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Abstract

State estimation for nonlinear systems with Gaussian or non-Gaussian noises, and with single and multiple sensors,
is presented. The key purpose is to propose a derivative freeestimator using concepts from the information filter,
theH∞ filter, and the cubature Kalman filter (CKF). The proposed estimator is called the cubatureH∞ information
filter (CH∞IF); it has the capability to deal with highly nonlinear systems like the CKF, like theH∞ filter it
can estimate states with stochastic or deterministic noises, and similar to the information filter it can be easily
extended to handle measurements from multiple sensors. A numerically stable square-root CH∞IF is developed
and extended to multiple sensors. The CH∞IF is implemented to estimate the states of a nonlinear permanent
magnet synchronous motor model. Comparisons are made with an extendedH∞ information filter.

Keywords: Nonlinear state estimation, Multi-sensor, Kalman filter,H∞ f ilter, Information filter

1. Introduction

State estimation for nonlinear systems is an active area of research and is essential for many real-life applica-
tions. One of the most preferred estimators for nonlinear systems is the extended Kalman filter (EKF), which is an
extended version of the classical Kalman filter [1, 2]. Othernotable nonlinear state estimators include Gaussian-
mixture filters [3], Quadrature filters [4], Gaussian-Hermite filters [5], Fourier-Hermite filters [6], sliding mode
observers [7], central difference filters [8], particle filters [9, 10, 11], unscented Kalman filters (UKFs) [12, 13]
and cubature Kalman filters (CKFs) [14].

The EKF formulation is based on the first order Taylor’s series approximation of nonlinear state and mea-
surement models (Jacobians), and may not be suitable forhighly nonlinear systems. For some models, such as
piecewise continuous nonlinear systems [6], where it is difficult to obtain the Jacobians, derivative filters like EKF
should be avoided. Furthermore, apriori statistical knowledge of process and sensor noise is required for EKF.
Deterministic sigma-point filters like UKFs and CKFs, “or particle filters” can be used to estimate the states of the
nonlinear system without evaluating the Jacobians. But UKFand CKF have limited capability to deal with non-
Gaussian noises. Particle filters can handle non-Gaussian noises, but their performance is dictated by the number
of stochastically selected samples or particles. For better accuracy more particles are required and hence they are
computationally expensive filters. More recently,H∞ filters and their variants [15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
have been investigated and utilised to deal with non-Gaussian noises. An extendedH∞ filter (EH∞F) can be used
for nonlinear systems with non-Gaussian noise, but they need Jacobians. The CKF andH∞ filters are combined
to handle nonlinear systems with unknown noise statistics [25]; however this estimator cannot directly deal with
measurements from multiple sensors. In several real life applications, where the measurements come from differ-
ent sets of sensors, Kalman filters are seldom used. Alternatively, an algebraic equivalent form of Kalman filter, an
information filter is preferred over the standard Kalman filter due to its simpler update stage. For nonlinear state
estimation with multiple sensors, an extended informationfilter (EIF) can be used [26]. However, the EIF is not
a derivative free filter and requires Jacobians during the prediction and update stages and hence is not preferred
for highly nonlinear systems; and they have limited capability to handle non-Gaussian noise. A few derivative
free information filters like unscented information filters[27], cubature information filters [28, 29], etc. have been
recently proposed for nonlinear systems with Gaussian noises. H∞ filters in the information domain have been
extended to nonlinear systems, but many of these EH∞Fs are not suitable for nonlinear systems where the non-
linearity is severe; this is due to the fact that EH∞Fs are Jacobian based filters. In [30], we presented an earlier
version of this work consisting of basic cubatureH∞ information filter. In this paper, we present the cubatureH∞
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information filter (CH∞IF) and its extensions, which have the capability to estimate the states of highly nonlinear
systems in the presence of Gaussian or non-Gaussian noises,and can handle measurements from multiple sensors.

The paper is structured as follows. Filtering preliminaries are given in Section 2; the CH∞IF is derived in
Section 3; the square-root extension of the CH∞IF is presented in Section 4; the applicability of multi-sensor
CH∞IF for state estimation of a permanent magnet synchronous motor is described in Section 5; and conclusions
are given in Section 6.

2. Filtering Preliminaries

This section presents the most relevant filtering approaches required for development of the CH∞IF. The key
focus will be on the EH∞F, the EIF and the CKF. Note that these filters will only be briefly discussed here; for
more details see for example [2] and [26] for EH∞Fs and EIFs, respectively, and [14] for the CKF.

2.1. Extended H∞ Filter

In the last two decades there has been an increasing interestin robust filters usingH∞ theory and several
authors have come up with different forms of so calledH∞ filters [15, 16, 17, 31]. In this section a game theory
basedH∞ filter will be discussed which is mainly based on [2, 16, 32].
The nonlinear discrete plant and measurement models are given by

xk = f(xk−1, uk−1) + wk−1 (1)

zk = h(xk, uk) + vk (2)

where the state vector, control input and the measured outputs are denoted byxk, uk andzk, respectively. The
functionsf andh are the nonlinear functions of states and control inputs. The plant and measurement noises are
represented bywk−1 andvk. In most of the Kalman filtering approaches these noises are assumed as Gaussian and
have zero-mean, whereas in theH∞ filtering approaches they are not assumed to follow any particular probability
distribution. In this section, it will be assumed thatwk andvk can vary randomly or they can be deterministic, and
they can also have non-zero mean.
The cost function for theH∞ filter is of the form [2, 16],

J∞ =

∑N−1
k=0 ‖xk − x̂k‖2Lk

‖x0 − x̂0‖2P−1
0

+
∑N

k=0(‖wk‖2Q−1
k
+ ‖vk‖2R−1

k
)

(3)

where the weighting matricesP0, Qk, Rk, andLk are symmetric positive definite weighing matrices chosen bythe
user based on the problem at hand. Note that this cost function is slightly different from the one in [2, 16]. The
numerator of (3) is the norm of the state estimation errors, however if one has to estimate the linear combination
of states then the numerator of (3) has to be an error norm of a linear combination of states as given in [2, 16];
which can however be absorbed byLk in (3).

In the worst case noise and the initial conditions, the aim oftheH∞ filter is minimize the state estimation error
in such a way that the performance measureJ∞ is bounded as

supJ∞ < γ2 (4)

where ‘sup’ means supremum and the attenuation parameterγ > 0.
Several solutions to thisH∞ problem are available in [16], [17], [2], etc. However, in this paper the solution

given in [32] will be used, as theH∞ filter structure in [32] closely resembles with Kalman filter. For nonlinear
systems, an EH∞F can be used where the nonlinear functions are replaced by the Jacobians. Like EKF, an EH∞F
can be expressed in two stages (prediction and update) [32].
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Prediction stage in the EH∞F:

The predicted state and predicted auxiliary matrix are:

xk|k−1 = f(xk−1|k−1, uk−1) (5)

Pk|k−1 = ∇fPk−1|k−1∇fT +Qk, (6)

where∇f is the Jacobian off evaluated atxk−1|k−1.

Update stage in the EH∞F:

The updated state and updated auxiliary matrix are:

xk|k = xk|k−1 +K∞[zk − h(xk|k−1, uk)] (7)

P−1
k|k = P−1

k|k−1 + ∇hTR−1
k ∇h − γ−2

In (8)

whereIn is thenth order identity matrix,∇h is the Jacobian ofh evaluated atxk|k−1, and

K∞ = Pk|k−1∇hT [∇hPk|k−1∇hT + Rk]
−1. (9)

2.2. Extended Information Filter
The Kalman filter propagates the state and covariance matrixat various stages. However, in some applications

like multi-sensor state estimation, an information filter (an alternate form of Kalman filter), is preferred due to its
simpler update stage to fuse the measurements from multiplesensors [26]. For nonlinear systems, an EIF can be
used [26] where the information state vector and the information matrix are propagated rather than state vector
and covariance matrix. The information matrix is the inverse of the covariance matrix, and the information vector
is the product of information matrix and state vector.

Consider the discrete nonlinear process and measurement dynamics in (1) and (2). Unlike theH∞ filter formu-
lation, in EIF formulation the process and measurement noises,wk−1 andvk, are assumed as Gaussian, and their
corresponding covariance matrices areQk−1 andRk. The prediction and update stages of the EIF are given below.

Prediction stage in the EIF:

The predicted information matrix and predicted information vector are

Ik|k−1 = P−1
k|k−1 =

[

∇fI−1
k−1|k−1∇fT +Qk−1

]−1
(10)

sk|k−1 = Ik|k−1xk|k−1 (11)

where
xk|k−1 = f(xk−1|k−1, uk−1).

Update stage in the EIF:
The updated information vector and updated information matrix are

sk|k = sk|k−1 + ik (12)

Ik|k = Ik|k−1 + Ik. (13)

where

ik = ∇hTR−1
k

[

νk + ∇hxk|k−1
]

(14)

Ik = ∇hTR−1
k ∇h (15)

and
νk = zk − h(xk|k−1, uk). (16)

The state vector and covariance matrix at various stages caneasily be recovered from the information vector and
information matrix [33]

xk|k = Ik|k\sk|k (17)

Pk|k = Ik|k\In (18)

whereIn is thenth order identity matrix and ‘\’ is a left-divide operator.
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2.3. Cubature Kalman Filter

The CKF based on the cubature rule is a promising tool to estimate the states of nonlinear systems with
Gaussian noises [14]. Its efficacy has been demonstrated on various applications and is found to be one of the best
methods for state estimation of nonlinear systems with Gaussian noise. It has an improved accuracy over the EKF
and the UKF.

Consider the discrete process and measurement models in (1)and (2) where the noiseswk−1 andvk are as-
sumed to be Gaussian and their corresponding covariances areQk−1 andRk. The prediction and update stages for
the CKF are given below.

Prediction stage in the CKF:

The predicted state and the predicted covariance matrix are

xk|k−1 =
1
2n

2n
∑

i=1

χ
∗
i,k|k−1 (19)

Pk|k−1 =
1
2n

2n
∑

i=1

χ
∗
i,k|k−1χ

∗T
i,k|k−1 − xk|k−1xT

k|k−1 +Qk−1 (20)

where
χ
∗
i,k|k−1 = f(χi,k−1|k−1, uk−1), (21)

χi,k−1|k−1 =
√

Pk−1|k−1ξi + xk−1|k−1, (22)

andξi is thei − th element of the following set
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
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Update stage in the CKF:

The updated state and the updated covariance matrix are

xk|k = xk|k−1 +Kk(zk − zk|k−1) (24)

Pk|k = Pk|k−1 −KkPzz,k|k−1KT
k (25)

where

Kk = Pxz,k|k−1P−1
zz,k|k−1 (26)

Pxz,k|k−1 =
1
2n

2n
∑

i=1

χi,k|k−1Z
T
i,k|k−1 − xk|k−1zT

k|k−1 (27)

Pzz,k|k−1 =
1
2n

2n
∑

i=1

Zi,k|k−1Z
T
i,k|k−1 − zk|k−1zT

k|k−1 + Rk (28)

and

zk|k−1 =
1
2n

2n
∑

i=1

Zi,k|k−1 (29)

Zi,k|k−1 = h(χi,k|k−1, uk) (30)

χi,k|k−1 =
√

Pk|k−1ξi + xk|k−1. (31)
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3. Cubature H
∞

Information Filters

The state estimators discussed in Section 2 have their own merits and demerits. For nonlinear systems, an
EH∞F can estimate the states and has a capability to deal with Gaussian as well as non-Gaussian noises, but it
needs the Jacobians evaluated at various stages which are first order approximations of nonlinear functions. The
EIF can deal with multi-sensor state estimation with computationally efficient update stage, but it can only deal
with Gaussian noise and similar to the EH∞F, the EIF also needs Jacobians at various stages. The CKF is a
derivative free and numerically stable state estimator fornonlinear systems; however, it assumes that the process
and measurement noises are Gaussian. In this section, a new filter called the ‘cubatureH∞ information filter’
(CH∞IF) will be developed and will be extended to multiple sensors. The CH∞IF will have the advantages of the
three filters discussed in Section 2, such as it is derivativefree for nonlinear systems, can handle Gaussian and
non-Gaussian noises, and can easily be extended to multi-sensor state estimation.

Consider the discrete process and measurement models givenin (1) and (2). In this section, the noises are
assumed to be of generic nature and will have the same properties of the EH∞F noises discussed in Section 2.1,
such that they can be stochastic or deterministic and can have non-zero mean, etc. The key idea of the CH∞IF is
to use the prediction step from the CKF in information form, and to obtain the update step by fusing the EH∞F,
the EIF and the CKF. First the extendedH∞ information filter (EH∞IF) will be derived and then the derivative free
CH∞IF will be developed.

3.1. Extended H∞ Information Filter
Initialise the information vector and information matrix,I0|0 ands0|0, for k = 1.

Prediction stage in the EH∞IF:
The predicted information matrix (inverse of the predictedcovariance matrix) and the corresponding information
vector are

Ik|k−1 =
[

∇fI−1
k−1|k−1∇fT +Qk−1

]−1
(32)

sk|k−1 = Ik|k−1xk|k−1 (33)

where
xk|k−1 = f(Ik|k−1k−1|k−1\sk−1|k−1, uk−1).

Note that the prediction step for the EH∞IF is the same as that of the one given in the EIF in Section 2.2,except
that Qk−1 andRk are the weighting matrices rather than noise covariances. The update stage, where the sensor
measurements are required, will be different from the traditional EH∞F or EIF given in Sections 2.1 and 2.2.

Update stage in the EH∞IF:

The updated information vector and information matrix are

sk|k = sk|k−1 + ik (34)

Ik|k = Ik|k−1 + Ik. (35)

where

ik = ∇hTR−1
k

[

νk + ∇hxk|k−1
]

(36)

Ik = ∇hTR−1
k ∇h − γ−2

In (37)

and
νk = zk − h(xk|k−1, uk). (38)

Note that the main difference between the update stages of the EIF and the EH∞IF is the information matrix
contributionIk.

For multi-sensor state estimation, the measurement comes from different sensors and can be fused to estimate
the state vector efficiently in the following way

sk|k = sk|k−1 +

D
∑

j=1

i j,k (39)

Ik|k = Ik|k−1 +

D
∑

j=1

I j,k, (40)
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where

i j,k = ∇hT
j,k|k−1R−1

j,k[ν j,k + ∇hT
j,k|k−1xk|k−1] (41)

I j,k = ∇hT
j,k|k−1R−1

j,k∇hT
j,k|k−1 − γ

−2
In (42)

(43)

and∇hT
j,k|k−1 represents the ‘jth’ sensor Jacobian ofh j,k|k−1, andR j,k is the corresponding noise.

3.2. Cubature H∞ Information Filter
This section presents the derivation of the CH∞IF, and its extension to multi-sensor state estimation. Thekey

idea is to fuse the CKF and the EH∞IF to form a derivative free state estimator for nonlinear systems. The EH∞IF
can deal with multi-sensor for Gaussian and non-Gaussian noises, but it needs the Jacobians which can then com-
promise the accuracy of state estimation. The linear error propagation property will be used to derive the CH∞IF.
The derived filter will have the desired properties of the CKFand the EH∞IF like derivative free estimation, the
ability to handle Gaussian and non-Gaussian noises and multi-sensor state estimation. The prediction stage in the
CH∞IF will be the same as that of the CKF given in Section 2.3. However, it will propagate the information vector
and the information matrix; for more details, see the prediction stage in Algorithm 1.

The updated information vector and information matrix are given by

sk|k = sk|k−1 + ik, (44)

Ik|k = Ik|k−1 + Ik. (45)

The update stage for the EH∞IF given in Section 3.1 will be explored to develop the updatestage for the CH∞IF.
Consider the linear error propagation property [25, 27, 28,34, 35]

Pzz,k|k−1 ≃ ∇hPk|k−1∇hT , (46)

Pxz,k|k−1 ≃ Pk|k−1∇hT . (47)

Pre-multiplying byP−1
k|k−1 on both sides of (47) yields

∇hT = P−1
k|k−1Pxz,k|k−1,

= Ik|k−1Pxz,k|k−1. (48)

Using (48) in (36) and (37), we get

ik = Ik|k−1Pxz,k|k−1R−1
k [νk + PT

xz,k|k−1I
T
k|k−1xk|k−1], (49)

Ik = Ik|k−1Pxz,k|k−1R−1
k PT

xz,k|k−1I
T
k|k−1 − γ

−2
In. (50)

The derivative free information matrix and cross error covariance matrix,Ik|k−1 = P−1
k|k−1 andPxz,k|k−1, can be

obtained from (20) and (27). The information contributionsin (49) and (50), along with (44) and (45) represents
the update stage of the CH∞IF.

One of the key advantages of using information filters are their ability to estimate efficiently the states with
multiple sensors. There are several applications where multiple sensors are preferred to estimate the states such
as the target tracking of a re-entry vehicle, where the aircraft states are estimated using radars located at different
altitudes [27], etc. The update step described above for theCH∞IF can easily be extended for multiple sensors.
The structure of the update stage for the multi-sensor CH∞IF will be the same as that of the EH∞IF given in
Section 3.1, but the information contribution factorsi j,k andI j,k will be different, and they are derivative free. The
updated information vector and the corresponding information matrix for CH∞IF with multiple sensors are

sk|k = sk|k−1 +

D
∑

j=1

i j,k (51)

Ik|k = Ik|k−1 +

D
∑

j=1

I j,k, (52)

where

i j,k = I j,k|k−1Pxz, j,k|k−1R−1
j,k[ν j,k + PT

xz, j,k|k−1I
T
j,k|k−1xk|k−1] (53)

I j,k = I j,k|k−1Pxz, j,k|k−1R−1
j,kPT

xz, j,k|k−1I
T
j,k|k−1 − γ

−2
In (54)

The CH∞IF and its extension to multiple sensors are summarised in Algorithm 1.

6



Algorithm 1 Cubature H∞ Information Filter
Initialise the information vector and information matrix,I0|0 ands0|0 for k = 1.
Prediction

1: Evaluateχi,k−1|k−1, χ
∗
i,k|k−1 andxk|k−1 as

χi,k−1|k−1 =

√

Ik−1|k−1\Inξi + (Ik−1|k−1\sk−1|k−1),

χ
∗
i,k|k−1 = f(χi,k−1|k−1, uk−1)

xk|k−1 =
1
2n

2n
∑

i=1

χ
∗
i,k|k−1

where ‘\’ is left-divide operator,In is thenth order identity matrix, andξi is given in (23).
2: The predicted information matrix and information vector are:

Ik|k−1 =

















1
2n

2n
∑

i=1

χ
∗
i,k|k−1χ

∗T
i,k|k−1 − xk|k−1xT

k|k−1 +Qk−1

















∖

In

sk|k−1 =
Ik|k−1

2n

















2n
∑

i=1

χ
∗
i,k−1|k−1

















.

Measurement Update
1: Evaluateχi,k|k−1, Zi,k|k−1 andzk|k−1 as

χi,k|k−1 =

√

Ik|k−1\Inξi + xk|k−1

Zi,k|k−1 = h(χi,k|k−1, uk)

zk|k−1 =
1
2n

2n
∑

i=1

Zi,k|k−1

2: Evaluate

Pxz,k|k−1 =
1
2n

2n
∑

i=1

χi,k|k−1Z
T
i,k|k−1 − xk|k−1zT

k|k−1

3: The information contributions are

ik = Ik|k−1Pxz,k|k−1R−1
k [νk + PT

xz,k|k−1I
T
k|k−1xk|k−1]

Ik = Ik|k−1Pxz,k|k−1R−1
k PT

xz,k|k−1I
T
k|k−1 − γ

−2
In,

whereγ is the attenuation parameter.
4: Finally, the update information vector and information matrix are

sk|k = sk|k−1 + ik,

Ik|k = Ik|k−1 + Ik

Measurement Update for Multi-sensor State estimation

sk|k = sk|k−1 +

D
∑

j=1

i j,k

Ik|k = Ik|k−1 +

D
∑

j=1

I j,k,

where

I j,k = I j,k|k−1Pxz, j,k|k−1R−1
j,kPT

xz, j,k|k−1I
T
j,k|k−1 − γ

−2
In

i j,k = I j,k|k−1Pxz, j,k|k−1R−1
j,k[ν j,k + PT

xz, j,k|k−1I
T
j,k|k−1xk|k−1].
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4. Square-root Cubature H
∞

Information Filter

For implementation purposes the square-root version of thefilters are preferred due to their enhanced numeri-
cal stability [2, 4, 20, 28, 25, 36, 37] and have been implemented since the Apollo mission [38]. In this section, a
numerically stable square-root version of the CH∞IF will be developed. Square-root filters arise when covariance
or information matrices are replaced by their square-root factors; these square-root factors are then propagated at
various stages. Square-root factors for the information matrix and other matrices are defined such that

I = IsIT
s (55)

Pxz = Pxz,sPT
xz,s (56)

R−1 = RsiRT
si (57)

Q = QsQ
T
s (58)

whereIs = P
−T
2 , Pxz,s = P

1
2
xz,s, Rsi = R

−T
2 , andQs = Q

1
2 . Note that these square-root factors are not unique and can

be calculated using different numerical techniques such as theQRdecomposition, etc. [36, 38, 39]. The square-
root CH∞IF can also be written in the prediction and update stages. The prediction stage in the square-root CH∞IF
(SR-CH∞IF) is the same as that of the square-root CKF [14], but the information vector and the square-root of the
information matrix are propagated rather than the state andcovariance matrix.

The prediction stage of SR-CH∞IF has straight forward equations, please see the prediction stage of Algorithm
2 for more details. However, the update stage is not straightforward and the hence the detailed derivation is given
in the below Theorem 1. The update stage for the square-root CH∞IF using J-orthogonal transformation is given
in Theorem 1.

Theorem 1. The updated information vector and information matrix for the SR-CH∞IF can be obtained from

[

Is,k|k−1Pzz,s,k|k−1Rsi,k Is,k|k−1 γ−1
In

zT
a,kRsi,k s

T
s,k|k−1 0

]

ΘJ =

[

Is,k|k 0 0
s

T
s,k|k 0 ⋆

]

, (59)

where⋆ represent the terms which are irrelevant for the SR-CH∞IF, za,k = νk + PT
zz,s,k|k−1IT

s,k|k−1xk|k−1 andΘJ is a
J-unitary matrix which satisfies

ΘJΘ
T
J = J and J=





















In 0 0
0 In 0
0 0 −In





















.

Proof. Squaring the left hand side (LHS) of (59) yields

[

Is,k|k−1Pzz,s,k|k−1Rsi,k Is,k|k−1 γ−1
In

zT
a,kRsi,k s

T
s,k|k−1 0

]

ΘJΘ
T
J





















RT
si,kPT

zz,s,k|k−1IT
s,k|k−1 RT

si,kza,k

IT
s,k|k−1 ss,k|k−1

γ−1
In 0





















, (60)

Further, (60) can be written as

[

Is,k|k−1Pzz,s,k|k−1Rsi,k Is,k|k−1 γ−1
In

zT
a,kRsi,k s

T
s,k|k−1 0

]





















In 0 0
0 In 0
0 0 −In









































RT
si,kPT

zz,s,k|k−1IT
s,k|k−1 RT

si,kza,k

IT
s,k|k−1 ss,k|k−1

γ−1
In 0





















,

=

[
(Is,k|k−1Pzz,s,k|k−1R−1

k PT
zz,s,k|k−1IT

s,k|k−1 + Ik|k−1 − γ−2
In
) (Is,k|k−1Pzz,s,k|k−1R−1

k za,k + Is,k|k−1ss,k|k−1
)

⋆ ⋆

]

(61)

The covariance matrix in (46) can be factorised as

Pzz,k|k−1 = ∇hPk|k−1∇hT

= ∇hP
1
2

k|k−1P
T
2

k|k−1∇hT

= (∇hPs,k|k−1)(∇hPs,k|k−1)
T

= Pzz,s,k|k−1PT
zz,s,k|k−1. (62)
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ThePxz,k|k−1 in (47) can be represented in terms ofPzz,s,k|k−1 andPs,k|k−1 as

Pxz,k|k−1 = Pk|k−1∇hT

= P
1
2

k|k−1(∇hP
1
2

k|k−1)
T

= Ps,k|k−1PT
zz,s,k|k−1 (63)

Pre-multiplying the information matrix on both sides of theaforementioned equation yields

Ik|k−1Pxz,k|k−1 = Ik|k−1Ps,k|k−1PT
zz,s,k|k−1

= Is,k|k−1IT
s,k|k−1Ps,k|k−1PT

zz,s,k|k−1

= Is,k|k−1PT
zz,s,k|k−1 (64)

Substituting (64) in (61) yields
[
(Ik|k−1Pxz,k|k−1R−1

k PT
xz,k|k−1IT

k|k−1 + Ik|k−1 − γ−2
In
) (Ik|k−1Pxz,k|k−1R−1

k za,k + Is,k|k−1ss,k|k−1
)

⋆ ⋆

]

=

[
(Ik|k−1 + Ik|k−1Pxz,k|k−1R−1

k PT
xz,k|k−1IT

k|k−1 − γ
−2
In
) (

sk|k−1 + Ik|k−1Pxz,k|k−1R−1
k za,k

)

⋆ ⋆

]

. (65)

Now by squaring the right hand side (RHS) of the update stage in (59), we get

[

Is,k|k 0 0
s

T
s,k|k 0 ⋆

]





















IT
s,k|k ss,k|k
0 0
0 ⋆





















=

[

Ik|kIT
s,k|k Is,k|kss,k|k
⋆ ⋆

]

=

[

Is,k|k sk|k
⋆ ⋆

]

. (66)

By equating the corresponding elements of (65) and (66), which corresponds to the LHS and RHS of (59), we get

sk|k = sk|k−1 + ik (67)

Ik|k = Ik|k−1 + Ik. (68)

where

ik = Ik|k−1Pxz,k|k−1R−1
k [νk + PT

xz,k|k−1I
T
k|k−1xk|k−1] (69)

Ik = Ik|k−1Pxz,k|k−1R−1
k PT

xz,k|k−1I
T
k|k−1 − γ

−2
In. (70)

Note that the information vector and the information matrixgiven in (67) and (68), and the corresponding infor-
mation contributions in (69) and (70) for the SR-CH∞IF are the same as that of the CH∞IF in (44), (45), (49)
and (50). This proves that the update stage of the SR-CH∞IF given in Theorem 1 is equivalent of the CH∞IF in
Section 3.2.

The multi-sensor SR-CH∞IF will be the same as that of the prediction stage for the single sensor SR-CH∞IF
(since the multiple sensors only affect the update stage). The updated information vector and information matrix
of the multi-sensor SR-CH∞IF can be obtained from
[

Is,k|k−1Pzz,1,s,k|k−1Rsi,1,k Is,k|k−1Pzz,2,s,k|k−1Rsi,2,k . . . Is,k|k−1Pzz,D,s,k|k−1Rsi,D,k Is,k|k−1 γ−1
I

za,1,k za,2,k . . . za,D,k sk|k−1 0

]

ΘJ =

[

Is,k|k 0 0
ss,k|k 0 ⋆

]

(71)
The update stage for multi-sensor SR-CH∞IF in (71) can easily be proved along the similar lines of the proof of
Theorem 1. The SR-CH∞IF for single and multi-sensors is given in Algorithm 2.

Apart from the SR-CH∞IF’s applicability for multi-sensor state estimation in the presence of Gaussian and
non-Gaussian noises, the proposed numerically stable SR-CH∞IF can handle ill-conditioned covariance matrices,
has double order precision, suitable for efficient real-time implementation, and can easily estimate the states with
near-perfect measurements.
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Algorithm 2 Square-root Cubature H∞ Information Filter
Initialise the information vector and square-root information matrix,Is,0|0 andss,0|0 for k = 1.
Prediction

1: Evaluateχi,k−1|k−1, χ
∗
i,k|k−1 andxk|k−1 as

χi,k−1|k−1 =
(Is,k−1|k−1\In

)

ξi + (Is,k−1|k−1\ss,k−1|k−1),

χ
∗
i,k|k−1 = f(χi,k−1|k−1, uk−1)

xk|k−1 =
1
2n

2n
∑

i=1

χ
∗
i,k|k−1

where ‘\’ is left-divide operator,In is thenth order identity matrix, andξi is given in (23).
2: Evaluate the information matrix

Is,k|k−1 =

[

qr
(

X∗i,k|k−1 Qs,k−1

)T
]T
∖

In

ss,k|k−1 = Is,k|k−1xk|k−1

where

X∗i,k|k−1 =
1
√

2n

[

χ
∗
1,k|k−1 − x̂k|k−1 χ

∗
2,k|k−1 − x̂k|k−1 . . . χ

∗
2n,k|k−1 − x̂k|k−1

]

.

Measurement Update

1: Evaluateχi,k|k−1, Zi,k|k−1 andzk|k−1 as

χi,k|k−1 = Is,k|k−1\Inξi + xk|k−1

Zi,k|k−1 = h(χi,k|k−1, uk)

zk|k−1 =
1
2n

2n
∑

i=1

Zi,k|k−1.

2: Evaluate

Pzz,s,k|k−1 =
[

qr
(

Zi,k|k−1 Rsi,k
)T
]T
∖

where

Zi,k|k−1 =
1
√

2n

[

Z1,k|k−1 − zk|k−1 Z2,k|k−1 − zk|k−1 . . . Z2n,k|k−1 − zk|k−1

]

.

3: For a single sensor, the square-root information matrix andthe corresponding information vector can be
obtained from

[

Is,k|k−1Pzz,s,k|k−1Rsi,k Is,k|k−1 γ−1
In

zT
a,kRsi,k s

T
s,k|k−1 0

]

ΘJ =

[

Is,k|k 0 0
s

T
s,k|k 0 ⋆

]

,

whereγ is an attenuation parameter,ΘJ is a J-unitary matrix,za,k = νk+PT
zz,s,k|k−1IT

s,k|k−1xk|k−1, and⋆ represent
the terms which are irrelevant for the SR-CH∞IF.

Measurement Update for Multi-sensor State Estimation

1: For multiple sensors, the square-root information matrix and the corresponding information vector can be
obtained from
[

Is,k|k−1Pzz,1,s,k|k−1Rsi,1,k Is,k|k−1Pzz,2,s,k|k−1Rsi,2,k . . . Is,k|k−1Pzz,D,s,k|k−1Rsi,D,k Is,k|k−1 γ−1
In

za,1,k za,2,k . . . za,D,k sk|k−1 0

]

ΘJ =

[

Is,k|k 0 0
ss,k|k 0 ⋆

]
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5. State Estimation of a Permanent Magnet Synchronous Motor

State estimation of a permanent magnet synchronous motor (PMSM) using the proposed multi-sensor SR-
CH∞IF is considered in this section. Two cases are considered; the first case deals with the state estimation of
PMSM in the presence of Gaussian noise and the second one deals with non-Gaussian noise. Consider the state
equations of a discrete nonlinear PMSM model [2, 28]





























i1,k+1

i2,k+1

ωk+1

θk+1





























=































i1,k + dt(−R
L i1,k +

ωkλ

L sinθk + 1
L u1,k)

i2,k + dt(−R
L i2,k − ωkλ

L cosθk + 1
L u2,k)

ωk + dt(− 3λ
2J i1,k sinθk + 3λ

2J i2,k cosθ4,k − Fωk
J )

θk + dt(ωk)































wherei1 andi2 are the winding currents,ω is the speed andθ is the rotor position of the PMSM. The inputs to the
PMSM model are

[

u1,k

u2,k

]

=

[

sin(0.002πk)
cos(0.002πk)

]

It is assumed that the measured outputs of the PMSM model are currents
[

y1,k

y2,k

]

=

[

i1,k
i2,k

]

.

The PMSM parameters are chosen as [2]

Winding Inductance L = 0.003 H
Winding resistance R = 1.9Ω
Moment of inertia J= 0.00018kg−m2

Coefficient of viscous friction B = 0.001Nms
Motor constant λ = 0.1

and the sampling timedt is 0.001 s. The key objective of the SR-CH∞IF is to estimate the speed,ω, and the
rotor position,θ, using the current measurements,i1 andi2, in the presence of Gaussian and non-Gaussian noises.
In the next few sections various comparisons of the proposedSR-CH∞IF with classicalH∞ filters are detailed.
First a comparison and simulation results of the classical extendedH∞ filter and SR-CH∞IF with a single-sensor
measurement are given. Then simulation results for multi-sensor based estimation for low and high Gaussian
noises are demonstrated. Finally, the simulations for various estimators in the presence of non-Gaussian noise and
near perfect measurements are performed. Note that an attempt has been made to estimate the states using the
square-root unscentedH∞ information filter with a set of tuning parameters as suggested in [13],α = 1 × 10−3,
β = 2 andκ = 3− n = −1. In a few simulations, it was found that the state estimatesof PMSM, using a square-
root unscentedH∞ information filter, diverges and hence their responses are not shown here. This divergence is
possibly due to the unavailability of positive semi-definite matrices because of the negativeκ. However, when the
parameterκ is selected as 0, the unscented filters boil down to the cubature filters, but note that the selection of
κ = 0 in unscented filters cannot be justified theoretically or mathematically [14]. This instability of the unscented
filters is discussed in [14].

5.1. PMSM State estimation in the presence of Gaussian noises

In this section, it is assumed that the process and measurement noises are Gaussian. For all the simulation re-
sults given in this paper, the initial conditions for the actual PMSM states and the information vector are randomly
selected fromN([0.1 0.1 0.1 0.1]T, 0.1× I4).

5.1.1. Single-sensor state estimation
Two hundred Monte-Carlo simulations are performed using the single-sensor SR-EH∞F and SR-CH∞IF. Note

that in this section the comparison has been made with the classical square-root extendedH∞ filter and the pro-
posed SR-CH∞IF. The process and measurement noise covariance matrices for single-sensor state estimation are
chosen as

Q =





























6.25 0 0 0
0 6.25 0 0
0 0 0.1 0
0 0 0 1× 10−6





























, R1 =

[

2.5× 10−6 0
0 2.5× 10−6

]

.
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(b) RMSE of speed using single-sensor SR-EH∞F and SR-
CH∞IF

Figure 1: PMSM simulation results in the presence of Gaussian noise using single-sensor measurements

Simulation results of a typical run are shown in Figure 1. Theactual states and their estimates using the SR-
EH∞IF and SR-CH∞IF are shown in Figure 1a. The first two states, which are also the measured outputs, and
their estimates using SR-EH∞F and SR-CH∞IF almost overlap. The estimated speed and rotor position using the
SR-CH∞IF are very close to the actual states, whereas SR-EH∞IF has large estimation errors. The root mean
square errors (RMSEs) for the speed using SR-EH∞F and SR-CH∞IF are shown in Figure 1b, where the SR-
EH∞IF RMSE is larger than the SR-CH∞IF. The maximum RMSE error is 55.65 for the SR-EH∞IF and 18.25 for
the SR-CH∞IF, and the average RMSE error is 10.19 for the SR-EH∞IF and 3.02 for the SR-CH∞IF.

5.1.2. Multi-sensor state estimation in the presence of low-Gaussian noise
For multi-sensor state estimation, two sets of current sensors are used to estimate the states. The first set is the

same as that of the single-sensor based estimation given in Section 5.1.1 and for the second set the measurement
noise covariance is chosen as

R2 =

[

5× 10−6 0
0 5× 10−6

]

.

Simulation results of state estimation in the presence of low-Gaussian noise using the multi-sensor SR-EH∞IF
and SR-CH∞IF are shown in Figure 2. The actual states and their estimates using the SR-EH∞IF and SR-CH∞IF
are shown in Figure 2a. The estimates using the SR-EH∞IF are more erroneous than the SR-CH∞IF. The root
means square errors (RMSEs) for the speed using SR-EH∞IF and SR-CH∞IF are shown in Figure 2b, where the
SR-EH∞IF RMSE is larger than the SR-CH∞IF. The maximum RMSE error is 58.6 for the SR-EH∞IF and 4.7 for
the SR-CH∞IF, and the average RMSE error is 12.89 for the SR-EH∞IF and 1.21 for the SR-CH∞IF.
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(b) RMSE of Speed using SR-EH∞IF and SR-CH∞IF

Figure 2: PMSM simulation results in the presence of low Gaussian noise

5.1.3. Multi-sensor state estimation in the presence of high-Gaussian noise
In this section, the simulations are performed with high-Gaussian noise. It is assumed that the sensors and plant

model used in this subsection are more prone to noise such that their noise covariance matrices are assumed to be
12 times those given in Section 5.1.2. The process and measurement noise covariance matrices for high-Gaussian
noise are chosen as:

Q =





























75 0 0 0
0 75 0 0
0 0 1.2 0
0 0 0 1.2× 10−5





























, R1 =

[

3× 10−5 0
0 3× 10−5

]

, R2 =

[

6× 10−5 0
0 6× 10−5

]

.

Simulation results of a typical simulation run are shown in Figure 3. The actual states and their estimates using the
SR-EH∞IF and SR-CH∞IF are shown in Figure 3a. Due to the noisy current sensors, the first two states (currents
of PMSM) in Figure 3a are noisy. The root means square errors (RMSEs) for the speed using SR-EH∞IF and
SR-CH∞IF are shown in Figure 3b, where the SR-EH∞IF RMSE is larger than the SR-CH∞IF. The maximum
RMSE error is 58.95 for the SR-EH∞IF and 23.25 for the SR-CH∞IF, and the average RMSE error is 13.59 for
the SR-EH∞IF and 4.09 for the SR-CH∞IF.

5.2. PMSM Multi-sensor State estimation in the presence of Non-Gaussian noises
In some of the control applications, the process and measurement noise can be approximated by a Rayleigh

probability distribution function [40]. Rayleigh noise can be generated using the Matlab command ‘raylrnd’. To
show the efficacy of the proposed method in the presence of non-Gaussian noise, the simulations are performed
for low and high intensity Rayleigh noise.
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(b) RMSE of Speed using SR-EH∞IF and SR-CH∞IF

Figure 3: PMSM simulation results in the presence of high Gaussian noise

5.2.1. Multi-sensor state estimation in the presence of lownon-Gaussian noise
The process and measurement covariance matrices are the same as of low-Gaussian noise in the Section 5.1.2,

however, the plant and measurements are corrupted by Rayleigh noise. Results of a typical simulation run using
the Rayleigh noise are shown in Figure 4. The actual states and their estimates using the SR-EH∞IF and SR-
CH∞IF are shown in Figure 4a. In this case also the first two statesand their estimates using SR-EH∞IF and
SR-CH∞IF almost overlap and estimation errors of speed and rotor position using the SR-EH∞IF are large. The
RMSEs for the speed using SR-EH∞IF and SR-CH∞IF are shown in Figure 4b. The maximum RMSE error is
39.74 for the SR-EH∞IF and 8.24 for the SR-CH∞IF, and the average RMSE error is 12.89 for the SR-EH∞IF and
1.64 for the SR-CH∞IF.

5.2.2. Multi-sensor state estimation in the presence of high-non Gaussian noise
The process and measurement covariance matrices are the same as of high-Gaussian noise in the Section 5.1.3,

however, the plant and measurements are corrupted by Rayleigh noise. Results of a typical simulation run using
the high intensity Rayleigh noise are shown in Figure 5. The actual states and their estimates using the SR-EH∞IF
and SR-CH∞IF are shown in Figure 5a. The first two states are seen to be noisy due to the high intensity Rayleigh
noise added to them. In this case also the first two states and their estimates using SR-EH∞IF and SR-CH∞IF
almost overlap and estimation errors of speed and rotor position using the SR-EH∞IF are large. The RMSEs for
the speed using SR-EH∞IF and SR-CH∞IF are shown in Figure 5b. The maximum RMSE error is 48.37 for the
SR-EH∞IF and 32 for the SR-CH∞IF, and the average RMSE error is 12.82 for the SR-EH∞IF and 5.52 for the
SR-CH∞IF.
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Figure 4: PMSM simulation results in the presence of low non-Gaussian noise

5.3. PMSM multi-sensor state estimation in the presence of near-perfect measurements

This section presents the simulation results with near-perfect plant and measurement models in the presence
of Gaussian and non-Gaussian noise. It is assumed that the sensors provide near-perfect measurements and the
process models are also almost perfect. The process and measurement noise covariance matrices are chosen as:

Q =





























1× 10−20 0 0 0
0 1× 10−20 0 0
0 0 1× 10−20 0
0 0 0 1× 10−20





























,R1 =

[

1× 10−20 0
0 1× 10−20

]

,R2 =

[

1× 10−20 0
0 1× 10−20

]

.

The square-root filter has inherent tendency to effectively estimate the states in the presence of near-perfect mea-
surements, for more details please see [37], [38], [2], [25]. The estimated and actual states with near-perfect
measurements are very close for both the Gaussian and Rayleigh noises, and hence the plots of states and their
estimates are not shown. The root means square errors (RMSEs) for the speed in the presence of Gaussian and
non-Gaussian noise using multi-sensor SR-CH∞IF are shown in Figure 6. The RMSE errors for both cases are
very low. The maximum RMSE error is 3.18 for the Gaussian noise and 3.19 for the Rayleigh noise, and the av-
erage RMSE error is 0.5816 for the Gaussian noise and 0.5869 for the non-Gaussian noise respectively. Since the
SR-EH∞IF is a Jacobian based approach, it is sometimes difficult to implement on various applications for exam-
ple when the Jacobians are ill-conditioned or for piecewisenonlinear systems. However, the proposed SR-CH∞IF
is a Jacobian free approach and hence one can avoid the difficulties due to Jacobians. The simulation results in this
section show the efficacy of the proposed SR-CH∞IF. It can be observed that the proposed filter has a tendency
to handle low and high Gaussian noise and as well non-Gaussian noise. Further, the SR-CH∞IF can be handy in

15



0 1 2 3 4 5
−0.5

0

0.5

1

Time (s)

x 1 (
A

m
ps

)

 

 

Actual Multi−SREH∞IF Multi−SRCH∞IF

0 1 2 3 4 5
−0.5

0

0.5

1

Time (s)

x 2 (
A

m
ps

)

0 1 2 3 4 5
−100

−50

0

50

Time (s)

x 3 (
ra

ds
)

0 1 2 3 4 5
0

5

10

Time (s)

x 4 (
ra

d)

(a) States and their estimates using SR-EH∞IF and SR-CH∞IF

0 1 2 3 4 5
0

10

20

30

40

50

Time (s)

R
M

S
E

 

 Multi−SREH∞IF Multi−SRCH∞IF

(b) RMSE of Speed using SR-EH∞IF and SR-CH∞IF

Figure 5: PMSM simulation results in the presence of high non-Gaussian noise

applications where the sensor-measurements are near-perfect. This shows the robustness of the proposed filter in
the presence of various types of noises. The simulations have been performed using 64 bit Matlab on a computer
with the processor speed on 3.4 GHz. The average computationtime, for the simulations given in this paper, are
3.1 s and 3.6 s for SR-EH∞IF and SR-CH∞IF, respectively. However, it can be seen that in all the simulations the
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Figure 6: PMSM simulation results in the presence of near-perfect Gaussian and non-Gaussian noise using multi-sensor SR-CH∞IF
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quality of the state estimate using the proposed SR-CH∞IF is far better than the SR-EH∞IF.

6. Conclusion

In this paper, we have developed a cubatureH∞ information filter and its square-root version. These proposed
estimators are further extended to handle measurements from multiple sensors. The cubatureH∞ information filter
is derived from the cubature Kalman filter, the extendedH∞ filter and from the extended information filter. The
desirable features of the cubatureH∞ information filter are:

1. It is a derivative free (Jacobians evaluations are not required) state estimator for nonlinear systems.
2. It has computationally an easier measurement update.
3. It has a capability to handle Gaussian and non-Gaussian noises.
4. It is easy to deal with measurements from single sensor andmultiple sensors.
5. For numerical accuracy, a square-root version of the cubatureH∞ information filter can be used.

The efficacy of the square-root cubatureH∞ information filter is verified on a simulation example of multi-sensor
permanent magnet synchronous motor. The superior performance of the cubatureH∞ information filter over
extendedH∞ information filter in the presence of Gaussian and non-Gaussian noises has been demonstrated.
The work in this paper can be further explored in various directions, for example in this paper the filter tuning
parametersQ andR are heuristically selected. A proper mechanism to tune these matrices can be incorporated
in the current framework to enhance further over-all robustness and performance. Furthermore it is assumed that
there is no time delay due to the sensor dynamics. It would be interesting to extend the current work along the
lines of [22].
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