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Optim ization Problem s in Communication Networks 
M at us MihaFak

Abstract

We study four problems arising in the area of communication networks.
The minimum-weight dominating set problem in unit disk graphs asks, for a 

given set V  of weighted unit disks, to find a minimum-weight subset V  C D such 
that the disks V  intersect all disks V. The problem is A/’T*-hard and we present 
the first constant-factor approximation algorithm. Applying our techniques to 
other geometric graph problems, we can obtain better (or new) approximation 
algorithms.

The network discovery problem asks for a minimum number of queries that 
discover all edges and non-edges of an unknown network (graph). A query at 
node v discovers a certain portion of the network. We study two different query 
models and show various results concerning the complexity, approximability and 
lower bounds on competitive ratios of online algorithms.

The OVSF-code assignment problem deals with assigning communication 
codes (nodes) from a complete binary tree to users. Users ask for codes of 
a certain depth and the codes have to be assigned such that (i) no assigned 
code is an ancestor of another assigned code and (ii) the number of (previously) 
assigned codes that have to be reassigned (in order to satisfy (i)) is minimized. 
We present hardness results and several algorithms (optimal, approximation, 
online and fixed-parameter tractable).

The joint base station scheduling problem asks for an assignment of users to 
base stations (points in the plane) and for an optimal colouring of the resulting 
conflict graph: user u with its assigned base station b is in conflict with user v, 
if a disk with center a t 6, and u on its perimeter, contains v. We study the com
plexity, and present and analyse optimal, approximation and greedy algorithms 
for general and various special cases.
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C hapter 1

Introduction

This thesis has two main goals. Besides the ultimate goal of presenting the 

research and research results of the author, the other goal is to deliver an in

teresting and compact reading for a passing by “pedestrian” . The problems 

studied and presented in this thesis dare to ask to satisfy the first goal, whereas 

the problems’ different background and nature makes this thesis a reading of 4 

rather independent stories and therefore it is more challenging to address the 

second goal, which could be understood as presenting a fluent, one-shot read

ing. In spite of the fact that the problems were studied independently from each 

other, there are some common elements that unite the thesis under one roof.

The very common point of each of the presented stories is that they all deal 

with combinatorial problems that are tackled by algorithmic techniques (we talk 

about the algorithm-theoretic frame in Chapter 2). The cultivating medium for 

this thesis is the area of communication networks and all problems that are 

presented in this thesis originate within that area. A communication network 

is, as defined in [13], an organization of stations capable of intercommunications 

(but not necessarily on the same channel). Leaving this abstract definition, 

we can describe a communication network as communication entities connected 

by communication links that allow communication to be passed from one part 

of the network to another over multiple communication links. Here, commu

nication links are understood as a means of delivering data from one place to 

another and can be of various nature: wires, fiber optic, radio, or a combina

7



CHAPTER 1. INTRODUCTION 8

tion thereof. Building a communication network demands a variety of engineers 

and researchers to cooperate together. The diversity of the field offers also a 

big diversity of research problems. We are interested in problems that can be 

modeled and studied by means of algorithmic theory. Still, these problem can 

vary substantially, as the 4 problems that are studied in this thesis demonstrate 

and whose brief description follows.

W eighted D om inating Sets in U nit D isk Graphs

The dominating set problem is a classical graph-theoretic optimization problem. 

For a given graph G =  (V, !£), a set D  C V  is called a dominating set if every 

vertex from V  is in D  or a neighbour is in D. We consider graphs whose 

vertices have weights associated with them. The minimum-weight dominating 

set problem (MWDS) is to find a dominating set of minimum total weight 

(i.e., the sum of weights of vertices from the dominating set). The minimum- 

weight connected dominating set problem (MWCDS) asks for a dominating 

set of minimum weight such that the induced graph by the dominating set is 

connected. In this thesis we are interested in MWDS and MWCDS in a special 

class of graphs—unit disk graphs. A unit disk graph is a graph for which every 

vertex is associated with a disk in the plane. The radius of the disk is one. There 

is an edge between two vertices if the corresponding disks intersect. Thus, for a 

given set V  of unit disks in the plane, where every disk has a weight associated 

with it, the MWDS problem in unit disk graphs (the MWCDS in unit disk 

graphs) is to select disks V  C V  of minimum total weight such that every disk 

from T> is selected in V  or intersects a disk from V  (and the intersection graph 

of V  is connected).

The problem is studied in Chapter 3.

Network D iscovery and Verification

This problem is motivated by the efforts of obtaining a map of large scale, 

self-organizing networks, such as the internet. A map of a network (and the 

network itself) is modeled as a graph G =  (V ,E ). The nodes V  represent the 

communication entities (such as Autonomous Systems in the internet) and the 

edges represent direct communication links. We assume that the information
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about links is not known and the goal is to discover all the edges and non-edges 

(a non-edge of a graph is a pair of vertices that do not form an edge). This 

can be done by querying (known) vertices of the network. Each query at vertex 

v gives some information about the network. The network discovery problem 

is to discover all edges and non-edges of the graph using a minimum number 

of queries. We consider the following 2 query models: the query at vertex v 

returns distances from v to all other vertices of the network; and the query 

at vertex v returns all shortest paths from v to every other vertex. Since the 

information about the network’s edges is gained on the fly by querying vertices 

of the network, this is an online problem. The offline version of the problem 

can be stated as follows. A graph G is given, both the vertices and edges are 

known, and the goal is to compute a minimum number of queries that discover 

the graph. Since the edge set of the graph is known, the result of queries at 

every vertex is known in advance. The offline version of the network discovery 

problem is also called the network verification problem.

The problem is studied in Chapter 4.

A ssignm ent o f O VSF-Codes

In mobile telecommunication systems of the third generation (3G), for example 

in UMTS, the sharing of bandwidth can be accomplished via Orthogonal Vari

able Spreading Factor Codes (OVSF-codes). In a communication cell served by 

a base station, users are assigned these codes to use them when communicating 

with the base station. These codes can be viewed as nodes of a complete binary 

tree T, where a code from level I of the tree guarantees a bandwidth proportional 

to 2l. The users can distinguish the signal of the base station if all the codes that 

are in use are orthogonal, i.e., if no two codes lie on the same leaf-to-root path 

in T. Users request, upon arrival, a code from a certain level, reflecting their 

bandwidth demand. It is the task of the base station to decide which code from 

the requested level to assign to the user. Over time, as users enter and leave 

the cell, it can happen that the new user cannot be assigned a code—all codes 

from level I are in use or lie on a common leaf-to-root path with an assigned 

code—but a different code assignment of codes to existing users would allow the 

new user to get her code. The code reassignment causes extra communication
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with the users, resulting subsequently in delays and users disturbance. Thus, a 

natural goal is to keep the number of users that have to change their code as 

low as possible—either at the moment of a new user’s request or over a period 

of time.

The problem is studied in Chapter 5.

Joint B ase Station  Scheduling

Another means of sharing bandwidth in mobile communications in a commu

nication cell with one base station is to assign the full bandwidth to a user for 

a certain period of time. Thus, users share time as a resource. The standard 

approach is that the base station decides itself about which user gets the band

width at what time. Because of interference phenomena, a neighboring cell’s 

QoS (Quality of Service) can be influenced when the user is a t the border of the 

cells. We consider the scenario when the base stations cooperate, i.e., they share 

the knowledge of positions of the users and their communication demands and 

the base stations decide together upon which base station communicates with 

the user and also a t which time. The model we adapt is that the base stations 

adjust their power to reach the user. This results in the so called interference 

disks. An interference disk is a disk with its center placed at the communicat

ing base station (which is modeled as a point in the Euclidean plane) and with 

a radius equal to the distance between the base station and the user that is 

communicating with the base station.

The optimization problem that we study in this thesis is motivated by the 

above example. Let B  and U be sets of points in the Euclidean plane, rep

resenting the base stations and users, respectively. We consider discrete time 

{0 ,1 ,2 ,...}  and we want to assign each user u € U to a base station 6 G B 

at time tu such that there is no interference at the user’s side, i.e., for every 

u G U, there is exactly one interference disk intersecting u at time tu, namely 

the interference disk formed by the base station that is assigned to u, among 

all interference disks that are considered at time tu. The optimization goal is 

to minimize the maximum time t that is assigned to any user.

The problem is studied in Chapter 6.
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A N ote  on a D ivide and Conquer Approach in W riting a Thesis

We studied the OVSF-code assignment problem (Chapter 5) and Joint Base 

Station Scheduling problem (Chapter 6) together with Thomas Erlebach, Riko 

Jacob, Marc Nunkesser, Gabor Szabo and Peter Widmayer. As postgraduate 

regulations suggest, unique and original results are expected to be presented 

in a thesis of a PhD student. As both Marc Nunkesser and Gabor Szabo were 

PhD students and interested in using the results in their thesis, some kind 

of “I write this and you write tha t” splitting would be politically correct but 

would lose on the readability of the thesis. Moreover, some of the results were 

discovered in common discussions and joint investigations and cannot be easily 

contributed to one person. Therefore, with the agreement of all co-authors and 

Ph.D. supervisors, some of the results that are presented here appeared already 

in the theses of Gabor Szabo [96] and Marc Nunkesser [83] (Sections 5.4.2, 5.4.3,

5.5.2 and 5.5.3 for the OVSF-code assignment, and Sections 6.3.1, 6.3.2, 6.3.4, 

6.3.5, 6.3.6, 6.4.1 and 6.4.1 for the Joint Base Station Scheduling problem). 

We believe that it is better to mention most of the results here, in order to 

make the reading fluent and to put the results in context. We stress, where 

appropriate, to whom the credits go and in which thesis the reader shall find 

the missing/detailed proofs/discussions on a certain topic.



C hapter 2

Notation, Terminology and 

Theory

In this chapter we want to introduce (and reference) the necessary minimum 

of notation and terminology that is used throughout this thesis. We suppose 

the reader is familiar with a general concept and terminology of discrete math

ematics, graph theory, linear algebra and theory of algorithms. Nonetheless, we 

recall some of the elementary notion here and also present some less common 

terminology.

Graphs

A graph G = (V , E ) consists of a set of vertices V  and a set of edges E. The 

vertices are also called nodes. The set of vertices and the set of edges of a 

graph G is also denoted by V(G) and E{G ), respectively. For an undirected 

graph G =  (V, E), the edges are 2-element subsets of V. The number of vertices 

is denoted by n := \V\ and the number of edges is denoted by m  \E\. A 

neighbour of vertex v G V  is a vertex w G V  such that {v ,w }  is an edge, i.e., 

{v,w }  G E. The number of neighbours of v is called the degree of v. The 

maximum degree of a graph G, denoted by A q  or A, is the maximum degree of 

vertices of G.

A path P  in graph G is a sequence v \ , V2 ■.., ve of vertices from V  such that 

no two vertices on the path are the same and for every 1 <  i < I  — 1, {vi, vi+\}

12
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is an edge, i.e., {t>j, 1^+1 } G E. The path P  is said to be a path between v\ 

and ve or a path from v\ to V£. The length of a path P  is the number of edges 

{vi,Vi+1 } in that path, i.e., the number of vertices minus one. Graph G is said 

to be connected if for every two vertices u, v G V  there is a path between u and 

v. The distance of two nodes u and v in graph G is the length of the shortest 

path between u and v , and is denoted by d c (u ,v ), or, if it is clear which graph 

we are referring to, by d(u,v).

A  clique is a graph G =  (V ,E) such that for every u ,v  G V, {u,u} is an 

edge. A connected graph G = (V, E) is a tree if it has n — 1 edges. In that case, 

for every u and v there is a unique path from u to v. A tree is often denoted 

as T  (instead of G) and often has a special vertex—the root. Tree with root 

v is usually depicted in layers according to the distances of the vertices to the 

root, i.e., vertex u  at distance i from the root v belongs to layer i. The height 

of tree T  is the maximum of the distances from root v to all other nodes. A 

binomial tree Tfc of order k is a tree with the follwing recursive definition: To is 

just a single node; Xfc, k > 0, is a node (root) with k neighbours, where the i-th 

neighbour, 0 < i < k, is a root of binomial tree T*.

Graph H  =  (V ',E ') is a subgraph of graph G — (V ,E) if V ' C V  and 

E ' C E. H  is an induced subgraph of G if H  is subgraph of G and for every 

u ,u G  V ’, if {u, v} G E  then also {u , v} G E ' . An induced subgraph H  of graph 

G with vertex set V ' is denoted by G\V'].

The chromatic number of a graph G =  (V ,E ), denoted by x(G)i is the 

minimum number of colours such that each vertex of G is assigned one colour 

and for every edge {u ,v}  G E  the colours assigned to u and v are different. The 

clique number of a graph G = (V, E), denoted by 00(G), is the maximum number 

of vertices of G that induce a clique. An independent set of graph G =  (V, E) 

is a subset V ' C V  such that for every u ,v  G V ' , {u, v} is not an edge. The 

independence number of graph G , denoted by a(G), is the number of vertices in 

a maximum-size independent set of G. A  dominating set of graph G =  (V, E) 

is a subset V ' C V  such that for every vertex v G V, v is in V ' or a neighbour 

of v is in V '.

A  graph G is called perfect if for every induced subgraph H  the chromatic 

number x(H )  is equal to the clique number 00(H). The so-called strong perfect
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graph theorem states that G is perfect if and only if G contains no odd hole 

and no odd antihole. A hole of G is a chordless cycle of length at least four. An 

antihole is a complement of such a cycle. The parity of the number of vertices 

of holes and antiholes determines whether the hole (antihole) is odd or even.

More on graph theory can be found e.g. in the standard textbook by Rein- 

hard Diestel [46]. The first chapter therein deals entirely with the basic termi

nology.

G eom etry

We now introduce some notation for the problems dealing with geometric ob

jects. We assume all problems are considered in a 2-dimensional plane—this 

can be seen as a set R x R—which is part of the 2-dimensional Euclidean space, 

denoted by E2 (the Euclidean space is also called Euclidean plane). The points 

are the elements of R x R. The distance between two points p = (px ,py) and 

Q =  (QxiQy) is denoted by d(p,q), \p — q |, or ||p — q112 (also called the 2-norm). 

A conflict graph G = (V, E) of a set D  of objects is a graph for which the ver

tices V  are in one-to-one correspondence with the objects of D  and there is an 

edge {u, v} in G if the corresponding objects are in conflict. We will be talking 

about conflict graphs of geometric objects (e.g., lines, circles, disks, rectangles, 

etc.), where there is a conflict between two geometric objects, if the two objects 

intersect. In such a case we say that G is a (geometric) intersection graph of D.

Com plexity Theory and Optimization Problems

We make a very brief (and coarse) excursion into the basics of complexity theory, 

and approximation and online algorithms of optimization problems. A decision 

problem (such as the Satisfiability Problem) is a problem with a solution “yes” or 

“no” . A decision problem P  is given by all instances Ip  of the problem together 

with a mapping /  : Ip  —► {yes, no}. An instance that maps to yes is called a 

yes-instance and an instance that maps to no is called a no-instance. A decision 

problem P  is in M V  if there is a nondeterministic polynomial time algorithm 

that solves the problem, i.e., if for any instance x  of the problem the algorithm 

decides in polynomial time whether a: is a yes-instance. A decision problem P  is 

in V  if there is a deterministic polynomial time algorithm that decides for any
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instance x  of P  whether a; is a yes-instance. A decision problem P\ reduces to 

a decision problem P2 if there exists a polynomial time deterministic algorithm 

that for any instance x  of Pi produces an instance y for P 2 such that a; is a 

yes-instance if and only if y is a yes-instance. Reductions are used to establish 

how difficult two problems are: here, P2 is at least as difficult as Pi since an 

algorithm that solves P2 can be used to solve P i, losing only polynomial time 

in the reduction. A decision problem P  is said to be AfV-complete, if P  is in 

M V  and every decision problem P ' from M V  can be reduced to P . A decision 

problem P  is said to be MV-hard if every decision problem P ' from M V  can 

be reduced to P . We switch now to complexity of optimization problems. An 

optimization problem P  is characterized by

1. the set of instances Ip  of the problem P ,

2. a set of feasible solutions Sp(i) for every instance i E Ip ,

3. objective function objp, that assigns a nonnegative rational number to 

each pair (z, s ), where i is an instance and s  is a feasible solution for z, i.e., 

s  E Sp(i), and

4. the goal of the problem P , which can be either minimization problem or 

maximization problem.

For maximization problems, the objective function is also called the profit 

function and for minimization problems, the objective function is also called the 

cost function. An optimal solution OPTp(z) for an instance z of a minimiza

tion (maximization) problem P  is a feasible solution that achieves the smallest 

(largest) objective function value. We use OPT for short, if it is clear what prob

lem and instance we are talking about. We abuse the notation sometimes, and 

refer by OPT to the actual value of the optimal solution (and we make it clear 

what we mean by OPT when considering particular problems). An algorithm 

solves the optimization problem if it returns an optimal solution. In this thesis, 

we are interested in polynomial time algorithms only. Every optimization prob

lem P  can be naturally modified to a corresponding decision problem (called a 

decision version of P ) by giving a bound on the optimal solution (which* is given 

as part of the input). Clearly, a polynomial time algorithm for an optimization
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problem P  solves the decision version—simply compute the optimum solution 

and compare it to the given bound. Hence, hardness established for the decision 

problem carries over to the optimization problem. In general, an optimization 

problem P  is said to be MV-hard, if using an optimal solution of P  can solve 

an A/P-complete decision problem P ' in polynomial time.

An algorithm A  is said to be a factor S approximation algorithm (or 5- 

approximation algorithm) for a minimization (maximization) problem P, if, for 

each instance i of P , the algorithm runs in polynomial time and produces a 

feasible solution s such that obj(i,s) < <5 • OPT(i) (obj(i,s) >  |  • OPT(i)), 

where OPT(z) denotes the cost of an optimum solution of the instance i and S 

is a function that for a given size of the input i gives a positive rational number. 

For algorithm A  and an instance i of an optimization problem P , by A(i) we 

usually denote the solution delivered by A  or the cost of this solution. We 

always make clear which meaning of A(i) we use. To make the life even more 

complicated, A  itself can sometimes refer to the actual solution (or cost of the 

solution) of the algorithm.

Online optimization problems are characterized by partial knowledge—the 

input is given to the algorithm in parts, which can be seen as a sequence, one 

item of input at a time, and an online algorithm must decide how to act on 

incoming items without knowledge of future inputs (or if there is any future 

item at all). In a competitive analysis of online algorithms, the quality of the 

solution produced by an algorithm A  on input i (denoted by A(i)) is compared 

with a solution of an optimal algorithm OPT that knows the whole input i in 

advance. (Such an algorithm is called offline algorithm.) An online algorithm 

is called c-competitive for an online minimization problem if for every finite 

input sequence i, A(i) <  c • OPT(i). An online algorithm is called weakly c- 

competitive, if an additive constant a  in the quality of A(i) is allowed, i.e., 

if A(i) < c ■ OPT(z) +  a  for every input i. Notice that we do not require 

the algorithms to run in polynomial time, but in practice the running time is 

always an issue. The competitive ratio of an algorithm for online maximization 

problems is defined similarly as for approximation algorithms. The analysis of 

an online algorithm is often seen as a “game” between two players—the online 

algorithm and an adversary. The adversary has full knowledge of the online
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algorithm and is responsible for creating an input sequence that maximizes the 

competitive ratio of the algorithm.

If randomization is used in algorithms for optimization problems, the terms 

of approximation ratios and competitive ratios are defined for randomized algo

rithms as well. In all the above definitions, the actual cost A{i) of the solution 

produced by an algorithm A  on input i is substituted by the expected cost 

E(A(z)) of the algorithm A  on input i.

A polynomial-time approximation scheme (PTAS) is a family of approxima

tion algorithms, one for every constant e > 0, with approximation ratio 1 +  e. 

A fully polynomial-time approximation scheme (FPTAS) is a family of approx

imation algorithms, one for every e > 0, with approximation ratio 1 +  e and 

running time polynomial in ^ and in the input size.

Different optimization problems admit different approximation guarantees. 

An optimization problem belongs to class A V X , if there exists a constant-factor 

approximation algorithm for the problem. Assuming V  ^  M V , not every op

timization problem belongs to A V X . Clearly, every problem for which there 

exists PTAS belongs to A V X . There are problems that cannot be approxi

mated arbitrarily, unless V  = M V  (i.e., there are problems in A V X  for which 

no PTAS exists). This result is a consequence of the celebrated PCP theo

rem. The theorem shows that M .A X  SAf'P-hard problems do not admit PTAS. 

(Thus, to show that a problem does not admit PTAS we can show that the 

problem is M .A X  SA fV -hard.) A 4A X  SM V  is a special class of optimization 

problems that is defined using second-order logic, together with the notion of 

approximation-preserving reduction, and thus the notion of completeness and 

hardness. In general, to show hardness of approximation of a problem, a so 

called gap introducing reduction (or a gap technique) is often used. Let P' be 

an A/’P-complete decision problem and let P  be a minimization problem (for 

maximization the reduction works similarly). Let us suppose there is a reduc

tion from P ' to P  that for every instance i' of problem P' creates an instance i of 

problem P  such that the value OPT(z) of the optimum solution of i is c(i') if i' 

is a yes-instance, and c(i')(l +  gap) if i' is a no-instance (c is some function that 

can be computed in polynomial time). Then clearly there is no p-approximation 

algorithm for P, where p < 1 +  gap.
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An exact algorithm A  for an optimization problem is called fixed parameter 

tractable with respect to parameter k , if it solves the problem in time bounded 

by f (k )  • n°(k\  where /  is an arbitrary function.

A good introduction to algorithms is [37]. A standard reference for complex

ity theory and AfP-complete problems is [62]. Approximation algorithms are 

covered in [14, 101], and online algorithms and online computation is the topic 

of [21]. The class M . A X  S A f V  is defined in [86]. The PCP theorem was first 

proved in [9]. For more on the topic of fixed parameter tractable algorithms, a 

good starting point is [48] or a more recent [82].

Linear Programming

Linear programming is a technique that provides a unified way to describe and 

solve a plentiful amount of optimization problems. A linear program (LP for 

short) is an optimization problem, where the aim is to minimize a linear function 

c-xT , where c and x  are n-dimensional vectors (that can be seen as row-vectors), 

c is a constant vector and x  is the vector of variables. The values of x  have to 

satisfy a set of constraints in the form of linear inequalities A x T > bT , linear 

equations A 'x T =  b,T and also constraints Xi > 0, where A  and A' are matrices, 

b and b' are vectors, and x = (x \,X 2 , ■ ■., x n). Integer linear programming (ILP 

for short) is a linear programming problem, where additional constraints on x  

are imposed, which are not in the form of linear equations—each Xi has to be 

an integer, i.e., Xi E Z. We note that LP can be solved in polynomial time, if 

the number of constraints is polynomial in n , whereas ILP does not possesses 

this property, unless V = A f V .  In case the number of constraints of LP is more 

than polynomial, the problem can be solved in polynomial time, if there exists a 

polynomial time oracle that for any x  identifies the constraints that are violated.

Linear programming and its use in optimization problems is covered e.g. in 

[85] and [91].



C hapter 3

W eighted Dom inating Sets 

in Unit Disk Graphs

We study the problem of finding a minimum-weight (connected) dominating set 

in the given unit disk graph—for a given set V  of disks in the plane, find a min

imum subset T>' C "D, such that every disk from T> \V  intersects a disk from V . 

The problem is mainly motivated by (besides the fact that it is a classical prob

lem in graph theory on its own) its applications in the field of wireless ad-hoc 

networks. These networks consist of a set of devices that can communicate with 

each other (and with no-one else) in a wireless manner. It can be just a cou

ple of laptops communicating with each other, but much of the recent research 

attention has been devoted to devices that are usually very small and have lim

ited power, memory and computational capabilities (the networks consisting of 

these devices are called sensor networks). Ad-hoc networks lack any centralized 

network management. Unlike wired networks or cellular networks, no physical 

backbone infrastructure is present in wireless ad-hoc networks. Communication 

between two nodes is established either via direct radio transmission (if the par

ties are close enough, i.e., in the reach of their signalling strength)—which is 

called a single-hop (or one-hop) communication, or via passing the message onto 

intermediate nodes—which is called multi-hop (or many-hop) communication. 

The single-hop connectivity, i.e., the topology of a wireless ad-hoc network, can 

be modeled via graph G = (V, E )—nodes V  represent the wireless devices and

19
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there is an edge between two nodes u and v in the edge set E  if the devices are 

in the transmission range of each other. We assume for simplicity the devices 

to be in the plane. Mostly, all devices have the same technical capabilities, 

including their transmission range, and therefore the underlying graph G is a 

unit disk graph, i.e., a conflict graph of disks (in the plane) of unit radius.

A vital question is how devices send messages to each other, i.e., how to 

establish a routing mechanism in such networks. Although no physical back

bone infrastructure is present, a virtual backbone can be formed for routing 

purposes. Dominating sets of the corresponding unit disk graph have been pro

posed for construction of routing backbones (see, e.g., [41, 6]). A message that 

is broadcast by all nodes of a dominating set will be received by all nodes of 

the network. Therefore, a small connected dominating set is an energy-efficient 

routing backbone. Recent work has emphasized that ad-hoc networks are of

ten heterogeneous as different nodes have different capabilities. Therefore it is 

meaningful to assign weights to the nodes (giving small weight to nodes that 

have a large remaining battery life, for example) and aim to determine a (con

nected) dominating set of small weight [102].

3.1 Problem  D efinition

For a given undirected graph G =  (V, E), a subset D  C V  of its vertices is called 

a dominating set if every vertex in V  is contained in D  or has a neighbour in D. 

A  vertex in D  is called a dominator. A dominator dominates itself and all 

its neighbours. The goal of the minimum dominating set problem (MDS) is 

to compute a dominating set of smallest size. In the weighted version, the 

minimum-weight dominating set problem (MWDS), each vertex of the input 

graph is associated with a weight, and the goal is to compute a dominating set 

of minimum weight.

A dominating set D  C F  is called a connected dominating set in the graph 

G = (V, E) if the subgraph induced by D  is connected. The minimum connected 

dominating set problem (MCDS) and minimum-weight connected dominating 

set problem (MWCDS) are defined in the obvious way.

We are interested in MWDS and MWCDS problems in unit disk graphs in
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the following. A graph G = (V, E) is called unit disk graph if every node is 

associated with a disk in the plane of a unit radius and there is an edge between 

two nodes if the corresponding disks intersect. The set of unit disks in the plane 

are called a disk representation of G. Our algorithm for MWDS and MWCDS 

in unit disk graphs works for the graphs whose disk representation is given as 

the input.

3.2 R elated  Work and N ew  C ontributions

For general graphs, MDS (and therefore MWDS) is A/"P-hard [62]. Furthermore, 

MDS for general graphs is known to be equivalent to the set cover problem, 

implying that it can be approximated within a factor of O(logn) for graphs 

with n vertices using a greedy algorithm (see, e.g., [101]), but no better unless 

all problems in AfVc&n be solved in n ° (loglogn) time [57]. Approximation ratio 

O(logn) can also be achieved for the weighted set cover problem and thus for 

MWDS. The best known approximation ratio for MWCDS in general graphs is 

O(logn) as well [68].

We are, however, concerned with MWDS and MWCDS in a special class of 

graphs: unit disk graphs. Clark et al. [35] have proved that MDS is J\fV-haid  for 

unit disk graphs. Lichtenstein [77] has shown that MCDS is M V-haid  for unit 

disk graphs. Constant-factor approximation algorithms for MDS and MCDS in 

unit disk graphs were given by Marathe et al. [79]. For MDS in unit disk graphs, 

a PTAS was presented by Hunt et al. [72], based on the shifting strategy [15, 70]. 

These algorithms, however, do not extend to the weighted version. In particular, 

the PTAS is very much based on the fact that the optimal dominating set for 

unit disks in a k x k square has size at most 0 ( k 2) and can thus be found in 

polynomial time using complete enumeration if k is a constant. In the weighted 

case, there is no such bound on the size of an optimal (or near-optimal) solution, 

as an optimal solution may consist of a large number of disks with tiny weight. 

For MCDS in unit disk graphs, a PTAS was presented in [31]. For the special 

case of unit disk graphs with bounded density, asymptotic fully polynomial-time 

approximation schemes (with running time polynomial in ^ and in the size of 

the input, but achieving ratio 1 +£ only for large enough inputs) were presented
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for MDS and MCDS in [100].

Wang and Li [102] give distributed algorithms for MWDS and MWCDS in 

unit disk graphs that achieve approximation ratio 0(min{log A, cr}), where A 

is the maximum degree of the graph and a is the ratio of the maximum weight 

to the minimum weight of a disk. Note that these approximation ratios are not 

better than the known ratios for general graphs in the worst case.

In this thesis, we present the first constant-factor approximation algorithms 

for MWDS and MWCDS in unit disk graphs. The results were published in 

[7] and appeared in more details in [8]. Our algorithm for MWDS solves the 

problem in two steps. First, we reduce MWDS in unit disk graphs to the 

problem of covering a set of points that are located in a small square using a 

minimum-weight set of unit disks. In the reduction we lose only a constant factor 

in the approximation ratio. Then, we present a constant-factor approximation 

algorithm for the latter problem using enumeration and dynamic programming 

techniques exploiting the geometry of unit disks. To solve the MWCDS problem, 

we first compute an 0(l)-approxim ation for the MWDS problem and then use 

an approach based on a minimum spanning tree calculation to add disks to the 

solution in order to make the dominating set connected.

We also show that our techniques yield a constant-factor approximation 

algorithm for the weighted disk cover problem for unit disks, constant-factor 

approximation for the weighted rectangle cover problem and for the weighted 

dominating set in conflict graphs of rectangles, and a 3-approximation algorithm 

for the special case of the forwarding set problem (see Section 3.7 for a definition 

of this problem).

The remainder of the chapter is structured as follows. Our top-level approach 

to solving MWDS, which consists of breaking the problem into subproblems in 

small squares, is presented in Section 3.3. In Section 3.4, we show how the 

subproblem can be reduced to a special disk cover problem and give a constant- 

factor approximation algorithm for the latter problem. We also describe how this 

implies a constant-factor algorithm for the general weighted disk cover problem 

with unit disks. Section 3.5 shows how we can make a dominating set connected 

while incurring a cost that is bounded by a constant factor times the cost of the 

optimal connected dominating set. In Section 3.7, we apply our techniques to
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obtain a 3-approximation algorithm for the forwarding set problem.

3.3 A lgorithm  for M inim um -W eight D om inat

ing Sets

Let an instance of MWDS in unit disk graphs be given by a set V  of weighted 

unit disks in the plane. The weight of disk d E V  is denoted by Wd > 0 . Each 

disk has radius 1 and is specified by the coordinates of its center. For U C D , 

we write w(U) for Yhdeu wd-

We partition the plane into squares Sij of side length p < 1, which is the 

parameter of our algorithm; we can set p =  0.999. The square Sij, for i , j  E Z, 

contains all points (x, y) with ip  < x < (i + l)p  and jp  < y < (j + T)p.

For a square Sij that contains at least one disk center, let Dij be the set 

of disks in D  whose center is in Sij. Let N(T>ij) denote the set of all disks in 

V \T> ij that intersect a disk in T>ij. Thus, N(T>ij) contains the neighbouring 

disks of T>ij in the underlying unit disk graph.

We focus on solving the following subproblem of MWDS in every square Sij: 

Find a minimum-weight set of disks in T>ij U N(T>ij) that dominates all disks 

in D ^. We show in Section 3.4 that such a special case of MWDS in unit disk 

graphs admits a 2-approximation algorithm, i.e., our algorithm finds a solution 

Uij for which w(Uij) <  2 -u^O PTjj), where OPTij is an optimal solution to the 

MWDS subproblem for square S ij. Our algorithm outputs in the end the union 

of all sets Uij that have been computed. It is clear that this yields a dominating 

set.

T h eo rem  3.1 There is a constant-factor approximation algorithm for the min

imum weight dominating set problem in unit disk graphs.

P roo f. Let U be the dominating set that is computed by the algorithm that 

was described above. The weight of U is at most fTj w{Ui3). Here and in the 

following, the summation is over all squares Sij that contain at least one disk 

center. We want to compare this weight to to (OPT), the weight of a minimum- 

weight dominating set OPT for the whole instance. Recall that O PT^ denotes 

the optimum solution to the MWDS subproblem for square Sij. As we will
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present a 2-approximation algorithm for each subproblem in Section 3.4, we 

have w(Uij) < 2 • ic(OPTYj). Let 0PT[5ij] =  OPT D {T>ij U N(T>ij)). Note that 

0PT[5ij] is a feasible solution to the subproblem for square S i j  and therefore 

we have u;(OPTij) <  u ^ O P T ^ j]) .

We get w(U) < 52w(Uij) < 2 ^ u ;(0 P T jj )  < 2 ]Cu;(0PT[5ij]). The sum 

^ u )(0 P T [5 ij])  adds the costs of solutions OPT[Sij] for all squares S i j  that 

contain at least one disk center. Note that a disk d in OPT can be in OPT[Sij] 

only if it is part of the optimal dominating set for the subproblem Sij, which 

can happen only if the center of d is in Sij or it intersects a disk with center 

in Sij. Therefore, the distance between the center of d and the square Sij is 

at most 2. Consequently, there are only 0 (1 /n 2) squares Sij such that d can 

be in OPT[5ij]. More precisely, all such squares must be fully contained in a 

disk of radius 2 +  v^A4 around the center of d, and for /i =  0.999 that disk 

can contain a t most [(2 +  y/2n)2it/ fi2\ =  36 such squares. This means that 

the number of times each disk in OPT contributes its weight to ^w (O P T [5 ij]) 

is bounded by 36. We get 22u;(OPT[5jj]) <  36 • ic(OPT) and, thus, w(U) < 

2 w(OPT[Sij]) <  72 ■ w{OPT). □

As a direct consequence of the proof, the approximation ratio of our algo

rithm is 72.

3.4 Solving the Subproblem  for a Sm all Square

In this section we present a 2-approximation algorithm for the following problem: 

Given a fix  square S i j ,  where fi < 1, and the set of disks V i j U N ( T > i j ), compute 

a minimum-weight set of disks that dominates all disks in V i j .

Let OPTij denote the set of disks in an optimal solution for the problem. In 

the following, we will often write that the algorithm “guesses” certain properties 

of OPTij. Such guesses are to be interpreted as follows: The algorithm tries 

all possible choices for the guess (there will be a polynomial number of such 

choices) and computes a solution for each choice. In the end, the algorithm 

outputs the solution of minimum weight among all solutions found in this way. 

Some guesses may not lead to feasible solutions; such guesses are discarded. In 

the analysis, we concentrate on the solution in which the algorithm makes the
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right guess about OPTY,. It then suffices to show that the solution the algorithm 

finds for that guess is a constant-factor approximation of the optimum, because 

the solution output by the algorithm in the end will be at least as good as the 

one it finds for that guess.

First, the algorithm guesses the largest weight w of a disk in OPT*j. Since 

there are n disks in our instance, there are at most n  different values for this 

guess, i.e., the algorithm tries at most n different values. Having the largest 

weight w of a disk in O PT^, the algorithm checks if there is a disk of weight w 

in T>ij. If this is the case, the algorithm simply outputs that disk as the solution. 

Observe that this solution is optimal, because the disk has its center in square 

Sij and therefore dominates all disks in Sij and has the right (correctly guessed) 

weight. If there is no disk of weight at most w in V ^ ,  we know that OPT*., 

consists entirely of disks in N(T>ij) of weight at most w. In this case, we first 

discard all disks from N(T>ij) that have weight larger than w and end up at the 

following problem: Find a set of disks of minimum weight from N(T>ij) that 

dominates all disks in T>ij. A disk d\ from N(T>ij) dominates a disk di from Vij  

if and only if the distance of the centers of d\ and d2 is at most 2. Therefore, we 

can increase the radius of the disks in N(T>ij) from 1 to 2 and reduce the radius 

of the disks in Vij from 1 to 0 and obtain an equivalent problem: If V  denotes 

the set containing the enlarged version of the disks in N (V ij)  and V  denotes 

the set of centers of the disks in V ^ , we need to find a minimum-weight subset 

of the disks in V  that covers all points in V. Furthermore, we can re-normalize 

the setting so that the disks in V '  have radius 1. The re-normalized square Sij  

is now a S x 6 square, with S =  /i/2 < 1/2. Therefore, the problem to be solved 

can be stated as follows:

D isk cover in  a  sm all square : Given a set V  of points in a 6 x 5 

square 5, where 5 < 1/2, and a set V  of weighted unit disks, find a 

minimum-weight subset of V  that covers all points in V.

In the following subsection, we will present a 2-approximation algorithm for 

this problem. In view of the discussion above, this implies that we have a 2- 

approximation algorithm for the problem of computing a minimum-weight set of 

disks that dominates all disks in Vij for a given f ix  fi square and this is the 

ingredient that we needed in the previous section to obtain the constant-factor
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UL UM UR

CL CR

LL LM LR

Figure 3.1: One-hole solution (left), many-hole solution (middle), naming of 
regions (right).

approximation algorithm for MWDS in unit disk graphs.

3.4.1 Algorithm for Disk Cover in a Small Square

We are given a set V  of points in a <5 x <5 square S , 5 < 1/2, and a set V  of n 

weighted unit disks, and we want to find a minimum-weight subset of V  that 

covers all points in V. Let OPT' denote a set of disks constituting an optimal 

solution to this problem.

Let C be the area covered by the union of the disks in OPT'. A hole of OPT' 

is defined to be a topological component of S \ C .  Intuitively, if S  was a glass 

window and the disks in OPT' were to cover parts of this window, the holes 

would be the connected regions where one can still see through the window.

Definition 3.1 OPT' is a one-hole solution if it has exactly one hole and each 

disk in OPT' forms part of the boundary of that hole (and that part consists of 

more than 1 point). OPT' is a many-hole solution if it has at least two holes.

Definition 3.1 is illustrated in Fig. 3.1. If OPT' is neither a one-hole solution 

nor a many-hole solution, it must be of one of the following types: Either OPT' 

has no hole at all, or it has one hole but not all disks in OPT' form part of the 

boundary of the hole. If OPT' does not have a hole, we can delete one disk d 

from OPT' (and remove all points in d from V) to obtain a solution with at 

least one hole. If OPT' has one hole but not all disks are on the boundary of 

the hole, let d' be a disk that is not on the boundary of the hole. If we delete d! 

from OPT' (and the corresponding points from V ), we have at least two holes
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and arrive at a many-hole solution. Therefore, OPT7 can always be converted 

into a one-hole or many-hole solution by deleting at most two disks.

The algorithm guesses whether OPT7 is a one-hole solution or a many-hole 

solution. If O PT7 is neither of these, the algorithm also guesses this and addi

tionally guesses the one or two disks that need to be removed from O PT7 (and 

added to the solution computed by the algorithm) in order to obtain a one-hole 

or many-hole solution. Hence, we can assume that OPT7 is a one-hole or many- 

hole solution and that the algorithm has guessed correctly which of the two is 

the case. In each of the two cases, we will encounter subproblems that can be 

solved by dynamic programming, as stated in the following lemma.

Lem ma 3.2 Let V be a set of points located in a strip between the horizontal 

lines y = yi and y =  y^ for some y\ <y^- Let V  be a set of weighted unit disks 

with centers above the line y — y2 (upper disks) or below the line y = yi (lower 

disks). Furthermore, assume that the union of the disks in V  contains all points 

in V . Then a minimum-weight subset of V  that covers all points in V  can be 

computed in polynomial time.

Proof. A solution consists of some upper disks and some lower disks. All 

upper disks in the solution intersect the line y  =  y i, and all lower disks the line 

y — yi • We view the upper halfplane bounded by y = y 2 and the lower halfplane 

bounded by y = y\ as special cases of disks (with weight 0). For a set U  of upper 

disks and a point p £ P  with x-coordinate xp, we say that an upper disk u € U 

is active at xp if its lowest intersection point with the vertical line x  =  xp has 

the smallest y-coordinate among all lowest intersection points of disks u' € Li 

with that line. If there are two or more active upper disks at x  =  x p by this 

definition, we consider only the one with leftmost center. For lower disks, active 

disks are defined similarly (i.e., having an intersection point with x  — xp of 

largest y-coordinate). For a given solution and a given ^-coordinate x p, there is 

one active upper disk and one active lower disk at xp (and each of these could 

also be the respective halfplane, e ls  mentioned above). The algorithm computes 

a table Tp for every point p £ V, in order of non-decreasing ^-coordinates. For 

ease of presentation, we assume that no two points have the same ^-coordinate. 

Let P\,P2 , • • • ,Pk denote the points of V  in order of increasing ^-coordinates. 

For an upper disk u and a lower disk d , the table entry TPi (u ,d ) denotes the
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optimal weight of a solution that covers all points from p\ up to pi and has u 

and d as the active upper and lower disk, respectively, at xPi. (If u and d do 

not cover p*, we say that u ,d  is not feasible for pi and set the table entry to 

oo.) The table TPl can be initialized by setting TPl (u , d) = wu + Wd for all pairs 

of disks u and d that cover pi and TPl(u,d) =  oo if u or d does not cover p\. 

Once the tables for p i , . . .  ,Pi_i have been computed, the table entries TPi(u,d) 

for all feasible disks u and d for p* can be computed as follows:

TPi{u,d) =  m in{T Pi_ 1('U/ ,Gi/) +  [u ^  u']-wu + [d ^  d']-Wd \ u ',d ' feasib le for Pi_i}

Here, the term [u ^  u '] is 1 if u ^  u', and 0 otherwise (and similarly for [d ^  d']). 

Intuitively, the equation is based on the observation that an optimal solution 

covering p i , . . . ,  pi with u and d as active disks for xPi can be obtained by adding 

u and d to an optimal solution corresponding to some TPi_1(u/,d '), where the 

weight of u or d needs to be added only if xPi is the first ^-coordinate for which u 

or d is active. The correctness of the calculation in the case of unit disks follows 

from the fact that an upper or lower disk can be active in the solution only for 

points in V  that are consecutive (except if the disk is actually the lower or upper 

halfplane mentioned above, but these special disks have weight 0 and therefore 

do not cause problems if their weight is added each time they become active). 

The weight of an optimal solution for the disk cover problem can be found by 

locating the minimum value TPk(u,d) among all feasible disks u ,d  for p^. The 

solution itself can be found using standard bookkeeping techniques. □

In the following two subsections, we deal with the one-hole case and the 

many-hole case, respectively.

O ne-hole Solutions

Assume that O PT' is a one-hole solution. The boundary of the hole is formed 

by disks from O PT7 and, potentially, some parts from sides of the square S  (we 

view the latter as special kinds of disks with weight 0 and infinite radius, i.e., 

halfplanes, and do not treat them explicitly in the following). All disks in OPT7 

have their centers outside S. Using the lines that are the extensions of the sides 

of 5, we can partition the plane outside S  into 8 regions in the natural way (see
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also Fig. 3.1): upper left region (UL), upper middle region (UM), upper right 

region (UR), central right region (CR), lower right region (LR), lower middle 

region (LM), lower left region (LL), and central left region (CL). The upper 

region (U) is the union of UL, UM and UR, and similarly for the lower region 

(L).

If we follow the boundary of the hole in counterclockwise direction, we will 

encounter disks with center in CL, then disks with center in L , then disks with 

center in CR, then disks with center in U. (This description of hole is now given 

as an intuition rather then an obvious fact; we do not use this fact anywhere 

in our assumptions.) The points on the boundary that are in the intersection 

of two consecutive disks on the boundary are called comers. Each corner is 

determined by two disks (the disks on whose boundaries it lies).

Among all corners that are determined by at least one disk whose center is 

in CL, let pt denote the one with the smallest y-coordinate and let pu denote 

the one with the largest y-coordinate. Let p'e and p’u be defined analogously 

with respect to CR. (The case where no part of the boundary of the hole is 

created by disks with center in CL or CR is easier and is not treated in detail 

here.) The algorithm guesses the corners pg, pu, p'e and p'u and the pairs of 

disks determining them. As there are only 0 (n 2) pairs of disks, the number of 

potential guesses is polynomial.

Let di, be the unit disk that has pt and pu on the boundary and has its 

center to the left of the line ptPu- Note that in general is not a disk that is 

part of the input of the problem. Let dt and du be the disks from O PT' that 

have their center in CL and contain pt and pu, respectively, on the boundary. 

Let x  be the intersection point of the boundaries of dt and du that is closer 

to S. Let C be the connected region that is delineated by the boundary of djL, 

between pu and pt, and by the boundary of dt between x  and pt, and by the 

boundary of du between pu and x. See Fig. 3.2 (top) for an illustration.

L em m a 3.3 The only disks in OPT' that intersect C have their center in CL or 

in the union of UR, CR and LR. Furthermore, no disk from  O PT ' with center 

in CL can cover a point outside C that is not already covered by du or d t .

P roo f. As pu and pt are on the boundary of the hole, no disk in O PT' can 

contain pu or pt in its interior. Hence, any disk d from O PT' that intersects C
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Figure 3.2: The region £  is defined by parts of the boundaries of disk g?l, drawn 
dashed, and disks du and de (top). A disk d with center not in CL from OPT' 
intersecting £  must have its center in the cone of two halflines starting at the 
center cl of df, and passing through pu and pe, respectively (bottom).
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must either have its center to the left of the line ptPu and intersect the parts 

of the boundaries of dt and du that define £, or it must have its center to the 

right of the line pipu and intersect the boundary of C twice on the part that 

is also a boundary of dj,. In the former case, the y-coordinate of the center of 

d must lie between the y-coordinates of the centers of dt and du, and hence d 

must have its center in CL. (To see this, consider the disk dl that is obtained 

from d by shifting it horizontally to the right until it first contains pu or pt 

on its boundary; observe that the disk du can be rotated around pu until it 

becomes identical to d', with its center continuously moving downward; the 

same argument can be applied to the disk dt and shows that the center of d' 

must have larger y-coordinate than the center of dt. By the same argument, we 

also have that c l  must lie in CL.) In the latter case, the center c of d must lie 

in the cone of points between the halflines starting at the center cl of dz, and 

passing through pt and pu, respectively, see Fig. 3.2 (bottom). We want to show 

that c cannot be in UM or LM. Assume for a contradiction tha t c is in UM (the 

case for LM is similar). The slope of the line connecting cz, and pu is a t most 

5 /y /l  — S2. Therefore, the largest y-coordinate of a point in the intersection 

of the cone and UM is bounded by yPu +  52/ \ / l  — S2, so the distance between 

pu and any point in that intersection is at most 5 /y /l — S2 (see Fig. 3.3 for an 

illustration). Hence, for S < y/2/2  (and we even have 6 <  1/2), a unit disk

square S

Figure 3.3: Any disk with center in the cone and in UM contains point pu, for 
5 < y/2/2

with center in that intersection must contain pu. Thus, c cannot be in UM, as 

d would then contain pu in its interior. Similarly, we get that c cannot be in 

LM. Furthermore, c clearly cannot be in UL or LL, as it must be to the right
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of pu. Hence, we have shown that c must be in the union of UR, CR and LR.

We have shown that the only disks in OPT' that intersect C have their center 

in CL or in the union of UR, CR and LR. It remains to show that no disk from 

OPT' with center in CL can cover a point outside C that is not already covered 

by du or di. Let d! be a disk from OPT' with center in CL. All disks from OPT' 

are on the boundary of the hole, and pu and pi are the topmost and lowest 

corners, respectively, that are determined by at least one disk with center in 

CL. Therefore, dl must appear on the boundary of the hole between pu and pi. 

This implies that d' \  (du Udi) consists of one region that is contained in C and a 

second region that is outside the square 5  (and cannot contain any points from 

V). This establishes the claim. □

Similar to £ , we can define a region 7Z with respect to CR, p't and p'u , and 

the analogue of Lemma 3.3 holds for 1Z.

Let V  be the set of points that is obtained from V  by removing the points 

that are contained in one of the disks determining the four corner points guessed 

by the algorithm. For the points in V ' fl (£ U TZ), we can compute an optimal 

disk cover using Lemma 3.2 (rotated by 90°), since the points are contained in 

the vertical strip containing S  and the only disks that need to be considered 

for covering them have their center to the left or to the right of the strip. The 

remaining points in V  can only be covered by disks with center in U or in L 

by OPT', hence we can again compute an optimal disk cover for them using 

Lemma 3.2. If we output the union of the two disk covers, we have clearly 

computed a 2-approximation to the overall disk cover problem in this square.

M any-hole Solutions

Now we consider the case that O PT' is a many-hole solution. For such a case, 

there must be two disks d i , d 2 £ O PT' such that S \ { d \  U d^) consists of two 

disjoint regions and each of these two regions contains a hole of OPT'. (As 

a special case, d\ or d2 could be any halfplane that touches a side of S  but 

does not contain 5; in this case, we would have a single disk from O PT' that 

intersects the square in such a way that two holes are created.) We use a new 

coordinate system in which the y-axis contains the centers c\ and C2 of d\ and 

d2 > respectively, and the intersection points of the boundaries of d\ and d2 are
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y-axis

CRCL
x-axis

bounding square b

Figure 3.4: New coordinate system for the many-hole case.

on the x-axis. Let b be the smallest axis-parallel square containing the (rotated) 

square S. Let S' be the side length of b. Note that S' < Sy/2 < \/2/2. See Fig. 3.4 

for an illustration. As for the one-hole case, we partition the plane outside b 

into regions UL, UM, UR, CR, LR, LM, LL, CL, and we define regions U and 

L as before.

The disks d\ and c?2 create two holes in S ’, we refer to the left hole as LH, 

and to the right hole as RH. Because OPT7 is a superset of {di, g^}, OPT7 may 

contain more than two holes, but all the holes in OPT7 are contained in either 

LH or RH.

We begin with some observations: First of all, for any point with coordinates 

(x, y) that is contained in LH or RH, we have |y| < 1 — \ / l  — x 2. Furthermore, 

for any two points such that one is from LH and one from RH, the ^/-distance 

between the points is at most 1 — \J 1 — o 2, where a  is the rr-distance between 

the points. This follows from the following computation. Assume the first point 

has coordinates (—ot\,y\) and the second point (012, 2/2)5 for some 0 :1 , 0 2  > 0. 

We have 0 1  +  0 2  =  o  < S’, and the y-distance of the points is bounded by 

12/11 +  12/21 < 1 — y j 1 — of + 1  — y /l  — (o — 0 1 )2. We find that this expression is
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P

c

Figure 3.5: No disk from the union of UR, CR and LR can intersect LH.

maximized at a \  =  a  and a\  =  0, giving the upper bound of 1 — \ / l  — a 2.

L em m a 3.4 In O PT ', no disk with center in the union of UR, CR and LR 

can intersect LH and no disk with center in the union of UL, CL and LL can 

intersect RH.

P roo f. We consider the case of LH and the union of UR, CR and LR only. The 

other case is symmetric. For brevity, let R denote the union of UR, CR and LR.

Assume, for a contradiction, that there is a disk d in O PT ' that has its 

center c in R and intersects LH. We will show that d covers RH completely, 

contradicting our assumption that O PT' is a many-hole solution with at least 

one hole in RH.

Assume that d does not cover RH completely. Then there must be a point 

q in RH that is not contained in d. Furthermore, as d does not cover LH 

completely, there must be a point p  in LH that lies on the boundary of d. 

Assume without loss of generality that q is not below p. As d contains p but 

not q and its center is to the right of q, c must lie below q. Moreover, c lies 

on a circle C  of radius 1 with center p , because d has p  on its boundary. See 

Fig 3.5. Consider point d  on C  at distance 1 from q and below q (observe that 

d  exists because p  and q are at most y/2/2 apart). Let a  denote the angle of 

lines qp and qd  and let a ' denote the angle of line qp and the negative y-axis. 

Observe that both a  and a ' are at most 180°. Because c lies left of d  on circle
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C,  it is enough to  show  th a t a  <  a',  i.e ., cos a  >  cos a ' ,  i.e ., c is n ot in R  (a  

contradiction). Let u, h and v d en ote th e d istance, the horizontal d istance and  

the vertical d istance o f p and q. T h en  cos a  — u/2  and cos a '  =  v /u . W e have 

v <  1 — y/1 — h2, i.e., 1 — h2 <  (1 — u )2, i.e ., 2v <  v2 +  h2 — u2, i.e ., v /u  <  u /2 , 

w hich concludes the proof. □

Our approach to the weighted disk cover problem in the many-hole case can 

now be outlined as follows. We will show that LH contains a region £  such 

that points in £  can be covered only by disks with center in CL by OPT'. Let 

V  C V  be the points in LH that are not in £  and are not already covered by 

the disks the algorithm guesses to define £. We will show that points in V ’ 

can only be covered by disks with center in U or L. The same approach will 

be applied to RH. This breaks the problem into two independent subproblems: 

covering points in £  and in the corresponding region of RH using disks with 

center in CL or CR, and covering the remaining points using disks with center 

in U or L. Each of the two subproblems can be solved optimally by dynamic 

programming (Lemma 3.2). Since the subproblems are independent, the union 

of their optimal solutions gives an optimal solution to the disk cover problem 

in the many-hole case.

In the following we discuss this solution approach for points from V  that are 

in LH in more detail. The arguments for RH are symmetric. Lemma 3.4 shows 

that no disk with center in the union of UR, CR and LR can intersect LH. We 

distinguish the following three cases concerning disks with center in CL that are 

contained in OPT':

1. OPT' does not contain any disk with center in CL.

2. OPT' contains one disk with center in CL.

3. OPT' contains two or more disks with center in CL.

The algorithm guesses which of the three cases holds for OPT'. In the first case 

we have that all points in LH are covered by disks with center in U or L by 

OPT'. In the second case, we have to additionally guess the disk d with center 

in CL that is in OPT'. The remaining points in LH (those that are not covered

by d) can then again only be covered by disks with center in U or L by OPT'.



CHAPTER 3. W EIGHTED DOMINATING SETS IN  UDGS 36

u

CL

L

Figure 3.6: Setting for the many-hole case where more than one disk with center 
in CL appears in O P T' and one of the disks is not on the boundary.

It remains to deal with the third case, where OPT7 contains two or more 

disks with center in CL. We can show that in this case, all disks from OPT' 

with center in CL form a consecutive piece of a boundary of a single hole. We 

start with lemma that shows for our case (the third case) that all disks from 

O PT' with center in CL appear on the boundary of OPT'. In the following, we 

define Iu and Id to be the horizontal lines that contain the upper and lower side 

of 6, respectively.

L em m a 3.5 I f  there is a disk de G O PT' that has its center in CL and is not 

on the boundary of O PT', then de is the only disk with center in CL in OPT'.

P ro o f. Assume for contradiction that there are at least two disks in O PT' with 

center in CL and one of them does not appear on the boundary of OPT'. Let 

T  denote the set of disks in O PT' that have their center in CL. Consider the 

boundary B t  formed by disks from T  inside b and observe that all disks from T 

appear on B t - Let dx and dz be two adjacent disks on B t , dx above dz , i.e., the 

center cx of dx above the center cz of dz , and let one of them be the disk that is 

not part of the boundary of OPT'. Let q be their common corner point on B t , 

see Figure 3.6. We can assume that q is in LH, because otherwise one of the 

two disks dx and dz would be redundant in OPT'. Because dx or dz is not part
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of the boundary of OPT', point q must be covered by some disk with center in 

U or L (note that Lemma 3.4 shows that q cannot be covered by a disk with 

center in the union of UR, CR and LR). Assume that q is covered by a disk dy 

with center Cy in L (the case when cy is in U is analogous). Let x  and 2  be the 

rightmost intersections of the disks dx and d2, respectively, with line Id- Points 

that are covered by dz and not by dx must be in the triangular region qxz. We 

show that the triangular region qxz is covered by dy, and therefore dz could 

be removed from OPT', a contradiction to the fact that O PT' is an optimum 

solution. Disk dy does not cover the entire triangular region qxz if and only if 

y, the leftmost intersection of dy and Id, is to the right of x. (Note that the 

rightmost intersection of dy and Id is always to the right of x, if dy has center 

in L.) If dy has q on its boundary (i.e., the distance of cy and q is 1), we claim 

that dy must have its center cy in the union of UR, CR, LR. If this is the case, 

observe that if the distance from cy to q gets shorter than 1 , cy remains in the 

union of UR, CR and LR, which contradicts Lemma 3.4. We are left to prove 

the claim. Assume that x — y. Let h be the horizontal distance of cy and q (see

Cy

Figure 3.7: The shown setting is impossible: Center cy must lie to the right of 
b because h > 5'.

Fig. 3.7 for an illustration). Observe that h is equal to the horizontal distance 

of cx and x  (for this observe that line c^q is parallel to line xcy). Therefore, 

h > V l  — S'2. For S' < y/2/2 we have h > S' and therefore cy lies in the union 

of UR, CR and LR. If y moves to the right of x, then cy moves to the right as
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well, i.e., cy stays in R, which is a contradiction to Lemma 3.4. □

Thus, according to this lemma (as we have at least two disks in O PT' with 

center in CL), all disks from OPT' with center in CL lie on the boundary of 

OPT' (possibly on more distinct holes). Let pu and pi be the corners with 

largest and smallest y-coordinate, respectively, among all corners of holes that 

are determined by at least one disk with center in CL. Notice that pu and pi 

are different. Let du and di be the disks with center in CL that determine pu 

and p i , respectively, and let 4  be the disk with center to the left of pu and 

pi that contains pu and pi on the boundary. (Note that cLl is in general not a 

disk that is part of the input.) The algorithm guesses these points and the disks 

determining them. The disks du, di and dl define a region C in the same way 

as in the one-hole case, see Fig. 3.2 (top).

We show that the points from C can only be covered in O PT ' by disks with 

center in CL.

L em m a 3.6 O PT' does not contain any disk with center outside CL that in

tersects C in LH.

P ro o f. Let d be a disk that has its center c outside CL and that intersects 

C in LH. Since c is not in CL, c has to be to the right of the line pipu and d 

intersects g(l twice between the points pu and pi. We claim that c must be in 

the union of UR, CR and LR. This follows by the same arguments as in the 

proof of Lemma 3.3 (which are applicable since 6' < y/25 <  \/2 /2 ). However, 

Lemma 3.4 shows that no disk with center in the union of UR, CR and LR 

intersects LH, and therefore no such disk can intersect C in LH. □

It follows that all disks from O PT' with center in CL lie on the boundary of 

the same hole:

L em m a 3.7 pu and pi lie on the boundary of the same hole in O PT ', and the 

boundary between pu and pi is formed by disks with center in CL (or parts of 

sides of S ) only.

P roo f. Observe that from the construction of the region C we have that all 

disks with center in CL that are on the boundary of the solution can appear 

only in the region C. Since no other disk than those with center in CL can 

intersect C (Lemma 3.6), the results follows. □
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Thus, we have characterized the disks with center in CL that appear on the 

boundary of OPT'. Because every disk from OPT' with center in CL must be 

on the same boundary that is within £, the disks with center in CL cannot 

cover any other point outside £. The points in LH that are not in £  must be 

therefore covered by disks with center in U or L.

Similarly, the points in RH can be split into those that can only be covered 

by disks with center in CR and those that can be covered by disks with center in 

U or L. We create two subproblems that can be solved by dynamic programming 

(Lemma 3.2): one subproblem for the points to be covered by disks with center 

in U or L, and one subproblem for the points to be covered by disks with center 

in CL or CR. For both subproblems, there is a (vertical or horizontal) strip 

that contains all the points to be covered while all disks have their centers 

outside that strip. As O PT' cannot contain a disk that covers points from both 

subproblems, the union of the optimal solutions to the two subproblems actually 

gives an optimal disk cover for the square.

In summary, we have shown that in both the one-hole case and the many- 

hole case we can obtain a 2-approximation (in the many-hole case, even an 

optimal solution) of the minimum-weight disk cover for the given 5 x 5  square S. 

Furthermore, all other cases (no holes, or one hole with not all disks on the 

boundary of the hole) can be reduced to one of these cases by guessing one 

or two disks in the optimal solution. Therefore, we obtain a 2-approximation 

algorithm for the problem of computing a minimum-weight disk cover in a small 

square.

3.4.2 Algorithm  for General W eighted Disk Cover with  

Unit Disks

We remark that our result on disk cover in a small square also implies a constant- 

factor approximation algorithm for the general weighted disk cover problem 

with unit disks (i.e., given a set of points and a set of weighted unit disks, 

find a minimum-weight set of given disks that covers all the points). We can 

simply partition the plane into 5 x 5  squares and compute an approximate disk 

cover for each square. Then we output the union of all computed disk covers as 

the solution. As a disk from the optimal solution can be used to cover points
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in at most 0 ( l / 5 2) different S x 6 squares, we lose only a factor of 0(1  /S 2) 

in the approximation ratio by solving the problem for each square separately. 

More precisely, for every disk d, any square containing a point covered by d 

must be fully contained in a disk of radius 1 +  y/25 around the center of d, and 

hence there are a t most [_7r(l +  y/28)2/52\ =  36 such squares (for <5 =  0.999/2). 

Since our algorithm for disk cover in one square has approximation ratio 2, the 

overall approximation ratio of our algorithm for the weighted disk cover problem 

with unit disks is 72. Previously, constant-factor approximation algorithms were 

known only for the unweighted case of the disk cover problem [23, 25]. Moreover, 

the approximation ratio 72 of our algorithm improves also the (previously best) 

approximation ratio 108 for the unweighted case from [25]. The approximation 

ration 72 for the unweighted problem was also obtained independently in [81].

Observe that both the general weighted disk cover problem and the minimum- 

weight dominating set problem have the same approximation ratio. This con

nection is not surprising as the following observation shows.

O bservation  3.8 Let T> be the set of unit disks with centers V . Let S  be the set 

of disks of radius 2 with centers identical to V . Let C be any subset of centers 

V. Then, the set of disks T>' C V  with centers C dominates all disks V  if and 

only if  the set of disks S ' Q S  with centers C covers all points V .

3.5 C onnecting th e D om inating Set

In this section we consider the problem of adding disks to a given dominating 

set in order to produce a connected dominating set. We present an algorithm 

that solves this problem by adding disks of total weight at most 0(w*), where 

w* denotes the optimal weight of a connected dominating set for the given set of 

weighted unit disks. Note that the problem of connecting up a dominating set 

is a special case of the node-weighted Steiner tree problem; for general graphs, 

the best known approximation ratio for the latter problem is logarithmic in the 

size of the graph [68].

Let V  be a set of weighted unit disks, and let U C T> be a dominating set. 

Let G denote the unit disk graph corresponding to the disks in V , and assume 

that G is connected (otherwise, G cannot have a connected dominating set). If
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the subgraph of G induced by U (denoted by G[U]) is not connected, there has 

to be at least two connected components of G. We are looking for a minimum- 

weight set U' C D of disks such that the graph G[U U U'} is connected. Observe 

that for each component of G[U] there exists a path of length at most 3 in 

G[U U U'] that connects the component with some other component. If this is 

not the case then there exists a connected component for which every path in 

G[U U U'] connecting the connected component with another one contains at 

least 5 vertices and therefore there would be a vertex in the middle of the path 

that is not dominated by U, a contradiction. We use this fact in constructing 

U' of small total weight.

We call the vertex set of a connected component of G[U] a cluster of U. We 

create an auxiliary graph H. The vertices of H  correspond to the clusters of U . 

For every path of length at most 3 in G that connects a vertex in one cluster 

Ci of U to a vertex in another cluster C2 of U and whose one or two internal 

vertices are not in U, we add an edge between ci and C2 to H. The weight of 

the edge is the sum of the weights of the disks corresponding to the one or two 

internal vertices of the path. Note that H  can have parallel edges. Next, we 

compute a minimum spanning tree T  in H. (The proof of the theorem below 

shows that H  is a connected graph.) Finally, we connect the dominating set U 

by adding all disks that correspond to internal vertices of the paths in G that 

correspond to the edges of T.

T h eo rem  3.9 Let V  be a set of weighted unit disks and U be a dominating 

set. Let w* be the weight of a minimum-weight connected dominating set for V. 

There is an efficient algorithm that computes a set JJ' of disks such that U U U' 

is a connected dominating set and w{U') <  17w*.

P roo f. We show that the auxiliary graph H  contains a spanning tree T ' of 

weight at most 17w*. This implies that H  is connected. Furthermore, the 

weight of the set U' of disks that the algorithm adds to U is at most the weight 

of the minimum spanning tree, and the weight of the minimum spanning tree is 

upper bounded by the weight of T'. Therefore, we get w{U') < 17w*.

It remains to show how to construct a spanning tree T ' of H  with weight at 

most I7w*. Let U* be an optimal connected dominating set, w(U*) =  w*. Let 

C  be an arbitrary non-empty set of clusters of U, but not the set of all clusters
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of U. Let C  be the set of the remaining clusters of U. We claim that G must 

contain a path 7r from a vertex in some cluster in C  to a vertex in some cluster 

in C  such that 7r contains at most two internal vertices and has the property 

that all its internal vertices are in U* \  U. (Note that such a path 7T corresponds 

to an edge in H.) To prove the claim, we argue as follows. Let x  be an arbitrary 

vertex in a cluster in C, and y an arbitrary vertex in a cluster in C. As U* is a 

connected dominating set, there must be a path p in G from x  to y all of whose 

internal vertices are in U*. Let x' be the last vertex on p that is not in U and 

that is dominated by a vertex x"  in a cluster in C. Note that such a vertex x' 

must exist. Furthermore, x ' or the vertex y' after x' on p must be dominated by 

a vertex y" in a cluster in C. Therefore, we obtain the desired path as x " , x ' , y" 

or x " ,x ',y ',y " .

Now we can create a spanning tree of H  as follows. We start with a tree 

consisting of a single vertex of H  (corresponding to some cluster of U) and grow 

the tree by repeatedly finding a path 7r in G that connects a vertex from a 

cluster in the tree to a vertex in a cluster not in the tree and has the properties 

discussed above. The claim above shows that such a path must exist. We can 

thus grow the tree by adding the edge in H  that corresponds to the path 7r. 

This is repeated until we have a spanning tree T ' .

The weight of each edge in the spanning tree T ' corresponds to the weight of 

the internal vertices (which are in U*) of a path of length at most 3 that connects 

different clusters of U. Furthermore, a vertex (disk) d of U* can contribute to 

at most 17 edges of H : Whenever d contributes to the weight of an edge, it is 

an internal vertex of a path that connects two clusters of U whose closest disks 

have (graph-theoretic) distance at most 2 from it. However, the set of disks at 

distance at most 2 from d can contain at most 18 disjoint disks (see e.g. [102]) 

and therefore at most 18 disks from different clusters of U. As the spanning 

tree can contain at most 17 edges between these 18 clusters, we obtain that d 

contributes its weight to at most 17 edges of the spanning tree T ' . Consequently, 

w (V )  < 17w*. □

Together with Theorem 3.1, we obtain the following corollary.

C oro llary  3.10 There is a constant-factor approximation algorithm for the 

minimum-weight connected dominating set problem in unit disk graphs.
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The approximation ratio of the algorithm of Corollary 3.10 is at most 72 + 

17 =  89.

3.6 Covering Points w ith  Unit Squares

In this section we look at possible adaptations of the two main problems that 

were studied in this chapter—the weighted dominating set in unit disk graphs 

and the covering problem of points in the plane with weighted disks. We apply 

the techniques and ideas developed throughout the chapter to a setting where 

instead of disks we consider axis-parallel squares of size l x l .

Let us consider the covering problem first. Let V  be the set of points in 

the plane that is to be covered by a set of weighted (axis-parallel) unit squares 

<S, i.e., squares of size l x l  (this scenario includes all covering problems with 

rectangles of size a x 6, where a and b are constants—just scale the setting 

appropriately). The weight of a square s G S  is denoted by ws. The weight of 

the squares from set S ' C S  is denoted by w(S') := ws- The goal of the

Weighted Square Covering Problem (WSCP for short) is to find a minimum- 

weight set S ' C S  that covers all points V , i.e., Vp G V: p G (J{s | s G <S'}. We 

define the center cs of a square s G S  to be the intersection point of the two 

diagonals of s. Thus, the distance from cs to the horizontal “end” of s is 1/2 

and the distance from cs to the vertical “end” of s is 1/2.

Similarly to the approach of the covering problem with disks, we divide the 

plane into parts where we can compute a good approximation to some local 

covering subproblem. Our approach divides the plane into strips of width 1. 

Strip Ti is bounded by two horizontal lines y — i and y — i +  1 and consists of 

points {(x,y) \ i < y < i + 1}. For every strip Ti we solve the following covering 

problem: cover the points from Ti by a minimum-weight set Fj C 5. At the 

end we output the union of all sets U{ as the approximate solution to WSCP.

3.6.1 Covering Points in a Strip

We present an optimal algorithm for the covering subproblem for strip Ti. The 

algorithm is basically identical to the dynamic programming from Lemma 3.2. 

Let Pi C V  be the points inside Ti. The horizontal line ti that goes through the



CHAPTER 3. WEIGHTED DOMINATING SETS IN  UDGS 44

middle of the strip Ti (i.e., ti is a line y = i +  1/2) divides the squares S  into 

two sets Su  and Sl—square s with center above ti belongs to Su  and square s 

with center below (or on line) ti belongs to Sl - We can now use the dynamic 

programming from Lemma 3.2 where instead of upper disks we use the squares 

Su  and instead of lower disks we use the squares Sl - The squares satisfy all 

the properties that are necessary for the correctness of the dynamic program

ming (see Lemma 3.2). Hence, the problem of covering points by weighted unit 

squares in a strip of width 1 can be solved optimally in polynomial time.

3.6.2 Approximation Algorithm for W SCP

We discuss the quality of the solution U =  (J  ̂Ui that is produced by the al

gorithm. Let OPT denote the optimum solution to the covering problem. Let 

OPT[i] denote the set of squares from OPT that cover a point in T*. Clearly, 

w{Ui) < u;(OPT[i]), as Ui is an optimum solution for the covering problem in 

Ti. Hence, w(U) < Y ^ iw{Ui) ^  w(OPT[i]). The summation is over i such 

that Ti is not empty. The weight of a square from OPT[z] can be counted more 

than once in the above sum: always, when a square covers a point in more 

than one strip Ti. Each square s can cover a point in at most 2 strips (as it can 

intersect at most 2 strips). Hence, w(U ) < w(Ui) < OPT[i] < 2u;(OPT).

Theorem  3.11 There is a 2-approximation algorithm for the Weighted Square 

Covering Problem.

3.6.3 M W DS in Unit Square Graphs

We can use the above algorithm to compute a constant factor approximation of 

a minimum-weight dominating set in unit square graphs—geometric intersection 

graphs of squares S  of size l x l .  Observe that a square s G S  dominates a square 

s' € S  (s' can be equal to s ) if and only if a square of size 2 x 2  with center at cs 

covers the center cs> of square s'. Hence, a solution to WSCP translates directly 

into a solution to MWDS in unit square graphs and a solution to MWDS in 

unit square graphs translates directly into a solution to WSCP.

Observation 3.12 Let S  be a set of unit squares and let V  denote the set of 

centers of squares of S . Let T> denote the set of squares of size 2 x 2  with centers
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identical to centers V . Let C be a subset of the centers V . Then squares V  C V  

with centers C cover all points V  if and only if  squares S ' C S  with centers C 

dominate all squares S .

As a direct application of this observation and Theorem 3.11, we obtain the 

following result.

T h eo rem  3.13 There is a 2-approximation algorithm for the Minimum- Weight 

Dominating Set problem in unit square graphs.

3.7 A 3-approxim ation A lgorithm  for M inim um - 

W eight Forwarding Sets

In this section we consider the minimum-weight forwarding set problem (MWFS). 

In this problem, we are given a distinguished unit disk dQ (the source disk), a 

set of weighted unit disks V  with centers in dQ, and a set of points V  in the 

plane outside dQ (but contained in the union of the disks in D). The goal is to 

find a minimum-weight subset V ' of V  such that every point in V  is covered by 

at least one disk from V . In the unweighted version of the problem (MFS), all 

disks have weight 1. Obviously, the problem is a special case of the disk cover 

problem.

MFS and MWFS arise in wireless ad-hoc networks in the context of the 

efficient implementation of flooding [25]. Flooding is a broadcasting mechanism 

where each node forwards the message to all its neighbours. This leads to many 

redundant messages. A more efficient implementation is obtained by letting 

each node forward the message only to a subset of the one-hop neighbours (the 

forwarding set) that covers all the two-hop neighbours. If the wireless network 

is modeled as a unit disk graph, the problem of determining a smallest (or 

minimum-weight) forwarding set for a node is just MFS (or MWFS) as defined 

above.

Calinescu et al. [25] devised a 3-approximation algorithm for MFS. We com

bine our ideas from Section 3.4 with their approach and obtain a 3-approximation 

algorithm for MWFS, the weighted version of the problem. The 3-approximation 

algorithm ALG for the unweighted case from [25] partitions the points in V  ac
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cording to the four quadrants defined by two orthogonal lines through the center 

o of disk da, and then independently solves the covering problem for each quad

rant. The union of these four disk covers is then a disk cover for all the points 

in V. Clearly, the same approach can be applied to the weighted case as well.

L em m a 3.14 ([25]) I f  an a-approximation algorithm is used for the (weighted) 

covering problem in each quadrant, the approximation ratio of ALG is at most 3a:.

The proof of this lemma is based on the observation that each disk in V  can 

cover points from V  in at most three quadrants.

We present an optimal algorithm for the weighted covering problem of points 

in one quadrant, thus obtaining a 3-approximation algorithm for MWFS.

L em m a 3.15 There is a polynomial-time optimal algorithm for the minimum- 

weight forwarding set problem if the points V  lie in one quadrant only.

P roo f. For a disk d G V, let w(d) denote the weight of the disk. Let Q be the 

quadrant in which the points V  lie. Let Q' =  Q — dQ be the external quadrant, 

i.e., the quadrant without the disk dQ. Observe that in any optimal solution 

V , each disk d G V  appears in Q' on the boundary of the solution (where the 

boundary of the solution means the boundary of the union of the disks from 

V ) .  To see this, consider a point p G V. Let op be the half-line starting at o 

and passing through p. Because p is covered by V , the half-line must intersect 

the boundary of V  at some point o' that lies beyond the point p. Let d' G V  

be the disk that contains o'. We say that disk d! is active at p. Observe that o' 

is in Q '. Because every disk from T> contains o, the disk d! contains the whole 

segment of op between o and o'. Thus the disk d' contains p as well. Therefore, 

if there is a disk d G T>' that is not on the boundary of the solution, we could 

remove the disk and keep the points covered, a contradiction to V  being an 

optimal solution.

In [25] it was proved that in Q' the boundaries of any two disks from V  can 

intersect in at most one point. This implies that each disk from the optimal 

solution appears on the boundary of V  in Q' exactly once (i.e., there is exactly 

one continuous part of the disk on the boundary).

We present a dynamic programming approach for the covering problem 

of points in Q (which is an adaptation of the dynamic programming from
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Lemma 3.2). Assume that the points in V  are ordered according to their polar 

coordinates (with the reference center being o). The algorithm computes a table 

with entries Ti(dj) that store the cost of an optimal solution for covering the 

points p i , . . . ,  pi in such a way that dj is active at pi. If there is no solution for 

which dj is active at pi, we set the entry to oo. Computing T\{dj) is straight

forward: We set T\(dj) = w (dj) if dj covers pi, otherwise we set T\{dj) — oo.

For a disk dj that covers pi, we can compute the cost Ti{dj) using

Ti(dj) = min{Ti_i(djfc) + [ t7 ^  k\-w(dj) \ dj active at pi for the solution of Ti-i(dk)}.

Here, the term [j ^  k] is 1 if j  7  ̂ fc, and 0 otherwise. The correctness of the 

computation is justified by the fact that each disk can be active only for points 

in V  that are consecutive. The weight of the optimal solution can be obtained 

as the minimum of the table entries Tn{d), where n  is the number of points in 

V  and d ranges over all disks in V  that cover pn. The optimal solution itself 

can be obtained using standard bookkeeping techniques. □

The discussion of this section leads to the following theorem.

T h eo rem  3.16 There is a 3-approximation algorithm for the minimum-weight 

forwarding set problem.

3.8 Sum m ary of R esults and O pen Problem s

In this chapter we have studied the Minimum-Weight Dominating Set in unit 

disk graphs. The problem, motivated by the real-life scenarios in mobile ad- 

hoc networks, is A/’P-complete and we have presented the first constant factor 

approximation algorithm for the problem. The techniques that were developed 

can be successfully applied to other geometric problems of similar nature, such as 

the unit disk covering problem, covering problem and dominating set of squares, 

and the forwarding set problem. For all these problems our approach leads to 

new or better approximation algorithms than the previously known ones.

It is an interesting question (and a long standing open problem even for 

unweighted graphs) whether there is a constant factor approximation algorithm 

for a dominating set problem for general disks (i.e., disks are not restricted to
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a unit radius) or rectangles.



C hapter 4

Network Discovery and 

Verification

In recent years, there has been an increasing interest in the study of networks 

whose structure has not been imposed by a central authority but has arisen 

from local and distributed processes. Prime examples of such networks are 

the Internet, sensor networks or unstructured peer-to-peer networks such as 

Gnutella. As opposed to the static, centrally planned networks, there is no 

central authority with a full knowledge and control over the network and which 

possesses a map of such a network. Obtaining an accurate map, usually modeled 

as a graph, is generally very difficult and costly due to the network’s dynamic 

growth process and limitations in accessing the network. Such network maps 

are useful for many purposes, especially for studying and analyzing the network 

structure, routing aspects, robustness properties, etc.

In order to create maps of the Internet, a commonly used technique is to 

obtain local views of the network from various locations (vantage points) and 

combine them into a map that is hopefully a good approximation of the real 

network. There is an extensive body of related work studying various aspects 

of this approach, see e.g. [32, 47, 84, 64, 65, 61, 16, 95, 45, 2, 39, 40]. More 

generally, one can view this technique of discovering the topology of an unknown 

network as performing queries on the network. A query corresponds to asking 

for a local view of the network from one specific vantage point (a node of the

49
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network).

As performing such a query at a node is usually very costly (in terms of time, 

energy consumption or money), the question of minimizing the number of such 

queries arises naturally. We formalize the problem of obtaining a map of an 

unknown network as a combinatorial optimization problem (network discovery 

problem) and study it from this perspective. The goal of the network discovery 

problem is to minimize the number of queries required to discover all edges and 

non-edges (absent edges) of the network (which is modeled as a graph). We 

study the problem both as an online and offline problem.

In the online network discovery problem (network discovery for short—we 

omit the word “online” ) we assume that the nodes of the network are known in 

the beginning and it is only the edges and non-edges that have to be discovered. 

The algorithm ascertains the edges and non-edges in the online manner and at 

each step has to decide where to make the next query. The only information 

the algorithm has is gained with the previous queries. Thus, the difficulty 

in selecting good queries arises from the fact that the amount of information 

discovered by a query may strongly depend on the parts of the network that are 

still unknown.

In the offline network discovery problem (called network verification) the 

full information about the network is given to the algorithm, i.e., all the nodes 

and edges are known (hence also all non-edges). The task is to compute a 

minimum set of queries that suffice to discover the network (if the network was 

unknown). Although an algorithm for this offline problem is hardly useful for 

the network discovery (knowing the network there is no need to discover it), 

it can be employed for a scenario where a given map of the network is to be 

verified whether it is still accurate.

Note that at first sight, in order to discover a network, it might seem sufficient 

to discover only the edges of the graph. It is, however, necessary to have a 

proof (i.e., discovery) for unconnected node-pairs that there is actually no edge 

between them, especially in view of the online setting. An online algorithm can 

only know that it discovered the network when both the edges and non-edges 

have been discovered. Taking both the edges and non-edges into account reflects 

in a better way what portion of the unknown network has been discovered by a
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set of queries. This can be helpful when investigating the quality of published 

maps of the Internet.

We consider two different query models. In the layered-graph query model 

the answer to a query at a vertex v consists of all edges and non-edges whose 

endpoints have different distance from v. This is equivalent to obtaining all- 

shortest paths from vertex v. In the distance query model a query at a node v 

returns all distances from v to all other vertices of the investigated graph (net

work). The distance query model is much weaker than the layered-graph query 

model in the sense that typically a query reveals much less information about 

the network. The motivation for the layered-graph query model comes from 

the following scenario. W ith traceroute tools, one can determine the path that 

packets take in the network if they are sent from one’s node to some destination. 

If each traceroute experiment returns a random shortest path to the destination, 

one could use repeated traceroute experiments to all destinations to discover all 

edges of the shortest-path subgraph. Making a query at node v would mean 

getting access to node v and running repeated traceroute experiments from v to 

all other nodes. If we assume that the cost of getting access to a node is much 

higher than that of running the traceroute-experiments, minimizing the num

ber of queries is a meaningful goal. The motivation for studying the distance 

query model comes from different scenarios. In many networks it is realistically 

possible to obtain the distances between a node and all other nodes, while it is 

difficult or impossible to obtain information about edges or non-edges that are 

far away from the query node. For example, so called distance-vector routing 

protocols work in such a way that each node informs its neighbours about upper 

bounds on the distances to all other nodes until these values converge; in the 

end, the routing table at a node contains the distances to all other nodes, and 

a query in our model would correspond to reading out the routing table. An

other scenario is the discovery of the topology of peer-to-peer networks such as 

Gnutella [36]. There, with the Ping/Pong protocol it is possible to use a Ping 

command to ask all nodes within distance k (the TTL parameter of the Ping) 

to respond to the sender [5]. Repeated Pings could be used to determine the 

distances to all other nodes.

W ithout doubt, both of the query models are simplifications of reality. In
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real networks, routing does not necessarily use shortest paths, and traceroute 

experiments will often reveal only a single path (or at most a few different paths) 

to each destination, but not the whole shortest-path subgraph. Real peer-to- 

peer networks are often so large that it becomes prohibitive to send Pings for 

larger TTL values, and there are also many other aspects that make the actual 

discovery of the topology of a Gnutella network very difficult [5]. Nevertheless, 

we believe that our models constitute a good starting point for a theoretical 

investigation of fundamental issues in network discovery.

4.1 Problem  D efinitions and Prelim inaries

A network is represented by a connected, undirected, unweighted graph G = 

(V ,E). The number of nodes is denoted by n =  \V\ and the number of edges 

by m  = |F j. For two distinct nodes u, v G V  we say that {u, v } is an edge if 

{u, v} G E  and a non-edge if {u , v } ^ E. The set of non-edges of G is denoted 

by E. The distance of two nodes u and v in graph G is denoted by dc{u,v) 

or d(u,v) if it is clear in which graph the distance of u and v is measured. A 

query is specified by a node v £ V  and is called a query at v or simply the query 

v. We are interested in a minimum-size query set Q C V  that “discovers” the 

network G. As a first objective, “to discover” refers to identifying all edges and 

non-edges of the network G. In general, “discovering” a network can also mean 

“discovering” other properties of the graph, such as the diameter or maximum 

degree. The query model and the given discovery goal can lead to a plentiful 

amount of online and offline optimization problems. We now present a general 

framework for such network discovery problems.

To obtain a concrete variant of the network discovery or verification problem, 

the following two aspects need to be specified:

Q uery  m odel: The query model specifies the type of queries that can be asked, 

and the information that is returned by a query in a given network.

C o m p le tio n  c rite rio n : This criterion specifies when the task of discovery or 

verification is considered to be completed, i.e., when a set of queries is 

sufficient.
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In all the network discovery problems, we are interested in algorithms that 

compute a set Q of queries (as specified in the query model) such that the 

information returned by the queries in Q is sufficient to satisfy the completion 

criterion. The objective is to minimize the cardinality of the set Q. In the online 

case, the algorithm can use only the information obtained through previous 

queries for selecting the next query. This scenario is given by the vertex set 

only and the edges of the graph are not known to the algorithm. In the offline 

version both the vertex set and edge set is known to the algorithm. The offline 

case is also called network verification problem.

Q u ery  M odels. The query model specifies the information that is returned 

to the algorithm when a query at a node v E V  is performed. We are studying 

the following two query models in this thesis.

For the layered-graph query model, the query at node q G V  returns all 

edges and non-edges {u ,v}  of G where the distances d c (q ,u ) and d c (q ,v ) are 

different. We refer to this query model as LG.

For the distance query model, th e query at node q G V  returns d istances 

from  q to  all other nodes o f V. W e refer to  this query m odel as D is t .

C o m p le tio n  C rite r ia . The completion criterion is the condition that must 

be satisfied so that the graph discovery or verification task is considered accom

plished. In the following we describe two completion criteria.

Discovery of the edge set E  and the non-edge set E  of the network is the 

completion criterion that we consider in this thesis. The task of the algorithm 

is accomplished, if the algorithm computes a query set that gives enough in

formation to identify uniquely the edge set E  and the non-edge set E  of the 

graph. This completion criterion is referred to as A l l . For this criterion, we 

say that the graph is discovered as synonym to saying the edges and non-edges 

are discovered.

Another completion criterion (which we do not consider in this, but was 

considered previously) is to discover the edge set E  only. Clearly, this completion 

criterion makes sense only in the offline setting. We refer to this completion 

criterion as A ll-E .
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N etw ork  D iscovery  a n d  V erification P rob lem s. We refer to the net

work discovery problem with query model X and completion criterion Y as 

X - Y - D isc o v e r y  and to its offline version as X -Y -V e r if ic a t io n . Thus, 

L G - A ll- D isc o v e r y  and D is t - A ll- E - V e r ific a t io n  are two examples of 

concrete problems arising in our framework.

Thus, the L G - A ll- D isc o v e r y  asks for a minimum number of queries that 

discover both the edges and non-edges of the network. The query q returns all 

edges between vertices of different distance to q. This is equivalent to obtaining 

all shortest paths from q to any other vertex. (To see this, observe that a query 

at q returns an edge {u, v} if and only if {u, u} lies on a shortest path from q 

to some node v'). For a query vertex q we can sort the vertices V  into layers 

according to their distance from q. Layer Li (or L?, if we want to emphasize the 

query to which the layer is associated) is the set {w G V  \ d(q,w) = i}. Thus, 

the result of the query can be viewed as a layered graph. Hence, if u, v G V  and 

dc{q, u) 7  ̂dc{q,v), query q reveals what {u,u} is—either an edge or non-edge. 

In such a case we say that q discovers the edge/non-edge {u, u}. Hence, in this 

model, the completion criterion is satisfied if and only if every pair {w, v } (edge 

or non-edge), u ,v  G V, is discovered by a query q G Q.

The L G - A ll- V e r if ic a t io n  problem is the offline version of the L G -A ll-  

D isc o v e r y  problem. The whole network G =  (V ,E) is given to the algorithm 

and the goal is to compute a minimum size query set Q C V  such that every 

edge/non-edge {u, v}, u, v G V, is discovered. In this case we may also say that 

q verifies {u, v} and that Q verifies the graph.

The D i s t - A l l - D i s c o v e r y  and D i s t - A l l - V e r i f i c a t i o n  problems ask 

for a minimum-size set Q that discovers all edges and non-edges of the net

work. It is not clear at first sight what exactly it means to discover the edges 

and non-edges of the network. Intuitively, the set of queries Q discovers the 

network G, if the distances to all vertices that Q returns differ (in at least 

one distance) from the distances that Q returns when applied to any network 

G' =  (V ,E ') 7  ̂ G (G' is on the same vertex set as G). Formally, we label the 

queries in Q as qi, #2 , • • • ,Q\q \ and we denote by do (Q ,v ) the |Q|-dimensional 

distance vector of distances from Q to v , i.e., the z-th component contains the 

distance dc(qi,v). Let D<2 (Q), for Q Q V, denote the set of all distance vectors
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dG(Q,v), for all v E V. We write Dg(Q) ±  D g'(Q ), for G' =  (V ,E '), if there 

exists at least one query q e  Q and a node v G V  such that dc{q, v) ^  do'(q, v ). 

Conversely, D g(Q ) =  Dg"(Q), if dc(q,v) = dG>{q,v) holds for all queries q G Q 

and all nodes v G V.

Discovering a Graph in the D istance Query M odel. A query set Q C V  

for the graph G — (V ,E) discovers the edge e G E  (discovers the non-edge 

e e E), if for all graphs G' =  (V,E*) with Dg(Q) =  D G'(Q) it must hold that 

e G E ' (e G E'). Q C V discovers the graph G, if it discovers all edges and 

non-edges of G.

A lternative (Equivalent) D efinition. The fact that Q discovers G implies 

that any graph G' with D g(Q) =  D g'{Q) must have the same edges and non

edges as G, in other words: G' =  G. Conversely, if a query set Q for G yields 

D g(Q ) = Dg'(Q) only for G' = G and for no other graph, then Q discovers 

G (since it clearly can discover each edge and non-edge individually). Thus, 

this gives an equivalent definition: A query set Q C V  discovers the graph 

G = (V,E), if for every graph G' = (V ,E ') ^  G at least one of the resulting 

distances changes, i.e., Dg(Q) ^  Dg'(Q)- Intuitively, the queries Q which 

discover a graph G can distinguish it from any other graph G' (sufficient and 

necessary condition).

The D is t - A ll- D isc o v e r y  problem is given by the vertices of a network 

G =  (V ,E ) and the goal of the algorithm is to discover the network by a 

minimum-size query set Q in the distance query model. According to the defi

nition, an algorithm has to compute a minimum size query set Q such that for 

every G' =  (V ,E ') ^  G, D c ( Q)  7  ̂ Dg(Q). Here, intuitively, we expect the 

algorithm to be aware of how the actual edge set E  of G looks like at the end of 

the algorithm’s computation. In Section 4.4.1 we show how the algorithm can 

discover individual non-edges and edges of an unknown network from the queries 

Q. Actually, we use the approach of discovering individual non-edges and edges 

as the “thinking environment” for the D is t - A ll- D isc o v e r y  problem.

We evaluate the online algorithms for the online problems within the frame

work of competitive analysis. The number of queries Q (that discover the un

known network G) computed by an algorithm (and denoted by A{G)) is com
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pared to the minimum number of queries that discover G (denoted by OPT(G)).

For the offline setting we are interested in approximation algorithms. Here, 

similarly to online algorithms, the number of queries Q computed by an al

gorithm (denoted by A(G)) is compared to the minimum number of queries 

that discover G (also called the optimum number of queries and denoted by

OPT(G)).

4.2 R elated Work and N ew  C ontributions

There are several ongoing large scale efforts to collect data representing local 

views of the Internet. For example, the RouteViews project [84] by the Uni

versity of Oregon collects data from a large number of so-called border gateway 

protocol routers. Essentially for each router—which can be seen as a node in 

the Internet graph—the list of paths it knows (to all other nodes in the network) 

is retrieved. More recently, and—due to good publicity—very successfully, the 

DIMES project [47] has started collecting data with the help of a volunteer com

munity, similar in spirit to SETI@Home [93]. Users can download a client which 

collects paths in the Internet by executing successive traceroute commands. A 

central server can direct each client individually by specifying which routes to 

investigate.

Data obtained by these or similar projects has been used in heuristics to 

obtain maps of the Internet, basically by simply overlaying possible paths found 

by the respective project, see e.g. [65, 84, 47, 32]. Another line of research aims 

at inferring from such local views the types of economic relationships between 

nodes in the Internet graph, cf. [61, 95, 45].

Bejerano and Rastogi [20] study the problem of monitoring link delays and 

faults in IP networks. They propose a two-phase approach. The first phase 

corresponds to the problem of verifying all edges of a network with as few queries 

as possible in a model which is related to our layered-graph query model, but 

where query results are trees. They give a S e t C o v e r  [101] based O(logn)- 

approximation algorithm and show that the problem is A/’P-hard. Here and in 

the following, n stands for the number of nodes of the graph. They state that 

their reduction can be strengthened to give a lower bound of fJ(logn) on the
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approximation ratio. In contrast to Bejerano and Rastogi, we are interested in 

verifying (or discovering) both the edges and the non-edges of a graph. Breitbart 

et al. [22] consider the network monitoring problem in a setting where a query 

returns a shortest-path tree rooted at the query. They consider 2 variants of 

the problem—minimize the number of queries that verify all network links such 

that (a) the query may return any shortest path tree, or (b) the algorithm 

may choose which shortest-path tree is returned. The authors show that both 

variants are JVV-haid and they also present some heuristics for the problem 

together with an analysis and experimental evaluation of the heuristics.

Network verification in the layered graph query model is closely related to 

the problem of finding the metric dimension of a graph. A subset of nodes 

Q C V  such that every node in the graph has a unique vector of distances to 

Q is called resolvability set. The cardinality of a minimum resolvability set is 

the metric dimension of the given graph [62]. Such a minimum subset Q is also 

called a basis of the graph and it is easy to see that this is the same as a mini

mum query set in the layered graph query model. The problem of determining 

whether a graph G has a resolving set of cardinality at most k is A/”'P-complete 

[62]. Khuller et al. [76] investigate the problem of finding a basis of a graph (and 

thus a minimum query set). They present an 0(log n)-approximation algorithm 

(based on a S e t C o v e r  greedy 0(logn)-approximation algorithm) and investi

gate special graph classes. For trees, they show that the problem can be solved 

optimally in polynomial time. Furthermore, they prove that one landmark is 

sufficient if and only if G is a path, and discuss properties of graphs for which 2 

landmarks suffice. They also show that if k landmarks suffice for a graph with 

n vertices and diameter D, we must have n < D k +  k. For d-dimensional hyper

cubes, it was shown in [92] (using an earlier result from [78] on a coin weighing 

problem) that the metric dimension is asymptotically equal to 2d/log2d). A 

survey on resolvability of graphs is given in [27] (from a graph-theoretic point 

of view rather than an algorithmic one). Caceres et al. [24] study the metric 

dimension in Cartesian products of graphs and give many helpful references, 

pointing out interesting connections to other closely related problems. Results 

for the problem variant where extra constraints are imposed on the basis (e.g., 

connectedness or independence) are surveyed in [90].
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The L G - A l l - E - V e r i f i c a t i o n  problem was first considered in [87] (where 

the problem was called Minimum Layered-Tree Query Problem), where the au

thors consider special graph classes, show a lower bound on the number of 

queries in terms of the clique number to(G) of the given graph G and also re

late the diameter of graph G and the independence number of graph G with 

the maximum and minimum number of layers for a query at vertex v G G. 

They also show that the decision variant of L G - A l l - E - V e r i f i c a t i o n  is AfV- 

complete and present a S e t C o v e r  based 0(logn)-approximation algorithm for 

L G - A l l - V e r i f i c a t i o n  and L G - A l l - E - V e r i f i c a t i o n .  They also mention 

the L G - A l l - D i s c o v e r y  problem as their prime interest and motivation, but 

do not consider it further.

The L G - A ll- D isc o v e r y  problem was then discussed in [49], where a lower 

bound on the number of queries in terms of the diameter of an induced subgraph 

was given (we recall this lower bound in our text later on). Three algorithms are 

proposed and experimentally compared with each other. No worst-case analysis 

is given.

In [17] both the L G - A ll- D isc o v e r y  and L G -A ll- V e r if ic a t io n  as well 

as L G - A ll- E - V e r if ic a t io n  are considered. It is shown that the L G -A ll-  

V e r if ic a t io n  problem cannot be approximated within a factor of o(logn) 

unless V = N V , thus showing that the approximation algorithm from [76] is 

best possible. This result was also published in [19, 18]. For L G - A ll- E - 

V e r if ic a t io n  a polynomial time algorithm is presented that computes the 

optimum number of queries for a special class of graphs—non-branching planar 

chordal rings. This is a class of graphs that can be build from cycles in the plane 

for which edges (chords; drawn as straight lines in the plane) are added that do 

not intersect in the plane. Further experiments for LG—A ll—D isc o v e r y  based 

on [49] were given. Also, another query model was considered—shortest path 

tree query model—where a query at node v returns a shortest path tree of the 

graph rooted at v. To specify which shortest path tree is returned by a query, 

weights from an interval [1 — e, 1 +  e] are assigned to every pair {u, v} (edge or 

non-edge). The problem of deciding whether k queries discover a given graph 

G in this query model is shown to be ./VP-complete.

In th is chapter we stu d y  LG—A ll—D is c o v e r y , LG—A ll—V e r if ic a t io n ,
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D ist - A ll- D isc o v e r y  and D is t - A ll- V e r if ic a t io n . For the layered-graph 

query model we first give in Section 4.3.1 a full characterization of graphs for 

which 2 queries discover the graph and we also investigate the change in the 

optimum number of queries if an edge is added or deleted from the network. For 

the online discovery problem we present a lower bound 3 on the competitive ratio 

of any online algorithm and give a deterministic algorithm that guarantees to 

output a query set of size a t most OPT(G)+4(\E(G)\ — n) +  5. We also present a 

randomized online algorithm with competitive ratio 0(y /n  log n ) (Section 4.3.2).

For the distance query model we first show how a query (or set of queries) 

can discover individual non-edges and edges (Section 4.4.1). In Section 4.4.2 we 

show lower bounds on the number of queries needed to discover or verify a graph, 

based on the independence number ct(G), clique number cu(G) and size of the 

edge-set of the graph, \E(G)\. For D is t - A ll- V e r if ic a t io n  we present poly

nomial time algorithms for basic graph classes—chains, cliques, trees, cycles, 

hypercubes and grids. For general graphs, the problem turns out to be MV-  

hard and a (S e t C o v e r  like) 0(log n)-approximation algorithm is presented 

(Section 4.4.4). For D is t - A ll- D isc o v er y  we show in Section 4.4.5 that no 

deterministic online algorithm can be better than 0 (y/n)~competitive and no 

randomized online algorithm can be better than 0(logn)-competitive. Finally, 

we present a randomized online algorithm with competitive ratio 0 (y /n logn).

Most of the results presented in this chapter were published in [19], [51] and 

[18].

4.3 Layered-Graph Query M odel

4.3.1 A Few Structural Properties

Let us start with some observations and characterizations about the minimum 

number of queries for various graphs.

T h eo rem  4.1 ([49]) I f  a graph G =  {V,E) contains a subgraph H  of diameter 

D h with n n  vertices, then OPT(G) > logDH+ \n H-

P roo f. Imagine the queries being performed sequentially. At any instant, the 

unknown edges and non-edges induce disjoint cliques, which we call unknown
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groups. Two vertices are in the same unknown group if and only if they were 

in the same layer of all queries made so far. Consider the n n  vertices of sub

graph H. Initially, all vertices form an unknown group. For each query, the n #  

vertices of H  will be in a t most D h  +  1 consecutive layers of the layered graph 

returned by the query. Therefore, after the first query, a t least u h /{D h +  1) 

vertices of H  will still be in the same unknown group. Similarly, after k queries, 

at least u h / (D h +  l ) fc vertices of H  will be in an unknown group together. If 

k queries suffice to verify all edges and non-edges, the unknown groups must be 

singletons in the end. So we must have tih/{D h +  l ) fc < 1. This proves the 

theorem. □

This theorem implies that a graph containing a clique on k vertices requires 

at least log2 k queries, and a graph with maximum degree A at least log3(A +1) 

queries. For the former, take H  to be the clique on k vertices, and for the latter, 

take H  to be the subgraph induced by a vertex of degree A and its neighbours. 

The latter was also mentioned in [27]. This theorem can also be seen as a 

generalization of the result from [76], where it was stated that if k vertices 

discover the graph, then n < D q +  k.

We study now how much the optimal number of queries changes if the net

work is changed a bit—an edge is added or deleted, or a vertex is added or 

deleted. In [27] it was shown that if a vertex is added to the graph and it can 

be adjacent to any vertex, the number of queries can change dramatically. For 

example, a cycle needs 2 queries to be discovered, whereas the wheel (a cycle 

with one extra single vertex connected to all the vertices of the cycle) needs 

L 2n£ 2 J queries. In [27] they also point out that for trees adding an edge can 

increase the number of queries by at most 1 or decrease the number of queries 

by at most 2. Here, we show a slightly more general result.

Lem m a 4.2 I f  Q C V(G) discovers a graph G in L G -A ll- D is c o v e r y , then 

Q U {u, u} discovers G' = G \  {u, v}, for any edge {u, v } G E.

Proof. Let x, y be arbitrary vertices of the graph G. We show that there exists 

a query q G Q' that discovers {x, y}, i.e., leaves x and y in two different layers.

Let q £ Q be a query that discovers {x, y} in graph G. Assume w.l.o.g. that 

dc(q, x) < dc(q, y )• Consider the following two cases. First, assume that there is 

a shortest path from q to x in G of length dc(q , x) that does not contain the edge
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{u,v}. In such a case dc'{q ,x) = dc(q,x)  and therefore {u,v}  is discovered by 

q also in G', as dc{q,x) < dc(q,y) < dc'{q,y)- In the second case assume that 

every shortest path from q to x  (in G) contains the edge {u, u}. Assume w.l.o.g. 

that v appears after u on these shortest paths. Consider now the distances 

dc{v,x)  and dc(v,y).  As q discovers {x ,y}  in G, we have do(v ,x )  < dc(v,y)  

(otherwise dc{q,x) = dc(q,y))- Observe that d c { v , x ) = dc(v ,x ) .  Clearly, 

dc{v,y) < dG>(v,y), and therefore d c { v , x ) < dGr{v,y), i.e., v discovers {x, y} 

in G'. □

We cannot make a similar claim about adding an edge into graph G, as 

shows an example from Figure 4.1, where Q — {z , v } discovers G, but {z,u ,  u} 

does not discover edge {x ,y}.

As a consequence of the lemma we have the following corollary.

Corollary 4.3 Let G be a graph and e an edge in G. Then for  L G -A ll- 

D isc o v e r y  OPT(G  \  e) <  OPT(G)  +  2.

x yu

Figure 4.1: Querying Q(G) = {z ,v}  and the endpoints u and v of a newly added 
edge into G does not discover G' =  GU {u,u}.

In [27, 76, 49] some special graph classes were investigated. For cycles, 

wheels, lines, trees and complete graphs the optimum number of queries was 

determined. Also, a full characterization of graphs for which the optimum num

ber of queries is 1, n — 1 and n  — 2 was given. In [76] some properties of graphs 

for which 2  queries discover the graph were given. We now give a full character

ization of such graphs. We can characterize the graphs verifiable by 2 queries 

by a series of simple observations. Let Q = {^1 , 9 2 } be the query set verifying 

G.

1 . Every vertex v € V(G) can by uniquely characterized by a tuple (iv, j v ), 

where iv = d(qi,v) and j v =  d(q2 ,v), because V u , u  G V: d(qi,u ) ^  

d{qi, v) or d(q2, u) ^  d(q2, v ).
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d(v,q i)

n - ....................................................   ■

Figure 4.2: Graph verified by 2  queries q\ and q2 can be drawn in a grid with 
special properties.

Placing the vertices on a two dimensional grid of size n x n according 

to their coordinates (iv, j v) can give a better understanding of G (see 

Figure 4.2).

2 . Every vertex (i , j ) of G has at most 8  neighbours ((i — 1, j  — 1), (i — 1 ,j), 

( i - l , j  +  l) , { i , j -  1 ), {i,j + 1 ), (i +  l j - l ) ,  (* +  l , i ) ,  or (i + 1 , j  + 1 )), 

i.e., G is a subgraph of a complete grid.

3. The diameter diamc of G is at least y/n — 1. If not, then all the vertices 

of G would fit into the box of size (diamc  +1) x (diamc + 1), which would 

yield \V\ < (diamc  +  l ) 2 < (y/n)2 =  n, a contradiction.

4. Vertices q\ and 92  are placed symmetrically on the boundary of the grid: 

qi =  (0 ,a), q2 = (a ,0 ).

5. There is a unique path P  =  po > Pi 5 P2 , • • •, Pa of length a between the query
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(4,0) (5,1) (6,2)

b;-(3,-

O'

(0,4) (1,5) (2,6)

Figure 4.3: Every graph verifiable by 2 queries is a subgraph of a grid (an 
example of such a graph is drawn with solid edges and full circles). The grid is 
depicted by dotted lines as edges and circles as vertices.

vertices q\ and q2 : Pi =  (i,a  — i) (depicted on the figure with bold disks).

6 . As a consequence of the above reasoning, there is no vertex in area R\  := 

{ (h j)  I * +  J < a}- To see this, suppose for contradiction that there exists 

a vertex v G G such that (iv,jv) £ R\. Then d(qi,q2 ) < d(qi,(iv, j v)) + 

d((iv , 3 v),(l2 ) =  iv +  jv < a =  d(q\,q2 ), a contradiction. Similarly one can 

show there is no vertex from G in areas R 2 := {(i, j )  \ j  — i > a} and 

R 3 ;= | i — j  > a}. E.g. using the triangle inequality, one gets for

every vertex ( i , j )  G G that j  =  d((i , j) ,q 2 ) <  d((i , j) ,q i)+ d(qi,q2) =  i+ a ,

i.e, j  — i < a, etc. Yet another simple bound is: for every vertex ( i , j )  G G, 

i and j  is at most n — 1 .

7. Thus, qi and q2 are the corners of a slab of the grid into which G is 

embedded (the strip/lane/slab which remains when subtracting Ri, R 2 

and R 3 from the integer lattice)—see Figure 4.3.

8 . Both <71 and q2 have at most 3 neighbours each (otherwise there would be 

a vertex in R \,  R2  or R3 ).

9. Every vertex ( i , j )  except q\ and q2 has a neighbour in (i — 1, j  — 1), —

(i — l , j  +  1 ) and a neighbour (not necessarily distinct) in (i — l , j  — 1 ),
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(z, j  — 1) and (z + l , j  — 1) (e.g. the neighboring vertex on shortest paths 

from (z,j) to q\ and the neighboring vertex on shortest path from (z, j )  to 

Q2-

Thus, every graph G which is discovered by 2  queries is (*):

a subgraph of slab {(z, j )  \ \ i—j\ < a}, a > 1 , of a 2  dimensional grid 

{ (b i)  I h j  > 0 } (where also the diagonal edges are present), such 

that every vertex v G V  at position (i,j)  (except (0,a) and (a,0), 

which satisfy only one of the following constraints) of the grid has at 

least one neighbour in G among positions (z — 1 , j  — 1 ), (i — 1 , j )  and 

(z — 1 , j  + 1 ) and at least one neighbour among positions (z — 1 , j  — 1 ),

(■i , j  -  1) and (z +  1, j  -  1).

It is easy to verify that every graph with such a property (*) can be discov

ered by the two neighboring corner vertices (qi = (0, a) and <72 =  (<b 0) from the 

grid of Figure 4.3).

We notice that these graphs don’t have to be planar, as planar graphs have 

to satisfy \E\ < 31V-! — 6 .

As a generalization of the previous discussion, we can give some insight for 

graphs for which k queries are needed to discover them. For Q = {<71, . . . ,  q^} 

that discovers G, we can represent every vertex v by a fc-tuple (i\, i%, ■ • ., z£), 

where ij =  d(v,qj).

Therefore,

1 . graph G is a subgraph of a k dimensional grid with diagonals.

2 . diamc  >  -y/zz — 1 .

3. A c  < 3 k — l. (Every neighbour of v = ( x \ , ^ 2 , • • •, x \)  (including v itself) 

can differ in every coordinate by at most 1 ).

4. Every query vertex ^  has degree at most 3fc_1. (Here the neighbours of ^  

have their z-th coordinate fixed (equal to 1 ) and can differ in the remaining 

k — 1 coordinates).

Observe that the second and third characterization (but not the last one) follows 

also from Theorem 4.1.
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4.3.2 The Online Problem  

Lower Bound

Theorem  4.4 No deterministic online algorithm for L G -A ll- D isc o v e r y  can 

have weak competitive ratio 3 — e for any e > 0.

Proof. Let A  be any deterministic algorithm for L G - A ll- D is c o v e r y . We 

first give a simpler proof that A  cannot be better than 2-competitive. This gives 

an insight for the ingredients we use to prove the main claim of the theorem. 

Consider Figure 4.4(a). We refer to the subgraph induced by the vertices labelled 

r, x , y , and z a s a  2-gadget. Assume that the given graph G consists of a global 

root g and k, k > 2 , disjoint copies of the 2 -gadget, with the r-vertex of each

2-gadget connected to the global root g. One can easily verify that OPT(G) =  k 

for this graph, and that the set of all a:-vertices (or y-vertices) of the 2 -gadgets 

constitutes an optimal query set. On the other hand, algorithm A  can be forced 

to make the first query at g (as, initially, the vertices are indistinguishable to 

the algorithm). This will not discover any information about edges or non-edges 

between vertices x, y and z of each 2-gadget. The only queries that can discover 

this information are queries at x, y and 2 . In fact, a query at x  or y suffices 

to discover the edge between x  and y and the non-edges between x  and z and 

between y and z. When A  makes the first query among the vertices in {x , ?/, z} 

of a 2 -gadget, we can force it to make that query at z, since the three vertices are 

indistinguishable to the algorithm. The query at z does not discover the edge 

between x  and y. The algorithm must make a second query in the 2 -gadget to 

discover that edge. In total, the algorithm must make at least 2 k + 1 queries. As 

the construction works for arbitrary values of k, this shows that no deterministic 

online algorithm can guarantee weak competitive ratio 2  — e for any constant 

£ >  0 .

To get a stronger lower bound of 3, we create a new gadget, called the 3- 

gadget, as shown in Figure 4.4(b). The 3-gadget is the subgraph induced by all 

vertices except g in the figure. We claim that A  can be forced to make 6  queries 

in each 3-gadget, whereas the optimum query set consists of only 2 vertices in 

each 3-gadget (drawn shaded in the figure). If we construct a graph with k, 

k > 2, disjoint copies of the 3-gadget, the s-vertex in each of them connected to
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U

(a)
(b)

Figure 4.4: Lower bound constructions.

the global root g as indicated in the figure, we get a graph G for which we claim 

that OPT(G!) =  2k and the algorithm A can be forced to make at least 6 k +  1 

queries. This shows that no deterministic online algorithm can guarantee weak 

competitive ratio 3 — e for any constant e > 0.

To see that OPT(G) =  2 k, let Q be the set of queries consisting of the 

two shaded vertices from each copy of the 3-gadget as shown in Figure 4.4(b). 

We claim that Q discovers G. This can be verified manually as follows: For 

every vertex in a 3-gadget II, consider the 3-tuple whose components are the 

distances from that vertex to the two query vertices in II and the distance to an 

arbitrary query vertex from Q outside II. One finds that each vertex in II has 

a unique 3-tuple, showing that all edges and non-edges of II are discovered by 

Q. Each non-edge between two different 3-gadgets is discovered by one of the 

queries inside these two 3-gadgets. The edges and non-edges between g and each

3-gadget are also discovered. Hence, OPT(G) < 2k. We have OPT(<3) > 2k, 

because each of the edges {x,y}  and {x',y'} (see Figure 4.4(b)) of a 3-gadget 

requires a separate query.

To show that A(G) > 6 k +  1 , we argue as follows. First, we can force 

A  to make the first query at g. This will not reveal any information about 

edges within the same layer of any of the 3-gadgets. We view each 3-gadget as 

consisting of s and a left part, a middle part, and a right part. The left part 

consists of the left child of s and its four adjacent vertices below (these four
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vertices are called bottom vertices, and the left child of s is called the root of 

that part); the middle and right part are defined analogously. The three parts 

of a 3-gadget II are indistinguishable to A  until it makes its first query inside

II. A query at s would not discover any new information about II, so we can 

ignore queries that A  might make at s in the following arguments. When A  

makes its first query inside II, we can force this query to be in the middle part, 

and we can force it to be at u or u. In both cases, the query does not discover 

any information about the edges and non-edges between the bottom vertices of 

the left part, nor does it discover any information about the edges and non

edges between the bottom vertices of the right part, nor does it discover the 

edge drawn dashed. When A  chooses its second query in II, it could be in the 

left part, in the middle part, or in the right part. Assume that A  chooses the 

left part; since the bottom vertices of the left part are still indistinguishable to 

A, we can force A  to make the query either at the root of the left part or at 

the bottom vertex t. Similarly, in the right part we can force A  to make the 

query at its root or at t ' . In the middle part, A  can make the query anywhere. 

In any case, the second query made by A  does not discover any information 

about edges and non-edges between vertices in the set { x ,y , z }  and in the set 

{x ' ,y ' ,z '} .  Similarly as in the case of Figure 4.4(a), for each of these sets we 

can force A  to make the first query at z (at z') and thus require a second query 

at x  or y (at x' or y') to discover everything about these groups. In total, A 

must make at least 6  queries in each 3-gadget. □

W ith the gadget of Figure 4.4(a) one can prove easily that no randomized on

line algorithm for L G - A ll- D isc o v e r y  can have weak competitive ratio 4 /3 —£ 

for any e > 0 ; just observe that we can force a randomized algorithm to make 

the first query at 2  with probability at least 1/3. All lower bounds on the 

weak competitive ratio also hold for the (standard) competitive ratio (where no 

additive constant c is allowed).

A D eterm inistic A lgorithm

We describe now an algorithm for L G - A ll- D isc o v e r y  that is inspired by 

Lemma 4.2. The algorithm makes an arbitrary query qo. This splits the vertices 

of G into layers with discovered edges and non-edges between the layers. Observe
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that any breadth-first-search tree rooted at qo contains only edges discovered 

by qo. The algorithm fixes one such breadth-first-search tree T. Let Qt  be an 

optimal query set that discovers T  (this can be computed in polynomial time 

due to [76]). Let Qe  be the set of endpoints of edges of G that are not in T,

i.e., Qe  =  {u | G V(G ) : {u,u} G E(G) \  E(T)}.  The algorithm makes 

queries at Qt , one by one, and during this phase also at all end-points of all 

newly discovered edges in the process of querying, until all edges and non-edges 

are discovered, or there is no query to be made.

We claim that the algorithm’s computed query set Q discovers G. Let Q'E be 

the endpoints of the edges that were discovered by the algorithm. Suppose by 

way of contradiction that the algorithm terminates (i.e., it queried all vertices 

from Q =  Q t  U Q'e ) and that there is an undiscovered pair {x, y}—a non-edge 

or an edge. Let q G Q t  be the query that discovers {x, y} in T  (as a non-edge). 

Because q does not discover {x, y} in G, the shortest paths (in G) from q to x 

or the shortest paths from q to y (or both) contain some newly discovered edges 

(i.e., an edge not from T). Let {u, v} be such a new edge on a shortest path from 

q to x or from q to y, traversed in the order u, v. The algorithm queried both 

endpoints u and v and because {x ,y}  is undiscovered, d c (v ,x ) =  dc(v ,y)  and 

also dc(u, x) =  dc{u , y) =  d c (v , x) + 1 . Hence, we can assume that the shortest 

paths from q to x and from q to y agree on the part from q to v. Moreover, 

let {u,u} be such a newly discovered edge with a minimum distance from v 

to x and y. We claim that the shortest path from v to y contains only edges 

from T. If not, then there would be a newly discovered edge (of which

both endpoints were queried) with v' closer to y and x than v is. Hence the 

shortest path from v to y contains only edges of T  and for the same reasons the 

shortest path from v to x contains only edges of T, too. Thus, x and y are at 

the subtree Tv of T, rooted at v, and at the same depth. The query q discovers 

{x, y} in T  and therefore q is in Tv and the shortest path Pt  from q to x in T  

does not contain v. Let g be the vertex from Pt  that is closest to v. Let Liv, 

Liq, Lig and Lix y be the layers of qo with vertices v, q, g and x, respectively. 

Observe that the length of Pt  is £ = (iq — ig) +  (ix —ig)• The shortest path Pq 

from q to x in G goes via v and therefore the length of such a path is at least 

(iq — iv) +  (ix ~  iv) > £ (as all the edges of G connect neighbouring layers or lie
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within layers of the initial query qo), which is certainly not possible.

Thus the algorithm discovers G and the number of queries it makes is at most 

1 +  \Qt \ +  \Qe \ =  1 +  \Qt \ +  2 |E(G) \  E(T)\. Repeated usage of Lemma 4.2 

(starting with G and deleting edges until we end up with T) shows that \Qt \ =  

OPT(T) < OPT(G) +  2|E(G) \  E (T )|.

Theorem  4.5 There exists an online (polynomial time) algorithm for L G - 

ALL-DlSCOVERY which computes a query set Q (that discovers an unknown 

network G) of size at most OPT(G)  +  4k +  I, where k = \E(G)\ — (n — 1 ).

Observe that the algorithm guarantees to deliver OPT{G)  +  o(n) queries 

only if the number of edges is n + o(n). Otherwise, from the worst-case-analysis 

point of view, querying all n  vertices would achieve the same upper bound.

Random ized Online A lgorithm

Theorem  4.6 ([18]) There is a randomized online algorithm with competitive 

ratio 0 (y /n  log n) for  L G -A ll- D is c o v e r y .

P roo f. The online algorithm is shown in Figure 4.5. The algorithm consists 

of two phases. In the first phase, it makes 3y/n\nn  queries at nodes chosen 

uniformly at random. In the second phase, as long as node pairs with unknown 

status exist, it picks an arbitrary such pair {u, v} and proceeds as follows. First, 

it queries u and v in order to determine the distance of all nodes to u and v. 

From this it can deduce the set S  of nodes from which the edge or non-edge 

between u and v can be discovered; these are simply the nodes for which the 

distance to u differs from the distance to v. Then, it queries all remaining nodes 

in S.

To analyze the algorithm, it is helpful to view L G - A l l - D i s c o v e r y  as a 

H i t t i n g S e t  problem [62]. For every edge or non-edge {u, u), let S uv be the 

set of nodes from which a query discovers {u,v}. The task of the L G - A l l -  

D is c o v e r y  problem translates into the task of computing a subset of V  that 

hits all sets Suv. The goal of the first phase is to hit all sets that have size 

at least y/n Inn with high probability. If this succeeds, the problem remaining 

for the second phase is a H i t t i n g S e t  problem where all sets have size at most 

y/n Inn. The algorithm of the second phase repeatedly picks an arbitrary set
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E  <— 0; / *  discovered edges */
N  <— 0; / *  discovered non-edges */
A  «— (^); / *  all pairs of distinct nodes * /
/ *  Phase 1 * /  _____
for i = 1 to 3\Ailnn do

v <— randomly chosen node from V ;
(.EV,N V) <- query(u);
E  *— E  U E v\
N  * - N O  N v\

od;
/ *  Phase 2 */  
while E  U N  V A  do

{u, v} <— an arbitrary element of A \  (E  U N);
(EU,N U) <- query(u);
(EV,N V) *- query( v ) ;

E  <- E  U E u U E v- 
N  <- N  U N u U N v;
S  <— set of nodes from which the (non-)edge 

{u, v} is discovered; 
foreach x  G S  \  {u, v} do 

(EX,N X) 4— query(a:);
E  <— E  U E x;
N  *- N U N X,

od;
od;

Figure 4.5: On-line algorithm for L G -A ll- D is c o v e r y .

that is not yet hit, and includes all its elements in the solution. As the sets have 

size at most vVilnn, the number of queries made in the second phase is at most

a factor of V n ln n  away from the optimum.

Let us make this analysis precise. Consider a node pair {u, v } for which the

set Suv has size at least y/n \nn .  In each query of the first phase, the probability 

that Suv is not hit is at most 1 -  =  1 — Thus, the probability
/  /------ \ 3 v n l n n

that Suv is not hit throughout the first phase is at most ( 1 — J  =
/  y z  \  3 in n

I ^ 1  — lnTl j <  e_31nn =  There are at most (”) sets S uv of

cardinality at least V n ln n .  The probability that at least one of them is not hit 

in the first phase is at most Q) • ^

Consider the second phase, conditioned on the event that the first phase has 

hit all sets Suv of size at least V n ln n .  In each iteration the algorithm asks at

most V n ln n  queries. Let I  be the number of iterations. It is clear that the



CHAPTER 4. N E TW O RK  DISCOVERY AND VERIFICATION 71

optimum must make at least I  queries, because no two unknown pairs {u,v}  

considered in different iterations of the second phase can be resolved by the 

same query.

Since OPT(G) > 1 and OPT(G) > the number of queries made by the 

algorithm is at most 3V n ln n  +  i V n Inn =  0 ( y /n logn) • OPT(G).

W ith probability at least 1 — 1, the first phase succeeds and the algorithm 

makes 0 ( \ / n  logn)-OPT(G) queries. If the first phase fails, the algorithm makes 

at most n queries. This case increases the expected number of queries made by 

the algorithm by at most ^ • n =  1 . Thus, the expected number of queries is at 

most 0 ( V n logn) • OPT(G) +  £ • n = 0 ( y /n logn) • OPT(G). □

4.4 T he D istance Query M odel

4.4.1 Discovering Individual Edges and Non-Edges

In the layered-graph query model, a query at node v resulted explicitly in a 

set of edges and non-edges that were discovered by the set of queries. In the 

distance query model, this is no longer the case. The query at node v returns 

(only) the distances to all other nodes of the network. We want to compute a 

set Q of queries that discover the graph as defined in Section 4.1. It may be 

not clear in the first sight, how an algorithm for the problem could discover the 

individual edges and non-edges. Here we give a characterization, when a query 

(or a set of queries) from Q discovers individual edges and non-edges.

Characterizing the Queries D iscovering a N on-E dge. If we look at a 

particular non-edge e G E, there exists a query q 6  Q that confirms this non

edge to be in G:

Observation 4.7 For G = (V,E) the queries Q C V  discover a non-edge 

{u, v} G E  if  and only if  there exists a query q ^ Q  with \d(q, u) — d(q, v)\ > 2 .

Proof. The implication “<*=” is easy to see: Clearly, if there is a query q 

such that \d(q, u) — d(q,v)\ > 2, then {u, v} is a non-edge. To see the second 

implication assume that {u, v} is a non-edge and that (for contradiction) 

every query node q gives \d(q, u) — d(q,v)\ < 1 . We show that if {u, v} was an



CHAPTER 4. N E TW O RK  DISCOVERY AND VERIFICATION 72

Lq L1 L 2 L3 Z/4 Lz L>2 L1 Lq

Figure 4.6: Edge {^3 ,^ 4 } of a graph (left) is discovered by the combination of 
queries at nodes v\ and vq; the distances to the query node v\ (middle) and vq 
(right) are depicted via layers of the graph.

edge, the distances returned by Q would not change (a contradiction). Indeed, 

u and v are either in the same layer or in two consecutive layers of a query q. 

Therefore adding an edge {u,v}  to G cannot decrease a distance from q to any 

other node. □

Thus, a non-edge {u, v}q is discovered by Q if there is a query q E Q such 

that |d(q,u) —d(q,v)\ > 2 .

C h a rac te riz in g  th e  Sets o f Q ueries D iscovering an  E dge . An edge may 

be discovered by a combination of several queries (this is a major difference to 

the layered-graph query model, where the set of edges and non-edges discovered 

by a set of queries is simply the union of the edges and non-edges discovered by 

the individual queries). If a node w is in layer i + 1  of a query q, this shows that 

w must be adjacent to at least one node from layer i. If layer i has more than 

one node, then in general it is not clear which node from layer i is adjacent to w. 

Figure 4.6 shows an example of how a combination of two queries can discover 

an edge even if each of the two queries alone does not discover the edge: The 

edge {i>3 , U4 } is neither discovered by a query at v\ nor by a query at vq alone. 

The query at v\ reveals that iq is connected to V2 or to 1*3 . The query at vq 

identifies {v2 ,iq} as a non-edge. From these two facts one can deduce that iq 

must be connected to U3 , i.e., {0 3 , 0 4 } is an edge. This discussion is generalized 

by the following observation.

O bservation  4.8 For G = (V, E) the queries Q C V discover an edge {u, v} E 

E  if and only if  there is a query q E Q with the following two properties:

(i) The nodes u and v are in consecutive layers of query q, say, u in the i-th 

layer Li and v in the (i +  1 )-th layer Li+\, and Li \  {w} does not contain 

any neighbour of v.
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(ii) The queries Q discover all non-edges between v and the nodes in Li \  {w}.

P roo f. We again start with the easy direction “<=”: From the result of query 

q in (i) one can deduce that there must be an edge from some node in Li to v. 

From (ii) it follows that {u, i>} is the only possibility for such an edge.

For the implication “=>” , we give a proof by contradiction. Assume that the 

query set Q discovers the edge {u, v}. Observe that if (i) does not hold, then all 

queries yield the same results if {it, v} is removed from G. To see this, consider 

an arbitrary query q' G Q. If u, v are originally at the same distance from g', 

they also will be at the same distance after removing {u, v}. If u, v are originally 

at different distances from q', say u G Li> and v G Tj'+i, we know that since (i) 

does not hold, v has another neighbour in L? \  {u}. Therefore, we know that v 

is in Li'+i even after removing the edge {u,v}. So in this case as well, Dg(Q) 

does not change if we remove {u, v}. This contradicts our assumption that Q 

discovers {u,v}.

Thus, we can assume that (i) holds. For each q G Q for which (i) holds, 

assume that (ii) does not hold. Let q be a query for which (i) holds. Assume 

that u is in layer Li of that query and v is in layer Li+\. As (ii) does not hold, 

there must be at least one non-edge eq =  {u',v}  for some u' G Li that is not 

discovered by Q. We modify the graph G as follows: We remove the edge {u, v}, 

and we add the edges eq for all q G Q for which (i) holds (these edges eq are 

not necessarily distinct). It is easy to see that the resulting graph G' satisfies 

D g'{Q) =  D g(Q ), proving that Q does not discover the edge {u ,v}  in G, a 

contradiction. □

We say that a query for which (i) holds is a partial witness for the edge 

{u, v}. The word “partial” indicates that the query alone is not necessarily 

sufficient to discover the edge; additional queries may be necessary to discover 

the non-edges required by (ii).

We conclude that a set of queries discovers a graph G if and only if it discovers 

all non-edges and contains a partial witness for every edge.

4.4.2 Structural Properties

In this section we show lower bounds on the number of queries needed to discover 

G. We relate this number to the independence number a  of the graph, to the
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clique number u> of the graph, and to the number of edges m. We also adopt 

Lemma 4.2 for the distance query model.

L em m a 4.9 For any graph G with independence number a  and diameter diam > 

2 , at least logj-diam-] (a) — 1 queries are needed to discover G. 7/diam  =  2 , we 

need at least a  — 1 queries.

P roof. Let Aq C V  be an independent set of size a. Any query q splits the 

nodes into at most diam +  1 layers. In layer 0 there is only q itself. We merge 

each pair of consecutive layers 2 i — 1 and 2 i, for i > 1 , so that we obtain at most 

/3 := new layers Z* (the last new layer may consist of a single original

layer). Query q does not discover any non-edge whose endpoints lie within the 

same new layer. At least a  — 1 nodes of the independent set A q are distributed 

among the (3 new layers (one node of A q may be the query node, which is not in 

the new layers). Thus, there must be a new layer Z* with at least ( a —1)/ (3 nodes 

from A q. Let A\  denote the set of these nodes. If (a — l)//3  > 1 , then we need 

at least one more query to discover the non-edges within A \ . After the second 

query, there is a new layer containing at least (|Ai| — 1 )//3 > ((a  — l)/j3 — l)//3 

nodes from A \ , and the argument can be repeated. Let ak, for k >  1, denote the 

size of the biggest subset of Ao for which the queries q i , . . .  ,qk do not discover 

any non-edge. By the arguments above, we have ak > ak, where oq — a  

and ak =  for k > 1 . We get ak =  f t  -  j r  ~  i-e->

ak = Aj. (a — PpFi ) if P  > 1 and ak =  a  — k if (3 =  1 . If A: queries discover G, 

we must have that ak < 1. For /3 = 1 we get k > a  — 1. For (3 > 1 we get 
pk+i > 1 +  ^  k > log^ a  +  log^ ( /? _ i  +  1 ) _  i  >  log/3 a - I .  □

L em m a 4.10 For any graph G with clique number to we need at least uj — 1 

queries to discover G.

Proof. Consider a clique K w C G of size uj. Let q be the first query. The nodes 

of Ku  appear in at most two consecutive layers i and z -f 1 of query q. Observe 

that q is a partial witness of an edge from K u if and only if there is exactly 

one node v from in layer i and the rest is in layer i +  1. Moreover, q is a 

partial witness only for edges incident on v. After query q, there is still a K ^ - i  

for which no query has been made that is a partial witness of any of its edges.
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Therefore, by induction (using the fact that one query is necessary for a K 2 as 

the base case), it follows that we need at least oj — 1 queries to discover G. □

L em m a 4.11 Any graph G with n nodes and m edges needs at least m /(n  — 1) 

queries to be discovered.

P ro o f. Consider the layers of an arbitrary query q € V. For each node v on 

layer i, q can be a partial witness for at most one edge {u, v} with u in layer i — 1 . 

Therefore, q can be a partial witness for at most n — 1 edges. Since a set of 

queries that discovers G must contain a partial witness for each of the m  edges 

of (7, the bound follows. □

This lower bound shows that graphs with a super-linear number of edges 

need a non-constant number of queries to be discovered.

L em m a 4.12 I fQ  C V  discovers a graph G = (V,E) in D is t - A ll- D isc o v e r y , 

then Q U {u, v} discovers G' =  G \  {u , v}, for any edge {u, v} G E.

P ro o f. Let x, y € V(G). We now distinguish two cases. Suppose first {x ,y}  is 

a non-edge. If u or v discovers {x, y}, the lemma follows. Assume therefore that 

u and v do not discover {x, y}, i.e., |dc'{u,x)  — dc f(u,y) \ <  1 and \dc'{v,x) — 

dG'(v,y) | <  1. Let z be a query from Q that discovers {x ,y}  in G. Assume 

w.l.o.g. that d c (z ,x )  < d c ( z ,y ) — 2. Then the edge {u ,v}  cannot lie on 

any shortest path from 2  to x  in G (otherwise we could make the distance 

from z to y in G shorter going via u or v). Thus dc>(z,x) =  d c ( z ,x ) < 

dc(z ,y )  — 2  <  dc '(z ,y )  — 2 . Hence, z discovers {x, y} also in G'.

Suppose now that {x, y} is an edge. We show that there exists a partial 

witness in Q U {u, v] for the edge in G'. Let z £ Q be a partial witness for 

the edge in G where, w.l.o.g., d c (z ,x )  < dc{z,y). If {u,u} appears both on 

shortest paths from z to x and from z to y (v is closer to x than u is) then v is 

a partial witness for {x,y} in G' . If {u,u} does not appear on a shortest path 

from z to x, then d<3 '(z , x) =  dc(z, x) and the distance from z to y in G' cannot 

get shorter. Therefore z is a partial witness for {x, y}. □

4.4.3 Poly normally Solvable Cases

L em m a 4.13 G needs 1 query to be discovered if and only i f  G is a chain. A 

clique K n needs n — 1 queries to be discovered.
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Proof. If G is a chain, then clearly a vertex of degree 1 discovers the chain. 

On the other hand, if one query q discovers the whole graph G, observe that q 

cannot discover an edge or non-edge between two vertices at the same distance 

from q. Therefore, the vertices of G have unique distance from q and therefore 

G is a chain.

The second part of the statement follows from Lemma 4.10 and since with n —

1 queries each edge has at least one incident query and therefore will be discov

ered. □

The example of the cycle with 4 nodes C4 shows that there is a graph that 

needs n — 1 queries to be discovered and is not a clique. (The same holds for 

graphs that are obtained from K n by deleting one edge, for n > 4.) In general, 

for cycles the following lemma holds.

L em m a 4.14 A cycle Cn, n > 6 , needs 2 queries to be discovered.

Proof. By Lemma 4.13 we have th a t 1 query does not discover a cycle. We 

show now that 2 queries are enough. We argue for n  being odd, i.e., n = 2k +1. 

Similar arguments can be given for even n.

Let V  =  {uo,. . . ,  vn- \ }  be ordered according to their appearance on the 

cycle. Let q\ — vq and (72 =  ^ 2  be two queries at Cn. Query vq divides the 

vertices into layers according to the distance. In every layer i >  1 there are

2  vertices Vi and vn- i  (see Figure 4.7). Observe that q\ is a partial witness 

for all edges except {vk,Vk+i}, and <72 is a partial witness for {vk,vk+i} (cf. 

Figure 4.7).

Query q\ discovers all non-edges between vertices from non-neighboring lay

ers. We show that <72 discovers all the remaining undiscovered non-edges of 

type {vi,vn- i - 1 } and {vi+i ,v n-i} ,  for i = 1 ,2 , . . . ,  k -  1. Notice

that {iq,Un—1 } and {v \ ,v n- 2 } are the only unknown non-edges incident on v\ 

after query q\. Observe that if n  > 6 , query <72 discovers these non-edges. Hence 

we consider an unknown non-edge {va, Vb} where a > 2  and a < k and b > k + 1 , 

b £ {n —a + 1, n —a, n —a —1}. The distance da from iq to va can be used to bound 

the distance to Vb as follows: d(v2 ,Vb) > min{4 +  (da — l ) ,d a +  2} > da + 2 

(by considering the lengths of the two paths from V2 to Vb via vq or via Vk)- 

Thus the distances d(q2 , va) and d(q2 ,Vb) differ by at least two and therefore <72 

discovers the non-edge {va,Vb}-
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Figure 4.7: Cycle Cn can be discovered by queries at uq and V2 -

bodies

connectors

spider

Figure 4.8: Legs, bodies, spiders and connectors in a tree.

We showed that q\ and q2 discover all non-edges and are partial witness for

Now we characterize the optimal query set for a tree T. For this, we define 

a leg to be a maximal path in the tree starting at a leaf and containing only 

vertices of degree at most 2, see Figure 4.8. Therefore, if T  is not a chain, there 

has to be a node u of degree greater than 2  adjacent to the last vertex of the 

leg. We call u a body and we say that the leg is adjacent to its body u. The 

body u with all its adjacent legs is called a spider. Nodes that are not part 

of a spider are called connectors (i.e., nodes that are not in a leg and have no 

adjacent leg).

L em m a 4.15 Let T  = (V,E) be a tree that is not a chain. Denote by B  c  V  

the set of bodies of the graph. Let lb, for b G B, be the number of legs adjacent 

to b. Let T\B] be the induced subgraph of T  on vertex set B. Let VC (T[B ]) 

denote a minimum vertex cover ofT[B\. Then the minimum number of queries 

to discover T  is — +  \VC(T[B])\.

all edges. Therefore q\ and q2 discover the cycle Cn. □
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Proof. We first show that we indeed need at least this many queries. For this 

observe that if there is no query in two legs adjacent to a body, then we cannot 

discover the non-edges formed by vertices of the two legs at the same distance 

from the body. Therefore there has to be at least one query in every leg but one 

of any body. Moreover, if there are two legs of two different bodies which are 

connected by an edge then there has to be at least one query in one of the legs. 

Otherwise we cannot discover the non-edge between vertices of the legs at the 

same distance from their bodies. Therefore for any two bodies connected by an 

edge at least one of them has a query in every leg. Observe that the bodies with 

all legs containing a query form a vertex cover of T[B] and therefore a minimum 

vertex cover gives a lower bound on the number of spiders that have a query in 

every leg.

To prove that the claimed number of queries is sufficient, we construct a 

query set Q in the following way. We compute a minimum vertex cover of T[B] 

(which can be done in polynomial time on trees). Let u be a body. We add the 

leaves of lu — 1 of its legs to Q. If u is in the vertex cover, we add also the leaf 

of the last (the Zu-th) leg to Q.

We show now that Q discovers T. We start with non-edges. Let {u, u;} be 

a non-edge. We distinguish several cases. First, consider the case that both v 

and w are from legs. Consider the following subcases.

1 . v and w are from the same leg. Clearly, the non-edge is discovered by any 

query.

2 . v and w are from different legs, and there is a query q in the leg where v 

or w is. This query discovers the non-edge. (Note that there must be a 

query in the leg of v or w if they are in different legs of the same spider, 

or in legs of spiders whose centers are adjacent.)

3 . v and w are from different spiders centered at u and u ', which are not 

neighbours, and there is no query in the legs containing v and w. Let the 

path from u to u' be u, x , . . . ,  y, u ', where x  =  y is possible. Let q be a 

query from a leg adjacent to a body b such that the path from b to u does 

not contain x, possibly b = u. Let dv be the distance from u to v, dw be 

the distance from u' to w and let d > 2  be the distance between u and
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u'. If q does not discover the non-edge {f,w} then \d(q, v) — d(q,w)| =

| (dv +  d) — dw | >  3 and thus qr discovers the non-edge.

Now, consider the case that at least one of the two nodes, say, the node v, 

is not from a leg. Then any query in a tree of the forest T \ { v }  that does not 

contain w verifies the non-edge. Observe that such a query always exists.

Therefore Q discovers all non-edges. We claim now that Q discovers all 

edges. For this observe that for a tree T  any query is a partial witness for every 

edge. To see this imagine the tree rooted at the query node. Therefore, Q 

discovers T, which concludes the proof. □

L em m a 4.16 A query set discovering a d-dimensional hypercube Hd is a vertex 

cover and any vertex cover verifies a d-dimensional hypercube Hd for d > 4. A 

minimum vertex cover discovers H 3 . Therefore we need 2d ~ 1 queries (the size 

of a minimum vertex cover in Hd) for d > 3.

P ro o f. First we show that a query set Q that discovers the given hypercube 

Hd is a vertex cover. Let {u, v} be an arbitrary edge. Recall that we can label 

the nodes of the hypercube by d-dimensional vectors such that there is an edge 

between two vertices if and only if their labels have Hamming distance 1. Now, 

suppose that neither u nor v is in Q. We show that no other query is a partial 

witness for the edge {u,u}. Let q be a query. W.l.o.g. u is closer to q than v 

is. Therefore, w.l.o.g., u =  0 0 0 ... 0 and v = 100 ... 0 and q = q\q2 ■ ■ .qd, where 

qi =  0. There must exist an i > 1 such that qi — 1. Then w — 10 . . .  0 1 0 ...  0 is

a neighbour of v and is a t the same distance from q as u, and therefore q cannot 

be a partial witness for the edge {u, v}. Thus, Q does not discover Hd-

Now we show that an arbitrary vertex cover discovers Hd when d > 4. 

Clearly, a vertex cover discovers all edges. We show that it discovers also all 

non-edges. Let {u,v}  be a non-edge in Hd- If u or v are in the vertex cover, 

the non-edge is discovered. We assume now that neither u nor v is in the 

vertex cover. W.l.o.g., u =  0 0 .. .0  and v =  1 . . .  1 0 . . .0 ,  k > 2. If k — d,
k

i.e., v is antipodal to u then 1 0 .. . 0  is a neighbour of u and therefore in the 

vertex cover. 1 0 . . .  0  has a distance d — 1 to u and distance 1 to u and since

\dv — (d + dw)\ < 1. Then a query q' from a leg adjacent to a body b' such 

that the path from b' to u' does not contain y satisfies \d(q', v )—d(q', u;)| =
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(d — 1) — 1 = d — 2 > 2 the query at this node discovers the non-edge {u, v}. If 

k < d then vertex 0  . . .  0 1  (neighbour of u and therefore in the vertex cover) has 

distance k + 1 to v and distance 1 to u and therefore the distance difference is 

k > 2  and therefore {u,v}  is discovered.

For d =  3, observe that V \ {000,111} is a vertex cover, but does not discover 

the non-edge {000, 1 1 1 }. On the other hand this is not a minimum vertex cover 

for Hs and therefore a minimum vertex cover for H 3 has to contain a vertex from 

every antipodal pair (and therefore discovers every such non-edge). To discover 

a non-edge {u, u} of vertices at distance 2  from each other, i.e., w.l.o.g., u — 0 0 0  

and v = 1 1 0 , note that 1 1 1  has to be in the vertex cover if none of u, v is in it, 

and 1 1 1  discovers the non-edge {u,v}.

Finally, we note that the size of a minimum vertex cover for Hd, d > 1, is 

2 d-i  gee observe that every vertex can cover at most d edges. The

hypercube has | 2 dd edges and therefore a lower bound on the size of any vertex 

cover is 2 d_1. One can easily check that all vertices with even Hamming distance 

to the origin 0 0  . . .  0  form a vertex cover and the number of such vertices is 2 d~1.

□

L em m a 4.17 A two dimensional grid G of size m  x n, m  ^  n, or m  = n and 

m > 4, needs max{m, n} queries to be discovered.

P roo f. Let G be an m x n-dimensional grid. We denote the vertex from i-th 

row and ji-th column as 1 < i < m, 1 < j  < n. The edges are of the form

{(ij)> ( i , j  +  !)} and { ( h j ) ,  (« +  1J ) } -

We first show that every row contains a query from Q, if Q discovers G. This 

follows from the fact that only vertices from the i-th row { ( i , j )  | 1 < j  < m} 

are partial witnesses for the edges {(i, j) ,  (i , j  +  1)} of the i-th row: It is easy 

to see that a vertex ( i , j )  is a partial witness of any such edge. We now show 

that vertex q = (A:, Z), k ^  i, is not a partial witness for any edge of the i-th 

row. Let us consider an edge {(i, j ) ,  ( i , j  +  1)} from the i-the row. W.l.o.g. we 

assume that k > i and I < j .  The case k < i and I < j  is similar (just vertically 

upside down) and the other cases are symmetrical, just exchange the roles of 

( i,j)  and ( i , j  -(- 1) in the following arguments. Let d denote the distance from 

q to (i, j) .  Then both ( i , j )  and (i +  1 , j  + 1) are at the same layer Ld , they are
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( M ) , A ’ 771)

(ra , 1) ( r a ,  r a )

Figure 4.9: A grid m  x m  together with 4 queries (1 ,2), (ra — 1 , 1 ), (ra, ra — 1 ) 
and (2 , ra) (shown as filled dots) that discover all non-edges.

both incident to (i , j  +  1 ), and therefore q is not a partial witness for the edge 

{ ( h j ) , (h 3  +  !)}•
For the same (symmetrical) reason we have that every column contains a 

query from Q. Hence, every row and column contains one query, which estab

lishes a lower bound max{m,n} on the number of queries needed to discover 

the grid G.

We now show how to place max{m, n} queries in every row and every column 

such that every non-edge is discovered. In case m < n (or m > n, this case is 

again symmetrical) we have to place in some row more than one query. Thus, we 

can place two queries at (1 , 1 ) and (1 , n), which discover all non-edges (similarly 

as in the layered-graph query model) and then place for the remaining rows and 

columns the m — 2  queries arbitrarily such that we have a query in every row and 

column. In case m =  n, ra > 4, we proceed as follows. We place the following 

4 vertices into Q: (1 , 2 ), (m — 1 , 1 ), (m, ra — 1 ) and (2, m). See Figure 4.9 for 

an illustration. Observe that no two queries lie in the same row or column. We 

claim that the four queries discover all non-edges. Observe first that (O):

a query (a, b) discovers all non-edges of the form {(a +  k, b + I), (a +  

k+ k', b+l+l')}  for any non-negative k, k ', Z, I'. Similarly, it discovers 

all non-edges {(a + k, b — I), ((a + k-\-k ' , b — l — l')}, {(a — k , &+/), ((a — 

k — k',b + I + I')} and {(a — k, b — I), ((a -  k — k ', b — I — O l-

Let {u,u} be a non-edge of the grid, where u =  (i , j ) and v =  (k,l). We may 

assume i < k. W ithout loss of generality, j  < I (the case j  > I is symmetric—
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rotate the grid counterclockwise by 90 degrees). Non-edge {u, v} is not dis

covered by query q\ =  (1 , 2 ) according to the observation (<vl) if u is from the 

first column, i.e., u =  ( i ,l ) .  The non-edge is also not discovered by query 

(m ,m  — 1 ) according to the observation (<s?) if v is from the m-th column, 

i.e., v — (/c,m). Then d(qi,u)  =  1 + i and d(q\,v) =  m  — 1 +  k. Hence, 

d(Qi j v) ~  d(qi, u) =  m  — 2 +  (k — i) > 2 for m  > 4 and therefore q\ discovers 

the non-edge {u,v}.

Hence we have shown that the four queries discover all non-edges. To dis

cover the whole grid, we need a partial witness for every edge of the grid, i.e., 

we need to place a query into every row and column of the grid. We have done 

so in the first two and last two rows and columns already. For the remaining 

rows and columns, one can take the diagonal vertices as the query vertices.

We have shown that max{m, n} queries discover the grid, which matches the 

lower bound and is therefore optimum. □

Observe that the optimum number of queries for grids 2 x 2  and 3 x 3 is 3 

and 4, respectively.

4.4.4 The Offline Problem

The AfP-Hardness o f the Offline Problem

We consider the complexity of the D is t —A ll—V e r if ic a t io n  problem and show 

that it is M V -hard. First we prove a useful lemma.

Lem m a 4.18 To discover a non-edge in a graph of diameter 2, one of its end

points has to be a query.

Proof. A non-edge {u, v} is discovered by a query q, if the distances from q 

to u and v differ by at least 2. Since diam = 2 , any node other than q is at 

distance 1 or 2  and therefore a query q £ {u,v}  cannot discover the non-edge 

{u,u}. □

Theorem  4.19 The problem D is t - A ll- V e r if ic a t io n  is MV-hard.

Proof. We present a polynomial-time reduction from the V e r t e x C o v e r  prob

lem to our problem. Let G — (V, E) be a given graph for which a vertex cover 

is to be found. Let n  =  \V\. The basic idea is to create the complement G
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Figure 4.10: Instance of V e r t e x C o v e r  (left), constructed instance of D ist -  
A ll- V e r if ic a t io n  (right).

of G and add a new node s to the graph and connect it to all other nodes. 

The resulting graph G' has diameter 2. According to Lemma 4.18 a query set 

Q verifying G' contains an endpoint of every non-edge. Thus, discovering the 

non-edges in G' corresponds to finding a vertex cover in G. To verify also the 

edges of G' we may need more queries, however, and the number of these addi

tional queries may vary. Therefore we modify the construction of G' in order to 

force an additional fixed (or more precisely: tightly bounded) number of queries 

which discover all edges. Given an instance G =  (V,E)  of V e r t e x C o v e r , we 

start by constructing G and then extend it as follows: For each node v € V, 

we add two new nodes v' and v" and the edges {u,?/}, {v ,v"}  and {v ' ,vn}. In 

addition, we connect v" to all nodes w E V  that are not adjacent to v in G. 

Finally, we add an extra node s and make it adjacent to all nodes of type v' 

and v " . Call the resulting graph G ' . An example of the construction is shown 

in Figure 4.10. Denote the set of all nodes of type v' by V', and the set of all 

nodes of type v" by V " . We observe that G' has diameter 2. Furthermore, both 

V' and V "  are independent sets in G'.

Let C  C V  be an optimal vertex cover for G. We claim that Q c = {s} U 

V'  U V"  U C  is a query set that verifies G'. First, note that Q c  contains partial 

witnesses for all edges of G'\ in particular, the query at v' is a partial witness 

for all edges in G' that connect v to other nodes from V . Furthermore, Qc  

verifies all non-edges. For non-edges incident to a node from { s }  U V' U V", 

this is obvious. For non-edges between nodes in V  this follows because C, being 

a vertex cover in G , contains at least one endpoint of every edge in G, and
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therefore at least one endpoint of every non-edge in G between nodes in V. 

Hence, there is a query set of size 2 n + l + \C\ that verifies G'.

Let Q be any query set that verifies G'. As V' and V"  are independent sets 

and G' has diameter 2 , Q must contain at least n — 1 nodes from V'  and at least 

Ti — 1 nodes from V"  by Lemma 4.18. Furthermore, the set C' — Q n  V  must 

be a vertex cover of G, since it must contain an endpoint of every non-edge in 

G' between nodes in V. Hence, a query set Q that verifies G' yields a vertex 

cover of G of size at most \Q\ — 2 n + 2 .

The discussion above shows that a polynomial-time algorithm computing an 

optimal query set for G' would give a vertex cover of size at most (2 n +  1 +  

|G|) — 2n +  2 =  |C| +  3. As V e r t e x C o v e r  is ./VP-hard to approximate within 

a factor of 7/6 — e by [69], the problem D ist - A ll- V e r if ic a t io n  is A/”P-hard.

□

A pproxim ation A lgorithm

We present an 0(logn)-approximation algorithm for D is t - A ll- V e r ific a t io n  

that is based on the well-known greedy algorithm for the S e t C o v e r  prob

lem [62]. This technique was also used to derive the 0(log n)-approximation 

algorithm for the metric dimension and therefore for L G - A ll- V e r ific a t io n  

in [76].

Theorem  4.20 There is an O(log n)-approximation algorithm for  D is t - A ll-  

V e r if ic a t io n .

Proof. We transform an instance G =  (V,E)  of D is t - A ll- V e r ific a t io n  

into an instance of the set cover problem as follows. The edges and non-edges 

form the ground set E  U E  for the set cover problem. For each query q G V, 

we introduce a subset Sq = Uq U Wq of the ground set, formed by the set Uq of 

non-edges it verifies and the set Wq of edges for which it is a partial witness. 

By Observations 4.7 and 4.8, we can compute XJq and Wq. As a set of queries 

verifies G if and only if it discovers all non-edges and contains a partial witness 

for every edge, there is a direct correspondence between set covers and query 

sets that discover G. The standard greedy set cover approximation algorithm 

gives an approximation ratio of 0(log |E  U E\) = O(log (2 )) =  O(logn). □
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Figure 4.11: Graph used in the proof of the lower bound Q,(y/n) for on-line 
algorithms (left and middle); layers after query at vertex Vk (right).

4.4.5 The Online Problem

Lower Bounds for Online A lgorithm s

We present a lower bound of 0.(y/n) on the competitive ratio of any deterministic 

online algorithm for the problem D ist - A ll- D isc o v e r y . Using the same ideas, 

we also obtain an Q(logn) lower bound on the competitive ratio of randomized 

online algorithms.

Theorem  4.21 There is no o(y/n)-competitive deterministic online algorithm 

for  D is t - A ll- D is c o v e r y .

P ro o f. Consider the graph Gk from Figure 4.11. It is a tree built recursively 

from a smaller tree Gk- i  as depicted in the figure. Alternatively, Gk can be 

described as follows. Start with a chain of length 2 k — 1 from x  to Vk■ For 

1 < i < k, the node on the chain at distance 2 i — 1 from x  is labelled as 

Vi. To each such node Vi, 1 < i < k, we attach another chain (which we call 

arm) of length 2i — 1, starting at Vi. The number nk of nodes of Gk satisfies 

nk =  nk - 1  +  1 +  2k for k > 1 and n\  =  3. Hence, nk =  k 2 +  2 k. Gk is a 

non-trivial tree and, by Lemma 4.15, the optimum number of queries is 2.

Now consider any deterministic algorithm A. As all vertices are indistin

guishable to A, we may assume that the initial query qo made by A  is at Vk■ 

This sorts the vertices into layers according to their distance from Vk. There 

is no non-edge discovered within the layers. In particular, the non-edge {x, y} 

in G\ (see Figure 4.11) is not discovered. We now show that A  needs at least k 

additional queries to discover {x,y}.

Observe that in the rightmost arm (attached to Vk) we have vertices from 

every layer. A  picks a vertex from some layer j  and, because all the vertices in
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this layer are indistinguishable for A, we may force A  to pick the vertex from 

the rightmost arm. Such a query in the rightmost arm does not reveal any 

new information within G k - 1 - The vertices within one layer of G k - 1 remain 

indistinguishable for A. Thus, when A  places its first query in G k - 1 , we can 

force it to be at a node from Gfc_i’s rightmost arm. Clearly, we can continue 

recursively in this manner and therefore we can force A  to query in every arm 

before it discovers {x ,y} . This yields that A  needs at least 1 +  k queries to 

discover Gk-

Since nk =  k 2 +  2k, we have that k = 0(^/nfc). Together with the fact that 

the optimum needs 2  queries, we get the desired lower bound. □

Theorem  4.22 There is no o(\ogn)-competitive randomized on-line algorithm 

for D ist - A ll- D is c o v e r y .

Proof. To show a lower bound on the competitive ratio of any randomized 

algorithm A  against an oblivious adversary, we use Yao’s principle [104]: The 

(worst case) expected number of queries of a randomized algorithm A  (against 

all inputs) is at least the expected number of queries of the best deterministic 

algorithm for any input distribution. Thus, to show the lower bound for any 

randomized algorithm, we create a set of instances and a probability distribu

tion and show that any deterministic algorithm performs badly on this input 

distribution in expectation.

The input set Qk is as follows. The graph is always isomorphic to Gk (as 

shown in Figure 4.11). Let layer Li be the set of all nodes at distance i from Vk- 

The input distribution is constructed by permuting the labels (identities) of the 

nodes in each layer Li, 1 < i < 2 k — 1 , using a permutation chosen uniformly 

at random. Let A  be any deterministic algorithm. Let Ek denote the expected 

number of queries made by A  on an instance Gk from Qk, assuming that a query 

at Vk (or at some node outside Gk , if the Gk is part of a larger tree) may have 

been made already but no other query inside Gk has been made. When the 

algorithm makes the first query q inside Gk, there are the following cases. If the 

query q is made at some Vi, at the parent of Vi, or at a node in the arm attached 

to the parent of the parent of Vi, then after the query there is still a Gi such 

that no query has been made in it (except possibly at its root Vi). In that case, 

we say that a Gi remains. The expected number of queries required to discover
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Gi is then Ei. If the query q is made at one of the children of v \ , no Gi remains, 

and the algorithm may not require any additional queries. Letting pi denote the 

probability that a Gi remains after the first query, we have Ek > 1 +  Y^lZ\ Pi Hi- 

The algorithm makes the first query inside Gk at some layer j .  Since the 

labels of the nodes of layer j  have been permuted randomly, each of the nodes 

in layer j  is equally likely to be the query node. For each layer, the probability 

that a Gi remains (possibly as part of a remaining G? for i' >  i) after a query 

in that layer is at least for each i E { 1 ,2 ,..., k — 1}. (The minimum is 

achieved at the leaf layer.) Hence, we get

Ê 1 + YkTTEi
i=l

for k > 2  and E \ = 1. This implies Ek > -Hfc+i — \  =  ©(logfc), where Hh = 

Y^i=i j  denotes the h-th harmonic number. Noting that the optimum is 2  and 

applying Yao’s principle, we obtain the theorem (note that k — ©(^/nT), where 

njt is the number of nodes in Gk , and thus log A: =  ©(logn^)). □

Random ized O nline A lgorithm

In this section we present a randomized algorithm for D is t - A ll- D is c o v e r y . 

The algorithm has competitive ratio 0 ( \ / n logn), which is very close to the 

lower bound Q,(y/n) for deterministic algorithms but leaves a gap to the lower 

bound Q(\ogn) for randomized algorithms.

The algorithm is a (non-straightforward) adaptation of the randomized al

gorithm for network discovery in the layered-graph query model presented in 

Section 4.3.2 and given in [19].

Theorem  4.23 There is a randomized online algorithm with competitive ratio 

0(y /n  log n) for  D is t - A ll- D is c o v e r y .

Proof. The algorithm runs in two phases. In the first phase it makes 3V n Inn 

queries at nodes chosen uniformly at random. In the second phase, as long as 

there is still an undiscovered pair {u, v} (i.e., the queries executed so far have 

not discovered whether {u, v} is an edge or non-edge), the algorithm executes 

the following. First, it queries both u and v. This discovers if {u, v} is an
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edge or non-edge. In case it is a non-edge, the algorithm then knows from the 

queries at u and v the set S  of all queries that discover (u, v}: S  is the set of 

vertices w for which |d(u,w) — d(v,w)\ > 2. The algorithm then queries the 

whole set S. In case {u, v} is an edge, the algorithm distinguishes three cases. 

First, if the queries at u and v discover a non-edge, say, {u , ic}, that hadn’t been 

discovered before, the algorithm proceeds with the pair {u, w} instead of {u, u) 

and handles it as described above. Second, if the number of neighbours of u 

and the number of neighbours of v is at most Y™ , then the algorithm queries
v l n  n

also all neighbours of u and v (notice that after querying u and v we know all 

their neighbours). With this information we know the set S  of vertices that are 

partial witnesses for {u, u}: a vertex w is in S  if and only if the two vertices are 

at distances i and i + 1 from w and all the other neighbours of the more distant 

vertex are at distances i +  1 or i + 2. Third, if the number of neighbours of u 

or the number of neighbours of v is more than the algorithm does not
v  In n

do any further processing for this pair (i.e., this iteration of the second phase 

is completed) and proceeds with choosing another undiscovered pair {u ',v '}  (if 

one exists).

The algorithm can be viewed as solving a H it t in g S e t  problem. For every 

non-edge {u, v} let Suv be the set of vertices that discover {u, u}. Similarly, for 

every edge {u ,v}  let S uv denote the set of all partial witnesses for {u,v}.  The 

algorithm discovers the whole graph G if it hits all sets Suv, for {u , v} € E \J E .  

In the first phase, the algorithm aims to hit all the sets Suv of size at least 

Vn In n. Then, in the second phase, as long as there is an undiscovered pair 

{u, u}, the algorithm queries the whole set Suv; if {u, v} is an edge, it also queries 

all the neighbours of u and v in order to determine Suv, except in the case where 

the degree of u or v is too large. In the case that the undiscovered pair {u, u} is 

an edge for which a partial witness has already been queried before, the query 

at u or v must discover a new non-edge, and the algorithm uses that non-edge 

instead of {u, v} to proceed.

We analyze the algorithm as follows. Let OPT  be the optimal number of 

queries. Consider a pair {u, v} for which the set Suv has size at least a/ ? 2  In n. 

In each query of the first phase, the probability that S uv is not hit is at most 

1 — v'wT|nn =  1 — Thus, the probability that Suv is not hit throughout the
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first phase is at most

.----------------------------------- 3 In n
  -v 3 v n l n n

1 - ^ 1  =  I <  e - 3 1 n n  _
y /n n 3 •

There are at most Q) sets Suv of cardinality at least y/n lnn . The probability 

that at least one of them is not hit in the first phase is at most Q) •

Now consider the second phase, conditioned on the event that the first phase 

has indeed hit all sets Suv of size at least y/nlnn. If the unknown pair {u, v} is 

a non-edge, after querying u and v we know Suv, and querying the whole set Suv

requires at most y /n ln n  queries (note that \SUV\ < y /n ln n  if {u, u} is a non-edge 

that hasn’t been discovered in the first phase). If the pair {u, v} is an edge and 

the queries at u and v discover a new non-edge, the algorithm proceeds with that 

non-edge and makes at most y /n ln n  further queries (as above), hence at most

y /n ln n  +  1 queries in total for this iteration of the second phase. Otherwise, if 

the number of neighbours of u and of v is bounded by -^==, we query also all 

neighbours of u and v to determine the set Suv, amounting to at most 2  ^ ^ -  

queries, and then the set Suv, giving another y /n ln n  queries (since S uv hasn’t 

been hit in the first phase). In total, we make at most y /n ln n  + 2 queries 

in this iteration of the second phase. Consider the remaining case, i.e., the case 

where the unknown pair {u, v} is an edge, no partial witness for the edge has 

been queried before, and u or v has degree larger than . Assume that there 

are k iterations of the second phase in which the unknown pair falls into this case. 

Note that no node can be part of an unknown pair in two such iterations. Hence, 

we get that 2\E\ > and, by Lemma 4.11, O P T > I f  >

and therefore k < 2 \ /n ln n  • OPT.

Now, let I  denote the number of iterations of the second phase in which the 

set S uv was determined and queried (i.e., all iterations except the k iterations 

discussed above). We call such iterations good iterations. The overall cost of the 

second phase is at most iy /n ln n  -f 21 +  2 k. Clearly, OPT > £, because no

two unknown pairs {u, v} considered in different good iterations of the second 

phase can be discovered by the same query (or have the same partial witness). 

Therefore the cost of the algorithm is at most 3 \/n In n+£y/n In n + 2 l + 2k =
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0{y/n  log n) • OPT.

So we have that with probability at least 1 — ^ , the first phase succeeds and 

0 ( \ /n  logn) • OPT  queries are made by the algorithm. If the first phase fails, 

the algorithm makes at most n queries (clearly, the algorithm need not repeat 

any query). This case increases the expected number of queries made by the 

algorithm by at most =  1 . Thus, we have that the expected number of 

queries is at most 0 { y /n logn) • OPT -f = 0 { y /n logn) • OPT. □

4.5 Sum m ary of R esults and O pen Problem s

We have introduced a model for the problem of mapping large-scale, dynamic 

networks—network discovery, where a network (modeled as a connected, undi

rected graph) can be discovered by queries at nodes. We have presented two 

query models. In the layered-graph query model a query at node v returns all 

shortest paths from v to all other nodes. In the distance query model a query 

at node v returns distances to all other nodes. We have studied the complex

ity of discovering a network with minimum number of queries and presented 

optimal algorithms for specific classes of graphs, lower bounds on randomized 

online algorithms, and randomized online algorithms. Our randomized online 

algorithms have competitive ratio 0 ( \ / n logn) in both query models.

There are quite a few interesting open problems in directions for future work 

in the framework of network discovery:

• Is there a deterministic online algorithm with an approximation ratio sim

ilar to the competitive ratio 0{yjn  logn) of the online randomized algo

rithms presented in this thesis? How good can we approximate by a 

deterministic algorithm?

• Another interesting modification is to consider different query models. For 

example, a query specified by two nodes u and v returns all shortest paths 

between u and v ; or a query at node v returns the distances to all other 

nodes that are within distance at most k from v.

• Changing the objective of the problem leads to other intersting variants. 

For example, one could ask for the minimum number of queries that are
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required to determine the diameter or the value of some other graph pa

rameter of the network.



Chapter 5

Assignment of OVSF-Codes

The area of mobile communication has flourished in the past years in many as

pects. The high commercial interest demands new services and better solutions 

(whatever this means) than the existing ones. This in turn offers plenty of new 

research problems to the research community. Currently, the so-called third 

generation (3G) mobile telecommunication systems (of which Universal Mobile 

Telecommunications System, UMTS, is an example) are being introduced (more 

information on the topic can be found for example in [71], [99]). These offer a 

relatively large amount of data that can be communicated at a time. Sharing 

this bandwidth in a communication cell (served by a base station) among mo

bile users is one of the well studied problems. Code Division Multiple Access 

(CDMA) allows the users to communicate at any time and to use the whole 

frequency spectrum. To identify connections upon receiving users’ signals, com

munication codes are used. More specifically, these codes are used to spread the 

data before transmission (creating a new data stream that allows the receiver 

to distinguish the data from other users’ data). Orthogonal Variable Spread

ing Factor Codes (OVSF-codes) are used in W-CDMA (Wideband CDMA, a 

CDMA technology used in UMTS). The principle is that each bit of information 

that is to be transmitted is encoded as a binary word w. The length of w can 

vary, as it depends on the bandwidth that is assigned to the user. The shorter 

the code is, the more bandwidth the code gains for the user. OVSF-codes can 

be viewed as nodes of a complete binary tree, called a code-tree. The sharing of

92
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Figure 5.1: OVSF-codes represented as nodes of a complete binary tree T. 
The filled nodes represent codes assigned to users. The nodes with a cross 
represent blocked codes. The blank nodes are available codes for other users to 
be assigned.

the given bandwidth is accomplished by assigning the users different codes from 

the code-tree. The code-word w associated with a node is created in a recursive 

fashion as follows. The root is assigned code-word (1). For the children of a 

node with code-word (a): the left child carries code-word (a, a) and the right 

child carries code-word (a ,—a). The generation of OVSF-codes is described 

in more details in [3]. The crucial property for the receiver to distinguish the 

signals of two different users is that the users use codes that are mutually or

thogonal. Two codes are mutually orthogonal if and only if they do not have 

any descendant/ancestor relationship in the code-tree. In other words, no two 

codes lie on the same leaf-to-root path. An assigned code therefore prevents 

some other codes from being assigned to another user. Theses codes are called 

blocked codes. The codes are arranged in levels, numbered from 0 to h, where 

level-0 codes are the leaves and the root is the level-h code. Figure 5.1 depicts 

an example of an OVSF-code tree, with some codes assigned to users.

Users ask for codes from a certain level according to their bandwidth pref

erences/needs. Over time, users enter and leave the cell, i.e., a code is assigned 

and released on these occasions. This can lead to a situation that a new user en

ters the cell, asking for a code from a certain level, but the system cannot serve 

the user, although the unused bandwidth is sufficient for the user’s demand. 

Figure 5.2 gives an example of such a situation (only the bottom 3 levels of the 

code-tree are depicted): a new user requests a code from level 2 , but all codes 

from level 2 are blocked or assigned. Reassigning of the codes (i.e., a user gets

level

N  leaves
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request for code on level 2level

Figure 5.2: The assigned codes block all codes from level 2. A reassignment 
(depicted by the dashed arrows) of the already assigned codes results in a level- 
2  code to be available for the new user.

assigned a different code from the same level), as depicted by the dashed arrows, 

allows the entering user to obtain a code from level 2  (as the solid arrow shows). 

This problem is known as code blocking or code-tree fragmentation. Although 

the reassignment increases the throughput of the system, its necessary commu

nication with the affected users causes signalling overhead, unwanted delay and 

users’ disturbance ([80], [63]). Therefore, a natural objective stated in [80], [89] 

is to serve all users, if the bandwidth is sufficient, and to minimize the num

ber of code reassignments. Since then, several authors considered the problem, 

suggesting several heuristics and simulations to tackle the problem, adjusting 

them to different statistical models capturing the process of users’ entering and 

leaving the cell. We aim to give an algorithmic-theory insight into the problem 

in terms of computational complexity, online and approximation algorithms.

5.1 Formal Problem  Definition

A complete binary tree T  = (V ,E ) of height h with N  = 2h leaves represents the 

code-tree of the OVSF-codes. The codes are the nodes of the tree. For a code 

c from X, the subtree rooted at c is denoted by Tc. The codes are organized 

in levels, always codes of the same depth forming one level. The levels are 

counted from the leaves to the root starting at level 0. We denote by l(v) the 

level of node (code) v. A code from level i supports bandwidth of 2 1B l , where 

B l is the bandwidth of the leaf codes. For ease of presentation, we assume 

that B l =  1 . The supported bandwidth of a tree is also called a capacity. We 

assume that users enter the cell of a base station one at a time. Each user 

requests a certain bandwidth, i.e., a code from a certain level of T. All users 

that are allowed in the system have their requests assigned to codes in the tree
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(and the codes are assigned to the requests) of the desired level, such that on 

every path pj from a leaf j  to the root there is at most one assigned code (i.e., 

no assigned code is in a subtree of another assigned code). If we denote the 

number of requests for a code from level I by rj, then all requests of the users 

are assigned to codes from T such that for every level I there are exactly r* 

codes assigned to the requests and no assigned code is in a subtree of another 

assigned code. We call every set of positions F  C V  in the tree that fulfils these 

properties a (feasible) code assignment for a request vector r =  (ro, r \ , . . . ,  r^). 

From now on, when we talk about a code tree, we always mean T  together with 

F. The number of assigned codes is denoted by n  (i.e., n = \F\). A maximal 

subtree of unassigned codes is called a gap tree. A request of a new user is 

dropped if it cannot be served. This is the case, if its acceptance would cause 

the users’ requested bandwidth to exceed the total system bandwidth 2h. After 

accepting the new request for a code on level I, a code assignment algorithm has 

to change the (old) code assignment F  (for r) to a new code assignment F ' for 

the new request vector r' =  (ro, . . . ,  n  + 1 , . . . ,  r^). Similarly, when a user leaves 

the system, the algorithm has to produce a code assignment F '  for the request 

vector r' =  (ro, . . . ,  r\ — 1 , . . . ,  r^) (in this case, it is straightforward to find 

F '- ju s t drop the code from F  that was assigned to the leaving user). The size 

|F '\ F |  corresponds to the number of reassignments. This implies that for a new 

code request, the new code assignment is counted as a reassignment. We define 

the number of reassignments as the cost function. Hence, if a code is released 

by a departing user, this incurs zero cost (and can be viewed as charging the 

departures upon arrivals).

To stress the combinatorial side of the problem, we call a reassignment a 

movement of a code and the nodes of T  positions. This can be viewed as having 

pebbles on the positions of assigned codes (i.e., F  are the pebbles) and moving 

the pebbles from F  that are not present in F' onto their new positions in F '. 

Also, when a new request arrives, this can be viewed as inserting a new pebble 

into the tree. Thus we talk about a code insertion. Similarly, if a user leaves 

the system, we talk about a code deletion.

We state the code assignment problem (CA), as it was stated in [80], together 

with some of its natural variants:
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one-step offline CA Given a code assignment F  for a request vector r  and 

a code request for level I, find a code assignment F ' for the new request 

vector r' = (ro , . . . , n  + 1, . . . ,  r^) with minimum number of reassignments.

general offline CA Given a sequence S  (of length m) of code insertions and 

deletions, resulting into request vectors r 1 , . . . ,  rm, find a sequence of code 

assignments Fi for r l so that the total number of reassignments is mini

mum, assuming the initial code tree is empty (i.e., no code assigned).

online CA For a sequence S  of code insertions and deletions (of unknown 

length), whose items appear to the algorithm one by one (in an on-line 

fashion), find a code assignment Fi for every code insertion/deletion r l 

upon its arrival so that the total number of reassignments is minimum, 

assuming there is no code assigned in the beginning.

insertion-only online CA This is the online CA problem with S  consisting 

of insertions only.

5.2 R elated Work and N ew  C ontributions

Soon after W-CDMA was chosen to be the air interface for UMTS [38], aware

ness of a need to have some policy that assigns the codes in an effective way 

has arisen. Fantacci and Nannicini identify the importance of optimizing the 

resource allocation, i.e., having a “good” code assignment [56]. They propose 

a code allocation similar to our compact representation algorithm from Section

5.5.2 and use it in their simulation-based evaluation of their medium access pro

tocol. Only three types of requests for bandwidth were allowed—voice, video 

and data. Here, dropping of assigned codes, or lowering the assigned band

width was part of their protocol. In the same journal Minn and Siu proposed 

a dynamic code assignment (DCA) scheme to eliminate code blocking and to 

minimize the number of code reassignments to support a new user to enter the 

system [80]. While their algorithm DCA will be shown to be erroneous in Section 

5.4.1, it is this paper that explicitly defines the problem of minimizing the num

ber of code reassignments—the one-step offline CA problem. Many follow-up 

papers considered the problem to be solved by Minn and Siu and concentrated
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on evaluation of existing OVSF-code assignment schemes [1 1 ] or different opti

mization goals (such as maximizing the average level of codes assigned to users 

[10]), or proposed new schemes aiming to be simpler and quicker [29], or used 

additional mechanisms (like time multiplexing or code sharing) on top of the 

original problem setting in order to mitigate the code blocking problem [26, 89].

The question of which code should a new user be assigned (arising in on-line 

problems with different optimization goals, e.g., blocking probability, Quality 

of Service (QoS), number of reassignments, etc.) is addressed at the same time 

in [30, 12, 103]. In [30] codes are placed on the left-hand side of the tree and 

the larger codes on the right-hand side of the code tree. The scheme from [12] 

divides the code tree into several regions. Each region is reserved to support 

one specific data rate. The partitioning strategy is based on the users’ request 

probabilities. A compact index is defined in [103] for each code and the code 

with the smallest compact index (among the candidates) is assigned to the user. 

This approach is similar to a crowded-first strategy introduced in [98], which 

computes for each code the bandwidth that is occupied in a subtree rooted at 

the code’s parent. The code with the highest computed value is assigned to 

the user. The idea is to keep large areas in the code tree without any assigned 

code. In [89] similar ideas are used and the authors propose to decide according 

to a different value computed for each candidate code—the total number of 

codes assigned in the subtree rooted at the code’s parent. Dell’Amico at al. [44] 

present a dynamic tree partitioning technique and evaluate it in simulations with 

respect to blocking probability and number of reassignments over a sequence of 

call arrivals and departures. Kam, Minn and Siu [73] address the problem in 

the context of bursty traffic and differnet QoS. They come up with a notion of 

“fairness” and also propose to use multiplexing. Similar in perspective is [60]. 

Chen and Chen [28] propose a best-fit least-recently used approach. We add 

that no algorithm-theoretic analysis is given in these papers.

Inspired by the above work, we studied the problems defined in Section 5.1 

and present them in this chapter. A few important observations about the code 

assignment are presented in Section 5.3. The one-step offline CA is studied in 

Section 5.4. There we begin with a counter-example of the claim that the DCA- 

algorithm proposed by Minn and Siu is optimal [80] (Section 5.4.1). We outline
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the proof of the AfP-completeness in Section 5.4.2. The full proof appeared in 

the thesis of Marc Nunkesser [83]. We then outline the key ideas of an optimum 

algorithm that runs in time 0 (2 hn h) time. The full details of the algorithm can 

be found in the thesis of Gabor Szabo [96]. Based on these ideas we show that 

the problem is fixed parameter tractable for various parameters (Section 5.4.3). 

In Section 5.4.4 we present an h-approximation algorithm. Section 5.5 deals 

with the online CA problem. We start by showing that no deterministic on

line algorithm can be better than 1.5-competitive. We show that a natural 

greedy algorithm that in every step minimizes the number of reassigned codes 

is fi(h)-competitive (Section 5.5.1). In Sections 5.5.2 and 5.5.3 we analyze two 

algorithms that were proposed in the literature before. The first one, called 

compact algorithm, is shown to be ©(h)-competitive and the second one is shown 

to be optimum for the insertion-only online CA problem. The main contribution 

of the author of this thesis is the h-approximation algorithm for the one-step 

offline CA, fixed parameter tractability of the one-step offline CA (together with 

Thomas Erlebach and Riko Jacob) and the analysis and discussion of the online 

algorithm that keeps the number of blocked codes on minimum at all times 

(joint work with Gabor Szabo).

After we have published our results, Tomamichel showed that the general 

offline CA problem is A/’"P-hard [97]. Recently, Kralovic et al. announced an 

optimum online algorithm with amortized constant number of reassignments 

per request [59].

5.3 Folklore

5.3.1 Call Adm ission Feasibility

When a new user arrives, asking for a code from level /, the system has to 

decide, if the user can be assigned the requested code. Thus, if F  is the code 

assignment to the current request vector r =  (ro, . . . ,  r^) of the code tree T, 

the task is to decide whether there exists a code assignment F ' to the request 

vector r' = (r0, . . . ,  n  + 1 , . . . ,  r^).

Consider a code assignment F  of n codes in a code tree T  of height h. 

Every assigned code on level I has its unique path from the root to the node of
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Figure 5.3: Correspondence of code assignments in tree of height 4 with codes 
on levels {0 ,1 ,1 ,1 ,2 } (assigned codes are the filled nodes) and prefix free codes 
of lengths {4,3,3,3,2}.

length h — I. The path can be encoded by a word w E {0 ,l} /l-i determining 

whether we traverse through the left or right child. Here, 0 stands for the left 

child and 1 stands for the right child. From the properties of code assignments 

the path/node identifiers form a binary prefix-free code-set (a set of words in 

a given alphabet form a prefix-free code-set if none of the words is a prefix 

of another word). On the other hand, given a prefix-free code-set of lengths 

{h —Zi , . . . , / i—/n}we can assign a code on level U by following the path described 

by the code word (see Figure 5.3) and form a feasible code assignment. Thus, we 

have shown that a code assignment for codes on levels l i , . . . ,  ln exists if and only 

if there exists a binary prefix-free code-set of given lengths {h — l i , . . .  ,h  — ln}. 

The latter is a well known result in coding theory due to the Kraft-McMillan 

(inequality) theorem, the proof of which can be found for example in [4].

T h eo rem  5.1 (K raft-M cM illan  inequality ) A binary prefix-free code-set of 

code lengths a \ , . . . ,  am exists if and only if

m

£ > - ‘ < 1 .  (5.1)
2 = 1

We can multiply the Equation (5.1) by 2h to see the immediate relationship of 

OVSF-code assignment and binary prefix-free codes, expressed in the following 

corollary.

C oro lla ry  5.2 A code assignment for levels l i , . . . ,  lm into the code tree T  of
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Figure 5.4: Non-optimality of a code assignment F ' that reassigns codes also 
on higher levels than the requested level.

height h with N  leaves exists if and only if

m
^ 2 li < N .
i=1

Hence, checking whether one can serve the code insertion can be decided 

in linear time. Therefore from now on we assume, without loss of generality, 

that the sequence of code insertions and deletions can always fit within the tree 

capacity, i.e., there exists a code reassignment to insert the code.

5.3.2 Irrelevance of Higher Level Codes

In this section we show that an optimal algorithm for the one-step offline CA 

problem moves only codes on levels lower than the requested level I. A  similar 

result was already given in [80], but here we give an independent and slightly 

different statement.

L em m a 5.3 Let c denote a code insertion on level I into a code tree T. Then

for every code reassignment F ' that inserts c and that moves a code on level

k > I there exists a code reassignment F" that inserts c and moves fewer codes,

i.e., with | F " \ F |  < | F ' \ F | .

P roo f. Let x  G F  be the highest code that is reassigned by F ' on a level at or 

above the level I and let S  denote the set of codes moved by F ' into the subtree 

Tx rooted at node x. We denote by R  the rest of the codes that are moved by 

F ' (see Figure 5.4). The cost of F / is |S| +  \R\. The code reassignment F "  is



CHAPTER 5. ASSIG NM ENT OF OVSF-CODES 101

defined as follows: Let y be the position where F '  moves the code x. Then F "  

moves the codes in S  into the subtree Ty rooted at y, leaves the code x  at the 

root of Tx , and moves the rest of the codes R  in the same way as F'. The cost 

of F "  is at least one less than the cost of F '  since it does not move the code x. 

In the example from Figure 5.4 the cost of F '  is 6  and the cost of F "  is 5. □

5.3.3 Arbitrary Code Tree Configuration

For discussion about quality of algorithms for the general offline CA problem 

or for the online CA problem, a natural question is, how restricted the frag

mentation of a code tree can be. In this section we show that any algorithm 

that

(a) upon a code deletion does not perform any code reassignments and

(b) upon a code insertion minimizes the number of code reassignments necessary 

to accommodate the new code,

can be forced (by a properly chosen sequence of code insertions and deletions) to 

produce an arbitrary code assignment. We remark that any optimal algorithm 

for the one-step CA problem behaves in exactly this way (i.e., satisfies (a) and

(b))-
Let A  be an algorithm following the rules (a) and (b). Let Fe be an arbitrary 

code assignment of a code tree T. We show how to construct a sequence of code 

insertions and deletions such that A  ends up in Fe on that sequence. The idea 

of the proof is to take a detour and first attain a full-capacity code assignment 

F f  such that Fe C F f  and then go from there to Fe. The second step is easy: 

It suffices to delete all the codes from F f  that are not in Fe (A  must not do any 

reassignments during these deletions). First, we show that we can force A  to 

produce an arbitrary chosen code assignment F f  that uses the full tree capacity.

L em m a 5.4 Any algorithm A behaving according to (a) and (b) can be led to 

an arbitrary code assignment F f (of n codes) that uses the total tree capacity 

(i.e., every code of the tree is blocked) by a sequence of insertions and deletions 

of length m  < 3n.

P ro o f. Recall that h is the height of the tree and that in the beginning there 

is no assigned code (technically this is not a problem, since we can make the
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tree empty by deleting all the assigned codes in the beginning). We proceed 

level by level, starting at the top: On every level I with codes in F f  we ask 

for code insertions on every unblocked position on level I (of the current code 

assignment). A  fills all unblocked codes on level I with codes. Next we delete 

all codes on I that are not in F f  and proceed recursively on the next level. It is 

clear that the created sequence of code insertions and deletions forces A  to end 

up with code assignment Ff.

Now we have to argue about the size of the constructed sequence. Observe 

that we are only inserting and deleting codes above the n codes in F f , and every 

node is considered for insertion or deletion at most once. Consider the binary 

tree for which the leaves are exactly the codes in Ff.  From the properties of 

binary trees, the number of inner nodes of this tree is n — 1. Hence, the number 

of insertions is bounded by n +  n  — 1 and the number of deletions is bounded 

by n — 1 , which completes the proof. □

C oro lla ry  5.5 For any algorithm A that satisfies (a) and (b) and for any code 

assignment Fe of n codes into a code tree T  of height h, there exists a sequence 

of code insertions and deletions of length m  < 4nh that forces A  to end up with 

code assignment Fe.

P roo f. We define F f  from Fe by adding to Fe the roots of all gap trees of the 

code assignment Fe. Each code from Fe causes at most one gap tree on every 

level (observe that each code is inserted into some gap tree and that new gap 

trees can appear only within the former gap tree), hence, for every code in Fe 

we need to add at most h codes (the roots of the gap trees) to F f . Altogether we 

have at most n{h +  1) codes in F f —n codes from Fe and the a t most nh  codes 

that “fill” all gap trees. According to Lemma 5.4, we can construct a sequence 

of length m < 3 n(h  +  1) that forces A  into Ff. By asking for code deletions of 

the filling codes (the roots of the gap trees of Fe) the algorithm ends up in Fe. 

Clearly, we need at most 4n(h  +  1) requests of code insertions and deletions in
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5.4.1 Non-O ptim ality of Greedy Algorithms

We consider possible greedy algorithms for the one-step offline CA problem. 

Recall that we want to minimize the number of code reassignments while ac

commodating the code insertion on level I and that according to Lemma 5.3 we 

do not want to move codes on higher level than I.

For a code insertion on level /, a straight-forward greedy approach is to place 

the code into the root of a subtree with minimum cost that is not blocked by 

a code above the requested level, according to some cost function. All codes 

in the selected subtree must then be reassigned. So in every step a top-down 

greedy algorithm (for the one-step offline CA problem) chooses the maximum 

bandwidth code that has to be reassigned, places it a t the root of a minimum 

cost subtree (that is not blocked by an above assigned code), takes out the 

codes in that subtree and proceeds recursively. The DCA-algorithm in [80] 

works in this way. The authors propose different cost functions, among which 

the “topology search” cost function is claimed to solve the one-step offline CA 

optimally. As the cost function depends only on the current code assignment of 

the considered subtree, the following theorem implies that the DCA-algorithm 

is not optimal.

T h eo rem  5.6 Any top-down greedy algorithm A tdg, whose cost function de

pends only on the current code assignment of the considered subtree is not opti

mal.

P ro o f. We construct a code assignment F  of a code tree T  (and specify a level 

I for the code insertion), for which A tdg is not optimum. More specifically, we 

make A tdg assign the new request on level I to the root of a special subtree 

To, see Figure 5.5, which illustrates the construction of F. The tree To has an 

assigned code Ck of bandwidth 2 fc on level k < I and, depending on the cost 

function of A tdg-> it can have an assigned code Ck-\ of bandwidth 2k ~ 1 on level 

k — 1. The code(s) from T0 then has to be reassigned. We construct trees Ti, T2 

and T3 (with roots on level k) to be considered as place to reassign the code(s) 

from Tq. The subtree T\ has 2 fc_1 — 1 consecutive leaf codes assigned to users
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Figure 5.5: The construction of a code tree for which any top-down greedy 
algorithm is not optimum.

(and no other assigned codes elsewhere in the subtree). The subtrees T2 and 

T3 contain 2k~ l assigned codes on the leaf level, always an unassigned code 

following the assigned one. All other subtrees, in particular the sibling trees of 

Ti, T2 and T3 (omitted from the figure) have all their leaves assigned. With 

such a code assignment any optimal code reassignment that accommodates the 

new code on level I has to insert the new code to the root of To and reassigns the 

codes from To into the free places of T \ , T2 and T3 (we choose I to be sufficiently 

higher than k , so that all other subtrees of level I have a high number of assigned 

leaf codes).

Hence, A tdg assigns the new code to To and has to decide about where to 

reassign the code c^:

case 1 : The cost function of A tdg evaluates T2 and T3 as cheaper than T\. 

In this case we let the subtree To contain only the code Cfc. Algorithm 

A tdg moves cjt to the root of the subtree T2 or T3 , which causes one more 

reassignment than assigning it to the root of T \ , hence the algorithm fails 

to produce the optimal solution.

case 2: The cost function evaluates T\ as cheaper than T2 and T3 . In this case 

we let the subtree To have both codes Ck and Ck-1 . A tdg moves Ck to the 

root of T\ and Ck-i to the a child of the root of T2 or T3 , see the dashed 

lines in Figure 5.5. The number of reassigned codes by the algorithm 

i s | - 2 f c _ 1 + 2  (remember that we count the initial code insertion as a 

reassignment). The minimum number of reassignments is 2f c_1 +  3, which
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is achieved when the code Ck-i is moved into the empty part of T\ and the 

code Ck is moved to the root of T2 or T3 , see the solid lines in Figure 5.5. 

Therefore, also in this case Atdg is not optimum.

□

5.4.2 Com plexity of One-Step Offline CA

In this section we study the complexity of the decision variant of the one-step 

offline CA. It turns out that for a natural input decoding, the problem is M V- 

complete. The full proof and discussion on this topic appeared in the thesis of 

Marc Nunkesser [83], we will only outline the main idea.

The decision variant of the one-step offline CA is to decide whether a new 

code insertion can be handled with cost less or equal to a number smax, which 

is also part of the input. Clearly, the decision variant is in M V , because we can 

guess an optimal assignment and verify in polynomial time if it is feasible and if 

its cost is at most smax. To complete the proof of ATP-completeness, we reduce 

the three-dimensional matching problem (3DM, [62]) to the one-step offline CA 

problem.

P ro b le m  1 (3DM) Given a set M  C W  x X  x Y , where W ,X  and Y  are 

disjoint sets having the same number q of elements. Does M  contain a perfect 

matching, i.e., a subset M ' C M  such that \M'\ = q and no two elements of M ' 

agree in any coordinate?

For our purposes, we assume that, without loss of generality, W  =  X  = Y  — 

{1,2, . . . ,  q}. We define the indicator vector of a triplet (i , j , k) G W  x X  x Y  

as a zero-one vector of length 3q that is all zero except at the indices i,q  +  j  

and 2 q + k. Hence, every element of W  x X  x Y  can be viewed as an indicator 

vector. The 3DM problem is now equivalent to finding a subset of q indicator 

vectors out of the indicator vectors in M  that sum up to the all-one vector.

Figure 5.6 shows an outline of the construction that we use for the reduction: 

an input to 3DM is transformed into an initial feasible assignment that consists 

of a token tree in the left half of T  and different smaller trees in the right half 

of T. A code insertion request is given at the level indicated in the figure. The 

construction is set up in such a way that the code must be assigned to the root
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Figure 5.6: Sketch of the construction.

(a) The zero-tree. (b) The one-tree.

Figure 5.7: Encoding of zero and one.

of the left tree, the token tree, in order to minimize the number of reassignments 

(we can assign a lot of leaf codes in the right half of T  to achieve that; the higher 

the tree T, the more leaf codes we have). There are q codes in the token tree, 

all on the same level. These codes have to be moved to the right half of T. By 

the construction, they are forced to be reassigned to the roots of triplet trees 

(again, we can use the leaf codes to achieve that). Each of the triplet trees 

represents one of the elements of M, for which we are asking the existence of a 

3D matching. We want to design the tree T, such that all codes in the chosen 

triplet trees (by the reassignment of the q codes from the token tree) find a 

place without any additional reassignment if and only if these triplets represent 

a 3D matching.

The construction of the token tree is straightforward, we place q codes po

sitioned arbitrarily on level / start with sufficient depth (the discussion of what 

exactly is a sufficient depth can be found in [83, 52]). The triplet trees have 

their roots on the same level /start- They are constructed from the indicator vec

tors of the triplets. We represent each of the 3q elements of the vector by four 

levels in the triplet tree. We call these four levels a layer. Each layer encodes 

either zero or one, where the encoding of zero and one are shown in Figure 5.7

(a) and (b). We have chosen the zero-trees and one-trees such that both have 

the same number of codes and occupy the same bandwidth, but are still differ
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ent. The receiver trees are constructed to receive all codes in the chosen triplet 

trees. By the property of 3DM, we want the union of all receiver trees to ac

commodate on every layer exactly one layer that encodes 1 and q — 1 layers that 

encode 0 without additional reassignments. Finally, the fill trees are trees that 

are completely full (i.e., the assigned codes occupy the whole tree-bandwidth) 

and have one more code than the receiver trees. They are used to support the 

construction of the receiver trees to work in the way we want.

An interesting question is, whether this transformation from 3DM to the 

one-step offline CA can be done in polynomial time. This depends on the input 

encoding of our problem. We consider the following natural encodings:

• a zero-one vector that specifies for every node of the tree whether there is 

a code or not, and

• a sparse representation of the tree, consisting only of the positions of the 

assigned codes.

Obviously, the transformation cannot be done in polynomial time for the 

first input encoding, because the generated tree has roughly leaves. For 

the second input encoding the transformation is polynomial, because the total 

number of generated codes is polynomial in q, which is polynomial in the input 

size of 3DM. Besides, we should rather not expect an A/’'P-completeness proof 

for the first input encoding, because this would suggest, together with the dy

namic programming algorithm (that finds an optimum reassignment and runs 

in n °(logn) time) from Section 5.4.3, n°^logn^-time algorithms for all problems 

in AfV .

By the above construction we can prove the following theorem (the proof of 

which has appeared in the thesis of Marc Nunkesser [83]).

T h eo rem  5.7 The decision variant of the one-step offline CA is MV-complete 

for an input given by a list of positions of the assigned codes and the code 

insertion level.
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5.4.3 An Optimal Algorithm  and Fixed Param eter Tractabil- 

ity

In this section we outline an optimal algorithm for the one-step offline CA based 

on dynamic programming. The details appeared in the thesis of Gabor Szabo 

[96]. Building on the techniques of the optimum algorithm we show that the 

one-step offline CA is fixed parameter tractable for various (natural) parameters.

Let F  be a code assignment for a request vector r. Let I be the level of 

the new code request. We want to find a code assignment F ' for the request 

vector r' — (ro, r \ , . . . ,  r\ +  1 , . . . ,  r^) that minimizes \F' \  F |, the number of 

code reassignments. The key idea of the optimal algorithm is to decompose the 

computation of optimum F ' for r ' into two smaller problems: Split r' into all 

possible pairs of vectors r'L, r'R such that r' = r'L +  r'R; consider r'L (r'R) as a 

request vector for the left (right) subtree of T  and compute the optimum code 

assignment F'L (FR) for r'L (rR); output as F  that pair-union F'L \J FR, which 

has the minimum code reassignments. Observe that if r' — ( . . . ,  1 ), i.e., there 

is a code assigned at the root, there is nothing (difficult) to compute.

A dynamic programming for such a recursive computation can be realized 

as follows. We store at every node v all possible (i.e, all request vectors that 

are feasible, and achievable from the current code assignment F) request vec

tors r \ , . . . ,  together with their cost. We define the cost of a request vec

tor r \  to be the minimum number of assigned codes that have to move out 

of the subtree Tv to obtain a code assignment for the request vector r \  (we 

note that there might be some codes moving into Tv as well, but these are 

not considered in our cost function). Because only levels 0 , 1 , . . . ,  l(v) are af

fected by the subtree Tv, the request vectors considered at v are all of the form 

(ro ,r \ , . . . ,  0 , 0 , . . . ,  0). It is easy to compute these tables at the leaves—

there are only two request vectors considered: (0,0, . . . ,  0) and (1,0, . . . ,  0). To 

compute the cost for the request vector r \  we have to combine all computed 

requests vectors (and their costs) of the children of v. At the end, we compute 

at the root of T  the cost of r' (the only request vector considered at the root). 

This cost is the value |F  \  F'\, which is equal to \F' \  F | — 1, the value we are 

looking for, decreased by one.

The crucial aspect of the running time of the algorithm is the size of the
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tables stored at every node. Since every level can have at most n  assigned 

codes, the size of a table stored at a node is at most (n +  l ) h. The time to 

combine two tables is at most (n +  T)2h. This gives the overall running time 

0 (2 hn2h).

T h eo rem  5.8 The one-step offline CA problem can be optimally solved in time 

0 (2 hn 2h).

We consider now the fixed parameter tractability of the one-step offline CA. 

Parametrized problems are described by languages L C E* x N. If (x , k ) € L , 

we refer to A; as the parameter. The concept of fixed parameter tractability is 

described for example in [48].

D efin ition  5.1 ([48]) We say that L is uniformly fixed-parameter tractable, 

if  there is an algorithm A, a constant c and a function f  : N —> N such that

1. the running time of A (x ,k )  is at most f(k ) \x \c

2. (x ,k)  G L if and only if A  accepts (x,k).

We assume that our problem is given by a pair (x , k ), where x  encodes the 

code insertion on level I and the current code assignment and k is the parameter. 

We assume the encoding of the code assignment in the zero-one vector form 

x \ , . . .  ,X2h+i-\ saying for every node of the tree whether there is an assigned 

code. Denote for the purpose of the rest of this section by n  the size of the 

input, i.e., n  := |rr| =  2h+1 — 1 .

We consider various variants of parameters for the problem. The most nat

ural ones are the number of moved codes m  or the level I of the code insertion. 

To show the fixed parameter tractability, we reuse the ideas of the exact algo

rithm using dynamic programming, where we store at every node a table of all 

possible request vectors.

We first show that the problem is fixed parameter tractable, if the parame

ters are both m and I, i.e., we show an algorithm solving the problem in time 

0 ( f(m ,l)p (n )) for some polynomial p(n).

Having a code insertion into the code tree for level I, we know that we only 

move codes from lower levels than I. Hence, when building the tables at nodes, 

we consider only those request vectors that differ on levels 0 , . . . , /  — 1 from the
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current subtree (its actual request vector). From the assumption that we move 

at most m  codes, we have that on each of these levels, the considered request 

vector can differ by at most m. Hence, the number of considered request vectors 

in every node is at most (2771+1)*. To compute all the tables, we need to combine 

all the tables from the children nodes, i.e., we have to consider (2 m +  l ) 2* pairs 

for every node. From this we get the running time to be 0 (2 h(2m + 1)2*), which 

is certainly of the form /(m , l)p(n).

For the case, where we have only I as the parameter, we immediately get that 

we move from every subtree Tv at most 2* codes, hence we bound the number of 

codes moved in every subtree by a parameter (we note that we did not bound 

the overall number of moved codes) m  = 2l.

Consider now the case, where only m  is the parameter. Since we move at 

most m codes within the tree, we know that at most m  codes come into the 

subtree and at most m go away from the subtree. Hence, assigning for each such 

possibility a level out of 0 , . . . ,  / , we get an upper bound of a t most (I +  l ) 2m 

request vectors to be considered at every node on level I. Since I +  1 <  h for 

I =  0 , . . . ,  h — 1 we get at every node at most h2m =  (logn)2m requests. From 

[8 8 ] we can use the inequality (log n)m <  (3m log m)m +  n to express the size of 

each table in the form g(m) +  n. To compute the table for every node, we need 

time n(g(m) +  n)2 which is certainly of the form f(m )p(n).

We can summarize the results of this section in the following theorem.

T h eo rem  5.9 The one-step offline CA problem is fixed parameter tractable for 

the following parameters:

• the level I of the code insertion, and

• the number m  of moved codes.

5.4.4 An h-Approxim ation Algorithm for One-Step offline 

CA

In this section we propose and analyze a greedy algorithm for one-step offline 

CA, i.e., for the problem of assigning an initial code assignment request co (for 

level I) into a code tree T  with given code assignment F. The idea of the greedy 

algorithm A greedy is to assign the request cq onto the root g of the subtree
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Tg that contains the fewest assigned codes among all possible subtrees. From 

Lemma 5.3 we know that no optimal algorithm reassigns codes on higher levels 

than the current one; hence the possible subtrees are all those subtrees (with 

roots on level I) that do not contain assigned codes on or above their root. The 

greedy algorithm takes all assigned codes in Tg (denoted by F (Tg)) and reassigns 

them recursively (one by one) in the same way, always processing codes of higher 

level first.

In the following, for ease of presentation, when speaking of codes, we mean 

an assigned code from T. When referring to nodes of T, we do not distinguish 

between assigned and unassigned codes.

At every time t the greedy algorithm has to reassign a set Ct of codes into 

the current tree T l. Initially, Co = {co} and T° =  T (i.e., for simplicity the 

initial request co is also viewed as a code). The codes from subtree Tg that have 

to be reassigned are removed from T  and placed into C* (formally, once they 

move to Ci, they should be called code requests, but we abuse the notation here 

a bit). Recall that for a given position, code or request c, its level is denoted 

by 1(c).

A lg o rith m  1  Greedy algorithm A greedy:

Co {co};T° *— T  

t * -  0

WHILE Ct ^  0 DO
ct <— elem ent w ith  h ig h e s t le v e l  in  Ct

g <— th e  ro o t of a su b tre e  Tg of le v e l  l(ct) w ith  th e  few est 

codes in  i t  and no code on or above i t s  ro o t 

/*  a ss ig n  ct to  p o s it io n  g * /
T t+1 _  {Tt \  F {T , )} u  {9}

Ct+i *— (Ct U F(Tg)) \  {ct} 

t <— i T 1 

END WHILE

In [80] a similar algorithm is proposed as a heuristic for the one-step offline 

CA. We prove that A greedy has approximation ratio h. As the following example 

shows, this bound is asymptotically tight. Consider Figure 5.8. The request for
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^ n e u i  * * ’opt

’greedy
l-l

Z-3

Figure 5.8: Example for the lower bound for A greedy

a new code cnew is assigned by the greedy algorithm into the root of To (which 

contains the least number of codes). The two codes on level I — 1 from To are 

reassigned as shown in the figure, one code can be reassigned into Topt (with 

no additional reassignments) and the other one goes recursively into T\ (whose 

left subtree contains 2 codes, i.e., the least among all other subtrees). The two 

codes from T\ are reassigned in the same principle, one goes into Topt and the 

second one into T2 and so on. The reassignments stops in this fashion when the 

greedy algorithm processes the level 1 codes. There, it cannot accommodate a 

level 1 code into Topt and it has to move additionally two codes from level 0 . 

In total, the greedy algorithm does 2-1 + 1 reassignments while the optimal 

algorithm assigns cnew into the root of Topt and reassigns the three codes from 

the leaf level into the trees T\, T2 , T3 , requiring only 4 reassignments. Obviously, 

for this example the greedy algorithm is not better than (21 +  l ) / 4  times the 

optimal. In general I can be Cl(h).

For the upper bound we compare A greedy to the optimal algorithm A opt. 

A opt assigns co to the root of some subtree ^xo > the codes from TXo to some 

other subtrees, and so on. Let us call the set of subtrees to the root of which 

A opt moves codes the opt-trees, denoted by Topt, and the arcs that show how 

A opt moves the codes the opt-arcs (cf. Figure 5.9). By V(Topt) we denote the 

set of all nodes in Topt.

A sketch of the proof is as follows. First, we show that in every step t A greedy 

has the possibility to assign the codes from Ct into positions inside the opt-trees. 

This possibility can be expressed by a code mapping (f)t : Ct —» V(Topt)- The 

key-property is now that in every step of the algorithm there is the theoretical
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— ► an o p t-a rc  *► greedy assignment

Figure 5.9: A opt moves codes to assign a new code co using opt-arcs. The opt- 
trees are subtrees to the root of which A opt moves codes. Here, the cost of the 
optimal solution is 5. The greedy algorithm has cost 6 .

choice to complete the current code assignment using the code mapping 0  and 

the opt-arcs as follows: Use (j) to assign the codes in Ct into positions in the 

opt-trees and then use the opt-arcs to move the codes out of these subtrees 

of the opt-trees to produce a feasible code assignment. We will see that this 

property is enough to ensure that A greedy incurs a cost of no more than O PT  

on every level.

In the process of the algorithm it can happen that we have to change the 

opt-arcs in order to ensure the existence of fa. To model the necessary changes 

we introduce a t-arcs that represent the changed opt-arcs after t steps of the 

greedy algorithm.

To make the proof-sketch precise, we use the following definitions:

D efin ition  5.2 Let Topt be the set of the opt-trees for a code request cq and let 

T l (together with its code assignment F l) be the code tree after t steps of the 

greedy algorithm A greedy . An  a-mapping at time t is a mapping a t : M at —> 

V(Topt ) for some M at C F*, such that Vv G M at : l(v) =  l(a t (v)) and

&t(Mat) U (F t \  M at) is a code assignment, where a t (M a t) =  (JueMat a t(u)-

Note that in general, F l is not a code assignment for all codes (for all code 

requests) since it does not contain the codes in C l . The set a t (M at){J(Ft \M at) 

represents the resulting code assignment (that again does not contain the codes 

in C l) after reassignment of the codes M at C F f by a t . We see the a-mapping 

as a description of how codes are moved (reassigned).

D efin ition  5.3 Let T l be a code tree, x ,y  be positions in T l and a t be an a- 

mapping. We say that y depends on x in T l and a t , if  there is a path from x



CHAPTER 5. ASSIGNMENT OF OVSF-CODES 114

Figure 5.10: The filled subtrees represent all the positions that depend on x.

to y using only tree-edges from a parent to a child and a t -arcs. By dept(x) we 

denote the set of all positions y that depend on x in T l and a t . We say that an 

a t arc (u,v) depends on x i f u E  dep*(x).

For an illustration of this definition, see Figure 5.10. We write dept(X) for 

the set Ucex dePt(x )-

D efinition 5.4 At time t a pair (fa ,a t) of a code mapping fa : Ct —> V(Topt) 

and an a-mapping a t is called an independent mapping for T l, if the following 

properties hold:

1. Vc € Ct the levels of fa(c) and c are the same (i.e. 1(c) = l(fa(c)).

2. Vc £ Ct there is no code in T l at or above the roots of the trees in 

dep t(fa(c)).

3. the code movements realized by fa and at (i.e. the set fa(Ct) U a t (Mat) U 

(F t \M oct)) form a code assignment (where fa(Ct) stands for Ucect ^(c))-

4■ every node in the domain Mat of at is contained in dep t (fa(Ct)) (i.e., no 

unnecessary arcs are in a t).

Independent mapping formally captures the (hypothetical) possibility of the 

greedy algorithm to finish the greedy assignment at time t and to follow the 

optimal steps, i.e., the remaining codes from Ct are assigned according to fa 

into some positions in opt-trees and the codes from the subtrees of fa(Ct) are 

moved according to a t .

Note that fa and at can equivalently be viewed as functions and as collections 

of arcs of the form (c, fa(c)) and (u, a t (u)), respectively. Note also that if a pair
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(<pt,(*t) is an independent mapping for T l , then dept (4>t(Ct )) is contained in 

opt-trees and every node in dept ((j>t(Ct)) can be reached on exactly one path 

from Ct (using one (f)t-arc and an arbitrary sequence of tree-arcs, which always 

go from parent to child, and a t-arcs from a code c G F(T*) to a t (c)).

Now we state a lemma that is crucial for the analysis of the greedy strategy, 

the proof of which we give in Section 5.4.5.

L em m a 5.10 For every set Ct in algorithm A greedy the following invariant 

holds:

There is an independent mapping for T l . (5.2)

We remark that Lemma 5.10 actually applies to all algorithms that work 

level-wise top-down and choose a subtree Xg for each code ct G Ct arbitrarily 

under the condition that there is no code on or above the position g.

To show the approximation ratio of the greedy algorithm, we first express 

the cost of the optimal solution by the opt-trees:

L em m a 5.11 (a) The optimal cost is equal to the number of assigned codes in 

the opt-trees plus one, and (b) it is equal to the number of opt-trees.

P roo f. Observe for (a) that A opt moves all the codes in the opt-trees and for

(b) that A opt moves one code into the root of every opt-tree. □

T h eo rem  5.12 The algorithm A greedy has an approximation ratio of h.

P roo f. A greedy works level-wise top-down. We show that on every level I the 

greedy algorithm incurs cost at most OPT. Consider a time ti where A greedy is 

about to start a new level I, i.e. before Agreedy assigns the first code on level I. 

Assume that Cq contains qi codes on level I. Then A greedy places these qi codes 

in the roots of the qi subtrees on level I containing the fewest codes. The code 

mapping <f)tl that is part of the independent mapping (0 ^ , 0 :^), which exists by 

Lemma 5.10, maps each of these qi codes to a different position in the opt-trees. 

Therefore, the total number of codes in the qi subtrees with roots at (ptl (c) (for 

c a code on level I in Cq) is at least the number of codes in the qi subtrees 

chosen by A greedy. Combining this with Lemma 5.11(a), we see that on every 

level A greedy incurs a cost (number of codes that are moved away from their 

position in the tree) that is at most Aopt’s total cost. □
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5.4.5 Proof of Lemma 5.10

We prove the lemma by induction on t. Assume that the code co is to be inserted 

into the tree initially, and that A opt assigns it to position xq. For the base of 

the induction (t = 0 ), let (f>o(co) =  xo and let c*o consist of all opt-arcs, i.e., 

all arcs (u, v) such that A opt moves a code from u to v. It is easy to see that 

{(j)o,o:o) is an independent mapping.

Assume now that the lemma holds after t > 0 iterations of the greedy algo

rithm. We show how to construct (</>t+i,oct+i) from the independent mapping 

((f)t ,a t). In iteration t+  1 , the greedy algorithm A greedy assigns the code ct of 

highest level in Ct to a position g in T 4, such that there is no assigned code on 

or above g.

C ase 1 . There is a code dt in Ct with 4>t(dt) =  g. If dt ^  ct , we exchange the 

<j>t values of dt and Ct while maintaining (<f)t ,a t)  as an independent mapping for 

T t . Thus, we can assume that <t>t{ct) =  g• We set

&+i =  {(c,0t(c)) I c G Ct \  {ct} } U {(c,a*(c)) | c G F(T%)}

and

ott+i = a t \  {(c ,a t (c)) | c G F(Tg)}.

We can see it as performing one step in following the whole code reassignment 

given by (<j>t ,a t). It is easy to see that (<f)t+ i,a t+i) is an independent mapping 

for T t+1.

We remark that Case 1 could also be handled in the same way as Case 2  

below, but we have chosen to give a direct treatment of Case 1 in order to 

illustrate some of the proof ideas on a simple case.

C ase 2 . There is no code dt in Ct with 4>t{dt) =  g• In this case, Xg can

contain a number of codes, some of which may be in the domain M at of a t - 

Furthermore, there can be 4>t-arcs and Of-arcs pointing into Tg. An example is 

shown in Figure 5.11. All codes from Tg are going to be moved to Ct+1 and we 

have to define a (f>t+i-arc for all these codes in T*. Also (since no code can move 

to T* anymore) we must find a new destination outside Tg for those (f)t-arcs
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Ct : 

ct

c

Figure 5.11: T* contains the heads of a t-arcs and (f>t-arcs as well as codes with 
and without at-arcs.

and at-arcs pointing into T* that we need for the construction of ((j>t+ i , a t+i). 

The idea is to redirect these arcs into the “free space” that was reserved for ct 

by <f>t (ct) and the subsequent reassignments, but was not used by the greedy 

algorithm.

First, we will define an intermediate generalized independent mapping ((f), a) 

for T t+1 in which we allow loose ends, i.e., we allow a code c to have as head of 

its a-arc or 0 -arc a dummy tree (that is not part of the real tree) of the required 

capacity. In a second step, we will fix loose ends by finding proper destinations 

in dep (0 t (ct)) for them (where dep refers to the dependency induced by tree- 

arcs and the current a-arcs). In the end, a part of the resulting (0, a) without 

loose ends will be used to define (0 t+i, at+i).

We proceed as follows. For each assigned code c at a node v in T* that is not 

in the domain Mat of a t, define 0(c) =  v. For each assigned code c in T* that 

has an at-arc, define 0(c) =  a t (c). For all codes c in Ct \  {ct}, set 0(c) =  0 t(c). 

Let a  =  a t \  {(u,u) | u G T*}. Finally, replace every a-arc or 0-arc (u, v) for 

which v G Tg by a loose end, i.e., an a-arc or 0-arc pointing from u to a dummy 

tree of height l(v). The generalized mapping (0, a) constructed in this way is 

indeed independent. Figure 5.12 shows the generalized mapping (0, a) resulting 

from the situation in Figure 5.11.

Dummy trees that can be reached from 0t(ct) along tree-arcs and a-arcs are 

called inactive, all other dummy trees are called active (i.e., all dummy trees 

reachable from (f)(Ct+1 )). Active dummy trees have to be fixed (so that we can
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a

dummy trees

Figure 5.12: The constructed generalized independent mapping (0, a). All 
shown a-arcs are inactive (indicated by dashed lines). The rightmost dummy 
tree is inactive, the other two are active.

eventually obtain an independent mapping without loose ends), while inactive 

dummy trees will either become active later on or will be discarded in the end. 

Similarly, we set all a-arcs that can be reached from 4>t{ct) along tree-arcs and 

a-arcs inactive, and all other a-arcs active. Inactive a-arcs will either become 

active later on or will be discarded in the end as well.

Let U denote the capacity of the tree Tg, i.e., U =  2l 9̂\  Note that all 

dummy trees were generated from independent subtrees of T*. Therefore, the 

total capacity of all dummy trees is at most U. Let Ua be the total capacity of 

active dummy trees and Ui be the total capacity of inactive dummy trees. We 

have Ua + U i<  U.

We want to use dep(0f(ct)) for finding new destinations for a-arcs or 0-arcs 

that point to active dummy trees. We say that a path from 4>t(ct ) to some tree 

node v is strict if it follows tree-arcs downward from nodes without assigned 

codes in T t+1 and a-arcs from nodes with assigned codes in Tt+\. Now we can 

define the available capacity in dep(0t(ct )) to be the number of leaves that are 

not in dummy trees and that can be reached from 0t(c*) along a strict path that 

does not contain the head of any 0-arc or active a-arc. Note that a position v 

in dep(0*(Q)) can be used as the new head of an a-arc or 0-arc if and only if v 

is not in a dummy tree, there is no code at or above v , and no 0-arc or active
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a-arc points to a position in dep(u) or to a position p such tha t v is in dep(p). 

We call v an available position. Otherwise, the position v is called unavailable.

The available capacity in dep(0t (ct)) is U — Ui initially, since only the loose 

ends in dep(0* (q)) reduce the available capacity. The total capacity of active 

dummy trees is XJa < U — Ui (i.e., it suggests we have enough capacity to 

accommodate the 0-arcs and active a-arcs with loose ends). In the following we 

will maintain the invariant that the total capacity of active dummy trees is at 

most the available capacity in dep(0t (ct )).

We fix the active dummy trees one by one in order of non-increasing levels. 

Assume that we are currently processing a dummy tree of level d that is the head 

of an a-arc or 0-arc (x, y ). Consider all nodes Vd of level d in T t+1 that do not 

have assigned codes and are reachable from (f>t(ct) along strict paths. Observe 

that a node Vd is unavailable only if it is inside an inactive dummy tree or if the 

path from 0t(ct ) to Vd passes through the head of an active a-arc or a 0-arc. 

However, it is not possible that all nodes Vd are unavailable, because then the 

total available capacity in dep(0f (cf)) would be zero, contradicting our invariant 

(it is important here that we are processing the codes in the non-increasing order 

and thus cannot block the available positions by some low level codes). Thus, 

we can find a node Vd that is available. We replace (x ,y)  by (x,Vd) and make 

all a-arcs reachable from Vd as well as all inactive dummy trees reachable from 

Vd active. (Note that no active dummy tree can have been reachable from Vd 

before this operation, since we fix the active dummy trees in order of non

increasing levels.) Let U' be the total capacity of previously inactive dummy 

trees that were made active now. The total capacity of active dummy trees 

decreases by 2d — U ', and the total available capacity in dep(0t (ct)) decreases 

by 2d — U' as well (since the part of dep(0i(ct)) that is reachable from Vd had 

available capacity exactly 2d — U'). Therefore, the invariant is maintained and 

the process can be continued until no active dummy trees are left. The process 

terminates because the total capacity of active dummy trees never increases and 

in each step the number of active dummy trees of highest level decreases by one 

(and only dummy trees of lower levels may become active). A possible result of 

applying this process to the generalized independent mapping of Figure 5.12 is 

shown in Figure 5.13.
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Figure 5.13: The final generalized independent mapping ((f), a) in which all 
active dummy trees have been fixed. The independent mapping (</>t+i, Ot+i) is 
obtained by deleting the inactive a-arcs and discarding the remaining inactive 
dummy tree.

When all active dummy trees are fixed, we let 4>t + 1  =  4> and a t+i =  {(u, v) £ 

a  | (u,v) is active }. Since ((f), a) was a generalized independent mapping and 

(cf)t+i , a t+i) does not contain loose ends, we have that (4>t+ i, a t+i) is an inde

pendent mapping as required.

5.5 Online CA

The most natural version of the whole family of code assignment problems is 

perhaps the online version, where the codes are being inserted and deleted from 

the tree over time. We study the online CA in this section. We present a lower 

bound on the competitive ratio (of any competitive online algorithm), show

ing that a (small) code-tree fragmentation is (always) inevitable. We further 

propose and analyze several algorithms.

T h eo rem  5.13 No deterministic algorithm A for the online CA problem can 

be better than 1.5-competitive.

P roo f. Let A  be any deterministic algorithm for the online CA problem. Con

sider N  consecutive leaf insertions. Whatever the algorithm’s code assignment 

is, the adversary can ask for N /2  code deletions to get to the situation in Fig-
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Figure 5.14: Lower bound for the online assignment problem.

ure 5.14 (i.e., deletion of every second code on the leaf level). Then a request 

for a code assignment on level h — 1 causes iV/4 code reassignments, leaving half 

of the tree full of assigned leaf codes. W.l.o.g., it is the left half of the tree. The 

adversary proceeds recursively with the left subtree of full leaf codes, deleting 

every second leaf code, etc. We can repeat this process (log2 N  — 1) times. The 

overall number of code reassignments of the algorithm A  is Ca  =  N  +  jT(JV), 

where T (N ) = 1 +  N /4  +  T ( N /2) and T (2) =  0. Computing the closed form of 

T (N )  we get T (N ) = log2 N  -  1 +  f  (1 -  2/N ).

The optimal algorithm A opt assigns the leaves in such a way that it does not 

need any code movement at all. Thus, A opt needs Copt =  N  +  log2 N  — 1 code 

assignments. If CA < c • Copt then c >  — >N~̂ 00 3/ 2, D

5.5.1 Greedy Strategies

We study a natural greedy algorithm that uses at every code insertion/deletion 

an optimal algorithm A  for the one-step offline CA problem. As an optimal 

algorithm breaks ties in an unspecified way, the online strategy can vary for 

different optimal one-step offline algorithms.

Theorem  5.14 Any deterministic greedy online strategy, i.e., a strategy that 

minimizes the number of reassignments for every request, is Q(h) competitive.

Proof. Let A be a fixed, greedy online strategy (that minimizes the number of 

reassignments for every request). We first insert N /2  codes at level 1 (i.e., we
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Figure 5.15: Requests that an online greedy strategy cannot handle efficiently.

fill level 1 of the tree with assigned codes). As A  is deterministic we can now 

ask for code deletion of every second code on level 1. Subsequently, we insert 

N /2  codes at level 0, using the whole bandwidth of the tree. This leads to the 

situation depicted in Figure 5.15. Then we delete two codes at level I = 1 (as A  

is deterministic it is clear which codes to delete) and immediately assign a code 

at level I +  1. As it is optimal (and up to symmetry unique) the algorithm A  

moves two codes as depicted. An optimal strategy arranges the level-1 codes in 

a way that it does not need any additional reassignments. We proceed in this 

way along level 1 in the first round, then left to right on level 2 in a second 

round, and continue towards the root. Altogether we move N / 4 codes in the 

first round and we assign N /2 3 codes. In general, in every round i we move 

N / 4 level-0 codes and assign N /2 l+2 new codes on level 2 +  1. Altogether the 

greedy strategy needs 0 ( N ) +  (iV/4)Q(log N ) = Q,(N log N )  (re-)assignments, 

whereas the optimal strategy does not need any reassignments and only O(N) 

assignments. □

5.5.2 Compact Representation Algorithm

This algorithm maintains the assigned codes in the tree T  sorted according to 

their levels and also keeps them compact. For a given node/code v G T, we 

denote by w(v) its string representation, i.e. the description of the path from 

the root to the node/code, where 0 means left child and 1 right child. We use 

the lexicographic ordering when comparing two string representations. By U 

we denote the set of unblocked nodes of the tree. We maintain the following
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\
Figure 5.16: Algorithm A compact finds the rightmost position (blocked or un
blocked) for a code insertion and reassigns at most one code at every level.

invariants:

V codes u ,v  € F  : l(u ) < l(v) => w(u) < w(v), (5.3)

V nodes u ,  v G T  : l(u ) <  l(v ) A u e F A u e C /  =>• u;(u) <  u;(u). (5.4)

Following (5.3) we maintain the codes in the tree ordered from left to right 

according to their levels (higher level assigned codes are to the right of lower 

level assigned codes). Invariant (5.4) keeps the codes compact (no unblocked 

code to the left of any assigned code on the same level).

In the following analysis we show that this algorithm is not worse than 0(h)  

times the optimum for the offline version. We also give an example that shows 

that the algorithm is not asymptotically better than this.

Theorem  5.15 There is an algorithm A compact satisfying invariants (5.3) and

(5.4) that performs at most 0 (h ) code reassignments per request.

Proof. We show that for both code insertion and code deletion we need to make 

at most h code reassignments. When we insert a code on level /, we look for the 

rightmost unassigned position (it can be blocked) on level I that maintains the 

invariants (5.3) and (5.4) among codes on level 0 , . . . ,  /. Either the found node 

is not blocked, so that we do not move any codes, or the code is blocked by some 

assigned code on a higher level I' > I (see Figure 5.16). In the latter case we 

remove this code to free the position for level I and handle the new assignment 

request for level I' recursively. Since we move at most one code at each level 

and we have h levels, we move at most h codes for each insertion request. 

Handling the deletion operation is similar, we just move the codes from right
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t  2,3

Figure 5.17: Code assignments for levels 0 ,0 ,1 ,2 ,3 ,4 ,..., h — 1 and four con
secutive operations: 1. delete on level h — 1, 2. insert on level 0, 3. delete on 
level 0, 4. insert on level h — I.

to left in the tree and move at most one code per level to maintain the invariants.

□

C orollary 5.16 The algorithm A cornpact satisfying invariants (5.3) and (5.4) 

is 0(h)-competitive.

Proof. In the sequence a =  a i,...,c rm the number of deletions d must be 

smaller or equal to the number i of insertions, which implies d < m /2. The cost 

of any optimal algorithm is then at least i > m/2. On the other hand, Aconipact 

incurs a cost of at most m  • h, which implies that it is 0(h)-competitive. □

T heorem  5.17 Any algorithm satisfying invariant (5.3) is 0(h)-competitive.

Proof. Let A i be an algorithm that always follows invariant (5.3). Consider 

the sequence of requests for code assignments on levels 0, 0, 1, 2, 3 ,..., h — 1. 

For these requests, there is a unique code assignment satisfying invariant (5.3), 

see Figure 5.17. Consider now two requests—deletion of the code at level h — 1 

and insertion of a code on level 0. Then A j has to move every code on level 

Z > 1 to the right to create space for the code assignment on level zero and 

maintain the invariant (5.3). This takes h — 1 code (re-)assignments. Consider 

as the next requests the deletion of the third code on level zero and an insertion 

on level h — 1. Again, to maintain the invariant (5.3), A i has to move every 

code on level Z > 1 to the left. This takes again h — 1 code (re-)assignments. 

An optimal algorithm can handle these four requests with two assignments, 

since it can assign the third code on level zero in the right subtree, where Aj 

assigns the code on level h — 1. Repeating these four requests k times, the total
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Figure 5.18: Reassignment of one code reduces the number of blocked codes 
from 3 to 2.

cost of the algorithm A i  is then Ca — h +  1 +  k • (2h — 2), whereas OPT has 

Co p t  =  h +  1 +  k • 2. As k goes to infinity, the ratio Ca / C o p t  is Cl(h). □

5.5.3 M inimizing the Number of Blocked Codes

The idea of minimizing the number of blocked codes is mentioned in [98, 89] 

and empirical studies are presented. In this section we given an analysis of the 

algorithm that satisfies the invariant:

#  blocked codes in T  is minimum. (5.5)

In Figure 5.18 we see a situation that does not satisfy the invariant (5.5). 

Moving a code from level 0 reduces the number of blocked codes by one.

We can prove that this approach is equivalent to minimizing the number of 

gap trees on every level (Theorem 5.18). Recall that a gap tree is a maximal 

subtree of unblocked codes in a code tree.

D efin ition  5.5 The level of the root of a gap tree is called the level of the gap 

tree. The vector q =  (^o, • • • ,Qh), where qi is the number of gap trees on level i, 

is called the gap vector of the tree T .

See Figure 5.19 for an example of the definition. Observe that the invariant

(5.5) implies at most one gap tree at each level. If there were two gap trees 

on a level I we could move the sibling tree of one of the gap trees to fill the 

other gap tree, reducing the number of blocked codes by at least one (concept 

from Figure 5.18). As the following theorem shows, the other direction of this 

implication holds as well.



CHAPTER 5. ASSIG N M EN T OF OVSF-CODES 126

#  of gaps:

gap vector: q =  (1, 2 ,1 ,0 , 0)Gap trees

Figure 5.19: Illustration for the definition of gap tree and gap vector.

T h e o rem  5.18 Let T  be a code tree after realizing the code insertions and 

deletions from a sequence of requests a. T  has at most one gap tree on every 

level if  and only i f T  has a minimum number of blocked codes.

P ro o f. We are left to prove the second implication. Suppose T has at most 

one gap tree on every level. The minimum number of blocked codes has to be 

attained at some tree T ' with at most one gap tree on every level, otherwise 

we could reduce the number of blocked codes by filling one of the two gap trees 

from the same level with the sibling tree of the other gap tree.

The free bandwidth capacity of T  can be expressed in terms of the gap vector

h
cap = ^  gj2l .

2 = 0

As qi < 1, the gap vector is the binary representation of the number cap and 

thus the gap vector q is unique for every tree serving requests a with at most 

one gap tree at every level (and hence also for T').

The gap vector determines also the number of blocked codes:

h
#  blocked codes =  (2h+1 — 1) — ^>^qi(2t+1 — 1).

i=0

Thus, every tree for requests a  with at most one gap tree at every level has the 

same number of blocked codes, i.e., T  has the same number of blocked codes as
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Now we are ready to define the algorithm Agap (Algorithm 2). As we will 

show, on insertions A gap never needs any extra reassignments.

A lgorithm  2 A gap:

1. Insert: • Assign the new code into the smallest gap where it fits.

2. Delete: • I f  after the deletion a second gap tree appears on some level,

move one of their sibling subtrees to “fill” the gap tree 

• Look for a second gap tree on a higher level and treat it 

recursively.

Lem m a 5.19 The algorithm A gap has always a gap tree of sufficient height to 

assign a code on level I and at every step the number of gap trees at every level 

is at most one.

Proof. Let cap denote the available capacity of the tree T  when processing 

the request for code on level I. Because the code request can be served, we 

have cap > 2l. We can express the available capacity via the gap vector as 

cap — Qi^1- Summing only over gap trees on level i < I we get a capacity

cap' =  ]T)!=o < 2° +  21 + . . . 2l~l =  2* — 1 . Therefore, there exists a gap tree

on level j  > I.

Next, consider an insertion operation into the smallest gap tree on level V 

where the code fits. New gap trees can occur only on levels j , I < j  < V and 

only within the gap tree on level V. Also, at most one new gap tree can occur 

on every level. Suppose that after creating a gap tree on level j , we have in T 

more than one gap tree on this level. Then, since j  < V and I > j ,  we could 

have assigned the code into this smaller gap tree, a contradiction. Therefore, 

after an insertion there is at most one gap tree on every level.

Consider now a deletion of a code. The nodes of the subtree of the deleted 

code become unblocked, i.e., they belong to some (new) gap tree. Only one new 

gap tree can occur in the deletion operation (and some gap trees may disappear). 

Thus, when the newly created gap tree is the second one at the level, we “fill” 

this gap tree (according to the algorithm Agap) and then we recursively handle 

the newly created gap tree at a higher level. In this way the problem with 2 

gap trees is moved to higher levels. Because we cannot have two gap trees on
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DELETE

N / 4 codes

Figure 5.20: Worst case number of movements for algorithm A gap.

level h — 1, we eventually end up with a tree with at most one gap tree at each 

level. □

The result and its proof shows that upon insertions, the algorithm does not 

need any code movements.

C o ro lla ry  5.20 The algorithm A gap is optimal for the insertion-only online 

CA problem.

However, similarly to the compact representation algorithm, this algorithm is 

f2(log iV)-competitive.

T h eo rem  5.21 Algorithm A gap is fl(logiV)-competitive.

P ro o f. The proof is basically identical with the proof of Theorem 5.14. □

The algorithm A gap has even a very bad worst case number of code move

ments. Consider the four subtrees on level h — 2, where the first one has N /4  

leaf codes inserted, its sibling has a code on level h — 2 inserted and the third 

subtree has again N / 4 leaf codes inserted (Figure 5.20). After deletion of the 

code on level h — 2, A gap is forced to move N /4  codes. This is much worse than 

the worst case for the compact representation algorithm.

5.6 Sum m ary o f R esults and O pen Problem s

We have studied the OVSF-code assignment problem from the algorithm-theoretic 

perspective. For the one-step offline CA we have shown non-optimality of greedy 

algorithm that consider the current subtrees for evaluation if a position is good 

for a code insertion. We have presented an 0(logn)-approximation algorithm, 

an optimal algorithm and fixed-parameter tractable algorithms for various pa

rameters. For the online CA we have shown a lowerbound 1.5 for the compet
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itive ratio of any online algorithm, and log n-competitive algorithm. For the 

insertions-only CA we have presented an optimal online algorithm.

It is an interesting question, whether there is an approximation algorithm 

with better approximation ratio than O(logn).



C hapter 6

Joint Base Station  

Scheduling

The combinatorial problem that is studied in this chapter reflects some of the 

real-life problems in the area of load balancing in time-division mobile networks. 

In such a network, mobile users are served by a set of base stations. Roughly 

speaking, serving a user means that the user communicates with one of the base 

stations via the common radio channel and uses the services offered by the base 

station (voice transmission, internet access, GPS positioning, etc.). The time 

is discretized into slots (rounds) 1,2,—  In each time slot/round (of the time 

division multiplexing) each base station serves at most one user. Conventionally, 

each user is assigned to the (single) base station of the cell in which the user is 

currently present. The user is being served by the base station until she leaves 

her cell or her demand is satisfied. The amount of data that a user receives 

depends on the strength of the signal that she receives from her assigned base 

station and on the interference, i.e., on all signal power that she receives from 

other base stations. In [42], Das et al. propose a novel approach: Clusters of base 

stations jointly decide which users they serve in which round in order to increase 

network performance. Intuitively, this approach increases throughput, when in 

each round neighboring base stations try to serve pairs of users such that the 

mutual interference is low. We turn this approach into a discrete scheduling 

problem in one and two dimensions (see Figure 6.1), the Joint Base Station

130
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(a ) T h is  fig u re  d e s c r ib e s  a  p o s s ib le  s itu a t io n  
in  s o m e  t im e  s lo t  (r o u n d ). B a s e  s ta t io n  62 
s e r v e s  u ser  122, 63 s e r v e s  u ser  u q . U se r s  123,1x4 
a n d  1x5 are  b lo c k e d  a n d  c a n n o t  b e  serv ed . 
B a s e  s ta t io n  b\ c a n n o t  s e r v e  1x1 b e c a u s e  th is  
w o u ld  c r e a te  in ter fe r e n c e  a t  1x2.

h

(c ) A  p o s s ib le  s i tu a t io n  in  s o m e  t im e  
s lo t  in  th e  2D  c a se . U s e r s  122,1x4,1x7 
an d  1x12 are ser v e d . B a s e  s ta t io n  65 
c a n n o t serv e  u ser  121 h ere , b e c a u s e  
th is  w o u ld  c r e a te  in te r fe r e n c e  a t  1x4 
a s  in d ic a te d  b y  th e  d a s h e d  c irc le .

(b ) A rro w  r e p r e s e n ta t io n  o f  th e  s i tu a t io n  
fro m  (a ) .

Figure 6.1: The JBS-problem in one and two dimensions

Scheduling problem (JBS).

In one dimension (see Figure 6.1(a)) we are given a set of n users as points 

{ u i , . . . ,  un} on a line and we are given positions {6 1 , . . . ,  bm} of m  base stations 

(also on the line). We note that such a setting could correspond to a scenario 

where the base stations and users are located along a straight road. In our 

model, when a base station bj serves a user Uj this creates interference in an 

interval of length 2|bj — U{\ around the midpoint bj. In each round each base 

station can serve at most one user such that at the position of this user there is no 

interference from any other base station. The goal is to serve all users in as few 

rounds as possible. In two dimensions users and base stations are represented as 

points in the plane. When base station bj serves user Ui this creates interference 

in a disk with radius ||bj — UiH2 and centre bj (see Figure 6.1(c)). Again, the 

goal is to serve all users in as few rounds as possible. In both dimensions, the 

problem can be viewed as firstly to decide which base station is going to serve 

each user and secondly to decide in which round the user is going to be served.

The one-dimensional problem is related to interval scheduling problems, 

where a set of intervals is to be scheduled such that no two intervals sched

uled in the same round intersect. Here, the interference around a base station 

can be viewed as an interval, but because of the particular way how interference 

operates, the interval has a direction and the interval becomes an arrow with 

a head and a tail (the user that is served represents the head of the interval).
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Intersection of two intervals is allowed, if only the tails of arrows intersect (in

tersecting tails correspond to interference that does not affect the users at the 

heads of the arrows).

Also, the problem has many similarities with interval graphs, with the spe

ciality that we have conflict graphs of arrows, where the conflict rules are defined 

by the interference. This naturally leads to a notion of arrow graphs. The prob

lem of scheduling data transmissions in the smallest number of discrete rounds 

can be expressed as the problem of colouring the corresponding arrow graph 

with the smallest number of colours, where the colours represent rounds.

6.1 Problem  D efinitions and M odel

The setting is given by a set B  — {b\ , . . . ,  bm} of base stations and a set U =  

{ u i , . . .  , un} of users. Each user and base station is placed in the Euclidean 

plane.

In the one-dimensional case users and base stations lie on a line and they 

are ordered from left to right, i.e., for i < j ,  user Ui is to the left of user Uj 

and base station bi is to the left of base station bj. The interference is modeled 

by interference arrows. Each pair of user u 6  U and base station b G B  forms 

an interference arrow, which is an arrow pointing to the user u and having b as 

the midpoint (see Figure 6.1(b) for an example). Thus, the interference arrow 

for the pair (Ui,bj) has its head at Ui and its midpoint at bj. We denote the 

set of all arrows resulting from pairs P  C U x B  by A (P ). If it is clear from 

the context, we call the interference arrows just arrows. For each user w* we 

have to decide which base station serves U{. This is equivalent to selecting one 

arrow (ui,bj) among all possible arrows from {ui} x B. For every user Ui we 

have to decide in which round she is going to be served. This scheduling can 

be viewed as labelling the chosen arrow (ui,bj) (i.e., bj was decided to serve 

Ui) with a number representing the round, which can be equivalently viewed as 

colouring. We say that two arrows are compatible if no head is contained in the 

other arrow; otherwise, we say that they are in conflict. (Formally, the head Ui 

of the arrow for (Ui,bj) is contained in the arrow for (uk,bi) if Ui is contained 

in the closed interval [6 / — \uk — bi\,bi + \uk — &j|].) Thus, if two users Ui and
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Uk are to be scheduled in the same round, then the chosen arrows (Ui,bj) and 

(uk,bi) have to be compatible. This models the condition that any user must 

not get any interference from any other base station at the time when she is 

being served. If we want to emphasize which user is affected by the interference 

from another transmission, we use the term blocking, i.e., arrow ai blocks arrow 

aj if a j ’s head is contained in a*.

In the two-dimensional case the positions of base stations are in the Eu

clidean plane. The interference is modeled by interference disks d(bi,Uj) with 

center bi and radius \\bi — Uj\\2 - We denote the set of interference disks for the 

user base-station pairs from a set P  by D(P). Two interference disks are in con

flict if the user that is served by one of the disks is contained in the other disk; 

otherwise, they are compatible. The problems can now be stated as follows:

1D -JBS

Input: User positions U = {u \ , . . .  , un} C M and base station positions B  =  

{ b i , . . . ,b m} CM.

Output: A set P  of n user base-station pairs such that each user is in exactly 

one pair, and a colouring C  : A (P )  —> N of the set A{P) of corresponding 

arrows such that any two arrows ai,aj G A (P ), a* aj, with C(a^) =  

C (aj) are compatible.

O bjective: Minimize the number of colours used.

2D -JB S

Input: User positions U = { u i , . . .  ,u n} C M2 and base station positions 

£  =  {&!, . . . , 6 m} CM2.

Output: A set P  of n  user base-station pairs such that each user is in exactly 

one pair, and a colouring C  : T>(V) —> N of the set D (V) of corresponding 

disks such that any two disks di,dj G V(V), di ^  d j , with C{di) =  C (dj) 

are compatible.

Objective: Minimize the number of colours used.

For simplicity we will write Ci instead of C(a{) in the rest of this chapter. 

From the problem definitions above it is clear that both the ID- and the 2D-JBS
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problems consist of a selection problem and a colouring problem. In the selection 

problem we want to select one base station for each user in such a way that the 

arrows (disks) corresponding to the resulting set P  of user base-station pairs 

can be coloured with as few colours as possible. We call a selection P  feasible 

if it contains exactly one user base-station pair for each user. Determining the 

cost of a selection is then the colouring problem. This can also be viewed as a 

problem in its own right, where we no longer make any assumption on how the 

set of arrows (for the ID problem) is produced. The conflict graph G(A) of a 

set A  of arrows is the graph in which every vertex corresponds to an arrow and 

there is an edge between two vertices if the corresponding arrows are in conflict. 

We call such conflict graphs of arrows arrow graphs. The arrow graph colouring 

problem asks for a proper colouring of such a graph. It is similar in spirit to the 

colouring of interval graphs. As we will see in Section 6.3.1, the arrow graph 

colouring problem can be solved in time 0 (n  log n). We finish this section with 

a simple lemma that reduces the number of considered arrows in the selection 

problem and leads to a new type of arrows.

L em m a 6 . 1  For each 1D-JBS instance there is an optimal solution in which 

each user is served either by the closest base station to her left or by the closest 

base station to her right.

P ro o f. This follows by a simple exchange argument: Take any optimal solution 

that does not have this form. Then exchange the arrow where a user is not served 

by the closest base station in some round against the arrow from the closest 

base station on the same side (which must be idle in that round). Shortening 

an arrow without moving its head can only resolve conflicts. Thus, there is also 

an optimal solution with the claimed property. □

The two possible arrows by which a user can be served according to this 

lemma are called user arrows, or pair of user arrows. From now on we are only 

interested in solutions of this kind. It follows that for a feasible selection one 

has to choose one arrow from each pair of user arrows.
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6.2 R elated  Work and N ew  C ontributions

Das et al. [42] propose an involved model for load balancing that takes into ac

count different fading effects and calculates the resulting signal to noise ratios at 

the users for different schedules. In each round only a subset of all base stations 

is used in order to keep the interference low. The decision which base stations 

to use is taken by a central authority. The search for this subset is formulated 

as a (nontrivial) optimization problem that is solved by complete enumeration 

and that assumes complete knowledge of the channel conditions. The authors 

perform simulations on a hexagonal grid, propose other algorithms, and reach 

the conclusion tha t the approach has the potential to increase throughput.

The problem of using the “scarce” radio spectrum in an efficient way in order 

to increase the network throughput attracted a lot of attention from researchers 

from various fields. Although not directly related to our work, we find it worthy 

to mention slightly different models and optimization goals that were studied 

in the context of the radio spectrum management. Many researchers focus on 

the assignment of channels to the communication cell itself. A channel is a 

telecommunication term that refers to a unit of a division of the radio spec

trum, that can be used simultaneously with other channels while maintaining 

an acceptable received radio signal. A comprehensive survey on channel assign

ment algorithms is given in [74]. The main approach is to use one channel for 

more users in different cells, if the interference constraint allows that. Mobile 

users that are too close cannot communicate via the same channel. The al

gorithms presented there are of various types and optimization goals, but the 

exact solution of a mathematical model (if given at all) is often not possible to 

find in polynomial time and hence heuristics are used. If we look at the prob

lem with a “discretizing” approach (graph-theoretic and algorithm-theoretic), 

we can relate it to the colouring problems in graphs (more precisely, to the list- 

colouring and T-colouring of graphs), if the base stations are assigned colours 

representing the channels and an edge in the graph of base stations states that 

the base station cannot use the same channel. The channel assignment problems 

are known as frequency assignment problems in the algorithm-theoretic com

munity. A comprehensive survey and source of information on the topic can be 

found for example in [1 , 50]. Again, we stress, the main difference is that the
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channels are assigned to the cells in the planning phase of the communication 

network.

There is a rich literature on interval scheduling and selection problems (see 

[55, 94] and the references given therein for an overview). Our problem is similar 

to a setting with several machines where one wants to minimize the number of 

machines required to schedule all intervals. A version of this problem where 

intervals have to be scheduled within given time windows is studied in [34]. 

Inapproximability results for the variant with a discrete set of starting times for 

each interval are presented in [33].

In this thesis we study both the 1D-JBS and 2D-JBS problems. We present 

several results in different depth, focusing on the main contributions of the au

thor. The results were published in [53] and [54] and appeared also in the thesis 

of Marc Nunkesser [83] and Gabor Szabo [96]. We show that arrow graphs are 

perfect and can be coloured optimally in 0 ( n logn) time (Section 6.3.1). For 

the one-dimensional JBS problem with evenly spaced base stations we outline 

a polynomial-time dynamic programming algorithm (Section 6.3.2). The full 

proof appeared in the thesis of Marc Nunkesser [83]. For another special case 

of the one-dimensional JBS problem, where 3k users must be served by 3 base 

stations in k rounds, we also give a polynomial-time optimal algorithm (Sec

tion 6.3.3). For the general one-dimensional JBS problem, we outline that for 

any fixed k the question whether all users can be served in k rounds can be 

solved in n ° ^  time (Section 6.3.4) (the full result appeared in the thesis of 

Gabor Szabo [96]). From the perfectness of arrow graphs and the existence of 

a polynomial-time algorithm for computing maximum weighted cliques in these 

graphs we derive a 2 -approximation algorithm for JBS based on an LP relaxation 

and rounding (Section 6.3.5). We show that this result can also be generalized to 

a more realistic model where the interference region extends beyond the receiver 

(Section 6.3.6) (the result is discussed by Gabor Szabo in his thesis [96]). For 

the two-dimensional JBS problem, we outline that the problem is A/’P-complete 

(Section 6.4.1). The complete discussion and the proof appeared in the thesis 

of Gabor Szabo [96]. The special case, deciding whether all users can be served 

in one round, is shown to be solvable in polynomial time (Section 6.4.2). We 

analyze an approximation algorithm for a constrained version of the problem,
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and present lower bounds on the approximation ratios of some natural greedy 

algorithms for the general two-dimensional JBS problem (Section 6.4.3). The 

main contributions of the author are the special case when 3k users are served 

by 3 base stations in k rounds, the special case of serving users in one round, 

and lower bounds for greedy algorithms for 2D-JBS.

6.3 Case on the Line— 1D-JBS

The one dimensional case, when all users and base stations are placed on a line, 

requires selecting an arrow for each user and colouring the resulting arrow graph 

with a minimum number of colours. Trying to understand when a selection of 

arrows leads to an arrow graph with small chromatic number, we first study 

the colouring problem for arrow graphs. We continue with some restricted 

cases—first we discuss the case when the neighboring base stations are evenly 

positioned on the line, and second we discuss the case with 3k users to be served 

in k rounds with 3 base stations. We continue with an optimum algorithm for 

the /c-decision variant of 1D-JBS and present also a 2 -approximation algorithm.

6.3.1 Arrow Graphs

Let us consider an arrow graph devised from the arrows that represent the choice 

of the base stations that serve the users. We are interested in the number 

of rounds that are necessary to serve the users by these arrows, i.e., we are 

interested in a colouring algorithm for arrow graphs. At the end of this section 

we present an 0 (n  log n)-time algorithm that optimally colours a given arrow 

graph. An alternative way of finding a polynomial optimum algorithm is to use 

some of the existing ones—one can show that the class of arrow graphs belongs 

to the class of perfect graphs. For perfect graphs polynomial time algorithms 

for the colouring problem exist.

Let us show that the class of arrow graphs belongs to the class of perfect 

graphs. We consider several graph classes, all perfect, and show their relation

ship with the arrow graphs. The class of PI* graphs consists of conflict graphs 

of triangles whose endpoints lie on two fixed parallel lines. An arrow graph 

can be represented as the intersection graph of triangles on two horizontal lines
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Figure 6.2: An arrow graph (top) and its representation as a PI* graph (bottom).

y = 0 and y = 1 : Simply represent an arrow with left endpoint I  and right 

endpoint r  that points to the right (left) as a triangle with corners (£,0 ), (r, 0 ), 

and (r, 1) (with corners (r, 1), (^,1), and ( ,̂ 0)). It is easy to see that two 

triangles intersect if and only if the corresponding arrows are in conflict. See 

Figure 6.2 for an example. PI* graphs are a subclass of trapezoid graphs, which 

are the intersection graphs of trapezoids that have two sides on two fixed paral

lel lines. Trapezoid graphs are in turn a subclass of co-comparability graphs, a 

well-known class of perfect graphs. Therefore, the containment in these known 

classes of perfect graphs implies the perfectness of arrow graphs. Consequently, 

the size of a maximum clique in an arrow graph always equals its chromatic 

number.

We can also show the relationship between interval graphs and arrow graphs. 

Observe that an interval graph can be represented as an arrow graph simply by 

making each interval an arrow pointing to the right. Hence, the interval graphs 

are a subclass of arrow graphs.

As arrow graphs are a subclass of trapezoid graphs, we can apply known 

efficient algorithms for trapezoid graphs to arrow graphs. Felsner et al. [58] 

give algorithms with running-time 0(n  log n) for chromatic number, weighted 

independent set, clique cover, and weighted clique in trapezoid graphs with n 

vertices, provided that the trapezoid representation is given. Hence, the follow

ing theorem is a direct consequence of our discussion.

T heorem  6.2 Arrow graphs are perfect. In arrow graphs chromatic number,
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weighted independent set, clique cover, and weighted clique can be solved in time 

0 (n  log n).

We present an 0 (n  log n) algorithm for finding the chromatic number of 

arrow graphs, which can be indeed seen els an adaptation of the algorithm for 

trapezoid graphs. Nevertheless, we think the (explicit) description and analysis 

of the algorithm can bring insight into arrow graphs and also makes the thesis 

more self-contained. We assume for simplicity that the arrows are given in 

left-to-right order of their left endpoints (the sorting can also be seen as the 

first step of the algorithm). The algorithm scans the arrows from left to right 

in this sorted order. In step i it processes the i-th arrow a*. The algorithm 

checks whether there are colours that have already been used and that can be 

assigned to ai without creating a conflict. If there are such candidate colours, 

it considers for each such colour c the rightmost right endpoint rc among the 

arrows that have been assigned colour c so far, and chooses for ai a colour c for 

which r c is rightmost (breaking ties arbitrarily). If there is no candidate colour, 

the algorithm assigns a new colour to ai.

We show that this greedy algorithm produces an optimal colouring by show

ing that any optimal solution can be transformed into the solution produced by 

the algorithm.

L em m a 6.3 Let C be an optimal colouring for a set of arrows A  =  { a i , . . . ,  an}. 

The colouring C can be transformed into the colouring produced by the greedy 

algorithm without introducing new colours.

P ro o f. We prove the lemma by induction on the index of the arrows. The 

induction hypothesis is: There exists an optimal colouring that agrees with the 

greedy colouring up to arrow k — 1. The induction start is trivial. In the Ar-th 

step let C = ( ci , . . . ,  cn) be such an optimal colouring and let H  =  ( h i , . . . ,  hn) 

be the greedy colouring, i.e. we have h\ = c \,h 2 = C2 , .. •, h k -i  =  Ck-i- We 

consider the colouring C' = (c'i,. . .  ,c'n) that is obtained from C  by exchanging
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the colours Ck and hk for the arrows a* , . . . ,  an. More precisely, we define

Ci, if i < k or c* g {c*, hk} 

hk, if i>  k and Ci =  Ck 

Ck, if % ^  fc and C{ — hk •

By definition we have c'k = hk, and it remains to show that C' is a proper 

colouring and, therefore, the induction hypothesis is also true for k. If Ck — hk 

we have C' =  C  which is a proper colouring. Otherwise, we have to show that 

all pairs of arrows di,a,j that are in conflict receive different colours in C', i.e., 

c'i 7  ̂ c '. If i , j  < k or k < i , j  this is obvious by the fact that C  is a (proper) 

colouring. Hence, we assume i < k  < j\  the case j  =  k is implied by H  being a 

proper colouring.

If hk is a new colour, i.e., different from all of c i , . . .  ,Ck-\, then, because 

of the nature of the greedy algorithm, also Ck is a new colour. Hence, it is 

impossible that we have c' =  c ' .

Therefore hk is an already used colour. Assume for a contradiction that we 

indeed have c =  c( =  c!j and the arrows a* and aj are in conflict. By the ordering 

of the arrows we know that a* and ak overlap. Observe that c G {ck, hk} because 

C  is a colouring (i.e., before we made the changes, there was no conflict in C ). 

This leaves us with two cases:

C ase  1 c = Ck’ Since C  is a colouring, the arrows a* and ak are compatible, 

i.e., ai is directed left and ak is directed right. Such a configuration is depicted 

in Figure 6.3. By the definition of the greedy algorithm, we know that hk is a 

colour of a compatible arrow. Since hk i=- Ck = Ci, there must exist an arrow 

ai, I < k, that is compatible with ak and that ends not before a* and that has 

colour hk, i.e. ci =  hk- Since aj is in conflict with ai (the head of aj is within a*), 

there is also a conflict between aj and a/. We have c' =  Ck, implying Cj — hk, 

hence we get the contradiction Cj =  hk =  ci in the optimal colouring C.

C ase 2 c = hk- Because i f  is a colouring, a* and ak have to be compatible. 

Since aj ends before ak and is in conflict with a^, also aj is in conflict with ak- 

Because dj =  hk we know by definition of C' that Cj =  Ck, hence there is a 

conflict in C, a contradiction. □
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ai

Qj

ak
i < k < j

Figure 6.3: Possible configuration for the two cases. Dotted lines mean that the 
arrows could be extended.

The running time of the algorithm depends on the time the algorithm spends 

in every step on identifying an allowed colour that was previously assigned to an 

arrow with the rightmost right endpoint. By maintaining two balanced search 

trees (one tree for each direction of arrows) storing the most recently coloured 

arrows of the used colours (one arrow per colour) in the order of their right 

endpoints, we can implement this operation in logarithmic time. Together with 

Lemma 6.3 we get the following theorem.

T h e o rem  6.4 The greedy algorithm optimally colours a given set of arrows 

{ai, 0 2 , • • •, an} in 0 ( n logn) time.

6.3.2 Evenly Spaced Base Stations

On the way towards the general 1D-JBS problem, we consider the special case 

when all base stations are evenly spaced. From the practical point of view, 

this is a possible scenario, if one wants to cover, for example, a highway in 

an uninhabited area. We assume that m  base stations {&i,. . . ,  bm} and n users 

{wi, . . . ,  un} are on a line, where the distance between any two neighboring base 

stations is the same.

Let d denote the distance between two neighboring base stations. The base 

stations partition the line into two rays and a set of intervals { / i , . . .  , I m- 1 }. 

In this section we additionally require that no user to the left of the leftmost 

base station be further away from it than distance d, and that the same hold 

for the right end. Hence, we can introduce two additional intervals Io and Im , 

where Io is the left neighbour of I\ and Im is the right neighbour of Im- \  on 

the line. Now all users lie in the union of the intervals. We outline an optimum



CHAPTER 6. JO IN T BASE STATION SCHEDULING 142

polynomial time algorithm that solves this special case of ID-JBS. The complete 

proof appeared in [53] and in the thesis of Marc Nunkesser [83].

Observe that, since we consider only solutions that consist of user arrows 

only, every arrow intersects only two intervals—an arrow formed by a base 

station bj intersects intervals I j - \  and Ij .  The crucial property of the setting 

with evenly placed base stations is that among the optimum solutions there is 

always one that is non-crossing. A solution to 1 D-JBS is said to be non-crossing 

if there are no two users u and w in the same interval R  such that u is to the 

left of w, u is served from the right, and w from the left.

L em m a 6.5 For instances of 1D-JBS with evenly spaced base stations, there is 

always an optimal solution that is non-crossing.

P ro o f. Take any optimal solution s that is not non-crossing. We show that 

such a solution can be transformed into another optimal solution s' that is non

crossing. Let u and w be two users such that u and w are in the same interval, 

u is to the left of w , and u is served by the right base station br in round t\ 

(forming an interference arrow ar) and w is served by the left base station bi in 

round £2 (forming an interference arrow ai); trivially, t\ 7  ̂£2 - Modify s in such 

a way that at t\ base station br serves w and at t 2 base station bi serves u (and 

modify the interference arrows a* and ar accordingly). This new solution is still 

feasible because first of all both the left and the right arrows ai and ar have 

become shorter. This implies that both ai and ar can only block fewer users. 

On the other hand, the head of ai has moved left and the head of ar has moved 

right. It is impossible that they are blocked now because of this movement: In 

t\  this could only happen if there were some other arrows containing w, the new 

head of ar. Such an arrow cannot come from the left, because then it would 

have blocked also the old arrow. It cannot come from br because br is busy. It 

cannot come from a base station to the right of br, because such arrows do not 

reach any point to the left of br (here we use the assumption that the rightmost 

user is no farther to the right of the rightmost base station than d, and that the 

base stations are evenly spaced). For t 2 the reasoning is symmetric. □

The selection of arrows in any non-crossing solution can be completely char

acterized by a sequence of m — 1 division points di, such that the i th division
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point di is the index of the last user that is served from the left in the i th inter

val Ii. (The case where all users in the ith interval are served from the right is 

handled by choosing the ith division point di as the index of the rightmost user 

to the left of the interval, or as 0 if no such user exists.) A brute-force approach 

could now enumerate over all possible 0 (n m_1) division point sequences (dps) 

and colour the selection of arrows corresponding to each dps with the optimum 

greedy colouring algorithm of Section 6.3.1.

We can do better by exploiting the properties of the setting. Let Xi(di-1 > di) 

denote the cost (i.e., the minimum number of colours needed to colour the 

arrows) of an optimum solution of the setting with users u\, U2 , ■ ■ ■, and 

base stations &i, &2> • • • » such that bi serves users Udi_1+i, . . . ,  Wdi* Let Di 

denote all possible division points of interval I i . Observe that we are interested 

in the value min^eD^-i X m ( d , n ) ,  i.e., the cost of an optimum solution of the 

whole setting with U and B.

The value Xi+i(di, di+\) is obtained from some optimum solution that has 

di-1 G Di-1 as a divsion point in interval Ii~\. Thus the arrows of that are 

uniquely determined by the division points di and di+i can only be in conflict 

with arrows formed by bi (that are determined by the division points di-1 and 

di). Let Ci+i(di-i,di,di+i) denote the minimum number of colours needed to 

colour the arrows of frj+i with respect to the colouring of arrows of bi. Clearly, 

this number is equal to the minimum number of colours needed to colour the 

arrows of bi+i with respect to the colouring of all arrows of &i,. . . ,  6*. As all 

the colours for the arrows of bi are different, we can assume, w.l.o.g., that the 

colours are 1 ,2, . . .  ,pi, where pi is the number of arrows at base station bi (no

tice that pi is determined by the choice of di-1 and di). Then Cj+i(di_i, di, d*+i) 

can be computed by the greedy colouring algorithm using the arrows of bi and 

bi+i only. Then Xi+i(di,di+i) =  m ax{xi(d i-i ,d i) ,c i+i(d i - i ,d i ,d i+i)}. Thus, 

to compute Xi+i(di, di+i) without knowing the optimum solution, we can re

cursively compute

Xi+i(di,di+i) = min max{xi(d*-i, di), ci+i(di- 1, d{, d*+i)}. (6.1)

A dynamic programming approach starts with computing the values x i(0> d) 

for all d G D\.  This can be done easily by the greedy colouring algorithm.
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Then, setting i = 1 and increasing i one by one, the dynamic programming 

computes Xi+i using the recurrence (6.1). The running time is dominated by 

the calculation of the c(-) values. There are 0 (m • n3) such values, and each of 

them can be computed in time 0 (n  log n) using the greedy colouring algorithm. 

An optimal solution can be found by tracking back the division points of the 

optimum cost solution and then colouring the arrows resulting from the division 

points.

T h e o rem  6.6 The base station scheduling problem for evenly spaced base sta

tions can be solved in time 0 (m  • n4 logn) by dynamic programming.

Note that the running time can also be bounded by 0 (m  • u ^ ax logumax), 

where umax is the maximum number of users in one interval.

6.3.3 Serving 3k  Users w ith 3 Base Stations in k  Rounds

We study another special case of the general setting. We are given 3 base 

stations b\, 62  and 63, and 3k users with k far away users among them, i.e., 

users to the left of 61 or to the right of 63 whose interference arrows contain 62; 

the problem is to decide whether the users can be served in k rounds.

Observe that in every round every base station has to serve a user. We know 

that a far away user has to be served by its unique neighboring base station. 

Since the arrows of far away users contain 62, all users between bi and 62 have 

to be served in rounds in which far away users of 63 are served, and all users 

between 62 and 63 have to be served in rounds in which far away users of b\ are 

served. In particular, every round must be of one of the following two types:

T y p e  1 : 63 serves a far away user, 62 serves a user between 61 and 62, and 61 

serves a user that is not a far away user.

T y p e  2 : 61 serves a far away user, 62 serves a user between 62 and 63, and 63

serves a user that is not a far away user.

For every user, it is uniquely determined whether she will be served in a round

of Type 1 or Type 2.

The schedule can be constructed in the following way. Suppose we have ki 

far away users at b\ and k$ far away users at 63, k =  k\ +  ^3. First, we serve the
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b\ 62 63
• x  * * * '  # y  '  x  '  • • •

U l  U 2 U 3 U 4  U s  U&U7 ^  U g  Uq U \ q  U \ \  U 12

 *»  ► 1
—   ► 2

•••••=►     = = -------------------------------------►  3

Figure 6.4: Far away users uio, mu and U12 are served by 63 in rounds 1, 2 and 
3, respectively. The solid arrows depict the selection of users for 62 and 63. The 
dotted arrows depict the resulting selection for 61. Users u\, ug and ug will be 
scheduled in a round of Type 2 (not shown).

far away users of 63 in rounds 1 , . . . ,  k$ in the order of increasing distance from 

63. Next, we match the resulting arrows with arrows produced by 62 serving 

users between b\ and 62 (cf. Figure 6.4). We apply a best fit approach. For 

every round i = 1, 2, . . . ,  £3, we find the user closest to 62 that can be served 

together with the corresponding far away user served by 63, and schedule the 

corresponding transmission in that round. Note that with this selection the 

size of the arrows of 62 grows with the number of the round in which they are 

scheduled. Now we have to serve the remaining k3 users (that are not far away 

users of 61) with b\. We use a best fit approach again, i.e., for every round 

i =  1, 2 , . . . ,  &3, we schedule the user with maximum distance from b\ (longest 

arrow) among the remaining users. This completes the description of how we 

obtain a schedule for the rounds in which a far away user of 63 is served. The 

schedule for the remaining users (the far away users of 61, and the users that 

must be scheduled in a round in which a far away user of b\ is scheduled) can 

be found similarly, starting with the far away users of 61.

We claim that if there exists a valid schedule with k rounds for the given 

instance of the problem, our algorithm produces a valid schedule. W ithout loss 

of generality, we consider only the schedule for the rounds in which the far 

away users of 63 are served; the reasoning for the rounds with far away users of 

61 is analogous. Consider any valid schedule with k^ rounds for the 3/C3 users 

that must be served in rounds in which far away users of 63 are served; call 

this schedule the optimal schedule. We can assume that the far away users are 

served by 63 in the optimal schedule in the same round as in our schedule (the 

schedule produced by our algorithm). We will show that we can transform the 

optimal schedule into our schedule without losing validity.
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First, we transform the optimal schedule in such a way that, in addition to 

the user served by 63, also the user served by 62 Is the same as in our schedule 

in every round. Consider the first round i in which the optimal schedule does 

not serve the same user with &2 as our schedule. Assume that 62 serves user x 

in our schedule, but user y ^  x  in the optimal schedule. (Note also that the 

algorithm cannot get stuck while selecting a user to be served by &2 in round i, 

since y is a candidate.) Note that y must be to the left of x, due to the best-fit 

rule our algorithm applies. The optimal schedule must serve x  in some round 

j  ^  i. If it serves x  with &2, we know that j  > i, and we can simply exchange 

the users served by 61 and &2 in rounds i and j  in the optimal schedule. If the 

optimal schedule serves x  with 61 in round j , we can let the optimum serve y 

with b\ in round j  and x  with &2 in round i. In both cases, we have transformed 

the optimal schedule so that it also serves x  with &2 in round i, without losing 

validity. Repeating this transformation, we obtain an optimal schedule that 

serves the same users with &2 and 63 as our schedule in every round.

It remains to handle the users served by 61. Consider the first round i in 

which the optimal schedule differs from our schedule. Assume that b\ serves user 

w in our schedule, but user z in the optimal schedule. Note that, by the best-fit 

approach, the arrow for (w, b\) must be at least as long as the arrow for (z , 61). 

The optimal schedule must serve w in some later round, say, round j ,  also with 

61. We can change the optimal schedule by letting 61 serve user w in round i 

and user 2 in round j ; this does not affect the validity of the schedule, since the 

arrow for z is not longer than the arrow for w (and thus round j  remains valid) 

and since the arrow produced by the transmission of &2 is shorter in round i 

than in round j  (and thus serving w in round i must be valid if serving w in 

round j  was valid). By repeating this transformation, we have transformed the 

optimal schedule into our schedule, without losing validity. This shows that our 

algorithm produces a valid schedule if one exists. The time complexity of our 

algorithm is dominated by the time for sorting the users, 0 (n  log n). After the 

sorting, the schedule can be computed in linear time.

T h eo rem  6.7 For the setting with 3 base stations and 3k users on a line with 

k far away users, there is an 0 (n  log n) time algorithm that computes a valid 

schedule with k rounds if there is one.
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6.3.4 Exact Algorithm  for the /c-Decision Problem

In this section we present an exact algorithm for the decision variant /c-ID-JBS 

of the 1D-JBS problem: For given k and an instance of 1D-JBS, decide whether 

all users can be served in at most k rounds. We present an algorithm for this 

problem that runs in 0(m • n2k+1 logn) time.

As shown in Section 6.3.1, the arrow graphs are perfect and therefore the 

size of the maximum clique of an arrow graph equals its chromatic number. We 

use this fact in our algorithm, which we call A^-jbs- The main idea is to divide 

the problem into subproblems, one for each base station, and then combine the 

partial solutions to a global one.

The set of all arrows that are considered in the selection phase is the set of 

all user arrows. For base station bi, the corresponding subproblem Sl considers 

only those user arrows for which the arrow intersects bi or the alternative arrow 

intersects bi, i.e., if at and ar are user arrows of a user, then ai and ar are 

considered at Si if and only if ar or ai intersect 6j. Let us denote this set of 

arrows Ai. We call S i- \  and 5 i+1 neighbours of Si. A solution to Si consists of 

a feasible selection of arrows from Ai of cost no more than k, i.e., the selection 

can be coloured with at most k colours.

We want to find all solutions to every Si and subsequently select one appro

priate solution from every Si and combine these selected solutions into a global 

solution. To find all solutions we enumerate all possible selections that can lead 

to a solution in k rounds. For Si we store all such selections {s*, . . . , s™*} in 

a table T*. We only need to consider selections in which at most 2k arrows 

intersect the base station bi. All other selections need more than k rounds, 

because they must contain more than k arrows pointing in the same direction 

at bi. Therefore, the number of entries of Ti is bounded by o (j) =  0(n2k). 

We need 0(n logn) time to evaluate a single selection with the greedy colouring 

algorithm of Section 6.3 .1. Selections that cannot be coloured with at most k 

colours are marked as irrelevant and ignored in the rest of the algorithm. We 

build up the global solution by choosing a set of feasible selections s i , . . .  , s m 

in which all neighbours are compatible, i.e., they agree on the selection of com

mon arrows. It is easy to see that in such a global solution all subsolutions are 

pairwise compatible.
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We can find such a set of compatible neighbours by going through the tables 

in left-to-right order and marking every solution in each table as valid if there 

is a compatible, valid solution in the table of its left neighbour, or as invalid 

otherwise. A solution s* marked as valid in table Ti thus indicates that there are 

solutions s i , . . . ,  Si-1 in T i , . . .  , Tj_i that are compatible with it and pairwise 

compatible. In the leftmost table Ti, every feasible solution is marked as valid. 

When the marking has been done for the tables of base stations &i, 

we can perform the marking in the table T, for bi in time 0(n2k+1) as follows. 

First, we go through all entries of the table Tj_i and, for each such entry, in 

time 0(n) discard the part of the selection that affects pairs of user arrows 

that intersect only bi-\ but not &*, and enter the remaining selection into an 

intermediate table T i - i,*. The table T j_ ^  stores entries for all selections of 

arrows from pairs of user arrows intersecting both bi-\ and bi. An entry in 

T i - \ ti is marked as valid if at least one valid entry from T i- \  has given rise to 

the entry. Then, the entries of Ti are considered one by one, and for each such 

entry Si the algorithm looks up in time O(n) the unique entry in T i - 1,* that is 

compatible with Sj to see whether it is marked as valid or not, and marks the 

entry in Ti accordingly. If in the end the table Tm contains a solution marked 

as valid, a set of pairwise compatible solutions from all tables exists and can be 

retraced easily.

The overall running time of the algorithm is 0(m • n 2k+l • logn). There is a 

solution to A;-ID-JBS if and only if the algorithm finds such a set of compatible 

neighbours.

L em m a 6.8 There exists a solution to k-lD-JBS if and only i f  A k -  j b s  finds a 

set of pairwise compatible solutions.

P ro o f. (=>) Every arrow intersects at least one base station. A global solu

tion directly provides us with a set of compatible subsolutions Eopt =  {s°P\  

S2Pt’ • • •, Since the global solution has cost at most k, so have the solu

tions of the subproblems. Hence, the created entries will appear in the tables 

of the algorithm and will be considered and marked as valid. Thus there is at 

least one set of compatible solutions that is discovered by the algorithm.

(<*=) We have to show that the global solution constructed from the partial 

ones has cost a t most k. Suppose for a contradiction that there is a point
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Figure 6.5: A clique of size greater than k at point p together with the different 
types of arrows at this point.

p where the clique size is bigger than k and therefore bigger than the clique 

at bi (the left neighboring base station of p) and the clique at bi + 1 (the right 

neighboring base station of p). We divide the arrows intersecting point p into 5 

groups as in Figure 6.5. Arrows of type a (b) have their head between bi and 

bi+ 1 and their tail to the left (right) of bi (&*+i). Arrows of type c (d) have their 

tail between bi and bi+\ and their head to the left (right) of bi (bi+1). Finally, 

type e arrows intersect both bi and For the clique at p  to be bigger than 

tha t at bi some arrows not considered at bi have to create conflicts. The only 

such arrows (considered at bi+i but not at bi) are of type d (observe that arrows 

of type a, b and e are considered both at the table for bi and at the table for 

&i+i). If their presence increases the clique size at p, then no type c arrow 

can be in the maximum clique at p (observe that arrows of type c and d are 

compatible). Therefore, the clique at p cannot be bigger than the clique at bi+1 , 

a contradiction. □

T h e o rem  6.9 Problem k-lD -JB S can be solved in time 0 {m  • n 2 k + 1  • logn).

6.3.5 Approxim ation Algorithm

In this section we present a 2-approximation algorithm for 1D-JBS based on 

a relaxed (integer) linear program and a subsequent straightforward rounding. 

The main idea is to express the fact that each user u is served by her left of 

right neighbouring base station via two indicator variables that sum up to 1. 

The (deterministic) rounding then follows the choice of the indicator variable 

that is bigger than one half.



CH APTER 6. JO IN T BASE STATION SCHEDULING 150

Let A  denote the set of all user arrows of the given instance of 1D-JBS. The 

selection problem of ID-JBS asks for a feasible selection Asei C  A  that minimizes 

the chromatic number of its arrow graph G(Ase\) (among all feasible selections). 

As for perfect graphs the chromatic number equals the clique number, we set 

our optimization goal to be the clique number of G(Asei). The ID-JBS problem 

can then be expressed as an integer linear program (ILP). We introduce two 

indicator variables L and r* for every user i that indicate whether she is served 

by the left or by the right base station, i.e., if the user’s left or right user arrow 

is selected into Asei. Moreover, we ensure by the constraints that no cliques 

in G'(Asei) are large and that each user is served. The ILP formulation is as 

follows:

min k (6-2)

s.t. L + Ti < k V cliques C  in G{A) (6.3)
hec  n e e
li + rt = 1 V*€{l , . . . , | t f | }  (6.4)

* ^ < € { 0 ,1 }  Vi € { 1 ,. . . ,  \U\} (6.5)

f e e N  (6.6)

The natural LP relaxation is obtained by allowing li,ri e  [0,1] and k > 0. 

Given a solution to this relaxation, we can use a rounding technique to get an 

assignment of users to base stations that has cost at most twice the optimum,

i.e., we obtain a 2-approximation algorithm. Let us denote by opt the optimum 

number of colours needed to serve all users. Then opt is at least k , because 

the optimum integer solution is also a feasible fractional solution (i.e., a feasible 

solution to the relaxed LP). We can construct a feasible solution for the integer 

LP from a solution to the relaxed problem by rounding L := [/j+ 0 .5 j, r* := 1—/*. 

Before the rounding the size of every (fractional) clique is at most k ; afterwards 

the size can double in the worst case (because the value of each individual 

variable can at most double). Therefore, the cost of the rounded solution is 

at most 2k < 2opt. Figure 6.6 gives an example where the cost of an optimal 

solution to the relaxed program is indeed smaller than the cost of an optimal 

integral solution by a factor arbitrarily close to 2.
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Si:
lu = 0.5 ru =  0.5
------------ 7K---------- *****---------- 7\-----------

bt u br

S 2:

------------- X-----------— -----------X------------
- X- « X-  X » X

' n —1

Figure 6.6: Setting S\ with two base stations bi and br and one user u in between, 
where both the solution of the ILP and the solution of the LP relaxation have 
cost 1. 52 is constructed recursively by adding to the setting of S\ two (scaled) 
copies of 5 1 in the tail positions of the arrows. Here the cost of the relaxed LP 
is 1.5 and the integral cost is 2. The recursive approach for general n is shown 
in the bottom of the figure. Using setting S\ and putting two (properly scaled) 
settings 5 n_i as depicted in the picture, we get a setting Sn where k*(n), the 
cost of the LP relaxation for 5n, is 0.5 +  k*(n — 1) =  0.5 +  n ) 2, whereas the 
cost of the ILP is n.

a\
CL2

a3
<24

Cln—1 

An

Figure 6.7: Example of an arrow graph with an exponential number of maximum 
cliques. For every choice of arrows from a compatible pair (a2 i - i  ,« 2z) we get a 
clique of size n /2 , which is maximum. The arrow graph can arise from a ID-JBS 
instance with two base stations in the middle and n / 2  users on either side.
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One issue that needs to be discussed is how the relaxation can be solved 

in time polynomial in n and m, as there can be an exponential number of 

constraints of type (6.3). (Figure 6.7 shows that this can really happen. The 

potentially exponential number of maximal cliques in arrow graphs distinguishes 

them from interval graphs, which have only a linear number of maximal cliques.) 

Fortunately, we can still solve such an LP in polynomial time with the ellipsoid 

method of Khachiyan [75] applied in a setting similar to [67]. This method 

only requires a separation oracle that provides us for any values of U, r * with a 

violated constraint, if one exists. Thus, we need to find a separation oracle that 

runs in polynomial time. It is easy to check for a violation of constraints (6.4) 

and (6.5). For constraints (6.3), we need to check if for given values of li, r* the 

maximum weighted clique in G(A) is smaller than k. By Theorem 6.2 this can 

be done in time 0 (n  log n). Summarizing, we get the following theorem:

T h e o rem  6.10 There is a polynomial-time 2-approximation algorithm for the 

ID -JBS problem.

6.3.6 Different Interference M odels

We discuss here briefly another possible interference model that can arise in the 

modelling phase of 1D-JBS. So far we have been dealing with the discrete inter

ference model where the interference region has no effect beyond the targeted 

user. One step towards a more realistic model is to consider the interference 

region, produced by a base station sending a signal to a user, to span also be

yond the targeted user. For the 1-dimensional case this can be modeled by using 

interference segments with the user somewhere between the endpoints of this 

segment (the small black circles in the segments in Figure 6.8) and the base 

station in the middle of the segment. The conflict graph of such interference 

segments is another special case of trapezoid graphs. An example of interfer

ence segments together with the corresponding conflict graph represented as a 

trapezoid graph is in Figure 6.8.

The transformation from interference segments to trapezoids is straightfor

ward, if we consider an interference segment with a user between its endpoints 

as two “interference” arrows pointing to the user from the left and from the 

right. Then the two resulting triangles from the transformation of interference
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a b e

Figure 6.8: Example of interference segments for base stations and users (top; 
only users are depicted) and the trapezoid graph as the conflict graph of the 
interference segments (bottom).

arrows to trapezoid graphs (Section 6.3.1) form the trapezoid that corresponds 

to the interference segment. Hence, also the “interference segment graphs” are 

perfect and for this interference generalization of the ID-JBS problem we have 

a 2-approximation algorithm using the same technique as in Section 6.3.5.

6.4 The General Case— 2D-JBS

We discuss now 2D-JBS, the two-dimensional version of the joint base station 

scheduling problem. As the decision variant of 2D-JBS (the &-2D-JBS problem, 

which asks whether we can serve all users in k rounds) is shown to be MV- 

complete for k > 3 (main ideas are outlined in Section 6.4.1), a natural quest 

for approximation algorithms tries to exploit the 2-approximation algorithm of 

the 1D-JBS—set up an ILP of the problem, and use some rounding of the LP 

formulation obtained via relaxation of the constraints of the ILP. First of all 

it is not clear what the rounding would be, because every user can possibly 

have more than 2 base stations that are considered to serve the user. Moreover, 

the conflict graphs of interference disks need not be perfect, as can be seen 

if Figure 6.9. Thus, an approximation algorithm based on an LP formulation 

similar to the one for 1D-JBS is more than doubtful. We give, however, an 

approximation algorithm whose approximation ratio depends solely upon the 

geometry of the setting—the minmum distance between any two base stations, 

and the maximum allowed radius of an interference disk. To the end we discuss 

several greedy algorithms and show lower bounds on their approximation ratio.
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Figure 6.9: A cycle of length 5 in the conflict graph of interference disks (left). 
Note that it is not clear that the selection problem will ever produce this selec
tion. Another assignment of users to base stations (an optimum one) does not 
lead to such a situation (right).

6.4.1 AA'P-Completeness of the k - 2D-JBS Problem

In this section we outline very briefly that the decision variant (&-2D-JBS) of 

2D-JBS is Af'P-complete. The complete proof appeared in [53] and in the thesis 

of Gabor Szabo [96].

The problem, /c-2D-JBS, is shown to be .A/’P-complete by a reduction from 

the general /c-colourability problem. Our reduction is inspired by the reduction 

used in [66], which proofed A/’"P-completeness of fc-colourability of unit disk 

graphs (conflict graphs of unit discs in the plane). Given any graph G, we 

construct in polynomial time a corresponding 2D-JBS instance that can be 

scheduled in k rounds if and only if G is A;-colourable. We use an embedding 

of G into the plane which allows us to replace the edges of G with suitable 

base station chains with several users in a systematic fashion such that the 

fc-colourability is preserved. The result that we obtained is the following.

T h e o rem  6.11 The k-2D-JBS problem is J\fV-complete for any fixed, k > 3. 

The colouring problem of k-2D-JBS is AfV-complete for any fixed k > 3.

6.4.2 Base Station Assignment for One Round

The previous section showed that even if we have users assigned to the base sta

tions as they are served in an optimal solution, the &-2D-JBS problem cannot 

be solved in polynomial time unless V —M V. Now we consider the complemen

tary problem: knowing for every user the round in which the user is served in a
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particular optimal solution, find an assignment of the users to the base stations 

such that a valid optimal schedule is obtained. We will see that this problem 

is solvable in polynomial time, which actually shows that, in some sense, the 

assignment problem is easier than the colouring one.

Knowing for every user the round in which she is served, we can consider 

every round as an independent problem by taking into account only the users 

scheduled in the corresponding round. We study therefore the problem of de

ciding whether we can serve all the users in one round.

We start with a simple observation that is valid also for the general 2D-JBS 

problem. Consider an empty disk d = d(b, u ) in the given setting of users U 

and base stations B , i.e., a disk containing only user u. We claim that every 

optimal solution can use d to serve u without changing the disks selected for 

other users. To see this, imagine u is served by some other base station b' in an 

optimal solution. Then b has to be idle in this round, because u is the closest 

user of b and therefore serving anybody else would block u. Moreover, d does 

not contain any other user, therefore we can serve u with b instead of b' in the 

same round without blocking anybody else.

We can adapt this idea to our setting. Suppose we can serve all the users in 

one round. Observe that every optimal solution is a set of empty disks. Consider 

the set of all possible empty disks formed by B  and U. For every base station 

there is at most one empty disk, determined by the closest user to the base 

station (there is no empty disk at b if there are 2 or more closest users at the 

same distance from b). For every user u G U there must be a t least one empty 

disk serving u (e.g., the disk from an optimal solution). We know that we can 

use any of these disks in any optimal solution, therefore we can pick any empty 

disk into our optimal solution. So our algorithm simply computes all empty 

disks and then selects for each user u an arbitrary empty disk serving u\ if some 

user u does not have an empty disk, the users cannot be served in one round.

The algorithm can clearly be implemented to run in polynomial time. Us

ing standard techniques from computational geometry [43], e.g., computing in 

0 (n  log n) time a Voronoi diagram for the user points and then a point location 

data structure so that the closest user of a base station can be determined in 

O(logn) time, we obtain a running-time of 0 ((m  + n) logn).
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Lem m a 6.12 The problem of deciding whether all users in a given 2D-JBS 

instance can be scheduled in one round can be solved in time 0 ((n +  m) logn).

Corollary 6.13 Given the sets U\ , . . . ,  Ur of users scheduled in rounds 1 , . . . ,  r  

in an optimal solution, the problem of assigning base stations to the users such 

that we obtain a valid schedule of users Ui in round i can be solved in polynomial 

time.

6.4.3 Approxim ation algorithms

We investigate possible algorithms for the general 2D-JBS problem. We discuss 

first a scenario of limited transmission power, which directly translates into 

radius-bounded interference disks. Then we consider several greedy algorithms 

and discuss their limits by showing lower bounds on their approximation ratio.

B ounded geom etric constraints

We consider instances where the base stations are at least a distance A from 

each other and have limited power to serve a user, i.e., every base station can 

serve only users that are at most R ma.x away from it. We also assume that 

for every user there is at least one base station that can reach the user. We 

present a simple algorithm achieving an approximation ratio depending only on 

the parameters A and R max.

Consider the following greedy approach: For round 1,2, . . . ,  the algorithm 

repeatedly picks an arbitrary user base-station pair (u, b), where u is an unserved 

user, such that the transmission from b to u can be added to the current round 

without creating a conflict. If no such user base-station pair exists, the next 

round starts. The algorithm terminates when all users have been served.

We can analyze the approximation ratio achieved by this greedy algorithm 

as follows. Let k be the number of rounds that the algorithm needs to schedule 

all users. Let u be a user served in round k, and let b be the base station 

serving u. Since u was not served in rounds 1,2, . . . ,  k — 1, we know that in each 

of these rounds, at least one of the following is true:

• b serves another user u' ^  u.
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• u is contained in an interference disk d(b', u') for some user u' ^  u that is 

served in that round.

• b cannot transmit to u because the disk d(b, u ) contains another user u' 

that is served in that round.

In each of these cases, we see that a user u' is served, and that the distance 

between u and u' is at most 2 R max (since every interference disk has radius at 

most R max). Therefore, the disk with radius 2Rma.x centered at u contains at 

least k users (including u ). Let B' be the set of base stations that serve these k 

users in the optimal solution. The base stations in B ' must be located in a disk 

with radius 3R m&x centered at u. As any two base stations are separated by a 

distance of A, we know that disks with radius A /2 centered at base stations are 

interior-disjoint. Furthermore, the disks with radius A /2 centered at the base 

stations in B ' are all contained in a disk with radius 3Rmax +  A /2 centered at u. 

Therefore, we have

, (3R  max +  A /2)2tt _  {6 R max +  A )2 
1 1 -  (A /2)27t A2

Furthermore, we know that the optimal solution needs at least k /\B '\ rounds. 

This yields the following theorem.

T h e o rem  6.14 There exists an approximation algorithm with approximation 

ratio )2 f or 2D-JBS in the setting where any two base stations are at

least A away from each other and every base station can serve only users within 

distance at most R max from it.

General 2D-JBS

We present lower bounds on the approximation ratio of three natural greedy 

approaches for the general 2D problem. The algorithms proceed round by round 

and use certain greedy rules to determine the user base-station pairs to be 

scheduled in the current round.

First, consider the greedy algorithm that serves as many users as possible 

in every round, i.e., in each round it chooses a maximum independent set in 

the conflict graph of all interference disks corresponding to user base-station



CHAPTER 6. JO INT BASE STATION SCHEDULING 158

Figure 6.10: A greedy approach serves n  users placed on a common interference 
disk in n  time steps. An optimum algorithm can serve the users in one time 
step by assigning Ui to base station bi, which lies on a halfline determined by bo 
and Ui.

pairs involving unserved users. We refer to this algorithm as the maximum- 

independent-set algorithm. The maximum independent set problem is M V- 

hard in general graphs, and we do not know its complexity for conflict graphs of 

interference disks; nevertheless, we believe that it is interesting to determine the 

approximation ratio that can be achieved using this greedy approach, even if it 

is not clear whether the approach can actually be implemented in polynomial 

time.

Furthermore we consider greedy algorithms that, in each round, repeatedly 

choose an interference disk of an unserved user that can be scheduled in the 

current round without creating a conflict. The algorithm that chooses among the 

interference disks of all unserved users a disk of smallest radius is the smallest- 

disk-first algorithm, and the algorithm choosing a disk containing the fewest 

other unserved users is the fewest-users-in-disk algorithm.

For the smallest-disk-first algorithm, there is a simple example (see Fig

ure 6.10) showing that this approach has approximation ratio fl(n). All the 

user points in this example, however, lie on the perimeter of a common inter

ference disk. As such a configuration appears to be a rare case in practice, this 

leads us to consider instances of 2D-JBS in general position, defined as follows.

D efin ition  6.1 We say that sets of points (U,B) C K2 x R2 are in general 

position i f  no two points from U lie on a circle centered at some point in B.
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bo in d rounds.
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Figure 6.11: Outline of the construction of instances that greedy algorithms 
cannot handle efficiently

For points in general position we can show a lower bound of fi(logn) on the 

approximation ratio of all three considered greedy algorithms. Our construction 

of 2D-JBS instances leading to this lower bound is sketched in Figure 6.11. 

Conceptually, the arrangement of users and base stations can be viewed as a 

tree, where the edges of the tree are indicated by solid and dashed lines in the 

figure. The dashed lines represent a distance A, while the solid lines represent 

much shorter distances £* A. The structure of the tree is such that, after 

contracting the dashed edges, one obtains a binomial tree. The base stations in 

the figure are labelled by bo, b\ , . . .  in the order of a depth-first search traversal 

of the tree. Users are vertices of degree 2 and are adjacent to two base stations; 

our convention is to label a user adjacent to bi and bj with U ij.

The base station at the root of the tree is bo- The aim of the construc

tion is to have the greedy algorithms use bo to serve the d users uo,i,uo,2 , 

uo,4 , •. •, uo,2* > • • • > u0 2d -i , which are the children of bo, in d consecutive rounds,
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whereas they can be served in a single round by an optimum algorithm by us

ing the d base stations 6 1 , 6 2 , 6 4 , . . . ,  i • • • , b2d~i. We show how to construct 

a tree Td w ith this property for every value of d. In the following, the term 

“greedy algorithm” should be taken to refer to the smallest-disk-first algorithm. 

Afterwards we will discuss how the two other greedy algorithms behave on the 

constructed instances.

For d — 1, we simply put the user 1*0,1 between base stations bo and 61 at a 

position closer to 6 0 , see Figure 6.11(a). For d = 2, we have to ensure that user 

1*0 ,2  is not served by b2 in the first round. Therefore we occupy 62 in the first 

round by another user 1*2 ,3 , which will be selected by the greedy algorithm (see 

Figure 6 . 1 1  (b)).

Similarly, for general d, we construct the tree Td from two trees Td-1 , see 

Figure 6.11(c). We want to ensure that the user i*o,2d- 1 is n°f served in the 

first d — 1 rounds; hence, we make base station b2d-i (which could serve 1*0 ,2^-! 

from below) busy for d — 1 rounds by creating a copy of Td- 1 rooted at b2d~i. 

Equivalently, the tree Td can be viewed as putting trees To, Xi, T2, . . . ,  Td-i 

below the users 1*0 ,1 , . . . ,  i*0,2*1-1 • Note also that every base station in the tree 

Td is the root of a tree Tk for some k. With this construction, we obtain a tree 

with levels of users and base stations, where level i consists of the users and 

base stations whose distance to the root (in terms of the number of edges) is 

of the form 2i — 1 or 2i. All users in a level have the same y-coordinate, and 

the same holds for the base stations in a level. We set e\ < £ 2  < ■ • ■ < £d and 

A in such a way that €d A and Wd £1 , where Wd is the width of the 

tree Td (see Figure 6.11). When constructing a tree Td from two trees T d-1 , we 

always leave a free space of width Wd- 1 between these two trees. We adjust 

A such tha t serving a user Uij from level I  by base station bj blocks all the 

users on level I  + 1 . Also, we adjust Wd such that a disk centered at any user 

i* from level i with radius £\ contains all other users from level i. Figure 6.12 

depicts the desired property. To ensure that the points are in general position, 

we can adjust the rr-coordinates of all users by a small perturbation that is much 

smaller than any of the values Wi.

The tree is constructed in such a way that the greedy algorithm will pick 

the disks formed by base stations and users at distance Si in the i-th round,
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Figure 6.12: Possible realization of the “bad” instance for the greedy algorithms. 
The disk d \  centered at U \  contains all other users that are on the same level 
as u\ is. The disk d2 centered at 62 blocks all users on the level below 6 2 -
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1 < i < d. Let Gi denote the set of these disks chosen in the z-th round. An 

optimal algorithm can serve all users on some level I in one round by using the 

base stations from below, at the expense of blocking all users on level t  + 1 . 

Thus, it can serve all users in two rounds by serving the odd levels in one 

round and the even levels in the other. Consequently, the approximation ratio 

of the greedy algorithm is 11(d). The number rid of users in the tree Td can be 

calculated by solving the simple recursion rid =  2 n<f-i +  1 (which follows from 

the recursive construction of the tree), where ni =  1. This gives n  =  rid =  2d — 1 

users and thus d = log (n +  1 ).

As every disk from Gi does not contain any unserved user, Gi is also a 

possible choice for the fewest-users-in-disk greedy algorithm. Thus we have 

shown the following.

L em m a 6.15 There are instances (U,B) of 2D-JBS in general position for 

which the smallest-disk-first greedy algorithm and the fewest-users-in-disk greedy 

algorithm have approximation ratio Q(logn), where n  =  \U\.

Furthermore, we can show that Gt is a maximum independent set among the 

interference disks of all unserved users after the first t —1 rounds of the algorithm, 

implying that the greedy algorithm maximizing the number of served users in 

each round can produce the same solution as the two other greedy algorithms 

on this instance.

To show this, we consider an arbitrary maximum independent set M t among 

the interference disks of all unserved users (after serving G i , . . . ,  G t- i in previ

ous rounds) and show \Mt \ =  \Gt\. The inequality \Mt \ >  \Gt\ is obvious. To 

show the second inequality, we proceed as follows. Define an active base station 

as a base station with unserved neighboring user(s) below the base station. A 

base station such that all neighboring users below it have been served is called 

passive. We present several transformations on M t (exchanging one interference 

disk by another) tha t preserve the size of M t and the independence of the disks 

and lead to a new maximum independent set where only active base stations 

are used to serve users. This shows the desired inequality \Mt \ <  |Gt|, since in 

Gt all active base stations serve a user.

First, we transform M t so that base stations serve only neighboring users. 

Suppose there is user u on level i that is served by a non-neighboring base
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Figure 6.13: Transformations for the maximum-independent-set algorithm

station b in M t . We perform a case study depending on the position of b.

1. Suppose b is below u (i.e., from level i , i  + 1, . . .). Consider the bottom 

neighbour b' of u (from level t, cf. Figure 6.13(a)). We claim that b' is 

idle (i.e., b' does not serve any user); b' cannot serve any user above 6 ', 

because this would block u (u is the closest user above 6 '); b' cannot serve 

any of its bottom neighbours (from level i +  1 ) because all the users from 

level i +  1 are blocked by the disk d(b, u)\ b' cannot serve any of the users 

from a level greater than i -f  1 because this would block u. Therefore we 

can serve u by 6 ' (no new interference is created because the disk d(b',u) 

blocks only the users on level i -1- 1 , which were blocked also by the disk 

d{b, u)).

2. Suppose b is above u (i.e., from level i — l , i  — 2, . . . )  and to the left of 

u (see Figure 6.13(b)). Consider the upper neighbour b' of u (b' is from 

level i — 1 ; note also that b must be to the left of b', by construction of 

the instance); b' cannot serve any user above it, because that would block 

u; b' cannot serve any user that is to the right of u and below b' for the 

same reason; 6 ' cannot serve any user from level greater than i for the 

same reason; b' cannot serve any neighboring user to the left of u because 

these users are blocked by the disk d(b,u); b' cannot serve any user from
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level i to the left of its leftmost neighbour because then it would block u 

(as the horizontal distance is at least the width of the tree rooted at &'). 

Therefore, b' is idle and can serve u instead of b without introducing any 

new interference.

3. Suppose b is above u (i.e., from level i—1, i —2 , . . .) and to the right of u (see 

Figure 6.13(c)). Suppose b is the rightmost base station with the property 

of serving a user and being to the right and above of her. Consider the 

smallest subtree Tk containing both u and b. The children subtrees of 

Tk are of the form T i,T 2 , . . .  ,Xfc_i. Let Tk-i be the child subtree of Tk 

containing u and let T k-j be the child subtree of Tk containing b. Note 

that i > j ,  therefore the horizontal distance from b to u is at least W k-j- 

Thus, b also blocks all users on level i in the tree T k - j , in particular, 

user u', which is the user in T k-j whose position in T k-j is identical to 

the position of u in Tk-i (note that, because the root of T k-j  has more 

children than that of T k -i , there must be such a user u', and u' hasn’t been 

served in previous rounds). We will show that u' is only in the interference 

disk d := d(b, u ), and therefore we can use b to serve u' instead of u (the 

interference disk gets smaller). Now if b is still to the right of u' we are 

left with a smaller tree T k-j containing both b and u' and we can apply 

the same transformation rule 3 again until b is to the left of u', when we 

can apply the transformation 2.

It remains to show that u' is only in the interference disk d. Suppose for a 

contradiction that u' is also in another disk d" =  d(b",u"). Consider the 

case where b" is above u '. If user u" is above b" then u" is a neighbour of 

b" (transformation 1 has been applied) and therefore if d" blocks u 1 then 

it blocks also the whole level i, u included. So u" must be below b". Then 

u" has to be from level i (u" being on level greater than i blocks the whole 

level i). If u" is a child of b" then also u' is, and therefore u" is blocked by 

d. Therefore b" is not a neighbour of u" and b" is to the right of u" (we 

have applied transformation 2 already), and therefore d" does not block 

any user to the left of u " . Thus u" is to the left of u' and to the right of 

u. But then u" is blocked by the disk d.

Consider the case where b" is below u'. If u" is above 6", we know that u" is
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the upper neighbour of b" (we have applied transformation 1 already), and 

therefore u" is the only user above b" that is blocked by d", a contradiction 

to the assumption that d" contains u '. If u" is below b", for d" to reach 

u' the radius has to be at least E\ more than the vertical distance from b" 

to u '. Therefore, d" blocks the whole level i, u included.

Now we have a maximum independent set M* where base stations serve only 

neighbouring users. If base station b' serves a neighbour below, then clearly b' 

is active. If b' is passive and serves its upper neighbour u, then consider b" (cf. 

Figure 6.13(a)), the upper neighbour of u, which is active. We claim that b" is 

idle. Because b' is passive and u is its upper neighbour, u has to be the first 

unserved user (in left-to-right order) among the children of b". Therefore, if b" 

were to serve any other user, it would block u. Thus, we can use b" to serve u 

instead of b'. Finally, we have obtained a maximum independent set where only 

active base stations serve users.

T h e o re m  6.16 There are instances (U,B) of 2D-JBS in general position for 

which the maximum-independent-set algorithm, the smallest-disk-first greedy al

gorithm, and the fewest-users-in-disk algorithm have an approximation ratio 

fi(logn), where n =  \U\.

We note tha t the algorithm maximizing the number of served users in every 

round achieves approximation ratio O(logn), as can be shown by applying the 

standard analysis of the greedy set covering algorithm.

6.5 Sum m ary o f R esults and Open Problem s

We have studied the joint base station scheduling problem—a problem of as

signing base stations and time slots to users such that every user is assigned 

to a base station and in every time slot, there is no interference at the site of 

users who were to communicate at that time slot. These problems can be split 

into a selection and a colouring problem. In the one-dimensional case we have 

shown that the colouring problem leads to the class of arrow graphs, for which 

we have studied its relationship with other graph classes and algorithms. For 

the selection problem we have proposes an algorithm based on an LP-relaxation



CH APTER 6. JO INT BASE STATION SCHEDULING 166

and rounding. For the two-dimensional case we have studied several greedy 

algorithms as well as setting with bounded parameters, resulting in an approx

imation algorithm with its approximation ratio depending on these geometric 

parameters.

The following natural questions remain open.

• W hat is the complexity of the one-dimensional case?

• Can we design an approximation algorithm with approximation ratio that 

does not depend on the ratio



C hapter 7

Conclusion

In this thesis we have studied four optimization problems. We tackled these 

problems within the algorithm-theoretic framework. Thus, we were mainly in

terested in algorithms that run in polynomial time and that deliver solutions 

as close to optimum solutions as possible. Indeed, as many variants of the 

studied problems turned out to be A^P-hard, we had to abandon all hopes 

for optimum algorithms (i.e., polynomial-time algorithms delivering optimum 

solutions) and we concentrated on the approximation algorithms (or online al

gorithms) and approximation solutions. For the problem of finding a minimum- 

weight dominating set in unit disk graphs we have delivered the first constant- 

approximation algorithm and thus showed that the problem belongs to the class 

*4P<r(Chapter 3).

A/”P-completness was not the only reason to study approximation algorithms. 

The complexity of the one-dimensional version of the JBS problem (Chapter 6 ) 

remained unresolved, which labels our 2 -approximation algorithm for the prob

lem, vaguely said, as our best polynomial-time effort. The study of this problem 

led to a definition of an interesting class of graphs—the arrow graphs. For this 

class, its relationship with various other graph classes has been presented. Fur

thermore we have studied several special cases of the problem in one dimension. 

The study of the two-dimensional case has resulted into quite opposite results 

when compared with the one-dimensional case. The general JBS problem is 

AfP-complete, but the existence of any non-trivial approximation algorithm re
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mains an open problem.

Online algorithms and online computation were in the center of our focus in 

the study of the OVSF-code assignment problem and of the network discovery 

and verification problem. For the OVSF-code assignment problem (Chapter 5), 

we have presented a simple strategy giving a ©(h)-competitive algorithm (h is 

the number of assigned codes), whereas we have shown the lower-bound to be 

1.5. Also, for code insertions only, we have shown that no code reassignment 

is necessary. The study of the problem was motivated by a previous work that 

claimed to solve the problem optimally when only one code insertion is consid

ered. We have shown that their argumentation was erroneous, and presented a 

0 (fo)-approximation algorithm.

We have also introduced the problem of network discovery and verification 

(Chapter 4), where, for a given query model, the task is to find the minimum 

number of queries that discover an unknown network. In the layered-graph 

query model the problem turned out to be equivalent to the problem of com

puting the metric dimension of the graph. In the design of online algorithms we 

have used randomization and developed a 0 (\/n  log n)-competitive algorithm 

for both query models. We have also studied the problem in its offline vari

ant, and delivered several lower bounds on the optimum number of queries, and 

analyzed several graph classes.

7.1 Future Work

There are several possible future directions and open problems. For the minimum- 

weight dominating set the natural question is what is the best approximation 

ratio for the problem. Also, we may ask for computing the minimum dominating 

set in general disk graphs or general rectangle graphs.

In the study of the network discovery we are interested in deterministic 

online algorithms. We may also ask for different query models, or for different 

computational goals.

For the OVSF-code assignment an open question remains—is there a better 

approximation algorithm (than our 0 (log n)-approximation algorithm) for the 

problem of assigning one code into a code tree?
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The study of joint base station scheduling problem leaves more unanswered 

elementary questions. In the one-dimensional case the main unanswered ques

tion is the complexity of the problem. In the two-dimensional case, we do not 

know any approximation algorithm with non-trivial approximation ratio. The 

design of such an algorithm is an interesting open problem.
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