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INTRODUCTION

This thesis considers three problems in the field of

elastodynamics.

The first concerns small-amplitude elastic disturbances in 

an infinite cylinder. The equations describing vibrations in 

an isotropic cylinder of infinite length and circular cross- 

section were first formulated by Pochhammer [1] as early as 

1876; however, the complicated nature of these equations meant 

that even modest information was difficult to obtain. Chree 

[2 ,3a,3b] also discussed this problem but gave a more general 

account by including the cases in which the normal section of 

the cylinder was non-circular and in which the cylinder was 

composed of anisotropic material. Our approach extends the

results of Pochhammer and Chree by utilising a method of 

successive approximation through which we solve the governing 

equations to obtain dispersion relations that relate the 

angular frequency w and the wave number K ( K=27r/wavelength ) .

The second investigation is of the propagation of elastic 

waves in a pre-stressed body, with particular reference to the 

circular cylinder and the half-space. In this type of problem, 

the final state of the body may be regarded as a small elastic 

deformation superimposed on a given finite deformation. The

general theory of such deformations has been used by many 

investigators: Prager [4], Green, Rivlin and Shield [5],

Urbanowski [6 ], Zorski [7], and more recently by Eringen and 

Suhubi [8, Chapter 4] whose notation we adopt in Chapters 2 

and 4. From the equations of motion, boundary conditions and 

constitutive equations, it is possible to establish a set of
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linear differential equations which may be solved to give a 

dispersion relation. In general, however, these linear 

equations are complicated and little information can be 

obtained without recourse to considering special cases or 

specific materials. This work has particular importance when 

considering the implications for stability.

The final investigation is of a compressible strain-energy 

function that contains the Ko model as a special case. In 

order to illustrate various aspects of non-linear behaviour in 

elastic materials, it is usually necessary to assume an 

explicit form for the strain-energy function W. In an attempt 

to describe the behaviour of polyurethane foam rubber Ko [9] 

proposed a one-parameter strain-energy model which, due to its 

relative simplicity, has been used by many later investiga

tors. Various other forms for W have been proposed to describe 

compressible rubberlike materials, principally by Blatz and Ko 

[10] and Ogden [11]. The proposed model is examined in the 

light of various a p r i o r i  inequalities, and is then used to 

obtain solutions to the problem of vibrations in a stressed 

plate.

We begin in Chapter 1 with a short review of the work 

carried out by Pochhammer and Chree for vibrations in 

isotropic, circular cylinders. The method of successive 

approximation is then applied to cylinders whose radius is 

small in comparison to the wavelength of the vibration. 

Dispersion relations are derived for both longitudinal and 

flexural types of vibrations. Similarly, we set up the 

fundamental equations describing vibrations in circular 

cylinders of transversely isotropic composition and also for
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isotropic cylinders of elliptic cross-section, which we solve 

to establish the appropriate dispersion relations.

This analysis is extended in Chapter 2 to encompass waves in 

stressed isotropic cylinders, infinite in length, and having a 

circular cross— section. -We consider only those waves whose 

wavelength is large compared to the cylinder radius, which is 

to say that Ka (the product of the wave number K and the 

cylinder radius a) is taken to be small. The theory is in two 

parts depending on whether the material is incompressible or 

compressible. Accordingly, we consider two particular 

problems: an incompressible cylinder placed under a uniaxial

stress (either a compression or an extension) directed along 

the axis of the cylinder, and a cylinder composed of a 

compressible material having stresses applied along its axis 

and also upon its lateral surface. For both of these problems, 

the governing equations are set up and solved by successive 

approximation to establish dispersion relations describing 

both longitudinal and flexural waves. The results are then 

simplified with the introduction of a modified Young's modulus 

and a modified Poisson's ratio which take into account the 

effect of the primary stress. The chapter is concluded with an 

illustration of our results for three particular cases.

Chapter 3 is concerned with the propagation of surface waves 

in a pre-stressed half-space. Incompressible and compressible 

materials are considered in turn, and in both cases our aim is 

to establish the frequency equation from which we may

calculate the wave-velocity in terms of various material

constants and the applied stress. The results are again

illustrated for specific materials.

We return to the problem of waves in a stressed cylinder in
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Chapter 4. The governing equations established in Chapter 2 

are now solved completely in terms of Bessel functions. We 

show that in the limiting cases, when Ka is small and when 

Ka-̂ oo, the results calculated in Chapters 2 and 3 respectively 

are recaptured.

Finally, in Chapter 5, an extension of Ko's strain-energy

function, put forward by Dr. A.J. Willson, for isotropic

hyperelastic materials is presented. The implications of the 

Baker-Ericksen inequality, the strengthened tension-extension 

inequality and the ordered forces inequality are discussed in 

detail. Particular considerations are given to the configurat

ions of plane stress and plane strain. The dispersion relation 

governing the propagation of small-amplitude waves in a

pre-stressed plate is obtained and limiting solutions are 

derived for thin plates for both the flexural and longitudinal 

modes. Numerical results are given for configurations of

marginal stability.
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CHAPTER 1

SMALL-AMPLITUDE VIBRATIONS IN UNSTRESSED CYLINDERS 

§1.1 INTRODUCTION. ............._

In this chapter we present an analysis of the propagation of 

small-amplitude waves along an elastic cylinder of infinite 

length. The cylinder material is homogeneous and taken to have 

uniform density. Our main objective is to derive the 

dispersion relation linking the velocity of propagation and 

the wavelength, and to obtain the associated displacement 

field, for waves whose wavelength is large compared to the 

cylinder radius. We first obtain results for longitudinal, 

flexural and torsional modes of vibration in isotropic 

cylinders of circular cross-section, and then move on to 

consider vibrations in cylinders composed of a transversely 

isotropic material and also isotropic cylinders with an 

elliptic cross-section.

The plan of analysis is as follows. In §1.2 we set up the 

general elastic equations of motion governing small-amplitude 

vibrations in terms of a cylindrical polar coordinate system 

(r,G,z) and formulate the boundary conditions at the surface 

of the cylinder. In §1.3 and §1.4 we analyse longitudinal and 

flexural modes, and review previous investigations. The 

dispersion relation is then calculated when Ka (the product of 

the wave number K ( K = 2it/wa velength ) and the cylinder radius a) 

becomes small and when Ka is very large. Numerical results for 

intermediate values of Ka are also presented. §1.5 deals 

briefly with the torsional mode. For the remaining sections
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(§1 .6-§ 1 .1 1 ) we analyse only those vibrations whose wave

lengths are large compared to the cylinder radius. In §1.6 and 

§1.7 we set up recurrence relations, for both longitudinal and 

flexural vibrations, that are used to obtain more accurate 

approximations to the dispersion relation. Circular cylinders 

of anisotropic composition are dealt with in §1.8 and §1.9, 

and a discussion of vibrations in an isotropic cylinder of 

elliptic cross-section (§1 .10, § 1 .1 1 ) concludes the chapter.

POCHHAMMER-CHREE EQUATIONS FOR CYLINDRICAL BARS 

§1.2 ISOTROPIC CYLINDERS OF CIRCULAR CROSS-SECTION.

Investigations of the vibrations of a long circular cylinder 

in terms of the general elastic equations were originally

carried out by Pochhammer [1] and, independently a few years 

later, by Chree [2].

The z-axis is taken to coincide with the cylinder axis, and 

we consider the propagation of an infinite train of sinusoidal 

waves in which the displacement depends harmonically on both z 

and the time t. The equations of motion, expressed in

cylindrical polar coordinates, are well-known and may be found 

for example in Love [12, §199] or Kolsky [13, Chapter 3]:

(^+2p)A^+jj(u^^+Ugg/r^ )-p(Vg/r^+v^g/r)-pw^^,

pv = (X+2p)A /r+p(u /r^-u ./r)tt 0 0 r 0
(1 .1 )

+p(v +v /r-v/r^+v )-pw. /r,rr r zz 0z

pw = (X+2p)A -p(u +u /r)-pv /r+p(w +w /r+w /r^),11 z r z z  V z r r r  ou

where u, v, w are the components of displacement in the r, 6
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and z-directions respectively, p is the density, X and p are 

the usual Lamé constants, and A is the dilatation given by

A = u +(u+v.)/r+w , r 6 z
with subscripts indicating partial differentiation.

The stress-free boundary conditions on the cylinder surface

r=a require the vanishing of the radial components of stress,

P , P , P . These are expressed in terms of the displace- rr r8 rz
ments by:

P = XA+2pu , rr r

Pr0 = P(Ug/r+v^-v/r), (1 .2 )

P = p(u +w ). r z z r

From the resulting eigen-problem, three particular types of 

vibration may be distinguished; longitudinal, flexural, and 

torsional vibrations. We examine first longitudinal modes.

§1.3 LONGITUDINAL VIBRATIONS.

A detailed numerical investigation of this problem was first 

carried out by Bancroft [14]. A further account detailing the 

dispersion of elastic waves in a circular cylinder for all 

three types of vibration may be found in Davies [15].

The longitudinal solution is characterised by: 

u = U ( r ) exp{ i (u)t-Kz ) } ,

V  = 0 ,

w = iW( r ) exp{ i ( o)t-Kz ) } .

Now (1.1)^ is satisfied identically whilst (1.1)^ and (1.1)^ 

reduce to
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-pufu = (X+2p ) (U^^+U^/r-U/r^ )-pK^ U+K (X+p )W^ ,

-pQj^W = -K(X+p) (U^+U/r )-K^ (X+2p)W+p(W^^+W^/r ) .

Solving (1.3) for U and W, see for example [12], gives 

. _ U = PJ^ (X^ r)+RJ^ (X^r),

W = -PX J" (X. r)/K+RKJ^(X. r)/X^, 1 0  1 0 2 2

(1.3)

(1.4)

Where P, R are constants, denotes the Bessel function of
2 2order n, and X ^ , X^ are given in terms of X=pw /pK , L=X/p by 

X^ = (X-I)K^, X^ = [X/(L+2)-1]K^. (1.5)

Note also that U vanishes when r vanishes, appropriately for 

longitudinal waves, and the cylinder axis remains undisturbed 

during the vibration.

The boundary conditions (1.2)^, (1.2)^ reduce to

(L+2)U^+LU/r+KLW = 0,

-KU+W^ = 0,
(1 .6 )

which are to be satisfied on the surface r=a. Substituting the 

values for U and W given by (1.4) into (1 .6 ), and introducing 

y(x) = X (X ) / ( X ), gives

PJ^ (X^a ) [2ip(X^ a)-2]+RJ^ (X^a) [ (X-2)K^\p(X2a)/X2-23 = 0,

PJ^ (X^ a ) (X-2 )-2RJ^ (X^ a ) = 0 ,

which leads at once to the dispersion relation

[X/2-1 ]̂  ip(X2 a ) + [\y(X̂  a )-X/2] [X/( L+2 )-1 ] = 0. (1.7)

The velocity, say, of longitudinal waves of infinite

wavelength in a bar is easily shown to be /(E/p), where E is 

Young's modulus (see for instance [13]), or equivalently

= /[2p(1+a)/p], (1.8)

where O' is Poisson's ratio (cr=L/ 2 ( L+1 ) ) . We have therefore
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X = 2(V/V^)2(i+g,, 

where V is the phase velocity w/K. Further, by setting

a = ( 1-20") / ( 1-O') , (1.7) may be rewritten in the form

[X/2-1 a ) + Cip(X̂  a )-X/2 ] [Xa/2-1 ] = 0 , (1.9)

where now

= (oX/2-1 )K^ .

So the dispersion relation has been simplified to involve just

the dimensionless quantities X, a and Ka. Equation (1.9) has

multiple roots each corresponding to a particular mode of

vibration. Values of V/V tabulated as functions of O' and Ka0
are given in Table 1.1 for the fundamental mode, and the

results have been plotted in Fig. 1.1 for various values of O'.

In Fig. 1.2 we display the first four modes using the value

O' = 0.25; the curves denoted 1, 2, 3 and 4 refer respectively

to the fundamental, second, third and fourth roots of the

dispersion relation. We display the group velocity curves for

longitudinal vibrations in Fig. 1.3
2 2When Ka-»oo, both X^ and X^ are negative and we may employ the 

asymptotic expansion ii)(ix)%x (see Bancroft [14]); (1.9) now

become s

X ^ - 8 [X^-(3-a)X+(2-a)] = 0 , (1 .1 0 )

and apart from a change in notation this is Rayleigh's 

equation, containing one real root in the range of possible 

values for the parameter X, that gives the velocity of 

Rayleigh waves on the surface of a solid isotropic half-space. 

The value of this root for selected values of Poisson's ratio 

is presented in Table 1.1 on the line corresponding to Ka = «».

Approximate solutions to the dispersion relation for the 

case when Ka is small may be calculated by using power series 

expansions for the Bessel functions;

Chapter 1 Page 9



O in CM r-cnr T-CMin00V !-•n inCMcn m r V t-V IDr IDV T-r- «TCM0 00cn0 roroIDto0
o O t" O œ n t--0 inm V 00CMIDcnint— 0 inV m cncn00roroCM 0 COc—T cnr-int— t-in00inin O en in n 0 t--C'IDKf cnt--r- 01V r-cnn 0 IDincnIDcnro CMCDIDCMrocnCOcnCMCMm mO cnr- 0 r-en0 0 cnIDm cnm cnV 00CMt—CMn CMIDCMinT ID0 m CM0 COIDinV V roCMO O CTi cn cricnCOr-IDIDinn CM cnCOIDm n CM0 cnCMt'-n cnCOr-C-IDIDIDm ininm m m m mO 01cncn01cncncncncnin01cnCOCOCOCOCOCOCOr-r-IDIDIDinm m ininininm inininininm in

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O m CMV IDCOID0 KTT-CO CMr-CMIDn m cnCMoiV cn 0 IDr-CMroc-COr-COCOc—COrot-COCOin O cr> r-n IDm cnr-CO0 m m 0 0 n cnID0 cnIDt-M’CMIDV IDm ID0 V in00CMcn'f0 cnVV O COCMinco0 CMCMCMCMCMm r-V 000 n 0 m cnt--01IDt"V rocn c-r-COCMCOIDCMO CTi r* in r- V t'-COCOr-inCMCOn COCMr- m V 0 m t-0 CO0 V 0 c-'fro 0 OlcnCOr-C—O O cncncncncoCO IDinV n CM 0100IDm m CM0 roCO<< 0 COCOr-t— IDIDIDIDIDinininininO cncn01cncncncncncn01cncncnCOCOCOCOCO00COt—IDIDVDIDinininm ininininm ininininin
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O O in inr cninm 0 n V 01V inm COinCMCO9"V 0 m 0 roID roincnrocnCOr cnr-01'f0O O O cn r~CM0 0 r-t--inCOCMincnIDinCOCO0 0 cnIDIDcn0 CO0 r-CO0 COCOcn IDCOr-V O CO ro m U1COCMID ID0 TTIDt-COcn t—COIDV IDcn0 cnCO«T0 CMcnCOIDCOininCOCMCOCO0O cnCD10m cnincnn int'r-IDTT r-m t— incn«Ift—cnCMinroincnV cnt--IDin'fV roCMroO O cncncncnCOCOt't'IDenV r~)CM cnCOIDm m V CO<fCM0 cnCOt'r—t-IDIDIDIDIDIDIDIDIDO cncncncncncnenen01cncncncncnCO00COCOCOCOt-IDIDIDIDinm eninm inm m m ininininin
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O m m «TIT)0 cnCOr-IDCOn IDcnCOt—]— cn0 I— r-CM0 cnroincnID0 CMCM0 inIDroCOID0 r-rin O 01 CO 0 COCOV cninin0 int--t—CMID 0 XTr-COcnIDTT<froCMCOcn0 t'inroCMCOTfcoCOn O 10t'CM0 V 0 COIDinm 0 V IDIDinm <fcn CMinIDr-IDroinroroCMenroIfr- 010O 01 CD r~IDCMCOTT00CMinr--COr-inCMCOm 1— 0 V inm r-cnt-cnrocnIDV CM 0 cncnCOt-cnO O cnencncn01COCOt' IDm V n CM cnCOIDm n m 01inCM0 cn00COr-c-t't't-r-IDIDID10IDO 01cncn01cncncnencncncn01cncnm COCOCOCOCOt—IDIDIDIDininininineneninm inm inm in
- 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O in ̂  lor-m COcncninID0 0 COt— CM«Tr- m IDcn 00ID t-V COCMCO0 COr V r CMrot'O O n- 01 "T0 V IDCM CMm IDCMn 0 0 0 inCMIDCOcnCMinCMCOCOID0 CM COinCMm CMIDenm 0 r- 0 01m V 0 0 CMinCO0 0 IDCOincocn0 IDin0 m cnt̂ IDroIDID00r-CM0 rjID in0 <ncnr-to COv cnm IDm 0 cnr-'Ifcnm t— cninCMcn ro ror-ro0 coI"IDm V V roCOinO 0 <ncncncncncnCOCOt--r-IDinm m CM cnCOIDV ID0 inro 0 01COCOCOt--t't'r-t—C'c-r-t'0 cn01cn01cncn01cncncncncncncncncnCOCOCOCOt'-t—IDIDIDIDinininm ineneninm enm inen
0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 m 0 cnT-COT-0 COn t-r V 0 CM r-cnIDCMIDt'r COr COrom «TKfIDr-V T-t—t—r-in 0 r-toCMcn10IDCMCO 0 t—inCMCOIDcnIDm IDIDIDeninin0 0 IDCM COcnCOm CMCMt— co0 COn m V COcnm ID0 cot'inCMm 0 0 n COV cn00IDCOroCMIDCO r-t"0 in IDroV0 01cnCDt--m n CDin0 encnCMm n r- 'T inint-m inr-int' t̂ inro 0 0 oicnCOCOo 0 cncn01cncncncnCOCOCOr-IDIDin m 0 00IDr-0 IDro 0 encnCOCOCO00COCOt't'r-r-CO0 cncncncncn 01cncncncn01cncncncncncnCOCOr-t—IDIDIDIDm m m ininm m inenenm inm
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 d 0
0 0 <0CM V 0 cnCO V CMCMf-.cnr CMcn0 CO00 CMCM01CMroCOror CMCOr ro01CMCOr-cninmo 0 0 cnCDV in 0 m IDn V CMm IDCMV 0 COm CMm IDCMm V COCOinroCOV IDin t-inVCM 0 cn m 0 m m 0 inm CMIDCMr-cnm 0 CMCOCMCOn ror-m IDr-V COroinroV CO r-ID00 cn CDI--ID«STCM0 t--m cnn IDCOCOm m CMCM CMt—CO0 CO0 in cnr-IDm V 'froCOCOo 0 cncncncncncncncn01coCOt't— IDin n 0 COCO IDroCM0 0 cncnCOCOCOCOCOCO00COCOCO0 cncncncnm cncncncncncnencncncncncncn COr-c-IDIDIDIDIDm m m inm ininininininin
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 V n CMm CMcnCOCMr-ID0 CMn 0 r 0 T-0 m cnCOIDCMCO00inIDIDCOIDIDCOIDrot-COCOIDm 0 r~CD100 t--IDroCM<Dt--cnm 0 r-ID m 0 c-inc-01IDrorot--cnV COIDCOr-c- ro00 cnr- 0 int--CDt'COm m in0 V CM0 0 m m V 0 r- ID t'-*f01CO IDro 0 0 cn0 0101cn01COr-IDen«STCM0 t-V cnn m V cn 0 IDcn ro "Ifcninro 0 0 01cncncncn'fO 0 cn01cncncncncncncncnm coCOt--t—IDm m CM0 01 IDV CM 0 cncn01cncncnCOCOCOCO00cn0 cn01 cncncn01cncncncncncncncncncncncncnt-c-IDIDIDIDIDm m inininincninm m m m
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 incncnCMT-inCMn r-CO0 0 IDcn COT r-IDT-COCOT-CMCM0 V ro0 0 IDroror-0 IDcnm CMO 0 r-0110COm 0 cnr-CMcnm cnCO 0 n m m cn01CM0 0 rocncnc-KfV CMr-ro0 COincnCDro0 C31 00 C"inm 0 in0 inin n cnT CM O'IDinIDID 01TTroCMIDIDIDCOV cnIDV COroin0 cncn cncn0100COt'IDm V CMcnID n 0 t'int— CMinV c-CM01r-IDin'fV V V V V CMO 0 01 01 01cncncncncnencncncncnCOCOCOr-ID cn c- CM 0 0 01cncncncn01cncn010100 oi 01 01cncncncncncncn01cncncncncncncncnair-t-IDIDIDIDIDIDm inm m ininininininID
T-0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 V m CMinCM0 inCMTT0 n ID9"CO IDcn0 T-V r-cnCO roCOm T-cnroroV IDr-'fincnr r-in 0 cnt'V cnm in «Tm m 0000IDr-m IDCOcnCMn r-t-cnr-r-CMID0 rocnc-roCOIDCMcnr-0O 0 cnencnCOCOr-IDm m COV cnCM m r-n n COCMCMrocn(Mcoro inCOt-- COIDIDt-cnroCO0 cncncncncncncncncncnCO00t-r-IDV 0 CMCM IDt- rot-ID0 IDro 0 0 cn01cncncn0 cnO 0 cncncncn01cncncncncncncnm cncncncnCOIDm cn r-V CM 0 0 0 0 0 cncncncncn0 00 cn01cncncncncncncncncncncncncncncncncncnr-c-IDIDIDIDIDIDIDIDIDIDinininininIDID
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

«fV ID0 V cn<fcninT-0000r-CMT-COCOCMCMCMVO cnIDn CM0 TfCMCMCMcnr-IDroCOr- IDCO cnCOO m ID c-inCOCMroIDV V 0 cn0 rocnV 01 m m CMin0 V 00cnrocnt— IDm m inininm IDCOO r-n 01 t— CM 0 0 0 0 0 0 0 0 0 0 0cncnt-t—IDIDIDIDIDIDIDIDIDIDIDIDIDIDIDIDID

b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 T-CMcnTTinIDt'-CO010 CMm inIDr-COcn0 m 0 m 0 m 0 in0 m 0 in0 in0 m 0 0 0
0 0 0 0 0 0 0 0 0 0 T-'r- r- T-'CMCM roTfO' inIDIDt—r-COCOcncn0 CM *

•D014->U .
0) CQH01 cncn 3•HFt •a
0 CQ4-
■o 4-0) 0+J(Q hH 0>3 T3n C(0 •H+j H>- U
a f-i(0 1
ÜJ H  13 1S u !II
0 •H 1> u ;

CO I> c !> •H+j•H cn 'U C !
0 0 iH •H 101 +J 1> (0

U0) •Û ;cn •H(0 >r;a (0- C
0 •H> •03> +J•H
0 0)•H C4-> 0(0 1—1
f-t Ft
V 00) 4-01a bcn
1 ■001 c> (0«
5 (0y:0)
jc 4-K 0
. cn*— 0)• 3*- H(00) >

I— I
n
n



1.0

0.9

0.8
CT=0 . 0
cr=0 . 1
CT=0 . 2
a = 0  . 3 
CT=0 . 4 
CT=0 . 5

V / V

0.7

0.6

0.5
128 10Ka

F i gu re  1.1

P h a s e  v e l o c i t y  V for l o n g i t u d i n a l  v i b r a t i o n s  in c i r c u l a r
c y l i n d e r s  of r a d i u s  a. C u r v e s  a re  p l o t t e d  for s e l e c t e d

v a l u e s  of P o i s s o n ' s  r a t i o  a w h e r e  V = / ( E / p )0



V/ V

.8

.6

.4

.2

.0

0.8

0.6

0.4
6 8Ka 10 12 14

F i g u r e  1. 2

T h e  f i r s t  f o u r  l o n g i t u d i n a l  m o d e s  for t h e  p h a s e  v e l o c i t y  
in a c y l i n d e r  of r a d i u s  a a r e  p l o t t e d .  H e r e  V^ = / ( E / p )

a n d  a = 0 .25.



1.0

<j=0 .0
a =0 .1 
a =0 . 2 
cr=0 . 3 
0=0 .A 
cr=0 .5

0.8

0.6

/V 0

0.4

0.2

0.0

128 100 4 62 Ka

F i g u r e  1. 3

T h e  g r o u p  v e l o c i t y  f o r  l o n g i t u d i n a l  v i b r a t i o n s  in
c i r c u l a r  c y l i n d e r s  of r a d i u s  a w i t h  = / ( E / p ) .  C u r v e s  

a re  p l o t t e d  for s e l e c t e d  v a l u e s  of P o i s s o n ' s  r a t i o .



J^(k) = 1~x^/4+x / 6 4 - . . . f J^(x) = x/2-x^/16+...

An approximation to the dispersion relation is found by 

neglecting a and X^a. To this order of working

W(X^a) = y^X^a) % 2 , 

for which (1.9) reduces to

X[X( 2-a)-(6-4a)] = 0 .

Ignoring the trivial solution X = 0 , the speed of propagation of 

longitudinal waves through a solid cylinder is given to this 

approximation by

V = y [2p( 1+0-)/p] = /(E/p).

This is in agreement with (1.8), obtained from the elementary 

treatment in which no dispersion occurs.

The next approximation has

y ( x )  % 2-xf / 4 , 

and leads from (1.9) to

V/Vq = [ 1 -cr( Ka )̂  /4 ] . (1.11)

This equation was due originally to Pochhammer [1], and was 

later derived by Rayleigh [16, §157] using energy consider

ations alone.

§1.4 FLEXURAL VIBRATIONS.

The anti-symmetric or flexural type of vibration are 

characterised by the forms

u = U ( r ) exp[ i (üJt+6- Kz ) ] ,

V = iV( r ) exp [ i ( ojt + e-Kz ) ] , (1.12)

w = iW( r ) exp[ i ( ü)t + 0-Kz ) ] ,

so that we are now contemplating a solution which includes a

transverse component of displacement together with a specified
_ie® azimuthal dependence.
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The equations of motion (1.1), with (1.12), require 

-poj^U = (X+2p ) (U^^+U^/r )-[ (X+3p)/r^+jjK^ ]U

- [ (X+p)V^/r-(X+3p)V/r^]+K(X+p)W^,

-püJ^V = [ (X+p)U^/r+(X+3p)U/r^ ]+p(V^^+V^/r ) (1.13)

-[(X+3p)/r^ +pK^ ]V+(X+p) KW/r ,

-pw^W = - K(X+p)(U^+U/r-V/r)+p(W^^+W^/r-W/r^ )-(X+2p ) W ,

which may be solved to give

U = K[PJ^' (X^ r )+QĴ ' (X^ r )+RJ^ (X^ r )/r] ,

V = K[PJ^ (X^r ) / r+QJ^ (X^r)/r+RJ^ (X^r)], (1.14)

W = -PK^J^ (X^D+QX^ (X^r),

where P, Q, R are arbitrary constants and X^ , X^ are defined 

by (1.5).

If we pause for a moment to consider the real parts of the 

radial and transverse components of displacement in (1 .1 2 ), we 

see that both usin0+vcos6 and w vanish when r = 0 . So points 

initially lying on the axis of the cylinder move along the 

axis of x̂  . Thus equations (1.12) correspond to motion of the 

transverse or flexural type. Alternate formulations for 

flexural waves are possible; for example, we could try 

u = U (r )cos 0.exp{i(wt-Kz)},

V = V( r ) sin0 . exp{ i ( uJt-Kz ) } , 

w = W( r ) cos 0 . exp{ i ( iDt-Kz ) } , 

but it is fairly readily seen that the results for this 

formulation will be in agreement with the findings based on 

(1 .1 2).

The boundary conditions (1.2), with (1.12), reduce to
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(L+2)U^+L(U/r-V/r+KW) = 0 ,

U/r-V/r+V^ = 0 , (1.15)

-KU+W = 0, r

on r=a, and these yield three relations between P, Q and R:

(X^ a ) [ ( 2-X ) ( Ka )̂  +2 ( 2-ip(X^ a ) ) 3

+ 2QJ^ (X^a)[(2-w(X^a))-(X^a)2]-2RJ^(X^a)[2-y(X^a)3 = 0 ,

PJ^ (X^a) [2ip(X^ a)-4] + 2QJ^ ( X̂  a ) [ip ( X^ a ) - 2 3

+RJ^ (X̂  a ) [2 ( 2-ip(X^ a ) )-(X^ a )̂  3 = 0 ,

2PJ^ ( X̂  a ) [ip (X^ a )-1 3+QJ^ (X^ a ) [ip(X^ a )-1 3 ( 2-X)+RJ^ (X^ a ) = 0,

so that for a non-trivial solution

det(DLj ) = 0 , (1.16)

where, after a little tidying up,

D = (X-2 ) , D = 2[ip(X a )-23 ,
11 2 2 1

0^2 = 2(X-1), 0^3 = 2[2-ip(X^ a ) 3-(X^ a )̂  ,

= (X-1 ), = 2[ip(X2a)-13,

= 2[ip(X^ a )-23 ,  ̂ = ( 2-X ) [ip (X^ a ) - 1 3 ,  ̂ = 1.

Equation (1.16) is then the dispersion relation for flexural

waves in a circular isotropic cylinder (c.f. Bancroft [14 3, 

Hudson [17 3, Abramson [183). A detailed numerical investigat

ion of this problem first carried out in [17 3 claimed

incorrectly that (1.16) contained just one real root so that 

flexural vibrations were propagated in only a single mode. 

This error was passed on to later work [13 3, [153, [19] even

though Holden [20] in his paper on elastic waves in cylinders
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and slabs, and later Abramson [IB], both refer to the

existence of higher modes for flexural vibrations in a

cylinder. In Table 1.2 the values of V/V for selected values0
of Ka and a are presented. Fig. 1.4 displays the phase 

velocities of the fundamental mode for a range of values of 

Poisson's ratio, whilst in Fig. 1.5, for <j = 0.25, the phase 

velocity curves are plotted for the first four modes of 

(1.16).

For vibrations of large wavelength, expansion of the Bessel 

functions in (1.16) enabled Pochhammer to calculate the 

approximation

1/2 - ( 4a^+1 5CT+1 0 ) ( Ka )̂

4 8 ( 1 + a )

(Ka).
(1.17)

Finally, for very small wavelengths, (1.16) may be shown to 

reduce to the Rayleigh surface wave equation.

§1.5 TORSIONAL VIBRATIONS.

We mention briefly a third possible type of vibration of

special interest: the torsional vibration. In this case both u

and w vanish, and v is taken to be independent of 6 . We have

V = V ( r )exp{i(wt-Kz)}.

From (1.1)^, V(r) must be proportional to J^(X^r) with

defined by (1.5). For V to then satisfy the boundary condition 

(1 .2 )̂  requires

J (X a) = 0 . (1.18)
2 1

One solution of (1.18) is X^ = o . This solution yields the

corresponding form V = Ar, A constant, with wave-speed /(p/p). 

The positive zeros of , in (1.18), correspond to higher
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modes of vibration.

For an further account of torsional vibrations in a cylinder 

the reader is referred to Eringen and Suhubi [21, §8.10], or

Davies [15]. ‘

SUCCESSIVE APPROXIMATION ANALYSIS FOR LONG WAVES 

§1.6 LONGITUDINAL VIBRATIONS.

In this section we give an alternative treatment of 

longitudinal vibrations in an isotropic cylinder of circular 

cross-section, appropriate to the case that Ka is small, from 

which we shall recover (1.11), and then extend this result by 

calculating the coefficients of (Ka)* and (Ka)^ in the 

dispersion relation.

The procedure is to presuppose a series development for U 

and W in ascending powers of Kr, and to develop recurrence 

relations for the coefficients from the equations of motion 

and the boundary conditions. Accordingly, we write

Ü = A tT a. (Kr)^"*^ , W = -A E~c (Kr)^",n = o n n=o n
where A and the coefficients a , c are constants. Introducingn n
these expressions into (1.3) and equating powers of r^ we 

find, (for n>0)

Xa = 2(n+l)(L+1)c -4(n+1)(n+2)(L+2)a +a ,n n + 1 n + 1 n

Xc = -4(n+1)^c +(L+2)c -2(n+1)(L+1)a ,n n + 1 n n

with boundary conditions (1.6) now taking the forms

E~[2(n(L+2)+(L+1))a -Lc ](Ka)^" = 0, n = 0 n n

E [a +2(n+l)c ](Ka)^*^ = 0.n =0 n n + 1

(1.19)

(1 .2 0 )
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The convergence of these series is assumed unconditionally

since they are just the expansions of the Bessel functions

encountered earlier. In effect, equations (1.19) determine

, c^,.. in terms of X ( =pw^ / jjk  ̂) , a^ , . The

boundary conditions (1.20) impose two conditions between X and 

a^/c^, and the dispersion relation results from elimination of

a /c between these latter conditions.0 0
The parameter X is now expressed as an asymptotic series in

ascending powers of (Ka)^ (=E, say), thus

with similar expressions for a and c . Substituting thesen n
series forms into (1,19) and equating like powers of E we 

find, after a little rearrangement,

a""> = [2n(L+1)c"">+a‘"’’- 2:> ‘'"‘P >a ‘ ̂  ]/4 n ( n+1 ) ( L+2 ) ,n n n-l p=0 n -1
( 1 .2 1 )

c<'"> = [(L+2)c""’-2(n+l)(L+na'"” - E > ‘"’-P'c'P>]/4(n+1)', n+1 n n p=0 n

for n>1, m>0; and for n=0

x'"' = [(L + 2)cJ"'’-2(L+na„""’-4c‘'">]/c;” ’ , (1.22)

where, without loss of generality, we have taken

 ̂ 2(L + 1)/L, m = 0 ,

L 0, m > 1.
(1.23)

Further, from (1.20), we calculate

(m) ^ [Lc'"'-nE"(2(n(L+2,+(L+1))a'"-"'-Lc'"-"')]/2,L+1),u u 11 "• I n n
(1.24)

(m) ^ (m)^ E ^ a " " - " ’ + 2(n+1)c""-"’)]/2.1 0 n = 1 n  n+1

for m> 0.

As demonstrated in §1.3 by the Pochhammer-Chree analysis, 

the initial two terms in the dispersion relation are fairly
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easily obtained; however, the working becomes prohibitive for 

higher approximations. Using relations (1 .21 )-( 1 . 24) we 

propose to extend the approximation to the dispersion relation 

by a further two terms, demonstrating* the relative ease with 

which new terms may be developed, whilst at the same time 

building up important details about the associated 

displacement field.

We begin with m=0; then from (1.24), with (1.23), we have
( 0 )

so that, from (1.22),
1

= - 1 /2 ,

( 0 ) = (3L+2)/(L+1). (1.25)

The general situation is that of known X ̂ ̂  ̂n n + 1
for 0<n^k, 0<k<m-1, some m>1. Equations (1.21), with m-n

entered for m, furnish a ̂  ̂, c ̂  ̂ for 14n<m, and equationsn n + 1
(1.24) then yield and Finally we use (1.22), with

(1.23), to calculate X^^^. Initiating this procedure with m=1 , 

we calculate from (1.21)

( 0 ) -(L +4L+2) ,

8(L+1 ) (L+2 ) 

then from (1.24)

{ 1 ) (5L +12L+6),

8 (L+1) (L+2)

so that (1.22) gives

( 0 ) (3L +6L+2)

32(L+1)(L+2)

- ( 2L^+9L^ + 1 4L + 6 ) ,

16(L +1) (L+2)

X ( 1 ) - ( 3L+2)L .

8 (L+1)

Thus we have easily established the result

3L + 2

L+1

1 - L E

8(L+1)

which, expressed in dimensionless form, becomes

V/V^ = [1-CT^(Ka)^/4],

(1.26)
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and this is the result obtained by Pochhammer and Chree, 

previously given by (1.11).

For m=2 the procedure yields successively:

(0) (3L*+i4L^+26L^+18L+4), -(5L*+26L^+40L^+22L+4),
^2 "  2 2  ^3 =  2 2----192(L+1) (L+2) 1152(L+1) (L+2)

- ( L^ + 5L*+1 8L^+34L^+25L + 6 ) ,
1̂ = -------------- 5------ 2------3 2 (L+1) (L+2)

~(2L -25L -49L^-31L-6) ,
C  =  -  -

128(L+1) (L+2)

using (1.21), then from (1.24) we calculate

(2) -(12L5  + 2 3 L ^ - 6 8 L ^ - 2 0 8 L ^ - 1 7 0 L - 4 4 )  ,
a
° 96 (L+1 )̂  (L+2)2

 ̂̂  ̂ (10L^+4 4L^ + 37L^-112L^-260L^-186L-44),
^2 =---------------------- 4------ 2-------------1 92(L+1 ) (L+2)

so that (1.22), with (1.23), gives

(2L — 13L — 5 6 L —52L-14 )L
X = --------------    (1.27)

9 6 (L+1) (L+2)

The procedure of solution to calculate the next term follows 

in the same way. The calculation is straightforward and we 

omit details of the coefficients at this stage to present 

simply the result

- ( L^-1 32L^-389L^+5 1 4L^ + 28 1 5L^+3324L^ + 1 572L+264 ) L^ .
X =       (1.28)

3072(L+1) (L+2)

We summarise the results (1 .25 )-(1.28) in dimensionless form 

with the expression

V 1 - a^(Ka)^ - ( 2 1 (J*+4a^-29a^-4(T+7 )CJ-̂ ( Ka ) *

Vp 4 9 6(1 -(Ĵ  ) (1.29)

- ( 396c/ -2 5 20-^-8240^ +4 8ÜCT* +4 9 2ct̂  -2 5 4ct̂  -6 9CT+3 3 )a^ ( Ka )̂  .

1 536(1 -cr̂  ) ( 1 -CT)
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§1.7 FLEXURAL VIBRATIONS.

For the flexural modes we take the series forms
U(r) = A (Kr)^", V(r) = A E~b (Kr)^",n=0 n n=o n

W(r) = A E c (Kr) n =0 n
(1.30)

2 n + 1

A, a ^ , constants. We proceed in much the same way as in

§1.6 to produce recurrence relations from the equations of

motion and boundary conditions. Accordingly, from (1.13), we

obtain for n>0,

Xa = a -[4n(n + 2 )(L+2)+(3L+5)]a n n n + 1

+[2n(L+1)+(L-1)]b -(2n+1)(L+1)c ,n + 1 n

Xb = b -[2n(L + 1 )+(3L+5)]a (1.31)n n n + 1

+[(L-1)-4n(n+2)]b -(L+1)c ,n + 1 n

Xc = (L+2)c +(L+1)[(2n+3)a -b ]-4(n+1)(n+2)c , n n n+1 n+1 n+1

whilst (1.15) provides

E~[(2n(L + 2 )+(3L+4))a ,-Lb +Lc ](Ka)^n = o, n=0 n+1 n+1 n

E~[a +(2n+1)b ](Ka)^" = O , (1.32)n=0 n+1 n + 1

E~[a -(2n+1)c ](Ka)^" = 0. n=0 n n

Assuming asymptotic expansions for X, a , b and c inn n n
ascending powers of E ( = (Ka)^) and equating coefficients of E^

in (1.31), we have, denoting [16n (n+1 )̂  (n+2) (l+ 2 ) ]"̂  by F ,

= [(L+1)[(2n+1)a*^^-b*^^] + (L + 2)c*^* n n n n-l
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+[2n(L+1)+(L-1)][b(*)- Emy(m-P)b(p)]n p=0 n

-4n(n+1)(2n+3)(L+1
(1.33)

C :  =  r[-[2n,L.1,.,3L.5,Ha‘'">-pE™x'-P'a‘P>3
+ C4n( n + 2 ) ( L + 2 )+( 3L+5 )][b/^)- Em^Xm-p)^(p) ̂n p = 0 n

-4n(n+1)(L+1)c^^^]],

for n>1, m>0. Additionally, from (1.31)^ with n=0, we find

x ( m )  ^  [ajm)_(L+i,c^"'-|3L+5,ajm'+(L-1,b^m']/a;°', 11.34,

where, without loss of generality, we may take

= 1  1 , m=0 ,
(1.35)

0, m>1,

and, anticipating the result = 0, the difference between

(1.31)^ and (1.31)^ with n=0 gives bj^* =

Similarly, from (1.32), we have

c(m) ^ a/m)+ e"’< a <  ̂̂ ( 2 n+1 ) c ̂ " S  ,0 0 n = 1 n n

a(m) ^ _[Lc‘'"’+ ET(2((n(L+2,+2L+2)a'"-"' 1 O n = l  n+1
(1.36)

+2nLb^%;"'+LC^"-"',]/4IL+1,,

b'"' = -a'"” - E"(a'"-"'+(2n+1,b'm-"'). 1 1 n=l n+1 n+1

for m> 0.

Now, from (1.36)

= 1, aj ° = -bj^* = -L/4(L+1),

then (1.34) with m set to zero gives, as expected,

x ‘° ’ = o .  (1.37)

The general situation is that of known b^^n+1 n+1
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(k) for 0<n<k, 0<k<m-1, some m>1. Equations (1.33),

with m-n for m, supply \  a ̂ ̂  \  b ̂ ̂   ̂ for 1(n<m. Thenn n+1 n+1
(1.36) yield successively a^^* b | ^ \  and finally,

equation (1.34), with (1.35), provides

We begin with m=1 and using (1.33) we calculate

= 1/4,

and from (1.36)

.1, -<4L+3),

( 0 ) -(9L+5) ,

1 92(L+1 )
( 0 ) ( 3L-1

1 92(L+1 )

( 1 )
4 (L+1) 

so (1.40) provides

A 1 )

(24L^+25L+5 ) ,

96(L+1)

(3L+2).

{ 1 ) -(24L +21L+1),

96(L+1)

(1.38)
4 (L+1 )

With m=2 we calculate from (1.33)

-(1ÜL+7) ,
= 1/64, ( 0 ) ( 0 )

4608(L+1)

(2L-1)

4608(L+1)

( 1 )

( 1 )

-(15L+11),

48(L+1 )
( 1 ) (129L^+456L^+4 25L+118),

2304(L+1) (L+2)

-(75L^ + 192L^+8 3L-14) ,

2304(L+1) (L+2)

then with (1.36)

( 2 )

( 2 )

( 2 )

( 102L +1 59L+61 ),

9 6 (L+1)

-(1176L*+4677L^+5 950L^+2887L+430),

4608(L+1) (L+2)
4 3 2(1368L +5 121L +5886L +2275L+134),

so that (1.34) gives

X( 2 )

4608(L+1) (L+2)

-(37L +55L+20).

48 (L+1)
(1.39)
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Finally, for m = 3 , we omit details of the coefficients and 

present the result

(43351^+10122L^+7729L+1934).
X = -------------------- 1----------- (1.40)

4608(L+1)

We summarise (1.37)-(1.40) in dimensionless form by 

V 1/2 - ( 4a^ +1 5CT+1 0 ) ( Ka )̂

4 8 ( 1 +(j ) (1.41)

+ (724a^+2249a^+2 294cr+767) (Ka)^

4 608(1+0 )2

( K a ) .

In Figs. 1.6 and 1.7 we plot the curves marked 1, 2, 3 for 

longitudinal and flexural waves respectively, where 1 is the 

full dispersion curve, 2 is the Pochhammer approximation for 

long waves, and 3 is the curve corresponding to the extended 

approximation given by (1.29) for longitudinal waves and by 

(1.41) for flexural waves.

VIBRATIONS IN A TRANSVERSELY ISOTROPIC CYLINDER.

We now look at the problem of small-amplitude vibrations in 

a circular cylinder composed of a material possessing an axis 

of symmetry that is parallel to the generators - transversely 

isotropic material. As before, we consider long waves 

propagating in the axial direction for both longitudinal and 

flexural modes. Our investigation is now complicated by the 

presence of five independent material constants, the

stiffnesses, that replace the Lamé constants X and jj. The 

stiffnesses (all assumed to be positive) enter the analysis 

through the following stress-strain relations
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P h a s e  v e l o c i t y  c u r v e s  for l o n g i t u d i n a l  v i b r a t i o n s  in a 
c i r c u l a r  c y l i n d e r  w i t h  a = 0 . 2 5 .  C u r v e  1 r e p r e s e n t s  the  
full d i s p e r s i o n  c u r v e  c a l c u l a t e d  f r o m  (1.9), c u r v e  2 is 
P o c h h a m m e r ' s  a p p r o x i m a t i o n  (1.11) and  c u r v e  3 is the  

e x t e n d e d  a p p r o x i m a t i o n  ( 1. 29) .
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Figure 1.7

Phase velocity curves with cr=0.25 for flexural vibrations 

in a circular cylinder, where curve 1 is calculated from 

(1.16), curve 2 is Pochhammer's result (1.17) and curve 3 

IS given by equation (1.41).



= A = 11+B*22+C*33' h 2  = ' 2 '

''22 = »*11+A*22+C*33' Pl3 = :E*13'

P33 = C = 11+C*22+°=33' ”23 = 2^®23-

Comparing (1.42) with the isotropic stress-strain relations we 

see

A = D = X+2p, B = C = X, E = p,

for the isotropic case.

§1.8 LONGITUDINAL VIBRATIONS.

For convenience we write the displacement field in cartesian 

coordinates. We have

“ 3 =

A constant and C = cos(wt-Kx^), S = sin(ut-Kx^).

The stresses are easily calculated from (1.42), and the 

equations of motion, after comparing coefficients of r^^, give

Xa = 2(n+l)(C+E)c -4(n+1)(n+2)Aa +Ea ,n n + 1 n + 1 n

Xc„ = -4 (n + 1 )2EC +Dc -2(n+1 ) (C+E)a ,n n+1 n n

(1.43)

2 2where now X = pw /K . On the cylinder surface the stress-free 

boundary conditions are now

E~[((2n+1)A+B)a -Cc ](Ka)2" = 0, n = u n n

r,E“ [an+2(n+1)c^^,](Ka)=" = 0.
(1.44)

We again assume asymptotic series, in ascending powers of 
2(Ka) , for X and the coefficients a , c . Equating like powersn n
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2of (Ka) , after substituting these series forms into (1.43), 

give

a'"' = [2n(C+E)c""’+a a""'- >a'” ’ ] / A n ( n+1 ) A ,n n 7 n-l p = 0 n-1
(1.45)

c<"'> = [Dc'"'-2(n+1,(C + E,a'"'- j:> ' ^ ’ c ' ̂  ' ]/+( n + 1) " E , n + 1 n n p=0 n

for n>1, m>0; and for n=0

x'"' = [DcJ'"'-2(C+E)aJ"” -*EC,<'"’]/c;‘” , (1.46)

where we have taken

= ( (A+B)/C, m=0,

L 0, m>1.

Similarly, the boundary conditions (1.44) give

= [Cc^"^- E^(((2n+1)A+B)a(^"")-Cc(^'")}]/(A+B),0 0 n = l n n

(m) ^ - t a ‘""+ E"(a'"-"' + 2,n+1)c'"-"')]/2.1 O n = l n  n+1

(1.47)

(1.48)

for m>0.

The procedure of solution is now an extension of that given 

in §1.6 where equations (1.21)-(1.24) are now replaced by 

( 1 . 45 )-( 1 . 48 ) . Following the method prescribed in §1.8 we 

calculate, from (1.48)

a^“ ’ = 1, c'®’ = -1/2,

SO that from (1.46), with m=0, we have

° ’ = D-2C^ / ( A+B ) .

We calculate a higher approximation for X from (1.45), and, 

denoting Y = [D+C-2C^/(A+B)]/A , we find

= -Y/8, = [ (C+E)Y-2C^/ (A+B)]/32E,

then, from (1.48)

a/1* = [ ( 3A+B )Y-4C]/8 ( A+B ) ,

= - [ ( (3A+B)E+(A+B)C)Y-2C(2E+C)]/16(A+B)E,
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so that (1.46) now gives

2 2
1 ) - c D - 2C

2(A+B)^ A + B

Finally, omitting details of the calculation at this stage, 

we present the result

.( 2 ) -C=A ( 7A+B ) - YC "1+ C + "1+3C

4(A+B)3 1 2 A + B 3A A+B

Substituting the isotropic values for the stiffnesses into the 

expressions for X * ^ , X*^* and X*^* we recover (1.25), (1.26)

and (1.27) respectively.

§1.9 FLEXURAL VIBRATIONS.

For the displacement field we consider the forms 

"2 =

u = -AK X (Kr)^^S,3 n=o n 1

(see Appendix A .1), from which we may calculate the following 

recurrence relations

2Xa = 2Ea -[(8n^+16+5)A+B]a n n n + 1

+[(2n-1)A+(2n+3)B]b^^^-2(2n+1)(C+E)C^,

2Xb = 2Eb -[(2n+5)A+(2n+1)B]a _ n n n + 1 (1.49)

-[(4n +8n+1)A-(2n+1)(2n+3)]b^^^-2(C+E)c^,

Xc = DC +(C+E)[(2n+3)a -b , ]-4(n+1)(n+2)Ec_^,, n n n+1 n+1 n+i

for the equations of motion along with
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E” [(2ln+1)A+B)a -Bb +Cc ](Ka)2" = 0, n = o n + 1 n + 1 n

' 2"+''Cn3

for the boundary conditions. Assuming the usual expansions for

X, a , b and c in (1.49) we calculate for the coefficients n n n
the following relations:

= [(C+E)[(2n + 1)a(^)-b(^)]+Dc(^) n n n n-1

- E"'x^^"'^^c^‘̂ h/4n(n+1 )E, p=0 n-1

a/"") = [[(4n2+8n + 1)A-(2n + 1)(2n + 3)B][Ea(*)- Em^(m-p)^(p)] n + 1 n p =0 n

+ [(2n-1)A+(2n+3)B][Eb(^)- E^X^^ ^ ̂ b ̂ hn p = 0 n
(1.51)

-4n(n + 1 ) ( 2n+3 ) ( C + E )(A-B)c^"^^]/16n(n+1)^( n+2 ) A ( A-B ) ,n

^ [-[(2n+5)A+(2n + 1)B][Ea(^)- e|"x  ̂  ̂a ̂  ̂]n+1 n p=0 n

+[(8n:+16n+5,A+B][Eb'"'- E > ‘" - P >b '^ ]n p = 0 n

-4n(n + 1 ) (A-B) ( C + E ) c ̂  ̂ / 1 Bn ( n+1 )̂  (n+2)A(A-B),n

for n>1, m>0, and

X^™) = [2EaJ^^-(5A+B)a^^^-(A-3B)b/^^-2(C+E)CQ^)]/2, (1.52)

for n=0, where
(m ) (m) r 1, m = 0 ,(m) . (m)

%  = ^0 (1.53)
 ̂ 0, m>1.

Similarly, from (1.50), we calculate

(m) , (m)^ ET(a'"-"'-t2n+1,c'm-"',,0 0 n = 1 n n
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( m ) [cc‘"” + c"(2((n+1,A+B)a'"-"' + 2nBb'"-"' 0 n = 1 n + 1 n + 1
(1.54)

)]/2(A+B),

(m )

for m> 0 .

Equations (1 .51 )-(1 .54) now replace equations ( 1 . 33 )-( 1 . 36 ) 

respectively and are solved using the same procedure set down 

in §1.7. We begin, therefore, with (1.54) from which we find

‘̂ 0°’ “
then at once, from (1.52),

= -C/2(A+B),

x ' ° '  = 0 ,

just as we had for the isotropic case.

To the next approximation in X, we obtain, from (1.51) 
( 0 ) = [D-2C(C+E) / (A+B)]/8E,

= [ ( 3A-5B )M-1 ON]/96 , b/^* = -[ ( 9A+B )M+2N]/96 ,

where we denote M = 2E a * ° /A (A-B) and N = 2(C+E)cj°*/A, so 

that, with (1.54), we have

= [2C(3C+E)/(A+B)-3D]/8E,

( 1 ) -1 1 2AC "(A-B)M - 2N" +(3A+B)(A-3B)M-2N(5A+3B)

4 8 (A+B) E C + E

1. 1 2AC ■(A-B)M - 2N" +(3A+B)(5A+B)M-2N(A-B)

4 8 (A+B) E C + E

then (1.52) provides

X*'* = D/4-C^/2(A+B).

Finally, to the next approximation and following the method 

outlined in §1.7, we calculate
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-7[X‘ x'1) 
X'2' = -------- - ----

BE 1 2

3 - 2C

A + B

C^E 

24 ( A+B )2

it is then a straightforward matter to recover (1.38) and 

(1.39) in the isotropic case for the above values of X*^*, 

x'  2 ' .

ISOTROPIC CYLINDER OF ELLIPTIC CROSS-SECTION.

We have seen in the previous sections that for circular 

cylinders the dispersion relation for large wavelengths may be 

constructed by taking appropriate series expansions for the 

displacement field. This procedure is now extended to include 

isotropic cylinders of elliptic cross-section. We take the 

bounding ellipse to be x^/a^+x^/b^ = 1 and assume Ka<<1, Kb<<1

wherever necessary.

The algebraic manipulation in this problem rapidly becomes 

intractable, so we restrict ourselves to working to the second 

order in K.

It should be mentioned that the analysis presented in §1.10, 

§1.11 is only valid, insofar as one cannot claim unconditional 

convergence of the Taylor series that are introduced.

§1.10 LONGITUDINAL VIBRATIONS.

We seek a solution of the form

= Kx^ [A^ + k2 (Â  x2+A^x2 ) + . . .]C,

"2 “ XXj[B|j + k2 (B̂  x2+b^x2 ) + . . .3C,

U3 = [Cjj + k2 ( x2+Cj Xj )+K* ( X*+C^ x2 x|+Cg X* )+ . . . ]S,
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with C = cos(wt-Kz), S = sin(wt-Kz), as before.

What is attempted here is to determine the coefficients in

the above expansions in succession and to a progressively

higher degree of approximation in ascending powers of Ka, Kb 

(briefly powers of K). The approach is a development of that 

given in §1.6 for the circular cylinder.

First we set out the expressions for the components of

stress as far as it is necessary to carry them for present

purposes :

P,, = pK[[2Ag+LIA^+Bg-CQ)]+K2[|6A,+L(3A,+B^-C^))x2

+ (2Aj+L(Aj+3Bj-C^ ) )x2 ]]C,

P;; = PK[ [2B|j+L(B||+A|j-Cj| ) ]+k2 t (2B^+L(3A^+B^-C^ ) )x2

+ (6Bj +L(A^+3B2-Cj ) )x2 ]]C,

P3 3  = p K [ [ - 2 C Q + L ( A g + B g - C o l ] + K 2 [ ( - 2 C ^ + L ( 3 A ,  + B , - C ^ ) ) x 2

+ (-2Cj+L( A^+3Bj -C2 ))x2]]C,

P,2 = 2MX, Xj K^CAj +B, ]C,

P,3 = PX^ [[A3+2C^ ] + k2 C (A^+4Cj )x2+(Aj+2C^ jXj ]]S,

P33 = px^ r2 [CBj|+2C^ ] + k2 C (B^+2C^ )x2+(Bj+4Cj )x2 3]S,

where L = X/p. These expressions may then be substituted into

the equations of motion P. . . = -po)^u. and the stress-freei],3 1

surface conditions P. v. = 0.
13 3

The equations of motion identify as zero certain series

expressions in which successive terms are homogeneous

polynomials in x ^ , x^ ; it must be the case that the

coefficients in these series vanish identically and this
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forces relations between the coefficients. Most simply, from 
2P . . = -pw u one finds by equating to zero the terms33,3 3

independent of , x^

-XC^ = 2C +2C +A„+B^-2C„+L ( A +B^-C„). (1.55)0 1 2 0 0  0 0 0 0

This is regarded as an equation for X (= pw^/pK^), that -is, as

the dispersion relation, when the ratios A /C , B /C , C /C ,0 0 0 0 1 0
C^/C^ are known. Improvement in X is obtained by iterative

development of these ratios in ascending powers of K.

In the same way the surface stresses are series expressions
2 2 2 2in x̂  , x ^ , but with the added simplification x^/a fx^/b = 1. 

After the parametric substitution x̂  = acoscp, x^ = bsincp what 

emerges is a series in ascending powers' of in which the 

coefficients are polynomials in cos^cp (after appropriate 

application of cos (p+sin tp = 1 ) . The terms in these series 

must vanish identically, and this in turn requires the

identical vanishing of the polynomial coefficients; we find 

that at each stage of the procedure the number of equations 

present is equal to the number of coefficients required. 

Taking first the leading terms in the three components of 

surface stress one finds

:*o+L(A,+B,-Co, = 0,

:Go+L(A,+Bo-Co, = 0,

(B +2C ) + ( A - B +2C - 2 C )cos^w = 0.
0 2 0 0 1 2 ^

Without loss of generality we set = 2(L+1)/L then it is 

clear that

\  = -zc, = -ZC; =

to zero order in K, and one may now calculate from (1.55)

X = (3L+2)/(L+1).
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The iterative process continues by developing zero order

expressions for A ,  a , B , B , C , C , C  and at the same1 2 1 2 3 4 5
time, first order corrections for A ^ , B^, and hence

also for X. Terms independent of x^, x^ in the equations of 

motion for i=1,2 give

-XA^ = 12A^+2B^+2A2-2C, -Aq+2L(3A^+B^-C^),

-XB_ = 12B^ + 2B +2A -2C. -B_+2L(A^+3B^-C_),0 2 1 2 2 0  2 2 2

while, from inspection of the terms quadratic in x̂  , x^ in the 

equations of motion for i=3, we find

-XC^ = 3A^+B^ -2C^+ 1 2C^+2C^+L ( 3A^+B^-C^ ) ,

-XC; = A2 + 3B2-2C2 + 2C^+12Cg+L(A;+3B;-C;).

(We have two equations and not three since there is no x^x^ 

term) .

In the three surface conditions, the terms to first order in 

give rise to seven conditions (two linear and one quadratic 

polynomial in cos^tp), and it is then a matter of straight

forward but tedious algebra to compute 

- ( +4 L + 2 )[L(Q^ + 2Q+3) + 2( of+Q+1 ) ] ,
A = 2 2

12(0+1) (L+1) (L+2)

-(L^+4L+2)[L(Q^ +2 0-1 )+2(0^+0-1 )],
®1 = ---------------- 2 i--------------4(0+1) (L+1) (L+2)

[L^ ( 1 10^+2 20+3 )+4 L^ (90^+19 0-1 )+ 16 L( 20^+50-1 )+6 (0^+3 0-1 )] ,
C = 2 2

96(0+1) (L+1) (L+2)

[L^ ( 50^+20+5 )+ 4 L̂  ( 5 0^-0 + 5 )+B L ( 3 0^ - 2 0+3 )+ 8 ( 0^-0+1 )],

 ̂ 16(0+1)^(L+1)^(L+2)
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A, =  1 +0
[(L + 2)Q-L][L^ (3Q^+4Q+3) + 8L(Q^ +Q+1 )+4(Q^+Q+1)](Kb)^,

8 ( Q+1 )̂  ( L+1 )̂  { L+2 )

C = -1/2 -

3L^(6Q^+7Q^-2Q-3)+2L^(330^+400^-70-12) 

+ 2L ( 3 60^ +5 2 0^ + 2 0-6 ) + 8 ( 30^+5 0^+0 ) (Kb) ,

48(0+1)^(L+1)^(L+2)

where 0-(a/b) . Expressions for , A; , , B^ and ^are not

given explicitly above as they may be obtained by

interchanging the parameters a and b in A^, , A^ and

respectively. From (1.59), it follows at once

X =
3L+2

L + 1

2 2 2 2 1 - L K (a +b )

16(L+1)

from which, with a=b, we recover (1.25) and (1.26) from the 

results for the circular cylinder.

§1.11 FLEXURAL VIBRATIONS.

For flexural vibrations in an isotropic cylinder of elliptic 

cross-section we seek a solution of the form

= [A^ + K̂  ( Â  x^+A; X; )+K^ ( A; x^+A^ x^ X;+Ag X; ) +. . . ]C,

"2 " )+. . .]C,

"3 ^ -Kx, [Cg+K^ (C^ x^+CjXj ) + . . .]S,

Where again C = cos(wt-Kx^), S = sin(ut-Kx^), so that the

principal flexure plane is Ox x .1 3
We compute the stresses so far as they are required;

P = pK^x [[4A +L(2A +B +C ) ] + K^ [(8A_+L(4A +B +C ) ) x^I I I I l U U  w w i l l

+(4A +L(2A +3B +C ))x ]]C, 4 4 2 2 2
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Pgg = PK^X^ [[2B^+L(2A^+Bjj+Cp )] + K^ [(2B^+L(4A;+B^+C^ ) )x^

+ (6B +L(2A, +3B,+C ) )X^ 3]C,Z 4 Z Z Z

P33 = yK*x^ [C2C^+L(2A^+B|j+C3 ) ] + K^ [ (2C^+L(4A3+B^+C^ ) )x^

+ (2Cj+L(2A^+3B^+Cj ) )Xj3]C, 

P,j = pK^Xj[2Aj+B^+K^[(2A^ + 3B^ )xJ+(4Aj+Bj)Xj]]C,

P,3 = PK[A,-c,+K:[(A,-3C,)x: + (A2-C2,x:]]S,

P^3 = m K^x,X3[B^-2C3]S.

As in the previous case for longitudinal vibrations, the

equations of motion produce homogeneous polynomials in x̂  ,

with coefficients that must vanish, and we find from the

coefficient independent of x , x in P . . = -pu the1 2 1 3 f 3 1
relation

XA^ = A^-C -4A -(2A^+B„ )-L(2A +B^+C„ ) , (1.56)0 0 0 1 2 0 1 0 0
where X is determined after calculating the ratios Â  /A^ ,

*2 ' ^ o ' \

The stress-free surface conditions (with the substitution 

x̂  = acostp and x^ = bsinip) again yield polynomials in cos^tp 

and considering only the zero-order terms in K from the 

components of the boundary conditions, we calculate 

(2A2+B0 )+C4Ai-2A^-Bo+L(2Ai+Bo+C^ ) ]cos^(p = 0 ,

(2A2 +B0 )+QT2B^+L( 2Ai+B^+Co ) 3 = 0,

= O'

with Q=(a/b)^ as before. We begin by setting A^=1 so that 

Cp = 1 , ®0 ~ ^^1 ” -2*2 “ -L/2(L+1).
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At once, from (1.56),

X = 0 .

The next approximation for X is found by calculating zero

order values for B ,  B , C , C , A , A , A and then first1 2 1 2 3 4 5
2order (in K ) corrections for , B ^ , Â  and A ^ .

With i=1 in the equations of motion, and equating to zero 

the coefficients of the quadratic terms in x̂  , , we have

XA^ = A^-3C^ -24A;-(2A^+3B^ )-3L(4A;+B^+C^ ) ,

XA; = A;-C;-4A^-(12A^+3B; )-L(2A^+3B;+C; ),

whilst for i=2,3 terms independent of x̂  , x^ give

XB^ = B^-2C2-4A^-6B^ -12B2-2L(2A^+3B;+C^ ) ,

XC = 2C_ + 2A +B_-6C -2C^ + L ( 2A +B„+C ) .0 0 1 0  1 3  1 0  1

From the surface conditions we establish a further seven 

conditions to first order in by setting up (as we did in 

§1.10) two linear and one quadratic equation in cos^(p.

We present the following results for the coefficients:

4 (2Q+1)+3L(3Q+1), 4Q+L(3Q+1) ,
C = ; C =

12(30+1)(L+1) 4(30+1)(L+1)

-[9L^ (30^ + 70^+170 + 5 )+4L( 100^ + 250^+560 + 21 )+4 ( 30^+90^+190 + 9 ) ] ,
A = --------------------------------- 2------------- 5---------------------

192(30+1)(0 +20+5)(L+1)

-[L^ ( 3 0^ + 70^ +1 70 + 5 )+L (1 00^ + 1 4of+380 + 2 )+8( 0^+0^ +20)],

 ̂ 32(30+1)(0^+20+5)(L+1)^

[3L^( 30^ + 70^ +1 7 0 + 5 )+4 L ( 30^+4 0^ +7 0 + 2 )+4 (O^-of-70-1)],
\  " ---------------------------- 2--------------i----------------192(30+1)(0 +20+5)(L+1)

-[3L^ (3Q^ + 7Q^ +17 0 + 5 )+2L(50^ + 1lof+350+13)+8 ( 30+1 )],
B = 2 2

48(3Q+1)(0 +20+5)(L+1)
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-[3L (30^+70^+170+5)+4L(3Q^+8Q +190+2)+4(0^+30 +50-1)],
=

48(30+1)(0^+2 0+5)(L+1)^

[(30+1 )L+(20+1 )](Ka)Z,
C_ = 1 -

(30+1)(L+1)

-L
B = 0 2 (L+1)

3L^ (210^ + 520^ +1 260^+520+5) + 2L(210^ +630^ 

+ 1550^ +1 170+1 2)+4 ( 30^+9 0^ +150-3)

48(30+1)(0^+20+5)(L+1)^

(Kb) ,

-L

4 (L+1)

3L^ ( 27 0^+600^ +1 4 60^+280-5 ) + 2L ( 360^ +870^ 

+ 2 0 50^ +6 9 0+3 )+4 ( 30^+90^+190^+90)

96(30+1 ) (0^ +2 0+5) (L+1 )̂

(Kb) ,

-L

4(L+1)

3L^ ( 2 10^ + 520^+1 260^+520+5 )+6L(7 0^+210^

+ 4 90^+3 10 + 4 )+4 (30^+50^+30-3)

96(30+1)(0^+2 0+5)(L+1)^

so we now find
(3L+2)(K a )

X =

(Kb) ,

4 (L+1)

A particularly interesting feature of this result is that 

the wave-speed is unaffected by changes in the length b along 

the axis transverse to the direction of the vibration. Details 

of the displacement field, however, are certainly altered.
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APPENDIX A.1

In this section we present the analysis which relates the 

polar displacements u, v, w to their cartesian equivalents u ,

From (1.12), (1.30) we have

u = A (Kr)^^.exp[i(wt + 8-Kz)],n = 0 n

V  = iA E b (Kr)^".exp[i(wt+8-Kz)], (A.1.1)n = 0 n

w = iA E c (Kr)^^  ̂. exp [ i (u)t+8-Kz ) ] . n = 0 n

Now by replacing i, w , K by - i , -o), -K throughout (so that the

wave-speed is unaffected by these changes) and then adding 

these new forms to their previous values in (A.1.1), we 

calculate

ti = A E a (Kr)^^cos8.exp[i(wt-Kz)], n =0 n

V = -A E~b ( Kr )̂  *^sin8 . exp [ i (u)t-Kz ) ] ,n = 0 n

w = iA^E™c^(Kr)^^*^cos8.exp[i(wt-Kz)],

and taking real parts

u = A E a (Kr)^^cos8.cos(wt-Kz), n=0 n

V = -A E b (Kr)^^sin8.cos(wt-Kz), (A.1.2)n = 0 n

w = -A E c (Kr)^^*^cos8.sin(wt-Kz), n = o n

this then is a real wave travelling along the Oz-axis.

The transformations from polar to cartesian coordinates are:

u = ucos8-vsin8, x = rcos8,1 1
Ug = usin8+vcos8, x^ = rsin8, (A.1.3)

“3 = W, Kj = Z.
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It follows then, from (A.1.3) with (A.1.2),

u = A[a +K^ E"*(a x^+b x^ ) ( Kr ) ̂ *̂ ] cos (wt-Kx ) ,1 0 n = 0 n + l 1 n + 1 2 3

u = AK^ E~(a -b )x,x (KrJ^^cos(wt-Kx^),2 n = 0 n + 1 n + 1 1 2  3

u = -AK E c X (Kr)^^sin(wt-Kx^),3 n=0 n 1 3

provided we have a =b , and these are the forms used in §1.90 0
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CHAPTER 2

VIBRATIONS IN SLENDER CYLINDERS UNDER STRESS 

§2.1 INTRODUCTION.

In this chapter we present an analysis of the propagation of 

small-amplitude waves along an elastic cylinder upon which 

there has been imposed a large primary stress. The cylinder is 

taken to have circular cross-section and to be infinite in 

length. Our objective is to obtain the di.s_persion relation 

linking frequency and wavelength of the small-amplitude waves 

(treated as a p^turbation) , and to obtain details of the 

associated displacement field, for waves whose wavelength is 

large compared to the cylinder radius. The material is taken 

to be homogeneous, isotropic and hyperelastic with strain- 

energy function W but, at any rate in the first instance, no 

particular form for W is assumed. Consideration is given to 

both compressible and incompressible materials, and for each 

case results are obtained for both longitudinal and flexural 

modes. We consider, however, only those modes for which the 

wave-velocity remains finite as Ka-+0 (a the cylinder radius, K 

the wavenumber). Our results are illustrated in detail for 

particular types of material.

The plan of analysis is as follows. In §2.2 we consider the

steady state of the material produced after the imposition of 

the primary stress. In §2.3 we consider incompressible 

materials and obtain the equations of motion governing the

vibrations of small-amplitude and the appropriate boundary

conditions. In §2.4, §2.5 respectively we analyse longitudinal
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and flexural waves for incompressible materials and obtain the 

dispersion relations governing their propagation when Ka is 

small, together with details of the displacement fields. In 

§2.5, §2.7, §2.8 we undertake the corresponding analysis for

compressible materials. We conclude in §2.9 with a summary and 

discussion of the principal results achieved so far and follow 

this in §2.10 with a detailed examination of three 

illustrative examples.

§2.2 THE EQUILIBRIUM STATE OF PRIMARY STRESS.

In the first instance it is convenient to work with a 

rectangular cartesian system fixed in space. The typical 

particle of the elastic medium in its natural stress-free 

state occupies a position whose coordinates are denoted by X
K'

(K=1,2,3), and in the general state of the medium the position 

of the same particle has coordinates x  ̂ (i=l,2,3), where x

depends upon the and possibly also the time t. These

relations may be inverted to give X^ in terms of x ., t . The 

elements of the Cauchy deformation tensor c are defined by the 

relations

where suffixes appearing after the comma indicate partial 

differentiation with respect to the coordinates x  ̂ and where 

the double suffix convention has been used. The inverse of c 

is denoted by c  ̂' and Î  , I^, I^ are the usual three 

invariants of c"^  ̂ that is

|c"l-Xi| = I^-I^X+I^X^-A^ , 

in which I is the identity matrix.

The theory now follows one or other of two lines of develop-
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ment according to whether the material is compressible or

incompressible.

It is convenient to begin with the incompressible case. The 

strain-energy function for the medium, assumed to be hyper

elastic, isotropic and homogeneous is denoted by W(I )

Then the stresses P are given by the equation

P . . = 2W c . -n5 . .-2W c . (2.1)
13 1 13 13 2 1]

where 5^^ is the Kronecker delta and W^, ( 01= 1,2), denotes the

partial derivative of W with respect to I . Here in (2.1) IIa
denotes an arbitrary hydrostatic pressure and, since there is 

no change in volume,

^3 = 1, (2 .2 )
so that the density of the material remains constant.

In the compressible case, however, the strain-energy

function W now depends upon all three invariants I % %
1 2 ' 3

and the stresses are given by

Wh er e , of course, = d W /ôI ^.

The steady state achieved after the imposition of an axial 

traction (taken here to be in the OX^ direction) along with a 

lateral force acting on the curved surface of the cylinder is 

specified by the equations

, x^ = PX^ , x^ = YX^ , (2.4)

so that , Y (both positive constants) denote the transverse 

and axial principal stretches respectively. We shall have y > 1 

in the tensile case, and of course 1>Y>0 in the compressive 

case.

For an incompressible body, however, we may simplify our

calculations by combining the axial and lateral tractions to 

produce an equivalent stress, t say, acting only in the axial
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direction

Now

p"^ 0 0 , p^ 0 0

c = 0 p -2 0 -1, C 0 P^ 0

0 0 y'^ 0 0 Y^

(2.5)

with

Ig = P (P +2y ), = p S ^ (2 .6 )

(2.7)

will be diagonal. For an axial

We consider now the incompressible and compressible cases in 

turn. For the incompressible case, from (2.2), (2.6)

P^Y^ = 1

and the stress tensor 

principal stress t , we have from (2.1), (2.5)

(2 .8 )

and since the state is to be produced by axial traction alone 

the transverse principal stress must be zero; thus

(2.9)

Upon subtracting (2.9) from (2.8) so as to eliminate the 

unknown hydrostatic pressure II we obtain

(2 .1 0 )

T = 2W^ -n-2W2 Y ^

0 = 2Ŵ  13̂ _n-2W2 P'^

T = 2W^ (Y^-P^ )-2W2 (Y ^-P"^ ) .

In equations (2.8)-(2.1G) the partial derivatives W^, are

to be calculated at the point in (1^,1^) space given by

= P^ (Pf+2Y^ ) . (2 .1 1 )

Thus for a given value of t , equations (2.7), (2.10), (2.11)

determine the values of P, Y once the nature of the material 

is known through the dependence of W upon .

For the compressible case, on the other hand, from (2.3) and 

(2.5) we have

1 2 . 1 2  1
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tg, denoting the axial and lateral principal stresses

respectively. For purposes of comparison between the

compressible and incompressible case we may assume T = t^-t^ .

The partial derivatives of W are to be calculated this time at

the point in the three-dimensional space given by

(2.6). Once W is known as a function of I , I , I , for given1 2 3
values of the stresses t̂  , t ^ , equations (2 .6 ) and (2 .1 2 ) 

suffice in principle to determine P and y . Questions relating 

to the existence or uniqueness of solutions are best 

considered when an explicit form is given for W(I^,l # ) •

Our task now is to derive equations of motion governing 

small perturbations about the steady state described above. We 

begin in the next section with the case of incompressible 

material.

§2.3 SMALL PERTURBATIONS - THE INCOMPRESSIBLE CASE.

Consider the steady-state deformation given by (2.4) and 

make a small perturbation with cylindrical components u, v, w 

that depend on the spatial coordinates and on the time t. We 

shall regard u, v, w and their derivatives as small quantities 

and shall discard their squares and products.

Expressed in cartesians the deformation is given by

= pX^+( x̂  u-x^ V ) /r , Xg = pX^ + ( x^ u+x^ V )/r ,

X3 = Y%2+w,
(2.13)

and adopting the familiar device of setting x^=r, x^=0 , we 

calculate
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c = p ^ [(v - U g )/r-v^] P ^ [1-2(u+Vg)/r] -[p ^v^+Y ^Wg/r]

~[p" u^+Y~ w^3 -CP~^v^+Y Wg/r] Y [l-2w^]

where, since the medium is supposed incompressible

(u+Vg)/r+w^ = 0 .

From (2.14) it is a straightforward matter to calculate

(2.14)

(2.15)

-1

P^( 1+2u^) -pf[(v-Ug)/r-v^] [Y^u^+P^w^]

- P ^ [ ( v - U g )/ r - v ^ ]  p ^ [ 1 + 2 ( u + V g )/r] [Y ^ v ^ + P ^ W g /r ]

Cy  u ^+P w ^3 [y ^v^+P^Wg/r] Y [l+2w^]

from which, with the aid of (2.15), we obtain

= 2P^+y^+2 (y^-P^ )w^,

= P^ (P^+2y^ ) + 2P^ (Y^-P^ )w^.

(2.16)

(2.17

Now as in (2.1)

P = 2W^ c""* -ni-2W2 c, (2.18)

and using (2.9), we write
n -5 n -9 (2.19)

where the affix zero indicates that the partial derivatives

n = n + 2 W ^ p ' - 2 w ; p - ' ,

of W have been calculated in the equilibrium state of

primary stress; in (2.18) these derivatives have to be

calculated at the neighbouring point given by (2.17). The 
*quantity II is the change in hydrostatic pressure due to the

perturbation. From (2.18) we have the following expressions
-2 _„0 „2 . „-2

r r = -n + 2W^ ( 1 + 2U^)P - 2W2 ( 1-2U^)P -2W;jp +2W^P ,

Pgg = -n* + 2W^ [ 1 + 2(u + V g  )/ r ] P ^ - 2 W 2  [ 1 - 2 ( U + V g  )/ r ] p " ^ - 2 W ° P ^ + 2 W ^ P " ^  ,

= -n*+2W^ ( 1+2w^)Y^-2W2 ( 1-2w^)Y~^-2wJp^+2W°P”  ̂,

PrG = 2W^ [v^+(Ug-v)/r]p^+ 2W^[v^+(Ug-v)/r]p"^,
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p = 2W (y^u +P^w ) + 2W (p +Y ), rz 1 z r 2 z r

Pq, = 2W (Y^v +P^w«/r ) + 2W (P"^v,+y"^w./D .v Z  I Z ü  z z ü

We now expand by Taylor series about the equilibrium

state and, using (2.17) but retaining only first-order small 

quantities,

’’re " 2[W°P^+W°P'^][Vj.+ (Ug-v)/r],

Prz = 2(W° Y^+w“p‘  ̂)u +2(W°P^+W° jŵ ,, (2 .2 0 )

Pjz = 2 (W°Y^+W°P'^ )v^+2 (W°P^+W^y'^ )Wg/r,

and similarly

= -n* + 4<w°p^+w“ p'^ )U^ + 4(Y^-P^ )[(W°^P^+W°3 P* )

Pgg = -n +4(W“P +W“P )(u+Vg)/r+4(Y -P )[(W“ ^P"+W”3 P ) (2.21)

-(W°^p-=’+w“g)]w^,

P^g = •c-n* + 4(W®Y^+W°Y'^ )Wz+4(y^-p^ )[(w“^+W°3p^)Y^

■(W°2 +w“jP^ )y'^]w^,

where in the last equation we have used (2 .1 0).

The identity (2.15), together with the arbitrariness 
*inherent in II , allows us to cast (2.20), (2.21) into many

different forms. For convenience, however, we choose the form 

(and, in large part, the notation) that permits comparison in 

various special cases with the work of Eringen and Suhubi [8 ]. 

We define

@ = 2W0, W = 2W°, A = 2W°^ , B = 2W ° ^ , F = 2wJ^, (2.22)

a nd
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= 2P (Y -P )[A+P (Y +p )B+(y 4 2P )F]-2p (@+p W ) ,

^2 = -2P^ ($+Y^W) , = P^($ + P^'F), (2.23)

63 = 2(Y^-pf)(Y^A+2B+3YF) + 2p^(@+P^Y).

We further define

P* = n*+2(Y^-p^ ) CP^'F+(2+P^ )B+(2y +P^ )F]w^. (2.24)

The stress components may now be written in the following

forms

F" = -p +6 (u+v^)/r+6 w , P „ = -6 (v +(u_-v)/r)/2,rr 2 0 1 z r8 2 r 0
*

 ̂ = -p +5 u +5 w , P = a (u +w )+TU , (2.25)08 2 r 1 z rz 5 z r  z
*

P = x-p +(u +2 t )w , P^ = a (V + w ^ / r ) + T V  .zz 3 z 6z 5 z 0 z

The equations of motion are well-known (see, for example, 

Filonenko-Borodich [22] or Novozhilov [23]):

f"tt = Prr,r+Pre,e/r+Prz,z+'Prr-Pe8'/r'

=  Pre.r+'ee.e/r+'ez.z+zPre/f'

f"tt = Prz,r+Pez,e/r+Pzz,z+Prz/r'

where p is the constant density of the elastic material, and a 

comma indicates partial differentiation.

The substitution of (2.25) into (2.26) yields the equations 

of motion:

" -p!r+['°5 +tlUzz-G2 Uee/2r']+6 2 lVre+Vg/rl/2r

+ (G,+°ylWrz'

pv^t " -p Q/r+62(u^g-Ug/r)/2r+(a^+x)V22 (2.27)

-6 (V +v /r-v/r^ )/2+(6 +a )w. /r ,2 rr r 1 5 0 z
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* 2 pw = -p +(tx +T)(u +u /r+v_ /r)+a (w +w /r+w\ ̂ /r tt ,2 5 rz z 6z 5 rr r 66

+(5 + 2t)w 3 zz

We also require the boundary conditions that no traction is 

applied at the deformed curved surface of the cylinder. These 

are:
*“P +5^ (u+Vg)/ r + 5 ^ = 0 ,

v^+(Ug-v)/r = 0, (2.28)

u +w = 0 , z r

at r=a, where a = pa^, and a, a^ are respectiv^y the radius of 

the cylinder after the primary stress has been imposed and the 

radius in the natural state.

Equations (2.27), (2.28) are the basis of our subsequent

analysis of wave propagation. So far as we are aware they have 

not been given previously in this form although for particular 

materials, and in the particular case in which there is no 

azimuthal dependence, the corresponding equations are well 

established (see, for example, Eringen and Suhubi [8 ]).

§2.4 LONGITUDINAL WAVES IN INCOMPRESSIBLE MATERIAL.

We look for solutions of the equations of motion (2.27) 

subject to the boundary conditions (2.28) that have v=0 and 

that are independent of 6 . Accordingly, we write

u = U ( r ) exp{i ((Dt-Kz ) > , w = iW ( r ) exp{ i ( iDt-Kz ) } ,
(2.29)

•kp = P ( r ) exp{ i (u)t-Kz ) } ,
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so that the wave travels along the z-axis with phase speed 

w/K. We shall specify the functions U, W and P in more detail 

later; for the moment we substitute (2.29) into (2.27), 

(2.28). The equations of motion (2.27) become

pu^U = P^+K^ (a^+T)U-K(6^+a^ )W^,

pw^w = -KP-a (W +W /r )+K^ ( 6^ -a^+T )W, 5 rr r 3 5

(2.30)

where we have used the incompressibility condition (2.15) in 

the form

U^+U/r+KW = 0, (2.31)

and the boundary conditions (2.28) give

-P+Ô U/r+KÔ W = 0,
2 1

(2.32)
-KU+W^ = 0 ,

on r=a.

We come now to the forms for U, W and P, in the selection of 

which we are guided by the corresponding expressions for 

unstressed cylinders. For the group of waves under examinat

ion, for which the wave-speed remains finite as Ka-+0, we again 

seek expansions in ascending powers of Ka. Specifically, we 

try :

U(r) = A (Kr)^"*^ W(r) = -A E~c (Kr)^",n=0 n ' n=0 n

P(r) = KA E d (Kr) n = 0 n

(2.33)
2 n

where A is an arbitrary constant, necessarily small in 

magnitude, however, because of the linearised derivation of 

( 2.27), (2.28). Equating coefficients of r^ in the incom

pressibility conditions (2.31) we obtain the relations

2 (n+1 )a -c = 0 , (n=0 ,1,2 ,...). (2 .3 4 )n n
Similarly, the equations of motion (2.30) and the boundary
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conditions (2.32), with c eliminated by the use of (2.34),n
yield respectively:

Xa = 2 (n+l)d +(a +x)a +4(n+ 1 )(n+2 )(6 +a )a ,n n + 1 5 n 1 5  n + 1 ,>
(2.35)

2 (n+1 )Xa = d + 2 (n+1 )(6 -a +%)a - 8 (n+1 )^(n+2 )a a ,n n  3 5 n 5 n + 1

2 2for n>0 , where X=pw /K , and

( 5^-2 ( n + 1 ) 5 ) a -d ](Ka)^^ = 0 , n=0 2 i n n

E [a +4 ( n+1 ) ( n+2 ) a ] ( Ka ) ̂ "̂ = 0 n=0 n n + 1

(2.36)

Now equations (2.35) give (for large n)

a _ 0 (a / (n + 1 ) (n + 2 )), d 0 (a /(n+1 )),n+1 n n+1 n
so that convergence of (2.33) is assured without restriction 

on Kr .

The parameter X and the coefficients a , d are in turnn n
expressed as asymptotic series expansions in ascending powers 

of (Ka)^, thus

X = x(°)+x^* (Ka)2+X*2l (Ka)4 + ...+x(n) ( Ka )̂  "̂ +. . . ,

and similarly for a and d . Then from (2.35),

C  = -[.ag.x,a<-C4n<n.n,5,.ag,a^-'-^i:x<-P>a<P>]/Zn,

^(m) ^ [d_̂ '"' + 2(n+1)(53-ag+x)a‘"’> (2.37)

-2 (n+1)pÇ^^^^"^^a^P)]/8 (n+1 )^(n+2 )a^,

for n>1, m>0; and additionally from (2.35)^ we have

jj(m) ^ [<jjm)/2^.(53_^^+^)a^(m)_8a^a,'"’’]/a‘‘”  , (2.38)

where we have taken

0
0 , m> 1

Likewise, equating coefficients of (Ka)^^ the boundary
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conditi ons  (2.36) we have

d'"’’ = (6 -25 )a‘'"’+ e"™( (6 ,-2 (n+1 16, )a‘'"'"’-d*'"""’) ,Ü Z i u n —1 2  i n  n

(2.39)

for m > 0 .

The terms in the dispersion relation may now be calculated 

successively using (2.37)-(2.39).

First, from (2.39) with m=0 we calculate

= - 1 /8 , d‘“ ' = 6 3 -2 6 , .
(We may observe that to this approximation, and, by virtue

of (2.34), , are independent of the applied stress t and

independent of the nature of the material.) These values 

together with (2.38) give

= (5^+6^/2-0^+t ) . (2.40)

The general situation now follows familiar lines.

We begin with (2.37) to obtain

= (6 +6 /2)/2, a/0* = (5 +5 -6 +a )/192a ,1 * 5 ^   ̂ O f c l O  5
then (2.39), with m = 1, give

= - ( ô + Ô - ô ) / 6 4 a  , = -(46 +36 -4Ô )/8 ,I 3 2 1  5 0 3 2 1
and so from (2.38) we have

= -(6^+6 2 /2-6^)/8 . (2.41)

To the next order of approximation the procedure supplies,

from (2.37), setting Z = (6^+6^-5^ )/a^:
<̂3 ° ’ = - ( 2 6 3  + 3 6 3 /2 -6 ,+6, Z)/32,

&3 = ( 36, - 36 - 36g-ttg- 6 3  Z / 2 )/9 2 1 Gttg ,

d,' ”  = (6 3 / 2+ 6 , Z ) / 1 6 ,

a/'' = 63 ( l+Z/2)/l536ag ,

then from (2.39), (2.38), setting m = 2 ,
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= (663 + 263- 65,-63 Z)/96,

 ̂* = -( 56,-263- 563+63 Z )/ 1 53 6ttg ,
and

x ' ^ ’ = (63-6, )/192. 12.42 1

A further round of calculation reveals

= (ô^+ô^/Z-ô^-a^Z^ )/3072. ( 2.43 )

The significance of the results ( 2 . 40 )-( 2.43 ) in the general 

case and for particular materials will be discussed in §2.9 

and §2 .10.

§2.5 FLEXURAL WAVES IN INCOMPRESSIBLE MATERIAL.

We turn attention now to the more complicated problem of 

flexural waves in incompressible cylinders. To this end we 

consider the forms

u = U ( r ) exp { i ( iiJt+6- Kz ) } , v = iV(r)exp{i(wt + 8-Kz)},

*
w = iW( r ) exp{i (üJt + 0-Kz ) } , p = P(r)exp{i(wt + 6-Kz)}.

The incompressibility condition (2.15) now gives

U^+(U-V)/r+KW = 0, (2.44)

and the equations of motion (2.27) yield, after some simpli

fication ,

piD^U = P^ + [(a^ + T)K^-Ô2 /2r^]U+Ô2 (V^+V/r)/2r-K(6^+a^ )W^,

pw^v = P/r-6 2 (U^-U/r)/2r+02(V^^+V^/r-V/r^ )/2
(2.45)

+ (a^+T)K^V-K(6^+a^ )W/r,

pw^W = -KP-a^ (W^^+W^/r-W/r^ ) + K^ (t+6^-o^ )W
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The bounda ry  cond ition s (2.28) give

-P+6 (U-V)/r+K6 W = 0 , 
2 1

V^+(U-V)/r = 0 , (2.46)

-KU+W = 0, r
on r=a.

For the radial dependence U, V, W, P we set

U(r) = A E"a (Kr)^", V(r) = A E~b (Kr)^",n=0 n n = 0 n

W(r) = A e‘"c (Kr)2n + 1 , P(r) = AK E~d (Kr)^"*^ , n=0 n n=0 n

where A is an arbitrary constant; in selecting these forms we 

have again , been guided by our knowledge of the solution

corresponding to the unstressed cylinder.

Again denoting ptü^/K^ by X, the governing equations are, 

from (2.44),

(2n+3)a^^^-b^^^+C^ = 0 , (n=0 ,1,2 ,...), (2.47)

and from (2.45)

Xa = (a +T)a -(2n+1 )(6 +a_ )c +(2n+1)d -6 [a^ -(2n+3)b , ]/2,n b n  I 5 n n z n +1 n +1

Xb = (a +t)-(5 +a )c +d -( 2n+1 )6^[a -(2n+3)b ,]/2 , (2.48)n 5 1 5 n n 2 n + 1 n + 1

Xc = (t+6 -a )c -d -4 ( n+1 ) ( n+2 )0L_ c  ̂,n 3 5 n n b n + 1

with (2.46) supplying

E~[a +(2n-1 )b ](Ka)^*^ = 0 , (2.49)n=0 n n

E~[a -(2n+1 )c ](Ka)^^ = 0 . n =0 n n

2For the asymptotic developments in ascending powers of (Ka) 

we find from (2.48), (2.47), after some manipulation.
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c(m) ^ [_d(m)+(t+5 -a P > c < P > ] / 4 n ( n+ 1 )a ,n n-l 3 5 n-l p=0 n-l 5

d^"™’ = [4n( n+1 ) (6 ,+Qg )c^"’’-(Qig+T ) ( ( 2n+1 )

+ E^x'^'P'((2n+1)a'P’- b ‘P ’)]/4n(n+l), p = 0 n n
(2.50)

a ̂  ̂ = [-(2n + 1)d^^^ + ((2 n+ 1 ) ( 6 +a ) - ( 2 n+ 3 ) 6 / 2 ) c ̂n + 1 n 1 5  2 n

-(a. +T)&(^)+ EmyXm-p)^(p)]y2 (n+l )(n+2)6 ,5 n p=0 n 2

b""> = (2n+3)a'™>+c""’ . n+1 n+1 n

for n>1, m> 0 , a nd

= (a^+T)aQ^)-(6^+a^)c^^)+dQ^)+62(3b^^)-a^^))/2, (2.51)

where, without loss of generality, we have set

1, m= 0 ,a(m)

0 , m>1.

Likewise from (2.49), (2.47), we find

= ag"">+,,E';’(a<'"-"’-(2n+ 1 )c''"-">),

= - [ c 0 " ' + n s T < c r ' + ' z p + ' ' C r ' ' ] / 4 .

b'ml = Cg""’+3a,‘"” , (2.52)

j(m) ^ g c'"'+G (a'"'-b'"')+ e'"(6 c ' > -d ’0 1 0  2 1 1 n=i 1 n n

+6 (a'm-P'-b'"-"')),2 n + 1 n + 1
for m> 0 .

A first approximation for the dispersion relation may be 

made by setting m=0 in the relations (2.52) and calculating

pg“”  = 1. aj°' = -bj“ ' = -1/4, d ‘“ ’ = G,-G3 /2 ,

SO t h a t  f r o m  (2.51) we ha v e

= T. (2.53)

Thus to a first approximation the speed of flexural waves in a
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slender cylinder is given by

piD̂  / = T ,

a result independent of the particular material. This is in 

agreement with the usual elementary argument (see, for 

instance, Coulson [24]) for waves along a uniform stretched 

string .

Setting Y = (6^+g^/2-6^ one finds for a further approx

imation, from (2.50),

= (Y-D/8, = ( (5,+ag )ï-6, )/8,

a^“ ’ = (SG^-Zag-SYg^i/ISZG^, ° ’ = {G^ -1 Oa^-YG^ ) / 1 9 ZG^ ,

then (2.52) give 

c y '  = (1-3Y)/8, a'”  = (Za^-ZGj+SYGj )/4B53 ,

b y ’ = (Zttg-YGj j/IBGj ,

d y  ' = [ (65,-63-2ttg )-Y(186,-763+ 60  ̂)]/48,

SO t h a t  we  have

X ‘^ ’ = (5^+6^/2-6^)/4. (2.54)

To the next approximation we calculate

X*2) = (1-4Y-7Y^)a^/96. (2.55)

§2.6 SMALL PERTURBATIONS - THE COMPRESSIBLE CASE.

In this section we derive the equations of motion and the 

boundary conditions for elastic cylinders of compressible 

material. Part of the analysis can be taken over directly from 

the incompressible case (§2.3) thus equations (2.13), (2.14),

(2.16) still hold good, but for the invariants of we now

have
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+y^ + 2[J3^ ( u ^ + ( U + V g  )/r )+Y^ w^] ,

1 2  = (13^+2y^ ) + 2p^ [((3^+Y^ ) ( u ^ + ( u + V g  )/r) + 2 Y ^ W ^ ]  ,

Y ^ [1+2(u^+(u+Vg)/r+w^)].

We modify the definitions (2.22) to
© = ® , 'F = 21‘ '̂̂ Ŵ̂ ,

= 1 = B3 = 21; I/:*; 3 , Bg = 2i;1/2 w3 3 , (2.56)

S  = 3 ' S  = 1 ' S  =

all evaluated at the equilibrium state given by (2 .6 ).

The relations (2.12) are then

t = y^$ + 2{3̂  Y^'F+0 ,

t̂  = (p2 +y2 )%^G,
(2.57)

and, using (2.3), the off-diagonal stress components are:

P^g = ( $+y '̂F) Cv^+(Ug-v)/r ] ,

Pgz = ($+13̂ 'F) (v^+Wg/r ) + ( t^-t^ )v^, (2.56)

P = P^(@+p^^)(u +w ) + (t -t )u , rz z r 3 1 z

where for the last two of the relations (2.58) we have made

use of (2.57). We define for this case

01̂ = 2p4 [B,+ (92+^2 )2B2+P*Y^ 62 + 292^2 (pZ+Y^ ) C ^ + 2 P S ^ C 2

+ 2 (gf +Y^ ICgD+G-p^B-P^ (P^ +Y^ )W,

0̂ 2 = 2 p ^ ^  [B^+2p^ (P^+Y^ )B2+ P S ^  (P^+3y^ )Ĉ

+P^ (pf+Y^ )C2+(3P^+Y^ IC^I+G-P^B-P^ (P^-Y^ )'F, (2.59)

= a^ + (P^-Y^ ) (ff+P̂ 'F) ,
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^ = 2y^ [B +4P^B +P^ B +4P^C +2p^C +4p^C ]+©+( 2P^-y^ J ® + 2p^'F,4 1 2 3 1 2 3

= P^(@+P^W), dig = P^($+y ^'F), = Y^(®+P^'F).

Note that here is defined in a way consistent with (2.23),

and that
cx -a = a -OL = t -t . (2.60)2 3 7 5 3 1

Now from (2.58), with (2.59),

% 6  = “g[v^+(Ug-v)/r],

P ̂ = a ( v + w ^ / r )  + ( t - t ) v ,  (2.61)e z 5 z 0 3 1 z

P = a  ( u + w  )+(t^-t )u , rz 5 z r 3 1 z

and similarly

P = t +a [u + ( u+v„ ) / r ]+ 2 ( t -©)u + 2P^'F ( u+v. ) / r+a w , rr 1 1 r 6 1 r 8 2 z

P„^ = t +a [u + (u+v„ )/r ] + 2p^»Fu + 2 (t -© ) ( u+v^ ) / r+a w , (2.62)8 8 1 1 r 8 r 1 8 2 z

P = t +a [u +(u+v„)/r ]+[a + 2 (t -t )]w . zz 3 3 r 8 4 3 1 z

To derive the equations of motion we substitute (2.61), (2.62)

into (2.26), and denoting

R = a +2(t -©), S = a +2p^W, T = a +2(t -t ), (2.63)1 1  1 4 3 1

we find, making use of (2.60),

pu = R(u +u /r-u/r^ )+a u„./r^+a,u +(a +S)v /r tt rr r 6 8 8 7 zz 6 r8

-(a +R)v„/r^+(a +a )w ,G 8 2 5 rz

pv = (a +S)u „/r+(a +R)u^/r^+a (v +v /r-v/r^) (2.64)tt G re G 6 G rr r
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f"tt = '°2+*5''"rz+"z/r+Vg2/rl+ag(Wr^+Wp/r+Wgg/r:) + TW22,

with p denoting the density of the material after the primary 

stress has been applied.

The boundary conditions may be expressed in the form

P . .V . = t V . (2.65)ID 3 I D
where v=(1 ,-u /r,-u ) is a unit vector normal to the deformed 0 z
curved surface of the cylinder X^-|-x^=a^ , and a is the cylinder 

radius after the imposition of the primary stress. Thus using 

(2.61), (2.62) in (2.65) we have

(u+Vg )/r+a^ = 0 ,

v^+(Ug-v)/r = 0 , (2 .6 6 )

u + w  = 0 , z r
on r = a .

It is readily verified that, for cylinders under uniaxial 

stress, equations (2.64) agree for Ko materials with equations 

derived by Thompson and Willson [25], and, in the special case 

in which there is no 8-dependence, with equations obtained by 

Eringen and Suhubi [8].

§2.7 LONGITUDINAL WAVES IN COMPRESSIBLE MATERIAL.

Following the line established in §2.4 for incompressible 

materials we look for a solution in the form

u = U ( r ) exp{ i (cut-Kz ) } , w = iW( r ) exp{ i ( lut-Kz ) } . (2.67)

Again there is no azimuthal 8-dependence nor any transverse 

component of displacement.

From (2.64), (2.67)
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pw u = -R(U +u /r-U/r )+a K U-K(a +a )W , r r r 7 2 5 r
(2.68)

= K (a^+cx^ ) (U^+U/r )-a^ (W^^+W^/r )+K^ TW, 

while the boundary conditions (2.66), with (2.67), yield

on r=a.

We now set

RU +sU/r+Ka W = 0, r 2

-KU+W = 0, r

U = A E~a (Kr)2" + 1 , W = -A E~c (Kr)^", (2.70)n = 0 n n =0 n
where A is an arbitrary constant. Substitution of (2.70) into 

(2 .6 8 ) gives

Xs- = 2 (n+1) (a +a )c - 4 ( n+1 ) ( n+2 ) Ra +a a ,n 2 5 n+1 n+1 7 n
(2.71)

Xc = -4(n+1)^a c +Tc -2 (n+1)(a +a )a , n 5 n + 1 n 2 5 n

2 2with X again denoting pw /k . Similarly from (2.69) we find

(2.69)

e” [ ((2n+ 1 )R+S)a -a c ](Ka)^^ = 0 , n = 0 n 2 n

E™[a + 2 (n+1 )c ](Ka)^n = on = 0 n n + 1

(2.72)

Again the asymptotic behaviour of the coefficients indicates 

convergence of (2.70) unconditionally.

In the usual way we seek asymptotic developments for X and

the coefficients a  ̂ c in ascending powers of (Ka)^ . From then n
equations of motion (2.71) we calculate 

for n>1; m>0 ; and from (2.71)  ̂ with n=0

x'"' = (2 74)
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taking
( m ) ( R + S ) /a^ , m=0 ,

0 , m > 1.

Similarly the boundary conditions (2.72) produce

c ( m )  ^ s ' " ‘ ’ + 2 ( n+ 1 )c 2 .1 0 n=1 n n +1

(2.75)

We find, successively, from (2.75),

= - 1 / 2 ,

and these with (2.74) supply the result

X ‘ ° ’ = T-20.2 / ( R + S ) . (2.76)

In this approximation then, the terms ° * and have the
0 1

same values that they had in §2.4 for the incompressible case.

In fact, because of (2.34) and (2.75)^^ the relation
=(0 ) „ (0 )
%  = 

will always hold true.

To the next approximation, with D = [T+a -2a^/(R+s)]/R , we

calculate.

= -D/8 , ° ' = [ (a^+a^ )D-2a^ / ( R + S ) ]/32a^ ,

= [ (3R+S)D-4a^ ]/8 (R + S ) ,

cji* = -[( (3R+S)a^+(R+S)a^ )D-2a^ (2a^+a^ )]/16(R + S)a^ ,

so that (2.74) provides

X ( 1 ) -a

2 (R+S)

To the next order of approximation, we find.

X ( 2 )

(2.77)

-"2 * D^ ( 7R+S ) -Da^ p^^2 1 "1+30.2
4 ( R+S )̂ 1 2 R + S_ 3R R + S_

(2.78)
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§2.8 FLEXURAL WAVES IN COMPRESSIBLE MATERIAL.

For this case the relevant equations of motion are given in 

§2.6 by (2.‘6A) and the boundary conditions by (2.66). We write 

u = U (r )exp{i (wt+0-Kz)}, v = iV(r)exp{i(wt+B-Kz)},
(2.79)

w = iW( r ) exp{ i ( LUt + 0-Kz ) } ,

as we did in §2.5 for incompressible materials.

From (2.64), with (2.79), the equations of motion take the

form

PW^U = -R(U +U /r-U/r^)+a U/r^+a K^u+(a +S)V /r rr r 6 7 6 r

-(a +R)V/r^-(a +cx ) KW ,6 2 5 r

p(jĵ V = -(a +S)U /r-(a +R)U/r^-a (V +V /r-V/r^) (2 .8(3)B r 6 6 rr r

+ RV/r^ K̂  V- (a^ ) KW/r ,

pw V7 = K ( OL +0L ) (U +U/r-V/r)-OL (W +W /r-W/r^ ) + TK W,2 5 r 5 rr r

and similarly from (2.66), (2.79) the boundary conditions give

(U-V)/r+a^ KW = 0 ,

V +(U-V)/r = 0 , (2.81)r

-KU+W^ = 0 ,
on r=a.

For U, V, W we take the series expansions
2 n .... . ... . 2 n /

(2.82)
_  .  (Kr)2"+1 .n = 0 n

"'rl = A^E“a„(Kr)7", V(r) = A,,E“b^(Kr) ",

W(r) = A E~c (Kr)Zn+l,

where A is an arbitrary constant.

The substitution of (2.82) into (2.80) gives
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Xa = a a -[(2n+1 )(2n+3 )R-a ]ari 7 n 6 n ̂ 1

+[(2n+l)R-(2n+3)a ]b -(2n+1 )(a_+a_)c ,b n + 1  2 5 n

Xb = a b -[(2n+3)R - (2n+1 )a ]a (2.83)A 7 A p A 1

+[R-(2n+l)(2n+3)a ]b -(a +a )c ,6 n+1 2 5 n

Xc = Tc +(a +a )[(2n+3)a -b ]-4(n+ 1)(n+2 )a c ,n n 2 5 n+1 n+1 5 n+1

in which we have used the relation R = S+2a^,

Similarly from (2.81), (2.82) we have

E ~ [ (2(n+1)R+S)a ~Sb +a c ](Ka)^^ = 0, n=0 n+1 n+1 2 n

E^[a +(2n+1)b '](Ka)^" = o , (2.84)n =0 n + 1 n + 1

E~[a -(2n+1 )c ](Ka)^" = 0 . n = 0 n n

The corresponding relations for the coefficients in the

asymptotic developments are, from (2.83)^,

= [(a +an 2 5 n n n-l

- E[J'x^^"‘̂ ^c^^h/4n(n+1 )a , p=o n-1 5

whilst manipulation of (2.83)^ , (2 .83)2 yields

= [[(2n+l)(2n+3)a -R][a a(*)-  ̂ ^ ̂ a ̂  ̂]n+1 6 7 n p=0 n

+ [ ( 2n+1 ) R - ( 2n+3 )a ] [a b/^^- e ' ^ X ^ ^ b ^ ^  ]6 7 n p=0 n

-4 n ( n + 1 ) ( 2n+3 ) ( a +a ) a c ̂  ̂ / 1 8 n ( n+1 ) ̂ ( n+2 ) Ra ,2 5 G A B

b'm) = [[(2n+l)a -(2n+3)R][a a " " ’- E > <  "’’P ’ a ‘ ̂  ] n+1 6 7 n p=0 n

+ [ ( 2n+1 ) ( 2n+3 ) R-a ] [a b^^^- E^X ̂ ^ ̂ b ̂  ̂]6 7 n p=0 n

-4n(n+1 )(a +a )a c*^^]/16n(n+1)^(n+2)Ra ,2 5 6 a 6
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these equations holding for n>1, m > 0 .

The dispersion relation may be expressed in the form:

X(m) = a,a<"'_(3R_ag,a;m' + ,R-3ag)b^"'-(a2+as,cjm', (2.85)
after taking

 ̂ 0 , m > 1 ,

while, from (2.83)^^ (2.63)^ with n=0, and assuming X ^ , we

find
b(m) _ _ ( m )
0 - *0 -

Correspondingly, from the boundary conditions, we have, after 

a little rearrangement,
c ( m )  ^  ( m ) ^
0 0 n=1 n n

= -[a^c(^)+ E^^2 ((n+1 )R+S)a(^"") + 2nSb(^'")1 2 0 n =1 n + 1 n + l

+01; )]/2 (R + S ) ,

b'ml = -a'"'’- E'"{a‘"’-"> + (2n+1 )b‘"'-">).1 1 n = l n + 1 n + 1

We proceed to construct a first order approximation for X 

using these conditions. With m set to zero we find

= 1, = -a^/2{R+S). (2.86)

Comparing these results with the corresponding results for

incompressible materials, we see that the two relations

a'O' = -b'O' , c'°' = a'°'1 1 ' 0 0
are valid for all materials considered here.

Now using (2.86) in (2.85), and with the aid of (2.60), we 

find

X<0) = tg-t^ , (2.87)
just as for incompressible materials (with t interpreted as

s - s > -
For the next approximation we find
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= [T-( -t^ )-Za^ (a^+a^ ) / ( R+S ) ]/8a^ ,

= [ (5ag-R)B-5C]/48, = [ (ag-5R)B-C]/A8,

after denoting B = a^a^^’/Ra^ and C = 2 ( +a^)cj°’/R . Using 

these values we may then calculate

= R[agB/ag-3C/2(aj+a^ )],

( 1 ) - 1 BRa^ K B  - C 1- ( 2R-ag ) ( R-3o.g )B- ( 4R-3ag )C
12(R+S)

( 1 )
1 6Ra^ K B C + ( 2R-ag ) (3R-a.g )B-a.g C

1 2(R + S ) aL 5 (a +a^l

from (2 .85),

X^T* =
[T-

- 4  •
4 2 ( R+S )

(2 .8 8 )

Omitting details of the calculation for the next approxima

tion we present the result
( 1 ) -.2 „( 1 )

X ( 2 )

6a 1 2

3- 2a.

( R + S )
^ °’2

2 4(R+S)
(2.89

An interesting feature of the results formulated for the 

compressible case is that the equations are closely related to 

those given for the transversely isotropic case in Chapter 1. 

By taking

R = A, S = B, a = o . = C ,2 3

“s = “ 7 = E,T = D,

we recover the results established in §1.8, §1.9.
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§2.9 DISCUSSION AND SUMMARY.

We are now in a position to discuss and summarise the 

various dispersion relations governing the propagation of 

longitudinal and flexural waves in incompressible and

compressible materials.

We begin by assembling the equations together for

comparison: that is, (2 . A 0 )-(2 . 43 ) and (2.53)-(2 . 55 ) for

incompressible cylinders, ( 2 . 76 )-( 2 . 78 ) and ( 2 . 87 )-( 2 . 89 ) for

compressible materials. We use suffices i, c to describe the 

material, and 1 , f to describe the type of wave (i incompress

ible, c compressible, 1 longitudinal, f flexural). Then

2pw = ( A+t )-A ( Ka )̂  + ( 2A-5^ )(Ka)4_ A^ +A ( 6  ̂ ) +5^ (Ka )̂  ,

X ,1 3 84 4 30720^

2pw = T+A (Ka)^ + a -4A-7A (Ka )̂  ,

k2 *5_ 9 6
(2.90)

—
p(xi = (Q+t )-a^ fi(ka )̂ a

c, 1 2 (R+S)^ 4 (R+S)^

(7 R + S)Q +Qa,

1 2 R

R+S — Cl

\SR R + Sj

( s-R )

1 2 R

( Ka ) ,

pw = T+Q(Ka) +

c, f

Aa^a^ -2 [3 ( R + S )- 2a 2 ] Q - 7 Q^

( R+S ) ( R + S ) a.

(Ka)

96

where A = [ 6^+5  ̂/ 2-5^ ] , Q = [ T-2a^ / ( R+S )-t] and = '

First, it is instructive to compare the results (2.90) with 

those obtained for cylinders free from stress. For an elastic
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material with Lamé constants X, p the dispersion equations for 

longitudinal and flexural waves in an unstressed elastic 

cylinder are:

2pu)

k2

= p( 3L + 2 ) -p ( 3L+2 ) ( Ka +p ( 2L^ - 1 3L^-56L^ -52L-1 4 ) ( Ka

k2

^ (L+1) 8(L+1)^ 96(L+1)^(L+2)

-p(L^-132 - 389 +514 + 2816 +3324 L^+1572L + 264)L(Ka)^,

3072(L + 1 {L+2)

(2.91)
= p(3L+2)(Ka)^-p(37L^+55L + 20) (Ka )̂  ,

4(L + 1 ) 4 8(L+1 )2

where L=X/p. In the absence of primary stress (so that (3 and y 

are both unity), it is readily seen from the derivation of 

(2.25) that

= 6^ = -6^ = -2p, = p, (2.92)

and from the derivation of (2.61), (2.62) and (2.63) that

R = T = X + 2 p ,  a ^ = a ^ = p ,  S = a ^ = X .  (2.93)

Using these values for a a , r , s , T in (2.90)^, (2.90), and

setting t =0 , gives

Q = p ( 3L+2 ) / ( L+1 ) , 0.^/(R+S)^ = L^/4(L+1)^

and leads directly to a reconciliation with (2.91) to the 

appropriate order. For incompressible materials we see, from

(2.92), that in the absence of primary stress A = 3p , so that

(2.90)^^ (2 .90)2 give the limiting forms of (2.91) as L-+~ (the 

appropriate limit for incompressible materials).

We now restrict our attention to the terms in (2.90) up to 

and including the coefficients of (Ka)^ which for convenience 

are rewritten here
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(PW^/K^). = (5^+6 /2-6 +t)-(6^+5 /2-5 ) (Ka)^/8 ,1 y j. 3 2 1 3 2  1

(puf/K^)^  ̂ /2-6^ ) (Ka)^/4 ,
(2.94)

(pwf/K^)^ ^ = (T-2a2 / (R+S)-T)-(T-2a2/(R + S)-T)a2 (Ka)^/2(R + S)^ ,

(pwf/K^) = x+(T-2a^ / ( R + S )-T) ( Ka )^/4 .c , t z

The first observation to make is that the equations (2.94)

have a pleasing general symmetry about them; the vital

quantities being (6^-6^/ 2-6^) and (T-2a ^ /(R+S)) modified on

occasions by the addition of a term in t . The coefficients are

clearly closely matched. One slightly odd feature is the

appearance of the factor o^/ 2 (R+S)^ in the expression for the

(pw^/K^) case, a factor not matched elsewhere. A conjecturec , 1
at this stage, later confirmed, is that this factor arises out 

of the intrinsic effects of the compressible state of the

material.

It is possible, however, to express these results in a form 

which may be more convenient for comparison with experiment. 

In the theory of linear elasticity for isotropic materials

(see for example Love [12]), there are defined Young's modulus

E and Poisson's ratio ct in terms of the Lamé constants X, p by 

the relations

E = p ( 3L+2 ) / ( L+1 ) , (J = L/2(L + 1),

so that (2.91), to 0(Ka)2^ becomes

(puf/K^)^ = E[1-a^ (Ka)^/2] ,

(puf/K^ ) ̂  = E(Ka)2/4.
(2.95)

It might reasonably be hoped that (2.94) could be expressed in 

a simple form with suitable changes in the definitions of 

Young's modulus and Poisson's ratio to take account of the
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primary stress. In the primary state produced by the imposi

tion of the primary stress, the deformation is specified by 

the equations (see (2.4))

r Xg = = YX^ . (2.96)

In parallel, then, with the manner in which E, ct are defined 

for perturbations of the natural state, let us consider the 

static deformation

= #X^+Ex^, x^ = PXg+Cx^, x^ = YX^+nx^, (2.97)

where e, n are small and arise from (2.96) by increasing the

axial stress by an amount dt. We define a modified Young's
* *modulus E and a modified Poisson's ratio a by the relations

* *E = dt/r), a = - e / t\. (2.98)
*  ■*We now wish to relate E , a to quantities already appearing 

in this chapter. We turn therefore to (2.13), used alike for 

compressible and incompressible materials, and observe that

(2.97) is equivalent to (2.13) provided

u = er, V = 0, w = q z . (2.99)

From (2.66), (2.99)

(R+S)e+a^ri = 0 , (2 .1 0 0 )

and from (2.62)

dt = 2a  e + ( a  + 2T)n- ( 2 . 1 0 1 )

We deduce at once from (2.63), (2.98), (2.100), (2.101)
_ *  *E = T-2a2 / ( R+S ) , cr = a^ / ( R + S ) . (2.102)

From (2.60), therefore with (2.102),
★ 2 *E = 7-20^/(R+S)+2a t . (2.103)

Thus for compressible materials from (2.94), (2.103)

(pw /K ) = E -20- T-(a ) [E -(2(T +1)T](Ka) /2,c, 1

(puf/K^) = T+[E*-(2a*+1)T](Ka)2/4,c , f

(2.104)

to compare with (2.95).
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Incompressible materials present a somewhat degenerate case. 

Of course, we must have E=3p and ct= 1/2, and from (2.15),

(2.98) O’ =1/2 also. But we can still use ( 2.25), ( 2.28 ) with
*(2.98) for E and we find

E* = 6 +6 /2-6 +2T. (2.105)3 2 1
When (2.105) is substituted into (2.94)^ , (2.94)^

(pw /K^) = (E - T ) - ( E  - 2 T ) ( K a )  /8,1 » -L

(P wf/ K^ ).  = x + ( E * - 2 T ) ( K a ) 2 / 4 .1 f T

(2.108)

*It is seen at once that (2.106) agrees with (2.104) when a is 

set equal to 1/2, the appropriate value for incompressible 

materials. The advantage of casting the dispersion relations 

into the forms (2.104), (2.106) is that the quantities

appearing in those equations are directly measurable, and so 

entirely suitable for comparisons between theory and 

experiment. One cautionary remark, however, must be made: once

the primary deformation has been imposed upon the cylinder, 

there is no longer isotropy with regard to further small 

displacement. The quantities E  ̂ q- defined above are defined 

solely in relation to a further incremental rise in axial 

stress and not for small perturbations in general.

Let us return now to the general notion of dispersion

relations and consider in particular the implications for

stability for those parts of (2.94) which refer to the

flexural mode. We see at once from (2.94)^ that may vanish

(that is, the onset of instability is imminent) when t takes a

value of 0(Ka)2 ^ little caution is necessary because (2.94)

has been derived on the premise that the term in (Ka)^ is a

small correction in an expression whose principal term is T.

But when x is itself of order (Ka)2, (2.94) may be expressed4
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2pw = T + p "3L + 2" (Ka)2

K\ c, f 4L+4

correct to terms in (Ka) . Thus we expect instability when T

corresponds to a compression given by
23L+2 ( Ka )

4L + 4

At first sight this result has puzzling practical implica

tions, for it seems to show that for a given negative value of 

T , no matter how small, we shall find it possible to find a 

sufficiently small K so that waves with this wavenumber will 

be marginally unstable. It would seem then to follow that for 

all bars and cylinders in compression, instability is 

inherent. It must be remembered, however, that the results 

obtained here for wave-propagation relate to cylinders of 

infinite length. For bars of finite length the boundary 

conditions at the ends have a role to play. Consider for 

example a cylinder of length A and suppose that the end- 

conditions include the restriction that w, the axial displace

ment, must vanish there. Take equations (2.29), (2.67) and

(2.94) in conjunction; we see that we may replace K by - K 

(leaving other parameters unaltered) and combine solutions to 

get

w = W ( r )sinKz.cos(wt+ e ).

For w to vanish when z=0 imposes no extra condition but for w 

to vanish when z=A requires K to be a multiple of n/A. Thus 

the end condition sets a lower limit to K, specifically K>n/A, 

so that we expect instability in this case to arise when

= -p 3L+2' na

4L+4 A

and not until this value of compressive stress is reached. We
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observe that for instability in the longitudinal mode, (2.94)

predicts that much larger values of |t | will be required. The

effect of the primary stress upon wave-velocity may well be

perceived, however, long before instability sets in.

We turn now to another aspect of the dispersion equation.

From (2.94) the typical equation can be written in the form

= of[1+t(Ka)2], a>0,

before instability arises. Thus, taking the positive root

(with li), K both regarded for the moment as positive), we have

(JÜ = aK [ 1+^ ( Ka ) ̂ / 2 ]

to the order of approximation in which we retain the small

quantity (Ka)^, Thus the phase-velocity c is given by

c = (jj/K = a[ 1+E ( Ka ) ̂ / 2 ] ,

and the group-velocity c by
9

= dUJ/dK = a[ 1+ 3^ ( Ka )̂  / 2 ] .

Of course, if the correction term in (Ka)^ is not included,

both c and c^ are constants, indeed there is no dispersion.

The value of E, as determined by the theory underlying the

derivation of (2.94), gives the correction to c and c . in
9

particular, the sign of Ei indicates whether the group velocity 

increases or decreases as the wavenumber K increases. This has 

great implications for the manner in which pulses are 

propagated along the cylinders. The reader is referred to 

Jeffreys and Jeffreys [26], and an extended account of the 

propagation of pulses in elastic solids by Davies [15].

§2.10.1 ILLUSTRATIVE EXAMPLES.

We wish now to illustrate the general results obtained above 

by reference to certain special materials. In the first case
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we examine the model introduced by Mooney [27] for incompress

ible materials and for the second case we study the model for 

compressible materials (intended originally to represent the 

behaviour of polyurethane foam rubber) given by Ko [9]. 

Finally, we consider a hyperelastic incompressible material 

for which the strain-energy W is expressed directly in terms 

of the principal stretches (rather than the strain invari

ants). With other workers Ogden [28] has developed the theory 

for rubberlike materials whose strain-energy may be taken in 

this form.

§2.10.2 THE MOONEY MODEL.

For the Mooney (or Mooney-Rivlin) model, the material is 

taken to be incompressible and the strain-energy function W 

has the particular form

W = L(I^-3)+M(l2-3),

where L and M are constants.

In terms of the principal axial stretch y, we have
- 2

(2.107)

P =

from (2.7), (2.11), and

Ig = 2y +y

T = 2 ( -y "'* ) (L+Y  ̂M) ,

(2.108)

(2.109)

from (2.10), (2.107). The definitions (2.22) are now

evaluated; thus

= 2L, W = 2M, A = B = F = 0, (2.110)

so that the quantities in (2.90)^, (2.90)^ may be found from

the substitution of (2.108), (2.110) into (2.23). We obtain

(in terms of the axial stress)
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= -6^ = -20^ = -4y  ̂(L+y ~^M), 5̂  = -4y  ̂(L+Y^M),
(2.111)

A = 6y ^L-2(Y-4Y ^)M.

The expressions (2.109), (2.111) can then be substituted into

(2.90)^ f (2.90)^ from which we may determine the wave-speeds 

(in terms of L, M and Y )- Thus, denoting M/L by F, the 

longitudinal mode gives

= 2[2Y~^+Y^+3Y~^r]-[3Y~^+(AY~^-T)r] (Ka)^

LK^ 4 (2.112)

+ CY“''+Y"^r] ( Ka )^-[ 1 + ( 9y "^-7Y^ )F+( 1 2y "^ -1 5y + 4Y^ )F^ ] (Ka)^ .

2 4 1536(y+F)

To the order (Ka)^ this particular result was obtained by 

Suhubi [29]. For the flexural mode

pu)2 = 2 ( y -Y~^ ) ( Y+r) + [3Y~^+( 4y ~^-Y)F] ( Ka )̂

2 (2.113)

-[ 74 + ( 1 9 4Y"’’ -46Y^ )F+( 1 2 7 Y~ ̂ " 6 Oy +7 Y^ )F^ ] (Ka)^ .

48(y +F)

The results (2.112), (2.113) are illustrated in Fig. 2.1 where

we set F = 0 .4 and plot, for selected values of Ka, the curves 

of the axial stretch Y against (c/c^)^ with c denoting the 

usual wave-velocity w/K and where c^ = 2(L+M)/p so that in the 

linear approximation ĉ  reduces to /(p/p), the velocity of 

transverse waves in an unbounded medium. In Figs. 2.2, 2.3

respectively, we display, for selected values of F , the

longitudinal and flexural modes, for the limiting case when

Ka = 0 . The curves produced for F = 0 represent the neo-Hookean 

model.
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§2.10.3 THE KO MODEL.

In [9] Ko proposed as a model for compressible materials the

strain-energy function

W = ÏÏ( /2I^ ) , (2.114)

P constant. This is an especially simple model in that the 

Lamé constants X, p governing the linear elastic behaviour are 

equal (and, in fact, equal to the parameter p in (2.114)), so 

that the Poisson's ratio is 1/4.

From (2.55), (2.57), (2.59), (2.63) with (2.114), we find

after a little calculation

^2 = = S = R/3 = p-t^ , = T / 3 = p-tg. (2.115)

For convenience we introduce the standardised stresses T , T1 ' 3
where

T, =

SO that, from (2.90) (2.90), with (2.115), (2.118)3 4

(2.116)

pw

pK^

= (6T2 -T^) - ( BT^-3T^ ) ( Ka )

64 (2.117)

and

-(49T^-2 6BT^ +3 5 2?^ ) (Ka )̂  , 

92 1 6T

pw

pK^

= (T̂  -T^ ) + ( BT^ -3T^ ) ( Ka )

(2.1 IB)

-(63T^-366T T +527T^)(Ka)4. ____ 1______ 1 3______ 3______
3B4T

When are unity (2.117) and (2.11B) reduce, as they1 ' 3
should, to the forms (2.91) with L there set equal to one. The

full expressions (2.117), (2.11B) will be used later, for the

moment, however, we set Ka=0 and look at the behaviour of
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these equations for two particular primary deformations. In 

Fig. 2.4 we display for the longitudinal mode the curves of 

(c/c )2 against the axial stretch y with c = /(p/p) denotingI t
the velocity of transverse waves in the linear approximation. 

The curves plotted correspond to a uniaxial stress; T = i,

13^y=1 and an equibiaxial stress; 7^ = 1, 0^y^ = 1. The

corresponding curves for the flexural mode are given in 

Fig. 2.5.

§2.10.4 RUBBERLIKE MATERIALS.

For our third example, we return to isotropic, incompress

ible materials for which the strain-energy function W is given 

in terms of the principal stretches (where X^X2X^= 1 ),

measured from the natural state. We write W = E(X ,X ,X ) and1 2  3
attach suffixes 1,2,3 to E to indicate partial derivatives

taken with respect to X x ,X . Examples of calculations of1 2  3
this kind are given in the work of Ogden and others [28], 

[30], [31].

One possible approach is to express W in terms of Î  , and

then use (2.94)^^ (2.9 4)  ̂. Often, however, this is a clumsy

and time-wasting procedure. A better line is to use (2.106).

First the principal stresses are given in terms of the 

function E and its derivatives by the relation

^i ^ (i=1,2,3),
where II is an arbitrary hydrostatic pressure. So, from a 

consideration of the primary deformation,

at X^=X2 =P, Xg=y. We now make the small perturbation given by 

(2.97) which has the effect of increasing (3, y , t to #(1+E),
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Y ( 1 + n ) r  T+dt in which c , ri, dt are all small. The incompress

ibility condition gives 2c+n=0, that is, a*=i/2 . We can now
•k *

calculate E from the relation E =dt/ri to find

We can then use (2.106) to give the dispersion relations.

In much of the work published on this model, the function E 

is expressed in the form

E = F(X^ )+F(X^ l+FtX^)+C, 

where F is a function of the single variable and C is a

constant. In this case

T = yF' F' )
and

E* = y F' (y )+y "^^^F‘ )/2+Y^F" (Y)+Y~^F" )/2.

For example, if E = L (X^+X^+X^-3)+ M (X"^+X‘^+X"^-3), so that 

F(X) = LX +MX ^ ,

T = 2 ( Ŷ  - y “  ̂ ) (L+y"^ M) ,

E* = 2 ( 2y ^ + y "^ ) L + 2 (2 Y ~ ^ + y )M,

and (2.106) gives

(Pt^^/LK^)^ = 2[ 2Y~^+Y^+3Y~^F]-[3y ~^+( Ay ~^-T)r] ( Ka )^/4 ,

(piD^/LK^)^ = 2 ( Y-y '^ ) ( Y+F) + [3y "^+ ( 4y "^-Y)F] ( Ka )̂  /2 ,

in agreement with (2.112), (2.113) to 0(Ka)^. This is as it

should be for with E as above, W = L ( - 3 )+ M ( - 3 ) .

This is an especially interesting example because it 

illustrates the usefulness of equations (2.106) relating our 

results for the dynamical behaviour of cylinders, in the long 

wave limit, to data derived from the statical state of stress.
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CHAPTER 3

SURFACE WAVES IN A PRE-STRESSED MATERIAL 

53.1 INTRODUCTION.

In a series of papers by Willson [32-373 the properties of 

small-amplitude surface waves are investigated for a variety 

of isotropic elastic materials, both incompressible and 

compressible, which have been placed under different 

configurations of stress and also for arbitrary directions of 

propagation. In this chapter we consider a surface wave 

supported by a semi-infinite medium that has been placed under 

a large primary deformation, and for which the direction of 

propagation is along a principal axis. We consider both 

incompressible and compressible materials in turn and show 

that Willson's results are recovered as special cases. Our 

main results are investigated numerically for Mooney and Ko 

materials .

§3.2 INCOMPRESSIBLE MATERIAL.

Consider a semi-infinite region x^>o composed of a homo

geneous, isotropic, hyperelastic material upon which stresses 

have been applied along the three axes Ox^ , Ox^, Ox^. We 

suppose that the uniform principal stretches are a, p, Y so 

that the deformation in the steady state is

Xi = ax^, Xg = YXg. (3.1)

In this state we denote the non-zero stresses by and P^

so that, using (2.1) with the definitions (2.22),
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and

-n-'Fa ^

2 -2 = @Y -n-WY

2 "2 2 2 2 2Ig = a P +P Y +Y a f I3 ■= ; (3.2)

Since the material is incompressible 1^=1 so that aPY=1•

We now consider the perturbed state in which the displace

ments and stresses differ from the above by only small 

amounts, fhe deformation is specified by

= aX^+u(x^,^,t), x^ = PX^, x^ = YX^+w( x̂  , x^ , t ) , (3.3)

in which we regard u, w as small quantities and in all 

subsequent calculations we shall neglect their squares and 

products. Accordingly, for the Cauchy deformation tensor c, we 

calculate

c =

a  ̂(i-2u^ ) 0
-2

—  2 —  2-a Ug-Y 0

-1
a ( 1 +2u^ )

2 . 2a +Y

- 2 — 2-a Ug-Y

y "̂  ( 1-2Wg )

2 . 2 a w^+Y

Y ( 1 +2Wg )

(3.4)

The incompressibility condition det c = 1 yields

u +w = 0,1 3
and from (3.4), with (3.5),

= a^+p^+y^ + 2 (Y^ )w^ ,

2 2 2 2 2 2  2 2 2I g = a p + p  Y + Y  a + 2 p  (Y -a

(3.5)

(3.6)

Assuming that W and its derivatives may be expanded as a
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Taylor series about the point given by (3.6), we find

for the components of stress

P = P -n+Rw , P = P = 0,11 1 3 12 23

P = P -n+Sw , P = Gu +Hw , (3 .7 )2 2 2 3 13 3 1

P33 = P3-n+Tw^,
W h e r e

(3.8)

(3 .9 )

R = 2a^(Y^-a^)[A-p^Y*B+P^(1-p^Y*)F]-2a^(@+p*Y*W),

S = 2 p^(Y^-of )[A-a^Y^B+(p^-a*Y*)F],

T = 2y^ (Y^-a^ ) [A-a^ B+p^ ( 1-a^ ) F]+2y  ̂(®+oî P̂ 'F) r

G = Y^(@+P^W), H = a^(®+P^'F),

and ffi, 9/, A, B, and F are given by (2.22).

The equations of motion become

-n^+(R+H)w,,+Gu,, = PU^t'

-n,+Gu,,+Hw,,+Tw,, = pw^t,

with p the constant density of the medium.

The boundary conditions at the surface =0 are

P..v. = P^v., (3.10)
13 3 3 3

where v=(-w^ ,0,1), and, with use of the relation G-H = P^-P^ , 
this reduces to

Ug+w^ = 0, -n+TWg = 0. (3.11)

The theory is now applied to the study of surface waves. We 

restrict attention to those monochromatic solutions with 

harmonic dependence on the spatial coordinates, and seek what 

are in effect Rayleigh waves. Accordingly we suppose a 

dependence e x p [i (wt-Kx^- Kmx^)] for the field quantities, and 

impose the requirement lm(m)<0 so that the wave is attenuated
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away from x = o . The equations of motion (3.9) are then 3
in+Km[Gm^-(R+H)-X]w = 0 ,

imn+K[(G-T)m^-H+X]w = 0,
(3 .1 2 )

2 2where we denote X=pw /K and have eliminated u with use of 

(3.5), and for (3.12) to have a non-trivial solution

Gm^-[R-T+H+G+X]m^+(H-X) = 0 .  (3.13)
2 2 2 This is a quadratic in m whose solutions, m ^ , m ^ , say, will

each give rise to a single solution m̂  , m^ satisfying lm(m)<0

(except when the solution is non-negative, real) and where

m^+m^ = (X+R-T+H+G)/G, m^m^ = (H-X)/G. (3.14)

Since (3.13) has real coefficients, the solutions are complex

conjugates (where they are not real) so that the expression

m^m^ will be negative (a conclusion that also holds when m^ , 
2m^ are both negative).

Now, as with Rayleigh waves in an unstressed medium, we seek

to satisfy the boundary conditions by selecting a disturbance

having two contributions of the type exp [ i ( cut-Kx^ - Kmx^ ) 3 where

w, K are the same for the two contributions and m takes the

values m̂  and m^ respectively. Hence, noting (3.12), (3.5), we

look for solutions of the form

u = i[m Pexp(-iKm x )+m Qexp(-iKm x )]exp{i(wt-Kx )},1 1 3 2 2 3 1

w = -i[m^ Pexp (-iKm^ x^ )+m^ Qexp (-iKm^ x^ ) ]exp{ i (wt-Kx^ ) } ,

n = K[((G-T)m^-H+X)Pexp(-iKm^Xg)

+ ( ( G-T ) m^ -H+X )Qexp (-iKm^x^ )]exp{i(u)t-Kx^ )},

where P, Q are arbitrary constants. The boundary conditions 

(3.11) now become
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- 1 ) P+m^ ( - 1 ) Q = 0 ,

(Gm^-H+XiP+tGm^-H+XlQ = 0,

and for a non-trivial solution in P, Q we find

(m —m )[{X - H )(m +m -1)+Gm m +(X-H+G)m m ] = 0.1 2 1 2 1 2  1 2
The vanishing of the factor -m^ corresponds to a trivial 

solution only and may be disregarded. The remaining factor may 

then be manipulated with the aid of (3.14) to yield the 

frequency equation

(X+R-T+H-G)[(H-X)/G]’'̂  = (H-G-X) . (3.15)

Of course, when the primary stresses are zero,

R = -T = -2jj, H = G = p,

and (3.15) reduces to the well-known result

( x-4 ) ( 1-x)’̂  ̂ = -X, (3.16)

where x = X/p, comparable with Rayleigh's equation (1.10) for 

the incompressible limit X-**». Equation (3.16) has only one 

physically meaningful solution x=0.9126... (cf. Table 1.1 

corresponding to the result for Ka=«> when a=Q . 5, V/V^ = x//3 ) .

As an illustrative example we now consider the Mooney model

with strain-energy function given by (2.107). From (2.22),

(3.8) and denoting M/L by T we have

R = -4La^ ( 1+p^Y^r) , H = 2La^(1+p^D,

T = 4Ly  ̂( 1 + a^P^D , G = 2Ly ^(1+P^T).

Using the incompressibility condition a#Y=1 we find

T-R = 4L(o^+Y^)(i+p^r),

so that the frequency equation (3.15) may be written
2 2 2 1/2 2 2 (Y-a -3y )(a -Y) = y(cx -y -Y) (3.17)

with Y = X/2L(1+P^D. We see immediately that the point at

which instability arises, that is, when Y vanishes, (3.17) is
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independent of the parameter T.

As a guide to the behaviour of this model under differing 

states of primary deformation we briefly explore three 

specific cases :

(i) uniaxial stress parallel to OX •1
(ii) uniaxial stress parallel to OX^;

(iii) equibiaxial stress in the OX^x^-plane.

In case (i ) we take P = diag(P^,o,0) so that p=y, ap^=1 and
3 2Y is now a function of a and F alone. Denoting a -aY by q , 

(3.17) may be expressed in the form

q^+q^+3q-1 = 0, (3.18)

which contains a unique real root at q=q^=0.2956. For the 

wave-speed we calculate

(c/c^)2 = ( a ^ ) ( 1+a"”'F) / ( 1+F) , (3.19)

where c=tu/K, c^ = 2(L+M)/p. The results are illustrated in 

Fig. 3.1 where we plot, for selected values of F , the curves 

of the principal stretch a against (c/c^)^. The point labeled 

M, lying on the line a=1, corresponds to the unstressed state 

and at this point (c/c^ )̂  takes the value 0.9126. The other 

point common to all the curves occurs at the marginal point 

a = 0 .4437.

Similarly, for case (ii), where P = diag(0,P^,0) and a = Y ,
2a P= 1 , (3.17) may again be reduced to the form (3.18) but now
2 -2 q =1-Ya so that

(c/c^)^ = ( 1-q^ )a^ ( 1+a"“̂F) / ( 1+F) .

The results are displayed in Fig. 3.2.

Finally in case (iii) we set P = diag(P^ ,p̂  ,0) so a=p, 

0L^Y=1- Again (3.18) holds but now with q^=o^-a^Y; we find that 

for this particular case

(c/c^)2 = (a^-a^q^ ) ( 1+a^ F) / ( 1+F) (3.20)
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and we display the results in Fig. 3.3. For the Neo-Hookean 

model (r=0), (3.20) is in agreement with the findings of

Willson [34, §7].

§3.3 COMPRESSIBLE MATERIAL.

For the general compressible medium, the relations (3.1), 

(3.2) still hold for the static state and, using (2.3) and the 

definitions (2.56),

= a^@+a^(0^+Y^)W+@,

= 0^@+0^(Y^+a^)W+@,

= Y^@+Y^(o^+p^)W+0.

The perturbed state is again described by (3.3), (3.4), but

now

Î  = +y  ̂+ 2 (a^u^+Y^ ) ,

2 2 2 2 2 2  2 2 2  2 2 2  I^ = a P +p Y +Y a +2 [a ( P +Y )u^+Y (a +p )w^ ] ,

I3 = a^P^Y^ + Za^P^Y^ (u^+w^ ) .

For the stress components we calculate

P = P +Au +Bw , P = P = 0,11 1 1 3  12 2 3

^22 = P2+CU1+DW3 , ?13 = G"3+H"l'

where, using the definitions (2.58),

A = 2a^ [B^+(P^+Y^ )^B2 +P̂ y'̂  B^+2PS^ (P^+Y^ )Ĉ

+ 2P^Y^ C^+2(P^ +Y^ )C^ ]+a^®+a^ (P^ +Y^ )'P+©,
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B = 2a^ +(P^+Y^ ) (a^+P^ )B2 +a^pN^ (P̂  (a^+Y^ )

+ 2 â  )Ĉ  +p^ (a^+Y^ )C2 + (o^ + 2P^+Y^ ) Ĉ  ]-a^®-a^ (pf-Y^ )%^G,

C = 2a^P^ [B^+(a^+Y^ ) (P^+Y^ jB^+a^P^Y^B^+Y^ (Ŷ  (a^+3^ )

+ 2a^P^ )Ĉ  +Y^ (a^+P^ IC^ + to^+pZ+ZY^ ) C^ ]-pf®+P^ (a^-Y^ )W+G, 

D = 2p^Y^[B^+(a^ +p^ ) (a^ +y  ̂) B^ +a^ p^ y  ̂B̂  +a^ (a^ (P^ +Y^ )

+ 2P^Y^ )Ĉ  +a^ (pf+Y^ )C2 + (2a^+P^+Y^ )C^]-p^®-p^ (a^-Y^ )W+G, 

E = 2 â  Ŷ  [B^+(a^+P^ ) (P^+Y^ )B2 +a^p"^Y^ B^+P^ (P̂  (a^+Y^ )

+ 2a^ Y^ )Ĉ  +0^ (a^+Y^ ) C^ + (a^+ 2p^+Y^ ) C^ ]-Y^@+Y^ (a^-p^ )%^G, 

F = 2Y*[B^+(a2+p2)2B2+a4p4B2+2a2p2(a2+p2)c^

+ 2a^P^ C2 + 2 (o.2 +P^ )Ĉ  ]+Y^@+Y^ (â  + P^ )'F+0 , 

G = Y^(®+P^'i'), H = o2(@+p2^),

and G, H are defined in such a way so as to be consistent with

(3.8). The equations of motion become

A"l1+GU33+(B+Hlw,2 = P"tt'

(G+E)u ,3+Hw ^,+FWj 3 = P"tt'
(3.21)

where p is the density in the deformed state and for the 

boundary conditions (with use of the identity P^-p^=G-H) we 

have

w^+Ug = 0, Eu^+FWg = 0 .  (3.22)

As in the previous section we seek solutions possessing a 

exp[i(wt-Kx^-KmXg)] dependence, so that, from (3.21), we find 

FGm^+[G(H-X)+F(A-X)-(B+H)(G+E)]m^+(A-X)(H-X) = 0 

with roots m̂  , m ^ , say, where
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= -[G(H-X)+F(A-X)-(B+H)(G+E)]/FG,
(3.23)

= (A-X)(H-X)/FG.

The general solution of (3.21) is then 

u = ( B+H ) [Pm^ exp (-iKm^ )+Qm2 exp (-iKm^ ) ] exp{ i (o)t-Kx^ ) } ,

w = -[ (A-X+Gm^)Pexp(-iKm^x^) (3.24)

+ (A-X+Gm^ )Qexp(-iKm^ x^ )]exp{i(wt-Kx^ )},

P, Q arbitrary constants. Substituting (3.24) into the

boundary conditions (3.22), we must have for a non-trivial

solution in P, Q either

m -m = 0 (3.25)
2 1

or
(X-A)[E(B+H)+F(X-A)-FG(m^+m2)l-EFGm^m^ (3.26)

= (B+H)CE^+F(X-A)]m^m^,

where the expression on the right-hand-side of (3.26) has been 

simplified by the relation B+H = G+E. From (3.26), with

(3.23), and rejecting the positive square root of m^m^, we 

calculate

X = A (3.27)
or

(A-X)(H-G-X) = [Ef+F(X-A)][(A-X)(H-X)/FG]^^, (3.28)

assuming B+H is non-zero.

Hayes and Rivlin [38] have shown that the solutions (3.25),

(3.27) are degenerate cases, thus (3.28) is the frequency 

equation for surface waves in a pre-stressed compressible 

half-space.

When there is no primary stress

A = F = X+2p, E = X, G = H = p.

Chapter 3 Page 82



X,p the usual Lamé constants, and denoting x=X/p, a=2p/(X+2p),

(3.28) reduces to

-x(2-ax) = (2a-4+x)[2(2-ax)(i-x)]i/2, 
which upon squaring and removing the factors (2-a), (ax-2)
becomes (1.10), the relation governing Rayleigh waves in an

unstresed isotropic half-space.

Willson [32, 33] investigated Rayleigh waves in a semi

infinite medium composed of a particular compressible material 

under conditions of normal loading and equibiaxial stress.

Later [35] he considered an equibiaxially stressed medium 

composed of Hadamard material. Eringen and Suhubi [8, §4.4]

calculated the frequency equation for surface waves in a 

compressible half-space placed under the biaxial stress 

P = diag( , 0 ) ,  P^^P^. The results obtained in these four

investigations are encompassed by (3.28).

The result (3.28) is now applied to the Ko model (2.114), so 

that,

A/3 = G = p/a^PYf E = F / 3 = H =  p/aPY^- (3.29)

For this model we consider the curves on the velocity-stretch 

diagrams for the following four cases:

(i) uniaxial stress parallel to OX^ ;

(ii) normal loading onto the surface X^=0;

(iii) equibiaxial stress in the OX^X^-plane;

(iv) equibiaxial stress in the OX^X^-plane.

Using the frequency equation (3.28) with (3.29) we plot values 

of (c/c^) , c^ = /(p/p), against the principal stretch a.

In case (i) we take P = diag(P̂  ,o , 0) , so that P=Y and ap^ = 1. 
The curve produced is plotted in Fig. 3.4. K is the point 

(1,0.8453) in agreement with Rayleigh waves in an unstressed 

medium having a Poisson's ratio of 1/4 (cf. Tables 1.1, 1.2
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with V/V^ taking the value /(2/5)c/c^). The two points at 

which instability arises are (0.5793,0) and (2.6768,0).

Similarly in Figs. 3.5, 3.8, 3.7 we display the curves

corresponding to the cases (ii), (iii) and (iv) respectively. 

The unstressed point K on the line a=1 remains the same for 

all four graphs and the points of marginal stability are given 

in Table 3.1.

Table 3.1
Values of the stretch  a when the curves in 
Figs.  3 . 5 ,  3 . 6  and  3 . 7  cross the a-axis.

Case (ii) a = 0.8724 a = 1.2793
Case (iii) a = 0.6345 a = 2.2731
Case (iv) a = 0.7611 a = 1.6367
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CHAPTER 4

VIBRATIONS IN CYLINDERS UNDER STRESS.

§4.1 INTRODUCTION.

In this chapter we return to the problem of small-amplitude 

elasic vibrations in a pre-stressed cylinder, previously 

considered in Chapter 2, but we no longer regard Ka as a small 

quantity. The governing equations set up in Chapter 2, for 

longitudinal and flexural waves in incompressible and 

compressible solids, are now solved completely to establish 

general dispersion relations expressed in terms of Bessel 

functions. Dispersion relations for longitudinal vibrations in 

uniaxially stressed cylinders for both compressible and 

incompressible materials have been calculated by Eringen and 

Suhubi [8, §4.5], however, no detailed numerical examination

of their results has since been carried out. We show that in 

the limiting cases; when Ka is small (slender cylinders) the 

results from Chapter 2 are recovered, and when Ka is large we 

illustrate the recapture of the surface wave limit, obtained 

in Chapter 3, for the Mooney and Ko models,

§4.2 LONGITUDINAL WAVES IN INCOMPRESSIBLE MATERIAL.

The longitudinal vibrations in an infinite cylinder composed 

of an incompressible material are governed by the equations of 

motion (2.30),
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pw^U = P +K^ (a + t )U-K(6 +a )W , r 5 1 5 r

p u f w  = -KP-cx (W +W  /r )+K^ ( 6 ^ -a +T) W, 5 rr r 3 5

(4.1)

the incompressibility condition (2.15),

U + U /r+ KW = 0, (4.2)r
and the boundary conditions (2.32),

- K U + W  = 0, r
(4.3)

-P+ô^U/r+Kô^W = 0 ,

satisfied on r=a.

In the same manner in which the equations in Chapter 1 were 

solved, we calculate, from (4.1), (4.2):

U(r) = K[AJ^ (X^r)+BJ^ (X^r)],

W(r) = -[AX^ (X̂  r )+BX^ (X^ r ) J , (4.4)

P(r) = K[Ab J (X r )+Bb J (X r )],1 0  1 2 0 2

where A, B are arbitrary constants,

b^ = - ( X^+X^ ) ( 5^+a^ )/X^ , (i=l,2),

xf = [X-(a +T)]K^, X^ = [X-(5,-a +x) ,
 ̂ ------5------  4  3-- 5------  (4.5)

(5i+a^)

X^ = ( Ô +a ) , X = ,

“ 5
2 2and X^ , X^ are the roots of the equation

X -(X +X )X -X X = 0. (4.6)4 5 3 5

Substituting (4.4) into (4.3) yields two equations linear in 

A, B which may be solved to give the longitudinal dispersion 

relation for incompressible materials:
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)6 - (K^ -X^ ) (b /X +6 )U)(X a)2 1 2  1 2  2 1 2
(4.7)

+ (K^-X^ ) (b^ /X^+5^ )ll)(X̂  a) = 0,

where il)(x) = xJ^(x)/J^(x). The above result is in agreement 

with the form obtained by Eringen and Suhubi [8, §4.5].

To a zeroth order approximation (in Ka) we may set '^(x) = 2, 

then the relation (4.7) may be factorised to give

X^ (X^-X^ ) [ 2 ( 6 +a ) ( -X^ )+( 6 - 26 ) X^ ] = 0.3 1 2  1 5  4 2 1 5
2 2 2The factors X^ , X^-X^ both correspond to degenerate cases,

however, the remaining factor gives the result

X = 6 +6 /2~6 + T ,3 2 1
just as we had in (2.40). Higher approximations are, of 

course, obtainable; however, the calculations involved become 

exceedingly laborious.

§4.3 FLEXURAL WAVES IN INCOMPRESSIBLE MATERIALS.

For the flexural case the governing equations are given in

( 2 . 4 4 )-(2 . 46) which for ease of reference are rewritten below;

U +(U-V)/r+kW = 0, (4.8)r
for the incompressibility condition,

pufu = P +[(a + t )K^-6 /2r^]U+6 (V +V/r)/2r-K(5 +a )W , r 5 2 2 r 1 5  r

pufv = P/r-6 (U -U/r)/2r+6 (V +V /r-V/r^)/2 2 r 2 rr r
(4.9)

+ (a^+T ) K̂  V-K (6^+a^ )W/r,

pw^W = -KP-a (W +W /r-W/r^ ) + K̂  (t+6 - cl )W , 5 rr r 3 5

for the equations of motion, and
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-P+5^ (U-V)/r+K6^ W = 0,

V +(U-V)/r = 0, (4.10)r

-KU+W^ = 0,

(4.11)

for the boundary conditions on r=a.

Solving (4.9), (4.8), we find

U(r) = KLAJ^' (X̂  r )+BJMX^r )+CJ^ (Er )/r] ,

V( r ) = K [ AJ^ (X^r)/ r+BJ^ (X^ r ) / r+CJ^' ( Er ) ] ,

W(r) = AX^^J^ (X̂  r)+BX^J^ (X^r),

P(r) = -K[AX^ (X^r)+BX^b2J., (X^r)],

where A, B, C are constants, and

E^ = -2(6^ +a^ )X^ /ô^ . (4.12)

Inserting (4.11) into the conditions (4.10) and solving for A, 

B, C, we obtain for the flexural dispersion relation:

det(D^j) = 0, (4.13)
where

Dll ^ ®1 ' *̂ 22 ^ 2LUI(X^ a)-2] ,

= X^b^*X^6^, 0^^ = 2[2-w(Eal]-(ta|Z_

D, 3 = (6^+a^)X^, D3 , = (K^-X^ jLiiHX^a)-!],

D3 .I = 2 [41 (Xj a )-2] , -X^ ) [iplX̂  a )-1 ] , D33 = .

Setting ip=2 in (4.13) we calculate

X3 (X^-Xj ) (X-T) = 0, 
where again the first two factors are degenerate so that to

this approximation X=T, as expected. Higher approximations are

not easily obtainable.
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In the absence of the initial stress, from (2.92) with

(4.5), (4.6), (4.12), we have
2 2 2 2 2 X = - X = ( 1 - Z ) K ,  X = - K ,3 4 5

X^ = = (Z-l)K^, X^ = -K^, = 0, b^ = -ZK^/X^,

where Z = X/p, p the modulus of rigidity. The relations (4.7),

(4.13) now reduce to the unstressed dispersion relations

(1.9), (1.16) after the incompressible limit has been

applied.

§4.4 THE MOONEY MODEL.

To illustrate our results we again employ the Mooney model

(2.107) so that, from (4.5), (4.6), (4.12), with (2.109),

(2.111), we obtain
2 2 2 2 2 2 = YK , X^ = - Y K %  x' = -K ,J 4 3

X^ = -YK^ , X^ = -K^, E^ = - ( 1+Y~^ r)YK^ / ( 1+Y^ D  , (4.14)

b̂  = 0, X b^ = 2 ( Y-1 ) (L+Y~N) /Y,

wh ere
Y = Y^-Y( c/c^ )^ ( 1 + r  ) / ( 1+Y ^ D .  ( 4 . 1 5 )

2Of course the usual notations T = M/L, c = w/K, c^ = 2(L+M)/p 

still hold.

When Ka->«», we may reasonably expect to recover the surface 

wave velocity given by (3.19) (with y replacing a). Utilising 

the result (3.19) in (4.15) we find that Y is always positive, 

thus X^a, X^a will be purely imaginary in this particular 

case, so that, using the asymptotic expansion iy(ix)-»x, (4.7),

(4.13), the respective dispersion relations for longitudinal
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and flexural modes, may be factorised to give the form 

expressed by (3.18).

The results for longitudinal and flexural modes are

displayed in Figs. 4.1, 4.2 respectively. In both figures T is

fixed at 0.4 and for a range of values for the axial stretch y 

we plot the curves of (c/c^ )̂  against K a . An interesting 

feature to note in Figs. 4.1, 4.2 is that the Mooney model is

unstable only for points of compression. As Ka increases in 

size the curves of constant Y converge rapidly to the wave- 

velocity predicted by (3.19). In Fig. 4.3, again for F=0.4, we 

compare the results (2.112), (2.113), the respective longitu

dinal and flexural approximations for small Ka, shown in the

figure by the broken curves, with the exact dispersion

relation curves.

§4.5 LONGITUDINAL WAVES IN COMPRESSIBLE MATERIAL.

For a compressible cylinder under axial and lateral

tractions the governing equations are given by the equations 

of motion (2.68),

Pw^U = -R (U^^+U^/r-U/r^ )+a.̂  K^U-KCa^ )W^ ,
(4.16)

pw^W = K (a^+OL^ ) (U^+U/r )-a^ (W^^+W^/r )+K^ TW,

and the boundary conditions (2.69),

RU +SU/r+Ka W = 0 , r 2

-KU+W^ = 0,
satisfied on r = a .

The equations (4.16) may be solved to give

(4.17)
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Figure 4.1

against Ka for longitudinal 

vibrations in a uniaxially stressed Mooney cylinder 

with r=Q.4. Curves are plotted for selected values 

of the axial principal stretch y .
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Variation of (c/c^) against Ka for flexural

vibrations in a uniaxi all y stressed Mooney

cylinder with 1=0.4.
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Figure 4,3

For both longitudinal and flexural vibrations we 

contrast the exact dispersion curves (represented 

in the figure by solid cuives) against their 

corresponding approximations for slender cylinders 

(broken curves) for a Mooney cylinder with F = 0 .4.



U(r) - K[AJ^ (jj^r)+BJ^ ( r ) ] ,
(4.18)

W(r) = r )+Bp^c^ r ) ,

where A, B are constants,

c. = (a +a )K̂  = R(p^-p^), (i=1,2),1 2 b____________4 jL

 ̂ 3̂ “  ̂  ̂°̂2 "‘’‘̂5 ̂ (4.19)

= (X-T)K^/a r = (X-a )K^/r , = (a +a )^K^/Ra f3 5 4  7 5 2 5  5

2 2and are the roots of

4 2 2 2 2 2 2
\l - ( JJ^+p^+p^ ) p +P2 U4 = 0 . (4.20)

Inserting (4.18) into the conditions (4.17), and eliminating 

the unknowns A, B, we calculate for the dispersion relation:

( +c^ p^ ) ( R+a^c^ )U»( a ) - ( +c^ p^ ) ( R+%2 ̂ 2

+ 2a^ (c^pZ-c^p:) = 0,
(4.21)

and, if we specialise to the case of a uniaxially stressed 

cylinder, (4.21) agrees, apart from a difference in notation, 

with the relation obtained by Eringen and Suhubi.

For a slender cylinder, we may set Tp = 2 in (4.21) to obtain, 

after a little calculation and neglecting the solution 

p^ = p^f the result (2.76).

§4.6 FLEXURAL WAVES IN COMPRESSIBLE MATERIAL.

From §2.8, the governing equations are:

pw^U = -R(U +U /r-U/r^ )+a U/r^+a K^U+(a +S)V /r rr r 6 7 6 r

-(a +R)V/r^- (a +a )KW ,6 2 5 r
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ptü^V = -(a +S)U /r-(a +R)U/r^-a (V +V /r-V/r^) (4.22)G r G G rr r

+ RV/r^+a^ V - ( +a^ ) KW/r ,

piü^W = K(a +a ) ( U +ü/r-V/r )-a (W +W /r-W/r^) + TK^W,2 5 r 5 rr r

from the equations of motion (2.80) and,

RU^+S (U-V )/r+a^ KW = 0,

V^+(U-V)/r = 0 ,  (4.23)

-KU+W = 0, r

from the boundary conditions (2.81) satisfied on r=a.

For the general solutions of (4.22) we find 

U(r) = K[AJ^(p^r)+BJ^(p2r)+CJ^((r)/r],

V(r) = K[AJ^ (p^r) /r+BJ^ (p^r) /r+CJ^' (^r)], (4.24)

where
W(r) = -[Ac^ p^ ( P̂  r )+Bc^ p^ ( p̂  r ) ] ,

= (X-a^)K^/a^, (4.25)

then (4.24) with (4.23) provide the dispersion relation

det(D. ) = 0, (4.26)13
wh ere

Dll " ^5^2+*2^4' ^22 " 2[\l)(p^a)-2],

Di 2 = °5^i+*2^4' ^2 3 ^ 2[2-W((a)]-(Ca)2,

D i 3 = ( a ^ + a ^ ) p ^ ,  + c^  ̂[iy ( P^ a ) " 1 3 f

Dg ̂ = 2 [w(P2a)-2 ], = ( K^+c^ p^ ) [il)(p̂  a )-1 ] ,  ̂ = K̂  .

To a zeroth approximation we readily find the result (2.87)
2 2 2after disregarding the degenerate solutions  ̂ = 0, p^ = p ^ .

For an unstressed cylinder we have, using (2.92), (2.93)
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with (4.19), (4.20), (4.25),

\il = [Z-(L+2)]K^, = ( Z-1 ) / ( L + 2 ) , p^ = ( L+1 ) ̂ / ( L + 2 ) ,3 4 5

pf = = (Z-I)K^, P^ = [Z/(L + 2)-l]K^, = -1, Cg = K^/X^,

where Z = X/p, L = X/p, X, p Lamé constants; and the 

dispersion relations (4.21), (4.26) reduce to their unstressed

forms (1.9), (1.16) respectively.

§4.7 THE KO MODEL.

For the Ko model (2.114) we calculate, from (4.19), (4.25),

with (2.115),

= (T^+TglK^ = 3T^(P^-P^), = lY-T^IK^/T, ,

(4.27)

pf = (Y-3T, )K^/T , P^ = (Y-T )K^/3T . p^ = (T +T /3T, T ,3 3 3 4 1 1 5 1 3  1 3

with T^ , T^ defined by (2.116) and where we denote X/p by Y.

We consider first the marginal (Y=0) behaviour of a Ko 

cylinder placed under a uniaxial stress directed along the 

axis of the cylinder. From the dispersion relations (4.21), 

(4.26) with (4.27) we illustrate the marginal states in 

Fig. 4.4 for both longitudinal and flexural waves. We see 

that, unlike the Mooney cylinder, we have instability for both 

compressions and extensions. We see also that as Ka increases 

the curves approach the surface wave limit predicted in §3.3, 

shown in the figure by the two short broken lines.

For the non-marginal case, and denoting c^ = /(p/p), we plot 

in Figs. 4.5, 4.6 the wave-speed ratio (c/c^)^ against Ka for

various values of the axial stretch y for the longitudinal and 

flexural modes respectively. Again the values of the curves on
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Figure 4.4

Curves of marginal stability for a uniaxially stressed 

Ko cylinder. For large Ka the curves approach the limits 

predicted for surface waves, represented in the figure 

by the short broken lines.
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Figure 4.5

Variation of (c/c^)‘' against Ka for longitudinal

vibrations in a uniaxially stressed Ko cylinder.
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Figure 4.6

Variation of (c/c^)^ against Ka for flexural

vibrations in a uniaxially stressed ’Ko cylinder.
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Figure 4.7

For longitudinal vibrations in a uniaxially stressed 

Ko cylinder we contrast the exact dispersion curves 

(solid curves) with their corresponding approximations 

for slender cylinders (broken curves).
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Figure 4.8

For flexural vibrations in a uniaxially stressed Ko 

cylinder we contrast the exact dispersion curves (solid 

curves) with their corresponding approximations for 

slender cylinders (broken curves).



the right-hand-side of the figures are predicted by our 

results in §3.3.

Finally, we contrast our findings with the results

established in §2.10.3 for slender Ko cylinders. In Fig. 4.7, 

for selected values of y, we plot the wave-velocity (2.117), 

represented in the figure by the broken curves, and the curves 

calculated from the longitudinal dispersion relation (4,21). 

The corresponding result for the flexural case, using (2.118) 

and (4.26), are illustrated in Fig. 4.8.
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CHAPTER 5

A GENERALISATION OF KO'S STRAIN-ENERGY FUNCTION 

§5.1 INTRODUCTION.

In [9] Ko proposed for the elastic strain-energy function

W = +1^ /21g ], (5.1)

p constant; p>0, where Î  , , I^ are the invariants of the

left Cauchy-Green strain-tensor B, with a neutral stress-free 

configuration taken as the reference state. Originally 

intended to describe the behaviour of polyurethane foam rubber 

and similar materials, the form (5.1) has been used by many 

workers in a much wider context for illustrating various 

theoretical aspects of non-linear behaviour in elastic 

materials (see for example [8], [25]). When it is applied to

deformations in which the elastic strains are small, the usual 

linear behaviour for isotropic materials is recovered, with 

Lamé constants X, p both equal to p, so that Poisson's ratio cr 

is 1/4.

The purpose of this chapter is to introduce the model

stra in-energy function
—  1/2w = PCI^ +nl^ /2l^+(n-l )Î  /2] , (5.2)

P, n constants. The motivation to consider this alternative 

function lies in theoretical rather than experimental observa

tion. The difficulties inherent in problems of non-linear 

elastic behaviour severely limit the scope of investigations 

in terms of a general strain-energy function (see [39] for an 

example of such an investigation), and a reasonable line of 

development is to explore fully the potential of such models
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as are mathematically tractable and have physical relevance. 

The present model is proposed in this spirit. The following 

sections show that physically reasonable behaviour is 

manifested for a greater range of principal stretches than is 

the case for n=1, and this together with the avoidance of the 

constraint ct= 1/4 may have application.

In §5.2 of this chapter the model form (5.2) is examined in 

the light of various a priori constitutive inequalities that

have been proposed by other workers in attempts to guarantee

that the predicted behaviour is in accord with natural notions 

of what is physically reasonable. In §5.3 particular consider

ation is given to equilibrium configurations of plane strain 

and plane stress. Finally in §5.4 we turn to the dynamical

behaviour of the model and consider the vibrations of a 

stretched plate composed of elastic material for which (5.2) 

holds. In particular, the conditions for marginal stability

are established in terms of the parameters p, n and the

applied principal stretches , X ^ .

§5.2 BASIC CONSIDERATIONS.

For a clear account of the principles of non-linear elastic

ity the reader is referred to [40]. For a given deformation 

the stress-tensor P can be found from the equations

P = h^ I+h^ B+h_^ B ~ \  (5.3)

where I is the identity and h^ , h^, h_^ are the response

functions given by

where W = ÔW/ÔI and similarly for W , W . Now substitution 1 1  2 3
for W from (5.2) into (5.4), combined with (5.3), yields the
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stress-strain relations

P = PC I + { (n-1 ) B-nB"*' }] .

In the reference state B=I, 1^=1 and P vanishes for all n, 

so this state is indeed free from stress. For a small 

deformation B may be written as I+2e, where e is the usual 

strain-tensor. Taking e in its cartesian component form e  ̂

and retaining just first-order terms in these small quantit

ies, we find I =l+2e (using the summation convention) and3 k k
obtain

P. . = p[e,,6. +(4n-2)e. .3.ID kk ID ID
Thus in the linear small-strain approximation W , as given by

(5.2), leads to Lamé constants

& = P, p = ( 2 n - 1 ) p ,

and Young's modulus E and Poisson's ratio a are given by 

E = p [4n-1- 1/2n ], a = 1/4n.

Now physical considerations demand that p, the modulus of 

rigidity, is positive so (since p has been assumed positive in

(5.2)) we conclude that n>1/2. We impose this restriction on n 

in all that follows.

First consider a homogeneous finite deformation in which the

typical particle at ( ,  X ^ ) in the reference state moves

to (x̂  , x ^ , x ^ ) in the current state, where

X = X X ,  X = X X , X = X^X , (X >0), (5.5)1 1 1  2 2 2  3 3 3  1
a fixed system of cartesian axes being used throughout. The 

quantities X. are then the principal stretches. Since

the principal stresses are P , P and P where1 2  3
P^ = p[1+{(n-1)X^^-nX^^}/(X^X^X^)], (i=1,2,3). (5.7)

In the past, various restrictions have been placed upon W in 

order to ensure a physically reasonable response. Reviews of
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these restrictions and the interconnections between them are 

given in [41], [42]. Recently, however, Dunn [43] has

constructed an ingenious example to show that even when

several such requirements are met, the response is not always 

satisfactory.

We begin with the Baker-Ericksen inequality which is

satisfied if and only if the greater principal stress is

associated with the greater principal stretch, that is

(P. -P .) (X. -X .) > 0 if X. # X ..
1 3 1 3  1 3

From (5.7) it is easily seen that this is equivalent to the
2 -  2requirement that (n-1)X -nX shall be a monotonie increasing

function of X, for X>0. If n>1 this is certainly satisfied but

for 1/2 < n <1 we must have

^  ̂ ^g(n) = [ n / ( 1-n ) ] ̂ ^̂  .

In Table 5.1 the values of X (n) are shown for selected valuesB
of n .

T able 5. 1

For selected values of n, the values of (n ) shown are
the greatest values of the principal stretches if the

Baker-Ericksen inequality i s to hold .

n
( n ) =

0.5 0.5 
1.000 1.107

0 . 7 
1.236

0 . 
1 .

8
4 1 4

0 . 9 
1.732

n
( n ) =

0.92 0.94 
1.842 1.990

0.96
2.213

0 . 
2 .

98
646

1.00

Of course if the Baker-Ericksen inequality is imposed in the

strict sense that it has to be satisfied for all X , X , X >01 2 3
then the consequence is that n must be greater than or equal 

to unity. However, we adopt the viewpoint here that the 

inequality is to be interpreted as imposing joint demands upon 

n and the X ^ . Thus for 1/2<n<1 we must have X^<X^ (n) for
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i= 1 ,2,3, if the Baker-Ericksen inequality is to be satisfied.

Another restriction commonly encountered is the "strength

ened tension-extension inequality" which requires that each 

principal stress shall be a strongly monotone increasing 

function of its associated principal stretch. Again from (5.7) 

we see that this is always satisfied if n>1 but for 1/2<n<1 it 

requires that
1 /AX. < [3n/(1-n)] ' = (1.315...)X (n).1 B

Yet another such inequality is the ordered forces inequality 

which can be cast into the form

(P X X -P X X ) > 0 if X f X. .1 2 3 2 3 1 1 2
From (5.7) an easy calculation shows that this is equivalent

to the requirement that

Q = n-1 + n(xZ+x^ )/(X^ > o

for all values of X , X , X to be used in any calculation of1 2  3
physical relevance. Now the analysis is much more complicated

since, even if n>1, 0 is certainly negative for sufficienty

large X ^ ; but we may argue as follows. In the (X̂  , X ^ ) plane,

consider the rectangle bounded by the lines X^=0, X^=0,

X^=1+6, X2=1+0, (6>0). Then since 8 q /ô X^ and ôQ/dX^ are both

negative, the smallest value of Q (for a fixed value of X^ )

inside the rectangle is achieved at X =X =1+6 and there
1 2

-4Q=n-1+3n (1+5) -X^. Thus provided X^ does not exceed
“4n-1+3n(1+6) the ordered forces inequality will hold. Suppose 

we set

X^ = 1+6 = n-1+3n(1+6) ^

and determine 6 in terms of n, say 6 =6(n ) . Then if no

principal stretch exceeds X (n)=1+6(n) the ordered forces0
inequality will be obeyed. In Table 5.2 the values of X ^ (n ) 

obtained in this way are shown for selected values of n.
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Table 5.2

For selected values of n, the values of (n ) shown specify 
the size of the cube in (X^,X^ ,Xg) space, for the points of 

which the ordered forces inequality will certainly hold.

n = 0 . 5 0 . 6 0 ., 7 0 .. 8 0 . 9
\ (n) 1 .000 1.055 1 .. 1 06 1 ,. 154 1.200

n = 1 . 0 2 . 0 3 .. 0 4 ,. 0 5 . 0
\ (n) 1.246 1.707 2 ,.314 3 ,.126 4.055

n = 6 . 0 7 . 0 8 .. 0 9 ,. 0 10.0
X0 (n) 5.028 6.016 7 ,.010 8 ,. 007 9.005

It is to be emphasised that this is a sufficient condition, 

that is to say, the ordered forces inequality may well be 

satisfied at points in the (X^, X ^ , X ^ ) space outside this

cube of edge X^(n), but inside the cube it will certainly be

satisfied. We shall return to this point in §5.3.

Other restrictions upon n and the X^ may follow from a 

consideration of specific types of deformation. Consider an 

elastic bar, obeying (5.2), placed under uniaxial stress T 

parallel to the axis Ox^ . Then from (5.7) since both , P^ 

vanish

X +n-1 = nX ^ .
1 2

For 1/2<n<1 then, under compression, X^ becomes very large as 

X̂  approaches (1-n). We must conclude therefore that physical 

reality breaks down in our model before this stage in the

compressive case is reached. Also from (5.7), the stretch-

stress relation for bars under uniaxial stress is 

T = iT[ 1+{ (n-1 )X̂  -nX'^ }{ (X^+n-l ) ]  .

It is reasonable to require that for elastic deformations of 

this kind T shall be a monotonie increasing function of X^ . 

This is certainly true if n>1 but for 1/2<n<1 this imposes an 

upper limit to X ^ , denoted here by X^(n). Table 5.3 shows how
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(n ) depends upon n .

Table 5.3

For ^elected values of n, the values of X^(n) specify the 
greatest axial stretch if the axial principal stress is 

to be a monotone increasing function of the stretch.

n =
X ( n ) = u

0 . 5 
1.000

0 . 6 
1.17 6

0 . 7 
1.353

0 . 8 
1.576

0 . 9 
1.954

n = 0.92 0.94 0.96 0.98 1.00
Xu(n) = 2.081 2.252 2.509 3.003

Now consider the deformation produced by a hydrostatic 

pressure II, so that X^ =X^ =X^ ( =X say) in (5.7), where

n = p[nX -(n-1)X -1].

With p, denoting the densities in the current and reference

states respectively, this result gives the pressure-density 

relation
  «5/0 1 /Tn = P[n(p/pg) -(n-l)(p/p^) -1].

It is easily verified that for II>0, dll/dp will be positive for 

all n>1/2. If we demand that dll/dp shall be positive even when 

n is negative, then for n>1 we must have
1 /4X < X^(n) = [5n/(n-1)]

For n<1, however, this requirement is satisfied for all X.

The conditions to be imposed upon W are sometimes expressed 

[44] in terms of the principal wave speeds, that is, the 

speeds of waves propagated along the axes Ox^ , O x ^ , Ox^ as

perturbations of the primary state specified by (5.5). But

Truesdell [44] has established the universal relations

p a x ,  p ( x Z - \ Z  ) p ( x ^ - X j  )

Where c^^, c^^f  ̂ are the speeds of waves travelling

parallel to Ox^ , the first being the longitudinal principal
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wave speed and the others the speeds of the transverse

principal waves. Thus the requirement that c^^ shall be 

positive is equivalent to the strengthened tension-extension 

inequality, and the requirements that c^^ and c^^ shall be

positive is equivalent to the Baker-Ericksen inequality.

It is clear from the results above that the requirements 

commonly placed upon the strain-energy function W in order to 

achieve a physically reasonable response, when applied to

(5.2), distinguish sharply between the two cases n>1 and 

1/2<n<1. Thus the original Ko model (5.1) marks the boundary 

between them. If n>1 the Baker-Ericksen and the strengthened 

tension-extension inequalities will always be satisfied (so 

that the speeds of all principal waves are real), and in 

uniaxial stress the applied tension is a monotonie increasing 

function of the axial stretch. It is easily shown too that the 

ordered forces inequality holds not only for all states of

uniaxial tension or compression but also for all small

perturbations about these states. Further, for materials under 

hydrostatic compression dll/dp will always be positive (though 

this is also true if 1/2<n<1). Finally, the ordered forces 

inequality will certainly be satisfied if the biggest

principal stretch does not exceed X^(n), a quantity which

increases with n.

§5.3 TWO-DIMENSIONAL CONFIGURATIONS.

In this section we consider two-dimensional homogeneous 

configurations of plane stress and plane strain, with 

particular reference to the ordered forces inequality. In view 

of the results of §5.2 we shall impose upon W in (5.2) the
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requirement that n >1 . These configurations are of basic 

interest and importance in their own right; in particular, 

however, the study of plane stress is an essential preliminary 

to the analysis of plate vibratiohs given in §5.4.

Consider first a state of plane stress with regard to planes 

normal to OX^; we take the deformation specified in (5.5), 

therefore, and require in (5.7) to vanish. Thus , X^>0

and

X X = nX ^-(n-1)X . (5.8)1 2  3 3
If the ordered forces inequality is to be valid, then

(X^X^P -X X^P^)(X -X ) > 0 for X f X (5.9)2 3 1 1 3 2 1 2 1 2
and

P, ( X̂  -X^ ) > 0 for X f X ,1 1 3  1 3

PL (X -X ) > 0 for X^ t2 2 3 2 3

(5.10)

We are assuming in this section that n>  ̂ so the Baker-Ericksen 

inequality holds, so (5.10) is certainly valid. Easy 

manipulation of (5.9) shows that it is equivalent to the 

requirement that

X^ < n-l + nCX^+X^X^+X^I/CX^X^)^, (5.11)

where X^ is given in terms of X^ and X^ (and n) by (5.8). Take 

first the original Ko model with n=1. Then (5.8), (5.11) give

(X^X^)® <(X^+X^X^+X^)^. This inequality is clearly satisfied in 

the (X̂  , X ^ ) plane in the neighbourhood of the point N, where 

X^=X^=1. The situation is illustrated in Fig. 5.1. The 

bounding curve (X^X^)®= (X^+X^X^+X^)̂ , indicated in that figure 

by the label n=1 divides the positive quadrant of the (X^, X ^ ) 

plane into two parts. The ordered forces inequality will hold 

in the part including N and bounded by the axes, which are 

asymptotes to the bounding curve. This curve cuts the line
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X =X at the point A, where X =X =1.3904... .1 2  1 2
For n>1, however, the bounding curves are closed (see 

Fig. 5.1, where the curves for n=1.4, 1.45, 1.48, 1.49, 1.498

are shown). The ordered forces inequality holds o u tside  these 

closed curves, that is, it holds in an area containing N. As n 

approaches 1.498 (approximately) the bounding curve gets 

smaller and finally disappears. Thus for n > 1 .498. . . the 

ordered forces inequality holds for all homogeneous plane 

stress configurations.

Now consider states of plane strain with regard to planes 

normal to OX^. Thus we set X^=1 in (5.5) and then the ordered 

forces inequality will require for the in-plane forces

(X^ -X^ ) (X^-X^ ) > 0 for X^ f X^, (5.12)

and, taking into account the out-of-plane force X^X^P^, it 

requires also that

(P -X P )(X -1) > 0 for X 1,1 1 3  1 1
(5.13)

It is easily seen that (5.12) is equivalent to the requirement

G 5 ( n-2 ) (X̂  X^ ) ̂  + n (X^+X^ X^+X^ ) > 0 for X^, X^ > 0. (5.14)

For n>2, (5.14) is clearly satisfied. For a fixed value of n,

with Kn<2, the curve G = 0 in the ( X̂  , X^ ) plane has the

coordinate axes as asymptotes and is symmetrical about the
1 /4line X =X which it cuts at X =[3n/(2-n)] >1. For a given1 2  1

value of n, (1<n<2), at any point on the same side of the 

curve G=0 as N (1,1) the requirement (5.12) will be satisfied. 

However, this is not the end of the matter for (5.13), 

relating in part to the out-of-plane force, must also be taken 

into account. The requirements (5.13) may be cast into the 

form
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H E (n-1-X )+n(X ^+X ^+X  ̂) > 0,1 2 1 1 1

H = (n-1-X )+n ( X ^+X. ^+X \  > 0 2 1 2  2 2

(5.15)

Consider first Ko material (n=1 ) : the curve G = 0 is now the 

bounding curve only in the region 1<X^<1.839..., the remaining 

part of the boundary being taken up by the curves H^=0 and 

=0. Calculation reveals that this pattern, where the overall 

bounding curve is at some stage governed in turn by one of the 

three curves G=0, H^=o, H^^O, is repeated for all values of n

in the range 1<n< 1.745... . For n > 1.7 4 5. . . the bounding curve

may be constructed solely from the requirements (5.15). The 

bounding curves for n=1, 1.3, 1.5 and 1.8 are shown in 

Fig . 5.2.

§5.4 WAVES IN A STRESSED PLATE.

Consider a plate of elastic material, with a strain-energy 

function given by (5.2), unbounded in the Ox^ , Ox^ directions 

and having thickness 2H in the neutral state. The plate is put 

under large tensions or compressions directed along the Ox^ , 

Ox^ axes. The state now achieved is called the primary state 

and the stresses in this state are given the affix zero. 

Taking the principal stretches to be X ^ , X ^ , X ^ , we see that 

the deformation is given by (5.5), that the stresses p°^

due to the applied forces are P^, P^ given by (5.7) and that 

P^^=P^=0. Of course P? ̂  vanishes for i^j. In this state the 

upper and lower faces are x̂  = H = ± h .

The plate is now perturbed, the additional small deformation 

comprising a two-dimensional wave travelling along the 

direction of the principal axes Ox^ . The upper and lower faces
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are kept free from traction. Thus in the perturbed state (the 

displacement being taken parallel to the plane Ox^ x̂  )

^ » X3 /1 ) ,

Xg = ^ 2*2 ' (5.16)

X3 = '*3 ft),

where u, w have derivatives so small that their squares and 

products may be neglected. This additional deformation causes

small changes in the stresses, so now
0 *

'ij = "ij + ' i f
*the contribution being due to the perturbation. In

particular, from (5.2)-(5.4), (5.6), (5.16) it is readily

found that

^ 3  = »3l"l+*33"3' "l3 = <̂ “3 ■
where

a^^ = A C (n - 1 ) X ^ + 3 n X ^ ^ ], a^^ = A [-(n- 1)X ^ + n X ”^ ],

a = A [ - ( n - 1) X ^ + n X  ^], a = A [ ( n - 1 ) X ^ + 3 n X  ^],«il o « 5

a = A [ ( n- 1 )X^+nX^  ̂] , = A [ ( n- 1 )X ^ + n X ^  ̂  ,

A = p ( X̂  X^ X^ ) V

With the density in the primary state denoted by p, the 

equations of motion yield

-'"+*3 1 '"l3+'P"tt-9"l1-*33"33' =

(5.17)

For a solution of (5.17), we try

u = Acos h ( Ksx^ ) exp [ i (o)t-Kx^ )],

w = Bsinh ( Ksx^ ) expCi (U)t-Kx^ ) ] ,

Chapter 5 Page 106



2 2 2 and so obtain (with u /K denoted by c )

(pc^-a^ ̂ +as^ ) A - ( (3+â  ̂  ) isB = 0 , 

- ( a+a^ ̂ ) isA+ (pc^ -p + a^^ ŝ  ) B = 0 .
(5.18)

For non-trivial solutions in A, B in (5.18) the parameter s 

mu St satisfy

( pc^ -a^^+as^)(pc^-p+a^^s^) + (a+a^^)(lB+a^^)s^ = 0. (5.19)
2 2 2 This is a quadratic equation in s with roots ŝ  and s^, say.

It follows, therefore, that a solution for the deformation

field may be sought by setting

u = i(|3+a )[Ls cosh(Ks x )+Ms cosh(Ks x )], 13 1 1 3  2 2 3
(5.20)

w = [(pc^-a H-as*" ) Lsinh ( Ks X ) + (pc^-a +as^ ) Msinh ( Ks X ) ] ,11 1 1 3  1 1 2  2 3

in which the factor exp [ i (ujt-kx^ )] is suppressed and where L,

M are constants that must be found from the boundary

conditions. The upper and lower faces are free from traction

so (using the relation =p-a) we must have

u. = 0, a^ u +a _ w = 0  on x. = +h.3 1 3 1 1 3  3 3 3 —
These conditions yield two simultaneous equations in L , M and 

for a non-trivial solution

s tanh(Ks h )
--------------  = Q, (5.21)
ŝ  tanh ( Ks^ h )

where

Q _ ------ :----------------------------- ;------------- T-- (5.22)
[*3 1*1 -'PC -*1l'][=3l'0+*,3'+*33'PC

Equation (5.21) is the dispersion equation for the waves given 

by (5.20), usually called the longitudinal or extensional 

waves. By interchanging the hyperbolic functions cosh(x), 

sinh(x) throughout the analysis so far, we may obtain also the
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dispersion equation for flexural waves, that is,

s tanh(Ks h )
— --------    = 0. (5.23)
ŝ  t a nh ( K ŝ  h )

Our initial objective is to examine the conditions for 

marginal stability by studying (5.21), (5.23) with pc^ set 

equal to zero. From (5.21), (5.23)

+ 1
tanh ( Ks^ h ) 

tanh ( Ks^ h )
OS, (5.24)

with the upper sign for longitudinal waves, and the lower sign

for flexural waves, where from (5.19) for marginal stability
2 2 2 and s^ are the roots of the quadratic equation in s

^ ° " (5.25)
Consider first, however, the case of a very thin plate for

which kh is very small. Assuming for the solutions of
2 2principal interest that ŝ  remain finite as kh tends to

zero, and denoting E = (a^^/a^g), T = -(o-p+a^^-Ea^^ )/3,

(5.24) yields as an approximation for flexural waves

pc^ = -T( Kh )^+rC-1 er+5a-2Ea] ( Kh )̂  / 1 5a,

and for the longitudinal waves

pc^ = (a -Ea ) FE^ ( Kh )^-FE^ [ 1 er+5Ea -2a ] ( Kh )̂  / 1 5a .11 3 1 3 1 3 1  31
Thus the condition for the flexural mode to be in marginal

stability, in the limit as kh-+0, is simply that P̂  shall

vanish, that i s ,

Similarly the condition for the longitudinal mode in very thin 

plates to be in marginal stability is

*31-*11 =33 = (5 26 1
Equation (5.26), together with the condition that P^ shall

vanish, determine pairs of values (X̂  , X ^ ) giving marginal
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stability in the longitudinal mode. The results are presented 

in Fig. 5.3 for n = 1, 1.03, 1.10 and 1.30. The sight-line

=X^ has been included in this and later diagrams; its 

intersections with the appropriate n-curve give equibiaxial 

states of marginal stability. For these states all directions 

of wave-propagation are equivalent. In particular for the Ko 

model (n=1) it is found that for marginal stability in the 

longitudinal mode

X^ = 27X^ , X^ = /3 .

Consider now the case of a very thick plate for which in

(5.24) kh is taken to be very large. Without loss of 

generality ŝ  , s^ may be taken to have positive real parts. 

Then for the modes of interest, the hyperbolic terms in (5.38) 

may be replaced by unity so that both the flexural and

longitudinal modes are governed (to this approximation) by the 

same dispersion equation

Qs^ = s^. (5.27)

We proceed as before to obtain states of marginal stability by 

setting pc^ in (5.22) to zero, and using (5.25), (5.27). For

the Ko model this gives

X^ = ( S + /3 3 X^ = ( 6±/3 3 . (5.28)

The wide disparity of the numerical factors in (5.28) makes

for difficulties of presentation. In Fig. 5.4 we display for

n=1 the values (X̂  ,X^) obtained by choosing the upper sign in 

(5.28), in Fig. 5.5 those obtained from the lower sign. We

refer to these as the first and second family of solutions 

respectively, and for other values of n (n = 1.03, 1.10 and

1.30 in Figs. 5.4, 5.5) these families arise similarly.

Examination of Fig. 5.4 reveals the sensitivity of the 

solutions to changes in n , in particular for the equibiaxial
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case. The behaviour of the second families as shown in 

Fig. 5.5, however, is quite different. It may be seen that for 

those solutions arising from extension (X^>1) in the direction 

of wave-propagation a severe compression (X^<1) has to be 

imposed in the transverse direction. The remaining solutions 

correspond to compression in the direction of wave 

propagation; in particular for the equibiaxial case we see

that X =X «^0.65 for the values of n considered here.
1 2

We turn our attention now to consider the marginal behaviour 

of a plate placed under a uniaxial stress applied in the 

direction of Ox^ . From (5.24), we display for both

longitudinal and flexural waves, the marginal curves given in 

Figs. 5.6 and 5.7 respectively for selected values of n. The 

curves representing marginal states of compression (X ^ <i) are

insensitive to changes in the values of n considered here. For

marginal states of extension (X^> i) the behaviour is quite 

different and the curves produced are very sensitive to even 

small changes in n. On the right-hand-side of Figs. 5.6, 5.7

(Kh large) the curves close up as n increases (n>1) until 

finally these curves vanish for n=1.02212... (X^%4.1) leaving

no further points of marginal stability in the flexural case. 

We still have curves of marginal stability in the longitudinal 

case but these curves also vanish for n=1.03037... (X^%3.6).

The marginal behaviour of a plate under an equibiaxial 

stress produces curves similar to those found for the

uniaxially stressed plate; however, the curves produced are 

less sensitive to the value of n. Thus in the equibiaxial case 

for large values of Kh the marginal curves vanish for 

n=1.1 0689... (X^%3.9) and when Kh = 0 the curves for

longitudinal waves disappear for n=1.12684... (X^%3.4).
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Finally, we produce the graphs of pc^ against for a

uniaxially stretched plate and selected values of Kh. We 

consider the two cases where n=1, n=1.02 corresponding to 

Figs. 5.8 and 5.9 respectively. The points where the curves 

cross the X^-axis mark the points of marginal stability.
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THE INFLUENCE OF A PRIMARY STRESS UPON THE PROPAGATION OF 
SMALL-AMPLITUDE ELASTIC DISTURBANCES

by
PHILIP J. MYERS 

ABSTRACT
This thesis considers three problems in the field of 

elastodynamics.
The first concerns small-amplitude elastic disturbances in 

an infinite cylinder, a problem first investigated by 
Pochhammer [1] and Chree [2]. Our approach extends the results 
of Pochhammer and Chree by utilising a method of successive 
approximation through which the governing equations are solved 
to produce dispersion relations.

The second investigation, recently considered by Eringen and 
Suhubi [3], is of the propagation of elastic waves in a pre
stressed body, with particular reference to the circular 
cylinder and the half-space. The governing equations are again 
solved via successive approximation to give new and detailed 
results describing the wave motion.

The final investigation is of a compressible strain-energy 
function which is an extension of the Ko model. The model is 
examined in the light of various a priori inequalities, and is 
then used to obtain solutions to the problem of vibrations in 
a stressed plate.
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