warrington and Jones (1991)), which were 
incapable of resolving multimoded signals in the experiments reported by 
Zatman (see Gething, 1991, for interferometry techniques in 
multisignal/multimoded environmrents). In case of single-moded propagation 
the results were similar, except that with DOSE the spread of the estimated 
directions of arrival was much smaller.

Manikas et al (1997) compared the performance of the IMP and DOSE 
algorithms (among others) operating in a coherent signal environment with 
simulated signals, using a planar 6-element circular array of 25 metres radius 
with a natural beamwidth of 23°. They used two coherent sources separated by 
various angles and additive noise taken to be 20dB and lOdB below the power 
of the two signals. The results were similar with both values of signal-to-noise 
ratio. IMP and DOSE failed for angular separations of 25° (or smaller) and 15° 
(or smaller) respectively.

IMP and DOSE have been taken as the basis for developing the INS algorithm 
by Warrington (1995). INS does not assume that the incident signals are 
uncorrelated, it does not require a predefined number of estimates, and it 
includes a steering vector tuning procedure (see Section 2.7). INS and MUSIC,
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applied to experimental data from three mid-latitude paths, were compared by 
Warrington (1995). The data were analysed in one snapshot and for the 
following integration times: Is, 2s, 4s, 8s, 16s and 32s. INS was significantly 
better than MUSIC at resolving the various propagation modes in terms of 
success rate and bearing standard deviation, particularly for short signal 
analysis intervals. Warrington concluded that the poor performance of the 
MUSIC algorithm was mainly due to its characteristic of assuming that the 
incident signals were uncorrelated, whereas they can be well correlated, 
especially in the case of multimoded propagation and over short periods.

The performances of MUSIC in terms of variances of estimated DOAs were 
compared to the Capon and the Loaded Capon algorithms by Featherstone et al
(1997). As we have seen in Section 2.7, Featherstone et al (1997) improved the 
Capon's MVE algorithm (1969) into an algorithm which they named Loaded 
Capon. They used both simulated data and experimental data for a mid­
latitude path (recorded with a multichannel HF DF system) to emphasise the 
advantages of their new Loaded Capon algorithm with respect to the classic 
Capon's algorithm (1969). For a more comprehensive comparison, they 
processed the same data by means of MUSIC. Figures 2.8.1a&b illustrate the 
variances of the estimated DOAs versus number of samples for simulated data, 
for signal to noise ratios of 9dB and 12dB respectively, using all three 
algorithms. In both cases, Loaded Capon showed lower variances than Capon, 
this difference being very remarkable for low numbers of samples. While 
MUSIC consistently exhibited lower variances than Loaded Capon regardless of 
the number of samples, Loaded Capon has two main advantages with respect 
to MUSIC: a) it requires a much lower computation burden and b) it does not 
require a priori knowledge of the number of signals being received. The errors 
which occur when this number is incorrectly estimated are therefore avoided, 
errors which are more likely to occur in multicomponent wavefields.

A multicomponent wavefield is generally produced by ionospheric multipath 
or co-channel interference from other transmitted signals. This can cause two or 
more signals to arrive at the receiver with different angles of arrival and 
different amplitudes. Johnson and Miner (1986) undertook simulations that 
compared the performance of several superresolution algorithms in resolving 
multiple signals. In particular, the comparison between the MUSIC and the 
Capon algorithms, in terms of angular resolution and co-channel interference, is 
of special interest for this thesis. For the simulations, the antenna array (Figure 
2.8.2) consisted of five antennas deployed in a crossed array configuration in 
the X-Y plane, separated by 30 m. Two additional antennas were located 
vertically on the Z axis, over the centre of the crossed array. Signals at 4 MHz
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were assumed to be incident on the composite 7-antenna array, which implied a 
spacing between antennas of 0.4 A. Johnson and Miner simulated two unspread 
and mutually incoherent signals arriving at the receiver with elevation angle 
separations of 10°, 5° and 4°, having the same power and the same signal-to- 
noise ratio (Figure 2.8.3). MUSIC resolved the two signals in all cases, whereas 
Capon only resolved the two signals when they were separated by 10°, whilst 
in the other two cases it showed one broad peak. A co-channel interference 
simulation was also carried out to reproduce the HF propagation environment 
perturbed by an interfering signal. In this simulation, Johnson and Miner 
assumed three unspread and mutually incoherent signals with relative signal 
amplitudes of 1.0, 0.5 and 0.1, elevation angle separation of 10° to each other, 
same signal to noise ratio (Figure 2.8.4). The MUSIC algorithm resolved the 
three signals for every case considered, while the Capon algorithm never 
resolved the weakest signal, but did resolve the two strongest signals for 
angular separation of 10° or more. The research reported by Johnson and Miner 
is limited to the case of unspread incident signals, which is often an unrealistic 
scenario, especially at high latitudes (see Chapter 6).

The ability of the DF algorithms to detect more than one signal is obviously a 
crucial one. Investigations on the sensitivity of some algorithms were carried 
out by Dumas (1997), who compared the performance of several algorithms, 
including MUSIC, INS and SML (Read, 1999) discussed later in this section, 
applied to an experimental data interval. Figure 2.8.5 shows that the gross 
structure of the traces detected by means of the MUSIC and the INS algorithms 
was similar, both in the case of one signal detected and when evidence of a 
secondary signal showed. Analysis of the same portion of data, undertaken for 
this research with INS, showed that the secondary signal could be detected for a 
longer time interval (see Figure 4.2.6), possibly due to a different termination 
threshold (see Section 2.7), which was not specified by Dumas. It is evident in 
Figure 2.8.5 that SML was remarkably more sensitive to the secondary signal 
than the other algorithms.

Read (1999) compared some results obtained with SML and MUSIC using 
experimental data. The traces detected by SML were cleaner, i.e. less scattered, 
than those for MUSIC, and this can be seen in Figure 2.8.5 for the analysis 
undertaken by Dumas. Using simulated data, SML performed better than 
MUSIC, especially when the problem of estimating the bearing of a weak point- 
source signal in the presence of a stronger distributed-source signal was 
considered (see Section 2.7). However, the modelling failed when the azimuth 
and/or elevation spreading of a distributed signal was assumed to be larger 
than 15°. This is an important limitation, as incoming signal often arrive at the
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receiver spread in azimuth for more than 15° (see Chapters 3 and 4). 
Furthermore, SML required a much higher computational burden than MUSIC. 
Recently, Read has improved the latter deficiency with an algorithm, which 
was named Spatial Incoherent Region Estimator (SPIRE) (Read, 1999). Even 
though the results obtained by means of SPIRE appeared to be promising, Read 
admitted that further efforts were needed to investigate the full capabilities and 
limitations of this new algorithm. Since it has been developed so recently, it has 
not been possible to utilise SPIRE in this research. However, the assumption 
that a signal propagating at high latitudes has to be modelled as generated by a 
spread-like source is certainly supported by the results presented in this thesis.

2.9 Visibility of multiple signals.

Different antenna array geometry and SRDF algorithms will generally perform 
differently, especially when multiple signals are present. The presence of both 
single-reflection (point source) and multiple reflection/scattering (extended 
source) ionospheric radio propagation is typical of the observed high latitude 
night-time conditions (Jenkins, 1997). The extended source can be caused by a 
reflection from moving features in the F-region (see Section 1.5). The DOAs 
tend to cover the solid angles subtended by these features. At the same time, 
the occasional appearance of a sporadic E-layer can give rise to signal 
propagation along the Great Circle Path. The received signal may be weaker 
and narrower than the spread signal reflected from the F-region.

Jenkins modelled such an environment, in which to compare the performances 
of four array patterns, shown in Figure 2.9.1, and two algorithms, MUSIC and 
deterministic Maximum Likelihood. All four arrays consisted of 12 antennas. 
The Vortex and the log-spiral array were based on previously implemented 
experimental arrays, while the centred circle and the star array were selected on 
the basis of observed good DF performance in low signal-to-noise situations. 
The analysis was undertaken over a wide range of aperture sizes and 
frequencies of operation. The arrays were scaled in size so as to have the same 
mean aperture (over all azimuths) at any frequency. This allowed performance 
to be evaluated separately in terms of array geometry and aperture in 
wavelength. The modelled data were processed by means of MUSIC and 
deterministic Maximum Likelihood (ML) (Jenkins, 1994), both requiring an 
estimate of the number of signal directions.

The performances of the four array patterns and the two algorithms were 
characterised in terms of visibility of the weaker signal, i.e. how well a weaker 
point source was observed in the presence of a stronger extended source. Figure
2.9.2 shows several azimuth-time plots obtained with the ML algorithm, for
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different point-source/spread-source power ratios. The point source is set at 
180° azimuth East of North, the spread source is scattered between 140° and 
165° E of N. The trace of the point source is clearly visible when the point 
source power is -lOdB relative to the spread source. The direction of arrival of 
the point source becomes harder to estimate when the power ratio decreases to 
-15dB, and even more at -20dB. At -25dB point-source/spread-source power 
ratio, the point source trace cannot be seen as such. The visibility of two spread 
signals is presented later in this thesis (see Section 6.3, including a comparison 
with Jenkins' results).

The effect of array geometry on DF performance is illustrated in Figure 2.9.3, 
where the curves of point-source visibility as a function of aperture in 
wavelength are shown, for the four array geometries. The three plots 
correspond to three point-source/spread-source separations: 5°, 10° and 15° 
azimuth. The general effects for all four array patterns is an improvement in 
performance as the aperture is increased up to an optimum size (which 
depends on the point-source/spread-source separation), followed by a 
subsequent deterioration in performance as the aperture is increased over the 
optimum size. This was explained as follows: a) when the aperture is too small, 
a DF array cannot resolve two closely separated sources, because its beam is too 
broad; b) when the size of the array is relatively increased, the beam is 
relatively broad, and thus few steered directions are needed to cover a spread 
source, which leaves more directions to be used to detect a weaker point source; 
c) when the aperture is too large, the beam is so narrow that all available 
directions are needed to detect the amount of energy of the stronger signal, 
leaving none for the weaker point source. According to these criteria, the results 
of the four array geometries were similar for small apertures. But for optimum 
and large apertures, the star array (consisting of three arms with its smallest 
spacing at its extremities) performed much better than the other three array 
geometries, in terms of visibility of the secondary energy, for all three values of 
azimuth separation. The comparison between the MUSIC and the ML 
algorithms showed that the latter performed better, at the cost of a heavier 
computational burden.

2.10 SRDF for non-zero bandwidth and fin ite angular spread 
signals.

A classical definition of narrowband, when an adaptive antenna array is 
employed for signal detection, is that 'there is no decorrelation between signals 
received on opposite ends of the array' (Compton, 1988). Zatman (1998)
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provided a more analytical expression for the classification of a signal 
environment as narrowband.

For sake of simplicity, Zatman considered a uniform linear array of N  
antennas, with half-wavelength spacing at the operating frequency / 0. 
However, the results can be extended to any irregular array geometry and any 
operating frequency. The steering vector representing the transfer function 
between the angle of arrival 0 from the array broadside and the output of the 
array is given by

where T represents the transpose operator and the inter-element phase (p is 
given by

d  being the inter-element spacing, /  the frequency of the received signal and c 
the propagation velocity. As (p depends on both the angle of arrival and the 
frequency of the incoming signal, for a linear array, a non-zero bandwidth 
signal appears as an extended angular source, whereas a zero bandwidth signal 
appears to be received from a discrete source (studies of the spread of incoming 
signals are presented in Chapters 3 and 4 for experimental data and in Chapters 
5 and 6 for modelled data).

A covariance matrix R (see Section 2.7) can be expressed as

where V is the matrix of eigenvectors and A is the diagonal matrix of 
eigenvalues. If we partition the eigenvectors into a signal and a noise subspace, 
we obtain

where the subscripts -sand n refer to the signal and noise subspaces 
respectively. The matrix Vs is the minimum-rank orthonormal basis for the 
received signals. In the zero bandwidth case, the rank of the signal subspace is 
equal to the number of signals present, which means that each signal present 
corresponds to a rank-one representation in signal subspace. Zatman (1998) 
defined the 'effective rank' of a signal-only covariance matrix as the number of 
signal subspace eigenvalues greater than 1 (i.e. OdB since no noise is included). 
If the bandwidth of a signal is sufficiently wide, the rank of the signal subspace

a($) = [ U jv e'(AM)* f (2.10.1)

(2.10.2)
c

R = VAVh (2.10.3)

(2.10.4)
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can be larger than the number of signals present, because one or more signals 
can have a rank representation greater than one. This means that one or more 
signals will be represented by two (or more) eigenvalues. In such cases the 
received signal (or signals) cannot be assumed to be zero-bandwidth. Zatman
(1998) defined the notion of narrowband signal as follows: I f  the bandwidth of 
a signal is such that the second eigenvalue of the signal's noise-free covariance 
matrix is larger than the noise level in the signal-plus-noise covariance matrix, 
then that signal may not be described as narrowband'. Therefore, as a signal's 
bandwidth increases, eigenvalues pop up from the noise floor one at a time. In 
order to define a signal as non-zero-bandwidth, an expression of the two larger 
eigenvalues is sufficient. Methods for the calculation of the eigenvalues of a 
covariance matrix have been proposed by Hudson (1981) and Lee H.B. (1992). 
The derivation used by Zatman (1998) is a special case of the general results by 
Hudson (1981).

Let us consider the case of two equal power uncorrelated zero-bandwidth 
signals. The two eigenvalues of the corresponding covariance matrix (see 
Zatman, 1998, for the full mathematical derivation) are given by

\ 2 = A ^ (l± M ) (2.10.5)

where sm/ 2 is the power of each of the two signals and y/ is the cosine of the 
angle between the two eigenvectors in the N -dimensional space.

For the purposes of this discussion, we are interested in the smaller eigenvalue, 
which can be obtained by using the '-' sign in Equation 2.10.5. Now we need to 
apply the formulation of the obtained second eigenvalue of the covariance 
matrix to the wideband problem, for which we need to calculate \y/\.

Because a signal ceases to be narrowband when its effective rank increases from 
one to two, we can affirm that two discrete uncorrelated sources adequately 
model a non-zero bandwidth signal. The two discrete sources will have mean 
and variance of their instantaneous frequency spectrum corresponding to the 
mean and variance values of the corresponding non-zero bandwidth signal 
they model. For a rectangular power spectrum with bandwidth b and centre 
frequency f c the variance of the spectrum is given by

var( / )  = !  f ( / - / c)2#  = £  (2-10.6)
tJL1Jc  2

The signal can be represented as two delta functions each separated by k from 
the centre frequency. The variance of such representation is equal to k 2,
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therefore, as the variances of the model and the real non-zero bandwidth signal 
must be the same, we have

12
(2.10.7)

(2.10.8)

and the separation between the two delta functions is given by 

2 k = ̂ =

Now we need to obtain an expression relating the bearings of the two discrete 
signals originated by the signal model to the bandwidth of the real signal. For 
an arbitrary array, \y/\ is given by

M=
a (6 J  + k f  a (Q J -k )

+ k)Ha (6 J  + k) a{QJ -  k f  a(QJ -  fc)
(2.10.9)

where /  is the mean of the received signal's power spectral density. For a 
uniform linear array, let us consider the two values of the inter-element phase 
(p± (see Equation 2.10.2) for the two deltas as given by

<P± =
_ 2  7id(f±k) sin# (2.10.10)

Because \y/\ depends on both the frequency and angle of arrival of the incoming 
signal, the model of Equation 2.10.8 (in a few steps from Equation 2.10.10) 
corresponds to having two incoming signals from bearings equal to

sin(0) (2 .10.11)

where bf = b ! f0 is defined as the fractional bandwidth. The two signals are 
spaced in sin(0) by

sin (0)bf

s

For a uniform linear array \y/\ is given by

(Njte Vi—

(2.10.12)

sin
M=

1 2  J

hK?)
(2.10.13)

Given |î  from Equation 2.10.13, the smallest eigenvalue in Equation 2.10.5 can 
be expressed as
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(2.10.14)

The calculation of does not include the noise, whereas if noise is included ^  
is given by Equation 2.10.14 plus 1 (Zatman, 1998). Therefore, a signal can be 
regarded as narrowband, i.e. its effective rank is equal to 1, if Â is smaller than 
1 (i.e. ^<2 or <3dB if noise is included). As a result, the narrowband condition 
is expressed by

For a linear array, the apparent spreading of a signal caused by the non-zero 
bandwidth effect, is analogous to spreading due to array rotation (Zatman, 
1995). A similar result to Equation 2.10.15 for the case of a rotating array was 
derived by Hayward (1997). In fact, array motion affects the structure of the 
resulting covariance and therefore the formation of the relevant eigenvalues. 
Therefore, for systems involving arrays mounted on rapidly moving platforms, 
the assumption of approximately stationary signal environment may be 
violated. Such systems, mainly used for military purposes, aim to adaptively 
suppress unwanted sources of interference, such as jamming. However, when 
the location of jamming sources is not known a priori, the waveforms of the 
jammers need to be calculated from the data. In order to minimise the sum of 
squared errors between the beamformer output and the wanted signal, a set of 
weights for some finite set of data is usually computed. This set of weights is 
regarded as the optimal Wiener solution (approached asymptotically as the size 
of the data set increases), in a wide-sense stationary signal environment. The 
best linear mean-square (MS) estimates (regardless of the statistics of the inputs 
or when the inputs are gaussian) can be obtained by means of the Wiener 
solution (Van Trees, 1968), which therefore maximises the signal-to-noise-plus- 
interference ratio (SNIR) at the beamformer output. The least-squares approach 
is also taken with the Sample Matrix Inverse (SMI) algorithm (Reed et al, 1974) 
and the Recursive Least-Squares (RLS) algorithm (Haykin, 1986).

In a non-stationary signal environment, the weight solution needs to be time- 
varying. If the data are input into the beamformer at a fixed rate, the effective 
rate at which the weight solution is updated is increased by either decreasing 
the number of samples used to calculate the weights in the SMI algorithm or the 
memory length of the RLS algorithm. As a consequence, the convergence of the 
solution at each update is reduced. Van Veen (1991) and Krolik and Swingler 
(1994) exploited the convergence properties of the SMI algorithm in a wide- 
sense stationary signal environment. Observations from simulations (Balance 
and Miller, 1991) showed that spatially distributed sources can cause significant

(2.10.15)
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degradation in beamformer performance. The results by Hayward (1997), 
reported below, confirmed these observations, as they showed that the weight 
solution is sensitive to very small variations in the apparent angle of arrival of 
incoming signals, during the time interval in which sufficient data are acquired 
to update the weights.

Let us consider an irregularly spaced antenna array. Given the polar angles 6 
and O describing a point in the array far field (Figure 2.10.1), a(0,0) is the
generic steering vector. The locus of a as 6 and 0  vary is referred to as the
array manifold. In the time domain, and in the presence of a single narrowband 
source, the data vector at the array output is given by

y(0 = s(t)a(t) + v(0 (2.10.16)

where s(t) is the transmitting waveform and v(0 is the white thermal noise 
process, uncorrelated with the v(t), both s(t) and v(t) being wide-sense 
stationary. In the case of 5(0 being an interferer or jammer, y{t) is a noise-only 
data vector. In order to obtain a noise-only covariance matrix, following the 
SMI algorithm, we obtain a set of such vectors and average the n rank-one 
estimate, thus having

* = - i w "  (2.10.17)
n .1=1

Goodman N.R. (1963) showed that, if a were fixed, Equation 2.10.17 would 
represent the maximum likelihood estimate of the true covariance. However, as 
a is time-varying, the estimate is that of the covariance matrix

W
i ”

= + =RS + R" (2.10.18)

where R* is the rank-one covariance matrix for the source in the ith position 
and Rv is the noise covariance. The covariance matrix R is equivalent to that 
which would be obtained from the presence of n uncorrelated sources, whose 
spatial distribution varies according to the shape of the array manifold and the 
sampling rate. In fact, the ordering of the data vectors in the averaging process 
is arbitrary, therefore any information related to the motion is lost.

If R is known, the weight vector of an ideal beamformer is given by

- - S -  (2-10-19>at R at

where at is the steering vector corresponding to the direction of the target. In 
order to understand how the structure of the covariance matrix can affect the
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beamformer performance, we need to consider an expression of the SNIR in 
case of uncorrelated target signal and noise as input data. We assume that there 
is no loss caused by mismatch between at and the true target steering vector. 
Even though the true target steering vector is time-varying, the assumption is 
justified by the very small angles involved. Monzingo and Miller (1980) 
obtained the following expression:

where Pt is the target signal power. The covariance matrix can also be 
expressed as in Equation 2.10.3 (R = VAVH). The inverse of the covariance 
matrix is given by

Assuming the noise process spatially white, R takes the form of a 21 and each of 
its eigenvalues is given by the sum of the corresponding eigenvalues of Rs and 
Rv. From Equation 2.10.22 we can see that an increase of the ith eigenvalue of 
Rs causes a loss in the beamformer performance proportional to the value of the 
numerator. In case of single strong point source present (a discrete scatterer or a 
jammer), Rs has a single non-zero eigenvalue with no motion, whereas with 
motion Rs has additional eigenvalues, whose value depends on the effective 
displacement of the source. The maximum size of the source displacement that 
can be regarded as tolerable (no considerable deterioration in the beamformer 
performance caused), can be obtained by setting an upper limit of a 2 on the 
largest additional eigenvalue. When this limit is reached, the second term of the 
summation in the Equation 2.10.22 will have increased of 3dB. Therefore, the 
effect of the source displacement on the beamformer performance depends on 
the value of the numerator, which is function of the eigenvectors of Rs. A 
situation in which the value of this factor becomes significant can be, for 
example, when the array is rotated. In this jamming scenario the beamformer 
performance can deteriorate significantly, and the jammer suppression can be 
ineffective.

Assuming that m sources with equal power P jm  are present and that the 
platform is in uniform motion, being

SNIRq = PtatHR~xat (2.10.20)

/r^ V A V " (2.10.21)

and substituting in Equation 2.10.20 we have

(2.10.22)

= jt| cosO + yf sinO and r, = y. cosO -  x( sinO
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we obtain (for a full mathematical derivation, the reader is referred to 
Hayward, 1997)

\  = 7C2^  k(cosO)2 r2S02 (2.10.23)

for small uniform motion in 0 and 

P
\  = K2— fc(sin0) r #l>2 (2.10.24)

for small uniform motion in O. In both cases )^ = Psk. It is now possible to set a 
limit to the maximum effective source displacement that can be tolerated 
during the estimation of the covariance matrix. Although this discussion is 
restricted to uniform linear arrays, the analysis can be applied to arbitrary array 
geometries with similar results. From Equation 2.10.23, for motion in elevation, 
we have

<502max = —  -----------5— (2.10.25)
kjt2ps(cose)V

In the case of the source representing the mainbeam jammer, we can assume 
that cos0 = l. For a k sensor linear array with half-wavelength sensor spacing, 
r2 = k,2148, k »  1. The beamwidth of the array (peak to first null) is equal to 2k, 
thus in a few steps, in beam widths, for large k we obtain

m - ' ^ m  < 2 - i a 2 6 )

where k P j o 2 =JNR (the quiescent pattern output jammer-to-noise ratio). As a 
numerical example, from Equation 2.10.26 we can calculate that, in the presence 
of a mainbeam jammer with JNR = 10000 (i.e. 40dB), a linear array will be 
sensitive to rotations as small as 0.02 beamwidths during the time taken to 
estimate the sample covariance matrix.

As a conclusion, Hayward (1997) and Zatman (1998) obtained (with a different 
approach) the common result that a single source can give rise to an estimated 
covariance matrix equivalent to that due to two or more uncorrelated spatially 
distributed sources. This equivalence was exploited by both Zatman and 
Hayward by calculating the second largest eigenvalue of the covariance matrix, 
which, in the above mentioned scenarios, can originate from the same single 
source of the first largest eigenvalue, instead of originating from a different 
source. The practical consequence is that the observations obtained by means of 
direction finding systems can show the presence of multiple traces, whereas 
only a single broad source is present in the signal environment. Therefore, a
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non-zero bandwidth signal and/or a non-stationary signal environment 
originated by array motion can be analogous situations to that of spread 
incoming signals discussed in Chapters 3 to 6. For a theory of two-signal 
representation of one signal spread in azimuth and a comparison with 
simulation results the reader is referred to Sections 5.7 and 5.8 respectively.

2.11 Summary.

Fixed land-based stations for Direction Finding are classified in three main 
groups: Narrow Aperture DFs (NADFs), Wide Aperture DFs (WADFs) and 
Very Wide Aperture DFs (VWADFs). NADFs present limited cost, but poor 
resolving power. VWADFs have good resolving power, but are very expensive. 
In between is the compromise of using WADFs, which have become the most 
popular since the advent of multichannel receivers and digital computers. This 
has given the operators the ability to utilise modern signal processing 
techniques.

Although conventional interferometry techniques have the ability of detecting 
more than one direction of arrival in a multisignal or multimoded environment, 
superresolution direction finding algorithms are necessary to resolve 
multisignal or multimoded environments more accurately, without the use of 
very large arrays. In fact, superresolution direction finding algorithms are 
characterised by the ability to resolve two signals which are separated in 
azimuth less than the natural beamwidth of the antenna array at the receiving 
site. Therefore in the last decades researchers have focused their efforts in the 
development of SRDF algorithms and have compared their performances with 
both observed and simulated data, with respect to a large number of factors 
(see Sections 2.8 and 2.9). The SRDF algorithms used for the work detailed in 
this thesis are MUSIC, INS, Loaded Capon and SML.

Recent studies have shown that a non-zero bandwidth signal (Zatman, 1998) or 
a non-stationary signal environment originated by array motion (Hayward, 
1997) can give rise to an estimated covariance matrix equivalent to that caused 
by two or more uncorrelated spatially distributed sources. Such scenario can 
cause direction finding systems to show the presence of multiple traces, 
whereas only a single spread signal is present in the signal environment.
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Fig. 2.2.1 Two-ring DF array (Gething, 1991).
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Fig. 2.5.1 Three types of spectral estimator P for two-ray problem
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1991).
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Fig. 2.8.1b Variance of the estimated angles of arrival m ade by Capon's 
Minimum Variance Estimator, Loaded Capon and MUSIC, for SNR=12dB 

(Featherstone et al, 1997).
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Fig. 2.8.2 Seven antenna array (Johnson and Miner, 1986).



MUSIC

jLlVATtOH
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incoherent, (Az/El)=(45o,40°), (45o,40o), (50°,30°), relative am plitude (top) 1.0, 
0.5, 0.1, (middle) 0.5,0.1,1.0, (bottom) 0.1,1.0,0.5 (Johnson and Miner, 1986).
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Fig. 2.10.1 Array and far-field co-ordinate system (Hayward, 1997).



3. DATA COLLECTION METHOD AND OVERVIEW 
OF THE MEASUREMENTS

3.1 Introduction.

The data acquisition system (known as Vortex) used to collect the data analysed 
in this work was deployed at Alert, in the Canadian Arctic. The data were 
collected in wintertime by the Canadian Communications Research Centre, 
when the receiver was recording a signal from Iqaluit, in the North West 
Territories, 2100 km South of Alert. The locations of the transmitter and receiver 
make this a polar cap path and therefore the performance of the Vortex DF 
system is limited by this challenging propagation environment.

Direction-of-arrival observations over three days during the Arctic winter (22nd- 
24th January 1996) are presented. During these days several ionospheric 
disturbances occurred which affected the propagation environment, making the 
signal arrive at the receiver at angles far removed from the Great Circle Path. At 
times, the direction of arrival of the signal showed very rapid changes (see 
Section 3.6). The oblique ionograms taken during the data interval over the I-A 
path are shown.

Bearing measurements for data recorded over the same path have been 
undertaken by Warrington et al (1997a and b) with a goniometric system for a 
period between January and April 1994 (see Section 1.5). Bearing measurements 
for the 23rd January 1996 (see Section 1.5) were also investigated by Dumas 
(1997) and for the 24th January 1996 (see this and next chapter) by Warrington et 
al (1997a and 1999).

The data in this chapter have all been obtained by means of the Iterative Null 
Steering (INS) superresolution algorithm, with the search for peaks of 
secondary energy set to terminate when the peak of the scanned beam was less 
than 6dB below the strongest peak (see Section 2.7). The 6dB threshold was 
chosen in order to filter noise from the data without excluding important 
information about the incoming signal. Since major features are generally 
observed by all algorithms (see Chapter 4) the INS algorithm was arbitrarily 
chosen to present an overview of the measurements. All plots in this chapter 
were obtained with the full array configuration of 12 antennas.

Table 3.1.1 (see below) shows the 3-hourly values of the geomagnetic index Kp 
on the 22nd, 23rd and 24th January 1996 respectively. The value of Kp was never 
greater than 3, and these three days can be regarded as days of quiet 
geomagnetic activity. However, some of the observed bearings show a strongly 
disturbed propagation environment, as we will see in the following sections.
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This makes the data very interesting for the purpose of investigating how the 
superresolution algorithms perform in situations more extreme than typically 
found at mid-latitudes. The time intervals over these three days when the data 
were available are shown in Table 3.1.2, in total 7h32f on the 22nd, 8h27' on the 
23rd and 9h33' on the 24th January 1996.

Simulations of a drifting mono-dimensional over-dense plasma structure have 
been undertaken, the results of which are consistent with the observed change 
inDOA.

Table 3.1.1 Values of Kp on 22nd 23rd and 24th January 1996 (US Department of 
Commerce, National Geophysical Data Center FTP).______________________________

UT 00-03 03-06 06-09 09-12 12-15 15-18 18-21 21-24

Kp on 22/01/1996 3- 1 1- 1- 2 2+ 2 2

Kp on 23/01/1996 3- 1 1- 2- 1+ 1- 1 3

Kp on 24/01/1996 0+ 1 0+ 1- 1 3 3- 2+

Table 3.1.2 Time intervals (UT) over the three days in January 1996, when the 
collected data were available for processing._____________________________________

22/01/1996 13:58-
16:38

19:03-

23:55

23/01/1996 00:25-

04:59
05:09-

10:02

24/01/1996 09:36-

14:22
15:53-

20:40

3.2 Data acquisition system.

The Vortex DF system, which was used to collect the data, is installed at Alert, 
located on the northern tip of Ellesmere Island in the Canadian Arctic (82.60° N, 
62.35° W). The analysed data were collected during a period when the system 
was recording a signal from the CZD transmitter, located in Iqaluit (63.45° N, 
68.30° W), also in Canada, about 2100 km south of Alert. The I-A Great Circle 
Path is therefore within the polar cap (see Figure 1.4.1). Both in Iqaluit and Alert 
the Local Time (LT) corresponds to the Universal Time (UT) -  4 hours. The 
transmitter in Iqaluit provided a fixed target, allowing deviations from the true
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bearing to be used as estimates of the errors in bearing-determination that 
could be expected in the operational field.

The direction finding antenna array deployed at Alert is illustrated in Figure 
3.2.1a, where the full squares represent the positions of the antennas used for 
the Vortex array. The Vortex array consists of 12 irregularly spaced antennas. 
The antennas are vertical elements, 8 of which are deployed in a circle 
measuring 25-m radius, which is part of a 2-ring DF system. The 2 rings are 
Pusher arrays (circular arrays with 24 antennas, spaced at 15° intervals). 
Elements 9 and 10 are at a distance of 88 m from the centre of the circle; 
elements 11, and 12 are at 125 m from the centre of the circle. Elements 9 and 11 
are at azimuth 0a = 15°, measured clockwise of North, elements 10 and 12 are at 
0a = -75°. All 12 elements are 6-m high and 5-cm diameter aluminium poles 
with ground radials. The 4 outlying antennas (9 to 12) are used to increase the 
array aperture, thus increasing the resolving power of the Vortex DF system. 
The maximum dimension of the antenna array is 176 m.

The 12-antenna Vortex array is repeated for better clarity in Figure 3.2.1b. Each 
antenna is connected to an individual receiver. Figure 3.2.2 shows the Vortex 
data acquisition system that received a signal transmitted from Iqaluit at 9.292 
MHz (wavelength A =32.3 m) which alternated between a 15-sec tone and a 15- 
sec interval during which the Morse callsign was sent twice. This 30-sec cycle 
was repeated continuously for a 25-min period, followed by a 5-min sounder 
slot during which the 9.292 MHz signal was switched off while an oblique 
ionogram lasting 4 min and 40 sec was taken along the I-A path. The ionogram 
consisted of a sweep in frequency from 2 to 30 MHz at a rate of 100 kHz/sec. 
The entire 30-min sequence was then repeated throughout the experimental 
period under consideration. At the receiver, the 12 signals (one at each antenna) 
were mixed with a common reference signal to downconvert the input signal 
from HF to 2.5 kHz, bandpass filtered between 1-4 kHz and then sampled and 
digitised at a rate of 10 kHz. The bandwidth of the received CW signal was 
typically 10 Hz or less. However the bandwith was about 30 Hz when the 
Morse callsign was transmitted. The raw data were written to 8-mm tapes for 
subsequent processing and analysis. Each tape recorded about 5.7 hours of 
continuous data. The array response in amplitude and phase were calibrated 
for each tape. The calibration constants were incorporated into the data (read in 
blocks, see later in this section) before forming the covariance matrix. The data 
were filtered using an additional bandpass filter to reduce the amount of noise 
in the processed signal. A width of 200 Hz was found to represent a useful 
compromise for achieving noise reduction without affecting the DOA 
measurements.
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The ionograms were collected to allow the mode structure of the I-A path to be 
determined. In this way, the propagation conditions could be well-assessed. 
The traces obtained by means of the oblique ionograms gave important 
information about the usable range of frequencies of operation, as well as 
information about the disturbances in the propagation environment. 
Furthermore, the evolution of the ionospheric conditions along the I-A path 
could be inferred by interpreting series of consecutive ionograms.

The collected data have been analysed with a simple Beam algorithm and five 
SRDF algorithms (see Sections 2.4 and 2.7 respectively). These algorithms have 
been implemented in the MATLAB-computing language. The software allows 
complete flexibility in the number and the position of the antennas to be used 
for the processing. This enables the effective beamwidth of the antenna array as 
well as the angular resolution to be varied. It is important to note that the run­
time increases with the number of antennas in use.

The data have been processed with two sets of elements of the Vortex array, the 
full array of 12 antennas and a sub-array of the 8 inner antennas in circle, 
numbered 1 to 8 in Figures 3.2.1a&b. The two arrays have two different 
apertures and shapes. In the case where the full array is in use, the maximum 
dimension is 176 m, which corresponds to 5.45A, whereas the maximum 
dimension of the sub-array is given by the diameter of the inner ring of the DF 
system, that is 50 m (1.55 A). The corresponding beam patterns will then have 
different shapes, with as expected the main lobe obtained from the full array of 
12 antennas (Figure 3.2.3) being markedly narrower than that obtained from the 
sub-array of 8 antennas (Figure 3.2.4). In the case of 12 antennas there are two 
strong side lobes close to the main lobe (at about 170° and 200°), whereas in the 
case of 8 antennas the main lobe is broader, covering the range of values 
between 170° and 200°. Furthermore, a strong sidelobe exists at around 250°. 
Sidelobes occur in directions other than the current main lobe direction for 
which a similar phase distribution occurs across the array. In the presence of 
noise, calibration errors, diffuse signals, etc. it is possible for the measured 
phase distribution to be more like that for the sidelobe direction than the actual 
signal direction. This sidelobe excitation would cause erroneous DOA 
estimates.

Table 3.2.1 shows the expected elevation angles of arrival for the signal 
reflected from the E or F layer, in case of 1-hop or 2-hop propagation. The E 
region reflection height is assumed at 100 km and the F region reflection height 
at 250 km. Figures 3.2.5a, b, c and d show the beam patterns formed by the 12- 
antenna Vortex array, in the look direction of the true bearing (188.5°) for 
various elevation angles. The main lobe of the array is highly spread in
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elevation, i.e. it is sensitive to a wide range of values, and therefore the 
elevation angle measurements are not likely to be very accurate.

Table 3.2.1 Approximate elevation angles of arrival and propagation times for a 
signal propagating through the ionosphere from Iqaluit to Alert. The two cases of the 
signal reflected from the E or the F layer, in case of 1 hop (no reflections from the 
ground) or 2 hops (one intermediate reflection from the ground) are illustrated. The 
reflection heights are assumed 100 km for the E layer and 250 km for the F layer._____

TYPE OF PROPAGATION E LAYER (100 km) F LAYER (250 km)

1-HOP (El-Prop, time) 0.6° - 7.09 ms 8.3°-7.33 ms

2-HOP (El - Prop, time) 8.1°-7.11 ms 22.9°-7.81 ms

The raw data were read in blocks of 0.8 sec, which correspond to 8000 samples 
for each of the 12 antennas, the received signals having been sampled at a rate 
of 10 kHz. To generate the data covariance estimates, an FFT was performed on 
each block of 12 by 8000 data points and only the data within the 200 Hz 
frequency band around 2.5 kHz retained. The interference due to noise and 
other unintended HF signals was thereby reduced. The data covariance matrix 
was formed directly from the frequency domain data. The data were then input 
to the direction finding algorithm at the estimation rate of 1 direction of arrival 
each 0.8 sec. This value was used because it was regarded as a good 
compromise between the need of accurate DOAs estimates, low bearing 
standard deviations and reasonable computational time (see Section 4.3). This 
process then produced a predefined number of estimates of azimuth, elevation 
and amplitude of the received signal each 8000 samples. In the plots shown 
throughout this thesis primary and secondary estimates are included (red and 
green dots respectively). The whole data set will be displayed in the next 
sections, along with the relevant oblique ionograms.

3.3 Observations on 22nd January 1996.

The bearings and amplitude measured between 13:58 and 16:38 UT on 22nd 
January 1996 are illustrated in Figure 3.3.1. In all figures a number of gaps in 
the trace of the signal from Iqaluit are apparent. These correspond to the 5- 
minute periods ending at 16 and 46 past each hour, during which time the 
transmitter was off and the sounder was on for the collection of oblique 
ionograms, shown in Figure 3.3.2, on the same I-A path (see Section 3.2). The
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Maximum Usable Frequency (MUF) was well above the frequency of operation 
of 9.292 MHz (vertical line in the plots). This implies that the signal from Iqaluit 
was expected to be received at Alert. Because the transmitter and receiver were 
not synchronised, the delay of the ionogram traces is an indication of the 
relative propagation time. The azimuth vs. time plot in the upper panel of in 
Figure 3.3.1 exhibits a narrow trace around the true bearing of 188.5° from 14:00 
to 15:00. The relative amplitude (bottom panel) is higher until 15:00 than 
afterwards, when it decreases by 15-20dB. After 15:00 the azimuth trace 
becomes spread. There is evidence of two weaker signals coming from about 
60° and 275° after 15:00, when the decrease in the signal strength of the wanted 
signal from Iqaluit allows these secondary signals to emerge, as the gap 
between the strongest peak and the other peaks decreases (see Section 2.7).

The elevation angle of arrival (middle panel) is below 10° until 15:00. This value 
is typical of 1-hop F mode propagation along the I-A Great Circle Path (see 
Table 3.2.1 for the values of the expected elevation angles for the I-A path). 
Even though this elevation angle value is also typical of 2-hop E mode 
propagation, the ionograms at these times are suggestive of F region reflection. 
After 15:00 the elevation angle is slightly higher on average, and in particular 
between 16:05 and 16:25. The 16:15 ionogram suggests a two-moded 
propagation (also suggested by the higher spread in the elevation angle trace), 
possibly a 1-F mode and a 2-F mode. During the whole time interval the 
elevation angle varies periodically. Since the azimuth of arrival is constantly 
fairly close to the true bearing, this would possibly suggest either the 
occurrence of vertical movements of the reflection point or the presence of 
periodical ionospheric tilts (possibly generated by TIDs, which typically have 
periods from a few minutes to more than an hour, or other ionospheric 
disturbances) or the occurrence of moving patches along the I-A path causing 
the reflection point to move nearer, or otherwise, to the receiver. The elevation 
shows oscillation also in other intervals of the data set, particularly apparent in 
Figures 3.3.3 and even more in Figure 3.5.3.

The time plots and the relevant ionograms in the interval between 19:03 and 
23:55 are shown in Figures 3.3.3 and 3.3.4 respectively. The MUF was greater 
than the 9.292 MHz operational frequency at all times. All ionograms show a 
thin trace, at times more apparent than others, possibly representing a sporadic- 
E reflection. This is very evident in the 22:15, 22:45 and 23:15 ionograms, at 
9.292 MHz. At all other times there is still evidence of the presence of a thin 
trace, supporting frequencies of operation higher and/or lower than 9.292 
MHz. We can infer that a sporadic-E layer was constantly present on the 22nd 
January 1996 between 19:15 and 23:45 along the I-A path, supporting different
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frequency ranges at different times. The azimuth vs. time trace of Figure 3.3.3 is 
quite narrow and 'clear' until 22:00 and the amplitude is relatively high. After 
22:00 the scenario changes: the bearing becomes spread and there is evidence of 
a second spread trace, the amplitude drops by about 20dB and the elevation 
angle of arrival also becomes highly variable. In fact, the ionograms after 22:00 
show evidence of two-moded propagation. For example, the 22:45 ionogram 
shows two thin traces at the operational frequency, suggestive of 1-hop and 2- 
hop sporadic-E, whereas the following ionogram exhibits a thin and a spread 
trace, possibly sporadic-E and F mode propagation.

3.4 Observations on 23rd January 1996.

The data observed between 00:25 and 04:59 UT on 23rd January 1996 are shown 
in Figure 3.4.1 and the ionograms taken at these times in Figure 3.4.2. Unlike 
those recorded on the 22nd January 1996, some of these ionograms show that the 
MUF was below the frequency of the wanted signal, e.g. at 00:45 and 03:15. The 
azimuth panel in Figure 3.4.1 confirms that at these times the signal from Iqaluit 
does not show a clear trace of primary bearings. The energy of the received 
signal was therefore lower than at other times due to the conditions of the 
propagation environment, because penetration often occurred, although clearly 
some generally weak reflection did occur. The occurrence of sporadic-E 
reflection (thin trace) is generally present in Figure 3.4.2. The amplitude is 
higher at around 02:30 and from about 04:00 (Figure 3.4.1), when the 
corresponding ionograms show a thin trace well above the operational 
frequency, and therefore the signal strength would appear to depend on this 
sporadic-E propagation mode.

The azimuth panel of Figure 3.4.1 indicates that multiple signals were present. 
Several traces are evident during the whole interval, at various azimuths 
contemporarily. The trace that corresponds to the signal from Iqaluit, at around 
188.5°, is fairly constant in azimuth between 00:30 and 02:45, when it starts to 
increase and becomes more spread until 04:45. Between about 00:30 and 01:30 
secondary bearings are representative of the wanted signal, which means that a 
stronger energy coming from unwanted signals or via other modes was 
received. There are in fact several other traces, the most visible of all being a 
very spread energy arriving between around 350° and 40° azimuth. This is 
evidence of a strong signal coming from N-NE. In fact, it is important to note 
that the amplitude panel shows energy being received during the sounder slot 
5-minute intervals, when the transmitter was off. This indicates that one or 
more signals, other than the signal from Iqaluit, were received during the time 
interval of Figure 3.4.1. Other secondary traces are also evident. A long trace at
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70-80° between 00:30 and 04:00 with a gap of half of an hour around 01:20, 
which probably represents an interfering signal, because it is not interrupted 
when the transmitter is off. Two traces from 00:30 to 01:40 and after 03:50, both 
at 270-280° and a quite strong, swinging and spread trace between 220° and 
260° from 00:50 to 01:40 are also evident, which are likely to represent other 
modes of the signal from Iqaluit, as they disappear when the transmitter goes 
off.

The middle panel shows a wide range of elevation angles of arrival during the 
whole period, which is not surprising when we consider that a number of 
spread signals were received at Alert. The values range from a few to about 20 
degrees at most times. Due to the presence of multi-signal and/or multi-moded 
propagation, and to the lack of accuracy of the elevation measurements, the 
elevation panel does not provide precise information about the signal 
environment. However, at around 02:30 we can see elevation measurements 
below 10°, and a single-moded propagation from the azimuth panel, this 
indicating that possibly a 2-hop E mode was present, which is in agreement 
with the thin and straight trace shown by the ionograms around that time. At 
around 01:05 and 02:50, two 10-minute periods stand out immediately, in which 
the elevation angles ranged between 20° and 30°. Since in both cases there is a 
break in this signal when the transmitter is off, the trace is likely to represent a 
propagation mode from Iqaluit with the reflection point closer to the receiver 
than the transmitter, possibly caused by ionospheric tilts or by patches of 
enhanced ionisation.

The observations between 05:09 and 10:02 are shown in Figure 3.4.3 and the 
corresponding ionograms in Figure 3.4.4. The same time interval was analysed 
by Dumas (1997) (see Section 1.5). The azimuth vs. time plot exhibits very 
pronounced swings throughout the whole time interval. The largest variations 
in bearings over the 23rd January 1996 occur between 05:30 and 09:30, when the 
value of the geomagnetic index Kp=l- was the lowest in the data interval, which 
is consistent with Table 1.5.1. These bearing swings are often regarded as 
caused by reflections from large structures of enhanced ionisation (patches and 
arcs, see Section 1.5).

The ionograms exhibit a highly variable structure of the ionosphere, this 
variability being clearly confirmed by the DOA and amplitude measurements. 
The ionograms often show multipath propagation, and in particular most of 
those in the right hand column (07:45 to 09:45) exhibit one or two patches 
around 9.292 MHz. These patches are detached and at different delay values 
with respect to the main trace, and are consistent with the presence of large
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drifting structures of enhanced ionisation. Furthermore the roughly oscillating 
elevation angle indicated the presence of ionospheric tilts, as in other intervals.

In detail, a number of swings from low to high azimuth can be seen between 
05:20 and 07:10. Each of these swings lasted for about 20-30 minutes, with the 
azimuth increasing by about 20-30°. When each of traces ends, the next one 
follows starting from a lower bearing, but ends at a value of azimuth greater 
than the final value of the previous one. The steepest swing occurs between 
07:20 and 07:40, from 120° to 170° azimuth, i.e. 50° azimuth swing in 20 
minutes. After this swing, the azimuth drops suddenly to about 130° at 07:50, 
then goes up to 210° at 09:35 (80° in lh45'). A strong interfering signal is present 
0° for most of the time interval. A weaker signal (which is an interferer as it 
does not disappear when the transmitter is off) is detected at about 260° at 
around 07:00, between 07:30 and 08:00, and between 09:10 and 09:35.

This interval is clearly suggestive of a periodic phenomenon of large density 
structures drifting towards increasing values of azimuth, that is westwards for 
the I-A path. This periodicity was also seen in the work carried out by Dumas 
(1997) and Warrington et al (1997b), also for other propagation paths. In 
particular the ionograms after 07:30 show detached features at the operational 
frequency. In the three ionograms between 08:45 and 09:45 we can see that a 
patch is present alternatively in the first and third panels, again indicating a 
recurrent series of features. In general, the ionograms of Figure 3.4.4 provide 
evidence for a multipath propagation environment. Even though the precise 
identification of these swings is often difficult, there are periods when traces 
corresponding to two swings are present at the same time, for example at about 
09:30, with a stronger trace at around 200° and a weaker trace at around 150° 
(also seen by Dumas, 1997). Even though relating this occurrence to the 
ionograms is not obvious, it is possible that the swing terminating at 200° is 
caused by the patch visible on the 08:45 ionogram (this swing starts at around 
08:30), whereas the swing starting at 150° is caused by the patch visible on the 
09:45 ionogram.

Rogers et al (2001) stated that the ionograms at these times indicate the 
reflection of structures that drift transverse to the propagation path. They also 
stated that the occurrence of these bearing swings could, possibly, result from 
reflections from multiple sun-aligned arcs (see Section 1.4) over the propagation 
path. Arcs drift from dawn to dusk (see Section 1.4), which at about 07:45 (when 
patches are visible for the first time in the ionograms) corresponds to a direction 
diagonally across the I-A path. Whereas at about 09:45 (when patches are 
visible for the last time) the arcs would drift in a direction along the I-A path. 
Furthermore and more importantly, the elevation angle would be expected to
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increase gradually (slower towards the beginning of this 2-hour interval and 
faster towards the end) and then drop down suddenly when the signal is 
reflected from the following arc, then gradually increase again, and so on. As 
these circumstances do not occur, the bearing swings are unlikely to having 
been caused by arcs. However, the bearing swings are consistent with those of a 
multiple patches simulation (see Section 3.6) drifting across the propagation 
paths with the convection flow (see Section 1.4).

3.5 Observations on 24th January 1996.

The DOA and amplitude observations from 09:36 to 14:22 UT on 24th January 
1996 are illustrated in Figure 3.5.1 and the ionograms in Figure 3.5.2. The signal 
from Iqaluit is very variable in azimuth in the first 2.5 hours of this time interval 
and other traces can be seen representing interfering signals incoming from 
various directions. The wanted signal has a number of swings with increasing 
values of azimuth between 09:40 and 11:50, the steepest occurring between 
09:35 and 10:00, when the bearing goes from about 145° to 210°, 65° in 25 
minutes. At the same time a peak in amplitude occurs. In the 10 minutes 
around 09:50 the elevation is above 10°, making more likely the signal path to 
be a 1-hop F rather than a 2-hop E propagation. The relevant 09:45 ionogram 
(Figure 3.5.2, top left panel) shows a patch at 9.292 MHz, detached from the 
main trace. At that time, the ionosphere did not support a Great Circle Path 
(GCP) mode; thus a patch might 'offer' a reflection point displaced from the 
GCP. The following ionograms (up to 11:45) show detached patches at various 
relative delay differences from the main trace. As we have already seen in other 
examples in the previous section, a patch moving transversally to the 
propagation path can cause a swing in the direction of arrival of the signal (see 
next section). The elevation angle of the signal is generally below 15° when the 
azimuth swings were present, and the amplitude is relatively low, with the 
exception of two further peaks at about 10:30 and 11:25.

After 12:00 the bearing of the signal tends to stabilise around the GCP. There is 
a slow positive change in azimuth, which starts at 12:00 and ends at 14:00 from 
about 180° to 195°, i.e. 15° in 2 hours. At these times the amplitude of the signal 
is much higher. The relevant ionograms (right hand panels) no longer show 
evidence of a detached feature and the MUF is constantly well above the 
frequency of operation, unlike in the previous ionograms (left hand panels), 
where the frequency of operation is generally close to the MUF. There appears 
to be some periodicity in the elevation with peaks at around 20°, at 12:30,12:45 
and 13:15. The interpretation of the sharp trend of the elevation between 12:00 
and 13:30 in Figure 3.5.1 is made more difficult by the 5 min breaks when the
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ionograms were taken between 12:15 and 13:15. However, an expanded view of 
the observations at these times (not shown in the thesis) would suggest a 
varying elevation angle, with growth faster than the decay. This, given the 
fairly constant bearing, would then suggest a series of features drifting along 
the propagation path from Alert to Iqaluit, i.e. from dusk to dawn, which 
would exclude the presence of arcs, which drift in the opposite direction (see 
Section 1.4). However, these elevation swings could be caused by patches. 
Although there is no clear evidence of patches in the ionograms, the trace due 
to signal being reflected by them could be hidden within the rather spread main 
trace. In fact, the difference in the propagation delay for two paths through the 
F layer, one via a patch, would be between 0 and about 0.5 ms, and therefore 
both traces could be part of the ionogram spread. In such circumstance, the 
series of patches would not be in agreement with the theoretical convection 
flow (see Sections 1.4), which, however, is estimated on a statistical basis and 
therefore the occurrence of patches having caused these elevation swings 
cannot be dismissed. Even though this interesting portion of data is not easy to 
interpret, a simulation presented in the next section has shown consistency with 
a patch drifting along the GCP in the A-I direction.

The time plots and the ionograms from 15:53 to 20:40 are illustrated in Figures 
3.5.3 and 3.5.4 respectively. During this period the azimuth of the received 
signal is around the true bearing all the time. The single trace is narrow and 
clear, rarely surrounded by secondary bearings, probably as a result of fairly 
high amplitude. In the middle panel the elevation angle of arrival oscillates, 
being on average below 10° (either 2-hop E or 1-hop F mode). This apparent 
oscillating elevation angle coupled with a fairly constant azimuth of arrival 
(phenomenon also shown towards the end of the previous time interval in 
Figure 3.5.1, as well as in the Figures of Section 3.3), is once again likely to be 
caused by periodical ionospheric tilts, with subsequent movements of the 
reflection point closer to the receiver (higher angle of arrival) or otherwise 
(lower angle of arrival). All these ionograms show a well-defined main trace, 
the MUF being well above the 9.292 MHz operational frequency. Some of the 
ionograms show that a multipath propagation was likely to occur. In particular 
the 19:15 ionogram exhibits 2-hop F and both low and high angle propagation, 
which would explain the slightly higher elevation angle at around 19:15 than 
elsewhere (excluding when the transmitter was off). Multimoded propagation 
then occurred, possibly over several paths on the GCP, since the bearing is 
fairly constant at this time.

Further interpretation of the results is left to the next chapter. Expanded views 
of some portions of the time plots will be shown, supported by the relevant
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ionograms, in order to assess the effect of different propagation conditions on 
direction finding systems. The results obtained with other algorithms (Loaded 
Capon, MUSIC, SML and Beam) will be compared. Furthermore, the results 
obtained with two different array patterns will be compared in order to 
investigate the effect of the array geometry.

3.6 Sim ulation of a drifting over-dense plasma structure.

Large bearing deviations in the azimuth of the received signal at high latitudes 
are often present (Warrington et al, 1997c). These swings are usually attributed 
to the movement of over-dense plasma structures, such as patches and arcs, 
over the polar cap. When the MUF is exceeded by the operational frequency, 
paths other than the GCP can become more apparent, and these structures are 
likely to reflect the signal. The reflection point will then move as these 
structures move, resulting in bearing deviations, which are more prevalent 
during magnetically quiet periods (see Table 1.5.1).

Simulations of a drifting mono-dimensional reflector have been undertaken. 
Firstly given the geographical co-ordinates (latitude and longitude) of two 
points, the GCP distance between them, the azimuth and elevation (for a given 
height) of one point with respect to the other are calculated assuming a 
perfectly spherical Earth. The trajectory of the patch is then simulated by 
simply varying the co-ordinates of the reflector with the desired speed, and 
recalculating the new azimuth and elevation (one estimate per second). The 
purpose of these simulations is to show that the large bearing deviations in the 
observations can be simulated with a simple model consisting of a reflecting 
moving structure, taking care in the assumption of realistic trajectories (see 
below).

Two examples are illustrated in Figure 3.6.1 of intervals where observed and 
simulated bearings are increasing. The observations have been obtained with 
the INS algorithm using the 8-antenna sub-array (see Section 3.2). The top left 
hand panel exhibits a swing from about 145° to 210° azimuth, between 05:37 
and 06:01 Local Time (LT) on 24th January 1996. The elevation angle varies 
between 5-10°, consistent with a 1-hop F mode. In the top right hand panel the 
azimuth rises from about 195° to 205°, between 05:01 and 05:25 LT on 23rd 
January 1996. The elevation panel below exhibits a slightly decreasing angle, 
between 5-10°. An example of experimental observations and relevant 
simulations in which the elevation angle varied but the azimuth was fairly 
constant is presented later in this section.

The third and bottom panels show the results of two bearing vs. time and 
elevation vs. time simulations respectively. A point reflector is assumed to
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move westwards, at a height of 240 km and 210 km in the left and right hand 
side panels respectively, with trajectories shown in Figure 3.6.2. These reflection 
heights are typical of the F region, where large-scale electron density structures 
can occur. 24 minutes of data were simulated. In the case on the left hand side 
in Figures 3.6.1 and 3.6.2, the reflector would cover 1200 km (from 800 km to the 
east to 400 km to the west of the GCP) at a speed of 840 m /s. This velocity is 
more typical for a patch of enhanced ionisation than an arc (see Section 1.4). The 
signal is assumed to arrive at the receiver at Alert after a reflection from a point 
moving westwards (according to the convection flow pattern, see later in this 
section), crossing the GCP at a distance of 1000 km from Alert (about half 
distance between transmitter and receiver). It is important to bear in mind that 
this combination of parameters does not form a unique solution, and is given as 
an example (see also later in this section). The azimuth of arrival of the signal 
increases, becoming greater than the true bearing (188.5°) after the point crosses 
the GCP. In the right hand panels, the reflector is also assumed to move 
westwards, covering 200 km, starting at 100 km to the west of the GCP (also at 
the level of 1000 km from Alert), and arriving at 300 km to the west of the GCP 
at the end of the simulation. The speed of this reflector is assumed to be about 
140 m /s. Even though this speed is lower than the speed typical of patches, the 
direction of this reflector would follow the convection flow pattern, and as such 
it is more likely to be a patch than an arc (see below). Both the bearing and the 
elevation panels of this simulation (third and bottom in Figure 3.6.1) show good 
agreement with the experimental data (top and second panels in Figure 3.6.1). 
However, it is worth bearing in mind that the elevation angle estimates are 
much less accurate than the bearing measurements (see Figures 3.2.3, 3.2.4 and 
3.2.5).

It is important to calculate the minimum height at which a point reflector can be 
seen at a given distance from a receiver, to make sure that the assumed 
distances of the reflector from the receiver are realistic. Figure 3.6.3 shows that 
when a point is about 1100 km from the receiver, which is about the maximum 
distance of the point from Alert in either simulation, the minimum height for it 
to be visible from the receiver is between 90 km and 100 km. A 90-km height 
corresponds to the bottom of the E region, whereas these structures drift across 
the F region. This implies that the drifting features have not gone below the 
horizon. Therefore all the parameters assumed in the simulations are realistic.

It is also important to note that very often the bearing swing traces overlap one 
another. For example, in the top left panel of Figure 3.6.1 we can see the end of 
a trace just after 05:37 LT at about 190°, when the main trace of the panel starts 
at 145°. The main trace ends at about 06:00, when another trace starts at 170°
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(see Figure 3.5.1 for a more comprehensive view). This indicates that the main 
trace stopped being visible when another more intense feature crossed the 
propagation environment, and not that, for example, the previous feature 
disappeared below the horizon. Two traces are present at the same time around 
the first and last two minutes of the time interval, whereas in between the main 
trace only is visible. This happens either because the gap in strength between 
the main signal and other possible signals was too big (so the weaker signal was 
not detected), or simply because the main trace represents the only signal that 
was present at that time. A combination of the two above mentioned situations 
across the time interval is likely to have occurred. Furthermore, the top left 
hand panel trace of Figure 3.6.1 represents one of the most dramatic scenarios 
of the whole data set, as it starts at about 145°, i.e. 45° below the true bearing, 
and ends at about 20° above the true bearing. Therefore, if the feature was 
visible at 45° below the true bearing, it was very likely to also be visible at 
beyond 20° above the true bearing. Furthermore, at the end of the simulation 
the point reflector is at about 1100 km from Alert while a point reflector which 
is at 230 km of height can be seen from a distance of about 1700 km (see Figure 
3.6.3)# and therefore it should be above the horizon.

Simulations have been undertaken to reproduce the sharp elevation angle 
swings (with fairly constant bearing along the GCP) occurring on 24th January 
1996 between 12:30 and 13:30 UT (see Figure 3.5.1). Figure 3.6.4 shows an 
example of particularly sudden decrease in the elevation, from about 15° to 5° 
in 4 minutes. The observations have been obtained with INS and 8 antennas 
(left hand plots). Given the fairly constant bearing at about the direction of the 
GCP, a point reflector drifting along the GCP, in the direction from Alert to 
Iqaluit (decreasing elevation angles) has been simulated (right hand panels). 
This point reflector is not likely to represent an arc, since they move from dawn 
to dusk (see Section 1.4), i.e. the opposite direction. However, it could represent 
a patch (see previous section) moving in a direction which does not agree with 
the theoretical convection flow. The good agreement of Figure 3.6.4 is obtained 
with a reflection height of 220 km, a speed of 2200 m /s (typical of a patch, but 
not an arc), starting and ending points at 670 and 1180 km from Alert 
respectively.

Simulations of all the bearing swings which occurred during the data set have 
been undertaken. Although the identification of the number and precise trend 
of the swings is often far from obvious, at least 12 swings can be identified, 
eight on the 23rd and four on the 24th January 1996. Table 3.6.1 shows the time 
interval (third column) and the azimuth range (fourth column) of these swings, 
numbered in chronological order in the first column. The fifth and sixth
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columns show the direction and the speed respectively of a simulated moving 
point reflector, which would cause the corresponding measured bearing 
swings. The results in Table 3.6.1 are illustrated in Figure 3.6.5. The straight 
arrows, numbered 1 to 12 (corresponding to the numbers in Table 3.6.1), 
represent the direction of the moving features simulated by point reflectors. The 
points representing the drifting patches are reflected at heights comprised 
between 200 km and 250 km, therefore in the F region. The length of the arrows 
is approximately proportional to the speed of the moving features (see Table 
3.6.1). The direction and speed of the reflectors match both azimuth and 
elevation measurements in all cases. The simulation was able to obtain a range 
of reasonably good matches for the reflector crossing the GCP between about 
800 and 1200 km from Alert, and by varying the values of direction (generally 
about 250-300°), speed (100 m /s to a few km/s) and reflection height (see 
above) depending on each swing. The values in Table 3.6.1 were calculated for a 
patch crossing the GCP at 1000 km from Alert.

Table 3.6.1 Bearing swings occurred on 23rd January 1996 (numbered 1 to 8) and on 
24* January 1996 (9 to 12). In the last two columns are the direction and speed of the 
simulated moving reflector point, for which trajectories cross the GCP at 1000 km from 
Alert.

Swing
No.

Date Time interval 
(Local Time)

Azimuth range Direction, 
E of N

Speed,
m /s

1 23/01/96 01:20-01:45 (25 min) 155°-175° (20°) 290° 730

2 23/01/96 01:45-02:10 (25 min) 160°-185° (25°) 250° 270

3 23/01/96 02:15-02:40 (25 min) 165°-190° (25°)

oO00<N 320

4 23/01/96 02:40-03:10 (30 min) 175°-200° (25°) 290° 270

5 23/01/96 03:20-03:40 (20 min) 130°-165° (35°) 260° 670

6 23/01/96 03:50-04:10 (20 min) 130°-160° (30°) 265° 500

7 23/01/96 04:15-04:35 (20 min) 155°-180° (25°) 270° 390

8 23/01/96 04:55-05:35 (40 min) 185°-210° (25°) 270° 140

9 24/01/96 05:35-06:00 (25 min) 145°-210° (65°) 270° 840

10 24/01/96 05:55-06:25 (30 min) 180°-235° (55°) 280° 610

11 24/01/96 06:50-07:10 (20 min) 155°-195° (40°) 255° 570

12 24/01/96 07:20-07:40 (20 min) 160°-200° (40°) 270° 580
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The curved dashed arrow in Figure 3.6.5 represents an indication of the 
direction of the convection flow during both the examined periods of time, i.e. 
between about 01:20 and 05:35 LT on 23rd January 1996, and between 05:35 and 
07:40 LT on 24th January 1996. The likely trend of the convection flow during 
these two time intervals has been obtained by considering the average values of 
the By and Bz components of the IMF (NASA Coordinated Data Analysis Web 
Site). As By>0 most of the time during the two time intervals both on the 23rd 
and on the 24th January 1996, we can infer from Figure 1.4.4 (both top and 
bottom right hand plots) that the convection flow had about the direction given 
by the curved dashed arrow in Figure 3.6.5 (for both Bz<0 and Bz>0). Bearing in 
mind that the convection flow is obtained on a statistical basis, the directions of 
the point reflectors clearly follow the direction of the convection flow (see 
Section 1.4) in all 12 analysed cases of bearing swings, which is consistent with 
the swings occurring on the 23rd and 24th January 1996 having been caused by 
trains of patches crossing the polar cap at about half way between Iqaluit and 
Alert.

In conclusion, the results of these simulations show that the measured bearing 
and elevation swings are consistent with those caused by structures of over- 
dense plasma (patches in these cases) drifting across the polar cap. However, it 
is not suggested that a point reflector is a good model for over-dense structures, 
which have a diffuse nature.

3.7 Summary.

The data acquisition system used to collect the data analysed in this work is 
situated at Alert, in the Canadian Arctic. The data were collected when the 
receiver was recording a signal transmitted from Iqaluit, 2100 km south of 
Alert, which propagated within the polar cap in wintertime.

The observations showed that the performance of HF direction finding systems 
can be highly affected and severely degraded by the propagation environment 
at high latitudes, as expected from previous work (see Section 3.1). In fact, the 
DOA of the signal can be well displaced from the GCP when the signal is 
reflected by structures of over-dense plasma far from the GCP.

In this chapter the whole data set from the 22nd to the 24th January 1996 for the 
transmission path from Iqaluit to Alert has been presented. The propagation of 
the signal varied dramatically from one day to another and also within the 
same day. Large and rapid bearing swings often occurred, in particular when 
the relevant ionograms showed detached features from the main trace, which is 
often likely to be evidence of patches or arcs of enhanced ionisation.
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Several simulations of a mono-dimensional moving reflector have been 
undertaken which show that the signal bearing and elevation swings can be 
caused by trains of patches of over-dense plasma drifting across the polar cap. 
The simulated direction of the point reflector closely followed the direction of 
the convection flow in the case of the bearing swings.

The next chapter will focus on the interpretation of the results obtained by 
processing the data with various algorithms and with different antenna 
geometries.
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Fig. 3.2.1a Alert Vortex DF system. The full squares represent the antenna 
elements in the Vortex antenna array, and the circles are unused antennas 
which are part of a 2-ring DF system (Dumas, 1997).
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Fig. 3.2.1b Positions of the antennas in the Vortex array.
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Fig. 3.2.3 Beam pattern formed by the full 12 antenna Vortex array. Look 

direction: az=188.5°, el=8.3° (GCP direction, 1 hop F region reflection at 250 km 
height).
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Fig. 3.2.4 Beam pattern formed by the Vortex sub-array of antennas 1 to 8. 
Look direction: az=188.5°, el=8.3° (GCP direction, 1 hop F region reflection at 
250 km height).
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plots for the 22nd January 1996 (13:58 - 16:38 UT). The red and green dots 
represent the primary and secondary bearing estimates respectively.
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4. Behaviour o l the INS, Loaded Capon, MUSIC and SML
algorithms

4 4  Introduction.

in the previous chapter we have seen the results of the processing of the whole 
data set obtained by means of the Iterative Null Steering algorithm. Some of the 
results obtained with Loaded Capon, INS, MUSIC and Beam will be compared 
in this chapter. Examples of bearing measurements obtained by means of the 
experimental Spread Maximum Likelihood (SML) algorithm (Read, 1999) (see 
Sections 2.7 and 2.8) ate also reported.

th e results show dependence both on the algorithm and on the array geometry, 
in different ways according to the various propagation conditions. This is 
expected, as others have compared DF algorithms, underlining the differences 
in terms of performance (see Sections 2.8 and 2.9 for a review). In particular, 
Warrington et al (1997c) and Dumas (1997) have compared results obtained 
With different algorithms for the same propagation path and for some of the 
tin^e intervals investigated here. Warrington et al investigated the behaviour of 
several algorithms in different propagation conditions, whereas Dumas 
com part performances of algorithms in terms of sensitivity with respect to a 
secondary weaker signal.

Jenkins (1997) undertook a comparison between the performances of four 
arrays, (in terms of miminum angular separation at which a weaker point 
Source signal would be detected in presence of a stronger spread-source signal, 
see Section 2.9), including the Vortex antenna array (see Section 3.2).

Finally, the behaviour of the standard deviation in bearing is investigated, as a 
function of integration time and the time over which bearing estimates are 
averaged.

4.2 Algorithm and array geometry dependence of the measured 
azimuth of arrival.

Bearing estimates have shown dependence on both the algorithm and the array 
geometry in use throughout the whole data set. Bearing observations during 
three 1-hour intervals and the corresponding ionograms, obtained with Loaded 
Capon and all 12 antennas in use, are illustrated in Figure 4.2.1 as an 
introduction to this investigation. Although interesting features have been seen 
throughout the whole three-day data collection, these three 1-hour intervals 
have been selected because they are representative of three different 
propagation conditions, occurring during the same day, i.e. on the 24th January
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1996(results presented by Warrington et al, 1997c). In particular the Maximum 
Psable Frequency (MOT) changed dramatically dining the day.

During the first period, from 09:45 to 10:45, the signal showed several swings of 
bearing, varying between about 160° to 235° (top right panel). In particular, we 
can see a very rapid bearing deviation of the primary trace from around 170° at 
09:45 to around 210° at 10:00, possibly extending on to about 235° at 10:25. 
These types of bearing swing are often attributed to reflection from patches or 
arcs of enhanced ionospheric electron density convecting over the polar cap 
(see Sections 1.5 and 3.6). It is also interesting to note that at this time the signal 
frequency was dose to the MOT and that the ionogram trace is very spread, this 
indicating the presence of irregularities which will affect the propagation. Some 
two and a half hours later, from 12:15 to 13:15, the MUF increased to around 
11.5 MHz and the ionogram trace is much less spread than in the earlier 
example (middle left panel). At this time, a swing in the measured bearing is 
still evident but not as pronounced as during the earlier period. In the final 
period, between 18:45 and 19:45, the ionogram traces are much less spread than 
in t|ie previous examples and the main features are readily identifiable (bottom 
left panel), with a 2-hop F and both low and high angle 1-hop F propagation. 
The direction of arrival of the signal was fairly constant and relatively close to 
the Great Circle direction of 188.5° (bottom right panel).

The whole data set has been analysed with Loaded Capon, INS (6dB 
termination threshold, see Section 2.7), MUSIC and Beam, and with both the 
full 12-antenna Vortex array and a sub-array consisting of the 8 inner antennas 
in circle of Figure 3.2.1b, numbered 1 to 8, to give a second beam pattern. The 
gross structure of the results was consistent for all four algorithms and both 
array geometries. However, three 24-minute intervals of data around the times 
cif Figure 4.2.1 are shown in Figures 4.2.2 to 4.2.4 in order to compare the 
detailed structure of the bearing measurements for each algorithm and array 
geometry. Examples of bearing measurements with SML are also shown later in 
this section, and merits and drawbacks of this algorithm discussed.

A preliminary inspection of Figures 4.2.2 to 4.2.4 shows that with both 12 
antennas (left hand columns) and with 8 antennas (right hand columns), INS 
generally exhibited the narrowest traces, followed by Loaded Capon. MUSIC 
generally showed very spread traces, with primary bearings often intermixed 
with secondary bearings. Beam was often capable of detecting a relatively 
narrow main trace, but also usually showed evidence of secondary traces well 
detadied from the primary one (this is particularly evident in Figure 4.2.4). This 
is not surprising, because Beam is not a superresolution algorithm, and as such 
it cannot resolve two signals separated by less than the natural beamwidth of
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tile antenna array. Therefore, in order for the Beam algorithm to detect two 
peaks of energy, these must be separated by more than the beamwidth. 
Qfcherwise the spread energy arriving at the receiver from one signal may be 
split in well-separated traces. These traces will then not represent two different 
signals, but portions of energy from the same signal (confirmed by the break 
when the transmitter was off), and might arise from the presence of sidelobes 
(see Figures 3.2.3 to 3.2.5). All the above features were often seen in the whole 
data set. It is then important to point out that while the gross structure of the 
results was consistent for all algorithms, differences arose in the detailed 
structure.

Multiple traces which appear to closely track one another were often seen with 
SRDF algorithms (this is particularly apparent in Figures 4.2.2 and 4.2.3, to a 
greater or lesser extent depending on the algorithm). Since SRDF algorithms, 
unlike Beam, can resolve two signals separated by less than the natural 
beamwidth of the antenna array, these closely separated traces must be 
different in origin to the well separated ones exhibited by Beam. By comparing 
the ipsults for SRDF algorithms with 12 and 8 antennas, whether these traces 
represent real signals or arise as an artefact of the algorithm in use can be 
determined (wider beam patterns result from smaller apertures and vice versa, 
see Secfion 3.2). If the multiple traces represent real signals, their structure 
would not be substantially affected (provided that the signals were resolvable 
with both array geometries), whereas considerable changes in the structure of 
the traces are expected if multiple traces result as artefacts of the algorithm.

Generally there are more multiple traces when the full 12-antenna array is in 
use. For example, in Figure 4.2.3 Loaded Capon and MUSIC produced three 
traces with the full array, but only two when the sub-array was in use. INS 
showed two traces with 12 antennas and only one with 8 antennas. This 
difference in the number of closely separated traces with different arrays 
indicates that these traces are likely to be an artefact of the algorithm, 
representing portions of the energy of the same signal. In Figures 4.2.2 and 4.2.3 
more closely separated traces are generally present when the 12-antenna full 
array is used rather than with the 8-antenna sub-array. To interpret this 
behaviour, we have to consider that the secondary bearings found by the 
algorithms could represent part of the primary signal when signal is relatively 
spread. The narrower the beam, the more likely this situation will occur. Since 
the beamwidth is inversely proportional to the array aperture, this explanation 
is consistent with the closely separated traces observed with the 12-antenna 
array, but not the 8-antenna array. Closely separated multiple traces have been 
reproduced by means of modelling studies in which spread signals are
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assumed to arrive at the receiver (see Chapters 5 and 6). It is also noteworthy 
that, in general, die traces appear to be more spread with the full 12-antenna 
array. However, the differences between the 8- and 12-antenna array are less 
marked during times with smaller bearing deviations or narrower signals. For 
example, the differences are less apparent in Figure 4.2.3 (slow changes in 
azimuth) than in Figure 4.2.2 (very rapid changes in azimuth), and even less in 
Figure 4.2.4 (fairly constant bearing).

In addition to the four algorithms discussed above, measurements have also 
been undertaken by means of the Spread Maximum Likelihood (SML) 
algorithm (Read, 1999) (see Sections 2.7 and 2.8), which assumes that the signal 
is spread in direction. SML has been used here in order to test its capabilities, 
since it was available when this research was being carried out (unlike SPIRE, 
see Section 2.8). However, it is important to bear in mind that SML was still 
under development and somewhat limited, e.g. it cannot deal with spreads of 
greater than 15° (Read, 1999).

The performance of SML has been determined by analysing two 20-minutes 
exanfples of experimental data (Figure 4.2.5). The upper panels (23rd January 
1996, between 08:20 and 08:40 UT) refer to a time interval in which the other 
SRDF algorithms exhibited a spread incoming signal (about 20-50° azimuth, 
depending on the specific algorithm, see Figure 3.4.3 for INS, observations with 
Loaded Capon and MUSIC are not shown in the thesis). Loaded Capon, INS 
and MUSIC exhibit a narrow primary trace which increases from about 150- 
160° to 180-190°, over this 20-minute time interval. Instead, SML shows primary 
beatings arriving from about 225° in the first 2-3 minutes, and from 350-360° in 
the remaining portion of the time interval, while multiple secondary traces 
between 80-180° occur during the whole interval. This happens with both 12 
and 8 antennas. This clear difference between SML and the other SRDF 
algorithms is not surprising, since all the others consistently exhibit a trace 
more spread than 15°, this consistency suggesting that the signal was more 
spread than 15°, and therefore SML was not reliable.

The lower panels in Figure 4.2.5 (24* January 1996, between 16:20 and 16:40 UT) 
refer to a time interval in which the other SRDF algorithms exhibited a narrow 
incoming signal (-10° depending on the algorithm, see Figure 3.5.3 for INS, 
observations with Loaded Capon and MUSIC are not shown in the thesis), and 
therefore sufficiently narrow to expect SML work correctly. In common with 
the other algorithms, SML does show a very narrow primary bearings trace at 
about 190° with both 12 and 8 antennas. However, it also exhibits a number of 
narfpw secondary traces, at clearly different directions for the 12-antenna and 
8-antenna arrays, which are not found with the other algorithms. Therefore, this
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islikely to be an artefact of the algorithm (unlike the other SRDF algorithms, 
SML showed nartow secondary traces also in the upper panels).

The above festdts make it dear that SML needs further development, especially 
for when the DOAs ate highly spread. For this reason SML has not been utilised 
elsewhere in this research.

It is very important to distinguish between multiple traces which represent 
multiple signals and those which are artefacts of the algorithm. It is worth 
recalling here that INS (see Section 2.7) terminates the search for secondary 
bearings when the remaining energy is less than a previously set threshold 
below foe first detected peak (6dB unless otherwise stated). In order to make 
INS more sensitive to secondary bearings (and/or noise) a threshold of 15dB 
has been used for the results illustrated in Figure 4.2.6. In the two plots to the 
left the bearing separation between the primary and secondary trace changes 
with the number of antennas in use, which suggests that, in this case, the 
double trace is an artefact of the algorithm. In the right hand panels the bearing 
separation between the primary (200°) and the secondary trace (150°) does not 
chlnge with the number of antennas in use, indicating that these traces 
represent two separate signals.

It is worth comparing the top right hand plot of Figure 4.2.6 to the middle panel 
of Figure 2.8.5, showing results presented by Dumas (1997) in the same time 
interval with the INS algorithm (note that Dumas did not specify the 
termination threshold employed). The results in the top right hand plot of 
Figure 4.2.6 showed evidence of the interfering signal at about 150° from just 
after 09:20 to the end of the interval, at 09:35, whereas the corresponding trace 
of Dumas' plot shows a clear gap between about 09:28 and 09:32. However, it is 
important to bear in mind that the 15dB threshold used for the results in Figure 
4.2.6 increases the sensitivity of the INS algorithm to secondary energy. This 
important aspect was not emphasised by Dumas when he compared the 
performance of INS with other algorithms, in terms of sensitivity to the 
secondary trace at about 150°.

Contour plots of the bearing estimates obtained with 12 antennas vs. those 
obtained with the 8-antenna sub-array are shown in Figure 4.2.7 for Loaded 
Capon, INS, MUSIC and Beam. They refer to the period 15:53-20:40 UT on 24* 
January 1996, an interval for which large bearing swings were not evident and 
the signal from Iqaluit was the only one present during the whole time interval 
(see Figure 3.5.3). It is important to consider that only the primary bearing 
estimates have been included. Of particular note in the four panels is the offset 
of foe distribution from foe 'equal result line', foe bearings obtained with the 
12-antenna array being, on average, different to those obtained with the 8-
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antenna array (results presented by Warrington et al, 1997c). This offset appears 
todepend cm both array geometry and algorithm. Loaded Capon and MUSIC 
produced bearing estimates around 1° higher with the 12-antenna array, 
whereas INS mid Beam produced similar offsets, but in the opposite direction. 
Hie differences between the bearing estimates obtained with 8 or 12 antennas 
(Le. different apertures), and with different algorithms could arise from the 
diffuse nature of the signals. It is also clear that the spread of the traces was 
algorithm dependent during this period. The least amount of scatter occurred 
with die Beam algorithm, the standard deviation of the bearing estimates being 
equal to 2.2° in the case of full array, and to 2.1° when the 8-antenna sub-array 
was used. This is not unexpected, since the primary estimates only were taken 
into account. Second best, from this point of view, was INS (standard deviation 
equals 2.4° and 2.2° with 12 and 8 antennas respectively). Loaded Capon 
showed higher values of standard deviation (4° with 12 antennas and 3.5° with 
8 antennas). The distribution of the points for the MUSIC algorithm was 
significantly greater, the standard deviation being equal to 8.4° with both array 
geometries.

In this section we have seen that, with the exception of SML, each direction 
finding algorithm used here showed similar gross behaviour, but differences in 
the detailed structure of the results. Furthermore, the azimuth has frequently 
exhibited multiple traces. It is of great importance to determine whether these 
arise as a consequence of multimoded propagation, interfering transmissions, 
or as an artefact of the algorithm. Modelling studies of one and two distributed 
signals are presented in Chapters 5 and 6 respectively. These studies are able to 
reproduce some experimental observations, including multiple traces arising as 
artefacts of the algorithm (a clear example is illustrated in Figure 6.3.5).

4.3 The effect o f integration tim e on the observed bearing  
spread.

An important parameter for DOA estimates is the integration time (see, for 
example, Warrington, 1995), the choice of this parameter having to meet the 
needs of the DF operator. In this section several data intervals are presented, in 
which the integration time (time/snapshot) has been varied, and the bearing 
estimates have been averaged over a range of time values.

Several intervals of about 20-minutes for each day have been investigated. The 
Intervals have been chosen such that the azimuth spreads are different, a low 
spread of up to about 15-20° and a high spread of greater than this. Within each 
time interval, the portions of data collected when the transmitter was off (see 
Section 3.2) have been excluded. A range of integration times from 0.05 to 10 sec
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has been used. It is important to consider that integration times higher than 10 
sec are unlikely to be of use in an operational environment at high latitudes, 
where rapid bearing deviations often occur. In fact, the data set utilised in this 
investigation has presented several occurrences of very rapid azimuth and 
elevation changes. For example, both the azimuth swing between 05:35 and 
06:00 LT on 24* January 1996 (see Table 3.6.1) and the elevation swing between 
09:22 and 09:26 LT on the same day (see Figure 3.6.4) have exhibited angular 
deviations comprised between 0.4° and 0.5° each 10 seconds on average.

For each integration time value, the primary bearing estimates have then been 
averaged over time intervals greater than or equal to the integration time up to 
10 sec, i.e. for an integration time of 0.05 sec, the bearing estimates have been 
averaged over 0.05, 0.1, 0.25,..., 10 sec, and so on. The bearing estimates have 
been detrended in order to prevent azimuth swings affecting the standard 
deviations. Furthermore, only primary bearings within 30° either side of the 
mean azimuth of the signal have been included in the calculations of the 
standard deviations.

As an example, one minute of bearing measurements is illustrated in Figure 
4.3.1, in which the integration time is varied between 0.05-10 sec (top to 
bottom), using Loaded Capon, INS, MUSIC and Beam with the full 12-antenna 
array. For all integration time values, the traces for INS are the narrowest and 
those obtained with MUSIC are the most spread. This behaviour was generally 
seen in all investigated time intervals. The results are summarised in Figures 
4.3.2 and 4.3.3. Figure 4.3.2 shows two examples of bearing standard deviations 
against average time for an integration time of 1 sec and with different spreads 
(higher in the top plots and lower in the bottom ones). The important aspect of 
the results in Figure 4.3.2 is that, if the time/snapshot is kept constant, the 
standard deviation decreases as the average time increases, and this is true for 
all the situations investigated. This is a very important result, as a low standard 
deviation is a desirable feature (assuming that the bearing is fixed); however it 
has to be reconciled with the need of the bearing estimate to be obtained in the 
shortest possible time. For example, a time/average of 10 sec could be too high 
for DF operators who need real-time estimates. In the higher spread interval, 
with 12 antennas the bearing standard deviations are lower for Loaded Capon 
than for the other algorithms, whereas they are about similar for all algorithms 
with 8 antennas (the curves crossing one another), thus Loaded Capon 
performs better with the full array. In the lower spread interval the higher 
values are shown consistently by MUSIC, followed by INS, then Loaded Capon 
and Beam, with both array geometries. Overall, among the SRDF algorithms 
Loaded Capon performed better than the others in both the higher and lower
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spread intervals. With the exception of Loaded Capon in the higher azimuth 
spread interval, the algorithms did not exhibit substantial differences between 
the two array geometries.

It is also interesting to investigate the behaviour of the algorithms when, 
keeping constant the time/average, we vary the integration time. Two 
examples with azimuth spreads higher (top panels) and lower (bottom panels) 
than 15-20° are shown in Figure 4.3.3, for time/average of 5 sec. In the higher 
spread interval, Loaded Capon with 12 antennas performs better than the other 
algorithms. As in Figure 4.3.2 for a fixed integration time, also for a fixed 
time/average the algorithms did not show substantial differences between 12 
and 8 antennas in terms of bearing standard deviations. These did not show 
any particular trend for all algorithms for an integration time of up to about 1-2 
sec, after which they tended to diverge, increasing, decreasing or remaining 
constant dependent on the algorithm, array geometry and spread. Also in other 
intervals, not shown in the thesis, the algorithms showed analogous results to 
this example for integration times below 2 sec. However, the results could be 
substantially different for higher integration times. A reason for this may be 
that the higher the integration time, the fewer the bearings taken into account 
for the calculation of the standard deviation, and therefore the less reliable the 
results. An analysis on a much longer data set would be needed for a more 
comprehensive study. However, from this investigation we can conclude that 
the bearing estimates are generally lower for Loaded Capon, especially in the 
higher spread intervals and with the full array in use.

The choice for the optimum integration time value depends on the particular 
situation in which a DF operator has to deal with. In fact, it is important to take 
into account that an integration time too high would be unsuitable when rapid 
deviations in bearing occur (in Chapters 2 to 4 we have seen that this often 
happens at high latitudes), or when signals are only present for short periods. 
In such situations the DF finding system would need a suitably short 
integration time value (even though this would not necessarily imply lower 
bearing standard deviations, as we have seen). However, for very short 
integration time values of the order of hundredths of a second, the 
computational burden increases dramatically. This investigation has shown that 
the larger the time over which the bearing estimates are averaged, the lower 
their standard deviation. However, once again, a too high average time could 
not be appropriate in case of rapid azimuth swings and when a real-time 
estimate is crucial. A value of 0.8 sec integration time was chosen for the results 
presented throughout this thesis (unless otherwise stated) as a reasonable 
compromise between the above mentioned factors.
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4.4 Summary.

The whole three-day data set has been analysed with three superresolution 
algorithms (Loaded Capon, INS and MUSIC) and a simple beam forming 
algorithm (Beam), and with two antenna array geometries. The gross features in 
the data are largely independent of algorithm and geometry. However, the 
detailed results differed especially when the signal was fairly spread and/or 
showed large bearing deviations. Therefore care must be taken in the 
interpretation of these results since they can depend substantially on the DF 
algorithm in use at these times.

The comparison of the results of the processing carried out with the full 12- 
antenna Vortex array and an 8-antenna sub-array has shown several interesting 
features. The results obtained with the 8-antenna sub-array generally exhibited 
less secondary energy, resulting in less spread traces. Multiple traces were often 
present which could be evidence either of a multisignal environment or 
multimoded propagation, or artefacts of the algorithms. A comparison of the 
results obtained with two different array geometries was usually able to 
distinguish between these mechanisms. In particular, the closely separated 
traces were likely to arise as artefacts of the DF algorithm, since their angular 
separation was different when using two different array patterns and apertures.

Examples of experimental data obtained by means of the SML algorithm have 
also been presented. SML attempts to model the signal environment at high 
latitudes more realistically than Loaded Capon, INS and MUSIC. However, the 
poor results obtained with SML confirm the need for its further development 
suggested by Read (1999).

An investigation on the effect of the integration time and the time over which 
bearing estimates are averaged on the bearing spread has been undertaken, for 
intervals of both low and high azimuth spread. In both cases, the results (for all 
algorithms and array geometries) indicate that the bearing standard deviation 
generally decreases when, the integration time being fixed, the time/average is 
increased. In general, the lowest bearing standard deviations were exhibited by 
Loaded Capon (among the SRDF algorithms). The behaviour of the algorithms 
did not substantially differ between 12 and 8 antennas, with the exception of 
Loaded Capon, which showed lower bearing standard deviations in the higher 
azimuth spread intervals. With a fixed time/average, the bearing standard 
deviation values were fairly independent of integration time up to about 1-2 sec 
of integration times.

Integration time values set too high would be unsuitable in the case of the 
occurrence of rapid bearing deviations, which is a frequent occurrence at high
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latitudes. However, low integration time values can dramatically increase the 
computational burden. A high time/average, although it implies lower 
standard deviation values, can be unsuitable when real-time DF is a crucial 
factor for DF operators. The information contained in this investigation can be 
useful for DF operators in order to make the proper parameter choices 
according to requirements and propagation conditions.
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5. MODELLING OF ONE SPREAD SIGNAL

5.1 Introduction.

The large swings in bearing apparent throughout much of the data presented in 
Chapters 3 and 4 were broadly similar in character to the goniometric 
observations previously reported (Warrington et al, 1997b). The major 
difference is the presence of multiple traces that closely track one another, 
particularly on 23rd and 24th January 1996. In considering the presence of 
successive swings in bearing on 23rd January 1996, Dumas (1997) simulated a 
series of traces in the bearing time history, each trace corresponding to an 
individual patch. However, Dumas did not take into account the effect of 
diffuse reflections from the ionosphere and it is important that this effect is 
given due consideration.

Modelling studies undertaken to investigate the behaviour of the various 
algorithms using both antenna array configurations, for diffuse incident energy, 
are presented here. It is noteworthy that the distribution of energy in practice is 
expected to be complex and time varying and therefore it was not expected that 
the modelling exercise would accurately reproduce the ̂ time evolving features 
of the analysed data.

The signal was modelled as a grid of point sources in both azimuth and 
elevation. Several symmetrical and asymmetrical multiple discrete source 
distributions (MDSDs), including the raised cosine, were imposed on the grid. 
Different resolutions were investigated. A resolution of 0.1° in both azimuth 
and elevation was used for most simulations (see Section 5.2).

A theory of two-signal representation from one incoming signal spread in 
azimuth is derived and presented here, based on Zatman's theory (1998). The 
theoretical results are compared with model data results.

5.2 Simulation of a spread signal.

The data have been simulated by modelling an incoming signal whose complex 
amplitude function A(Q,a) consists of three parts: the type of distribution (the 
raised cosine RC(0,a) is used here, see Section 5.3 for other types), phase of the 
signal at each antenna Ph(9,a) and Doppler spread Dop(0,a). The latter takes 
into account the time varying nature of the diffuse reflections (see Warrington, 
1998, for a presentation of experimental observations which may be used to 
justify this approach). The amplitude of the signal is then given by

A(d,a) = RC(0,a)Ph(0,a)Dop(d,a) (5.2.1)
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where the three contributions (at a given instant and considering one antenna at 
a time) can be expressed as

of the «-th antenna from a reference point (the centre of the array for the Vortex 
system), is the azimuth of the i-th antenna with respect to a reference 
direction (North), X is the wavelength of the signal, A 0 and Act are the azimuth 
and elevation spread of the signal, A0D and Aa D are the azimuth Doppler 
spread and elevation Doppler spread of the signal, and t is the time.

Analytical solution.

In order to obtain the incoming signal, for each antenna and at a given instant 
(i.e. the corresponding component of the data vector required for the DF 
process), the complex amplitude of Equation 5.2.1 needs to be integrated with 
respect to 0 and a  within the limits 9mm, 0 ^ , a min and amax. After some 
manipulation the resulting function of 6 and a ,  for fixed values of all above 
mentioned parameters, can be expressed as

RC(0,a)

Ph(Q,a) = expj y^pcos(0. -  0)cosa j, 

Dop(0,a) = expj/2»r (0-0) + (a  - a ) j j ,

6 and a  are the mean azimuth and elevation angles of arrival, rt is the distance

(5.2.2)

where

and

j — l cosacos(6i -  6)

Focusing on f 2(0 ,a )/ and taking 0 = 0 and 0. = 0 for sake of clarity in the next 
equation, f 2(0,a) would be of the type



where

a = —
A0

cos a;

For the first snapshot of the simulated data we have t = 0, thus c = 0 and 
exp(yc0) = l. In such scenario the solution to Equation 5.2.3, would require the 
following integral to be solved

For a frequency of 9.292 MHz, an antenna array such that rt lies between 25 and 
125 m (see Section 3.2) and for elevation angles up to 20°, b would assume 
values between 4.5 and 24.3. Even though the exponential in the integrand of 
Equation 5.2.4 could be approximated in an expansion series or in a sum of 
Bessel functions, for the above range of values for b, the approximated 
expressions would converge after about 60 and 70 terms respectively, which 
does not allow a practicable solution. Robinson T.R. (personal communication, 
2002) demonstrated that the integral of Equation 5.2.4 could be solved 
analytically, with good approximation for the conditions b »  1, b » a ,  b » 0 miQ 
and b »0max/ and by approximating cos0 = l - 0 2/2. However, the above 
conditions do not occur in this case, in particular a cannot be smaller than 1, 
and for typical azimuth spreads up to 60° (O<A0<7r/3) we have 3<a<°o. 
Furthermore, for the following snapshots t increases, thus contributing to the 
increase of a.

Numerical solution.

Since the expression of the amplitude of the incoming signal cannot be 
integrated analytically, the data simulations presented in this and the next 
chapter have been obtained by modelling the incoming signal as a grid of point 
sources separated by a given value in both azimuth and elevation, i.e. a 
multiple discrete source distribution (MDSD). Resolutions between 0.02° and 
2.5° in both azimuth and elevation were used.

The simulated data were analysed using the same DF algorithms and software 
as for the experimental data. In some of the model data analysis, asymmetries 
were introduced by specifying different "half widths' of the distribution in 
increasing and decreasing angles in both azimuth and elevation (the 'half 
width' was defined as the angular separation from the peak for the power 
distribution to fall to zero). No noise was introduced in the modelled data, with 
rounding errors from the computational process proving negligible. As a 
consequence the results were identical when, for a given spread (in azimuth

(5.2.4)
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and/or elevation), the amplitude of a signal was varied in order to match the 
size of the area subtended by the distribution of another signal with a different 
spread.

For the investigation presented in this sub-section, the MDSD was modelled to 
produce 1 estimate each 0.1 sec, with 10 snapshots for each estimate. A variety 
of input azimuth spreads were employed. Simulations have been undertaken 
with a number of sufficiently small values for the grid size and for a number of 
azimuth and elevation spreads, over 1 minute of data (i.e. 600 estimates). An 
example of bearing vs. time plots is shown in Figure 5.2.1, where a raised cosine 
distribution for the amplitude of the signal has been used (see next section for 
other distributions). The results are obtained with INS and the full array, for an 
input azimuth and elevation spread of 20° and 10° respectively (the results for 
other spreads are analogous). The angular separation of the grid ranges from 
0.02° to 2.5° in both azimuth and elevation. Even though the azimuth spread 
values are consistent for all angular separations, the results clearly show a 
cyclical trend of the bearing estimates for lower resolutions (right hand panels, 
particularly apparent for azimuth and elevation separations of 2° and 2.5°). 
Therefore the MDSD model does not reproduce adequately the experimental 
data for angular separations greater than 0.5°. In contrast, the results obtained 
for angular separations between 0.02° and 0.2° (left hand panels), show the 
typical irregularly scattered estimates that characterise the experimental data. 
These results are analogous for all algorithms employed and both the 12- and 8- 
element array. Table 5.2.1 (see below) shows the standard deviations of the 
bearing estimates obtained with all algorithms and both array geometries. The 
values are independent of azimuth and elevation separations between 0.02° and 
2.5° (only bearings within ±30° around the true bearing have been taken into 
account to avoid possible effects from sidelobe excitations). However, it is 
worth pointing out that decreasing the separation increases the computational 
burden.

The cyclical trend of the bearing estimates is caused by the discrete distribution 
computational routine repeating itself after a number of estimates, which 
depends on the angular separation of the grid that models the signal. As 
apparent from the right hand panels of Figure 5.2.1, the lower the resolution the 
shorter the cycle. Even though the routine would repeat the estimates for any 
resolution value, we can suggest that this does not affect the validity of the 
simulations for angular separations of 0.2° and below. In fact, the simulations 
do not aim to reproduce the experimental observations in detail, but their 
typical features such as the scattered estimates. Since the MDSD model exhibits 
similar behaviour for sufficiently small grid sizes, then the numerical solution
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can be regarded as a reasonable approximation of the analytical solution for 
resolution values of 0.2° and below. In the light of these results, a resolution of 
0.1° has been used in this thesis, since it provides a reasonable approximation to 
the integral, with reduced computational burden with respect to higher 
resolutions.

Table 5.2.1 Standard deviation of the bearing estimates as a function of azimuth 
and elevation steps for the modelled signal, with input azimuth spread of 20° and 
elevation spread of 10°._______________________________________________________

Az. snd EL step (deg.) —» 

A lgorithm  1

0.02 0.05 0.1 0.2 0.5 1 2 2.5

Loaded C apon (12 A ntennas) 4.2 3.7 4.0 4.3 3.6 3.9 4.3 3.4

Loaded C apon (8 A ntennas) 3.5 3.2 3.6 3.6 3.4 3.9 3.6 3.5

INS (12 A ntennas) 3.6 3.6 3.6 4.2 3.4 3.7 4.0 2.9

INS (8 A ntennas) 3.7 4.0 4.2 4.2 3.3 3.2 5.0 3.6

MUSIC (12 A ntennas) 4.9 5.1 4.6 5.0 5.1 4.9 6.5 5.7

MUSIC (8 A ntennas) 5.4 5.7 5.8 5.6 5.5 4.9 5.5 4.3

Beam (12 A ntennas) 3.6 3.6 3.6 4.2 3.4 3.7 4.0 3.0

Beam (8 A ntennas) 4.1 4.4 4.5 4.5 3.3 3.2 5.3 4.1

5.3 The effect of changing the spread energy distribution model.

In reality, the precise distribution of energy of the incoming signal is not 
known, and could very well vary with time, location etc. For this reason a 
number of types of distribution have been used to evaluate how they would 
affect the bearing estimates, including the gaussian and the square distributions 
for the amplitude of the signal, and the raised cosine distribution for the 
amplitude and the power of the signal.

The behaviour of the standard deviation primary bearings as a function of the 
azimuth spread (given by the width containing 90% of the power) for the four 
distribution models is presented in Figure 5.3.1. In order for possible sidelobe 
excitations not to affect the calculation of the bearing standard deviations, only 
bearings within 30° either side of 188.5° have been included. Whereas MUSIC 
does not show substantial differences between the various distributions, for 
Loaded Capon and INS the curves for the raised cosine distributions (both 
amplitude and power) are fairly close to each other and exhibit standard
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deviation values lower than for the gaussian and square distributions. The 
latter has usually shown the highest bearing standard deviations.

A number of symmetrical and asymmetrical distribution models have been 
utilised for this investigation. An example is shown in Figures 5.3.2a, b, c and d, 
where bearings estimates are obtained with all the discrete symmetric 
distribution models (±15° around the true bearing at 188.5°), for Loaded Capon, 
INS, MUSIC and Beam respectively, with both the full 12-antenna array (left 
hand panels) and the 8-antenna sub-array (right hand panels). As expected, the 
square distribution shows more uniformly scattered bearings estimates than the 
other distribution models. However, the experimental data have usually shown 
more irregularly scattered bearings estimates. This difference between the 
square and the other distributions is more apparent, for example, for Loaded 
Capon with 8 antennas and INS with 12 antennas. The raised cosine and 
gaussian distributions show more irregularly scattered estimates, and therefore 
they better simulate signals propagating at high latitudes. However, in Section 
5.6 an investigation is described that shows good quantitative agreement 
between model (raised cosine distribution) and experimental data in terms of 
azimuth spread. In this investigation the corresponding ionogram trace was 
used for an indication of the expected value of the signal azimuth spread. 
Nevertheless, it cannot be excluded that, in other periods, the gaussian 
distribution model could also provide good agreement with experimental data 
and a more comprehensive study is necessary. Results with other values of 
azimuth spread for the symmetric and asymmetric distributions are analogous 
to those described above, and as such they have not been included in the thesis. 
For the reasons, the raised cosine distribution has been chosen for the results in 
the next sections of this chapter and in the next chapter.

5.4 Behaviour of simulated azimuth as a function of angular 
spread.

For each model run, 2 minutes of data were simulated for a variety of azimuth 
spreads with half widths (see Section 5.2) ranging from 2-30°. The other 
parameters that varied in these simulations (based on experimental data) were 
the azimuth Doppler spread (6.4, 8.4,10.4 and 12.4 Hz), the elevation peak (5°, 
10° and 15°), the elevation spread (±2.5°, ±5° and ±7.5°) and the elevation 
Doppler spread (2.4 Hz). The simulations were run with many of the possible 
combinations of these parameters. It was found that only the value of the 
azimuth spread had significant effect on the azimuth results and the results for 
other parameters will not be presented.
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Figure 5.4.1 shows the simulated azimuth spread as a function of input azimuth 
spread. The 'equal values' black dashed line emphasises that the results with 
MUSIC are often characterised by a similar or slightly higher spread than the 
input, whereas the opposite is true for Loaded Capon and INS. Particularly 
apparent is the much lower output azimuth spread with the INS algorithm 
when only the 8-antenna sub-array is in use, which would result in narrower 
traces in the bearing vs. time plots similar to those seen experimentally (see 
Chapter 4).

Examples of bearing distributions for various algorithms are reproduced in 
Figures 5.4.2a, b, c and d (both for each of the full 12-antenna array and the 8- 
antenna sub-array. A symmetric azimuth spread with values ranging from 5- 
30°, which are consistent with values seen experimentally (see Section 5.5), was 
employed.

The results show that the peaks of primary bearings (red) are always close to 
the true bearing (188.5°) with all algorithms. The mean bearings produced by all 
superresolution algorithms were within ±0.1° or so of the true bearing, although 
individual estimates tended to lie within the range of the azimuth energy 
spread. With Loaded Capon and INS, overall average bearing estimates closer 
to the peak of input energy were obtained by including both primary and 
secondary estimates. INS (Figure 5.4.2b) produced lower azimuth spread and 
less spurious secondary bearings than Loaded Capon (Figure 5.4.2a). MUSIC 
(Figure 5.4.2c) produced bearing estimates with a much greater spread than 
those produced by either the Loaded Capon or the INS algorithms. However, 
the Beam algorithm (Figure 5.4.2d) behaved differently, in that it exhibited 
secondary bearings well separated from the primary ones (possibly caused by 
sidelobe excitation), whereas the superresolution algorithms showed secondary 
bearings surrounding the primary ones. In the time domain this would 
correspond to well-separated traces for the Beam algorithm, but closely 
separated traces for the superresolution algorithms. These features were 
frequently present in experimental observations (see Chapter 4). Differences 
between the 12 and 8-element array cases are evident. In particular, the bearing 
distribution splits into multiple peaks at larger spread values with the 8- 
element array than for the 12-element array.

Simulations were also undertaken with asymmetrical distributions of the 
azimuth power. The asymmetry was achieved by specifying different values for 
the 'half widths' of the signal distributions, i.e. different angular separations 
from the peak for the power distributions to fall to zero. In general, the results 
were similar to those for the symmetrical case in terms of azimuth spread, 
whereas the mean bearings produced by all the algorithms were closer to the
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mean bearing of the azimuth power distribution rather than the peak. Figure 
5.4.3 illustrates one example for all algorithms, obtained with half widths of 
power distribution equal to -2° to +30°, i.e. a portion of the power between 
186.5° and the peak at 188.5° and a portion between 188.5° and 218.5°.

For the Loaded Capon and INS algorithms, good average bearing estimates 
were obtained whilst the bearing estimate distribution was single peaked (i.e. at 
the lower spreads). In general, the mean bearing was closer to the actual DOA 
when only the primary bearings were included. However, once multiple peaks 
in the bearing distribution occurred, better estimates were obtained when 
averages of both the primary and secondary bearings were taken. With MUSIC, 
the spread was much larger than with the other superresolution algorithms and 
the overall average bearing was less accurate. Beam showed even more 
separated secondary peaks than in the case of symmetric azimuth distribution. 
It is important to note that asymmetry resulted in small differences (up to about 
1°) between the mean of the distributions obtained with the 8 and with the 12- 
element antenna arrays, which was also observed with in experimental data 
(see. Section 4.2), whereas the symmetric model did not produce this offset 
(Warrington et al, 2000).

5.5 Comparison between modelling and observations.

The results of the modelling described in the previous section often exhibited 
behaviour similar to that observed experimentally. However, since the model 
does not fully account for the variability of the propagation environment a 
precise agreement cannot be expected.

Figures 5.5.1a and b illustrate a typical example of model and experimental 
bearing estimates for 1 minute of data. In this case an asymmetrical model with 
half-widths of -28° and +8°, i.e. a portion of the power is between 160.5° and the 
peak at 188.5° and a portion between 188.5° and 196.5° has been employed.

The model data (left hand panels) are generally in good agreement with the 
experimental data (right hand panels). For example, in Figure 5.5.1a the model 
data for Loaded Capon with the 12-antenna array (top left panel) exhibit 
primary and secondary bearings spread over about 25° azimuth very similar to 
that shown by the corresponding experimental data (top right panel). The 
agreement is more marked when the 8-antenna sub-array is in use (second 
panels from the top), where the bearing distribution is more contained (about 
15-20°), and two traces clearly arise from one spread signal. For INS the 
azimuth spread is 10° with the full 12-antenna array (third panels) and less than 
10° for 8 antennas (bottom panel). Two traces are also apparent in the INS 12- 
antenna case, for both model and experimental data (third panels). The two
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closely separated traces which arise from one spread signal in the model is an 
important result since two closely separated parallel traces are often seen in the 
observations (Chapters 3 and 4). A theoretical investigation on this matter and a 
comparison with model data results are presented in Sections 5.7 and 5.8 
respectively.

With both 12 and 8 antennas, the MUSIC algorithm (top four panels, Figure 
5.5.1b) exhibits similar levels of azimuth spread for simulated and experimental 
results. However, there appears to be two traces when using the sub-array with 
experimental data which are not present in the model -  therefore in this case 
the agreement is not as good as it was for Loaded Capon and INS. The Beam 
algorithm (third and bottom panels) exhibits good agreement between model 
and experimental primary bearings (especially with 8 antennas, bottom panels). 
With the full 12-antenna array (third panels from the top), the secondary 
bearings are scattered at various azimuth values for model and experimental 
data. It is important to point out that the secondary bearing traces at around 
200° do not arise from the spread incoming signal as an artefact of the Beam 
algorithm, but are possibly caused by sidelobe excitations (this was commonly 
seen for Beam results, differently from the SRDF algorithms). In fact, the signal 
is mainly spread below the true bearing of 188.5° (as we have seen with Loaded 
Capon with 8 antennas and INS with 12 antennas, one trace is around the true 
bearing and the other trace around 180°).

A good general agreement between the model and the observed data was 
shown, in particular with the Loaded Capon and INS algorithms, for a short set 
of data. It is likely that by an appropriate choice of the model parameters the 
majority of the observed data (even though with different levels of agreement 
according to the algorithm in use), could be adequately simulated. The 
behaviour of the experimental data with different superresolution algorithms 
(Figures 5.5.1a and b) generally agrees with the behaviour shown during 
several runs with model data (Figure 5.4.1). In fact, the Loaded Capon and the 
INS algorithms, used for experimental data, exhibited traces spread in azimuth 
less than 36° (thus less than the input azimuth spread), particularly INS with 
the 8-antenna sub-array, whereas MUSIC exhibited traces spread over 30-40°. 
The Beam algorithm confirmed its tendency in experiment of producing 
secondary traces well separated from the primary bearings (see Section 4.2), 
with the model data graphs often showing secondary peaks distant from the 
primary peaks.
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5.6 A com parison of measured azim uth spread w ith  that 
observed from ionogram and simulation results.

Oblique ionospheric sounding between a transmitter and a receiver is 
frequently used to investigate the propagation mode content of an incoming 
signal (see Section 1.5). Figure 5.6.1 shows an oblique ionogram obtained over 
the I-A path on the 22nd January 1996 during the 5-minute interval between 
14:11 and 14:16 UT. The delay spread at the frequency of operation of 9.292 
MHz is about 0.4-0.5 ms. In Figure 5.6.2 the inferred signal azimuth spread as a 
function of spread of ionogram traces is plotted, with the assumptions of a flat 
earth, a symmetrical signal azimuth spread with respect to the GCP and a 
constant reflection height of 200 km at the mid-path point (F layer, 1 hop, see 
Section 3.3), thus neglecting any contribution of the elevation spread to the 
ionogram trace delay spread. These assumptions are appropriate to this 
investigation because its purpose is to make a broad comparison between 
azimuth spread from observed and simulated data, and ionogram trace spread. 
For example, the curve of Figure 5.6.2 does not show any substantial difference 
for a reflection height of, say, 250 km (plot not shown). Figure 5.6.2 is derived 
by calculating a number of points as follows. Let us call lx the distance between 
the transmitter T and the reflection point P along the GCP (1068.88 km, see 
Figure 5.6.3). Let us call P' a generic reflection point of a signal whose azimuth 
spread is 9 , and l2 the distance between T and P'. Since the signal is assumed 
symmetrically spread with respect to the GCP, then the angle between the TP 
and TP' will be equal to 9 /2. For a given value of azimuth spread, the 
corresponding ionogram trace spread can be calculated as follows. Being ldiff 
the difference between the length of the two paths TP'R and TPR, given by 
/ = 2(/2 -  /j), we can easily calculate the difference in time tdiff taken by the
signal components to reach the receiver through these two paths as tdiff = ldlff / c , 
where the velocity of the signal is approximated as the light speed c . Since the 
ionogram of Figure 5.6.1 does not exhibit any group retardation at 9.3MHz, 
thus the reflection points are well away from the layer peaks, therefore the 
signal speeds would be similar on each path. Bearing in mind that the time 
taken by the signal components to traverse the paths TP'R and TP"R is the 
same, the value of tdiff corresponds to the ionogram trace delay spread. The 
segments h and l2 are related by h = l2 cos 6/2, therefore we have

ldiff C ^cos(0/2) 

and with a few steps

(5.6.1)
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0=2arccos -----—  (5.6.2)
£ W +1

By using the Equation 5.6.2 for a number of values of the ionogram trace delay 
spread tdlff, we obtain the corresponding values of azimuth spread 0. Figure 
5.6.2 is given by the resulting series of points.

A relative delay spread of about 0.4-0.5 ms corresponds to an azimuth spread of 
about 40°. By comparing the results from the simulation with the azimuth 
spread set to ±20° to the relevant observations will provide a suitable test.

The modelled (raised cosine) and experimental azimuth distributions from the 
interval close to that of the ionogram of Figure 5.6.1 are illustrated in Figures 
5.6.4a and b. Note that the time interval for the model (left hand panels, 2- 
minutes) is shorter than that of the experimental data (right hand panels, 15 
minutes). The 5-minute ionospheric sounding slot is the data gap which starts 
at 14:11. Although the model makes a number of assumptions, the results agree 
quite well with observations. For example, for Loaded Capon (12-antennas, 
Figure 5.6.4a, top left panel) the azimuth spread is about 30° around the true 
bearing, 10° less than the input azimuth spread. The experimental data traces 
are indeed spread by about 30°, with secondary traces surrounding the primary 
ones. Analogous behaviour occurs with reduced spread, when using the 8- 
antenna sub-array (second panels), which both show an azimuth spread of 
about 20°. While INS exhibits much less secondary energy than Loaded Capon, 
there is still good agreement between model and experiment. The good 
agreement is largely held for MUSIC (Figure 5.6.4b). However, Beam exhibits 
primary bearing estimates concentrated around the Great Circle direction with 
secondary estimates mainly at azimuths higher than the true bearing for both 
model and experimental data and with both array geometries. With the full 12- 
antenna array, Beam shows a trace of secondary bearings just above 200°, 
possibly caused by sidelobe excitation.

In conclusion, for this example the delay spread in the ionogram trace in Figure 
5.6.1 gives a good indication of the azimuth spread. This applies more or less 
for all algorithms and array geometries, although the superresolution ones 
perform better. This agreement was generally found for other times, when the 
ionogram trace delay spread was greater than about 0.4 ms. However, there 
was poor agreement for ionograms of two types. The first type was when the 
ionogram trace was relatively narrow (typical examples are the ionograms of 
Figure 3.4.2), which made the identification of the corresponding azimuth 
spread difficult, since a small change in the ionogram trace delay spread would 
lead to a large change in the inferred signal azimuth spread. The second type
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was when the ionograms show two traces and/or other features at the 
operational frequency (typical examples are most of the ionograms of Figure 
3.4.4). Although the results shown in this section are promising, the limited 
number of available examples implies that a longer period of data collection, 
with the corresponding ionograms, is necessary for a more comprehensive 
study.

5.7 Theory of two-signal representation from one signal spread 
in azimuth.

Throughout this thesis we have often seen closely separated traces (in bearing), 
possibly arising from a spread signal, with both experimental and model data. 
In Section 2.10 we have seen the results presented by Hayward (1997) and 
Zatman (1999), which relate the occurrence of two traces arising from one signal 
to the eigenvalues of the covariance matrix. Hayward stated that this situation 
can occur in case of a rotating array, which would have the same effect, on the 
DF system, of an incoming spread signal. Hayward related the eigenvalues to 
the spread of the signal measured in beamwidths, using a linear array of 16 
antennas. His results (Figure 5.7.1a) show that the higher the spread, the more 
the weaker eigenvalues approach the value of the first eigenvalue. Of particular 
importance is the value of the second eigenvalue, which could become strong 
enough to give rise to a second bearing. Figure 5.7.1b illustrates analogous 
results (for the first two eigenvalues) for the full 12-antenna Vortex array (red 
curves) and the 8-antenna sub-array (blue curves). These have been obtained by 
simulating a snapshot of data (see Section 5.1), and then by calculating the 
eigenvalues of the covariance matrix, for an incoming signal (raised cosine 
distribution) with a number of values of azimuth spreads, symmetrical with 
respect to the GCP, expressed in beamwidths (0.005 to 1.5). Therefore, for a 
given azimuth spread value in beamwidths, the absolute azimuth spread value 
would be different between the full-array and the sub-array. The solid curves 
represent the first eigenvalue, and the dashed curves the second eigenvalue. We 
can see a clear agreement between the Hayward’s results in Figure 5.7.1a and 
the results for the Vortex array in Figure 5.7.1b.

The absolute value of the eigenvalues depends on many parameters used to 
calculate them, such as the number of antennas, the number of samples for each 
estimate and the azimuth steps for the discrete multiple distributions. 
Therefore, the important aspect is the ratio between the eigenvalues, not their 
absolute value. For this reason, the eigenvalues in Figure 5.7.1b have been 
normalised to the first eigenvalue obtained with 12 antennas for a signal spread 
of 0.005 beamwidths. The eigenvalues obtained with 8 antennas have been
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normalised with the same value as for 12 antennas. The eigenvalues curves 
obtained with 8 antennas are lower than those with 12 antennas because fewer 
signal components contribute to the data matrix.

A mathematical theory behind a two-signal representation of one non-zero 
bandwidth signal, was obtained by Zatman (1998) (see Section 2.10). Zatman 
also related this occurrence to the first two eigenvalues of the covariance 
matrix. Given the analogy between Zatman's theory about a signal spread in 
frequency, and my results about a signal spread in azimuth, it is worth making 
a comparison between the two situations. A theory for a two-signal 
representation of one signal spread in azimuth is derived in this section and 
compared to simulations results in the next section.

Zatman considered a uniform linear array of N  antennas, with half-wavelength 
spacing at the operating frequency / 0. Zatman's two-signal representation of a 
non-zero bandwidth signal is valid when the amount of spreading is consistent 
with two eigenvalues of the covariance matrix being above the noise floor, i.e. 
when the narrowband condition fails. For a signal-only covariance matrix, this 
corresponds to one signal being represented by two eigenvalues greater than 1 
(i.e. OdB, see Section 2.10), as expressed by Zatman's Equation 2.10.15, repeated 
in Equation 5.7.1

where is the second eigenvalue, sm/2  is the power of each of the two signals

dimensional space.

In analogy with Equation 2.10.9, for a signal spread in azimuth only, with fixed 
elevation angle and in absence of bandwidth, we have

where 0  is the mean azimuth of the incoming spread signal and k is the 
azimuth separation of each of the two traces representing the spread signal 
from the centre bearing 0.

For an arbitrary array, such as Vortex (see Section 3.2), the steering vector is 
given by

(5.7.1)

and |y/| is the cosine of the angle between the two eigenvectors in the V-

M (5.7.2)

a(0) = {e * V M..... e»"} (5.7.3)
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where <p(the inter-element phase) is given by

<pi = Aicos(Qi - 6 )  (5.7.4)

and

2^rcos(a)
A = } (5.7.5)

(^,0,) being the co-ordinates of the i-th antenna with respect to an arbitrary 
origin and Q and a  the azimuth and elevation angle of arrival respectively.

By substituting Equation 5.7.3 into 5.7.2, we obtain

M A■Jb c

where

0 - j A i cos[0i-(0+*)]

^  =  <| :  cos[0,-(0-*)] g+zAtfCostOiv-tf-*)] j

cos[0w-(0+t)] 1

e- j A l cos[0j-(0+fc)] 1

|^ + /A j costo^ca+fc)] cos[0w—(0+fc)]^

cost0w-(0+*)] j

fg- ĉost©, -̂*)] 1 
^ r _ ^ :  + COS[0,-(0-*)] e  + JA N C O S[0^-(0-fc)]|

cos[e N-(fi-k)]

By developing the expression of |y/| we have

-  JAX { cost©! -(0  +*)}-cos[©1 -(©—*)]) ~jAN{ coste^-tO+Jt^cost©^ —(0—A:)]l
\nJL-e +...+ e 1 J

J(l + l + ...)w • (1 + 1 + ...L .y  \  JN times \  /  N  tunes

and therefore

w = -m  N
X ex p  {-/A,. [cos(0f -  (0+  kj) -  cos(0f -  ( 0 -  fc)) ]}
P=\

(5.7.6)

Equation 5.7.6 for an arbitrary array and a generic incoming signal spread in 
azimuth is the analogue of Equation 2.10.13 for a uniform linear array and a 
non-zero bandwidth signal (Zatman, 1998).
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By inserting 5.7.6 into 5.7.1, simplifying the trigonometrical function and 
inverting the direction of equation 5.7.1, we obtain

Equation 5.7.7 states, in terms of azimuth separation between two traces, the 
condition by which the effective rank of a generic incoming signal increases 
from one to two. This sets the minimum azimuth separation value above which 
one signal incoming from a given bearing might have a two-signal 
representation, for a given array geometry and signal-to-noise ratio (SNR).

The plots of Figure 5.7.2 illustrate the curves of the second eigenvalue as a 
function of the separation between the two traces representing one signal 
spread in azimuth around the true bearing for the I-A path (188.5°), for four 
values of SNR and two array geometries. Results for an elevation of 8.3° are 
shown, it being found that the curves are largely independent of elevation. For 
a given SNR, as the azimuth separation increases, the second eigenvalue also 
does; when it equals 1, the two-signal representation of one spread signal could 
take place. This is the analogous to the narrowband condition as described by 
Zatman (1998). It is apparent that, as the SNR increases, the second eigenvalue 
reaches the unitary value for decreasing traces separations, which are lower for 
the full array than for the sub-array. For a 25dB SNR, the two-signal 
representation can occur for about 13° with 12 antennas and about 49° with 8 
antennas; these values decrease with increasing SNR falling to 2° and 8° at 40dB 
SNR. This means that the stronger the SNR, the less spread the signal will 'need 
to be' in order for the two-signal representation to become possible. It is 
therefore interesting to relate the azimuth separation of the two traces to the 
azimuth spread of the signal.

In analogy with Zatman's discussion (see Section 2.10) about the variance of a 
spread signal with a rectangular power spectrum, let us evaluate the variance of 
a signal whose bearing distribution is raised cosine (see Section 5.3). The 
expression of the raised cosine distribution of the azimuth of arrival 9 of a 
signal and for a generic azimuth spread Ad is

Since the following calculations are valid for any mean azimuth value, let 9 be 
equal to 0° for sake of simplicity. Thus the variance of the distribution is given
by
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With a few steps we obtain the variance of a raised cosine distribution for a 
given azimuth spread as

(5.7.8)

A two-azimuth-of-arrival representation of the signal would then consist of two

variance of such representation (Zatman, 1998 and personal communication, 
2001). Therefore, by substituting var(A0) with k2 in Equation 5.7.8, we can 
easily obtain the separation 2k between the two traces, as

Figure 5.7.3 shows the azimuth separation between two traces representing one 
spread incoming signal, as a function of its azimuth spread, from Equation 
5.7.9. It is then useful to relate the second eigenvalue to the azimuth spread, for 
different values of SNR. This is obtained by substituting k from Equation 5.7.9 
into Equation 5.7.7. The results are shown in Figure 5.7.4 for SNR values of 25, 
30, 35 and 40dB, the incoming signal being spread in azimuth around 188.5° 
and with an elevation angle of arrival equal to 15°. With 12 antennas (blue 
curves) an azimuth spread values of about 51° or more could give rise to a two- 
trace representation, with the lowest SNR in Figure 5.7.4 (25dB, top left panel). 
Whereas with 8 antennas (red curves) the theoretical azimuth spread needs to 
be greater than about 190° (a very unlikely occurrence) for two traces to be 
shown. For a 30dB SNR (top right panel) an azimuth spread of about 28° and 
104° with 12 and 8 antennas respectively is sufficient for two traces to possibly 
arise. For higher SNR values the minimum azimuth spread value further 
decreases for a two-traces representation to be possible, dropping to about 15° 
and 58° (35dB SNR) and about 9° and 33° (40 dB SNR) with 12 and 8 antennas 
respectively. The above theoretical results are based on the calculation of 
eigenvalues of the covariance matrix, therefore this discussion refers mainly to

traces separated by k either side of the mean azimuth of arrival, where k2 is the

(5.7.9)



eigenanalysis methods such as MUSIC. However, simulation results with 
MUSIC did not clearly exhibit a two-trace representation of a spread signal. But 
since this occurred with Loaded Capon and INS, even though this theory does 
not relate to these two algorithms, it is worth comparing its results to 
simulation results (see next section).

5.8 Comparison between theoretical and simulation results of 
two-signal representation from one signal spread in azimuth.

In this section some of the model data results obtained with a raised cosine 
distribution presented in this and the next chapter are compared to the 
theoretical discussion of the previous section. The data were modelled with a 
given input azimuth spread and in some cases the results exhibited two-closely 
separated traces (we refer to Figures 5.5.1a, 6.3.2 and 6.3.5, and other results not 
shown in the thesis, which are relevant to a two-signal representation of one 
signal spread in azimuth). The algorithm and the array geometry heavily 
affected the results. The results obtained with INS also depended on the 
threshold below the first peak for the search for other peaks to terminate (see 
Figure 6.3.5). In general, the results about the visibility of two signals were 
dependent on the azimuth separation and the amplitude ratio between them 
(see Section 6.3). Furthermore, a number of parameters were input to the model, 
which could affect the results (see Section 6.3). It is worth bearing in mind that 
any change in the value of any of the various parameters of the model is likely 
to change the simulation results.

Table 5.8.1 compares some values of theoretical azimuth separation between 
two traces representing one spread signal to simulation results for Loaded 
Capon, INS and MUSIC. The theory relates to eigenanalysis DF methods such 
as MUSIC, which however never clearly showed a two-trace representation 
(together with Beam), and thus the simulations did not suggest consistency 
with the theory. Nevertheless, it is interesting to compare the theoretical results 
to simulations for Loaded Capon and INS, since these showed the two-trace 
representation of one spread signal, in some circumstances. However, it is 
important to bear in mind that Loaded Capon and INS are not eigenanalysis 
methods, and as such the theory does not relate to these two algorithms. It 
follows that the results in Table 5.8.1 are not obvious to interpret even though 
they are very interesting, and it would be desirable to consider how the 
presence of the additional eigenvalue due to the source spread in azimuth 
would affect the operation of Loaded Capon and INS (see Section 7.3).

From Table 5.8.1 we can see that in the case when two traces arose from one 
signal spread 15° in azimuth, the simulation results with Loaded capon and INS
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exhibited an azimuth separation (between 5° and 7°) higher than the theoretical 
value of 3.8° (notice that INS with 8 antennas exhibited one trace only). For 
increasing input azimuth spread values (20°, 30° and 36°), Table 5.8.1 shows 
that, when two traces arose, the azimuth separation between them increased 
too, and was fairly close to the theoretical expectations, in particular with 
Loaded Capon and full array (7-8°) for an input azimuth spread of 30°, the 
theoretical value being 7.7°. Simulations with higher azimuth spread values did 
not show any clear two-signal representation of one spread signal. However, it 
is not suggested that this cannot happen in a real signal environment. 
Furthermore, it is noteworthy that the two-trace representation occurred, or 
otherwise, with no apparent trend.

Table 5.8.1 Azimuth separation values of two traces representing one spread 
modelled signal as a function of the input azimuth spread, for Loaded Capon, INS and 
MUSIC, with both the full 12-antenna array and the 8-antenna sub-array. The 
theoretical azimuth separation corresponding to the input azimuth spread is in 
brackets, calculated from Equation 5.7.9. The signal is modelled with a discrete raised 
cosine distribution (az peak=188.5°, az Doppler spread=10.4Hz, el peak=15°, el 
spread=5° and el Doppler spread=2.4Hz). When a two-trace representation did not 
occur, T trace' is stated.

Input azimuth spread —> 

Theoretical azimuth separation -» 

SRDF algorithm I

15°

(3.8°)

20°

(5.1°)

30°

(7.7°)

36°

(9.2°)

Loaded Capon (12 antennas) 5-6° 1 trace 00 o 1 trace

Loaded Capon (8 antennas) 5-6° 6-7° 1 trace 11-12°

INS (12 antennas) 6-7° 1 trace 1 trace 10-11°

INS (8 antennas) 1 trace 1 trace 8-9° 1 trace

MUSIC (12 antennas) 1 trace 1 trace 1 trace 1 trace

MUSIC (8 antennas) 1 trace 1 trace 1 trace 1 trace

The SNR worst-case scenario in Table 5.8.1 is for the lowest azimuth spread 
value (15°) and the 8 antenna sub-array, as we can infer from Figure 5.7.4. In
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such scenario, the minimum SNR necessary for the second eigenvalue to be 
greater than 1 is about 47dB, according to the theoretical calculations (Equation
5.7.7, in which the value of k is obtained from Equation 5.7.9 for a raised cosine 
distribution).

The occurrence of a two-trace representation of one spread signal is clearly not 
a desirable feature. The algorithms behaved correctly when only one trace was 
detected, representing one spread signal. There appears to be no particular 
trend in the algorithms behaviour, i.e. it is not possible to infer which algorithm 
(between Loaded Capon and INS) or which array geometry is more opportune 
to use in order to avoid the occurrence of a two-trace representation. Even 
though MUSIC does not exhibit this problem, we have seen that it is not 
suitable for high latitude DF. Furthermore, a high number of parameters, 
corresponding to often-unpredictable features in a real signal environment, are 
likely to change the results. The modelling results for MUSIC were not in 
agreement with the theoretical results, since MUSIC never exhibited two traces 
arising from one spread signal. However, for those circumstances when a two- 
signal representation of one spread signal occurred for Loaded Capon and INS, 
the theoretical values were in fairly good agreement with the simulations, 
especially for azimuth spread values of around 30°.

5.9 Summary.

Ionospheric propagation modes have been often modelled by others (Sections 
1.5 and 2.9) with the over-simplification of assuming a smooth ionosphere of 
infinite extent upon which were superimposed the localised irregularities 
leading to the scattered energy. More realistic modelling studies have been 
reported in this chapter, which consider the effect of diffuse reflections from the 
ionosphere. This model reproduces much more faithfully very disturbed 
regions, where signals are more likely to arrive spread at the receiver, as often 
occurs at the high latitudes.

A multiple discrete source distribution was modelled as a grid of point sources 
separated in both azimuth and elevation for a number of values between 0 .02° 
and 2.5°. For angular separations of 0.2° and below the results did not vary 
significantly and were able to reproduce the typically scattered bearing 
estimates seen with experimental data. Since the computational burden 
increased with increasing resolutions, a reasonably fine grid of point sources 
separated by 0 .1° was employed for the modelling studies of this and the next 
chapter.

Several types of distributions for the multiple discrete source model have been 
compared. These are the raised cosine, gaussian and square distributions for the
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amplitude of the simulated signal, and also the raised cosine distribution for the 
power of the signal. The raised cosine and the gaussian distributions appeared 
to be able to reproduce the irregularly scattered estimates seen with 
experimental data (less spread for the raised cosine distribution), whereas the 
square distribution exhibited more uniformly distributed bearing estimates, 
and thus it is not recommended.

In some of the model data analysis a symmetric distribution of the signal 
around the Great Circle Path direction was assumed, whereas in others analysis 
the distribution was assumed to be asymmetric. The model was able to 
reproduce at least the gross behaviour of the observations for all the DF 
algorithms. For example, the spread in the bearing estimates was found to be 
different for each algorithm for a given input spread. Loaded Capon and INS 
exhibited traces spread in azimuth less than the input value, especially INS 
with the 8-antenna sub-array, whereas MUSIC often showed traces spread 
about the same or slightly more than the input value, especially with the full 12- 
antenna array. Beam often produced secondary traces well separated from the 
primary bearings.

A comparison of the model results and the observations has found that the 
amount of spread in an ionogram trace can give an indication of the expected 
value of the signal azimuth spread. A good agreement was found when the 
relative delay of the ionogram traces spread was above about 0.4 ms.

A theory about the two-signal representation of one signal spread in azimuth 
has been developed, based on the relationship between the second eigenvalue 
of the covariance matrix and the azimuth spread of a raised cosine distributed 
signal. The relationship between the two traces separation and the amount of 
azimuth spread derived from the theory was found to be in good agreement, 
especially for azimuth spread values of around 30° (the azimuth separation 
between the two traces increased for increasing azimuth spread values, as 
expected). For input azimuth spreads of about 40° or more, the two-signal 
representation of one spread signal did not occur in the simulations. The 
occurrence of a two-trace representation of one spread signal depended on the 
algorithm and array geometry in use, the type of signal distribution, and to a 
lesser extent the elevation angle of arrival, elevation spread and azimuth and 
elevation Doppler spread. Unfortunately, the results did not show any 
particular trend in terms of which algorithm and array geometry would be 
better to use in order to avoid the undesirable two-trace representation of one 
spread signal. Furthermore, it is important to consider that the theory relates to 
eigenanalysis methods such as MUSIC, whereas the best agreements with the 
simulation results were found with Loaded Capon and INS. Therefore, it would
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be useful to undertake further investigations for a better understanding of the 
relationship between this theory and the operation of non-eigenanalysis 
methods such as Loaded Capon and INS.
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Fig. 5.3.2b As for Fig. 5.3.2a except for the INS algorithm.
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6. MODELLING OF TWO SPREAD SIGNALS

&f> . Introduction.
th e  observations presented in Chapter 3 and interpreted in Chapter 4 often 
showed evidence of multiple signals, e.g. interfering signals which arrived at 
the receiver from a different direction to the wanted signal from Iqaluit. Both 
the wanted and die interfering signals exhibited some spread in azimuth, which 
is a very frequent occurrence at high latitudes. The precise results depended on 
the DF algorithm and die array geometry employed.

Modelling studies are presented in this chapter which analyse the performance 
of the DF algorithms for two array geometries when two spread signals arrive 
at the receiver. The performance is evaluated in terms of the visibility of the two 
spread signals, for a number of values of azimuth spread and angular 
separation, and compared with Jenkins' results (1997), where the visibility of 
one narrow (point source) weaker signal in the presence of one spread 
(extended source) stronger signal was investigated.

6.2 M odelling of two spread signals.

A multisignal environment is not an uncommon situation in which direction 
finding systems have to operate. Furthermore the very rough structure of the 
ionospheric layers at high latitudes often causes the signal to arrive at the 
receiver over a range of azimuths. Therefore, when multisignal propagation 
occurs, each signal is likely to be spread in azimuth. A challenging task for 
direction finding algorithms is to detect spread signals arriving with the lowest 
angular separation and with the highest amplitude ratio between them.

The case where point source and extended source signals occurred was 
modelled by Jenkins (1997), where the point source would represent a sporadic- 
E reflection and the extended source would represent an F region reflection 
caused by a patch of enhanced ionisation (see Section 2.9). Jenkins investigated 
die visibility of the weaker narrow signal in presence of the stronger spread 
signal with two algorithms and four array geometries (see Section 2.9). Jenkins 
assumed that the weaker signal came from a point source. However, at high 
latitudes this is often not the case, and for this reason the results presented in 
this chapter were obtained by modelling two signals which both originate from 
spread sources. Four algorithms (Loaded Capon, INS, MUSIC and Beam) and 
both the 8-antenna and 12-antenna arrays have been used. In some of the 
processing runs die two signal distributions overlapped, whereas the minimum 
angular separation for Jenkins' modelling studies was equal to 5°.

6.1



In the simulations whose results are shown in the next section, the same 
azimuth spread value is given to both signals for each rim. The angular 
separation between the peaks of the two signals has a number of values ranging 
from 0 .2° to 50°. Hie distributions of the signals, with widths ranging between 
0.2° and 30° are all assumed to be symmetrical. The peak of the strongest signal 
was fixed at 188.5° (i.e. the true bearing). The weaker signal was arbitrarily 
assumed to arrive at bearings lower than 188.5°. For example, when the angular 
separation between the two signals was fixed at 20°, the weaker signal would 
arrive from 168.5°. Four amplitude ratios between the two signals were 
employed, i.e. 1:1,2:1,5:1 and 10:1. The azimuth Doppler spread (10.4 Hz), the 
elevation (10°), the elevation spread (2°, symmetrical) and the elevation 
Doppler spread (2.4 Hz) were fixed for both signals.

6.3 Visibility of two signals with varying amplitude ratio.

The results of the simulations presented in this section are different for the four 
employed algorithms, and for both the 12-element and the 8-element arrays, as 
expected. Bearing estimates for 10° azimuth spread and 20° angular separation 
are illustrated in Figure 6.3.1, in which the two signals have the same 
amplitude. All algorithms are able to detect the two traces, with the exception 
of Beam with 8  antennas. However, the traces generally exhibit different 
spreads, as emphasised by the standard deviations values (first decimal 
precision). Loaded Capon using the sub-array and INS (with a lOdB 
termination threshold) using the full array show the narrowest traces. The 
mean azimuth values are generally separated by about 1-2° less than the 
distribution peaks. In Figure 6.3.2 are shown the plots obtained with the same 
angular separation as in Figure 6.3.1, but much higher azimuth spread, 30° for 
both distributions instead of 10°. We can immediately notice that INS now 
performs better than Loaded Capon. The clearest traces are obtained by means 
of INS when 8 antennas are in use. Loaded Capon shows very spread traces 
with the full 12-antenna array whereas with the 8-antenna sub-array it exhibits 
a narrow trace around the true bearing while the other trace around 20° below 
the true bearing is fairly spread. Furthermore, the latter trace appears to merge 
with some spread energy coming from 150-160° (possibly caused by sidelobe 
excitation, see Figure 3.2.4), which is an error not occurring with INS. MUSIC 
fails to detect the two signals with either array geometry. Beam shows a 
reasonable performance in the detection of the two energies with the full array, 
but the two mean azimuths are separated by only 15°, i.e. 5° less than the 
separation between the distribution peaks.

6.2



While the separation between the traces is generally slightly lower than the 
separation between the distribution peaks for relatively low values of azimuth 
spread of the two distributions (Figure 6.3.1), it is higher when the azimuth 
spread is set at 30° for both Loaded Capon and INS (Figure 6.3.2). A number of 
simulations with the incoming signals at various DO As would be needed for an 
understanding of this behaviour, and in particular how the beam pattern would 
influence the results, as its shape and sidelobes will differ according to the look 
direction, because of the irregularly spaced deployment of the antenna array.

Hie results of this investigation for two signals with the same amplitude are 
summarised in Figure 6.3.3, which illustrates the Visibility curves', i.e. when 
the two signals are identifiable in the simulated data, for all algorithms with the 
full 12-antenna array (upper panel) and with the 8-antenna sub-array (lower 
panel). Hie stronger signal was always at a bearing of 188.5° (true bearing for 
the I-A path) for all processing runs, while the weaker signal was offset from 
this by various amounts. Loaded Capon and MUSIC perform the best, i.e. the 
angular separation is the lowest, for very low azimuth spreads, with both array 
geometries. When the azimuth spread of the two distributions increases above 
2°, the performance of MUSIC rapidly deteriorates. MUSIC clearly performs 
well only when the two signals are unspread, which is not expected to be a 
common situation at high latitudes. In the upper panel (12 antennas), it stands 
out that for spreads below 15° the performances of Loaded Capon (best), INS 
(second best) and Beam (third) are fairly constant. With both 12 and 8  antennas 
Loaded Capon performs the best up to 15-20° of azimuth spread and INS for 
higher values.

Figure 6.3.4 illustrates the visibility curves for signal amplitude ratios equal to 
2:1,5:1 and 10:1, at various values of azimuth spread (0.2° to 15°, equal for both 
distributions) and angular separation (1° to 30°). INS has been used with 
different termination thresholds in the various cases, in order to make possible 
the detection of the weaker trace. Amplitude ratios of 2:1, 5:1 and 10:1 
correspond to 6dB, 14dB and 20dB respectively, thus INS threshold has been set 
to lOdB, 18dB and 25 dB respectively. Loaded Capon generally performed 
slightly better than INS with both array geometries. MUSIC showed good 
performances for very low azimuth spread values (a few degrees) and was 
generally more sensitive to the weaker trace when the sub-array was in use, 
rather than the full array. However, MUSIC exhibited more spread traces, as 
usual. Since Beam never detected the weaker trace, it has been omitted from 
Figure 6.3.4.

The behaviour of INS for three thresholds (6dB, 14dB and 20dB below the peak: 
1st, 2nd and 3rd column respectively), and two amplitude ratios between the two
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signals (2:1,1st and 2nd rows, and 5:1, 3rd and 4th rows) is compared in Figure 
6.3.5. The azimuth spread for both signals is equal to 15° and the angular 
separation is 30°. Amplitude ratios of 2:1 and 5:1 imply that INS would work at 
its limits with a 6dB and 14dB threshold respectively. The results show that 
with a 6dB threshold and an amplitude ratio of 2:1 (left panels, 1st and 2nd rows), 
INS detects a very weak secondary signal (more apparent with 12 antennas), 
which clearly shows that INS is working at its limits. When the threshold is 
equal to 14dB (middle panels, 1st and 2nd rows), INS is capable of detecting both 
traces. However, the stronger signal exhibits two closely separated traces (12 
antennas), which appears to be an artefact of the algorithm. The occurrence of 
this phenomenon is reminiscent of the parallel closely separated traces 
observed in both experimental (Chapters 3 and 4) and simulated data (Chapter 
5) in case of diffuse energy arriving at the receiver. It is important to emphasise 
that these closely separated traces did not occur for azimuth spread values 
lower than 15°. The modelled data, once again, show this phenomenon with 
INS as well as with Loaded Capon (not shown in this section). With a 20dB 
thfeshold (right panels, 1st and 2nd rows), the higher amount of detected energy 
causes the two closely separated traces to occur also with the 8-antenna sub­
array for the stronger signal, and there is some evidence of the same 
phenomenon even for the weaker signal with the full array.

In the 3rd and 4th rows the amplitude ratio is 5:1 (i.e. about 14dB), and therefore 
INS with a 6dB termination threshold cannot detect the weaker trace (left 
panels). In the middle panels the threshold is 14dB, therefore INS is again 
working at its limits and it only detects a few secondary bearings with the full 
12-antenna array, whereas with 8 antennas it detects some spread energy at 
around 170°, probably originated by sidelobe excitation from the signals. If a 
threshold of 20dB is employed (right panels), the weaker signal becomes visible 
with 12 antennas and some bearings are also detected with 8 antennas. Two 
closely separated traces are apparent when 12 antennas are in use with a 14dB 
and 20dB threshold. The mean values, shown in the panels, are calculated by 
including both primary and secondary bearing estimates. These mean values 
are considerably more accurate than those which could be obtained from the 
primary bearing estimates only. For example, a simple look at the middle and 
right panels in the 1st row shows that when two closely separated traces are 
present the primary trace is at about 191-192°, whereas the mean values are 
189.1° and 188.8° respectively, i.e. much closer to the distribution peak at 188.5°. 
The same is true for all other circumstances in which two closely separated 
traces occur (see other panels).
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The importance of the array aperture in terms of visibility of two signals under 
extrem e situations is apparent in Figure 6.3.5 for INS. Likewise for Loaded 
Capon in  Figure 6.3.6, w hich show s the effect o f changing the angular 
separation from  10-15° for an amplitude ratio of 10:1. In the top left panel w e 
can see the results obtained w ith full 12-antenna array w ith tw o signals with 
aMmuth spread of 10° and separated by 10°. W ith a 10:1 am plitude ratio 
Loaded Capon cannot detect the weaker signal, although it show s evidence of 
som e secondary bearings close to the true bearing of the weaker signal (178.5°). 
Some spread energy is evident betw een 150° and 170°, w hich does not 
correspond to any input energy but may correspond to sidelobe excitation by 
the tw o signals.

W hen the angular separation is increased by one degree to 11° (second left- 
hand panel), Loaded Capon is able to detect the weaker trace with the full array 
in use, although not at all times. However, the weaker trace is detected almost 
continuously w hen the angular separation is further increased to 12° (third left 
hand panel). The difference in the performance of Loaded Capon for angular 
separations of 10° and 12° with the full 12-antenna array is remarkable, whereas 
w ith  only 8 antennas in use Loaded Capon performed poorly in both cases. 
H owever, Loaded Capon w ith 8 antennas starts exhibiting tw o traces for 15° of 
angular separation (bottom right panel), even though the weaker trace is very 
spread, whereas tw o clear traces are evident w hen the full 12-antenna array is 
in  use (bottom  left panel). It is evident that for these extreme conditions the 
array aperture is crucial for determining the visibility of the two signals.

It is interesting to compare the results in this section w ith those obtained by 
Jenkins (1997). The third left panel of Figure 6.3.6 is repeated in Figure 6.3.7 
(lower panel), and compared with Jenkins' results (upper panel of Figure 6.3.7, 
repeated from the bottom left panel of Figure 2.9.2). The lower panel shows that 
Loaded Capon w ith 12 antennas detects the tw o signals for a 10:1 amplitude 
ratio (i.e. 20dB power ratio) when the peaks of these tw o signals, both spread by 
10° in azim uth, are separated by 12° (188.5° and 176.5°). As both signals are 
characterised by the same values of azimuth and elevation spreads, their peak 
pow er ratio equals their integrated power ratio. The stronger signal is spread 
betw een 183.5-193.5° and the weaker between 171.5-181.5°, and hence the two 
distributions are separated by only 2°.

Jenkins' results in Figure 6.3.7 (upper panel) are obtained w ith the same 
antenna array (Vortex w ith all 12 antennas) and w ith the same power ratio 
betw een the tw o signals (20dB), as in the results of the lower panel of Figure
6.3.7, but w ith  a different algorithm (determ inistic M aximum Likelihood) 
(Jenkins, 1994). It is not possible to clearly distinguish the weaker trace for
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pow er ratios greater than 20dB in either case. H owever, for Jenkins' case, the 
point-source signal arriving at 180° and the upper end of the spread-source 
signal arriving betw een 140-165° are separated by 15°. Therefore the results 
obtained in this investigation w ith Loaded Capon are significantly better than 
those obtained by Jenkins w ith  the determ inistic M aximum Likelihood  
algorithm , since both signals can be detected at m uch low er angular 
separations.

Jenkins also investigated the effect of four array geom etries (including the 
Vortex array) in terms of visibility of the weaker source for different array 
apertures in wavelengths and for different angular separations (5°, 10° and 15°, 
see Figure 2.9.3). The values for the Vortex array for an aperture of 5.45A 
(corresponding to aperture in wavelengths of the Vortex array for the 9.292 
M Hz signal sent from Iqaluit, see Section 3.2) have been extracted from Figure 
2.9.3 and compared to the results obtained here, as shown in Figure 6.3.8. It is 
important to consider that, for consistency w ith Jenkins' results, in this case the 
azim uth spread separation is compared, i.e. the separation between the lim its of 
the tw o spread signals, and not the separation betw een the tw o peaks of 
distribution, such as in Figures 6.3.3 and 6.3.4. A lso, since Jenkins' investigation 
refers to the visibility of an unspread source in presence of a spread source 
having an azim uth width of 25°, it is reasonable to compare his results w ith  
those of this investigation w ith tw o spread sources having azim uth w idths of 
12.5° each. Figure 6.3.8 clearly shows that the results for this investigation with 
Loaded Capon (red curve) are far better than those obtained by Jenkins (blue 
curve), for the weaker source is detected for a much higher power ratio (about 
25dB) w ith respect to the stronger one.

6.4 Summary.
The presence of m ultiple incoming signals is a common occurrence, especially 
at high latitudes, where the signals often arrive considerably spread at the 
receiver. This applies for both the wanted signal and possible interfering signals 
or other m odes of the wanted signal. The m odelling studies presented in this 
chapter reproduced som e of the behaviour of the DF algorithm s at high  
latitudes, w hen tw o spread signals arrive at the receiver.

The performance of the algorithms has been evaluated in terms of the visibility 
of the tw o signals, for a number of values of azim uth spread and angular 
separation betw een them. The DF algorithms have been taken to their lim its in 
terms of the ability of detecting two spread signals arriving at the receiver with 
the low est possible angular separation and w ith the highest possible amplitude 
ratio. The effect o f the am plitude ratio betw een the tw o signals has been
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sim ulated. W hen the signals have the same am plitude, Loaded Capon had the 
best performance at azimuth spreads of up to about 15-20°, whereas for higher 
values INS show ed the best performance. For am plitude ratios between 2:1 and 
10:1 Loaded Capon generally showed slightly better performances than INS, 
MUSIC (as expected) performed w ell for unspread signals only and Beam failed 
for all cases.

The sim ulations have shown the presence of parallel closely separated traces 
(often observed in the experimental data, see Chapters 3 and 4), which appear 
to arise as artefacts of the algorithm, both w ith the Loaded Capon and the INS 
algorithm s. The estim ated direction of arrival of the signal is more accurate 
w hen die bearings belonging to both traces are included to obtain the mean 
value, both for Loaded Capon and INS.

Results obtained for the visibility of two signals for a 10:1 amplitude ratio with 
Loaded Capon have been compared w ith Jenkins' results (1997) w ith the 
determ inistic Maximum Likelihood algorithm . W hile Jenkins considered a 
weaker point source signal in the presence of a stronger spread source signal, in 
the m odelling studies presented in this chapter both signals are assum ed 
spread. Since much less angular separation is required for detecting both 
signals w ith Loaded Capon, the results of this investigation are significantly 
better than those obtained by Jenkins w ith the determ inistic M aximum  
Likelihood algorithm . Furthermore, by using the sam e 12-antenna array 
(Vortex), for the same value of angular separation between the two sources, the 
results of this research by far exceeded Jenkins' results in that the weaker signal 
w as visible for a much higher power ratio w ith respect to the stronger source.
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Fig. 6.3.1 Bearing estimates obtained from the double distribution model.
Am plitude ratio 1:1. Az. Spread 10°. Distributions peaks at 188.5° and 168.5°.
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Fig. 6.3.2 Bearing estimates obtained from the double distribution model.
Amplitude ratio 1:1. Az. Spread 30°. Distributions peaks at 188.5° and 168.5°.
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Fig. 6.3.3 Visibility of two signals with am plitude ratio 1:1. The curves 
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distributions, at which two traces are detected, for different values of azimuth 
spread (the same for both signals at each processing run).



Visibility (2 signals) Ampl. ratio 2:1 (12 Ant.) Visibility (2 signals) Ampl. ratio 2:1 (8 Ant.)

Loaded Capon 
INS 10dB 
MUSIC

<  10

0 5 10 15
Azimuth spread 

Visibility (2 signals) Ampl. ratio 5:1 (12 Ant.)

Loaded Capon 
INS 18dB 
MUSIC

§ 20

<  10

150 5 10
Azimuth spread 

Visibility (2 signals) Ampl. ratio 10:1 (12 Ant.)

Loaded Capon 
INS 25dB 
MUSIC

<  10

10
Azimuth spread

Loaded Capon 
INS 10dB 
MUSIC

25

<  10

0 5 10 15
Azimuth spread

Visibility (2 signals) Ampl. ratio 5:1 (8 Ant.)
30

Loaded Capon 
INS 18dB 
MUSIC

8 20

<  10

0 5 10 15
Azimuth spread 

Visibility (2 signals) Ampl. ratio 10:1 (8 Ant.)
30

Loaded Capon 
INS 25dB 
MUSIC

25

o 20

< 10

Azimuth spread
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both signals at each processing run).
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7* CONCLUSIONS AND FUTURE WORK

7.1 Introduction.
H ie data analysed for this work were collected over three days from 22nd to 24th 
January 1 9 9 6 ,  in  die arctic winter, during which the Vortex direction finding 
system  situated at Alert, Canada, was recording a 9.292 MHz signal transmitted 
from Iqaluit, 2100 km to the south, making this a polar cap path. Measurements 
of azim uth, elevation and am plitude of this signal were made using four 
superresotution direction finding algorithm s, Loaded Capon, Iterative N ull 
Steering (INS), MUSIC and Spread Maximum Likelihood (SML), and a simple 
Beam form ing algorithm. The data obtained w ith the full 12-antenna Vortex 
array and an 8-antenna sub-array were analysed. The results were correlated 
w ith oblique ionosonde observations from the Iqaluit-Alert path.

Two m odelling studies were undertaken, making use of all four algorithms. For 
the first, one spread signal w as m odelled for a variety of conditions (in 
particular the azim uth spread). For the second, tw o spread signals were 
m odelled, and the effects of their am plitude ratio and of the azimuth spread 
and angular separation between them were investigated. In both cases, these 
m odelling studies were able to reproduce m uch of the behaviour of the 
algorithm s w ith experimental data.

7.2 Conclusions.
The high latitude ionosphere is often subject to very strong disturbances, which 
cause the ionospheric layers to be highly variable. Therefore, the high latitude 
ionosphere can be often regarded as a tough reflecting surface for HF signals. 
A s a result, the propagation is heavily affected by this roughness, which causes 
the signal to arrive spread in azimuth and elevation at the receiver.

Ionospheric disturbances at high latitudes, such as patches and arcs of 
enhanced ionisation, can often cause m ultim oded propagation. In such  
circum stance well-correlated signals can reach the receiving site. Therefore 
those algorithm s which assum e uncorrelated incident signals at the receiver 
(such as MUSIC) are less suitable to the high latitude propagation environment. 
Whereas Loaded Capon and INS are not lim ited in this way.

The directional behaviour of the incoming signal varied dramatically from one 
day to another and also within the same day. Large and rapid bearing sw ings 
often occurred, w hen the direction of arrival (DOA) of the signal w as w ell 
displaced from  the Great Circle Path (GCP) direction (188.5°). W hen the 
ionosphere did not support the GCP m ode, the data were som etim es consistent
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w ith th e signal being reflected by structures of over-dense plasma (i.e. patches 
and arcs), w hich were located far from die GCP. The DOA of the signal varied 
according to the m otions of these structures. Bearing sw ings occurred especially 
w hen the relevant ionogram s showed features detached from the main trace, 
w hich could be evidence of patches or arcs of enhanced ionisation. The 
observations were consistent w ith those previously obtained w ith a goniometric 
system  located at Alert (Warrington e t  a l ,  1997a and b). The drift of a mono­
dim ensional reflector across the GCP has been sim ulated and the bearing 
sw ings reproduced using realistic values of m odel parameters such as velocity 
of drifting features. The results show  that the point reflector follow ed the 
direction of the measured convection flow  (NASA Coordinated Data Analysis 
Web Site) during the tim e intervals relevant to the sim ulations. Simulations 
w ere a lso  undertaken to reproduce the elevation  sw in gs observed  
sim ultaneously w ith fairly constant bearing. These were consistent w ith the 
signal being reflected by a patch drifting along the GCP from Alert to Iqaluit. 
These observations showed that HF direction finding system s can be highly 
affected and severely degraded by the propagation environm ent at high  
latitudes, whereas instrumental errors (±0.1°) are negligible in comparison.

Observations undertaken w ith Loaded Capon, INS, MUSIC, Beam and, limited 
to som e exam ples, SML, and w ith tw o antenna arrays of 12 and 8 elements have 
been compared. Whereas the gross structure of the wanted signal was similar in 
all cases, a m ore detailed investigation of the traces show ed im portant 
differences. The results obtained w ith the 8-antenna sub-array generally  
exhibited traces less spread in azim uth as a result of less secondary energy 
detected. M ultiple traces were often seen, w ith different angular separations 
from the wanted signal. These could be evidence of a m ultisignal environment 
or a m uitim oded propagation, or could result as artefacts of the algorithms. 
Com paring the results obtained w ith  tw o different array geom etries was 
usually able to resolve this issue. In particular, closely separated m ultiple 
traces, apparent w ith Loaded Capon and INS, were often likely to be caused by 
the diffuse nature of the signal, in which case Loaded Capon and INS detected 
tw o (or more) peaks of energy, which were essentially portions of the same 
spread signal. Much of this behaviour w as reproduced by m odelling studies 
(see below).

It*e effect of the integration time and the time over which bearing estimates are 
averaged on the standard deviation of the bearing estim ates (i.e. bearing 
spread) has been investigated for tim e intervals w ith both low  and high  
azim uth spreads. In all cases, for a fixed integration time value, an increase in 
the tim e/average resulted in a decrease in the bearing standard deviation.
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Loaded Capon generally performed best, and especially in the higher spread 
intervals w ith  d ie h ill array. Wham the tim e/average w as fixed, the bearing 
standard deviation values were generally independent of the integration time 
value up to 1-2 sec. For a better understanding of the results for higher 
integration tim es, a longer data set than the one available for this research 
w ou ld  be needed. It is important to take into account that relatively high  
integration tim e values w ould be unsuitable in the case of rapid bearing 
deviations (a frequent occurrence at high latitudes), which could result in poor 
accuracy of the bearing estim ates. However, low  integration time values can 
dramatically increase the computational burden, which m ight not be acceptable 
to som e DF operators. Furthermore, although a higher time interval over which 
bearing estim ates are averaged im plies lower standard deviation values, a too 
high value can be unsuitable w hen real-tim e DF is a crucial factor for DF 
operators, w hich is often the case. The inform ation contained in this 
investigation can be useful for DF operators in order to make the proper 
param eter choices according to their requirem ents and to propagation  
conditions.

M odelling studies have been undertaken, w hich considered the effect of 
sym m etrical and asymmetrical diffuse reflections from the ionosphere, in 
azim uth and elevation. This m odel sim ulated very disturbed propagation  
environm ents, where signals are likely to arrive spread at the receiver, as often 
occurs at the high latitudes. The aim of these sim ulations w as to determine the 
types of behaviour that may be expected from the DF algorithms, when the 
signal is spread. In order to achieve this, the expression of the com plex 
am plitude of the incom ing signal needed to be integrated w ith respect to 
azim uth and elevation. However, since this expression could not be integrated 
analytically, a num erical solution w as adopted. A  m ultiple discrete source 
distribution (MDSD) was m odelled as a grid of point sources in both azimuth 
and elevation. The sim ulations produced similar results for separations of 0.2° 
and below . An angular separation of 0.1° in both azim uth and elevation was 
used for m ost simulations.

By com paring the input and output azim uth spreads of the m odelled signal, 
important inform ation w as obtained. In particular, it w as seen that Loaded 
Capon and INS produced azimuth spreads less than the input spread of the 
signal. This w as true for both array geom etries (8 and 12 antennas), but in 
particular the low est spreads were obtained for INS w ith 8 antennas in use. In 
contrast, MUSIC produced output values which were spread about the same or 
slightly more than the input signal spread. These results were similar in many 
respects to those at times seen in the experimental data.
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Several M DSDs have been utilised aim ing to reproduce experim ental data: 
raised cosine (for both the amplitude and the power of the signal), gaussian and 
square. The raised cosine and gaussian distributions were able to reproduce the 
irregularly scattered experimental data, while the square distribution was not. 
The raised cosine distributions showed the low est standard deviations of the 
bearing estimates.

A s w ell as observing the spread in signal azim uth from the DF results, it has 
been possible to infer it from the delay spread in the ionogram trace. By 
running the m odel w ith the spread derived from the ionogram and comparing 
this w ith the experimental data results in a time interval around the 5-minute 
sounder slot corresponding to the ionogram, a good agreement w as obtained 
w hen the ionogram trace delay spread was greater than about 0.4 ms. A poor 
agreem ent w as found w hen the ionogram show ed either m ultiple traces or 
other features at around the operational frequency, or w hen the trace was 
narrower than 0.4 ms. H owever, more exam ples are needed for a statistically 
v^Jid analysis.

The visibility of two spread signals arriving at the receiver was also studied. A  
m ultisignal propagation environment is expected to be a common occurrence, 
and at high latitudes the signals w ill often arrive at the receiver considerably 
spread. A  large number of sim ulations have been undertaken w ith all 
algorithm s and both the 8 and 12-elem ent array, aim ing to take the SRDF 
algorithm s to their lim its in terms of the ability of detecting tw o spread signals 
arriving at the receiver for several values of azim uth spread and w ith the 
low est possible angular separation and w ith the highest possible am plitude 
ratio. In the case of two signals w ith the same am plitude and same azimuth 
spread, Loaded Capon performed the best up to about 15-20° of azimuth spread 
and INS for higher spreads. In the case of two signals w ith different amplitudes 
(2:1, 5:1 and 10:1 were used), but equal azim uth spread, Loaded Capon 
generally performed slightly better than INS. The higher the amplitude ratio, 
the higher the angular separation needed by the algorithm s for detecting the 
weaker signal, for a given azimuth spread value. In som e sim ulations, Loaded 
Capon remarkably succeeded in detecting the tw o traces even in the case in 
Which the tw o signal distributions overlapped. MUSIC performed w ell for 
unspread signals only, independently of the value of the am plitude ratio. For 
the vast majority of the cases, and especially for azimuth spreads up to 20°, the 
angular separation o f the mean azimuth values of the tw o traces was less than 
the input of the tw o m odelled signals, by 1-2°, whereas it was generally the 
opposite for azim uth spreads of 30°. Therefore, in  case of m ultisignal 
environm ent this information can be useful for a better estim ate of the real
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separation betw een tw o signals, w hen tw o clear, independent traces are 
detected by a DF algorithm.

In these m odelling studies (both w ith one and tw o spread signals) closely  
separated traces occurred both w ith Loaded Capon and INS for values of 
azim uth spread of 15° or more, whereas they did not occur when the azimuth 
s p t m A  o f the distribution w as lower. These types of traces, which appear to 
arise as artefacts of the algorithm, are often found in the experim ental data, 
especially in the case of disturbed propagation environment, which causes the 
signals to arrive spread at the receiver. This result showed that, when closely 
separated m ultiple traces are present in the real data analysis, the relevant 
signals m ight be spread in azimuth by 15° or more. Furthermore, the estimated 
direction o f arrival of the signal w as more accurate w hen the bearings 
belonging to both traces were included to obtain the m ean value, both for 
Loaded Capon and INS. In order to investigate how  two traces might arise from 
one spread signal, a theory about the two-signal representation of one signal 
spfead in azim uth has been derived. This theory (developed from Zatman's, 
1998) w as obtained by relating the second eigenvalue of the covariance matrix 
to the azim uth spread of a sim ulated signal, based on the principle that the 
higher the spread, the higher the chances for the second eigenvalue to pop up 
from the noise floor. This occurrence would cause tw o eigenvalues to represent 
one spread signal. Theoretical values relating the separation of the two traces to 
the azim uth spread of the incom ing signal were obtained. This theory closely 
refers to eigenanalysis methods such MUSIC, whereas, w ith m odelling studies, 
a two-trace representation of one spread signal occurred only w ith Loaded 
capon and INS. Nevertheless, a comparison between theoretical and simulation 
azim uth separation values for a given azim uth spread show ed interesting 
results. The m odelling studies have shown two traces arising from one spread 
signal for azim uth spread values comprised between about 15° and 35-40°. For 
a 15° azim uth spread value, the theoretical azim uth separation values were 
slightly low er than the sim ulation results, in those circumstances when two 
traces from one spread signal occurred. For increasing azimuth spread values of 
the incom ing signal, the azim uth separation values of the tw o traces also 
increased for both the m odel data and the theoretical calculations, and were in 
fairly good agreement, in particular for about 30° azim uth spread. However, a 
high num ber of factors influenced the m odel data results, other than the 
azim uth spread. These are the algorithm and array geometry in use, the type of 
signal distribution, and to a lesser extent the elevation angle of arrival, elevation 
spread, azim uth and elevation Doppler spread. Furthermore, the m odel data 
results show ed that the two-trace representation of one spread signal occurred 
(or not) random ly w hen algorithm (Loaded Capon or INS) and array geometry
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(8 or 12 antennas) w ere varied, keeping constant all other parameters. This 
im plies a high unpredictability of when the two-trace representation is likely to 
occur, and does not suggest a particular algorithm or array geometry to utilise 
in order to  atroid this undesirable effect.

The overall results about the performance of the various SRDF algorithms 
utilised for th is research suggest the follow ing im portant conclusions. As 
expected, MUSIC w as unable to detect correlated signals. Furthermore it 
consistently exhibited highly spread traces across the w hole data set, which is 
not a desirable feature, since it does not help obtaining a precise DOA estimate. 
M odelling studies show ed good MUSIC perform ances only for a single 
unspread incom ing signal. However, at high latitudes highly correlated and/or 
spread signals often arrive at the receiver, therefore the use of the MUSIC 
algorithm for TO direction finding at high latitudes is not recommended.

The Loaded Capon algorithm exhibited good performances at high latitudes, as 
w ell as the M S algorithm, which w as previously successfully tested at mid- 
lafitudes (W arrington, 1995). These tw o algorithm s have show n the low est 
bearing estim ates standard deviation values with both experimental and model 
data, in addition to an excellent agreement between them. Therefore the author 
recom m ends utilising Loaded Capon and M S for HF direction finding at high 
latitudes. The choice o f which algorithm w ould be better to use between them  
w ill depend on the propagation characteristics and the DF operator's needs, 
bearing in  m ind that M S has the flexibility of the threshold setting. H owever, 
the investigation about the effect of integration tim e, and the time interval over 
w hich the bearing estimates are averaged, suggests a criterion according to the 
value o f spread of the bearing traces. The recommended criterion is to use the 
M S algorithm w ith a relatively low  threshold for azimuth spreads up to 15-20°, 
w hereas the Loaded Capon algorithm is recomm ended for higher azimuth 
spread values, in order to obtain the low est standard deviation of the bearing 
estim ates.

Bearing measurements have also been obtained by means of the SML algorithm  
(Read, 1999). A s stated by Read, SML is unreliable for incom ing signals more 
spread than 15° (not unusual at high latitudes). Nevertheless, SML attempts to 
m odel the propagation environment more realistically than Loaded Capon and 
M S, particularly at high latitudes, as it assum es a spread source instead of a 
point source generating the received signal. As such, SML has been utilised in 
order to test its capabilities. The results show  the unreliability of SML for 
signals m ore spread than 15°, whereas for lower spread values SML often 
detected a num ber of secondary traces displaced from the strongest trace, 
w hich w as inconsistent w ith the results obtained w ith Loaded Capon and M S.
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Therefore the author does not recommend the utilisation of this version of SML. 
H owever, the reader should to be aware of further developm ents of SML and 
another algorithm developed by Read (1999), i.e. the Spatial Incoherent Region 
Estimator (SPIRE), which w as not available for this research.

The com parison undertaken between the SRDF algorithm s utilised for this 
research, w ith  tw o array geom etries, w ith both experim ental and sim ulated 
data and in different propagation environments, can be helpful to DF operators, 
in order to make die best possible choice in any possible situation that may be 
encountered. Furthermore, the m odelling studies have reproduced much of the 
behaviour of the SRDF algorithms with experimental data. The results obtained, 
together w ith proper further work, could be used to obtain correction factors 
for experim ental results in various propagation environm ents, and especially 
w hen spread signals or spread m odes of the same signal arrive at the receiver. 
This occurrence is particularly frequent in disturbed regions such as the high 
latitude ionosphere.

7.3 Future work.
The observations presented in this thesis have show n a dependence of the 
results on the algorithm and array geom etry utilised. It w ould therefore be 
useful to undertake further investigations aimed at making the best possible 
choice o f w hich SRDF algorithm  to adopt in d ifferent propagation  
environm ents. In particular, the reader is referred to further developm ents of 
the SRDF algorithms created by Read, SML and SPIRE, which at present suffer 
from a lack of efficiency (see Section 7.2). Furthermore, it w ould be appropriate 
to carry out further investigations, possibly w ith large availability of data, on 
the effect of the array aperture and geometry on the results, in order to obtain 
an optim al array size and placem ent of antennas for given propagation  
characteristics (such as signal spread and signal separation in case of 
m ultisignal or m ultim oded propagation). This could be obtained by further 
com parison betw een m odelling studies and experim ental results for a high 
number of array geometries.

An investigation has been undertaken about the effect of the integration time 
and the tim e over which the estim ates are averaged on the azimuth spread of 
the results. This was carried out for experimental data and for greater or lesser 
azim uth spreads, and has given useful information which could be of interest 
for DF operators. M odelling studies would be useful to investigate the effect of 
the signal spread on the results, for different integration tim es and tim es over 
w hich the results are averaged.
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The relationship betw een delay spread in the ionogram  traces and azimuth 
signal spread has been investigated, showing interesting results. H owever, a 
longer period o f data collection, w ith the corresponding ionogram s, is 
necessary for a m ote complete study.

The sim ulation of a mono-dimensional drifting reflector presented in this thesis 
show ed excellent agreement w ith the occurrence of bearing sw ings and the 
direction o f the convection flow. However, the m odel could be developed into a 
shaped reflector, which w ould more realistically sim ulate a large-scale electron- 
densitystructure.

A  theory about the tw o-signal representation of one signal spread in azimuth 
has been developed, which relates to eigenanalysis m ethods such as MUSIC. 
H ow ever, a good agreement betw een the theoretical values and sim ulation 
results w as found for non-eigenanalysis m ethods, such as Loaded Capon and 
INS. It w ould then be interesting to investigate how  the theory presented in this
thesis w ould affect the operation of these algorithms.

§
M odelling studies of one and tw o spread signals have been undertaken by 
assum ing several types of m ultiple discrete source distributions for the 
incom ing signals. The results proved to be dependent on the precise 
distribution (the raised cosine, the gaussian and the square w ere used). 
Sim ulations w ith distributions other than those utilised for this work could 
provide useful results.

The m odelling studies of tw o spread signals have show n that the separation 
betw een the traces is usually slightly different than the separation between the 
peaks o f the input distributions. A number of sim ulations w ith the incom ing 
signals at various DOAs w ould be needed for an understanding of how  the 
irregularly shaped beam pattern would influence this result.
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