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D.A.W.Heron

The internal structure of c l-accretion discs

Abstract
In this thesis we develop a mathematical model to describe the internal 

structure of an a-accretion disc. The method is to consider the standard thin 
disc as a zero order approximation to a disc with vertical structure. The order of 
the approximation is controlled by the parameter 1/ M2, where M is the Mach 
number of the azimuthal flow at a fiducial point. The theory is developed 
analytically as far as possible, using numerical solutions for the final system of 
ordinary differential equations only.

The model expands upon the work of other authors by assuming a disc 
surface defined by the condition of pressure balance between the disc and its 
environment. Vertically transported angular momentum is extracted by 
coupling to these surroundings. In the absence of an external couple, the 
vertical transport of angular momentum is ignored, as in the standard thin disc.

The internal structure and stability of the disc is investigated in both the 
gas and radiation pressure dominated regions, and the effects of including 
vertical transport of angular momentum is discussed. An application of the disc 
model is presented whereby external heating from X-rays associated with a 
radio jet are shown to induce mass loss from the disc surface. Such a 
configuration may undergo symmetry breaking to an asymmetric state in which 
one jet dominates. This is therefore a possible model for intrinsically one-sided 
radio sources.
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Chapter One

Accretion discs
1.1 Introduction

Active galactic nuclei (AGN) are the most luminous objects in the 

known Universe. Accretion of matter on to a supermassive black hole 

(~ 108M 0) is widely believed to be the source of power for this enormous 

outflow of radiation (~ 10* ergs'1) (c.f. Frank et al., 1992). For galactic material 

to accrete on to the black hole it must lose its angular momentum. The most 

efficient way to achieve this is by the formation of an accretion disc.

Accretion discs around black holes are of special interest because the 

disc radiation seems to be the basic observational effect of black holes (Shakura 

& Sunyaev, 1973; Novikov & Thome, 1973; Lynden-Bell & Pringle, 1974). 

Therefore, analysis of the disc structure as well as the disc radiation is of great 

importance. The pioneering work on disc accretion was done in the early 1970's 

and in 1973 Shakura and Sunyaev produced what is now the standard model in 

describing accretion discs. This is known as the thin disc model (Shakura & 

Sunyaev, 1973).

1.2 The thin disc model
Galactic material will orbit a supermassive black hole as a ring of matter 

with Keplerian motion. Within the ring dissipative processes, such as viscous 

dissipation and particle collisions, will convert some of the material's energy 

into internal, heat energy. In due course, a fraction of this energy will radiate
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away and the material will move closer to the gravitational source, requiring it 

to lose angular momentum. As a Kepler orbit has the least energy for a given 

angular momentum, it is efficient for the material to move towards the black 

hole in a series of near Kepler orbits. In this way an accretion disc is formed. In 

many cases the material lies mainly close to the orbital plane and the disc can 

be thought of as two-dimensional. This is the thin disc approximation.

In cylindrical co-ordinates (/?,<{>, z ) the material lies close to z = 0  and 

circles the central black hole with an approximate Kepler orbit

W  = (—”■—)1/2 • (1.1)
A

The material is also assumed to have a small radial 'drift' velocity v R that is 

negative near the black hole so that matter is accreted. This radial velocity 

comes about because of the dissipative processes active in the disc. One of the 

main problems in the theory of disc accretion is the exact nature of the 

dissipative mechanisms that transport angular momentum within the disc.

1.2.1 The viscous mechanism
Within an accretion disc only a fraction of the gravitational energy of 

the infalling matter can be transformed into orbital kinetic energy: this fraction 

is 1/2  when the rotation is exactly Keplerian. Since the remainder cannot be 

stored in a stationary disc, it must leave the system, and this can only be 

achieved through radiation. The same conclusion may be drawn from the virial 

theorem. To summarise, the extra energy must be converted into heat in order 

to be radiated into space.

Turbulent motions between fluid particles on neighbouring orbital 

flowlines are usually assumed to be the mechanism that transports angular 

momentum by viscous shearing. Unfortunately, no rigorous theory exists to
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describe the mutual interaction of random and average quantities in turbulent 

flows. Hence the description of turbulence in the accretion disc seems to be 

rather approximate.

The turbulent viscosity can be written in terms of the velocity u and the 

size X of the largest viscous ’eddy' that can effectively participate in the energy 

dissipation:

Since the largest eddies ought to be smaller than the disc scale-height H  (i.e. 

X<H) ,  and the speed of the turbulent motion is not likely be supersonic, then 

(1.2) can be rewritten as

This is the well-known a-prescription first defined by Shakura & Sunyaev, 

(1973). This parameterization means that the dissipation of the extra energy can 

be achieved by turbulence that remains subsonic, and our ignorance of the 

viscous mechanism can be hidden in the constant a  < 1.

It is useful to define a viscous timescale ~ R / v R ~ R 2 / v over which 

changes in the radial structure will occur. In most systems studied, external 

conditions change on much longer timescales. Therefore the disc will settle 

down to a steady state structure. This simplifies the calculation of the disc 

structure.

1.2.2 The local structure of thin discs
To investigate the internal structure of the thin disc, the Euler equation 

for the conservation of momentum in a fluid is used

v =x> \. (1.2)

v = ocsH . (1.3)
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p-^=+pv.Vv = -VP +£_. (1.4)

4

Here f_ specifies forces other than pressure gradients acting upon the fluid; in 

this case important contributions arise from the gravitational force of the 

central object and viscosity.

First the vertical structure of the disc. If the disc is thin (i.e. z « R \  

then any vertical flow will be small. Therefore, the vertical component of (1.4) 

reduces to hydrostatic equilibrium:

1 dP _ GMz
p dz ”  R 3 ' { }

Using P = pc) for a perfect gas, where cs is the sound speed, equation (1.5) can 

be integrated to give

where pc(R) is the density on the centre line z = 0, and H is the scale height of 

the disc in the z-direction defined by

By investigating the viscous torques in the disc it can be shown that the 

radial velocity vR ~ v / R .  When the a-prescription is adopted to describe the 

viscosity this becomes

p(tf ,z ) = pc (R) exp(-z2 / 2H2) (1.6)

(1.7)

vR ~acsH /R . ( 1.8)
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In deriving the equations (1.6)-(1.8) it was assumed that the disc was thin (i.e. 

H « R ) .  Therefore to check self-consistency it necessary to insist that, from

(1.7), the local Kepler velocity is highly supersonic

C , « &  (1.9)K

and, from (1.8), that the radial velocity is highly sub-sonic.

If the thin disc approximations hold, calculating the disc structure 

becomes relatively easy, as Shakura & Sunyaev (1973) showed. The radial and 

vertical structures within the disc decouple because the pressure and 

temperature gradients are basically vertical. Therefore each radial component 

can be treated separately and its vertical structure determined. Each radial part 

is related to another by the local energy generation rate D(R) only.

The sound speed is give by

c] —dP /dp (1.10)

where the total pressure in the disc is the sum of gas and radiation pressures:

It is assumed that the temperature T ( R , z ) is close to the central temperature 

TC(R ).

There should be an energy equation that relates the vertical transport of 

energy flux to the rate of energy generation by the viscous dissipation. This 

vertical transport mechanism can be either radiative or convective depending on 

whether or not the temperature gradient required for radiative transport is 

smaller or greater than the gradient given by the adiabatic assumption
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Pp-< = const, where 7 is the ratio of specific heats. If the disc is optically thick, 

in that, if each element of the disc face radiates as a blackbody, i.e.

x = p/fKJ?(p,rc) » l , ( 1.12)

the flux of radiant energy through a surface z-constant is given by

k* is the Rosseland mean opacity. Once the optical depth of the disc material 

t < 1, it is optically thin, equation (1.13) breaks down and the radiation can 

escape directly.

The energy balance equation gives the volume rate of energy production 

by viscous dissipation Q* as

Integrating therefore gives the dissipation rate per unit face area D(R)

If the rotation of the disc is exactly Keplerian then half of the disc's 

gravitational energy will be dissipated. Thus, D(R) can be calculated

(1.14)

(1.15)

(1.16)

where M is the accretion rate in the disc
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M =2kKL(-\)r ) (1.17)

(remembering that v R < 0) and X is the disc's surface density. The last term on

This states that the viscous torque vanishes at three Schwarzschild radii, which 

is the last stable orbit for a Schwarzschild black hole.

The important thing to note is that the energy flux through the face of 

the disc is independent of viscosity. D(R) is an observationally measurable 

quantity, and our ignorance of the viscosity mechanism is hidden by the fact 

that v  adjusts itself to give the correct M .

From (1.13) and (1.12) an alternative expression for the emitted flux can 

be obtained

Assuming that T* » T * ( H )  equation (1.18) can be equated with (1.15) to give 

the thin disc energy equation

6GMthe right of (1.16): [ l - ( ---- —)1/2], comes from the inner boundary condition.
Rc

3T
(1.18)

(1.19)

1.23 The thin disc equations
Using the equations of §1.2.2, a complete set of thin disc equations can 

be derived (see Frank et al., 1992 for full details).
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4q 4 _ 3 GMM
3t c “  8kR3

(1.20)

x = pHKJ?(p,7'c)

v = v(p,7’c,a,...)

The disc structure can now be solved for the seven unknowns 

p, H , cs , ? ,  Tc, t  and v.

1.3 The thin disc solution
To obtain the standard thin disc model derived by Shakura & Sunyaev 

(1973), the equations from the previous section are solved using the <x- 

prescription (1.3) for viscosity, and by specifying the opacity function. 

Equation (1.13) assumes that the disc is optically thick and radiates flux as a 

blackbody. In the regions of the disc where this holds the source of opacity is 

dominated by absorption. For pure hydrogen and free-free processes the 

Rosseland mean opacity is best approximated by Kramers' law

K* =6.6xl022prc"7/2 cm V 1- (1-21)

It is also assumed that in this region the gas pressure term in (1.11) will 

dominate and so the radiation pressure term is dropped. The assumptions made 

here will be tested later.

Taking p = 0.615 for a fully ionizes mixture of gases, and X = p tf , the 

Shakura - Sunyaev disc solutions are (Frank et al., 1992)
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.  3/10
Tc = 1.4xl06a" l/s Mu M™R*,4f f,,K (1.22)

.  1/5
t  = 3.3 x 10 a  M u f ,i

.  3/10
v = 1.8 x 1018a 4'5 Mu A/,-1'4̂ ' 4/ 6'5 cm2 s

0  1U

u* = 2.7xl04a 4'5 Mu Mg’1'4!?-1'4/ - 14'5 cm s '1•1/4 /*—14/5

with f  = l - ( 6GAf / Rc2 )m . As mentioned above, this takes the last stable orbit 

for a Schwarzschild black hole as the inner radius. It is encouraging that the 

quantities are reasonably insensitive to the particular value of oc, although this 

means that it will be difficult to predict the size of a  by comparing this model 

with observations.

It is now possible to check the assumptions made earlier. Kramers' 

opacity was used and from (1.21) this becomes

For an ionized gas in the inner regions of the disc electron scattering becomes 

an important source of opacity:

Therefore using (1.22) it is clear that Kramers' opacity dominates over electron 

scattering if

K R(Kramers) = 6.3 x  10-4 M26 Af8-1/4/ -2 cm2 g~l .
- 1/2

(1.23)

kr (electron scattering) = GT / mp = 0.4 cm2 s 1. (1.24)

(1.25)

Turning to the disc pressure, (1.22) shows that the ratio of radiation to gas 

pressure is
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p •  7/20
-^- = 2.7a1/10 M26 Af"8̂ ;3'8/ 7'5 (1.26)
8̂

which is small over the region that (1.25) holds. In fact radiation pressure 

becomes even more important when electron scattering dominates the opacity. 

Shakura & Sunyaev (1973) show that radiation pressure exceeds gas pressure at 

radii

.  14/15
R < 5.2 x 1014a 8/3° M26 M81/3/ 56/I5 cm . (1.27)

Therefore, this disc can actually be split into three distinct zones. Zone A 

where the radiation pressure Pr is dominant and opacity is determined by 

electron scattering, zone B where the gas pressure Pg plays the main role and

electron scattering gives the main contribution to the opacity, and zone C where 

Pg > Pr and opacity is determined using Kramers' equation (1.21).

1.4 The disc spectrum
In the last section, solutions were found for the thin disc equations in 

zone C: gas pressure dominant with opacity given by free-free transitions. In 

deriving the energy equation (1.13) it was an important assumption that the disc 

was optically thick in the z-direction. If this holds then each element of the disc 

face radiates roughly as a blackbody with a temperature T (R), where

oT a(R)=D(R). (1.28)

Therefore using (1.16):

T(R) = 3 GMM 
8izR?g

t i - O 1'2]Kc

X 1/4

(1.29)
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Now, the emitted spectrum from each element of the area of the disc can be 

approximated as

7V = # V[T(/?)] = — ^ (ergs~' cm~2 Hz~l sr '1). (1.30)

This approximation neglects any contribution or effect from the atmosphere of 

the disc (i.e. regions of the disc that are optically thin, t  < 1) in redistributing 

the radiation over the frequency v. For an observer at a distance D whose line 

of sight makes an angle i to the normal to the disc plane, the flux at frequency 

v from the disc is

K. =
2n cos i r

(i3i>

where ROUJ is the outer radius of the disc. Using the blackbody assumption 

(1.30) this becomes

4ncosiv3 f'S, RdR
c'D1 e*“,a m - 1 ' '  '

Once again it is worth noting that the flux (an observable quantity) is 

independent of the disc viscosity. The expression obtained for the flux emitted 

from the disc surface (1.32) is a product of a steady-state disc, in the region 

where the conditions for zone C are valid, assuming that it is optically thick. 

Even though this gives a somewhat simplified picture of the disc structure, the 

spectrum from (1.32) should give a crude representation of the observed 

spectrum for some systems.

The spectrum given by (1.32) is shown in figure 1. The spectrum of the 

disc as a whole varies as Fv °c v1/3 until it peaks at a frequency that corresponds

to the maximum effective temperature. At greater frequencies there is an
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i

s

o
15 15.514 16 17

log v  Hz

Figure 1
The continuum spectrum Fv of a steady optically thick accretion disc radiating 
locally as a blackbody.

exponential cut-off where Fv declines rapidly as a Wien law. For massive 

black holes, the maximum temperature from the optically thick area of the disc 

is situated in the UV region of the electromagnetic spectrum.

1.5 AGN spectra and the accretion disc
Having developed an emission spectrum for the standard thin disc, the 

next step is to see if this can be linked to the observed spectrum of an AGN. 

This will provide evidence that accretion discs are the primary source of power 

in AGNs.

The strongest evidence for the existence of accretion discs in AGN is the 

spectral feature called the UV-bump. Figure 2 shows the spectral distribution of 

AGN. It can be divided up into three parts: an infrared bump, a UV-bump (blue 

bump), separated by a gap at about 1 pm , and a X-ray power law continuum 

with a positive index. The 1 \m  gap is probably due to the superposition of two 

different components dominating respectively the infrared and UV emission
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soft X-ray 
’excess’

IRbump •— UV bump ->> 
(big blue bump)

radio loud

radio quiet

10 1211 13 1014 15 17 18

log V Hz

Figure 2 
Schematic AGN spectrum

and fading at 1 \im (Elvis et al., 1986). The optical-UV flux varies by factors of 

two or more in time scales of weeks for Seyfert galaxies and of months for 

quasars. These dmescales correspond to a dimension for the emitting region of 

smaller than, or of the order of 1000/?,, where Rs is the Schwarzschild radius of 

the central black hole. The variation dmescales are smaller in the X-ray region, 

suggesting a smaller dimension for the emitting region. Variations of the 

infrared flux above a few microns have not credibly been detected so far.

1 pm is the minimum wavelength at which hot dust just below the 

sublimation temperature can radiate. Therefore the infrared bump is often 

attributed to dust thermal radiation reprocessed from the central UV source. 

However, this is a controversial problem and an infrared synchrotron power 

law continuum is not dismissed by the observations (Collin-Souffrin, 1994).

Although the EUV is not observed, it can be guessed from the shape of 

the soft X-ray continuum that v /v reaches its maximum between 10 and 100

eV. Indeed the slope of the soft X-ray continuum is strongly negative, which 

translates into the so-called soft X-ray excess (Amaud et al., 1985).
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The UV-bump
Once the Broad Line emission has been subtracted from the optical-UV 

spectrum, the UV bump appears as a smooth continuum increasing towards 

small wavelengths. Two thermal mechanisms can give rise to such a featureless 

and increasing continuum: an optically thin gas radiating mainly by free-free 

processes, or an optically thick gas radiating as a blackbody.

• Optically thin free-free emission

This has been invoked by various authors (e.g. Ferland at al., 1990) but it 

certainly cannot account for the UV bump in the majority of objects. For 

free-free to dominate free-bound emission, temperatures of at least 4x 106 K 

are required. The emissive surface must be large, since the surface 

emissivity of an optically thin medium is small. Malkan (1991) showed that 

the dimension of the emissive medium would then be larger than that given 

by the variation timescale in the UV range.

• Blackbody emission

The only way to account for the small variation time scale of the UV flux is 

therefore to assume a blackbody emission. To produce a maximum in the 10 

- 100 eV range, the temperature of this blackbody should be of the order of 

lO5* .

Apart from the accretion disc model, there is one other model that is 

based on blackbody emission. In the 'cold cloud model' (Celotti et al., 1992) 

cold clouds (with temperatures ~ lO5# ) are formed and confined in a hot 

spherical accretion flow and reprocess as the UV bump a large fraction of a 

primary hard X-ray continuum. The clouds are very small ('room size') and 

must be located at a small radii. This means that they should be intimately 

mixed with the X-ray source and the UV flux should vary on the same 

timescale as the X-ray flux. This is not observed.

This leaves the accretion disc model, which was shown to dissipate its 

gravitational energy mainly in the UV range (§1.4). The shape of the blue
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bump is suggestive of an accretion disc. The optical part of the bump has a 

slope of -1 /3  (once the power law is subtracted) and the UV indicates a 

turnover toward short wavelengths. The standard thin disc model has a low 

frequency slope of - 1 /3  and a turnover at the maximum temperature (figure 

2). Caditz (1993) found that AGNs over the limited range of redshifts 0.4 < z 

<0.75 occupy a well defined region of the colour-magnitude plane. It was 

found that the standard thin disc model accurately replicated the observed 

colour-magnitude distribution, and that the low and high colour cut-offs were 

defined by the Eddington limit and a maximum central mass M -  \095M 0 

respectively. This result provides real evidence for accretion discs as the power 

source for AGNs in the redshift range investigated.

However, there is a problem with the accretion disc origin for the UV 

bump. Malkan (1983) found that in the objects he studied, the UV turndown 

suggested a uniform maximum temperature in the disc of 20,000-30,000 K 

which is in contradiction to the temperatures implied from EUV observations 

made by Betchtold et al. (1984). Also, the most extreme high temperature cases 

are those AGN with soft excesses in their X-ray spectra (Elvis et al., 1985),t
which as mentioned earlier are generally interpreted as shortward extensions of 

the blue bump. In an accretion disc, this corresponds to a peak temperature of 

-500,000 K. The thin disc interpretation of this is that it becomes highly super- 

Eddington which is both implausible and inconsistent with the thin disc model 

(Betchtold et al., 1987). Unless these problems can be resolved then the 

accretion disc model may have to be abandoned for the UV bump. Therefore it 

is necessary to develop more sophisticated models to describe the observed 

AGN spectra.

There have been many attempts to improve upon the thin disc model in 

order to obtain a more realistic emission spectrum. These include the influence 

of relativity on the emission spectrum, relaxation of the blackbody
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approximation, investigations into the soft X-ray emission and the importance 

of external irradiation.

1.6 Relativistic thin discs
The standard thin disc developed by Shakura & Sunyaev (1973) emitted 

a blackbody spectrum at the effective temperature at each radius. The effective 

temperature was determined by the local dissipation rate. The spectrum in the 

UV range depends on two parameters, the mass of the central black hole and 

the accretion rate (1.32) and (1.29). This is only true for UV though, since the 

optical spectrum depends also on the value of the outer radius Roul.

However, the disc is accreting onto a supermassive black hole and 

therefore relativistic effects are important, especially for rotating black holes 

seen at large inclinations. Space-time around a rotating black hole is described 

by the Kerr metric and the structure of the thin disc in this metric was 

investigated by Novikov & Thome (1973). Cunningham (1975) calculated its 

spectrum for both a non-rotating and maximally rotating (a/M =0.998) black 

hole. Here the observed spectrum depends on four parameters, the disc 

inclination, the black hole mass and angular momentum, and the accretion rate 

(plus external radius for the optical spectrum). In spite of these unknowns the 

model did show emission in the EUV range.

1.7 Modified blackbody approximations
The models considered so far have all insisted upon a locally emitted 

blackbody. This is only the case when the opacity mechanism is given by the 

Rosseland opacity. In §1.3 it was shown that other zones could exist in an 

accretion disc. A gas pressure dominated region with electron scattering, and a 

radiation pressure dominated region where once again electron scattering
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outweighs free-free opacity. When electron scattering becomes the dominant 

mechanism departures from a local blackbody spectrum are expected.

The relative importance of electron scattering and absorption is a 

function of frequency o. The emitted radiation flux can be described by a 

modified blackbody approximation (Rybicki & Lightman, 1979),

' • - * • £ ^ 7  (1-33)

where

k„ =0.4 cm2 s~l (1.34)
l - e - ’"/kT 
(hv/kT):

, -hv/tr
Ka„s =1.4xl025p r - 3J - ^ - — 3- cm2 s '1. (1.35)

Therefore, in the spectral range > k„, the spectrum can be described as a

blackbody (1.33) (cf. (1.30)). If electron scattering dominates, the emitted 

radiation flux is lower ( /v < £ v) for the same value of temperature and so

causes a flattening of the spectrum. The frequency v0 which divides these two 

ranges can be calculated from the condition = Ka :

—— » 6.3x 1012r  ■7/4p1'2 (1.36)
kT

(Shakura & Sunyaev, 1973). Therefore, if a significant part of the energy is 

emitted at v > v0 then the departure of the spectrum from blackbody will be 

quite significant.

Computing the emission spectrum is made significantly easier if a 

vertically averaged radial structure is used in the calculations. The disc is 

divided into rings allowing the vertical structure to be computed independently.
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Using a vertically averaged model, Czerny & Elvis (1987) state that when 

electron scattering is included the radiation spectrum above logv ~ 15.0 will be 

modified which means that the UV region is flattened whilst the X-ray flux 

increases.

This assumes only electron scattering and free-free absorption are 

important in the disc. There will also be some contribution from heavy 

elements through bound-free processes. The important sources being bound- 

free from hydrogen n = 1 to n = 5, bound-free from He0 n = 1,2, and bound-free 

from H e+ n = l,2 for T > 104X (Laor & Netzer, 1989). Their effect can be 

estimated using the Rosseland mean opacity. So far Kramers' approximation for 

the Rosseland mean value of the absorption coefficient has been used (1.21). 

This can be thought of as the first approximation with the contribution from 

bound-free processes represented as a change by some small factor in the 

numerical coefficient of k ^ .  Czerny & Elvis (1987) and Madau (1988) show 

that the effect decreases the role of electron scattering and predicts a flattening 

of the spectrum around logv ~ 15.3 which is close to that found by Malken & 

Sargent (1982) for 3C 273. This strongly suggests that the observed spectrum 

of AGN should be described using a modified blackbody (or better) 

approximation.

1.8 Comptonization
High frequency photons are scattered many times before they leave the 

disc since the last thermalization surface at high frequencies lies deep within 

the disc. For photons with frequency greater than a frequency vc, the disc 

becomes effectively thin (i.e. transparent to absorption), but the thermalization 

of photons proceeds as a result of energy changes in multiple scatterings. The 

importance of this process is represented by the Comptonization parameter y 

(see Rybicki & Lightman, 1979 for details),
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(1.37)

where the first factor approximates the energy increase per scattering (if 

hv < 4 k T ) and the second factor describes the number of scatterings for 

photons originating at the optical depth for scattering x (x> 1). Therefore, the 

Comptonization effect is greater for photons at optical depths greater than

Photons emitted between the disc surface and xc contribute to the spectrum as 

thermal brehmsstrahlung since the geometrical depth of this region does not 

depend on photon frequency.

Photons emitted from regions at x > xc, but above the last thermalization 

surface, are shifted in frequency by Comptonization and form a Wien peak 

around 3kT (Maraschi & Molendi, 1990). Below a frequency vc, absorption 

removes photons completely. Above vc Comptonization is important and that 

corresponds to frequencies higher than logv ~ 16.1 (Wandel & Petrosian, 1988, 

Czerny & Elvis, 1987) for a disc where opacity contributions from heavy 

elements are accounted for.

Polarisation and frequency variability of the induced scattering should 

be observable in AGN in the radio-infrared region of the spectrum (Coppi et 

al., 1993) and although none of these effects have been unambiguously 

observed, sharp turnovers in frequencies ~ 1012 Hz imply the existence of 

Compton scattering (de Kool & Begelman, 1989). Therefore Comptonization is 

an effect that must be considered in accretion theory especially when trying to 

model objects with observed soft X-ray excesses.

It has been shown that the inner regions of accretion discs in AGN are 

actually strong emitters of soft X-rays, which is contrary to expectations from

(1.38)
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the standard blackbody disc approximation. By considering Comptonization 

effects in radiation pressure dominated discs Ross et al. (1992) found that the 

closer the luminosity to the Eddington limit and the lower the mass of the 

central black hole, the greater the fraction of the emission in soft X-rays. Their 

accretion disc model produced a steep soft X-ray component in the spectrum 

which was similar to that observed for MKN 841. Similar results were found 

by Laor & Netzor (1989).This strongly hints that the harder X-ray emission is 

due to relativistic electrons which do not cool to the extent that a substantial 

population of thermal electrons accumulate (i.e. the Lorentz factor of the 

electrons always exceeds ~2).

1.9 Addition of atmospheres
When the optical depth of the material in a region of the disc becomes 

< 1 that area of the disc is described as optically thin. In this region radiation 

escapes freely once produced and the material itself reabsorbs very little. 

Equation (1.13) can no longer be used to describe the flux of radiant energy 

and instead the volume loss of energy is

For a hot gas radiating thermal brehmsstrahlung (or free-free radiation), this has 

the approximate form

In reality the free-free emission in the optically thin region will be enhanced by 

Compton scattering. The luminosity enhancement of radiation from thermal

(1.39)

-V .F  = const p*T1/2. (1.40)
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electrons Comptonizing their own brehmsstrahlung can be approximated using 

an appropriate amplification factor (Dermer et al., 1991).

In the inner most parts of the disc where radiation pressure and electron 

scattering dominate, the standard diffusion approximation says that if a  > 0.1 

then the disc is optically thin for absorption, yet optically thick for scattering, 

and the radiation spectrum is that of saturated Comptonization. Calculations 

lead to a very high surface temperature (~ 109K) since there are only a small 

number of photons to carry the large energy flux generated. This implies a 

temperature inversion; there is a cool interior (~ lC^K) and hot atmosphere 

(Callahan, 1977). The implicit assumption here is that almost all of the energy 

is transported to the upper atmosphere by non-radiative means. There are some 

consistency problems with this model. The region of strong temperature 

inversion must be optically thin for scattering because the pressure must 

decrease monotonically outward from the equatorial plane. Therefore, even if 

the disc has a hot corona the outgoing radiation cannot be thermalized to the 

high coronal temperature.

The correct solution for the problem must be to solve the equation of the 

vertical structure of the disc together with the radiative transfer equation. This 

can lead to some very complicated physics! As a solution to the problem of 

how to move smoothly between the optically thin and optically thick regimes, a 

number of flux-limiting diffusion equations have been introduced to replace the 

modified blackbody approximation (1.33), including Czerny & Elvis (1987), 

Wandel & Liang (1991) and Levermore & Pomraning (1981). As an example 

the diffusion equation used by Czerny & Elvis (1987) is shown:
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Here x* = [ ( K afcJ + K w)KflfcJ]1/2 and x* is the effective optical thickness of the disc 

for absorption at frequency v. For large x* it reproduces the result from the 

modified blackbody approximation (1.33), while for low x* it describes the 

thermal brehmsstrahlung from an optically thin medium.

Using this formalisation Czerny & Elvis (1987) found that even in 

ranges where the effective optical depth of the disc was small, the optical depth 

for electron scattering could be large. Photons generated by Brehmsstrahlung at 

large optical depths undergo many scatterings and change their energy as a 

result of Comptonizaton. The energy from these thermalized photons will be 

shifted to a mean value of ~2>kT which will be emitted with a Wien spectral 

shape. Czerny & Elvis (1987) find that the deviation of the emitted spectrum 

from a black body can be described as

/ v = ------2(1 e *- ■ ■ -w [ l - / rt(v)]+C (1.42)
/v l + [(Kv+K„)/Kvr

where f th is the ratio of thermalized photons to all generated photons and C is a 

normalization constant.

In hot optically thin regions, Coulomb coupling often fails to equilibrate 

ion and electron temperatures, resulting in lower electron temperatures 

(— 109AT) which must be taken into account. The disc typically emits radiation 

as a power law in the X-rays with a prominent Wien peak and exponential cut­

off at a few hundred keV. Wandel & Liang (1991) calculated a spectral index 

of ~ 0.3 - 2 and Maraschi & Molendi (1990) ~ 1. This is consistent with 

calculations using (1.42) (Czerny & Elvis, 1987) and Shimura & Takahara 

(1993). Wandel & Liang (1991) claim that their solutions are physically 

observable. However recent work has suggested that hot optically thin regions 

of the disc (T > 107X ) are thermally unstable against perturbations in the proton 

temperature (Kusonose & Mineshige, 1992). Therefore these discs are difficult
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to observe, because they are only stable on timescale less than the thermal 

dmescale.

If the electron temperature approaches the electron rest mass, then 

electron-positron pairs must also be included. The electron-positron pairs could 

become important within high accreting discs where they could escape from the 

disc to form a hot pair atmosphere or pair wind, or they could be advected to 

smaller radii with the accretion flow (White & Lightman, 1989). Here, pairs are 

being created faster than they can annihilate and all of the available energy 

including the thermal energy goes into creating the pairs and the disc cools 

down, stopping pair production until the disc heats again. Therefore the disc 

would undergo limit-cycle oscillations on a viscous time scale. In this case it 

may be possible to observe the disc/disc corona cycling around in a quasi­

steady manner (Kusonose & Mineshige, 1992).

1.10 Disc irradiation
There are several lines of evidence to suggest that irradiation of the disc 

surface may be important. The disc thickness ratio H /R  increases outwards 

(1.22) and hard radiation from an axial jet or ion torus at small radii (Rees et 

al., 1982), or radiation scattered by a hot atmosphere (§ 1.9) could irradiate the 

disc at various radii. Observations of Seyfert galaxies have shown no 

measurable time delay between the UV and optical continuum light curves 

(Clavel et al., 1992). The absence of a time lag is in contradiction with the 

standard thin disc model. The local temperatures must be causally linked with 

the transmission of information at the speed of light. This would be the case if 

the disc were radiatively heated by a central source (Molendi, Maraschi & 

Stella, 1992). This external supply of energy is reprocessed as thermal radiation 

at frequencies corresponding to the effective temperature of the disc, i.e. as UV 

and optical continuum emission.
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The irradiation theory is backed up by X-ray observations of a high 

energy ’hump' which is associated with partial reprocessing of a hard X-ray 

continuum by Compton reflecting off an optically thick slab of effectively cool 

gas, such as an accretion disc (Pounds et al., 1990). A consequence of this is 

that if a fraction of the X-ray continuum is Compton reflected then another 

fraction should be absorbed in the disc itself and give rise to observable optical 

and UV flux variations. This would mean that in some cases the viscous UV 

flux could be up to an order of magnitude lower than was thought, and the 

majority of the flux could be provided by radiative heating of the disc (Collin- 

Souffrin, 1994).

Irradiated disc theories are still in their infancy and self-consistent 

calculations of the atmospheric structure are needed to determine what kind of 

corona may be created and how much energy is deposited below the optical 

photosphere. In a model considering non-thermal electron-positron pair 

cascades Zdziarski & Coppi (1991) investigated disc irradiation by the AGN’s 

hard X-ray component. They predicted that soft excesses should be common in 

AGN and showed a correlation between large soft X-ray excesses and steeper 

hard X-ray slopes. This is backed to some degree by observations (Saxton et 

al., 1993). It is hoped that the reflecting spectrum will relate to the density in 

the disc and the ionizing flux. This will give information on the disc structure 

and geometry of the illumination and aid further research in this direction (Ross 

& Fabian, 1993).

1.11 Disc instabilities
In § 1.2 the theory of a steady thin accretion disc was developed. There 

are several reasons for extending this theory to the study of time-dependent 

behaviour of discs. Disc stability against small perturbations can be 

investigated, and, as the time dependence of disc flow is likely to be controlled
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by the size of viscosity, observations of time dependent disc behaviour can 

offer quantitative information about disc viscosity.

Typical disc timescales can be identified: the dynamical (hydrostatic) 

timescale, zz, which denotes the time taken for deviations from hydrostatic 

equilibrium in the z-direction to be smoothed out, the thermal timescale, Tth, 

which gives the timescale for re-adjustment to thermal equilibrium, and the 

viscous timescale, t ^ ,  which gives the timescale on which matter diffuses 

through the disc under the effect of the viscous torques. These timescales can 

be shown collectively as (Frank et al., 1992)

Thus the dynamical and thermal timescales are of the order of hours, and the 

viscous timescale of the order of years for typical parameters.

A disc is unstable if a small perturbation is made to a putative 

equilibrium solution and this perturbation continues to grow rather than being 

damped. From (1.44) and (1.45) we see that, in general, a disc may suffer from 

two kinds of instability. The Lightman-Eardley (Lightman & Eardley, 1974) 

instability causes the surface density to clump into alternatively high and low 

density rings on a viscous timescale; a thermal instability causes the disc to 

expand and contract vertically on a thermal timescale while maintaining 

constant surface density. The viscous instability occurs if the stress is inversely 

related to surface density, i.e. 3(v £ )/3Z < 0 , which can be rewritten as

(1.43)

Using the a-disc solutions (1.22):

. -3/10

^ - 3 x 1 0 ’a M ^ R ^ s

(1.44)

(1.45)
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d M

ax
< 0 , (1.46)

and the thermal instability when there is an insufficient dependence of the rate 

of radiative cooling Q~ on temperature, to counteract the rate of viscous

heating f i+» i-e.

(1 .4 7 )
a rc btc

An unstable structure will commonly be subject to both sorts of instability. The 

viscous evolution timescale is larger than the thermal timescale (1.43), so that 

wherever an annulus goes from one temperature to another because of a 

thermal instability, this transition is rapid compared to the subsequent viscous 

response of the disc in the r-direction.

If a viscously and thermally unstable regime (surface density decreasing 

with increasing effective temperature) connects to stable sequences (surface 

density increasing with effective temperature) at higher and lower 

temperatures, the resulting double-valued nature of the locus ensures that other 

stable solutions at higher and lower temperatures are accessible at fixed surface 

density. The unstable portion is inaccessible to evolving discs (Bath & Pringle, 

1982) and, in general, the existence of an unstable sequence can give rise to 

limit cycle behaviour (Pringle, 1981).

In a plot of accretion rate versus surface density, the locus of steady 

state a-models at a single radius shows a characteristic 'S-shaped' curve (figure 

3) containing an unstable portion with negative slope. This instability is related 

to the partial ionization of hydrogen which results in very temperature sensitive 

diffusion or convective flux (Meyer & Meyer-Hofmeister, 1983). Meyer & 

Meyer-Hofmeister proposed a limit cycle mechanism for dwarf novae based on 

this unstable sequence. In this model the viscosity in the disc varies:
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log 2

Figure 3
An illustration of an S-shaped M (2) curve.

between outbursts (at 'quiescence') the viscosity is low, so that the viscous 

timescale is long and matter accumulates in the disc; at outburst the viscosity 

suddenly rises, the viscous timescale becomes short and the matter previously 

stored in the disc is rapidly deposited on to the white dwarf.

Lightman & Eardley (1974) also found that the inner regions of a 

standard thin disc was viscously and thermally unstable. The rapid growths of 

these unstable modes may result in the breakdown of the thin accretion disc 

configuration, although there has been some research into mechanisms that 

quash these instabilities (see §1.11.1 and §1.11.2).

With regard to the perturbation of viscosity, Kato (1978) suggested that 

a local pulsational instability exists in a viscous disc. His suggestion was 

proved in subsequent investigations (Blumenthal et al., 1984). The existence of 

pulsational instabilities does not depend on what pressure and opacity 

dominates the disc, although they are likely to exist only in the innermost 

regions of the disc, with the oscillations trapped in this narrow area (Okazaki et
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al., 1987). Kato et al. (1988) found that there are two kinds of instability in an 

isothermal disc when the viscosity parameter a  is above a critical value. The 

pulsational instability in the inner part of the disc, and a sonic-point instability. 

The research into these instabilities continue, and recent work has included the 

investigation of different viscosity mechanisms (i.e. radial viscosity: Wu et al., 

1994; Yu et al., 1994). Vertical shear instabilities set up by the resonant 

response of a disc with a slight tilt has been studied by Kumar & Coleman 

(1993), and instabilities in magnetized accretion discs have been discussed by 

Kumar et al. (1994).

1.11.1 Slim discs
It was stated above that Lightman & Eardley (1974) found that the inner 

region of the standard thin disc becomes thermally (and viscously) unstable. 

Here radiation pressure dominates over gas pressure. The rate of radiative 

cooling Q~ ~ H , while the rate of viscous heating Q+ ~ H 2\ thus overheating 

produces expansion that leads to a thermal runaway (Frank et al., 1992). 

Abramowicz (1981) noted that advective cooling (heat transport by the bulk 

motion of the disc material) at the inner edge could have a sufficiently steep 

dependence on H (Q^  ~ / / 3) to halt the thermal runaway. The extent of the 

stabilized region would depend on the accretion rate, and only for high 

accretion would there be sufficient cooling for no instability to occur. The 

inclusion of advective cooling, general relativistic effects, and to keep 

consistency, radial pressure gradients led to the construction of a new family of 

accretion discs known as 'slim discs' (Abramowicz et al., 1988) for moderately 

super-Eddington accretion rates. The discs are 'slim' because the usual 

assumption that the angular velocity of the disc material is Keplerian must be 

dropped. The resulting discs have a ratio of disc height to radius smaller than 

unity.
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The slim disc theory is justified when investigating the very inner 

regions of accretion on to black holes where the radial motion is transonic. 

Abramowicz et al. (1988) found an S-shaped M (2) relation (c.f. figure 3) at a 

fixed R defining three regimes of accretion. There is a lower branch where gas 

pressure dominates radiation pressure and opacity is given by electron 

scattering. The cooling is provided by vertical radiative flux. A middle branch 

where the opacity and cooling mechanism are the same as the lower branch but 

radiation pressure dominates, and finally an upper branch where radiation 

pressure is greater than gas pressure and the cooling is provided by both 

vertical radiative flux and horizontal advection. This implies that non- 

stationary, quasi periodic behaviour should be expected in the innermost 

transonic parts of slim accretion discs.

1.11.2 Different viscosity prescriptions
Generally accretion discs models have used the a-prescription (1.3) to 

describe the viscous mechanism. An alternative form of (1.3) is

7*= aP Mtfl/ (1.48)

where is the component of viscous stress that drives the accretion and Pwtal

is the sum of the gas pressure and radiation pressure. Very different radial 

structures could be obtained with other combinations of and Pgas. The p-

prescription (T^ = $Pgas) has been used by some authors (Wandel & Liang,

1991; Abramowicz et al., 1988) giving quite different results from the a- 

models. p-discs have different instability regions and change the S-shaped 

M (2) curve (Abramowicz et al., 1988).

The a/p parameter is generally assumed to be constant and of the order 

unity. This assumption has strong implications on the radial disc structure and 

on the EUV emitted spectrum, since a smaller value of a  would lead to a larger
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density, thus an opacity less easily dominated by electron scattering. Obviously 

more work is needed to understand the viscous mechanisms present in accretion 

discs.

In an attempt to understand dwarf novae outbursts it was described 

above how it was necessary to have the viscous parameter a  vary from a low 

value in the quiescent state to a high value in the outburst state. Meyer & 

Meyer-Hofmeister (1983) approximated this variance by assuming a viscous 

mechanism with a  = a 0(H /R )n. In a radiation pressure dominated disc Milsom 

et al. (1994) found that limits were imposed upon the disc scale height, 

resulting in thermally stable discs. As with slim discs, the disc solutions take 

the form of an S-shaped M (Z) curve, with two stable branches corresponding 

to high and low accretion rates, and a viscously and thermally unstable middle 

branch for discs with intermediate M .

1.12 Discs with vertical structure
As shown in the previous sections there have been many attempts to 

improve upon the standard thin disc and to obtain realistic disc emission 

spectra. With the exception of some particular cases (e.g. Madau, 1988) the 

comparison with observations has been carried using vertically averaged 

models of the disc. It is not at all clear that this averaging of the vertical 

structure is appropriate to a discussion of emission spectra.

A knowledge of the vertical structure of accretion discs is vital since 

spectral features departing from a pure blackbody are formed in the upper 

layers of the disc. Attempts to obtain a disc spectrum by solving the vertical 

structure of an accretion disc have been made (i.e. Shimura & Takahara, 1993), 

but the disc solutions are found at a fixed radius only. Inconsistencies may 

occur as the spectrum is not calculated from the global structure. Therefore in 

the following chapters a model will be presented which investigates both the
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vertical and radial structure of an accretion disc and makes the first steps 

towards obtaining the emission spectrum of a disc with vertical structure.

Urpin (1983) was the first to study the internal structure of accretion 

discs. The disc equations (conservation of momentum, energy and the 

continuity equation) were solved using a parameterization similar to Shakura & 

Sunyaev (1973). Defining M as the Mach number of the azimuthal flow at a 

fiducial point

(1.49)
rc

where c is the sound speed at r and Mbh is the mass of the central black hole, 
Urpin assumed x>p ~ Mcs, v R~aM~1cs, x>z ~aM~2cs and H~M~lR. The

solutions showed an outwardly directed flow in the equatorial plane and inflow 

near the surface of the disc. However, Urpin's model was highly simplified. 

The disc equations did not include the full viscous stress tensor and a 'vertically 

isothermal' approximation was used to obtain solutions.

With a set of more realistic opacities and equations of state, 

Siemiginowska (1988) found similar results to Urpin. The calculations show a 

very large radial infall velocity near the disc surface, but lack in general the 

outflow in the midplane. Instead a few circulation cells occur in the equatorial 

plane. However, her inability to keep the accretion rate constant over a global 

region throws doubt into the validity of the results.

With improved numerical methods, Eggum et al. (1985) calculated the 

two-dimensional structure of an accretion disc around a black hole by solving 

the time dependent hydrodynamic equations, including radiation. Their 

simulations show a small convective cell slowly moving outwards, although 

this seems to be a result of the initial conditions. Otherwise they found no 

indication of any variation in radial infall velocity with height.
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Kley & Lin (1992) developed a time-dependent, two-dimensional 

numerical radiative hydrodynamical scheme to calculate general two- 

dimensional flow. They solved the disc equations including the full viscous 

stress tensor. For low values of the viscosity parameter a  their solutions show 

mass outflow in the central parts of the disc close to the equatorial plane, and 

inflow near the disc surface (similar to Urpin, 1983). However, for higher 

values of a  (> 0.06), the flow throughout the disc is directed inward.

The most reliable results are those of Kley & Lin (1992). However, 

using a numerical finite difference method to solve the disc equations can mean 

that it is very difficult to interpret the physical reason behind the solutions. 

Therefore in the following chapters we will present a method that endeavours 

to develop the theory for the disc analytically as far as possible, resorting to 

numerical methods for the solution of the final system of ordinary differential 

equations only. The thin disc is treated as a zero order approximation to a disc 

with vertical structure. The order of this approximation is controlled by the 

parameter 1/M2, where M is the Mach number of the azimuthal flow at a 

fiducial point (1.49). This work is therefore similar in intention to Urpin 

(1983).

The studies into the internal structure of an accretion disc mentioned 

above, have all assumed surface-less discs where vertical equations are 

integrated to infinity. In reality, in an AGN system, this is unlikely to be the 

case. We define a disc surface as a condition of pressure balance between the 

disc and its surrounding medium. This medium could consist of a corona or 

disc wind created by Compton heating of the disc through illumination by hard 

X-rays from the central regions of the disc near the black hole, or a radio jet 

(Begelman et al., 1983). Therefore, it is possible to imagine situations where 

the disc surroundings influence the internal structure of the disc.

In §2 the expansion method used to solve the disc equations is 

introduced. The zero order terms are identified and solved to produce global



Chapter One Accretion discs 33

solutions for an a-accretion disc. At this stage the vertical transport of angular 

momentum is ignored. The internal structure and stability of the disc is 

investigated in both the gas and radiation pressure dominated regions. The 

effects of applying an external pressure (varying with r as a power law) to the 

disc is also studied, and in §2.4 possible sources for this external pressure are 

discussed.

An application of the disc model is introduced in §3. External heating 

from X-rays associated with a radio jet are shown to induce mass loss from the 

disc surface. This mass provides the environment in which the jet is collimated. 

Assuming that the dissipation in the jet depends on the pressure of this external 

medium and hence the rate of the mass loss produced from the jet illumination, 

such a configuration may undergo symmetry breaking to an asymmetric state in 

which one jet dominates. This is therefore a possible model for intrinsically 

one-sided radio sources.

The effects of including the vertical transport of angular momentum 

within the disc is investigated in §4. Finally, conclusions are summarised in §5, 

and future work is discussed.



Chapter Two

The internal structure 
of an a-accretion disc
2.1 Introduction

In §1 we outlined some of the problems faced in predicting the disc 

spectrum. The calculation of the emitted radiation flux depends on an 

understanding of the radiative transfer processes occurring within the disc. This 

is often by-passed by using a modified blackbody approximation (i.e. equation 

(1.33), Rybicki & Lightman, 1979). For this approximation to be used 

correctly, all mechanisms that contribute to the opacity must be accounted for. 

This suggests that the use of vertically averaged models is not appropriate in 

the discussion of emission spectra. A specific knowledge of the vertical 

structure is required because departures from a pure blackbody are likely to 

occur in the upper layers of the disc (Collin-Soufffin, 1994). These regions will 

be ’smoothed1 out in an averaged model.

Another problem associated with obtaining a disc spectrum surrounds 

the area of disc stability. As mentioned in §1.12, the thermal disc properties are 

determined by the requirement that viscous torques can dissipate the disc's 

mechanical energy at the required rate, and therefore cannot be prescribed 

without a knowledge of the viscosity within the disc. When a-viscosity 

(Shakura & Sunyaev, 1973) is used in a radiation pressure dominated disc 

viscous instabilities evolve (Lightman, 1974). These instabilities can induce



Chapter Two The internal structure of an a -accretion disc 35

more rapidly evolving thermal instabilities (Shakura & Sunyaev, 1976). In these 

regions a steady state disc is untenable, and the disc becomes optically thin 

(Shapiro et al., 1976), or causes the expulsion of matter in a radiation driven 

wind (Meier, 1979; Jones & Raine, 1980). It is important to investigate for 

which disc parameters and radial regions these instabilities occur, as it is likely 

to alter any predicted disc spectrum. To do this correctly requires a knowledge 

of the internal structure of the disc.

There have been a number of attempts to calculate the internal structure 

of an accretion disc. Urpin (1983) investigated the internal structure of the thin 

disc. His results implied that the vertically averaged solutions were a good 

approximation. The most notable result associated with Urpin's disc was the 

existence of an outflow of material near the equatorial plane away from the 

central black hole. This outflow of material has also been predicted by 

Siemiginowska (1988) and Kley & Lin (1992). However, there is some doubt to 

the validity of these results. Urpin solves the vertical structure of the disc 

assuming a pseudo-isothermal solution, Siemiginowska's model suffers from 

poor ordering of the disc equations which is confirmed in the inability to keep 

the accretion rate constant, and the accretion disc developed by Kley & Lin 

assumes that the vertical transport of angular momentum is of the same order as 

the radial transport. This is probably only true in a thin disc if an external 

torque is applied that can 'carry' the angular momentum away (a torque of this 

kind was not included in Kley & Lin). All of these models will be discussed in 

more detail in §2.5.1.

Clearly, a model is needed that can provide the large scale internal 

structure self-consistently. If an outflow of material is indeed obtained then this 

may significantly affect the disc solutions, because for a given accretion rate, 

there is more material in a disc with both inflow and outflow than in a disc with 

just inflow.
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In this chapter we endeavour to obtain the internal structure of a 'thin' 

accretion disc, by considering the standard thin disc as a first order 

approximation to a disc with vertical structure. We seek to develop the theory 

for a steady state disc analytically as far as possible, resorting to numerical 

methods for the solution of the final system of ordinary differential equations 

only. The basis of the method is an expansion of the equations of motions in 

the parameter 1 / M 2, where M is the Mach number of the azimuthal flow at a 

fiducial point. We restrict ourselves to z / r < 1 and impose boundary conditions 

at the disc surface corresponding to no loss of angular momentum and mass. 

We also incorporate a disc surface defined by a pressure balance between the 

disc and its environment in a special case of zero net torque (see §2.2.3).

An accretion disc is unlikely to 'sit' in a vacuum. The surrounding 

medium could consist of an optically thin, hot corona or disc wind (Begelman 

et al., 1983), which will apply a pressure upon the disc (see §2.4) The external 

pressure applied by the surrounding medium can have an important effect on 

the internal structure of a disc. According to Kippenhahn & Thomas (1982) an 

accretion disc cannot be in hydrostatic and thermal equilibrium simultaneously 

if the rotation velocity is a function of radius only. They suggest, that as in stars 

(Tassoul 1978), this problem can be resolved by small meridional circulations 

within the disc. However, we find that when a disc is under the influence of an 

external pressure, its effect allows the disc to adopt the correct surface height to 

remain in both hydrostatic and thermal equilibrium, and no meridional 

circulations are found.

We also find that when the applied pressure is small, our disc solutions 

are similar to that of Urpin's (1983); we have an outwardly directed flow in the 

equatorial plane and inflow near the surface of the disc. The disc is also 

unstable when radiation pressure dominates. However, when a significant 

external pressure is placed on the disc (of order - 1- 10% of the disc central 

pressure), the disc structure is compressed, and the solutions depart from that
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expected by Urpin and the standard thin disc. Most notably, the outflow of 

material along the equatorial plane z = 0 ceases, and the possibility of a 

thermally stable (although viscously unstable) radiation pressure dominated 

disc arises. We will show that this could be of some importance in the study of 

disc stability and disc spectra variability.

In §2.2 we introduce the disc equations and describe our computational 

method. The results are presented in §2.3. Possible sources of external pressure 

are discussed in §2.4 and we investigate whether any of these sources could 

provide a large enough ’push1 to alter the disc structure (as described above). 

Concluding comments on the model are given in §2.5.

2.2 The disc model
2.2.1 Basic equations for disc accretion

In developing this disc model we consider a two-dimensional system in 

cylindrical co-ordinates (r, <|>, z )  with azimuthal symmetry assumed, i.e. 

physical quantities are allowed to vary in r and z , but not in <|>. Symmetry 

about the mid-plane (z = 0) is also assumed, although this condition will be 

dropped in § 4.

The gravitational potential for the disc is provided by a central black 

hole (Mbh ~ 108Mo ). This means that the effect of self-gravity is ignored. At 

the disc height H , at radius r  from the centre, the z -component of 

gravitational force due to the black hole is gc ~ GMH / r 3. This compares to the 

self-gravity contribution gs ~GL, treating the disc as an infinite uniform plane. 

Discs in which gs > gc are gravitationally unstable, with the end result being 

possibly non-interacting cloudlets or angular momentum transporting spiral 

arms (Lin & Pringle, 1987). The condition for the neglect of self-gravitation is

p «  Af / R 3 (2.1)
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which from (1.22) is satisfied for all disc radii up to ~ 1017' 18 cm, although this 

limit can decrease for lower values of the viscosity parameter a  (see §1.2.1 and 

equation (1.3)). In more accurate studies investigating the regimes of self­

gravity, Cannizzo & Reiff (1992) and Cannizzo (1992) (using vertically 

averaged and vertically explicit disc models respectively) parameterized the

region for which g c > g s as R < 5x 1017 a 2/3cm, for a black hole mass M  = 108Af 0
•  __

and an accretion rate M  = 0.01 M 0yr~ \ This is in agreement with limits 

presented in Clarke (1988) and Mineshige & Shields (1990). Including the 

effects of self-gravity is beyond the scope of this work; therefore results 

corresponding to the very outer regions of the disc need to be treated 

cautiously.

To describe the gravitational effects of a rotating black hole the 

equations of motion for the disc should be solved within a Kerr metric. 

Relativistic models to describe discs around rotating black holes have been 

produced: the relativistic thin disc (Novikov & Thome, 1973) and the 

relativistic slim disc (Lasota, 1994). However using the Kerr metric can 

become difficult and cumbersome, and the solutions require an enormous 

numerical effort. There have been some attempts to describe orbits in the Kerr 

metric by a pseudo-potential (Chakrabarti & Khanna, 1992) but the result is not 

very satisfactory since it is a poor approximation of the full Kerr treatment. The 

majority of models (e.g. Madau, 1988; Abramowicz et al., 1988; Cao, 1992) 

describing the disc properties close to the central black hole use the pseudo- 

Newtonian potential of the form

GM
{ r l + z 2f z - r s^  “  ✓ 2 . 2 \l/2 (2 .2 )

which has been shown by Paczynski & Wiita (1980) to mimic the essential 

features of a Schwarzschild spacetime with regard to accretion flows.
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The nearest region to the central black hole we shall investigate in our 

model will correspond to radii where radiation pressure dominates gas pressure. 

From (1.27) it is noted that this occurs at a minimum distance of ~ 35Rs in the 

standard thin disc model. At these distances the effects of general relativity are 

small, therefore for the present time the gravitational potential of the black hole 

will be described by the simple Newtonian form

•  = - . (2-3)( r '+ z " )

Considering special relativity, Novikov & Thome (1972) show that if 

the orbital motion of the disc material is assumed to be very nearly geodesic, 

then although general relativistic effects are very important near the hole, one 

can ignore special relativistic corrections to the local thermodynamic, 

hydrodynamic, and radiative properties of the disc at all r and z - even near 

the black hole. Special relativity can become important when a disc becomes 

optically thin and takes a two-temperature state in which the electron 

temperature differs from the ion temperature. However, we are only 

considering one-temperature discs, where the electron and ion temperatures are 

equal, and therefore all relativistic effects remain small.

As mentioned in §1.2.1 the fundamental problem associated with the 

study of accretion discs is the uncertainty of the form and magnitude of the 

viscous stress which drives the accretion. The traditional remedy is the semi- 

empirical theory; that the total pressure P is proportional to the component of 

viscous stress which drives the accretion (which means that the turbulent

length scales are no larger than a scale height). This gives rise to the a-disc 

where
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is taken to be a constant. This prescription will be adopted for our disc model.

To obtain the internal structure of the a-accretion disc, the conservation 

equations of momentum, mass and energy in a fluid must be solved. These are 

given in covariant derivative form and are solved using a flat space-time metric 

in cylindrical polar co-ordinates. The conservation of momentum is described 

by the Euler equation (§1.2.2 and (1.4)). To include the effects of gravity and 

viscous stress, the Euler equation is used in the Navier-Stokes form (Eggum et 

al., 1987)

(pi)')+ (po* U' ) . J  = -T j -  (P8*);; -  p<D, (2.4)

where i = 1,2,3, and u. is velocity of the fluid. This equation differs from

Eggum et al. (1987) in the fact that the stress energy tensor here includes only

the viscous stresses (because the pressure is written explicitly) and is given by

X, = -vp(u ,;, + V JU - | 8 #V *). (2.5)

The conservation of mass is described by the continuity equation

|£ + (p v i) , = 0 . (2 .6)
at

The vertical energy transport mechanism in accretion discs may be 

either radiative or convective, depending on whether or not the temperature 

gradient required for radiative transport is smaller or greater than the gradient 

given by the adiabatic assumption

Pp"Y = const. (2.7)
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Convective energy transport is generally ignored; Shakura et al. (1978) showed 

that convection amounts to less than half the total energy transport in radiation 

pressure dominated discs. More recent studies have shown that for sub- 

Eddington thin discs the effect of convection on the structure of the disc is 

relatively benign, causing only small perturbations (Eggum et al., 1987). This is 

in marked contrast to the situation within thick super-Eddington discs in which 

convective cell activity dominates the dynamics within a significant fraction of 

the disc volume (Eggum et al., 1985). The theory of convective discs are 

discussed in works such as Clarke et al. (1985), Meyer & Meyer-Hofmeister, 

(1983) and Kley (1994). For now all energy transport will be assumed to be via 

radiative mechanisms. Our work could be expanded to include convection at a 

later date.

Energy conservation requires that the rate at which a fluid element 

increases its heat energy equals the rate at which heat is delivered to the 

element minus the rate at which the element does work against its surroundings 

(1st law of thermodynamics). Using Eggum et al. (1987) this is written as

^ - +(Evk);k+P»*k + r*S *+ Z > r(£0*), =0 (2.8)

where

(2.9)
2 \ im H

is the gas energy density and

E0=aT4 (2.10)

is the radiative energy density, both at temperature T .
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Within the equation of energy conservation is the contribution of the 

radiative transport to the energy flow within the disc. This can be expressed in 

terms of the radiation energy density E0 and the radiation flux F0. In the 

optically thick case

F0 = -DVE0 (2.11)

where, in the diffusion approximation

D = —.
3

Here / is the photon mean free path. This relation is not strictly accurate for 

the accretion disc problem because optically thin regions must be treated, and 

the use of the diffusion approximation for D leads to violation of causality. 

Solutions to this problem have been found and expressed in the many variations 

of radiative transport by flux limited diffusion (FLD). An example of FLD was 

shown in §1.9 (1.41) with the algorithm developed by Czerny & Elvis (1987). 

A similar approximation was developed by Levermore & Pomraning (1981) in 

which the diffusion algorithm is replaced by

D = cl(2+R)
6+3R + R 2

R  ( 2 - 1 2 )

En

clThis reduces (2.11) to its correct optically thick form F0 = —— V£ 0 when

/|VF0| « E 0 and gives the limit of freely streaming radiation |F0|/£ 0 = c when 

optically thin /|V£0| » E 0. FLD algorithms have been used in other
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astrophysical contexts (e.g. supernova shockwave calculations; Chevalier & 

Klein, 1979) with good results.

There is a problem implementing any flux limited algorithm into our 

disc model. This is linked to our method of solving the disc equations and in 

particular the diffusion equation (see §2.2.4 for details). Therefore we shall use 

the energy equation corresponding to a fully optically thick disc (2 .11) as an 

approximation which we will justify in §2.3.1.

The equation of state is given by the sum of the gas pressure and 

radiation pressure

Pm =P"S +P* = 7rL + \ aT' ’ (2.13)\m H 3

where p=0.6 is taken for an ionised gas with cosmic abundance.

2.2.2 Thin disc expansion
In the previous section the equations governing the structure of the

accretion disc were defined (equations (2.3), (1.43), (2.4), (2.6), (2.8) and

(2.13)). To obtain solutions, these equations are expanded in terms of a small 

parameter so that the thin disc is treated as a zero order approximation to a disc 

with vertical structure. The parameter that controls the ordering of this 

approximation is 1 / M2, where M is the Mach number of the azimuthal flow at 

a fiducial point

=9Msb-' (2.14)
rc

c is the sound speed at r , and Mbh is the mass of the central black hole.

The expansion parameter 1/M 2 reaches of order 1/10 only if the gas 

temperature approaches 1/1 Ox the proton virial temperature. Thus, this
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expansion will be valid over most of the disc, except possibly in the 

atmosphere of the inner region, or radii where general relativity is important. 

For the present however, we restrict ourselves to the case that the components 

of velocity are of the order of the thin disc values. In this case the expansion 

parameter is of order 10“*.

In the thin disc it is assumed that the disc material circles the central 

black hole with an approximate Kepler orbit (1.1). At the fiducial point f

(2.15)

Therefore we can define a dimensionless azimuthal velocity V :

(2.16)

From (1.7) and (1.8) the thin disc value of the radial velocity v r is

[V' ]f r (GMbh)m M
acH ac2r m a c (2.17)

Hence a dimensionless radial velocity U can be defined as

v _ n , v rM (2.18)

We complete the velocity scalings by assuming v> r = M v . (Urpin, 1983; 

Siemiginowska, 1988), and thus our z -component of velocity, W , is
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Finally we choose a vertical scale, z , such that, at the fiducial radius,

3  = (2 .20) 
r M

We also define dimensionless quantities

C = Z /z  CD = r  /  r
2 2 ,-2  (2-21) o  = p /p  cz = c ; / c z.

Note that c2 is the dimensionless speed of sound, not the speed of light which 

we shall not need.

The equations of motion and energy transport (2.4), (2.6) and (2.8) give 

five equations for U ,V ,W ,c  and c2. These are

. M W  m +I
4 a  co acr 3 ^ 3 ^  3co 3co

rcvM A  ——W 2^ ~
" acr “ 3 “ 3 5 3co

+ -^r(va)„  ( M2U, ,+Wm ) 
acr  ' *

___r oVU avM , ~ 2tt tt 1 1
g UV,(D+o W V„+ -------= —— (M — V5C0----- -V )

4 © acr co co

acr co
~  M

+M2— (va),,V,,  (2.23)
acr * *
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2 M , . . “ 2,7 M 2U ,=r(va),c (M2Ut<0- 2 M 2W„ +-------,
3 acr 4 4 ©
M4 , 2 x M4az _ (2.24)
a  4 c a

(t/acD),(0+(aWG)),c = 0 (2.25)

^ [l/(ac2),„ +W(ac2),; ] + | t c 2(I/,.+W ,; + - ) - - ! ! ^ ( < d 2(V,. )2 -2<oW ,„+V2)

£^ - V , 2+ - ^ r [ 4 / - ( D ^ ) + ^ | r ( D ^ ) + ( r - | ^ ) ]  = 0 . (2.26)
az  ̂ ac p r a(0 d© z OL, d£ r G) d©

To find approximate solutions, equations (2.22)-(2.26) are expanded in powers 

of 1 / M 2:

f/ = C/0( e o ,C ) + ^ ^ + . . .
M

y = y 0«n,O +Vî ) +... (2.27)
M

w = w0«d, ; ) + JS ^ 5 2 + ...
M

a  = g 0(ca.O+g |^ ’̂ +-- 
M

2 2/ K \ 1̂ (®»C)c 2 = C 2(Q),0 +  *  + . . .
M

The zero order terms from each equation can now be identified. These 

produce the expected thin disc equations as follows. For the radial component 

of (2.22), the lowest order terms give the Kepler approximation to the 

azimuthal velocity,

v , = - T -  (2-28)
G)2
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In the vertical direction (2.24) the lowest order terms correspond, as 

expected, to hydrostatic equilibrium:

As both gas pressure and radiation pressure are being considered, it is useful to 

introduce the parameter p, which is the ratio of gas pressure to the total 

pressure. Writing P0 = o ^ , then from (2.13):

where P0 is the zero order expression for p and A is the constant

T  is the temperature at the fiducial point and T0 is the corresponding zero order 

dimensionless variable. The equation for hydrostatic equilibrium (2.29) can be 

rewritten in the form

As discussed in §1.11.2 various parameterizations for the viscous stress

within the disc have been presented (for a review see Narayan & Goodman, 
1989). We are assuming that the viscous stress tensor 7^ is proportional to the

total pressure (1.48). Using the thin disc expansion defined in (2.15-2.21) this 

gives a lowest order

(2.29)

Po_ (P0-A7V) (2.30)

(2.32)
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v = CLcrcla>2 (2.33)
M

As a result of this we find that the lowest non-trivial order in the <|>-component 

of the momentum equation (2.23) gives an expression for the radial velocity t /0,

Here the final two terms represent the corrections from non-Kepler azimuthal 

motions; these terms are included by Urpin (1983) and Kley & Lin (1992) but 

ignored in the standard treatment where this equation is integrated vertically to 

give the radial velocity in terms of the surface density. Note that contributes 

to U0 at the lowest order in this expansion. The departure from Kepler velocity, 

Vp is obtained from the first order correction to the radial equation (2.22):

Note that the third term on the right of (2.35) comes from the radial pressure

gradients while the first two terms on the right represent the effects of the

viscous transport of angular momentum vertically; the final term is from the

vertical gradient of the gravitational field. These effects are fed into the radial 

motion through V1 in (2.34). The UQ% and f/0,K terms were included by Kley &

Lin (1992), but omitted by Urpin (1983).

Both Kley & Lin and Urpin assume that there is no external torque being 

applied to the disc. In this case it is unlikely that there will be significant 

vertical transport of angular momentum. Angular momentum is transported 

principally by large scale eddies (and energy dissipated mainly by small scale 

ones). In the vertical transport of angular momentum, eddies of scale H would

aP  0 = (< V > 2).» +2a0c02coV1,K -2o„CV, ,c. (2.34)

(2.35)
2(D2
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be deposited in the disc environment. This would require an external torque to

extract the angular momentum. We will investigate the effects of adding an

external torque to an accretion disc in §5.

In this section we are not considering the vertical transport of angular

momentum. Therefore we can neglect the z -derivatives of the velocity terms 
(i.e. set U = V  =W ,c = 0) that appear in 7^v, as it is these terms that carry the

angular momentum in the z-direcdon.

Neglecting the vertical transport of angular momentum simplifies (2.34) 

to give an explicit expression for the radial velocity:

U0 = + 3fl>* . (2.36)
Po po

It can be seen that an outwardly directed flow of material (U0 > 0) arises when

P 2 . (2.37)
P0 ©

This is a simple expression that relates the direction of flow to the pressure 

within the disc. The thin disc solutions (1.22) shows that, for a gas pressure 

dominated disc with opacity given by Kramers' rule, the centre line pressure 

falls off radially as r '21/8. Therefore we should expect fluid outflow near the 

equatorial plane (from 2.37). Similar velocity flows have been predicted by 

Urpin (1983), Siemiginowska (1988) and Kley & Lin (1992), however, until 

now a condition for outflow has not been presented. The derivation of (2.37) 

contradicts the suggestion made by Urpin (1983) that an outflow of disc 

material is linked to the vertical transport of angular momentum. We see that 

the radial velocity depends solely on the viscous transport of angular 

momentum in the radial direction.
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Turning now to the equation of energy balance (2.26), the zero 

order equation relates the radiated flux to the rate of energy generated by 

viscous dissipation

(2.38)
OL, GO32

where F0 is the heat flux which, using (2.30), is given by

_ T f_ d T!L=_^VL n  ™
0 K0a 0 9 ?  K0f y >0 9 ?  . 1 • J

and

A _  3aKc3pr
A y  —------ --

16aT Af

From here on the viscosity parameter a  has been absorbed into the constant

A y .

Understanding the physical processes that can contribute to the opacity 

within the disc is very important if a realistic disc spectrum is to be produced. 

A great deal of work has been done calculating the effects of electron 

scattering, free-free and bound-free processes (e.g. Cox & Stewart, 1970), 

which dominate at high temperatures T > 10,000£, and the effects of molecules 

and grains at cooler temperatures (e.g. Alexander et al., 1983; Pollack et al. , 

1985). Models using these different opacities have been developed (Collin- 

Souffrin & Dumont, 1990; Cannizzo & Reiff, 1992; Cannizzo, 1992) but they 

have not included the correct radiative transfer effects.

Cannizzo (1992) showed that for temperatures T > 6000K the disc could 

be modelled using standard thin disc opacities. Therefore, to gain an
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understanding of the internal structure of the accretion disc, we will not over­

complicate the model by including detailed opacity contributions, but simply 

consider the two main mechanisms apparent in the disc; namely free-free 

absorption k* (represented by Kramers' law, (1.23)) and electron scattering

(1.24). These have the zero order form:

s = 6 . 6 x i o “ pr-™  (240)
■̂eso = 1 K — 0.4.

Finally, the continuity equation (2.25) gives

T  j ,  /»?
o •* 0

For the purpose of calculating the disc structure we find that (2.41) is easier to 

solve when integrated with respect to co. This expresses mass conservation, to 

zero order, in the form of a mass flux E:

(2.42)
* o

On integrating vertically this gives the accretion rate S0 = M .

This completes the set of equations needed to obtain the disc structure: 

the hydrostatic equation (2.32), the energy equation (2.38 and 2.39) and the 

continuity equation (2.42).

2.23 Boundary conditions
For the conditions on the surface of the disc we integrate equation (2.4) 

over a pill-box spanning an element of surface (figure 4). This gives
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D i s c  s u r f a c e

Figure 4
The boundary conditions on the disc surface are obtained by integrating the 
Navier Stokes equation over a pill-box spanning an element of surface.

j p v W d S ,  = - j f , dSJ- g ¥jPdSj -jp(2.43)

where the first term in equation (2.4) is zero in the steady state and the third 

term on the right of (2.43) is zero in the limit that the pill-box volume tends to 

zero. Labelling the surface values with the subscript s we obtain

\ f ijnj +p d V » , + /V ], = Pextn‘ (2.44)

where Pext is the pressure in the external medium surrounding the disc.

Assuming no mass-loss from the surface of the disc gives the condition

dMio
dr

= 0 = 2nrpx> i + i *
i

2 \ *

d r ) , )
(2.45)

where v n is the velocity (at the surface) normal to the surface of the disc
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Using the expansions defined in §2.2.2 this gives a boundary condition 

showing that the material follows a 'streamline' (see §2.2.4) along the disc 

surface (as expected for no mass loss)

K
dCD

(2.47)

From (2.44) we get

[T +T 13n3 +p(l)Vn, +»V n,)], = [(P,B ~P+W \ 

[ f 2In, + T nn3 + p(l)Vn, + V2U3n3)]s =0 

[ T ^ + ^ X  + pC oV nj+ vV ^)], = [{Pta - p j n 3],

(2.48)

(2.49)

(2.50)

where ni is the normal vector to the surface of the disc (from 2.47):

n. x> MU,
(2.51)

Expanding (2.48), (2.49) and (2.50)

A . ,  2[M AP]S )],

+ [ c W 1a(M2U^+W,„)^l

~ ~ w
[Af4AP], =[c2o)3/2a(W 2I/,c+W,„ )—],

r 2 3/2 .4Aif 2M 3- [c 2a»3/2o ( -^ -W ,t — — U,a )],.

(2.52)

w 1
[W2V,? ], =[— (V ...--V )], (2.53)

(2.54)
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In developing this model we will assume (in a sense to be made precise below) 

that there is no net torque being applied at the disc surface. We argued (in 

§2.2.2) that this implies that the vertical transport of angular momentum within 

the disc is to be neglected. An extension of this argument is that there is very 

little transport of angular momentum at the surface, both radially and vertically. 

Therefore we neglect the viscous terms in the boundary equations (2.52 - 2.54).

The zero order terms from (2.52) and (2.54) give the condition AP -  0. 

This defines the disc surface: at f  -  £  the external pressure equals the internal 

pressure

P(fl>,C)-P«,(*>). (2.55)

Later we shall find small departures in the disc flux from the standard thin disc 

values. This can be traced back to our neglect of the discontinuity in the 

viscous stresses at the surface. If, for example, >0, then material in the

surface experiences a torque from fluid at larger radii, but zero torque from 

smaller radii, so giving rise to an inward surface current. (The surface layer 

contains no mass, but the radial velocity diverges because of the discontinuity 

in viscous stresses). We are therefore neglecting this surface current giving rise 

to a lower accretion rate than the corresponding thin disc. (Conversely, to 

maintain the accretion rate we require a higher surface density which, for 

^ —->0, gives rise to the greater dissipative flux). In the situation we are
aO)

modelling, therefore, an element in the disc surface experiences zero net 

torque: the environment provides a stress that everywhere balances the stress 

exerted by the adjoining disc on the surface.

We turn now to the boundary condition for the energy equation. In using 

the radiative diffusion equation (2.38) the disc is assumed to be optically thick,
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i.e.

(2.56)

Here the radiation field is locally very close to the blackbody form. When T 

becomes < 1 the disc becomes optically thin and the radiation escapes directly. 

The total dissipation rate through one half of the vertical structure must give the 

dissipation rate per unit face area D(r) (equation (1.16)). In our case, the disc 

has a surface, defined by a pressure balance between the disc and its external 

medium. We shall see that this affects the total dissipation rate by a surface 

term, depending on the external pressure and the disc slope. Equation (1.16) 

must be modified to take this into account:

The value of X is calculated along with the solutions of the disc equations (see 

§2.2.4) and can be positive or negative. For a significant external pressure, X 

can become quite large. This leads to a noteable, but probably not observable 

(see §2.5), change in the emitted flux. We also find a change in the internal 

disc structure depending on the external pressure.

To obtain a relation between the outgoing radiation flux F0 and the 

temperature in the surface layers, the equations for radiative transfer must be 

solved. If the opacity in the disc is mainly absorption (Kramers' opacity) then 

the disc emits roughly as a blackbody and the spectrum of outgoing radiation is 

Planckian, i.e. the radiative flux is related to the disc temperature at the 

photosphere by

D(r) = 3GMM v  
7 A

8ro-
(2.57)

o T 4=D(r) (2.58)
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where the photosphere is defined as x = l. However electron scattering alters 

the emitted flux and in this case the spectrum cannot be thought of as 

blackbody. A modified blackbody approximation must be used such as the one 

developed by Rybicki & Lightman (1979) shown in §1.7

This condition is applied at the adjusted photospheric surface defined as 

VT* (T* + ) = 1 was use<* by Czemy & Elvis (1987). It also closely

resembles the modified blackbody equations used by Laor & Netzer (1989) and 

Ross et al. (1992). It can be seen that when Kramers' opacity dominates, (1.33) 

reduces to the blackbody equation (2.58). In §2.2.4 we will explain that our 

method of solving the disc equations means that we must consider a disc that is 

wholly optically thick. A consequence of this is that the modified blackbody 

approximation reduces to the Planckian equation (2.58). This condition will be 

adopted in the following model.

We can define the boundary conditions that govern the flux and 

temperature, assuming a symmetric disc about £ = 0, as

(1.33)

- at £ = 0

F =0. (2.59)

- a t £  = C,

F = D(r) = —  
8:

j  _

3 GMM v
- : X (2.60)

(2.61)
a

To complete the boundary conditions we should specify an inner and an 

outer radial boundary condition. One of these is usually the mass flux in the
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disc, the other is usually some condition at the inner edge. We therefore expect 

the disc equations above will yield a two parameter family of solutions.

2.2.4 Obtaining the disc structure
In the standard thin disc the vertical and radial structures are largely 

decoupled. If the local energy generation rate D (r) is known for a given radius 

then the vertical disc structure can be calculated. It is only the radial 

dependence of D(r) that ties the vertical and radial structures. Our method of 

solving the disc equations is similar.

To obtain the internal structure of the disc, the disc equations derived in 

§2.2.2 are developed analytically as far as possible, before a final system of 

first order differential equations is solved using a NAG library routine. The 

NAG library routine used is D02HBF which solves the two-point boundary 

value problem for a system of ordinary differential equations, using initial 

value techniques and Newton iteration. The parameters determined correspond 

to the unknown boundary conditions. The routine is used to calculate the 

vertical disc structure, integrating between the z =0 centre line and the disc 

surface. A consequence of using this NAG routine is that all boundary 

conditions must be fulfilled at one of these limits. The boundary condition 

usually applied to the diffusion equation (2.11) governs the vertical region of 

the disc that is optically thick. As this must be applied at our disc surface it 

means that our disc must either be wholly optically thick or optically thin. The 

flux limited diffusion equation (2.12) cannot be used as a singularity occurs 

when its boundary condition (2.58) is satisfied. Hence, the diffusion equation 

we apply is the standard equation for a fully optically thick disc (2.39) radiating 

as a blackbody (2.58).

This is obviously quite restricting and any results obtained must be 

checked for consistency (§2.3.1). Future improvements to the model will 

include solving the ordinary differential equations with an alternative NAG



Chapter Two The internal structure of an a -accretion disc 58

routine such as D02SAF. This solves the two-point boundary-value problem 

for a system of first order ordinary differential equations with boundary 

conditions combined with additional algebraic equations. It uses initial value 

techniques and a modified Newton iteration in a shooting and matching 

method. In this way the parameters determined need not be boundary values; 

they may be eigenvalues, parameters in the coefficients of the differential 

equations etc. Attempts were made to use this routine, but it has proved 

difficult to apply.

The equations that govern the vertical structure of the disc at each r, 

derived in §2.2.2, are the equations for hydrostatic equilibrium (2.32) and 

energy transport ((2.37) and (2.38)). These are solved using the NAG routine 

D02HBF subject to their appropriate boundary conditions at £ = 0 and £ = ^ , 

where , the disc surface, is calculated by solving a radial equation.

In §2.2.3 it was stated that this disc model requires two further boundary 

conditions. These will be equivalent to specifying a condition at rin and another 

at rout. One of them, as we have seen, is the disc surface 5,, and the second is 

the mass flux in the disc, the accretion rate M . It will be shown later (§2.3.1) 

that the initial value chosen for has little effect on the final disc structure as

the solutions settle fairly rapidly with radius.

From (2.36) it is seen that the radial velocity depends on P0,m, which in 

turn depends on F0,a and T0,a (2.32). If we are to gain a picture of the internal

structure of the disc, we must construct a closed system of equations that can 

be solved to give P0,m, P05£0 and T0,a at all radii. Given the boundary conditions 

of §2.2.3, solutions for P0, F0, T0, P01(O, P0,M and T0>(O can be obtained by using

the NAG routine D02HBF to solve the first order differential equations (2.32),

(2.38), (2.39) and their ©-derivatives as a function of £ for a given disc height

These solutions are then coupled together radially by determining the 

evolution of the disc surface. This is achieved by calculating t)s >a) through the 

assumption of constant mass flow through the disc using (2.42).
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To summarise, given the two starting conditions ^  and M , the NAG 

routine D02HBF is used to calculate the vertical structure of the disc by solving 

the following eight first order differential equations

dPo. Pô oS
r 0to3

dFo
£0“

_ Pof,K*Fj
T* 1 0

dSo Po^ot®
d? To

9t0

(2.32)

(2.37)

(2.38)

(2.42)

at r. -  (2 62>

a c  r 0o>3 ) , “
_  ,AvPq .

a ;  _ ( co3'2 ^  1 ;

% SL = - ( -°’̂ — )■«, (2-65)t  o

subject to the sixteen boundary conditions at £ = 0 and ? = £,

-a t  ? = 0 - a t ?  = £,

/ ,o=5(l) PB=PSa

F0= 0 f 0 ='S(6)

T „ = S ( 2 )  T 0 = A T [ S m m

S0 = 0 E0=M (2.66)

= 5 0 )  t0 = 0

F0.» = 0 ^o.„ = 5(8)
.1s(8)[S(6)-3Z4])+5s^o  
4 A}

T 0,a = s  (5) r0,tt = AT (-S(8)[5 (6)-3'4]) + Ho ^  °5(7).
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The parameter AT is

16M 1/4
Ar - (W }

and S is an array that contains the eight unknown boundary conditions 

determined by the NAG routine.

We found that the strong dependence on temperature in equations (2.38) 

and (2.65) meant that any slight variation in the centre-line temperature would 

lead to a large alteration of the temperature at the surface. This was remedied 

by changing the direction of integration, i.e. by integrating down through the 

disc from £ = to £ = 0.

The boundary condition (2.55) defines a disc surface at the height 

corresponding to a pressure balance between the disc and its external medium. 

We bypass the physics here and investigate the disc structure considering a 

range of power law external pressures

P ^ocr '" .  (2.67)

The unknown S (7) corresponds to the disc surface gradient ^  and this 

is used to calculate the disc height £, as a function of © from the given starting 

radius. Written as a first order differential system, this is

y  (2 .68) 
y,„ = S( 7).

Equation (2.68) is a radial equation that can be solved using various NAG 

routines. We use D02CAF which integrates a system of first-order ordinary 

differential equations over a range with suitable initial conditions, using a 

variable-order variable-step Adams method. The internal disc structure can now
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be determined by integrating radially using (2.68). The vertical structure at 

each radius is calculated for the current disc height ^  and the result used as an 

input to the function S (7) in (2.68) for the radial integration.

To understand the resulting disc flow it is useful to derive an analytic 

solution for £J>a). Substituting the expression derived for the radial velocity

(2.36) into the equation of vertical mass flow (2.42) gives

This equation can be solved explicitly because, by using the a-viscosity 

prescription, a relationship is developed between the pressure in the disc and 

the emitted flux: from (2.37) we get

(2.69)

(2.70)

(2.71)

and from the flux boundary condition (2.57)

9GMbW  _ 2 
1287Cr2T 4M  3

(2.73)

(2.72)

Substituting (2.70) and (2.71) into (2.69) and using (2.72) and (2.73) leads to 

the expression
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This can be rearranged to give an expression for the surface gradient

“ I *
r =   (2 75)
^ 5,<D 3©5/2Pt̂  1 J

When the external pressure exerted by the surrounding environment of the disc 

is small, we have X -  X  -  0. This is the thin disc approximation,

C ,-  = 0. (2.74)

The standard thin disc central pressure in the gas pressure/Kramers' 

opacity dominated disc discussed in §1.3 was found to have an r~21/8 radial 

dependence (1.22). Therefore it is probable that if the external pressure applied 

by the surrounding environment of the disc decreases more slowly than r '21/8, 

the internal structure will be 'pushed down' as the external medium begins to 

dominate at larger distances. This is illustrated by considering the disc scale 

height H (1.7). This has a radial dependence of r 9/8. From (2.74) it is seen that 

if n <21/8 in (2.67) then the surface of the disc will force the scale height to 

deviate from its thin disc value and a change in disc structure is likely. 

Therefore we can define a 'critical' external pressure with n = nc -  21/8. For 

external pressures with n > n c we expect the thin disc to give a good 

approximation to a disc with vertical structure, whilst when n < n c changes in 

the internal structure may occur.

To complete the calculation of the disc internal structure and fluid 

velocity, the vertical velocity W0 needs to be found. We obtain only an

approximate evaluation here (see chapter 3 for a detailed treatment in a

vertically isothermal disc). The continuity equation is satisfied to order of
^ 3 CO 3

magnitude W0 = ~—U0 (assuming —  -  — ——). We obtain an expression that
© OL, L, 0(0
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satisfies the condition on the boundaries at £ = 0 and £ = £ f , if we write this in 

the form

(2.75)

since this automatically satisfies the boundary condition (2.47):

(2.76)

We therefore adopt (2.75) for WQ with the provision that this is at best an order 

of magnitude approximation. (This does not effect the computation of any other 

quantities, especially the radial velocity.

2.3 Presentation and analysis of results
23.1 Testing the code and optically thick assumption

The code has been run for various values of accretion rate, external 

pressure, and disc radius. Recall that the disc solutions require the specification

of two parameters. The first corresponds to the mass flux within the disc, the
•  __

accretion rate M  , which is taken to be constant throughout. The second, which

replaces an inner radial boundary condition (see Glatzel, 1992), we take as the 

height of the disc ^  at the starting radius for the radial integration. It is found 

that the choice of ^  has little influence on the disc solutions away from rin. 

Figure 5 and 6 show the evolution of the disc quantities T0(g>£s) and P0(co,0) 

with radial distance © for a choice of initial disc heights (£, =2, 3, 4, 5, 

corresponding to z s ~ H ,  2 H , 3H, 4H , where H  is the disc scale height 

(1.7)). The solutions correspond to a disc dominated by Kramers' opacity, with 

M  =108M0, M  =0.1M 0yr~\ a  = 0.1, and putting n = 3 in the external pressure 

law (2.67). The two functions r o(co,^) and P0(co,0) rapidly converge towards
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M©i
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CO©i

0.3 0.5 0.80.1 0.2 0.4 0.6 0.7 0.90
log w

Figure 5
The evolution of the surface temperature 7*0((D,5,) with respect to the 
dimensionless radial variable (0 for a range of initial disc heights (with
increasing Tsur: t̂ s —2, 3, 4, 5). Disc system: M  = 1Cf  M 0, M  =0.1M 0yr~l, 
a  =  0.1.

0.30.1 0.2 0.4 0.5 0.6 0.80.7 0.90
log u

Figure 6
The evolution of the central pressure P0(CO,0) with respect to (0 for a range of 
initial disc heights (with increasing P0: C)s =2, 3, 4, 5). Identical disc to figure 
6.
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radial distance (101#cm)

Figure 7
The effect of an external pressure on the disc (solid line) and photospheric 
(dashed line) surface. The external pressures applied correspond to n =  l (dark 
shade), n — 2 (light s-hade) and n = 3 (clear).

equilibrium solutions. Indeed the two most extreme choices of are within 

95% of the 'average' solution by ~ 1.3rin.

This computation has been repeated assuming electron scattering, and 

using various permutations of accretion rate, alpha parameter and external 

pressure. All results that are obtained by running the code will be shown after 

sufficiently large radial distances from the inner edge so as to ensure that the 

solutions are independent of the initial choice of .

In §2.2.4 we introduced an external pressure, in the form of a power law 

(2.67), which is applied at the disc surface. In all disc solutions to follow, this 

pressure will be assumed to be small, compared with the disc central pressure, 

at the starting radius (i.e. !P (co ,0 )« l at rin). This is so that any effects

associated with the external pressure will be independent of the initial 

conditions.

A consequence of using the NAG routine D02HBF to solve the vertical 

structure of the accretion disc, is that the boundary condition applied to the
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energy equation (2.65) must be utilised at the disc surface rather than the 

photospheric surface defined as x=l .  For consistency, we will impose the 

requirement that the photospheric surface is within 95% of the 'real' disc 

surface. In §2.2.4 an approximate analytical solution was derived for the 

surface gradient (2.74). If the photospheric surface has the same radial 

dependence as the disc scale height (Urpin, 1982), then the disc surface will 

diverge from the t  = 1 surface when the external pressure falls off more rapidly 

than nc -21/8. In figure 7 the disc and photospheric surfaces are shown for a 

range of external pressures. It is found that for n> 3 in (2.67) ^  departs too 

quickly from the x = 1 surface, and therefore these external pressures will be 

considered only in special circumstances. Although there is a departure for 

external pressures with n = 3, the divergence is gradual and only becomes 

significant at large radial distances.

In the following sections, the disc model will be used to investigate the 

three separate zones apparent in a thin accretion disc. These zones were first 

defined by Shakura & Sunyaev (1973) and Novikov & Thome (1973). Zone A 

where the radiation pressure Pr dominates (i.e. p « 1 )  and the opacity is 

determined by electron scattering, zone B where gas pressure Pg plays the main

role (i.e. p ~ 1) and electron scattering is the major contributor to opacity, and 

finally zone C, where the disc solutions are controlled by the effects of gas 

pressure and free-free transitions.

23.2 Zone C
This section concerns the disc model in zone C, where the inequalities 

Pg >Pr and kr >kes (c.f. (2.40)) hold. In §1.3 it was shown that these

inequalities are generally fulfilled in the outer regions of the accretion disc

(1.25) where the temperature is not too high. It should be noted that at such 

temperatures bound-free and bound-bound transitions can become relatively 

important along with free-free. Czemy & Elvis (1987) approximated their
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effect by increasing the numerical coefficient in (1.35) by a factor ~ 30.

This raised the temperature within the disc to a value close to that found by 

Malkan & Sargent (1982). However, changing is not expected to alter

quantitatively the internal structure of the disc (Cannizzo, 1992) and therefore 

any corrections to the opacity by bound-free and bound-bound transitions are 

ignored.

Figure 8 shows F0((o£s) scaled by the thin disc flux in the case 

M =108M 0, M = 0.04 M0yr_1, a  = 0.5 between lx l0 16cm and 1.6x1017cm for

three different laws. Note that the fluxes are above the thin disc values. 

Examples of the internal structure of the discs from figure 8 are shown in 

figures 10-12. The fluxes are decreasing with respect to the thin disc values 

where the disc has a positive slope. Where this disc flux ratio is decreasing and 

less than 1, the disc surface has turned over and the slope is negative (compare 

figure 12).

We now show that this behaviour is a general property of these discs. 

We have, from equations 2.69 and 2.70 that:

and

So

(2.77)
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Now, since the thin disc flux Fd = aco-3, we have F J  Fd oc ©3/2 r '  , and ifJo

Fs / Fd is decreasing then

_3_
d(D

( ^  \
Q>3/2JP0<*C

V o j
= -k:

say. We deduce that

3coF,

2 4
= (-M ) + 3cofe2 + 3<o5/24  />(£,)

dco
(2.78)

We now make the comparison with the thin disc by using these expressions to 

relate our constants to the value of a. For the thin disk flux we drop the final 

term in (2.77) to get

6cd3F, • <n d — —-  = ( - M)  -  3© —  
4  day

co3/2Fa

4
(2.79)

from which, putting Fd = a(0 , we obtain

Fh = 24X-M)
3CD3

(2.80)

Thus, finally, we obtain

f s = f a + ^ - k ,
G)

(2.81)

where K  = 3coA:2 + 3co5/2(d£s / dco)Fo(Cs)- If the surface of the disc is rising with 

radius and equation (2.77) holds then we obtain the theorem (pointed out to us 

by C. Clarke) that the disc flux can only be above the thin disc value.
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2x10'

Figure 8
The ratio between the emitted flux and the predicted thin disc value as a function 
of radius for three external pressure power laws (n=0, 1, 3). The dashed line 
corresponds to F0((o£s ) = F(thin).

Disc system: M  = 108M0, M = 0.4M0yr~l , a  = 0.5, Kramers' opacity.
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Figure 9
The ratio between the external pressure and the central pressure as a function of 
radius for the three values of n (=0, 1, 3).

Disc system: M  = 108M0, M  = 0.1Af0̂ r_1, a  = 0.5, Kramers' opacity
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Figure 10
The r-z velocity field of the disc in figure 9 with n = 3. The dashed line shows 
the disc surface. The inflow velocities at the surface are ~ 10*cm s~l, the 
outflow velocities at the equatorial plane ~ 103 cm s -1.

Alternatively, if the disc slope is negative (height decreasing with radius) and 

Fs / Fd is increasing then the disc flux is below the thin disc value.

Figure 9 shows that at large distances the external pressure has become 

negligible and the disc solutions converge to those of the standard thin disc, i.e. 

r o(co,0) oc r‘3/4 and F0(o),^) <̂ r-3. This result is confirmed by Urpin (1983) 

whose accretion disc was not influenced by an external medium.

The velocity structure of the disc with n = 3 is shown in figure 10. An 

outflow of material is observed close to the £ = 0 centre line, as first predicted 

by Urpin (1983). This outflow has since been confirmed by Siemiginowska 

(1988) and Kley & Lin (1992), and we showed in §2.2.2 that it is due to the 

viscous transport of angular momentum in the radial direction, summarised by 

the ratio
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p 2
(2.37)

P0 ©

Siemiginowska (1988) also found small meridional circulations close to the 

equatorial plane. However this is probably due to the poor ordering of the disc 

equations which is illustrated by their inability to keep the accretion rate 

constant. Eggum et al. (1987) solved the time dependent hydrodynamic 

equations to obtain the internal structure for a two-dimensional accretion disc 

around a black hole. Their solutions show a small convective cell moving away 

from the central black hole, but there is no outflow of material along the centre 

line. This is probably due to the lack of resolution inherent in finite difference 

methods, whilst the appearance of the cell seems to be a consequence of the 

initial conditions.

When n = 1 the external pressure applied at the disc surface becomes 

significant away from the central black hole (figure 9). The surface contribution 

to the flux becomes quite significant causing notable departures from the thin 

disc solutions (figure 8). In reality, any observable changes would depend on 

the source of the external pressure, and where and for how long the external 

pressure would be a sizeable fraction of the disc central pressure. Sources of 

external pressure will be discussed in §2.4.

Figure 11 shows that for n = 1, the disc begins its departure from the thin 

disc as the external pressure reaches approximately 1% of the disc centre line 

pressure. The surrounding medium exerts such a force that the disc and 

photospheric surface are suppressed from their thin disc radial dependence of 

~ r 9/8 (as can be seen in figure 7). This effects the other quantities in the disc 

(seen in figure 8). The compression, caused by the external medium, forces the 

centre line pressure to fall less rapidly. This gives rise to a change in the 

velocity flow and the equatorial outflow is replaced by inflow (2.37). Figure 12 

shows the velocity change occurring on the centre line at ~ 1.6x 1017cm. The
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1.5x10 2x10'5x10

radial distance (cm)

Figure 11
The r-z velocity field of the disc in figure 9 with n = 1. The effect of the external 
pressure becomes evident at large radii with a compression of the disc surface 
(dashed line).

o

o
5x10 1.5x10 2 x 1 0 ’

radiol distance (cm)

Figure 12
The r-z velocity flow of the disc in figure 9 with n = 0. At large radii 

~ P0(CD,0) (figure 9) causing the disc surface (dashed line) to bend over. 
The flow on z = 0 changes direction at ~ 6 x  1016 cm . Surface velocities range 
between ~ 103 —104cm s ' 1, equatorial velocities ~ 102cm s ' 1.
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values of the vertical velocity are approximate. A more accurate velocity field 

for a vertically isothermal disc showing the change from outflow to inflow will 

be shown in chapter 3, where a circulation of disc material will be shown to 

occur. Kley & Lin (1992) also predict a directional change in the centre line 

velocity. But this occurs at large values of a  and is a consequence of assuming 

that the vertical transport of angular momentum is important within the disc. At 

this stage we neglect this vertical transport, although we will show that it is 

important when a external torque is applied to the disc (chapter 4).

The disc structure obtained for a disc under the influence of an extreme 

external pressure n = 0 is also shown in figure 12. Here the external pressure 

becomes of the same order of the disc centre line pressure (figure 9) at large 

radii. This is equivalent to calculating the n = 1 disc to greater radial distances, 

or considering an n = 1 disc with an increased a  or decreased M  over the same 

radial region. As seen in figure 12, the disc surface is 'pushed over', compacting 

the disc material into a very small region. The insistence on a fixed accretion 

rate means that the density and temperature within the disc decrease slowly 

with radius. An application of an external pressure 'pushing' the disc surface 

past the horizontal will be discussed in chapter 3.

The boundary condition for thermal equilibrium (2.58) implies that our
  •

disc remains optically thick. This has the result of 'warping' the standard M  (X)

curve (shown in the discussion of slim discs; figure 3). Figure 13 shows the 

equivalent of the lower branch of the logM (log X) curve (corresponding to a 

gas pressure dominated disc in figure 3) for the previous selection of discs at 

the selected radius lx  1017 cm . As can be seen for the n = 3 line, discs subjected 

to small external pressures ( n < n c) tend towards the thin disc value at large 

accretion rates. As the accretion rate gets smaller, the thin disc surface density 

declines and the disc becomes optically thin. Our insistence that the disc 

remain optically thick is shown by the disc tending towards a constant X at 

small M  .
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Figure 13
The M  (X) relation for the disc in figure 9 taken at r = 10 cm . The dashed 
line represents the thin disc value.

For the more significant external pressure n = 1 the velocity change near 

the equatorial plane, from outflowing to inflowing, is shown by the reduction in 

surface density. As mentioned previously, this is due to the fact that if the 

accretion rate is constant there is more material in a disc with both inflowing 

and outflowing matter. This is also shown when n -  0, although the large 

compression of the disc structure leads to a slight increase in the surface 

density. At large M  the effects of the external pressures get smaller. This is 

seen by the convergence to the thin disc value for all n .



Chapter Two The internal structure of an a -accretion disc 75

233 Zone B
We now consider zone B where the gas pressure is dominant and 

electron scattering gives the main contribution to opacity. As seen in §1.3 this 

region is situated closer to the central black hole than zone C. In §2.2.3 it was 

mentioned that when scattering becomes more important than absorption within 

the disc, the outgoing radiation can no longer be blackbody. Therefore, instead 

of trying to solve the full radiative transfer problem, a modified blackbody 

approximation is used (i.e. (1.33)). This has the effect of flattening the emitted 

spectrum (see §1.7). The form of (1.33) shows why the explicit calculation of 

the vertical structure is important for obtaining accurate emission spectras. It is 

not at all clear that the vertical averaging technique, as used by Czerny & Elvis

(1987), Maraschi & Molendi (1990), Cannizzo & Wheeler (1984) etc., will 

produce the same solutions at a modified photospheric boundary. In principle, 

the emission spectrum will be affected by the vertical distribution of 

temperature and density (Shimura & Takahara, 1993).

As our method of solving the disc equations does not allow us to 

implement a modified blackbody assumption, our results must concentrate on 

the dynamical structure of the accretion disc.

Figure 14 and 15 show the radial variations of the scales flux F0(<»,£,) 

with respect to the thin disc results, for three forms of the external pressure 

(n = 3, 1, -1). in the case of high and low accretion rate respectively. Figure 14 

shows the case M  = 108M0, M  =0.4M 0yr~ \ a  = 0.5 between 5x1015cm and

4xl016cm. This is analogous to figure 8. The flux ratio is greater than 1 and, 

where the disc surface has a positive gradient, is falling towards 1. Figure 15 

shows F0 (co,Q in the case M =108M0, M  = 0.1 M0yr~l , a  = 0.5 between

5x1015cm and 4xl016cm. For this relatively low value of accretion rate the flux 

is less than the thin disc value but is rising to meet it. In this case again, to 

within a small numerical error, the disc surface for both the cases n = 1 and 

n = -1 turn over at the point where the flux ratio starts to decrease. We have not
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Figure 14
The ratio between the emitted flux and the predicted thin disc value as a function 
of radius for three external pressure power laws (n =-1, 1, 3). The dashed line 
corresponds to F0(g>,£5) = F(thin).

Disc system: M  = 108M0, M  = 0.4M0yr~l , a  = 0.5, electron scattering.
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Figure 15

The same as figure 14 but with M = 01M 0yr~l
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Figure 16
The same as figure 14 showing the ratio between the external pressure and the 
central pressure as a function of radius for the three values o f n (=  -1, 1, 3).
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Figure 17
The r-z velocity field of the disc in figure 14 with n = 3. The dashed line shows 
the disc surface. The inflow velocities at the surface are -1 0 5cm s ' 1, the 
outflow velocities at the equatorial plane ~ 103cm s ~l.
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Figure 18
The r-z velocity field of the disc in figure 14 with n — 1. The effect of the 
external pressure is evident at large radii with a compression of the disc surface 
(dashed line).
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Figure 19
The r-z velocity flow of the disc in figure 14 with n = —1. At large radii 

~ P0(GD,0) (figure 16) causing the disc surface (dashed line) to bend over. 
The flow on z = 0 changes direction at ~ 6x  1016 cm . Surface velocities range 
between ~ 104 —105cm s~l, equatorial velocities ~ 103 cm j -1.
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Figure 20
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The M  (X) relation for the disc in figure 14 taken at r = 10 cm. The dashed 
line represents the thin disc value.

investigated the existence of this branch of solutions for Kramer’s opacity in 

zone C, but it could be present for very low values of M .

Returning to the thin disc equations (1.20), it is easy to see that if the 

opacity is given by electron scattering (1.24), then the central pressure has 

a radial dependence of r~51/20. This translates to a critical external pressure (see 

§2.2.4) of nc ~ 5/2. The n - 3 curve, as expected, converges towards thin disc 

values of r~mo and r“3/4 for the emitted flux and cental temperature 

respectively. The effect of the surface term on the flux becomes negligible at 

large radial distances (X -» 0 in (2.57)) due to the insubstantial external 

pressure (figure 16). For greater external pressures (n < nc ) we once again see
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the effect of the surface term. The same effect occurs for all n < nc, the radial 

range of these effects being controlled by the choice of a  and M .

Figures 17-19 show the velocity fields for the discs mentioned above. 

Once again, the outflow along the central line is observed for discs with n > n c 

as predicted by Urpin (1983) (c.f. his region B).

External pressures with n < n c 'warp' the internal structure of the disc to 

such an extent that the material flow changes direction near the equatorial plane 

and becomes inflow. The accompanying change in the surface density is shown 

in figure 20.

23.4 Zone A
In this section we investigate the disc in a region where radiation

pressure dominates over gas pressure and electron scattering is the main source

of opacity. This region corresponds to the inner regions of the accretion disc

(see §1.3). The difficulty in obtaining smooth solutions for a disc moving

between gas pressure and radiation pressure dominated regions has been

highlighted by the fact that the internal structure of such a disc has not been

investigated. Urpin (1983) considered disc regions comparable to zone C, zone 
B, and a disc zone corresponding to Pg ~Pr. Similarly, both Siemiginowska

(1988) and Kley & Lin (1992) concentrated on calculating the internal structure 

of the gas pressure dominated disc.

It has been found that when radiation pressure becomes more important 

than gas pressure the disc becomes thermally and viscously unstable. This is 

due to the fact that there is an insufficient dependence of the rate of radiative 

cooling (2"on temperature, to counteract the rate of viscous heating Q+. The 

disc suffers from overheating and thermal runaway occurs (Abramowicz, 

1981). The general criterion for thermal stability of the standard thin disc 

model is
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(2-82)dtoH z 3 h H z

This inequality is usually represented as a limit on the ratio between gas 

pressure and total pressure p (2.30) (i.e. p > 2 /5  (Abramowicz et al., 1988), 

p > 2 /9  (Milsom et al., 1994)). If stable structures do not exist, then the disc is 

likely to become optically thin (Shapiro et al., 1976).

There have been various models proposed to quench the thermal 

runaway. Abramowicz (1981) suggested that advective cooling (heat transport 

by the bulk motion of the disc material) at the inner edge of an accretion disc 

could have a sufficiently high dependence on temperature to counterbalance the 

large rate of heating. This stabilization could only occur for large rates of 

accretion (close to the Eddington limit), where the standard, geometrically thin 

model was no longer applicable. Hence, a new thermally stable disc model was 

constructed, the 'slim' disc (Abramowicz et al., 1988), characterised by the S- 

shape M (I) curve (see §1.10 figure 3). The lower and upper branches 

correspond to disc solutions that are both thermally and viscously stable. The 

lower branch is the solution for a gas pressure disc, whilst the upper branch is 

the solution to a radiation pressure dominated disc cooled by vertical radiative 

flux and horizontal advection. The middle branch follows a radiation pressure 

disc with cooling due to the vertical radiative flux only. Accretion on this 

branch is both thermally and viscously unstable. Viscous instabilities arise 

because when dM IdE<0 more material is fed into those regions of the disc 

that are denser than their surroundings, and material is removed from those 

regions that are less dense, so the disc tends to break up into rings (Lightman, 

1974; Lightman & Eardley, 1974).

Alternative models that predict a stable radiation pressure dominated 

disc, have been obtained by using different viscous prescriptions. In an attempt 

to understand dwarf novae outbursts it was necessary to have the viscous
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parameter a  vary from a low value in the quiescent state to a high value in the 

outburst state. A successful approximation was a = a0(H / r)n (Meyer & 

Meyer-Hofmeister, 1983; Mineshige & Shields, 1990). When this prescription 

is applied to radiation pressure dominated discs, limits are imposed upon the 

disc height and thermally stable discs are produced (Milsom et al., 1994). The 

disc solutions take the form of an M (2) S-shaped curve as mentioned in the 

discussion of slim discs. There are therefore two stable 'branches' 

corresponding to high and low accretion rates, and a thermally and viscously 

unstable middle branch for discs with intermediate M  .

As of yet, advection is not included in our model, so we do not expect 

our results to be relevant to those of the slim disc (Abramowicz et al., 1988). 

Similarly, our prescription for the viscous mechanism (1.43) assumes that a  is 

constant. Therefore, we anticipate our solutions to suffer from the same viscous 

and thermal instabilities as the standard thin disc when radiation pressure 

dominates over gas pressure.

To find solutions when approaching the unstable region, the code is run 

’backwards', the radial equation (2.68) being solved from an outer radius 

inwards towards the central gravitational source. When the code is reversed, 

external pressures become significant close to the central black hole when 

n > n c.

Figure 21 shows the values of p at the surface and equator as a function 

of radius for the external pressure n = 1 and M =108Af0, M = 0 . \M 0yr~\  

a  = 0.5. This value of n means that the external pressure becomes negligible at 

inner radii and the disc solutions should approach those of the thin disc. 

However, as the vertical structure of the disc is calculated explicitly, we see 

that the upper regions of the disc rapidly become radiation pressure dominated. 

This can occur at fairly large distances from the central source (~ 1.5x 1015cm in 

this example), significantly further than in the vertically averaged solutions of 

the thin disc (see equation (1.27)). As the surface value of p 0 the disc height
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Figure 21
The gas pressure to total pressure ratio is plotted against radius at both the 
surface and centre line p0 (thick lines). The external pressure law (2.67) has 
n = 1. The disc surface (scaled) is also plotted (thin line).
Disc system: M  = 108Af 0, M  = 0.1M0y r -1, a  = 0.5, electron scattering.

begins to increase, signifying the onset of disc flaring. It should be noted that 

the equatorial zones of the disc, unaffected by the small external pressure, 

follow the standard thin disc solution and at this distance (-2 x 1 0 15cm ) the 

equatorial region is dominated by gas pressure.

To understand what is happening within the disc, an approximate 

estimate of the solution of (2.39) can be investigated (where the subscript s 

denotes the value at the surface):

tr05]5= -[  (2.83)

Note that the model imposes the condition that the disc is in thermal and 

hydrostatic equilibrium. When the external pressure is insignificant at a given 

radius, accretion rate and black hole mass, the emitted flux [FJ,, and surface 

temperature [Tq], are fixed quantities (2.57; 2.58). Therefore as radiation
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Figure 22
The M  (2) curve for the disc in figure 21 taken at 1.5x 1015 cm .

pressure begins to dominate (p —»0), the disc surface flares up in

2.83). It is due to this fact that past attempts to investigate the internal structure 

of geometrically thin, optically thick accretion discs (Urpin, 1982; 

Siemiginowska, 1988; Kley & Lin, 1992) have avoided the radiation pressure 

dominated region. In our example, at ~ 1015cm the upper regions of the disc 

effectively become optically thin and our model breaks down.

In figure 24 we show the logAf (log 2) relation for the disc at 

1.5xl015cm. The gradient is positive because the majority of the disc is still 

dominated by gas pressure which is viscously and thermally stable. When
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Figure 23
The gas pressure to total pressure ratio is plotted against radius for the disc in 
figure 21 with n = 3. Both the surface p5 and centre line p0 (thick lines) values 
are shown. The disc surface (scaled) is also shown (thin line).

log AT — 0.5 the disc surface begins to flare, the upper regions become 

optically thin and our results become unreliable.

In figure 25, a more significant external pressure is applied to the inner 

disc region (n = 3). In this case the material near the disc surface remains cooler 

than that of figure 23, thereby reducing the significance of radiation pressure. 

We find that in the inner regions of the accretion disc it is the material near the 

equator which is subjected to the greater proportion of radiation pressure. 

Another difference with the disc in figure 23 is that the disc surface does not 

flare up as the contribution from radiation pressure increases. As the only 

difference between figure 23 and 25 is the value of n , the change in the disc 

solutions must be a consequence of the effect of the surface pressure on the 

flux.

If we consider a radiation pressure dominated disc (p ~ 0) subjected to a 

large external pressure, we see that the disc cannot maintain hydrostatic 

equilibrium by raising the disc surface (as it did in the n = 1 case, see (2.83))
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Figure 24
The M  (X) curve for the disc in figure 23 taken at 8 X1014 cm

because the surrounding medium 'pushes' the surface down. Therefore to keep 

(2..83) consistent, [FJ, and \T0]s are reduced by the surface terms (in a similar 

fashion to that seen in zones B and C).

Figure 24 shows a disc with the same configuration as that in figure 22, 

but in this case n = 3 and the solutions are shown at 8x1014cm. As in the 

standard thin disc our solutions become viscously unstable (at log M ~ -0.1 in 

this example). As the accretion rate increases (figure 24) the effect of the 

external pressure lessens and the disc surface flares (as with the disc in figure 

22). The upper regions of the disc become optically thin and our results 

unreliable.
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Figure 25
The r-z velocity field of the disc in figure 23. As radiation pressure begins to 
dominate the velocities become large (2.36; 2.80). The surface velocities 
~ 106cm s -1 and central velocities ~ 105cm s ' 1.

The internal structure of the previously discussed disc (n = 3) is shown 

in figure 25. When radiation pressure dominates (p —> 0) the fluid velocities 

becomes large (c.f. (2.36) and (2.80)). This implies that advection (heat 

transport by the bulk motion of the disc material) could become important in 

this region. As discussed earlier in this section, this was proposed in the slim 

disc of Abramowicz et al. (1988), where the inflowing disc material carried a 

proportion of the locally generated energy before depositing it closer to the 

inner boundary. This was used as a cooling mechanism, to prevent the radiation 

disc thermal instability. However, figure 25 shows that the central regions of 

the disc are outflowing, and any advection would deposit energy at greater 

distances.
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2.4 Sources of external pressure
In the previous section it was realised that when an external pressure is 

applied to an accretion disc in the form of a power law

P&a °c r~n, (2.67)

then there is a critical value of n = nc, where if n < nc the external pressure can 

become large enough (at large radii) to alter significantly the internal structure 

of the accretion disc.

Until now, the cause of the external pressure has been unspecified. In 

this section we will discuss a variety of pressure sources, and investigate if any 

of them can provide a significant 'push' that could influence the disc structure.

2.4.1 Disc coronae and winds
The scale height of a standard thin disc increases with radius as r 9/8 

(1.22). X-rays emitted by the central component region near the black hole will 

either be intercepted directly by the ’flared’ outer regions of the disc 

(Cunningham, 1976), or partly reflected towards the disc by a Compton thin 

medium (Jones & Raine, 1980; Begelman et al., 1983; Collin-Souffrin & 

Dumont, 1990). The radiation is sufficiently hard that material in the upper 

regions of the disc can be heated, by the Compton process, to temperatures 

exceeding 107X (Begelman et al., 1983). As these temperatures are far greater 

than the internal temperatures associated with the outer regions of accretion 

discs, the heated gas forms a tenuous corona with a thickness exceeding that of 

the disc. If the sound speed in the heated gas also exceeds the escape speed of 

the system at that radius, then the gas steadily escapes as it is heated, forming a 

wind.

To summarize, we can define
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^ r l r IC=TIC/Tg (2.84)

where r/c is the radius at which the Compton temperature equals the escape 

temperature (~ 1018cm), TIC is the 'inverse Compton temperature', at which 

Compton heating balances inverse Compton cooling (~ 108̂ ), and Tg is the

escape temperature. If £<1, we expect a sharp transition from a disc 

photosphere to a static hot corona at T -T IC. On the other hand, for £> 1, a 

vigorous wind may arise as the gas is heated to a temperature that exceeds the 

escape temperature.

The surrounding corona, or wind, will exert a pressure upon the disc. 

Begelman et al. (1983) found that in the inner regions of the disc (£< 1) the 

ratio of the external pressure to that of the internal disc pressure yielded

^E xt _  1 0 8 . ^ 4  /  £  \  / o  o c \

( 2 - 8 5 )

where E'0 is the ionization parameter at the base of the wind/corona, e is the 

efficiency of mass-to-energy conversion in the accretion flow, and f  is an 

attenuation factor. All these terms are of order unity, a  is the usual a-viscosity 

parameter. At a distance of ~ 1016cm, this ratio is -  lO^ocr '̂8. This value is 

probably too small to effect the structure of an accretion disc.

For discs with £ > 0.1, Begelman et al. (1983) found the ratio

Ee*. >SL(1±-)U* . (2.86)
P0 28 r /C8 5

At a distance of ~ 1017cm, (2.86) corresponds to a ratio of about ~ 10“2ar^/8. 

This magnitude of external pressure could be significant enough to cause 

structural changes within the disc, especially for discs with high a  or low M . 

In principle, this could be observed by a reduction in the predicted blackbody
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emission spectrum. However, at such large distances from the central black 

hole (-1017cm) it is debatable whether any departures from a thin disc 

spectrum could be observed. Changes would occur in the optical/infrared end 

of the spectrum and most likely would be swamped by the reprocessed 

emissions associated with the infrared bump (Collin-Souffrin, 1994).

2.4.2 Jets
In the previous section (§2.4.1) X-rays emitted by the central region near 

the black hole were discussed as the energy sources that produced disc coronae 

and winds in the outer radii of accretion discs. However, it has also been 

suggested that there is a hard X-ray component associated with radio jets 

(Canizares & White, 1989). This component has a Compton temperature of 

order 108X and illuminates both faces of the disc directly.

Irradiation of the disc by the jet will contribute to the pressure on the 

surface of the disc by heating the disc material. The external pressure on the 

disc from this source will take the form P \/(r2 + h2), where h is the height 

of the jet source above the disc. From Begelman et al., (1983), a more complete 

expression can be derived. Assuming that the incident X-rays are unattenuated 

while passing through the disc flow, the external gas pressure applied to the 

disc surface will be strictly proportional to the mean radiation intensity 

encountered there: i.e.

(2-87)47t(r +h )c^0

Here I L ^  is the luminosity of the jet. For S ', the ionization parameter at the 

disc surface, we put E' =3 (Begelman & McKee, 1983). The height of the jet 

source is of order 5x 1016 -5 x  1018cm, which means an almost constant external 

pressure applied to an accretion disc for r < h . When r > h the external
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Figure 26
The ratio of external pressure to central pressure as a function of radius. The 
external pressure is provided by radiative heating of the disc atmosphere by the
hard X-rays from radio jets with (i) h = 5x 1016cm , M  =0.01M Qyr~x; (ii)

h = 5 x l 0 16cm, M  = 0 . \M 0yr~1; (Hi) h = 5x\Ollcm, M  = 0.01M0yr_1;
(iv) h = 5 x 1017 cm, M  = 0.1M 0yr ~l in (2.87).
Disc system: M  = 108M 0, CL = 0.5, = 0.1, Kramers' opacity.

pressure falls off as ~ r"2, which is still more slowly than the disc central

pressure. Figure 26 shows how the /P0(co,0) ratio changes with radius for a

variety of disc configurations and disc heights. The more dominant external

pressures are related to the discs with low accretion rates. In reality the
•

luminosity of the jet is related to the accretion rate and so a reduction in M  

will be met by a similar reduction in IL ^ ,  thereby changing P ^  /P0(co,0). 

Even with this taken into account, it is clear that the external pressure will 

become significant enough to alter the internal structure (P^  /P0(co,0) > 0.01) in 

the outer regions of the disc.

An alternative approach to calculating the external pressure provided by 

radio jets is outlined by Krautter et al. (1983). Their work involves calculating 

the external equilibrium pressure needed to collimate a jet. If it can be assumed
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that the collimating pressure follows approximately spherical isocontours then 

a similar external pressure will be applied to the disc surface at equivalent 

distances. This would certainly mean that there are large external pressures in 

the inner regions of accretion discs.

2.4.3 An optically thin accretion disc
The discovery of new classes of galactic X-ray sources in the 1970's (the 

'bursters', and the globular cluster sources; see Grindlay, 1976, for review) 

brought about the need for a new type of disc model. These new X-ray sources 

had an average X-ray luminosity Lx - 1 0 erg Is, and peak luminosities 

exceeding 10 * erg Is, at energies E > \keV , along with remarkable time- 

variations. Black hole masses of M ~ 103AT 0 were postulated by Silk & Arons 

(1975).

The standard thin disc model (Shakura & Sunyaev, 1973) predicts a very 

soft X-ray spectrum under the relevant conditions L ~ 1017erg Is, M ~ 103Af0, 

with an observed emission temperature kTx « 1  keV . Therefore this model 

does not apply directly (Liang, 1977). However, Pringle et al. (1973) noted that 

'non-standard' optically thin accretion discs around massive black holes could 

be constructed. These would predict a strong emission in the X-ray band.

Since the possibility of optically thin discs was first postulated, a great 

deal of work has been done in this area to provide a model of the hard X-ray 

and gamma-ray emission of AGN. This has taken the form of wholly optically 

thin discs (i.e. Payne & Eardley, 1977; Kusonose & Takahara, 1988) or 

'sandwich discs', where a fraction of the accretion flow forms an optically thick 

disc, geometrically thin disc, while the rest of the material is in a hot, optically 

thin disk, extending as a corona above and below the optically thick region (e.g. 

Wandel & Liang, 1991).

In the case of a sandwich disc the optically thick disc and optically thin 

corona will be in pressure balance at the optically thick surface (Kusonose &
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Mineshige, 1994). In this section we will derive a 'simple' optically thin disc in 

order to discover the magnitude of the external pressure it would provide to a 

geometrically thin slab of optically thick material in the equatorial plane.

In an optically thin disc ( t < 1) radiation escapes freely once produced 

and the material itself reabsorbs very little. The diffusion equation (1.13) can 

no longer be used to describe the flux of radiant energy and instead the volume 

loss of energy is

where j v is the emission coefficient. A variety of optically thin disc models 

have been developed using different cooling mechanisms; the pure 

bremsstrahlung disc, the Comptonised bremsstrahlung disc and the 

Comptonised soft photon disc, all in both the one-temperature and two 

temperature (different temperatures for the electrons and protons) version and 

including the effects of electron-positron pairs (see Kusonose & Takahara, 

1988 for pairs in the two temperature pure bremsstrahlung disc and Tritz & 

Tsuruta, 1988 for pairs in the two temperature Comptonised soft photon disc).

In developing a basic model for an optically thin disc we will not take 

into account soft photon sources (produced by blackbody emission or 

synchrotron radiation for example). Therefore we neglect the effects of 

Compton scattering. Comptonization of bremsstrahlung photons may play a 

role in creating a Wien bump if %ES (the optical depth if electron scattering is 

the dominant opacity mechanism) is large enough. However, as we will show, 

the effects are not significant for the obtained values of tes .

In all disc models, energy is initially deposited into the protons. In the 

one-temperature disc, energy exchange between protons and electrons is rapid 

and the proton and electron temperatures are simply set equal, whilst in the 

two-temperature disc, protons cannot cool down to the temperature of the

(2 .88)
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electrons. The internal structure of the disc is unlikely to be strongly coupled to

the electron temperature (Chen, 1995), and so we shall set the disc temperature 
equal to the proton temperature T ~Tp. The electron temperature is

approximately one order of magnitude smaller than the proton temperature 

(Guilbert & Stepney, 1985). Thus, our model is to be a simple one-temperature 

optically thin disc cooled by pure bremsstrahlung.

The model will take the same form as that derived for the optically thick 

disc in §2.2. Assuming that the local radiative cooling is provided by optically 

thin thermal bremsstrahlung, (2.88) becomes

where cff =5.6 xlO20erg s ~l K~m g '2 cm* is the bremsstrahlung emissivity

coefficient, and the Compton luminosity enhancement factor A ~ 1 (Wandel &

Liang, 1991). For optically thin discs the pressure is given by the gas pressure 

(P =Pg in (2.13), or p = l in (2.30); Eardley et al., 1978). This and equation

(2.89) dramatically simplify the energy equation (2.8). Using the thin disc 

expansions derived in §2.2.2, (2.8) becomes

-V .F = c/fp2T 1/2A (2.89)

[U(cc2),„ +W(oc2),c ] + - o c 2(1 7 ,. +W,c + - )  - -Z2—  
^ 2   ̂ o  ae ro

ce p T m M f _ ^ m  ncvoM
a z ’c a c

(CO2̂  )2- 2 o W ^ + V 2)

(2.90)

The zero order terms correspond to an energy balance between cooling by 

bremsstrahlung and the energy generated locally by viscous dissipation: using
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where

CffjpTV2Mr
3----- • (2.92)a c

As the disc is dominated by gas pressure, this zero order can be rearranged to 

give an explicit expression for the disc temperature in terms of pressure

7’o3'2= ^ w P0<»3'2. (2-93)

This indicates that a knowledge of the emitted flux from the disc is not needed 

in determining the internal disc dynamics, in contrast to the optically thick 

case. Therefore the final system of disc equations is greatly simplified, along 

with the applied boundary conditions. The radial derivative of temperature can 

be found explicitly from (2.93), and so the system of eight first order 

differential equations in §2.2.4 needed to obtain the vertical structure of an 

optically thick disc is reduced to a system of four first order differential 

equations for the optically thin disc:

d f t _  , 9 2/3P0'% 
a ;  4Abmn (o4

(2.94)

dPo’a _  // 9 2/3 Po'%, 
f t  ~ *Airm CO4 J’“

(2.95)

9 x2 /3 n l/3 r r

ac ~ V J  P° u °
(2.96)

3*0 _ (  9 2/3 p y
f t  AAbrtm <0

(2.97)

where from (2.36) and (2.93) we see that
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dA P PU0 = ffhrSnL0)2/3 (.6^3/2 _ 3^/2 fono.) ^  .98)

9 P0

The equation for optical depth (2.97) is calculated using electron scattering to 

describe the opacity. It is included in order to check for consistency. The 

optical depth must remain low < 2.5) for our disc to remain optically thin, 

and Comptonization of bremsstrahlung photons negligible (Kusonose & 

Takahara, 1988). Without the need to calculate the flux at the surface of the 

disc, the boundary conditions are simply a condition of pressure balance at the 

disc surface between the disc and its surrounding medium, and the condition of 

constant mass flux:

at £ = 0

P o = S ( D

Po- = S( 2)

N? — f)*—o w

-atC = i

P = Pr 0 Ext

Pqi<d Pe* » H .2/3p wr
Ext S j

4 Abrem CO
5(3) (2.99)

S 0=M

T0 =5 (4) T0 = 0

where similarly to §2.2.4 the array 5 contains the unknown parameters to be 

calculated by the NAG library routine.

To obtain the radial structure we need to prescribe two boundary 

conditions at rin and rout. As with the optically thick disc, these correspond to 

the accretion rate and disc surface height at the starting radius. The radial 

structure of the disc is obtained by solving the first order differential equations

 ̂ (2.100)
y,a = 5(3)

where 5 (3) is the disc surface gradient ,(D.
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The surface is defined by a condition of pressure balance with the 

external medium. Once again, we shall express the external pressure in the 

form of a power law

/V* « r - .  (2.101)

Its source maybe a static corona or disc wind that originates from disc 

irradiation by either the central continuum near the black hole or a jet.

To obtain an order of magnitude value for the central pressure of our 

optically thin disc, (2.94) can be solved explicitly with the appropriate 

boundary condition to give

Po = ( P g + (T r—)2'3(% Ir-))3/2- (2.102)
™brem

Therefore the central pressure is obtained as

Pc = ( P £ + (- -j— T !- f r Y "  (2.103)4K.m 3“
,2/3 , /  7  \2 /3  S j  \3/2

and from (2.97) the central temperature is

t c =  + Z T - w )co- ( 2 1 0 4 )brem

At a radial distance of 1016 cm this corresponds to a temperature of 

~ 108AT. As the disc is in hydrostatic and thermal equilibrium, a disc 

temperature such as this translates to a relatively geometrically thick disc of 

height ~8x l014cm. Therefore, we can consider a 'sandwich' disc system 

(Wandel & Liang, 1991) where a geometrically thick, optically thin disc 'sits' 

upon a geometrically thin, cold slab of material. In this case the optically thin
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Figure 27
A plot showing the evolution of the central pressure (thick lines) and external 
pressure (thin lines) with radius for a three values of n  in (2 .105). For both 
central and external pressure (in increasing logP ) n — 1 , 2 ,  3.

Disc system: M  = 108M 0, M  = 10~*MQyr~l, a  = 0.05, optically thin disc.

disc will be in pressure balance with the optically thick slab; equation (2.103) 

gives the external pressure being applied to the lower material.

We have run the code described above for an optically thin disc under a 

variety of different accretion rates and external pressures (2.101). Figure 27 

shows how the central pressure of the disc varies with radius under the 

influence of a variety of external pressures. We see that for low values of n  

(external pressures becoming significant at large radii) the central pressure 

converges towards its surface value. This is because the external pressure 

compresses the surface, keeping the value of low in (2.103), and therefore 

P  . For higher values of n  the central pressure departs from its surface 

value as the external pressure becomes negligible at large radii, and £, large. 

The overall result is that the central pressure of an optically thin disc is unlikely 

to be many orders of magnitude greater than the pressures provided by coronae 

or winds (calculated in §2.4.1 and §2.4.2).
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We have established the fact that real sources of external pressures can 

become large enough to alter the disc structure. We now discuss whether any of 

these changes will be significant enough to manifest themselves as observable 

phenomena.

2.5 Discussion
2.5.1 Vertically isothermal approximation

The internal structure of a geometrically thin, optically thick accretion 

disc has been investigated when an external pressure is applied at the disc 

surface. In §2.4 we showed that this external pressure could be provided by a 

hot corona or wind that surrounds the disc. When the applied pressure is small 

(<0.1% of the disc central pressure) we find that the disc quantities can be 

approximated by the classical solutions of the standard thin disc (Shakura & 

Sunyaev, 1973; Lynden-Bell & Pringle, 1974). However, the vertically 

averaged solutions of the thin disc cannot resolve the internal structure of an 

accretion disc and the fluid flow is assumed to be wholly inflowing. In self- 

consistently solving the internal structure of the disc we find an outflow of 

material near the equatorial plane and inflow near the surface of the disc. This 

is a similar result to that found by Urpin (1983) (and after him Siemiginowska

(1988) and Kley & Lin (1992)). However, in solving the vertical structure of 

the disc Urpin approximated the hydrostatic equation (2.32) with the vertically 

isothermal solution a 0 «=exp(-£2/2H 2), and therefore his solutions must be 

thought of as pseudo-isothermal. The similarity between our disc solutions for 

n>nc and those of Urpin means that discs subjected to small external pressures 

can probably be represented by vertically isothermal models. Although this 

cannot be used if the emitted spectrum is required, it will make the calculation 

of the disc structure easier. This is because the energy equation (2.8) can be
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replaced by a known radial dependence for the temperature. This is adopted 

when applications of this disc model are developed in §3 and §4.

2.5.2 Absence of meridional circulations
Kippenhahn & Thomas (1982) proposed that a disc cannot 

simultaneously be in hydrostatic and thermal equilibrium if the azimuthal 

velocity is just a function of radius. If the disc is in hydrostatic equilibrium, 

then circulatory motions are induced to carry away the energy which cannot be 

transported by radiation. This introduces a non-zero vertical gradient to the 

azimuthal velocity. This is similar to that which is expected in the case of 

rotating stars (Eddington, 1925; Vogt, 1925; Roxburgh, 1966). The relevant 

timescales within an accretion disc can be estimated as follows:

The Kepler time xk

1 T y. 3/2

^  4̂> -y/GM bh

The dynamical timescale idynz, \ dynr

These are the characteristic timescales for hydrostatic equilibrium in the 

vertical direction, which is of order of the timescale for free fall in the z- 

component of the gravitational force, and pressure equilibrium in the radial 

direction, which is the timescale for a sound wave travelling through the disc in 

the radial direction, respectively. Hence,

T-dynr ~ d̂yn z (2.106)

The thermal adjustment time Tth

Using the a-paramaterisation for the viscosity v = ctHx>s, where vs is the 

sound speed, gives
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(2.107)
a

The viscous timescale \ iscz, xviscr

The time necessary for viscosity to smooth out vertical gradients of the 

angular velocity

(2-108)

while the characteristic scale for viscosity to exchange information in the radial 

direction is

2 2 2 r r r
Tw,cr~ V “ H 2 * * "  aH***' (2 ' 109)

If a  < H  / r , then from (2.106) and (2.107) the thermal timescale is longer than 

the dynamical timescale in the radial direction and the solution will close to 

hydrostatic equilibrium and violate thermal equilibrium, thereby causing 

meridional circulations. In the other case a > H  / r  the thermal adjustment is a 

stronger condition than the hydrostatic adjustment in the radial direction. Here, 

the energy released by viscous dissipation is expected to be radiated vertically 

while there is no radial pressure equilibrium. Therefore motions will occur 

which, via their initial pressure, will take care of the horizontal balance.

Siemiginowska (1988) claim to show these meridional circulations but, 

as mentioned earlier, their inability to keep the accretion rate constant throws 

their results into some doubt. Similarly, the vertically isothermal approximation 

of the hydrostatic equation by Urpin (1983) (see §2.5.1) could be an 

explanation for the lack of small scale circulations in that model.
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As can be seen in figures 10-12, 17-19 and 25, we obtain no such 

meridional circulations. This is a consequence of our boundary conditions and 

the insistence on obtaining the structure of a disc in both hydrostatic (2.55) and 

thermal (2.58) equilibrium. The effect of the surface pressure allows the disc to 

adopt the correct surface height so that hydrostatic and thermal equilibrium are 

not violated.

2.5.3 The nature and stability of the disc equilibrium solutions
Applying a large external pressure to the surface of the disc also alters 

the internal velocity field. Compression of the surface leads to a flattening of 

the radial pressure distribution within the disc. As a result (c.f. 2.37), the usual 

outflow of material near the equatorial plane changes direction, and the whole

disc is inflowing towards the central black hole. The change in flow direction
•   _

causes a displacement in the M (2) curve (figure 13 and 21). This is due to the

fact that if the accretion rate is fixed, then there is more material in the disc

with both inflow and outflow than in the disc with just inflow. Therefore, in a

vertically averaged model, where the material in the disc is assumed to be

wholly inflowing, the value of I  is always too low unless a large external

pressure is applied to the disc surface. This could have a significant effect on

the stability of an accretion rate.

There has been much work in calculating the nature of the equilibrium

solutions of the a-accretion disc. This includes inputting the correct opacity

mechanisms in a given temperature regime, but this has generally been done

using vertically averaged solutions (e.g. Clarke, 1988). Equilibrium solutions 
• • 

are shown on an M (X) curve where, as we have seen in §2.3.4, dAf /3Z>0

implies a viscously and thermally stable solution, whilst a disc withdM /3X < 0

is prone to these instabilities. It has been predicted that 9M /3Z< 0 for discs

that are partially ionized and discs that are radiation pressure dominated (Lin &

Shields, 1986; Clarke, 1988).
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M- -*XTAm

Figure 28
A schematic evolutionary path in the local (M plane showing limit cycle

behaviour, where M in corresponds to an unstable equilibrium solution (Clarke, 
1988).

M

Figure 29
As in figure 28 but showing an example of runaway behaviour (Clarke, 
1988).

Suppose the steady state accretion rate into an annulus, at radius R , is 

fixed at M,«. If this accretion rate corresponds to an unstable equilibrium 

solution, then its evolution is determined by the shape of the equilibrium M  (Z)
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curve in the vicinity of the unstable regime. If the unstable sequence connects 

to stable sequences at higher or lower X (figure 28), the solution will undergo a 

vertical transition in the (AT ,X) plane, (AC or BD) corresponding respectively 

to runaway heating and cooling at a give surface density. In this case the 

annulus is forced to perform the limit cycle ACBD in a search for a stable 

equilibrium corresponding to Mm. If, however, there exists only one stable 

solution at the instability threshold (figure 29), then the outcome is more 

problematic. Here the onset of runaway heating could lead to the disc breaking 

down and becoming optically thin (Lin & Shields, 1986).

For a given set of disc parameters (including M ), the value of X 

depends on the amount of outflow within the disc and therefore the magnitude 

of the external pressure applied by the surrounding medium. This means that 

the external environment of the disc can play a crucial role in determining the 

outcome of an instability.

We have only applied our model to the regions where the disc is gas or 

radiation pressure dominated, with the opacity given by electron scattering or 

Kramers' formulae. These radial zones do not give the S -shaped M (X) curve 

needed to investigate the effects of the external pressure on the stability of the 

disc. In future work, different opacity mechanisms could be studied, where an 

S -shaped M (X) curve is believed to exist (i.e. partially ionized discs).

2.5.4 A thermally stable radiation pressure dominated disc?
In §2.3.4 it was said that the standard thin disc is thermally and 

viscously unstable when radiation pressure dominates. Stabilizing mechanisms 

have been suggested (advection, Abramowicz et al., 1988; and a z-dependent 

viscosity parameter, Milsom et al., 1992), but these are only effective at high 

accretion rates.

When our disc model was used in the radiation pressure dominated inner 

region of the accretion disc, we noted that disc flaring, caused by a low value
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of p in (2.88), could be suppressed when a large external pressure was added 

(> 1% of the central pressure). The surface terms had a cooling effect on the 

disc and hydrostatic and thermal equilibrium could be achieved at a small disc 

height.

This implies that the disc could be thermally stable. If the temperature 

within the disc is increased by a small perturbation then the disc surface will 

rise to maintain thermal and hydrostatic equilibrium. However, as the surface 

gradient changes, the surface terms will have a cooling effect on the disc 

causing the disc surface to fall back down to a stable height. Similarly if the 

temperature is decreased by a small amount we expect that the change in 

surface gradient will introduce a heating effect and a stable solution will be 

found. The observed collimation of radio jets (§2.4.2) would suggest that large 

external pressures are apparent in the inner regions of disc - black hole systems. 

Since we have only treated a special case (zero net torque boundary condition) 

a more formal investigation into the stability of radiation pressure dominated 

discs subjected to large external pressures would be needed to establish these 

results.

2.5.5 UV variability of AGN
In the previous section §2.5.4 we proposed that the radiation pressure 

dominated inner regions of an accretion disc could be thermally stabilized 

when subjected to a large external pressure (< 1% of the central pressure). This 

result could help explain the observed UV variability in AGN spectra which is 

thought to be caused by accretion disc instabilities.

Siemiginowska & Czerny (1989) have suggested that the instabilities 

apparent in the radiation pressure dominated disc may develop over a limited 

time-scale, before the disc is stabilized by irradiation of the disc by the non- 

thermal component of the spectrum (Czerny et al., 1986) or the advective term 

(Abramowicz et al., 1988). The instability should then manifest itself as an
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observed variability in the AGN spectrum. The UV band would be the most 

interesting to study because, as we have seen, it is this region where the 

domination by the disc is most profound (Malkan, 1983). Siemiginowska & 

Czerny then used the observed UV variability to determine the viscosity 

parameter a  using the thermal timescale (2.107). The observed UV variability 

in AGN ranges from -5-5000 days which corresponds to a range of a  between

0.1 and 0.001.

This predicted range of a  is rather large. In other astrophysical systems 

where accretion discs are believed to exist, a much smaller range of a  is 

predicted (i.e. a  -  0.7 - 1.0 in C.V.'s, see Frank et al., 1992). If in some of the 

AGN, the inner disc is subjected to a large external pressure, then the disc 

would be thermally stable. Any variability could then be interpreted as due to 

viscous instabilities within the disc. For a disc of M -  108AT0 and a  = 0.1, then 

from (2.109) we get t v̂c r ~ 3000 days at 50rs (the largest value used by 

Siemiginowska & Czerny). Therefore this could imply that all AGN have a 

similar value of a. The observed short timescale variability in the UV spectra 

could be due to thermal instabilities in disc systems experiencing little external 

pressure, whilst the large variability timescales would be due to viscous 

instabilities in systems with significant external pressures.

In this chapter we have developed a model that shows the internal 

structure of an a-accretion disc. However, our model can only accurately 

describe a disc in which the velocities are small. As we have seen with the 

'slim’ disc (Abramowicz et al., 1988), in a radiation pressure dominated region, 

the velocities can become large enough that advection of heat could become 

important (figure 27). This implies that the next order 11M2 terms, in the disc 

equations §2.2.1, should be considered in this region. Similarly, we have not 

investigated the effects of the radial transport of flux in the energy equation, 

and the I I M 2 gravity term in the z-component of conservation of momentum
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equation. These terms, although small, could change the internal structure of 

the disc over a large radius. We hope to expand the disc model to include the 

next order terms in our expansion of the disc equations in order to investigate 

their effects on the disc solutions in the future.
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A model for asymmetric 
radio sources
3.1 Asymmetries in jets and double radio sources

High-resolution observations of extended double sources over the last 

few decades have shown that many of them contain jets or beams, which are 

intimately related to the transport of energy from the nuclei of active galaxies to 

the outer lobes. A crucial morphological feature of these extended sources is 

that there are actually two fundamentally distinct classes of object: FR I and FR 

II (Fanaroff & Riley, 1974).

Sources of low luminosity (power at 14GHz , P14 <5xl025W Hz _1) are 

known as FR I type objects. These tend to have prominent, smooth, continuous 

two-sided jets running into large scale lobe structures (plumes) which are limb 

darkened, i.e. their brightness fades gradually with increasing distance away 

from the central object. Most straight jets are one-sided (by >4:1 intensity 

ratio) close to the core but become two-sided after a few kpc. The one-sided 

region lasts typically <10% of the total length of the jet. Although large-scale 

two-sided symmetry is a general feature of FR I type structures it should be 

noted that some sources show significant side to side asymmetry (i.e. NGC 315 

and NGC 6251; Perley, Bridle & Willis, 1984), where the brighter jet tends to 

be the one with the one-sided base.
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Radio galaxies with P14 >5xl025W Hz_1 tend to have large-scale 

structures which are limb brightened, with bright outer hotspots and are 

referred to as FR II sources or 'classical doubles'. Although the absolute 

luminosities of the jets and cores in FR II objects are in general higher than in 

FR I galaxies, the proportionately greater increase in lobe and hotspot 

luminosities results in the jets and cores being far less prominent in the radio 

structures than for FR I type objects. Therefore, the cores and extended jets are 

difficult to detect. When detected, the jets in FR II sources differ significantly 

from those in FR I structures. They are usually one-sided with a jet / counterjet 

ratio >4:1 (Bridle & Perley, 1984). The situation is further complicated since 

the jets are in general not smooth but dominated by 'knots', whilst the opening 

angles of jets in FR II structures are lower than those for FR I sources.

One of the intriguing aspect in jet research is the paradox that the 

majority of FR II jets are very asymmetric, often only one-sided, although the 

outer extended lobes are roughly symmetric. Several possible solutions to the 

problem have been suggested. The usual explanation is in terms of Doppler 

boosting of emission from relativistic plasma moving at small inclinations to 

the line of sight (Shklovsky, 1977; Begelman, Blandford & Rees, 1984). The 

apparent one-sidedness reflects the Doppler boosting of radiation from the 

approaching jet over that from the receding counter jet. However, the relativistic 

interpretation leads to some complications:

1. If large jets are beamed towards us, then their true lengths greatly exceed 

their projected lengths, making the extended sources, which are believed to 

be unbeamed, unusually large (Schilizzi & de Bruyn, 1983). Observations 

of the jet - counteijet system in the nucleus of NGC 6251 (Jones, 1986) 

have shown that they are consistent with a simple two-sided relativistic 

beaming model only if the radio axis is aligned within 10° of our line of 

sight, and the flow velocity in the two jets is greater than 0.7c. This implies
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an unreasonably large physical size for the extended radio emission 

associated with this galaxy.

2. Cygnus A possesses a one-sided jet structure which would require an angle 

of 60° or less between the jet and the line of sight, while the structure of the 

extended radio lobes suggests that the jet axis lies close to the plane of the 

sky (Hargrave & Ryle, 1976). Also, the straight forward beaming picture 

does not seem to allow for the apparently observed differences between the 

flux densities and spectra of the jet / counteijet system (Saikia & Wiita, 

1982).

3. Garrington & Conway (1991) (and Garrington, Conway & Leahy, 1991) 

found that some one-sided sources had additional asymmetries in spectral 

brightness and hotspot brightness. These asymmetries are surprising 

because if the source is intrinsically symmetric then no such differences 

between the two sides of the source are expected (Tribble, 1992).

4. In about half the FR II sources with weak radio cores and lopsided hot spot 

brightnesses, the brighter jet points to the dimmer hot spot (Bridle & Perley, 

1984). This observation is not consistent with the beaming of symmetric 

jets.

5. In an investigation into a geometrical and kinematical description of the 

curved jets associated with the S5-quasar 1928+738 in terms of a precessing 

beam model (Hummel et al., 1992), a moderate intrinsic brightness 

asymmetry of the jets has to be invoked to account for the apparent 

brightness ratio of jet to counterjet. Hummel et al. found that this 

comparatively low ratio seems to contradict the Doppler interpretation of 

the one-sidedness.

6. Observations of the radio emission from GRO J1655-40, a recently 

discovered black-hole candidate, show two highly collimated relativistic 

jets, one on each side of the source, which expand and decay over a few
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days (Hjellming & Rupen, 1995). The alternate brightening and fading of 

the jets cannot be explained by relativistic beaming.

This leads to the possibility that some core-dominated sources with one­

sided jets and symmetric extended structure may be intrinsically asymmetric. 

Saikia et al. (1989) have reported observations which suggest a new class of 

intrinsically one-sided lobe-dominated radio sources. Similarly, observations of 

an FR I type radio galaxy, 3C 338, could imply a jet that is intrinsically one­

sided and alternately feeds energy into opposite directions (Feretti et al., 1993). 

Increasingly high resolution studies of radio galaxies and QSOs have also 

shown substantial differences in component size, shape and strength between 

the two 'symmetric' lobes (Neff & Rudnick, 1980; Macklin, 1981).

These observations have led to various proposals for intrinsically one­

sided jet mechanisms. Ryle & Longair (1967) suggested time delay effects 

could account for the asymmetries observed. The high ejection velocities from 

the parent galaxy would mean that the two components would be seen at 

significantly different ages, unless the axis of the system is perpendicular to the 

line of sight. Other ideas include the possibility that the beam shines through 

clumpy material and that these clumps occasionally block the beam (Miley, 

1980), anisotropic electron pitch-angle' distributions (van Groningen et al., 

1980), and transient phenomena (Christiansen et al., 1982).

Wiita (1978a, b) produced a twin beam model where a continuous 

source of energy and relativistic plasma lies within a cloud of confining gas in 

an active galactic nucleus. Wiita & Siah (1981) showed that in this model, if 

the source of plasma is even slightly displaced with respect to the centre of the 

confining gas cloud, a strongly asymmetric cavity is formed, leading towards 

single jet formation. However, the model is somewhat simplified; plasma 

processes are ignored and relativistic motions are not included properly.

The asymmetry problem of Cygnus A (see 2. above) was addressed by 

Saikia & Wiita (1982). They showed that the observations could be accounted
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for using a flip-flop model, where the jet flips, alternately supplying energy and 

plasma to the two outer lobes. However, they admitted that knowledge of the 

actual turnover frequencies and the fact that their model is highly simplified 

may rule this out. They concluded that the most likely explanation is that 

intrinsic asymmetries between the jets exist (although Doppler effects would 

clearly play a role).

Rudnick (1982) and Rudnick & Edgar (1984) presented the case for a 

specific pattern to the asymmetries between sides of an individual source, 

namely that where an emission peak occurs on one side of a source, no peak 

will be found at the corresponding distance on the other side of the nucleus. 

After analysing the asymmetries in various samples of radio galaxies and QSOs 

Rudnick & Edgar arrived at the conclusion that the distribution of arm length 

ratios indicated a preferential difference between the two arms of each source 

which cannot be explained in terms of random fluctuations, projection or time 

delay effects. The distributions could possibly be explained by differential drag 

due to galaxy motion, or separate ejection times for each arm in a flip-flop 

model. However, observations that one-sided sources have preferentially 

stronger central components (Kapahi, 1981) does not fit naturally into Rudnick 

& Edgar's flip-flop picture, whilst their model cannot also explain the 

observations of twin jets or symmetric structures around a central component 

(e.g. B2 1323+31, Ekers, 1982).

Lovelace et al. (1987) and Wang et al. (1990) obtained the axisymmetric 

field structure for the inside of an accretion disc. They found jet solutions in 

which the power flow was carried mainly by the Poynting flux of the 

electromagnetic field and the angular momentum outflow from the disc was 

carried by the magnetic field. This work was extended by Wang et al. (1992) to 

include magnetic fields which have no reflection symmetry about the equatorial 

plane. The power flow was found to be different above and below the disc, and 

the ratio of the jet luminosities (top/bottom) depended directly on the degree of
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asymmetry of the field and was shown to be much greater than unity. 

Therefore, this is a disc/jet model that produces intrinsically asymmetric jets. 

However, the authors do not investigate the time dependency of the model, and 

the degree of asymmetry in the jet depends on the asymmetry of the weak 

galactic field fed into the disc at large distances over long periods of time. 

Hence, it is difficult to see how the model can predict the distribution of arm 

length ratios seen by Rudnick & Edgar (1984) and produce two-sided lobes.

It is our aim to provide a self-consistent intrinsically asymmetric model 

to explain the above anomalies. We will show that by investigating the internal 

structure of an accretion disc we can provide a mechanism for the large scale 

jet changes.

3.2 The asymmetric disc model
By investigating disc asymmetry we will show that the radio jets can be 

maintained in an intrinsically asymmetric state through a combination of the 

effect of the jet luminosity on the mass loss from the surface of the accretion 

disc and the effect of this mass loss on the jet luminosity (figure 30). In order to 

obtain the latter we assume that the jet collimation and dissipation depends on 

the pressure in the surrounding medium near the base of the jet. This medium is 

supplied by the mass evaporated off of the disc.

The dependence of the mass loss from the disc on the jet luminosity 

which gives rise to the disc asymmetry arises by assuming that there is a hard 

X-ray component associated with the radio jet (Canizares & White, 1989). This 

component has a Compton temperature of order 108K. In addition, there is a 

soft X-ray component associated with the base of the jet or with the inner 

accretion disc. The Compton temperature of this emission may be as low as 

106K (Fabian et al., 1986). We do not know the spectrum as seen by the disc, 

so we assume that the disc is exposed to a mean active galactic spectrum
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Figure 30 
The asymmetric disc model.

(Mathews & Ferland, 1987). The inverse Compton temperature of the 

combined radiation field is of order 107K, which is significantly less than the 

inverse Compton temperature of the hard component.

This assumption leads to asymmetry in the following way. The shape of 

the surface of the disc is responsive to the external pressure produced by the 

ambient radiation. Under certain circumstances, regions of the disc, at radii 

where the atmosphere is otherwise too cool for mass loss to occur, can become 

shielded from the central soft X-ray source. In these regions the temperature of 

the disc is raised and mass loss occurs. Even a small change in the radius of the 

mass losing region can raise the dissipation in the jet by a large amount.

Our accretion disc model solves the zero order disc equations of §2, 

assuming the disc is vertically isothermal. This assumption is justified using the 

results of §2 and §2.5.1 as we are only interested in studying the velocity 

structure of the disc and not in predicting a disc spectrum. We also relax the
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assumption of symmetry about the equatorial plane, £ = 0. The disc will be 

investigated over timescales relating to the time taken for the material 

evaporated from the disc to reach the environment of the jet, ~ 104 years at 

1017 cm. This is longer than the timescale associated with hydrostatic 

equilibrium in the vertical direction, ~ 103 years at 1017 cm, and therefore we 

assume that the disc solutions can be described as a series of steady state 

systems.

The result may be described as a disc with broken symmetry where the 

sensitivity of jet collimation on its surrounding medium plays the role of order 

parameter: high sensitivity corresponds to a stable ground state configuration of 

an asymmetric disc with mass loss occurring preferentially from one surface.

3.3 A vertically isothermal disc model
3.3.1 The disc equations

In the application we wish to make, mass loss from the disc surface, by 

which we mean the base of the externally heated atmosphere of the disc, will 

turn out to depend on the shape of the disc surface. We saw in §2 that to 

compute this shape the internal structure of the disc must be considered. 

Therefore our model will be similar to that used in §2, solving the zero order 

disc equations and including the effects of an external pressure applied at the 

surface of the disc. Where this model will differ is that for computational ease 

we will replace the energy equation (2.8) with a prescribed vertically 

isothermal temperature distribution T =T (r). The function T(r)  will be 

specialised for specific numerical computations.

The energy equation was solved consistently for an accretion disc in §2, 

and in §2.5.1 we showed that the disc solutions and internal structure were 

similar to those of the pseudo-vertically isothermal solutions of Urpin (1983). 

Also, the temperature at the base of the externally heated atmosphere will be of
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order 104AT; the temperature in the mid-plane of an optically thick, 

geometrically thin disc at the radii we shall be interested in (1016 —1017 cm) will 

lie typically between 4 x l0 4K and 104K (1.22). The presence of the heated 

atmosphere may, of course, alter his somewhat, but it seems reasonable as a 

first approximation to take the disc to be isothermal in the z-direction. This will 

allow us to obtain results with only a limited amount of numerical computation.

As mentioned in §3.2, when applying our asymmetric disc model to the 

case of one-sided jets, the shortest timescale we will consider is the time taken 

for mass evaporated from the disc surface to reach the jet environment, 

~ rd / c s ~ 104 years at 1017 cm , where rd is the radius of the mass losing region. 

This compares to the timescale for hydrostatic equilibrium in the vertical 

direction (2.106), ~ 103 years at 1017cm. Therefore, we assume that the 

evolution of the disc can be described as a series of steady-state solutions.

From §2.2.2 we can identify the zero order disc equations for a 

vertically isothermal disc. The radial region we shall be interested in 

~1016 - 1017cm corresponds to a disc dominated by gas pressure, P0 = 1 (2.30), 

with Kramers opacity k r (2.40). The radial component of the momentum 

equation (2.22) gives a lowest order equal to the Kepler approximation to the 

azimuthal velocity,

The zero order terms in the vertical component (2.24) leads to the hydrostatic 

equation

2 \  _  PpC (3.2)
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Remember that we are using a vertically isothermal approximation. Therefore 

(3.2) integrates to

r
G0 =<**) exp (3.3)

£CnQj

Here = a 0((o,0), and comparison with (1.6) gives us a pressure scale height

H  = c0go3/2.

For a disc described with a-viscosity (§1.3) we have that the total 
pressure P is proportional to the component of viscous stress which drives

the accretion, where

a  = —  (3.4)

is taken to be a constant. Under our assumption of isothermality in the vertical 

direction, the kinematic viscosity coefficient v is a function of radius only (c.f. 

1.3)

v = acsH . (3.5)

The radial velocity is obtained from the conservation of angular momentum 

(2.23). As with the models developed in §2 and §3 we ignore terms associated 

with the vertical transport of angular momentum (see §2.2.2). Hence, zero 

order terms in (2.23) give

(3-6)

Using the equation for the dimensionless density (3.3), we can obtain an 

expression for U0:
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U0=B+CC2 (3.7)

where

B = -(3cd3/2Cq +6co1,2Cq + 3co3/2Cq g °°,CD)
<*00

3c2 9r  = —i  \
2c 2co3/2 2 co5/2

In a similar fashion to §2 we can derive an expression for the condition of 

outflow (U0 > 0) along the mid-plane (£ = 0) of the disc: outflow occurs if

Zso^2.<-(£oiffi.+ 2.). (3.8)
Oqo Cq CD

To determine the zero order term for the sound speed c2, we would normally be 

required to solve the energy equation (2.26). However, in our vertically 

isothermal approximation, c02 becomes a specified function of radius. The 

results of §2 show that for a gas pressure dominated disc with Kramers1 

opacity, being subject to a small external pressure, the disc quantities follow 

their thin disc radial dependencies. Hence, c2 °c co~3/4 (1.22). In the case of 

larger external pressures being applied to the disc surface, this radial 

dependence alters. However, in §3.6.4 we show that altering the radial 

dependence of c2 has little effect on the internal structure of the accretion disc. 

Therefore for simplicity, we restrict our computations to the thin disc 

temperature law

(3.9)
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This allows us to give an explicit expression for the condition of outflow on the 

equatorial plane (3.8), namely,

With reference to the thin disc solutions (1.22) we see that a gas pressure 

dominated disc with Kramers' opacity has a radial density dependence of r"15/8 

at the mid-plane. Therefore the disc consists of outflowing material on the £ = 0 

centre line as predicted in §2 and by Urpin (1983), Siemiginowska (1988) and 

Kley & Lin (1992).

Finally, the continuity equation (1.25) has as its lowest order:

(aJ70<D),w +G)(o0Wo),c = 0. (3.11)

This completes the set of zero order equations needed to obtain the disc 

structure of a vertically isothermal accretion disc.

33.2 Boundary conditions
In §2.2.3 we described the boundary conditions for a zero order 

accretion disc which is subject to an external pressure. These were a definition 

of the disc surface, as the condition of pressure balance between the disc and 

external medium (the external pressure could be provided by a corona or disc 

wind; see §2.4), a boundary condition for the energy equation which we can 

ignore as the temperature in the disc is prescribed, and a condition that 

describes the velocities at the disc surface. For the model derived in §2 the 

latter was a no mass-loss condition (c.f. 2.46)
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which shows that the material follows a mathematical 'streamline' along the 

surface (as expected for no mass loss).

For the model we are developing in this chapter, we lose the assumption 

of symmetry about the equatorial plane (£ = 0). Therefore we must consider 

both the upper and lower disc surfaces; the surface definition (2.55) is adapted 

to

P(a>,C,±) = Pto±«D). (3.13)

In §2.4.1 we discussed the effect of illuminating the disc by X-rays 

emitted by the central region near the black hole or radio jet. The radiation is 

sufficiently hard to heat the material in the upper regions of the disc, by the 

Compton process, to high temperatures (Tc >107K). The heated gas forms a 

tenuous corona above the disc. If the sound speed in the heated gas also 

exceeds the escape speed of the system at that radius, then the gas steadily 

escapes as it is heated, forming a wind. In §3.5 we will show that this mass loss 

occurs when the disc surface is depressed by a sufficient distance ds (by the 

external pressure provided by the corona or wind upon illumination by a radio 

jet, say; see figure 30). We use the result of Begelman et al. (1983) for their 

'case A’ outflows

1 d M ..<~ r >0.1rfc. (3.14)
2 nr dr cic

Here cic (=(kTic l\vnH)m) is the isothermal sound speed at the Compton 

temperature of the radiation falling on the disc and ric
1q8 i t  ^

(=1018(--------)(—s--- ) cm) is the radius at which the Compton temperature
Tic 10 8M0

equals the escape temperature. To incorporate this induced mass loss into our 

model, we recall equation (2.45):
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d  Af loss 
dr (2.45)

where v n± is the velocity (at the upper and lower surfaces respectively) normal 

to the surfaces of the disc

Vzd r - V rdz
\ d r 2+dz2)m ^ ±'

Equating (3.14) and (2.45) and using the expansions introduced in §2.2.2, we 

find

Therefore we have two conditions that relate the radial and vertical velocity at 

the disc surface: the no mass loss condition (3.12) if the surface depression 

<ds, and the mass loss condition (3.15) if the surface dip >ds.

As in §2 and §3, to complete the boundary conditions we should specify 

an inner and an outer radial boundary condition. One of these is usually the 

mass flux in the disc, the other is usually some condition at the inner edge. We 

therefore expect the disc equations above will yield a two parameter family of 

solutions.

< * F o  P E xtAExt ̂  loss lj± (3.15)

where
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333 Calculating the disc structure
The equation that governs the vertical structure of the disc at each r  was 

derived in §3.3.1, namely the hydrostatic equation (3.3), as the temperature 

within the disc is specified. To obtain a global solution the continuity equation

(3.11) must also be solved.

We shall now show that the continuity equation is a second order 

differential equation for 0 ^ (00). In §3.3.2 it was stated that this disc model

requires two further boundary conditions. These will be equivalent to 

specifying and at rin (equivalent to the accretion rate and an inner 

boundary condition) in order to obtain Radial integration then provides

g0o and G o ,,fo r the next radius. To see this we take the continuity equation

(3.11) in the form

(^o®o).; = -^oOo*. - u 0a 0/m. (3.16)

This equation can now be integrated vertically between the lower and upper 

disc surfaces, where C,s_ and are obtained using (3.3)

  r2
pc 2cfaw exp(-— f i j )  = P ^ .

2c0(O

The external pressure P^  is defined in §3.4. Integrating (3.16) from £ = to 

£ = £J+, and using the expression we derived in §3.3.1 for U0 (3.7), we get

W  0Oo]” = -° o o (5  •mJ i +C <„J2 ) - Z 2- Z i (3 .17)

where



Chapter Three A model for asymmetric radio sources 123

Z2=( ^ +0o°’”) B/,+a2)

and

Z2=â +2 ^ )(B/2+Ĉ
(3.18)

4 -

J2 = 4  (3.19)
> J-

. /4 =

and B and C are defined in (3.7). The term B ,a on the right side of (3.17) 

contains t(aa so equation (3.17) is a second order equation for Ooq. Thus, we 

solve (3.17) for a ^ ,^ ,  and write the resulting equation in the equivalent first 

order form

y  = a oo
y '= Y  (3.20)
r '= F (y jr ,< o)

where the form of F , obtained from (3.17), is

F = (3c£a>3/2/ 1)"1 {Z, +Z2 + Z 3 +Z 4
-[(3c02,C)(D3/2+6c0V /2),fiJ (3.21)

3c2oo3'2+  i)

<*oo

and using (3.15)
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W o l i =lU0X±Z,1±,„ +Pr„AExt loss

Note that the term that includes Ahss is neglected if there is no mass loss (i.e. 

the surface depression <ds; c.f. §3.5). The radial system (3.20) is solved by a 

NAG library routine given the starting conditions and at rin. We use

D02CAF which integrates a system of first-order ordinary differential equations 

over a range with suitable initial conditions, using a variable-order variable-step 

Adams method. The NAG library routine D02CAF is also used to calculate the 

three vertical equations in (3.19) to yield F at each radial integration point. We 

check the accuracy of the integration by computing the accretion rate at each 

radius. This should be constant when there is no mass loss.

3.4 The disc structure in the presence of external 
illumination

Having described our method of obtaining the internal structure of a 

vertically isothermal accretion disc, we now outline the features of the 

proposed asymmetric disc model. We assume a soft X-ray excess emission 

("big bump") from close to the central black hole, either from the inner 

accretion disc (Pounds et al., 1984) or from the base of the jet (George et al., 

1988). It is important for what follows that this radiation comes from close to 

the equatorial plane. In addition to this we assume a hard X-ray component 

associated with the radio jet as suggested by the observations of Canizares & 

White (1989). The hard X-ray component is taken to illuminate both faces of 

the disc directly. It contributes to the pressure on the surface of the disc by 

heating the disc material. Thus, the external pressure on the disc from this 

source is x  1/(r2 +h2) , where h is the height of the jet source above the
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disc. Begelman et al. (1983) showed that the external pressure applied to the 

disc surface is proportional to the mean radiation intensity encountered there:

(3.22)
4n(r +h )cz/Q

Here I JL ^  is the X-ray luminosity of the upper and lower jet respectively, and 

for S ', the ionization parameter at the disc surface, we put E'0 = 3 (Begelman & 

McKee, 1983). If the luminosity of the top jet is equal to the luminosity of the 

lower jet then the disc will be symmetric. The soft X-ray excess will also 

contribute to the heating of the disc surfaces, where these are exposed to it; but 

its effect on the external pressure is small and will be neglected.

In §3.3.1 the hydrostatic equation (3.3) was solved explicitly. This 

allows us to obtain an expression for the disc surface as defined by the 

condition of pressure balance between the disc and the surrounding 

corona/wind. Using equation (3.3) with the boundary condition (3.13) gives

CJ± = |2c02co3l o g ( ^ o Z ) .  (3.23)
V Ext±

At small radii (<1016cm) along the disc, the external pressure is negligible 

compared with the pressure in the disc, so has little effect on the shape of the 

surface. At intermediate radii (~ 1017 cm) the pressure from the jet becomes 

significant compared with that of the central disc and, because it falls less 

rapidly than the internal disc pressure, can now be sufficient to alter the 

curvature of the disc surface in such a way that the surface becomes hidden 

from the central source (as seen in figures 11 and 12 in §2.3.2).

The shadowing of a region of the disc from the soft X-ray source implies 

a raised Compton temperature on the disc surface. Beyond a radius 

~ 0.1rc = 1017 cm, for a black hole of mass 108Af 0 and a hard X-ray source with
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Compton temperature 108X , material will be evaporated from the disc surface

(Begelman et al., 1983). This material constitutes the environment of the jet. At 

a distance r the jet is therefore subject to an external pressure Pjet±{r) of order

^£»±(r ) (Smith & Raine, 1985). The dissipation in the jet is proportional to a 

high power of PM (e.g. Begelman et al., 1984); thus, a bending of the disc

surface can result in positive feedback, increasing the pressure on the disc and 

giving rise to further changes in surface shape until the whole of the potential 

mass losing region beyond ric is shielded, and the jet reaches its maximum 

luminosity. Whether this can occur in practice depends on the effect of the 

external pressure on the disc central pressure. We are, however, able to find 

asymmetric solutions in which the disc pressure is raised on one side only, 

hence with a self-consistent asymmetric jet structure. We will investigate the 

evolution of the model in §3.7.

3.5 An optically thin Compton heated wind
In §3.4 we discussed the possibility that mass can be evaporated off of 

an asymmetric disc in the region of a surface depression caused by hard X-rays 

from the jet. Once it has risen above the surface dip, the material is exposed to 

the central soft X-ray flux which has a lower Compton temperature. 

Nevertheless, we show in this section that, for dips of the order of magnitude 

predicted here, a strong disc wind can still form. The argument follows 

essentially from that of Begelman et al. (1983) who show in their ’case A' 

solutions, appropriate to disc radii R > 0.lRic, that material reaches the 

isothermal sound speed close to the disc surface. We show that this occurs in 

fact at a Compton heating length scale above the disc surface. Since subsequent 

cooling then leads to a further increase in the Mach number of the flow 

(Begelman et al., equations (3.17)), we do not require a non-zero transverse 

expansion of the streamlines to force the material through the critical point at
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the adiabatic sound speed, in contrast to Begelman et al. Thus, in their notation, 

we put (3 = 0 and consider a one-dimensional flow. As a consequence the 

critical point here also lies close to the disc surface and not at z ~R.

The basic equations of continuity, momentum and energy for flow in the 

z-direction at radius R0 in the disc are

pu = m =  const.

pu
dx> dP GMp 
dT~~dT~ R% (1+z2/ * 2)2 /  d 2 \ 3/2

(3.24)

(3.25)

3 . d—Pvlog— 
2 Bdz . 5/3

n.r.q-r/rj
( l + z 2 / j £ )

(3.26)

We assume a fully ionised hydrogen plasma:

P = ^ - k T .  (3.27)
mH

Near the disc and for R0 >0.\Ric the gravity term in (3.25) makes a

negligible difference, so for simplicity we neglect it. Then, in terms of the

Mach number, M = u /c , , (3.25) can be written

(M 2- l ) d]0gMl +(l+M2)d l ° &  =0 (3.28)
dz dz

and (3.26) can be manipulated to give

(3M 2 -  5)d l °SC’ oc[M2-  U l - c f  I cl  ] (3.29)
dz

where c ic = cs (Tic) is the sound speed at the Compton temperature.
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From (3.28) we see that for d logc) !dz >0 we have M 2 < 1, since the 

gas starts from rest, and d log AT2 !dz > 0; thus M increases as the gas is heated. 

Then from (3.29) we see that if Af2 <1 and cs <cic we have d logc21 dz >0; 

hence the gas continues to be heated until Af2 -> 1 and cs ->c.c. It follows that 

the gas is accelerated to speed v - c ic at a height z x which must be of order z c, 

the Compton heating length scale. We can confirm this by an approximate 

integration of the equations of motion.

From (3.25), for z « R 0> F + po2 = F0, so at Af =1 we haveFj = P J  2 . 

Equation (3.26) may be written alternatively as

(3M 2 - 5 )— = ,
^  mcfmH(l+z2 / Rq)

So for Af2 « 5 / 3 ,  c2 ~ P0 /p  and we get

5 dp 4 r 0
P dz m mHP0

and hence

5 kTx 5 kTic
Zl ~ 16 r0 Cl 16 r0 C,c ~Zc*

This result is sufficient for our purposes; provided z x<ds, the depth of 

the depression in the disc, we can appeal to Begelman et al. to see that 

subsequent cooling will assist expansion in driving a wind through the critical 

point at Af2 =5/3. If expansion is unimportant, we can investigate the fate of 

the gas as follows. Manipulating (3.28) and (3.29) we get

(5-3M 2) d l0f - ~[1+M 2][l-c,2 /cl],  
dz

(3.30)
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Hence at cs =cic we have d logM2 /dz = 0 and also, from (3.29), 

dlogcf I dz =0. Beyond z1? therefore, the velocity of the gas is constant. The 

wind enters a coasting phase until either radial expansion or cooling can force it 

through the critical point at Af2 =5/3. If the coasting phase is ended by a 

reduction in the inverse Compton temperature of the ambient radiation field, to 

T ' , say, so cic is reduced to c ' =cs(T'c), then from (3.30) we see that the 

critical point occurs on a Compton cooling length scale. If T '  ~ ~ T ic then

c ' ~ i cic; since M 2 > ̂  the velocity x> becomes u ' > i ~ u ~ cic. We

summarise this by saying that if the initial heating phase provides sufficient 

bulk energy to escape, then a modest amount of subsequent cooling cannot 

extract this bulk energy to prevent the wind escaping.

Thus to determine the consistency of our model we compute the 

Compton heating length scale z c. The Compton heating rate is

r 0 = k\  (3.31)m e  kR

which can be rewritten as

10“^ '  r

The Compton heating timescale at r — 0.1r/c, Tic = l(?K  and M bh= l ( f M 0 is 

therefore

(3.33)
L

Hence the height above the base of the outflow at which the wind reaches a 

temperature Tic = 10*K and a Mach number of order unity is
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z c ~cstn - 2 x l0 14( ^ - )  cm. (3.34)
L i

Material rising from the disc in a surface depression ds >zc cannot be cooled 

sufficiently by the central soft X-ray flux, once it rises above the dip, to prevent 

a strong wind.

3.6 Asymmetric disc solutions
3.6.1 Testing the code

The code has been run for various values of accretion rate, external 

pressure, and disc radius. In §3.3.2 we showed that the disc solutions require 

the specification of two starting parameters. These are o^Cco) and (co)

(3.20), which as in §2 and §3 correspond to the mass flux within the disc, the 

accretion rate M  , and the height of the disc, , which replaces the inner radial 

boundary condition. It turns out that the choice of ^  (or a^Coo); 3.23) has little 

influence on the disc solutions away from rin (for a given M ). Figure 31 shows 

the evolution of the disc quantity a^Cco) with radial distance co for a choice of 

initial disc heights (£, = 1.5, 2.3, 2.8, 3.0, corresponding to 

z s -1.5H , 2.3H ,  2.8H,  3H , where H is the disc scale height (1.7) at the 

starting radius). The solutions correspond to a symmetric disc (i.e. equal jet 

luminosities in 3.22) with Af = 108M0, M = 0.lM0yr~l and a  = 0.1. The function 

a 00(co) rapidly converge towards equilibrium solutions. The two most extreme 

choices of ^  are within 95% of the 'average' solution by -  1.3r„. This 

computation has been repeated using various permutations of accretion rate, 

alpha parameter and jet luminosity in (3.22) with similar results.

3.6.2 The vertical velocity component
The model developed in §2 gave the vertical velocity term W0 by using 

the fact that the continuity equation (3.11) decouples the r and z components
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Figure 31
The evolution of the central density G^ (CO) with respect to the dimensionless 
radial variable for a range of initial disc heights (with increasing G^Cco): 
t  =  1.5, 2.3, 2.8, 3.0;.

Disc system: M  = 108Af 0, M  = 0.1M 0y r“\  (X = 0.1.

from the <|> direction. This allowed us to use mathematical 'streamlines' in the r- 

z plane on the disc surface and equatorial plane to determine W0 (see §2.2.4). 

However, this method fails if the external pressure becomes significant enough, 

with respect to the disc central pressure, to change the outflow of material 

along the equatorial plane into inflow (see §2.3.2 and 2.37). In this instance, 

the £ = 0 centre line ceases to be a 'streamline' and the calculated values for W0 

become unreliable.

This chapter solves the simpler vertically isothermal disc equations and, 

as a result, the vertical velocity term W0 can be computed easily (by integrating 

equation 3.16 vertically from £ = 0 to £ = £,) without the need to invoke 

mathematical 'streamlines'. Therefore we can investigate the internal structure 

of the disc at the radii where outflowing material becomes inflowing. Figure 32 

shows the r-z velocity flow for the 'top half of a disc, symmetric about its £ = 0
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Figure 32
The r-z velocity field for a symmetric disc about the equatorial plane showing 
the velocity direction change on the £ = 0 centre line (axis units are in cm).

Disc system: Af=108Af0, M =O.OlM0yr~l, a  = 0.1, L+ =0.8L ^ ,  
h = 2 x 1 0 11 cm.

midplane. The disc system is Af = 108Af0, M  = 0.01Af0yr-1 and a  = 0.1, with the 

external pressure to both surfaces being provided by points at heights of 

2x 1017cm on the axis of the disc emitting at 0.8 Eddington luminosities.

Remember that there is an associated reduction in surface density as the 

disc becomes wholly inflowing due to the fact that the accretion rate is fixed 

and there is more material in a disc with both inflow and outflow. This is 

evident by the 'turning back' of material between ~ 4 x l0 16cm and 1.5x1017cm. 

This could not be seen with the 'streamline' calculation of §2.

3.6.3 An asymmetric disc
In this section an asymmetric disc structure is investigated in order to 

illustrate the theory of §3.4 and §3.5. We present the results for a disc with 

a  = 0.1, around a black hole of mass 108M0. We also take Tic = 108AT as the
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Figure 33
The r-z velocity field for an asymmetric disc (axis units are cm). The dotted line 
shows the approximate line-of-sight for the central soft X-ray flux.
Disc system: M  = 108Af 0, M  = 0.01M 0yr~l, a  = 0.1, L+ =0.6LEdd, 
L_ =0.1Z,fia, A = 2 x l0 17cm.

3x102.5x102x10 3 .5x10 ' 

radial distance

4x10 ' 4 .5x10 ' 5x10 ' 5 .5x10'

Figure 34
A close up of figure 33 focusing on the dipped top surface region.



Chapter Three A model for asymmetric radio sources 134

Compton temperature appropriate to the region of the disc shielded from the 

central source. The disc solution is shown between the radii 1x1016cm and 

5.5xlO17cm. Mass loss from even larger radii is not relevant to dissipation in 

the jet at 1017cm. We have approximated the effect of the soft X-ray central 

source in reducing the Compton temperature, by allowing mass loss only from 

areas of the disc surface shielded from direct radiation from the central source 

by a depth ds >zc (see §3.5 and 3.34).

Figure 33 shows the r-z velocity field for a disc where the luminosity of 

the jet on the top side of the disc is 0.6L ^ .  The luminosity from the bottom 

side is O.LL^. Both luminosities are provided by points at heights of 2x 1017cm 

on the axis of the disc, and the accretion rate at the disc's inner edge is 

0.0 lAf Qyr~\  The effect of the larger external pressure (top jet) is to push the top 

surface down at a radial distance close to the jet height ~ 3x 1017 cm . Figure 32 

shows a close up of the dipped region of the disc and we see that the depression 

in the surface is caused by material being forced over the £ = 0 central plane 

into the lower half. When the depth of the depression is sufficiently large 

(ds >zc), the evaporated material forms a wind that reaches the (isothermal) 

sound speed before being exposed to Compton cooling. From (3.34) we see that 

for a top surface luminosity of 0 .6L^, this occurs when the dip is 

-3 -4 x 1 0 14cm. Figure 34 shows us that this occurs at -3.5x1017cm. At this 

point the mass loss boundary condition (3.15) is introduced. Material from both 

sides of the disc move towards the mass loss region. The effect of this transfer 

of mass is that the dipped surface is 'pushed' back up. The surface continues to 

rise with increasing r until eventually the disc region will no longer be shielded 

from the soft X-ray flux and mass loss will cease.

Note that the lower surface, being subjected to a smaller external 

pressure, is not forced over in the same manner as the top surface. We find that, 

except for discs with very low accretion rates, M  < 1(T* M 0yr~\  with both sides
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Figure 35
A plot of L+ vs. M  showing the minimum luminosity required to produce a dip 
ofds >zc by a radii 5 X1017 cm . L_ is fixed at O.OLL^.
Disc system: M  = 108A/0, (X = 0.1, h = 2x 1011 cm.

being subjected to high pressures, L / >1.0, discs will experience a dip on

one side only.

It is clear from the velocity field of figures 33 and 34, that to achieve an 

asymmetric disc shape the internal structure of the disc must be calculated. 

With vertically averaged models, material cannot cross the equatorial plane, 

and therefore a significant surface dip does not appear (Raine & Thomas, 

unpublished).

In order to maintain a typical power of 1046ergs"1, the Eddington limit 

for a 108M 0 black hole, the rate of gas supply must be approximately 1M 0yr~\  

assuming a high total efficiency (about 10%) of conversion of rest mass into 

radiant energy. However, we find that the one-sided dipped solutions occur 

only when the approximate inequality (M l \ M 0yr~l) <  0.1(L / L ^ ) holds, where 

L represents the luminosity of the jet shining on to the shadowed region. This 

is highlighted in figure 35. Here we see luminosity plotted against accretion
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rate. The accretion rate is that at the inner edge, whilst the luminosity is the 

lowest luminosity required to produce an external pressure (using equation 

3.22) capable of causing a dip with ds > z c by an outer radius of 5x 1011 cm . The 

luminosity of the opposite jet is fixed at O.OIL^. It should be noted that 

asymmetric disc shapes are possible for higher accretion rates (or alternatively 

for smaller ratios of top to bottom jet luminosities), but these will occur at 

larger radii (i.e. 1018-1019cm) because the external pressure takes a larger 

distance to become significant. However, we shall only concern ourselves with 

systems where surface shadowing occurs by 1018cm.

To obtain a consistent model, where a dominant high luminosity jet can 

be supported by a low inner edge accretion rate, we must investigate the 

energetic feasibility of such a system. This is studied in §3.7.

3.6.4 The radial structure of the sound speed
Having obtained an asymmetric disc structure, we can use this to check 

that our specification of the disc sound speed to its thin disc dependence of r _3/4 

is valid. In §3.3.1 we noted that when a large external pressure is applied to a 

disc, the work done in moving the disc surface can cool the disc, and the disc 

temperature may diverge from its thin disc dependence. Figures 36 and 37how 

the r-z velocity fields for discs systems identical to that in figure 33except the 

sound speed radial dependence has been altered to r~ino and r -4'5 respectively. 

It is clear that the internal structure of the disc has not altered significantly, and 

we surmise that different specifications for the sound speed will not alter the 

results in this chapter.
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4 x 1 03 x 1 02x1010

radiol dis tance

Figure 36
The r-z velocity field  fo r the disc in figure 33ith Cq =  CD_7 /1 °  (axis units in cm).

m

5 x 1 04 x 1 03 x 1 02 x 1 010

radial dis tance

Figure 37
As in figure 36ut with Cq =  CO 8 /1 0 .
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3 .7  Dynamical evolution
In §3.6.3 we showed that our vertically isothermal disc model could be 

used to obtain asymmetric solutions which would excite mass-loss from 

shielded surface regions. However, to do this, a low accretion rate at the inner 

edge is needed. This must be able to support the dominant, high luminosity jet. 

Therefore in this section we investigate the energetic feasibility of our model.

The central powerhouse of a radio galaxy is widely acknowledged to be 

a supermassive black hole (~ 108Af0; see §1). The reservoir of extractable 

energy coming from the orbital energy of the gas near the black hole horizon, 

and the spin energy of the hole itself. Energy and angular momentum can be 

extracted from a black hole by the magnetic torques believed to be associated 

with radio jets (Blandford, 1979).

We assume that the energy from the accreting disc material (accretion 

rate M «*) is coupled to the spin of the central black hole. Therefore the rate of 

spin of the black hole is equal to the energy received from the disc minus the 

power, P , extracted to fuel the jet, i.e.

where a = m for a maximally rotating black hole. For the efficiency of the black 

hole, we take e = 0.1. From (3.35) we see that for a disc system with a low 

accretion rate, the energy required to power a radio jet can be obtained directly 

from the spin energy of the black hole itself. This will cause the black hole to 

spin down, as it loses angular momentum, until all its energy has been extracted 

and the radio jet ceases.

An estimate for the power extracted from the hole can be taken from 

Blandford & Znajek (1977)

(3.35)
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(3.36)

where

(3.37)

is the maximum extractable power from the hole, i.e. when a = m .

A  disc wind can be created by the illumination of an accretion disc by 

the X-rays emitted from a radio jet (see §2.4.1). Begelman et al. (1983) showed 

that such a wind will occur at distances of ~ 1018cm. The wind material goes to 

constitute the environment of the jet and the extracted black hole energy is 

converted to radiative energy

where the conversion efficiency k '  < 1.

In §3.4 we discussed the idea that if a region of the disc surface can 

become hidden from the cooling central soft X-ray flux associated with the 

inner regions of the disc, then the subsequent rise in temperature could induce 

mass loss from the shadowed region. The lost material would add to the 

environment of the jet. This introduces a time scale into the dynamics, 

corresponding to the time taken for the material that is lost from the shielded 

region of the disc surface (travelling at the isothermal sound speed from a radial 

distance rd ) to reach the jet: t x ~ rd lc s ~ 104 yr  for rd ~ 1017cm. We adapt (3.38) 

by assuming that the self-consistent jet luminosity is increased by the external 

pressure provided by the mass lost from the disc surface, M ^ , as a power law

L ~ k T (3.38)
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L ~ P( ]^LoEl ). (3.39)
in

Here both k and n are constants. If it is large, then when the disc is symmetric 

and there is no additional mass loss, the luminosity of the jet will only be a 

small fraction of its maximum. If the disc becomes one-sided and mass loss is 

induced then, depending on the value of n, the luminosity of the jet could 

increase to a maximum brightness as Mu,# approaches its largest value 

(presumably related to the accretion rate at an outer radial boundary in the 

disc).

At the shadowed disc region, we have seen in §3.3.2, the rate of mass 

loss is proportional to the luminosity, using the expression given by Begelman 

et al. (1983) (c.f. 3.14). Remember, that mass loss only occurs if the surface dip 

satisfies ds >zc, where z c is the Compton heating length scale above the disc 

surface (3.34). If d <zc then no mass loss occurs. This is summarised as

f  • \
A l  loss

1 M0yr -i
“Edd

0

if d5>zc.

if ds <zc.
(3.40)

Here j  is a constant. Assuming that only mass loss between 1017 cm and 1018 cm 

is considered, equation (3.14) can be used to give a value j  ~ 1.0. In calculating 

the dynamical evolution of the disc-jet system the asymmetric disc model 

derived in §3.3 must be used to discover if ds > z c.

To complete this set of equations we insist on a constant accretion rate 

at some outer boundary. This introduces another time scale t2 ~ rd lv r ~ 106yr
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which is the inflow time of material left in the disc after mass-loss has 

occurred. Therefore, we have

M  acc "I" M  loss (t 12 )  =  M total • (3. 4 1 )

We can now solve equations (3.35)-(3.41) for different values of k and n .

We have identified two types of solutions to the dynamical flow 

equations. The dominant factor is the parameter k in (3.39). As we have 

mentioned, £ is a measure of the jet efficiency in converting jet energy into 

radiation. It determines the sensitivity of the dissipation in the jet to its 

environment, which consists of material brought by a disc wind from large 

radii.

In the two examples to follow, the disc is assumed initially symmetric 

with a fixed accretion rate at the outer boundary of Af total — 1. 0M 0yr~\ The 

accretion rate at the inner edge is temporarily reduced to M acc =0.1Af 0yr~l for 

~ 104 yr and a large perturbation is given to the disc system in which the top jet 

has a higher luminosity than the lower jet: L+ = 0 . 8 and L_ = 0.2L^ (the jet 

height is 2x 1017cm). This creates an asymmetric disc shape and a region of the 

top disc surface is shadowed from the central soft X-ray flux by a distance 

ds > zc at -5x 1 0 11 cm. The requirement of a large perturbation to produce an 

asymmetric system is discussed in §3.8.

Figure 38hows the dynamical evolution of the system with k =10 and 

n = 0.1. The thick lines represent the two jet luminosities, the crosses 

correspond to the accretion rate at the inner edge, and the triangles show the 

spin of the black hole as the ratio a i m . The high value of k means that the 

dissipation in the jet is highly sensitive to its environment. When the material 

from the shadowed region reaches the jet, it improves the jet's efficiency. The 

resultant increase in luminosity raises the mass loss from the shadowed region 

(3.40) which in turn feeds back to the jet until its luminosity reaches a
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©
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Figure 38
The evolution of the upper and lower jet luminosities with time for a disc system
with k =  10 and n = 0.\. The crosses show the accretion rate at the inner edge,

•

M  acc, in units of solar masses per year. The triangles show the ratio a i m ,
representing the spin of the black hole.

maximum, i.e. L ~P  (3.39). After a time scale t2 ~ 106 yr the accretion rate at 

the inner edge becomes very small due to the large loss of disc material. The 

power extracted from the black hole by the jet is greater than the power the 

hole receives from the accreting material and the black hole starts to lose 

angular momentum (3.35). As the black hole spins down it reduces the 

m axim um  power available to the two jets. This in turn reduces the rate of mass 

loss from the shadowed region of the top disc surface, and again this affects the 

accretion rate at the inner edge after t 2 ~ 106 yr  as M acc begins to rise.

With the chosen parameters in figure 38 the reduction in both upper and 

lower jet luminosities continues for ~ 108yr, as the black hole spins down. 

Eventually, the upper jet drops to a luminosity of ~ 0.6L ^ .  This induces mass 

loss at the rate of ~ 0.6M0yr_1 from the shadowed surface area (from 3.40). The 

corresponding disc accretion rate is M acc ~ 0AM  Qy r .  Now M acc is too large to
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2
.5 *  m

§ ° 1 
3

©

tim« (years)

Figure 39 
The same as figure 38 but with k =  1.

support an asymmetric disc shape. The disc is forced to become symmetric and 

mass loss from the disc surface ceases.

With no additional material in the jet environment, the efficiency in 

converting jet energy into radiation declines and the luminosity of the top jet 

falls off dramatically becoming equal to that of the bottom jet. After a disc 

inflow time of 106yr, the accretion rate at the inner edge reaches 1.0M 0yr~l and 

the black hole, having a surplus of energy from the accreting disc material, 

starts to spin back up.

Figure 39 shows the same initial disc configuration, but k has been 

lowered to k = 1. This smaller value of k means that the dissipation in the jet is 

less sensitive to its environment. Therefore, when the additional material from 

the shadowed region of the top surface reaches the jet, the subsequent rise in 

luminosity is not as significant. The lower jet, without this extra material, has a 

jet luminosity which is comparable with that of the upper jet. The disc cannot 

maintain the asymmetric shape and the mass loss ceases. Note that the

5x10' 2.5x10' 3x10' 3.5x1 O'1.5x10' 2x10' 4x10



Chapter Three A model for asymmetric radio sources 144

accretion rate at the inner edge takes ~ 106 yr to adapt to the changes in mass 

loss.

3.8 Comparison with observations
We have seen in the previous section that the dynamical evolution of a 

one-sided jet can be described by one of two categories. These categories relate 

to the magnitude of the effect the surrounding medium of the jet has in 

converting the jet energy into radiant energy. We found that if the jet 

environment raises dissipation within the jet, then a stable one-sided jet / 

asymmetric disc system is likely to remain for large timescales. However, if the 

jet environment has little effect in enhancing the efficiency of dissipation, then 

a one-sided jet / asymmetric disc system is unstable and will only last for a 

short time.

As we mentioned in §3.7, the two examples (figures 38 and 39) only 

consider disc solutions that contained shadowed surface regions within 1018 cm. 

In reality, shadowing can occur at much larger radii. This would change the 

examples in two ways. We would not need such a large initial perturbation to 

create the initially asymmetric disc. The jet luminosities were originally 

perturbed to L+ = 0 . 8 and L_ = 0 . 2 .  A smaller perturbation would create 

the initial shadowed region at a larger radii, but the subsequent increase in jet 

luminosity would move the dip inwards. Conversely, we would not expect the 

disc to suddenly 'snap' back into a symmetric shape when an asymmetric 

solution became unviable, as in the examples, but rather the dip would begin to 

move outwards.

As small perturbations in jet luminosities are likely, this leaves us with a 

picture where a disc is always in an asymmetric shape, the region of the surface 

dip moving between inner (~ 1017cm) and outer (~ 1019cm) radii, and possibly
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moving from top to bottom surfaces in a random fashion. The one-sidedness of 

the jet depends on how sensitive the jet dissipation is to its surrounding's.

Our model is unrealistic in at least one respect: systems in which jet 

energy is converted efficiently into radiation should correspond to the bright 

jets. However, putting the efficiency factor k = 0 in (3.39) leads to the jet 

having its maximum luminosity. We should introduce a factor k / k ^  into 

(3.39) to account for the efficiency of dissipation in the jet even in the absence 

of mass loss:

This then means that the brightest jets are those most sensitive to their 

surrounding environment, and as we have seen in §3.7, are likely to be in a 

stable one-sided system. This is consistent with the observations of Perley, 

Dreher & Cowan (1984); Bridle et al. (1986) etc. who have found that the vast 

majority of FR II radio galaxies and quasars appear to be completely one-sided.

Fluctuations in jet luminosities due to, for example, differential 

efficiencies of dissipations in bulk-energy flows for the two jets, could lead to 

disc systems where the surface dip would occasionally flip sides. This would 

occur when a one-sided jet was coming to the end of its 'lifetime', as the surface 

dip moved to larger radii. In this fashion the more luminous jet would randomly 

flip-flop from one side to the other. For stable one-sided jets (high k ) this 

random direction change would occur on timescales of 107 -108yr (see figure

This could explain the 'specific avoidance' effect observed in the 

extended lobes of radio sources (see §3.1 and Rudnick & Edgar, 1984). A large

L ~
k

k
max loss (wax)

(3.42)

38).
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number of high-resolution maps have been rotated 180° around their cores or 

reflected about their symmetry axis and then overlaid on their respective 

originals. The high surface brightness regions from one-side is seen to 'avoid' 

those from the other plate, for most sources. Rudnick & Edgar discussed the 

possibility that this avoidance behaviour could be due to ejections from the 

nuclear source alternating sides. This idea has also been mentioned by Saikia & 

Wiita (1982), Macklin (1981) and Robson (1981). However, one problem with 

these models is in finding a mechanism to switch the jet from one side to the 

other. Another problem is that they do not explain the existence of symmetric 

lobes. The model derived in this chapter has a mechanism for switching sides 

on the timescales associated with avoidance behaviour (~107 -108yr). Also, the 

lobes are always symmetric because they are fed by the same bulk jet kinetic 

energy, even though one jet is more luminous.

Our model for one-sided radio jets illustrates an important point. The 

picture of lost material from a shadowed region of an accretion disc improving 

the dissipation of a radio jet, can only be obtained by consistently calculating 

the internal structure of the disc. In this way, we see that small changes in disc 

material flow can cause very large fluctuations in observed phenomena on kpc 

scales.



Chapter Four

The vertical transport 
of angular momentum
4.1 Introduction

The angular momentum within an accretion disc is transported 

principally by large scale eddies (and energy dissipated mainly by small scale 

eddies). In the vertical transport of angular momentum, eddies of scale H , the 

disc scale height, will be deposited in the disc environment. The standard thin 

disc model developed by Shakura & Sunyaev (1973) and Novikov & Thome 

(1973) (see §1) obtain disc solutions using vertically averaged quantities. Thus, 

in these models the vertical transport of angular momentum is neglected.

Attempts have been made to obtain a self-consistent picture of the 

internal structure of an accretion disc (Urpin, 1983; Siemiginowska, 1988; Kley 

& Lin, 1992). Here the effects of the vertical transport of angular momentum 

must be accounted for. Both Urpin and Kley & Lin have incorporated this 

vertical transport into their disc models, although Urpin does not include all of 

the viscous stress tensor components. These models describe surface-less discs 

extending to infinity.

As discussed in §2, Urpin, using a parameterization similar to Shakura & 

Sunyaev (1973), found an outwardly directed flow in the equatorial plane and 

inflow near the surface of the disc. Using the full viscous stress tensor and 

finite difference method, Kley & Lin found similar results for discs with low a,
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but find that for discs with higher values of a  (> 0.06), the flow throughout the 

disc was directed wholly inward. They conclude that a change in direction in 

the flow can only be obtained by increasing the vertical variation of the 

azimuthal velocity. A large viscosity increases the stress between mass 

elements at different heights above the disc midplane and tends to reduce the 

vertical gradient of the infall velocity. Consequently, flow throughout the disc 

is directed inwards. However, by using a finite difference method to solve the 

disc equations it is difficult to gain much insight into the solutions.

In this section we attempt to solve the equations in a gas pressure 

dominated region with Kramers opacity (2.40) (c.f. zone C; §2.3.2), for a 

steady state accretion disc, including the vertical transport of angular 

momentum, analytically as far as possible, resorting to numerical methods for 

the solution of the final system of ordinary differential equations only. As in §4 

we set up the equations of motion of the thin disc under the restrictions that the 

vertical and horizontal temperature gradients are specified. We find that for 

consistency the first order correction to Kepler motion must be included.

Following on from the previous chapters, we again define a disc surface 

through the condition of pressure balance between the disc and its environment 

(which may be a corona or disc wind; see §2.4). Having a disc surface hampers 

the transport of angular momentum vertically. As we mentioned previously, 

eddies of scale H  can transport angular momentum vertically by depositing it in 

the external environment. This produces an external torque (to extract the 

angular momentum). Therefore in previous chapters we have neglected 

transport in the vertical direction. In this chapter, to treat the vertical transport 

of angular momentum correctly, we must impose a boundary condition at the 

disc surface corresponding to angular momentum loss. Note that we will not 

consider mass loss in this case.

Our results are similar to those of Kley & Lin (1992). We find that for 

low a, the internal structure is akin to Urpin (1983), with directional changes of
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flow apparent in the disc. At high a, the disc becomes wholly inflowing. 

However, we expand upon the work done by Kley & Lin and find that for more 

significant external pressures (n<nc; see §2.2.4), a steady state solution exists, 

at a given accretion rate, for only one value of surface torque. Alternatively, 

assuming there exists a fixed external torque generated, for example, by 

magnetic or viscous interaction with the disc environment, then steady state 

solutions can be found for one accretion rate only.

4.2 A disc with vertical transport of angular 
momentum
4.2.1 The disc equations

In this section we will identify the lowest order steady-state equations 

that describe an accretion disc which includes vertical transport of angular 

momentum. As in §2 we shall assume that the disc is symmetric about the z = 0 

midplane. We shall also assume that the disc can be described by the vertically 

isothermal system of equations (as we did in §3; for an explanation see §2.5.1). 

This means that the energy equation (2.8) is replaced by a prescribed vertically 

isothermal temperature distribution T =T(r).

The disc equations are similar to those used in the asymmetric disc 

model of §3; first

Vn = —!— (4.1)
0 CD1/2

Cf o = o 00 « c p ( ~ - i - r ) • (4.2)2c0CD

At zero order the disc material rotates in a Kepler orbit (4.1), and is in 

hydrostatic equilibrium (4.2). We use the kinematic viscosity prescription
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v = a csH  . (4.3)

With the <|>-equation (2.23), we now differ from §4. Including all viscous stress 

terms, we have an equation for the zero order radial velocity U0

3
<*<Po = ---- r(<J6Co®2)>a, +2a0c02coV1,K -2 o £ V lK. (4.4)

CO2

Here the final two terms represent the corrections from non-Kepler motions; 

these terms are ignored in the standard treatment when this equation is 

integrated vertically to give the radial velocity in terms of the surface density. 

The non-Kepler terms are obtained from the next order correction to the radial 

equation (2.22):

2 o0V, = a 2c02a 0®3*70,K + a20t£C/o,? +®2( < V o ) > „ (4.5)
2®*

Note that the third term on the right of (4.5) comes from the radial pressure 

gradients while the first two terms on the right represent the effects of the 

viscous transport of angular momentum vertically (these terms are not included 

in the model developed by Urpin, 1983); the final term is from the vertical 

gradient of the gravitational field. These effects are fed into the radial motion 

through in (4.4).

The continuity equation (2.25) is in the same form as in §3:

(oJU 0<o)m +®(0(JV 0)'<= 0- (4.6)

Finally, as we mentioned above, we assume that the disc is vertically 

isothermal and the temperature within the disc is prescribed as T =T(r). The
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disc region we are interested in corresponds to gas pressure dominated and 

Kramers' opacity. We adopt the thin disc temperature dependence (1.22) in the 

form

—  • (4.7)co

We showed in §3.6.4 that altering the radial dependence of c\. had little effect 

on the internal structure of the accretion disc.

4.2.2 Boundary conditions
In §2.2.3 we saw that to obtain the conditions on the surface of the disc 

we must integrate the momentum equation (2.4) over a pill-box spanning an 

element of surface (see figure 4 and 2.43). We mentioned in §4.1 that to 

include the vertical transport of angular momentum correctly, we require an 

external torque to extract the angular momentum. This is incorporated into the 

surface integral as

J  pvV dS j  = - J  V d S j -g * f  PdSj -  J p(<!>g%dV-J  G^dSj (4.8)

The third term on the right is zero in the limit that the pill-box volume tends to 

zero, whilst the final term on the right is the external couple. This will 

introduce vertically transported angular momentum loss at the surface

( 4 9 )

G lJ =0 for all other i andj.

gc(r) represents the couple applied at the disc's surface and its value will be 

prescribed for specific numerical calculations. Labelling the surface values with 

the subscript s we obtain
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Uriinj +PU-V/I, +Pn‘ - G ’ r ij l  =Plxtn ‘ (4.10)

where P„, is the pressure in the external medium surrounding the disc.

We take from (2.47) the condition of no mass loss from the disc surface

K
d(D U,

(2.47)

From (4.10) we get

(4.11)

(4.12)

(4.13)

l f nn, + r 13n ,+ PCuV«, + v ' v \ ) ] s =[(Pa  - P J n ' l  

U 2\  + T 23n3 +p(\>Vn, + t)V n 3)]s =[G23n3]s 

\ T 3,n. + T nn,+p(.vWnI +t>Vn3)], = [(Pm - P J n 3]s

where ni is the normal vector to the surface of the disc, and hence from (2.47) 

we get the relation

i  = (4-14)
7i, x> „ MU*

Using the expansions of §2.2.2 we expand (4.11), (4.12) and (4.13) obtaining, 

respectively

[M2AF], = - [c 2o 3,2a 4 f / , ffi- | w >;)]{
3 3 (4.15)

2,^ 3 /2 _  /  1 / 2  r * - —» '  U+ [c as <s(M U ,^ + W )-^]

W 1[M2V% ] ,= [— (V,„-----V)-Fc(r))s
s U as

(4.16)



Chapter Four The vertical transport of angular momentum 153

[M4AP]s = [ c W no(M2UK ) ^ ]
U

(4.17)
- [ c2cd3'2c ( ^ |

Here the external couple gc (r) is absorbed within 

8c(r) = gc(r)M/ (c2rap(Qmc2G) . Taking the first order terms of (4.16) and using

(2.47), gives us a boundary condition for the correction to Kepler motion at the 

disc surface:

(4.i8)

Equating the zero order terms of equations (4.15) and (4.17) gives us another 

boundary condition, defining the vertical gradient of U0 at the disc surface

[U 0%l = 0 .  (4.19)

Finally, substituting (4.19) back into either (4.15) or (4.17) gives us the 

definition of the disc surface as a condition of pressure balance between the 

disc and its surrounding medium through AP = 0:

P «o£s) = PExt(G>)- (4.20)

Once again, to complete the boundary conditions we should specify an 

inner and an outer radial boundary condition. We therefore expect the disc 

equations above to yield a two parameter family of solutions.

4.2.3 Solving the disc equations
In §4.2.1 we identified the disc equations that would describe a disc 

which includes the vertical transport of angular momentum: the hydrostatic
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equation (4.2), the equations for the azimuthal velocity (4.1 and 4.5), 

expressions for the radial velocity (4.4) and disc temperature (4.7), and finally 

the continuity equation (4.6).

The linearity of equations (4.4) and (4.5) in a 0 enables us to eliminate 

Oqo from these equations using (4.2). After some manipulation we get

Now, to solve the two equations (4.21) and (4.22) for U0 and Vlf it is helpful to 

rescale the dimensionless variable for z in terms of A (from 1.7 we see that the 

disc scale height H =4a  12): q = £/ A1/2. We also define new variables V =VxX 

and U =U0, where X = V2/ 0C, and use primes to denote differentiation with 

respect to q. The above equations (4.21) and (4.22) become:

AV j ,£ —2t^V, ,£ -U 0=B +C?2 (4.22)

(4.21)

where

A =2cq(o3

(4.23)

U" + 2c!J'-XV  = -X2E - X2FAq2 

V " - 2  q V '-X U  = XB + XCAq2.

(4.24)

(4.25)
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Note that U and V depend on radius co only as a parameter - through the co 

dependence of A, B, C, E, F  in the particular integral and through the 

dependence on q = £ /A 1/2. The partial differential equations therefore reduce to 

a set of ordinary differential equations even when angular momentum is 

transported vertically.

Particular integrals of this system are readily obtained. For the 

complementary function we eliminate V to obtain a fourth order homogenous 

equation for U for which we define four independent solutions, say 

A if i = 1 - 4 ,  by specifying the following conditions at <; = 0:

where these conditions determine solutions behaving as cosh q, sinh <;, cosq and 

sin <;, as q tends to zero.

From equation (4.24) we can define a similar set of functions, B{ as

Each of the set Af and B( form a complete independent set of complementary 

functions for (4.24) and (4.25). The general solutions for U and V can now be 

written as

A, = 1 A ; = 0 A"= 1 Aj"=0
A2 = 0  A' = l A2"= 0 A'"=l
A3 = 1 A3' = 0 A3'= - l  A3'"=0
a 4 = 0  a ;  = i a 4" = o a 4"= - l

(4.26)

(4.27)

4

U = £ / ,  (to)A, (?) + p0+p{? (4.28)
1

V = Y j ‘ (cd)B' (S) + ? o + 9 i? 2 ■ (4.29)
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If we substitute the particular integral terms of equations (4.28) and (4.29) into

(4.24) and (4.25) and equate coefficients of q2, we get

4p, -Xq, = —XIFA
4 , - v U c a .  ( 4 -3 0 )

Equating coefficients of c? gives us 

2
2qx -  Xp0 = XB.

Solving the simultaneous equations (4.30) and (4.31) gives us the particular 

integrals of (4.24) and (4.25):

2A(F X -4C )
(AF+16) B (4'32)

2AX(4F+C )iin
«° = ~ (A? + 16) ~~ (4‘33)

X'Af4F+C)
(X +16)

XA(FX2-4C )
q ' = ( 4 - 3 5 )

Turning to the complementary functions, we have assumed that the disc 

is symmetric around its midplane <; = 0. This implies

dU

<5=0

dV = 0. (4.36)
s=0

These two boundary conditions are substituted into the solutions (4.28) and 

(4.29). Using the boundary conditions (4.26) and (4.27) we get
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f  2  “I" / 4 =  0  -  _  -

3/2- / 4=0 2  ̂ ^

Similarly, we substitute the two surface boundary conditions (4.18) and (4.19) 

into the solutions (4.28) and (4.29) using (4.37) and have

(4.38)

4

where

^  (4.39)

C4 = 3<j) i(j> • (4.40)

If C4 = 0 then (4.38) becomes singular. This can be consistent only if the 

numerator and denominator of (4.38) vanish at the same point. Using the 

expressions in (4.23) we can rewrite (4.38) as

qjM 4 2 ^ ^ )+(3A>2 + 216)A3; ))+WA-J)
Tl 4oo1/4(A,2 + 16)C4

q > (4 2 ^ i; ) +(3X2+216)A1/(5>)+WA1/(j>
U 4cd1/4(A,2 +16)C4

The complementary function solutions A1 ,A3, Bx, B3 can be calculated from

(4.24) and (4.25) using a NAG routine such as D02CAF and depend on the 

value of X (which is inversely related to the viscosity parameter a). Figures 40 

and 41 show how the quantities A,', A', B', B ' vary with q for a  = 0.1 and 

a  = 1.0 respectively. These quantities are positive for all q. Therefore to obtain
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Figure 40
The complementary functions A,', A3, Z ? B£ as a function of q for a  = 0.1.
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Figure 41
The complementary functions A,', A3, 5 /, Z?3 ay a function of q for a  = 1.0.
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solutions when C4 = 0, a specific value of gc must be given to allow the disc to 

pass smoothly through the 'singularity'.

The form of (4.38) tells us what couple must be applied at the disc 

surface when C4 = 0 in order to obtain a steady state solution. This arises 

because the terms f 1 and f 3 are calculated at the disc surface q5. The definition 

of the disc surface (4.20) is one of a pressure balance between the disc and its 

surrounding medium, where the external pressure is a function of r only. In 

reality, if the disc surroundings are extracting angular momentum from the disc, 

then there will be some kind of feedback mechanism which will result in the 

external pressure becoming dependent on both r and z. This problem does not 

arise in the surface-less models of Urpin (1983) and Kley & Lin (1992), where 

angular momentum is transported to infinity.

Because of our lack of knowledge of the feedback processes between the 

disc and its environment we investigate the disc structure considering a range of 

power law external pressures

PExt~r~n- (4*41>

In all examples to follow, the initial value of the external pressure (at rin) will 

be chosen as < 10~̂ P0, where P0 is the disc central pressure. This is so that any 

disc solutions affected by the external medium will be independent of the initial 

boundary conditions.

Figure 42 shows how the quantity C4 varies with q for differing values 

of a  (0.1, 0.5, 0.7 and 1.0). For high values of a  (i.e. a  = 1.0), C4 does not pass 

through zero. From (4.24) and (4.25) we see that when a  is large (i.e. small X), 

the correction to Kepler motion remains small even when the vertical gradient 

of the radial velocity is large. In this case, most of the angular momentum is 

carried away in the radial direction. This is confirmed by the velocity solutions

(4.38). If a  »  0 (X ~ 0) then the correction to Kepler motion V ~0 and the
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Figure 42
The quantity C4 as a function of $ for a  = 0.1, 0.5, 0.7 and 1.0.

radial velocity is independent of z. All the momentum is carried away radially, 

and the disc will consist of wholly inflowing material (as found by Kley & Lin, 

1992). Note that this result differs from §2 where vertical transport of angular 

momentum was ignored. Here the radial velocity remained a function of z 

because Kepler motion was modified by radial pressure gradients and the 

vertical gradient of the gravitational field (4.5).

For low values of a  (high X), even small gradients in U could lead to 

large values ofV  .A t certain disc heights (values of <;,), the vertical transport of 

angular momentum will become very significant (C4 =0) and the disc solutions 

will depend sensitively on the external couple applied at the disc surface.

If the external pressure remains small compared to the central pressure 

of the disc (c.f. n > nc; §2.2.4), we have seen that the disc surface will increase 

approximately as a multiple of a scale height (i.e. constant <;; see §2). 

Therefore, in the case of a small external pressure and fixed a , the quantity C4 

(which depends only on the disc height for fixed a), should remain constant. If 

a  is large, then C4 will be positive. If a  is small, then C4 could either be



Chapter Four The vertical transport of angular momentum 161

positive or negative, depending on the value of qs. However, for an external 

pressure that becomes more significant with radius (n<nc, i.e. corona or disc 

wind; §2.4), the disc surface will be 'pushed over' (c.f. results of §2.3.2), 

lowering qs with radius. The value of C4 will change as qs moves to the left on 

figure 42 and, for discs with low a , possibly move through zero at a some 

distance. Here, to obtain steady state solutions the value of the couple must 

allow the solutions to pass smoothly through the C4 = 0 point.

Turn now to the condition of no mass loss at the boundary (2.47). This 

gives an expression for the vertical velocity at the surface of the disc:

As we showed in §3, the continuity equation can be shown to be a 

second order differential equation for a^Cco). Therefore, to solve the disc 

structure we are going to specify and at some co and for q = 0 

(equivalent to the accretion rate and an inner boundary condition) and integrate 

with respect co. To see this we take the continuity equation (4.6) in the form

W 1/2 ( 2 ̂ ,fi> ^  ^  I* * (4.42)

(4.43)

Integrating from q = 0 to q = qs, we get

(4.44)
^3 ^5

where the q dependent terms are all evaluated at qs, and
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second order equation for o00. The coefficients in this equation involve the 

functions A i and Bi at the surface £ = <;, as functions of co and these must be

evaluated by vertical integration of (4.24) and (4.25) at each co. Thus, we solve

(4.44) for Goo ,<00, and write the resulting equation in the equivalent first order

form

Z 3 =  £ 0 2 ^ 0  { f ^  +  /A  +  Poj 2 + p  J t ) (4.45)

Z5=£ ^ ( / i A + / a + W j )

and

(4.46)

tin
The term ~ ~  on the right side of (4.44) contains om><m so equation (4.44) is a

y  = °oo

Y ,m = F ( y X  ,<S>)
(4.47)

where the form of F , obtained from (4.44), is
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F  =(3© { Z ,+ Z 2+ Z 3+ Z 4- Z 5

+<*o°(f  | ^ - - (3®3/2c02.o ■^®1'2c02),„ - C o o ) - M  (4 .48)

where Z 2, Z 3 and Z5 are given by (4.45) and

Z ^ i a . W l A -1'2
rr ,d fiT  3 r ^Pi r \ (4.49)

The radial system (4.47) is solved by the NAG library routine D02CAF which 

integrates a system of first-order ordinary differential equations over a range 

with suitable initial conditions, using a variable-order variable-step Adams 

method. Rather than using the integrals in (4.46) directly, we append the q - 

derivatives of these quantities to the equivalent first order system from (4.24) 

and (4.25) giving a total of 17 first order equations and boundary conditions 

which are integrated with respect to q, again using the NAG library routine 

D02CAF whenever F is called by the radial integration routine. In addition we 

check the accuracy of the integration by computing the accretion rate at each 

radius. This is found to be constant, as it should be, to at worst, within 1% over 

a factor 102 in radius.

4.3 Disc solutions
4.3.1 Testing the code

The code has been run for various values of accretion rate, external 

pressure and disc radius. It is essentially a modified version of the code 

developed in §3, and as such requires the same starting parameters, namely, 

Goo (co) Ooo,̂  (©) (4.46) which corresponds to the mass flux within the disc, 

and the height of the disc qs. The choice of q, has little effect on the disc
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Figure 43
The evolution of the central density (00) with respect to the dimensionless 
radial variable CO for a range of initial disc heights (with increasing 0^(0)):
<;s =1.5, 2.0, 2.5, 3.0).
Disc system: M = 108M 0, M = 0.1M 0yr~l, a  = 0.1.

solutions away from rin (for a given M ). Figure 43 shows the evolution of the 

disc quantity cr̂ Ceo) with radial distance © for a choice of initial disc heights 

(qs =1.5, 2.0, 2.5, 3.0, corresponding to z s ~ 1.5>/2H , 2.oJlH , 3rj2H,

where H is the disc scale height (1.7) at the starting radius). The solutions 

correspond to a symmetric disc (i.e. equal external pressure applied to both 

sides of the disc) with M =108M0, M =0.1M 0yr~l and a  = 0.1. The function 

Goo (co) rapidly converge towards equilibrium solutions. The two most extreme 

choices of are within 95% of the 'average' solution by ~ 1- 3 rin. This 

computation has been repeated using various permutations of accretion rate, 

alpha parameter and external pressure with similar results.
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Figure 44
The r-z velocity field for a disc with (X = 1.0, M  = 0.5M Qyr~x and n = 2.7.

4.3.2 Discs subjected to small external pressures
In §2 we investigated the effect of external pressures on an optically 

thick accretion discs with vertical temperature gradients. We showed that, for 

consistency, a disc surface calculated by a pressure balance between the disc 

and its environment, should be at the same height as the photospheric (x = 1) 

surface. If the external pressure is small compared to the disc central pressure, 

the surface will have a (thin disc) radial dependence of r m  in a disc zone 

which is gas pressure dominated and has Kramers' opacity. This corresponds to 

a disc with qs = constant and C4 =constant. The value of both qs and C4 will 

depend on the value of the viscous parameter a , the accretion rate, and the 

magnitude of the external pressure.

Figure 42 showed that the quantity C4 took a variety of different forms 

as a  was varied. The high a  solutions did not pass through the C4 = 0 line as <; 

was increased, whilst the low a  solutions crossed the line several times. In this 

section we will investigate the internal structures of discs with different a ,
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subjected to small external pressures (approximately constant qs). In §4.2.2 we 

showed that to correctly consider the vertical transport of angular momentum, 

an external couple must be placed at the disc surface to extract the angular 

momentum. We have seen that because we do not know the physical processes 

involved at the surface, the external pressure is given as a function of r  only. As 

a result the value of the external couple is unknown (except at C4 =0, where 

only one value for the couple will give a steady state solution). Therefore, in 

this section where qs and C4 are constant (but non-zero) over the range of r, we 

will choose the unphysical gc =0.

Figure 44 shows the r-z velocity field for a disc with high a  (a  = 1.0), 

M = 0.5Af 0yr~l and n = 2.7. For this value of a , C4 is positive for all qs beyond 

<;5 = 3.0 (figure 42). In this example the numerical computations give qs ~ 2.1. It 

was shown in §4.2.3, that when a  is high (low A,) the disc transports the 

majority of its angular momentum in the radial direction. There is no correction 

to Kepler motion, V =0, and the radial velocity is independent of z. This is 

shown by the wholly inflowing disc structure of figure 44. Similar solutions 

were found by Kley & Lin (1992).

If the viscosity parameter is reduced to a  = 0.5, then the quantity C4 has

a zero at qs ~ 2.05. Figure 45 shows the r-z velocity field for a disc with a  = 0.5

and qs ~ 2.3 (negative C4). The flow pattern is similar to those found by Urpin

(1983), the low a  solutions of Kley & Lin (1992), and the solutions of §2

where the vertical transport of angular momentum was ignored. There is an

outflow of material near the equatorial plane, and inflow near the disc surface.

The magnitude of transport of angular momentum in the vertical direction leads

to values of V similar to those found in models where vertical transport is

ignored (where V is non-zero, because of radial pressure gradients and the
•

vertical gradient of the gravitational force). If c,s is lowered, by decreasing M 

or increasing the external pressure, then C4 becomes positive. This results in 

the velocities changing sign. Figure 46 shows the disc with a  = 0.5, but with a
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Figure 45
Same as figure 44, but with a  = 0.5 and C>s ~ 2.3 (negative C4).
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Figure 46
Same as figure 45, but with C,s ~ 1.8 (positive C4).
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Figure 47
Same as figure 44, but with CL = 0.1 and C,s -1 .3  (negative C4).
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Figure 48
Same as figure 47, but with Q,s -1 .9  (positive C4).
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reduced disc height of qs -  1.8 (i.e. lower M = 0 .2 M 0yr~1). Now there is 

inflowing material near the equatorial plane and outflow near the disc surface.

Finally we look at disc solutions with low values of a . Equation (4.29), 

along with (4.33), (4.35) and (4.37), shows that when a « l  (high A), the 

correction to Kepler motion, and therefore the vertical transport of angular 

momentum, becomes significant. Figure 47 shows the r-z velocity field for a 

disc with a  = 0.1 and qg -1.3. This corresponds to a negative value for C4 (with 

a  = 0.1, C4 has two zeros residing at qs -  0.8 and <;, ~ 1.7). We see that the large 

vertical transport of angular momentum induces a flow pattern where there is 

outflow at both the equatorial plane and disc surface, but inflow in the middle. 

Altering (corresponding to changing M )  to make the value of C4 positive 

generates the opposite velocity field. Figure 48 illustrates this with a disc 

whose surface is at qs -1.9. The equatorial plane and disc surface consist of 

inflowing material whilst inbetween there is outflow.

4 3 3  Discs subjected to power-law external pressures w ith n < n c

In §2.2.4 we proposed that if a disc is subjected to an external pressure, 

where the external pressure takes the form of a power law (4.42), with n < nc 

(where n = 21/8 for a gas pressure dominated / Kramers' opacity disc) then the 

disc surface (and photospheric surface) will be 'pushed' over and begin to 

deviate from its thin disc radial dependence r 9/8. In this situation the value of qs 

will decrease with r. This corresponds to a variation in the value of C4 with r 

(for a given a, the value of C4 will change as qs moves to the left on figure 42). 

Therefore there is likely to be a radius at which the disc surface will move 

through the C4 =0 axis. We have seen in §4.2.3 that when C4 =0, the external 

couple gc must be sufficient to allow (4.38) to pass through the point smoothly, 

if there is to be a steady state solution for the disc.

Figure 49 shows the r-z velocity flow for a disc with a  = 0.5, with a 

starting height of qs -  2.5, being subjected to an external pressure with n = 1.
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Figure 49
The r-z velocity field of a disc with a  = 0.5, n = 1 and starting height C)s ~ 2.5.
The disc passes through C4 = 0 at ~ 2.3x 1017 cm.

The starting conditions mean that C4 is initially negative (see figure 42), with 

outflow near the equatorial plane and inflow near the disc surface. However, 

the external pressure is such that at large r it becomes significant enough to 

lower qs . At ~ 2.3xl017cm the disc surface has been pushed down to such an 

extent that qs ~ 2.05 and C4 passes through zero, becoming positive. We saw in 

figure 46, that when a  = 0.5 and C4 is positive, the velocity field shows inflow 

near the equatorial plane and outflow near the disc surface. To pass smoothly 

through the C4 = 0 singularity, the correct couple is applied at the surface. Its 

effect on the internal structure of the disc, is to keep the flow pattern within the 

disc intact. There is outflow near the equatorial plane and inflow near the 

surface for both positive and negative values of C4. This contrasts with the 

results found in §2, where the vertical transport of angular momentum was 

ignored, and where the velocity flow in a disc changed if the external pressure 

became significant compared with the central pressure of the disc. The slight
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Figure 50
The r-z velocity field of a disc with a  = 0.1, n — 1 and starting height C,s -1.9.
The disc passes through C,s -  1.9af -  1.1X1017 cm .

disturbance in the velocity field in figure 49 at -2.3x1017cm, is due to the 

numerical error in running the model through the C4 =0 point. If the 

computation were to be done more accurately then the velocity field would 

show a smoother transition between positive and negative values of C4.

Figure 50 illustrates a similar transition across C4 =0. In this example 

a  = 0.1, the starting height is -1.9, and the external pressure power law has 

n = 1. From figure 42, we see that with these starting conditions C4 is positive. 

There is inflow at both the equator and disc surface, and outflow inbetween 

(figure 48). The external pressure suppresses the disc surface from its thin disc 

radial dependence and at -  l.lxlO17cm, qs -1.7 the value of C4 changes from 

being positive to negative. As with figure 49, the external couple needed to 

allow the equations (4.38) to pass smoothly through C4 =0, also maintains the 

velocity field of the disc. Therefore we have the scenario, that even if the 

external pressure becomes significant, a steady state disc with vertical transport
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of angular momentum will maintain the same flow pattern if a  and M remain 

constant.

It should be noted that by changing the accretion rate, and thereby qs, 

the radius at which C4 = 0 can be altered. Therefore, if the external couple and 

a  are fixed for a given disc, steady state solutions that pass smoothly through 

C4 = 0 can be found by specifying the correct accretion rate.

4.4 Conclusions
In this chapter we have attempted to investigate the internal structure of 

an accretion disc which includes the vertical transport of angular momentum. 

Although similar studies have been done (i.e. Urpin, 1983; Kley & Lin, 1992), 

these have assumed surface-less discs where angular momentum can be 

deposited at arbitrary heights. It is unlikely that, accretion discs sit in vacuua. 

The surrounding medium could consist of a corona or a radially, or thermally, 

driven wind from the central disc regions or radio jets. In this case, a surface 

between the disc and its surroundings can be defined and the vertically 

transported angular momentum is extracted by coupling to these surroundings.

Our model simplifies the physics involved in the interaction between the 

disc and its environment, by assuming the external pressure varied as a fixed 

given function of radius only. In reality, if the disc's environment extracts 

angular momentum from the disc then this will in turn influence the 

environment and its effect on the disc, resulting in an (r, z) dependence. The 

magnitude of the couple extracting angular momentum from the disc is 

unspecified. However, if the disc surface reaches a height such that the term 

C4 = 0 (4.40), then, if M is fixed, there is only one value for the couple, gc 

which will allow a steady state solution (4.38). Alternatively, if gc is fixed for a 

given disc, then there is only one value for the accretion rate M , which will
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allow steady-state solutions. Inclusion of feedback to the environment is 

unlikely to alter these conclusions.

Our results can be compared with those by Kley & Lin (1992). Discs 

with high viscous parameter a , consist of wholly inflowing material and all 

angular momentum is transported radially (i.e. figure 44). As a  is reduced, the 

vertical transport of angular momentum increases. This is manifested by a 

change in the flow direction within the disc (i.e. figure 47) as the correction to 

Kepler motion grows. The greater the vertical transport of angular momentum, 

the more changes in fluid flow within the disc.

The direction of flow depends on the sign of C4. When C4 is negative, 

there is outflow along the equatorial plane, whilst if it is positive, there is 

inflow. When the vertical transport of angular momentum is ignored (as in §2), 

the equatorial fluid velocity can change sign if the disc is subjected to a 

significant external pressure compared with the central pressure of the disc. 

However when vertical transport is allowed, this directional change does not 

occur because the external couple required at C4 =0 is sufficient to maintain a 

constant flow pattern (i.e. figure 50). Therefore there is a bifurcation of flow 

patterns for a disc with constant a , consisting of inflow and outflow along the 

equatorial plane, where the direction of flow is chosen by the initial conditions.

If an a  « 1  disc is subjected to an external pressure power law such that 

n <nc (see §2.2.4) then the quantity C4 will pass through zero at some radial 

point. As we have mentioned above, if gc is fixed for a given disc, then there is 

only one value for the accretion rate M , which will allow steady-state 

solutions. Thus, if (a) the external environment has a significant effect on the 

disc, and (b) there is vertical transport of angular momentum, then the steady 

state accretion rate is determined by the external torque on the disc. 

Conversely, for a general accretion rate and where the torque on the disc is 

fixed by the conditions in the environment, there is no steady state solution.
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Conclusions
In this thesis we have developed a mathematical model that describes the 

internal structure of an a-accretion disc. Our method is to consider the standard 

thin disc (Shakura & Sunyaev, 1973; Novikov & Thome, 1973; Lynden-Bell & 

Pringle, 1974; §1.2) as a zero order approximation to a disc with vertical 

structure. The order of the approximation is controlled by the parameter 1/ M 2, 

where M  is the Mach number of the azimuthal flow at a fiducial point. The 

method develops the theory of the disc analytically as far as possible, resorting 

to numerical methods for the final system of ordinary differential equations 

only.

Our model expands upon the work of other authors (i.e. Urpin, 1983; 

Kley & Lin, 1992) by assuming a disc surface defined by the condition of 

pressure balance between the disc and its environment in a special case of zero 

net torque at the boundary. Vertically transported angular momentum is 

extracted by coupling to these surroundings. In the absence of an external 

couple, the vertical transport of angular momentum should be ignored, as is the 

case in the standard thin disc.

If the external pressure is assumed to follow a radial power law 

dependence, i.e.

/^ ( r )o c r - " ,
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where the external pressure is small compared to the disc central pressure at the 

inner boundary, then a critical external pressure can be defined when n - n c 

(c.f. §2.2.4). If n > nc then the disc environment has little influence on the disc 

solutions. If n < nc then the surroundings will effect the structure of the disc at 

large radii. The value of nc is found to be the predicted radial dependence of 

the thin disc central pressure. Sources of external pressure are discussed in 

§2.4.

When n > n c and the vertical transport of angular momentum is ignored, 

we find that the disc solutions closely resemble those of Urpin (1983) and have 

thin disc radial dependencies. There is an outflow of material near the 

equatorial plane and inflow near the disc surface. In solving the disc equations 

Urpin used a vertically isothermal approximation (c.f. §2.5.1). The closeness 

between our results and those of Urpin suggests that when investigating the 

velocity structure of accretion discs a vertically isothermal prescription can be 

adopted. This is confirmed by results in §3.6.4.

If the disc environment provides an external pressure with n < n c, then at 

large radii the pressure can become significant enough to 'surpress1 the disc, and 

photospheric ( t  = 1), surface. Our disc model predicts a lowering of the surface 

and a reduction in the emitted flux, and therefore the disc temperature. This 

could be of importance in the inner radiation pressure dominated regions. The 

observed collimation of radio jets would suggest that large external pressures 

are apparent in the inner regions of discs. The disc surface adjusts itself against 

the surroundings which cools the disc, thereby preventing thermal (but not 

viscous) instabilities. Since we have only treated a special case (zero net torque 

boundary condition) a more formal investigation into the stability of radiation 

pressure dominated discs subjected to large external pressures would be needed 

to establish these results conclusively.

If the observed UV variability in AGN spectra is caused by instabilities 

in the radiation pressure dominated regions, and can therefore give a guide to
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the value of the viscous parameter a, as proposed by Siemiginowska & Czerny 

(1989) (c.f. §2.5.6), then disc cooling by its surroundings could imply that all 

AGN have a similar value of a. The observed short timescale UV variability 

could be due to thermal instabilities in disc systems experiencing little external 

pressure, whilst the longer term variability would be due to viscous instabilities 

in systems with significant external pressures.

If the environment exerts a pressure such that within the disc

assuming no vertical transport of angular momentum, then the outflow of 

material near the equatorial plane will cease and the disc will become wholly 

inflowing. This means that for a given accretion rate, the surface density of the 

disc at a particular radius depends on the external pressure being applied by the 

disc environment. This could be of importance when determining the stability 

of the disc equilibrium solutions (see §2.5.4). By investigating discs that are 

partially ionised (where an S-shaped AT (X) curve has been predicted; Clarke, 

1988), the ability of the external pressure to influence the evolution of the disc 

(either limit-cycle or thermal runaway) could be studied.

A limitation of our model is that it can only describe optically thick 

accretion discs (i.e. where the (pressure balance) disc surface is at the same 

height as the photospheric surface). This results from our use of the NAG 

routine D02HBF to solve the disc equations (see §2.2.4). By using the NAG 

routine D02SAF, a modified blackbody condition could be applied at the 

photospheric surface, and a flux limiting diffusion equation (i.e. 2.12) used. 

This would allow us to investigate optically thick discs with optically thin 

atmospheres (c.f. §1.9). Attempts were made to use this routine, but it has 

proved difficult to apply.
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When the vertical transport of angular momentum is included, our 

results can be compared with those of Kley & Lin (1992). Discs with high a  

consist of wholly inflowing material, and all angular momentum is transported 

radially. As a  is reduced, the vertical transport of angular momentum increases. 

This manifests itself by changing the flow direction within the disc as the 

correction to Kepler motion grows. The greater the vertical transport of angular 

momentum, the greater the changes in fluid flow. We find a bifurcation of flow 

patterns for a disc with constant ex, consisting of inflow and outflow along the 

equatorial plane, where the direction of flow is determined by the initial 

conditions. If n < nc then the steady state accretion rate is determined by the 

external torque on the disc. Therefore, for a given accretion rate and an applied 

torque that is fixed by the conditions in the environment, there is no steady 

state solution. Investigating the time dependency of such discs could be 

undertaken at a future date.

Finally, in §3 we proposed a possible model for intrinsically one-sided 

radio sources. This assumed that the inner disc solutions could be described by 

a series of steady state systems and depended on assuming a finite perturbation 

to generate asymmetric states. To obtain a complete picture we should follow a 

dynamically evolving disc over the full mass losing region and include the 

effects of mass and angular momentum loss consistently.

We have attempted to show in this thesis the potential importance of 

considering the internal structure of thin accretion discs. In particular the 

possibility of spontaneous breaking of symmetry may depend on the velocity 

field in the disc. Further problems that must involve the internal structure are: 

inclusion of magnetic fields (for applications to radio galaxies), surface 

advection of entropy (for the possible generation of mass outflows in the inner 

disc), general relativistic effects (although it is not clear that these can be 

incorporated consistently in the present expansion scheme) and two 

temperature discs or ion-tori (for the prediction of spectral properties).
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