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INTRODUCTION

This thesis considers three problems in the field of
elastodynamics.

The first <concerns small-amplitude elastic disturbances in
an infinite <cvlinder. The equations describing vibrations in
an isotropic cylinder of infinite length and circular cross-
section were first formulated by Pochhammer [1] as early as
1876; however, the complicated nature of these equations meant
that even modest information was difficult to obtain. Chree
[2,3a,3b] also discussed this problem but gave a more general
account by including the cases in which the normal section of
the cylinder was non-circular and in which the cylinder was
composed of anisotropic material. Our approach extends the
results of Pochhammer and Chree by utilising a method of
successive approximation through which we solve the governing
equations to obtain dispersion relations .that 1relate the
angular frequency w and the wave number K (K=2n/wavelength).

The second investigation is of the propagation of elastic
waves in a pre-stressed body, with particular reference to the
circular cylinder and the half-space. In this type of problem,
the final state of the body may be regarded as a small elastic
deformation superimposed on a given finite deformation. The
general theory of such deformations has been used by many
investigators: Prager [4], Green, Rivlin and Shield {51,
Urbanowski [61], Zorski [7], and more recently by Eringen and
Suhubi (8, Chapter 4] whose notation we adobt in Chapters 2
and 4 . From the equations of motion, boundary conditions and

constitutive equations, it is possible to establish a set of
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linear differential equations which may be solved to give a
dispersion relation. In general, however, these linear
equations are complicated and 1little information can be

i

obtained without recourse to <considering special cases or

- specific -materials. --This-work has-particular -importance -when - .

considering the implications for stability.

The final investigation is of a compressible strain-energy
function that contains the Ko model as a special case. In
order to illustrate various aspects of non-linear behaviour in
elastic materials, it is usually necessary to assume an
explicit form for the strain-energy function W. In an attempt
to describe the behaviour of polyuretﬁane foam rubber Ko [9]
proposed a one-parameter strain-energy model which, due to its
relative simplicity, has been used by many later investiga-
tors. Varipus other forms for W have been proposed to describe
compressible rubberlike materials, principally by Blatz and Ko
(10} and Ogden [11]. The proposed model is examined in the
light of wvarious a priori inequalities, and is then used to
obtain solutions to the problem of vibrations in a stressed

plate.

We begin in Chapter 1 with a short review of the work
carried out by Pochhammer and Chree for vibrations in.
isotropic, circular cylinders. The method of successive
approximation is then applied to cylinders whose radius is
small in comparison to the wavelength of the vibration.
Dispersion relations are derived for both longitudinal and
flexural types of vibrations. Similarly, we set up the
fundamental equations describing vibrations in circular

cylinders of transversely isotropic composition and also for
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isotropic <cylinders of elliptic cross-section, which we solve
to establish the appropriate dispersion relations.
This analysis is extended in Chapter 2 to encompass waves in

stressed isotropic cylinders, infinite in length, and having a

~circular cross-section. We -consider only -those waves whose - --

wavelength 1is large compared to the cylinder radius, which is
to say that Ka (the product of the wave number K and the
cylinder radius a) is taken to be small. The theory is in two
parts depending on whether the material is incompressible or
compressible. Accordingly, we consider two particular
problems: an incompressible cylinder placed under a uniaxial
stress (either a compression or an extension) directed along
the axis of the cylinder, and a cylinder composed of a
compressible material having stresses applied along its axis
and also upon its lateral surface. For both of these problems,
the governing equations are set up and solved by successive
approximation to establish dispersion relations describing
both 1longitudinal and flexural waves. The results are then
simplified with the introduction of a modified Young's modulus
and a modified Poisson's fatio which take into account the
effect of the primary stress. The chapter is concluded with an
illustration of our results for three particular cases.

Chapter 3 is concerned with the propagation of surface waves
in a pre-stressed half-space. Incompressible and compressible
materials are considered in turn, and in both cases our aim is
to establish the frequency equation from which we may
calculate the wave-velocity in terms of various material
constants and the applied stress. The results are again
illustrated for specific materials.

We return to the problem of waves in a stressed cylinder in
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Chapter 4. The governing equations established in Chapter 2
aré now solved completely in terms of Bessel functions. We
show tﬁat in the 1limiting cases, when Ka is small and when
Ka-=oo, the results calcuiated in Chapters 2 and 3 respectively
are recaptured.

Finally, in Chapter 5, an extension of Ko's strain-energy
function, put forward by Dr. A.J. Willson, for isotropic
hyperelastic materials is presented. The implications of the
Baker-Ericksen inequality, the strengthened tension-extension
inequality and the ordered forces inequality are discussed in
detail. Particular considerations are given to the configurat-
ions of plane stress and plane strain. The dispersion relation
governing the propagation of small-amplitude waves in a
pre-stressed plate is obtained and 1limiting solutions are
derived for thin plates for both the flexural and longitudinal
modes. Numerical results are given for configurations of

marginal stability.
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CHAPTER 1

SMALL-AMPLITUDE VIBRATIONS IN UNSTRESSED CYLINDERS

§1.1 INTRODUCTION.

In this chapter we present an analysis of the propagation of
small-amplitude waves along an elastic cvylinder of infinite
length. The cylinder material is homogeneous and taken to have
uniform density. Our main objective 1is to derive the
dispersion relation 1linking the velocity of propagation and
the wavelength, and to obtain the associated displacement

field, for waves whose wavelength i1is large compared to the

cylinder radius. We first obtain results for longitudinal,
flexural and torsional modes of vibration in isotropic
cvlinders of circular cross-section, and then move on to

consider vibrations in cylinders composed of a transversely
isotropic material and also isotropic cylinders with an
elliptic cross-section.

The plan of analysis is as follows. In §1.2 we set up the
general elastic equations of motion governing small-amplitude

vibrations in terms of a cylindrical polar coordinate system

(r,0,2) and formulate the boundary conditions at the surface

of the cylinder. In §1.3 and §1.4 we analyse longitudinal and
flexural modes, and review previous 1investigations. The
dispersion relation is then calculated when Ka {(the product of
the wave number K (K=2n/wavelength) and the c¢ylinder radius a)
becomes small and when Ka is very large. Numerical results for
intermediate values of Ka are also presented. §1.5 deals

briefly with the torsional mode. For the remaining sections
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(§1.6-§1.11) we analyse only those vibrations whose wave-
leﬁgths are large compared to the cylinder radius. In §1.6 and
§1.7 we set up recurrence relations, for both longitudinal and
flexural vibrations, that are used tvobtain more accurate
approximations to the dispersion relation. Circular cylinders
of anisotropic composition are dealt with in §1.8 and §1.9,
and a discussion of vibrations in an isotropic cylinder of

elliptic cross-section (§1.10, §1.11) concludes the chapter.
POCHHAMMER-CHREE EQUATIONS FOR CYLINDRICAL BARS
§1.2 ISOTROPIC CYLINDERS OF CIRCULAR CROSS-SECTION.

Investigations of the vibrations of a long circular cylinder
in terms of the general elastic equations were originally
carried out by Pochhammer [1] and, independently a few vyears
later, by Chree [2].

The =z-axis is taken to coincide with the cylinder axis, and
we consider the propagation of an infinite train of sinusoidal
waves 1in which the displacement depends harmonically on both z
and the time t. The equations of motion, expressed in
cylindrical polar coordinates, are well-known and may be found

for example in Love [12, §1838] or Kolsky [13, Chapter 31]:

2 2
u = - -
p tt (h+2u)Ar+p(uzz+u99/r ) p(ve/r +vre/r) uwrz,
2
\4 = + + -
[e] tt (XA Zu)Ae/r u(uelr ure/r)
(1.1)
— 2 -
+u(vrr+vr/r v/ir +vzz) pwezlr,
— -— — 2

pwtt = (h+2p)Az p(urz+uz/r) uvez/r+p(wrr+wr/r+weelr ),

where u, v, W are the components of displacement in the r, 6
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and z-directions respectively, p is the density, A and p are
the usual Lamé constants, and A is the dilatation given by
A = u +(utv,_)/r+w ,
r 6 z
with subscripts indicating partial differentiation.
The stress-free boundary conditions on the cylinder surface

r=a require the vanishing of the radial components of stress,

P, P ' P . These are expressed in terms of the displace-
rr ro rz
ments by:
P = AA+2pu
rr HU s
P = pl{u_ /r+v -v/r), (1.2)
re 6 r
P = + .
rz u(uz wr)

From the resulting eigen-problem, three particular types of
vibration may be distinguished: longitudinal, flexural, and

torsional vibrations. We examine first longitudinal modes.

§1.3 LONGITUDINAL VIBRATIONS.

A detailed numerical investigation of this problem was first
carried out by Bancroft [14]. A further account detailing the
dispersion of elastic waves 1in a circular cylinder for all
three types of vibration may be found in Davies [15].

The longitudinal solution is characterised by:

u = U(r)exp{i(wt-Kz)1},
v =0,
w = iW(r)exp{i(wt-Kz)}.

Now (1.1)2 is satisfied identically whilst (1.1), and (1.1)3

reduce to
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It

-pu? U (h+2p)(Urr+Ur/r-U/r2)—pK2U+K(h+p)Wr,

{1.3)

—pwlW —K(h+p)(Ur+U/r)-K2(h+2u)W+u(Wrr+Wr/r).

Solving (1.3) for U and W, see for example [12], gives
U = PJ
F 1(h1r)+RJ1(h2r), L
(1.4)
= - J +
w PL1 0()\1r)/K RKJO(hzr)/hz,
where P, R are constants, Jn denocotes the Bessel function of
order n, and h1, hz are given in terms of X=pw2/uK2, L=A/p by
2 2 2
h1 = (X-1)K , A, = [X/(L+2)-11K . (1.5)
Note also that U vanishes when r vanishes, appropriately for
longitudinal waves, and the cylinder axis remains undisturbed

during the vibration.

The boundary conditions (1.2)1, (1.2)3 reduce to

(L+2)Ur+LU/r+KLW = 0,
(1.8)
-KU+W_ = o0,
I

which are to be satisfied on the surface r=a. Substituting the
values for U and W given by (1.4) into (1.6), and introducing
pix) = xJO(x)/J1(x), gives

2 =3
PJ1(h1a)[2w(h1a) 2]+RJ1(h2a)[(X—2)K w(hza)/hz 21 o,
PJ1(L1a)(X-2)-2RJ1(h2a) =0,

which leads at once to the dispersion relation
[X/2—1]2w(h2a)+[w(h1a)—X/2][X/(L+2)-1] = 0. (1.7)
The velocity, V0 say, of longitudinal waves of infinite
wavelength in a bar is easily shown to be J(E/p), where E is
Young's modulus (see for instance [13])), or equivalently
Vo = JL2p(1+0)/p], (1.8)

where O is Poisson's ratio (o=L/2(L+1)). We have therefore
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X = 2(V/V0)2(1+0-)'
where V 1is the phase velocity w/K. Further, by setting
a = (1—20)/(1-0), (1.7) may be rewritten in the form
[X/2-12%y(x a)+[w(x a)-X/2](Xa/2-1] = o, (1.9)
where now
A2 = (aX/2-1)K° .
So the dispersion relation has been simplified to involve Jjust
the dimensionless quantities X, o and Ka. Eguation (1.9) has
multiple roots each corresponding to a particular mode of
vibration. Values of V/V0 tabulated as functions of o and Ka
are given in Table 1.1 for the fundamental mode, and the
results have been plotted in Fig. 1.1 for various values of O.
In Fig. 1.2 we display the first four modes using the value
g = 0.25; the curves denoted 1, 2, 3 and 4 refer respectively
to the fundamental, second, third and fourth roots of the
dispersion relation. We display the group velocity curves for
longitudinal vibrations in Fig. 1.3
When Ka—=e, both hf and h; are negative and we may employ the
asymptotic expansion W(ix)=zx (see Bancroft [14]); (1.9) now
becomes
X gk - (3-0)K+(2-a)] = o, (1.10)
and apart from a change in notation this 1is Rayleigh‘s
equation, containing one real root in the range of possible
values for the parameter X, that gives the velocity of
Rayleigh waves on the surface of a solid isotropic half-space.
The value of this root for selected values of Poisson's ratio
is presented in Table 1.1 on the line corresponding to Ka = e,
Approximate solutions to the dispersion relation for the
case when Ka is small may be calculated by using power series

expansions for the Bessel functions:
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Figure 1.1

Phase velocity V for longitudinal vibrations in circular
cylinders of radius a. Curves are plotted for selected

values of Poisson's ratio a where V = /(E/p)
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Figure 1.2

The first four longitudinal modes for the phase velocity
in a cylinder of radius a are plotted. Here V* = /(E/p)

and a=0.25.



1.0

<=0 .0
a=0 .1
0.8 a=0 .2
cr=0 .3
0=0 .A
cr=0 .5
0.6
A
0.4
0.2
0.0
0 2 4 6 8 10 12
Ka
Figure 1.3
The group velocity for longitudinal vibrations in
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are plotted for selected values of Poisson's ratio.
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An approximation to the dispersion relation is found by
neglecting h1a and hza. To this order of working

w(h1a) = m(hza) x 2,
for which (1.9) reduces to

X{X(2-a)-(6-4a)] = 0.
Ignoring the trivial solution X=0, the speed of propagation of
longitudinal waves through a solid cylinder is given to this
approximation by

v = JI[2pu(1+0)/pl = J(E/p).
This 1is in agreement with (1.8), obtained from the elementary
treatment in which no dispersion occurs.
The next approximation has
| pix) = 2—x2/4,

and leads from (1.98) to

V/V0 = [1-0(Ka)?/41. (1..11)
This equation was due originally to Pochhammer [1], and was
later derived by Rayleigh [16, §157] using energy consider-

ations alone.
§1.4 FLEXURAL VIBRATIONS.

The anti-symmetric or flexural type of wvibration are

characterised by the forms

u= U(r)expli(wt+8-Kz)1],
v = iV(r)expli(wt+8-Kz)1], (1.12)
w = iW(r)expli(wt+6-Kz)],

so that we are now contemplating a solution which includes a
transverse component of displacement together with a specified

i . '
e azimuthal dependence.
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The equations of motion (1.1), with (1.12), require

‘?WZU'= (h+2u)(Urr+Ur/r)—[(h+3u)/r2+pK2]U

. -[(h+p)Vr/r-(h+3p)V/r2]+K(A+p)wr,

-pw?V = [(vHU_/T+HM3)U/x 14p(V__+V /1) (1.13)
L (A+3p) /r2 +uK®? JVH (A+p) KW/ T,

~pwlW = -K(h+p)(Ur+U/r—V/r)+p(wrr+Wr/r—W/r2)—(h+2u)K2W,

which may be solved to give

U = K[PJ' (A r)+QJT! (A, r)+RI, (A, r)/r],
V = K[PJ (A, r)/r+QJ (XA T)/r+RI (X 1], (1.14)
W= -PK°J, (A, 1)+QA°J_ (A r),
1 2 11 1
where P, Q, R are arbitrary constants and h1, hz are defined

by (1;5).

If we pause for a moment to consider the real parts of the
radial and transverse components of displacement in (1.12), we
see that both usin®+vcos8 and w vanish when r=0. So points
initially 1lying on the axis of the cylinder move along the
axis of X1. Thus equations (1.12) correspond to motion of the
transverse or flexural ¢type. Alternate formulations for

flexural waves are possible; for example, we could try

u = U(r)cosbB.exp{i{wt-Kz)},
v = Vir)sinf.exp{i(wt-Kz)1},
W = W(r)cos@.exp{i(wt-Kz)},

but i1t 1is fairly readily seen that the results for this
formulation will be in agreement with the findings based on
(1.12).

The boundary conditions (1.2), with (1.12), reduce to

Chapter 1 Page 11



(L+2)U_+L(U/r-V/r+KW) = 0,
U/r-V/r+V_ = o, (1.15)
-KU+W = 0,

r

on r=a, and these yield three relations between P, Q and R:

PJ1(hza)[(Z-X)(Ka)2+2(2—w(h2a))]

+2QJ1(h1a)[(2—w(h1a))-(k1a)2]-2RJ1(h1a)[2—w(h1a)] =g,
-— + -

PJ. (h,a) [2W(X, a)=41420T (A a)[w(X a)-2]
+RJ1(h1a)[2(2—w(h1a))—(h1a)2] = o,
2PJ (X a)[W(h a)=11+QJ (A a)[W(X a)-11(2-X)+RJ (A a) = 0,

so that for a non-trivial solution
det(D. ) = o, (1.186)
13

where, after a little tidying up,

D, = (X-2), D,, = 2[w(x a)-2],

D, = 2(X-1), D,, = 2[2-w(x a)l-(x a)?,

D, = (X-11, D,, = 2[w(A,a)-11,

D,, = 2(w(ra)-2], D, = (2-X)[w(A a)=1], D . =1.

Equation (1.16) is then the dispersion relation for flexural
waves 1in a circular isotropic cylinder (c.f. Bancroft [14],
Hudson [17]), Abramson [18]). A detailed numerical investigat-
ion of this problem first carried out in [17] claimed
incorrectly that (1.16) contained Jjust one real root so that
flexural vibrations were propagated in only a single mode.
This error was passed on to later work [13], [15]), [19] even

though Holden [20] in his paper on elastic waves in cylinders

Chapter 1 Page 12
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and slabs, and later Abramson {183, both refer to the
existence of higher modes for flexural vibrations 1in a
cylinder. In Table 1.2 the values of V/VD for selected values
of Ka and O a\re'I presented. Fig. 1.4 displays the phase
velocities of .the fundamental mode for a range of values of
Poisson's ratio, whilst in Fig. 1.5, for 0 = 0.25, the phase
velocity curves are plotted for the first four modes of
(1.186).

For wvibrations of large wavelength, expansion of the Bessel
functions in (1.16) enabled Pochhammer to calculate the
approximation

1/2 - (402 +150+10) (Ka)? | (Ka).

\Y
- = (1.17)
Vv 48(1+0)

0

Finally, for very small wavelengths, (1.16) may be shown to

reduce to the Rayleigh surface wave equation.

§1.5 TORSIONAL VIBRATIONS.

We mention briefly a third possible type of vibration of
special interest: the torsional vibration. In this case both u

and w vanish, and v is taken to be independent of 8. We have

v Vir)exp{i(wt-Kz)}.
From (1.1)2, V(r) must be proportional to J1(h1r) with h1
defined by (1.5). For V to then satisfy the boundary condition
(1-2)2 requires

Jz(}\1a) = 0. (1.18)
One solution of (1.18) 1is h1 = 0. This solution yields the
corresponding form V = Ar, A constant, with wave-speed J(p/p).

The positive zeros of J in (1.18), correspond to higher

2 ’
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Figure 1.4

For selected values of Poisson's ratio curves of the
phase velocity V ( = /(E/p)) for flexural vibrations

in a circular cylinder are plotted.
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Figure 1.5

Phase velocity curves for the first four flexural modes

of vibration In a circular cylinder with a=0.25.



modes of vibration.
For an further account of torsional vibrations in a cylinder
the reader is referred to Eringen and Suhubi [21, §8.10]), or

Davies [15]. :
SUCCESSIVE APPROXIMATION ANALYSIS FOR LONG WAVES
§1.6 LONGITUDINAL VIBRATIONS.

In this section we give an alternative treatment of

longitudinal vibrations in an isotropic cylinder of circular

cross-section, appropriate to the case that Ka is small, from
which we shall recover (1.11), and then extend this result by
calculating the coefficients of (Ka)* and (Ka)G in the

dispersion relation.

The procedure is to bresuppose a series development for U
and W in ascending powers of Kr, and to develop recurrence
relations for the coefficients from the equations of motion

and the boundary conditions. Accordingly, we write

U=a2a7sx"a (k)2 W=-ac%"c (kr)2",
n=0 n n=0 n

where A and the coefficients an, cn are constants. Introducing

these expressions 1into (1.3) and equating powers of r2n we
find, (for n:20)
Xa = 2(n+1)(L+1)cC -4(n+1)(n+2)(L+2)a +a ,
n n+1 n+1 n
(1.19)
Xc = -4(n+1)%c _+(L+2)c -2(n+1)(L+1)a ,
n n+1 n n
with boundary conditions (1.6) now taking the forms
E”[Z(n(L+2)+(L+1))a -Lc ](Ka)zn =0
n=o n n '
(1.20)

L 2n
+ + =
n}':_‘o[an 2(n 1)cn+1](Ka) 0.
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The convergence of these series is assumed unconditionally
since they are Jjust the expansions of the Bessel functions
encountered earlier. In effect, equations (1.18) determine

C. . The

a , a .. in terms of X (=pw2/pK2), a,r ¢,

1 2!

boundary conditions (1.20) impose two conditions between X and

2"" 1'

aolco, and the dispersion relation results from elimination of

aolc0 between these latter conditions.
The parameter X is now expressed as an asymptotic series in
ascending powers of (Ka)2 (=E, say), thus
X=X(0)+X(1)E+X(2,E2+...+X(m)Em+....
with similar expressions for an and cn. Substituting these

series forms into (1.19) and equating like powers of E we

find, after a little rearrangement,

{m) _ (m) (m)_ (m-p)_{(p)
a, " = [entt+nic, Maa TV- 2Tk a " 1/4ntn+1)(L+2),
(1.21)
(M) o ievre!™ o (ntty (Lrnyal ™= gMg MR IRy he )2,
n+1 n n p=0 n
for n21, m20; and for n=0
'™ o peezre!™ aienya™ i My et (1.22)
0 1} 1 0
where, without loss of generality, we have taken
cgm) =} 2(L+11/L, m=0,
(1.23)
0, m21.
Further, from (1.20), we calculate
(m) (m) m {m-n) {m-n)
a = - -
0 [Lc0 n§1(2(n(L+2)+(L+1))an Le, }l/2(L+1),
(1.24)
(m) _ . _(m) m, {(m-n) (m-n)
c, = [a0 +n§1{an t2(n+i)c }Yl/2.
for m20.

As demonstrated in §1.3 by the Pochhammer-Chree analysis,

the initial two terms in the dispersion relation are fairly
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easily ob;ained; however, the workiqg becomes prohibitive for
higher approximations. Using relations (1.21)-(1.24) we
propose'to extend the approximation to the dispersion relation
by a further two terms, demonstrating the relative ease with
which new terms may be developed, whilst at the same time
building up important details about the associated
displacement field.

We begin with m=0; then from (1.24), with (1.23), we have

(0) (0)
a =
0 ty g
so that, from (1.22),

-1/2,

X0V o (aL42)/7(L+1). (1.25)

The general situation is that of known a(k—n), c(k;n), x(k)
n n+

for O0<ng<k, 0<k<m-1, some m21. Equations (1.21), with m—-n

. m-n - .
entered for m, furnish a; ), C;T1n) for 1<n<m, and equations

(1.24) then yield a;m) and c:m). Finally we use (1.22), with

(1.23), to calculate X(m). Initiating this‘procedure with m=1,

we calculate from (1.21)

2 2
-(L
o) (L +4L+2) , (01 (3L +6L+2) ,
a1 = C2 =
B(L+1)(L+2) 32(L+1)(L+2)
then from (1.24)
2 3 2
(1) (5L%+12L+6), (1) —(2L  +9L " +14L+86),
a
2
0 B(L+1)° (L+2) ! 16(L+1)2(L+2)
so that (1.22) gives
—(3L+2)L2.
(1)
X = —73 (1.26)
8(L+1)

Thus we have easily established the result

2
3L+2}j1 - L E

]

2
L+1 8(L+1)

which, expressed in dimensionless form, becomes

V/V0 = [1-02(Ka)2/L],
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and this 1is the result obtained by Pochhammer and Chree,
previously given by (1.11).
For m=2 the procedure yields successively:

4 3 2 4 3 2
(3L +14L " +26L  +18L+4), -(SL +26L +40L " +22L+4),

(0)
a
2

C(O)
3

192(L+1)2(L+2)2 1152(L+1)2(L+2)2

(L3454 +18L3 43412 +25L+8) ,

201
1 32 (L+1)° (L+2)2
S 3
R e | IREVE TS ST
C2 =

128 (L+1)° (L+2)2

using (1.21), then from (1.24) we calculate

) 4 3 2
(2) -(12L7+23L -68L -208L -170L-44),

4

96 (L+1)° (L+2)?

6 2
(1) (10L +44L5+37L4—112L3—260L -186L-44),

192 (L+1)% (L+2)2
so that (1.22), with (1.23), gives
4
(21 (2L -13L3—55L2-52L—14)L2.

X = s (1.27)
96 (L+1) (L+2)

The procedure of solution to calculate the next term follows
in the same way. The calculation is straightforward and we
omit details of the coefficients at this stage to present

simply the result

7 6 5 4 3 2 2
(3) -(L -132L -389L +514L +2816L +3324L +1572L+264)L" .
X 3 7 2 (1.28)
3072(L+1) (L+2)

We summarise the results (1.25)-(1.28) in dimensionless form
with the expression

V1 - 0%(ka)? - (210°+40° -290% -40+7)0° (Ka)*

v 4 96(1-02) (1.29)

~(3960 -2520° -8240° +4 800" +4820° -2540° -690+33 )02 (Ka)® .

1536(1-02)(1-0)
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§1.7 FLEXURAL VIBRATIONS.

For the flexural modes we take the series forms

Ulr) = A £7a (kr)2", Vir) = A £7b_(kr)2","
n=0 n n=0 n
(1.30)
‘Wir) = A £7c (kr)?"™*t,
n=0 n
A, an, bn’ cn constants. We proceed in much the same way as in

§1.6 to produce recurrence relations from the equations of
motion and boundary conditions. Accordingly, from (1.13), we

obtain for n20,

Xa = a -[4n(n+2)(L+2)+(3L+5)]a
n n n+1
+{2n(L+1)+(L-1)]D -(2n+1)(L+1)cC_,
n+1 n
Xb = Db -[2n(L+1)+(3L+5)]a (1.31)
n n n+1
+[(L—1)—kn(n+2)]bn+1—(L+1)cn,
Xc = (L+2)c +(L+1)[(2n+3)a -b J-4(n+1)(n+2)cC ,
n n n+1 n+1 n+1

whilst (1.15) provides

o 2n _
E L(2n(L+2)+(3L+4))a Lbn+1+Lcn](Ka) = g,

n +1
oo 2n
L [a +(2n+1)b J(Ka) = 0, (1.32)
n=0 n+1 n+1
£ [a -(2n+1)cC ](Ka)2n = 0.
n=0 n n
Assuming asymptotic expansions for X, an' bn and Cn in
. 2 n
ascending powers of E (=(Ka)") and equating coefficients of E

in (1.31), we have, denoting [18n(n+1)2(n+2)(L+2)]-1 by T,

™ Cortenrtizntnra™ o™y p(Lezy ™
n N n n-1
_ eMm (m-p) (p)
pEOX cn_1]/4n(n+1),
(m) _ ' 2 (m) _ em_(m-p) (p)
a = T{l4(n+1) -(L+3)1(a pgox a "1l
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+L2n(L+1)4(L-1)1cb' ™ gMx(m-P) (P},
n p=0 n
(1.33)

-4n(n+1)(2n+3)(L+1)C;m)]v

(m)

(m) _ gm (m—p)a(p)]
n+1

= T[-[2n(L+1)+(3L+5)]1[a sznx n

+Tan(n+2) (L+2)+(3L+5)31b(™ - £ix(MPIp (P,

-4n(n+1)(L+1)c;m)

11,

for n21, m2»0. Additionally, from (1.31)1 with n=0, we find

(m) (m) (m)

= - {0)
X = [aD (L+1)c0 a

0 ! (1.34)

—(3L+5)a:m)+(L-1)bfm)]/

where, without loss of generality, we may take

a(m)

. =| 1, m=o0,

(1.35)
0, mz1,

and, anticipating the result X(O) = 0, the difference between

. _ . (m) _ _(m)
(1.31)1 and (1.31)2 with n=0 gives b0 = a,

Similarly, from (1.32), we have

LT A PO ST PT PO PAL
0 0 n=1 n n

{m-n)

(m) (m)
-lLe n+1

1 0

a + T2 ((n(L+2)+2L+2)a

(1.36)
{m-n) {m-n)

+2n|_bn+1 +Lcn Fl/4 (L1,

™ = —a!™ 2™ ™M ne My
1 1 n=1 Tne n+1

for mz20.

Now, from (1.36)

cto oy 2100 o _pton

0 1 ) = =-L/4(L+1),

then (1.34) with m set to zero gives, as expected,

x'0 - 0. (1.37)

{k-n) b(k—n)

The general situation is that of known a ,
n+1 n+1
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(k)

c(k—n)' X

n

with
(1.36) vyield

i

equation

for 0<n<k,
m-n for m, supply cn '
successively

(1.34),

O<k<m-1,

(k-n)
n+1

{(m-n)
c(m)'
0 1

with (1.35),

some mz21.

(m)

provides X

Equations (1.33),

b(k—n) for
n+1

1<n<m. Then

(m)

] b1 r

{m)

and finally,

We begin with m=1 and using (1.33) we calculate

-(sL+ 3L-1
{0) (0) (3L+5) (g) { o
] = 1/4, a, = — b, = —
1892 (L+1) 182(L+1)
and from (1.36)
-(4L+3), (24L%+25L+5), (2424210419,
t1) (1) (1)
o = a, = 2 b1 - 2
L(L+1) g6(L+1) g6(L+1)
so (1.40) provides
(3L+2).
X(1) = — (1.38)
L(L+1)
With m=2 we calculate from (1.33)
- + L_
(0) (o) (1oL+7) , (0) (2 1) '
<, = 1/64, a3 = —_—— 5 R —
4608 (L+1) 4608 (L+1)
2
(1) -(15L+11), (11 (129L3+456L +425L+118),
1 = 2 2
LB8(L+1) 2304 (L+1) (L+2)
3 2
(1) -(75L"+192L +83L-14),
bz - 2
2304 (L+1) (L+2)
then with (1.36)
2
(23 (102L +159L+61),
C =
0 96 (L+1)°
4 3 2
(2) ~{1176L +4677L +5950L +2887L+430),
a = 3
460B8(L+1) (L+2)
4 3 2
(2) (1368L 45121L +5886L +2275L+134),
b
1 4608 (L+1)° (L+2)
so that (1.3¢4) gives

-(37L% +55L420) .
X(Z) -

4B (L+1)°

Chapter 1
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Finally, for m=3, we omit details of the coefficients and
present the result
3 2
(31 (4335L7+10122L° +7729L+1934).

X = 3 (1.40)
4t808B(L+1)

We summarise (1.37)-(1.40) in dimensionless form by

v l1/2 - (4c®+150+10) (Ka)?

\Y 48 (1+0) (t.41)

+(72403+22A90'2+22940+787)(Ka)4 (Ka).

4608 (1+0)2
In Figs. 1.6 and 1.7 we plot the curves marked 1, 2, 3 for
longitudinal and flexural waves respectively, where 1 is the
full dispersion curve, 2 is the Pochhammer approximation for
long waves, and 3 is the curve corresponding to the extended
approximation given by {1.29) for longitudinal waves and by

(1.41) for flexural waves.
VIBRATIONS IN A TRANSVERSELY ISOTROPIC CYLINDER.

We now look at the problem of small-amplitude vibrations in
a circular cylinder composed of a material possessing an axis
of symmetry that is parallel to the generators - transversely
isotropic material. As before, we consider long waves
propagating in the axial direction for both longitudinal and
flexural modes. Our investigation is now complicated by the
presence of five independent material constants, the
stiffnesses, that replace the Lamé constants A and Pg. The
stiffnesses {all assumed to be positive) enter the analysis

through the following stress-strain relations

Chapter 1 Page 21
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Figure 1.6

Phase velocity curves for longitudinal vibrations in a

circular cylinder with a=0.25. Curve 1 represents the
full dispersion curve calculated from (1.9), curve 2 is
Pochhammer's approximation (1.11) and curve 3 1is the

extended approximation (1.29)
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Figure 1.7

Phase velocity curves with cr=0.25 for flexural vibrations

in a circular cylinder, where curve 1 is calculated from

(1.16), curve 2 is Pochhammer's result (1.17) and curve 3

IS given by equation (1.41).



P = + + = (A-
11 Ae  tBe,,tCe s P2 (A-Ble,,
P .= e + + = e 1.42)
22 B 11 Aezz ceas’ P13 2E 13’ (
yl
= + + P = .
Psa = €&, FCe,,*De 4y 23 - 2E€y,

Comparing (1.42) with the isotropic stress-strain relations we

see

A =D = A+t2y, B=2C =2, E = p,

for the isotropic case.

§1.8 LONGITUDINAL VIBRATIONS.

For convenience we write the displacement field in cartesian

coordinates. We have

oo 2n oo 2n
u = =
1 AKngoanx1(Kr) c, u2 AKngoanxz(Kr) c,
_ o0 2n
u3 = Angocn(Kr) S,
A constant and C = cos{wt-Kx_), S = sin(wt-Kx_).

3 3

The stresses are easily calculated from (1.42), and the

equations of motion, after comparing coefficients of rzn, give

Xa = -
n 2(n+1)(C+E)cn+1 4(n+1)(n+2)Aan+1+Ean,
{(1.43)
- - 2 _
ch = =4{n+1) Ecn+1+Dcn 2(n+1)(C+E)an,
where now X = pmlez. On the cylinder surface the stress-free’
boundary conditions are now
£ [ ((2n+1)A+B)a_-Ccc_1(Ka)?" = ¢
n=0 n n !
(1.44)

= 2n _
nIp[a *2(n+tt)c 1(ka)®" = 0.

We again assume asymptotic series, in ascending powers of

2 .
(Ka)®, for X and the coefficients a . c_ . Equating like powers

Chapter 1 Page 22



2 . . R .
of (Ka)”", after substituting these series forms into (1.43),

give

(m) (m) (m) (m-p)_{(p)
a = -
N [2nictere, "va,a T £X a P 1/4nin+1)a,
(1.45)
(M) toe!™ 2 (nttr(crpral™ - £MgMTPIPY Y ) 2,
n+1 n n p=0 n
for n21, m20; and for n=0
'™ = o™ 2icemrat™ i ™y et (1.46)
0 0 1 0
wherg we have taken
cém’ = | (a+B)/Cc, m=0,
(1.47)
0, mz1.
Similarly, the boundary conditions (1.44) give
a'™ oo™ g™zt rateial™ M ccc ™My 1/ (ate),
1] 1] ns=1 n
(1.48)
(m) _ __(m) m,_{(m-n) (m-n)
c, = [a0 +n§1{an +2(n+1)cn+1 }1/2.
for mz20.

The procedure of solution is now an extension of that given
in §1.6 where equations (1.21)-(1.24) are now replaced by
(1.45)-(1.48). Following the method prescribed in §1.6 we

calculate, from (1.48)

a(O) C(O)

0 = 1, 1 = -1/2,
so that from (1.46), with m=0, we have
(0) 2
X = D-2C" /(A+B).
We calculate a higher approximation for X from (1.45), and,

denoting Y = [D+C-2C?/(A+B)]/A, we find

(0) (0)
a = -
3 Y/s8, c2

then, from (1.48)

= [(C+E)Y-2¢2/(A+B)]/32E,

a(1)
0

[(3Aa+B)Y-4C]/B(A+B),

c(1)

] = -[((3A+B)E+(A+B)C)Y-2C(2E+C)]/16(A+B)E,
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so that (1.46) now gives

2 2
(1) C b - 2C

X = |— —
2(A+B) A+B

Finally, omitting details of the calculation at this stage,

we present the result

2 2 2
(2) -C A Y (7A+B) - YC[1+ C + € [1+43cC

X = P —_— —_—

4 (A+B)° 12 A+B 3A|  A+B

Substituting the isotropic values for the stiffnesses into the

expressions for X(O’, x''" and x'?' we recover (1.25), (1.26)

and (1.27) respectively.

§1.9 FLEXURAL VIBRATIONS.

For the displacement field we consider the forms

2 oo 2 2 2n
u =
; A[a0+K ngo(an+1x1+bn+1x2)(Kr) ]¢,
_ 2 o _ 2n
u2 = AK nEo(an+1 bn+1)x1x2(Kr) c,
u = -AK L ¢ x (Kr)zns,
3 n=0 n 1

(see Appendix A.1), from which we may calculate the following

recurrence relations

2Xa = 2Ea —[(8n2+18+5)A+B]a
n n n+1
+[(2n—1)A+(2n+3)B]bn+1-2(2n+1)(C+E)cnr
Zan = 2Ebn—lj(2n+5)A+(2n+1)B]am1 (1.49)

2
-[(&n +8n+1)A-(2n+1)(2n+3)]bn*1-2(C+E)Cn:

XCn = Dcn+(C+E)[(2n+3)an

+1’

”-bm1]—l.(n+1)(n+2)Ecn

for the equations of motion along with.
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ngo[(Z(n+1)A+a)an+1

n

oo 2n
n5=:0[an (2n+1)cn](Ka)

for the boundary conditions.

X, a ,

b
n n

the following relations:

2n
an+1+Ccn](Ka)

oo 2n
Eo[an*1+(2n+1)bn+1](Ka)

o,

(1.50)

o,

0,

Assuming the usual expansions for

and cn in (1.48) we calculate for the coefficients

c'™ - [(c+Errizn+tra ‘™ -p!{Myipctm
n n n n-1
_ My (m-p) _(p)
oo X c Pl1/entn+)E,
a'™ = [[(4n®+8n+1)A-(2n+1) (2n+3)B1[Ea' ™ - Mg (M PIalP),
n+1 n p=0 n
+0(2n-1)A+(2n+3)81Eb' ™ - gMx!M-PIp(P),
n pP=0 n
(1.51)
—4n(n+1)(2n+3)(C+E)(A—B)cﬁm)]/16n(n+1)2(n+2)A(A—B),
(M) [—r(2n+5)a+(2n+1)BICEa ™ - £Mx(MP)g(P),
n+1 n pP=0 n
2 (m)_ om,(m-p). (p)
+[(Bn‘+15n+5)A+B][Ebn pgox bn ]
(m) 2
—4n(n+1)(A—B)(c+E)cn J/16n(n+1) (n+2)A(A-B),
for n21, m20, and
x!{™ - [2Eaém)—(5A+B)a:m)—(A-aB)b:m)—Z(C+E)cém)]/2, (1.52)
for n=0, where
(m) (m) _
0 b0 = 1, m=0,
(1.53)
0, mz1
Similarly, from (1.50), we calculate
(m) _ _(m) m,_{(m-n)_ {(m-n)
c0 = a, + 2__:1{an (2n+1)cn },
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(m) (m) (m-n) {m-n)

m

a = -

) [Cc0 +n§1{2((n+1)A+B)an+1 +2nabn+1

(1.54)
+cC:m'n)}]/2(A+a),

(m) (m) m, {(m-n) (m-n) !

b, = 8, _n§1{an+1 tlent )b )y
for m:>0.

Equations (1.51)-(1.54) now replace equations (1.33)-(1.36)
respectively and are solved using the same procedure set down

in §1.7. We begin, therefore, with (1.54) from which we find

(0) (o) (o)
C0 = 1, a, = —b1 = -C/2(A+B),

then at once, from (1.52),

just as we had for the isotropic case.

To the next approximation in X, we obtain, from (1.51)

C(O)

1 [p-2C(C+E)/(A+B)]/8BE,

a;O’ = [(3A-5B)M-10N]/96, b;°’ = -[(9A+B)M+2N]/96,

(0}
where we denote M = 2Ea:0‘/A(A—B) and N = 2(C+E)c1 /A, so

that, with (1.54), we have

Cé” = [2C(3C+E)/(A+B)-3D]/8E,

(1) -1 12AC[(A-B)M - 2N]+(3A+B)(A-3B)M-2N(5A+3B)|,
a = —_—

1 48 (A+B) E C+E

(1) 1 12AC[ (A-B)M - 2N]+(3A+B) (5A+B)M-2N(A-B) |,
b = —_

1 48 (A+B) E C+E

then (1.52) provides

Y bra-c?r2(a48).

X
Finally, to the next approximation and following the method

outlined in §1.7, we calculate
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6E 12 A+B 24(A+B)2

it 1s then a straightforward matter to recover (1.38) and

(1.39) in the 1isotropic case for the above values of x'1 '

(2)

ISOTROPIC CYLINDER OF ELLIPTIC CROSS-SECTION.

We have seen in the previous sections that for circular
cylinders the dispersion relation for large wavelengths may be
constructed by taking appropriate series expansions for the
displacement field. This procedure is now extended to include
isotropic cylinders of elliptic <cross-section. We take the
bounding ellipse to be xf/az+x§/b2 = 1 and assume Ka<<1, Kb<<1
wherever necessary.

The algebraic manipulation in this problem rapidly becomes
intractable, so we restrict ourselves to working to the second
order in K.

It should be mentioned that the analysis presented in §1.10,
§1.11 is only valid, insofar as one cannot claim unconditional

convergence of the Taylor series that are introduced.
§1.10 LONGITUDINAL VIBRATIONS.

We seek a solution of the form

2 2 2
u = + .« e
1 Kx DA +K™ (A x[+A % )+...]C,
2 2 2

= +

u2 sz[B0 K (B1x1+82x2)+...]C,
2 2 2 4 4 2 2 4

= +K + + +...

u, [C0 (€, X7 +C, 3 )+K (€ %) +C, x|, Cs %, ) 18,
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with C = cos(wt-Kz), S = sin{(wt-Kz), as before.

What 1is attempted here is to determine the coefficients in
the above expansions in succession and to a progressively
higher degree of approximation in ascending powers of'ka, Kb
(briefly powers of K). The approach is a development of that
given in §1.6 for the circular cylinder.

First we set out the expressions for the components of

stress as far as it is necessary to carry them for present

purposes:
2 2
P = - + + -
11 uK[[2A0+L(A0+BO Co)]+K [(BA1 L(3A1 B1 c1))x1
2
+(2A2+L(A2+382 cz))lelc,
2 2
Poy = pK[[280+L(Bo+A0—C0)]+K [(281+L(3A1+B1 C, 1%,
2
+(852+L(A2+382 cz))le]c,
_ _ _ 2., _ _ 2
Pay = pK[ 2C0+L(A0+BO CO)J+K L 2C1+L(3A1+B1 C, )%,
2
+( 2C2+L(A2+382 cz))le]c,
P = 2Px_ X K3[A +B_ ]C
12 B, %, 2 1 !
P = px K [[A +2C, 14K° [ (A, +4C_)x° +(A_+2C, Ix°1]S
13 1 0 1 1 3° 71 2 472 !
P = px KP[I[B +2C. 14K [ (B, +2C )x2+(B_+4C_)x21]S
23 2 0 2 1 4 1 2 572 !
where L = A/u. These expressions may then be substituted into’
the equations of motion Pij 5 = -pwzui and the stress-free
4
surfacé conditions Pi'vj = 0.

The equations of motion identify as zero certain series
expressions in which successive terms are homogeneous

polynomials in X X it must be the case that the

2 F

coefficients in these series vanish identically and this
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forces relations between the coefficients. Most simply, from

= -pwzu3 one finds by equating to zero the terms

P _
33,3 ‘
independent of x1, X

1

-Xc_ = +2C_+A _+B_-2C_+ +B - . 1.55
o 2C, +2C_ +A +B -2C +L(A +B -C ) (1.55)

This is regarded as an equation for X (= pwz/pxz), that dis, as

the dispersion relation, when the ratios AO/CO, BO/CO, C1/C0,
Cz/C0 are known. Improvement in X is obtained by iterative
development of these ratios in ascending powers of K.

In the same way the surface stresses are series expressions
. R . C o . 2 2 2 2
in X1, xz, but with the added simplification x1/a +x2/b = 1.
After the parametric substitution x1 = acosy, X, = bsing what

. . . . 2 . .
emerges 1s a series 1in ascending powers of K in which the

coefficients are polynomials in coszm (after appropriate

application of cosz¢+sin2m = 1). The terms in these series
must yanish identically, and this in turn requires the
identical vanishing of the polynomial coefficients; we find
that at each stage of the procedure the number of equations
present 1is equal to the number of coefficients required.
Taking first the 1leading terms in the three components of
surface stress one finds

2A - =
0+L(A0+BO Co) o,
2B +L(A +B -C ) = O,
2
B +2C_)+ -8B +2C -2C = .
( 0 2 2) (A0 0 1 2)cos P 0

Without 1loss of generality we set C0 = 2(L+1)/L then it is

clear that

to zero order in K, and one may now calculate from (1.55)

X = (3L+2)/(L+1).
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The iterative process continues by developing 2zero order

expressions for A , A, B , B

c., ¢, C and at the same
1 2 1 S

4

time, first order corrections for Ao, B C., C. and hence

o' T 2

also for X. Terms independent of x1, x2 in the equations of

motion for i=1,2 give

n

-XA - - -
0 12A1+281+2A2 2C1 A0+2L(3A1+B1 C1),

_B - - -
X 0 1282+281+2A2 2C2 B0+2L(A2+3B2 Cz),

while, from inspection of the terms quadratic in x1, X, in the

equations of motion for i=3, we find

-Xc +B_-2C_+ +2C + 4B -
; 3A 4B -2C +12C_+2C +L(3A 4B -C ),

n

- +3B_-2C_+2C + + - .
XcC A,+3B,-2C,+2C +12C_+L(A,+3B,-C, )

2

(We have two equations and not three since there is no x1x2

term).

in the three surface conditions, the terms to first order in
K2 give rise to seven conditions {(two linear and ohe quadratic
polynomial in COSZ@), and it is then a matter of straight-
forward but tedious algebra to compute

—(LP+aL+2)[L(Q%+20+3)+2 (% +a+1) ],

A =
! 120a+1)2 (L+1)2 (L+2)
2 2 2
“(L°+4t+2)[L(Q +26-1)4+2(Q@°+Q-1) ],
B =
1 sa+1)2 (L+1)2 (L+2)
(L3 (110%+220+3)+4L% (902 +190-1)+16L(20%+50-1)+B (0% +30-1) 7,
C =
3 96 (a+1)2 (L+1)% (L+2)
(L3 (sa2+20+5)+4L% (502 -0+5)+8L(30%-20+3)+8(0% -a+1) ],
C =
4

16(a+1)2 (L+1)2 (L+2)
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[(L+2)0—L][L2(302+k0+3)+8L(02+0+1)+4(02+Q+1)](Kb)2,

A =1 +
2 2
0 B(Q+1)° (L+1)° (L+2)
3 3 _ 2 2 2
3L (60 +70° -20-3)+2L2 (330  +400° ~70-12)
3 2 3 _ 2 2
c. = -1/2 - +2L(36Q° +520°+20-6)+8(3Q°+50°+Q) | (Kb)*,

sela+1)2 (L+1)2 (L+2)

2 .
where Q@=(a/b)” ., Expressions for Bz' Az' C5, B0 and Cz\are not
given explicitly above as they may be obtained by
interchanging the parameters a and b in A1, B1, c3, A0 and C1

respectively. From (1.58), it follows at once

se+2] |1 - L3k (a%+p2 |,

2
L+1 16(L+1)

from which, with a=b, we recover (1.25) and (1.26) from the

results for the circular cylinder.

§1.11 FLEXURAL VIBRATIONS.

For flexural vibrations in an isotropic cylinder of elliptic

cross—-section we seek a solution of the form

u1 = [A0+K2(A1xf+A2x:)+K‘(A3x:+A4xfx§+A5x;)+...]c,
u, = K2x1x2[Bo+K2(B1xf+Bzx§)+...]C,
u, = —Kx1[c0+K2(c1xf+c2x§)+...]s,
where again C = cos(mt—Kx3), S = sin(wt-Kxg), so that the

principal flexure plane is 0x1x3
We compute the stresses so far as they are required:

2 2 2
P = pK LA +L(2A +B + + +
1 H x1[[ ] ( A1 so co)] K [(8A3+L(LA3 B1+C1))x1

' 2
+(4A + +3B_+
(4a +L(2A +3B_+C ))x;1]C,
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2 2 2
P = + +B +
P22 pK x1[[280 L(2A +B +C )1+K" [(2B +L(4A +B +C ))x]

2
+(682+L(2A4+382+C2))XZJ]C,

_ 2 2 2
933 = pK x1[[2CD+L(2A1+BO+C0)]+K [(2c1+L(4A3+a1+c1))x1
2
+
(2C2+L(2A4+382+C2))le]C,
P = usz [2A_+8 +K2[(2A +38B )x2+(4A +B )le]c
12 2 2 0 4 17 5 "2°72 !
P._ = pK[A ~-C +K’[(A. -3C )x°+(A_-C_)x>11S
13 0 0 1 0 1 2 2'72 '
P = uk’x x_[B_ -2C_]S.
23 172570 2

As 1in the previous case for longitudinal vibrations, the

equations of motion produce homogeneous polynomials 1in x1, xz
with coefficients that must vanish, and we find from the
coefficient independent of x_ , x in P__. . = =-pu wz the
1 2 13,3 1
relation
= -C - - + - +B + .
XAO A0 CO 4A1 (2A2 BO) L(2A1 BO Co), (1.56)

where X 1is determined after calculating the ratios A1/A0,

A /A

) 0 BOIA0 and CO/AO.

The stress-free surface conditions (with the substitution
x1 = acosyp and x2 = bsing) again yield polynomials in coszw
and considering only the zero-order terms in K from the

components of the boundary conditions, we calculate

(2A2+BO)+[4A1—2A2—BO+L(2A1+BO+C0)]coszw = 0,
(2A2+BO)+Qr280+L(2A1+Bn+CO)] =0,
(AO-CO) = 0,

with Q=(a/b)2 as before. We begin by setting A0=1 so that

c =1, By = 2A, = -2A, = -L/2(L+1).
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At once, from (1.56),
X = 0.
The next approximation for X is found by calculating zero

order values for B , B, C, €C, A, A, A and then first
1 2 1 2 3 4 S

. 2 .
order (in K ) corrections for CO’ B A and Az'

o' 1

With i=1 in the equations of motion, and equating to zero

the coefficients of the quadratic terms in x1, X we have

2 ’

XA1 A1—3C1—24A3—(2A4+381)—3L(4A3+B1+C1),

XA

2 Az—CZ-LAQ-(12AS+3Bz)-L(2A4+382+C2),

whilst for i=2,3 terms independent of x x2 give

1 [

XB

- -4A -6B_- - +38B_+
0 B,~2C,—4A -6B -128, 2L(?A4 3B,+C, ),

XC0

+ +B_- - + +B + .
ZC0 2A1 B0 SC1 2C3 L.(2A1 B0 C1)

From the surface conditions we establish a further seven
conditions to first order in K2 by setting up (as we did in
§1.10) two linear and one quadratic equation in coszw,

We present the following results for the coefficients:

4{(2Q+1)+3L(3Q+1), 4Q+L(3Q+1) ,

12(3G+1)(L+1) L(3Q+1)(L+1)

2 3 2 3 2 3 2
~[9L (307 +7Q° +17Q+5)+4L (100" +25Q° +56Q+21)+4(3Q  +9Q  +19Q+9)],

A =
3 192 (30+1) (@2 +2Q+5) (L+1)2
L2 (303 +70% +170+5)+L (100°+1402 +380+2)+8 (a°+a% +2Q) ],
A =
¢ 32(30+1) (0% +20+5) (L+1)°
2
[3L2 (30 +70% +170+5)+4L (30 +40% +7Q+2)+4 (@° -a% -70-1) 7,
Ag = 2 2
192(30+1) (Q° +20+5) (L+1)
2 3 _ 2 3 2
=[3L7 (307 470" +170+5)+2L (5@  +11Q" +35Q+13)+8(30+1) ],
B =

48(30+1)(Q°+2Q+5) (L+1)2
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2 2
-[3L (303+702+170+5)+4L(3Q3+802+190+2)+4(03+3Q +5Q~1)1],

B =
2
3 48(30+1) (02 +2Q+5) (L+1)°
[(30+1)L+(2Q+1)](Ka)?,
C, =1 - .
(3Q+1) (L+1)
4
3L2(21Q‘+52Q3+12502+520+5)+2L(21Q +s3o3
-L 2 3 2 2
B = — + +155Q@°+117Q+12)+4 (30 +90° +150-3) |(kb) ,
0
2(L+1) 2 >
48(3Q+1)(Q°+2Q+5) (L+1)
3L% (270“+600° +1460%+280-5)+2L (360" +870°
Tt 2 4 3 2 2
A= ——— 4 +205Q0° +69Q+3)+4 (30°+90° +190°+9Q) | (kb)*,
L(L+1) 5 5
96(3Q+1)(Q°+2Q+5) (L+1)
3
312 (210%+520  +1280%+520+5)+6L (70" +21a°
-L 2 3 2 2
A2 = — 4+ +49Q" +31Q+4 )44 (3Q° +5Q" +3Q-3) (Kb)",
L{L+1)

96(30+1) (Q2+2Q+5) (L+1)2

so we now find )
(3L+2) (Ka) .

4(L+1)
A particularly interesting feature of this result is that
the wave-speed is unaffected by changes in the length b along
the axis transverse to the direction of the vibration. Details

of the displacement field, however, are certainly altered.
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APPENDIX A.1

In this section we present the analysis which relates the

polar displacements u, v, Ww to their cartesian equivalents u1,

u , u_.
2 3
From (1.12), (1.30) we have
_ oo 2n .
u=AT a (Kr)° .explilwt+8-Kz)],
n=0 n
. oo 2n .
v = 1An§0bn(Kr) .expli(wt+6-Kz)], (A.1.1)

L e 2
w=iA T c (kr)’™ expli(wt+8-Kz)1].
n=0 n

Now by replacing i, w, K by -i, -w, -K throughout (so that the
wave-speed 1is unaffected by these changes) and then adding
these new forms to their previous values in (A.1.1), we

calculate

u = Anggan(Kr)zncose.exp[i(mt—Kz)],

v=-ACZ%b (Kr)znsine.exp[i(wt—Kz)],
n=0 n

W = iAnzgcn(Kr)2n+1cosB.exp[i(mt-Kz)],

and taking real parts

u=Aacta (Kr)zncose.cos(mt-Kz),
n=0 n

<
]

-A b (Kr)znsine.cos(wt-Kz), (A.1.2)
n=0 n

w=-ATZ ¢ (Kr)zn*1cose.sin(wt—Kz),
n=0 n

this then is a real wave travelling along the Oz-axis.

The transformations from polar to cartesian coordinates are:

U1 = ucosb-vsin®, x1 = rcos®8,

uz = usinB+vcosb, x, = rsin®, (A.1.3)
u =w X_ = 2z.

3 ! 3
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It follows then, from (A.1.3) with (A.1.2),

2 e 2 2 2n
u = + -
- A[a0 K ngo(an+1x1+bn+1x2)(xr) Jcos(wt Kx3),
u = AK2 Ew(a -b )X X (Kr)zncos(wt-Kx )
2 n=0 “n+1 n+#1 12 S 3!
u = -AK E7c x (Kr)?"sin(wt-Kx_ ),
3 n=0 n 1 3

provided we have a0=b0, and these are the forms used in §1.9.
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CHAPTER 2
VIBRATIONS IN SLENDER CYLINDERS UNDER STRESS
§2.1 INTRODUCTION.

In this chapter we present an analysis of the propagation of
small-amplitude waves along an elastic cylinder upon which
there has been imposed a large primary stress. The cylinder 1is
taken to have «circular <cross-section and to be infinite in
length. Our objective 1is to obtain the dispersion relation
linking frequency and wavelength of the small-amplitude waves
(treated as a p%gﬁrbaticn), and to obtain details of the
associated displacement field, for waves whose wavelength is
large compared to the cylinder radius. The materigl is taken
to be homogeneous, isotropic and hyperelastic with strain-
energy function W but, at any rate in the first instance, no
particular form for W is assumed. Consideration is given to
both compressible and incompressible materials, and for each
case results are obtained for both longitudinal and flexural
modes. We consider, however, only those modes for which the
wave-velocity remains finite as Ka-+0 (a the cylinder radius, K
the wavenumber). Our results are i1llustrated in detail for
particular types of material.

The plan of analysis is as follows. In §2.2 we consider the
steady state of the material produced after the imposition of
the primary stress. In §2.3 we consider incompressible
materials and obtain the equations of motion governing the
vibrations of small-amplitude and the appropriate boundary

conditions. In §2.4, §2.5 respectively we analyse longitudinal
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and flexural waves for incompressible materials and obtain the
dispersion relations governing their propagation when Ka 1is
small, ‘together with details of the displacement fields. In
§2.6, §2.7, §2.8 we undertake the correspon&ing analysis for
compressible materials. We conclude in §2.8 with a summary and
discussion of the principal results achieved so far and follow
this in §2.10 with a detailed examination of three

illustrative examples.
§2.2 THE EQUILIBRIUM STATE OF PRIMARY STRESS.

In the first instance it is convenient to work with a
rectangular cartesian system fixed in space. The typical
particle of the elastic medium 1in its hatural stress-free

state occupies a position whose coordinates are denoted by X

Kl

(K=1,2,3), and in the general state of the medium the position
of the same particle has coordinates x . (i=1,2,3), where x.
i i

depends upon the XK and possibly also the time t. These
relations may be inverted to give XK in terms of xi' t. The
elements of the Cauchy deformation tensor ¢ are defined by the
relations

i3 T %%, 1%, 3
where suffixes appearing after the comma indicate partial

differentiation with respect to the coordinates xi, and where

the double suffix convention has been used. The inverse of ¢

. -1
is denoted by ¢ '' and I, Iz' I3 are the usual three
. R -1
invariants of ¢ ', that is
-1 2 3
c - = - + -
| Al I3 Izh I1}\ A,

in which I 1is the identity matrix.

The theory now follows one or other of two lines of develop-
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ment according to whether the material is compressible or
incbmpressible.

It i§ convenient to begin with the incompressible case. The
strain-energy function for the medium, assumed to bé‘hyper—

elastic, isotropic and homogeneous 1is denoted by W(I I ).
) 1 2

Then the stresses Pij are given by the equation

P = 2W c '-1s,. -2W_c, _, (2.1)

13 113 13 2 173
where aij is the Kronecker delta and Wa, (a=1,2), denotes the
partial derivative of W with respect to Ia' Here in (2.1) I
denotes an arbitrary hydrostatic pressure and, since there is
no change 1in volume,

I =, (2.2)

so that the density of the material remains constant.

In the compressible case, however, the strain-energy
function W now depends upon all three invariants I | 1 | I
and the stresses are given by
1/2

(IZW2+I3W3)Gij—ZI3 WZCij' (2.3)

P o= 21 Y2y ¢ 4217 1?
ij 3 1715 3
where, of course, W3 = 8W/613.
The steady state achieved after the imposition of an axial
traction (taken here to be in the 0X direction) along with a
3

lateral force acting on the curved surface of the cylinder 1is

specified by the equations

x1 = [3x1, x, = sz, X, = yx3, (2.4)
so that [, ¥ (both positive constants) denote the transverse
and axial principal stretches respectively. We shall have y>1
in the tensile <case, and of course 1>Y>0 in the compressive
case.

For an incompressible body, however, we may simplify our

calculations by combining the axial and lateral tractions to

produce an eduivalent stress, v say, acting only in the axial
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direction.

Now
[ 9 B 7
B¢ o o \ B2 o o
c=]0o B?% o}, = o g° o |, (2.5)
0 o y? 0 0 Yz
i | | ]
with
2 2 2 2 4 2
I = 2B8°+°, 1, = B (p*+2v"), I, = B°v’.  (2.6)

We consider now the incompressible and compressible cases in
turn. For the incompressible case, from (2.2), (2.6)

B*y? = 1 (2.7)

and the stress tensor Pij will be diagonal. For an axial

principal stress T, we have from (2.1), (2.5)

T o= 2W ¥ om-2w, v, (2.8)
and since the state is to be produced by axial traction alone
the transverse principal stress must be zero; thus

0 = 2W152-n—2w2ﬁ_2, (2.9)
Upon subtracting (2.9) from (2.8) so as to eliminate the

unknown hydrostatic pressure II we obtain

T o= oW (vi-p?y-aw, (v E-pTY). (2.10)

In eguations (2.8)-(2.10) the partial derivatives W1, W2 are
to be calculated at the point in (11,12) space given by

I = 2% +y2, I, = B2 (p?+2v%). (2.11)

Thus for a given value of T, equations (2.7), (2.10), (2.11)

determine the values of 3, ¥ once the nature of the material
is known through the dependence of W upon I1, 12,
For the compressible case, on the other hand, from (2.3) and

(2.5) we have

£ = or-V2. 2 -1/2 R V5 -2
3 213 W1Y +ZI3 (12W2+13W3) 213 W2Y '
(2.12)
-1/2 2 -1/2 1/2 -2
= + -
t, 2177w BT 42L (I W +I W )-2I "W B°,
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t3" t1 denoting the axial and lateral principal stresses

respectively. For purposes of comparison’ between the

compressible and incompressible case we may assume T = ta_t1'
The partial derivatives of W are to be calculated this time at
the point in the three-dimensional (I1,12,13) space given by

(2.6). Once W is known as a function of I1, 12, Iz,

values of the stresses t1, t3, equations (2.6) and (2.12)

for given

suffice in principle to determine 3 and Y. Questions relating
to the existence or uniqueness of solutions are best
considered when an explicit form is given for W(I1,I ,13),

Our task now 1is to derive equations of motion governing
small perturbations about the steady state described above. We
begin 1in the next section with the case of incompressible

material.

§2.3 SMALL PERTURBATIONS - THE INCOMPRESSIBLE CASE.

Consider the steady-state deformation given by (2.4) and
make a small perturbation with cylindrical components u, v, w
that depend on the spatial coordinates and on the time t. We
shall regard u, v, w and their derivatives as small quantities
and shall discard their squares and products.

Expressed in cartesians the deformation is given by

X = BX + - = BX_+{x_ut+x v)/r
; B ] (x1u X2V)/r' X, B 2 ( L, utx, Y/r,

(2.13)
X = X +w
3 Y2y T

and adopting the familiar device of setting x1=r, x2=0, we

calculate
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| B2 (1-2u ) B 2 [(v-u,)/r-v_] I8 %u vy 2w ] -
by ) r z r
= -2 - _ -2, ra-2 -2
c g " [ (v ue)/r vr] B “[1 2(u+ve)/r] ] vZ+Y welr] (2.14)
ra-2 -2 ra-2 -2 o2,
I [B "u +v "w 1 -[B v +¥y “w/r] Y Tl1-2w,] ]

where, since the medium is supposed incompressible

U +(utv,)/r+w_ = 0. (2.15)
T '] 2z

From (2.14) it is a straightforward matter to calculate

2 2 _ 2 2
B® (1+2u ) B L(v-ug)/r-v ] [¥°u_+B w_]
¢! o= —Bz[(v—ue)/r—vr] Bz[1+2(u+ve)/r] [Y2v2+ﬁ2we/r] (2.186)
2 2 2 2 2
[y uZ+B wr] [y vz+B we/r] Y [1+2wz] ]

from which, with the aid of (2.15), we obtain

I1 = ZBZ+72+2(Y2-B2)WZ,
(2.17)
Iz - BZ ([32_'_2\{2 )+2B2 (YZ _BZ )wz.
Now as in (2.1)
P =2W c7'-m1-2v,c, (2.18)
and using (2.9), we write
* -
T o= 042wl g% -2w) g7, (2.19)

where the affix zero indicates that the partial derivatives
W1, W2 of W have been calculated in the equilibrium state of
primary stress; in (2.18) these derivatives have to be
calculated at the neighbouring point given by (2.17). The

. *
quantity 1l is the change in hydrostatic pressure due to the

perturbation. From (2.18) we have the following expressions

prr = '“*+2w1(1+2“r’B2-2w2(1-2ur)ﬁ'2—zwfﬁz+2wgﬁ'2,

Pea = —n*+2W1[1+2(u+ve)/r]ﬂ2_2w2[1_2(u+ve)/r]B-2_2w$B2+2wgﬁ_2'
Py = 'n*+2w1(1+2wz’Y2—2W2(1-2wz)v'2—2wsﬂz+2wgﬁ'2,

Po = 2w1[vr+(u9-v)/r132+2w2[vr+(ue_v),r]B—2,
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2 2 -2 -2
2W1(Y uz+B wr)+2W2(ﬂ uz+Y wr),

o
f

rz-

P
6z

: 2 2 -2 -2
2W1(Y vz+ﬁ we/r)+2W2(ﬂ vz+Y we/r).
.l

We now expand Wi, W2 by Tayvlor series about the equilibrium

state and, using (2.17) but retaining only first-order small

gquantities,

P = 0.2 0.,-2 _
e 2[W1B +W, B ][vr+(ue v)/r],
0 2 0_~2 0.2 0 -2
= + -20
Prz 2(W1Y +W2B )uz 2(W1ﬂ +W2Y )wr, (2.20)
_ 0. 2,.,0.-2 02,0 -2
Pez = 2(W1Y +W2B )vz+2(W1B +WZY )we/r,

and similarly

Prr = _H*+‘(W332+Wgﬁ-2)ur+4(Y2—B2)[(WE1B2+W$2B4)
-(w?2B—2+W22)]wz'

Pog = —II*+L(W?[32+W2B_2)(u+ve)/r+4(y2—[32)[(w?1[32+w?2(3") (2.21)
—(W$2B_2+W22)]wz,

P = T-n*+4(W$Y2+WgY—2)Wz+4(Y2-B2)[(W?1+W32B2)y2

2

0 0 2 -
(W' +w
12 T, By T,
where in the last equation we have used (2.10).
The identity (2.15), together with the arbitrariness

. *
inherent in I , allows us to cast (2.20), (2.21) into many
different <forms. For convenience, however, we choose the form
(and, in large part, the notation) that permits comparison in

various special cases with the work of Eringen and Suhubi [8].

We define

— w0
¢ = 2W1, ¥ = zwg, A=2w. , B=2W

and
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2 2 2 2 2
6 = 2p° (v -B°)A+D (Y2+32)B+(Y2+232)F]—2ﬁ (¢+B2W),

(o4}
It

—28% 3y, a, = B2 (o+p%w), (2.23)

& = 2(v° -B% ) (NP a+2B+3yFr+2p (o+pPY) .

We further define

* *

P =1 +2(Y2—B2)[BZW+(2+B8)B+(27+B4)F]wz. (2.24)

The stress components may now be written in the following

forms
*
P = -p +&_(u+tv +8 P . = - +(u - 2
rr P 62( e)/r 1wz, 6 62(vr (uB vi/r)/2,
P * o)
= - + = + + .
88 P +62ur 1wz, Prz cxs(uZ wr) Tuz, (2.25)
P (s
= - + = + + .
22 T-p +(u3 2t)w2, Pez cxs(v2 we/r) rvz

The equations of motion are well-known (see, for example,

Filonenko-Borodich [22] or Novozhilov [23]):

pu_ = + ~
tt Prr,r+PrG,B/r+Pr2,z (Prr PBB)/r’
v _=p + +P +2p : 2.
P tt ré,r Pee,e/r 6z, z rG/I' ( 26)
W= + + +
Pt F’rz,r Pez,e/r Pzz,z Prz/r'

where p is the constant density of the elastic material, and a
comma indicates partial differentiation.
The substitution of (2.25) into (2.26) yields the equations

of motion:

pu
tt

* 2
-_— + p— -~
p'r [(a5+t)uzz 52uee/21 ]+62(vr6+ve/r)/2r

+(8 +a_)w__,
1 5 "rz

pv

*
tt —p,e/r+52(u -ue/r)/2r+(cxs+t)vzz (2.27)

ré

2
Gz(vrr+vr/r-v/r )/2+(61+a5)wez/r,
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* 2
pw = - + +u + + tw_/rtw
et p’z (a5+1)(urz z/r vez/r) us(wrr r/ ee/r )

+(8 +21)w .
3 zz

We also require the boundary conditions that no traction is

applied at the deformed curved surface of the cylinder. These

are:
P* &
- u+v r+ =
+52( 9)/ 1wZ 0,
vr+(ue—v)/r = 0, (2.28)
u_ +w_ = 0,
z T
e
at r=a, where a = Bao, and a, a0 are respecti#}y the radius of

the cylinder after the primary stress has been imposed and the
radius in the natural state.

Equations (2.27), (2.28) are the basis of our subsequent
analysis of wave propagation. So far as we are aware they have
not been given previously in this form although for particular
materials, and in the particular case in which there is no
azimuthal dependence, the <corresponding equations are well

established (see, for example, Eringen and Suhubi [81).

§2.4 LONGITUDINAL WAVES IN INCOMPRESSIBLE MATERIAL.

We look for solutions of the equations of motion (2.27)
subject to the boundary conditions (2.28) that have v=0 and
that are independent of 8. Accordingly, we write

u = Ul(r)exp{i(wt-Kz)}, w = iW(r)expl{i(wt-Kz)},

(2.29)
*
P = Pir)exp{i(wt-Kz)},
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s$oO that the wave travels along the z-axis with phase speed

w/K. We shall specify the functions U, W and P in more detail

later; for the moment we substitute (2.29) into (2.27),
. 1

(2.28). The equations of motion (2.27) become

pwly = P +k? (a_+T)U-K(6 +a_ )W ,
r S 1 S r

(2.30)
pw’ W

Il

2
—KP—as(Wrr+Wr/r)+K (53 a5+r)w,

where we have used the incompressibility condition (2.15) in
the form
Ur+U/r+KW = 0, (2.31)

and the boundary conditions (2.28) give

~P+8 U/r+K§ W = 0,
(2.32)
-KU+W = o,
r

on r=a.

We come now to the forms for U, W and P, in the selection of
which we are guided by the corresponding expressions for
unstressed cylinders. For the group of waves under examinat-
ion, for which the wave-speed remains finite as Ka-=+0, we again
seek expansions 1in ascending powers of Ka. Specifically, we
try:

2n+1

U =A™ = -A £~ 2n
(r) nann(Kr) ] Wir) A L cn(Kr) '

(2.33)
P(r) = KA £°d (kr)2".
n=0 n

where A 1is an arbitrary constant, necessarily small in
magnitude, however, because of the linearised derivation of
(2.27), (2.28). Equating coefficients of r2n in the incom-

pressibility conditions (2.31) we obtain the relations

2(n+1)a -¢ = g, (n=0,1,2,...). (2.34)
n n

Similarly, the equations of motion (2.30) and the boundary
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conditions (2.32), with Cn eliminated by the use of (2.34),

yield respectively:

Xa = 2(n+1)d +(a_+T)a +4(n+1)(n+2) (8 +a_la '
n n+1 S n 1 S

n+«t !
(2.35)
2(n+1)Xa = d +2(n+1)(6_-a_+T)a -8(n+1)° (n+2)o_a_ _,
n n 3 5 n S n+i
_ 2 2
for n20, where X=pw" /K", and
E[(5,. -2(n+1)6_ )a -d_J(ka)?" = o
n=o 2 1 n n !
(2.36)
oo 2n
+4 (n+ =
nE.O[an 4(n 1)(n+2)an+1](Ka) 0.
Now equations (2.35) give (for large n)
an+1 ~ O(an/(n+1)(n+2)), dn+1 ~ O(an/(n+1)),

so that convergence of (2.33) is assured without restriction
on Kr.

The parameter X and the coefficients a , d are in turn

n n
expressed as asymptotic series expansions in ascending powers
2

of (Ka) , thus

= (0) (1) ( (
X = X0 ax" (ke ?4x ! (kar el ™ (ka2 ™ L,

and similarly for an and dn. Then from (2.35),

(m) {m) (m) m,({m-p)_(p)
d - -
n [las+Tra " +enin+1) (8 +a da p§0X a “,1/2n,
(m) _ (m) _ {m)
a ., = [dn +2(n+1)(53 a5+1:)an (2.37)
_ m,(m-p)_(p) 2
2(n+1)p§0x a, 1/8(n+1) (n+2)a5,
for n21, m20; and additionally from (2.35)2 we have
(m) _ (m) _ {m) (m) (0)
X = [d0 /2+(83 a5+1:)a0 8o a, ]/a0 ' (2.38)
where we have taken
a.o(m) = 1, m:O'
0, me1.
Likewise, ‘equating coefficients of (Ka)2" in the boundary
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conditions (2.36) we have

{(m) (m) m, (m-n) (m-n)
a -
] [a0 + L, {a thinti)(nt2)a }y1/8,
(2.39)
(m) {m) m (m-n) (m-n) :

d = - - - .

0 (52 251)a0 +n§1{(52 2(n+1)61)an dn b,
for mz20.

The terms in the dispersion relation may now be calculated
successively using (2.37)-(2.39).

First, from (2.39) with m=0 we calculate

PULR
1

(0)
0

(We may observe that to this approximation, a1 and, by virtue

= -1/8, d = 62-251

of (2.3%4), C,+ are independent of the applied stress T and
independent of the nature of the material.) These values
together with (2.38) give
X{0V _ (5 +6_/2-85 +7). (2.40)
3 2 1
The general situation now follows familiar lines.

.

We begin with (2.37) to obtain

aror _ (6) _ _
1 (53+52/2)/2, a2 (53+82 51+0.5)/192as,
then (2.39), with m=1, give
al’' = _(5.+5_-5_)/64a ‘" = —(45_+35_-46_)/8
1 3 2 1 5 ' 0 3 2 1 !
and so from (2.38) we have
(1)
X —_— — -—
(53+82/2 61)/8. {2.41)

To the next order of approximation the procedure supplies,

f 2.37 tti Z = (& - :
rom ( ), setting ( 3+52 51)/as.

alor _ _

\ (28,+36,/2-8 +5 2)/32,

a'%" = (35 -35 -35_ -a_-5_2/2)/9216a
3 - 1 2 3 5 2 5’
a'’ = (s, /245 2)/16

1 2 1 '

al'' = 5_(1+2/2)/1536a

2 ) 5!

then from (2.39), (2.38), setting m=2,
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d(2)

(563+262—561-522)/96,

alZ)

"

-(551-252-583+522)/1536a5,
and

x'? . (53-61)/192. (2.42)

A further round of calculation reveals
X3 = (5.+46./2-5.-a zz)/3072. (2.43)
3 2 1 S
The significance of the results (2.40)-(2.43) in the general
case and for particular materials will be discussed in §2.9

and §2.10.
§2.5 FLEXURAL WAVES 1IN INCOMPRESSIBLE MATERIAL.
We turn attention now to the more complicated problem of

flexural waves 1in incompressible cylinders. To this end we

consider the forms

u

U(r)exp{i(wt+e-Kz)}, v iVir)exp{i(wt+6-Kz)},

g
l

*
iW(r)exp{i(wt+6-Kz)}, P Pir)exp{i(wt+6-Kz)}.

The incompressibility condition (2.15) now gives
Ur+(U-V)/r+KW = 0, (2.44)
and the equations of motion (2.27) yield, after some simpli-

fication,

puw?y

2 2
Pr+[(a5+t)K —52/2r ]U+62(Vr+V/r)/2r K(61+a5)Wr,

2 _ _ _ _ 2
pw’V = P/r-5,(U_-U/r)/2r+6, (V__+V_/r-V/r’)/2
(2.45)
2
+(u5+t)K \Y/ K(61+a5)W/r,
pw’W = —-KP-0_ (W__+W /r-W/r2)+K2 (T+6_-o )W
S rr r 3 cxS .
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The boundary conditions (2.28) give

‘P+52(U—V)/r+K61W =0,
Vr+(U-V)/r = 0, (2.46)

-KU+W = 0'
r

on r=a.

For the radial dependence U, V, W, P we set

Ulr) = A £%a (kr)2", Vir) = A I"b (kr)2",
n=0 n n=0 n

W(r) = & 5% (kr)2n*7', P(r) = Ak @ (kr)2™",
n=g n n=0 n

where A is an arbitrary constant; in selecting these forms we
have again. been guided by our knowledge of the solution
corresponding to the unstressed cylinder.
Again denoting puw? /g2 by X, the governing equations are,
from (2.44),
(2n+3)an -b +c¢_ = 0, (n=0,1,2,...), (2.47)

+1 n+1 n
and from (2.45)

Xa = - - -

n (a5+1:)an (2n+1)(61+u5)cn+(2n+1)dn Gz[an+1 (2”+3’bn+1]/2'
an = (u5+r)—(51+u5)cn+dn—(2n+1)Bz[an+1—(2n+3)bn+1]/2, (2.48)
ch = (r+53—a5)cn—dn—k(n+1)(n+2)u5cn*1,

with (2.46) supplying

o0 _ _ 2n _
n§0[61cn dn+62(an+1 bn+1)](Ka) = 0,

oo 2n _
n§0[an+(2n-1)bn](t<a) =0, (2.49)

n
(=]

oo 2n
nEo[an—(2n+1)cn](Ka)

For the asymptotic developments in ascending powers of (Ka)2

we find from (2.48), (2.47), after some manipulation,
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(m) {m) (m) m,{m-p} (p)
c = [ - - -
n [-a Z +(z+8,-a )c T - EX c “ 1/ entn+)a,
{m) (m) {m) (m)
d = - -
n [Ln(n+1)(51+us)cn (a5+T)((2n+1)an bn )
my, (m-p) (p)_, (p) !
+ -
p§0X ((2n+1)an bn Yl/4n(n+1),
(2.50)
(m) _ {m) _ {m)
an+1 = [ (2n+1)dn +((2n+1)(61+u5) (2n+3)52/2)cn
~to_+tral™s Mg M P P (1) (nt2) B
5 n p=0 n 2!
b{™ = (2n+31a!™ 4™
n+1 n+1 n
for n21, m20, and
{m) (m) _ (m)_ 5(m) (m)__{(m)
X (a5+-r)a0 (51+a5)c0 +d0 +62(3b1 a, Y/2, {(2.51)
where, without loss of generality, we have set
aém) = [ 1, m=0,
0, mz21.
Likewise from (2.49), (2.47), we find
(m) (m) m, (m-n) {m-n)
C = -
0 a, +n§1{an (2n+1)cn },
(m) _ _pr.(m) m,_ (m-n) (m-n)
a, = -[¢, +.Iyda ,, tlan+t1)b P1/4,
(m) _ _(m) {m)
b1 = C, +3a1 ' (2.52)
(m) _ (m) (m)_, (m) m (m-n)_.(m-n)
d0 = 61c0 +62(a1 b1 )+n§1{81cn dn

2 n+1 n+1
for mz20.

A first approximation for the dispersion relation may be

made by setting m=0 in the relations (2.52) and calculating

(0) (0) (0} (0)
c = s = - = -
0 1, a1 b1 1/4, do 61 52 /2,
so that from (2.51) we have
x'0r _ 4. (2.53)

Thus to a first abproximation the speed of flexural waves in a
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slender cylinder is given by
2 2
pW” sk~ = 1,

a result independent of the particular material. This is in

\

agreement with the usual elementary argument (see, for
instance, Coulson [24]) for waves along a uniform .-stretched -
string.

Setting Y = (53+62/2—61)/a5 one finds for a further approx-

imation, from (2.50),

C(O)
1

n

(Y-1)/8, at?’

) ((51+QS)Y-51)/B,

a(O) (0)

]

= (582—2a5—5Y62)/19262, b (52-10a5—Y82)/19252,

then (2.52) give

(1) (1)
C = - = -

0 (1-3Y)/8, a1 (2(:1.5 252+5Y52)/4862,
b'1 = (20 -Y5_ )/166

1 5 2 2!

(1)
d0 = [(561 62—2a5)—Y(1861—762+8u5)]/46,

so that we have
'V = (5. +5_/2-86_)/4. (2.54)
3 2 1
To the next approximation we calculate

x'2) _ (1—4Y-7Y2)as/96. (2.55)

§2.6 SMALL PERTURBATIONS - THE COMPRESSIBLE CASE.

In this section we derive the equations of motion and the
boundary <conditions for elastic <cylinders of compressible
material. Part of the analysis can be taken over directly from
the incompressible case (§2.3) thus equations (2.13), (2.14),
(2.16) still hold good, but for the invariants of ¢~ ' we now

have
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I = 2B%+v?+2[B% (u_+(utvy ) /)4y’ w ],

6

L)
Il

B% (B%+2v* ) +2% [(B®+v?) (u_+(u+vy) /r)+2v’w, ],
_ 4 2
I, = By [1+2(u +(utvy)/r+w ) ].

We modify the definitions (2.22) to

1/2 -1/2 -1/2
e = 21 = =
3 W3, ¢ ZI3 W1, b4 2I3 Wz,
-1/2 -1/2 -1/2
B = = = 2.56
1 213 W11, B2 213 sz. 83 213 W33, ( )
-1/2 -1/2 -1/2
c = = =
1 213 W23, C2 213 W31, C3 213 W12,

all evaluated at the equilibrium state given by (2.6).

The relations (2.12) are then

t3 = Y2Q+2B2Y2W+®,
(2.57)
t, = BZQ+BZ(EZ+YZ)W+®,
and, using (2.3), the off-diagonal stress components are:
2 2
P = -
ro B (o+y ¥)tv _+(u -v)/rl,
2 2
P = -
gy = BB W (v +w /r)+lt ~t v, (2.58)
P = B2 (o+p%¥W) (u_+w_)+(t_-t_)u
rz z T 3 1 z'

where for the last two of the relations (2.58) we have made
use of (2.57). We define for this case

e 8
1

234[B1+(B2+Y2)ZBZ+Bkv4B3+2B2Y2(B2+Y2)C1+262¥2C2
+z(ﬂz+yz)c3]+e—ﬁzm—aztﬁz+y2)w,
a = 2[32y2[B1+2132([32+72)532+1.’s‘5y283+13"([32+3y2)c,l

+BZ(BZ+Y2)C2+(3ﬁ2+Y2)C3]+®-B2Q—ﬁ2(B2-Y2)W, (2.59)

o)
I

u2+<Bz—YZ)(m+BZW),
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R
"

8 6 4 2 2 2 4
zy‘[a1+43‘az+ﬁ B,+4B°C +2B" c, +4B° c 1+0+ (28" -y 1 0+2p" ¥,

o)
I

2 2 2 2
B2 (o+piw), a = B (z+yiw), a, = ¥ (B+B°Y).

Note that as here is defined in a way consistent with (2.23),

and that

a -a = o .- = t_-t . (2.60)

Now from (2.58), with (2.59),

P = -
8 astvrﬂue vi/rl,
P = + + -— ' 2.61
0z us(vZ we/r) (t3 t1)v2 ( )
P =

+w )+ -t Ju
cxs(u2 r) (t3 1) o

and similarly

P = t +a [u +(u+v, )/rl+2(t -0)u +2B°w(u+v, )/r+a_w_,

rr 1 1 r 6 1 r ] 2 z

¢

P = t +a [u +(u+v +2 +2(t -©)(u+v +0_ W 2.62

08 ] 1[ r ( e)/r] B ?ur ( ] ) ( e)/r W ( )
P =t +a_[u +(u+v ) /rl+la +2(t_-t w

zz 3 3[ T ( (] /r1+l 4 ( 3 1)] z
To derive the equations of motion we substitute (2.61), (2.62)
into (2.26), and denoting

4
R =ao +42(t -0 S = a +2 = +2(t -t ) (2.62)
1 1 }, 1 B ¥, T 0.4 ( 3 1 7

we find, making use of (2.60),

2 2
= - +
putt R(urr+ur/r u/r )+asuee/r +a7uzz+(cxG 5)vre/r
2
- + +
(as R)ve/r +(cx2 as)wrz,
2 2
= + + + + - .
pvtt (u8 S)urB/r (as R)ue/r +as(vrr vr/r v/ir") (2.64)

2
+RvV r + \'4 +(a +a w r
BB/ % Va2 ( 2 S) Bz/ !
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2
z/r)+u5(wrr+wr/r+wee/r )+Twz '

pw = (a_+a u +u _/r+v
( 2 5)( rz z/ z

tt ]

with p denoting the density of the material after the primary
stress has been applied.

The boundary conditions may be expressed in the form

Poov. =t v_ ' (2.65)
13 3 13
where V=(1,—Ue/r,—uz) is a unit vector normal to the deformed
curved surface of the cylinder x2+x2=32, and a is the cylinder
1 2

radius after the imposition of the primary stress. Thus using

(2.61), (2.62) in (2.65) we have

RU +s(u+v_)/r+a_ w_ = 0,
r e z

2

v _+{u_-v)/r = 0, (2.66)
r 0

on r=a.

It 1is readily verified that, for cylinders under uniaxial
stress, equations (2.64) agree for Ko materialswith equations
derived by Thompson and Willson [25], and, in the special case
in which there is no B6-dependence, with equations obtained by

Eringen and Suhubi [81].

§2.7 LONGITUDINAL WAVES IN COMPRESSIBLE MATERIAL.

Following the 1line &established in §2.4 for incompressible .
materials we look for a solution in the form
u = U(r)exp{i(wt-Kz)}, w = iWl(r)exp{i(wt-Kz)}. (2.67)
Again there is no azimuthal 6-dependence nor any transverse
component of displacement.

From (2.64), (2.67)
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o)
€
™~
[
n

2 2
- + - o -K(a_+a_ )W
R(Urr Ur/r U/r” )+ 7K U-K( ) s) .
(2.68)

‘0
E
E ]
n

- 2
K(a2+u5)(Ur+U/r) as(wrr+wr/r)+K Tw,

i
while the boundary conditions (2.66), with (2.67), yield

RU +sU/r+Ka W = 0,
r 2 -

(2.69)
-KU+W = g,
r
on r=a.
We now set
U =2 z“a (Kr)2n+1, W = -A Z“c (Kr)zn, (2.70)
n=0 n n=0 n

where A is an arbitrary constant. Substitution of (2.70) into
{(2.68) gives

Xa

+ + - + + +
2(n 1)(&2 as)cn+1 L{n+1)(n 2)Ran+1 a7an,
(2.71)
Xc

2
- + +Tc_-2(n+1)(a_+a_)la
n L{n+1) ascn+1 n (n+1)( ) 5) n'

) . ) 2 2 _ .
with X again denoting pw” /K" . Similarly from (2.69) we find

= 2n _
I [((2nt1)R+s)a -a ¢ 1(Ka)" " = o,
(2.72)

£ [a +2(n+1)cC Jika)2" = g.
n=0-“n n+1

Again the asymptotic behaviour of the coefficients indicates
convergence of (2.70) unconditionally.

In the usual way we seek asymptotic developments for X and

the coefficients an' c_ in ascending powers of (Ka)?. From the

equations of motion (2.71) we calculate

alm) (m)+a alm _ gm (m-p)a(p)]

n [2n(a,+a )c 2304 p=0X no1d/4n(n+1)R,
(2.73)
(m) (m) (m)  om, (m-p) (p) 2
C [Tc, -2(n+1)(a,+a )a_ Lo X c Pl1setne )0,
for n2»1, m20; and from (2.71)2 with n=0
{m) {m) (m) (m) to)
X = -— - +
[ ba C, +TcO 2((12 &S)ao ]/c0 ' (2.74)
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taking

clm) _ (R+S)/a,, m=0,

o, mz1.

Similarly the boundary conditions (2.72) produce

{(m) {m) m (m-n) {m-n)
= = - + -a,_C R+S
0 [uzc0 n51{((2n+1)R S)an o, € Y1/ ¢ ),
(2.75)
(m) {m) m,_ (m-n) (m-n)
C = - + + .
] [a0 +n§1{an 2(n 1)cn+1 }1/2
We find, successively, from (2.75}),
(0) (0
ao = 1, c, = -1/2,
and these with (2.74) supply the result
x0) - T-2a§/(R+S). (2.76)
In this approximation then, the terms aéO) and C:O' have the

same values that they had in §2.4 for the incompressible case.

In fact, because of (2.34) and (2.75) |, the relation
2

(0 (0)
a = -
0 2C1

will always hold true.

To the next approximation, with D = [T+a —2&2/(R+S)J/R, we
3 2

calculate,

(0) (0) 2
a = - = -
) D/s8, <, [(a2+a5)D 2a2/(R+S)]/32a5.
(1)
ao = [(3R+5)D—4a2]/e(R+S),
(1)
= - + - +
c [((3R+S)a5+(R S)az)D 2a2(2a5+a2)]/1B(R S)as,

1

so that (2.74) provides

2
- T -2, -(t_-t )}.
(1)

X = 2 2 31 (2.77)

2(R+S)2 |  (R+5)

To the next order of approximation, we find,

(2) "GiR D2(7R+s)~Da2 1+a2 +a§ 1+3a2 .
X = 3 _— — E— (2.78)
4 (R+S) 12 R+S| 3R R+S
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§2.8 FLEXURAL WAVES IN COMPRESSIBLE MATERIAL.

For this case the relevant equations of motion are given in

§2.6 by (2.64) and the boundary conditions by (2.66). We write

u = U(rlexp{i(wt+6-Kz)}, v = iV(r)exp{i(wt+8-Kz)},
(2.79)
w = iW(r)exp{i(wt+8-Kz)},
as we did in §2.5 for incompressible materials.
From (2.64), with (2.79), the equations of motion take the
form
Wl _ 2 2 2 .
POy = -R(U_ +U /r-U/r" )+a_ U/r  +a_K U+ (a +S)IV /1
rr r 6 7 6 r
5 .
-(a +R)V/r™ - +a_ ) KW
6 (o, 79 r'
2 2 2
POTY = ~{a_*+S)U /r-(a +R)}U/xr - (V +V /r-V/r ) (2.80)
[ r 6 6 rr Ir
+RV/r? 4o K2 V-(a +0 ) KW/1,
7 2 5
2 2 2
PW W = K{a_+a_) (U +U/r-V/r)-a_ (W +W /r-W/r" )+TK W,
2 S by S rr r
and similarly from (2.66), (2.79) the boundary conditions give
RUr+S(U-V)/r+a2KW =0,
Vr+(U—V)/r = 0, (2.81)
-KU+W = g,
T
on r=a.
For U, V, W we take the series expansions
U{r) = A had 2n ) - oo ) 2n
ngoan(Kr) ' Vir) Angobn(Kl) '
(2.82)
- oo 2n+1
W(r) = A L ¢ (Kr) '
n=0 n

where A 1s an arbitrary constant.

The substitution of (2.82) into (2.80) gives
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Xa

I

n a7an—[(2n+1)(2n+3)R—uB]an+1

+ - —
[(2n+1)R (2n+3)us]bn+1 (2n+1)(u2+u5)cn,

an = u7bn—[(2n+3)R—(2n+1)a6]an+1 (2.83)
+[R-(2n+1)(2n+3)a6]bn+1-(u2+u5)cn,

ch = Tcn+(u2+a5)[(2n+3)an+1—bn+1]-4(n+1)(n+2)a5cn+1,

in which we have used the relation R = S+2c18

Similarly from (2.81), (2.82) we have

°° 2n _
nEoL(2(n+1)R+s)a_  -sb _ +o c l(ka)®" = 0,

o0 A f 2n
go[a 1+(2n+1)bn+1](Ka) 0, (2.84)

n+

2 [a -{2n+1)cC ](Ka) = 0.

The corresponding relations for the coefficients in the

asymptotic developments are, from (2.83)3,

C(m) = [ (« +a )[(2n+1)a(m) (m)]+Tc(m)
n 2 n n-1
o5 My (m-pl ;pgj/kn(n+1)a
whilst manipulation of (2.83)1, (2.83)2 vields
(m) _ _ (m)_ (m Pl p)
a = [[(2n+1)(2n+3)aB Rlla a_ g a "'l
+L(2n+1)R-(2n+3)a 1o, bi™ - Eix (M7Pp Py
- {m)
4n(n+1)(2n+3)(u2+us)a6 n ]/16n(n+1) (n+2)Ras,
b(m) - _ (m) _ My {m- p) (p)
nat [ft2n+1)a, (2n+3)RJ[a7anA pLo X a ]

+[(2n+1)(2n+3)R-a_ ][a b(m) Z x(m p) (p)]
8 7 n : n

—kn(n+1)(a2+a )a c ]/16n(n+1) (n+2)Ru6,
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these equations holding for n21, m20.

The dispersion relation may be expressed in the form:

x{m) _ (m)_ _ (m) _ (m) _ (m)
u7a0 (3R uB)a1 +(R 3a6)b1‘ (u2+a5)c0 ' (2.85)
after taking '
(m)
ao = 1, m=0,
o, mz1,
while, from (2-83)1, (2.83)2 with n=0, and assuming X # o, we
find
p{m) _ _{m)
o aO :

Correspondingly, from the boundary conditions, we have, after

a little rearrangement,

(m) {m) m (m-n) (m-n)
c = -
o ag +n§1{an (2n+1)cn },
{m) _ _ (m) m {m-n) (m-n)
a1 = [a2c0 +n§1{2((n+1)R+s)an+1 +2nSbn+1
+a_c!™ "y 9,2 (res)
2 n '
(m) _ __{m)_ m,_(m-n) (m-n)
b1 = T8 ngl{an+1 +(2n+1)bn+1 r.

We proceed to construct a first order approximation for X

using these conditions. With m set to zero we find

(o) (0)
clo) -y, 2l0) o _ptod

1 1 = -a2/2(R+S). (2.86)

Comparing these results with the corresponding results for

incompressible materials, we see that the two relations

) 0
alo) _p'o! ctor _ to)

1 = TRy 0 -~ 9
are valid for all materials considered here.
Now wusing (2.86) in (2.85), and with the aid of (2.60), we
find

X(O, = -t
t3 1!

Jjust as for incompressible materials (with T interpreted as

(2.87)

For the next approximation we find
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cto)
1

[T—(ta-t1)—Zaz(u2+us)/(R+S)]/8a5,

a;°"= [(50,-R)B-5C]/48, b;°) = [(a -5R)B-C]/48,

. _ (o), (o) .
after denoting B = a5a1 /RaG and C = 2(a2+a5)c1 /R. Using
these values we may then calculate

ctt! Rlo_B/a_-3C/2(a_+a_)]
0 6 5 2 S '
-1 [ —- 1 - - - - -
e 8Ra2 uSB C (2R as)(R 3uG)B (4R 3aG)C ,
1 —
12 (R+S o
( )_ [ & (“2+“5)d
1 [ - ) - - -
b(1) _ 6Ra2 asB C +(2R as)(BR us)B aSC .
1
12(R+S) a +
I | O (uz as)J
and so, from (2.85),
[T-(t_-t )] - o® .
') 2 31 2 (2.88)
4 2(R+S)

Omitting details of the calculation for the next approxima-

tion we present the result

. —7[X(1’]2—x‘1’ 3- 20 + aias .
X = —£ > (2.89)

s 12 (R+S) 24 (R+S)°

An interesting feature of the results formulated for the

compressible case is that the equations are closely related to

those given for the transversely isotropic case in Chapter 1.

By taking
R = A, S = B, (12 = (_13 = C,
T =0 a_ = = = =
' 5 a7 E, t3 t1 o,

we recover the results established in §1.8, §1.9.
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§2.9 DISCUSSION AND SUMMARY.

We are now 1in a position to discuss and summarise the
vari$us dispersion relations governing the propagation of
longitudinal and flexural waves 1n incompressible and
compressible materials.

We begin by assembling the equations together for
comparison: that is, (2.40)-(2.43) and (2.53)-({2.55) for
incompressible cylinders, (2.76)-(2.78) and (2.87)-(2.83) for

compressible materials. We use suffices i, ¢ to describe the

material, and 1, f to describe the type of wave (i incompress-

ible, ¢ compressible, 1 longitudinal, f flexural). Then
2 2 4 2 2 6
pw = (A+T)-A(Ka) +(2A-62)(Ka) -1A +A(62—u5)+52 (Ka) ,
Kz . 8 384 4 30720
L -lll 5
2 2 2 4
pw = T+A(Ka) + us—kA—7A (Ka) ,
— - -
K . 4 a 86
| i, f s (2.90)
pwz = (Q+t)—azQ(ka)2— az (7R+S)Qz+Qa2 R+S- az
T2 2 3 o
K 2(R+S) L (R+S) 12R 6R R+S
B Jc, 1
2 4
+a2(s—n) (Ka) ,
12R
pwz = T+Q(Ka)2+ Luias —2[3(R+S)—2a2]Q—7Q2 (Ka)‘,
K? 4 (R+5)2 (R+S) o | 96
c, f 5
where A = [8 45 /2-6.], Q = [T—zaZ/(R+s)-r] and T=t_-t .
3 2 1 2 3 1
First, it is instructive to compare the results (2.80) with

those obtained for cylinders free from stress. For an elastic
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material with Lamé constants A, P the dispersion equations for
longitudinal and flexural waves in an unstressed elastic

cvylinder are:

pwz = u(3L+2)—u(3L+2)L2(Ka)2+p(2L4—13L3-55L2-52L—14)L2(Ka)‘

K (L+1) 8(L+1)3 96(L+1)5(L+2)

—u(L7—132LG-3egL5+514L‘+ze16L3+3324L2+1572L+254)L(Ka)s,

3072(L+1)7 (L+2)

(2.91)
pw?| = p(3L+2) (Ka)2-p(37L%+55L+20) (Ka)*,

K A(L+1) 48(L+1)°2

where L=A/p. In the absence of primary stress (so that 3 and Y

are both unity), it is readily seen from the derivation of

{2.25) that

6 = = - = - = !
; 62 63 24, o B, (2.92)
and from the derivation of (2.61), (2.62) and (2.63) that
R =T = A+2 ¢ § = = = =
H, . o, H, S Q, A. (2.93)

Using these values for as, o

R, S, T in (2.90)3, (2.90)4 and

setting T=0, gives
Q = p(3L+2)/(L+1), a /(res)? = L2442

and leads directly to a reconciliation with (2.91) to the

appropriate order. For incompressible materials we see, from
(2.92), that in the absence of primary stress A = 3y, so that
(2-90)1, (2.90), give the limiting forms of (2.91) as L=+~ (the

appropriate limit for incompressible materials).
We now restrict our attention to the terms in (2.90) up to
and including the coefficients of (Ka)z which for convenience

are rewritten here
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(wZ 2 _ 3 _ 2
pw* sk )i (83+62/2 5,+1)-(5,+5,/2 51)(Ka) /8,

1
2, 2 _ _ 2
(pw® /K )i’1c = T+(63+62/2 51)(Ka) /4,
(2.94)
(pw? /k?) = (T-20® 7 (R+S)-T)-(T-20% 7 (R+S)-T)a® (Ka)2 /2 (R+S)?,
c,1 2 2 2
(pw? /k?) = 1+(T-2a%/(R+S)-1)(Ka)2 /4.
c, f 2

The first observation to make is that the equations (2.94)
have a pleasing general symmetry about them; the wvital
quantities being (5 -5 /2-5 ) and (T—2u§/(R+S)) modified on
occasions by the addition of a term in T. The coefficients are

clearly closely matched. One slightly odd feature 1is the

appearance of the factor “2/2(R+S)2 in the expression for the

(szle)C 1 case, a factor not matched elsewhere. A conjecture
1

at this stage, later confirmed, is that this factor arises out

of the intrinsic effects of the compressible state of the

material.

It 1is possible, however, to express these results in a form
which may be more convenient for comparison with experiment.
In the theory of 1linear elasticity for isotropic materials
(see for example Love [12]), there are defined Young's modulus
E and Poisson's ratio o in terms of the Lamé constants A, U by

the relations

E

H3L+2)/(L+1), o = L/2(L+1),

so that (2.91), to O(Ka)? 6 pecomes

EL1-0° (ka)2 /21,

( mz 2
pW” /K )l
(2.95)

(pwz/Kz)f E(ka)? /4.

It might reasonably be hoped that (2.94) could be expressed in
a simple form with suitable changes in the definitions of

Young's modulus and Poisson's ratio to take account of the
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primary stress. In the primary state produced by the imposi-
tion of the primary stress, the deformation is specified by
the equations (see (2.4))

X = = = . .96

] ﬁx1, X, BXZ, Xq YX3 (2 )
In parallel, then, with the manner in which E, o are defined
for perturbations of the natural state, let us consider the

static deformation

X_ = Yx3+nx3, (2.97)

X = +
BX1 X 2! 3

X, = BX_tex
1 B 2

1! 2
where €, n are small and arise from (2.96) by increasing the

axial stress by an amount dt. We define a modified Young's

* ’ *
modulus E and a modified Poisson's ratio ¢ by the relations
* *

E = dt/n, g = -g/n. (2.98)

. * *
We now wish to relate E , ¢ to quantities already appearing
in this chapter. We turn therefore to (2.13), used alike for
compressible and incompressible materials, and observe that
(2.97) is equivalent to (2.13) provided

u = €r, v = 0, W = nz. (2.99)

From (2.66), (2.89)

(R+S)€+a2n = 0, (2.100)
and from (2.52)3
dt = 2u3£+(a4+21)n. (2.101)
We deduce at once from (2.63), (2.98), (2.100), (2.101)
* %
E = T-2a,0, /(R+S), o = a2/(R+S). (2.102)

From (2.60), therefore with (2.102),

* 2 *
E = T—2a2/(R+S)+20 T. (2.103)

Thus for compressible materials from (2.84), (2.103)

* * x * *x
(szle)c L= E-20 1-(0 12 [E -(20 +1)t)(Ka)2/2,
4

(2.104)

* * 2
T+[E -(20 +1)tl(Ka)" /4,

2,2
(pw® /K )c,f

to compare with {2.95).
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Incompressible materials present a somewhat degenerate case.
of course, ‘we must have E=3p and o=1/2, and from {2.15),
(2.98) 0*=1/2 also. But we can still use (2.25), (2.28) with
(2.98) for E* and we find

*
E = 6,48,/2-8 +27. (2.105)
When (2.105) is substituted into (2.94)1, (2,94)2

* * 2
(E -T)-(E -2Tt)(Ka)" /8,

2 2
w
(pw /K )i,l
(2.1086)

I

*
(pwlez)i TH(E -27) (Ka)? /4.

. f

It is seen at once that (2.106) agrees with (2.104) when 0* is
set equal to 1/2, the appropriate value for incompressible
materials. The advantage of casting the dispersion relations
into the forms (2.104), (2.1086) is that the quantities
appearing in those equations are directly measurable, and so
entirely suitable for comparisons between theory and
experiment. One cautionary remark, however, must be made: once
the primary deformation has been imposed upon the cylinder,
there 1is no longer isotropy with regard to further small
displacement. The quantities E*, U* defined above are defined
solely in relation to a further incremental rise in axial
stress and not for small perturbations in general.

Let us 1return now to the general notion of dispersion
relations and consider in particular the implications for
stability for those parts of (2.84) which refer to the
flexural mode. We see at once from (2.94)4 that m2 may vanish
(that is, the onset of instability is imminent) when T takes a
value of O(Ka)? A 1ittle caution is necessary because (2.94)
has been derived on the premise that the term in (Ka)2 is a
small correction in an_expression whose principal term is T.

But when T is itself of order (Ka)?' (2.94) may be expressed
4
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pw = x+pf3L+2 (Kaizy

+
c, € LL+4
correct to terms in (Ka)?. Thus we expect instability when T

corresponds to a compression given by

T = -pl3L+2] (Ka)?.

LL+4

At first sight this result has puzzling practical implica-
tions, for it seems to show that for a given negative value of
T, no matter how small, we shall find it possible to find a
sufficiently small K so that waves with this wavenumber will
be marginally unstable. It would seem then to follow that for
all bars and cylinders in compression, instability 1is
inherent. It must be remembered, however, that the results
obtained here for wave-propagation relate to cylinders of
infinite length. For bars of finite 1length the boundary
conditions at the ends have a 1role to play. Consider for
example a cvylinder of length A and suppose that the end-
conditions include the restriction that w, the axial displace-
ment, must wvanish there. Take equations (2.28), (2.67) and
(2.94) in conjunction; we see that we may replace K by -K
({leaving other parameters unaltered) and combine solutions to
get

W = W(r)sinKz.cos(wt+e).

For W to vanish when z=0 imposes no extra condition but for w
to vanish when 2=A requires K to be a multiple of n/A. Thus
the end condition sets a lower limit to K, specifically K2n/A,

so that we expect instability in this case to arise when

— 2
T = “Bl3L+2]||na

LL+G | A

and not until this value of compressive stress is reached. We
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observe that for instability in the longitudinal mode, (2.94)
predicts‘ that much larger valueSof |T| will be regquired. The
effect of the primary stress upon wave-velocity may well be
perceived, however, long béfore instability sets in.

We turn now to another aspect of the dispersion equation.

From (2.94) the typical equation can be written in the form

wlez = u2[1+E(Ka)2], >0,
before instability arises. Thus, taking the positive root
(with w, K both regarded for the moment as positive), we have

w = aK[1+E(Ka)2/2]
to the order of approximation in which we retain the small
quantity (Ka)z. Thus the phase-velocity c¢ is given by

c = w/k = al1+E(Ka)?/27,
and the group-velocity cg by

¢, = du/dK = a[1+3E(Ka)? /2].
Of course, if the correction term in (Ka)2 is not included,
both ¢ and Cg are constants, indeed there is no dispersion.
The value of E, as determined by the theory underlying the
derivation of (2.94), gives the correction to c and Cg' In

particular, the sign of E indicates whether the group velocity

increases or decreases as the wavenumber K increases. This has

great implications for the manner in which pulses are
propagated along the cvlinders. The reader is referred to
Jeffreys and Jeffreys [26], and an extended account of the

propagation of pulses in elastic solids by Davies [15].

§2.10.1 ILLUSTRATIVE EXAMPLES.

We wish now to illustrate the general results obtained above

by reference to certain special materials. In the first case
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we examine the model introduced by Mooney [27] for incompress-
ible materials and for the second case we study the model for
compressible materials (intended originally to represent the
behaviour of‘ polyurethane foam rubber) given by Ko [91].
Finally, we consider a hyperelastic incompressible material
for which the strain-energy W is expressed directly in terms
of the principal stretches (rather than the strain invari-
ants). With other workers Ogden [28B] has developed the theory
for rubberlike materials whose strain-energy may be taken in

this form.

§2.10.2 THE MOONEY MODEL.

For the Mooney (or Mooney-Rivlin) model, the material is
taken to be incompressible and the strain-energy function W
has the particular form

w = L(I1~3)+M(12—3), (2.107)
where L and M are constants.

In terms of the principal axial stretch y, we have

B =vy"?, I, = 2v+y 2, (2.108)
from (2.7), (2.11), and
= 2 -1 -1
T = 2(Y -y ) (L+y M), (2.1089)
from (2.10), (2.107). The definitions (2.22) are now
evaluated; thus
¢ = 2L, v = 2M, A =B =F = 0, (2.110)
so that the quantities in (2.90)1 . (2.9(])2 may be found from

the substitution of (2.108), (2.110) into (2.23). We obtain

(in terms of the axial stress)
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B, = -8, = —20, = -4y (L+y M), 6, = -4y (LavTM),
{(2.111)
-1 -2
A = 6Y L-2(y-4y " IM.
The expressions (2.108), (2.111) can then be substituted into
(2-90)1, (2.90)2 from which we may determine the wave-speeds

{in terms of L, M and <¥). Thus, denoting M/L by T, the

longitudinal mode gives

pw? = 2[2Y_1+Yz+37_2r]—[37_1+(4Y-2—Y)T](Ka)z

LK 4 (2.112)

+IV 4y ?raka)  —nrcey T - rvP T 12y T2 - asyray T 1(kad B

24 1536 (y+I)

2 , . .
To the order (Ka) this particular result was obtained by

Suhubi [29]. For the flexural mode

Pw? = 2(y-v 2 ) (y+DT)+I3y " +(4y 2-y)TI(Ka)?

LK 2 (2.113)

—[74+(194Y_1—4872)F+(127Y—2—60Y+7Y4)TZ](Ka)4.

48 (y+T)
The results (2.112), (2.113) are illustrated in Fig. 2.1 where
we set I'=0.4 and plot, for selected values of Ka, the curves

of the axial stretch Y against (c/co)2 with ¢ denoting the

usual wave-velocity w/K and where ci: 2(L+M)/p so that in the
linear approximation ¢, Teduces to J(p/p), the velocity of
transverse waves in an unbounded medium. In Figs. 2.2, 2.3
respectively, we display, for selected values of I, the
longitudinal and flexural modes, for the limiting case when

Ka=0. The curves produced for I'=0 represent the neo—-Hookean

model.
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Figure 2.1

Variation of (c/c*) against the axial principal stretch y for
a uniaxially stressed Mooney cylinder with r=0.4. The two lower
curves correspond to the flexural mode given by (2.113) and the
upper set of curves, for the longitudinal mode, are produced

from (2.112)
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Figure 2.2

For selected values of r, the longitudinal curves of (c/c*)*
against y are displayed for a uniaxially stressed Mooney

cylinder in the 1limiting case Ka=0.
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Figure 2.3

For selected values of r, the flexural curves of (c/c*)
against y are displayed for a uniaxially stressed Mooney

cylinder in the limiting case Ka=0.



§2.10.3 THE KO MODEL.

In [9] Ko proposed as a model for compressible materials the

strain-energy function

Wos W) e sen )y, (2.114)
P constant. This is an especilially simple model in that the
Lamé constants A, J governing the linear elastic behaviour are
equal (and, in fact, equal to the parameter ﬁ in (2.114)), so
that the Poisson's ratio is 1/4.

From (2.56), (2.57), (2.59), (2.63) with (2.114), we find

after a little calculation

[ § = = = =—— = =__
2 a7 S R/3 H t1, as T/3 H t3' (2.115)
For convenience we introduce the standardised stresses T1, T3
where
T = - T = - u
] 1 t1/p, T3 1 tg/u, (2.116)
so that, from (2.90)3, (2.90), with (2.115), (2.118)
w'| = (6T.-T,) - (BT -3T, )(Ka)’
P 3 1 3 1
K’ 2 64 (2.117)
1
2 2 4
-{49T° -
( 1 268T1T3+352T3)(Ka) '
9216T1
and
21 = (T.-T.) + (8T.-3T, )(Ka)?
pw - 1 73 3 1
K2 8 (2.118)

1 3BST1T3+527T3)(K8)

384T

3
When T1, T3 are unity (2.117) and (2.118) reduce, as they
should, to the forms (2.91) with L there set equal to one. The
full expressions (2.117), (2.118) will be used later, for the

moment, however, we set Ka=0 and look at the behaviour of
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these equations for two particular primary deformations. In

Fig. 2.4 we display for the longitudinal mode the curves of

(C/Ct)2 against the axial stretch ¥y with c¢c_ = f(ﬁ/p) denoting

t
'l
the wvelocity of transverse waves in the linear approximation.

The curves plotted <correspond -to a uniaxial stress; T1=1,

4 L. .
e Y=1 and an equibiaxial stress; T3=1, BZY3=1. The
corresponding curves for the flexural mode are given in

Fig. 2.5.

§2.10.4 RUBBERLIKE MATERIALS.

For our third example, we return to isotropic, incompress-
ible materials for which the strain-energy function W is given
in terms of the principal stretches 11,h2,h3 {where h1h2h3=1),
measured from the natural state. We write W = 2(11,h2,33) and
attach suffixes 1,2,3 to I to indicate partial derivatives
taken with respect to h1,h2,h3. Examples of calculations of
this kind are given in the work of Ogden and others [28],
[30]1, [31]1.

One possible approach is to express W in terms of I1, I2 and
then use (2.9#)1, (2.94)2. Often, however, this is a clumsy
and time-wast;ng procedure. A better line is to use (2.106).

First the principal stresses Pi are given in terms of the

function L and its derivatives by the relation

Pi = AiEi—H, (i=1,2,3),
where II is an arbitrary hydrostatic pressure. So, from a

consideration of the primary deformation,

T = A -
323 }‘1 21 !
at h1=h2=B, h3=Y. We now make the small perturbation given by

(2.87) which has the effect of increasing B, v, T to B(i+e),
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Variation of (c/c*)* against the axial stretch Yy for
longitudinal waves in a stressed Ko cylinder for the

limiting case Ka=0.
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y{i1+n), T+dt in which €, n, dt are all small. The incompress-

ibility condition gives 2e+n=0, that is, 0 =1/2. We can now

* *
calculate E from the relation E =dt/n to find

2 -1 -
Liaty BpHy }:11/2+Y

* -1/2

e = yr_+v 172

1

21/2'2Y 212/2.

We can then use (2.106) to give the dispersion relations.

In much of the work published on this model, the function I

is expressed in the form

L = F(\
1)+F(>\2)+F(}x3)+c,
where F 1is a function of the single variable and C is a

constant. In this case

T o= YE'Uy) -y V2E (y71/2
and

*
E 1/2 1/2

= NF (yI+y 2Ry et E ey TR (v 2 2.

For example, if L = L(h?+h§+h§—3)+M(h;2+h;2+hgz—3), so that

F(A) = LAZ+4+Mp "2

1

T 2(v2—y My (nay iy,

2(2v? +y V)L+2(2y7?

m
I

+Y )M,

and (2.106) gives

(po? /Lk? ) = 202y 4?43y T1- 03y + ey 2T (Ka) P /4,
(pwz/sz)f = 2(y-y 2 ) (y+T1+03vy '+ 4y 2-y)T1(ka)? /2,
in agreement with (2.112), (2.113) to O(Ka)?. This is as it

should be for with I as above, W = L(I1—3)+M(IZ—3)_

This is an &especially interesting example because 1it
illustrates the usefulness of equations (2.106) relating our
results fof the dynamical behaviour of cylinders, in the long

wave limit, to data derived from the statical state of stress.
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CHAPTER 3

SURFACE WAVES IN A PRE-STRESSED MATERIAL

1}

§3.1 INTRODUCTION.

In a series of papers by Willson [32-37] the properties of
small-amplitude surface waves are investigated for a variety
of isotropic elastic materials, both incompressible and
compressible, which have been placed under different
configurations of stress and also for arbitrary directions of
propagation. In this chapter we consider a surface wave
supported by a semi-infinite medium that has been placed under
a large primary deformation, and for which the direction of
propagation is along a principal axis. We consider both
incompressible and compressible materials in turn and show
that Willson's results are recovered as special cases. 0Our
main results are investigated numerically for Mooney and Ko

materials.

§3.2 INCOMPRESSIBLE MATERIAL.

Consider a semi-infinite 1region xa;o composed of a homo-
geneous, isotropic, hyperelastic material upon which stresses

have been applied along the three axes 0x1, Oxz, 0x3. We

suppose that the uniform principal stretches are a, B, Y so
that the deformation in the steady state is

X = aX = fIX = . .
1 1! x2 le x3 Yx3 (3.1)

In this state we denote the non-zero stresses by P1, P2 and P3

s0 that, using (2.1) with the definitions (2.22),
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2 -2
P = ®a” -I-¥a °,

2 -2
P2 = 0p -n-¥p ,
P, = oY -m-wy °, "
and
I 2 A 272720 T Tt T R T
I1 = a +ﬁ2+y ' 12 = E?B2+Bzy2+yza2, I3 = a BZY . (3.2)

Since the material is incompressible I3=1 so that afy=1.
We now consider the perturbed state in which the displace-
ments and stresses differ from the above by only small

amounts. *he deformation is specified by

X = +u(x X = = X_ +w .
] ax1 ( . 3,t), X, BXz, X 2 3 (x1,x3,t), (3.3)
in which we regard u, W as small quantities and in all
subsequent calculations we shall neglect their squares and

products. Accordingly, for the Cauchy deformation tensor c, we

calculate
[ -2 -2 -2 ]
a (1—2u1) 0 a u, Y W,
-2
c = 0 B ] '
-2 -2 -2
—_ -— 0 p—
i a u3 Y w1 Y oo(1 2w3) ]
(3.4)
[ 2 2 i
a (1+2u ) 0 uzw +Y u
1 1 3
¢t o= 0 B2 0
2 2 2
+ +
_uw1yu3 0 Y(12w3)-
The incompressibility condition det ¢ = 1 yields
u +w. = 0 3.5
1 3 ' ( )
and from (3.4), with (3.5),
I1 = a2+ﬁz+y2+2(vz—uz)w3,
(3.6)
2 2 2 2 2 2 2
I2 = aZB +B3°Y +y a +2B2(Y -a )w3.

Assuming that W and its derivatives may be expanded as a
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Taylor series about the point (I1,Iz) given by (3.6}, we find

for the components of stress

P = p_ -N+Rw_, P_ =P _ =0,
11 1 3 12 23
P = P_-I+Sw_, P = Gu_+Hw_, (3.7)
22 2 3 13 3 1
= -I+Tw
Paa Py TH+TW,

where

2 4 2
R = 20 (v2-o ) [a-B vy  B+p? (1-B2 v  1F1-208 (a+B Yy 'y,

2 2 2 2 4 &
s = 2R (v2 -l [Aa-al vy e+ (Bl -a* Y IF],

(3.8)
2 2 2 4 6 2 4 2 2 4 _4
T = 2y (y -a J)[A-a B B+B (1-a B )FJ+2Yy (d+a B ¥),
2 2 2 2
G =Y (0+B8 ¥), H=oa (§+p ¥),
and &, ¥, A, B, and F are given by (2.22).
The equations of motion become
- +(R+ + =
] (R H)w13 Gu33 pu,
(3.9)
—H3+Gu13+Hw11+Tw33 = pwtt,
with p the constant density of the medium.
The boundary conditions at the surface X3=0 are
P,..v. = P_v_, (3.10)
13 3 3 3
where v=(-w1,0,1), and, with use of the relation G-H = P3—P1,
this reduces to
u +w =0 -M+Tw_ = . 3.
v, ' n+T 3 0 ( 11)

The theory is now applied to the study of surface waves. We
restrict attention to those monochromatic solutions with
harmonic dependence on the spatial coordinates, and seek what
are in effect Rayleigh waves. Accordingly we suppose a
dependence exp[i(wt—Kx1—Kmx3)] for the field quantities, and

impose the requirement Im(m)<0 so that the wave is attenuated
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away from X3=0. The equations of motion (3.9) are then

ill+KmI{Gm? - (R+H)-X 1w

0,
{(3.12)

imI+K[(G-T)m’ -H+X1lw = 0,

where,hwe,vdenotev,X=pw2/K?4 and have eliminated u with use of
(3.5), and for (3.12) to have a non-trivial solution
4 2
Gm - [R-T+H+G+XIm +(H-X) = 0. (3.13)

This is a quadratic in m2 whose solutions, m2

2 .
1! mz, say, will

each give rise to a single solution m1, m, satisfying Im(m)<0

(except when the solution is non-negative, real) and where

m2+m = (X+R-T+H+G)/G, mom = (H-X)/G. (3.14)
Since (3.13) has real coefficients, the solutions are complex
conjugates (where they are not real) so that the expression
m1m2 will be negative (a conclusion that also holds when mf,
m; are both negative).

Now, as with Rayleigh waves in an unstressed medium, we seek
to satisfy the boundary conditions by selecting a disturbance
having two contributions of the type exp[i(mt—Kx1-Kmx3)] where
w, K are the same for the two contributions and m takes the

values m1 and nE respectively. Hence, noting (3.12), (3.5), we

look for solutions of the form

. 2 . 2 . .
u 1[m1Pexp(—1Km1x3)+m2Qexp( 1Km2x3)]exp{1(wt Kx1)},
w = -1[m1Pexp(—1Km1x3)+m2Qexp(—1Km2x3)]exp{l(wt-Kx1)},
I = K[((G-T)m’ -H+X)Pexp(-ikm x, )

+((G-T)mi—H+X)Qexp(—iKm2x3)]exp{i(wt—Kx1)},

where P, Q are arbitrary constants. The boundary conditions

(3.11) now become
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2 2 _
m1 (m1 1)P+m2(m2 1)Q = 0,
2 2
(Gm1—H+X)P+(Gm2—H+X)Q = 0,

and for a non-trivial solution in P, Q we find
(m -m_) [ (X-H) (m2+m> —1)+Gm’m_ + (X-H+G)m m_] = 0.
S S B 12 - 12
The wvanishing of the factor m1—m2 corresponds to a trivial
solution only and may be disregarded. The remaining factor may
then be manipulated with the aid of (3.14) to yield the
frequency equation
(X+R-T+H-G) [ (H-X) /61"? = (H-G-X). (3.15)
Of course, when the primary stresses are zero,
R = -T = -2y, H=G =y,
and (3.15) reduces to the well-known result
(x-4)(1-x)"% =

' (3.16)

where x = X/p, comparable with Rayleigh's equation (1.10) for

the incompressible limit Ao, Equation (3.16) has only one
physically meaningful solution X=0.8126... (cf. Table 1.1
corresponding to the result for Ka=w when ¢=0.5, V/V0 = x/J/3).

As an illustrative example we now consider the Mooney model
with strain-energy function given by (2.107). From (2.22),

{(3.8) and denoting M/L by T we have

R = —4La2(1+Bévkr), H 2Lu2(1+B2r),

T = 4Ly? (14’ B°T), G = 2Ly’ (14+B°T).

Using the incompressibility condition offy=1 we find
T-R = 4L{a® +y2) (14B°T),
so that the frequency equation (3.15) may be written
(¥-a? -3v%) (a®-1)"? = y(a®-¥*-¥) (3.17)
with Y = X/ZL(1+BZF). We see immediately that the point at

which instability arises, that is, when Y vanishes, (3.17) is
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independent of the parameter TI.

As a guide to the behaviour of this model under differing
states | of primary deformation we briefly explore three
specific cases: !
(i) uniaxial stress parallel to OX .

(ii) uniaxial stress parallel to Oxz;

(iii) equibiaxial stress in the 0X1x2—p1ane.

In case (i) we take P = diag(P1,o,o) so that B=v, aﬁz=1 and
Y is now a function of a and T alone. Denoting aa—aY by qz,
{3.17) may be expressed in the form

+q®+3g-1 = o, (3.18)
which contains a unique real root at q=q0=0.2955. For the
wave-speed we calculate

(c/co)2 = (az—qgu_1)(1+u—1r)/(1+r), (3.19)
where c=w/K, C§= 2(L+M)/p. The results are illustrated in
Fig. 3.1 where we plot, for selected values of I, the curves
of the principal stretch & against (c/co)z. The point labeled
M, lving on the line a=1, corresponds to the unstressed state
and at this point (c/co)2 takes the value 0.9126. The other
point common to all the curves occurs at the marginal point
x=0.4437.

Similarly, for <case (ii), where P = diag(O,Pz,O) and a=vy,
a2ﬁ=1, (3.17) may again be reduced to the form (3.18) but now
@ =1-Ya 2 so that

(ere? = (1-g2ra® (1+a™'T)/(14T) .
The results are displavyed in Fig. 3.2.

Finally in case (iii) we set P = diag(P1,p1,o) so a=f,

o®y=1. Again (3.18) holds but now with g>=a’®-a“Y; we find that

for this particular case

(c/co)2 = (az-u‘qﬁ)(1+a2r)/(1+r) (3.20)
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Figure 3.1

Wave-velocity as a function of the principal stretch a for a

Mooney half-space uniaxially stressed in the O0X*-direction.
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Wcive-ve locity as a function of the principal stretch a for a

Mooney half-space uniaxially stressed in the OX -direction.
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Figure 3.3

Wave-veloc 1ty as a function of the principal stretch a for a

Mooney half-space under an equibiaxial stress in the OX“*x“-plane.



and we display the results in Fig. 3.3. For the Neo-Hookean
model (I'=0), (3.20) is in agreement with the findings of

Willson [34, §71.
§3.3 COMPRESSIBLE MATERIAL.
For the general compressible medium, the relations (3.1),

(3.2) still hold for the static state and, using (2.3) and the

definitions (2.56),

P1 = a2Q+a2 ([32 +yz J¥+0,
P, = 62Q+B2(v2+a2)w+®,
P, = v o4yl (a® +p% )v+0.

The perturbed state is again described by (3.3), (3.4), but

now
I1 = u2+ﬁz+yz+2(u2u1+Yzw3),
I2 — uZBZ+B2Y2+qu2+2[u2(Bz+Y2)u1+Y2(u2+B2)w3],
I3 = u2ﬁ2Y2+2a2B2Y2(u1+w3).

For the stress components we calculate

P = P_+Au_ +Bw_, P = P =0,
11 1 1 3 12 23
= +Cu_+Dw P = +
P22 P2 c 1 D 3’ 13 Gua Hw1'
= P_+Eu_ +Fw
P33 3 1 F 3’

where, using the definitions (2.56),
4
2 = 2a' 8 +(B*+v* )28, +B v" 8 +28° ¥ (B% 47,

+2Bzy2c2+2(32+vz)c3]+azm+a2(pz+yz)w+@,
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B = 2ﬂ272[81+(ﬁz+72)(u2+92)Bz+u2B4Y283+Bz(Bz(u2+Y2)
»+2u2y2)C1+B2(u2+y2)C2+(u2+232+72)C3]-u20—u2(Bz-Yz)W+®,
c = 20°p? 18 +(a®+v7) (B2 +vP e, +a? PPy B +v? (v (a®4p%)
+2d232yc1¥§2(d2+32)c2+(a2+ﬁ2+2yz)c3]—32m+pz(d2—yz)w+e,
D = 2B2Y2[B1+(u2+B2)(u2+Y2)Bz+&4B2Y283+u2(a2(B2+Y2)
+252Y2)C1+G2(BZ+Y2)C2+(2a2+ﬁz+yz)C3]—B2¢-Bz(az—vz)W+®,
E = 2a272[31+(u?+32)(ﬁ2+y2)32+uzﬁ‘yzas+ﬁz(Bz(a2+yz)
r2a’ 2 rc +B% (a® +v? ), +ta? 428 +v7 1 I-vP o4y (¥ -8 e,
F = 2v' (8, +(a’+p% ) b, +a" B 8 +20% p* (0®+p% 1,
+2u252c2+2(a2+52)c31+y2w+yz(u2+ﬁz)w+e,

v2 o+l , H = o (3+2YW),

Q
]

and G, H are defined in such a way so as to be consistent with

(3.8). The equations of motion become

Au  + +(B+
11 Gu33 (B H)w13 pu

tt'!
(3.21)

(G+E)u13+Hw11+Fw33 = pwtt,

where p 1is the density in the deformed state and for the
boundary conditions (with wuse of the identity P3-p1=G—H) we
have
W +tu_ = 0, Eu1+Fw3 = 0. (3.22)
As 1in the previous section we seek solutions possessing a
eXp[i(Wt'KX1—Kmx3)] dependence, so that, from (3.21), we find
FGm® +[G (H-X)+F (A-X)- (B+H) (G+E) Im° +(A-X) (H-X) = 0

with roots m1, mz, say, where
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mf+m§ = -[G(H-X)+F(A-X)- (B+H) (G+E) 1/FG,

(3.23)

mfmi = (A-X)(H-X)/FG.

i
The general solution of (3.21) is then

u = (B+H)[Pm1exp(—iKm1x3)+Qm2exp(—iKm2x3)]exp{i(wt—Kx1)},
w = -[ (A-X+Gm. JPexp(-ikm, x, ) (3.24)
+(A-X+Gm:)Qexp(-iKm2x3)]exp{i(wt—Kx1)},
P, Q arbitrary constants. Substituting (3.24) into the

boundary conditions (3.22), we must have for a non-trivial

solution in P, Q either

m -m =0 (3.25)

or
2 2 2 2
(X-A)[E(B+H)+F(X—A)-FG(m1+m2)]—EFGm1m2 (3.26)

= (B+H)[E2+F(X-A)]m1m2,

where the expression on the right-hand-side of (3.26) has been

simplified by the relation B+H = G+E. From (3.26), with
(3.23), and rejecting the positive square root of m1m2, we
calculate
X=A (3.27)
or
(A-X) (H-G-X) = [E?+F(X-A)1[(A-X) (H-X)/FG]1""?, (3.28)

assuming B+H is non-zero.
Hayes and Rivlin {[{38] have shown that the solutions (3.25),
(3.27) are degenerate cases, thus (3.28) is the frequency

equation for surface waves in a pre-stressed compressible

half-space.
When there is no primary stress

A = F = A+2p, E = A, G =H = p,
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A, 1 the usual Lamé constants, and denoting x=X/p, a=2u/(A+2n),
(3;28) reduces to

 —x(z-ax) = (2a-4+x)[2(2-ax) (1-x)1"2
which upon squaring and removing the factors (2-a), (ax-2)
becomes (1.10), the relation governing Rayleigh waves in an
unstresed isotropic half-space.

Willson [32, 33] investigated Rayleigh waves in a semi-
infinite medium composed of a particular compressible material
under conditions of nérmal loading and equibiaxial stress.
Later [35] he considered an equibiaxially stressed medium
composed of Hadamard material. Eringen and Suhubi [8, §4.41]
calculated the frequency equation for surface waves in a
compressible half-space placed under the biaxial stress
P = diag(P1,P2,0), P1#P2. The results obtained in these four
investigations are encompassed by (3.28).

The result (3.28) is now applied to the Ko model (2.114), so
that,

A/3 = G = n/a3By, E=F/3=H=np/aBy . (3.29)
For this model we consider the curves on the velocity-stretch
diagrams for the following four cases:

(i) uniaxial stress parallel to 0X1;

(ii) normal loading onto the surface X3=0;

(iii) equibiaxial stress in the 0X1X2—plane;

(iv) equibiaxial stress in the 0X2X3—plane,

Using the frequency equation (3.28) with (3.29) we plot values
of (c/ct)z, c, = J(u/p), against the principal stretch o.

In case (1) we take P = diag(P1,o,0), so that B=y and aB4=1.
The curve produced 1is plotted in Fig. 3.4. K is the point
{1,0.8453) in agreement with Rayleigh waves in an unstressed

medium having a Poisson's ratio of 1/4 (cf. Tables 1.1, 1.2
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Wave-velocity as a function of the principal stretch a for

a Ko half-space uniaxially stressed in the O0X*-direction.
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Wave-velocity as a function of the principal stretch a for

a Ko half-space with a normal 1load on the face X*=o.



Figure 3.5

Wave-velocity as a function of the principal stretch a for a

Ko half-space under an equibiaxial stress in the 0X X -plane
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Wave-velocity as a function of the principal stretch a for a

Ko half-space under an equibiaxial stress 1in the Ox2x3-plane



with V/V0 taking the wvalue f(2/5)c/ct). The two points at
which instability arises are (0.5793,0) and (2.6788,0).

Similérly in Figs. 3.5, 3.6, 3.7 we display the curves
corresponding to theJcases (ii), (iii) and (iv) respectively.
The unstressed point K on the line a=1 remains the same for
all four graphs and the points of marginal stability are given
in Table 3.1.

Table 3.1

Values of the stretch a when the curves in
Figs. 3.5, 3.6 and 3.1 cross the a-axis.

Case (ii) a = 0.8724 a = 1.2793
Case (iii) a = 0.6345 a = 2.2731
Case (iv) a = 0.7611 a = 1.6367
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CHAPTER 4

VIBRATIONS IN CYLINDERS UNDER STRESS.

\

§4.1 INTRODUCTION.

In this chapter we return to the problem of small-amplitude
elasic vibrations in a pre-stressed cylinder, previously

considered in Chapter 2, but we no longer regard Ka as a small

gquantity. The governing equations set up in Chapter 2, for
longitudinal and flexural waves 1n incompressible and
compressible solids, are now solved completely to establish

general dispersion relations expressed in terms of Bessel
functions. Dispersion relations for longitudinal vibrations in
uniaxially stressed cylinders for both compressible and
incompressible méterials have been calculated by Eringen and
Suhubi {s, §4.51, however, no detailed numerical examination
of their results has since been carried out. We show that in
the 1limiting cases; when Ka is small (slender cylinders) the
results from Chapter 2 are recovered, and when Ka is large we
illustrate the recapture of the surface wave limit, obtained

in Chapter 3, for the Mooney and Ko models.
§4.2 LONGITUDINAL WAVES IN INCOMPRESSIBLE MATERIAL.
The longitudinal vibrations in an infinite cylinder composed

of an incompressible material are governed by the equations of

motion (2.30),
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2 2
= + + - +
pw U Pr K (as T)U K(B1 US)wr'

(4.1)
2 2
= -KP- W tW +K -a_+T)W
pw W KP us( rr r/r) (ZS‘3 5 W,
the incompressibility condition (2.15),
Ur+U/r+KW = 0, ) _ (4.2)
and the boundary conditions (2.32),
-KU+W_ = o0,
r
(4.3)

-P+8,U/T+KS W = 0,

satisfied on r=a.
In the same manner in which the equations in Chapter 1 were
solved, we calculate, from (&4.1), (4.2):

Ul(r)

It

K[AJ1(h1r)+BJ1(h2r)],

W(r)

- + .
[Ah1Jo(h1r) Bh2J0(h2r)], (4.4)

P(r)

I

+
K[Ab1J0(h1r) BbZJO(hzr)],

where A, B are arbitrary constants,

2 2 .
= - + =
bi ()\3+)\.i)(61 as)/hi, (i=1,2),
2 2 2 2
A, = [X-(a_+T)IK , A, = [X-(§ -a_+T)IK ,
3 5 4 3 5
(4.5)
+a x
(61 '5) S
2 2 2 2
}\ = + =
5 (61 &S)K . X pw /K ,
Cls
2 2 .
and h1, hz are the roots of the equation
4 2 2 2 2. 2
- + - = . 4.6
A (h4 hs)h hghs 0 ( )
Substituting (4.4) into (4.3) yields two equations linear in
A, B which may be solved to give the longitudinal dispersion

relation for incompressible materials:
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2 .2 2 .2
_(hz_h1)62 (k¥ 2% ) (b, /A, +6 Jw(n a)
(4.7)
+(k2=2%)(b /A +6 Jp(A a) = o,
2R T T T T

where Wi(x) = xJo(x)/J1(x). The above result is in agreement
with the form obtained by Eringen and Suhubi [8, §4.5].

Tao a zeroth order approximation (in Ka) we may set wix)=2,
then the relation (4.7) may be factorised to give

2 2 2 2 2 2
A - + K™ - - =
3(h1 }xz)[2(51 as)( }\")+(62 261)h5] 0.

2
The factors h3, A1~h§ both correspond to degenerate cases,
however, the remaining factor gives the result
X =8 +6_ /2-6 +7,
3 2 1
just as we had 1in (2.40). Higher approximations$ are, of

course, obtainable; however, the calculations involved become

exceedingly laborious.
§4.3 FLEXURAL WAVES IN INCOMPRESSIBLE MATERIALS.

For the flexural case the governing equations are given 1in
(2.44)-(2.46) which for ease of reference are rewritten below;
Ur+(U—V)/r+kW = 0, (4.8)

for the incompressibility condition,

2 2 2
pw U = Pr+[(a5+T)K —62/2r ]U+62(Vr+V/r)/2r K(51+u5)wr,
pw2V = P/r-& (U -U/r)/2r+6_(V_ _+V /r—V/rz)/z

2 r 2 rr r
(4.9)
2
+(a5+t)K V—K(51+G5)W/r,

W = -KP-a_ (W__+W /r-W/r’ )+K° (T+6_-a_)W

pw s rr r THO, T T

for the equations of motion, and
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-P+62(U—V)/r+K61W =0,
vV +(u-vi/r = o, ‘ (4.10)
-KU+W_ = 0,

r

for the boundéry conditions on r=a.

Solving (4.8), (4.8), we find

Ul(r) K[AJ;(h1r)+BJ;(h2r)+CJ1(Er)/r],

Vir) = K[AJ1(h1r)/r+BJ1(hzr)/r+CJ;(Er)],
(4.11)
2 2
Wr)_AMJHMrHB%%(%rM

P(r) = —K[Ah1b1J1(h1r)+Bh2b2J1(h2r)],

where A, B, C are constants, and

EZ

2
= - +Q . 4&.12
2(81 5)}x3/62 ( )
Inserting (4.11) into the conditions (4.10) and solving for A,

B, C, we obtain for the flexural dispersion relation:

det(D. ) = 0, (4.13)
ij
where
_ 2 _ _
D11 = h2b2+h261, D22 2[w(h1a) 2],
D = A.b +2%5 D = 2[2-w(Ea)]l-(Ea)?
12 171 1! 23 !
_ 2 _ 2 .2 _
D13 = (61+u5)h3, D31 (K hz)[m(hza) 1],
DL = 2[w(r_a)-2] D = (K°=A%)[w(r, a)-1] D = K2,
21 2 ! 32 1 1 ! 33

Setting =2 in (4.13) we calculate

2 2 2

}‘3(}‘1 )\2)(X T) = 0, \
where again the first two factors are degenerate so that to

this approximation X=1, as expected. Higher approximations are

not easlly obtainable.
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In the absence of the initial stress, from (2.82) with

(4.5), (4.8), (4.12), we have
2 b2 2 2 2
A = - = - = —
3 h4 (1-2)K , hs K™,
2 2 2 2 2 _ = _py2
h1 = E = (2Z-1)K°, hz = -k, b1 o, b2 ZK /hz.

where Z = X/yu, B the modulus of rigidity. The relations (4.7),

(4.13) now reduce to the unstressed dispersion relations
(1.9}, (1.16) after the incompressible 1limit L-+~ has been
applied.

§4.4 THE MOONEY MODEL.

To 1llustrate our results we again employ the Mooney model

(2.107) so that, from (4.5), (4.6), (4.12), with (2.108),
(2.111), we obtain
2 2 2 2 2 2
A = YK, A, = -YK©, A, = -KT,
>\12 = -yk%, Li = k%,  E® = -(1+y 'YK/ (14¥° D), (4.14)
-1 2
b, = 0, hzbz = 2(Y-1)}(L+y MK /v,
where
3 2 -1
Y =¥ 'Y(C/CO) (1+T)/(1+y T). (4.15)
0Of course the usual notations T = M/L, ¢ = w/K, C§ = 2(L+M)/p

still hold.

When Ka-e, we may reasonably expect to recover the surface
wave velocity given by (3.18) (with ¥y replacing a). Utilising
the result (3.19) in {(4.15) we find that Y is always positive,
thus h1a, hza will be purely imaginary in this particular
case, so that, using the asymptotic expansion wilix)»x, (4.7},

(4.13), the respective dispersion relations for longitudinal
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and flexural modes, may be factorised to give the form
expressed by (3.18).

The ‘results for longitudinal and flexural modes are
displayed in Figs. 4.1, 4.2 respeétively. In both figures T 1is
fixed at 0.4 and for a range of values for the axial stretch ¥
we plot the curves of (C/CU)Z against Ka. An interesting
feature to note in Figs. 4.1, 4.2 is that the Mooney model is
unstable only for points of compression. As Ka increases in
size the curves of constant Y converge rapidly to the wave-
velocity predicted by (3.18). In Fig. 4.3, again for I'=0.4, we
compare the results (2.112), (2.113), the respective longitu-
dinal and flexural approximations for small Ka, shown in the
figure by the broken curves, with the exact dispersion

relation curves.

§4.5 LONGITUDINAL WAVES IN COMPRESSIBLE MATERIAL.

For a compressible cylinder under axial and lateral
tractions the governing equations are given by the equations

of motion (2.68),

2 2 2 '
pw U = —R(Urr+Ur/r U/r )+a7K U K(u2+us)wr,
(4.16)
2 2
pw W = K(a2+a5)(Ur+U/r) as(wrr+wr/r)+K W,
and the boundary conditions (2.69),
RU +SU/r+Ka_ W = 0,
r 2
(4.17)

-KU+W_ = 0,
r

satisfied on r=a.

The equations (4.16) may be solved to give
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Figure 4.1
Variation of (c/coi against Ka for longitudinal

vibrations in a uniaxially stressed Mooney cylinder
with r=Q.4. Curves are plotted for selected values

of the axial principal stretch y.
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U(r) = K[AJ +
[ (BT BJ, (u,r)],
(4.18)
W = +
(r) Ap1c1J0(p1r) szcho(pzr),
where A, B are constants,
_ 2 _ 2_ 2 C_
ci (a2+a5)K = R(p4 pi), (i=1,2),
2 2 2
- + .
us(u3 pi) ((12 c':l.s)).li (4.19)
2 2 2 2 2 2 2
H = - = - K = +a
5 (X-T)K /(15, IJ" (X a_,) /R, Mg (cx2 5) K /ROLS,
2 2
and p1, u2 are the roots of
4 2 2 2 2 2 2
- <+ = -
H (p3+p4+p5)p p3p4 0. {4.20)
Inserting (4&.18) into the conditions (4.17), and eliminating

the unknowns A, B, we calculate for the dispersion relation:

2 2 2 2
(K +L2u2)(R+a2c1)w(u1a) (K +c1u1)(R+u2c2)m(u2a)

(4.21)
2 2
+2 - =
GG(C1LH czpz) a,
and, if we specialise to the case of a uniaxially stressed
cylinder, (4.21) agrees, apart from a difference in notation,

with the relation obtained by Eringen and Suhubi.
For a slender cylinder, we may set =2 in (4.21) to obtain,
after a little calculation and neglecting the solution

2! the result (2.76).

§4.6 FLEXURAL WAVES IN COMPRESSIBLE MATERIAL.

From §2.8, the governing equations are:

pw?U = -R(U +U /r-U/r®)+a_ U/r’+a_ K U+(a_ +SIV /r
rr b oy 6 7 6 by

2
- +R)V - +
(a8 R)V/r (qz us)Kwr,
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2 2 2
pw VvV (u8+S)Ur/r (aG+R)U/r —us(Vrr+Vr/r v/r®) (4.22)
2 2
+RV/r +q7K V-(u2+as)KW/r,

pw’W = Klo_ +a ) (U +U/r-V/r)-a_(W__+W_/r-W/r’ )+TK’W,
2 5 Ir S rr Ir

from the equations of motion (2.80) and,

RUr+S(U—V)/r+u2KW = 0,
Vr+(U—V)/r = 0, (4.23)
~KU+W_ = 0,

r

from the boundary conditions (2.81) satisfied on r=a.

For the general solutions of (4.22) we find

U(r) = K[AJ;(p1r)+BJ;(u2r)+CJ1(ar)/r],
Vir) = K[AJ1(u1r)/r+BJ1(uzr)/r+CJ;(§r)], (4.24)
W(r) = -[A ‘23 (. r)+Bc. p2J. (p.r)]
r= C My T H, 2 ¥ tH, '
where
2% = (x-a K%/ (4.25)
7 6’

then (4.24) with (4.23) provide the dispersion relation

det(D. ) = o0, (4.26)
ij
where

D = a p’+a_p’ D = 2[wip a)-2]

11 gHy TO M, 22 vid, !
D = a_p’+o 2 D = 2[2-yiZal]l-(Za)?

12 571 274! 23 !
D = (a_+o_)p? D = (Ki4c p’)[wip al-1]

13 2 T 1M, 31 ¢ By vy, !
D.. = 2[w(p.a)-2], D.. = (K’+c. p>)[y(p.a)-1], D . = K°
21 2 ! 32 159 1 ! 33 :

To a zeroth approximation we readily find the result (2.87)

after disregarding the degenerate solutions Zz = 0, pi = ui.

For an unstressed cylinder we have, using (2.92), (2.93)

Chapter 4 Page 92



with (4.19), (4.20), (4.25),

2 2 2 2 2 2.2
By, = [Z2-(L+2)]K", B, = (221K /(L+2), B = (L+1) K /(L+2),
2 2 2 2 2 2 2
p, =2 = (Z2-1)Kk", . = [Z2/(L+2)-1]K", c, = -1, c_ =K /X ,
1 2 1 ) 2
where 2 = X/y, L =A/UW, A, p Lamé constants; and the
dispersion relations (4.21), (4.26) reduce to their unstressed

forms (1.9), (1.16) respectively.

§4.7 THE KO MODEL.

For the Ko model (2.114) we calculate, from (4.19), (4.25),

with (2.115),

_ 2 2_ 2 2 _ _ 2
Ci = (T1+T3)K = 3T1(u4 ui), Z (Y T1)K /T1,
2 2 2
T (p_ -p.) (T +T_)p,
3 "3 i 1 7374 (4.27)
2 2 2 2 2 2 2
p3 = (Y-3T3)K /T3: H‘ = (Y—T1)K /3T1, us = (T1+T3) K /3T1T3,

with T1, T3 defined by (2.116) and where we denote X/p by Y.

We consider first the marginal (Y=0) behaviour of a Ko
cylinder placed under a wuniaxial stress directed along the
axis of the <cylinder. From the dispersion relations (4.21),
(4.26) with (4.27) we illustrate the marginal states in
Fig. 4.4 for both 1longitudinal and flexural waves. We see
that, unlike the Mooney cylinder, we have instability for both
compressions and extensions. We see also that as Ka increases
the curves approach the surface wave limit predicted in §3.3,
shown in the figure by the two short broken lines.

For the non-marginal case, and denoting c, = J(u/p), we plot
in Figs. 4.5, 4.6 the wave-speed ratio (c/ct)z against Ka for

various values of the axial stretch y for the longitudinal and

flexural modes respectively. Again the values of the curves on
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2 4 6 8 10
Ka
Figure 4.4
Curves of marginal stability for a uniaxially stressed
Ko cylinder. For large Ka the curves approach the limits
predicted for surface waves, represented in the figure

by the short broken 1lines.



(c/c

)

Ka

Figure 4.5

0.5

Variation of (c/c”) Y against Ka for longitudinal

vibrations in a uniaxially stressed Ko

cylinder.



0.8

(c/c

0.4—
Y=1 .0
Y=0.8
Ka
-0.4 —
- 0.8
-1.2 4L
Figure 4.6
Variation of (c/c™) " against Ka for flexural

vibrations 1in a uniaxially stressed 'Ko cylinder.



Y=0.8

Figure 4.7

For longitudinal vibrations in a uniaxially stressed

Ko cylinder we contrast the exact dispersion curves
(solid curves) with their corresponding approximations

for slender cylinders (broken curves).



Y=1 .0

08 -
7-0.8
(c/c.)
0.4 —
Ka
-0.4 —
-08 -
Figure 4.8
For flexural vibrations in a uniaxially stressed Ko
cylinder we contrast the exact dispersion curves (solid
curves) with their corresponding approximations for

slender cylinders (broken curves).



the right-hand-side of the figures are predicted by our
results in §3.3.

Finaliy, we contrast our findings with the results
established in §2.10.3 for slender Ko cylinders. In Fig. 4.7,
for selected values of Yy, we plot the wave-velocity (2.117),
represented in the figure by the broken curves, and the curves
calculated <from the longitudinal dispersion relation (4.21).
The corresponding result for the flexural case, using (2.118)

and (4.26), are illustrated in Fig. 4.8.
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CHAPTER 5
A GENERALISATION OF KO'S STRAIN-ENERGY FUNCTION
§5.1 INTRODUCTION.

In [9]1 Ko proposed for the elastic strain-energy function

1/2
W = .
H[I3 +I2/ZI3], (5.1)

H constant; E>0, where I1, IZ' I3 are the invariants of the
left Cauchy-Green strain-tensor B, with a neutral stress-free
configuration taken as the reference state. Originally
intended to describe the behaviour of polyurethane foam rubber
and similar materials, the form (5.1) has been used by many
workers in a much wider context fér illustrating various
theoretical aspects of non-linear behaviour in elastic
materials (see for example (8], [25]). When it is applied to
deformations in which the elastic strains are small, the usual
linear behaviouf for isotropic materials is recovered, with
Lamé constants A, U both equal to E, so that Poisson's ratio o
is 1/4.
The purpose of this chapter 1s to introduce the model
strain-energy function
W= prr 241 /21 _+(n-1I_/21, (5.2)
3 2 3 1
E, n constants. The motivation to consider this alternative
function lies in theoretical rather than experimental observa-
tion. The difficulties inherent in problems of non-linear
elastic behaviour severely limit the scope of investigations
in terms of a general strain-energy function (see [39] for an

example of such an investigation), and a reasonable line of

development 1s to explore fully the potential of such models
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as are mathematically tractable and have physical relevance.
The present model is proposed in this spirit. The following
secti§n§ show that physically reasonable behaviour 1is
manifested for a greater range of principal stretches than is
the case for n=1, and this together with the avoidance of the
constraint g=1/4 may have applicatian.

In §5.2 of this chapter the model form (5.2) is examined in
the light of various a priori constitutive inequalities that
have been proposed by other workers in attempts to guarantee
that the predicted behaviour is in accord with natural notions
of what is physically reasonable. In §5.3 particular consider-
ation 1is given to equilibrium configurations of plane strain
and plane stress. Finally in §5.4 we turn to the dynamical
behaviour of the model and consider the vibrations of a
stretched plate composed of elastic material for which (5.2)
holds. In particular, the conditions for marginal stability
are established in terms of the parameters E, n and the
applied principal stretches h1, hz.

§5.2 BASIC CONSIDERATIONS.

For a clear account of the principles of non-linear elastic-
ity the reader 1is referred to [40]. For a given deformation

the stress-tensor P can be found from the equations

-1

P =h I+h B+ .
0I h1B h_1B ' (5.3)
where 1 is the identity and ho, h1, h_1 are the response
functions given by
-1/2 -1/2 1/2
h = 21 W +I W h = 2 h = - .
0 2 5 [I2 , t1, 3], ] 13 W1, . 213 Wz, (5.4)
where W1 = aW/aI1 and similarly for Wz, W3. Now substitution

for W from (5.2) into (5.4), combined with (5.3), yields the
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stress-strain relations
P = Hr1+1 "2 ((n-118-nB " 1.

In the reference state B=I, 13=1 and P vanishes for all n,
so this state is indeed free from stress. For a small
deformation B may be written as I+2e, where e is the usual
strain-tensor. Taking e in its cartesian component form eij
and retaining Jjust first-order terms in these small quantit-
ies, we find 13=1+Zekk (using the summation convention) and
obtain

Pij = Etekkﬁij+(4n—2)eij].
Thus in the linear small-strain approximation W, as given by
(5.2), leads to Lamé constants
A= 7, p o= (2n-1)p,
and Young's modulus E and Poisson's ratio O are given by
E = i[kn—1—1/2n], g = 1/4n.
Now physical considerations demand that p, the modulus of
rigidity, is positive so (since U has been assumed positive in
(5.2)) we conclude that n>1/2. We impose this restriction on n
in all that follows.

First consider a homogeneous finite deformation in which the

X_ ) in the reference state moves

typical particle at (X1, Xz, 3

to (x1, X X_) in the current state, where
Xx = X X X = X X X = A_X A.>0 5.5
1 171 2 272! 3 373! ( i Vi ( )
a fixed system of cartesian axes being used throughout. The

guantities hi are then the principal stretches. Since

B, = x, x_ (5.6)
ij i,k 3K
the principal stresses are P1, P2 and P3 where
- 2 -2 .
P = - - =
i Hl1+{(n 1)Li nhi }/(h1h2h3)], (i=1,2,3). (5.7)

In the past, various restrictions have been placed upon W in

order to ensure a physically reasonable response. Reviews of
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these restrictions and the interconnections between them are
given in [41], [421]. Recently, however, Dunn [43] has
constructed an ingenious example to show that even when

: A
several such requirements are met, the response is not alwéys
satisfactory.

We begin with the Baker-gEricksen inequality which is
satisfied if and only if the greater principal stress is
associated with the greater principal stretch, that is

(P.-P J(A.-A.) > O if XA, #F N ...

1 J 1 J 1 J
From (5.7) it 1s easlily seen that this is equivalent to the
requirement that (n-1)}x2—n}‘._2 shall be a monotonic increasing
function of A, for A>0. If n2>1 this is certainly satisfied but
for 1/2<n<1 we must have
A <A (n) = In/(1-n)1"4,

In Table 5.1 the values of hB(n) are shown for selected values
of n.

Table 5.1

For selected values of n, the values of AB(n) shown are

the greatest values of the principal stretches if the

Baker-Ericksen inequality is to hold.

n = 0.5 0.6 0.7 0.8 0.9
ha(n) = 1.000 1.107 1.236 1.414 1.732
n = 0.92 0.94 0.96 0.98 1.00
LB(n) = 1.842 1.980 2.213 2.646 oo

Of course if the Baker-Ericksen inequality is imposed in the

; A_>0

strict sense that it has to be satisfied for all h1, A 5

2
then the consequence 1s that n must be greater than or equal
to unity. However, we adopt the viewpoint here that the

inequality is to be interpreted as imposing joint demands upon

n and the hi' -Thus for 1/2<n<1 we must have hi<hB(n) for
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i=1,2,3, if the Baker-Ericksen inequality is to be satisfied.

Another restriction commonly encountered is the "strength-
ened tension-extension inequality" which requires that each
‘ .
principal stress shall be a strongly monotone increasing
function of its associated principal stretch. Again from (5.7)
we see that this 1s always satisfied if n21 but for 1/2<n<t1 it
requires that

1/4
hi < [3n/(1-n)1 = (1.315...)ha(n).

Yet another such inequality is the ordered forces inequality

which can be cast into the form
(P A X -P.X A ) >0 if A # A_.
1 2 3 2 3 1 1 2

From (5.7) an easy calculation shows that this is equivalent

to the requirement that
Q@ = n-1+n(A%4+x A +A2) /(A A ) -a. > 0
11 2 2 1 2 3
for all values of h1, Az, ha to be used in any calculation of
physical relevance. Now the analysis is much more complicated
since, even 1if n21, @ is certainly negative for sufficienty
large h3; but we may argue as follows. In the (h1, hz) plane,
consider the rectangle bounded by the 1lines h1=0, L2=0,
h1=1+5, h2=1+6, (620). Then since aQ/aA1 and ao/ah2 are both
negative, the smallest value of Q (for a fixed value of ha)
inside the rectangle is achieved at h1=h2=1+6 and there
4

Q=n-1+3n{1+8) —ha. Thus provided h3 does not exceed

-4 . . .
n=1+3n(1+08) the ordered forces inequality will hold. Suppose

we set
-4
hs = 1+6 = n-1+3n(1+8)
and determine & in terms of n, say &=8(n). Then if no
principal stretch exceeds ho(n)=1+5(n) the ordered forces

inequality will be obeyed. In Table 5.2 the values of ho(n)

obtained in this way are shown for selected values of n.
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Table 5.2

For selected values of n, the values of ho(n) shown specify
the size of the cube in (h1,hz,h3) space, for the points of

which the ordered forces inequality will certainly hold.

n = 0.5 6.6 0.7 0.8 0.9
ho(n) = 1.000 1.055 1.106 1.154 1.200
n = 1.0 2.0 3.0 4.0 5.0
ho(n) = 1.248 1.707 2.314 3.126 4 .055
n = 6.0 7.0 8.0 S.0 10.0
ho(n) = 5.028 6.016 7.010 8.007 9.005

It 1is to be emphasised that this is a sufficient condition,

that 1is to say, the ordered forces inequality may well be
satisfied at points 1in the (h1, hz' h3) space outside this
cube «aof edge ho(n), but inside the cube it will certainly be

satisfied. We shall return to this point in §5.3.

Other restrictions upon n and the hi may follow from a
consideration of specific types of deformation. Consider an
elastic bar, obeying (5.2), placed under uniaxial stress T
parallel to the axis Ox1. Then from (5.7) since both P2, P

3

vanish
A +n-1 = nA "
1 2
For 1/2<n<1 then, under compression, hz becomes very large as
h1 approaches (1-n). We must conclude therefore that physical
reality breaks down in our model before this stage in the
compressive case 1is reached. Also from (5.7), the stretch-
stress relation for bars under uniaxial stress is
- -3 1/2
T = Ll[1+{(n—1)}\1—nh1 }{(h1+n—1)/n} 1.

It 1s reasonable to require that for elastic deformations of
this kind T shall be a monotonic increasing function of k1,

This is certainly true if n21 but for 1/2<n<1 this imposes an

upper limit to h1, denoted here by A (n). Table 5.3 shows how
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hu(n) depends upon n.

Table 5.3

For selected values of n, the values of hu(n) specify the
greatest axial stretch if the axial principal stress is

. to be a monotone increasing function of the stretch.

n 0.5 0.6 0.7 0.8 0.8
hu(n) = 1.000 1.176 1.353 1.576 1.954
n = 0.82 0.94 0.96 D.98 1.00
hu(n) = 2.081 2.252 2.509 3.003 oo

Now consider the deformation produced by a hydrostatic

pressure II, so that h1=h2=h3 (=X say) in (5.7), where
T = Pna > -(n-1)A" " -17,
with p, po denoting the densities in the current and reference
states respectively, this result gives the pressure-—-density
relation
1= Btnprp ) - (n-1)(prp 1 -1
It is easily verified that for >0, dl/dp will be positive for
all n>1/2. If we demand that dlI/dp shall be positive even when
I 1is negative, then for n>1 we must have
A< (n) = rsn/(n-101"0

For n<1, however, this requirement is satisfied for all A.

The conditions to be imposed upon W are sometimes expressed
[44] in terms of the principal wave speeds, that is, thé
speeds of waves propagated along the axes Ox1, Oxz, Ox3 as>

perturbations of the primary state specified by (5.5). But

Truesdell [44] has established the universal relations

2 2 2 2 2
c = c = X -P = -P
11 }‘16?1' 12 1 Py 2)' 13 A, (P, 3 )
2 2 2 2
P ah1 p (h1 hz) p (h1 )\3)
where c11, c12, c13 are the speeds of waves travelling
parallel to 0x1, the first being the longitudinal principal
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wave speed and the others the speeds of the transverse
principal waves. Thus the requirement that cf1 shall be
positive 1is equivalent to the strengthened tension-extension
inequality, and the requirements that cfz and cfa shall be
positive is equivalent to the Baker—-Ericksen inequality.

It is clear from the results above that the requirements
commonly placed upon the strain-energy function W in order to
achieve a physically reasonable response, when applied to
(5.2), distinguish sharply between the two cases n2»1 and
1/2<n<1. Thus the original Kq model (5.1) marks the boundary
between them. If n?»1 the Baker—-Ericksen and the strengthened
tension-extension inequalities will always be satisfied (so
that the speeds of all principal waves are real), and in
uniaxial stress the applied tension is a monotonic increasing
function of the axial stretch. It is easily shown too that the
ordered forces inequality holds not only for all states of
uniaxial tension or compression but also for all small
perturbations about these states. Further, for materials under
hydrostatic compression dlI/dp will always be positive (though
this 1is also true if 1/2<n<1). Finally, the ordered forces
inequality will certainly be satisfied if the ©biggest
principal stretch does not exceed ho(n), a quantity which

increases with n.
§5.3 TWO-DIMENSIONAL CONFIGURATIONS.

In this section we consider two-dimensional homogeneous
configurations of plane stress .and plane strain, with
particular reference to the ordered forces inequality. In view

of the results of §5.2 we shall impose upon W in (5.2) the

Chapter 5 , Page 102

N



requirement that n21. These configurations are of ©basic
interest and importance in their own right; in particular,
however; the study of plane stress is an essential preliminary
to the analysis of plate vibratiots given in §5.4.

Consider first a state of plane stress with regard to planes

normal to OXS; we take the deformation specified in (5.5),
therefore, and require P3 in (5.7) to vanish. Thus A1, h2>0
and
AA = nal -(n-1)A . | (5.8)
1 2 3 3

If the ordered forces inequality is to be valid, then
A - - .9
( 2L3P1 h1h3P2)(h1 hz) > 0 for h1 # hz (5 )
and
P1(h1—h3) > 0 for h1 # h3,
(5.10)
Pz(hz—hz) > 0 for hz ¥ hg.

We are assuming in this section that n2>1 so the Baker-Ericksen
inequality holds, sO (5.10) is certainly wvalid. Easy

manipulation of (5.9) shows that it 1is equivalent to the

requirement that

2 2 3
A < n-1+ + + .
5 n-1 n(}\1 L1h2 hz)/(h1h2) . (5.11)
where hg is given in terms of h1 and hz {and n) by (5.8). Take
first the original Ko model with n=1. Then (5.8), (5.11) give

(h1h2)8<(hf+h1h2+h§)3. This inequality is clearly satisfied in
the (h1, hz) plane in the neighbourhood of the point N, where .
h1=h2=1. The situation is illustrated in Fig. 5.1. The
)3

bounding curve (h1h2)8=(hf+h1h2+h§ , indicated in that figure

by the label n=1 divides the positive guadrant of the (h1, hz)
plane into two parts. The ordered forces inequality will hold

in the part including N and bounded by the axes, which are

asymptotes to the bounding curve. This curve cuts the line
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Figure 5.1

Variation of X against X* for the generalised Ko model in
states of plane stress. For selected values of the parameter n
the curves shown enclose those states for which the ordered
forces 1inequality is not satisfied. For n>1.498... the ordered

forces inequality holds for all states of plane stress.
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0
0 1 2 3 4 5
Figure 5.2
Variation of against x* for the generalised Ko model

in states of plane strain. The ordered forces inequality
holds below these curves in the area which contains the

neutral point N (1,1).



h1=h2 at the point A, where h1=h2=1.3904...

for n>1, however, the bounding curves are closed (see
Fig. S.i, where the curves for n=1.4, 1.45, 1.48, 1.49, 1.498
are shown). The ordered forces inequality holds outside these
closed curves, that is, 1t holds in an area containing N. As n
approaches 1.488 (approximately) the bounding curve gets
smaller and finally disappears. Thus for n>1.488... the
ordered forces inequality holds for all homogeneous plane
stress configurations.

Now consider states of plane strain with regard to planes
normal to 0X3. Thus we set A3=1 in (5.5) and then the ordered
forces inequality will require for the in-plane forces

(h2P1—A1P2)(h1-h2) > 0 for h1 # hz' (5.12)
and, taking 1into account the out-of-plane force A1L2P3, it

requires also that
(P -\ P A -1 > 0 for X 1
1 13)(1 ) 1?é !

(5.13)
(P2~h2P3)(h2—1) > 0 for 12 # 1.

It is easily seen that (5.12) is equivalent to the requirement

G

A_ > 0. {(5.14)

N 3 2 2
{n 2)(h1h2) +n(h1+h1hz+h2) > 0 for h1, 2

For n22, (5.14) is clearly satisfied. For a fixed value of n,
with 1<n<2, the curve G=0 1in the (h1, hz) plane has thg
coordinate axes as asymptotes and is symmetrical about the
line h1=h2 which it cuts at h1=[3n/(2—n)]”4>1. For a given
value of n, {(1€n<2), at any point on the same side of the
curve G=0 as N{(1,1) the requirement (5.12) will be satisfied.
However, this is not the end of the matter for (5.13),
relating in part to the out—of-planerforce, must also be taken

into account. The requirements {5.13) may be cast into the

form
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H o= (n-1-A)04n(A 242" %2427y > o,
1 2 1 1 1
(5.15)
Hoo= (n=1-2_)+n(A 342 %427 ") 5> 0.
2 1 2 2 2
Consider first Ko material {n=1): the curve G=0 is now the

bounding curve only in the region 1<h1<1.839..., the remaining
part of the boundary being taken up by the curves H1=U and
H2=0. Calculation reveals that this pattern, where the overall
bounding curve 1is at some stage governed in turn by one of the
three curves G=0, H1=D, H2=D, is repeated for all values of n
in the range 1<n<1.745... . For n>»1.745... the bounding curve
may be constructed solely from the requirements (5.15). The

bounding curves . for n=1, 1.3, 1.6 and 1.8 are shown in

Fig. 5.2.

§5.4 WAVES IN A STRESSED PLATE.

Consider a plate of elastic material, with a strain-energy
function given by (5.2), unbounded in the 0x1, Ox2 directions
and having thickness 2H in the neutral state. The plate is put
under large tensions or compressions directed along the Ox1,
Ox2 axes. The state now achieved is called the primary state
and the stresses in this state are given the affix zero.

Taking the principal stretches to be h1, hz, hg, we see that

the deformation is given by (5.5), that the stresses P?1, sz

due to the applied forces are P1, P2 given by (5.7) and that

P23=p3=o_ Of course ng vanishes for i#j. In this state the
upper and lower faces are x3 = ikgH = +h.

The plate 1s now perturbed, the additional small deformation
comprising a two-dimensional wave travelling along the

direction of the principal axes Ox1, The upper and lower facés
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are kept free from traction. Thus in the perturbed state (the

displacement being

where u, W have

taken parallel to the plane Ox1x3)

= X X +
h1 ; u(x1,x3,t),

- 5.1
A, X ( 6)

L3X3+w(x1,x3,t),

derivatives so small that their squares and

products may be neglected. This additional deformation causes

small changes in the stresses, so now

0

P, . =P, .+ P._,
ij ij ij
. . *
the contribution Pij being due to the perturbation. In
particular, from (5.2)-(5.4), (5.6, (5.16) it is readily
found that
*
P = = = +
11 R R AT P33 331Uy Ta Wy Pis au, Bw1'
where
= _ 2 -2 - e 2 -2
a11 Al (n 1)}\1+3nh1 1, a, Al-(n 1)h1+nh1 ),
2 -2 _ _ 2 -2
a,, = A[—(n—1)}\3+n)~.3 1, a,, = Al (n 1)}x3+3n)x3 1,
-2 2 -2
o = A[(n—1)h§+nh1 1, B = att(n-1)A+nn "1,
A= pia A a7
HUAG By P )

With the density in the primary state denoted by p, the

equations of motion yield

{ pu

tt

~-{a+a
31

For a solution of

u

11 11

)u13+(pwt -Bw -

I
o

- -(B+a, )W
Uy mouyy i (Bra 0w,

(5.17)

a_ _w ) = 0.
t 11 33 33

(5.17), we try

Acosh(sta)exp[i(wt—Kx1)],

Bsinh(stg)exp[i(wt—Kx1)],
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. . 2 2 2
and so obtain (with w /K denoted by c )

I
o

2 2 .
- + -
(pc a,  tas )A (B+a13)1sB

(5.18)

n
(=]

. 2 2
- A+ -R+
(u+a31)1s (pc™ -B 3335 )B

For non-trivial solutions in A, B in (5.18) the parameter s
must satisfy

(PCZ—aH+a52)(pc2-B+a sz)+(m+a31 )(B+a13)52 = 0. (5.19)

33
. . . . . 2 . 2 2
This 1s a quadratic equation in s with roots s1 and 82, say.

It follows, therefore, that a solution for the deformation

field may be sought by setting

u

i(fp+a + n
B 13)[Ls1cosh(K?1x3) Ms,cosh(Ks, x 11,

(5.20)
w = [( cz-a +asz)Lsinh(Ks x_ )+ H{ cz-a +asz)Msinh(Ks x_ )]
p 11 1 173 P 11 2 273!

in which the factor exp[i(wt—kx1)] is suppressed and where L,
M are constants that must be found from the boundary
conditions. The upper and lower faces are free from traction
so {using the relation P1=ﬁ—u) we must have

u =0 on X = +4+h.

u_ +w = 0 a +a \
3 ! 311 33 °3 3 -

These conditions yield two simultaneous equations in L, M and
for a non-trivial solution

sztanh(Ks1h)

=Q' (5-21)
s tanh(Ks_h)
1 2

where

2 2 2 2
- - + -
[a31s2 {pc a11)][a31(ﬁ a1g)+a33(pc a11)+ua s ]

Q = 2 - > 33 ; . (5.22)
-— . -— + + -_—
[a31s1 (pc a11)][a31(ﬁ a13) 333(pc 311)+aa3352]

Equation (5.21) is the dispersion equation for the waves given
by (5.20), usually called the 1longitudinal or extensional
waves. By interchanging the hyperbolic functions cosh(x),

sinh(x) throughout the analysis so far, we may obtain also the
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dispersion equation for flexural waves, that is,

S t h(Ks_h
, tan ( 2 )

= Q. (5.23)
s1tanh(Ks1h)

Our initial objective 1is to examine the conditions for

marginal stability by studying (5.21), (5.23) with pc2 set
equal to zero. From (5.21), (5.23)
+1
tanh(Ks1h) Q%
= (5.24)
tanh(Ks_h) s
2 2

with the upper sign for longitudinal waves, and the lower sign

for flexural waves, where from (5.18) for marginal stability

2 2 . . . 2
51 and 52 are the roots of the gquadratic equation 1in s

4

2 —
aa33s -[a +af3 (a+a31)(B+a13)]s +[3a11 = 0. {(5.25)

a
11 33

Consider first, however, the case of a very thin plate for

which kh 1s very small. Assuming for the solutions of

2

principal interest that 51, 52 remalin finite as kh tends to

2

zero, and denoting L = (a__/

11 a33), r = —(u—B+a11—2a ) /3,

31

(5.24) yields as an approximation for flexural waves
2 2 4
pc = P1—T(Kh) +IT[-18T+50-2Za)(Kh) /15a,

and for the longitudinal waves

2 2 2 3 4
pc = (a11 2431)rz (Kh) -TE [1BI'+SZa31 2a31](Kh) /1Sa31

Thus the condition for the flexural mode to be in marginal
stability, in the limit as Kkh=0, is simply that P1 shall

vanish, that is,

-4
A = - -
) nk1 (n-1).

Similarly the condition for the longitudinal mode in very thin

plates to be in marginal stability is

2

a —a a
31 11 33

= 0. (5.26)
Equation (5.26), together with the condition that P3 shall

vanish, determine pairs of wvalues (h1, hz) giving marginal
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stability 4in the longitudinal mode. The results are presented
in Fig. 5.3 for n =1, 1.03, 1.10 and 1.30. The sight-line

h1=h2 has been included in this and later diagrams; its

i

intersections with the appropriate n-curve give equibiaxial
states of marginal stability. For these states all directions
of wave-propagation are equivalent. In particular for the Ko
model (n=1) it is found that for marginal stability in the

longitudinal mode

A, = 27}\1"‘, A, = A /3.

Consider now the <case of a very thick plate for which in
(5.24) kh 1is taken to be very large. Without loss of
generality s1, 52 may be taken to have positive real parts.
Then for the modes of interest, the hyperbolic terms in (5.38)
may be replaced by unity sO that both the flexural and
longitudinal modes are governed (to this approximation) by the
same disbersion equation

Qs = s . (5.27)

We proceed as before to obtain states of marginal stability by

. 2 ,
setting pc in (5.22) to zero, and using (5.25), (5.27). For

the Ko model this gives

A, = (51/33)3’21\1"', A, = (62/33)°

Ve (5.28)
The wide disparity of the numerical factors in (5.28) makes
for difficulties of presentation. In Fig. 5.4 we display for
n=1 the values (h1,h2) obtained by choosing the upper sign in

(5.28), in Fig. 5.5 those obtained from the lower sign. We

refer to these as the first and second family of solutions

respectively, and for other values of n (n = 1.03, 1.10 and
1.30 in Figs. 5.4, 5.5) these families arise similarly.
Examination of Fig. 5.4 reveals the sensitivity of the

saolutions to <c¢hanges in n, in particular for the equibiaxial
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n=1.03
n=
0 2 4 6 8 10
Figure 5.3

For a thin plate (Kh<<l) composed of generalised Ko
material, the curves show states of marginal stability

in the longitudinal mode.
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12 n=1.3 n=1.1

10

2 n=1.03

n=1

Figure 5.4

Variation of against for a thick plate (Kh>>!) composed
of generalised Ko material. The curves represent the first
family of solutions indicating marginal stability in the

flexural and longitudinal modes.
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0 0.2 0.4 0.6 0.8 1.0 1.2 14
Figure 5.5
Variation of against x* for a thick plate (Kh>>1l) composed
of generalised Ko material. The curves represent the second
family of solutions indicating marginal stability in the

flexural and longitudinal modes.



case. The behaviour of the second families as shown in
Fig. 5.5, however, is quite different. It may be seen that for
those solutions arising from extension (h1>1) in the direction
of wave-propagation a severe compression.l(h2<1) has to be
imposed in the transverse direction. The remaining solutions
correspond to compression in the direction of wave
propagation; in particular for the equibiaxial case we see
that h1=h2w0.55 for the values of n considered here.

We turn our attention now to consider the marginal behaviour
of a plate placed under a wuniaxial stress applied in the
direction of Ox1. From (5.24), we display for both
longitudinal and flexural waves, the marginal curves given in
Figs. 5.6 and 5.7 respectively for selected values of n. The
curves representing marginal states of compression (h1<1) are
insensitive to changes in the values of n considered here. For
marginal states of extension (h1>1) the behaviour is quite
different and the curves produced are very sensitive to even
small changes in n. On the right-hand-side of Figs. 5.6, 5.7
(Kh large) the curves <c¢lose up as n increases (n>1) until
finally these curves vanish for n=1.02212... (A124.1) leaving
no further points of marginal stability in the flexural case.
We still have curves of marginal stability in the longitudinal
case but these curves also vanish for n=1.03037... (h1x3.8).

The marginal behaviour of a plate under an equibiaxial
stress produces curves similar to those found for the
uniaxially stressed plate; however, the curves produced are
less sensitive to the value of n. Thus in the equibiaxial case
for large values of Kh the marginal curves vanish for
n=1.10689... (h1z3.9) and when Kh=0 the curves for

longitudinal waves disappear for n=1.12684... (h1z3.4).
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n=1.01
9
8
n=1.015
7
n=1.021
6
n=1.025
n=102
5
4
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n=1.01
2 n=1.015 n=1
n=102
n=1.021
1
(0]
o 1 2 3 4 5 6
Kh
Figure 5.6

For selected values of n the curves shown represent marginal
states of stability for longitudinal waves in a uniaxially
stressed plate. For an extension all curves disappear

for n=1.03037 ...
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n=1.01
n=1.015
X
n=1.02
n=1
o 1 2 3 4 5 6
Kh
Figure 5.7

Curves of marginal stability for flexural waves in a uniaxially
stressed plate composed of generalised Ko material. For X*>1

all curves disappear for n=1.02212...



Kh=0.5

Kh=1.0

pC

1 Kh=3.0

Figure 5.8

Variation of pc* against for selected values of Kh in

a uniaxially stressed plate composed of Ko material.



Kh=0.5

Kh=1.0

PC

Figure 5.9

Variation of pc”* against for selected values of Kh in
a uniaxially stressed plate composed of generalised Ko

material with n=1.02.



Finally, we produce the graphs of pc2 against 31 for a
uniaxially stretched plate and selected values of Kh. We
considef the two <cases where n=1, n=1.02 corresponding to
Figs. 5.8 and 5.9 respectively. The points where the curves

cross the k1-axis mark the points of marginal stability.
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THE INFLUENCE OF A PRIMARY STRESS UPON THE PROPAGATION OF
SMALL-AMPLITUDE ELASTIC DISTURBANCES

by

PHILIP J. MYERS

ABSTRACT
This thesis considers three problems in the field of
elastodynamics.
The first concerns small-amplitude elastic disturbances in
an infinite cylinder, a problem first investigated by

Pochhammer [1] and Chree [2]. Our approach extends the results
of Pochhammer and Chree by utilising a method of successive
approximation through which the governing equations are solved
to produce dispersion relations.

The second investigation, recently considered by Eringen and
Suhubi [3], 1is of the propagation of elastic waves in a pre-
stressed body, with particular reference to the circular
cylinder and the half-space. The governing equations are again
solved wvia successive approximation to give new and detailed
results describing the wave motion.

The final investigation is of a compressible strain-energy
function which 1is an extension of the Ko model. The model is
examined in the light of various a priori inequalities, and is
then used to obtain solutions to the problem of vibrations in
a stressed plate.
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