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Abstract

State estimation for nonlinear systems with Gaussian of@anssian noises, and with single and multiple sensors,
is presented. The key purpose is to propose a derivativefitamator using concepts from the information filter,
theH,, filter, and the cubature Kalman filter (CKF). The proposeth&stor is called the cubatutg,, information
filter (CH&IF); it has the capability to deal with highly nonlinear sysis like the CKF, like theH,, filter it

can estimate states with stochastic or deterministic spised similar to the information filter it can be easily
extended to handle measurements from multiple sensors.nfencally stable square-rootC,IF is developed
and extended to multiple sensors. ThE.QF is implemented to estimate the states of a nonlinear peenta
magnet synchronous motor model. Comparisons are made mihktanded., information filter.

Keywords: Nonlinear state estimation, Multi-sensor, Kalman filté, filter, Information filter

1. Introduction

State estimation for nonlinear systems is an active areesefarch and is essential for many real-life applica-
tions. One of the most preferred estimators for nonlinestesys is the extended Kalman filter (EKF), which is an
extended version of the classical Kalman filter [1, 2]. Othatable nonlinear state estimators include Gaussian-
mixture filters [3], Quadrature filters [4], Gaussian-Heerfilters [5], Fourier-Hermite filters [6], sliding mode
observers [7], central fference filters [8], particle filters [9, 10, 11], unscentedrifan filters (UKFs) [12, 13]
and cubature Kalman filters (CKFs) [14].

The EKF formulation is based on the first order Taylor's seapproximation of nonlinear state and mea-
surement models (Jacobians), and may not be suitableidbty nonlinear systems. For some models, such as
piecewise continuous nonlinear systems [6], where itfisodilt to obtain the Jacobians, derivative filters like EKF
should be avoided. Furthermore, apriori statistical krealgle of process and sensor noise is required for EKF.
Deterministic sigma-point filters like UKFs and CKFs, “orfpiele filters” can be used to estimate the states of the
nonlinear system without evaluating the Jacobians. But dKé& CKF have limited capability to deal with non-
Gaussian noises. Particle filters can handle non-Gaussises but their performance is dictated by the number
of stochastically selected samples or particles. For batteuracy more particles are required and hence they are
computationally expensive filters. More recenHy, filters and their variants [15, 16, 17, 18, 19, 20, 21, 22, 23, 2
have been investigated and utilised to deal with non-Gansmises. An extendédl, filter (EH.F) can be used
for nonlinear systems with non-Gaussian noise, but they daeobians. The CKF artdl, filters are combined
to handle nonlinear systems with unknown noise statisf6§ however this estimator cannot directly deal with
measurements from multiple sensors. In several real ligicions, where the measurements come frofiiedi
ent sets of sensors, Kalman filters are seldom used. Alteehatan algebraic equivalent form of Kalman filter, an
information filter is preferred over the standard Kalmarfiliue to its simpler update stage. For nonlinear state
estimation with multiple sensors, an extended informatfiieer (EIF) can be used [26]. However, the EIF is not
a derivative free filter and requires Jacobians during tleeliption and update stages and hence is not preferred
for highly nonlinear systems; and they have limited capightib handle non-Gaussian noise. A few derivative
free information filters like unscented information filt¢23], cubature information filters [28, 29], etc. have been
recently proposed for nonlinear systems with Gaussiaresold,, filters in the information domain have been
extended to nonlinear systems, but many of theldg [Es are not suitable for nonlinear systems where the non-
linearity is severe; this is due to the fact thatl s are Jacobian based filters. In [30], we presented anrearlie
version of this work consisting of basic cubatiitg information filter. In this paper, we present the cubatdre
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information filter ((H.IF) and its extensions, which have the capability to estntia¢ states of highly nonlinear
systems in the presence of Gaussian or non-Gaussian renisbsan handle measurements from multiple sensors.

The paper is structured as follows. Filtering preliminarége given in Section 2; theHC, IF is derived in
Section 3; the square-root extension of thid . OF is presented in Section 4; the applicability of multi-sen
CH,IF for state estimation of a permanent magnet synchronotsrisodescribed in Section 5; and conclusions
are given in Section 6.

2. Filtering Preliminaries

This section presents the most relevant filtering appraacteuired for development of theHG IF. The key
focus will be on the H.F, the EIF and the CKF. Note that these filters will only be fiyidiscussed here; for
more details see for example [2] and [26] fadEFs and EIFs, respectively, and [14] for the CKF.

2.1. Extended H Filter

In the last two decades there has been an increasing interesust filters usindH., theory and several
authors have come up withftérent forms of so called, filters [15, 16, 17, 31]. In this section a game theory
basedH., filter will be discussed which is mainly based on [2, 16, 32].

The nonlinear discrete plant and measurement models ag biv

Xk (X1, Uk-1) + Wic1 1)

ze = h(Xg Uk + Vv (2

where the state vector, control input and the measured tugpae denoted by, ux andz, respectively. The
functionsf andh are the nonlinear functions of states and control input® dlant and measurement noises are
represented bwy_; andvg. In most of the Kalman filtering approaches these noisessatgnaed as Gaussian and
have zero-mean, whereas in tHg filtering approaches they are not assumed to follow anyqaati probability
distribution. In this section, it will be assumed tlwat andvy can vary randomly or they can be deterministic, and
they can also have non-zero mean.

The cost function for thél, filter is of the form [2, 16],

N-1 o112
2o Xk = XullE,

o = o N 2 2
X0 = Roll2 , + Jpco(MKg, + + IIVidlZ 1)
0 k k

(3)

where the weighting matricd%, Qy, Rk, andL are symmetric positive definite weighing matrices chosethby
user based on the problem at hand. Note that this cost fumistislightly diferent from the one in [2, 16]. The
numerator of (3) is the norm of the state estimation errargdver if one has to estimate the linear combination
of states then the numerator of (3) has to be an error normiokarl combination of states as given in [2, 16];
which can however be absorbedbyin (3).

In the worst case noise and the initial conditions, the aithef., filter is minimize the state estimation error
in such a way that the performance measlyés bounded as

supl., < y? (4)

where ‘sup’ means supremum and the attenuation parametér.

Several solutions to thisl,, problem are available in [16], [17], [2], etc. HoweVver, instipaper the solution
given in [32] will be used, as thEl, filter structure in [32] closely resembles with Kalman filt€&or nonlinear
systems, an H.F can be used where the nonlinear functions are replacecehjatobians. Like EKF, anHE,F
can be expressed in two stages (prediction and update) [32].



Prediction stagein the EH.F:

The predicted state and predicted auxiliary matrix are:

Xigk—1 f(Xk-1k-1, Uk-1) (5)
Paker = VP ik VT + Q, (6)

whereVf is the Jacobian dfevaluated aky_1j-1.
Update stagein the EHF:

The updated state and updated auxiliary matrix are:

Xik = Xik-1 + Koo[Zk = h(Xigk-1, Uk)] )
Pik = Py + VAT RIVh = 72, (8)

wherel,, is then™" order identity matrixVh is the Jacobian df evaluated axyy_1, and
Ke = Pkt VAT [VhPg 1 VhT + R (9)

2.2. Extended Information Filter

The Kalman filter propagates the state and covariance nstviarious stages. However, in some applications
like multi-sensor state estimation, an information filten @lternate form of Kalman filter), is preferred due to its
simpler update stage to fuse the measurements from musgpigors [26]. For nonlinear systems, an EIF can be
used [26] where the information state vector and the inféionmamatrix are propagated rather than state vector
and covariance matrix. The information matrix is the ineav§the covariance matrix, and the information vector
is the product of information matrix and state vector.

Consider the discrete nonlinear process and measuremeanniys in (1) and (2). Unlike thid, filter formu-
lation, in EIF formulation the process and measuremen&isig_1 andvy, are assumed as Gaussian, and their
corresponding covariance matrices @ig; andRg. The prediction and update stages of the EIF are given below.

Prediction stagein the EIF:

The predicted information matrix and predicted informatiector are

_ _ -1
Ter = Peq=|VILlu VT + Qe (10)
T \k-1Xkjk-1 (11)

Skik—1
where
Xigk-1 = F(Xk-1jk=1, Uk-1)-

Update stagein the EIF:
The updated information vector and updated informatiorrimnate

Skk =  Skk-1t ik (12)
Ty = Tiper + Ik (13)
where
ik = VhTR vk + Vhxyk1] (14)
lk = Vh'R'Vh (15)
and
Vk = Zx — h(Xk|k,1, Uk). (16)

The state vector and covariance matrix at various stagesasily be recovered from the information vector and
information matrix [33]

Xik = ik \Skik (17)
Puk = Zkk\In (18)
wherel, is then™ order identity matrix and\’ is a left-divide operator.
3



2.3. Cubature Kalman Filter

The CKF based on the cubature rule is a promising tool to estirthe states of nonlinear systems with
Gaussian noises [14]. It$fecacy has been demonstrated on various applications andlrid fo be one of the best
methods for state estimation of nonlinear systems with Gansoise. It has an improved accuracy over the EKF
and the UKF.

Consider the discrete process and measurement models amq1(?) where the noiseg_; andvy are as-
sumed to be Gaussian and their corresponding covariane€g grandRg. The prediction and update stages for
the CKF are given below.

Prediction stagein the CKF:

The predicted state and the predicted covariance matrix are

2n

1 *
X1 = > ;Xi,km—l (19)
2n
Puk-1 = on ;Xfik|k—1X;il|k—1 - Xklk—lxl\k—l + Q-1 (20)
where
Xi*,k\k—l = f(Xi k-1k-1> Uk-1), (21)

Xik-1k-1 = VPk-1k-16i + Xk-1k-1, (22)

andé; is thei — th element of the following set

1 0 -1 0
0 : 0 :
(21 1 T P N N R PO . (23)
: 0 : 0
0 1 0 -1

Update stagein the CKF:

The updated state and the updated covariance matrix are

Xgk = Xk-1 + Ki(Zk — Zkk-1) (24)
Pak = Puke1 — KkPrzige-1K | (25)
where
Kk = PXZklk—lpgzlklk—l (26)
1 &
Pxzki-1 = on ZXi,k|k—1ZiTk\k—l - Xk\k—lz-lk-\k—l (27)
i1
1 2n
Pzzik-1 = 7 Z Zi,k|k—1ZIk|k_1 - Zk|k—1ZI|k_1 + Rk (28)
i1
and
1 &
Zg-r = oo Z Zi k-1 (29)
i
Zink-1 = hXixk-1> Ux) (30)
Xikk-1 =  VPuk-16i + Xigk-1- (31)



3. Cubature H,, Information Filters

The state estimators discussed in Section 2 have their owitsna@d demerits. For nonlinear systems, an
EH.F can estimate the states and has a capability to deal witkdizauas well as non-Gaussian noises, but it
needs the Jacobians evaluated at various stages whichst@ fier approximations of nonlinear functions. The
EIF can deal with multi-sensor state estimation with corapanally eficient update stage, but it can only deal
with Gaussian noise and similar to théiEF, the EIF also needs Jacobians at various stages. The CKF is a
derivative free and numerically stable state estimatonéorlinear systems; however, it assumes that the process
and measurement noises are Gaussian. In this section, altevediled the ‘cubaturél,, information filter’
(CHuIF) will be developed and will be extended to multiple sessdihe G, IF will have the advantages of the
three filters discussed in Section 2, such as it is derivéditee for nonlinear systems, can handle Gaussian and
non-Gaussian noises, and can easily be extended to mo#éisstate estimation.

Consider the discrete process and measurement modelsigiggnand (2). In this section, the noises are
assumed to be of generic nature and will have the same piepeftthe H.F noises discussed in Section 2.1,
such that they can be stochastic or deterministic and cam maw-zero mean, etc. The key idea of the IF is
to use the prediction step from the CKF in information formg o obtain the update step by fusing thid &,
the EIF and the CKF. First the extenddd information filter (EH.IF) will be derived and then the derivative free
CH.,IF will be developed.

3.1. Extended H Information Filter
Initialise the information vector and information matrifgo andsgo, fork = 1.
Prediction stagein the EH I F:
The predicted information matrix (inverse of the prediatedlariance matrix) and the corresponding information
vector are

-1
Ligk-1 [VfIE—ll\k—1VfT + Qk—l] (32)
Sk=1 = L iqk=1Xkk-1 (33)

where
Xigk-1 = F(L k-4 11\ Sk-11k-1, Uk-1)-
Note that the prediction step for theHEIF is the same as that of the one given in the EIF in SectioneX@pt
that Q,_, andRy are the weighting matrices rather than noise covarianchs. update stage, where the sensor
measurements are required, will b&eient from the traditional H.F or EIF given in Sections 2.1 and 2.2.
Update stagein the EH I F:

The updated information vector and information matrix are

Skk = Skgke1 F Ik (34)
]k\k = ]k\k—l + |k~ (35)
where
ik = vh' Ril [Vk + thk\k—l] (36)
lk = Vh'RVh-y7?I, (37)
and
Yk = Zx — h(Xk|k,1, Uk). (38)

Note that the main dierence between the update stages of the EIF and thdFEis the information matrix
contributionly.

For multi-sensor state estimation, the measurement camesdifferent sensors and can be fused to estimate
the state vectorf&ciently in the following way

D

Sk = Skk-1 + Z ik (39)
-1
D

Ty = Tik-1+ Z ks (40)
o1
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where

ik = Vh-jI:k\k—lRiﬁ[va + Vh}:k\k—lxk\kfl] (41)
ik = Vh{k\k—lRﬁVhImk_l -yl (42)
(43)

anthkakal represents thej*” sensor Jacobian dfjxx_1, andR| is the corresponding noise.

3.2. Cubature H Information Filter

This section presents the derivation of thid (F, and its extension to multi-sensor state estimation. Keye
idea is to fuse the CKF and theé-E IF to form a derivative free state estimator for nonlineastsyns. The B IF
can deal with multi-sensor for Gaussian and non-Gaussisesidut it needs the Jacobians which can then com-
promise the accuracy of state estimation. The linear emapggation property will be used to derive thelQF.
The derived filter will have the desired properties of the Ciie the H.IF like derivative free estimation, the
ability to handle Gaussian and non-Gaussian noises andseulsor state estimation. The prediction stage in the
CH..IF will be the same as that of the CKF given in Section 2.3. H@wgt will propagate the information vector
and the information matrix; for more details, see the praficstage in Algorithm 1.

The updated information vector and information matrix avex by

Skk = Skik-1 + iks (44)
Iy = Tyk-1+ k. (45)

The update stage for theHg, IF given in Section 3.1 will be explored to develop the updabege for the € IF.
Consider the linear error propagation property [25, 27 328 35]

Pukk-1 =~ VhPg1VhT, (46)
Puk_1Vh'. (47)

1R

I:>xzk|k—1

Pre-multiplying byP,;_, on both sides of (47) yields

vhT = P@&,lpxzklk—l,
= Jigk-1Pxziik-1- (48)
Using (48) in (36) and (37), we get
ik = Tik-1Pxakk-1R vk + P;I(—Zk‘k,lfl‘k,lxklk—l], (49)
I = Ik\kflPx;k|k71R§lPIZk|k,1fI‘k,1 — 7. (50)

The derivative free information matrix and cross error c@ece matrix, /-1 = P;‘&fl and Py,yk-1, can be
obtained from (20) and (27). The information contributiam$49) and (50), along with (44) and (45) represents
the update stage of theHG IF.

One of the key advantages of using information filters aré iglity to estimate #iciently the states with
multiple sensors. There are several applications wherépteusensors are preferred to estimate the states such
as the target tracking of a re-entry vehicle, where the @firstates are estimated using radars locatedia&rdit
altitudes [27], etc. The update step described above fo€thglF can easily be extended for multiple sensors.
The structure of the update stage for the multi-sendday,IE will be the same as that of theHg, IF given in
Section 3.1, but the information contribution factofisandl jx will be different, and they are derivative free. The
updated information vector and the corresponding infoimnanatrix for CH. IF with multiple sensors are

D
Sk = 5k\k—1+zij,k (51)
=
D
Ty = Ik\k—l+zlj,k, (52)
=
where
ik = Tikk1Pxoikk1REVik + PL et e Xkik-1] (53)
ik jKlk=1Fxz j,kk=1j | 1V k X2, j,klk=17 j,klk—17"klk=1
_ ‘ 1T T )
lixk = Lik-1Pxzikik-1R Pz k=1L jxk-1 =7 In (54)

The CH.IF and its extension to multiple sensors are summariseddgomithm 1.
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Algorithm 1 Cubature H,, Information Filter

Initialise the information vector and information matrigo andsgo for k = 1.
Prediction

1: Evaluatey; i1, X 1 aNdXi-1 as

Lk 1k-1\Inéi + (Zk-1k-1\Sk-1k-1)>

Xi*,k\k—l = fO¢iko1ke1o Uk-1)

Xik-1k-1

2
1O .
Xik-1 = %ZXi,k\k—l
i=1

where \’ is left-divide operator], is then™ order identity matrix, and; is given in (23).
2: The predicted information matrix and information vectae:ar

2n
1 * *T T
Tyk-1 n ZXi,k\k—]/\/i,k\k—l — Xigk-1Xkk-1 + Qi1 \In
i=1
2n
_ Der ;
k-1 = o0 Z/\/i,k—l\k—l :
i=1

M easurement Update
1: Evaluatey; _1, Zikk-1 andzxk-1 as

Xikk-1 = Tig-1\Inéi + Xigk-1
Zik-1 = h(xigr-1> Uk)
2n
1
k-1 = =— ) Zikk-1
Zn;

2: Evaluate
2n

_ T T
Pxzkk-1 = 5= ZXi,k\k—lZi,Mk—l — Xik-1Zyk—1
2n

3: The information contributions are

; -1 T T
ik = Tuk-1Pxark-1Re vk + Pogpr-17 k-1 Xkik-1]

_ —1pT T -2
Ik = Ik\k—lpxzklk—le Px;k|k—1jk\k—1_7 I,

wherey is the attenuation parameter.
4: Finally, the update information vector and information maare

Sk = Skgk-1 + ks
T Tigr—1 + Ik

M easurement Update for Multi-sensor State estimation

D
Sik-1 + Z ik
i1

Skk =
D
Iy = JTyk-1+ Z Ik
j=1
where
. — . . -1pT T -2
lix = IJsk\k—lpxll»klk—lRj,kszj,k|k—1Ij,k\k—l -7 Ih

=
|

, ‘ T T T
T kk-1Pxz jkik-1RGi[Vik + Pyz k17 j kk1Xkik-1] -
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4. Square-root Cubature H,, Information Filter

For implementation purposes the square-root version dilthes are preferred due to their enhanced numeri-
cal stability [2, 4, 20, 28, 25, 36, 37] and have been impleesince the Apollo mission [38]. In this section, a
numerically stable square-root version of thid IF will be developed. Square-root filters arise when covaréa
or information matrices are replaced by their square-ractofrs; these square-root factors are then propagated at
various stages. Square-root factors for the informatiotrimnand other matrices are defined such that

I = IJ! (55)
sz = szspl—zs (56)
R = RsR] (57)
Q = QQf (58)

wherels = P%, Pxzs = Pézs, Rsi = R%, andQ, = Q%. Note that these square-root factors are not unique and can
be calculated using flerent numerical techniques such as @R decomposition, etc. [36, 38, 39]. The square-
root CH,IF can also be written in the prediction and update stages prédiction stage in the square-rotiF
(SR-CH.IF) is the same as that of the square-root CKF [14], but therm&tion vector and the square-root of the
information matrix are propagated rather than the statecamdriance matrix.

The prediction stage of SRHL, IF has straight forward equations, please see the predistéme of Algorithm
2 for more details. However, the update stage is not stréaghiard and the hence the detailed derivation is given
in the below Theorem 1. The update stage for the square-tdgiEusing J-orthogonal transformation is given
in Theorem 1.

Theorem 1. The updated information vector and information matrix foe SR-CH,IF can be obtained from
T skk-1Pzzskk-1Rsik  Lskk-1 ¥ n ]@J =[ Isuk 0 O ’ (59)

TR T T
ZakRSl»k Sskk-1 0 S sk 0 %

wherex represent the terms which are irrelevant for the SR Zyx = v + P-zrzsklk—lj-ls:k|k—1xk|k—1 and®;is a
J-unitary matrix which satisfies

I, 0 0
©,0)=J and J={ 0 I, 0 |.
0 0 -l

Proof. Squaring the left hand side (LHS) of (59) yields

RL PT It RL.z
T skk-1Pzzskk-1Rsik  Tskk-1 ¥ 1n o| Sk ZZsKke1T skik-1 - Thsik ak
ZT Rsik 5T 0 ®J®J ngik_l 5S,klk—l 5 (60)
ak , sklk—1 ,y— ]In 0
Further, (60) can be written as
RL.PI T RL.z
TskcrPrskkaRsic Tsir vIp [ 0 O 9 auCzzgacrlsner Raidak
il Rsik o7 0 0 I 0 Is,kk—l Ssklk-1 P
ak I, sklk—1 0 0 _]In ,y— ]In 0
_ | (TskierPazskie 1R P sk 1 tien + Ziker =Y 72In) (2 sk 1Przski 1R Zak + L ski-19skik-1) 61)
* *
The covariance matrix in (46) can be factorised as
Pykki = VhPg 1Vh'
3 ps T
= Vth‘kflPk‘kfth
= (VhPsyk-1)(VhPspi-1)"
= Pzzsklk—lp-zrzsmk—l' (62)



ThePyzk-1in (47) can be represented in termsRf s k-1 andPgyk-1 as

.
Pxzkk-1 = Puk-1Vh

1 1

2

2 T
Pak1 (VAP 1)
PSklk—lp-zrstk—l (63)

Pre-multiplying the information matrix on both sides of #ferementioned equation yields

.
Dik-1Pxaik-1 = Lik-1Pskk-1Pzzs k-1
T T
I&k\kfljsklk—lpﬁk\kflpzzsklk—l
T
I&k\k—lpzzskm—l (64)

Substituting (64) in (61) yields

[ (Ik\k—lszk\k—lRElPIzk\k—lI-li—\k—l + Tike1 = ¥ 20n)  (Zuk-1Pxzkik-1Re  Zak + T skik-15skk-1) }
* *

| (T + Ik\k—lszk|k—1R§lF’Izk|k,lfl|k_l —¥72In)  (skk-1 + Luk-1Pxzkk-1Ry *Zak) 65
= . N . (65)
Now by squaring the right hand side (RHS) of the update sta¢®d), we get
T
_ T O 0 I&klk Sskik
T 0
[ sk ©F 0
| T G L skissic
B * *
= | e s (66)

By equating the corresponding elements of (65) and (66);hvborresponds to the LHS and RHS of (59), we get

Sk = Skk-1 F Ik (67)
Iy = Tik-1+ (68)
where
ik = Tik-1Pxakk-1Re vk + Pl—zk|k_1f1k—‘k_1xk\k—1] (69)
lk = Ik|k—1szk\k—lRElPIZk|k_1I|-<r|k_1 -y ?I. (70)

Note that the information vector and the information matyieen in (67) and (68), and the corresponding infor-
mation contributions in (69) and (70) for the SRACIF are the same as that of theHCIF in (44), (45), (49)
and (50). This proves that the update stage of the SRAE given in Theorem 1 is equivalent of theHG IF in
Section 3.2. O

The multi-sensor SR-E., IF will be the same as that of the prediction stage for thelsisgnsor SR-8,IF
(since the multiple sensors onlffect the update stage). The updated information vector dochiration matrix
of the multi-sensor SR-EIF can be obtained from

-1
T sik-1Pzz1skk-1Rsitk L skik-1Pzz2.skk-1Rsi2k .. L skk-1PzzD,skk-1Rsipk  Lskk-1 ¥ 1 @ = Ik 0 O
Za 1k Za 2k Za Dk Skik—1 0 S klk 0 x

(71)

The update stage for multi-sensor SREQF in (71) can easily be proved along the similar lines of theop of
Theorem 1. The SR4G.,IF for single and multi-sensors is given in Algorithm 2.

Apart from the SR-El,IF’s applicability for multi-sensor state estimation iretpresence of Gaussian and
non-Gaussian noises, the proposed numerically stable 3R can handle ill-conditioned covariance matrices,
has double order precision, suitable fali@ent real-time implementation, and can easily estimatestates with
near-perfect measurements.



Algorithm 2 Square-root Cubature H,, Information Filter

Initialise the information vector and square-root infotima matrix, 7 s oo andssgo for k = 1.
Prediction

1: BEvaluatey; _yy1, X{ k1 @NdXik-1 as

Xikeik-1 = (Fsk1k-1\In) & + (Fsk-1k-1\Ssk-1k-1),
Xi*,k\k—l = fOrik 1kt Uk-1)
2n
1 *
Xik-1 = EZXi,Mk—l
i=1

where \’ is left-divide operator], is then™ order identity matrix, and; is given in (23).
2: Evaluate the information matrix

T
Tsip-1 = [qr(xi*,k\k—l QS,kfl)T] \Hn
Ssiik-1 = L skik-1XKk-1
where 1
Xi*,k\k—l = ﬁ[/\/iklk—l — Rigk-1 Xz,k\k—l — Rigk-1 - - XZn,klk—l — Rigk-1-

M easurement Update

1: Evaluatey; yy_1, Zikk-1 andzi-1 as

Xikk-1 = L skk-1\In&i + Xiqk-1
Zixk-1 = Nxipp-1- Uk)

1 2n
Zgk-1 = %Zzi,k\k—l-
i

2: Evaluate
T T
Paskik-1 = [qr(zi,k\k—l Rsi,k)]

where 1
Zikk-1= —[Zl,klk—l — Zyk-1  Lowk-1— Zkk-1---  Lonkk-1 — Zk\k—l]-

V2n

3: For a single sensor, the square-root information matrix #aedcorresponding information vector can be
obtained from

T skk-1Pzzskk-1Rsik  Lskk-1 ¥ 1n } 0, = Isyk 0 O
T B T 1= T ,
Za,kRSLk S kk-1 0 Sskik 0 x

wherey is an attenuation paramete; is a J-unitary matrixzax = vx + Plzsklkflf qu_lxklk—la andx represent
the terms which are irrelevant for the SRACIF.
Measurement Update for Multi-sensor State Estimation

1: For multiple sensors, the square-root information matrg ¢ghe corresponding information vector can be
obtained from

-1
T sik-1Pzz1skk-1Rsitk L skk-1Pzz2skk-1Rsizk -+ Lskk-1Pzzp,skk-1Rsipk  Lskk-1 ¥ " In 0, = T sk
Za1k Zaok . ZaDk Skik-1 0 Sskik

00
0 %
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5. State Estimation of a Permanent Magnet Synchronous M otor

State estimation of a permanent magnet synchronous madw8NP using the proposed multi-sensor SR-
CHIF is considered in this section. Two cases are considenedfinst case deals with the state estimation of
PMSM in the presence of Gaussian noise and the second orevdahon-Gaussian noise. Consider the state
equations of a discrete nonlinear PMSM model [2, 28]

1Kot i1k + dt(=Rig + 24sing + Tugy)
ioke1 | iz + dt(—Fizk — 24 costy + Lupk)
w1 | wyg + dt(—%il,k sindy + g—aliz,k COSO4K — %
Ocr1 Ok + dt(wy)

wherei; andi, are the winding currents, is the speed andis the rotor position of the PMSM. The inputs to the

PMSM model are
Uik | | sin(Q002rk)
Uk | | cos(Q0027k)

It is assumed that the measured outputs of the PMSM modelarents

Yik | _ | ik
Yok 2k |

The PMSM parameters are chosen as [2]

Winding Inductance L =0.003H
Winding resistance R=1.9Q
Moment of inertia J=0.00018kg— n?

Codficient of viscous friction B =0.001Nms
Motor constant 1=0.1

and the sampling timdt is 0.001 s. The key objective of the SRHCIF is to estimate the speed, and the
rotor position g, using the current measurementsandi,, in the presence of Gaussian and non-Gaussian noises.
In the next few sections various comparisons of the prop&edH.,IF with classicalH,, filters are detailed.
First a comparison and simulation results of the classixt@reledH., filter and SR-CG1.IF with a single-sensor
measurement are given. Then simulation results for meftser based estimation for low and high Gaussian
noises are demonstrated. Finally, the simulations folowarestimators in the presence of non-Gaussian noise and
near perfect measurements are performed. Note that anpdtters been made to estimate the states using the
square-root unscentedi,, information filter with a set of tuning parameters as sugest [13],a = 1 x 1073,

B =2andk = 3-n=-1. In afew simulations, it was found that the state estimatédMSM, using a square-
root unscentedt., information filter, diverges and hence their responses arstmown here. This divergence is
possibly due to the unavailability of positive semi-definibatrices because of the negatvélowever, when the
parametek is selected as 0, the unscented filters boil down to the cubfitters, but note that the selection of

x = 0 in unscented filters cannot be justified theoretically othrmatically [14]. This instability of the unscented
filters is discussed in [14].

5.1. PMSM State estimation in the presence of Gaussiansoise

In this section, it is assumed that the process and measnot@wmises are Gaussian. For all the simulation re-
sults given in this paper, the initial conditions for thelsdtPMSM states and the information vector are randomly
selected fromV([0.1 01 01 01]7,0.1x lg).

5.1.1. Single-sensor state estimation

Two hundred Monte-Carlo simulations are performed usiegthgle-sensor SRHE,F and SR-El.IF. Note
that in this section the comparison has been made with tissicll square-root extendeétl, filter and the pro-
posed SR-E,IF. The process and measurement noise covariance maticsinfle-sensor state estimation are

chosen as
25 0 0 0

2
Q- 0 625 0 0 R — 25x%x 1076 0
-1 o 0 01 0 A 0 25x 107
0 0 0 1x10°
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(a) States and their estimates using single-sensor8&&nd () RMSE of speed using single-sensor SR:E and SR-
SR-CH..IF CH.IF

Figure 1: PMSM simulation results in the presence of Ganssise using single-sensor measurements

Simulation results of a typical run are shown in Figure 1. &btal states and their estimates using the SR-
EH.IF and SR-G.IF are shown in Figure 1a. The first two states, which are &smteasured outputs, and
their estimates using SRHg,F and SR-CEl, IF almost overlap. The estimated speed and rotor positioguke
SR-CHIF are very close to the actual states, whereas BR{E has large estimation errors. The root mean
square errors (RMSESs) for the speed using $R;E and SR-Ei.IF are shown in Figure 1b, where the SR-
EH.IF RMSE is larger than the SRHC, IF. The maximum RMSE error is 55.65 for the SRIEIF and 18.25 for
the SR-GHIF, and the average RMSE error is 10.19 for the SR<H- and 3.02 for the SR-B.IF.

5.1.2. Multi-sensor state estimation in the presence of@aussian noise
For multi-sensor state estimation, two sets of current@srare used to estimate the states. The first set is the
same as that of the single-sensor based estimation givesciio8 5.1.1 and for the second set the measurement
noise covariance is chosen as
R, — 5x 106 0
2" 0 5x 107

Simulation results of state estimation in the presencewf@aussian noise using the multi-sensor SR<H
and SR-C1.IF are shown in Figure 2. The actual states and their estinatiag the SR-H., IF and SR-&IF
are shown in Figure 2a. The estimates using the SRIE are more erroneous than the SRkQF. The root
means square errors (RMSESs) for the speed using BRHEand SR-®IF are shown in Figure 2b, where the
SR-HH. IF RMSE is larger than the SRHC, IF. The maximum RMSE error is 58.6 for the SRH4EIF and 4.7 for
the SR-GHIF, and the average RMSE error is 12.89 for the SR<H- and 1.21 for the SR-B.IF.
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(a) States and their estimates using SR and SR-Gl.IF  (5) RMSE of Speed using SRHE,IF and SR-G1.IF
Figure 2: PMSM simulation results in the presence of low Geumsnoise

5.1.3. Multi-sensor state estimation in the presence di{@gussian noise

In this section, the simulations are performed with highs§&an noise. Itis assumed that the sensors and plant
model used in this subsection are more prone to noise sutth#ianoise covariance matrices are assumed to be
12 times those given in Section 5.1.2. The process and nexasut noise covariance matrices for high-Gaussian
noise are chosen as:

75 0 O 0
| 0o 75 0 0 R — 3x10° 0 R, - 6x 10°° 0
Q=10 0o 12 0 L= 0 3x10° |° 27 0 6x 107

0 0 0 12x10°

Simulation results of a typical simulation run are shownigufe 3. The actual states and their estimates using the
SR-HH. IF and SR-GIF are shown in Figure 3a. Due to the noisy current senscdjrt two states (currents

of PMSM) in Figure 3a are noisy. The root means square erRMSES) for the speed using SRHEIF and
SR-CHIF are shown in Figure 3b, where the SREEIF RMSE is larger than the SR IF. The maximum
RMSE error is 58.95 for the SRHE,IF and 23.25 for the SR, IF, and the average RMSE error is 13.59 for
the SR-H,, IF and 4.09 for the SR-B..IF.

5.2. PMSM Multi-sensor State estimation in the presenceoofGaussian noises

In some of the control applications, the process and meammenoise can be approximated by a Rayleigh
probability distribution function [40]. Rayleigh noisercae generated using the Matlab command ‘raylrnd’. To
show the €icacy of the proposed method in the presence of non-Gaussis®, the simulations are performed
for low and high intensity Rayleigh noise.
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Figure 3: PMSM simulation results in the presence of highgse&un noise

5.2.1. Multi-sensor state estimation in the presence ofrlom-Gaussian noise

The process and measurement covariance matrices are taasarhlow-Gaussian noise in the Section 5.1.2,
however, the plant and measurements are corrupted by Bhyleise. Results of a typical simulation run using
the Rayleigh noise are shown in Figure 4. The actual statégteir estimates using the SRHEIF and SR-
CH.IF are shown in Figure 4a. In this case also the first two stamelstheir estimates using SRHEIF and
SR-CH.IF almost overlap and estimation errors of speed and rotsitipo using the SR-H.IF are large. The
RMSEs for the speed using SRHEIF and SR-GIF are shown in Figure 4b. The maximum RMSE error is
39.74 for the SR-HIF and 8.24 for the SR-B.IF, and the average RMSE error is 12.89 for the SR;H and
1.64 for the SR-El,IF.

5.2.2. Multi-sensor state estimation in the presence didmign Gaussian noise

The process and measurement covariance matrices are ta@sahigh-Gaussian noise in the Section 5.1.3,
however, the plant and measurements are corrupted by Bhyleise. Results of a typical simulation run using
the high intensity Rayleigh noise are shown in Figure 5. Tdteal states and their estimates using the $R;E
and SR-GIF are shown in Figure 5a. The first two states are seen to Isg dake to the high intensity Rayleigh
noise added to them. In this case also the first two statesheidestimates using SRHE,IF and SR-GH.IF
almost overlap and estimation errors of speed and rototiposising the SR-B.IF are large. The RMSEs for
the speed using SRHE,IF and SR-C1.IF are shown in Figure 5b. The maximum RMSE error is 48.37ter t
SR-HHIF and 32 for the SR-8,IF, and the average RMSE error is 12.82 for the SR;H- and 5.52 for the
SR-CHIF.
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(a) States and their estimates using SRsH and SR-C1.IF (b) RMSE of speed using SRHEIF and SR-Gl.IF
Figure 4: PMSM simulation results in the presence of low @aussian noise

5.3. PMSM multi-sensor state estimation in the presenceafperfect measurements

This section presents the simulation results with neafiepeplant and measurement models in the presence
of Gaussian and non-Gaussian noise. It is assumed thatrikerseprovide near-perfect measurements and the
process models are also almost perfect. The process andmaeest noise covariance matrices are chosen as:

1x10% 0 0 0
| 0 1x10? 0 0 |g _[1x10% 0 ] [1x10% 0
=l o0 0 1x10%® o [TT| g 1><1ch0]’ 2= 0 1x10%
0 0 0 1x10%

The square-root filter has inherent tendencyffedively estimate the states in the presence of near-penfkes-
surements, for more details please see [37], [38], [2],.[Zbhe estimated and actual states with near-perfect
measurements are very close for both the Gaussian and gayleises, and hence the plots of states and their
estimates are not shown. The root means square errors (RM@Hke speed in the presence of Gaussian and
non-Gaussian noise using multi-sensor SRs@F are shown in Figure 6. The RMSE errors for both cases are
very low. The maximum RMSE error is 3.18 for the Gaussianeaisd 3.19 for the Rayleigh noise, and the av-
erage RMSE error is 0.5816 for the Gaussian noise and 0.858@8¢ non-Gaussian noise respectively. Since the
SR-HH.IF is a Jacobian based approach, it is sometim@sdit to implement on various applications for exam-
ple when the Jacobians are ill-conditioned or for piecewim@inear systems. However, the proposed SR;&

is a Jacobian free approach and hence one can avoidffiveliies due to Jacobians. The simulation results in this
section show thef@cacy of the proposed SRHC,IF. It can be observed that the proposed filter has a tendency
to handle low and high Gaussian noise and as well non-Gaussiae. Further, the SR, IF can be handy in
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Figure 5: PMSM simulation results in the presence of high-8awissian noise

applications where the sensor-measurements are neacperhis shows the robustness of the proposed filter in
the presence of various types of noises. The simulations bagn performed using 64 bit Matlab on a computer
with the processor speed on 3.4 GHz. The average computatienfor the simulations given in this paper, are
3.1 s and 3.6 s for SRHE,IF and SR-C1.IF, respectively. However, it can be seen that in all the $tins the

‘ —— Gaussian Noise = = = Non—-Gaussian Noise‘
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Figure 6: PMSM simulation results in the presence of nediepeGaussian and non-Gaussian noise using multi-serisaHs, IF
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quality of the state estimate using the proposed $R;IE is far better than the SRHE,IF.

6. Conclusion

In this paper, we have developed a cubatdgeinformation filter and its square-root version. These psgub
estimators are further extended to handle measurementsiiirdtiple sensors. The cubatutle, information filter
is derived from the cubature Kalman filter, the extentiedfilter and from the extended information filter. The
desirable features of the cubatuitg information filter are:

1. Itis a derivative free (Jacobians evaluations are natired) state estimator for nonlinear systems.
2. It has computationally an easier measurement update.

3. It has a capability to handle Gaussian and non-Gaussiaasio

4. Itis easy to deal with measurements from single sensomaitiiple sensors.

5. For numerical accuracy, a square-root version of thetoubBl,, information filter can be used.

The dficacy of the square-root cubatufie, information filter is verified on a simulation example of ningdénsor
permanent magnet synchronous motor. The superior perfaenaf the cubaturél,, information filter over
extendedH., information filter in the presence of Gaussian and non-Gans®ises has been demonstrated.
The work in this paper can be further explored in variousdioms, for example in this paper the filter tuning
parameter§) andR are heuristically selected. A proper mechanism to tuneethegtrices can be incorporated

in the current framework to enhance further over-all robess and performance. Furthermore it is assumed that
there is no time delay due to the sensor dynamics. It wouldhtegdsting to extend the current work along the
lines of [22].
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