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A bstract

Anisotropic Adaptive Refinement For 
Discontinuous Galerkin Methods

Edward J. C. Hall

We consider both the a priori and a posteriori error analysis and hp adaptation strategies 
for discontinuous Galerkin interior penalty methods for second-order partial differential 
equations with nonnegative characteristic form on anisotropicallv refined computational 
meshes with anisotropically enriched polynomial degrees. In particular, we discuss the 
question of error estimation for linear target functionals, such as the outflow flux and the 
local average of the solution, exploiting duality based arguments.

The a priori error analysis is carried out in two settings. In the first, full orienta
tion of elements is allowed but only (possibly high-order) isotropic polynomial degrees 
considered; our analysis, therefore, extends previous results, where only finite element 
spaces comprising piecewise linear polynomials were considered, by utilizing techniques 
from tensor analysis. In the second case, anisotropic polynomial degrees are allowed, but 
the elements are assumed to be axiparallel; we thus apply previously known interpolation 
error results to the goal-oriented setting.

Based on our a posteriori error bound we first design and implement an adaptive 
anisotropic /^-refinement algorithm to ensure reliable and efficient control of the error 
in the prescribed functional to within a given tolerance. This involves exploiting both 
local isotropic and anisotropic mesh refinement, chosen on a competitive basis requiring 
the solution of local problems. The superiority of the proposed algorithm in comparison 
with a standard />-isotropic mesh refinement algorithm and a Hessian based h anisotropic 
adaptive procedure is illustrated by a series of numerical experiments. We then describe a 
fully hp adaptive algorithm, once again using a competitive refinement approach, which, 
numerical experiments reveal, offers considerable improvements over both a standard lip- 
isotropic, refinement algorithm and an fr-anisotropic/p-isotropic adaptive procedure.
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C hapter 1

Introduction

The m athematical modeling of physical phenomena often leads to the formation of ordi

nary or partial differential equations (PDEs) equipped with appropriate boundary/initial 

conditions. In most cases these differential equations cannot be solved analytically, and 

so numerical approximations must be constructed. Science demands tha t these approxi

mations be computed relatively speedily and to a high level of accuracy, for increasingly 

more complex problems. Improvements in hardware performance has gone a long way to 

meeting these demands, but enhancement of the current numerical methods still has an 

im portant role to play; as such this thesis is concerned with techniques for improving the 

efficiency of a certain class of numerical methods, namely Discontinuous Galerkin Finite 

Element Methods.

Finite Element M ethods (FEMs) and Finite Volume M ethods (FVMs) have emerged as 

the leading contenders for the numerical solution of PDEs. prim arily due to their ability 

to cope with complicated geometries and the sound m athem atical theory underpinning 

them. In both cases the domain of interest is divided into a mesh consisting of small 

regions (called ‘elements' for FEMs and 'volumes' for FVMs): on each of these subregions 

an approximation to the solution is then computed. Typically, standard Galerkin FEMs 

use polynomials to represent the solution 011 each element, while maintaining continuity 

across element boundaries; in contrast FVMs attach a constant value of the solution to each 

volume, hence continuity cannot be maintained and information is passed between cells by 

numerical flux functions. Evidently, decreasing the size of the subregions employed is likely

1



1.1 D i s c o n t i n u o u s  G a l e r k i n  (DG) F i n i t e  E l e m e n t s  M e t h o d s 2

to lead to improved accuracy in the solution, likewise, increasing the polynomial degree 

for FEMs should have the same effect, preferably this should should be done by means of 

an autom atic adaptive strategy. In general, the construction of such an adaptive strategy 

involves three key steps: the derivation of a sharp a posteriori error bound for the finite 

element approximation of the partial differential equation under consideration, which is 

then used as a stopping criterion to term inate the adaptive algorithm once the desired level 

of accuracy has been achieved; the design of an appropriate refinement indicator to identify 

regions in the com putational domain where the error is locally large: and the design of 

the corresponding mesh-modification/adaptive algorithm which is capable of automatically 

selecting the local mesh width h and /or the local degree p of the approximating polynomial 

in order to deliver reliable and efficient control of the discretization error. In this thesis 

we focus primarily on the design of the m esh-m odification/adaptive algorithm.

1.1 D iscontinuous Galerkin (D G ) F in ite E lem ents M ethods

In recent years a certain class of FEMs. called Discontinuous Galerkin Methods have 

gained popularity. They can effectively be viewed as hybrid FEMs and FVMs. in tha t 

higher order polynomials can be used, but no inter-element continuity is imposed; in this 

setting, as for FVMs. numerical flux functions are used to pass information between cells.

The first DG method was proposed by Reed V Hill [112] in the 1970s for the nu

merical solution of the neutron-transport equation; a first-order hyperbolic problem. The 

first analysis of the method was undertaken by LeSaint and Raviart [97] using Fourier 

techniques. At the same time, but independently. Discontinuous Galerkin methods were 

being developed for the approximation of second-order elliptic equations, although the DG 

name did not appear until later. In this case they were known as penalty methods: the 

name stemming from the inclusion of certain terms aimed at penalizing the discontinu

ities. Babuska [14] based the first penalty method on the preceding work by Nitsche [105]. 

where boundary conditions were enforced weakly for elliptic problems. Unfortunately, 

this method suffered from consistency problems and it was not until later that Wheeler 

[136] and Arnold [11] resolved these consistency issues. Since then a m ultitude of DG
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formulations have arisen for elliptic equations: see Arnold. Brezzi. Cockburn and Marini 

[12. 13] for a recent review. Of particular interest are the interior-penaltv (IP) methods 

of Riviere. Wheeler, and Girault [113. 114. 115] and Houston. Schwab and Suili [76. 127]. 

the symmetric version of which will be employed for the purposes of this thesis. A full 

review of the development of DG methods can be found in the review article Cockburn. 

Karniadakis and Shu [39].

DG methods offer a number of advantages over standard FEMs. For example, it is 

well documented tha t applying an FEM to a problem with. say. boundary or interior 

layers can result in a solution with non-physical oscillations when too few degrees of 

freedom are available to resolve the layer. To overcome this, a stabilization method has 

to be introduced, for example, streamline-diffusion stabilization [32. 85. 86] or bubble 

stabilization [29. 30. 31]. In contrast. DG methods do not suffer from this lack of stability; 

it appears that the discontinuous nature allows the oscillations to be damped by numerical 

dissipation: see [76. 127]. As an example, consider the simple one-dimensional convection- 

diffusion problem

— su '  +  U =  0.

u{ 0) =  1.

u (l)  =  0 .

where £ =  0.01. on the interval [0.1]. Figures 1.1(a) and 1.1(b) show a noil-stabilized 

FEM solution and a DG solution, respectively, computed on meshes too coarse to resolve 

the layer. Notice tha t the boundary layer causes global degradation of the FEM solution, 

whereas the DG solution is only locally disturbed.

DG methods also offer far greater flexibility in the mesh design compared with FEMs. 

FEMs require continuity to be enforced across element boundaries, hence if the mesh 

contains hanging nodes (vertices of one element occurring on the face of another, see 

Figure 1.2). special measures have to be taken to ensure the continuity holds. Possible 

solutions include removal of the hanging node bv subdivision of neighbouring elements, or 

elimination of the unknowns corresponding to the hanging node by interpolation of the 

values at neighbouring nodes. However, for DG methods, continuity only holds weakly.
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DG

X

>»

FEM

X

(a) (b)

Figure 1.1: (a) Instability of an FEM and (b) stability of a DG method for a boundary 

layer problem.

thus there can be multiple hanging nodes on a face without any computational difficulty. 

Similarly, varying polynomial degrees on adjacent elements is handled in a very simple 

manner by DG methods; for conforming FEMs the usual approach is to apply the minimal 

degree rule on the face and/or edges. DG methods, therefore, lend themselves particularly 

well to isotropic and anisotropic hp-adaptivity, which will be considered in this work.

Hanging Node

Figure 1.2: Example of a mesh with a hanging node.

Without the need for inter-element continuity a wider choice of basis functions for DG 

methods are available, as an example orthogonal basis functions are readily constructed, 

leading to diagonal mass matrices. Similarly, the lack of continuity reduces communication 

between elements, resulting in sparser matrices. Additionally, the method lends itself to
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parallelization. which can help to negate the drawback of the increased number of degrees 

of freedom associated with the method, in comparison to standard conforming FEMs. For 

certain mixed problem, such as the Stokes problem, DG methods are stable for a wider 

range of function spaces than standard FEMs. DG methods also possess other useful 

properties, for example, unlike FEMs. many DG methods are locally conservative.

1.2 A nisotropy

Many solutions to PDEs exhibit anisotropic behaviour, where the solution varies rapidly in 

one direction, but not in orthogonal directions. Examples include boundary and interior 

layers in singularly perturbed convection-diffusion-reaction equations and shock waves 

arising in compressible fluid flows. In these cases it would seem reasonable for the mesh 

to display similar properties by making use of anisotropic elements: i.e.. elements which 

have a small mesh size in the direction where the solution changes rapidly but a larger 

mesh size in the orthogonal direction. For an element k. let diam(K-) denote its diameter 

(i.e. the diameter of the element’s circumcircle) and pK be the supremum of the diameters 

of all the balls contained within k . then, loosely speaking, an element is anisotropic if

diam(s')
 —  >  1 .

Pk

the ratio of diam(ft) to pK being termed the aspect ratio. Compare this with isotropic 

elements, where
diam(K) ^

Pk ~

Understanding the approximation properties of anisotropic elements is challenging: indeed, 

early interpolation results gave bounds in terms of only diam(/\) and as such the usefulness 

of anisotropic elements were overlooked. Sharper estimates, where the various length 

scales of the elements are included, are needed before the merits of anisotropic elements 

can be seen. The geometry of the elements needs careful consideration as well, indeed 

a maximal angle condition has often to be met if good approximations are to achieved: 

see. for example Babuska and Aziz [15]. A review of the techniques involved in studying 

anisotropic elements can be found in Thomas Apel's monograph [7]. In this thesis we
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extend the anisotropic approximation techniques developed in Formaggia and Perotto 

[48] which precisely describe the anisotropy of the mesh. More specifically, we employ 

tools from tensor analysis (see De Lathauwer. Moor and Vandewalle [94]). along with 

local singular-value decompositions of the Jacobi m atrix of the local elemental mappings, 

to  derive directionally-sensitive bounds for arbitrary polynomial degree approximations, 

thus generalizing the ideas presented in [48]. where only the case of approximation with 

conforming linear elements was considered. The advantages of this general approach are 

tha t the resulting interpolation bounds exploit the full spectral properties of the underlying 

(affine) element transformation, and are thereby independent of the choice of coordinate 

axes. Additionally, no a priori condition on the maximal angle of the computational 

mesh is required: indeed, numerical experiments presented in [48] clearly dem onstrate 

tha t this approach leads to approximation bounds which show the correct asymptotic 

behaviour with respect to the maximal angle. We then use these interpolation estimates 

to carry out an a priori error analysis of an interior penalty DG method for second 

order partial differential equations with nonnegative characteristic form on anisotropically 

refined com putational meshes. In particular, we are concerned with the question of error 

estimation for certain linear target functionals of the analytical solution. Error control in 

this sense is particularly im portant in engineering applications: e.g. in fluid dynamics one 

may be concerned with calculating the lift and drag coefficients of a body immersed into 

a viscous fluid whose flow is governed by the Navier Stokes equations. The lift and drag 

coefficients are defined as integrals, over the boundary of the body, of the stress tensor 

components normal and tangential to the flow, respectively. Similarly, in elasticity theory, 

the quantities of interest, such as the stress intensity factor or the moments of a shell 

or plate, are derived quantities. In acoustic and electromagnetic theory the quantity of 

interest is often the far-field pattern. Our results generalize those of Harriman et, al. [61], 

where the underlying computational mesh was assumed to be shape regular.

A posteriori estimation on anisotropic meshes is also not as straightforward as th a t on 

isotropic meshes. Indeed, the estimates for norms reviewed in [3. 135] and developed in 

[134] become unreliable on anisotropic meshes. Anisotropic a posteriori error estimates 

have been developed for conforming FEMs in a series of papers by K unert [90. 91. 92]
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and for DG m ethods in. for example. Creuse et al. [40]. However, these methods involve 

the introduction of a matching function, which determines how well the mesh is aligned 

with the solution, as such, the error indicators become useless if the mesh is not well 

matched. In the functional setting we employ the duality weighted residual approach 

advocated in Johnson et al. [46] and Becker & Rannaeher [21]. and further developed in. 

for example, [63, 77. 79]. In this case, the error indicator is actually equal to the true error 

in the underlying target functional, provided the analytical solution to an induced dual 

problem is known. Hence, the technique is applicable for both isotropic and anisotropic 

meshes. In general the analytical solution of the dual problem is not known and must 

be approximated. Numerical experimentation reveals effectivities of the error indicator 

approaching 1 on both isotropic and anisotropic meshes.

Isotropic mesh refinement is often carried out by simply identifying those elements in 

the com putational mesh where the error is high, based on the a posteriori error estimator, 

and subdividing them  into similarly shaped elements: see. for example. [77]. Unfortu

nately, the error indicators do not contain any information pertaining to the anisotropy of 

the solution and hence, alternate methods must be sought when attem pting anisotropic 

refinement. In some cases the location of boundary and interior layers is known a pri

ori and initial grids can be designed to resolve these features, for example, piecewise 

uniform grids and geometrically graded meshes: see. for example. [120] and [10], respec

tively. W here knowledge of the true solution is unknown beforehand, mesh refinement 

can be performed in the directions where an approxim ated solution varies rapidly. One 

popular method involves considering a priori error estimates for approximation by linear 

polynomials; here the estimates are based around the Hessian m atrix of the solution, for 

example; see [22. 23. 43, 50. 83, 58. 5. 44]. To minimize these estimates, it can be shown, 

see Formaggia et al. [48. 49. 47], that an element should be orientated so tha t the prim ary 

left singular vector of the Jacobi m atrix of the local elemental m apping is in the same 

direction as the eigenvector of the Hessian matrix with smallest absolute eigenvalue. The 

aspect ratio of the element should then be chosen to be the same as the square root of 

the ratio of the absolute values of the eigenvalues of the Hessian matrix. One approach to 

achieve well aligned meshes is to insist that all faces in the mesh have the same measure
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in a metric induced from the Hessian: this can be done be means of local edge based 

operations, see [58]. for example.

The Hessian strategy suffers from a number of drawbacks: these include assuming that 

the interpolation estimates are sharp and the solution has sufficient regularity. Further, 

the strategy has only been developed for approximation by piecewise linear polynomials. 

As such, in this thesis we develop an alternative strategy, based upon solving local pri

mal and dual problems, together with a competitive refinement algorithm so tha t the 

anisotropic/isotropic subdivision of an element attaining the greatest reduction in error 

per degree of freedom is chosen. Numerical experiments reveal that, when applied to 

both elliptic and mixed elliptic/hyperbolic problems with boundary and interior layers, 

the new strategy can not only yield orders of magnitude reduction in the error for the 

same number of degrees of freedom when compared with isotropic refinement, but also 

offers significant improvements over a comparable Hessian based strategy. Indeed, the new 

strategy is seen to be robust for approximation by variable polynomial degrees, whereas 

the Hessian strategy typically fails for higher polynomial degrees.

Anisotropy need not only be introduced into the finite element space by means of el

ements with high aspect ratio. Indeed, anisotropic polynomials are also an option, i.e.. 

in directions of rapid variation of the underlying solution, a high polynomial degree can 

be used, while in perpendicular directions the polynomial order can be kept low. The 

approximation properties of such spaces has been considered by Georgoulis. see [52. 53]. 

where the elements are assumed to be axiparallel. Using the a priori interpolation esti

mates developed in [52], we undertake the a priori error analysis for the target functional 

of interest and see tha t a m ixture of anisotropic elements and anisotropic polynomial de

grees can lead to great reductions in the computational cost required in obtaining accurate 

solutions. Motivated by these results we design a strategy for autom atically deciding how 

to choose between anisotropic h-refinement and anisotropic p  enrichment and in which di

rections to  perform these refinements/enrichments. Once again, the m ethod is based upon 

the solution of local primal and dual problems and selecting the refinement/enrichment 

which gives rise to the largest error decrease per degree of freedom. Numerical exper

iments show tha t this new adaptive anisotropic hp strategy is capable of yielding over
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an order of m agnitude reduction in the error for the same number of degrees of freedom 

when compared with a method utilizing adaptive anisotropic h-refinement with isotropic 

p-enrichm ent.

1.3 O utline

The aim of this wrork is to develop a robust adaptive strategy with the ability to produce 

meshes with the possibility of anisotropic elements and /or anisotropic polynomial degrees 

where required. In particular, we shall be concerned with designing optimal meshes for 

the evaluation of certain linear functionals of the solution, rather than. say. some norm 

of the error. In order to do this we first describe a model advection-diffusion-reaction 

problem in Chapter 2 and present some results concerning the existence and uniqueness 

of the underlying solution. We then describe the DG finite element space to which our 

numerical approximations shall belong, where anisotropic polynomial degrees and high 

aspect ratio elements are perm itted. We then proceed by performing an interior penalty 

DG discretization of the problem and discussing the stability properties of the method.

The analysis of the method requires knowledge of the approximation properties of the 

finite element space: specifically, we shall need interpolation bounds for the L2-projection 

operator. In Chapter 3 we state these error estimates on the reference element and describe 

how these bounds translate to physical anisotropic elements. In the case of isotropic 

polynomial degrees on non-axiparallel elements, we generalize the results of Formaggia 

and Perotto [48] where only piecewise linear elements were considered. To this end. we 

utilize some results from tensor analysis, specifically those of De Lathauwer. Moor and 

Vandewalle [94] concerned with tensor-matrix multiplications.

In Chapter 4 we develop anisotropic a priori error estimates for linear target functionals 

of the solution. This is achieved by first introducing an appropriate dual problem, from 

which we deduce an error representation formula for the error in the underlying target 

functional of interest. Following the analysis in Harriman et al. [61]. we then apply the 

error estimates of Chapter 3 to obtain a priori error bounds. These bounds show that not 

only the anisotropy of the primal solution is im portant in the design of the mesh, but also
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the anisotropy of the dual solution.

We tu rn  our attention to adaptive ^-refinement in C hapter 5. The chapter begins with 

a discussion on current a posteriori error techniques and how they can be used to drive an 

adaptive process. We then introduce duality based a posteriori estimates for linear target 

functionals, first developed by Becker and Rannacher [21], Following this, we present a 

more thorough review of standard isotropic and anisotropic /? refinement strategies and 

show how our a priori error estimates of Chapter 4 can lead to  a Hessian based approach 

and describe an algorithm to make use of these results. A discussion on the drawbacks of 

the Hessian approach then leads us to develop the new competitive refinement strategy.

Numerical experiments to test the performance of our new anisotropic strategy com

pared with the standard isotropic and Hessian based approaches are carried out in Chapter 

6 . Specifically, an elliptic problem with a steep boundary layer is considered in the first 

example and a mixed elliptic/hyperbolic problem with an interior layer is studied in the 

second. In both cases the new approach is seen to offer considerable improvements over 

the other techniques.

Chapter 7 is concerned with the development of an hp-adaptive strategy with anisotropic 

elements and anisotropic polynomial degrees. We first perform a further a priori error 

analysis for the case of axiparallel elements to motivate the use of anisotropic polyno

mial degrees, showing tha t, in areas where the primal and dual solutions are smooth, 

p-refinement is preferable to /i-refinement. We discuss some techniques for determining 

where a solution is smooth before introducing a strategy to decide how to select when 

to increase the polynomial degree vector, be that isotropicallv or anisotropically. Once 

again these new methods are based around the solution of local primal and dual problems 

and choosing the refinement which gives rise to the largest error decrease per degree of 

freedom.

Some numerical experiments are then performed in Chapter 8 : the first two examples 

are used to further motivate the need for both anisotropic /?-refinement and anisotropic 

p-refinement. where a priori knowledge of the primal and dual solutions are used to design 

the finite element spaces. The last two examples are used to test the adaptive strategies 

developed in Chapter 7; once again an elliptic problem with a boundary layer and a
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mixed elliptic/hyperbolic problem are used for this purpose. Comparisons with isotropic 

hp-adaptive and /u-anisotropic/pisotropic algorithms are very encouraging. Finally, we 

make some conclusions and discuss some avenues of future research in Chapter 9.



C hapter 2

M odel Problem  and D iscontinuous 

Galerkin D iscretization

Throughout this thesis we will consider the numerical solution of linear advection-diffusion- 

reaction problems. More precisely, we will concern ourselves with second-order partial dif

ferential equations with nonnegative characteristic form . which, under certain conditions, 

can be shown to be well-posed. In the following sections, after recalling some function 

space definitions, we define what is meant by the term  partial differential equation with 

nonnegative characteristic form  and give some results 011 the existence and uniqueness of 

solutions. We then proceed to construct a DG discretization of the problem and discuss 

its stability.

2.1 Sobolev Spaces

Before we introduce the model problem, it is first necessary to recall the definition of a 

Sobolev space, based around the Lebesgue space, which we define below.

D efin itio n  2 .1 .1 . Let Q be an open domain in R.d, d > 1, LP(Q). p  6  [l.oc] is defined as

the Lebesgue space of real-valued functions with norm defined by

M , (/!JK x)l''dx)V 1 < P < D C .
HIL P ( Q )  \

esssup{|u(x)| : x  £ 0 }. p  =  oc.

1 2
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The space L 2{Vt), replete with the standard inner product will be of particular impor

tance. because in this case we have a Hilbert space.

For a multi-index, a  =  (cti a n). where the a 7. i =  1  n. are nonnegative, its

length |a | is defined as
n

ioi =  y > .
i

The |a |th  order differential operator can then be concisely defined as d a . where

£)G-1 fiOi ncya _
d x* 1 ' ' ' dx%n '

We now define the standard Sobolev space of integer index.

D efin itio n  2 .1 .2 . Let s be a nonnegative integer, p  E [l.oc], a  =  (c>i a n) a multi-

index and Q an open domain in R d, d > 1 . The Sobolev space on Q is defined

by

W£{Q) := {u e  Lp{n) : dQu € LP{Q) for  |o | < s}. 

with associated norm  || • ||u/yo) and seminorm \ ■ |yivyo)- respectively :

for p  E [1 , oc) and

IMIw* (fi) := max \\dau\\L^ {n). \u\w * (n) := max \\dau\\L^  {n).
|a|<s N=s

for p — oc. Here, s is referred to as the Sobolev index of the function space. In the special 

case p =  2. the space H7|(S1) with standard inner product is a Hilbert space and we use the 

notation VFftH) =  H S(Q).

Spaces with negative and fractional Sobolev index can also be introduced by means 

of duality and function-space interpolation arguments, respectively: see. for example. [1 . 

24, 28. 101. 103, 132] for details. Anisotropic Sobolev spaces have also been used: see for 

example [52], where different Sobolev indices are considered in each coordinate direction 

separately.

\ u \ W’-(O) :=  £ I u I \pI “ II LP( Q)
|q | < s

H E  ̂ “ IILP(n)
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2.2 Partial Differential Equations w ith  N onnegative Char

acteristic Form

Let us consider the following advection-diffusion-reaction equation on Q. a bounded open 

polyhedral domain in W1. d > 2 :

Cu =  —V • (aVu) +  V • (bu) +  cu = f  in Q. (2 .2 .1)

Here. /  G L 2(Q) and c G L °°(D) are real-valued, b =  {6;}f=1 is a vector function whose 

entries, bj, are Lipschitz continuous real-valued functions on Q and a =  is a sym

metric m atrix whose entries are bounded, piecewise continuous real-valued functions 

defined on Q, with

( Ta (x)(  > 0  G R d an d  Vx G Q. (2.2,2)

Under the above assumptions (2.2.1) is referred to as a partial differential equation with 

nonnegative characteristic form. This class encompasses a large number of types of equa

tion; they include second-order elliptic or parabolic, and first-order hyperbolic problems. 

As such they offer many physical applications, problems of this type occurring commonly 

in mathematical biology, financial mathematics and, in the non-linear case non-Newtonian 

fluid flow (p-Laplacian). A key feature of these types of equation is tha t they allow for a 

change of type within the computational domain, meaning they can be used as a prototype 

for more complicated compressible fluid flow problems, where this behaviour is common.

W riting F to denote the union of the (d — l)-dimensional faces of Q and n(x) =

{n.i(x)}f=l the unit outward normal vector to T at x  G T. we introduce the Fichera

function , b • n. and define

To =  {x  G F : n(x)Ta(x)n(x) > 0}.

T_ = {x G r\F0 : b(x) • n(x) < 0}.

r+ = j x G  r \r 0 : b(x) • n(x) > ()}.

For obvious reasons we will refer to T_ and F + as the inflow and outflow boundaries, 

respectively. It is clear tha t To- T_, and T+ are disjoint sets and T =  F o U r _ u r + . I f r 0 

is nonempty we further split it into disjoint subsets Fd and ensuring To is nonempty.
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We are now in a position to impose suitable boundary conditions on (2.2.1). On Td E T - 

we set Dirichlet boundary conditions, while on Neumann conditions are enforced, i.e..

u =  <7d on Td UT_.  and (aVu) • n  =  gy on I \ .  (2.2.3)

2.3 E xistence and U niqueness of th e Solution

We now review some results concerning the existence and uniqueness of the analytical 

solution to our model problem (2.2.1). (2.2.3). For simplicity, we assume gr> = gy =  0. 

Existence and uniqueness of solutions (in the weak sense) were considered by Oleinik 

and Radkevic [108] for problems with homogeneous Dirichlet boundary conditions under 

certain regularity assumptions: see also. Houston. Schwab and Siili [75]. where analogous 

results were derived under weaker regularity constraints. In [76] the results were further 

extended to problems with mixed Dirichlet-Neumann boundary conditions: we present 

these results below, after some initial preparation. We define the space

V := {v G H \ Q )  : v(x) = 0  Vx G r D}.

and let 7i be the closure of V in L 2(Q) with respect to the norm || • ||^  :=  a / (•. •)?*. where 

(•. -)h is the inner product defined by

(w, v)n  := (uV'tu. Vu) +  (w. v) +  (w. u)r _u r+ur N-

Here, (•,•) and (•••)'} are the inner products defined, respectively, by

(w.v) = / wvdx  and ( it'. r)~ = / | b -n | i u rds .
Jn A

Thereby. H  is a Hilbert space. We now define the bilinear form B(-. •) : H  x V —» K by 

B(w. v) =  (aVw. Vu) — (w. b  • Vv)  +  (cw. v) +  (w. i’) r +u rN 

and the linear functional (  : V —► R by

( ( v ) =  ( f . v ) .

We shall say tha t u € H  is a weak solution to the boundary value problem (2.2.1). (2.2.3) 

with homogeneous boundary conditions if

B (v .v )  =  f(v) Vug V. (2.3.1)
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We note th a t (2.3.1) stems from (2.2.1) by multiplying by v G V. integrating by parts 

and applying the homogeneous boundary conditions. We are now in a suitable position 

to state the following theorem.

T h e o re m  2.3 .1 . Suppose that a. b  and c of C are as in Section 2.2 and furthermore that 

b  • n  > 0  on and there exists a positive constant 70 such that

c(x ) +  • b(x)  > 7 0  a.e x  e  ft. (2.3.2)

Then. for every f  G L2(fl) there exists u G H such that (2.3.1) holds. Moreover, there 

exists a Hilbert subspace Tt' of Ti such that u G TL' and u is the unique element of TC such 

that (2.3.1) holds.

Proof. See Houston and Siili [80]. ■

2.4 M eshes

We shall now describe how we construct a com putational mesh over the domain Q. Firstly, 

we need the following the definition.

D efin itio n  2 .4 .1 . Let k and k' be open sets in W1, d > 1. A bijection Q : k n' is 

termed a C s-diffeomorphism for s > 1, if

1. Q and Q ~ l are continuous on R and R ' . respectively.

2. their derivatives of order 1 through to s are bounded, and continuous on R and k' . 

respectively.

Let Tu =  {k} be a subdivision of the (polygonal) domain Q into disjoint open element 

domains k . constructed through the use of the mapping QK o FK. where FK : R —>• R is an 

affine mapping from the reference element R to R. and Q h : R -> k is a  C'] diffeomorphism 

from R to the physical element k . Here, we shall assume tha t R is either the hypercube 

(—l . l ) d or the unit d-simplex; in the latter case QK is typically the identity operator, 

unless curved elements are employed. The mapping FK defines the size and orientation of 

the element k . while Q K defines the shape of k . without any significant rescaling, or indeed
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i ‘2 n

K

X 1 XI

Figure 2.1: Construction of the element mapping via the composition of an affine mapping 

Fk and a C^-diffeomorphism QK.

change of orientation, cf. Figure 2.1 for the case when d — 2 and k =  ( — 1 .1)2. W ith this 

in mind, we assume tha t the element mapping QK is close to the identity in the following 

sense: the Jacobi m atrix Jqk of QK satisfies

C f 1 < || det J q k H l ^ C k )  < C i .  I I ^ q J I I l ^ ^ )  < C 2 . \ \ J q J \\l ^ ( 8 k ) <  C 3 (2.4.1)

for all KinT/j  uniformly throughout the mesh for some positive constants C\. C2. and C3. 

where we denote by dn  the union of {d— l)-dimensional open faces of k . This assumption 

will be im portant as our error estimates will be expressed in term s of Sobolev norms over 

the element domains k. in order to ensure tha t only the scaling and orientation introduced 

by the affine element maps FK are present in the analysis. W riting m K. rn^. and m h- to 

denote the d-dimensional measure of the elements k . k. and k. respectively, the above 

condition (2.4.1) implies that there exists a positive constant C4 such tha t

C ^ m *  < m K < Cima  Vk 6  T/t. (2.4.2)

The above maps are assumed to be constructed in such a manner as to ensure tha t the 

union of the closure of the disjoint open elements k 6  T}r forms a covering of the closure 

of fl. i.e.. Cl = UKerhk. For a function v defined 011 k E T^. we write v =  v o Qs and 

v = y o Fk to  denote the corresponding functions on the elements k and k. respectively. 

Thereby, we have tha t v =  v o QK o FK.
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On the elements k and k we define the gradient operators V and V. respectively, by

R em ark 2 .4 .2 . We note that a similar construction of the element mappings for general 

meshes consisting of curved quadrilateral elements has also been employed for both shape-

in the current construction to tha t proposed in [53] is tha t here the element mapping FK 

contains information about both size and orientation of k. In contrast, in the construction 

developed in [53] both orientation and shape information are included in QK. while FK 

only contains information relating to the size of k .

R em ark 2 .4 .3 . W ithin this construction we admit meshes with possibly hanging nodes: 

for simplicity, we shall suppose that the mesh 7/, is 1-irregular, tha t is. each element face 

has at most one hanging node. cf. [75].

We define an interior face of 7/j to be the non-empty (d— l)-dimensional interior of 

dhii fl dnj,  where Kj and kj  are two adjacent elements of 7/,: then we define Tint to be the 

union of all the interior faces of 7/*. Similarly, we define a boundary face of 7j, to be the 

non-empty (d— l)-dimensional interior of O k  D T.

For a face /  € Tint , shared by elements /q and Kj. where i > j .  we let ny denote the 

unit normal vector pointing from K t to k j . If /  is a boundary face then we set ii/ =  n.

2 .4 .1  B ro k en  S o b o le v  S p a ces

In this section we introduce the notion of a broken Sobolev space.

D efin ition  2 .4 .4 . For an open set Q with corresponding subdivision 7/,. the broken Sobolev 

space of composite order s is defined as

regular and anisotropic meshes in the articles [75] and [53]. respectively. The key difference

H s(Q.Th) = {« € L 2(Q) : u|„. e H Sk(k ) Vk € T,,}.

where

s {.sy-}Kerh-
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The associated norm and seminorm are then defined, respectively, as

imIs.t, =  ( i h & s«(k) • =
\Kerh )  rh

In a similar fashion it is necessary to give the following definition.

D e f in it io n  2 .4 .5 . Let u G i / 1(Q.7/J) and r  G [H1(Q.Tfl)]2. then the broken gradient 

V rh u of u and the broken divergence • r  of r  are defined as

(V rhw)|K =  V (u|K). (VT„. • t ) \ k  = V • ( r | K). k G Th.

2 .4 .2  T race  O p er a to r s

To proceed with the DG discretization we must now define some operators acting on 

functions v G H 1(Q.Tfl). For a face /  G Fint. shared by two elements k, and Kj. where the 

indices i and j  satisfy i > j .  we define the jum p of v across /  and the mean value of v on 

/ .  respectively, by

H  =  v\dKinf  ~  v\dK.nf and {v) = ^{v\dK nf  +  v\aKjnf)-

For a boundary face. /  C Ok , we set [v] =  v\dKnf  and (v) =  v\dKnf- For an element 

« e  Th. we let v f  and vK be the interior and exterior traces of v defined on Ok and <9k\T. 

respectively. To ease notation, when it is be clear which element k . the values and v~ 

refer to. we shall drop the subscript k and use just v+ and v ~ . respectively. For x  G Ok , 

we define the inflow and outflow parts of Ok . respectively, by

d - K  =  { i G  3k  : b(.r) • n K(x) <  0}. and d+K =  {:r G 3k : b(.r) • n K(.r) >  0}.

where n K(x) denotes the unit outward normal vector to 3k  at x.

For a given face /  C r ^ t  UTd- such that /  C 3 k . for some k G T\x. we write /  and 

/  to denote the respective faces of the mapped elements k and k. respectively, based on 

employing the element mappings QK and FK. More precisely, we write /  =  Q f l ( f )  and 

/  =  F f 1(f)-  Further, we define nij .  m j .  and m j  to be the (d—1) dimensional measure 

(volume) of the faces / .  / .  and / .  respectively: for example, in two dimensions, i.e.. d -- 2 .
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m j.  the length of the corresponding face 011 the canonical quadrilateral element, is equal 

to 2. I11 view of (2.4.1). we note that there exists a positive constant C5 . such that

for every face /  C U To. Moreover, the surface Jacobian S j  j  arising in the transfor

mation of the face f  to f  may be uniformly bounded in the following manner

for all faces /  C Tint U Td - where Ce is a positive constant.

2.5 F in ite Elem ent Spaces

On an element k 6  7), we define two polynomial spaces, one with anisotropic polynomial 

degree p := {p-i}i=i d and one with isotropic polynomial degree p. respectively, by:

the image of the reference hypercube and a scalar pK with every element k € which is 

the image of the unit simplex: in this case, we set pK =  pK. Furthermore, for conciseness 

we let Vp = Vp and introduce

thereby, if k is a simplex we use polynomials from VpK. otherwise if k is a hypercube we use 

polynomials from Qpn- Thus, for an element which is the image of the reference hypercube, 

anisotropic information can be contained in the polynomial degree vector p K. as well as 

by way of the mapping FK. Introducing p =  {pK : k £ T/,} and F =  {QK ° Fh- : k E 

we are able to concisely define our discontinuous finite element space:

D efin ition  2.5.1. We define the finite element space with respect to il, 7/,. F and p by

C- l m j  <  n i f  <  Co'rnj (2.4.3)

-  Cg (2.4.4)

Qp := span{Ilf_1̂  : 0 < j  < pi} and Vp := span

We associate a vector pK (with entries > 1./ =  1. . . .  .d) with every k g T j , .  which is

Qp if k is the reference hypercube. 

Vp if k is the unit simplex:

S P( Q. Th, F)  =  { u e L 2( Q ) : u \ K o Q K o F K e 7 l p l' V K e T h}.
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2.6 Interior Penalty D iscontinuous Galerkin D iscretization

We now proceed to discretize our model problem (2.2.1). (2.2.3) based on the DG method 

presented in Harriman et al. [61]. for example: here the discretization of the second order

elliptic term  V • (qV ii) is based on the work outlined in [13]. In [13] a number of different

discretizations are presented, but we restrict ourselves to  the derivation of the so-called 

Symmetric Interior Penalty (SIP) DG method.

In order to fully appreciate the construction of the DG method the first step is to 

rewrite our advection-diffusion-reaction problem (2.2.1) as an equivalent first order system 

of partial differential equations, which we term  the auxiliary, or flux formulation:

=  0 in Q. (2.6.1)

V • $  +  V • (bn) +  cu = f  in Q. (2.6.2)

As with the standard Galerkin FEM we multiply (2.6.1) and (2.6.2) by suitable smooth 

test functions r  and v. respectively, though here we integrate by parts over each element 

k rather than the whole of the computational domain Q to obtain:

/ • r d x  +  / V • (ar)udx  — / (cit) ■ n Kuds =  0.
J k J k J Oh

/ <l> • Vudx — I & ■ n Kvds — / gsvds  — / uh  • V v d x  
JK j8 k\TI\- J cIkHFX JK

+  / b  • n Kuvds  +  / eiied.r =  / fv d x .
J ds J K j  K

In order to reduce the problem to one of finite-dimensional size we now restrict the choice 

of trial and test functions to subspaces based on S^(Q. Th- F ). Summing over all the 

elements k . in the mesh Th and introducing numerical flux functions iq). 7i(n^ . . n^)

and &h • n /- which we will dehne momentarily, we have the auxiliary formulation of the 

DG method: find Uh € 5^(17. 7/,. F) and 3>/? £ [S'P(D. 7/,. F )]rf such tha t

Y ,  (  [  &h • +  f  V • (aT)uhdi-\ -  f  [(or) • n/]fqd.s =  0. (2.6.3)
K<̂ jh k J* }  7rintur0

Y  ( I &h ' Vud.r -  j (uhb  • Vu -  cuhv)dx  +  /  ah . nk)v+ds j
k£Th ^ k k '

-  [  $ h - n f [v]ds= Y (  f  f v dj‘ + /  7 N ’̂d.s) (2.6.4)
"6 intUT D kcT, \7k J c)kC\Ys /
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for all c € S»(Q .T h. F ) and r  6 [S^(Q.Th. F )]rf.

We now discuss the numerical fluxes cp). 7 i(u ^ . . n and <!>/, • rif which represent

approximations to u. b • n Kw. and aVw • n / .  respectively, on the faces of the elements. It 

is essential tha t good choices for the numerical fluxes are selected, as they are the only

lack of continuity across inter-element boundaries. In effect we will be imposing continuity 

weakly across element boundaries. Two im portant properties tha t should be considered 

when devising numerical fluxes are consistency and conservation. The numerical fluxes 

are consistent if

for any smooth function r  satisfying the boundary conditions and they are conservative 

if they are single-valued on every face in the mesh. Should the numerical fluxes be con

sistent/conservative then the DG method will inherit the same properties; see Section

for k e  Th. This flux is both consistent and conservative and simply selects the exterior 

trace of the numerical solution u^. on an inflow face and the interior trace of tpl on an 

outflow face. There are many ways of choosing the numerical fluxes for the elliptic part, 

cf. Remark 2.6.4; here we give the numerical fluxes for the Symmetric Interior Penalty 

(SIP) DG method. In this case the numerical flux functions ip) and <I>/? • n j  are defined by

means by which information is passed from one element in the mesh to another, due to the

uh(v+, v ) |/  =  V.  H {v+. v . n K)\qk =  b • n Kv. ■ n / ( u + . Vu+ . v . Vu ) |/  =  aV v  • n f .

2 . 6 . 1 .

The (hyperbolic) numerical flux function . nK) is defined by

b • n K lim Uh(x — sb) otherw ise.

(uh)< f  c  r int u r N. 

f  c  r D.

and
{{aVuh) ■ ne) -  d[R/J. /  C r int.

(aV uh\f ) ■ n f  -  i)(uh\f  -  c/d), f  c Td .



2 . 6  I n t e r i o r  P e n a l t y  D i s c o n t i n u o u s  G a l e r k i n  D i s c r e t i z a t i o n 2 3

respectively. It is trivial to show that both these fluxes are consistent and conservative. 

Here, d is referred to as the discontinuity-penalization function and has the effect of pe

nalizing any jum p discontinuities on an interior face, and imposing the Dirichlet boundary 

conditions on faces which are subsets of Td- Thereby, the larger we set i) the closer the 

numerical solution becomes to being a continuous piecewise polynomial function. The 

term s involving d have to be added in order to ensure tha t the DG method is stable; in 

Section 2.7 we discuss how to select d.

It is perfectly acceptable to leave the m ethod in the form (2.6.3). (2.6.4) and solve 

this system, but instead we consider the so-called primal formulation. To this end. we 

eliminate <f>/; from (2.6.3) and (2.6.4) by setting r  =  V r in (2.6.3) and integrating by 

parts. Then we combine the two equations by substituting for the term  f  dp, -rd.r. Thus, 

the primal formulation is: find adg in S P(Q, Tf}. F) such that

B DG(uDG.v) = ( DC(v) (2.6.5)

for all v G S p (Q.Th. F ). Here, the bilinear form H d g (-- ') is defined by

H d g (r’. v) =  B a{u\ v ) +  B\y(w, v) +  6Bf(v . w) — B f(w .  v) +  B t)(w. v). (2.6.6)

where

B a(w .v ) =  £  aV w  • V i’dx.
*eTh J*

Bb(w .v)  — \ ~  /  {iL'b ■ V v  — cwv)dx
KETh '  J*

+  [  (b • n K)w+v +ds +  [  (b • n K) u ~ v +ds J .
Jd+K Jo- k\ r  J

B f ( v .w ) =  /  ((aVw) • nf)[v]ds.
J r intur D

Btf(w.v) =  /  d[w’][u]ds.
J rhnurD

and the linear functional 7dg is given by

^DG(n) =  yz (  [  f v d x -  I (b • n K)#Du+d-S' (2.6.7)
K£.q-h \ J * Jd-Kr(rDUY- )

+  f  OgB{{aVv+) • n*)ds +  /  g ^ v +ds  +  /  i)gi)V+d s j  .
./<9_Knr  ̂ JdKri\  Jo* nun /
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Here. 6 is a param eter, which in the case of the SIP method is equal to —1: the name 

arises from when C is purely elliptic, i.e. b =  0. and the bilinear form B GG(-. ■) becomes 

symmetric, tha t is Br>G(u.v)  =  # d g ('*■’• u) f°r a^ 11 and u.

2 .6 .1  C o n s is te n c y

Here we define the im portant notions of consistency and adjoint consistency.

D efin ition  2 .6 .1 . The primal formulation is consistent if

B D g ( u . v) =  ( DG(v) Vu e SP(fi. Th.F).

where a is the analytical solution to the problem (2.2.1), (2.2.3).

D efin ition  2.6.2. The primal formulation is adjoint consistent if

B DG( v . f ) =  [  vgdx Vc e H'Jn.Ti,)-  
Jn

where pi is the solution to the adjoint of (2.2.1). (2.2.3):

C* =  g in Q.

subject to homogeneous boundary conditions.

If we assume tha t the analytical solution u of problem (2.2.1). (2.2.3) lies in H i ^2+S(Q. T^). 

s > 0. and the functions u and (aVu) • n j  are continuous across each face /  C Ok\T  tha t 

intersect the subdomain of ellipticity Qa = {x € H : (jTa(.r)f > 0  V( E Rrf}. then the SIP 

method is consistent; this stems from the consistency of the numerical fluxes. Thereby, 

the Galerkin orthogonality property may be established:

B d g (u ~  u d G . v) =  0 Vv E S^(Q. Tfy.F). (2.6.8)

which is essential for the proceeding error analysis.

R em ark 2.6.3. If the smoothness condition on u above is violated, then the discretization 

method must be modified accordingly, cf. [76].
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R em ark  2 .6 .4 . The parameter. 0. from (2.6.6) and (2.6.7) can take values other than 

— 1. Indeed, popular choices are 0 = 1 and 0 = 0 which yield the Non-Symmetric Interior 

Penalty (NIP) method and the Incomplete Interior Penalty (IIP) method, respectively. 

These alternative methods can be attained with different choices for the elliptic numerical 

flux functions Uh and <!>/, • n f .  Indeed, there are a wide range of choices for these numerical 

flux functions resulting in alternative DG formulations: see [13] for a detailed review. 

Although, like the SIP method, both the NIP and IIP  methods are consistent, only the 

SIP method is adjoint consistent. In general a DG formulation requires the numerical 

fluxes to be conservative for it to be adjoint consistent and in the case of the NIP method 

the numerical flux u f  is not conservative. The lack of adjoint consistency of the NIP 

method has dram atic consequences when considering any duality based error analysis, 

such as the Aubin-Nitsche duality argument, of. [37]. or the proceeding error analysis 

from Chapter 4.

2.7 Stability

In Section 2.6 we derived a method for finding an approximate solution to our model 

problem (2.2.1). (2.2.3). A natural question to ask is the following: "How do we know 

tha t a solution to (2.6.5) actually exists and is it unique?". Before we can answer this 

question, we need some definitions.

D efin ition  2.7.1. A bilinear form B(-.-) on a normed linear space H. is said to be 

coercive on H  x H  i fB C s  > 0 such that

B(v .  v) >  CslMI// Vv € H .

We can now state the following standard theorem.

T heorem  2.7 .2 . I f  is a coercive bilinear form, on a normed, linear, finite dimen

sional space H , then for any linear functional (:{■) there exists a unique u € H  such that

B ( u . v ) = f ( v )  Vv G H. (2.7.1)
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Proof. Coercivity of the bilinear form B(-. •). over H  x H .  immediately implies that if

B (u \  w) = 0.

then w = 0. This in tu rn  implies the uniqueness of a solution: suppose we have two 

different solutions of u and u* of (2.7.1). then

B(u, v) — B (u *, v ) = B (u  — u*. v) = £(v) — L{v) — 0 Ve G H.

Selecting v — u — u*. yields B(u  — u*. u — u*) =  0. hence u = -u*. As the linear space H  is 

finite-dimensional and (2.7.1) is a linear problem, the existence of the solution to (2.7.1) 

follows from the fact tha t its homogeneous counterpart has the unique solution udg =  0. 

■

Thus, if we can prove coercivity of the bilinear from. Bdg{-. •) on the space 5 P(Q. 7/;. F). 

we can guarantee the existence of a unique solution to (2.6.5). Before we proceed it is first 

necessary to define a norm on our space S P(Q. 7/, . F). We define the DG-norm ||| • |||dg  (s^e 

[61]) by

where || • ||T. r  C dn. is the norm induced from the inner-product

(v .iv)T = J  |b  • n K|r  /cd.s.

and Co is defined as

W r ) ) 2 =  C(x) +  ^ V - b ( r )  V x e Q .

cf. Assumption (2.3.2).

We now state the following lemma, which is im portant for the forthcoming stability 

arguments.
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L e m m a  2.7 .3 . For w e  S P{Q. Th. F]

B b ( w . w )  =  Y ,  +  9 l l»'  l l a - « n ( r Du r - )

1„ + _ ||2 1 
2 |F ’ u' ||y_K\r  +  2 l|ir II0.+«nr

Proof. This result follows after an application of the integration by parts formula: see [75] 

for details.B

To prove coercivity in the DG-norm. we assume, for simplicity, tha t the entries of the

m atrix a are constant on each element k <E 7/; . i.e.

a 6 [Sfi(fi.T,,.F)j^.

and let aK := a |K. We also define a = | \ /a  | § - where | • [2 denotes the m atrix norm

subordinate to the /2-vector norm on . tha t is

\ A\2 := max 4 e  Rrfxrf
rGSd\{0} || C || 2

In this thesis we will analyze the DG method in two settings. In the first case, the 

polynomial degrees are restricted so tha t they are isotropic 011 each element, i.e. for all 

elements k E 7/,. pK = pK. where pK > 1 is an integer, but full orientation of the element 

is allowed, i.e 110 restriction is placed 011 the the mapping FK. except tha t it is affine, cf. 

Figure 2.1. In this case we define the finite element space to be S Piii°(Q. 7/,. F). The second 

setting allows anisotropic polynomial degrees, but restricts each element k G Tft to be an 

axiparallel image of the reference square (up to a C^-diffeomorphism). in other words FH 

is an affine mapping of the form

Fk(x ) = A kx +  bK.

where A K ^diag(/?^. h^)- with h* and /?£ the lengths of the edges of R parallel to the iq- 

and x‘2-axes. respectively. b K is a two-component real-valued vector and QH is a smooth 

diffeomorphism as before: see Figure 2.2.

In this way. our analysis will enable us to understand what effects the orientation 

of the elements has on the error of the method separately from the effects of employing 

anisotropic polynomial degrees.

+  ||u,+ w  ||* +  ||ir+ 1|| nnr ) • (2-7-2)
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Figure 2.2: Construction of axiparallel elements via composition of affine maps and C 1- 

diffeomorphisms.

2 .7 .1  S ta b ility  w ith  I so tr o p ic  P o ly n o m ia l D e g r e e s

For proving coercivity when isotropic polynomials degrees are used, the following inverse 

inequality will be required.

L em m a 2.7 .4 . Let k be either the reference d-hypercube or unit d-simplex. d = 2.3. then 

for any function v 6 7Zp(k), p > 1. there exists a positive constant C-mv which depends 

only on the dimension d. such that for f  C dk

I2 <  C ’ r>2 Iff’II2 I f — '-'inxP lb \\L-2(k )'

Proof. The result follows after application of the inverse estimate

I|Vi)||l2(«) <

together with the multiplicative trace inequality

(2.7.3)

(2.7.4)

(2.7.5)

here both C"m  and C\ are positive constants depending only on the dimension d. A  

proof of (2.7.5) for d = 2 can be found in. for example. Prudhom m e et al. [109]. with 

analogous arguments holding for d = 3. Schwab [119] provides a proof of (2.7.4) for d =  2.
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while for the 3 hypercube the result can be shown by performing a tensor product of the 

one-dimensional result. For the reference tetrahedron a proof of (2.7.4) can be found in 

Georgoulis [51]. ■

We now need to scale (2.7.3) to the physical element k: this is undertaken in the next 

lemma.

L e m m a  2.7.5. Let k be an element contained in the mesh 7]h and let f  denote one of its 

faces. Then . the following inverse inequality holds

IN lL (/) -  Cm\-—̂ -p2\\v\\2L2(K) (2.7.6)

for all v such that v o QK o FK G 7Zp(k), where Cmy is a positive constant which depends 

only on the dimension d.

Proof. We use (2.7.3) and rescale both the left- and right-hand sides. For the left-hand 

side we make use of (2.4.3) and (2.4.4) and obtain

mi n*n l i f F f -ij O5 ru j

Similarly, for the right-hand side using (2.4.1) and (2.4.2) yields

K ( / >  *  < * I H l l , / >  =  m i  ±  « < < / , •  < 2 - 7 - 7 )

l l ^ lL , , ) = d e t ( F - 1)||S |II2(s) =  ^ | | i | l i 2(A)< C 4^ | | i | l i 2(s)< C 1C4^ | | l. | |! 2W. (2.7.8)
I lift IiLk UiK

Inserting (2.7.7) and (2.7.8) into (2.7.3) gives the desired result. ■

R e m a rk  2.7.6. The inverse inequality stated in Lemma 2.7.5 is an extension of the 

standard result employed on isotropic finite element meshes to the case when anisotropic 

elements may be present. Indeed, in the isotropic setting, we have tha t m K % hdK and 

m f  «  h f r 1. where hK denotes the diameter of the element k G Th', thereby, the scaling 011 

the right-hand side of the inequality (2.7.6) is of size 1 / h K. as expected. Moreover, this 

result extends the inverse inequality stated in [53] to the case when the affine mapping FK 

includes not onlv size, but also orientation information, cf. above.



2 . 7  S t a b i l i t y 3 0

«2

/

/

Figure 2.3: Selection of mesh function h on face / .

We now define the function h 6 L oc(Yint U T d). as li(.r) =  m in{m Kl. m K,2} /m f .  if x 

is in the interior of /  C 0k\  D c)k2 for two neighboring elements in the mesh 7/;. and 

h(x) =  m K/ m f ,  if x  is in the interior of /  C dnC1 To- For example, if two neighbouring 

elements k and k' sharing a face f  are rectangular, then h\j is simply the minimum of the 

lengths of the faces of k and k' in the direction orthogonal to / :  see Figure 2.3. We note 

tha t in the isotropic setting we observe tha t h ~  h, where h denotes the mesh local mesh 

size. cf. Remark 2.7.6 above. We also define the function a E L oc(Fjnt U Fd) bv a(x) =  

max{aKl. aK2} if x  is in the interior of /  =  H^k-2 , and a(x) =  aK if x  is in the interior of

d « n r D. Similarly, we define the function p(x) E L^fFint U Fd) by p(.r) =  max {/y.,. ph2} 

if x  is in the interior of /  C dn\ H and p(x) =  pK if x  is in the interior of Ok Pi Td- 

W ith this notation, we are now in a position to state and prove the following coercivity 

result for the bilinear form £?dg(-- ') over S Piso(Q .T .F )  x S,piso(fh T . F).

T heorem  2.7.7. I f  d is defined as
2

<% =  ■<?/ =  C „ 2 L  / o r / c r D u r illt. (2.7.9)

then there exists a positive constant Cs . which depends only on the dimension d and the 

shape-regularity of Ty, such that

B d g (v . v ) >  Cs|||r|feG Vr e SP'“ (0. T. F).

provided that the constant C$ is chosen such that:

Cfi > Cd > 0.
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where C f is a sufficiently large positive constant.

The forthcoming proof follows the argument found in Prudhomme et al. [109]. with 

minor extensions since [109] only considers the case when b  =  0 and a = I.

Proof. Let Cs be an arbitrary real number and pick v € S P'*°(Q. T .  F ). Then

B dg(i'.«’) -  =  (1 -  C ,)(B .(r.«>) +  B b (v. v) +  B „(r. v))

- 2  I  ((oV r) -n/>[v]ds
^ r intur D

r 1 . >2.c
r  intUT D

— ((aV r) • n j)  ds.
d

(2.7.10)

Restricted to a face /  C  T j n t . the interface between elements /q and Kj. the last term  in 

the above expression (2.7.10) can be bounded as follows:

1 -  ^  [  _L
2d

— ((a-Vr) • n f ) ds < d.s. (2.7.11;(f  ((aKy v ) - n t f  + ((aKjV v ) - n f y

Using the fact tha t d is constant on each face and employing the inverse inequality (2.7.6) 

the following bound is obtained

{{aKiVv) ■ n f ) ds =  ^ | |a KiV?

C*inv W f  2 n V7 II2

< C \\w  2 II /------V7 II‘2

Thus, setting d as

vields

,)| /  =  C„ 

j  f ( a KV v ) - n f f d s <

ap2
IT

Cinv 
C,i) L2{KiY

Therebv.

" 1
- ( (a V v )  ■ n , f d S < ^  +  llv^Vrj  u

By using (2.7.9) an analogous argument for /  6 To yields

I L 2 ( h
(2.7.12)

2(K)‘
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Hence.

[  -A(aVv) ■ n t f d s  < ~ ^ B a(v. r). (2.7.13)
^ r intUrD V

where C f  is dependent on the maximum number of element interactions 011 an element 

boundary, tha t is:

C f  = m axcard{ / € F}nt U Td : /  C ds}.
Kerh

For a face /  G T\nt U Td the following bound holds:

2 J f {(a^ v ) ■ n /)M ds < 2)J f f ^ a V v ) ' n f ) 2ds J ^ M 2ds

< s j  i ( ( a V r )  • Uf ) 2ds  d[e]2ds.
7  17 c J f

for any e >  0. Summing over all faces /  G Tint U To and employing (2.7.13) we readily

obtain

2 [  ((aV r) ■ n /)[r]d s < r) +  - B d(v. v).
• 'r intu rD F 0 -

and therefore.

B d g (iviO -<Y IM Idc >  f l - C s - ( C s +  £ ) ^ ^ ^ B 0(v.c)  

+  (1 -  C s) B b(v. v) +  ( l  -  C , -  7  B A v .  v).

Evidently B a(v. v ) and B#(v. v) are non-negative, and similarly F?b(e- v) > 0 due to Lemma

2.7.2. hence it follows tha t if

b - C s - ( C . ,  + ; ) L 7 i j  > 0 . ( 1 - C S) > 0  and ( l  -  Cs -  i )  >  0 (2.7.14)

then coercivity holds. The last inequality will only hold provided

c  >  1 .

while the first implies that

„ 1 -  c C [nvC f / C d  ̂ 1 -  C in vC f /C r ,  _  Co -  C invC f  
<  a <  l  +  C ^ . C f / C i ,  l  +  C ^ . C j / C , ,  C „  +  C i „ v C /

So. in order for Cs to exist. Co must be taken sufficiently large, tha t is Co > C\m Cf.

in which case the second inequality from (2.7.14) automatically holds and the method is

coercive. ■
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Figure 2.4: Selection of polynomial function p on face / .

Thus, as coercivity has been shown, we are guaranteed the existence of a unique 

solution to (2.6.5).

2 .7 .2  S ta b ility  for A x ip a r a lle l E le m e n ts  in  M2

In this setting we make the following definition to differentiate between faces of an element 

d k l := ( -1 .1 )  x {±1} and d k 2 := {±1} x ( -1 .1 ) .

and similarly

d k 1 := FK(dkl). i =  1.2.

Ok1 := QK(dkl), i = 1.2.

We define a new mesh function h in L 30 (Tim U To), as 1i(t) =  hf  }. if x  is in the

interior of /  =  d ^ D d F  for two neighboring elements k. k'  in the mesh 7^. and /  =  Q ^ 1(f )  

is parallel to the aq axis: we also define h(x) =  h f . if x  is in the interior of /  =  8k  Pi Td 

and /  =  Q ^ i f )  is parallel to the Xj axis. We remark tha t in the restriction to  axiparallel 

images of the unit hypercube in R2 the mesh function h from Section 2.7.1 collapses to h. 

Similarly, we define p in L oc(Tint UTd) by p(x) =  max{pKl.j. pK2.m} if x  is in the interior 

of /  =  0k\ DOk2 - where i /  j  and I ^  m  and p(x) =  pKj  if x  is in the interior of OF DTd- 

where i ^  j .  Thus, for two elements k and k' sharing a face / .  p \f is the maximum of the 

polynomial degrees of the k and k' in the direction orthogonal to / :  see Figure 2.4. In this 

case, coercivity of J5dg(’-0 over S^(Q .Th.F)  x S^(Q. T^. F) can be shown.

^ r>L

I
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T h e o re m  2.7 .8 . For a mesh 7), consisting only of axiparallel images of the unit square 

(up to diffeomorphism). if  i) is defined as

%  =  <?/ =  f or f  c  dK‘ n d K J 6 r int- (2.7.15)

where /c* and Kj are two neighbouring elements of 7),. then there exists a positive constant 

Cs , which depends only on the dimension d and the shape-regularity of T ,. such that

B d g ( v . v ) > III <’ III dg  Vt’ e  S V { n .  Th. F ).

provided that the constant is chosen such that:

C,J > C[j > 0. 

where C\} is a sufficiently large positive constant.

Proof. The proof follows in the same vein as for Theorem 2.7.7. but requires a modification 

of Lemma 2.7.4 to the case of anisotropic polynomial degrees. See Georgoulis [52] for 

details. ■

R e m a rk  2.7.9. Theorem 2.7.8 implies tha t the direction perpendicular to the face of 

interest is the im portant one for ensuring stability. Indeed, in the case of anisotropic 

diffusion, it is also the case tha t only diffusion perpendicular to the face need be considered; 

see Georgoulis [52].

R e m a rk  2.7.10. As the inverse and trace inequalities needed for the above coercivity 

result are proved via tensor product expansions of one-dimensional results, it is relatively 

simple to extend them, and hence the coercivity results, to R3. In this situation h and 

p  will depend on the two length scales and two polynomial degrees perpendicular to the 

face of interest, respectively.



Chapter 3

A pproxim ation P roperties o f  

A nisotropic Spaces

In this chapter we will develop some approximation properties of the anisotropic: finite 

element spaces introduced in the previous chapter. Specifically, we shall derive interpo

lation estimates for the L2-projec:tion operator, which we will define momentarily. The 

standard practice involves determining bounds on the reference element, which are then 

transformed to the anisotropic physical element. For the case where full orientation of 

the physical element is allowed we shall extend the approach of Formaggia and Perotto. 

developed in the series of papers [48. 49. 47]. In these papers only approximation by 

piecewise linear polynomials was considered: here we generalize these results to include 

approximation by higher order polynomials, by making use of some results from tensor 

analysis, cf. [54]. For axiparallel quadrilaterals with anisotropic polynomial degrees, we 

state the results of Georgoulis [52. 53]. These interpolation results will then be used in the 

proceeding chapters to develop anisotropic a priori estimates for the DG m ethod presented 

in Chapter 2.

3.1 The L2-Projection operator

In order to obtain an optimal a priori error estimate for our DG scheme it is necessary to 

develop some error estimates for the orthogonal L2-projector from L 2(k) to 7Zp(k).  First
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we define this L 2-projection operator, denoted by lip.

D efin ition  3.1.1. For v € L 2(k), we define the L 2-projection operator

%  :

by

(fl jfiKiv)k = (iKw)k V w e l Z p .

Following the definition of the L2-projection operator on the reference element, k. we 

also define the L2- projection operators on k and k by means of the mappings FK and QK 

introduced in Section 2.4.

D efin ition  3.1.2. We define the L 2-projection operators lip and lip on k and k . respec

tively, by the relations

:= ( i y i o F . O o F , - 1.

rip!’ := (flp-(i'oQK))o Q ;1.

for v 6 L 2(k) and v 6 L 2(k).  respectively.

Initially we consider only uniform fixed isotropic polynomial degrees and let lip. lip. 

and Ftp be the respective restrictions of lip. tip  and Tip to this case. We quote the following 

approximation results on the reference element k.

Lem m a 3 .1 .3 . Let k be the reference element, and let f  denote one of its faces. Given a 

function v £ H k(k). the following error bounds hold for m  =  0.1:

|u — t lpv\Hm ^  < C|£|//s(*). m < s < min(p +  1. A*). (3.1.1)

\v -  t l p v l n ^  < C |i' !//-,;K;. m +  1 < s < min(p +  1. kj. (3.1.2)

where C is a positive constant which depends only on the dimension d and polynomial

order p.

Proof. The proof of (3.1.1) is standard; see [37]. for example. The approximation result 

(3.1.2) follows upon application of the multiplicative trace inequality (2.7.5). cf. [75]. ■
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In order for the above estimates to be of use we must transform  them  from the reference 

element k. to a physical element k . The following corollary provides a first step in achieving 

this.

C o ro lla ry  3 .1 .4 . Using the notation of Lemma S. 1.3. there exists a positive constant C. 

which depends only on the dimension d. and the polynomial order p. such that for m =  0 . 1 :

\v -  Upv\Hm(K) < C\ det( JpK) |1/2 11 J f j  11 '‘2 K’I//*(k)- m ^  s ^  m in (p+  1 . k). (3.1.3) 

\v -  U p v \ H rn( f )  < C\ mf \l/2 II J ^ T ||<2f K’|//*(k)- m + 1 < S  < min(p +  1. A-).(3.1.4)

Proof. Each of the inequalities (3.1.3) and (3.1.4) can be proved by employing a standard 

scaling argument on the left hand sides of the respective approximation results in Lemma

3.1.3. Indeed, for (3.1.3). with m =  0. the use of (2.4.1) yields

\\v -  U p v \ \ l 2{K) = I  d e t(Jqk)(v -  f lpr)2dx  
J k

< II det(./Q„ )!!/,*(/;) ||)' -  r ip r l l l , , , ,

< Ci f  -  t l p v f d i
J k

<  C i | d e t ( J F . ) | | | { '  -  f t p ' f l l L * ) -

Similarly for m =  1 . application of the chain rule twice and employing (2.4.1) yields

\v -  Upv \2hHk) =  f  d e t ( J q K) | J q J V (r  -  f lpv)\2dx
J k

^  IIj q1  lli*(K)ll -  n Pk W >

< C,(C2)2 f  det (JfK)\JFJ V ( v  — npf)|2cli'
J k

< C, (C-2)21 det (.7^) III II ̂  | r- -  n pr | y  , . r

Hence, for m =  0.1.

Ik -  V ’iy „ w  < C | det( J F-) 1)1-7^ ||2,,! || r  -  (3.1.5)

Combining (3.1.5) with (3.1.1) gives the desired result (3.1.3).

The bound in (3.1.4) follows analogously, but this time utilizing (2.4.1). (2.4.3) and 

(2.4.4). results in
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for m  =  0.1. Upon substituting (3.1.6) into (3.1.2) we obtain (3.1.4). ■

W ith this corollary it now only remains to scale the H s(k) semi-norm on the reference 

element k to  k in such a way as to extract the anisotropy of the mapping Fh. To this end. 

we must first introduce some tensor notation and results.

3.2 Tensor N otation

We use the following definition of a tensor.

D efin itio n  3.2.1. An entity,

A e  K/lX/2X- x h .   j N e

is termed a real N  th order tensor.

A tensor can therefore be regarded as a higher-order generalisation of scalars, vec

tors and matrices, with scalars being Oth-order tensors, vectors being ls t-o rder tensors 

and matrices being 2nd-order tensors. It is standard practice to use lower-case letters 

to represent scalars ( a , . . . .  a , . . . ) ,  bold letters to represent vectors ( b . . . . )  and capital 

letters to represent matrices (A. B . . . .) ;  for Arth  order tensors we use calligraphic letters

(A. B  ). The following discussion regarding the manipulation of tensors is based on the

work presented in the article [94].

D efin itio n  3.2.2. For an N th  order tensor A  the matrix unfolding A ^  €

£ / nx(/n+i/n+2...hxb/2..-/n-i)< n — contains the element o ,xj2..., v at, the position

with row number in and column number equal to

( i n  + l — l ) - ^ n + 2 ^ n + 3  • • • U v U  • • • h i - }  +  (?’n + 2 ~  l ) / n + 3 ^ n + 4  • • • I j \ I l h  • • • h i  I +  • • •

+  ( b v  — h ) I \ l 2 ■ ■ ■ I n - 1 +  ( U  — h h h  ■ ■ ■ I n - 1  +  ( h  ~  1K .3-U  - • • I n - 1 +  • • • +  b ; - l -

In essence a m atrix unfolding represents a splitting of an ATh--order tensor into a vector 

of (A—l)th -o rder tensors. These (Ar—l)th -o rder tensors are then recursively unfolded until 

2nd-order tensors (matrices) are realised. Figure 3.1 shows the three unfoldings possible 

for a 3rd-order tensor.
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Figure 3.1: M atrix unfolding of a 3rd order tensor: (a) First unfolding (b) Second unfolding 

(c) Third unfolding.
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The definition of a m atrix unfolding prom pts us to consider a way of multiplying a 

tensor by a matrix. Clearly, if we have a m atrix U E R JnXln then we can pre-multiply 

A(n) by U. Forming an Arth  order tensor from UA( n) by reversing the m atrix unfolding 

procedure we have the product of a m atrix and a tensor, giving rise to a tensor B E 

lg>/ix/2x...x/n_ixJ„x /n + ix...yv _ Dmgmmatically tliis can be represented as

, U n f o l d  . U x  T T  . R e f o l d  .A  > A {n)  > U A (n) --------► A x n V.
'    -

x„f.r
We formalize this notion in the following definition.

D efin itio n  3.2.3. The n-mode product of a tensor A  E R h x /2x...x/v ^  a mafrix jj ^

MJnX/n  ̂ denoted by A x  nU . is an I\ x 72 x . . .  x I ri_\ x J„ x I n + l x . . .  I \ - te n so r  of which

the entries are given by

In

(A  x n C ) / ! i  v := (A) i li2...in_l injn t j .../ v (L )jnjn •
i rtz 1

L em m a 3.2.4. For A  E jR/lX-hx...x/v and U E R J,,x7n. we have that

(A  Xr2 U')(n) =  UA( ny

Proof Consider element (A  x n U)il i2„,in_2j nin+l,,,2v. its position in (A x n U)(n) is at row 

number j n and column number k , where

k  =  ( h i + 1 — l ) C i + 2 - ^ n + 3  • • • L \ I 2 • • • I - n - l  +  ( h i + 2  ~  1 ) C j + 3 ^ m + 4  • • • C v - ^ 1 ^ 2  • • • C i - 1  +  • • •

T ( ' IN ~  1 ) A ^ 2  • • • I n - 1 +  ( A  — 1 ) ^ 2 ^ 3  • • • In-1 +  (*2 — l )C i-^4  • • • In - 1 +  • • • +  in-1-

Now.

In In

( U A [ n f ) j n k   ̂ ( U ) j n i n  ( A ( n ) ) i n k  0--4n - lU) Uj + 1 •■■UV ( k ‘ )jn in "

l „  =  l i r ,

Hence. (A  x n U)(n) =  UA( ny  as required. ■

By considering a vector v. as an /„ x 1 matrix, then an n-mode product of v T and *4 

can be performed to produce an I \  x I 2  x . . . x I n - \  x l x / , l+] x . . .  x Ty-tensor. This tensor 

could be viewed as an (Ar—l)-tensor. but instead we leave it as an AT-tensor in order that
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we can form other rn-mode products without the value of m having to change. However, if 

we have a 1 x 1 x . . .  x 1-tensor then we simply view this as a scalar. The r?-mode product 

satisfies the following properties.

P ro p e r ty  3.2.5. For a tensor A  E  R71 x l?x ---xhx ancf ffre matrices F  E  R J,iX/ri and 

G E M'7m x 7m, n 7̂  m, we have

{A x n F) x m G = (.A  x m G) x„ F  = A  x n F  x m G.

P r o p e r ty  3.2.6. For a tensor A  E  R 7i x U x . . . x / . v  an(j ^ ie matrices F  E  R J"x/" and 

G E M h n X j n , we have

( A x n F) x n G = A  x n (GF).

We also introduce the Frobenius norm of a tensor.

D efin itio n  3 .2 .7 . The Frobenius-norm || • ||F of a tensor A  E  R 7* x / 2 x . . . x / iV js given by

h  =  1 / 2  =  1 i.v =  l

L em m a 3.2 .8 . Given a tensor A  E  r-L x / 2 x . . . x / v  an orthogonal matrix F  E  R7,)X7'1. 

the following holds

\ \ A x n F\\F = \\A\\F . (3.2.1)

Proof. For a m atrix A  E  R /ri x ,n we have that

||iT 4||F =  \\A\\f . (3.2.2)

Using the identity in Lemma 3.2.4. namely. (-4 x n i r )(n) =  F A ( n). we deduce tha t

11-4 x„ F \\r  = ||Fv4(r?) ||F .

Given that A( n) E  exploiting (3.2.2) gives
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3.3 A pproxim ation E stim ates On T he Physical Element

We now return to the problem of rescaling the EP--seminorms. Here, we adopt the ap

proach of Formaggia and Perotto [48]. This method has a number of attractive properties: 

first it incorporates all the directional information contained within the map F h: secondly 

unlike other results it is not constrained by the need for a maximal angle condition. In

deed. numerical experiments presented in [48] clearly dem onstrate tha t this approach leads 

to approximation bounds which show the correct asymptotic behaviour with respect to 

the maximal angle. In order to perform the rescaling we first note tha t

H h -m  =  f  l|x>s(<’)llF<tf.
J k

where t>s(v) £ ^dxdx---xd is the ,sth order tensor containing the sth  order derivatives of 

v with respect to the coordinate system x  =  (T j ?>/). i.e..

 h  =  1 d - f o r  k =  1  * •

Thereby, for s =  0. t>s(v) = v. for s =  1. t>s(r) is the gradient vector, and for s = 2. T>s(v) 

is the Hessian m atrix of second-order derivatives. Similarly, we write T>s(v) £ '^dxdx"-xd 

to denote the sth  order tensor containing the sth-order derivatives of v with respect to the 

coordinate system x  — {x \  xj ) .  We now state the following lemma relating

t°  i 5 iy (i).

L em m a 3.3.1. Under the foregoing assumptions, for v £ H s(k). s > 0, we have that

K’l 2Hs{k) =  I ) |  /  II f>s(v) Xi  .]J,t x 2 J p K x 3 • • •  x  s j]:-f l l ^ d . r .
J R

Proof. The case when s =  0 follows trivially. For s > 1. we first note tha t the entry 

(P>s(v))il i2...is may be written in the form

=  i  h ' ‘' ' '■ {J f -

for if; =  1 . . . . .  c? and k =  1 . s; this follows by employing an induction argument

together with the chain rule. Thereby, from Definition 3.2.3 and Property 3.2.5 above, we 

deduce that

=  £* (* )  X , J l  X 2 J l  X 3 . . . X ,  J l . (3.3.1)
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Vl

Figure 3.2: SVD of a 2 x 2 matrix. A.

The statem ent of the lemma now follows by a simple change of variables.

■

In order to describe the length scales and orientation of the element k. we first need 

the following definition of the Singular Value Decomposition of a matrix.

D efin itio n  3.3.2. A matrix A  £ W nxn can be decomposed as follows:

A = UHV T .

where U £ ts an orthogonal matrix termed the left singular matrix, E £ W nxn is a

pseudo-diagonal matrix with non-negative entries called the singular values and V  £ 

an orthogonal matrix termed the right singular matrix. This decomposition is called the 

Singular Value Decomposition (SVD).

Viewing the m atrix A  as a map. the left singular m atrix U ~  [u i u m]. is composed

of orthonormal vectors u^. i =  1 . . . . .  m. which are in the direction of the images of the

respective orthonormal vectors v ?- of the m atrix V  — [v i v„]. It is convention that the

singular values <7/ of E are ordered such tha t o^ > ox > • • • o.s > 0 where s =  m in(m. n). 

These singular values represent the stretching factors of the corresponding orthonormal 

vectors, hence the SVD provides a complete characterisation of the map A. Figure 3.2 

shows the physical meaning of the SVD for a m atrix A  £ M2x2. For more information on 

the Singular Value Decomposition see. for example. Trefethen [131].
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For higher order tensors there exists a generalisation of the Singular Value Decompo

sition. which is expressed in the following Theorem.

T h e o re m  3.3 .3 . Every tensor A  € X/2X" 'X/;V can be written as the product

A  = S  x l U (l) x 2 U {2) x 3 . . .  x.v U (N).

where

1. C/<"> is an orthogonal (In x I n)-matrix.

2. S  6 K/ i x/2x- xtv of which the subtensors Sjn=a , obtained by fixing the nth index to 

q, have the properties of

(a) all-orthogonality: two subtensors S jn=a and Sin=j are orthogonal for all possible 

values of n, a  and $  subject to o ^  4, i.e.

(Siu=a -S in=3 ) =  0. when a A J-

(b) ordering:

| | S i n = l | | F  >  l l ^ i n  = 2  I I F  >  . . .  >  W ^ i n  = I n  I I F  >  0

for  all possible values of n.

The Frobenius-norms ||<Sjn=i||fr are the n-mode singular values of A  and the matrix
U(n) is the left singular matrix of the nth matrix unfolding of A .

Proof. For a proof see De Lathauwer. Moor and Vandewalle. [94]. ■

R e m a rk  3.3.4. Computation of an SVD of a tensor A  is straight forward. The orthogonal 

matrices U ^  are computed by performing the n th  m atrix unfolding and then calculating 

the standard m atrix SVD. so that:

A („) = U M HV.

W ith these matrices calculated, by making use of Property 3.2.5 and the orthogonal nature 

of each the core tensor S  can be found as

S  =  .4 X] ( t / (1))T x 2 ( C 2,)T X : , . . .  x .v (U (‘V,)T .
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The following corollary can also be shown, which extends the notion of an eigenvalue 

decomposition to higher order tensors.

C o ro lla ry  3.3.5. Suppose A  <E R nxnx- x" ls an y / / ; oryer tensor with the following 

symmetric property:

I v  ( l  i \  I i i'2 • ■ ■ i X  -  1 '

then A  has the decomposition

A  = S  X i U  x 2 U x 3 . . .  x M C7. 

where U is an orthogonal (n x n)-matrix and S  has the same symmetry as A .

Proof. See De Lathauwer. Moor and Vandewalle. [94]. ■

We perform an SVD decomposition of the Jacobi m atrix J/r. of the affine element 

mapping Fh. Thereby, we write

Jfk =  UkT.kVk - (3.3.2)

where UK and VK are d x d orthogonal matrices containing the left and right singular

vectors of J/rK. respectively, and =  diag(<7i,K. a2.K is a d x d diagonal matrix

containing the singular values oyK. i = 1 d. of . W riting UK = (u i.K . . .  u</.K). we

note that u 7 i — 1 d. give the direction of stretching of the element k . while cr/.K.

i = 1 d. give the stretching lengths in the respective directions. Indeed, for axiparallel

meshes, as considered in Section 2.7. for example. u;.K. i = 1 d will be parallel to the

coordinates axes and i = 1 d. will denote the local mesh lengths in the respective

coordinate direction. W ith this decomposition we now give the following lemma.

L em m a 3.3.6. Under the foregoing assumptions, the following identity holds

||£>S(-C) x t J l  x s . . . x , j 1 J f

d d d

=  X I  X  ••• X ^ i - k CT'2.k - - - ° is.k)2{VS{v ) X i u J . k X2 u |r2.K x 3 . . .  X . u X - ) 2
i l = l t 2 = l  L s  =  l

=  D ! ( i . E K. UK). (3.3.3)
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Proof. The result follows after performing the SVD as in (3.3.2). using Lemma 3.2.8 and 

rearranging. ■

R em ark 3.3.7. We note that, should the mapping FK yield a near isotropic element k . 

then upon defining the standard isotropic mesh size. hK. (see [61]. for example) by

we have

hK diam(K).

<7?.k ~  hK. i =  1 d.

(3.3.4)

Hence, in this isotropic setting

J k

We are now in a position to provide the main result from this section.

T heorem  3.3.8. Using the notation of Lemma 3.1.3. there exists a positive constant C. 

which depends only on the dimension d and the polynomial order p. such that for m =  0.1:

1 / 2

\v - U p v \ H m {K) < C\ad.K\ m

\ \ v - U pv\\L2(/) <  C\adJ ~ 1/2

[ n ~ ( r . y H. u h)dx 
J k

f  n;  r ,  'u
J  k

■ rn <  s <  mill(y> +  l . k) .

1 / 2

. 1 <  s < min(p +  1. k).

\ v - n ■Pv \ H H f )

oV
I

m j 1/2

/  Dl(i~.EK.U h.)dx
m K . J  k

1 / 2

• 2 <  s < min(/i +  1. A*).

Proof. Initially we substitute (3.3.3) into the result from Lemma 3.1.3. to obtain

|d e t ( jy > | l D ! ( v . Z K. UK)dx.  (3.3.5)
J k

Making the following observations

det(J/rK)| =  n ?=1(Ti.K. ||^f T ||2 =  1 /vd.K- trig < C7 U f J a UK.d- 1 (3.3.6)

where CV is a positive constant independent of the element size, we use (3.3.5) in Corollary 

3.1.4 to complete the proof. ■



3 . 4  h p -E r r o r  B o u n d s  O n  T h e  H y p e r c u b e 4 7

R em ark 3 .3 .9 . For the purposes of deriving the forthcoming a priori error bound on 

the error in the computed target functional, cf. Theorem 4.1.5 in the next chapter, it is 

convenient to leave the statement of the third approximation result above in terms of my

quantities naturally arise within the definition of the discontinuity-penalization parameter 

0 defined in (2.7.9).

3.4 /ip-Error Bounds On T he H ypercube

For completeness we also state the following p-dependent interpolation results in the case 

of isotropic and anisotropic polynomial degrees on the <i-hypercube.

3 .4 .1  Iso tr o p ic  P o ly n o m ia l D e g r e e s

L em m a 3.4.1. Let k be the unit d-hypercube, and let f  denote one of its faces. Given a 

function v G H k(k), the following error bounds hold

where 1 < s < min(p +  l . k )  and in each case C is a constant dependent only on the 

dimension, d.

Proof. A proof can be found in Houston. Schwab and Siili [76]. for example; see also 

Canuto and Quarteroni [33]. ■

and m K. rather than in terms of the stretching factors <x/ K. i = 1 d. solely, since these

C c

Rescaling to the physical element we easily atta in  the following result.

Lem m a 3.4.2. Using the notation of Lemma 3.1.3, there exists a positive constant C,



3 . 4  h p -E r r o r  B o u n d s  O n  T h e  H y p e r c u b e 4 8

which depends only on the dimension d such that:

0 < s <  min (p +  1. k). (3.4.1)

1 < s < min(p +  1. A'). (3.4.2)

1 <  s <  min(p +  1. k). (3.4.3)

2 < s < min(/i +  1. k). (3.4.4)

Proof. The same arguments from Corollary 3.1.4 and Lemma 3.3.6 can be applied to the 

results from Lemma 3.4.1 in order to derive the above results. ■

R em ark 3.4.3. Considering once again isotropic elements and bearing in mind Remark 

3.3.7 we see tha t Lemma 3.4.2 shares exactly the same convergence results in terms of 

both hK and p  as Lemma 4.3 of [61]. Indeed, all four results from Lemma 3.4.2 show 

ft-optimal convergence rates, with the errors in the L 2-norm  exhibiting p-optimal conver

gence; however, both fC -bounds are p  suboptimal. with (3.4.2) and (3.4.4) suboptimal 

by p 1/ 2 and p. respectively. Optimal //p-convergence rates have been shown for alterna

tive projection operators: see. for example. Georgoulis [52]. however, as we shall see. the 

L2-projector is required for the functional a priori analysis in the next chapter to give 

h optimal convergence rates.

3 .4 .2  A n iso tr o p ic  P o ly n o m ia l D e g r e e s

Returning to the 2-dimensional axiparallel setting introduced in Section 2.7. where aniso

tropic polynomial degrees are admissible, we introduce the quantity 4>(p. s. h ) by

<l P 1' \ \ L2( k)

\v — n pv\Hi(K) <

c
p S D%{v.Y^.UK)dx

c
p S - 3 / 20/0 Wd.K |-1

-J K
c!■- npi'||L2(/) < - 1 / 2

p

D U v . E . M ^ d x

\v -  n <
p

c
s -  5 / 2

77?

77?,
Wd.K I 1

D%(v.J:K. UK)dx
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where p and s are integers such that 1 < s < p. The following interpolation estimates 

then hold.

Lem m a 3 .4 .4 . Let u G H k(n). for k > 2; then, for  u := u o QK. p — (p\ . p2 ) and 

Pi‘P2 > 1- we have

W -  % u ||l < c km °.

where

and

M °  := £  $ (p „  s, .h, )  (3.4.7)

with

• := pMpi .Si .hriWdf ' uWj

+<S>{pJ. S j . h j ) \ \ d ^ 1f)ia\\'l

where i . j  = 1. 2, i ^  j .  1 <  si < minjp, +  1. k}. f o r  i = 1. 2. and (\ is the partial derivative 

in the Xi -d irect ion in the X\X2-plane.

Lem m a 3.4 .5 . Let u G H k(i\), with k > 1: then we have

ll« -  r v « | |L  < c KMgKj . (3.4.10)

with

M L,- : • ^ ( p j i>j)

with i . j  =  1.2, i /  j .  1 <  .s, <  niinj/), +  1. A'}, and />, > 1. for i =  1.2.

Lem m a 3.4.6. Let a G H k(K). with k > 2: then the following error estimates hold:

\ \d d u -  n p-u) | | |K, <  c ‘m U ,, +  0 2a / L , .  (3.4.11)

\\dj(u -  n p-u )!||Ki < C X . (  +  ^ L -  (3-4.12)
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with

for i , j  = 1 . 2 , i j ,  1 < Si <  minjpi +  1. k}. p t >  1. i =  1. 2. and

M L .i ■= Pj H P j - sj . h j ) ^ \ \ d j Ju\\l

+ p J < l H p l . s l J } l ) 2 ^ \ \ l ) p  1 d j u \ \ ‘~ . .  (3.4.14)
nj

for  2 < Si < niin{/u +  l .k } .

Proof. For each of the lemmata 3.4.4-3.4.6 full proofs can be found in Georgoulis [53]. In

each case, the idea is to split up the L2-projection operator on the reference element into a

tensor-product composition of one-dimensional L 2-projectors and apply one dimensional 

results (for example, see Schwab [119]): scaling back to the physical element then completes 

the proof. ■

R e m a rk  3.4.7. By using Stirlings formula

n\ ~  V 2 ^ n n+1/ 2e - n. n > 0. (3.4.15)

we see that for p > 1,

$ (p .s .h )  < C (s )p - 2 is- 1)h2{s~1). (3.4.16)

Thus, if we consider isotropic polynomial degrees in the results from the Lemmata 3.4.4- 

3.4.6 and apply (3.4.16) we return to the same asymptotic results in terms of p as for 

Lemma 3.4.2. Considering also isotropic h. tha t is h* ~  then we recover the same 

approximation results from Harriman et al. [61].

We shall now consider the case where the functions we are approximating are analytic. 

In this case we shall see that the L 2 projection provides />exponential convergence, a very 

desirable property, which improves on the merely algebraic convergence in p  witnessed
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above. In order to see this we present the following lemma, which is a slight modification

of Lemma 3.42 from [52].

L em m a 3.4 .8 . Let a : k —» M have an analytic extension to an open neighbourhood of k .

Also, let p, s, and n be positive integers such that

0 < 7? < s := ap  +  /? < p.

with 0 < a  < 1. Then the following bound holds

*(p.s + l.A)||a?+1« fu |£ 2(<t) < (3.4.17)

where m 6 {0.1} and r, C u > 0 are constants that depend on n and a, with i . j  £ {1.2}

for i /  j ,  and m K denotes the Lebesgue measure of the domain h .

Proof. We assume tha t i = 1 as the proof is analogous for i =  2. Since a is analytic in a

neighbourhood of k . its derivatives satisfy the bound

l|af+1a j" « H ^ (K) < c(cz1)s+1(</2)”'(« +

in which case

| | ^ +19 " 'u | |£2(K) <  C ( d l r + 1 ( d 2 ) " ' ( s +  l ) ! m ! m i  (3.4.18)

where C  is a generic positive constant and dj > 1 . i = 1.2. Using (3.4.18). utilizing

Stirling's formula (3.4.15) and recalling s =  ap  +  n. n > 0. we obtain

$(p. s +  1. /7)||af+1^ nw |||2(K) < C h 2sd lmdlQp+2n+2(ap +  7? +  1 )2«p+2"+3

(p(l _  Q) _  n \p(l-a)-n+±
x ^ ^ ^ --------  ntKm (3.4.19)

( p ( l  +  q )  +  7?)P(1 + Q ) +  n + 2

for sufficiently large p. The denominator of the fraction in (3.4.19) can be bounded from

below as follows:

(p(l +  q) + n ) p { 1 + a ) + n + l 2 > (p(l + a ) ) p { 1 + a ] + n + l 2 > (1 +  Q)P(1+rty (i+ a)+« + ̂  

and assuming that p{ 1 — a) > n. the num erator can be bounded from above as such

(p(l _  a) _ i < ( p ( 1  _  n ) y , (  +  i

By considering two cases we can further bound (/>( 1 — o ) f
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•  if 0 < n < then

-o i to -n ,(p(i -  a ))p(l~Q]- n+2 <  (i -  Q f , i - fty tl" n)

Thus, combining the above results, the right-hand side of (3.4.19) can be bounded as 

follows

(
I i 1 \  ‘2(xp+*2n

1 + +  j y n m j^  + f)

( ( \ - « y - n y
X V (1 +  a )1+a /

< C l r \ i f \ i i ( 2 a f ' ,pm'n{'i 'n+P

x ( | | ^ ( 2̂ ) 2n) P" -
for sufficiently large p. So. if we can find an a for which

F (a .d p - .=  [ ] ~ a ] ' y ^ i ) 2 a < l .

then we have recovered the /^exponential convergence. Indeed, it can be shown that for 

0 < q < 1 and d\ >  1. F {a .d \)  attains a minimum at a mjn := (l +  4d^)~ 2  and in this case 

F(om in-^i) < 1- Thereby, choosing r := | |  log(F(Qmin.di))|. we obtain the stated result.

In a similar vein the following also holds.

L em m a 3.4.9. Let u : k —> M. have an analytic extension to an open neighbourhood of R.

Also, let p. s. and n be positive integers such that

0 < 7? < s := ap  +  n < p.

with 0 < a  < 1. Then the following bound holds

<S>(p.s+l.h)\\d!d™i4l<(K] < (3.4.20)

where m G {0. 1} and r. C u > 0  are constants that depend on n and a. with i . j  G {1-2}

for i ^  j .  and rnK denotes the Lebesgue measure of the domain k .
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We notice tha t the results of Lemmas 3.4.4-3.4.6 all include term s of the form

$ ( p ,s . f r ) | |^ -1 u | | |2(K) or ^ ( p . s . I ^ W d f d j u f ^ ^ y

and hence Lemmas 3.4.8 and 3.4.9 can be used to  show tha t, for an analytic function u. the 

Z/2-projector achieves /^exponential convergence in both the L2-norm and H l semi-norm 

on the element and the element boundary.



Chapter 4

A P riori Error A nalysis

In this chapter we will use the anisotropic ^-interpolation estimates of the previous chapter 

to derive an anisotropic h-evrov bound for the SIP DG method. In particular, we shall focus 

on the estimation of certain linear functionals of the solution, rather than some norm of the 

solution. In this way the main result of the chapter will generalize the a priori estimates 

given in Harriman et al. [61] to anisotropic meshes: see also [54]. First, we discuss the 

importance of functional estimation and give some examples. Then, we introduce the 

so-called dual problem, on whose solution the a priori estimates will depend, a complete 

derivation of the estimates then follows.

4.1 Goal Oriented A nisotropic A  P r i o r i  Error E stim ates

Often it is not of practical value to have knowledge of some norm of the solution, but 

rather we might want to use our computed solution to calculate some other quantity of 

interest, the Goal. Error control in this sense is particularly im portant in engineering 

applications: e.g. in fluid dynamics one may be concerned with calculating the lift and 

drag coefficients of a body immersed into a viscous fluid whose flow is governed by the 

Navier-Stokes equations. The lift and drag coefficients are defined as integrals, over the 

boundary of the body, of the stress tensor components normal and tangential to the flow, 

respectively. Similarly, in elasticity theory, the quantities of interest, such as the stress 

intensity factor or the moments of a shell or plate, are derived quantities. In acoustic- and

5 4
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electromagnetic theory the quantity of interest is often the far-held pattern. Moreover, 

the same general theory is also applicable to the numerical com putation of eigenvalue 

problems. In this section, we derive anisotropic /?-error bounds in the case when the goal

is a linear target functional of the solution.

4 .1 .1  T h e  D u a l P r o b le m  an d  S p ec if ic  L in ea r  F u n c tio n a ls

Suppose that we wish to control the discretisation error in a generic linear target functional 

J(-) acting on the solution. We introduce the following dual or adjoint problem: find 

2 G H 2 (Q,Th) such that

B d g (w. z) = J(w)  Vw € H'2 (Q. Ti,). (4.1.1)

The well-posedness of (4.1.1) depends on the choice of functional •/(•). We will assume 

that a unique solution to (4.1.1) does exist: a discussion concerning the validity of this 

assumption can be found in Houston and Siili [79]. Three popular choices for ,/(•) covered 

by our hypothesis are

J(u)  =  M v (u) =  / up'dx.
Jn

J[u)  =  u(xo).

• Weighted Average:

where ip G L 2 (Q).

•  Point Value:

where xo G fh

• Weighted Boundary Flux:

J(u) =  N v (u) =  J (aVii • n +  (b • n)u )vds .

where ip G L 2 (T).

By performing an integration by parts of the bilinear form £?d g (*- ')• we can see 

each case we have recovered a weak formulation of the partial differential equation

L*z =E V  • (a V s )  — b  • V s  +  cz =  j0 \ in k.
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subject to boundary conditions

2 =  aJ2 on O k  n  (To u  r +).

d z  =  O o n f k - n r D .

(b • n K)z  +  (aVz) • nK =  ^ 3  011 Ok D T \.

where lj\. 0J2 and ^3  are functions dependent on the functional of interest.

R e m a rk  4.1.1. When the functional of interest is a point value and C is purely hyperbolic, 

the resulting weak solution 2 of (4.1.1) does not belong to L 2 (Q). Thus, to avoid technical 

complications. J  should be mollified to be a special case of the weighted average, where 0  

is chosen so tha t M v (u) is some approximation to u(x0 ). Details can be found in Houston 

and Siili [79].

For the weighted boundary flux. 011 To a consistent reformulation of the functional is 

required to obtain optimal convergence rates, details can be found in Harriman. Gavaghan 

and Siili [60].

4 .1 .2  A  P r i o r i  E rror A n a ly s is

We are now in a position to perform an a priori analysis of the error between the actual 

target functional value J(u).  and the estimate J ( u d g ) -  defined as j J(u)  — J ( r d g ) | -  T ^e 

following generalizes the a priori error estimates of Harriman et al. [61] to anisotropic 

meshes, by using the anisotropic estimates from Theorem 3.3.8. We present some prelim

inary lemmata and give the main result of this chapter in Theorem 4.1.5.

From now on we make the following assumption

and for simplicity, once again, assume the entries of the m atrix a are constant 011 each 

element k E Tft. i.e..

and let aK := a\K. We also define a =  \\fo\2. cf. Section 2.7. and write a K = a |K and hence

b  • V t0c € S P(Q. Tfj.F) Vv € 5 P(H.T/).F ) . (4.1.2)

0 6  [S °(n .T A. F ) K . (4.1.3)

aR :=  m a x { ( v  }• (4.1.4)
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where k' are those elements (including k itself) which share a (d-l)-dim ensional face with

K.

R e m a rk  4 .1 .2 . We note that hypothesis (4.1.2) is a standard condition assumed for 

the analysis of the hp-version of the DG method: see. for example. [53. 61. 76]. Indeed, 

this condition is essential for the derivation of a priori error bounds which are optimal 

in both the mesh size h and spectral order p: in the absence of this assumption, op

timal ^-convergence bounds may still be derived, though a loss of p 1//2 is observed in

the resulting error analysis, unless the scheme (2.6.5) is supplemented by appropriate 

streamline-diffusion stabilization, ef. the discussion in [75].

Initially we decompose the global error u — adg as follows

to estimate the error ?/ in a number of norms following the discussion in Chapter 3. but. 

as yet. we know nothing about the estimation of £. To this end. we present the following 

lemma, wdhch bounds the DG-norm of f  in terms of p.

L em m a 4 .1 .3 . Assume that (2.3.2) and (4 -1 .2 ) hold and let y i |K =  IK'/colll^^)-' then the 

functions f  and q defined by (4-1.5) satisfy the following inequality.

where C is a positive constant that depends only on the dimension d. and the polynomial 

degree p.

Proof. We begin by first making use of the coercivity result (2.7.10) and Galerkin orthog

onality result (2.6.8) as follows:

u -  udc; = (» - 1VO + (n py/ ~ ?Ox0 = >] + C (4.1.5)

where n p denotes the L2-projection operator introduced in Chapter 3. Hence, we are able

2
L2(dnn( rinturD))

KIIIdg <  c b d g ( C O

=  —C B d g ('I-S) 

<  C \ B DG(ih 0 l ( 4 . 1 . 7 )
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which holds for £ 6  5 ^ (0 . 7/,. F) and Upu € S P (fi.7 /,.F ) by assumption. We now bound 

B dg(t?« 0  from above; to this end. we write

BD ci1!' 0  = Ii +  I 2 +  7,3 +  73 +  7.5 +  I(j.

where

Ii = /  gV ?7 • V£d:r.
Kerh

h  =  ~  /  ^ /b ' “  r770d* = ~ Y 1  c‘?/£d.r.

73 =  V  (  f  (b • n K)//+£+d,s +  [  (b • n K)// £+d.s ) . 
reTh \ J d+K Jd-K\r J

h  =  I  < (aVi/) -n / >K]d.s?
7rjnturD

h = / ( ( « V 0 - n / )M d«.
71 intUFo

h  = [  tf[r/][£]ds.
7rinturD

For term 72 we have used condition (4.1.2) to ensure (77. b  • V -j^ ) =  0. by definiton of the 

L2-projection operator. Terms I\. I 2 . I 4 . I 5 . and 7g can now be bounded by use of the 

Cauchy-Schwarz inequality as follows

(K)-
nETh

Cl = I J l  /  T - W ^ l   ̂ H
KGTfe J k ° kGT* CO

n ko^ll L 2 (
L2(,

741 < lk ^ (« V 7 /) ||L2(rnitUrD) ||d 2K]||Lq rintUrD).

7 5 1 <  I k - * ( a V ^ ) | | L 2 ( r i I l t U r D ) l k 2 W l l L 2 ( r j n t u r D ) -

7 6 1 <  l l d ^ M I l L 2 ( r i n t u r D ) l l d 2  K ] l l L 2 ( r i n t u r D )-

For term  73. by virtue of an interior inflow edge of one element being an outflow edge of 

an adjacent element, then

73 =  V  [  b  • n K7/+<c+d.s +  V  I b - n K(£+ - £ - )7Td.s.
J d  J-KPir  . . r - n - .  Ik £ Th
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- yield

h < Y l  ( l i c i k « n r l k + l k » n r  +  I I C  -  C  l l a _ « \ r l l v _ l l d _ « \ r )  •
Therefore, combining the above results and applying the discrete Schwarz inequality we 

obtain

l 2 ( k ) +  llc o ^ l l i - 2 ( K) +  I l£+ I l l+Kn r  +  l l£+  _  £  Wd-K\r 

+ 2 | | d 2 K] l l z ,2 ( a « n ( r illtu r D )) +  N 2 ( a ^ € ) l l i 2 ( d K n ( r int u r D ))

y  i Mva
neTh

y  ( l I v ^ ^ l l i a j K )  +  5 i I M I l 2 ( K) +  ll7/ + l l l 4 K n r  +  II7/ I I « _ k \ t  
KeTh

II2

+ 2 ||d 2 Wlli2(0Kn(rintUr D)) +  IN 2 (a ^ 77)ll£2((jKn(rilltu rD))

< V 2 K |d g x y  ( l l ^ v ? , | |£ 2(K) +  5ilk/llL2(K) + /+ i 4 h-nr

+  II7/ I l L / t n r  +  2 II^ 2 W l l i 2 ( a K n ( r illtu r D )) +  II^ 2 ( « V / ; >  | j ^ 2 (6> ^n ( r intu r D )) 

Using this inequality in (4.1.7). yields the result (4.1.6). ■

We now consider the error | J{u) — J ( wdg)| and prove the following lemma

L em m a 4.1 .4 . Suppose J(-) is a linear target functional, u is the analytical solution of

(2.2.1). (2.2.3) and u DG is the approximate DG solution of (2.6.5). then assuming the 

same conditions stated in Lemma 4-1.3 hold.

IJ ( u )  -  j ( « d g ) I 2 <  C  I Y .  { l ! v ^ V ' , | i 2i 2 ( K |  +  ( J l  +  n )  +  A c ' I I V ' / l l l ^ . ,

\K£.Th

+  l l ^ + l la+ K \ r  +  II7/ -  l l i _ K \ r  +  I I W I l L  

+  |(d 1(flV?/)||^2(^Kn(rintu rD)) +  II^MIlI2(OKn(rinlu rD))

x 1 £
+  I M I L  +  l l « , +  l l a _ «  +  11̂  1{ a ^ 7u ' ) l l i 2( £ ) f . r i ( r i m u r i J ) )
+  N M I I L2 (a K n (r illtu r D)) ( 4 . 1 . 8 )



4 . 1  G o a l  O r i e n t e d  A n i s o t r o p i c  A P rior i  E r r o r  E s t i m a t e s 6 0

where i?i|K =  ||c +  V • b ||L^ (K). tf2|K =  ||b ||L^ (K). ~a |K =  ||c /c o || |^ (k). 5 2U =  Il(c +  V - 

k ) / co lll^ (K) and sK > 0 Vc € Th. Here. // is as in (4-1.5) and w = z — Upz. where Hpz is 

the L 2-projection of z and C is a constant dependent only on the dimension d.

Proof. Using (4.1.1) and Galerkin orthogonality we arrive at the error representation for

mula:

J(u) — J{adg) = B DG{ u -  «DG- z)

=  B d g (u — «DG- 2 — Zh.p). (4.1.9)

where z^.p can be any function from S P(Q. 7);. F ). Decomposing a — ujx.i as hi (4.1.5) gives

i j ( « ) - j ( « d g ) i  < m  +  M .  

where I  =  B Bc('r1'z ~ zh.p) and U  =  4?dg(C 2 — zh.p)- Considering term I  and setting 

w  =  z -  z h p  gives

B BG(r)- w)  =  I \  +  I2 +  -̂ 3 +  I4 +  Ir>-

wrhere

Ii =  / aVr/ • Vicd.r.

I 2 =  ( — j  (rjh ■ V w  — cqw)dx + /  (b • n K)rj+ w+ds +  /  (b • n K)// ir+ds j .K€Th V ^  Jd-K\V J
h  = f  ( ( a V q ) - n f )(w\ds. 

dr UP d

h  =  f  ((aVw)  • n/)[r/]d.s. 
4 r intur d

h  = / i)[ri}[w}ds.
*'rinturD

We now proceed to bound each of these five terms.

By assumption we have tha t s/a exists and by the Cauchv-Schwarz inequality it follows 

that

\h  \ < ^ 2  IIv/«V //||L2(k) ||\/u V u ’||L2(k).
«eTh



4 . 1  G o a l  O r i e n t e d  A n i s o t r o p i c  A P r io n  E r r o r  E s t i m a t e s 6 1

For term  I 2 . integration by parts gives

I 2 — ^ 2  (  /  (c +  V • b)i]wdx +  /  b  • V //"«’(hr — I  b  • n K [//] icds J .
\ « /  K J  K J  (9— hi /

then by application of the Cauchy-Schwarz inequality we have

\h\ < ^ 2  (llc +  V • b ||L^ (K)||//||L2(^)||a!||L2(K) +  ||b ||L^ (K)||V?/||L2(K)||a’||L2(,
Kerh

+  I I W I I s - k I I w ’ I I ^ k )

-  (  z L  +  ' ^ 2 - k  1  I I ^ ^ / I I l 2 ( k )  +  I l k L k X

where eK > 0.

A simple application of the Cauchy-Schwarz inequality for each of the final three terms 

yields:

1^31 <  11 d ~ 2 (a Vr/) 11 ̂ 2 (r .mu r D) 11 d 2 [u’j 11 ̂ 2  (r inturD > •

\IA\ <  | |d~ 2  (aVic) | |L2 (r .ntUrD)| | d 2 [r;]||L2 (rintUrD).

1^51 <  l |d2h] | |L2(rintu r D) l | d ^ H | | L2(rjntUrD).

Combining the above results we obtain

\BDG(ri.w)\ < ^ 2  Hv/aV77||L2(K)||ydV w ’||L2(K)
kE7/,

(e {+ I E  { J ill*?llhw +  ^ - A l l v v \\1Hk) + i im iiL ,

Y, { d l  I I u ’ I I l 2 ( k )  +  d 2 S K | | u ’ | | | 2 ( K )  +  | M l l
^ e r h

+  | | d  2 ( a V r / ) | | L 2 ( r .n t U r D ) || d  2 M  | | L 2 ( r intu r D )

+  ||d 2 (aVir) l lL2( r intu r D) l |d 2 MllL2(rimUr D)

+  l |d2 WllL2(rintu r D)l |d2 M l l / ^ r ^ u r n ) -  (4.1.10)
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for any sK > 0.

Now. for a function v. we have tha t

I M l i 2( r intu r D) -  Y  I M l i 2(/) +  Y  Ill’ll
/^ r  int / e r  n

= E^IMI

2
LHf)

+  Y  IM li2(dKnrD)2 " ' nL2(c)K\r)
KEF/, k g T)(

^  llr l l i 2 (dKn(rilltu r D))-
xeTh

Thereby, substituting this inequality into (4.1.10) and applying the Cauchy inequality, we 

obtain

\BDG{r},w)\ < ^ l l i2(K) + /:?ilb/ll i2(K) +  ;W l | V i y | | 2 2(K) +  ||[/

+  ||$ 2 (aV7/)||L-2^ Kn r̂ .ntUrD^ +  2||iG [//]||L2(c)Kn(rintu r D)) f  ) x

' w \ \ l 2 ( k ) +  ^iIIu , IIl2(k) +  ^ 2 £ k | M I 1 2(k) +  I M l S  

+  ||t? 2 (aV in)||!2(3Kn(rintUrD)) +  2 ||$ 2 [u’] ||^2(5Kn(r.ntUrDy)

We now tu rn  our attention to term  I I .  In an analogous procedure to tha t carried for 

term I  we obtain

| £ d g ( C ^ ’)I < Ilk III DG

E  ( l l v ^ V “. | | i2(K) +
K£Th

c +  V • b
Co

w
LHk)

+  l l « ? i H l l i » ( 9K n ( r 1K u r D . )  +  ! ! ^ V r , > | | | 2(^ . n ( r „i i U r D , , ) J 2 . ( 4 . 1 . 1 1 )

We are now in a position to use the result of Lemma 4.1.3: thereby, inserting (4.1.6) into 

(4.1.11). B d g (^ .w ) can be bounded in term s of // and ir as follows:

Y  f llv/aV r/||^2(K) +  
kGT̂ V Co F2(k)

+  ll'/+ l l l+ Knr +
12
la_K\r

+ 211^2 M l l l ^ ( ^ n ( r i „ , u r  D)) +  11'-' 5 ( « V r / ) H i 2( i jKn( r i i i tUr | ) ) )
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5 3  ( \ \ ^ ^ WW2L2(k) +
neTh V

c -E V • b
co

+  UA  II2

L 2 ( k)
I d -  k  )

+  H'£?2 H l l i 2(c>Kn(rintu rD)) +  11̂  2 (a ^7//) llL2(dKn(rintu rD))̂  

Returning to the initial problem and using our estimates for I  and I P  we arrive at

| J(u) -  J (u d g ) | <  C T  { IIv ^V tjU I^ ) +  'di||r/||^2(K) +  1IIV?7||22(k) +  IIh

+  | | d  2  ( a V r / ) | | ^ 2 ( d K n ( r . n t U r D ) )  +  2 | | d  2  [ 7 7 ] H z . 2 ( a « - n ( r i n t U r D ) )

53  {lIv^^Mli2̂ ) + h l|c'i|/_2(Kj + #2£*IMl|2(h-) + ||R’||S_

+  || 0 2 {aVw)\\2L2(dKn{r.niUTD)) +  2 ||d 2 [<c]||,i2(yKn(r,ntu rD))} j +

5 3  \ \ \ ^ 7i\\h{K) +
,KeTh k Co

+ ll7/+lli.fKnr + II7/ IILk\I-  112
L 2 (k )

+ 2 ||f/2 W lll2((9Kn(rintu rD)) +  N  2 (cV 77) 11̂ 2(̂ Kn(r;ntu rD))

X I 5 3  ] llv/«V7/ilL2(K) +
,KeTh I

1

c +  v  • b
CO

w IN + lll_
L 2 (k )

+ 11̂ 2 [u,]|li2(aKn(rinturD)) + IÎ  2 (g 7̂//)IIl2 ( DK f l ( r i n t  U F d  ))

and after a final application of the Cauchy inequality we obtain:

. - 1\J(u) -  J{uDG)\2 < C l  y  +  (3i +  71 ) IM Il2(k) +  i h t K iiv//hL2(k)

+  l l 7/ + l l I + K - n r  +  11^7 | l l _ K \ r  +  I I W I l L .

+ ||d 2{aV?7)|||2(5Kn(r .ntUr D)) + \\d2 [7/]llL2(6>Kn(TimurD))

X  ( E  {llv^Vu’11 ,̂,., + (A + A'-* + 7 2 ) IkllE,.,
\«CTh

+ IM|1_K + II^IILk) + 11̂ 2 (C7̂ 7a’)llL2(9Kn(rinturD))

+ ||d2 H I | |2(5Kn(rinturD))

which completes the proof.B
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For the rest of this chapter we make the assum ption tha t the element volumes, denoted 

by m K. for each k € 7/> have bounded local variation. tha t is. there exists a constant C$ > 1. 

such that, for any pair of elements k and k' sharing a (d— 1 )-dimensional face

C T 1 < < Cs . (4.1.12)

W ith this assumption, we are now ready to state and prove the main result of this chapter, 

which bounds the error in the target functional by using the results of Chapter 3. in the 

special case when the polynomial degree p. is both isotropic, uniform and fixed on the 

mesh; under these restrictions we define the finite element space to be S pnn'(Q. 7/,. F).

T h e o re m  4.1 .5 . Let Q C Wl be a bounded polyhedral domain. 7/, =  {s } a subdivision of 

fi. such that the elemental volumes satisfy the bounded local variation condition (4-1.12). 

Then, assuming that conditions (2.3.2). (4-1-3). and (4-1.2) on the data hold,, and a E 

H k(Q,Tf1). k > 2, z € H \kl.T if) .  I > 2. then the solution ur>c £ S p'll"(Q. 7/,. F) of (2.6.5) 

obeys the error bound

/  '  &| J(u) — ./(.DC, < L +  (A +  7 1 ) | f DU-u.  . U„ Mirj

+ (A  +  7 2 ) \ /  D lk (z.  E k. UKy U  • (4.1.13)

for  2 < s < m in(p+ l.  k) and 2 < t <  m in (p + l./) . where a \K = a*. =  \\c+V -b ||L^(K).

,32\k = ||b ||Loc(K). 7 i |K =  \\c/co llie (k)• 7 2 U =  II(c +  V -b ) /c o H ;^ (K) for all k E Th. Here. C 

is a constant depending on the dimension d. the polynomial degree p. and the parameters 

Q . i =  1 . . . . .8 .

Proof. We first extract the terms aR defined as in (4.1.4) and 32 :=  {| b j ^  (k) from the 

relevant norms in (4.1.9). in which case we have

IJ(u)  -  J ( r d c ) | 2 < c  j ^2 { a « l l ^ r/llL2(K) + + " 1) II7/IIl2(k) + '̂ 2^ ' 1 IIV//IIl2 |*')

3~ 32 ||2 t K\ n  +  Ih\[n Hl2(c>_ k\E) +  h M W h w

3-d R

1 2 1 2 n
4 -v

3~ O f
1)2

T M
1)2

L 2 ( ( t K n ( r i n t u r D )) L 2{OkC\( I in t Ul  D )) 1 1
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( 5Z  { aKllVW’lll2(K) +  (•-*! +  +  52) |M | |2
\KeTh

(*■ )

1
7-, 2
T(V«r

T"
al

re

L2(dh-n(riIlturD))

(4.1.14)
L2(c»Kn(r i„tu r r))

2

. By using the arithmetic-Suppose we now consider /  C dn and look at {aR/d)  2 (V//)

geometric mean inequality and applying the triangle inequality we deduce that
2

1 r i2

/

< -

< c

(|V7/K|2 +  |V//K/|2)d.r

+
!

d*
—  V//K/
1)2

t)

where is the element adjacent to k sharing face / .  A similar application of the triangle
2

inequality when applied to 1) 2 / 0 * [//]
/

yields

1 2 1 2 1
X) 2 d 2 tJ 2

— w < ~ T rh + r^/z-c

/ d | / d |

=  f ( \ M }  + IM I /) -
O-k

Absorbing the terms involving the element k ' into the relevant summation terms and 

applying Theorem 3.3.8 we obtain

|J(u) -  J(uDG)\2 < C £
ad.K

1 +
a nir VcI.kYI 

, . I r  
777 K z— ' Vf  a

h f  d  c) k  J
E

feds ^ f
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+  ̂ -  [1 +  ( Ka d.K] +  (Ji +  y 2) i  J  E„-. Uk)dr

We now use the definition of discontinuity penalisation param eter d: however, since here 

we are only considering a uniform, fixed polynomial degree we first incorporate the p term 

into the constant C'§. i.e. we write

^1/ =  C ' M y ^

Then, applying the local bounded variation assumption (4.1.12). using (3.3.6). choosing 

cK =  1 /<Jd.K and collecting terms we obtain the final result (4.1.13). ■

For completeness we also give the following theorem in the case where we approximate 

with functions now from S P,*°(Q. 7/,. F). In this case we also assume bounded local varia

tion of the polynomial degrees, i.e.. there exists a constant Cy > 1. such that for any pair 

of elements k and k' sharing a (d— l)-dimensional face

C g 1 < PK/p«' < Cg. (4.1.15)

T h e o re m  4.1 .6 . Let ft C be a bounded polyhedral domain, — {«} a subdivision

of Q, such that the elemental volumes and polynomial degrees satisfy the bounded local 

variation conditions (4.1.12) and (4-1-15). respectively. Then, assuming that conditions

(2.3.2), (4.1.3), and (4-1.2) on the data hold, and a G H k(il.T})). k > 2 , z £ H l(Q.T^).  

I > 2, then the solution udg € S Piso(Q. Th. F ) of (2.6.5) obeys the error bound

|J(«) -  . / ( udg)I2

f  a  G i + ~ i W I
a 2 } 2( sK —3/2)  +  2( s k —1/2) +  n 2 s K

e T h d .K (pK P k  P k

1 j  o  ^2^ (i.K ( ‘̂ 1 T  1 2 )^'(I K
2 L  f y f  \  2 P , - 3 / 2 )  +  2( fK- l )  +  
re T /i d -K K P k  P k  1 h

for  2 < sK < m in(pK +  l . k )  and 2 < t K < min(pK +  1./). where a |K =  a*-. J j |K =

| |c + V - b | |L^ (K). .J2U =  l|b||L'x (k) • 7iU  =  IK'A'oll 721 k — ||(c + V - b ) / c 0||L^ (K). for

all k E Th- Here. C is a constant depending on the dimension d and the parameters C,. 

i = 1.........9.

D-P(h.T.H.Uh-)d.

- T K.UK)dI- .
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Proof. The proof is analogous to that for Theorem 4.1.5: however, here, we pick sK = 

v\l°d.K  and use the interpolation results from Lemma 3.4.2 together with the discontinuity 

penalisation term
ii /-■ ap2

R e m a rk  4.1.7. As in Harriman et al. [61]. we discuss some special cases of the general 

error bound derived in Theorem 4.1.6. where we assume uniform polynomial orders pK =  

p. sK — s. tk = t. and uniform isotropic elements with mesh size h. In the diffusion 

dominated case the error bound from Theorcnn 4.1.6 implies the error in the computed 

target functional behaves like 0 ( h s+t~2 /p k+l~~2) as h —► 0 and p —> oc: this is optimal with 

respect to h but suboptimal in p by one order. For the strictly hyperbolic case (a = 0). the 

implication is tha t the error behaves like 0 ( h ,s+f~l /p k+l~1̂ 2): once again this is optimal 

in h. but suboptimal in p. this time by p 1/ 2. In both cases we witness 'order doubling' of 

the method with respect to h. stemming from the duality argument.



Chapter 5

A daptive A nisotropic M esh  

Refinem ent

The ultimate goal of any numerical method should be to solve a problem to a high level of 

accuracy, while remaining as efficient as possible both in term s of CPU time and compu

tational storage. It is also reasonable to wish tha t the error is equidistributed across the 

domain. Evidently, it is highly unlikely tha t our initial mesh will provide a solution with a 

small enough error, therefore, it is desirable to be able to autom atically modify the mesh 

in such a way as to reduce the error without significantly increasing the computational 

costs. First we need to be able to establish how accurate a solution is. i.e.. we need some 

sort of error indicator: for this purpose our a priori estimates from C hapter 4 are useless as 

they require knowledge of the actual solution beforehand. Hence, we introduce the notion 

of an a posteriori error estimate, which must be com putable using only the information 

from the approximate solution and the problem 's data. Equipped with an a posteriori 

error indicator we may design an adaptive algorithm to atta in  a desired level of accuracy, 

as follows.

1. Design an initial mesh.

2. Solve the discrete system.

3. Calculate an a posteriori error estimate.

68
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4. If the error estim ate is less than a prescribed accuracy then stop, else goto 5.

5. Perform adaptive mesh refinement and goto 2.

A very useful property of an a posteriori indicator is if it can be broken down into contri

butions from each element in the mesh, then only those elements with a large error need 

be refined. Step 5 (along with the quality of the a posteriori error indicator) then provides 

the key to  achieving an efficient algorithm, tha t is one which produces accurate results 

with minimal cost. Common refinement strategies include:

•  h adaptivity. where the chosen elements are split/joined in some way.

•  p^adaptivity, where the polynomial degree on the chosen elements are increased/de

creased.

•  r-adaptivity . where mesh points are redistributed in the domain.

•  hp—adaptivity. a m ixture of h and p  adaptivity.

Throughout this chapter we will concern ourselves only with /i-adaptivity, returning to 

p- and r-adaptivity  in Chapters 7 and 9. respectively. First, we look in more detail at 

a posteriori error estimation and present an a posteriori error estim ate in the context of 

target functional estimation.

5.1 A  P o s t e r i o r i  Error E stim ation

As previously mentioned, an a posteriori error estimate must be com putable from the 

numerical solution and the problem ’s data. Indeed, in order to  ensure th a t the numerical 

solution solves the problem up to a desired level of accuracy w ithout too much work it is 

essential tha t the a posteriori error estim ator is sharp. To this end. we introduce the notion 

of reliability for an error estim ator 77, where, as before, we are interested in minimizing 

| J(u)  — J (« d g ) |r for some functional J(-). where u is the analytical solution and «dg is 

the numerical solution.

Reliability | J(u)  — J ( u d g )| < Crip
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where Cr is a positive constant independent of the mesh; hence, reliability guarantees tha t 

the error is below the given tolerance. Additionally, we would also wish the estim ator to 

be efficient, in the sense tha t the true error can be bounded from below by the estimator, 

guaranteeing th a t not too many degrees of freedom have been employed to meet a given 

reliability condition. A posteriori error estimates are frequently 'residual' based, where 

the residual determines how well the numerical solution solves the underlying partial 

differential equation. For example, suppose we wish to solve Cu =  / .  where C is some 

partial differential operator, then the residual r(uh) is formally defined by

Similarly, where boundary conditions have been weakly imposed, such as in DG methods, 

for example, boundary residuals appear in the error estimate, where the boundary residuals 

measure how well the approxim ate solution matches the prescribed boundary conditions. 

A posteriori error estim ation on isotropic meshes for elliptic PDEs is now a very

and Oden [3] or Verfiirth [135], for example. For hyperbolic PDEs the a posteriori error 

estimation is at a less advanced stage; for developments in this field we refer to [38, 59. 

70, 123, 124], and [62, 63, 72, 82, 89, 93] for more recent work. Specifically, in the context 

of energy norm a posteriori error estimation of elliptic problems for DG methods, we refer 

the reader to Becker et al. [19, 20], Karakashian & Pascal [87], and Houston et al. [74]. 

Further work concerning energy norm error estimation for DG methods can be found in 

Houston et al. [73] and [71] for the Stokes’ problem and Maxwell equations, respectively.

In the case when anisotropic meshes are employed, energy norm a posteriori error 

estimation for a standard, conforming FEM has been considered by K unert in the series of 

papers [90, 91. 92], for elliptic, convection-dominated and singularly perturbed  reaction- 

diffusion problems, respectively. In the DG setting, Creuse et al. [40] extend the work 

in Houston et al. [73] to  anisotropic meshes for the Stokes' problem. However, for all of 

the mentioned anisotropic error estimates, reliability can only be shown in the followTing

r (uh)  =  /  -  Cuh.

m ature subject: a review of this area can be found in Szabo and Babuska [129], Ainsworth

sense;
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where || • || is the norm of interest, and m i(-.-) is the so-called matching function, first 

introduced in [90]. Essentially the matching function determines how well the mesh T  

is aligned with the underlying anisotropy of the function to be approximated: if the grid 

is well aligned then m \  ~  1. otherwise m i can become arbitrarily large. Hence, for the 

error estim ate to be reliable, the mesh must already be well aligned with anisotropic 

features present in the solution; this, thereby, requires exploiting a priori knowledge of 

the (unknown) analytical solution.

In the next section we present a posteriori error estimation in the goal oriented setting.

5 .1 .1  A  P o s t e r i o r i  E rror E s t im a t io n  For F u n c tio n a ls

In this section we lay down the framework for a posteriori error estim ation for general 

linear target functionals J(-) of the solution of (2.6.5). This being based on the method 

first developed by Becker and Rannacher [21] and extended in. for example, [63. 77, 79]. 

where in those cases a general semi-linear form replaces -Bdg(*, •) and J(-) is a non-linear 

functional.

We first recall the dual problem (4.1.1): find 2 E H 2(Q,Th) such tha t

B d g {uk z ) =  J(w)  \/w E H 2{tt. Th).

which, following the discussion in Section 4.1.1, we assume possesses a unique solution. 

We are interested in the error Jiu)  — J ( uug). where u is the solution to (2.2.1), (2.2.3) and 

?idg is the solution to (2.6.5). Hence, picking w =  u — udg and exploiting the consistency 

of the DG formulation, Galerkin orthogonality and the linearity of and J(-).

yields the following error representation formula

J{u) — J (u d g )  =  J(u  — udg)

=  Bd g ( u  — UVG, z)

=  B d g (ui z ) — £?dg(udg- z )

=  ( d g {z) -  B t)g (udgi z — zil/p). (5.1.1)

for some function z^,p E S^ ( Q, Th.F):  typically zh_p is chosen to be a projection/interpolant 

of 2 into 7ft, F ). It is common to write a posteriori error estimates in term s of
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residuals which measure how much udg fails to satisfy the underlying partial differential 

equation and the boundary conditions. Therefore, we define

#intU =  ( / - £ udci) |k-

D u r _ ) ■#D|dKn(rDur_) — (<7D -  wjxj)lc>Kn(r

^N|dKnrN =  (#n -  (flVwDG) • n )|^K'-|-x .

Upon rewriting B f { - .  •) and Bp  (■. •) in term s of sums over elements k  E Tp and applying 

the divergence theorem we can rewrite (5.1.1) as follows

J(u)  -  J ( u DG) = ^ 2  T]k' (5.1.2)
K£Th

where

Vk = /  R\nt(z -  zh.p)dx -  (b n K) RD(z -  zh,p) + ds
J k Jd-Knr

+  /  (b • n K)[iiDG](z -  Zh.P ) + d s  -  /  R D((aV(z  -  zh,p) + ) • n K)ds
Jd_k \t JdKnrd

+  I i)Rd (z — zp'P)+ds +  / R\i(z  — zp_p)+ds
J dKnT D JdKHTs

+  L  \ r  _  Zh-p)+) ' n *  ~ ~  ^ [ ( a V “ D G )  ‘ -  2/ i . P ) + j  d s

-  [  d[uDG](z -  zh'P)+ds. (5.1.3)
J d n \T

After applying the triangle inequality we arrive at the following a posteriori error bound

| J ( « ) - J ( » d g )| < E  k - |.  (5.1.4)

where qK is as in (5.1.3). An error bound such as this, which includes the difference 

between the dual solution z and its interpolant/projection zp_p into S^(Q.  Tp. F) is referred 

to as a Type I a posteriori error bound. Using approximation theory to bound the terms 

involving 2 — zp_p in term s of norms of 2 and in turn bounding these term s by norms of 

the data  for the dual problem. 2 can be completely eliminated from the error bound, this 

new estimate being termed a Type II a posteriori error bound. However, as discussed 

in [63. 125]. the local weighting term s involving the difference between the dual solution

2 and its projection/interpolant zp p onto SP(fE 7j,.F ) appearing in the Type I bound
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provide invaluable information concerning the global transport of the error. Hence, we 

will not explore Type II error bounds further in this thesis.

The formula for pK may look complicated, but each term  shares the common form of 

an integral of a residual weighted by the dual solution. Hence, we see tha t, even in areas 

where there may be a large residual, if the weighting term  is small, the contribution from 

tha t element to the overall error can also be small. This fact shows us the th a t the dual 

problem is the key to deciding in which areas to refine and prevents over refinement in 

areas of little importance.

Returning to our Type I a posteriori error bound (5.1.2) we see tha t, unless the actual 

solution 2 to  the dual solution is known, it is still not computable. However, to achieve a 

computable indicator it will be sufficient just to calculate an approximation 2DG to (4-1.1) 

and use this in place of 2 in (5.1.2) or (5.1.4). To this end. we com pute the approximate 

solution 2dg to (4.1.1) on the same mesh as used for the primal problem and restrict 

the choice of test and trial functions to a finite dimensional space. It is not possible 

for our approximation 2dg to come from SP(Q. T̂ . F). as replacing 2 by 2dg hi (5.1.1) 

would lead to the estim ate being identically zero, due to (2.6.5). Instead we pick 2dg

from S p+Pinc(Q, T̂ . F ), where pmc.i >  1 for i =  1 d. tha t is. 2dg will have a higher

polynomial degree than udg; for our purposes it is sufficient to set p mc =  1. Hence, the 

discrete dual problem is: find 2dg E  Sp+Pinc(Q.Tfl.F)  such tha t

B d g {w , 2dg) =  J{w) Vw e  S p+p^ ( n .  Th.F).  (5.1.5)

Schneider and Jimack [118] perform some experiments to show the reliability of (5.1.4) 011 

anisotropic triangular meshes and our experiments, see C hapter 6. confirm reliability 011 

anisotropic quadrilateral meshes.

R e m a rk  5.1.1. Instead of incrementing the polynomial degree as above to find the ap

proximation 2dg- h  is also possible to compute 2dg on a sequence of dual finite element 

meshes Th, which, in general, differ from the ’primal meshes’ 7/,. Alternatively, the approx

imate dual problem can be computed using the same mesh 7/j and finite element space 

as the primal problem. The resulting approximate dual solution 2dg E  s p { n . r h.F)  is 

then extrapolated to 2dg E  S p+p'mc(Q. 72/,. F): a coarser mesh with increased polynomial



5 . 2  / i- R e f i n e m e n t  S t r a t e g i e s 7 4

degree. The la tter approach is the cheapest of the three m ethods mentioned, and is still 

capable of producing adaptively refined meshes specifically tailored to the selected target 

functional, however the quality of the resulting approximate error representation formula 

may be poor. On the basis of numerical experimentation, we prefer the approach first 

mentioned, due to its com putational simplicity of implementation.

R e m a rk  5 .1 .2 . The error analysis above extends naturally to the case when £?d g ( ' - -) 

is replaced by a seini-linear form and /or when J(-) is non-linear, with a linearisation 

about udg needing to be performed to create a computable error bound; see, for example. 

[63]. One application area is the approximation of eigenvalues and eigenfunctions of a 

differential operator; see [66].

R e m a rk  5.1.3. In certain situations the control of more than one functional is essential: 

here, we refer to H artm ann and Houston [64] for the application of the theory to problems 

where multiple target functionals are of interest.

5.2 h - R efinem ent Strategies

We now tu rn  our attention to Step 5 of the adaptive algorithm presented at the beginning 

of this chapter and specifically concern ourselves with /?-refinement. Initially we consider 

widely used isotropic refinement and then move on to the problem of designing anisotropic 

meshes.

5 .2 .1  I so tr o p ic  h -R e fin e m e n t

The most extensively used form of /i-refinement is isotropic refinement, where cells are 

divided into similar shaped cells, all of roughly the same size, with no elongation in any 

direction. In other words all the singular values of the map FK. for each element k are 

close to unity. Two-dimensional examples of isotropic refinement for quadrilaterals and 

triangles are shown in Figures 5.1 and 5.2. respectively. This type of refinement is popular 

because the minimum angle constraint for the standard FEM is never violated and. in the 

case of triangular elements, hanging nodes can easily be removed by splitting neighbouring 

cells, as in Figure 5.3.
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Figure 5.1: Isotropic refinement of a quadrilateral element.

Figure 5.2: Isotropic refinement of a triangular element.

For our DG formulation, however, neither the minimum angle constraint nor the re

moval of hanging nodes need to be considered, but it is common to limit the number of 

hanging nodes to one per element face. Additionally, the following two mesh smoothing 

techniques are employed: (i) the removal of refined islands in the mesh; (ii) the refinement 

of unrefined islands. Figures 5.4 and 5.5, respectively give examples of these smoothing 

techniques. The use of smoothing often results in a more monotonic error convergence 

plot, especially in the functional estimation setting.

We now present an isotropic adaptive refinement algorithm for use in functional esti

mation:

1. Design an initial mesh 7^°.

2. (a) Solve for the primal solution udg-

(b) Solve for the dual solution zdg-

3. Compute the a posteriori error estim ate (5.1.1).

4. If the error estim ate is less than the tolerance then stop, else goto 5.
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Figure 5.3: Removal of hanging nodes in a triangular mesh.

Figure 5.4: Removal of a refined island.

Figure 5.5: Refinement of an unrefined island.
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5. Com pute the individual element error indicators

6. Refine the mesh using the following:

(a) Isotropically refine those elements where the local error estim ate is high.

(b) Derefine those elements where the local error estim ate is small.

(c) Perform mesh smoothing: removal of unrefined and refined islands and limita

tion of hanging nodes.

7. Goto 2.

A popular choice to decide which elements to refine is to order the elements according 

to  the relative sizes of the local indicators r)K and choose the top U% for refinement. In 

order to equidistribute the error on the mesh, derefinement of elements with small errors 

is also performed; similarly, as for refinement, we choose the bottom  L% for derefinement. 

This method is called the fixed fraction strategy and we shall use it in our experiments, 

with U — 20 and L = 10. An alternative method would be to once again order the 

elements according to the relative sizes of the r/K and select for refinement those elements 

with largest relative error which contribute to T%  of the global error YlneTh 7?«-

We shall use the above isotropic ^-refinement algorithm to compare the effectiveness 

of the anisotropic h-refinement strategies we develop later in this chapter.

5 .2 .2  A n iso tr o p ic  M e sh  R e fin e m e n t

Adaptive isotropic mesh refinement can be a powerful tool in achieving accurate numerical 

solutions whilst keeping com putational time and storage low. However, many problems 

tha t occur in practice exhibit anisotropic behaviour, for example boundary layer phe

nomena in convection-dominated problems and shock formation in compressible flow. By 

designing anisotropic meshes which match the underlying anisotropy of the solution, sig

nificant reductions in the number of degrees of freedom required for a given accuracy, when 

compared with isotropic meshes, can be achieved. For a problem in two-dimensions it is 

very beneficial to utilize anisotropic meshes, however, for three-dimensional problems it is
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S ---------------------  -------------------------------------

(a) (b)

Figure 5.6: (a) A piecewise uniform mesh (b) A geometrically graded mesh.

likely to prove essential if high levels of accuracy are to be achieved while keeping compu

tational costs relatively low. We now present a review of some of the m ethods employed 

to design anisotropic meshes.

• Use of a priori information. For some problems the existence and position of bound

ary or interior layers is known a priori. To capture boundary layers a common ap

proach is to set up a piecewise uniform mesh where elements close to the boundary 

are stretched in the direction of the boundary but elements away from the boundary 

are isotropic. Meshes of this type were originally studied by Shishkin in [120]: see 

Figure 5.6(a) for an example of such a mesh. The problem is then how to opti

mally choose the length 5\ Apel and Lube [9] show how to do this where a standard 

FEM is used to  solve an advection-diffusion-reaction problem. Alternatively, meshes 

with elements geometrically graded toward the boundary can be used, an example 

of which can be seen in Figure 5.6(b). In [10], Apel and Nicaise describe how to 

design geometrically graded meshes, for elliptic problems with both corner and edge 

singularities. A further use of a priori information can be found in Skalicky and 

Roos [121]; here, they exploit knowledge of the location of boundary and internal 

layers to design appropriate fitted meshes.
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Location of directions of rapid change in the solution. In Randrianarivony [111] 

rapidly changing directions are determined by considering the projection onto the 

com putational domain of the unit vector normal to the surface of the solution: if this 

projection is long then there is large variation in tha t direction. A similar method 

is tha t of Kornhuber & Roitzsch. who determine anisotropy by looking at the level 

lines of a solution; see [88]. Jum ps in the gradient are also used to drive anisotropic 

adaptation, for example: see Lien [99]. In [128] Sun uses a ratio of second order 

Taylor truncation errors to first order ones to indicate the presence of anisotropy.

Anisotropic mesh refinement based upon error gradients. Apel et al. [8] investigate 

the use of local error indicators to control the error, = u — u^. in the norm

IIM 2

for the problem

deh
dx

2

+
L2(Q)

0eh
dy + 7 lle*lli2(0) • (5.2.1)

L 2 { Q )  c

- c V 2u +  u =  / .  (x. y ) E  L l.

By estimating each of the three terms on the right hand side of (5.2.1) the refinement 

is chosen which will act to equilibrate the contribution from each of them. Once 

equilibration has occured. isotropic mesh refinement is then utilized.

• Hessian based anisotropic mesh refinement. Error estim ates for approximation by 

piecewise linear polynomials frequently bound the interpolation error in terms of 

the Hessian m atrix of the approximated function. A direct minimization of these 

error bounds suggests th a t elements should be oriented in directions dependent on 

the eigenvectors of the Hessian matrix, with scale factors dependent on the ratio 

of corresponding eigenvalues. For a rigorous derivation of this 'Hessian strategy* 

we refer the reader to Formaggia and Perotto [48]. where the strategy is developed 

simply for interpolation problems: the theory is then extended to FEM s in [49. 47]. 

Huang [84] investigates the case where higher order FEMs are used, advocating the 

use of Hessian matrices of higher order derivatives to determine anisotropy. Further 

work on higher order FEMs has been carried out by Cao in [34. 35]. To illustrate 

the popularity of this Hessian based method we give a list of some papers employing
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this approach: Belhamadia et al. [22. 23] for the Stefan problem. Dolejsi Felcman 

[43] and Huang [83] for boundary layer problems. Dompierre et al. [58. 5. 44] and 

Frey & Alauzet [50] for CFD applications.

The Hessian m atrix can be used to define a metric tensor M (x)  G Wixd. which 

provides a way to measure distance in space. Designing a mesh which is uniform in 

this metric then leads to an error which is equidistributed on tha t mesh. A new mesh 

can therefore be generated at each step or. alternatively, local mesh operation such 

as ‘Edge refinement’. ‘Edge coarsening', and ‘Edge swapping’ can be used to modify 

an existing mesh accordingly: see. for example, the Bidimensional Anisotropic Mesh 

Generator (BAMG) of Frederic Hecht [65].

•  Use of a posteriori error estimates. As an alternative to the techniques above, 

which exploit a priori information. Schneider and Jimack [118] present an anisotropic 

procedure which attem pts to minimize the a posteriori error estimate. This is done 

by combining elemental isotropic refinement with mesh movement. In order to create 

anisotropic elements aligned with the solution, a global node movement procedure is 

used to minimize contributions from the local error indicators. Once an anisotropic 

mesh has been formed, standard elemental isotropic refinement can then be used to 

achieve resolution.

5.3 H essian B ased A nisotropic //-refinem ent

Later in this chapter we shall develop a new, anisotropic, Cartesian refinement s tra t

egy based on the solution of local problems. To illustrate the effectiveness of this new 

strategy, we shall compare it against a Hessian based approach. Hence, in this section, 

motivated by the work of Formaggia et al. [48. 49, 47]. we develop an anisotropic adap

tation strategy based on the a priori error estimate from Theorem 4.1.5. specifically in 

the two-dimensional setting. The process involves writing the bound in term s of an ori

entation angle 9K and aspect ratio $K for each element k . Here. 0K is defined as the angle 

between the prim ary left singular vector of JpK {i.e. the singular vector whose corre

sponding singular values has the largest value) and the r  axis. <;K is defined as the ratio
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of the prim ary singular value and secondary singular value. The contribution from each 

element to the bound is then minimized simultaneously with respect to  both 9K and in 

order to determine an "optimal' orientation and aspect ratio for the element. Details of 

this optimization can be found in Appendix A .l for the purely diffusive case, where, due 

to the complexity of the problem, minimization with respect to the solutions u and z is 

considered independently.

For the case of approximation with bilinear elements, the results are consistent with 

those in [48. 49. 47], indicating tha t the ‘optim al’ scale factor should be chosen as

^  V  i w . * r
where fi\ ,* and p2,r are the prim ary and secondary eigenvalues of the mean-valued Hessian 

m atrix H% on the element k , for v = u. z and (if-}*.j := (1/m *) jR { H - j j j d x ,  for i . j  =  1. 2. 

Should H2,k — 0. then a maximum scale factor S  should be prescribed. Similarly. 0K 

should be chosen so tha t the prim ary singular vector of JpK is in the same direction as the 

secondary eigenvector of i7 |.

Unfortunately, a similar analysis using tensors of higher order derivatives is not possible 

when approximating by higher order polynomial degrees; see A .I. Nonetheless, it may be 

tha t, using numerical methods to minimize the error bound could provide the correct 

approach.

5 .3 .1  S h a r p n e ss  o f  A n iso tr o p ic  L2-I n te r p o la t io n  B o u n d

For the optimization described above to actually yield the correct anisotropic information, 

an assumption on the sharpness of the interpolation error bounds of Theorem 3.3.8 has 

been made. Specifically, tha t the bounds show qualitatively the same behaviour as the true 

error, as the element is rotated and stretched, i.e.. the error bounds have, at least, local 

maxima and minima in the same place as the actual errors. In this subsection we shall 

a ttem pt to investigate the validity of this sharpness assumption. R ather than  considering 

all the error bounds of Theorem 3.3.8, we just examine whether the bound on the L 2-error 

over the element exhibits the desired property. By considering a single element, rotating 

and stretching it, as in Figure 5.7. and calculating the actual L 2 projection on the element.
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Figure 5.7: Rotation and stretching of a single element.

we can compare the L2-error ||v — n pc ||L2(K) with the error bound [J. D%(v. £ K. UK)dx] l^‘2.

E x a m p le  1 In the first example we let

v — — tanh(sin(7r/4)x — cos(7r/4)p).

Hence, we have a function which is rapidly changing in the [1 ,-1 ] direction, but does not 

vary at all in the [1.1] direction. Thus, we would expect elements orientated with <fi =  tt/4  

to give the best approximation. We experiment with scale factors <? =  1, 5. and 10 and 

rotate from <f> =  0 to <p =  it, using polynomials degrees p  =  1.2. Due to the Hessian being 

equal to zero at [0.0] we position the center of the element at [0.2.0]. Figure 5.8 shows 

the actual errors and error bounds for the varying scale factors as the element is rotated.

We first notice tha t in the case when the element is isotropic, i.e. c, =  1- the error 

bound remains constant for every value of 0. whereas the actual L 2 errors clearly show 

tha t the element should be orientated with <f> = 7r/2. For scale factors c =  5 and <, =  10. 

we see th a t in the p = 1 case the curve of error bounds does mimic the behaviour of the 

actual error very well, with the minima and maxima occurring in the same place. However, 

we see th a t for p = 2. where we have used the tensor of th ird  derivatives for predicting 

the errors, there is no longer good agreement between these estim ates and the true errors. 

Although a local minimum of the estimate occurs in the same place as the actual error, 

another local minimum occurs in exactly the wrong place, tha t is. where the true error 

attains a maximum.

We notice, however, tha t the Hessian based error predictor is still very similar to the 

actual errors witnessed for p =  2, so the question arises: ‘Is the Hessian always a useful
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Figure 5.8: Example 1: Actual L2-errors and error bounds for varying scale factors.



5 . 3  H e s s i a n  B a s e d  A n i s o t r o p i c  ^ - r e f i n e m e n t 8 4

 L2 Error
—  Error Bound

a.
G
I

0

1.2
 L2 Error

Error Bound

0.4

0.2

00 0.5 1.5 21 2.5 3

(a) p  =  1, c =  2.18 (a) p = 2, <; =  2.18

Figure 5.9: Example 2: Actual L2-errors and error bounds.

measure of the anisotropy?’. Another interesting point is that by performing a higher order 

eigenvalue decomposition of the tensor of third derivatives evaluated at [0.2,0], the angles 

inferred from the eigenvectors are 7r/4 and 37r/4, the same as those which minimise the 

predicted errors. We address these issues by performing a further numerical experiment 

for a slightly more complicated problem.

E xam ple 2 In this example, we consider a function v , which is a sine curve in one 

direction, while being exponential in the orthogonal direction. The function is rotated 

through an angle of 7r/6 so that we might expect the optimal alignment angle to be 

4> — 7r/6. Specifically, v is given by

v  =  sin (7r(cos(7r/6)x  +  s in (7 r /6 )y ))e 10 “̂ sm 7̂r//6̂ :E+cos 7̂r//6̂ y\

We center an element about the point [0.5,0.5] and see that, based on the minimization 

analysis, the eigenvalue decomposition of the Hessian predicts an optimal scale factor 

C «  2.18 for p = 1. For this reason we consider only this scale factor, but rotate from 

# =  O to0  =  7ras before. Figure 5.9 shows the actual errors and error bounds for p = 1,2.

We see that for p = 1, the structure of the true errors is more complicated than for 

the last problem and the error bounds do not match the true errors so well. In fact the 

minimum of the error bounds does not occur in the same place as the true errors, but 

rather it coincides with a local maximum of the true errors, although the actual errors
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(a)

(b)

Figure 5.10: Anisotropic Refinement of a Quadrilateral.

do have two local minima in the vicinity. For p  =  2, again the error bound curve, based 

on the tensor of third derivatives, does not match the true errors and in this case there 

appears to be no correlation between the maxima/minima of the error bounds and the 

maxima/minima of the actual errors. Also, the true errors for p  =  1 and p  =  2 do not 

exhibit quite the same structure; here there are more local maxima and minima in the 

p  =  2 case and the location of the global minima are different to that for p  =  1. We also 

note that an eigenvalue decomposition of the tensor of third derivatives does not yield any 

useful information, that is, the induced angles are neither local minima/maxima of the 

error bounds, or of the true errors.

5 .3 .2  A  H e ss ia n  B a se d  A n is o tr o p ic  A lg o r ith m

In the last section we saw that the interpolation bounds of Theorem 3.3.8 may not be 

sufficiently sharp for the Hessian strategy to give reliable anisotropic information. Nev

ertheless, as it one of the most commonly used techniques for driving anisotropic refine

ment, new methods must be tested against it. Hence, purely for comparative purposes, we
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present the following Hessian based algorithm. We consider the case where we use quadri

lateral elements and only allow three refinements of the element, these being isotropic 

(see Figure 5.1) and anisotropic parallel to either of the reference quadrilateral’s axes, as 

in Figure 5.10. Having marked an element for refinement based on our earlier local a 

posteriori error estim ate (5.1.4), we then have to decide in which of the three ways we are 

going to refine.

The analysis from Appendix A .l tells us the ‘optim al’ alignment and stretching factor 

for an element, based on information derived from either one of the primal or dual solutions. 

In Formaggia and Perotto [47], they base refinement on only the dual solution z, however, 

the error estimates clearly show some trade off between prim al and dual solutions is 

required, hence it is im portant to capture information from both solutions when carrying 

out the refinement. To this end, we employ a method of ellipses similar to th a t proposed in 

Castro-Dfaz et al. [36], in which the context is deciding in which direction to refine when 

confronted with a system of equations. On each element k, for either the primal or dual 

solution, an ellipse can be associated with it by regarding the prim ary and secondary left 

eigenvectors of the appropriate Hessian m atrix as the semi-minor and semi-major axes, 

respectively, with respective lengths 1 /\/|M i,k | and 1 /y/\p2,k\' We exploit information 

from both solutions by computing the intersection of the ellipses, as shown in Appendix 

B .l. The intersected ellipse can then be used so tha t the ratio of the length of its semi

major axis to the length of its semi-minor axis provides the stretching factor while 

the angle between the x-axis and its semi-major axis provides the alignment angle 0K. 

Evidently the Hessian matrices must be recovered from the approxim ate solutions; see 

Appendix B.2 for details of how this is done.

The anisotropic refinements (Figure 5.10) are performed on the reference element, so 

we must translate the angle 0K to an angle 0K on the reference cell. If — \  <  0K < j  then 

we perform refinement as in Figure 5.10(a), else if j  < 0K < we perform refinement as 

in Figure 5.10(b). Of course, if the element has already been stretched in a direction 0K. 

calculated from the Jacobian of the element mapping evaluated at the element centroid 

such th a t 0K — \  < 0K < 0K +  \  then we must compare the scale factor of the element 

qK with the optimal scale factor W hen we perform an anisotropic refinement we are
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effectively doubling the scale factor, so if qK/2  > then we refine anisotropically, otherwise 

we carry out an isotropic refinement, which will retain the scale factor qK. If on the other 

hand 0K — j  ^  0K 0K +  j , then the element is oriented in the wrong direction so we 

carry out the anisotropic refinement regardless of the scale factor <fK- For every element 

which has been flagged for refinement we summarise the refinement process:

1. Compute the matrices defining the ellipse for both primal and dual solutions at the 

centroid of the element k .

2. Compute the intersection ellipse and determine the optimal alignment angle 0K and 

scale factor

3. Compute the current element scale factor qK and alignment angle 0K.

4. If 0K -  |  <  0K < 0K +  f  then

(a) if qK/2  >  then calculate the local refinement angle, 0K, and anisotropically 

refine accordingly.

(b) else perform isotropic refinement of the element.

5. else, calculate the local refinement angle 0K — \  <  0K <  0K +  f  and anisotropically 

refine accordingly.

5.4 Error O ptim ization Approach

Although the Hessian strategy has been proven to work well in the case of approximation 

by linear elements we have seen th a t the analysis is no longer valid for approximation 

by higher-order polynomial degrees. The strategy is also based on a priori estimates, 

which are assumed to be sufficiently sharp, and also assume sufficient regularity of the 

solution, which in general may not hold. It would seem more reasonable to try  and use 

an a posteriori error estim ator to decide which directions to refine. Hence, we seek to find 

a polynomial independent refinement strategy, based purely on the a posteriori estimates 

derived in Section 5.1.1. To this end, we introduce a new local optimization strategy to
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determine how an element should be refined on the basis of solving local primal and dual 

problems.

5 .4 .1  L o ca l P r o b le m  F o rm u la tio n

Suppose we have a patch of elements 7/j, which represents some refinement of a subset of 

the mesh 7/j. We can solve approxim ate primal and dual problems locally on this patch 

using the global DG solutions udg  and ^ d g 5 respectively, to  provide suitable boundary 

conditions. For the patch of cells 7/*, we modify the notation from Section 2.6, so tha t 

Tint represents the internal faces of Th and f  represents those external faces of Th not 

contained in T. As for the global problem, we decompose T as

f o  =  {x  € f  : n (x)Ta(x)n(x) >  0},

f  _ =  { x  € r \ f D : b( x )  • n(x)  <  0},

f+  = {x € f \ f D : b(x) • n(x)  > 0}.

Hence, we shall trea t the external faces of Th which are not part of the original boundary, 

T, as Dirichlet faces and use the global solutions for the boundary data, We let udg be the 

local primal DG solution contained in S p (7^, F^- ) the restriction of S P(Q, Th, F ) onto the 

patch 7/*. W ith this notation our DG formulation for the local prim al problem becomes: 

find udg  in S p (Th, F-f ) such th a t

B dg (u d g , v )  =  ^dg(^) (5.4.1)

for all v E S p (Th,Fj-h). Here, the bilinear form B d g (', •) is defined by

Bdg(w , v )  = B a(w , v) +  B h(w, v ) -  Bf (v ,  w) -  B f ( w , v) +  B#(w, v ).

where

B a( w , v )  =  £  a V w  • V v d x ,

B b ( w , v) =  ( — I ( w h  • V v  — c wv ) d x
V j  KkETh

+  / (b • nK)w+?;+ds +  / _ (b • nK)u>~c+ds J ,
J d + K  J d - K \ ( T U t )  J
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B f (v, w) = I ( (aVw)  • ny)[v]ds,
•'f'inturDu rD

B a[w,v ) =  / i?[ip][v]ds,
«/f;r,tUFnUfnr r i n t u r D u r D  

and the linear functional ^dg is given by

^dg( )̂ = I f  f vdx ~ f  (b ‘ n«)^D̂ +ds
KETh V K Jd-Kn{TDUT-)

— (b • nK)u^Gv+ds — / u ^ G((aVv+) • n K)ds +  / '^uGG'C+ds
«/a_Kn(rDur_) JO-k nro JdKC\TD

~  /  9d((cl'Vv+) • nK)ds +  / gNV+ds  +  /  tigvv+ds J .
Jd-K,nrD J 9kcirN ^9/tnrD /

For the local dual problem the formulation is slightly more complicated to establish,

due to the need to  impose suitable boundary conditions. The formulation becomes: find

z € H 2(Q,Th) such tha t

B d g (v , z ) =  J ( v ) +  (b • n K) z ^Gv + ds
^a+Kn(rDur+)

— j  z ^ G((aV v+) • nK)ds +  /  ,dz^)Gv +ds, (5.4.2)
J  d/cPlF d J dnnT d

for all v  €  H 2(Q,  7^), where J(-) represents J(-) localized onto 7/*.

Finally, in an analogous manner to th a t for the global problem, we can also define the 

local error estim ator ^ ( u d G )  h ,p ,z  — Zh,p), on the patch by

£ % { u v G , h , p , z  -  z h # ) )  =  ^  V k

k£Th

where

V k =  / Rmt( z  ~  zh,p) dx  -  / { b - n K) R D(z -  z h:P)+ ds
J k Jd-Kn( rur)

+  /  (b • n K)[uDG](z -  z h,p )+ d s  -  /  ^ D((aV(^ -  z h_p)+ ) • nK)ds
^a_K\(rur) ^£>Kn(rDu rD)

+  /  t f R v ( z  -  z hjP)+ d s  +  /  R N(z -  z h p̂) + d s
JdKCi(Ti)UTD) JdnDT^

+  /  j^[^DG](aV(^ -  ^ .p)+) • nK -  ^[(gV udg) • n « ] ( z - ^ . p)+ Id s
Jdn\(ruf) I*  1 )

-  /  $[udg\(z -  Zh,p)+ds,
Jdn \frurn)
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with Zh,p € S p (T h ,F fh). As before, we have

-RintU — ( /  ^ wdg) |k?

#N|d«nrN = (#n -  (aVwJG) • n)|a«nrN,

but now

R v\d Kn(rDu r_ u rDur_) — \ _
, (UDG — UDg)’

 ̂ (#D wDg )’ for dn  G Td U r _ ,  

for 5k 6 Fd U f_ .
(5.4.3)

Once again we approximate z by zdg £ S'P+i5inc(7/l, F j - ), where S'P+Pinc(7^, F ^ ) ,  is the

pure advection-reaction equation the local solutions udg  and 2qg will be identical to the 

global solutions udg  and ^DG on Th, respectively. For a problem with diffusion this is no 

longer the case as boundary conditions on Td have no longer been imposed in quite the 

same fashion.

5 .4 .2  E rror O p tim isa t io n  A lg o r ith m

We now present a novel use of local problems to determine in which directions to perform 

anisotropic refinement. As for the Hessian based approach, we consider a simple Carte

sian refinement strategy, where elements can be subdivided isotropically, as in Figure 

5.1, or anisotropically, as in Figure 5.10. In order to determine the optim al refinement, 

stim ulated by the articles [110, 118], we propose the following two strategies based on 

choosing the most competitive subdivision of k from a series of trial refinements, whereby 

an approximate local error indicator on each trial patch is determined.

A lgorithm  1: Given an element k in the computational mesh Th (which has been 

marked for refinement), we first construct the mesh patches Th,i, i =  1.2,3, based on 

refining k according to Figures 5.10(a), (b) and Figure 5.1, respectively. On each mesh 

patch, Thj, i = 1,2,3, we compute the approximate error estimators

restriction of S p+Pinc(Q,Th,F) onto the patch Th, and use this to calculate the error

estimate.

R e m a rk  5.4.1. We notice tha t, for Th a subset of Th with no additional refinement, for a
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for i =  1,2,3, respectively. Here, uvga , « =  1,2,3, is the discontinuous Galerkin approxi

mation to (2.2.1), (2.2.3) computed on the mesh patch 7)^, i = 1,2, 3, as discussed above. 

Similarly, denotes the discontinuous Galerkin approximation to z computed on the

local mesh patch 7 /^ , i =  1,2,3, respectively, with polynomials of degree p.

The element k is then refined according to the subdivision of k which satisfies

\Vk\ ~  |£ c , i (w D G ,i^ D G .z  -  Zh ,p )\min --------------- =------------- -------- ——.
i=i,2,3 #dofs(7/l-j) — #dofs(/c)

where #dofs(«) and ^dofs(7/l5j), i = 1,2,3, denote the number of degrees of freedom 

associated with n and 7/^, i =  1,2,3, respectively.

A l g o r i t h m  2 : This is very similar to A l g o r i t h m  1; however, here we only construct 

the mesh patches 7m , i = 1,2, and compute the approxim ate local primal and dual 

solutions on these meshes only. Given an anisotropy param eter 9 > 1, isotropic refinement 

is selected when
maxi=i>2 \£K,i(uVG,i, Zi ~  Zh,P) I g,

m in i= i ?2 \£K,i(uDG,ii ^DGi ~  Zfi.p) \ 

otherwise an anisotropic refinement is performed based on which refinement gives rise to 

the smallest predicted error indicator, i.e., the subdivision for which |£K.i(uDG.^ ^DGi — 

Zh.p)I? i — 1,2, is minimal. Based on computational experience, we select 6 in the range 

[1,3].

R e m a rk  5 .4 .2 . The solution of the local problems described in the above algorithms 

are, computationally, relatively inexpensive, yet further reductions in cost can be achieved 

as the algorithms can be easily parallelized. Evidently, A l g o r i t h m  2  will require less 

com putational effort than A l g o r i t h m  1 and will therefore be the most favourable to use, 

provided both algorithms give quantitatively similar errors for the same number of degrees 

of freedom.

We perform numerical experiments to test the effectiveness of the Hessian and local 

error estimation strategies in comparison with the standard isotropic technique in the 

following chapter.
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h- A dapt iv ity  N um erical 

E xperim ents

In this chapter we present a number of experiments to numerically dem onstrate the per

formance of the anisotropic adaptive algorithms proposed in Sections 5.3 and 5.4; see also 

[54]. All calculations were carried out using the MADNESS software package; for details; 

see Appendix C and Houston & Hall [69].

6.1 Exam ple 1

In this first example we consider a linear singularly perturbed advection-diffusion problem 

on the (unit) square domain Q = (0, l ) 2, where a = el,  0 <  e <C 1, b  =  (1 ,1)T , c =  0, and 

/  is chosen so tha t

u(x,  y) = x  +  y( 1 — x) +  [e_1/£ — e_ 1̂-x^ 1_y^ £] [1 — e_1/£]_1, (6.1.1)

cf. [76]. For 0 < e <C 1, solution (6.1.1) has boundary layers along x  = 1 and y =  1; 

throughout this section we set £ =  10-2 and Figure 6.1 (a) shows the primal solution in 

this case.

Here, we suppose th a t the aim of the com putation is to  calculate the (weighted) mean 

value of u over Q, i.e., J(u)  = f n mjjdx, where -0 =  100(1 — tanh(100(ri — 0.01)(ri +  

0.01)))(1 -  tanh(100(r2 — 0.2)(r2 +  0.2))), r\ = x  — 1.0 and r 2 =  y -  0.5; thereby, J(u)  =

92
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4.409917162888037. Figure 6.1 (b) shows the dual solution when, again, £ =  10~2. Hence 

the dual solution also exhibits boundary layers, but this time along x  =  1 and y — 0.

To dem onstrate the versatility of A lgorithm s 1 and 2 of Section 5.4, here we employ 

bi-linear, bi-quadratic, and bi-cubic elements, i.e., p = 1, p = 2, and p  =  3, respectively. 

To this end, in Figures 6.2 and 6.3 we plot the error in the computed target functional 

J(-) using both an isotropic (only) mesh refinement algorithm, together with the three 

anisotropic refinement strategies described in Sections 5.3 and 5.4. Additionally, in Tables

6.1 and 6.2 information is provided on the number of elements, degrees of freedom (DOF), 

the true functional error | J{u) — J(wdg)|? the computed a posteriori error indicator Wk \ 

and the corresponding effectivity index k =  pK \ / \J{u)  — J (u d g ) |,  for p =  1 and p  =  2, 

respectively, comparing isotropic refinement with anisotropic refinement.

Firstly, for each polynomial degree employed, we clearly observe the superiority of 

employing the anisotropic mesh refinement A lgorithm s 1 and 2 in comparison with stan

dard isotropic subdivision of the elements. Indeed, the error | J(u)  — J ( w dg)| computed 

on the series of anisotropically refined meshes designed using the two proposed algorithms 

outlined in Section 5.4 is always less than the corresponding quantity computed on the 

isotropic grids. Here, we observe tha t there is an initial transient whereby the error in 

the computed target functional decays rapidly using the former refinement algorithms, in 

comparison with the latter, after which the gradient of the convergence curves become 

very similar. This type of behavior is indeed expected, since for a fixed order method, i.e. 

h - version, we can only expect to improve the convergence of the error by a fixed constant, 

as the mesh is refined. Notwithstanding this, we note tha t, for each polynomial degree 

employed, the true error between J(u)  and J ( u d g ) using anisotropic refinement is around 

an order of m agnitude smaller than the corresponding quantity when isotropic refinement 

is employed alone. Secondly, we observe tha t for all polynomial degrees employed, the 

Hessian strategy is inferior to A lgorithm s 1 and 2, in the sense th a t the error in the 

target functional computed using the either of the two la tter strategies is always smaller 

th a t the corresponding quantity computed using the former strategy, for a fixed number 

of degrees of freedom. Indeed, even for bi-linear elements, for which the Hessian strategy 

has been proposed on the basis of interpolation theory, A lgorithm s 1 and 2 lead to a 35%
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(b)

Figure 6.1: Example 1: e =  10 2 (a) Primal solution (b) Dual solution.
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Figure 6.2: Example 1: Comparison between adaptive isotropic and anisotropic mesh 

refinement, (a) p = 1; (b) p = 2.
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Mesh Elements DOF | J(u)  -  J (u d g ) | I E k^ I k

1 256 1024 7.400E-02 7.790E-02 1.05

2 415 1660 1.183E-02 1.205E-02 1.02

3 670 2680 2.832E-03 2.847E-03 1.01

4 1051 4204 8.444E-04 8.441E-04 1.00

5 1675 6700 6.022E-04 6.014E-04 1.00

6 2680 10720 2.767E-04 2.764E-04 1.00

(a)

Mesh Elements DOF | J(u)  -  J (u d g ) | I E k^ I k

1 256 1024 7.400E-02 7.790E-02 1.05

2 308 1232 1.158E-02 1.179E-02 1.02

3 371 1484 5.980E-03 5.976E-03 1.00

4 448 1792 1.812E-03 1.806E-03 1.00

5 543 2172 7.362E-04 7.301E-04 0.99

6 653 2612 3.563E-04 3.513E-04 0.99

7 795 3180 2.042E-04 2.019E-04 0.99

8 963 3852 1.458E-04 1.447E-04 0.99

9 1173 4692 1.110E-04 1.103E-04 0.99

10 1435 5740 7.572E-05 7.524E-05 0.99

11 1758 7032 5.628E-05 5.599E-05 0.99

12 2131 8524 4.572E-05 4.551E-05 1.00

13 2574 10296 3.659E-05 3.634E-05 0.99

(b)

Table 6.1: Example 1: Adaptive results for p = 1, (a) isotropic refinement (b) anisotropic 

refinement by A lgorithm  2.



6 . 1  E x a m p l e  1 97

Mesh Elements DOF | J(u)  -  J(w dg)| I E *  Vk \ k

1 256 2304 6.826E-03 6.705E-03 0.98

2 415 3735 4.786E-04 4.777E-04 1.00

3 667 6003 2.833E-05 2.833E-05 1.00

4 1075 9675 1.071E-06 1.118E-06 1.04

6 2797 25173 4.055E-08 4.022E-08 0.99

( a )

Mesh Elements DOF | J(u)  -  J (« d g ) | I E ^ kI k

1 256 2304 6.826E-03 6.705E-03 0.98

2 316 2844 4.792E-04 4.781E-04 1.00

3 390 3510 2.856E-05 2.834E-05 0.99

4 473 4257 1.225E-06 1.068E-06 0.87

5 577 5193 1.777E-07 1.153E-07 0.65

6 719 6471 3.209E-08 5.281E-08 1.65

7 895 8055 7.596E-09 8.215E-09 1.08

8 1098 9882 1.300E-08 1.950E-08 1.50

9 1356 12204 1.129E-08 1.170E-08 1.04

10 1662 14958 6.595E-09 7.084E-09 1.07

11 1987 17883 4.920E-09 5.508E-09 1.12

12 2388 21492 3.389E-09 3.975E-09 1.17

13 2831 25479 2.353E-09 2.946E-09 1.25

(b)

Table 6.2: Example 1: Adaptive results for p = 2, (a) isotropic refinement (b) anisotropic 

refinement by A lgorithm  1.
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Figure 6.3: Example 1: Comparison between adaptive isotropic and anisotropic mesh 

refinement, p = 3.

reduction in the error on the final mesh in comparison with the corresponding quantity 

computed using the former strategy. Similar behavior is also observed for bi-quadratic 

and bi-cubic elements, though in the latter case, the Hessian strategy actually generates 

meshes which in many cases are inferior to their isotropic counterparts. Finally, we note 

that, despite the additional work involved in the implementation of A lgorithm  1 in com

parison to Algorithm 2, we see that both approaches lead to quantitatively very similar 

reductions in the error in the computed target functional.

We also notice that on both isotropically and anisotropically refined meshes the a 

posteriori error indicators are performing extremely well. Indeed, on all the isotropic 

meshes the effective indices are close to 1. The same can be said for anisotropic meshes 

with p = 1, however a slight degradation of the quality occurs on highly refined anisotropic 

meshes with p =  2, nonetheless, even in this case, the error indicators are still very reliable. 

For p = 3 similar effectivities are witnessed as for p — 2; for brevity, these numerics have 

been omitted.
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(a) (b)

Figure 6.4: Example 1: Adaptively refined meshes for p = 1. (a) Isotropic mesh after 5 

adaptive refinements, with 2680 elements; (b) Anisotropic mesh designed using Algorithm  

2 after 7 adaptive refinements, with 963 elements (c) Anisotropic mesh detail at (0.9,0.5).
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In Figure 6.4 we show the meshes generated using both  isotropic and anisotropic mesh 

adaptation. For brevity, we only show the meshes for p  =  1, and in the la tter case employ

ing A lgorithm  2. Firstly, we note th a t in both  cases the mesh is prim arily concentrated 

in the vicinity of the boundary layer along x  =  1, where the support of the weighting 

function xp appearing in the definition of the target functional J(-) is non-zero. Indeed, 

the region of the com putational domain where the rem ainder of the boundary layer along 

x  = 1 and moreover where the boundary layer along y  = 1 are located are not refined, since 

the resolution of these sharp features present in the analytical solution are not im portant 

for the accurate com putation of the selected target functional, cf. [63], for example. For 

A lgorithm  2, we observe th a t the refinement strategy has clearly identified the anisotropy 

in the underlying prim al and dual solutions, and refined the mesh accordingly. Indeed, we 

observe th a t the boundary layer along £ = l , 0 < y < l ,  has been significantly refined, as 

we would expect, w ith the elements being mostly refined in the direction parallel to  the 

boundary. We note, however, th a t some anisotropic refinement perpendicular to T is per

formed in the region of the boundary layer in order to accurately capture the anisotropy 

of the dual solution z.

6.2 E xam ple 2

In this second example we investigate the performance of the proposed anisotropic re

finement algorithms applied to a mixed hyperbolic-elliptic problem with discontinuous 

boundary data. To this end, we let Q = (0,2) x (0,1), a =  s(x)I ,  where e =  (1 — 

tanh(100(ri -  0 .12)(n  +  0.12)))(1 -  tanh(100(r2 -  0.12)(r2 +  0.12)))/1000, n  =  x  -  1.3 

and r 2 =  y  — 0.3. Furtherm ore, we set

b _ f  1 _ X)T i f x <
[  (1 ,1 /10)T if x >  1,

c =  0, and /  =  0. On the inflow boundary T_, we select u ( x , y )  = 1 along y — 0, 

1/8 <  x  <  3/4 and u{x, y)  =  0, elsewhere. This is a variant of the test problem presented 

in [68]. We note th a t the diffusion param eter e will be approximately equal to 3.6 x 10-3 

in the square region (1.18,1.42) x (0.18,0.42), where the underlying partial differential
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(b)

Figure 6.5: Example 2:(a) Primal solution (b) Dual solution.

equation is uniformly elliptic. As (x, y ) moves outside of this region, e rapidly decreases 

through a layer of width (9(0.1); for example, when x  = 1.3 and y > 0.7 we have e < 10~15, 

so from the computational point of view e is zero to within rounding error; in this region, 

the partial differential equation undergoes a change of type becoming, in effect, hyperbolic. 

Thus, we shall refer to the part of containing this square region (including a strip of 

size (9(0.1)) as the elliptic region, while the remainder of the computational domain will 

be referred to as the hyperbolic region. [Strictly speaking, the partial differential equation 

is elliptic in the whole of H.] Figure 6.5 (a) shows the exact primal solution.

Here, we suppose that the aim of the computation is to calculate the value of the 

(weighted) outflow advective flux along x  = 2, 0 < y < 1, i.e., J{u) =  J01(b-n)u(2, y)i{)(y)dy,
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Figure 6.6: Example 2: Comparison between adaptive isotropic and anisotropic mesh 

refinement, (a) p = 1; (b) p  =  2.
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where the  weight function xl>(y) = e^3/8  ̂ 2 - ( ( y - 17 / 4 0 ) 2 - 3 / 8 )  2 (approxim at e) true value 

of the functional is given by J(u)  =  0 . 2 0 0 6 2 0 1 6 7 0 6 2 1 4 0  and Figure 6 . 5  (b) shows the re

sultant dual solution in this case.

In Figure 6.6 we plot the error in the com puted target functional «/(•) using both  an 

isotropic (only) mesh refinement algorithm, together with the three anisotropic refinement 

strategies described in Sections 5 .3  and 5 . 4  for p  — 1 and p  =  2 .  As for the previous 

example, we clearly observe the superiority of employing anisotropic mesh refinement 

in comparison w ith standard  isotropic subdivision of the elements. Indeed, the error 

| J{u) — J (u d g ) | com puted on the series of anisotropically refined meshes is (almost) always 

less than  the corresponding quantity com puted on isotropic grids. Moreover, we again 

observe th a t (apart from an initial transient for p  =  1 ) ,  both  A l g o r i t h m s  1 and 2  give 

rise to an improvement in the error in the com puted target functional, for a given number 

of degrees of freedom, when compared to the Hessian strategy; indeed, on the final mesh, 

A l g o r i t h m  2 leads an improvement in \ J(u) — J (u d g ) | of around one and two orders 

of m agnitude for p  — 1 and p  =  2 ,  respectively. In this example, we again observe 

th a t A l g o r i t h m s  1 and 2  perform very similarly, in the sense th a t they both lead to 

approxim ately the same error in J(-) for a fixed number of degrees of freedom, though 

A l g o r i t h m  2  is still preferred since it is com putationally less expensive.

Finally, in Figure 6 . 7  we show the meshes generated using both  isotropic and anisotropic 

mesh adaptation (based on A l g o r i t h m  2 ) ,  for bi-linear elements. Firstly, we note th a t in 

both  cases the grid is prim arily concentrated in the vicinity of the discontinuity of the 

analytical solution u which em anates from the point (x , y)  = ( 3 / 4 , 0 )  on the inflow bound

ary; the second discontinuity in u is significantly less refined, as the resolution of this 

sharp feature in the solution is not essential for the com putation of J(-). Additional mesh 

refinement has also been performed within the elliptic region, as well as the portion of the 

com putational domain downstream of this region, though here we still observe a general 

concentration of elements w ithin the ‘sm oothed’ discontinuity of the analytical solution. 

Secondly, we observe th a t the anisotropic refinement algorithm has clearly identified the 

anisotropy in the underlying prim al and dual solutions, and refined the mesh accordingly. 

Indeed, here we observe th a t in regions where the discontinuities/layers in u are well
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a

(b)

(c)

Figure 6.7: Example 2: Adaptively refined meshes for p — 1. (a) Isotropic mesh after 8 

adaptive refinements, w ith 6539 elements; (b) & (c) Anisotropic meshes designed using 

A lgorithm  2 after: 8 adaptive refinements, with 606 elements, and 14 adaptive refine

ments, with 1762 elements, respectively.
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i

( c )

Figure 6.7: Example 2: Adaptively refined meshes for p = 1. (a) Isotropic mesh after 8 

adaptive refinements, with 6539 elements; (b) k  (c) Anisotropic meshes designed using 

Algorithm 2 after: 8 adaptive refinements, with 606 elements, and 14 adaptive refine

ments, with 1762 elements, respectively.
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aligned w ith the mesh lines of the original background mesh, anisotropic refinement has 

been employed; in other regions of the com putational domain, isotropic refinement has 

been utilized.



C hapter 7

A nisotrop ic hp-A daptive  

R efinem ent

So far in this thesis we have only considered isotropic and anisotropic /^-refinement strate

gies. however. Theorem 4.1.6 indicates tha t some balance between ft-refinement and p- 

refinement can lead to a better reduction in error than pure ft.-refinement. Indeed, ftp- 

adaptive m ethods, as they are known, have become increasingly popular over the years 

since their first analysis by Babuska and Dorr [16]. In this chapter we shall move away 

from the standard  isotropic p-refinement techniques and attem pt to develop a fully adap

tive anisotropic ftp-strategy for goal-oriented error estimation. First, we shall perform 

an analysis of the DG m ethod in the case when anisotropic polynomials have been used, 

to support the need for anisotropic p. Then we shall discuss some of the methods cur

rently used to determine whether ft- or p- refinement should be carried out. before finally 

presenting the full anisotropic ftp-algorithm.

7.1 A nisotropic /zp-Error A nalysis for Functionals

Once again we return  to  the case of axiparallel elements and perform a similar error 

analysis to tha t in C hapter 4 and obtain the proceeding theorem. In a slight variation to 

the assumptions required for the Theorem 4.1.6, new bounded local variation conditions 

on the element sizes and polynomial degrees are required: we suppose th a t there exist p,

1 0 6
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and Sr. for i =  1.2 such th a t

p f l  < P i / p f  <Pi-  (7.1.1)

U 1 < U / U '  < Si .  (7.1.2)

i = 1,2. for all pairs of neighbouring elements k and k ' .

T h eorem  7 .1 .1 . Let Ll C  M2 be a an axiparallel polygonal domain . 7  ̂ =  { k }  a subdivi

sion of Ll into axiparallel images of the 2-hypercube, such that the bounded local variation 

conditions, (7.1.1) and (7.1.2), hold. Then, assuming that conditions (2.3.2). (4-1-3), and 

(4-1-2) on the data hold, and u\K G H k*(K), kK > 2. for k. G and z G H 1k(k) ,  lK > 2. 

for  k  G Th, then the solution udq  G S p (Q.Tfl .F ) of (2.6.5) obeys the error bound

nCTh i=l
h? . s h ? \ 2

x ( a Kp?  + -^ (h  + (Pi  + 7i)) M

x ( E E ^ ^ u u ) (^ 4 { ( | ) ™ ( | ) " }
k ET^ j = 1 1 J

X ( a K.Pi + h?p2  + (~e) ( P i + 72))

with A  =  {(0.0), (0,1). (0,2). ( -1 ,0 ) .  ( - 1 . 1)(1, 2). (2.1), (2. 2)}. and

•* 7 \2„«r-1S h9\ ! /2
\ w \ ~  ( l l 7 'u’lli +  ( j ^ )  119,r A H Ia -)  . i . j  = 1.2. i j t ) .

/o r  2 < < min(pK +  l.fcK) and 2 < <  min(pK +  1 ,/K), where o |K =  a*. /4i|k —

Ik- +  V - b ||t ^ (K), A L  =  | N i ^ (K), 71 |K =  Ik'/colli^iK)- 7 2 L =  IIU + V -  b ) / c o | |^ (lt). for

all k G T k  Here, C  is a constant depending on the parameters Si. pt. i =  1.2.

Proof. Inequality (4.1.14) is also applicable in this case, by rearranging the term s we
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obtain

a &
IJ(U) -  J(udg)I2 < C | E  (J|V'/HUW + ^l|V.;|lU(aK) + Qi

(h ( £kIMIl2(k) + II ÎIl2(8k) ) + (A + 72) IMIl2(k)

=  C  £ ^  +  *2 +*3 X £ / f , (, +  /£  +  /£
\KeTh J \K £Th

For term  I f  (similarly I f w) we first split into contributions from the faces dn\ and ()k] .

such th a t
2 _(ii 0

i U  ^  2 * n w i i l , , , ,  +  E +  - i m i U a K,
\  1= 1 0 aR

Then, employing the interpolation result from Lemma 3.4.4 we obtain

r. 112\WvWhw <  r E  p f < f ( p f . s L U ) l l A i l l 2 +  * ( p ? , s ? ! f c n i i a f ‘ " 1a
i=  1

2

< r E / C i - U . -
i= 1 

2

1 + l / t

< r V m a x
= {0.2} \ h 1'

I2
I s ?  . K . i '

mi
i=l 1 ’ \  2

By using the definition of the discontinuity penalization term  0 from (2.7.15). the results

of Lemma 3.4.6 and utilizing the bounded local variation conditions, we also see tha t

2 _ 2a
E f l l Vl'llh(^) 2 c E * ( pT.«?A?
i= 1 i= \
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< C V p f $ ( p f . s f . / i f )  max ( A )
7~{ (ra.n)e--ll V P?/

l u l i

i = 1 v y J

where A x = {(0.0). (0.2). ( -1 . 0)}.

Similarly, by using Lemma 3.4.5 we obtain

2 n  2 /  k  \  m  /  7 \  ni  ̂ /  r>K \  /  I K \
E i; N I ^ ( a K ^ c y : p W .sf.ftf)(mm|« 2 U )  l«I

. . . ,  . . .  I l u ' 2z = l  "  Z = 1  '  • * v - T*  /  \  J

where A.2 =  {(1.2), (2.2)}. Hence, it follows tha t

2 /  \  m  /  7 \  n

and

I I2

For term s and 1$ we make the selection =  m ax;=i .2 ( (pf )2/ ?̂ /') ail(l using the same 

techniques as above we deduce tha t

1  £

A  / U \ m / V V '
I t  <  m a x  ( —  I

“ * ( m ,n ) e x i4  \ P j  /

-L  M 2I K 1 MqC/r.r
i = 1  7  ^  - j  y

where A 3  =  {(0. 0). (0.1). ( -1 ,1 )}  and A4 =  {(0. 0). (0.1). (2. 1). (2. 2)}. 

A simple use of Lemma 3.4.4 also yields

2 / h « ' 2
id?*it <  ( A + 7 i ) E H r  U p ? - U - U ) | .

i=l \ p i '

It < (A +  72 ) E

Combining the results for term s I \~ h  completes the proof. ■

R e m a rk  7 .1 .2 . Upon application of Stirling's formula for the factorials arising in the 

definition of <F, as in Remark 3.4.7, it can be shown tha t the error estim ate stated in 

Theorem 4.1.6 is /?-optimal and slightly p-suboptim al (by one order of p). This is in 

complete agreement with the results presented for the isotropic case in [61].
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W hen the analytical solution of both the prim al and the dual problems are sufficiently 

smooth, then it can be shown that the error converges to zero at an exponential rate 

with respect to  the local (directional) polynomial degrees. More precisely, we state the 

following result.

C o ro lla ry  7 .1 .3 . Let Q C  M2 be a bounded polyhedral domain, T  =  {k} a 1-irregular sub

division of Q, such that the mesh parameters satisfy the bounded local variation conditions 

(7.1.1) and (7.1.2). Then, assuming that conditions (2.3.2), (4-1.3), and (4-1-2) hold, and 

that u . z  are analytic functions on a neighbourhood of ft, the solution u^g  E S p (Q. 7/?. F) 

of (2.6.5) obeys the error bound

2 2 

| J(u) — J{udg)|2 < C ( a .  pi.fe* 7u 72) x ( E E ^ e K E E ^ E ) -
k,GT i=T kGT i—1

where

N * ;= ( A ? { (PT)4-1"(P?)m ( ^ ) ”}•
ri, qi are positive constants depending on the domain of analyticity of a and z. respectively, 

and m * is the Lebesgue measure of k; the set A  and the data-related constants o. J ] . .ij- ~ 1 • 

and 72  are as in the statement o f Theorem 7.1.1.

Proof. The result follows simply after applying Lemmas 3.4.8 and 3.4.9 to

* ( p ? , s ? A ? )  M E , ,  =  f t f ) ( | | a > | | ?  +  Q f w d r ^ j u W l ) -

and similarly to

The results of Theorem 4.1.6 clearly show tha t in the case where the Sobolev regu

larity of the prim al solution u or the dual solution z exceed the polynomial degree of the 

approxim ating solutions it will be more beneficial to increase the polynomial degree rather 

than decreasing the size of the mesh. Indeed, in the case where u and 2 are real analytic 

functions polynomial enrichment can lead to exponential convergence. Results have even



7 . 2  A d a p t i v e  S t r a t e g y 111

been shown th a t for problems with corner singularities a careful choice of mesh refinement 

into the corner together with increasing polynomial degree away from the corner can still 

lead to exponential convergence; see. for example, [119. Section 4.5].

Further, the convergence estimates from Theorem 7.1.1 and Corollary 7.1.3 indicate 

th a t it might be advantageous to use anisotropic polynomial degrees as well as anisotropic 

elements when constructing a finite element space. In Sections 8.1 and 8.2 we perform sim

ple numerical experiments to motivate the use of anisotropic polynomial degrees, where 

anisotropic elements and anisotropic polynomial degrees are chosen based on a priori 

knowledge of the prim al and dual solutions. We see th a t a very simple a priori anisotropic 

strategy can produce a surprisingly large improvement over isotropic polynomial degrees. 

Driven on by these results we now proceed to describe an autom atic anisotropic Jrp- 

adaptive strategy.

7.2 A daptive S trategy

In the goal-oriented setting the target error is highly dependent on both  the primal and 

dual solutions, hence the smoothness of both must be taken into account. Indeed, based

on the a priori error analysis if either the primal or dual is ‘sm ooth’ then it is natural to

perform p-enrichm ent, while if both  are ‘non-sm ooth’ -refinement would seem the logic al 

choice. W ith this in mind we propose the following adaptive algorithm for anisotropic 

hp- adaptation:

1. Select an element k, for refinement or derefinement .

2. Estim ate the ‘smoothness’ of both u and z on the element k .

3. If the element has been selected for refinement.

(a) If u or z is smooth perform anisotropic p-refinement. else

(b) Perform anisotropic h-refinement.

else

4. If the element k has been selected for derefinement.
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(a) If u or 2 is smooth on k perform h-derefinement, else

(b) Perform p-derefinement.

•5. Stop.

Anisotropic h-refinement has been investigated in depth in C hapter 5. thus the two 

im portant issues are how to identify whether a function is smooth or not and how to 

perform anisotropic p-refinement. We consider the former in the next section and the 

la tter in Section 7.4.

7.3 Sm oothness E stim ation

It is essential th a t we have some way of assessing the regularity of the solution on an 

element which has been flagged for refinem ent/derefinem ent. Much research has gone into 

this and we present a brief review of some of these techniques, together with our preferred 

approach, in this section.

•  Use of a priori information. For some problem types it is possible to  know before

hand where the solution is regular and where it is not. Consider, for example, a 

linear elliptic boundary value problem, with piecewise analytic coefficients, forcing 

functions and boundary data  on a com putational domain with a piecewise analytic 

boundary surface. In this case the solution will have singularities in the neigh

bourhood of corners of the domain and singularities in the boundary data. Thus, 

elements in the neighbourhood of these singularities can simply be chosen for subdi

vision, whilst all others can be selected for p-refinement. Examples of this method 

can be found in [25, 133]. Of course for more complicated problems, the location of 

singularities is not known a priori, so this method has limited appeal.

•  Type-Parameter. Suppose th a t on each element k in the com putational mesh, an 

error indicator 7jK(u ^ p, hK,pK) dependent on the numerical solution u^.p- the element 

size hK and the polynomial degree pK can be calculated. Suppose also tha t one has
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access to  rjK(uh.p- i ,  hK.pK -  1). Defining Q ,  by

  \ V k iuh.p' h - K ' P k ) / V k iuh,p—l • • P k  ~  !)• 3 k {uh.p— i • h K . p K — 1) ^  0.
Ck =  <

I 0. otherwise

and selecting the param eter. 0 < 7  <  1 . if Ck < 7  then the element is said to be of 

p-type and a^-refinem ent is carried out, otherwise the element is said to be of h-type 

and the element subdivided. Here, 7  is known as the type parameter- see [57].

A num ber of possibilities then exist. For example:

1 . On an element with polynomial degree pK, a local problem is solved with new 

polynomial degreepK + 1 and the error indicator rjK(u ^ p+ \ . h K,p K + \) calculated. 

The ratio of the computed error indicators then yields the type. For example, 

see [57].

2. Alternatively, global solutions with polynomial degrees p  and p — 1 can be solved 

at the outset and hence is immediately available for each k . This method 

has been considered in, for example. [2].

• Mesh optimization procedure. This m ethod is similar to A lgorithm s 1 and 2 in

troduced in Section 5.4 and to A lgorithm s 3 and 4 which will be introduced later

in this chapter, in th a t it is based 011 competitive refinements. Suppose first tha t

a reference solution has been calculated on some fine mesh. Now suppose tha t an 

element in the com putational mesh has been chosen for refinement, where the refine

ment to be performed is to be taken from a finite list of possibilities. By projecting 

the reference solution onto the local space formed by each of the possible refinements 

an indication of the expected reduction in error per degree of freedom increase can 

be calculated. Hence the refinement which maximizes the error reduction per degree 

of freedom is chosen. Evidently setting up the reference solution is com putationally 

expensive, but the mesh after refinement should be ‘optimized* and this cost negated. 

This m ethod was first proposed in [110], with extensions in [42] and [122]. where in 

the latter, goal-oriented adaptation is considered.

•  ‘Texas 3 Step'. The ‘Texas 3 Step* as it has become known was first introduced by 

Oden et al. [107] with further work undertaken in [26. 106]. It is not so much a means
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to  determ ine local regularity of a solution, but rather seeks to optimally choose the 

element size and polynomial degrees across the domain to  achieve a given level of 

accuracy. Two error tolerance are chosen. Tol\ and Toly, standing for Interm ediate 

and Final, respectively. The eponymous steps then follow as:

1. Setup an initialize mesh, which lies in the ^-asymptotic* range. Then, by equat

ing a priori and a posteriori error estimates, determine properties of the solution 

so th a t it is possible to:

2. Perform adaptive h-refinement to ensure the error is below Tol\ and is equidis- 

tribu ted  across the mesh. Recompute the a posteriori error estimates and again 

equate with the a priori error estim ate in order to:

3. Calculate the polynomial distribution which achieves equidistribution of the 

error across the mesh, subject to the error begin less than  the ToR .  Enrich the 

mesh and check th a t the tolerance is actually satisfied.

• Predicted error reduction. The idea of predicting the new error indicator on a re

fined element, based on a priori error estimates was first introduced by Melenk 

and W ohlmuth [104]. Suppose th a t an element has been chosen for either h- or p- 

refinement , then the a priori estimates allow, assuming the solution is locally smooth, 

a predicted error indicator to be calculated on the resultant elements /q, based 

on the current error indicator, r]K. Evidently, as p-refinement results in exponential 

convergence r)K*ed in this case will be different to the case when /?-refinement is used 

and only algebraic convergence is witnessed. Thus, the next time one of the resultant 

elements is chosen for refinement, the actual error indicator rjKi can be compared 

with the predicted error indicator p£];ed. If it happens th a t 7/K. > //{,”ed then the 

solution is not smooth and h-refinement will be chosen, otherwise the solution is 

smooth and p-refinement is picked. On the initial mesh, the choice must therefore 

be made either to perform h-refinement of any selected elements and set =  0

for all k , or set rfc™** = oc and perform p-refinement, cf., also, [67].

• Rate of decay of Legendre expansion coefficients. F irst proposed in [102] is the 

idea of using the decay rate of the Legendre coefficients of a function to determine
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w hether it is locally smooth or non-smooth. In one-dimension, for an approxim ate

solution of polynomial order p. the Legendre coefficients a,, for i — 0 p. are

readily obtainable. Real analytic functions exhibit exponential decay of the Legendre 

coefficients, th a t is a* ~  e~ai. By using the available Legendre coefficients, an 

estim ate of a  can be found by means of a least-squares fit. In [102] the choice was 

m ade th a t if a < 1 the function was not smooth enough to warrant p-refinement and 

an h-refinement carried out. otherwise p-refinement was utilized. Further work can 

also be found in Houston & Siili [81]. see below. Melenk and Eibner [45] extend the 

theory which this technique is based upon to the case of triangular and tetrahedral 

elements.

•  Local regularity estimation. By attem pting to explicitly approxim ate the local Sobolev 

regularity kK of a solution, p-refinement can be performed on those elements where 

> Pk +  1* and /?.-refinement performed otherwise. Techniques to approxim ate the 

Sobolev regularity were considered in [4], where they came about as a direct result 

of the a posteriori error estim ation of elliptic boundary problems. Suppose the ana

lytical solution is denoted by a and the numerical solution u^. The idea is to solve 

local problems for the error u — uh in order to calculate a posteriori estimates, which 

can then be corrected using a priori estimates of the local problems. By solving the 

local problem for multiple polynomial degrees, the term s involved in the a priori 

error estimates can be com puted and the Sobolev regularity of u — estimated. 

Noticing tha t the Sobolev index of the error (u — restricted to the element is

the same as th a t of u |K, the local Sobolev regularity of the solution has also been 

found. Extensions of this method to linear and non-linear hyperbolic problems have 

been considered in [77. 79. 126].

The assessment of local Sobolev regularity has also been considered in [78]. where in 

this case the coefficients of the Legendre polynomials are analyzed to  directly reveal 

the regularity.

Due to the simplicity and economy of its implementation and the robustness witnessed

in numerical experiments, the method we choose to use is based on the penultim ate algo-
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- 1

Figure 7.1: Bernstein ellipse on the interval I  =  (—1.1).

rithm  discussed above and involves estim ating the domain of analyticity of a solution by 

considering the decay rates of the Legendre expansion coefficients: it was first introduced 

by Houston et al. in [81]. Consider a function v, defined on the one-dimensional reference 

domain I  =  (—1.1) and associate with it the Bernstein ellipse £p. defining the complex 

domain of analyticity of v, with foci x = ±1 and radius p — {a +  b)/c > 1. where a and b 

are the lengths of the sem i-m ajor and semi-minor axes, respectively, and c: is equal to half 

the length of the interval / ,  cf. Figure 7.1. In the case p = 1. then we have the degenerate 

situation a = 1. b = 0 and £p =  [—1.1]: thus v is singular in I. The following result then 

holds.

T h e o re m  7.3 .1 . Let z v(z) be analytic in the interior of Ep, p > 1. but not in the 

interior of any other £p> with p' >  p. Then the Legendre series

00 2i + 1 f l
v(z) = Y ,b i L i ( z ) .  bi = - ~  v(z)L,(z)<iz (7.3.1)

i=0 1

converges absolutely and uniformly on any closed set in the interior of £p and diverges in 

the exterior of £p. Moreover,

— =  l im su p \bj I1/ '.  (7.3.2)
P i—-OC

Conversely, i f  (bi)i>o is a sequence satisfying (7.3.2) with some p > 1. then the Legendre 

series (7.3.1) converges absolutely and uniformly on any closed set inside £p to an analytic 

function z ^  v(z) satisfying (7.3.1)-(7.3.2). The series diverges in the exterior of £p.
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Proof. See Davis [41]. Theorem 12.4.7. for details. ■

We now extend the above theorem to the case where the interval is no longer the 

standard  I  = [—1.1], but rather I  =  [xi.a^], with mesh size hj = (.r2 — x \) /2 .  In order 

to  do this we follow the discussion presented in [81] and introduce the family of L 2(I)~ 

orthogonal polynomials { L \ (x )} £ 0 and we deduce tha t

L{ = ( l / h I p 2L i( ( x - m , ) / h , ) .

where m j  is the midpoint of the interval I .  hence m j =  ( t i  +  i;2)/2 . By the completeness

of { L \ ( z )} g 0 in L 2(I). for a function v e L 2{1) we can write

v(x)\i  = ' ^ a ( L Ii (x). where a\ =  ^  ^   ̂ f  v(x)L j(x)c\x. (7.3.3)

W ith this notation, the analogue of Theorem 7.3.1 on an interval I  holds, in which case the 

new local Bernstein ellipse £Pl has foci at x.\. x2 and radius pi =  (a /+  6/)//?., where a-j > hj 

and bj are the lengths of the semi-major and semi-minor axes, respectively. Indeed, with 

the Legendre coefficients of v being defined as in (7.3.3), if v is analytic in the interior of 

Spi. but not in the interior of any 8 ^  w ith p'j > pi the elemental Bernstein radius satisfies

— =  lim sup |af \1̂ 1. (7.3.4)
Pi i—r oc

for some pj >  1. Hence,

e, = — (7.3.5)
Pi

is some measure of the domain of analyticity of v relative to the size of the interval I.  By 

considering the local analogue of Theorem 7.3.1 we deduce tha t 0 < 0/ < 1: with Oj =  0 

indicating an entire analytic function, in contrast Oj = 1 corresponds to functions with 

singular support in I. We also remark th a t for a fixed, real analytic function v an h- 

refinement of the interval I  will always yield an increase in the relative size of the domain 

of analyticity of v and. therefore, a decrease of Oj.

The discussion above only considers functions defined in one-dimension and assumes a 

complete knowledge of the Legendre coefficients: however, we need to be able to determine 

smoothness based on our approxim ate solutions udg and ^dg and deal with higher spatial
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dimensions. To extend the result to higher dimensions we simply choose the centroid of 

the reference element and evaluate the Legendre coefficients in each coordinate direction

separately, a value 0-? can then be obtained for each j  — 1 d. Slightly more complicated

is how to use the approxim ate solution to obtain the analyticity estimate. Suppose tha t 

(for the d-hypercube) we have used a polynomial degree vector {p j}dj=\ to  approxim ate the 

solution, then approximations to the first pj +  1 Legendre coefficients are readily obtained, 

bearing in mind our basis functions are no more than the tensor products of Legendre 

polynomials; see Section C.5. One solution, motivated by (7.3.4). would be to approximate 

03 by 0J — \aPj\l /pi , for j  =  1 . . . . .  ci. However, for many functions aPi =  0: consider, for 

example, functions whose Legendre coefficients have repeating patterns of zero coefficients, 

such as functions which are symmetric or antisymmetric about the midpoint and hence 0, 

is liable to give a poor approximation to Of.

Instead we attem pt to use information from all of the available Legendre coefficients. 

Once again, using (7.3.4) we see tha t if v is analytic on I. then \a>. I ~  (11 p i )1 * as i —> oc. 

which in tu rn  implies log |a{| ~  ?Tog(l/p/), as i —> oo. So. by performing linear regression 

to estim ate the slope, p / of |lo g |u [ || =  ipi +  &/. for the available a\. i =  0. ■■■ PJ. the 

estim ate 9J becomes

Qj = e-Hjm i = i . . . . d .  (7.3.6)

We notice th a t the closed form for fij is given by

. _  ft 2 Y l^ L o  W i — Pj Za=o Vi

3 CPj +  +  l )2 ~  ! )  '

with yi — | log \aj ||, for i — 0 . . . .  .pj. For pj > 1. j  — 1 . . . . .  d. we will have enough data to

calculate an approximation OK although, evidently, the higher the polynomial degree used 

the better the approximation is likely to be. For this reason, we shall start com putations 

on grids with uniform polynomial degrees, with pj =  2. j  =  1 d.

Equipped with our approximations for OK j  = 1 . . . . . d .  we must decide how this 

translates into whether a function is ‘smooth* or not. We make the decision tha t, if for 

any j  = 1 , . . . .  d. <  0. where 0 is a user defined param eter (selected to be 0.25 in our 

experiments), the function is smooth enough that p-rehnement be carried out. otherwise 

h-refinement must suffice.
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Having decided upon whether a function is smooth or not we now tu rn  our attention 

to  how to perform anisotropic p-refinement.

7.4 A nisotropic p-Refinem ent Strategies

Although we obtain smoothness estimates in each direction, these do not provide us with 

sufficient inform ation to decide in which directions we would wish to  increase the poly

nomial degree, because they give no information about the potential error reduction. We 

are, therefore, motivated to use a similar strategy to tha t presented for anisotropic h- 

refinement, th a t is, competitive refinement based on the error indicators calculated on 

trial patches. Once again we consider cartesian meshes and solve local problems based on 

increasing the polynomial degree anisotropically in one direction at a time by one degree, 

or isotropically by one degree. Figure 7.2 provides a visualisation of the local mesh patches 

in two-dimensions, where the original polynomial degree vector on the element of interest 

is pK = [pi, P2] • The formulations presented in Section 5.4 for the local solution of the 

primal and dual problems are used and once again we present two possible anisotropic 

algorithms; see also [56].

(c)(a)

Figure 7.2: Polynomial Enrichment in 2D: (a) & (b) Anisotropic Enrichment: (c) Isotropic 

Enrichm ent.

A lgorithm  3: This algorithm is completely analogous to the A lgorithm  1 of Section 

5.4. Given an element k in the com putational mesh (which has been marked for 

refinement), we first construct the finite element spaces S Pi (k .F k ). i =  1.2.3. based 011 

enriching pK according to Figure 7.2. respectively. On each finite element space S /7‘ (k . Fk ).
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i =  1 .2 .3 . we com pute the approximate error estim ators

^DG.i Zh.p) =

for i =  1.2.3, respectively. Here. Rdg.g i — 1.2.3. is the discontinuous Galerkin ap

proxim ation to  (2.2.1), (2.2.3) computed on the space S Pi(k .F k ). i =  1.2.3. as discussed 

in Section 5.4. Similarly, ifixJa denotes the discontinuous Galerkin approximation to z 

com puted on the local space S PiJrPinc(n, FK)). i — 1.2.3, respectively.

The element k is then refined according to the subdivision of k which satisfies

\Wk\ ~  |^/c.i(^DG,p2DG.i “  ^h.p) |mm ------------=----  zr-*---------.
i=i.2.3 # d o fs (SPi (k , Fk )) — # d o fs (Sp(k . Fk ))

where # d o fs (Sp (k , FK)) and # d o fs (SPl (k . FK)). i =  1.2.3. denote the number of degrees 

of freedom associated with S p(k ,F k) and S Pi(K< FK), i = 1.2,3, respectively.

A l g o r i t h m  4 :  This is very similar to A l g o r i t h m  2 of Section 5.4 where only the 

mesh patches 7 /^ . i =  1,2, corresponding to the anisotropic refinements are carried out. 

However, as the original element may have had anisotropic polynomial degree, the number 

of degrees of freedom on the refined mesh patches are no longer directly comparable, hence 

a slight modification is needed. Thus, given an anisotropy param eter uo > 1, isotropic 

refinement is selected when

n ia x ^ i,2(|//K| -  £K.Q /(#do fs(£Pl(/GFK)) -  # d o fs (Sp{k . FK)))
miip= i,2( W  -  £* .i)/(#dots(Spi (k , Fk,)) -  #dofs(5P(«? F«)))

otherwise an anisotropic refinement is performed based on which enrichment gives rise to 

the smallest predicted error indicator, i.e.. the subdivision for which 

(|77K| — £K'i) / (# d o is (S pi(K. Fk )) — #dofs(S'^(/G FK))). i =  1.2. is minimal. Here, for brevity 

we have w ritten SK.̂  in lieu of £K.i(wDG.G zdg.* — ^h.p)- Based on com putational experience, 

we select lu in the range [2.3]. Once again we observe tha t both of the above algorithms 

are fully parallelizable.

R e m a rk  7.4.1. We remark th a t we could have combined A l g o r i t h m  1 or 2 with either 

A l g o r i t h m  3  or A l g o r i t h m  4  to  decide which is the best refinement to perform, h- or 

p -, without needing to estim ate the smoothness of u and 2 . in a technique very similar

to the mesh optimization strategy of [110]. Indeed, numerical experiments have revealed
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very similar convergence plots as those using the smoothness test. However, compared 

to  solving the local problems, com putational expense to ascertain smoothness is minimal 

and is therefore preferred.

In the case when both u and z are non-smooth, we wish to  perform a derefinement 

of the polynomial degree vector. To avoid the unnecessary solving of local problems, we 

simply perform an isotropic p-derefinement, th a t is. we reduce the polynomial by one 

degree in each coordinate direction.

7 .4 .1  S m o o th in g

For isotropic p-refinement, a smoothing of the resultant polynomials across the domain has 

proven to  be essential in achieving a smooth reduction in the error. S tandard techniques 

involve ensuring th a t the polynomial jum p across an element face does not exceed more 

than  one degree, cf. Figure 7.3(a). O ther techniques are the removal of unrefined islands, 

an analogue of the refinement case; see Figure 7.3(b). We simply extend these smoothing 

methods to the anisotropic setting by regarding the polynomial degree in each coordinate 

direction separately.

7.5 Full A nisotropic h p -A d ap tive A lgorithm

We are now in a position to describe a fully anisotropic hp-adaptive algorithm for a goal 

oriented problem, where the error needs to be below a prescribed tolerance Tol. Figure

7.4 shows this algorithm as a flow chart.



7 . 5  F u l l  A n i s o t r o p i c  hp-A d a p t i v e  A l g o r i t h m

a

a

122

P — 3  

P — 2  

p = l

P — 2  

p = l

(b)

Figure 7.3: p-smoothing techniques.
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Figure 7.4: Anisotropic /ip-adaptive algorithm.
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hp-A d ap tiv ity  N um erical 

E xperim ents

In this chapter we present the results of four numerical experiments: the first two are 

aimed motivate the use of isotropic and anisotropic polynomial degree enrichment, respec

tively. cf. [55]. while the final two show the performance of the anisotropic hp- strategics 

developed in Section 7.4. cf. [56].

8.1 Exam ple 1

In this first example, we consider the following singularly perturbed advection-diffusion- 

reaction problem proposed in [100]:

—s ^ u  T 2ux 3Uy T u =  f .

for (x. y) E (0, l ) 2, where 0 < t  C  1 and /  is selected so that

u(x. y) =  2 s in x  ^1 — e~2^ ~ x^ £ ĵ y2 ^1 — . (8.1.1)

Throughout this section we set e — 10-3 : in this case, the analytical solution (8.1.1) has 

boundary layers along x — 1 and y =  1, cf. Figure 8.1(a). Here, we suppose tha t the 

aim of the com putation is to calculate the (unweighted) mean-value of u over the entire

1 2 4
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com putational domain Q. i.e..

J(u) =  / adx;
Jn

thereby, the true value of the functional is given by J(u) = 0.320534488112846. This 

functional leads to  the development of boundary layers in the analytical solution 2 to  the 

corresponding dual problem (4.1.1) along x  =  0 and y — 0. cf. Figure 8.1(b).

In this section we investigate the effectiveness of employing local anisotropic h refinement 

in comparison to  enriching the polynomial degree within (boundary) layer regions for the 

accurate com putation of above target functional of interest. To this end. starting from 

a uniform 5 x 5  square mesh, we first perform n, n > 0. anisotropic refinements of this 

initial mesh within boundary layer regions. Here, we consider two types of refined com

putational meshes: the first, referred to as Type I. is constructed to resolve the boundary 

layers present in u by refining only elements which lie on the right-hand side or top bound

aries of Q. cf. Figure 8.2(a) for the case when n =  5. Secondly, in view of the boundary 

layers present in the dual problem 2 , we also consider a sequence of com putational meshes, 

referred to as Type II, based on refining all elements which lie on the boundary of Q, cf. 

Figure 8.2(b) for the case when n — 5. The design of this la tter set of meshes is inspired 

by the fact th a t the accurate com putation of target functionals typically requires the res

olution of im portant features present in both the primal and dual solutions, cf. [21. 63], 

for example.

Once the mesh has been constructed, this is kept fixed, while the polynomial degree 

is uniformly (and isotropicallv) increased, starting from p = [1.1]. In Figures 8.3 and

8.4 we plot the (square root of) the degrees of freedom employed in the finite element 

space S p (fl,7h, F ) against the error in the computed target functional J(-) using mesh 

Type I and mesh Type II, respectively. Firstly, we note tha t, after an initial transient, the 

convergence lines are (on average) straight, indicating exponential rates of convergence as 

the polynomial degree is increased, cf. Corollary 7.1.3. Moreover, we observe tha t in both 

cases, as the resolution of the mesh in the boundary layer is initially increased, i.e.. as n  

becomes larger, the effectiveness of enriching the polynomial degree (uniformly) increases, 

in the sense tha t the error in the computed target functional J(-) decreases for a fixed 

number of degrees of freedom. However, as n  is increased further, the error in </(•)• for a



8.1 E x a m p l e  1 1 2 6

Figure 8.1: Example 1. (a) & (b) Analytical primal and dual solutions, respectively, for
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(a)

(b)

Figure 8.2: Example 1. (a) & (b) Anisotropically refined meshes of Type I and Type II, 

respectively, with n = 5.
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F i g u r e  8 .3 :  E x a m p l e  1. C o m p a r i s o n  o f  t h e  e rr o r  i n  t h e  c o m p u t e d  t a r g e t  f u n c t i o n a l  w i t h

r e s p e c t  to t h e  ( s q u a r e  r o o t  o f  t h e )  n u m b e r  o f  d e g r e e s  o f  f r e e d o m  e m p l o y i n g  m e s h e s  o f

T y p e  I for: ( a )  n  =  3 , 4 , . . . , 6 ;  ( b )  n  =  6 , 7 , . . . , 1 0 .



8 .1  E x a m p l e  1 1 2 9

n=3
n=4
n=5
n=6
n=7

,-6

oQ

.-10

.-1 2

-1 4

20 60 80
(Degrees of Freedom) t

100v i 120 140

n=7
n=8
n=9
n=10

-410

-610

10

-1010

,-1210

,-1410
14080 100 12040 60

(Degrees of Freedom) 2

(b)

Figure 8.4: Example 1. Comparison of the error in the computed target functional with 

respect to the (square root of the) number of degrees of freedom employing meshes of 

Type II for: (a) n =  3 ,4 ,. . . ,7 ;  (b) n = 7 ,8 , . . . ,  10.
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fixed number of degrees of freedom, starts to deteriorate, which indicates th a t there is an 

optim al balance between resolving the boundary layers using h -  and /^refinem ent. On the

gives rise to the smallest error in J(-). for a fixed number of degrees of freedom, when 

mesh Type II is employed. This indicates tha t an optimal mesh adaptation algorithm 

will first anisotropically refine the mesh within unresolved boundary layer regions in the 

com putational mesh, before automatically deciding to increase the local polynomial degree 

distribution.

Finally, in Figure 8.5 we compare the optimal refinement strategy for mesh Type I 

(with n = 6) to the corresponding optimal approach for mesh Type II ('with n =  7). Here, 

we observe th a t the first approach where only the boundary layers present in the analytical 

solution u are resolved using anisotropic /?-refinement leads to the smallest error in the 

computed target functional </(•). for a fixed number of degrees of freedom, in comparison 

to the la tter strategy where both the boundary layers present in u and the dual solution 

2 have been refined.

This numerical example is designed to highlight the practical performance of the DGFEM 

on a sequence of a priori designed anisotropic fip-refined com putational meshes. To this 

end, we consider the following singularly perturbed advection-diffusion problem equation 

—eA u  +  ux +  uy — / .  for (x, y) E (0 .1)2, where 0 < e «  1 and /  is chosen so tha t

cf. [76]. For 0 <  c «  1 the solution (8.2.1) has boundary layers along x  =  1 and y — 1. 

Here, we suppose th a t the aim of the com putation is to calculate the value of the (weighted) 

mean-value of u over the com putational domain Q. i.e..

basis of the meshes employed here, an optimal value of n for mesh Type I is 6, while n =  7

8.2 Exam ple 2

u(x. y) — x  +  ?/(l — x) +  [e 1//o—e ^ y^ c] [1 — e lj/~] 1. (8.2.1)

where the weight function ip is chosen so that
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Figure 8.5: Example 1. Comparison of error in the computed target functional with 

respect to the (square root of the) number of degrees of freedom employing mesh Type I 

with n = 6 and mesh Type II with n = 7.

setting a  =  100 gives rise to a strong boundary layer along the boundary x = 1, 0 < y < 1, 

cf. [48].

Here, we consider a sequence of hp-finite element spaces employing a combination 

of isotropically/anisotropically refined computational meshes with isotropic/anisotropic 

polynomial degrees. More precisely, starting from a uniform 5 x 5  square mesh, we first 

perform n, n > 0, isotropic or anisotropic refinements of this initial mesh in order to 

capture the boundary layers present within the underlying primal solution u. Here, only 

elements which lie on the right-hand side or top boundaries of Q are refined; Figure 8.6 

shows the two types of meshes generated by this algorithm with n = 5. Once the mesh 

has been refined, this is then kept fixed, and the polynomial degrees are either uniformly 

(isotropically) increased, or anisotropically refined using the following strategy: at each 

step of the adaptive algorithm, the polynomial degrees in the ^-direction are increased 

by 1, while those in the x-direction are increased by 2. This latter strategy is motivated 

by the fact that the dual solution 2 only has anisotropy in the x-direction. We remark
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(a)

Figure 8.6: Example 2. (a) Isotropically refined mesh employed for £ =  10 3, with 745 

elements; (b) Anisotropically refined mesh employed for e = 10~3, with 81 elements.

that these hp-meshes are designed purely on the basis of a priori considerations, are not 

expected to be optimal, but are constructed merely to demonstrate the potential benefits 

of employing anisotropic hp-mesh refinement. Indeed, given the structure of the dual 

solution z, one may well expect that the computational mesh may be less refined in the 

region containing the boundary layer along y = 1 present in the primal solution u.

In Figures 8.7, 8.8, & 8.9 we plot the (square root) of the degrees of freedom em

ployed in the finite element space S^(Q.Th.F) against the error in the computed target 

functional J(-), for e =  10-2 ,10-3 ,10-4 , respectively, using each of the four refined hp- 

mesh distributions defined above, namely: isotropic h and isotropic p, isotropic h and 

anisotropic p, anisotropic h and isotropic p, anisotropic h and anisotropic p. Here, we 

have selected n =  2,5,8 for e = 10-2 ,10-3 ,10~4, respectively. Firstly, we note that in 

all cases, the convergence lines are (on average) straight, indicating exponential rates of 

convergence have been achieved using all four refinement strategies for each e, which is 

in agreement with Corollary 7.1.3. Secondly, for each £ we observe that the computed 

error, for a given number of degrees of freedom, employing the isotropic h and isotropic
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Figure 8.7: Example 2. (a) Comparison between adaptive isotropic and anisotropic hp-

mesh refinement algorithms for e = 10-2 ; (b) Zoom of (a) comparing only the adaptive

algorithms based on employing anisotropic  ̂ refinement.
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Iso h -, iso p-refinement 
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Figure 8.8: Example 2. (a) Comparison between adaptive isotropic and anisotropic hp-

mesh refinement algorithms for e =  10~3; (b) Zoom of (a) comparing only the adaptive

algorithms based on employing anisotropic h-refinement.
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Figure 8.9: Example 2. (a) Comparison between adaptive isotropic and anisotropic hp-

mesh refinement algorithms for s = 10-4 ; (b) Zoom of (a) comparing only the adaptive

algorithms based on employing anisotropic  ̂ refinement.
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p strategy is always inferior to the algorithm employing isotropic h and anisotropic p. 

Similarly, this la tter strategy is inferior to exploiting anisotropic h and isotropic p. which 

is in tu rn  inferior to the use of anisotropic h and anisotropic p-refinement. Indeed, here 

we observe tha t the use of an anisotropically refined starting mesh yields a vast improve

ment in the computed error, for a given number of degrees of freedom, in comparison to 

standard isotropic refinement, since the mesh resolution needed to adequately capture the 

boundary layers can be achieved with significantly less elements when the former strategy 

is employed. This behaviour becomes increasingly more evident the smaller e is chosen. 

For a given mesh, we see tha t even employing a simple-minded anisotropic polynomial 

distribution still yields significant improvements in comparison to isotropic refinement of 

p ; indeed, here we observe tha t the former strategy leads to between one and two orders 

of magnitude improvement in the computed error in J(-). for a given number of degrees 

of freedom, compared with the latter approach.

8.3 Exam ple 3

For this example we consider the same problem as in Example 1 of Section 6.1. where 

the primal solution has boundary layers of order O(s) along x — 1 and y =  1 and the 

dual solution also has a boundary layer along x  —  1. as well as one along y =  0 ; see 

Figure 6.1. As such, it is a good problem to try  our Cartesian based ftp-algorithm on. As 

A l g o r i t h m  2  proved itself to be the most effective algorithm to use for /^-refinement in 

Examples 1 and 2 of Chapter 6 , we limit ourselves to only using this when ^-refinement 

is needed. To illustrate the robustness of the algorithm, in this case we consider both 

s =  10-2  and c =  10~3. In both cases we begin with a uniform mesh with 17 points 

in each coordinate direction and assign a uniform polynomial degree vector p =  [2 . 2] on 

each element. We compare our /ip-adaptive strategy using both A l g o r i t h m s  3  and 4  for 

p-refinement against standard isotropic /? p-refinement and anisotropic /^refinement with 

isotropic p-refinement. Figures 8.10(a) and (b) plot the logarithm of error in the target 

functional. | J(u)  -  J (u d g )|-  against the square root of the number of degrees of freedom, 

for the cases e =  10~ 2 and e — 10-3 . respectively.
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Firstly, we notice th a t for z =  10* 2 in every case we have obtained exponential conver

gence, as predicted, and secondly our anisotropic //-refinement strategy is once again far 

superior to the standard  isotropic refinement. Further, we observe tha t both anisotropic 

p-algorithm s are always better than the isotropic p  cases. Indeed, on the final grids, for 

the same number of degrees of freedom, the anisotropic //p-strategies yield over 2 orders 

of magnitude improvement than the /? anisotropic pAsotropic case and nearly 2 orders of 

m agnitude improvement over the hp isotropic method. Alternatively, for the same func

tional error we see th a t the new //p-anisotropic strategy yields around a 14% reduction in 

the number of degrees of freedom when compared with the // anisotropic p  isotropic case 

and more than a 50% reduction when compared with the //p-isotropic case. Another point 

of interest is tha t the hp anisotropic strategies show an immediate improvement over the 

other two strategies, implying tha t the method is useful even in the relatively low accuracy 

region. Figure 8.11 shows the resultant mesh when A lgorithm  4 is used after 4 refine

ment steps, with Figures 8.11(a) and (b) showing the polynomial degrees used in the x- 

and y-directions respectively. We notice tha t anisotropic //-refinement has been employed 

in order to resolve the right hand boundary layer and anisotropic p-refinement has been 

utilized inside the domain. Indeed, the polynomial enrichment in the //’-direction has only 

been used slightly more than in the y-direction, however, we witness a vast reduction in 

error compared with isotropic p-refinement.

For e = 10~ 3 we once again see a great improvement over the isotropic //p-refinement for 

every anisotropic strategy used. The hp-anisotropic strategies do not show the immediate 

gain over the //-anisotropic/p-isotropic method witnessed for s =  10-2 . nevertheless, on 

the final grids around two orders of magnitude improvement in error for the same number 

of degrees of freedom is seen. We remark tha t the three anisotropic strategies performing 

comparably on the first few meshes is most likely due to anisotropic //-refinement being 

required initially so tha t the boundary layer can be resolved and may not be the case if a 

finer initial mesh had been used to start with. Comparing the //p-anisotropic results with 

the standard hp-isotropic results we notice on the final grids a decrease of around seven 

orders of magnitude in functional error for the same numbers of degrees of freedom.

Finally, we mention tha t both A lgorithm s 3 and 4 compare favourably, indicating
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tha t A lgorithm  4 may be preferable as it is more com putationally efficient.

8.4 Exam ple 4

In this final example we investigate the performance of the proposed /?p-anisotropic re

finement algorithms applied to the mixed hyperbolic-elliptic problem with discontinuous 

boundary data  first introduced in Example 2 of Section 6.2. Although, here, we suppose 

th a t the aim of the com putation is to calculate the value of the (weighted) outflow advec- 

tive flux along x  — 2. 0 < y < 1. i.e.. J(u)  =  J0J(b • n)u(2. y)ij’(y)dy.  where the weight 

function, in a modification to Example 2 of Section 6 .2 . is

<•’(//) =  <
(tanh(50(y -  7/40)) +  l) /2  y <  17/40.

(tanh( —50(;</ -  27/40)) +  l) /2  y >  17/40.

The dual solution is shown in Figure 8.12. we notice that here the internal layers are much 

steeper than in Example 2 of Section 6.2. The true value of the functional is given by 

J(u) = 0.324999805677598.

Given the qualitatively comparable results shown in the previous example, between 

exploiting the p-anisotropic algorithms A lgorithm  3 and A lgorithm  4. in conjunction 

with the h-anisotropic algorithm A lgorithm  2. in this section we shall only consider the 

latter approach, i.e.. the hp-anisotropic algorithm exploiting A lgorithm  2 and A lgorithm

4. as it is more com putationally efficient. Once again we compare this hp  anisotropic 

strategy with both /?p-isotropic and h anisotropic/pmsotropic refinement algorithms. In 

all cases the starting hp-m esh distribution is a 17 x 9 grid, consisting of uniform square 

elements, with the uniform polynomial degree distribution p =  [2 . 2] on each element.

Figure 8.13 shows a plot of the target functional errors. | J{u) — J ( « d g )|- against the 

(square root of the) number of degrees of freedom in the finite element space S P(Q. 7 /. F). 

for each of the three hp-m esh refinement algorithms described above, while Figures 8.14(a) 

and (b) show the resultant grid and polynomial degrees in the x  and //-directions respec

tively, after 8 steps of the hp-anisotropic refinement strategy.

Concentrating on Figure 8.13 we first notice that, after an initial transient, once again, 

the convergence lines are (on average) straight, indicating exponential rates of convergence
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Figure 8.10: Example 3: Comparison between adaptive /ip-isotropic and anisotropic mesh

refinement, (a) e = 10~2; (b) £ =  10- 3 .
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Figure 8.11: Example 3: Anisotropic hp-meshes after 4 refinement steps for Algorithm 4.

with 316 elements and 3767 degrees of freedom, (a) px and (b) py, for e =  10-2 .
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Figure 8.12: Example 4: Dual solution.

have been achieved for each of the three strategies. We also notice that at each stage the 

fop-isotropic strategy is performing the least efficiently, whilst the fop-anisotropic is always 

superior to both isotropic-p algorithms. Evidently the majority of improvement over the 

fop-isotropic strategy is due to the fo-anisotropic algorithm, cf. the previous example 

when e =  10-3 , yet in the asymptotic regime the fop-anisotropic strategy consistently 

shows around an order of magnitude improvement in the error for the same number of 

degrees of freedom, when compared with the fo-anisotropic/p-isotropic strategy.

Examining Figures 8.14(a) and (b) we see that the majority of fo-refinement has 

taken place primarily along the layer of the analytic solution u emanating from the point 

(x, p) =  (3/4,0). In other regions p-enrichment has been favoured; indeed, there is a 

marked difference between the polynomial degrees used in the x -  and ^/-directions, with the 

majority of elements having had no p-enrichment in the ^-direction, while most elements 

have had some p-enrichment in the ^/-direction. The p-enrichment in the x-direction has 

been concentrated in the left half of the domain as this is where layers in the primal and 

dual solutions run parallel to the p-axis, while for the same reason p-enrichment in the 

p-direction is concentrated in the right portion of the domain.
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Figure 8.13: Example 4: Comparison between adaptive /ip-isotropic and anisotropic re

finement strategies.
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Figure 8.14: Example 4: Anisotropic hp-meshes after 8 refinement steps, with 410 elements 

and 6338 degrees of freedom, (a) px and (b) py.
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C onclusions A nd Further Work

9.1 Sum m ary

This thesis is concerned with the development of adaptive anisotropic refinement strategies 

for the solution of second-order partial differential equations with nonnegative character

istic form, specifically in the case when control of a linear target functional of the solution 

is required. For this purpose a discontinuous Galerkin method was used to discretize the 

PDE. primarily for the flexibility in mesh design it offers. The PD E which was studied 

was a relatively simple linear advection-diffusion-reaction one. but which was able to offer 

many of the features present in more complex problems. In this way. the focus could 

remain on the development of autom atic anisotropic adaptivity algorithms.

Chapter 2 presented the definition of the model problem and the formulation of the 

Symmetric Interior Penalty (SIP) DG method used to discretize it. This included the 

setting up of appropriate anisotropic meshes and anisotropic function spaces. A discussion 

then followed concerning the stability of the method.

In order to analyze the DG method presented. T2-interpolation results were needed. 

Following the work of Formaggia et al. [48]. L 2-interpolation results on an element and its 

faces were presented, with new generalizations to the case when higher order isotropic poly

nomial degrees are utilized for the approximation. These results followed by considering 

higher-order tensor manipulations as presented in De Lathauwer. Moor and Vandewalle 

[94]. L2-interpolation results were also stated in the case of anisotropic axiparallel ele

144
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ments with anisotropic polynomial degrees, as first described by Georgoulis [52], These 

anisotropic interpolation results were then used to extend the a priori error analysis for 

target functionals of the solution, previously considered in the work of Harriman et al. 

[61], where only isotropic elements with isotropic polynomial degrees were used. It was 

also noted tha t the new bounds collapsed back to the previous bounds upon the use of 

shape regular meshes with isotropic polynomial degrees.

A duality based a posteriori error indicator for use with target functionals was then 

presented and standard  strategies for isotropic mesh refinement were discussed, plus some 

current techniques for anisotropic mesh refinement, the most popular of which being the 

use of the Hessian m atrix of the solution to drive the adaptive process. Our error anal

ysis implied tha t in the case when high order polynomial degrees were being used the 

Hessian would no longer provide optimal anisotropic information and higher order deriva

tives might need to be considered. However, numerical experiments indicated that these 

higher order tensors did not provide sharp enough information to control anisotropic re

finement and hence we developed a new competitive method, based on the solution of 

local problems, by selecting the refinement which gave the greatest reduction in error per 

degree of freedom. Some numerical experiments were then carried out, comparing the 

new algorithms with a Hessian based approach and standard  isotropic refinement. These 

experiments showed an improvement over both the isotropic and Hessian strategies for a 

number of different polynomials degrees: the experiments also showed the limitations of 

the Hessian strategy when higher order polynomial degrees are employed.

The a priori error analysis on axiparallel meshes with anisotropic polynomials hinted 

tha t great savings would be possible compared with isotropic polynomial degrees. Some 

numerical experiments were performed to  confirm this, simply by designing finite element 

spaces using a priori information about the solution. In light of this, a fully anisotropic ftp- 

adaptive algorithm was then proposed, again based on competitive refinements. Numerical 

experiments were then carried out comparing the ftp-anisotropic algorithm with a standard 

isotropic ftp-strategy and an ft-anisotropic/p-isotropic method. The results were very 

impressive, showing tha t orders of m agnitude improvement in the error for the same 

number of degrees of freedom are possible.
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In conclusion, we have seen tha t both anisotropic h- and anisotropic p-refinement offer 

distinct advantages over their isotropic counterparts, when performed correctly. Indeed, 

autom atic adaptive anisotropic hp-algorithms are possible and should be utilized in the 

future if the growing demands of science are to be met.

9.2 Future Work

9 .2 .1  L im ita tio n s  o f  U s in g  L o ca l P r o b le m s

The proposed means of determining in which direction to refine all rely on the solution 

of local problems, where appropriate boundary conditions are obtained from the global 

solution. Hence, the anisotropy of the primal and dual solutions can only be reliably 

extracted when there is sufficient mesh resolution. For example, a mesh may be sufficiently 

fine for the solution of only one of the primal or dual solutions and the resultant refinements 

be in an incorrect direction. Thus, further work needs to be undertaken to ensure a robust 

selection of the refinement directions. Of course, this resolution problem will be common 

to any approach which attem pts to extract anisotropy from the com puted solutions.

9 .2 .2  M e sh  A lig n m e n t

In this work only a relatively simple cartesian mesh refinement strategy has been consid

ered, which, although has proved itself very useful for the problems considered herein, is 

unlikely to be very efficient in those cases where anisotropies occur in non mesli-aligned 

directions. Initially, it was thought tha t offering more flexibility in the subdivision of ele

ments may be the way forward, as such refinement by cutting through the centroid of the 

reference element at an angle 0 as depicted in Figure 9.1. has been considered.

The Hessian strategy considered in Section 5.3 provides the simplest way of determining 

the angle at which to refine (a global angle is computed, which must be transformed back 

to the reference element). Initial trials, using the exact Hessian, provided convincing 

meshes. For example, consider the following simple advection problem

V • (b u) =  0,
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Figure 9.1: Anisotropic /*-refinement at an angle 9^.

on the domain Q =  [0.1]T. where b  =  (1 .0 .4 t)t  and the exact solution is chosen to be

u{x.y)  =  tan h (10(y -  0.2x2 -  0.5)).

Hence, there is a layer in the solution which follows the quadratic curve y — 0.2j,2+0.5. The 

exact solution is shown in Figure 9.2(a) and the grid produced after a number of adaptive 

steps is shown in Figure 9.2(b). We note the presence of a number of incorrectly refined 

elements, and remark tha t this has occurred due to the Hessian becoming identically zero 

at the centroid of the parent elements. The rates of convergence of L2-error were also seen 

to be better than in the case when standard isotropic /^-refinement was employed.

Unfortunately, testing on more complex problems and using approximated Hessians 

has not proved so easy. As such, a number of issues have arisen which could be looked 

at in the future. Figure 9.2(b) alludes to one of these problems: suppose an element 

and its children are repeatedly chosen for refinement in the same direction, then if the 

angle reduces the first quadrilateral element to nearly triangular elements, the successive 

refinements can lead to closely bunched narrow elements next to much larger elements. In 

such cases it is highly likely tha t the anisotropy in the solution could be missed entirely. 

Figure 9.3 gives an example off this phenomenon. Performing additional refinement as 

in Figure 9.4 could be the answer to this, but unfortunately this increases the number of 

elements after a refinement and also introduces triangular elements, which if the goal is 

to use anisotropic p-enrichment causes problems.

Another issue with this type of refinement is that it is liable to produce a highly mesh
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(b)

Figure 9.2: (a) Exact Solution (b) Mesh refined by Hessian strategy.

Figure 9.3: Failure to resolve an anisotropy (red) by refinement.

dependent solution if the refinements are chosen incorrectly to begin with, something which 

is likely on coarse initial grids. Thus, further refinements also choose the wrong angles 

and a correctly aligned mesh appears out of the question. Other points which must be 

considered are that the proposed refinements can often lead to highly distorted elements, 

that is, the mapping QK discussed in Section 2.4 is no longer close to the identity and cells 

possessing a very large internal angle can appear, in which case the DG solution will no 

longer represent the true solution well. Furthermore, controlling the number of hanging 

nodes on an element face with this type of refinement also proves problematic. It may 

well be that introducing some specialized mesh smoothing could solve the above problems,
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Figure 9.4: Additional refinement of an element.

but it is not yet clear how to proceed with this, hence it provides a direction for future 

research.

An alternative strategy to  the mesh refinement proposed above could be mesh move

ment (r-refinement), which has proved popular and indeed many anisotropic strategies 

involve mesh movement in some way, for example, the work of Dompierre et al. [58, 5, 44]. 

The basic idea of mesh movement is to arrange (by movement) the nodes of the mesh in 

such a way as to optimize the error for a given number of nodes. In our case the goal 

would simply be to perform one mesh movement step to  align the grid with the solution 

in such a way as to  let the mesh refinements discussed in Section 5.4 be more effective. 

Below we give a brief description of some possible approaches and present some initial 

forays into this field.

Ideally we would like the mesh movement to be driven by the a posteriori analysis 

developed in this thesis. As such a simple first step can be based around a modification of 

the technique presented in [17]. A loop over all the nodes in the mesh is performed and for 

a node n , w ith coordinates x n , the node is moved to a weighted average of the positions 

of the centroids of the N  neighbouring elements, by the formula

v-" TV
n e w  _  Z ^ i = 1  w i x i  

x n  ’

£ i = l  w *

where the xi are the coordinates of the centroids of Ki and Wi are the weights. The weights 

can simply be chosen as rjKi, which has the effect of pushing the node towards the areas 

of high error.

Alternatively, the method proposed by Schneider and Jimack [118] can be modified 

to achieve mesh movement. In [118] a strategy to  relocate all of the nodes of a mesh
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simultaneously by means of error optimization was described. This falls in very well with 

the optimization algorithms presented in this thesis and it can be modified to allow for 

independent node movement by local error optimizations.

Of course, there is the possibility of using the metric based techniques for mesh move

ment already used extensively in the literature. This process involves generating a mesh 

which is quasi-uniform in some metric, commonly based around the Hessian of the solu

tion; see, for example, [58]. Rather than  basing the metric around the Hessian of a solution 

or higher order derivatives it could be possible to use the a posteriori error estimates, for 

example the spatial derivatives of the error indicator might provide some useful anisotropic 

information. In any case, there is plenty of scope for future work in this direction.

We performed a number of experiments on quadrilateral and triangular grids to see 

how effective the three mesh movement strategies mentioned above are. For simplicity no 

PD E was actually solved, instead interpolation of the function

which had previously been considered in [84], was chosen for investigation. Figure 9.5(a)

quadrilateral elements, for a metric based movement strategy. For brevity, meshes for 

the two other strategies are omitted, as they exhibit many of the features present for 

the metric case. We first notice that, for both quadrilateral and triangular meshes, the

nodes have been moved in such a way as to align the anisotropy in the solution along the 

diagonals of the elements. Hence, performing anisotropic refinement on these elements will 

not prove effective as the incorrect direction will still be picked out. Ideally we would wish 

a quadrilateral element to remain, roughly, as a parallelogram with the anisotropy along 

the direction of one pair of faces in order th a t an anisotropic refinement will m aintain the 

implied direction of th a t element . Also, in each of the three cases considered above, highly 

distorted elements appear in the mesh and some correction to the elements is going to be 

required if any of the methods are to  prove viable. A possible cure could be only allowing 

internal angles up to a prescribed limit, although this restriction may not allow sufficient

(9.2.1)

shows the resultant mesh for triangular elements and Figure 9.5(b) shows the mesh for

general form of the solution has been recovered. However, in the quadrilateral case the
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(a) (b)

Figure 9.5: Metric based mesh movement (a) triangular grid and (b) quadrilateral grid.

movement of the mesh to achieve alignment. Huang [83] proposed including a measure 

of the quality of the mesh into the metric tensor to achieve non-distorted meshes, this 

presents some interesting avenues for future work. Alternatively, applying mesh smoothing 

techniques to an already moved mesh could prove the way forward, indeed work in this 

direction has already been undertaken, by Lee and Lee [95], for example.

It may well be th a t the node movement algorithms proposed above are not sufficient for 

our needs and another method for achieving well aligned grids has to be sought. A possible 

contender is moving the mesh by way of harmonic maps, first suggested by Winslow [137]. 

Here the idea is to create a mapping from a uniform com putational domain Qc to the 

physical domain fh By elliptic regularity of the solutions to harmonic equations, the 

resultant meshes are generally smooth and, therefore, may be suitable for our purposes. 

Indeed, the results of Tang [130] show very well aligned quadrilateral meshes, which seem 

ideal for anisotropic refinement. This moving mesh method has also been developed for 

DG schemes; see, for example, [98].

9 .2 .3  O th e r  D ir e c t io n s  for F u tu re  R ese a r c h

• E xten sion  o f  an isotrop ic hp—error analysis. The anisotropic fip-error analysis 

in this thesis was carried out only for axiparallel meshes. Further work could be
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carried out to  extend the results to the case when no restriction is placed on the 

mappings FK.

• E xten sion s to  en ergy  norm  control. This thesis concentrated on just control of 

the error in some target functional. Instead, the approximation results of Chapter 

3 could be applied to  the case of energy norm error analysis. It would also be very 

interesting to  see how applicable the competitive refinement anisotropic algorithms 

are in this case.

•  E x ten sion  to  th ree-D im en sion s. Anisotropic mesh refinement is likely to prove 

even more useful when three-dimensional problems are considered. A completely 

analogous set of refinements are possible (at least for hexahedra) and so local prob

lems again present an opportunity for determining the optimal refinement; it would 

be very interesting to see what gains could be made.

•  E x ten sion s to  M ore C om plex  P rob lem s. The problems considered within this 

thesis were only model problems with which to develop the anisotropic refinement 

strategies. It is now time to test these methods on more complicated problems, 

such as the Euler and Navier-Stokes equations for fluid flow with more complex 

geometries. An interesting avenue of research is also to apply the techniques to 

eigenvalue problems arising in the field of bifurcation analysis. Indeed, funding has 

been secured to study the transition to turbulence for fluid flows in a pipe with a 

sudden expansion.



A ppendix  A

Technical R esu lts

A .l  M inim isation o f Error Bounds

Here we directly minimise the right hand side of the a priori estim ate (4.1.13) in order

5.3.1. In the following analysis we assume a two-dimensional problem and consider two 

case separately, the first where bilinear elements are employed, the second where uniform 

higher polynomial degrees are used.

C ase  2, p = 1

To make things a little simpler we consider a purely diffusive problem, in which case the 

estim ate (4.1.13) reduces to:

where sK = 2 and tK = 2 .

To begin with we assume th a t we have a maximum number of elements to cover the 

com putational domain and th a t we have control over the orientation and aspect ratio of

to determine possible orientations and scale factors for the elements of the mesh. We 

remark th a t this requires sharpness of the (4.1.13) estimate, cf. the discussion in Section

\J(u) -  J ( u DG)\2 < C

(A.1.1)

1 5 3
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elements, bu t not the position of the centroid of each element nor the length of the longest 

edge of the element. W ith this assumption we cannot guarantee the com putational domain 

will be completely covered, bu t it will suffice for us to make decisions on the ‘optim al’ 

orientation and aspect ratio of elements situated at certain points in the domain. The 

goal, therefore, is to  minimise the error | J(u)  — J ( u d g ) | 5 in which case we are looking also 

to  minimise

I  = c \ Y ,  - I T  f  Dl(A,T.K,UK) d i ]  D l( z ,T ,KM K)dx \ .
\KGTfc J k )  \KETh °2.k h  J

We consider the easier problem of minimising with respect to one of the solution variables, 

u or z, th a t is minimising either

*1 == H  - J -  /  £*!(*> £ K, l /K)d£
KETh Gc1'k J k

or

h - - = J 2 ~ T -  [ D U z ^ U J d x ,
k € T h J k

as both  procedures are completely analogous we now only consider I \ .  Expanding 

f .  D \(u ,  E k, UK)dx  using (3.3.3) we obtain

2 2

h  =  J 2 ( a h,KCTi2,K)2(t>2(v) x 1 uJUK x 2 uJ2tK)2dx
neTh J k h=li2=l

=  Y 1  [  J 2  ^ ( a i i , ^ i 2 ^ ) 2( ^ u K HVuh ^ ) 2dx
kYTh J k h = l i 2=l

/  4  \
° " l , / c  T v , k  . 2  t V , K . n J 2  t  v , kI  wl,/c r v , K  . 2  t V , k  . 0 2 t V . K  \

=  a  2,k  2,2 +  * a l,KL l,2 I ’
kYTH \ ° ^

where

A *  :=  [ ( u ! uKH * u luK)2dx.
J k

We introduce the aspect ratio variable of an element by qK : =  o \ , k /& 2 , k , thus
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For ease of exposition we make the assum ption th a t H u(5i) remains fairly constant over 

the element k  w ith  a mean value H-:, in which case the following holds

J R
~  for «,j =  l ,2,

where is th e  Lebesgue measure of element k.

We now seek to  introduce an orientation angle into term  I \ .  To this end, we perform 

an eigenvalue decomposition of H-: as follows

H r  =  [ x i , k , x 2 .k]
AH,k 0 T

X 1,K

0 ^ 2 ,k

-----1

riof
X

1

where > fi2 .k are the eigenvalues of H~: w ith respective right eigenvectors x i * and 

X2 Due to  the  sym m etry of H% we can be sure tha t Xi,« and X2,r are orthogonal and 

we prescribe th a t they are both  unit vectors. W ithout loss of generality we assume th a t 

| AH,ft I > |/i2,/tI• In th is situation we can rewrite U i^ and U2,r as

ui,* = cos0Kx i?* +  sin0Kx 2,K> 

u 2 ,k =  - s i n 0 Kx i t« +  cos</>«x2,«,

where 4>K represents the angle between the prim ary singular vector and prim ary 

eigenvector x i^ .  Substitu ting these expressions into (A .1.2) gives

i ~  itIk(/H.ft cos (f)K T  /^2,« sin (f) )̂ ■

L ~ \ ~ ^  ~  f T ^ k  ( / H , k  sin ( f ) K  T f l 2 , k  cos 4 > k ^ )  1

L h i  ~  m*(/ii,*cos</>K sm(f)K +  /x2;*cos0Ksin0K)2

sin2(2^ K) 2
=  m k  j  (/H,ft +  /42,ft) •

Hence,
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By prescribing a fixed value for each a i,* we notice th a t full control over the shape and 

orientation of the element can still be achieved, although the element measure m*, will 

not remain fixed. To compensate for this, rather than  seeking to minimize I \  we minimize 

I \ := ii/(m£<Ti)K), indeed this makes sense because we are then effectively finding the 

minimum error for a given element size. Hence, we attem pt to  minimize I \  w ith respect 

to  o K and <pK simultaneously with conditions crK > 1 and E [0, 7r). Thereby,

Differentiating with respect to both <;K and (f)K and setting both results equal to 0 yields 

the following simultaneous equations

Hence, for a fixed if <;K satisfies (A.1.3) then <rK is a minimum. We consider a number 

of cases separately:

T t^l.k = M2,/t — 0

We see th a t both of the simultaneous equations are immediately satisfied, so any

0 =  2c«(mi,k cos2 (j)K +  /i2,« sin2 0 K)(sin(2<^k)(m2,* ~  Mi,*))

+  ~2 (Mi,k sin2 (f)K +  M2,*cos2 0K)(sin(20K)(/ii.K -  M2,*))

+ 4 ( s i n 0 Kc o s 0 K(/ii ,K +  M2, * ) ) ( c o s ( 2 0 k )(m i ,«  +  1*2,a))

-<^(Mi ,k cos2 cf)K +  [i2 ,k sin2 (f>K)^ +  2(/ii,« +  [i2 , k f  cos(20k) . (A.1.4)

We also differentiate with respect to  <>K once more to obtain

"K K

value of <;K and 4>K will be applicable to provide the minimum I\  = 0.

2. Mi,k > M2,k >  0 or mi,k <  M2,k < 0
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Rearranging the equation, (A. 1.3), gives:

s 2 _  Mi,* sin2 0 K +  1*2,K cos2 0K 
Mi,* cos2 +  fi2,k sin2 (f)K ’

and substituting this into (A. 1.4) yields

0 =  2 sin(2 0 K) [(/zit* -  n 2,k) (mi,* cos2 4>k +  /i2,* sin2 </>K

- ( m , k  sin2 (j>K +  ijl2,k cos2 <f>K)) +  2 (^ i,s +  /x2,k)2 cos(2 0 k)]

2 sin(2</>K) cos(20K) [(/ii7£ M2,*) 4“ 2 ( m i T  M2 .a) ] •

In which case we see tha t there are 4 possibilities for 0 K, these being (f)K =  0, 7r / 2 , 7t / 4  

and 37t/ 4 .  N o w , if =  0 then <;2 =  M2,*/mi,*5 which implies <  1, which cannot 

hold, so this case can be neglected. In the case of 4>K = 7r / 2 , then <;2 =  mi,*/M2.k and 

7i =  2mi,*M2.*- For <f>K =  7t / 4  or =  37r/ 4  we see th a t h  = (/ii,* +  M2,*)2- Now, 

2mi,*M2,* <  (Ml,* +  M2a ) 2, so bearing in mind (A.1.5), we see th a t the minimum 

occurs with (0K,^2) =  (7t/2,/xi,«/m2,«)-

3- Ml«* =  M2,* ^  0

We can use the simultaneous equations (A. 1.3) and (A. 1.4) in this case also. Sim

ilarly, we obtain 4 possible values of cf)K: (j)K = 0, 7r / 2 , tt/ 4  and 37r / 4 . </>k =  0 is an 

option in this case as then <;2 =  M2,*/Mi,* — 1- W ith both  =  0 and <f)K = 7r/2  

we have 7i =  2/x2 - and with =  7r/ 4  and =  37r/ 4  then I\ = 4/i2 -. Thus, with 

(A .1.5) the minimum occurs with either (J)K = 0 or <pK =  7r/ 2  and =  1.

4- |/4l,/c| >  M2,* =  0

In this case there are no local minima, but performing the same manipulation as 

for case 2, we see tha t as <>K —* oo then with (f)K =  7r / 2 , Ji is a decreasing function. 

Thus, the element should be stretched as much possible but still orientated such tha t 

(f)K =  tt/2.

5. Mu* and /i2j« have opposing sign.

In this case a local minimum occurs with (s2, <pK) = (|mi,«I/IM2,*|? 7r/2). However, as 

SK —> oo then if (f)K is such th a t ta n 2{4>K) =  — Mu*/M2,*> is a decreasing function,
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so the local minimum stated need not be a global minimum. For simplicity though, 

we use the local minimum.

In practice this means that, whatever the values of and p,2 ,k, an element k 

should be orientated such tha t the left singular vector associated with the largest 

absolute singular value of J f k be in the same direction as the eigenvector of f / |  

whose corresponding eigenvalue has the smallest absolute value. In those cases when 

neither eigenvalues of ET| are zero we choose =  v 'V i.kI/I/^.kI- When only one of 

the eigenvalues of are zero we stretch the elements up to a maximum prescribed 

aspect ratio, S, and when both eigenvalues are zero we let , = 1 .

R e m a rk  A . 1 .1 . In the case where convection and /o r reaction term s are present 

a similar analysis reveals th a t the elements should be orientated as for the purely 

diffusive case. However, the aspect ratio of the elements is no longer the same, but 

rather depends on the relative sizes of the diffusion, convection and reaction terms. 

For simplicity in experiments we always set qK = \Z |^i,k |/|/^2.k|-

C ase  2 , p  >  1

Unfortunately, it does not appear possible to directly minimize the error bound 

|J(u) -  J(uog)\2 < C \ Y , - T - [  Di-'(utS K,Un)<a
\ K e T h a d , K d R

x f E  4 -  [ d ^ z ^ U J dx
\ K E T h a d , K d K

when p  > 1, s K > 2 and t K > 2 . For Case 1, we saw th a t the im portant directions for 

determining anisotropy are the eigenvectors of the Hessian matrices H"~, v =  u,z ,  

however, in this case there appears to  be no link between the eigenvalues and eigen

vectors (see Theorem 3.3.3) of the higher order tensor of derivatives and the optimal 

element scale factor and orientation angle, respectively. Indeed, the experiments of 

Section 5.3.1 reveal tha t for p  > 1 the interpolation bounds of Chapter 3 are not 

sharp enough for this minimization approach to be effective.



A ppendix  B

C om putational M ethods

B .l  E llipse Intersection A lgorithm

The Hessian based refinement strategy laid out in Section 5.3.2 requires finding the in

tersection of two ellipses, one derived from the primal solution u the other from the dual 

solution 2 . Finding this intersection is non-trivial and so we approxim ate it by a modifi

cation of the m ethod in Castro Diaz et al. [36]. The procedure is as follows:

1. Let the two ellipses be denoted £\ and £2 .

2. If the ellipses do not intersect (i.e. when one is contained within the other) then the 

smallest ellipse is the one used.

3. Otherwise, for the two solutions define the following: x j, x£ the semi-major and 

semi-minor axes of the ellipse Si with respective lengths X\ and A .̂ Then let

r\ = the radius of £{ in the direction x{ i , j  = 1 , 2 , j ^  j, 

r2 = the radius of £{ in the direction x.2 = j.

Hence we form two more ellipses with corresponding matrices:

X\ 0 

0 A* _

1 5 9

J k  = [x i>x 2l
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  Ellipse 1
—  Ellipse 2 

Intersection

Figure B.l: Approximate Intersection of two Ellipses.

and

-& «*[*?. *2]

where

Aj =  max(/ii,r^) and X2 = max(p2, r2) i = 1,2.

4. The intersection ellipse is then derived from the left singular vectors and singular 

values of the matrix:

We give an example to show this in practice; see Figure B.l.

B.2 Higher Order Derivative Recovery

The Hessian based refinement algorithm introduced in Section 5.3.2 requires an approxi

mation of the Hessian matrices of the true solutions of both the primal and dual problems, 

u and z, respectively. To do this information must be recovered from the computed so

lutions ?/dg and respectively. Suppose that a polynomial of order pK > 1 has been

X\ 0

0 \ l
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used for the approximation u d g ? then polynomials of order at least pK +  1 >  2 will have 

been used for the approximation 2d>g and, therefore, approximations of the Hessian of z 

can be obtained by direct differentiation of z^ g • Similarly for pK > 2 direct differentiation 

of udg will yield an approximate Hessian matrix.

In the case of approximating the Hessian of a continuous piecewise linear function u 

techniques, for the standard conforming FEM, involve approximation by a piecewise linear 

function H (x) =  (hij (x )) defined through a weak formulation,

near the boundary, extrapolation is then required. For details see, for example, Habashi 

et al. [58].

R ather than approximating the Hessian by means of a weak formulation, we modify 

the method used in the DEAL (Differential Equation Analysis Library) II package of 

Bangerth, H artm ann and Kanschat [18]. Rather than  using finite differences to calculate 

the Hessian at the centroid of each element as in [18], we instead calculate the Hessian 

at the nodes of the element, as this leads to improved convergence rates on triangular 

elements. For ease of exposition we look first at approximation of the gradient. For every 

regular node Mi, with coordinate x/ from 7^, i.e. those which are not hanging, consider 

those elements Km, m  = 1, . . . ,  n, which have Mi as a vertex, thus udg  is multivalued at all 

regular interior nodes. We can define a continuous bilinear representation of udg^ which 

we call udg  such tha t

where uGG := udgU- Values of udg at hanging nodes can then be found via interpolation.

where 4>h is a test function which vanishes on the boundary. For approximating the Hessian

Let a regular node Mi be connected by a face to the regular or irregular node Mi> and define 

y w :=  x*/ -  x/ then
^ d g (xz')  ~  wdg(xz)

llyzz'
is an approximation of Vu(xj) • Multiplying on the left by and summing over
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all neighbouring nodes then yields:

yw yjy V7„ _  I ST' y'w \ Y7 ~  yw “dg(x{) -udg(xj)
j? llyzz'll llyzz'll \ y  llyzz'll llyzz'll J  ̂ llyzz'll llyzz'

yiv yu'
llyn'll llyn'

yThus, as long as = Yi is non-singular, multiplication from the left by Yt 1

gives:
yw ^dg (xj) -  udg (x/ )V u «  Y , - 1 £

^  llyzz'll llyzz'll
We can be sure th a t Yi does indeed have an inverse as long as the directions {yu'}i> span 

the whole space Rd, which in our case will always be true. The gradient can now be 

interpolated at any point in the mesh.

For higher order derivatives, of order n, then as long as we have a solution of order 

n —1 then the above method can be used to approximate the higher order derivatives. 

For example for the Hessian, we create a continuous bilinear representation udg.x^  for 

% — 1 , . . . ,  d, in the same way as we did for udg  • Thus,

T7 yw  UDG.xA’X-y ) -  UDG,x,ix l)
x , (  '  V  l l y « -  II

for i = 1, . . . ,  d.

Of course, uXiXj = uXjXi, but the m ethod above does not guarantee th a t our two 

approximations are equal. To compensate for this we use the arithm etic mean of the two 

approximations to ensure the Hessian is symmetric. We denote our approximate derivative 

by H ( udg)- For higher order derivatives the method is completely analogous.

One advantage of this method is th a t the calculation of the Hessian within an element 

can be computed locally by considering only those nodes which are vertices of the element , 

thus, much computational expense is saved when compared with globally approximating 

the Hessian.

R e m a rk  B .2 .1 . Our method for computing the Hessian results in a continuous linear 

approximation, which can prove useful when performing r-refinement in a metric setting: 

see Section 9.2.2 for details.

We now look at an example of this method in practice. We solve the following problem

—V 2w =  / ,
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Figure B.2: Convergence of recovered Hessians.

on Q =  [0 , l]2, where boundary conditions and /  are chosen such that

u = cos('Kx)sin('Ky).

We compute approximations of the Hessian on a series of uniform and quasi-uniform 

quadrilateral, triangular and hybrid grids and look at convergence of the error of the 

approximated Hessian in the L2-norm, as the mesh size h is decreased; see Figure B.2. 

We see that convergence of order roughly 0 {h °-6) is observed in each case.



A ppendix  C

M A D N E SS - M ulti-dim ensional 

A D aptive fiN ite E lem ent Solver 

Software

A main part of the project was spent designing and implementing a new finite element 

software package. Although other well established packages are available, for example 

the DEAL II package of Bangerth, H artm ann and Kanschat [18], none of them offer the 

flexibility needed to  perform the mesh refinements considered in this thesis. As such, a new 

software package, w ritten in Fortran 95 and christened MADNESS - Multi-dimensional 

ADaptive fiNite Element Solver Software, was born, with the following objectives in mind:

• Dimension ally independent data  structures.

•  Admissibility of hybrid grids - i.e. triangular and quadrilateral meshes in 2D and 

tetrahedral, hexahedral, pyramidal, and prismatic meshes in 3D.

•  Applicability to a wide range of problems.

•  Availability of a wide range of refinement types.

•  Ease of use.

These constraints meant tha t the code had to be developed in as general a way as possible.

164
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In this appendix we shall discuss some of the important decisions made when designing 

the MADNESS code and although not meant to be an instruction manual, the reader 

should gain some insight into the use of the code. A more thorough review of the package 

can be found in [69].

C .l General D esign of a F in ite E lem ent Code

Any adaptive finite element code can be broken down into the following procedures:

1. The setting up of a mesh and a finite element space.

2. The assembly of a discrete system of linear equations.

3. The solution of this system of equations.

4. The adaptive refinement/derefinement process.

5. Solution evaluation and visualization/post-processing.

Figure C.l shows the flow through the program and further breaks down each of the above 

points into smaller building blocks. These points are discussed in detail in the following 

sections.

C.2 Source C ode and Problem  Setup

The main body of code should offer many of the subroutines needed for a user to create

their own solver for whichever application they desire. Upon compilation of the source

code, there should be little need to modify its contents again, except for major changes 

such as a switch of the arithmetic precision. In certain circumstances the user may wish 

to use, say, a custom quadrature or custom finite element space not included within the 

package, the modular nature of the code facilitates this.

A number of template programs are provided with the code, specifically for the solu

tion of advection-diffusion-reaction problems, the Stokes’ problem and compressible flow 

problems. The files for each of these model problems are stored in separate directories
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Problem Setup

Linear System

Linear Solvers

Post-Processing

User Inputs ^Mesh Setup

^Problem Specification

Quadrature FE Spaces

Element Mappings^)

^  Iterative Direct

Preconditioners

Adaptation
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h / p j r -refinement

(Visualisation) ( Output

Figure C.l: Flow through a MADNESS program.
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and individual Makefiles provide the means to link with the source code. Otherwise, the 

files and documentation should provide enough insight into the running of the code that 

little difficulty be required in setting up other applications.

C.3 Inputs and O utput

To offer the greatest flexibility to the user and prevent endless recompilation, all of the 

parameters, except the arithmetic precision, can be provided at runtime. For the template 

programs, these options are passed in by way of the file fem data.dat.

On completion of solving the problem to the desired level of accuracy, the results need 

to be output in some way. Solutions and meshes can be output in a format suitable either 

to be read in by the code again, or for visualisation, either by Matlab or by HiVision (See 

Section C.8). For the output of information such as convergence results, functional values, 

e t c , there are subroutines which output to .dat and .tex  files, where the user has full 

control over the information exported.

C.4 M eshes

C .4 .1  C o m p u ta t io n a l M e sh

The three most important parts of a DG discretization are the cells and faces of the 

triangulation and numerical integration. Indeed, in order to be able to set up the system 

of linear equations rapidly, another requirement is that the cells, which border a face, 

need to be established quickly. For this reason a mesh data structure has been utilized, 

where such entities as element connectivity and face information are stored as arrays, in 

contrast to the mesh tree (see below), where information is stored in linked lists, by way 

of pointers.

At the heart of the computational mesh data structure is the derived type mesh, which 

contains general information about the mesh, plus arrays of derived type element and 

face, Figure C.2 shows these derived types. No information concerning the finite element 

space is included in the mesh definition, hence this data structure can be used multiple
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times within the program, for example for both the primal and dual problems, and also 

means there is no restriction to only a DG discretization.

C .4 .2 M e sh  T ree

For purposes of mesh refinement/derefinement it was decided that a tree structure was the 

best way to proceed. More precisely, since a refinement not only results in the subdivision 

of elements, but also the subdivision of faces (and edges in 3D), two (three in 3D) trees 

are setup, one consisting of elements, the other of the faces. This way, a full history of all 

the elements and faces is stored and hence derefinement is simply a matter of returning 

to a previous element/face in the trees. Initially the computational mesh is setup, based 

on either input from a data file, or by the simple hypercube mesh generator included, 

then prior to the first adaptive step the trees are setup. Hence, the first level of the trees 

consists of the elements and faces in the initial mesh, as such, derefinement to a mesh 

more coarse than the original is forbidden. In the case of faces, a refinement, as well as 

creating subfaces of existing faces, also creates entirely new faces, these are tagged on to 

the first level of the tree. Pointers between the elements and their corresponding faces are 

then required to maintain order. Additional pointers between the computational mesh’s 

elements/faces and the corresponding elements/faces of the tree are also setup. Figure 

C.3 shows a square grid after one isotropic and one anisotropic refinement step, together 

with the tree representation of its elements and faces. Thus, terminal nodes in the tree are 

active in the computational mesh, while non-terminal nodes represent the now redundant 

ancestor cells and faces.

Extraction of a computational mesh from the tree is carried out by means of a ‘tree 

walk’. The process begins at the first node of the first level and looks at the children of 

that node. If no children are present then this node must be part of the computational 

mesh and will be included, otherwise the children are considered sequentially and levels 

descended until there are no children and the nodes are terminal.
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type mesh
real(kind=db), d i m e n s i o n ( , pointer :: coords,face_normals 
real(kind=db), dimension(:), pointer :: face_jacobian 
type(face), dimension(:), pointer :: mesh_faces 
type(element), dimensionC:), pointer :: mesh_ele 
type(linkedlistint), dimensionC:).pointer :: node_eles 
integer :: no_eles,no.nodes,no_dofs,no_faces,which_face_representation 
integer :: problem_dim 

end type mesh

________________________________ (a)_____________________________
type element

type(linkedlistint), pointer :: ele.nodes
typeClinkedlistint), dimensionC:), pointer :: faces_subfaces 
integer, dimensionC:), pointer :: face_representation 
integer :: no_faces 
integer :: element.type
typeCtree.node), pointer :: tree.location 

end type element

__________________________________ (b)______________________________
type face

typeClinkedlistint), pointer :: ele.nodes 
integer, dimensionC2) : neighbours,loc_face.no 

end type face

(c)

Figure C.2: Mesh structure derived types (a) mesh, (b) element and (c) face.
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Figure C.3: (a) Square mesh after one isotropic refinement and one anisotropic refinement 

and (b) the resultant tree structure.

C.5 Linear System

Equipped with a computational mesh, the next step is to setup the linear system which 

discretizes the differential equation. In order to do this, the key features required of the 

code are a finite element space defined on the reference element, quadratures defined on 

the reference element and faces, element mappings to transform the finite element space 

and quadrature points to the physical element and a data structure to store the resultant 

matrix. The discussion below deals with these points separately.



C . 5  L i n e a r  S y s t e m 171

C .5 .1  F in ite  E le m e n t S p a ces

As the subject of this thesis and indeed the primary objective of the MADNESS pack

age were the use of DG discretizations, only discontinuous finite element spaces shall be 

considered herein. As different element types require different finite element spaces it was 

decided that each element type should have a module assigned to it dependent on the type 

of finite element space.

In the case of the d-hypercube, basis functions of Qp {k) span{nf=1x] : 0 <  j  <  p i } 

are required and for the d-simplex basis functions Vp span{nf=1f ^  : 0 < E l i « .  <  
p}} are needed; see Section 2.5. By attempting to make the basis functions orthogonal the 

number of zeroes in the matrix can be reduced, saving space and computational time. In 

the case of quadrilaterals (and hexahedrons) a set of hierarchical orthogonal basis functions 

can be obtained by performing a tensor product of the Legendre polynomials. Similarly, an 

orthogonal basis for Vp on triangles can be formed by utilizing the orthogonality properties 

of the Legendre and Jacobi polynomials. Hence, denoting the i th  Legendre polynomial by 

Li ( - ), and similarly the ith Jacobi polynomials by for a , b >  —1,

O f  =  span{<f>ij, i =  0 . . .p i, j  = 0 , . . . ,p2 : <t>ij = L i ( x ) L j ( y ) }

where rj = 2(1 + x ) / ( I  — y). Basis functions are nearly always computed at the quadrature 

points and, for a polynomial degree p in one coordinate direction, p +  npinc  quadrature 

points are used so th a t integration of the basis functions is exact. Hence, to save compu-

stored for quick access in the future. Similarly, the Legendre and Jacobi polynomials are 

also computed and stored in this way.

C .5 .2 Q u a d ra tu re

Similarly to the finite element space, each type of element needs its own quadrature defined 

upon it, tha t is a set of points, x g, and weights wq such tha t for a function / ,

Vp = span i = 0 . . . p, j  = 0 , . . .  ,p  -  i : fc j =

tational time the basis functions are computed the first time for a given degree p and then

[  fd x
J  K



C . 5  L i n e a r  S y s t e m 172

As such, quadrature routines for each element are all based around performing tensor 

product manipulations of the one-dimensional quadrature on the interval [—1.1], which 

are stored once they have been computed for future use. Suppose the one-dimensional 

quadrature points are p*, i  =  1, . . . ,  n, with corresponding weights i  =  1, . . . ,  rc, then 

for the quadrilateral element the set of points and weights are given by

the triangle reference frame. The new weights are then found by multiplication of the old 

weights by the Jacobian of the mapping at the corresponding coordinates. Evidently this

as long as the one-dimensional quadrature does not include the end-points of the interval, 

quadrature on a triangle is well defined. Analogous operations can be performed for three 

dimensional elements to formulate quadratures. Currently only Gauss quadrature is coded,

C .5 .3 E le m e n t M a p p in g s

Computations are not performed on the reference element or reference element face, but 

rather on the physical element. Suppose the physical element is transformed from the 

reference element by way of the mapping F K, cf Figure C.4 (not to be confused with the 

F k introduced in Chapter 2) and consider, for example, the bilinear form of the Laplacian 

operator

{X,w}ij = { ( p i , P j ) , W i W j ) .

For the triangle the quadrature points and weights are found by mapping from the reference 

quadrilateral to the reference triangle. The mapping used is

t  _  (1 + *Q)(1 - y Q) A

where ( x ® ,  y Q )  are the coordinates in the quadrilateral reference frame and ( x T , y T ) are in

mapping collapses the line y T  =  1 to a single point and is therefore singular. However.

where the quadrature points are the roots of the Legendre polynomials.

V u h ■ V u hd x ,

which results in the need to calculate, for every k  6 7^,
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Figure C.4: Element Mappings.

where n K are the number of degrees of freedom on element k and fa, i = 1 , . . . ,  n K are the 

basis functions associated with the element. In this case numerical quadrature gives

h j  :=  /  V u h • V u hdx & ^ 2  V fa (x q) • V fa { x q) 
J  K Q

where x 9 are a set of quadrature points and wq are the corresponding set of weights. 

Transforming from the reference element, under the mapping FK, using the chain rule 

gives

Iij =  'y  ̂ V ^ ( x g) • V ^j(xg)| det( JjrK(x.q))\wq,
Q

where J fk represents the Jacobian of the mapping FK, fa represent the local basis functions 

on the reference element and x q and wq are the quadrature points and weights, respectively, 

defined on the reference element.

Therefore, it is essential to able to map from the reference element to the physical 

element and vice versa and to evaluate the Jacobian of the mapping (and its inverse) at 

the quadrature points; subroutines which do this are included. In the case of affine element 

mappings the Jacobian remains constant and hence can be stored easily for quick access. 

For non-affine mappings, it is not practical to store the Jacobian at any coordinates and 

it must be calculated as and when it is needed.

C.5.4 dg_volume_integration_info and dg_face_integration_info

W hen computing volume integrals and face integrals three pieces of information are al

ways needed: quadrature points and weights, basis function values and element mappings,
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type dg_soln
real(kind=db), dimensionC:), pointer : solnvalues
integer, dimens ion(: :), pointer : istart
integer, dimension(: :), pointer : basis
integer, dimens ion(: :,:), pointer :: poly_vec
integer :: no.dofs
integer :: nv

end type dg.soln

Figure C.5: Derived type dg_soln.

both  of which are evaluated at the quadrature points. Hence it seems logical to provide a 

single function which returns these entities. MADNESS provides this by way of the sub

routine dg_volume_integration.info when a volume integral is about to be calculated 

and dg_f ace_integration_inf o in the case of face integrals. Of course, the objects are 

also still available separately, should the need arise.

C .5 .5 D e g r e e s  o f  F reed o m  a n d  S o lu tio n  a n d  M a tr ix  S e tu p

For a particular solution, on every element in the mesh, there is an associated number of 

degrees of freedom, which represent the coefficients of the basis functions discussed above. 

These number of degrees of freedom can be calculated using the polynomial degree vector 

and the type of basis. As mentioned before it is not practical to keep the information 

concerning finite element space with the mesh, but rather it is stored with the dg.soln 
derived type, for which the code is shown in Figure C.5. The istart pointer is of di

mension (nv,no_eles) and denotes where the degrees of freedom start in solnvalues for 

the element and variable numbers, basis has dimension (nv,no_eles) and poly.vec is of 

dimension (nv,problem_dim,no_eles) and give the basis type and polynomial vector for 

the element and variable respectively.

DG discretizations are liable to  produce a very large system of linear equations and 

hence could potentially lead to matrices requiring huge amounts of storage. However, the 

matrices tend to be very sparse. This sparsity can be utilized by providing sparse m atrix 

data  structures. Included in the MADNESS package is the Compressed Sparse Row format .
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type csr_sp_matrix
real(kind=db), dimensionC:), pointer :: matrix_entries 
integer, dimensionC:), pointer :: column_no, row_start 

end type sparse_matrix

Figure C.6: Derived type csr_sp_m atrix .

contained in module csr_sparse_matrix. the code for the derived type is shown in Figure 

C.6. Here, the ?th entry of column_no vector gives the column number in the full m atrix 

of the zth entry in matrix_entries. The entries in both column_no and matrix_entries 
are stored in row order and the j th  entry of row_start gives the position in column_no 
and matrix_entries where the j  th  row begins. An example provides a clearer insight 

into how this works.

2 0 0 1 0 ✓

0 0 4 0 0 m a t r i x _ e n t r i e s  = 2 1 4 5 1 7 1

A  = 0 5 1 0 0 - c o l u m n  _no = 1 4 3 2 3 5 1

0 0 0 0 7 r o w s t a r t  : 1 3 4 6 7 8
1 0 0 0 0

V

Coupled with the csr_sparse_matrix are routines which can input/retrieve entries given 

the row and column locations in the full m atrix and routines for providing matrix-vector 

multiplications.

Alternatively, there is the M UMPS sparse matrix, for use when the direct MUMPS 

solver is to be employed: see Section C.6. The same routines for inputting/retrieving 

entries are also available in this case.

In the case when local solutions need to be found (for example for purposes of anisotropic 

refinement) the size of the m atrix formed is relatively small, combining this with the over

heads involved in setting up a sparse matrix, it seems more logical just to use the standard 

array type provided by Fortran 95.



C . 6  L i n e a r  S o l v e r s 1 7 6

C.6 Linear Solvers

After com putation of the m atrix and corresponding, the (often very large) m atrix problem

Ax =  b

has to be solved, where x  represents the solution vector. Means of doing this fall into two 

categories: I: direct solvers, and II: iterative solvers. Although direct solvers lead to exact 

(at least to machine precision) solutions, they are often highly memory intensive and as 

such iterative solvers have generally been preferred.

C . 6 . 1  I te r a t iv e  S o lv ers

A particularly common class of iterative solver are the so called Krylov subspace methods. 

The n th  Krylov subspace of a matrix. A E  W n x m . with respect to a vector, v  E  is 

defined as

)Cn(A. v) =  span{v. Av. A2v  A n~ 1v}.

and the associated n th  Krylov matrix. K n E  M.m x n . is then defined as

K n  = V Av A n lv

If the wish is to solve the m atrix equation

Ax =  b.

then a sequence of iterates. x n E  x q  +  v n. can be found which approximate x in some way. 

with increasing accuracy as n is increased. Here, xo E  is an initial guess to the solution 

and v n E  Kn (A. v q ) ,  for some vo. is a correctional term. The question is then how to choose 

the correctional terms. A popular Krylov subspace method is the Generalized Minimal 

RESidual solver (GMRES) suitable for general lion-symmetric matrices: see [117], hence 

MADNESS comes equipped with an implementation of GMRES.
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C .6 . 2  P r e c o n d it io n in g

For a non-singular matrix, the GMRES can be shown to be convergent, with the rate 

of convergence dependent on the condition number of the matrix. Generally, it is not 

practical to use an iterative solver without some preconditioning. Suppose, as usual, the 

system of equations to solve is

Ax =  b. (C.6.1)

where A E R mxm . For a non-singular m atrix M  E Rmxm, the system

M " 1 Ax =  A T 1 b  (C.6.2)

shares the same solution as (C.6.1). Hence, if the inverse of the preconditioner M  approx

imates the inverse of A  the condition number of (C.6.2) is likely to be smaller than tha t of 

(C.6.1) and will require fewer iterations to solve. Of course, a good preconditioner must 

approxim ate A  well, but also be easy to compute, else the com putational effort will just 

be switched from the iteration method to the calculation of M .

MADNESS provides a number of preconditioners, which utilize the structure of the 

matrix, these are discussed below.

B lock  P recon d ition ers

The matrices formed by a DG discretization have a distinct block structure, with each 

block on the diagonal corresponding to the volume integrals on each element. Blocks below 

and above the diagonal then em anate from the interactions between elements. Consider 

now the block Jacobi, block Gauss-Seidel and block Symmetric Succesive Over Relaxation 

(SSOR) iterations, which represent the extensions to block systems of their non-block 

counterparts:

x (fc+i) _  x (0 +  D ~ l (b  — A x ^ ) .  Jacobi

x (fc+i) _  x (0 _|_ (£) _j_ L )-1 (b — A x(/l)). Gauss-Seidel

x <fc+1) =  + (D + U ) - 1D (D  + L ) - l ( b - A x a ) ). SSOR.

where A =  D  +  L +  U.  with D  the block diagonal component, and L and U the lower and 

upper block components respectively. Hence, in each case A -1 has been approximated by
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D 1. (D +  L)  1 and (D  +  U) 1D( D + L)  1. respectively and thus

M  =  D

M  =  (D +  L)

M  = (D +  U ) D~ 1(D +  L)

are potential candidates for preconditioners. For each case, the m atrix D ~ l can be com

puted and stored for further use. and the matrix-vector multiplications by {D + L) ~ l and 

(D +  U) ~l can be achieved by back and forward substitutions respectively.

In com plete  LU (ILU ) Factorisation

Suppose A  is factored into the product of a lower triangular m atrix L.  and an upper 

triangular m atrix U,  as A  =  LU.  Then, evidently LU  is the perfect preconditioner, 

although of course by performing the LU factorization the m atrix equation (C.6.1) has 

effectively been solved already at some cost. Suppose rather tha t the sparsity structure 

of the m atrix A  is made use of and an incomplete LU factorization carried out to create 

lower and upper triangular matrices. L and U. where non-zero elements in L and U are 

set to zero if the corresponding elements of A  are zero. Of course, this is not the way 

the incomplete LU factorization is actually computed, but rather it is done with far fewer 

operations than computing the actual LU factorization. The preconditioner

M  =  LU

can then be used and matrix multiplications can, once again, be done using successive 

back and forward substitutions.

C .6 .3 D ir e c t  S o lv ers

The MADNESS package provides support for the serial version of the direct solver MUMPS 

(MUltifrontal Massively Parallel sparse direct Solver), which has proven to be very effective 

for solving systems which are not too large. The techniques used in the MUMPS solver 

are beyond the scope of this thesis, but can be found in [6].
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C.7 A daptive Refinem ent

The majority of this thesis has been concerned with isotropic and anisotropic refinement 

techniques, so there is little to be said 011 that subject in this section, except to discuss 

how these are actually implemented.

C .7 .1  A  P o s t e r i o r i  E rror E s t im a t io n

The calculation of an a posteriori error estimate for functionals requires both the solution 

of the primal problem and the dual problem. The same mesh structure can be used in 

each case, but the polynomial degree must be increased by pine  for the dual problem. I11 

the linear functional case the same routines can be used to setup the m atrix and right 

hand side for the dual problem, as for the primal problem, however the solution step will 

involve transposing the resultant matrix in the dual case.

C .7 .2 O b ta in in g  R efin e m e n t In d ica to rs

W hen determining anisotropy using the solution of local problems, a mesh subset is re

quired. which picks out the element that is a candidate for refinement. In some instances 

more than one element may be required. This mesh subset must have pointers to the 

original mesh, so tha t boundary conditions can be enforced using the global solution. By 

storing the mesh subset as a new tree, the adaptive refinements described above can again 

be used to form the local patch on which the local problem is solved, extraction to a 

com putational mesh is then required. The routines used to create the global matrix can 

then be called with a local argument, so tha t they can be used with the local mesh. As 

noted before, the local matrices are stored as simple arrays, rather than in sparse format.

C.8 External Packages

For improved performance. MADNESS provides interfaces to the following packages:

• GotoBLAS - a highly optimized Basic Linear Algebra Subprograms (BLAS) package.

• MUMPS - a direct linear solver package. [6].
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•  SparseKit - a package for the manipulation of sparse matrices, including iterative 

solvers. [116].

•  ARPACK - a package for the solution of eigenvalue/eigenvector problems. [96].

Visualization of solutions is available either through M atlab or through the HiVision pack

age; see Bonisch and Heuveline [27]. The HiVision package is based around the C + +  

Visualization Toolkit (VTK) and offers excellent graphical output, especially for three- 

dimensional geometries.

C.9 Future Developm ent

Currently it is planned to develop the code in the following directions.

•  Three-dimensional adaptive refinement.

•  Parallelization.

•  Extension to eigenvalue/eigenvector problems.

•  Incorporation of a graphical user interface (GUI).

• Implementation of conforming FEMs in three-dimensions.
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