Perceptions of Identity in Science Education (POISED): A study of some Secondary school students and teachers in England

Maarten Tas, Hugh Busher, School of Education, University of Leicester, UK

Paper given at: Network 19 (Ethnography and Education) European Conference on Education Research, Freistaat University of Berlin, Berlin, 13-15 Sept, 2011

Contact addresses

Dr. Maarten Tas, School of Education, University of Leicester, UK Email: <u>mprt1@leicester.ac.uk</u>

Dr. Hugh Busher, School of Education, University of Leicester, UK Email: <u>hugh.busher@le.ac.uk</u>

Acknowledgement of Funding:

We are grateful to the College of Social Sciences, University of Leicester, for making available to us a small amount of funding during the year 2010-2011 without which this pilot project would not have been possible.

Abstract

This paper is based on a study of the views about schooling, science education and science in their lives of some Year Ten (Y10) (15 year old) students and some of their teachers in two schools in the Midlands of England, one of which serves multicultural urban areas, and one of which serves a rural and largely mono-cultural area. It was carried out from 2010 -2011. Data was collected by online surveys and blogs from students and from students and teachers by face to face interviews. Early findings from students' questionnaire responses suggest among other things that students think good teachers are centrally to their learning but they appreciate a relaxed and collaborative approach to work supported by a variety of resources and pedagogic methods. They recognise the positive impact of science on their lives and generally don't perceive it as antithetical to their faith, where they have any.

Introduction

Students' voices are conceived as heterogeneous, not homogenous, and students are perceived as constructors of learning, in this case in science education, and co-constructors of education with their teachers. Student voice acknowledges the rights of students to influence the shaping of their own learning (Fielding, 2004) and helps to democratise schooling (Rudduck and Flutter, 2004). Students' involvement in decision-making about how learning is carried out can be seen as part of the enactment of children's rights to take part in decision making about their own lives under the UN Convention of the Rights of the Child (UNCRC) (Sebba and Robinson, 2011). 'Interaction with others' and 'iterative identity construction' (Giddens, 1991) are central theoretical constructs in people's self-development, of which learning forms a part.

Accessing students' perspectives on education is encouraged in England by central government (DCSF, 2008; QCA, 2006) because it fosters student engagement in learning and helps to develop a more inclusive school environment. Listening and talking to students about their perspectives on teaching and learning (Rudduck, 2004, Demetriou and Wilson 2010) helps teachers reflect critically on their practice and improves the quality of schooling (Flutter and Rudduck, 2004). Pupils' learning is significantly improved through engagement in group discussions (Bennett

et al., 2004). However, teachers' approaches to science education are influenced by their own identities as science educators and the policy and socio-cultural contexts in which they work.

Students' identities as science students are affected by various social factors such as ethnicity and cultural contexts. In an international study drawn from 20 countries on the Relevance of Science Education (ROSE), Schreiner and Sjøberg (2007) noted that the more developed the society the more negative was the response to a questionnaire item 'I like school science better than most subjects'. They concluded that in each country this was a reflection of values and identity of contemporary youth and that girls had a more overall negative response. For example, the average English boy scored 2.3 while girls scored 1.6. In Gujurat the average Indian girl scored 3.2 while boys scored 3.3. In the UK the majority of pupils do not want to continue studying sciences at KS5 and even KS4 because of their perceived difficulty (Spall et al, 2004). The focus on education in England and India in this study is because people of Indian origin form significant minorities in many cities in England. In Leicester 'approximately 40% of Leicester's population has an ethnic minority background and Gujarati Indians form 28% of the total population (LCC, 2008).

Although the study focuses on the views of some Year 10 (Y10) students and teachers involved in science education in schools in the Midlands of England, this paper focuses only on students' views on the teaching and learning of science and on the importance of science to their lives as they were expressed in the closed and open questions of the questionnaire. This study focuses on three main questions:

- In what ways do national policy frameworks and socio-cultural contexts influence teaching and learning in science education?
- How do students and teachers in secondary schools perceive the teaching and learning of science and themselves as science students or science educators?
- In what ways do secondary school students relate science education to society, community and home life?

Literature Review

An important element in the Key Stage 4 (KS4) Science curriculum in England (QCA, 2006) is the nature of science or 'How Science Works' (HSW). This presents and perceives science as 'being a practice which is both shaped by and which shapes society' (Osborne and Dillon 2010, p. 59). Essential elements of HSW are that the pupils learn to develop arguments, use scientific, technical and mathematical language, conventions and symbols and ICT tools. Pupils are also taught to consider how and why decisions about science and technology are made, including those that raise ethical issues, and about the social, economic and environmental effects of such decisions (QCA, 2006). These elements require students to 'talk science', helping students to learn how to communicate effectively and increasing their understanding of concepts (Howe at al., 1992). This fits with the view that curriculum opportunities should be made for students to discover real life moral issues embedded in all subjects and which are relevant to their own narrative experience (Deakin et al., 2004).

Student participation also needs to be fostered through positive attitudes or progressive practices. Inclusion, influence and strategies for consensual change have to be worked on (Taylor, 2002). Bennett et al. (2004) found that pupils' learning was significantly improved through group discussions based on conflicting views (a combination of existing views within the groups and views presented by a facilitator).

In the UK the majority of pupils don't want to continue studying science at KS5 and even KS4 because of a perceived difficulty; this is particularly because of an increased need of mathematics in Physics (Spall et al, 2004). One of the reasons for this dislike of science seems to be the perception by parents and students of the repetition of topics and the lack of time to discuss issues of more

contemporary relevance (Osborne and Collins, 2001). A complementary study of Osborne et al. (2003) focused on what ideas about science should be taught in school science. It appeared there was a clear consensus. Girls in particular have a negative attitude towards Science because of the way it was taught in school (Murphy and Whitelegg,2006). Their research into student identity found that deeply rooted ideas are embedded in British culture and society about the nature of science: the scientist being in a white coat, male dominated, empirical evidence, all based on data analysis. But science is a lot more than this. Unsurprisingly, girls don't necessarily want to be the kind of people who fit this stereotype of the scientist, especially in Physics.

School processes often serve to disempower students from levels of responsibility which they experience as a matter of course outside school. 'Out of school many young people find themselves involved in complex relationships and situations, and carry tough responsibilities, but that 'in contrast, the structures of secondary schooling offer, on the whole, less responsibility and autonomy than many young people are accustomed to...' (Ruddock and Flutter, 2004, 1). Where young people are consulted and have the opportunity to discuss public policy and issues that have direct relevance to their own lives, this can have the impact of serving as a catalyst for future community involvement, whilst raising their general levels of motivation and productivity (Potter 2002 and Clough and Holden 2002).

Although the idea that teachers should consult children in order to be better informed professionals has been increasingly recognised, education lags behind some other child services in terms of heeding what children have to say (Hancock and Mansfield, 2002). To legitimate stronger student influences on the construction of schooling, Ruddock and Flutter (2004) outline five 'advocacies'. These are: the importance of helping students to develop their identities and individual voices; the need for young people to be able to 'speak out' about matters that concern them; a recognition that in the task of change, students are the 'expert witnesses'; the need for policy-makers and schools to understand and respect the world of young people; and the importance of preparing young people to be citizens in a democratic society' (p. 101).

Learning through interactions needs to employ multiple social activity structures, encourage pupils to listen and learn from each other and engage pupils as critics of diverse scientific information (Linn and Hsi, 2000). Collaborative learning can be supported by computers (Bennett et al., 2004). Although high achievers become deeply interested and knowledgeable or skilled in a topic (Ito et al., 2008) through the uses of technology, there is much less evidence about what motivates young people and low users of technology (CIBER, 2008). In this study we intend to involve students of all different levels of attainment.

Methodology

This study, focused on 14-16 year old students' and their teachers' views on schooling, science education and science and society, used a linked case studies design in two Secondary schools in the Midlands of England in 2010–2011, one of which (InnerCity) serves multicultural urban areas, and one of which, Smalltown, serves a rural and largely mono-cultural area . The study was carried out from 2010-2011 with the support of a small amount of funding from the College of Social Science, University of Leicester. In the preceding pilot study in 2009-2010 students, teachers and web-technicians, helped to construct the project website, define ethical practice on it, construct the elements of the questionnaire, and pilot its practice (Tas and Busher, 2010). This encouraged students, teachers and other staff to take part-ownership of the project rather than merely being objects of study (Busher and James, 2007), enhancing the trustworthiness of the study.

The main platform for the project was a secure website to facilitate participants' asynchronous interaction through, for example, the completion of online questionnaires, the keeping of blogs and the use of discussion boards. The use of the website was important for

facilitating communication between busy students, teachers and researchers who could not always meet face to face. However, the website needed to be secure to protect participants from having their privacy breached (James and Busher, 2009).

Data was collected by online surveys and blogs from 83 female and male Year Ten (Y10, 14-16 year old) students, a year before taking their school leaving examinations (GCSEs) in England. There were 64 (37 girls and 27 boys) students involved in Smalltown, from a stratified random sample (16/64, 10 girls and 6 boys) of whom questionnaire data was analysed, and 19 students (11 girls and 8 boys) involved in InnerCity. Data was also collected by semi-structured face to face interviews from students in pairs (3 boys and 4 girls in Smalltown, 7 girls and 3 boys in InnerCity) and teachers singly about their views on the same topics. Participants were all volunteers who gave their informed consent to participate. In the case of students their parents also gave permission for them to participate.

The study used a mixed methods approach to investigate the research questions set out in the introduction to this paper. Data was collected by online questionnaires supplemented by face to face digitally recorded semi-structured interviews with students, interviewed in pairs, and teachers and by students' blog-diaries on students' changing thoughts on science and being involved in science lessons. Quantitative data was analysed by simple descriptive statistics. Qualitative data was analysed thematically.

Findings

About the schools and participants

Smalltown school	InnerCity school
Organisation: A large Comprehensive school	Organisation: A Comprehensive school with
(2100 pupils), including almost 800 students in a	1400 pupils that is oversubscribed. It is a Science
large sixth form (post-compulsory schooling). It	& Sports and Leadership Partner Specialist
is a specialist Technology College, so all pupils	College with a reputation for innovation and
take Design and Technology (D & T) at GCSE	success. Science students can follow an AQA
level. Science students can follow a Triple	Triple science programme.
Science <mark>course, 21st Century Science (OCR</mark>).	Catchment: A multicultural, multi faith area with
Catchment: A wide rural area. Families come	93.2% of students from ethnic minority
from a broad range of social and educational	backgrounds.
backgrounds. Compared with national figures,	Students: aged 11-16 years (no sixth form -post-
the proportion of students entitled to free	compulsory schooling). Most of the participants
school meals was very low.	in the study had high current and expected
Students: aged 14-18 years, predominantly from	grades for Mathematics (43%, A*/A), Science
white British. Only 7% of students identified as	(48%, A*/A) and D & T (15%, A*/A)
have learning difficulties and disabilities.	
Most of the participants in the study had high	
current and expected grades for Mathematics	
(49%, A*/A), Science (48%, A*/A) and D & T	
(46%, A*/A)	

Students' perspectives on learning/teaching and the impact of science on their lives

Numbers against categories in the tables below indicate the number of students who gave a particular answer. Quotations are examples of what students were saying under particular categories

Smalltown	InnerCity
friends & socialising: enjoy myself more when I	friends & socialising: meeting friends; friendly
have friends in lessons that I can share ideas	atmosphere
with	learning new & interesting things: In
<i>learning new & interesting things:</i> the challenge	(mentioned) subjects; extracurricular
of learning new things; learning things i wouldn't	relationships with teachers: teachers explain
find out about anywhere else,	things thoroughly
relationships with teachers: some teachers are	ways of learning: interactive ways teachers
ok	present; very useful to gain important skills such
ways of learning: lessons are fun; Art (3);	as communication skills and a lot of confidence
English - being able to write stories; the library;	(1); Independent study

What I enjoy about school / learning

What I like about our Science teachers

Smalltown	InnerCity
how they support/treat us: (5) always try their	how they support/treat us: (4) we can go to any
hardest to help me to learn / get the grades I	preferred teacher and ask for help
want; easy to approach if struggling; (6) They	encouragement and enthusiasm: (3) gives us
treat us responsibly, and speak to us clearly; they	continuous encouragement and rewards us for
are nice; kind; they're ok	achievements; they motivate us to work harder
encouragement and enthusiasm: (2) my biology	and they believe in us
teacher is good a teaching and gets along with	behaviour for learning: she can control the class
you. They are funny and jolly (2) but get through	time /availability: (3) willing to spend breaks and
the work and don't take things too far or let	lunches to help us secure and pass our grades;
students get carried away; [mine] worked for	The fact that she is always there, making time for
NASA (1)	us whenever needed
nothing / not much: (4) nothing, nothing really; I	
don't really like them that much; not much, I	
don't	

What I like: how science teachers teach me

Smalltown	InnerCity
Practicals: Personally I like how my science	Practicals: (5) many practicals which help us to
teachers use experiments to get across the	visualise concepts
point; (3) Questions and practical work (7) i like	Explanations: (6)she explains things to us in an
that we do practicals because I learn more easy	understandable way; things are explained clearly
this way; experiments	and gone over if they are hard to understand
Explanations: (3) they are very clear, how they	teaching & learning resources: (5)they provide us
talk/explain to the class and myself; not too	with resources that can help to boost our grades;
complicated	use the interactive whiteboards and active
supported independent study: (4) Independent	expressions; uses diagrams
study is also available, which is how I learn best;	
How they set a task and let us get on with it and	
come round to see how we are getting on	

What I like most about Science lessons

InnerCity
practicals: (6) I am a kinestetic learner, so i
prefer doing things with my hands
group / interactive activities (2) we get to share
our ideas with other classmates; it helps us to
learn
fun: (1) make the lessons fun so its easier to
understand
easy to understand: (2)
interesting: (5) it gave us an insight
variety: games that are associated to the lesson;
being able to makes notes effectively which help
to revise later on

What I dislike about science lessons

Smalltown	InnerCity
too much to take in (5) certain things are very	some topics: I find them hard to grasp; (1) genes
hard to understand meaning that it can put you	and chomosomes; (1) chemistry
off, but going to science clubs is helpful;	social aspects: (2) behaviour control; (4) she
sometimes, we get overpowered with	cannot control our class: i end up teaching
information	myself out of a book;
nothing (2)	teachers approaches to teaching: she just makes
too much theory/ writing (4) Sometimes a	us copy things off the board which isn't helping
specific topic can be very theory based; I don't	at all; one of my teachers doesn't explain
like lots of theory work; When we have supply	anything so i don't understand; Personally, I do
teachers. They don't have a clue about what to	not learn well from answering questions on a
do; it can be tedious, and i don't always learn	worksheet, I prefer to listen/discuss; I don't like
that way	copying from a board; Poor teaching material;
Other: practicals; seating plan	<pre>Poor teaching(3); (1) teachers are unorganised;</pre>
	Too much writing/ theory: being left to read
	textbooks: too much information/ theory
Who or what encourages you to learn	

Who or what encourages you to learn

Smalltown	InnerCity
Teachers: (10) teacher who have a laugh	Teachers: (4) Good relationships between
my friends: (10); makes me proud and my	teacher and individual students; teachers
parents proud when I do well;	encourage me to learn by giving praise; teachers
my parents, myself : (8)	who have life experaince
future / job opportunities : (11) e.g. good	friends and family: (2)
education /qualifications so I can get a good job;	<i>future / job opportunities:</i> (3) reputable and well
good grades; will have something to show for	paid job so that I can support my parents
the hours of hard work.	financially; knowing the benefits of learning in
	the long term
	aspects of pedagogy: (4) competitive things;
	Interesting things; History; good working
	environment /atmosphere

How Science is useful in my life

Smalltown	InnerCity
Health related: To stay healthy (3); Using science	Health related: To stay healthy (3); stem cell
for medical treatment (2) i learn more about the	research (3); Abortions (3); Learning about
human body and about some animals;	fertility as it is important to know about these
Enhances knowledge: makes me more sure of	kinds of issues for when you are older (1);
what I already know (1); answers questions I	Enhances knowledge: helps understand how
have (1); It is also useful to know about evolution	things work (2); why things happen (3); Solving
because it effects you (1);	problems (1); Genetic engineering (2); Cloning
it doesn't (1);	(2); Intensive farming (2); Technology (2); Global
	warming (1)
How science has changed life at home	

How science has changed life at home

Smalltown	InnerCity
medicine (1); Environment (1); technology (4); Electricity has revolutionised my home (1) Computers we use them everyday more or less; Mobile Phone's; I switch the TV off because it uses 50% electricity on standby (2); i save energy (1); it hasn't: (4); NA (2); don't know (2)	Health related: I was able to advise my mum on how to deal with treating diabetes (type 2); what requirements are needed in order to stay fit and healthy (3); affects social lives; in physics we learn about the centre of mass and this is a key concept in many sports and leisure activities like skiing; wondering about things we have learnt in school and making these skills and applying them to your real life
	<i>technology</i> (3); gaming; communication (radio, tv, computer); knowing about insulation (save money); <i>not alot (1)</i>

How science affects my beliefs

Smalltown	InnerCity
Belief in science theory than Christian (1); Big	Contradicts (3) : I think that science sort of
Bang theory God Created Universe; confirms	contradicts my religious faiths and beliefs, e.g.
what I know (1); its made me think about	the creation of the world;
whether god made the universe or scientific	makes me doubt (3) : not acceptable (1) e.g. it
happening made the universe (1); no comment	makes me doubt some things i learn however i
(3); not religious/aetheist (3); no effect (3)	have no solid opinion on how science affects

		religion as of yet; No effect (2)
--	--	-----------------------------------

Emergent conclusions

Students think good teachers are centrally to their learning but they appreciate a relaxed and collaborative approach to work supported by a variety of resources and pedagogic methods. This fits with some of the literature on the importance of teachers involving students as partners in learning.

Students recognise the positive impact of science on their lives and generally don't perceive it as antithetical to their faith, where they have any. Only some pupils from the urban school mention contradiction

References

Bennett, J., Lubben, F., Hogarth, S. and Campbell, B. (2004) A Systematic Review of the use of Small-Group Discussions in Science Teaching with Students Aged 11-18, and their Effects on Students' Understanding in Science or Attitude to Science. York: University of York, Department of Educational Studies, Research Paper

Busher, H (2009) Is it Ethnography? Some students' views of their experience of Secondary schooling in England, *ECER*, 2009

CIBER (2008) *Information Behaviour of the Research of the Future: A CIBER Briefing Paper for the British Library and JISC*. London: University College London

Clough, P and Holden 2002 *Education for Citizenship: Ideas into Action* London: RoutledgeFalmer,. Cremin, H. Mason, C. Busher, H. (2011) Problematising pupil voice using visual methods: findings from a study of engaged and disaffected pupils in an urban secondary school *British Educational Research Journal*, 37 (4) 585-603

Deakin C. R., Coates, M., Taylor, M., and Ritchie, S. (2004) A systematic review of the impact of citizenship education on the provision of schooling, in *Research Evidence in Education*, London: EPPI-Centre, Social Science Research Unit, Institute of Education.

Demetriou H and Wilson E (2010) Children should be seen and heard: The power of student voice in sustaining new teachers *Improving Schools* 13 (1) 2010

DCSF (2008) *Working Together: Listening to the voices of children and young people,* London: DCSF (<u>http://publications.education.gov.uk/eOrderingDownload/DCSF-00410-2008.pdf</u>) [accessed 30 Aug 2010]

Fielding, M. (2004) Transformative approaches to student voice: Theoretical underpinnings, recalcitrant realities, *BERJ*, 30, 2, 295-310.

Flutter, J. and Rudduck, J. (2004) *How to improve your school: Giving pupils a voice,* London: Continuum Books.

Giddens, A. (1991) *Modernity and self-identity: Self and society in the late modern age*, Cambridge: Polity Press

Hancock, R. & Mansfield, M. (2002) The Literacy Hour: a case for listening to children, *The Curriculum Journal*, 13, 2, 183-200

Howe C. J., Tolmie, A. and Rodgers, C. (1992) The acquisition of conceptual knowledge in science by primary school children: group interaction and the understanding of motion down an inclined plane, *British Journal of Developmental Psychology*, 10: 113-30

Ito, M., Horst, H.A., Bittanti, M., Herr-Stephenson, B., Lange, P.G., Pascoe, C.J. and Robinson L. (2008) *Living and Learning with New Media: Summary of Findings from the Digital Youth Project*. Chicago: The John D. and Catherine T. MacArthur Foundation

James, N and Busher, H (2007) Ethical Issues in Online Educational Research: Protecting Privacy, Establishing Authenticity in Email Interviewing *International Journal of Research and Method in Education* <u>30 (1)</u> April 2007, pages 101 - 113

James, N and Busher, H (2009) Online Interviewing, London: Sage

Kearney, C. (2003) *The Monkey's mask: Identity, memory, narrative and voice,* Stoke-on-Trent: Trentham Book.

LCC, Leicester City Council (2008) *The Diversity of Leicester: Summary of key facts* Leicester: Leicester City, UK

Linn, M.C. and Hsi, S. (2000) *Computers, Teachers, Peers: Science Learning Partners.* London: Erlbaum

Murphy, P. and Whitelegg, E. (2006) Girls in the Physics Classroom: A Review of Research of *Participation of Girls in Physics*. London: Institute of Physics.

Osborne, J. (2010) Science for Citizenship. In J. Osborne and J. Dillon (eds), *Good Practice in Science Teaching. What research has to say*. 2nd Edition. Abingdon: McGraw-Hill Open University Press Osborne, J. and Collins, S. (2001) Pupils' views of the role and value of the science curriculum: a focus-group study, *International Journal of Science Education*, 23(5): 441-68

Osborne, J., Ratcliffe, M., Collins, S., Millar, R. and Duschl, R. (2003) What 'ideas-about-science' should be taught in school science? A Delphi study of the 'Expert' community, Journal of Research in Science Teaching, 40(7):692-720

Potter, J. (2002) Active Citizenship in schools. London: Kogan Page.

Prosser, J. (2006) *Image-based Research: A Sourcebook for Qualitative Researchers,* London: RoutledgeFalmer

QCA (2006) (<u>http://curriculum.qca.org.uk/key-stages-3-and-4/subjects/key-stage-</u>

<u>4/science/programme-of-study/index.aspx</u>) [accessed 30 Aug 2010]

Rudduck, J. (2004). *Pupil Voice is Here to Stay* [online] http://www.qca.org.uk/11478.html Sebba, J. and Robinson, C. (2011) Evaluation of UNICEF UK'S Rights Respecting Schools Award paper presented to *British Educational Research Association Annual Conference*, Institute of Education, University of London, London UK, 7-9 Sept 2011

Schreiner, C. and Sjøberg, S. (2007) Science education and youth's identity construction – two incompatible projects? In D. Corrigan, J. Dillon and R. Gunstone (eds), *The Re-emergence of Values in the Science Curriculum*, Rotterdam: Sense Publishers

Spall, K., Stanisstreet, M., Dickson, D. and Boyes, E. (2004) The development of students' construction of biology and physics, *International Journal of Science Education*, 26 (7): 787-803 * Taylor (2002).....

Thomson P. and Gunter H. (2005) Researching students: voices and processes in a school evaluation Paper presented to the Symposium: "Speaking up and speaking out: international perspectives on the democratic possibilities of student voice " *AERA*, Montreal April 2005

Wall, K. & Higgins, S. (2009) Pupils' views of Templates: A visual method for investigating children's thinking, *ESRC Seminar on visual methods, University of Leicester 13 & 14 Jan 2009*